UNIVERSITAT POLITECNICA DE CATALUNYA

Programa de Doctorat:

Automatizaciéon Avanzada y Robotica

Tesis Doctoral

3D MAPPING AND PATH PLANNING FROM
RANGE DATA

Ernesto Homar Teniente Avilés

Director: Juan Andrade-Cetto

Desembre 2015

Universitat Politecnica de Catalunya
BarcelonaTech (UPC)

PhD program:
AUTOMATIZACION AVANZADA Y ROBOTICA

The work presented in this thesis has been carried out at:

Institut de Robotica i Informatica Industrial, CSIC-UPC

Thesis supervisor:
Juan Andrade-Cetto

(© Ernesto Homar Teniente Avilés 2015

Con amor y entrega para mi amada familia ...

With love and devotion to my beloved family ...

Agradecimientos

Me gustaria agradecer profundamente al Dr. Juan Andrade-Cetto por guiarme a través
del doctorado, por su apoyo, paciencia y sus consejos en los aspectos, académicos y
personales a lo largo del trayecto, y por su comprensién en los momentos dificiles. Sus
invaluables consejos, su continua ayuda y constante motivacién han dado como fruto

esta tesis.

Quiero agradecer a mis amigos en México, Emmanuel Navarro, Luis Antonio, Carlos
Roberto, Pamela, Carlos Souvervielle y Victor Osuna, quienes fueron testigos del iniciar
de mi partir y andadura; a las grandes amistades descubiertas durantes estos afos,
Agustin Ortega, Omar Mendez y Cecy, Kim Quadrado, Ben Piegne y Sonia, Charly
Anderle, Luis Yerman, Anais Garrell, Michael Villamizar, Blanca Vela, Alex Pérez y
Gina, y Carlos Paredes por su apoyo en lo académico y personal cuando las cosas no
fueron como era esperado, por las horas de conversaciones y momentos compartidos;
también agradezco a Leonel Rozo, Oscar Sandoval, Carlos Lara, Michael Hernandez,
Farzad Husain y Rafael Valencia, Carlos Moya, Paco Alarcén, Jordi Esteban y Gavin
Craig por su grata compaiiia. Gracias a mis amigos de la grupeta de ciclismo, deporte
integral en mi vida, Jordi, Hita, Dani, Xavi, Julia, Claudio, Pablo y Jack, que mediante
la convivencia sin que quizas lo supieran me han aportado fuerza para seguir. A mis
amigos de despacho, Eduard Trulls, Gonzalo Ferrer, Aleix Rull, Marti Morta y Alex
Goldhoorn. Agradezco a Saskia y familia Castro, por el tiempo compartido, apoyo
y afecto. Gracias también German, Jaume, Jesus, Rubén y Fabidn. De la misma
manera, muchas gracias a todos los que conforman el Institut de Robotica i Informatica
Industrial (CSIC-UPC). Quiero agradeces a todas a aquellas personas que con cuyos
consejos y comentarios han contribuido positivamente en mi vida personal y académica

durante este trayecto que fue mas largo de lo esperado. Asi mismo quiero agradecer

iv

por su apoyo al Dr. Alberto San Feliu.

Nancy gracias por estar a mi lado, por tu compaifiia en esas ultimas largas noches
de escritura, por lo que hemos compartido en el andar, que con tu apoyo y comprensién
me has motivado e impulsado a trabajar aiin en momentos dificiles, por lo que a dia a

dia aportas en mi vida, te amo enormemente.

Agradezco a mi amada familia, a mis padres Ernesto y Zaray a quienes amo incodi-
cionalmente, por su inestimable apoyo a lo largo de estos anos, gracias por sus consejos
en los momentos dificiles y a cualquier hora que los necesitara, gracias a mis hermanos,
Michel, Jessica, Luis Fernando y Erika, por su muestras de carino atin en la distancia,
los amo. Agradezco a mi abuelos Luis, Rosalba q.e.p.d., Josefina y mi padrino Carlos,
por su fé en mi. Al resto de familia muchas gracias por su inmenso e incondicional

amor. jGracias!.

Asi mismo me gustaria reconocer todas las fuentes de apoyo financiero que de una
manera u otra contribuyeron para el desarrollo de esta tésis. Las cuales incluyen: al
Consejo Mexicano de Ciencia y Tecnologia (CONACyT) con una beca para estudios
doctorales en el extrajero; a la Universitat Politecnica de Catalunya; al proyecto europeo
URUS (No. IST FP6 STREP 045062); los proyectos nacionales de investigacién PAU
y PAU+ (DPI2008-06022 y DPI2011-2751) y MIPRCV Consolider Ingenio (CSD2007-
018),financiados por el Ministerio Espanol de Economia; y al grupo consolidado de

Investigacion VIS (SGR2009-2013).

Acknowledgements

I would like to deeply thank Dr. Juan Andrade-Cetto for guiding me through my PhD
studies, for his support, patience and advice in all academic and personal issues along
the way, and for his understanding in difficult times. His priceless advice, continued

support and constant motivation have resulted in this thesis.

I want to thank my friends in Mexico, Emmanuel Navarro, Luis Antonio, Carlos
Roberto, Pamela, Carlos Souvervielle and Victor Osuna, who witnessed my depart
and the beginning of this walk; to the great discovered friendships during these years,
Agustin Ortega, Omar Mendez and Cecy, Kim Quadrado, Ben Peigne and Sonia, Charly
Anderle, Luis Yerman, Anais Garrell, Michael Villamizar, Blanca Vela, Alex Pérez and
Gina, and Carlos Paredes for their support in academics and personal issues when
things did not go as well as it was expected, for the hours of conversations and shared
moments; I also thank Leonel Rozo, Oscar Sandoval, Carlos Lara, Michael Hernandez,
Farzad Husain, Rafael Valencia, Carlos Moya, Paco Alarcén, Stephen and Gavin Craig
Jordi for his pleasant company. Thanks to my cycling group of friends, the sport of
my life, Jordi, Hita, Dani, Xavi, Julia, Claudio, Paul and Jack, that by riding together,
without knowing, they gave me strength to continue. My office friends, Eduard Trulls,
Gongzalo Ferrer, Aleix Rull, Marti Morta, and Alex. Thanks Saskia and the Castro
family, for the sharing time, support and affection. Thanks to German, Jaume, Jesus
Ruben and Fabian. Similarly, thank you very much to all who make part of Institut
de Robotica i Informatica Industrial (CSIC-UPC). I want to thank all those whose
advice and comments contributed positively in my personal and academic life during

this journey, which was longer than expected.

Nancy, thanks for being by my side, for your company in those last long writing

nights, for what we have shared in the walk. With your support and understanding

vi

you’ve inspired and encouraged me to work even in difficult moments, so that every

day you bring in my life, I love you tremendously.

I thank my beloved family, my parents, Ernesto and Zaray whom I love uncon-
ditionally, for their invaluable support over the years, thank you for your advice in
difficult times, anytime I needed it. Thanks to my sisters and brother, Michel, Jessica,
Luis Fernando and Erika for their displays of affection even in the distance, I love you.
I thank my grandparents Luis, Rosalba R.I.P., Josefina and my godfather Carlos, for
his faith in me. To the rest of the family thank you very much for your immense and

unconditional love. Thank you!.

Also I would like to acknowledge all sources of financial support that in one way
or another contributed to the development of this thesis. These include the Mexican
Council of Science and Technology (CONACYT) with a scholarship for PhD studies;
the Technical University of Catalonia; the European project URUS (IST FP6 STREP
No. 045062); the national research projects PAU and PAU + (DPI2008-06022 and
DPI2011-2751) and MIPRCV Consolider Ingenio (CSD2007-018), financed by the Span-
ish Ministry of Economy; and the consolidated group Research VIS (SGR2009-2013).

vii

Abstract

This thesis reports research on mapping, terrain classification and path planning. These
are classical problems in robotics, typically studied independently, and here we link such
problems by framing them within a common proprioceptive modality, that of three-
dimensional laser range scanning. The ultimate goal is to deliver navigation paths for
challenging mobile robotics scenarios. For this reason we also deliver safe traversable

regions from a previously computed globally consistent map.

We first examine the problem of registering dense point clouds acquired at different
instances in time. We contribute with a novel range registration mechanism for pairs
of 3D range scans using point-to-point and point-to-line correspondences in a hierar-
chical correspondence search strategy. For the minimization we adopt a metric that
takes into account not only the distance between corresponding points, but also the
orientation of their relative reference frames. We also propose FaMSA, a fast technique
for multi-scan point cloud alignment that takes advantage of the asserted point corre-
spondences during sequential scan matching, using the point match history to speed
up the computation of new scan matches. To properly propagate the model of the
sensor noise and the scan matching, we employ first order error propagation, and to
correct the error accumulation from local data alignment, we consider the probabilistic
alignment of 3D point clouds using a delayed-state Extended Information Filter (EIF).
In this thesis we adapt the Pose SLAM algorithm to the case of 3D range mapping,
Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and
where sensor data is solely used to produce relative constraints between robot poses.
These dense mapping techniques are tested in several scenarios acquired with our 3D

sensors, producing impressively rich 3D environment models.

The computed maps are then processed to identify traversable regions and to plan

viii

navigation sequences. In this thesis we present a pair of methods to attain high-level
off-line classification of traversable areas, in which training data is acquired automat-
ically from navigation sequences. Traversable features came from the robot footprint
samples during manual robot motion, allowing us to capture terrain constrains not
easy to model. Using only some of the traversed areas as positive training samples, our
algorithms are tested in real scenarios to find the rest of the traversable terrain, and are
compared with a naive parametric and some variants of the Support Vector Machine.
Later, we contribute with a path planner that guarantees reachability at a desired robot
pose with significantly lower computation time than competing alternatives. To search
for the best path, our planner incrementally builds a tree using the A* algorithm, it
includes a hybrid cost policy to efficiently expand the search tree, combining random
sampling from the continuous space of kinematically feasible motion commands with a
cost to goal metric that also takes into account the vehicle nonholonomic constraints.
The planer also allows for node rewiring, and to speed up node search, our method
includes heuristics that penalize node expansion near obstacles, and that limit the
number of explored nodes. The method book-keeps visited cells in the configuration
space, and disallows node expansion at those configurations in the first full iteration of
the algorithm. We validate the proposed methods with experiments in extensive real
scenarios from different very complex 3D outdoors environments, and compare it with

other techniques such as the A*, RRT and RRT* algorithms.

ix

Resumen

Esta tesis versa sobre la construccién de mapas, la clasificacion del terreno y la plani-
ficacién de rutas para aplicaciones de robdtica movil. Estos problemas, clasicos de la
robdtica, se estudian habitualmente de forma independiente, y en esta tesis, los abor-
damos de forma conjunta, vinculados a una modalidad sensorial concreta, la telemetria
laser tridimensional. El objetivo final es ofrecer rutas de navegacién para entornos

complejos de robdtica moévil.

Examinaremos en primer lugar el problema de cémo registrar en un sistema de refer-
encia comun, nubes de puntos densas adquiridas con un telémetro laser tridimensional.
Contribuimos con un novedoso mecanismo de registro de nubes de puntos jerarquico
que analiza la correspondencia punto a punto en las capas de menor resolucién y la
correspondencia punto a plano en capas con mas nivel de detalle. Para la minimizacién
de la funcién de coste, adoptamos una medida que tiene en cuenta no sélo la distancia
entre puntos correspondientes, sino también la orientacién de sus planos de referen-
cia relativos. También proponemos FaMSA, una técnica rapida para el registro de
multiples nubes de puntos capturadas con un telémetro laser de forma continuada. La
técnica aprovecha las correspondencias entre puntos obtenidas en iteraciones anteriores
para acelerar el cémputo de nuevas hipétesis de correspondencia. Para propagar ade-
cuadamente el modelo de ruido del sensor, empleamos un método de propagacion de
incertidumbre de primer orden. Y, para conseguir un registro global y coherente de
todas las nubes de puntos, adaptamos una técnica de SLAM desarrollada en nuestro
grupo de investigacion que utiliza un filtro de informaciéon con una ventana temporal
de estados (EIF). En esta variante, que se llama PoseSLAM, mantiene una estimacién
probabilistica de la historia del robot y de un pequefio nimero de observaciones que

permiten cerrar lazos. La construccién de mapas con PoseSLAM y con las técnicas de

registro de nubes de puntos desarrolladas en esta tesis permiten construir mapas 3D con
suficiente nivel de detalle para poder planificar trayectorias de movimiento complejas

para robots moviles en entornos exteriores.

Identificamos mediante técnicas de clasificaciéon aquellas zonas del mapa que son
transitables. Los métodos que se presentan con este fin en esta tesis requieren una
fase de entrenamiento automatico a partir por ejemplo, de las mismas secuencias de
navegacion que se emplearon para construir el mapa. Los métodos de clasificacion
propuestos se comparan de forma favorable frente a otros métodos recientes. Una vez
se ha determinado el espacio libre de colisiones por el que el robot podria navegar, en
esta tesis presentamos también métodos que emplean estos mapas clasificados para la
planificacién de trayectorias que garantice no solo la accesibilidad del robot sino una
ruta Optima en distancia recorrida. Para buscar el mejor camino entre un punto de
origen y otro de destino en el mapa, nuestro planificador construye incrementalmente
un arbol utilizando el algoritmo A*, incluyendo ademéas una politica de coste hibrido
que toma en cuenta el modelo cinematico del vehiculo tanto para explorar el espacio de
acciones desde el punto actual, como para estimar una cota inferior del coste de llegar
a la meta. El método de exploracién elimina nodos del 4rbol mediante la reconexién de
nodos con una heuristica que penaliza la expansién de nuevos nodos cerca de obstaculos.
El método de exploracién presentado se ha validado extensamente en bases de datos

propias conseguidos con los robots del IRI y con bases de datos de terceros.

xi

Resum

Aquesta tesi versa sobre la construccié de mapes, la classificacié del terreny i la plani-
ficacié de rutes per a aplicacions de robotica mobil. Aquests problemes, classics de la
robotica, s’estudien habitualment de forma independent, i en aquesta tesi, els abordem
de forma conjunta, vinculats a una modalitat sensorial concreta, la telemetria laser
tridimensional. L’objectiu final és oferir rutes de navegacié per a entorns complexos de

robotica mobil.

Examinarem en primer lloc el problema de com registrar en un sistema de referéncia
comuna, ntvols de punts denses adquirides amb un telémetre laser tridimensional. Con-
tribuim amb un nou mecanisme de registre de ntivols de punts jerarquic que analitza la
correspondencia punt a punt en les capes de menor resolucié i la correspondencia punt
a planol en capes amb més nivell de detall. Per a la minimitzacié de la funcié de cost,
adoptem una mesura que té en compte no només la distancia entre punts correspo-
nents, siné també 'orientacié dels seus planols de referéncia relatius. També proposem
FaMSA, una técnica rapida per al registre de multiples ntivols de punts capturades amb
un telémetre laser de forma continuada. La teécnica aprofita les correspondéncies entre
punts obtingudes en iteracions anteriors per accelerar el comput de noves hipotesis de
correspondéncia. Per propagar adequadament el model de soroll del sensor, emprem un
metode de propagacié d’incertesa de primer ordre. I, per aconseguir un registre global
i coherent de tots els nuvols de punts, adaptem una técnica de SLAM desenvolupada
en el nostre grup de recerca que utilitza un filtre d’informacié amb una finestra tempo-
ral d’estats (EIF). En aquesta variant, que es diu PoseSLAM, es manté una estimaci6
probabilistica de la historia del robot i d’'un petit nombre d’observacions que permeten
tancar llagos. La construccié de mapes amb PoseSLAM i amb les tecniques de registre

de nuvols de punts desenvolupades en aquesta tesi permeten construir mapes 3D amb

xii

suficient nivell de detall per poder planificar trajectories de moviment complexes per a

robots mobils en entorns exteriors.

Identifiquem mitjancant técniques de classificacié aquelles zones del mapa que sén
transitables. Els metodes que es presenten a aquest efecte en aquesta tesi requereixen
una fase d’entrenament automatic a partir per exemple, de les mateixes seqiiencies
de navegacié que es van emprar per construir el mapa. Els metodes de classificacié
proposats es comparen de forma favorable enfront d’altres metodes recents. Una vegada
s’ha determinat I’espai lliure de col-lisions pel qual el robot podria navegar, en aquesta
tesi presentem també metodes que empren aquests mapes classificats per la planificacié
de trajectories que garanteixi no solament ’accessibilitat del robot sin6é una ruta optima
en distancia recorreguda. Per buscar el millor cami entre un punt d’origen i un altre
de destinaci6é en el mapa, el nostre planificador construeix incrementalment un arbre
utilitzant I’algorisme A*, incloent a més una politica de cost hibrid que pren en compte
el model cinematic del vehicle tant per explorar 1’espai d’accions des del punt actual,
com per estimar una cota inferior del cost d’arribar a la meta. El metode d’exploracié
elimina nodes de l’arbre mitjancant la reconnexié de nodes amb una heuristica que
penalitza ’expansié de nous nodes prop d’obstacles. El metode d’exploracié presentat
s’ha validat extensament en bases de dades propies aconseguits amb els robots de 'IRI

i amb bases de dades de tercers.

xiii

Contents

Agradecimientos
Acknowledgements
Abstract

Resumen

Resum

List of Figures
List of Symbols

1 Introduction
1.1 Summary of contributions oL

1.2 Publications derived from this thesis

2 Point cloud registration
2.1 Related work L
2.2 Range image registration oL
2.3 A hybrid hierarchic ICP,
2.3.1 Metrics for data association
2.3.2 Hybrid hierarchic ICP algorithm

2.3.3 3D range data filtering and data reduction.

Xiv

iv

vi

viii

xii

xvii

xxiv

CONTENTS

24

2.3.4 Hybrid hierarchic ICP comparison 24
Fast multi scan alignment with partially known correspondences 35
2.4.1 Using kd-trees for nearest neighbor search 35

2.4.2 Box structures for nearest neighbor search and multi-scan matching 39

2.4.3 Barcelona Robot Lab L. 42

2.4.4 FAMSA execution times 48

3 3D range mapping 54

3.1 Related work 55
3.2 Propagation of error from point cloud registration to relative pose esti-

mation 56

3.3 3D mapping with Pose SLAM 58

3.4 Mapping 3D scenarioso 60

4 Terrain classification 68

4.1 Related work L Lo 70

4.2 Gaussian processes for off-line terrain classification 72

4.2.1 Regression analysis L oo oL 73

4.2.2 Least-squares classification 74

4.2.3 Gaussian process trainingo 75

4.2.4 Covariance function choice 76

4.2.5 Off-line classificationo oL 76

4.3 Point cloud classification results 81

5 Path planning 88

5.1 Related work L 89

5.2 Hybrid randomized path planning 91

5.2.1 Steering functions oo oo 91

XV

CONTENTS

5.2.2 Cost estimation L L 95

5.2.3 Path projectiono Lo 97

5.2.4 Collision detection oL 98

5.25 Treerewiring L o 99

5.3 Planning with HRA* in 3D environments 99

6 Conclusions 108

xvi

List of Figures

1.1

2.1

2.2
2.3
2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

System architecture and thesis outline.

Comparison of ICP metrics. a) Metric based, l,,, = 30. b) Euclidean

distance.
Plane fitting and representation by the mean point o; and its normal 1.
Query point p; and its closest point pr; in the plane.
Plane with the errors of its adjacent points.

Median filter process. a) Selecting the window. b) Median point in
black. c¢) Result of the median filter.

Sampling and pruning example. a) Original point cloud. b) Pruned and

sampled point cloud. oL

The Barcelona Robot Lab at the Campus Nord of the Universitat Politéc-

nica de Catalunya. L L

a) IRI’s Helena robot and its sensors. b) Our first custom built 3D range

sensor. ¢) Example of an acquired scan.

a) ETHZ’s Smartter robot and its sensors. b) The mounted 3D scanner.

c) Example of an acquired scan. oL

Error comparison on Helena’s dataset for each ICP method implemented.
Cyan for point-to-point, blue for point-to-plane, green for hybrid with
Euclidean distance, and red for hybrid with ,,, = 50. a) Final positional

squared error d% in sq. meters. b) Final angular error in radians.

Helena dataset, point-to-point metric.

xviii

29

LIST OF FIGURES

2.12
2.13
2.14

2.15

2.16
2.17
2.18
2.19
2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

Helena dataset, point-to-plane metric. 30
Helena dataset, hybrid metric with Euclidean distance. 31
Helena dataset, hybrid metric, ,, =50. 31
Error comparison on Smartter dataset for each ICP method implemented.

Cyan for point-to-point, blue for point-to-plane, green for hybrid with
Euclidean distance, and red for hybrid with ,,, = 50. a) Final positional

squared error d% in sq. meters. b) Final angular error in radians. . . . 32
Smartter dataset, point-to-point metric. 32
Smartter dataset, point-to-plane metric.o 33
Smartter dataser, hybrid metric, Euclidean distance. 33
Smartter dataset, hybrid metric, ,, =50. 34
A kd-tree example: subdivided data (left) and the corresponding binary
tree (right). 36
kd-tree splitting rules. a) Standard split. b) Midpoint split. ¢)Sliding-
midpoint split 37
The boxing structure bounds all the data points inside, and requires the
update of only four positions at each iteration. 40
Camera network distribution at Barcelona Robot Lab. 43
Two BRL cameras (up) in the plaza and corresponding 3D range scan
(center) with stereo images (down). L. 43
a) Virtual model of the BRL scenario. b) Overimposed 3D cloud in the
virtual model.o 44
a) Our robot Helena with the second custom made 3D laser and the

sensors reference frames. b) Our custom 3D laser based on a Hokuyo-
UTM30 2D range finder. 46

Proprietary 3D range laser, Hokuyo UTM-30LX based. Example of the
laser scans a) in yaw top configuration, b) in roll front configuration. c)
Range image acquired with the 3D laser in yaw top configuration. Blue

means closer range and red farthest. 47

xXix

LIST OF FIGURES

2.28

2.29

2.30

231

2.32

2.33

3.1

3.2

3.3

3.4

3.5

Data set workspace in the BRL, with the robot trajectory for both days.
The first day is the blue dotted line and the second day is the red line. .

A path with 39 poses around the FIB plaza of the Barcelona Robot
Lab. a) Dense point cloud registration, color indicates height. b) Robot

trajectory, in green the initial pose, in red the final pose.

Algorithm performance. a) Time required to match @ and P’, when
the correspondences between P and P’ are known. b) Time required to
match Q with both Pand P'.

Number of correspondences between P’ and Q running a full BNN com-

pared to using the storedset Y. L.

Proportional relative error. a) Translation and b) rotational errors for
the registration between @ and P’ with the proposed methods. BNN is

used for ground truth comparison.

A loop closure location between clouds 3, 4, and 28 in the BRL dataset
(best viewed in color). a) Perspective and b) top views. P in yellow P’

inred,and Q inblue.

Our robot Teo. e

Map of the Barcelona Robot Lab computed with the hybrid hierarchic
ICP approach from Chapter 2 and the Pose SLAM algorithm described
in this chapter. a) Top view, robot poses are the blue points. b) and c)

superposition of the final map over a virtual model of the BRL.

Map of the Barcelona Robot Lab, 400 poses, pose means in red and
covariance hyper-ellipsoids in blue. a) Open loop point cloud registration
with the proposed hybrid hierarchic ICP. b) 6DOF Pose SLAM map.

Map of the Barcelona Robot Lab a) Rendering of the initial open loop

point cloud registration. b) Rendering once Pose SLAM is executed.

Example of a rich 3D point cloud rendered from the resulting Pose SLAM
map of the Barcelona Robot Lab.

XX

49

51

52

593

61

62

63

64

LIST OF FIGURES

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Computed map for the FME using the proposed hybrid hierarchic ICP
for pairwise point cloud registration and Pose SLAM for global registra-
tion. (color means different height). a) Rendered top view. b) Rendered

zoom in at ground level.

Non-parametric classification of complex terrain. a) A picture of the
Facultat de Matematiques i Estadistica (FME) patio. b) Classification
results. Traversable areas in green, and obstacles in height-valued gray.
The positive samples in the training sequence used to produce this re-
sult included the points at the robot footprint that were acquired while
climbing the slope next to the stairs. Consequently, the classification

technique was able to correctly label such scenario.

a) Training dataset, traversable points are in blue and obstacles in red.
Likelihood plot for: b) Neural network covariance and c¢) Squared expo-
nential covariance. In the color bar, the red color indicates the maximum

likelihood for a point to be traversable.

Example of the automatic data collection. In green the positive traversable

samples along the robot’s path footprint.

(a) Training dataset. (b) Likelihood curves for GP classification. In the
color bar, the red color indicates the maximum likelihood for a point to

be traversable. Lo
Edge classification for a small portion of the FME map.

Qualitative comparison of GP traversability segmentation on the BRL
dataset: a) Hand labeled classes, b) Naive parametric classification, c)
SVM classification, d) GP regression, and d) GP classification. Traversable

areas are shown in green and obstacles are in height-valued gray.

Terrain classification on the FME dataset. a) GP classifier. b) Filtered
and inflated obstacles. c) Inflated obstacles and borders, and in red, a
robot trajectory. Traversable points are in green, obstacles are in height-

valued gray, and inflated obstacles and borders are in blue.

xxi

84

LIST OF FIGURES

4.8

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

GP terrain classification after filtering, traversable points are in green,

obstacles are in gray. a) On the FME dataset. b) On the BRL dataset.

Robot forward motion model from x; to x;41 with three different meth-
ods. a) Euler (red) b) Runge-Kutta (green) and ¢) Exact solution (blue).
Where As is the path length increment, Af is the orientation increment,

and R is the turning radius L L oL

Reachable curvature sets. a) Normalized turning radius and velocity cor-
relation for different values of [,,. b) Integrated trajectories for different

values of [, and At =1)
Example of Dubins path sets.

Proposed cost estimation. Bold black current branch to compute cqcc,

red plus green lines cyoq;, and green line hy.o

Proposed path projection step, used to estimate the local path and the

final robot orientation. L

Configuration recovery from a path segment 7(¢) (blue line) in collision.
The last collision free configuration x,, € 7(t) is computed, then we

return in time to t,,_) adding a new node with the configuration x,,_j.

Examples of different path planners in a synthetic environment. The
green robot indicates the start position and the red one the goal. More-

over, in the RRT planners we draw the goal region.

Path planning scenarios and computed paths. The scenarios, from upper
left to bottom right, correspond to the FME1, FME2, FME3, FM4, BRL
and BM subsets. The green dots indicate the traversable areas and the
degraded blue and gray dots represent non-traversable regions. The start
and goal positions are indicated by red and gray spheres, respectively.
The resulting paths are: A* with rewiring (magenta), HRA* (red), RRT*
(pink) and RRT (dark blue).

Length vs. time plots for the two HRA* proposed methods, RRT and
RRT*. The grey ticks show one standard deviation bounds from the

various Monte Carlo runs. Note the logarithmic scale of the time axis. .

xxii

87

98

107

List of Symbols

Mathematical Notation

efree

eobs

At

Gaussian process posterior mean

Gaussian process (posterior) prediction (random variable)
unit normal vector with coordinates (i, fty, 72.)

index matrix list: 1 = I 4w

a list of points

vector, short for K (X,x,), when there is only a single test case
normal vector with coordinates (ng,ny,n;)

translational vector with coordinates (x,y,z)

control sequence inputs (v, w, At)

state vector, history of robot poses from time 0 to n :

the robot configuration’s space

collision free configuration space

obstacles configuration space

time increment

surface curvature

xXxiv

LIST OF FIGURES

gp

Gaussian process: f(x) ~ GP(m(x), k(x,x")), the function f is distributed as a

Gaussian process with by a mean function m(x) and the covariance function

k(x,x")

predective variance

computational complexity

robot position and attitude

any features

feature, local surface roughness

feature, local surface slope

point with coordinates (x,y,z)

point with coordinates (x,y,z) at time k
Gaussian process input vector

Gaussian process output target

Gaussian process training single test point output or target

mean

rotational velocity

vector of hyperparameters (parameters of the covariance function)

vehicle turning radius
covariance matrix

variance

variance of the noise free signal
noise variance

robot trajectory

XXV

LIST OF FIGURES

v translational velocity

X sates space

X free collision free states space

C number of classes in a classification problem

1 the identity matrix

K or K(X,X) nzn covariance (or Gram) matrix

k(x,x") covariance (or kernel) function evaluated at x and x’
m(x) the mean function of a Gaussian process

P points cloud

P query points cloud

p(y |) or y | conditional random variable y given x and its probability (density)
P points cloud at time k

P, obstacle points points: P, € P

P traversable/navigable points: P, € P

jn probability threshold

R rotation matrix

R(n,#) axis angle rotation matrix

t time

T, local planar patches or tangent plane

X D x n matrix of the training inputs {x;}/";: the design matrix
X, matrix of test inputs

YorZ corresponding closest points between two point clouds

XXVi

LIST OF FIGURES

q node in the tree structure

Acronyms

2D Two dimensional space

3D Three dimensional space

6D Six dimensional space, normally position and attitud
ANN Approximate Nearest Neighbor

DOF Degrees-of-freedom

EIF Extended Information Filter

EKF Extended Kalman Filter

EP Expectation Propagation

GCP Grid Closes Point

GP Gaussian process

HRA* Hybrid randomized path planning

ICP Iterative Closest Point

LOO Leave-One-Out approach

LP Laplace approximation

MSE Mean Square Error

NNS Nearest Neighbor Search

POMDP Partially Observable Markov Porcesses

SLAM Simultaneous localization and mapping

xxvii

Chapter 1

Introduction

A large number of mobile robot applications are designed to coexist in human en-
vironments; vacuum cleaners, floor cleaners, AGVs for warehouse distribution, line-
side logistics, hospital robots, museum tour guides; they all are expected to navi-
gate and move efficiently alongside people. Most of these mobile robot applications,
whether for indoor scenarios or not, assume that the world where the robot moves
is a plane [40, 47, 118, 127]. However, more challenging applications that are truly
outdoor encounter uneven characteristics of the terrain, ramps, stairs, and other un-
predictable elements in the environment. All these elements significantly difficult the
navigation task. We are interested in planning navigation paths for these more chal-
lenging mobile robotics scenarios. To alleviate the localization problem and to help the
robot take appropriate navigation decisions, we are interested in building full 3D maps
for our robots, and to do it as autonomously as possible. In this context, our robot
must be able to build a locally detailed and globally consistent map. Once the map
is built some post-processing might be necessary to obtain a complete digital compact
volumetric model, merging information to reduce the memory space of the map with-
out compromising details and consistency. The robot must then be able to perform a

traversability analysis in order to take the appropriate navigation decisions.

The proprioceptive modalities that can be used for mapping vary from: ultrasonics
devices, typically used for indoor mapping [30, 85, to 2D and 3D range data used for
indoor and outdoor mapping, respectively [40, 47, 54, 148]; to vision, which is a cheaper
sensing technique with the ability to use appearance information during data associ-

ation [66, 84, 93, 94], but using camera in outdoors has troubles such as illumination

issues. In our work we will concentrate in the use of 3D range sensing as the primary
source of information for mapping, a technique better suited for unstructured outdoor
mobile robot urban mapping [106], because it offers much more detailed information
than 2D maps. The disadvantages of 3D sensing technologies are its slower acquisi-
tion rate and the significant increase in data that needs to be processed, calling for a

compact and robust representation of the map.

For the purpose of this thesis we developed two 3D range sensors based on 2D
range scanners. The first sensor is a tilting unit built with a RS4-Leuze 2D laser. The
disadvantage of this sensor was that the acquisition rate was slow and that the resulting
point cloud distribution was highly non-uniform. Furthermore, given the large weight of
the Leuze Rotoscan, the tilting unit was mechanically unstable (i.e is like a pendulum),
thus difficult to control. The second 3D range sensor we built included a Hokuyo
UTM-30LX scanner mounted in a slip-ring, for which we filed a patent in 2012 [3]. The
slip-ring allowed the sensor to be always rotating at a constant speed, thus avoiding
the uneven distribution of sensed points from the acceleration and deceleration of the
tilting unit. Moreover, by mounting the laser unit just above the rotating motor, it
became very stable, thus easier to control compared with the tilting unit. Although
these sensors were not as fast as commercial state-of-the-art range scanning systems
when they were built, such as the Velodyne family, they not only provided a much
denser point cloud than those sensors, but were also a much more affordable solution

to our research group.

Multiple 3D scans are necessary to build a map with enough environment infor-
mation for navigation. To create a correct and consistent map, the scans must have a
common reference coordinate system. The process of aligning scans is called registra-
tion [14], and is usually done for a pair of scans at a time. This method is prone to error
accumulation from local data alignment leading to an inconsistent global map, mak-
ing the map useless for navigation, unless corrected. In this thesis we contribute with
novel range registration mechanism for pairs of 3D range scans using point-to-point and
point-to-line correspondences [128], and a hierarchical correspondence search strategy.
For the minimization we adopt in this work a metric that takes into account not only
the distance between corresponding points, but also the orientation of their relative

reference frames [17]. We also propose FaMSA, a fast technique for multi-scan point

cloud alignment that takes advantage of the asserted point correspondences during se-
quential scan matching, where the point match history can be used to speed up the
computation of new scan matches [129]. To properly propagate the model of the sensor
noise and the scan matching, we employ a closed-form first order error propagation

computation [33].

To build a globally consistent map we consider the probabilistic alignment of 3D
point clouds using a delayed-state Extended Information Filter (EIF) [51]. In this thesis
we adapt the Pose SLAM algorithm, a simultaneous localization and mapping (SLAM)
algorithm, to the case of 3D range mapping [132, 140]. Pose SLAM is the variant of
SLAM where only the robot trajectory is estimated and where sensor data is solely used
to produce relative constraints between robot poses. Pose SLAM maintains a compact
state representation by limiting the number of links and nodes added to the graph using
information content measures and is agnostic to the sensor used. In this thesis we use
the relative poses resulting from the registration of the point clouds as constraints that

nourish Pose SLAM to create an overall map of the whole robot trajectory.

These dense mapping techniques are capable of producing impressively rich 3D
environment models [140, 145]. Yet, these maps need still to be processed to identify
traversable regions and to plan and execute navigation sequences. Region classification
for off-road navigation is a challenging task. The main reasons being the irregularity of

the surface and the need to account for the non-holonomic constraints of the vehicles.

State-of-the art terrain classification methods extract features from these dense
point clouds [28], and use them to build traversable and non-traversable classes, usually
through parametric classification. Feature thresholding is a difficult task that usually
requires human intervention [54, 125, 135]. As an alternative, learning algorithms with

manual data labelling [70] can also be used.

In this thesis we present a pair of methods to attain high-level off-line classification
of traversable areas, in which training data is acquired automatically from navigation
sequences[116]. Traversable features came from the robot footprint samples during
manual robot motion, allowing us to capture terrain constrains not easy to model.
Using only some of the traversed areas as positive training samples, our algorithms

can successfully classify the rest of the traversable terrain. This is in contrast to other

1.1 Summary of contributions

techniques which search for ad-hoc features such as global planarity constraints which

are not always in accordance with the training data.

Once the terrain has been classified as traversable or non-traversable, the last step
is to plan and execute a trajectory from one location in the map to another. To plan
safe trajectories we introduce in this thesis a path planner that guarantees reachabil-
ity at a desired robot pose with significantly lower computation time than competing
alternatives [130]. Our interest is to find safe trajectories that guarantee reachability
satisfying the robot non-holonomic constrains. To search for the best path, our plan-
ner incrementally builds a tree using the A* algorithm [72, 76], and includes a hybrid
cost policy to efficiently expand the search tree, combining random sampling from the
continuous space of kinematically feasible motion commands with a cost to goal metric
that also takes into account the vehicle non-holonomic constraints. The planer also
allows for node rewiring, and to speed up node search, our method includes heuristics
that penalize node expansion near obstacles, and that limit the number of explored
nodes. The method book-keeps visited cells in the configuration space, and disallows
node expansion at those configurations in the first full iteration of the algorithm. We
validate the proposed method with experiments in extensive real scenarios from dif-
ferent very complex 3D outdoors environments, and compare it with other techniques
such as the A*, RRT [73] and RRT* [56] algorithms.

The thesis is structured in two parts. The first part is devoted to the globally
consistent map building, it includes the proposed scan matching method and the used
variant of SLAM. The second part is devoted to the planning of robot navigation
sequences for complex 3D environments, where we introduce the terrain classification
method and the path planner. Figure 1.1 shows a block diagram representing the

proposed architecture.

1.1 Summary of contributions

The contributions presented in this thesis constitute a step towards an integrated frame-
work for mapping, terrain classification, traversability analysis, and path planning for
autonomous mobile robots in 3D environments. These contributions can be listed as

follows:

1.1 Summary of contributions

(" Globally consistent Map)
Raw sensors Scan Matching
measuraments
[Chapter 2]
Pose Pose SLAM
;.. constraints
[Chapter 3]
Covariance
propagation
[Chapter 3]
,
Motion
e A
commands Global navigation
)
Terrain classification Pose SLAM
e -« map
[Chapter 4]
~—
/—v—\
Path planner
[Chapter 5]
—
_ W,

Figure 1.1: System architecture and thesis outline.

1.1 Summary of contributions

- Accurate and fast range data registration during pairwise and multi-scan range

data registration (Chapter 2).

We present a registration algorithm based on the well known iterative closest
point algorithm. We choose to use a metric alternative to the Euclidean distance
to perform the alignment [128]. We propose a new hierarchical correspondence
search strategy, using a point-to-plane metric at the finest level and a point-to-
point search at the coarsest level. To define the level we use a threshold to adjust
error of the local fitted plane and its adjacent neighbors. Moreover, we introduce
a novel technique for fast multi-scan point cloud alignment at loop closure that
takes advantage of the asserted point correspondences during sequential scan

matching [129].

- Development and construction of range scanners to produce rich 3D point clouds
(Chapter 2).

We built and patented a light weight and fast 3D range scan laser capable to work
on-line in robot applications such as autonomous navigation [3]. This scanner
superseded in computation time, and range resolution the previous scanner also
developed in our group [87]. The sensor has a 360 degree horizontal view of the
scene and a vertical field of view of 270 degrees. And, using these scanners as
primary sensors, we adapted PoseSLAM, the information-based mapping solution
previously developed in our group to the 3D mapping case [4, 132, 140]. The
methodology was further used to build maps for the calibration of a camera
network for the EU URUS project [100, 101], as well as for our own classification

and path planning experiments.

- Classification techniques for complex 8D environments (Chapter 4).

We present two techniques to detect and classify navigable terrain in complex 3D
environments. This is a high-level off-line classification mechanism that learns
traversable regions from larger 3D point clouds acquired with a laser range scan-
ner. We approach the problem using Gaussian Processes as a regression tool, in
which the terrain parameters are learned; and also for classification, using samples

from traversed areas to build the traversable terrain class [116].

1.2 Publications derived from this thesis

- Path planning algorithm for 8D scenarios using point cloud (Chapter 5).

1.2

We propose a new randomized method to plan safe trajectories for complex 3D en-
vironments. The path planner guarantees reachability at a desired robot pose with
significantly lower computation time than competing alternatives. The method
is a modified A* algorithm that uses a hybrid node expansion technique that
combines a random exploration of the action space meeting vehicle kinematic
constraints with a cost to goal metric that considers only kinematically feasible
paths to the goal. The method includes also a series of heuristics to accelerate the
search time. These include a cost penalty near obstacles, and a filter to prevent
revisiting configurations. We also allow node rewiring when revisiting previously

explored robot configurations [130].

Publications derived from this thesis

R. Valencia, E.H. Teniente, E. Trulls, and J. Andrade-Cetto. 3D mapping
for urban service robots. In Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 3076-3081, Saint Louis, October
2009. [140]

A. Ortega, B. Dias, E.H. Teniente, A. Bernardino, J. Gaspar, and J. Andrade-
Cetto. Calibrating an outdoor distributed camera network using laser range finder
data. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 303-308, Saint Louis, October 2009. [100]

J. Andrade-Cetto, A. Ortega, E.H. Teniente, E. Trulls, R. Valencia, and A.
Sanfeliu. Combination of distributed camera network and laser-based 3D map-
ping for urban service robotics. In Proceedings of the IEEE /RSJ IROS Workshop
on Network Robot Systems, pages 69-80, Saint Louis, October 2009. [4]

E.H. Teniente, R. Valencia, and J. Andrade-Cetto. Dense outdoor 3D mapping
and navigation with Pose SLAM. In Proceedings of the ITT Workshop de Robética:
Robética Experimental, pages 567-572, Seville, 2011. [132]

1.2 Publications derived from this thesis

[5] E.H. Teniente and J. Andrade-Cetto. FaMSA: Fast multi-scan alignment with
partially known correspondences. In Proceedings of the European Conference on
Mobile Robotics, pages 139-144, Orebro, September 2011. [129]

[6] J. Andrade-Cetto, M. Morta, P. Grosh, E.H. Teniente, Dispositivo medidor de
distancia y magnitudes omnidireccional. Patent filed July 4th, 2012 (P201231044). [3]

[7] E.H. Teniente and J. Andrade-Cetto. HRA*: Hybrid randomized path plan-
ning for complex 3D environments. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 1766-1771, Tokyo,
November 2013. [130]

[8] A. Ortega, M. Silva, E.H. Teniente, R. Ferreira, A. Bernardino, J. Gaspar, J.
Andrade-Cetto. Calibration of an Outdoor Distributed Camera Network with a
3D Point Cloud. Sensors 14.8 (2014): 13708-13729. [101]

[9] A. Santamaria, E.H. Teniente, M. Morta, and J. Andrade-Cetto. Terrain clas-
sification in complex 3D outdoor environments. Journal of Field Robotics 32.1

(2015): 42-60. [116]

Chapter 2

Point cloud registration

In this Chapter we discuss how to compute the rigid body transformation between
two range images. If the range images are computed by the same sensor aboard a
robot at two instances, then the transformation represents the relative motion between
the two robot poses. To compute this transformation, we must align the two point
clouds. The de-facto standard to compute this registration is the well-known iterative
closest point algorithm (ICP) [14, 17, 20, 95, 117]. Starting with an initial guess for the
transformation, the algorithm iteratively searches for point correspondences among the
two point clouds and revises the transformation that minimizes the sum of distances

between point matches.

In our implementation of ICP, we have chosen a metric that takes into account not
only the distance between the points, but also the angle between their relative reference
frames [17]. Moreover, given the large size of the point clouds treated and the amount
of noise present in them, we have devised strategies point cloud sub-sampling and for
outlier rejection during the correspondence search. We propose a new hierarchical
correspondence search strategy, using a point-to-point search at the coarser levels and
a point-to-plane metric at the finest level for improved accuracy. The level at which
correspondence is taking place in this hierarchy is indicated by a user-selected threshold
over the local plane fitting error. The proposed correspondence search strategy is

validated on different data sets.

We also present in this chapter FaMSA, a technique for fast multi-scan point cloud

alignment strategy that takes advantage of the asserted point correspondences during

10

2.1 Related work

sequential scan matching to aid in subsequent point match searches. The technique
is especially relevant during loop closure for 3D SLAM. In FaMSA, the point match
history is used to speed up the computation of new scan matches, hence allowing to
quickly match a new scan with multiple consecutive scans at a time, with the consequent
benefits in computational speed. The registration error is shown to be comparable to
that of independent scan alignment. Results are shown for dense 3D outdoor scan

matching.

The scan matching methods presented in this chapter represent the basis for the
computation of relative motion constraints used as inputs for the SLAM method de-

scribed in the next chapter.

2.1 Related work

Scan matching algorithms are often used in mobile robotics to correct the relative mo-
tion of a vehicle between two consecutive configurations, by maximizing the overlap
between the range measurements obtained at each configuration. The most popular
scan matching methods in [114] are based on the ICP algorithm [14] which is borrowed
from the computer vision community. The objective of this algorithm is to compute the
relative motion between two data sets partially overlapped. The algorithm iteratively
minimizes the Mean Square Error (MSE) of point correspondence distances and pro-
ceeds as follows: first, for each point in one data set, the closest point in the second one
is found or vise versa (correspondence step), then the motion that minimizes the MSE
between the correspondences is computed (registration step), finally the data shape is

updated (update step).

In the registration proposed by Besl and Mckey a point-to-point metric is used to
measure the “closeness” of data, they also suggest an accelerated version of the al-
gorithm by using a linear approximation and a parabolic interpolation with the last
three minimization vectors if they are well aligned, which means they have been moving
in an approximately constant direction. The use of sampling or tree-based-search to
speed up the algorithm are mentioned as future refinements to reduce the computa-
tional cost. In [20] the authors propose a point-to-plane error metric, which makes the

algorithm less susceptible to local minima than the metric proposed in [14]. The idea

11

2.1 Related work

in [20] is that given a so called control point in the first surface, the distance to the
nearest tangent plane in the second cloud is computed. In [18] the authors suggest a
point-to-projection solution computing the sum of the distances between the two range
views in the direction of the rays. This has also been called “reverse calibration”. This
approach makes registration very fast because it does not involve any search step to
find the correspondences. However, one of its disadvantages is that the resulting reg-
istration is not as accurate as the one given in the point-to-point and point-to-plane
metrics [114]. In [138] the authors propose a point-to-triangle correspondence using
meshes, which they call zippered meshes, finding the nearest position on a mesh to
each vertex on any other mesh. They find the rigid transformation that minimizes
a weighted least-squared distance between correspondences with a value in the range
from 0 to 1 called confidence. For the case of structured light scanners, they measure
the confidence of a point on a mesh to be the angle between the mesh normal and
the sensor viewing angle. The confidence is a measure of how certain they are of a
given range point’s position, which helps to eliminate possible wrong matches. In [22]
the authors present a robustified extension of the ICP applicable to overlaps under
50%, robust to erroneous and incomplete measurements, and with easy-to-set parame-
ters called Trimmed ICP (TrICP). The algorithm is based on the consistent use of the
Least Trimmed Squares algorithm [113] in all phases of the operation. On the other
hand, in [147], genetic algorithms are used to maximize an objective function, where the
genes are formed by concatenating six binary coded parameters, representing the three
angles of rotation and the 3-DOF for translations. A new error metric for the 2D space
which explores the compensation between the rotation and translation was proposed
in [82, 83]. Later in [16, 17] this metric is extended to the 3D space. The authors used
a point-to-projection minimization strategy using triangles as the projection surface,
and performing Nearest Neighbor (NN) correspondence search in the space of the new
metric. They did not tackle the computational complexity of the algorithm in any way,

so it is understood that they used brute force search to do the matching.

The computational bottleneck of ICP concentrates during the search for point
matches. One strategy to reduce such computational complexity is to use tree-based
search techniques [102]. In [95] for instance, the authors used a library called Ap-
proximate Nearest Neigborh (ANN), developed by [8], that includes either a balanced
kd-tree or a box decomposition tree (bd-tree). Niitcher et al. [95] showed that kd-trees

12

2.1 Related work

are faster than bd-trees for the NN problem. In [122] the authors used a kd-tree with
a caching technique, where in the first iteration, n-neighbors for each point in the ref-
erence cloud are extracted from the model query and cached. It is assumed that after
updating the reference cloud, the majority of cached points for each point in the up-
dated cloud should remain as neighbors and hence need not be matched again. In [12]
a double z-buffer structure is used which provides an explicit space partitioning. While
in [147] it is said that the time matching can be significantly reduced by applying a
grid closest point (GCP) technique, the GCP turns out to be another sampling scheme
which consists of superimposing a 3D fine grid on the 3D space such that the two clouds
lie inside the grid, dividing the 3D space into cells, each cell with an index of its closest
point in the model set. In [41] the authors present a new solution to the NN search
problem for the matching step, which they called Spherical Triangle Constraint. The
Spherical Constraint is applied to determine whether or not the nearest neighbor falls
within the neighborhood of each point estimate, and if so, the Triangle Constraint and
the Ordering Theorem are applied to the neighborhood to quickly identify the corre-
spondences. The Ordering Theorem orders a set of points by increasing distance to
some point. The authors showed that after approximately 20 iterations, their method
becomes more efficient than kd-trees in computational complexity and time execution.
Akca and Gruen [1] used a box structure [21] which partitions the search space into
boxes. For a given surface element, the correspondence is searched only in the box
containing this element and in the adjacent boxes. The correspondence is searched in
the boxing structure during the first few iterations, and in the meantime its evolution
is tracked across iterations. In the end, the search process is carried out only in an
adaptive local neighborhood according to the previous position and change of corre-
spondence. One of the main advantages of the box structure is that it has a faster and

easier access mechanism than the one provided by tree-based search methods.

Another common strategy to accelerate the matching process is to reduce the num-
ber of points. Sampling the data reduces the match execution time by a constant factor,
but retains the same asymptotic computational complexity. The techniques used for
sampling data vary. Coarse-to-fine strategies have been used by [149] and [138]. They
start using a less detailed description of the data and as the algorithm approaches the
solution, the resolution is hierarchically increased. In [138] and [18] on the contrary,

the authors used uniform sampling. And in [81], the authors used random sampling

13

2.1 Related work

at each iteration. Moreover, [98] and [43] used a technique best suited to the nature
of data for laser range finders, the so called reduction filter, which has been shown to

work well for realtime applications.

However, sampling methods are very sensitive to data content, i.e. noise level,
occlusion areas, complexity of the range data, etc. If too many points come from outliers
due to sensor errors, this may produce too many wrong correspondences, and may cause
the solution to converge on a local minimum leading to a poor final overlap, or in the
worst case, to divergence. We shall remember that the original algorithm from Besl and
Mackay considers data sets without outliers. Several approaches to dismiss possibles
outliers have been proposed using rejection strategies. Rejections based on thresholds
for the maximum tolerable distance between paired points were implemented by [138],
the threshold is set as twice the maximum tolerable space between range point meshes
and is adaptively changed when building the mesh. A statistical rejection method
based on the distribution of point distances was used by [149] and [109]. They used
two thresholds for the maximum allowed distance between paired points, one of them
dynamic. In [81] the authors reject pair matches whose point-to-point distance are
larger than some multiple of their standard deviation. Pulli, as well as [138], used not
only statistical reasoning, but also topological information to discard matches. They
removed matches that occur on mesh boundaries, and in [149] and [109] they used
the angle between the normals of the paired points as a constraint to keep matches.
Specifically for laser range data, the authors in [98] employed a median filter to remove

the Gaussian noise for each scan row.

The uniformity of the point cloud plays also a very important role during registra-
tion. and it is linked to the process used to acquire the point cloud. Initial attempts
to generate 3D point clouds for mobile robot navigation considered the use of 2D laser
scanners rigidly attached to the mobile robot, and the aggregation of a point cloud by
sweeping across the scenario whilst moving the robot [47]. This methodology made
the point cloud quality dependent on the quality of the platform odometry. An alter-
native was to mount the 2D laser atop a servo mechanism, in either a pan or a tilt
configuration for indoors [127, 144] or for outdoors [96, 98, 140]. In this case, the robot
remains still while a 3D snapshot is being acquired by the scanning mechanism, with

the consequence of significantly reduced error in the point cloud its, but at the expense

14

2.2 Range image registration

of intermittent robot motion. For continuous scanning, Lamon [71] presented a rota-
tional system using two lasers that produces a full 360° vertically scanned scenario.

This configuration is similar to our own scanning configuration [3, 132].

2.2 Range image registration

The main idea of the range image registration, also known as scan matching, is to
compute the relative motion between two consecutive snapshots of a scene with a dense
3D sensor. The technique is local in nature, but is typically used in mobile robotics
to update global localization and mapping estimates. In this section, we described in

detail the range image registration principles.

Given a point set P = {p1, p2, ..., pn} acquired from a reference frame and a second
point set P' = {p}, ph,...,p,,}, acquired from a new frame; we need to estimate the
relative displacement x = (z,y,2,1,0,$) between the reference frame and the new
frame. The Iterative Closest Point (ICP) algorithm deals with this problem in an
iterative process [14]. Starting from an initial estimate of the displacement xq, at
each iteration it establishes a set of correspondences between the two point sets and
updates the relative displacement xj between them by minimizing the error of the

correspondences. The process is repeated until convergence.

The basic idea in the correspondence step is to find the closest point in one point
set for each point in the other one. Closeness, lower than a given threshold d,;,, is
measured according to a specific metric, usually the Euclidean distance. This search
is also known, and from here referenced, as the Nearest Neighbor (NN) search. If we
refer with x;(p) to the rototranslation of point p} in P’ by xj to the reference frame
of P then, the above described point correspondence is

¢i = argmin{d(p;, Xk (p})) < dmin} - (2.1)

/

p]
The result is, for each iteration k, a set of I correspondences Cy, = {(p;,¢;)|i =1...1}.

Besl and McKey [14] assume that for each point in the reference set there must
exist a correspondence in the data set, in our application this is not the case, hence

l<nandl<m.

15

2.2 Range image registration

The metric to establish the correspondences computes the distance between the two

points. It is normally defined by the L2 norm (Euclidean distance)

1/2
d(p, p’)=< > (pd—p’d)Q) (2.2)

1<d<D
where D = 3 is the dimension size of the data we are working with, i.e., p = [pz, Dy, 2]
An alternative to the Euclidean distance, is the metric proposed in [16, 17|, where
the relative displacement, is expressed as a 3D rigid body transformation defined by a

vector X = (x,y, 2, 0ng, Ony, On,), it represents the position and orientation (—7 < 6 <

m) of the range finder laser. The norm of % is defined by

IR = \Ja? 4y + 22+ 12,62 (2.3)

with 1,,, € R for a distance.

Given two points p € P and p’ € P, using this metric, the distance between both
points is
d(p,p’) = min{[%]| | %(p') = p} (2.4)
where

%(p') = R(n,0)p’ +t (2.5)

with t the translation vector (z,y, z), R(n,0) = I+ U(n)sin(9) + (U(n))?(1 — cos(#))
the Rodrigues representation of the matrix rotating an angle 6 about the unit vector
n, and U(n) = ny the so-called cross-product matrix of n. Unfortunately there is no
closed form expression for d with respect to the coordinates of the points. However
a valid approximation could be computed with small rotations. Linearizing Eq. (2.5)
about # = 0 leads to cos(f) ~ 1 and sin(f) ~ 6, hence R(n,0) ~ I +U(n)6#, and we can
express Eq. (2.5) as

(p) = p +U(n)op +t (2.6)
and from the skew symmetric matrix properties, U(n)fp’ = —U(p’)nf, the above equa-
tion could be rewritten as

()~ p' + U@)r +t (2.7)

with r = n#.

16

2.2 Range image registration

If Eq. (2.4) squared is further developed with this linear approximation, then we
have that:

d(p,p')* =6" M (2.8)
2
o | x|
= 2 - 22 (29)
and, working out this squared value, the approximate distance is obtained
2
p/ x &
4 (p.p') = \/ jop - 1P (2.10)
where k = ||p/||*> +12,, 8 = p — p’ and l,,, is the trade-off between translation and

rotation, and is user specified. Be aware that, if [,,, — oo the new distance becomes

the Euclidean distance.

In the registration step, the relative displacement between the two point sets is
solved using a last squares minimization over this approximate distance [17], computing
the rigid body transformation that minimizes the displacement. The accumulated
distance for all points in the cloud becomes

l

Egst(}) = Y d™(ps, x(p}))” (2.11)
=1

with j the index of the point cloud in P’ closest to the p; in P. From Eq. 2.8, the above

equation could be rewritten as

Egst(R) = >8] () M;6;(%) (2.12)
7
and
6i(%) = pi—x(p))
~ pi—p; U —t (2.13)
with :
2 12 N D
pzm + m pmpzy pzxpzz
M;= | puby Py+1a piypi (2.14)
PizPiz PiyPiz pzzz + l12n
/ /
, 0 TP Py
Uy=UE)i=| pp. 0 —pjh (2.15)

_p;'y p;-x 0

17

2.3 A hybrid hierarchic ICP

(a) (b)

Figure 2.1: Comparison of ICP metrics. a) Metric based, l,, = 30. b) Euclidean
distance.

The rigid body transformation that minimizes equation (2.12) is given by

-1
M —MU; " Mo
s . l 7 1Yy . 104
Fmin = (=1 (~UrM; UTMU;) > Z(U; M5,) ‘ (2.16)

=1

Figure 2.1 shows a sample application of this rotation aware metric. The frame to
the left shows the results of the alignment of two point clouds with a weight factor of
I = 30. The frame to the right shows alignment results of the same point clouds using

the Euclidean distance as metric.

2.3 A hybrid hierarchic ICP

We propose a variant of the ICP algorithm that uses local planar information to decide
the correspondence search strategy to use. To find the correspondences several metrics
are available [114]: point-to-point [14, 98, 122], point-to-plane [20, 149], or point-to-
projection with triangular surfaces [16-18]. In our method we use a combination of
these in hierarchy for the correspondence search step, using a point-to-point metric at
the coarsest levels and a point-to-plane strategy at the finest level. For the minimiza-

tion step, we adopt the metric proposed in [17], but we use point-to-point matching

18

2.3 A hybrid hierarchic ICP

Figure 2.2: Plane fitting and representation by the mean point o; and its normal ;.

instead a point-to-mesh matching, thus avoid the computational burden of estimating

the corresponding triangle in the mesh.

2.3.1 Metrics for data association

We have already stated that point-to-point correspondence is the basic data association
metric used in ICP, and explained in the previous section how to compute it. We now
concentrate on explaining the point-to-plane correspondence search [20, 149]. Given its
higher computational cost than the point-to-point metric, we only use it at the finest
level of our hierarchical ICP scheme. The point to plane data association proceeds
as follow: given a 3D point cloud P containing k individuals points (py, p2, ..., px), we
compute local planar patches T), for each individual point. Next, for each point p’ in a
query point cloud P’ we find the plane T), for which the projection of p’ onto it is the

closest. This projection is the corresponding point.

The local planes are computed fitting the set of nearest neighbors in P to each
point p in a given search radius. This neighbor set is called Pr,. We represent the
local planar path 7), with a point o on it, and a unit normal vector f that indicates
the plane’s orientation [5], see Fig. 2.2. Local planar patches are only computed if a
point has at least k-NN in the given search radius. Otherwise the point is removed
from the point cloud since it does not offer sufficiently relevant information and can be

considered spurious.

The point o is computed finding the mean of Pr,. The unit normal vector f is the

eigenvector associated to the smallest eigenvalue of the correlation matrix M defined

19

2.3 A hybrid hierarchic ICP

Figure 2.3: Query point p; and its closest point pr; in the plane.

by
T
_ PqPq
M=Q - 12
where :
k
Ppg=>.p YV pi€Pp
i=1
k
Q=Y pip;
i=1
then

n = eig(M)

We want to find pr,, the closes point to p that lies on the plane 7). To find this
projected point, it is necessary to find the minimum distance d between the computed
tangent plane 7}, and p, where the signed distance is defined as d = (p — O)Tﬁ. Let us

define the distance vector as d = d’ 1, and from Fig. 2.3:

W =p—o0
r=w-—d (2.17)
pr, =o+r (2.18)

20

2.3 A hybrid hierarchic ICP

Figure 2.4: Plane with the errors of its adjacent points.

Substituting Eq. (2.17) on (2.18) and solving

pr, =0 +w —d
=p—d (2.19)

Where pr,, is the correspondent nearest neighbor to p.

2.3.2 Hybrid hierarchic ICP algorithm

We now explain the rationale used to decide whether to use the point-to-point or point-
to-plane metric. The idea behind is that, a point-to plane metric is expected to be more
accurate than the point-to-point metric. But it is not only more expensive to compute,
but also the support plane has to be sufficiently good. Then, we choose as level or
threshold that indicates when to use one metric or the other the mean square error of
the fitted local plane computed in Sec. 2.3.1. If the fitting plane error is larger than a
given threshold, we consider that the plane does not have sufficient support or that it
is too noisy for the point-to-plane metric to be used, and the point-to-point metric is

used instead.

We compute this error as the average of each point in Pr, to the plane T),. See

k
>4/ ((pi — 0)Th)? (2.20)
=1

The following pseudo-code (Alg. 1) resumes our Hybrid Hierarchic Iterative Closest

Figure 2.4,

| =

er, =

Point algorithm.

21

2.3 A hybrid hierarchic ICP

ICP(XH_I, P, Pl,f)

INPUT:
xi+1: Relative robot displacement at time ¢ 4 1.
P: Point cloud at time 3.
P’: Point cloud at time 7 + 1.
f: Point clouds features.
OuTPUT:

xj4+1: Corrected relative displacement at time 7 + 1.

1: fork=1to K do

2: Y + GETCORRESPONDENCES (P, P/, f)

3 €2 < COMPUTEERROR(Y))

4 Kmin < MINIMIZATION(Y")

5: (PI,YI7Xi+1) Al UPDATE(ﬁmin,X¢+1,Pl,Y)
6: d? < CoMPUTENEWERROR(Y”)

7: if CONVERGENCE(e?,d?) then

8 RETURN (%;+1)
9: end if
10: end for

Algorithm 1: Hybrid Hierarchic ICP.

In our proposed method, one of these three criterion must be reached for conver-
gence: a desired maximum number of iterations, desired difference between the MSE
error at the beginning of the iteration, and the MSE at the end, i.e d ek or a minimum
2.

Note that we could have decided to use only the point-to-plane metric, and clean
up tangent planes from outliers during fitting. This however is not only computation-
ally more expensive, but also would result in missing relevant point-to-point feature
correspondences at the coarser levels on non-planar regions, such as trees or bushes.
Another reason to use our hierarchical scheme is to alleviate the possibility of falling

into local minima, a problem common to most other ICP approaches.

Some of the correspondences can eventually come from wrong matches because of
noise data or zones with low information. For this reason during the NN search we ap-
ply several filters. In the original ICP algorithm of Besl and McKey [14] it is assumed
that for each point in the reference set there must be a correspondence in the query set.
When using point clouds coming from real robots with real sensors, this is surely not
the case, and adequate similarity tests must be implemented. Using point distance as
the only criteria for point similarity usually leads to wrong data association and local
minima. We do not want to compute distinctive feature signatures for each point, since

these are computationally expensive to compute. Hence, we use as in [109], the oriented

22

2.3 A hybrid hierarchic ICP

normal similarity constraint, together with a statistical constraint [80], i.e, points at
distances larger than a multiple of their standard deviation are rejected. Correspon-
dence uniqueness is also enforced and to implement it we programmed appropriate

bookkeeping of matches at every iteration.

2.3.3 3D range data filtering and data reduction

Point clouds are usually noisy and plagued with various artifacts of different kinds.
Blurring could occur for example at the edges, where the laser beam of a particular
scan hits two surfaces resulting in an erroneous data value. Reflections on mirrors and
refractions of the laser beam through glass also produce annoying artifacts. We need to
come up with efficient mechanisms to deal with all these situations since a few outliers
not properly handled may lead to multiple wrong correspondences during matching,

leading to an incorrect alignment.

On such heuristic used in [98] is to smooth the data. To that end, a median filter
can be used [43], capable of recognizing noise in a scan and to replace it with a suitable
measurement. Median filtering in our case proceeds as follows. A window of k points
is gathered from the last point cloud around each scan point p;. The points inside the
window are sorted according to their range value, and p; is replaced with the median
value in the window, see Fig. 2.5(b). Since large window widths would most likely end
up distorting the scan, typical values for median filter windows are rather small, a value

of £ = 5 has proved to work well in our case.

A second strategy is to reduce the number of points, this time to improve execution
time for very dense point clouds as in our case. Sampling strategies must preserve the
geometric nature of the surfaces [114], and in our case we use uniform sampling. To
sample the point cloud uniformly, the space is split in voxels. Initially the corners of the
volume enclosing the point cloud are found searching for the maximum an minimum
value for each coordinate axis plus a small increment 9, i.e., Pmin = (Tmin — O, Ymin — 9,
Zmin — 0)T, and Pmaz = (Tmaz + 0, Ymaz + 0, Zmaz + 6)7. Then we compute for a
desired voxel size voxg;.e, the total number of voxels needed for each axis [(Pmaz —
Pmin)/V0Zsize|. Next, the right index of the corresponding voxel for each point in the
cloud is computed with [(p; — Pmin)/v0Zsize |, and the median point of the voxel is

recorded.

23

2.3 A hybrid hierarchic ICP

w
w ---------- . w
Pttt ' ®: |+
. ° e © o o o '.... . e © o o o
500 ® 9.0 ° 8 T : o0 0 0 4.9 °
K ° I °
) [[[]
° L4 ° L4
] [] ° [}

(a) (b) (c)

Figure 2.5: Median filter process. a) Selecting the window. b) Median point in black.
¢) Result of the median filter.

Finally, another technique to reduce the number of points is to limit the maximum
distance for each local coordinate, this strategy also contributes to remove outlier read-
ings because points far from the center are sparse and induce larger corrections to the
ICP registration. Another reason to apply these limits is to weight the contribution
between points along the vertical and horizontal planes. We have observed that if
one of both surfaces has a significantly greater amount of points, that could lead to
misalignment. The result of applying the mentioned reduction strategies is shown in

Fig. 2.6(b).

2.3.4 Hybrid hierarchic ICP comparison

In the previous section we have stated the tools for our ICP proposal. To validate
the method we show results on two different datasets acquired in the Campus Nord
of the Universitat Politecnica de Catalunya, at the Barcelona Robot Lab (BRL),
Fig. 2.7. This environment is equipped with a distributed camera network and full
wireless coverage, available for your experiments. BRL was setup as part of the URUS
project [115], covering an area over 10,000 square meters with several levels and un-
derpasses, poor/intermittent GPS coverage, moderate vegetation, several points with
aliasing, large amounts of regularity from building structures, sunlight exposure severely
subject to shadows, and some dynamic objects e.g. walking people. It is the perfect

scenario to subject our mapping algorithms to real world conditions.

24

2.3 A hybrid hierarchic ICP

Figure 2.6: Sampling and pruning example. a) Original point cloud. b) Pruned and
sampled point cloud.

We gathered our first dataset using our robot “Helena” (Fig. 2.8(a)), an Activmedia
Pioneer 2AT robotic platform with a 3D range laser mounted atop, GPS and compass.
The laser is a proprietary system designed at IRI [87], similar to the ones in [77,
98, 144]. It includes a 2D range laser sensor for pan readings mounted on a motorized
structure giving the tilt movement. The 2D range sensor is a RS4-Leuze 2D laser, with a
maximum resolution of 528 points per scan line, in a 190.08° (—5.04° < 0jgser < 185.04°)
amplitude. This means that every 0.36° a point is obtained. Each scan is about 76,000
points. In this case the odometry coming from the Activmedia platform was used to

get a first estimate of the map.

Our second dataset was gathered by the ETHZ’s Smartter robot [71], also at BRL
during the experiment sessions of the project URUS. The range scanner system in
the Samartter robot consists of two 2D Sick LMS291-S05 lasers rotating around a
vertical axis (pan rotation) Fig. 2.9(b), delivering point clouds with a 360° vertical
coverage. Each second, a full 3D scan of the environment around the vehicle was
acquired, each scan with between 5,000 and 20,000 points, depending on the desired
resolution, see Fig. 2.9(a). In this case, the first estimate of the vehicle trajectory fused

wheel odometry, a differential GPS, an optical gyro and an inertial measurement unit.

25

2.3 A hybrid hierarchic ICP

Figure 2.7: The Barcelona Robot Lab at the Campus Nord of the Universitat Politec-
nica de Catalunya.

We sampled and filtered both datasets as stated in Sec. 2.3.3. We show the values
for each dataset in the Table 2.1. All parameters were set up experimentally except for

the median filter value which was set to 5 following the suggestion in [43].

Dataset | v0Zsize | Tmazs Ymaz (M) | Zmaz (M)
Smartter 0.45 + 23 8
Helena 0.35 + 25 9

Table 2.1: Sampling values for the data.

For both datasets we performed an empirical comparison of the different correspon-
dence search strategies: point-to-point, point-to-plane and the hybrid correspondences
search using two different [, values, [,, = oo and [, = 50. To compute the local
fitted planes we use the 12-NN from the original point cloud to the query point. Us-
ing the unsampled point cloud to compute the local planes helps to preserve the local

features for the registration. For Helena’s dataset we decided experimentally to set

26

2.3 A hybrid hierarchic ICP

Laser Rs4
Angular
position senso

7

Controller

Fixed
structure

Figure 2.8: a) IRI’s Helena robot and its sensors. b) Our first custom built 3D range
sensor. ¢) Example of an acquired scan.

27

2.3 A hybrid hierarchic ICP

Differential GPS 451

Figure 2.9: a) ETHZ’s Smartter robot and its sensors. b) The mounted 3D scanner. c)
Example of an acquired scan.

the following parameters, a maximum of 20 iterations, 92% accepted data, a pairing
distance threshold of 3.3m, 0.05 error threshold between e% and d?, a minimum error
of d% = 0.065m for the convergence parameters, and in the hybrid case, a maximum
tangent plane error of 0.12m. For Smartter’s dataset we also decided experimentally
the algorithm parameters: a maximum of 25 iterations, a filtering of 10% of the data,
a pairing distance filter threshold of 3.3 m, a 0.1 error threshold between ei and dz for
the convergence parameters, a minimum error for d? = 0.18 m, and in the hybrid case
a maximum tangent plane error er, = 0.18 m. Note that the parameters for Helena’s
data sets are smaller given its finer granularity and smaller noise levels than those in

the Smartter data set.

The ICP algorithm only computes relative transformations between consecutively
acquired point clouds. To get a view of the fully corrected map (more strictly, of this
new augmented odometry, since no loop closure is being performed at this time) it is

necessary to concatenate for each pose the corresponding correction.

Next we show comparative results of conventional ICP vs our Hybrid Hierarchic
ICP method. Figures 2.10- 2.15 give an empirical comparison between the different

methods.

Fig. 2.10(a) shows the MSE error in sq. meters for consecutive paired scans in

Helena’s dataset once the ICP algorithm has been executed. Frame 2.10(b) shows the

28

2.3 A hybrid hierarchic ICP

Figure 2.10: Error comparison on Helena’s dataset for each ICP method implemented.
Cyan for point-to-point, blue for point-to-plane, green for hybrid with Euclidean dis-
tance, and red for hybrid with [,, = 50. a) Final positional squared error d% in sq.
meters. b) Final angular error in radians.

final orientation alignment error also for consecutive point clouds. The colored lines
indicate the version of the algorithm used: cyan for point-to-point, blue for point-to-
plane, green for hybrid with [,,, = oo, and red for hybrid with [,, = 50. The revised
odometric trajectories for the various versions of the algorithm are shown in Figs. 2.11-
2.14.

The same is shown for the Smartter dataset. Fig. 2.15(a) shows the MSE error for

consecutive ICP pairings and Fig. 2.15(b) shows the error in orientation.

Even when the point to plane metric is more accurate than the other methods for
the computation of ICP registration on consecutive point clouds in the case of the He-
lena dataset, it is unfortunately a very computationally expensive method. The hybrid
approach presented is a reasonable trade off between accuracy and computational bur-
den in this case. Interestingly enough, for the case of the Smartter dataset with much
denser point clouds, the point-to-point metric performs comparably with the point-to-
plane metric, but the hybrid method supersedes the two of them. The reason for this

is among other things the adequate sampling of data points and outlier removal.

29

2.3 A hybrid hierarchic ICP

-20

Figure 2.11:

Helena dataset, point-to-point metric.

Figure 2.12:

Helena dataset, point-to-plane metric.

30

2.3 A hybrid hierarchic ICP

20

Figure 2.13: Helena dataset, hybrid metric with Euclidean distance.

20

Figure 2.14: Helena dataset, hybrid metric, I, = 50.

31

2.3 A hybrid hierarchic ICP

(] 5 10 15 20 25 30 35 40 a5 50
Data number

(a)

theta error(rac)
5
%

(] 5 10 15 20 25 30 35 40 45 50
Data number

(b)

Figure 2.15: Error comparison on Smartter dataset for each ICP method implemented.
Cyan for point-to-point, blue for point-to-plane, green for hybrid with Euclidean dis-
tance, and red for hybrid with I,, = 50. a) Final positional squared error di in sq.

meters. b) Final angular error in radians.

40

20

-100 |

-120 -

20 40 80 &0

I I Il I
100 120 140 160 180 200

Figure 2.16: Smartter dataset, point-to-point metric.

32

2.3 A hybrid hierarchic ICP

40

20

-100

-120

1 1 1 1
60 80 100 120 140 160 180 200

Figure 2.17: Smartter dataset, point-to-plane metric.

40

20

-100

-120

L, i i i i i
60 80 100 120 140 160 180 200

Figure 2.18: Smartter dataser, hybrid metric, Euclidean distance.

33

2.3 A hybrid hierarchic ICP

20

-100

-120

ek I I 1
20 40 60 80 100 120 140 160 180

Figure 2.19: Smartter dataset, hybrid metric, I,,, = 50.

34

2.4 Fast multi scan alignment with partially known correspondences

2.4 Fast multi scan alignment with partially known cor-
respondences

Most SLAM algorithms keep probabilistic estimates of the robot location that can be
used to determine whether or not a loop closure test is advisable, for instance, by
considering not only pose uncertainty but information content as well [51]. But, once a
loop closure test is deemed necessary, an algorithm that can compute it expeditiously is
needed. Typically loop closure tests are checked not only from the current point cloud
to a query point cloud in the past, but instead, to a consecutive set of query point
clouds in the past, which in turn have already been registered among them. Using
this knowledge, we can expedite multiple registrations at a time. For this reason we
proposed FaMSA [129], a technique for fast multi-scan point cloud alignment at loop
closure that takes advantage of the asserted point correspondences during sequential

scan matching.

Correspondence search is the most expensive step in the ICP algorithm. Finding
the NN to a given query point relies on the ability to discard large portions of the
data with simple tests. Brute force correspondence search would take O(n) worst
case with expected cost log(n), with n the size of the point cloud. The preferred data
structures used to solve the NN problem in low multidimensional spaces are kd-trees [37]
with O(nlogn) construction complexity and O(logn) search complexity. They were
suggested to use in the ICP in [14], later demonstrated in [149] as an alternative, and
finally implemented in [98, 122] to speed up the correspondence search. Another kind
of space partitioning are box structures. They take polynomial time to build [2] and
constant time to search. However the use of box structures in ICP is only possible
when the initial and final poses do not change significantly so that NNs remain in the
originally computed box and in the adjacent boxes. We propose to use a modified

version of the box structure in [2] to solve the multi-alignment problem.

2.4.1 Using kd-trees for nearest neighbor search

The kd-trees are a generalization of the binary search trees. The idea behind this
data structure (trees) is to extend the notion of a one dimension tree on a recursive

subdivision of the space, i.e. for the 2D case the subdivision alternates in using the x

35

2.4 Fast multi scan alignment with partially known correspondences

P6
P5e
P8 ¢
P3
)
P2
P4 PT ¢
[] [] []
P1 PIO

Figure 2.20: A kd-tree example: subdivided data (left) and the corresponding binary
tree (right).

or y coordinates to split, Fig. 2.20 (left) . Therefore, we first split on z, next on y,
then again on x, and so on. In general, the kd-tree cycles among the various possible
splitting dimensions. Each partition (of a point set) is represented by a node containing
the two successor nodes or by a bounding box that contains the data points for that
node, Fig. 2.20 (right). The root node represents the whole point cloud and the leafs
form a disjunct partition of the set. As long as the number of data points associated
with a node is greater than a small quantity, called the bucket size (in [37] it is proved
that a bucket size of 1 is optimal), the box is split into two boxes by an axis-orthogonal

hyperplane that intersects this box.

There are different splitting rules which determine how this hyperplane is selected.
The choice of the splitting rule affects the shape of cells and the structure of the resulting

tree.

- Standard splitting rule: The splitting dimension is the dimension of the maxi-
mum spread (difference between the maximum and minimum values), leading to
many cells with high aspect ratio, Fig. 2.21(a). The splitting point is the median
of the coordinates along this dimension. A median partition of the points is then
performed. This rule guarantees that the final tree has height (logan), also guar-
antees that every kd-tree entry has the same probability. Friedman et al. [37]
introduced this splitting rule in their definition of the optimized kd-tree.

36

2.4 Fast multi scan alignment with partially known correspondences

Figure 2.21: kd-tree splitting rules. a) Standard split. b) Midpoint split. c)Sliding-
midpoint split

- Midpoint splitting rule: When splitting the space, to guarantee that the tree is
balanced, the most common method is the midpoint splitting rule. The splitting
value is the median splitting coordinate, Fig. 2.21(b). As a result, the tree will
have O(logn) height.

- Sliding-midpoint splitting rule: First a midpoint split is attempted. If the data
points lie on both sides of the splitting plane then the splitting plane remains
there. However, if all the data points lie to one side of the splitting plane, then
the splitting plane “slides” toward the data points until it encounters the first
point. One child is a leaf cell containing this single point, and the algorithm

recurses on the remaining points, Fig. 2.21(c).

It had been shown that a O(logn) query time is possible in the average case through
the use of kd-trees [37]. Their use ensures that the nearest data point to a query
point could be found efficiently. High-dimensional (at least three) NN problems arise

naturally when complex objects are represented by vectors of d numeric features.

When using tree structures, finding the nearest neighbor to a given query point
relies on the ability to discard large portions of the tree by performing a simple test.
The tree is searched in a depth-first fashion and at each stage it makes an approximation
to the nearest distance. When the algorithm decides that there cannot possibly be a

closer point it terminates, giving the nearest neighbor.

37

2.4 Fast multi scan alignment with partially known correspondences

Nearest neighbor search with kd-trees proceed as follows. First, the root node
is examined with an initial assumption that the smallest distance to the next point
is infinite. The subdomain (right or left), which is a hyper-rectangle (in 3D space
this is a rectangular prism), containing the target point is searched. This is done
recursively until a final minimum region containing the node is found. The algorithm
then (through recursion) examines each parent node, seeing if it is possible for the other
domain to contain a point that is closer. This is performed by testing for the possibility
of intersection between the hyper-rectangle and the hypersphere (a plain sphere in 3D)
formed by target node and distance to the current best NN estimate. If the rectangle
that has not been recursively examined yet does not intersect this sphere, then there is
no way that the rectangle can contain a point that is a better nearest neighbor. This
is repeated until all domains are either searched or discarded, thus leaving the nearest
neighbor as the final result. In addition the algorithm not only provides the NN, but
also the square of the distance to the NN. Finding the nearest point is an O(logN)

operation.

For the kd-tree implementation (like in [95]) we use the Approximate Nearest Neigh-
bor (ANN) library by [8]. ANN is a library of C++ objects and procedures that sup-
ports the NN search and the approximate nearest neighbor search. It is designed for
data sets that can be stored in main memory. Points are assumed to be represented as
coordinate vectors of reals. The distance between two points can be defined in many
ways. ANN assumes that distances are measured using any class of distance functions
called Minkowski metrics, including the Euclidean distance, Manhattan distance, and
max distance. Preprocessing time and space are both linear in the number of points
n and the dimension d. Thus the data structure requires storage that is only mod-
erately larger than the underlying data set. Also it supports kd-trees [13, 37], and
box-decomposition trees [8], it is able to use different methods for building these search
structures and it also supports two methods for searching these structures: standard

tree-ordered search [9] and priority search [8].

38

2.4 Fast multi scan alignment with partially known correspondences

2.4.2 Box structures for nearest neighbor search and multi-scan match-
ing
The box structure is a very simple space representation where after partitioning the
space, a point’s correspondence is searched only in the box containing this element
and in the adjacent boxes. The idea is, for a given point cloud P; representing spatial
information, a list I is maintained in spatially non-ordered form. The boxing data
structure is built with a rearranged I (of size n) as list I and an index matrix I = I, , 4
whose elements are associated to individual boxes: u,v,w =0, ...,m — 1, and contains

integers indicating the beginning of the boxes in Iz, where m is the number of boxes

along the axis.

The memory requirement is of order O(n) for Iy and O(m?) for I. For the sake of
clarity of the explanation, I is given as a point list containing the (z,y, z) coordinate
values. To keep I in memory, then I» should only contain the access index to I; or

pointers which directly point to the memory locations of the point coordinates.

The box structure limits are given by the maximum and minimum points of the
involved point clouds. The access procedure requires O(k) operations, where k is the
average number of points in the box. One of the main advantages of the boxing structure
is a faster and easier access mechanism than that of the tree search-based methods.
Since for the query point we need only to compute the corresponding box and its

adjacent one.

Also there is no need neither to re-establish the boxing structure nor to update
the I and I lists in each iteration. Only four positions are updated in the course of
iterations, Fig. 2.22. They uniquely define the boxing structure under the similarity

transformation.

In their implementation [2], the correspondence is searched in the boxing structure
during the first few iterations, and in the meantime its evolution is tracked across the
iterations. Afterwards, the searching process is carried out only in an adaptive local
neighborhood, according to the previous position and change of correspondence. In any
step of the iteration, if the change of correspondence for a surface element exceeds a
limit value, or oscillates, the search procedure for this element is returned to the boxing

structure again.

39

2.4 Fast multi scan alignment with partially known correspondences

O

Figure 2.22: The boxing structure bounds all the data points inside, and requires the
update of only four positions at each iteration.

Differently from [2], where they assign to empty boxes the index of the last occupied
box, we instead leave empty boxes out of the search. This serves effectively as a fixed
distance filter with significant savings in computational load. The proposed multi-
alignment method, is faster than using the optimized Approximate Nearest Neighbor

(ANN) library [8] with fixed radius search, as shown in the experiments section.

We have already mentioned that correspondence search is the most expensive part
of any ICP implementation, for this reason we propose FaMSA to boost multiple scan
alignment using previously known correspondences. That is, given two previously
aligned point clouds P and P’, the relative transformation (x) between them, and
a list Y of correspondences, we want to find the registration between the current query

point cloud @ and the two different scans P and P’.

The method proceeds as follows. Standard correspondence search is implemented
between clouds P and @, and for each match between points p; and q;, a link to P’ is
read from Y, and consequently the distance from q; to pj, is immediately established,
avoiding the computation of similarity search and filters. Aside from the previous align-
ment of P and P’, the method needs, as any other iterative ICP algorithm, an initial
estimate of the relative displacement between the query cloud @) and P. Algorithm 2

shows the approach.

In the algorithm, Z and Z’ indicate the correspondence sets between P and Q); and

40

2.4 Fast multi scan alignment with partially known correspondences

FAMSA(P, P',Q,Y,x,x0)

INPUTS:

P, P’: Two consecutive query point clouds.

Q: Current point cloud.

Y: Correspondences between P and P’.

X: Relative displacement between P and P’.

X0: Initial displacement between P and Q.
OUTPUTS:

Xp: Relative displacement between P and Q.

Xpr: Relative displacement between P’ and Q.
Xp < X0

: Xpr 4 (X0 D x)
while not convergence do
Z < NNSEARCH(P,Q, Rp,tp)
Z' + LINK(Z,Y)
xp < ICPUPDATE(P, Q,xp, Z)
xps < ICPUPDATE(P’, Q,xp/, Z")
convergence <+ (e < T) and (¢/ <T)
9: end while

Algorithm 2: FaMSA: Fast multi-scan alignment with partial known correspondences.

P’ and Q, respectively. Appropriate index bookkeeping links to the other in constant
time. The threshold T is used to indicate the maximum error allowed for the registration
of both point clouds. The method also limits the search to a maximum number of

iterations, typically set to 100.

The method is suboptimal in the sense that no new matches are sought for between
point clouds P’ and (. For sufficiently close reference clouds P and P’ it does not

impose a limitation on the quality of the final correspondence.

In the same way that FaMSA takes advantage of the point correspondences between
P and P’ to boost the computation of the relative displacement between P’ and), one
can also defer the estimation of the pose between P’ and @ until all iterations for P
have finished and use the result as a starting point for the second optimization. This

method is shown in Algorithm 3.

Extensive experimentation shows that only one iteration of ICP update suffices to
revise the pose of P’ with respect to @, once the relative transformation between P
and @ has been optimized. We call this method FaMSA2.

41

2.4 Fast multi scan alignment with partially known correspondences

FAMSA2(P, P, Q,Y,x,x0)

INPUTS:
P, P’: Two consecutive query point clouds.
Q: Current point cloud.
Y: Correspondences between P and P’.
X: Relative displacement between P and P’.
X0: Initial displacement between P and Q.
OUTPUTS:
Xp: Relative displacement between P and Q.
Xpr: Relative displacement between P’ and Q.
Require:

1: xp < %o

2: while not convergence do

3 Z < NNSEARCH(P, Q,xp)

4 xp < ICPUPDATE(P, Q,xp, Z)
5: convergence < (e < T

6: end while

T: xpr < (Rp,tp) © (R,t)

8: while not convergence do

9: Z' + LINK(Z,Y)

10: xps « ICPUPDATE(P',Q’,xpr, Z")
11: end while

Algorithm 3: FaMSA2: Very fast multi-scan alignment with partial known corre-
spondences.

2.4.3 Barcelona Robot Lab

During the course of our research, the URUS project was evolving and we needed to
map larger areas than those covered by the two datasets used in the previous section.
To that end we produced a more complete and much larger dataset. This dataset was
accompanied with data coming from other sensors such as cameras and odometry priors.
At the time this research was developed, there were little to nonexistent databases
with enough data and detail to thoroughly test our methods, so we had to create one

ourselves.

This dataset [131] was gathered also at the Barcelona Robot Lab (BRL) area men-
tioned in the previous chapter, an urban like setting placed at Campus Nord of the
Universitat Politecnica de Catalunya (UPC). Fig. 2.23 shows the physical distribution
of the camera network in the Barcelona Robot Lab. And Fig. 2.24 shows imagery from
a pair of these during the dataset acquisition session along with a sample captured

scan.

42

2.4 Fast multi scan alignment with partially known correspondences

BE-1 (21)

BE-5 [4)

B5-3 (19)

B3 (2) L]
il

AG-B (15) AB- (16)

AB-T [14)

AB-E (13) A)

ST L5 o1&
AB-5(12) aggy11) AB-3(10) AB-Z(9)

T E——

Figure 2.24: Two BRL cameras (up) in the plaza and corresponding 3D range scan
(center) with stereo images (down).

43

2.4 Fast multi scan alignment with partially known correspondences

(b)

Figure 2.25: a) Virtual model of the BRL scenario. b) Overimposed 3D cloud in the
virtual model.

44

2.4 Fast multi scan alignment with partially known correspondences

The data set is intended but not limited to benchmarking algorithms for robust
outdoor localization, mapping and navigation, scene understanding, path planning and

motion pattern analysis in both the robotics and computer vision communities.

It contains over 12GB of dataand surveys an area that covers 10,000 square meters,
it includes 3D point clouds of the whole area, on-board robot imagery, as well as imagery

from a camera sensor network. Data acquisition was spanned in two consecutive days.

Three aspects made this dataset unique at the time our research was taking place:

1. It includes a time-stamped sequence of images from the entire camera sensor

network spanning the two days of data gathering.

2. It contains impressively rich 3D point clouds obtained with our proprietary built

3D scanner.

3. We provide a 3D virtual model of the scenario for ground truth comparison, i.e

a obj file, see Fig. 2.25.

The data set contains high quality 3D range data from a proprietary 3D laser, stereo
images, compass and the camera network images, along with their calibration parame-
ters, and a 3D virtual model of the scenario. All data has been carefully timestamped
with logs in a human readable format. The dataset spans two consecutive days, lead-
ing to 400 3D range scans (2.7 Gb), 800 stereo images at high resolution (5.5 Gb), and
more than 25,000 images from the camera network (3.7Gb). We also provide parsing
tools and examples written in MATLAB to access the data easily. The dataset is freely
available at the web site [131] .

Aside from the sensor data, it includes a 3D CAD model of the BRL area, see
Fig. 2.25. The map was built by hand, taking measurements with laser distance me-
ters and measuring tape, delivering a coherent 3D model which incorporates the most
important geometrical elements such as buildings, stairs, ramps, borders, curbs, some
vegetation elements and urban furniture such as benches or streetlights. The 3D model
is provided in .obj geometry definition file format [133], originally developed for 3D
computer animation and scene description, which has become an open format and a de
facto exchange standard, see [24] for further details. This model was used successfully

by 3D localization algorithms [136].

45

2.4 Fast multi scan alignment with partially known correspondences

z
X/T\‘y

3D laser range

R|gth stereo ca eraE =

=22
S

(a) (b)

Figure 2.26: a) Our robot Helena with the second custom made 3D laser and the
sensors reference frames. b) Our custom 3D laser based on a Hokuyo-UTM30 2D range
finder.

The robotic platform used to gather the dataset was a Pioneer3 AT mobile robot,
called “Helena”, see Fig. 2.26(a). Helena had a Centrino at 1.6GHz laptop for control
and to record proprioception sensors, such as odometry and IMU. Additionally, Helena
had a dual-core 2GHz laptop to record the 3D range scanner and images from the stereo

cameras.

As mentioned earlier, in the process of this thesis, we built two different laser range
scanning systems. The first custom 3D sensor we built was a tilting unit, with a RS4-
Leuze 2D laser [87]. It had the disadvantage of only scanning when the mechanism was
tilting up, and was mechanically unstable and difficult to control. Moreover, it had a
limited field of view horizontally and vertically. Consequently, for the BRL dataset,
we decided to build a second 3D range sensor. We opted to mount a more compact
2D range sensor in a slip-ring, allowing the sensor to be always rotating, thus avoiding

the dead time from the tilting unit, and warranting continuous scans. Moreover, as

46

2.4 Fast multi scan alignment with partially known correspondences

()

Figure 2.27: Proprietary 3D range laser, Hokuyo UTM-30LX based. Example of the
laser scans a) in yaw top configuration, b) in roll front configuration. c¢) Range image
acquired with the 3D laser in yaw top configuration. Blue means closer range and red
farthest.

the laser was mounted atop the motor, it was mechanically more stable and easier to
control compared with the tilting unit. We employed a Hokuyo UTM-30LX scanner
(30 meters range), were the angular position is controlled with a DC brush-less motor
and a computer. The system azimuth (horizontal) resolution is 0.5° over (360°) and
zenith (vertical) resolution is 0.25° (over 270°) leading to maximum definition up to
194,580 points per scan, with 30 meters of range and radial error about 30 mm for the

interval of 0.1 to 10 m, and 50 mm for 10 to 30 m.

Helena had the ability to explore indoors and outdoors environments, it was able to
climb hills on flat floor up to 30° and carry payloads up to 12 kg, including additional
batteries. Base autonomy was 3-6 hours on three fully 12V 7Ah charged batteries.

47

2.4 Fast multi scan alignment with partially known correspondences

Figure 2.28: Data set workspace in the BRL, with the robot trajectory for both days.
The first day is the blue dotted line and the second day is the red line.

Our 3D range scanner was designed to allow for two scanning configurations, either in
yaw top configuration, or in roll front configuration, Fig. 2.27. The BRL dataset was
acquired with a yaw top configuration. The sensor is mounted in top of our robotic
platform to minimize possible occlusion from other sensors, or the vehicle itself. Helena
also carries a proprietary stereo camera system based on two FLEA 2 cameras with
a 418 mm baseline and COMPUTAR M1214-MP lenses, with a field of view of 40.4°.
The cameras offer a resolution of 1280x960. Our robot delivers odometry data in a

(x,y,0) format, and carries a TCM3 compass to obtain the orientation about the 3 axis.

To gather the data it was necessary to expend two days of experiments. Figure 2.28

shows the trajectory done by Helena at the BRL area during the two spanned days.

2.4.4 FAMSA execution times

We now report results of our fast scan alignment algorithm with partially known corre-
spondences on this dataset. For this experiment we only use the first 39 point clouds of
the BRL dataset. Fig. 2.29 shows a view of the reconstructed part of the environment.
Each scan was uniformly sampled for faster convergence using voxel space discretization
with a voxel size of 0.35 meters. During sampling, we also computed surface normals

and enforced a minimum voxel occupancy restriction of 4 points. Random sampling

48

2.4 Fast multi scan alignment with partially known correspondences

—s 20

d 19

26\0 '35 N5
39
4 b4

Figure 2.29: A path with 39 poses around the FIB plaza of the Barcelona Robot Lab.
a) Dense point cloud registration, color indicates height. b) Robot trajectory, in green
the initial pose, in red the final pose.

49

2.4 Fast multi scan alignment with partially known correspondences

18 . T ! —
.. L ® BN ® BN
s e o ~@- ANNfr % e ~®- BNN:+FaMSA
. e | -e-aNN @ R 4 o ® BNN:+FaMSA2
/ ®- FaMsA > . e
18 . e Lamsan ok .. s]
o * e
12 La
16
§° e g . g
b d . * 2
£ R £
12
s, °
(S R .
> * A °
4 ° 10 o« o9
- ". ° : . L e 4
z 1. |
P e -e- ° .- o * o 1
4-27 4-28 529 5-30 6-31 7-32 7-33 18-37 16-38 17-39 3?4'27 3-4-28 4529 4530 5631 67-32 6-7-33 17-18-37 15-16-38 16-17-39
Cloud pairs Cloud chains
(a) (b)

Figure 2.30: Algorithm performance. a) Time required to match @ and P’, when the
correspondences between P and P’ are known. b) Time required to match @ with both
P and P'.

with set sizes of 20 points was used for those boxes exceeding such number of points.
Normal orientations are computed after random sampling. This has shown to pro-
duced better orientation estimates, especially around corners, when compared to other

strategies such as k-NNs with density filtering.

ICP is executed pairwise and in open loop for the 39 consecutive scans, storing all
relative pose displacements as well as the correspondence indexes. Then, a number of
possible loop closure locations were selected manually. FaMSA was executed on these
loop closure candidates. The specific parameters of the ICP implementation include:
maximum angle between normals of 35 deg; upper and lower bounds of sigma rejection

at 0.250 and 50, respectively; and maximum number of iterations at 100.

For the execution times reported, experiments were run in MATLAB using mex
files of C++ routines in an Intel Core 2 Quad CPU Q9650 3.0 GHz system, with 4 GB
RAM running Ubuntu 10.04 32 bits.

We first compare the execution time in seconds for various implementations of
multi-scan ICP. To this end, 10 loop closure locations @) are selected in the trajectory,
and each is compared against its query clouds P and P’. Assuming that an alignment
between a cloud in) and another one in P has been established, we compute the time
it takes to align the current cloud @ to the second query cloud P’ given the correspon-

dences between @ and P are known, see Fig. 2.30(a). The methods BNN, ANN-FR and

50

2.4 Fast multi scan alignment with partially known correspondences

2 ~®-BNN
. -y
so00f e L 3
, . ’
/ N / N
2s00® 7 (]
2 /
g . L]
§ 2000 hd
.
3 e . °
15005 -
¢ o *
. .
.. -
1000 e

"
4-27 4-28 529 5-30 6-31 7-32 7-33 18-37 16-38 17-39
Cloud pairs

Figure 2.31: Number of correspondences between P’ and @ running a full BNN com-
pared to using the stored set Y.

ANN refer to our implementation of voxel NNs; ANN with fixed radius, the size of the
voxels; and conventional ANN. FaMSA and FaMSA2 stand for the methods presented
in this chapter that make use of previous point correspondence indexes to speed up
registration. Note that FaMSA2 is the fastest of the methods, requiring only one iter-
ation in the minimization. Extensive experimentation showed that further refinement

in the case of FAMSA2 does not significantly improve the registration.

Figure 2.30(b) plots the time it takes to register the current point cloud @ against
both query clouds P and P’. The plot shows the individual registration using BNN and
the combined registration using the proposed schemes BNN+FaMSA and BNN+FaMSA2.
Note how the advantages in computational load of using any of the proposed algorithms

are significant.

One might think that using only the correspondences in Y (the set of correspon-
dences from clouds P and P’) would yield suboptimal estimation. As a matter of
fact, when using only this set to compute the relative displacement between P’ and @,
the number of correspondences effectively halves (see Fig. 2.31), but pose estimation

accuracy does not suffer significantly.

Figure 2.32 plots proportional translation and rotational errors as compared with
full ICP estimation using BNN, and computed as follows [86]: using as ground truth
the relative pose between @ and P’ as computed with BNN (Rpnn,tsNN), We measure

the relative error of the estimated rotation R, as Er(%) = |lasnny — dl|/||q||, where

o1

2.4 Fast multi scan alignment with partially known correspondences

07 T T T T 35 T T T T | : !
~® FaMSA o ~® FaMSA
2 -®- FaMsA2 i -®- FaMsA2
/ N [
/] i 4
/

05 ° ‘o .
o N 25 \
0 ° / ’
£ L4 \ g oA B / P
- / | 3 S { []
w 1 w ® . / \
osf \ / .
\ ! \ 3
, ¢ N / o
/ \ 15 e !
02/ ° N e i .
'Y \ . @ L] YN y
‘ / o [g
o1 . . . ° 1] ¢
° AN
0 ‘ ® L] 05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
4-27 4-28 529 5-30 6-31 732 7-33 18-37 16-38 17-38 4-27 4-28 5-29 5-30 6-31 732 7-33 18-37 16-38 17-39
Cloud pairs Cloud palrs
(a) (b)

Figure 2.32: Proportional relative error. a) Translation and b) rotational errors for the
registration between) and P’ with the proposed methods. BNN is used for ground
truth comparison.

qpn N and q are the normalized quaternions of the corresponding orientation matrices
Rpnny and R, respectively. Similarly, the relative error of the estimated translation is
computed with Ey(%) = |[tgnn — tpr||/|[tpr|. Translation error turns out to be less
than 0.7% for FaMSA and for all cloud pairs, and less than 0.2% for FaMSA2. Rotation

error is barely noticeable for both methods.

Figure 2.33 shows a sample of the point cloud match (best viewed in color). In blue,
the current pose. In green and red, the query poses. A safe percentage of point cloud
overlap in our method is roughly 50%. This is achieved with displacements of about 4

meters.

52

2.4 Fast multi scan alignment with partially known correspondences

s

e

i
]

Figure 2.33: A loop closure location between clouds 3, 4, and 28 in the BRL dataset
(best viewed in color). a) Perspective and b) top views. P in yellow P’ in red, and @
in blue.

53

Chapter 3

3D range mapping

In this Chapter we present the tools needed to create a globally consistent representa-
tion of a robot’s environment, which is crucial for localization and navigation. Many
mobile robotic systems gather information about their local environment using laser
range data [17, 77, 97, 98, 135]. These local representations have to be matched to build
a global map. The iterative procedures of local pairwise matching explained in the pre-
vious chapter is only part of the picture. Pairwise matching alone leads inevitably to
inconsistencies due to the accumulation of small errors in the matching process. To
attain a globally consistent map, global matching algorithms are needed, taking if not

all, as many possible correspondences between all scans into account.

The above mentioned errors of cumulative pairwise matching could be produced by
wrong convergence of the matching algorithm, under-constrained situations, or sensor
noise. The first of these factors was addressed in the previous chapter with our hy-
brid point-to-point and point-to-plane heuristics for correspondence search. The second
factor, was addressed also in that chapter by the subsampling strategy. Sensor noise
bounds is typically given by the sensor manufacturer. We are thus interested in model-
ing how such sensor noise propagates through the scan matching algorithm to produce
an error estimate of the relative transformation between two point clouds. Modeling
this error is important as it allows us to compute motion estimates with the appropriate
uncertainty bounds. In this Chapter we present the mathematical tools to estimate the
covariance of the relative motion estimate computed by the ICP registration algorithm
from chapter 2. These motion estimates, and probability distributions, serve as input

to the global mapping algorithm,i.e the SLAM method we employ in this thesis. The

54

3.1 Related work

motion estimates are used either as odometry measurements when matching consecu-
tive point clouds from consecutive poses in time, or as loop closure constraints, when
computing the relative motion of the most recent robot pose with respect to any other
previous pose besides the immediately previous one. We also explain in this chapter

the estimation machinery behind the chosen SLAM method.

The rest of this Chapter is structured as follows. We start with the related work in
Sec. 3.1. Next, we continue with the error propagation model for the presented scan
matching Sec. 3.2. Later, in Sec. 3.3 we explain the chosen filtering scheme used for

SLAM. And in the last section, Sec. 3.4, we show some of the 3D maps built.

3.1 Related work

Mapping with 3D laser range finders has been addressed in many ways. There exist non-
probabilistic approaches, such as the one proposed in [97], where the alignment of two
scans is achieved mainly by improvements to the basic ICP algorithm [14]. However,
more common methods for merging all scans are based on probabilistic information.
Probabilistic methods allow for a straightforward way to distribute errors when closing
a loop. That is, when revisiting a location after a long traverse. One possibility for 3D
probabilistic SLAM in outdoor environments is to employ a delayed-state framework
with an Extended Kalman Filter (EKF) [23].

Using an Extended Information Filter (EIF) within the delayed-sate paradigm has
better scalability properties compared to the EKF [32]. A delayed-sate EIF gener-
ates exact sparse information matrices and, during open loop traverse, the information
matrix becomes tri-block diagonal as consecutive robot poses are added to the state.
At loop closure, the matrix structure is only modified sparsely, setting information
links between non-consecutive robot poses. Thus, one advantage of the delayed-state
information-form for SLAM is that predictions and updates take constant time, assum-

ing an efficient or approximate way for state recovery is used to evaluate Jacobians.

The approximations performed by linearizations, together with covariance and state
recovery and data association are issues of concern in the use of EIF filters for SLAM.
Our group has proposed an alternative to reduce the overconfidence effects of lineariza-

tions by closing only the most informative loops, decreasing the total number of loop

95

3.2 Propagation of error from point cloud registration to relative pose
estimation

closure links, maintaining the sparsity of the information matrix [50]. The technique
not only defers filter inconsistency but also has better scalability properties. As for
state recovery in information form, efficient techniques for exact recovery of covariance
and state estimates are proposed in [48, 55]. Our group showed later that during open

loop traverse, exact state recovery can be performed in constant time [52].

Pose SLAM is one such variant of delayed state SLAM where only the robot trajec-
tory is estimated and in which landmarks are solely used to compute relative constraints
between robot poses. We have developed efficient methods to build 2D Pose SLAM
maps [51, 52] and 3D Pose SLAM maps [140] that ponder the information content on
odometry and measurement links to keep the graph of poses sparse. In this chapter we

show results of such Pose SLAM mapping achieved with our custom built 3D lasers.

3.2 Propagation of error from point cloud registration to
relative pose estimation

Next, we present a method to model the uncertainty of the relative motion parameters
computed with the registration approach just described in Chapter 2. This method
propagates the noise from the matching process of a point cloud pair, to that of the
motion estimate, thus delivering a probability distribution about the uncertainty in the

parameters of the relative transformation.

One way to compute an accurate covariance approximation is by Monte Carlo simu-
lation. However, this is a time-consuming solution, and we prefer to devise a closed-form
solution. In [19], the authors provide an analysis of different methods to compute the
propagation of the ensuing covariances of the scan matching process; such as, the Hes-
sian method [11, 15], which in some cases greatly over-estimates the real covariance;
or first order error propagation, a very well know method for covariance approxima-
tion [33], which is our preferred choice. We choose first order approximation because
for the case of very small relative motions, nonlinearities play a minor role and the
over-approximation is bearable. This first order approximation has also been studied
for the case of 2D scan matching [19], and in our institute, for the case of point 3D

model acquisition [35] and for camera calibration [38].

56

3.2 Propagation of error from point cloud registration to relative pose
estimation

The general rule for a first order approximation of the covariance X of the solution x
in Eq. 2.16 would be to compute a first order covariance propagation of the uncertainties
in 3D point estimation Xp p/, assuming that Eq. 2.16 is a differentiable function of the
point sets (P, P’)

Yy = VESp p VET (3.1)
with Vf the Jacobian of Eq. 2.16 with respect to the 3D correspondences in the point

estimates P and P’, and
Sppr = diag (X9, .., XPN SR SN (3.2)

a block diagonal matrix, with E?ﬁ and E?j,, the covariances of each of the the i-th point

coordinates in each of the two point clouds, respectively.

Note that Eq. 2.16 is the result of an unconstrained minimization of the cost function
Ejist(x, P, P’) in Eq. 2.12, written here explicitly as a function of the transformation
parameters x as well as the point coordinates in the two point clouds P, and P’. Then,
using the implicit function theorem [33], which in general forms states that the Jacobian
VT of a function f satisfying a certain set of constraints g(x, P, P’) = 0 can be expressed
in terms of the partial derivatives of g with respect to x and (P, P’) in the form

og\~! 0
Vf = — (ai) ng,) . (3.3)
The result is used in the following way. Assume that x is a solution for the mini-

mization of the cost function Egs(x, P, P'). This is equivalent to say that

OB gis(x, P, P\ T
P,P) = LA A) 3.4
glx, P, P') = (25 (34)
when evaluated at the minimizer x* is equal to 07.
Plugging Eq. 3.4 in Eq. 3.3, the Jacobian of Eq. 2.16 becomes
—1
82E‘dist 82£?dist
Vi =— 3.5
(ox? o(P, P")0ox (3:5)

Developing the summations in Eq. 2.12 and regrouping terms, the same cost function

can be rewritten as a quadratic expression on the rototranslation x

Egst =x Ax—2B'x+C (3.6)

The ensuing numerical evaluation of the partial derivatives in Eq. 3.5 becomes

straight forward.

o7

3.3 3D mapping with Pose SLAM

3.3 3D mapping with Pose SLAM

The Pose SLAM algorithm belongs to the variant of SLAM algorithms where only
the robot trajectory is estimated and landmarks are solely used to produce relative
constraints between robot poses. Pose SLAM maintains a compact state representation
by limiting the number of links and nodes added to the graph using information content
measures [51].

Formally, in Pose SLAM, the state vector x = [x},X],...,x},]"

.y Xp] , contains the history

of robot poses from time 0 to n, which is estimated from the history of odometric
observations U and proprioceptive observations Z using a canonical parameterization

of Gaussian distributions
p(x|Z,U) =N (x;m, A), (3.7)

where 7 is the information vector, and A is the information matrix.

Predictions and updates using this parametrization lead to an information filter,
which compared to the traditional Kalman form, has the advantage of being exactly

sparse for trajectory-based state vectors, such as ours [32].

New poses are added to the state vector as a result of the composition of odometric

observations u,, with previous poses

Xn = f(XTL—].7 un) = Xn—1 @ Uy - (38)

And, for highly uneven and unpredictable terrain, such as the one in the experiments
reported here, odometric data from the platform is unreliable and odometric observa-
tions are in fact computed by running the Iterative Closest Point (ICP) algorithm over

two consecutively acquired point clouds.

As said, to keep the graph of poses sparse, redundant poses are not fed to the
estimator. A new pose is considered redundant when it is too close to another pose
already in the trajectory, and not much information is gained by linking this new pose
to the map. However, if the new pose allows the establishment of an informative link,
both the link and the pose are added to the map. The result is a uniform distribution

of poses in the information space, as opposed to other more common methods that

58

3.3 3D mapping with Pose SLAM

trim the number of odometric relations by distributing them uniformly in Euclidean

space [65].

To determine if the current pose x, is close to any other pose in the trajectory x;,

we estimate the relative displacement between them
d = h(xi,xn) = OX; DXy, (3.9)
as a Gaussian with parameters:

td = h(ti, pin) (3.10)
i Xin

S = [H; Hn}[zl -

] [H;, H,] (3.11)

where 3;; and 3, are the marginal covariances for the state variables at stake, 3,
is their cross correlation, and H; and H,, are the measurement Jacobians of the rel-
ative displacement d with respect to poses x; and x,, respectively. Marginalizing the
distribution on the displacement for each one of its dimensions we get a set of 1-D
Gaussian distributions that allow to compute the probability of each variable in pose
x; of being closer than a threshold to its corresponding variable in pose x,,. If, for all
dimensions, these probabilities are above a given threshold s, then pose x; is considered
close enough to the current robot pose x,, and there is no need to include x,, in the

map, unless it establishes a highly informative link.

The amount of information of a link between any two poses is decided in terms
of the amount of uncertainty that is removed from the state when such link is added
to the pose graph; and measured as the mutual information gain, which for Gaussian
distributions is given by the logarithm of the ratio of determinants of the covariance
prior to performing the state update, and after the state update is made [26, 142].
This ratio is a multiple of the number of times state uncertainty shrinks once a loop is
asserted. In [51] we show, that despite being a measure of global entropy reduction, it
can be computed in constant time with a single compact expression,

7= ;m'g', (3.12)

where S = 3, + X, and X, is the measurement covariance.

Sensor registration is an expensive process, and in practical applications, it is con-

venient to hypothesize whether a candidate link is informative enough before actually

59

3.4 Mapping 3D scenarios

aligning sensor readings. To that end, Eq. 3.12 is first evaluated using an approxi-
mation of the measurement covariance, i.e., the covariance for the individual ICP just
computed in Eq. 3.1. If the result is above a given threshold, sensor registration is

needed to assert data association.

When establishing such a link, the update operation only modifies the diagonal
blocks ¢ and n of the information matrix A, and introduces new off-diagonal blocks at
locations in, and ni. These links enforce graph connectivity, or loop closure in SLAM
parlance, and revise the entire state, reducing overall uncertainty. The operation has
linear time complexity but takes place very sparsely. Hence Pose SLAM can be executed

in amortized constant time [53].

3.4 Mapping 3D scenarios

In this section we show experiments that demonstrate how the hierarchical ICP tech-
niques for sensor registration developed in Chapter 2 and the covariance estimates for
that method, developed in the previous section, can be fed as odometric as well as loop
closure inputs to the Pose SLAM algorithm. In that sense, our 6DOF version of Pose
SLAM [140] is applicable to build consistent dense 3D maps with range data [132].
The maps built here will be the input to the terrain classification method presented in

Chapter 4, and for the path planner in Chapter 5.

We must mention, that the sensor covariance approximation computed using the
first order error propagation in Sec. 3.2 was devised only for the point-to-point error
metric, whilst our actual implementation of the ICP is hierarchic, using a point-to-point
error metric at the coarsest levels but a point-to-plane error metric at the finest levels,
weighing differently rotations than translations [129]. Nonetheless, our experiments
show empirically that the computation of ¥y using inly the point-to-point metric is

accurate enough and does not jeopardize the rest of the method.

The results shown here are for mapping sessions with the same datasets as those
shown in Sec. 2.3.4. Moreover, we also present results for a new dataset, captured in the
interior plaza of the FME building at UPC. This new dataset encompasses a 100 x 40
sqm. rectangular area with various terrain types (gravel, earth, grass) and ramps. The

robot used in this case is Teo, a Segway RMP 400 platform equipped with our custom

60

3.4 Mapping 3D scenarios

—
| Laser 3D

Stereo

|'fE}n-bﬂard W
cameras

e FE

. -

-\""\.‘-

| Laser 2D |
\ J

Figure 3.1: Our robot Teo.

built 3D scanner, see Fig. 3.1 [132]. Each aggregated laser scan has 194,500 points
with resolutions of 0.5 deg azimuth and 0.25 deg elevation and range of 30 m, with a
noise level of 5cm in depth. The Pose SLAM map built contains 30 dense point clouds
with a maximum separation between consecutive poses of 18 m. In all the experiments
the robot was tele-operated during data collection. The next figures show empirically
the result of the SLAM method. Our intent is not to make an exhaustive numerical
analysis of the mapping mechanism, but to use these maps as input to higher level

navigation tasks, as shown in the following chapters.

61

3.4 Mapping 3D scenarios

Figure 3.2: Map of the Barcelona Robot Lab computed with the hybrid hierarchic ICP
approach from Chapter 2 and the Pose SLAM algorithm described in this chapter. a)
Top view, robot poses are the blue points. b) and c) superposition of the final map
over a virtual model of the BRL.

62

3.4 Mapping 3D scenarios

0 HE

3 3
e P
" ha e S 4l
s \\y

;
/

e e o i S
»

T .l g
R
LI RO G

(b)

Figure 3.3: Map of the Barcelona Robot Lab, 400 poses, pose means in red and covari-
ance hyper-ellipsoids in blue. a) Open loop point cloud registration with the proposed

hybrid hierarchic ICP. b) 6DOF Pose SLAM map.
63

3.4 Mapping 3D scenarios

Figure 3.4: Map of the Barcelona Robot Lab a) Rendering of the initial open loop point
cloud registration. b) Rendering once Pose SLAM is executed.

64

Figure 3.5: Example of a rich 3D point cloud rendered from the resulting Pose SLAM
map of the Barcelona Robot Lab.

3.4 Mapping 3D scenarios

Figure 3.6: Computed map for the FME using the proposed hybrid hierarchic ICP for
pairwise point cloud registration and Pose SLAM for global registration. (color means
different height). a) Rendered top view. b) Rendered zoom in at ground level.

66

Chapter 4

Terrain classification

Although the capability to acquire and build dense maps is a very important task in
mobile robotics [140]. If we want the robot to reliably navigate within this map, we
need to identify which regions on it are safe and which are not, i.e the map needs to

be classified.

State-of-the art terrain classification methods use 3D laser range finder data at im-
pressively rich point cloud density, and extract features from these point clouds [28].
Such features are then used to build traversable and non-traversable classes, usually
through parametric classification. Feature thresholding is a difficult task that some-
times requires human intervention [54, 125, 135]. However, learning algorithms with

manual initial ground truth labeling of data can also be used [70].

In this chapter we present a pair of methods to attain high-level off-line classification
of traversable areas, in which training data is acquired automatically from navigation
sequences. The classification mechanisms learn traversable regions from the large 3D
point maps build using the methods described in the previous two chapters. We ap-
proach the problem using Gaussian processes as a regression tool, for which the terrain
parameters are learned, and also we do it for classification, using samples from tra-
versed areas to build the traversable terrain class. These classifiers provide as output
the likelihood of a point to be traversable whilst modeling few local features in a sta-
tistical manner. In a second step we filter the classes and find the traversable region

edges which provide a boundary for the safe traversable regions for the robot.

To motivate the reader, Fig. 4.1 shows the type of terrain our method is able

68

Figure 4.1: Non-parametric classification of complex terrain. a) A picture of the Facul-
tat de Matematiques i Estadistica (FME) patio. b) Classification results. Traversable
areas in green, and obstacles in height-valued gray. The positive samples in the training
sequence used to produce this result included the points at the robot footprint that were
acquired while climbing the slope next to the stairs. Consequently, the classification
technique was able to correctly label such scenario.

69

4.1 Related work

to handle. Using only some of the traversed areas as positive training samples, our
algorithms successfully classified the rest of the traversable terrain and our robot was
able to climb the steep grass incline next to the stairs, despite the various types of soil
in the scene (grass, dirt, gravel, etc). This is in contrast to other techniques which
search for global planarity constraints or other features not in accordance with the
training data. The two methods are compared against a naive parametric approach
and some variants of a support vector machine. As shown in the experimental section
of this chapter, our method attains f-scores —weighted average of precision and recall

values— as high as 0.98 for the classification of traversable and non-traversable regions.

4.1 Related work

Terrain classification on 3D environments with non-flat surfaces has been an active
research topic in mobile robotics. An early approach to the problem is the use of
elevation maps [45, 46]. This is a discrete representation of the terrain that stores
surface height in its cells. Neighboring cells with a difference in height above a user-
defined threshold are marked as non-traversable. In [105] an extension of elevation maps
is given that allows to deal with vertical and overhanging objects. These were further
extended to represent multiple levels with the Muti-Level Surface Maps (MLS) [135].
And later, in [54], MLS were extended to include slope information to handle possible

abysses and holes.

Terrain classification also is approached with the aid of Markov random fields in [7,
44, 90], either using cameras or range data. All these mapping schemes store the
3D environment information in regularly spaced grids. Our technique does not treat
annotated 2D maps, but rather full 3D data, allowing us to handle underpasses or
tree shadows with ease. Another version of terrain classification that uses 3D data is
through the use of 3D occupancy maps [79]. This technique however has large memory
requirements. To deal with the memory requirements of 3D occupancy maps, one can
resort to the use of variable resolution grids, such as octrees [125, 146]. Instead of
learning the classification, the approach in [104] segmented the point clouds through a
graph-based ellipsoidal region-growing process using a minimum spanning-tree and two
maximum edge-weight conditions, leading to discrete regions that represent obstacles

in the environment. In [88] they classify objects according to height-length-density

70

4.1 Related work

parameters. The above-mentioned methods to terrain classification are parametric.
They offer fast terrain segmentation, but generally it is difficult to find the rules which

work for a variety of terrain types and dangerous areas like abyss.

Non-parametric approaches use some learning strategies that include the use of
training data. Some recent methods use learning from demonstration [120], imitation
learning [119], learning from proprioceptive measurements [6, 123], or coordinate ascent
learning to estimate terrain roughness [124]. In [69] for instance, Bayesian classification
is performed on elevation maps using stereo vision to compute occupancy maps. In a
method similar to ours in spirit, [62] produce a grid with traversable regions from an
autonomous data collection along the robot path. Their method extracts 13 different
features from monocular images, and feeds them to a majority voting process to predict
the traversability of each cell. Our method is simpler in that we use less features,
and are not constrained to regularly spaced grid settings. Another non-grid based
representation for 3D data is presented in [70]. They perform terrain classification
directly over the point clouds just as we do, learning the terrain feature distribution by
fitting a Gaussian Mixture Model using the Expectation Maximization algorithm on a
set of hand labeled training data. We resort instead to the use of Gaussian process for

classification, and do it over automatically acquired positive training sequences.

Gaussian Process (GP) [110] have recently called attention in mobile robotics for
classification [91]. Compared to a more traditional technique such as Support Vector
Machines (SVM) GPs offer several advantages such as learning the kernel and regu-
larization parameters, integrated feature selection, fully probabilistic predictions and
interpretability. In comparison with Support Vector Regression (SVR), GP’s take into
account the uncertainties, predictive variances and the learning of hyper-parameters.
Using GP, [59] proposed a mobility representation where in contrast of the traversability
criterion, the maximum feasible speed is used to classify the world adding exterocep-
tive or proprioceptive states augmenting the GP input vector. An approach using GPs
on two-dimensional range data to compute occupancy probability is presented in [99].
Another approach, [92], takes advantage of GPs to build cost maps for path planning
from overhead imagery. In [141], the authors infer missing data in 3D range maps for
open pit mines. And recently, GP’s were used to segment point clouds in not one but

multiple classes [103]. In [28], the Gaussian Process Incremental Sample Consensus

71

4.2 Gaussian processes for off-line terrain classification

(GP-INSAC) algorithm is presented, it consists of an iterative approach to probabilis-
tic, continuous ground surface estimation, for sparse 3D data sets that are cluttered by
non-ground objects. This approach however does not specifically address traversable

region classification as presented in the next sections.

4.2 Gaussian processes for off-line terrain classification

We need to classify the terrain of large maps to perform navigation. The main idea be-
hind terrain classification in mobile robotics, is to identify two terrain classes: traversable
regions and obstacles. This means that we must be able to identify different environ-
ment characteristics such as: slopes, bumps, vegetation, buildings and different terrain
surfaces (e.g., soil, grass, concrete), as navigable or not. For this end we will use Gaus-
sian processes. They are a powerful mathematical non-parametric tools for approxi-
mate Bayesian inference and learning, they provide a principled, practical, probabilistic

approach to learning in kernel machines [110].

Supervised learning, is the problem of learning input-output mappings with a train-
ing dataset. Self-supervised learning in robotics is refereed when there is not human
intervention to build the training data set. Learning can be divided in two cases: 1)
regression, concerned with the prediction of continuous quantities, and 2) classification,
where the outputs are discrete class labels. A Gaussian process (GP) [110] is a Bayesian
regression technique that trains a covariance function to model a non-parametric un-
derlying distribution. Gaussian processes are non-parametric approaches in that they
do not specify an explicit practical model between the input and output. The GP’s are
characterized by a mean function m(x) and the covariance function k(x,x’), such that
the GP is written as f(x) ~ GP(m(x), k(x,x")).

To solve the problem we need prior knowledge of the environment, i.e. the training
dataset D = {(x;,yi)|t = 1,...,n}, where we denote x as the training input of features
with dimension d, and y is a scalar output or target which is dependent of the problem
to solve (regression or classification). This knowledge can either be acquired from
previous data of a similar environment, or using a subset of the new data to train the

GP. This algorithm employs the Occam’s razor principle to avoid over-fitting, using D

72

4.2 Gaussian processes for off-line terrain classification

to shape a covariance function k(x, x’) into a function that characterizes the correlation

between points in the dataset.

The choice of the covariance function directly impacts in the quality of predictions
produced by the Gaussian Processes. The learning problem in Gaussian Processes is
precisely the issue of finding the suitable free parameters for the covariance function.
These free parameters are called the hyper-parameters ¢, they are adjustable variables
that give us a model of the data, such smoothness, interpreting characteristic length-
scale and variance of the GP functions. The hyper-parameters are learned using the

training data set D, to later predict new inputs x, that we may have not seen in D.

4.2.1 Regression analysis

Regression analysis is a statistical technique for estimating the relationships among
variables. It is needed to make inferences about the relationship between inputs and
targets, i.e. the conditional distribution of the targets given the inputs (but there is no
interest in modeling the input distribution itself). The inferences are made about the
relationship between the knowns inputs x and its outputs y, in the absence of knowledge
to the contrary it is assumed that the average value over the sample functions at each
x is zero. Under the GP’s all targets y are considered as jointly Gaussian distributed
P(Y1y s Yn|X1, -y Xn) ~ N(p, o), this is a distribution over functions and inference takes

place directly in the space of functions. The mathematics below are based on [110].

When introducing the noise term, the joint distribution of the observed target values

and the function values at the test locations under the prior is:

K(XvX)+072LI K(X,X*)
[12;] NN(0, l K(X4, X) K(X,,X.)]) (4.1)

where X = {x;}"; is the matrix of training inputs (it is called the design matrix), and

X, is the test inputs matrix.

By deriving the conditional distribution corresponding to Eq. 4.1, the key predictive

equations for Gaussian process regression are obtained

£1X,y, X ~ N(f., cov(£.)) (4.2)

73

4.2 Gaussian processes for off-line terrain classification

Now, for simplicity we use K = K (X, X) to represent the matrix of covariances
between the training points and k, = k(X, X.) to denote the vector of covariances
between the test point and the training points, using this compact notation and for a

single test point x, we get:

fe=k(K+a.D)ly (4.3)

VIfi] = E(xe, %) — kI [K + 021 'k, (4.4)

where o2 is the variance of the global noise.

4.2.2 Least-squares classification

In probabilistic classification test predictions take the form of class probabilities. Unfor-
tunately, the solution of classification problems using Gaussian processes is rather more
demanding than for the regression problems, this is due that the targets are discrete

class labels.

In the Gaussian processes classification (GPC) its is assigned to an input x a pattern
to one of the C classes, C1, ..., Cc. Classification problems can be either binary (C' = 2
or multi-class C' > 2. We are interested in the first case, where classification targets
are labeled as y = +1. For this case one simple idea is to turn the output of a
regression model into a class probability using a response function (the inverse of a
link function), “squashing” a linear function of the Gaussian predictive probability
through a cumulative Gaussian with the use of a (parameterized) sigmoid function as

in Platt [107] using a 'Leave-One-Out’ (LOO) approach,

(4.5)

p(yi| X, y—i,¢) = ® <>’Z(O‘Mz+5)>

1+ a?0?
where the sigmoid function has hyper-parameters (« and), ®(-) is the cumulative
unit Gaussian, y_; is the vector of all of the training data excluding the point (x;,y;),
pi and o? are the predictive mean and variance at the point x;, and ¢ stands for the

trained hyper-parameters of the covariance function.

74

4.2 Gaussian processes for off-line terrain classification

The expressions for the LOO predictive mean and variance become

(K~ 'yl

i =Yi — ﬁ (4.6)

and
P an
Ky

Using this probability distribution, the environment can be classified into regions ap-

plying user-defined thresholds, which depend on the desired level of greediness.

In the case of classification the likelihood p(y;|f;) is not Gaussian, hence there is
not closed form solution, therefore, it is needed to do approximations. In this work we
use the probit likelihood for binary classification [110], this makes the posterior (given
by Bayes’s rule) analytically intractable. The Laplace (LP) approximation method
or Expectation Propagation (EP) are models for non-Gaussian likelihood functions to
classify. We select the EP over the LP approximation, since in [110] the show that LP

can be overly cautious.

4.2.3 Gaussian process training

To find the best model for our data we need to train the Gaussian processes. Training
is performed computing the likelihood of the hyper-parameters given the training data
set D. The optimization of the hyper-parameters (¢ = (UJ%, ¥,02)) is a crucial aspect of
the Gaussian process. They are very important in that they ensure that the covariance
accurately captures the extent of the correlation in the environment. Under Baye’s
theorem hyper-parameters are computed maximizing a log-marginal likelihood function
given by

P(yX) = [p(yIE X)p(EIX)de (4.8)

resulting in

1 1
lnp(y[X) = —5y" (K +o70) " = S |K +021| - gln o . (4.9)

The advantage of the marginal likelihood is that it incorporates a trade-off between
model fit and model complexity. A function which overfits the data leads to poor
inference and large uncertainties, meanwhile, an over-generalized outcome can result
in a likelihood function which chooses to ignore many of the data points in favor of

adopting a less responsive behavior.

75

4.2 Gaussian processes for off-line terrain classification

4.2.4 Covariance function choice

There are numerous covariance functions (kernels) that can be used to models the
relationship between the random variables corresponding to the given data. The choice
of the covariance function has a direct influence in the quality of the the predictions
produced by the GP. The most common covariance function is the squared exponential,
but this function tends to smooth the probabilities. Another function is the the neural

network covariance
2%TY%,

V(L +2%T5%) (1 + 2x7 5%,

E(x, %) = UJQ: arcsin (4.10)
where %; = (1,x;)7 is the so-called feature augmented input vector [110]. Its hyper-
parameters ¥ = diag(o3, 0?) have been set as those fitting the squared expected value
of the error function on the samples x; and O'ch is the hyper-parameter signal variance,

used to scale the correlation between points.

The use of a neural network covariance kernel has been proved to be effective in
handling discontinuous (rapidly changing) data [141], and this is the main reason why
we think it is effective to model complex terrain data. Figure 4.2 shows the likelihood for
(b) the neural network covariance and (c) the squared exponential covariance. Notice
how the neural network provides a smoother fit to the sampled traversable points shown

in frame (a) in the figure.

4.2.5 Off-line classification

The prior knowledge of the environment is the training dataset D = {(x;,y;)|i = 1, ...,
n}, where x; contains the slope and roughness input values for each point p; in the map,
and y; is a scalar target value which is dependent of the problem to solve (regression
or classification), e.g., the traversable and non traversable classification class labels.
In our case, we take advantage of automatic data collection to build the training set,
similar to [62]. Since our robot trajectories were human-driven, they already satisfy
any unmodeled traversability constraint. The points located below the robot footprint
at each node in the Pose SLAM path are thus tagged as traversable, see Fig. 4.3. This
collection method alleviates the hard work of manually labeling the training dataset.

For each point in this set we compute our slope and texture features, and aggregate

76

4.2 Gaussian processes for off-line terrain classification

by

0.2 0.25

6.1 0.15
Roughness

(a)

Slope

0 0.05 0.1 0.15 0.2 0.25
Roughness

(b)

L e———
0 0.05 0.1 0.15 0.2 0.25
Roughness

()

Figure 4.2: a) Training dataset, traversable points are in blue and obstacles in red.
Likelihood plot for: b) Neural network covariance and c¢) Squared exponential covari-
ance. In the color bar, the red color indicates the maximum likelihood for a point to

be traversable.

7

4.2 Gaussian processes for off-line terrain classification

Figure 4.3: Example of the automatic data collection. In green the positive traversable
samples along the robot’s path footprint.

them into a positive feature vector x = [x1, X2, ..., Xp] : X; = [, fs]. The terrain roughness
f,. corresponds to the smallest eigenvalue from the local fitted planar path computed
as in 2.3.1. While the slope is the angle difference between the point’s orientation
(i.e the eigenvector associated with the smallest eigenvalue of the local planar patch)
and the global reference frame. Ideally, the training dataset would consist of all the
observations made. However we uniformly subsample the data. Data reduction is
important since the GP has worst case computational complexity O(n?), and memory

complexity O(n?).

At this point we propose two different approaches to classify the points as traversable
P, or obstacles P,. The first proposal employs GP regression and only traversable
samples. The main advantage of using regression is to have less computational effort
for the training and inference than GP classification, but with lower accuracy. In this
case, the training dataset D will consist of a uniformly sampled and filtered version of
x including only traversable points as in Fig. 4.3. We use a statistical density filter to
remove spurious data which may affect the regression. The specification of the prior
is important, because it fixes the properties of the functions considered for inference.

In this case, we use a zero mean Gaussian prior [110]. The algorithm will produce a

78

4.2 Gaussian processes for off-line terrain classification

classification threshold y = ¢ such that traversable points are P, = {p;|ly; > ¢} and
obstacle points are P, = {p;|y; < ¢}. We can use regression in our proposal since data
dimensionality is small and we can assume continuity, and also because we only have

two classes.

A second approach is to perform GP classification, which increases the computa-
tional load, but we believe it offers a more accurate prediction for this problem, as
shown in the experiments section. The training data set is established differently than
for regression. Now the training dataset needs two different classes. The first class com-
prises the same labeled traversable features used during regression, which came from
the robot footprint samples during manual robot motion; however, in this case we do
not further apply the statistical density filter in the training set because the prediction
of the GP classification is expected to remove spurious data during classification. We
call the input data set in this class x4, and receives the label y = +1. The second class
with label y = —1 is built by sampling the remaining unlabeled points x, in x. We
first sampled x,, uniformly, and then picked n random samples, where n is a multiplier
related with the number of elements in x. We decided to do this because we needed to

reduce the training data set dimension to ease computational burden.

Now we build the two-class training data set as D = {(x4 Ux_),y}. To define the
traversable points probability threshold, we create a grid over the slope and roughness
features. This grid is used to compute the log predictive probability curves with the
learned hyper-parameters, see Fig.4.4. It should be noted that the region of high
likelihood for high roughness and low slope (on the bottom right of the Fig.4.4) is largely
underrepresented in the training set, meaning that the GP would classify samples in
that region with large uncertainty values. In reality, since no points in the entire dataset
satisfied such condition, it is very improbable that during execution, a point would be
found to have such feature values and be misclassified. Traversable points will be those
with a probability larger than a threshold p; indicated by the likelihood curve that
best fits x, i.e., traversable points are P, = {p;|Inp > p;} and obstacle points are
Py = {pi|Inp < p}.

Note that when no true negatives are available, as in our case, it is still possible

to train only with positive samples during regression, or to randomly draw negative

79

4.2 Gaussian processes for off-line terrain classification

P . . —

i g T £ + Non-footprint samples|]
A fmi‘ £ &

i *ﬁéﬁ%ﬂﬁ o ﬁwﬁw ree Footprmt samples

S ¢f~h%a+f+ hia ?’Rﬁ T R

25 ﬂaw&%ﬁ*@“wvm Sefd

w +¢# 5 ++ +
-

w

;.
+a s **ﬁ@@%&+%§}“ 7t R

iy
e S |

shiles 2 A CSETE
2 *{%“ﬁ %&*}+;¢:§$ B R ey
O] ﬁ%ﬁ%’”ﬁ% : fﬁﬁiﬂ F f”ﬁ A
o e p
9 15 LT
0 Lt
¥y +*+ 1
0.5} S
0 005 01 015 02 025
Roughness
(a)
; ; ; ; ; 0.
0.6
0.7
2 L 4
@ 0.€
o .
O 5t — :
(7o I 5> 0.£
1 L B p
— 0.4
0.z

0 005 0.1 015 02 025
Roughness

(b)

Figure 4.4: (a) Training dataset. (b) Likelihood curves for GP classification. In the
color bar, the red color indicates the maximum likelihood for a point to be traversable.

80

4.3 Point cloud classification results

samples from the unlabeled data during classification. These two strategies are com-
monly used in learning, and are not unique to GPs, but are also applicable for SVM

classification [31] or with the SpyEM algorithm [78].

Once the point clouds are either regressed or classified, we propose to reclassify
the points and to add a filtering step to remove isolated points on each class [70]. To
reclassify the points we use a median class filter on nearest neighbor information. For
each point, its nearest neighbors are computed and its class revised according to the
median class in the neighbor. The filter devised to remove isolated points also uses
nearest neighbor information. It discards all points that have less than a constant
number of neighbors in a given search radius. Finally, a statistical density filter is also

applied to keep points in regions with very high density.

Identifying the edges in the traversable point set is very important to protect the
robot integrity. Edge or border points may be located near abysses, on stairs and
on holes that normally are out of the sensor field of view. We define edge points as
P, ={p;i € Pilfp1 > (u(fp1) + K xo(fp1)) A fpe > r Afys > B}, where r indicates a ratio of
the PCA components, and 3 is the maximum angle interval for a no edge point. Next

in line, we remove P, from P, and add these points to the obstacle set.

The first edge feature fy; is given by the distance between the centroid of the search
window and the query point. The second edge feature is given by fpo = Aj/A2. For
points located near or at a edge, 2A1 &~ Ay. To compute the third feature fp3, we project
the points in the query window onto the (z,y) plane, and compute the angles between
the query point and all its neighbors and sort them. We use as the third feature the
maximum angle interval between neighbors similar to [42]. Fig. 4.5 shows an example

of edge point detection for a small portion of the FME dataset.

4.3 Point cloud classification results

In this section we show classification results for our two datasets, the BRL [131] ex-

plained in Chapter 2.4.3, and the FME dataset introduced in Chapter 3.4.

Each of the aggregated point clouds in the two maps produced with these datasets
was uniformly sampled using a box size of bz = 0.15m. Then for each sampled point

we search the nearest neighbors in a search radius of 1.35bz over the raw data, and

81

4.3 Point cloud classification results

Figure 4.5: Edge classification for a small portion of the FME map.

compute f, and f,. Also, we discarded points with local height above 2.5m, since the
points above this height do not add useful information and are a computational burden.
Filtering and border detection was also performed on the aggregated point clouds. In
the outliers removal filter we discarded points with less than 7 neighbors within a
3+ h(bz) radius, where h(bz) is the box diagonal. In the density filter, the search radius
was the same. To compute border features the search radius was set to 2.5 h(bz). The

border detection values are: xk = 2, r = 1.85 and 8 = 35°.

For the learning algorithm the training dataset sampling steps were 0.005 for rough-
ness, and 0.5° for normal orientation. In the GP classification we get the samples x4
and x_ as stated previously. We set the number of x_ random samples as 7 times the
number of elements in x;. For the execution times reported, we run the experiments in
an Intel Core i7-2720 system @ 2.20 GHZ, with 8 GB of RAM, running Ubuntu 10.04
64 bits, with MATLAB. We used the GP toolbox in [111].

We compared the two proposed GP-based segmentation schemes against a naive
linear classifier, and also using SVMs with different kernel functions (linear, quadratic,
polynomial, RBFs, and multilayer perception). To measure classification performance,
we employ two different approaches. First we run the regression and classification
methods purely on robot footprint points, and use this as ground truth to compute
the recall ratios shown in Table 4.1. We can see that segmentation of the point clouds

in both cases, regression and classification, produce slightly better recall values than

82

4.3 Point cloud classification results

FME Dataset | BRL Dataset
Method Recall Recall
Naive parametric 0.987 0.978
SVM linear 0.9329 0.9266
SVM quadratic 0.9289 0.9266
SVM polynomial 0.9224 0.9054
SVM RBF 0.9250 0.9112
SVM MLP 0.7039 0.8417
GP regression 0.997 0.998
GP classification 0.995 0.993

Table 4.1: Traversability segmentation results using only the robot footprint to train
the classifier.

naive parametric classification and significantly outperform the SVMs. By recall we
mean the ratio of true positive samples over the sum of true positive and false negative
samples. False negatives are in this case the points in the labeled part of the dataset
that were not classified as traversable. Note that since we have only positive samples,

only recall as a measure of classification performance can be computed.

The evaluation however is not completely fair. The large recall values obtained
for the naive parametric classifier might be misleading since no labeled obstacles are
being considered. To come up with an evaluation that takes false positive and true
negative classification into account, we hand labeled the point clouds with positive and
negative ground truth and computed not only recall but also precision and f-scores.
The results are shown in Table 4.2. By precision we mean the ratio of true positives
over the sum of true positives and false positive samples; and the f-score, a common
statistic for classification performance, is computed as twice the product of precision
and recall over the sum of precision and recall. The table shows how GP classification
outperforms all of the other methods on f-scores in both datasets used at the expense of

larger computation costs. Database sizes and computation times are given in Table 4.3.

Quantitatively speaking, GP classification is less resilient to filtering and shows bet-
ter precision than regression, parametric classification, and SVM classification. In some
cases however, it might be sufficient to use GP regression given its significantly smaller
computational load. Fig. 4.6 shows qualitative results of all segmentation methods on

the BRL dataset, compared against hand-labelled ground truth.

83

4.3 Point cloud classification results

Figure 4.6: Qualitative comparison of GP traversability segmentation on the BRL
dataset: a) Hand labeled classes, b) Naive parametric classification, ¢) SVM classifica-
tion, d) GP regression, and d) GP classification. Traversable areas are shown in green
and obstacles are in height-valued gray.

84

4.3 Point cloud classification results

FME Dataset BRL Dataset
Method Precision | Recall | f-score | Precision | Recall | f-score
Naive parametric 0.9212 0.9949 | 0.9566 0.8832 0.9738 | 0.9263
SVM linear 0.8422 0.9962 | 0.9127 0.9015 0.9582 | 0.9290

SVM quadratic 0.9043 | 0.4761 | 0.6238 | 0.8656 | 0.9718 | 0.9266
SVM polynomial 0.8529 | 0.9962 | 0.9190 | 0.9213 | 0.3822 | 0.5402
SVM RBF 0.8634 | 0.9957 | 0.9248 | 0.8101 | 0.9819 | 0.8877
SVM MLP 0.7582 | 0.9886 | 0.8582 | 0.2156 | 0.9194 | 0.3492
GP regression 0.7229 | 0.9936 | 0.8369 | 0.5188 | 0.9382 | 0.6681
GP classification 0.9724 | 0.9916 | 0.9819 | 0.9112 | 0.9617 | 0.9358

Table 4.2: Traversability segmentation results using hand-labelled ground truth.

FME Dataset | BRL Dataset
Total size 16937 points | 11518 points
Training size 832 points 338 points

GP regression Training time 0.8 sec 0.35 sec
Segmentation time 0.53 sec 0.19 sec

Training size 6080 points 4144 points
GP classification Training time 326 sec 550 sec
Segmentation time 11.82 sec 8.84 sec

Table 4.3: Dataset sizes and execution times.

One reason why GP classification produces slightly better results than GP regression
in this particular problem might be that whereas function values take fixed values
during regression, during classification, the relation from function values to class labels
is achieved via class probabilities. The flexibility of using a threshold function to
accommodate such class probabilities could be a reason for the improved classification
results at the expense of higher computational cost. Although, the statement cannot

be generalized to any other GP regression/classification problem.

Next, Fig. 4.7 shows the results from the proposed traversability classification

method. Finally, Fig. 4.8 we present the classification of the complete FME and BRL.

85

4.3 Point cloud classification results

Figure 4.7: Terrain classification on the FME dataset. a) GP classifier. b) Filtered
and inflated obstacles. ¢) Inflated obstacles and borders, and in red, a robot trajec-
tory. Traversable points are in green, obstacles are in height-valued gray, and inflated
obstacles and borders are in blue.

86

4.3 Point cloud classification results

Figure 4.8: GP terrain classification after filtering, traversable points are in green,
obstacles are in gray. a) On the FME dataset. b) On the BRL dataset.

87

Chapter 5

Path planning

In this Chapter we discuss how to create navigation paths for the traversable maps cre-
ated in the previous Chapter. We present HRA*, a new randomized path planner that
estimates safe trajectories in rich complex 3D environments. It guarantees reachability
at a desired robot pose with significantly lower computation time than competing al-
ternatives. Our path planner incrementally builds a tree using a modified version of the
A* algorithm. It includes a hybrid cost policy to efficiently expand the search tree. We
combine a random exploration of the space of kinematically feasible motion commands
with a cost to goal metric that considers only kinematically feasible paths to the goal.
The method includes also a series of heuristics to accelerate the search time. These
include a cost penalty for tree nodes near obstacles, this is a penalty proportional to the
inverse distance to collision; and to limit the number of explored nodes. The method
book-keeps visited cells in the configuration space, and disallows node expansion at
those configurations in the first full iteration of the algorithm. The performance of the
method is compared against A*, RRT and RRT* in a series of challenging 3D out-
door datasets. HRA* is shown to outperform favorably against A*, RRT and RRT*,
in terms of computation time, and generates significantly shorter paths than A* and
RRT. For the scope of this research all the experiments models are completely known

and predictable.

The rest of this Chapter is structured as follows. We start with a review to the
path planning related work 5.1. Next, in section 5.2 we explain the necessary tools
and propose the path planning algorithm. Finally, we present some experiments in

section 5.3 .

88

5.1 Related work

5.1 Related work

Path planning allows robots to get from a starting point to a desired destination. The
idea is to gradually compute how to move the robot into a desired goal position, so that
it always avoids obstacles. Topologically, the path planning problem is related to find-
ing the shortest path of a route between two nodes in a graph. Typically, computational
complexity serves as a measure of the quality of a path planning algorithm. But apart
from the computational complexity of the path planning algorithm, good motion plans
are also limited by the quality/accuracy of the map and of the robot localization algo-
rithm. The most typical path planning methods for mobile robotics include sampling-
based algorithms (i.e RRT and PRM) and grid-based algorithms (i.e A* or D¥*) [72, 76].
Other methods for path planning include artificial potential fields [72, 112, 143], fuzzy
logic [126], genetic algorithms [137], and combinatorial algorithms [76].

Grid-based search is considered by many to be the most straightforward form of path
planning [72]. It is well-known that grid-based search can only obtain completeness for
a fixed resolution. Grid-based path planning algorithms, such as the methods based on
the A* [25], connect cells of a discretized configuration space from a start configuration
to a goal configuration. To jump from cell to cell, they typically explore the action space
with a deterministic minimal set of control parameters. For instance, a skid steer vehicle
moving on the plane could have an action set of the form {—vmaz, Vmaz} X {—wWmaz, 0,
Wmaz }» With a time interval according to the size of cells in the configuration space [10].
The time interval for which the kinematic model is unrolled can be related to the amount
of clutter near the explored node, for instance, with trajectory lengths proportional to
the sum of the distance to the nearest obstacle plus the distance to the nearest edge
in a Voronoi diagram of obstacles [27]. Besides modifying the integration time, one
can also condition the search speed according to a cost to goal heuristic. A number
of heuristics can be used to modify the resolution search. This is typical of best-first
algorithms such as A* in which the priority queue is sorted according to some cost to
goal heuristic [49]. Another grid-based path planner is the wavefront propagation path
planner [76]. An example of this planner for a 3D environment is presented in [125]
for a Normal Distribution Transformation map stored in a 3D discretized space (i.e an

octree).

89

5.1 Related work

Our method combines these two ideas. We propose a heuristic to modify the reso-
lution search depending on the amount of clutter near the explored node, but instead
of generating a Voronoi diagram as in [10], we add to the policy cost a penalty propor-
tional to the inverse distance to a collision. In this way, configurations near obstacles
will be sampled sparsely, whereas configurations in open space will have more chances
of being tested. Furthermore, we include a measure of the distance to the goal to our
cost policy, the same way as in [49], computed from Dubins paths [76], which give the

shortest length path between the current configuration and the goal configuration.

Randomized sampling-based algorithms for path planning such as Probabilistic
Road Maps (PRM) [60, 61] or Rapidly exploring Random Tree (RRT) [73, 75, 76]
explore the action space stochastically. They randomly explore the continuous config-
uration space and generate a trajectory from these sampled points, they use collision
detection methods to conduct discrete searches that employs these samples. Most of
these approaches require a path smoothing step after the planner has generated the
original path in order to get a usable path, which may not be the case of A* like algo-
rithms. These planers guarantee a weaker notion of completeness called probabilistic
completeness. This means that with enough samples, the probability to find an existing
solution converges to one [76]. However, the most relevant is the rate of convergence,

which is usually very difficult to establish.

A PRM planner constructs a graph in the configuration space by randomly picking
configurations and attempting to connect pairs of nearby configurations with a local
planner. Once the graph has been constructed, the planning problem becomes one
of searching a graph for a path between two nodes [76]. By randomly exploring a
continuous action space,the RRT has the property of being probabilistically complete,
although not asymptotically optimal [57]. There are many variants of this algorithm [34,
67, 74, 76]. These methods can quickly explore the space but normally provide a
solution far from optimal. Among them a newer version of the RRT, called RRT* [56,
58], solves this problem by triggering a rewire process each time a node is added to
the tree. The rewiring process searches for the nearest neighbor in configuration space
and decides whether it is less costly to move to the new node from the explored parent
or from such closest neighbor. In very cluttered environments however, the RRT*

algorithm may behave poorly since it spends too much time deciding whether to rewire

90

5.2 Hybrid randomized path planning

or not. In our method, we also sample actions randomly from a continuous action
space, but in the search for neighbors within the tree, we trigger a rewiring test only
when these actions reach a previously visited cell in an auxiliary maintained discretized
configuration space. The RRT* also has the property of finding an optimal solution

when the number of iterations tends to the infinity.

A more recent randomized motion planning strategy is cross entropy motion plan-
ning [63]. The method samples in the space of parameterized trajectories building a
probability distribution over the set of feasible paths and searching for the optimal tra-
jectory through importance sampling. Cross entropy motion planning is only applicable
to problems for which multiple paths to the goal can be computed during algorithm

execution.

5.2 Hybrid randomized path planning

Path planners solve the task of finding a feasible path 7(¢) : [to,...,tn] — Cree, if it
exist, in a configuration space free of collisions Cg.ee, from an initial robot configuration

7(tp) = xs to a goal robot configuration 7(t,) = xq.

Ideally, we would like to compute the minimum cost path
7" = argmin(c(7) : 7) (5.1)

but since finding the optimal path can be computationally costly, we will be content
with obtaining a low cost path with a reasonable computation effort. To this end, we
will devise a number of heuristics aimed at pruning the search space and to bias the

exploration towards the goal.

In our planning context we are faced with nonholonomic motion constraints for the
vehicle, and it is through a control sequence u(t) : [to, ..., tn] = WU, u(t;) = (vi,w;, At;),

that we can move from one robot configuration to another.

5.2.1 Steering functions

We use two motion control policies. The first is the forward kinematics of the vehicle

and the second one is an optimal control policy that guarantees goal reach. Our mobile

91

5.2 Hybrid randomized path planning

robot is modeled as a Dubins vehicle:

iy v cos(6)
g | = | vsin@®) |, lw| <wv/p (5.2)
0 w

where (z,y) is the vehicle position, 6 is the vehicle heading, v is the translational veloc-

ity, w is the angular velocity, and p is the vehicle minimum turning radius constraint.

5.2.1.1 Robot forward kinematics

We need to estimate new robot configurations for the search tree expansion. This
estimation is typically obtained by iteratively integrating the robot kinematic model
for a time interval (known as dead reckoning). This estimation could be computed for
instance using: the first order Euler integration (which is the most common method),
the second order Runge-Kutta, or the exact method. While the Euler method is the
simplest estimator, it is not very accurate when compared to others [108]. On the other
hand, the exact solution is the most expensive computationally. For this reason, we
selected the Runge-Kutta method. This derivation is more precise than the Euler based
solution, delivering better position estimates at a lower computational cost, closer to

those of the exact method, please see Fig. 5.1.

The new robot configuration after solving Eq. 5.2 using the second order Runge-

Kutta method is given by:

At
Ti+1 = T; + v;At; cos (02- + %2 Z)

At
Yi+1 = Yi + UZAtl sin <91 + wz2 l> (53)

Oit1 = 0; + wiAt;

The robot motion commands (v;,w;) are subject to minimum and maximum speed
constraints v; € [Umin, Umax] and w € [—Wmax, Wmax||(W = 0 = Umax), (|w| = wWmax =

Umin)- This definition imposes the maximum speed constraint v+ w? <1 [76].

We want to compute random velocity commands subject to this constraint. To
avoid significant rotation at high speeds we introduce a parameter [, > 1 designed to
control the relation between the translational and rotational velocities. The mechanism

to sample motion commands is as follows. We draw random translational velocities

92

5.2 Hybrid randomized path planning

Figure 5.1: Robot forward motion model from x; to x¢11 with three different methods.
a) Euler (red) b) Runge-Kutta (green) and c) Exact solution (blue). Where As is the
path length increment, Af is the orientation increment, and R is the turning radius

0.45F
0.35f
0.25f
0.15f

0.05f

-0.051

o(rad/s)

-0.151
-0.251

-0.351
-0.451

0 0.2 0.4 0.6 0.8 1 0 02 04 06 08 1 12 14 16 1.8
v(m/s) X

(a) (b)

Figure 5.2: Reachable curvature sets. a) Normalized turning radius and velocity corre-
lation for different values of [,,. b) Integrated trajectories for different values of I, and
At =1)

93

5.2 Hybrid randomized path planning

from the fixed interval vyang = [0, 1] and compute its corresponding rotational velocity

W(Vrand) = sin(arccos(vyand)). We then scale them with:

v, = lu Urand » Yy = 1— Urand
r=\/vl +y*, w, = sin(arccos(vy, /r)) (5.4)

In this way, we have a gauge to modify the robot behavior. See Fig.5.2. The original
velocity commands on the sphere occur at [, = 1. Finally, we scale these values to the

range given by the translational and rotational velocity:

Vj = Umin 1 V1, (Umax - Umin) (55)

Wi = QWmaxwy, , o~ rand(—1,1) (5.6)

Finally, the sampling period At; is randomly selected from a small interval [tin,
tmax), and the new robot pose x;4+1 and trajectory 7(At;) are computed by integrating

Eq. 5.3 over small time steps 0t << At;.

The strategy essentially limits large curvature values at high translational speeds,

producing smoother trajectories.

5.2.1.2 Locally optimal control policy

Now that we have a mechanism to sample configurations from a search node with a
linked configuration x;, we still need a way to measure the cost to reach goal comple-
tion. To that end, we compute the length of a Dubins curve from the new computed

configuration x;11 all the way to the goal xg.

Dubins curves [76] are optimal paths made up of circular arcs connected by tangen-
tial line segments. With geometric arguments in his pioneer work, Dubins [29] solved
the shortest path problem between two points with specific orientation in an obstacle-
free plane, with two constrains: 1) the path should be tangent to the given vectors at
start and goal, and 2) a bounded maximum curvature k = 1/p over the path inter-
val. The optimal path to this problem consists of a smooth concatenation of no more
than three pieces. Each of these pieces describing either a straight line, denoted by L,
or a circle, denoted by C (typically C* describes a traveled clockwise circle, and C~

refers to a traveled counter-clockwise circle). These segments are either of type CCC

94

5.2 Hybrid randomized path planning

Figure 5.3: Example of Dubins path sets.

or CLC, that is, they are among six types of paths. In our application we restrict to
only use the C'LC type and they are specified by a combination of left, straight, or
right steering inputs, leading to only four types of paths (CTLC—, C-LC™, CTLCT,
C~LC™). These concatenation sequences are known as R-geodesics, and there are fur-
ther constraints on how these segments may be connected together. R-geodesics are of
particular interest in robotics because they describe optimal paths for a simple model
of a car with bounded steering angle and velocity [76]. This paths will give us a locally
optimal control policy and a locally optimal path 7(¢).

5.2.2 Cost estimation

Our cost unit is time, and as in [36] we split the cost into accumulated cost (caec), i.€
the time we have integrated the kinematic model so far to go from x; to x;11, and a
cost to the goal cgoa1, the optimistic bound given by the Dubins curve from x;11 to xq,
assuming the remaining path is free of obstacles. Similar to [68], we also use upper and
lower bounds, but in a slightly different manner. The upper bound ¢ is used during

node selection to improve the exploration, by adding heuristics that bound the node

95

5.2 Hybrid randomized path planning

K1 /dCobs

—

Goal
Cgoal

Start
Cacc

Figure 5.4: Proposed cost estimation. Bold black current branch to compute cqec, red
plus green lines cyoq, and green line hy.

search. The lower bound ¢~ is used to determine the best path from the solution set,

i.e, ¢ will be the cost to minimize in Eq. 5.1.

The accumulated cost is computed with

i+1
Cace = D Aty , (5.7)
k=1

and the upper and lower bounds are computed with:

€ = Cacct dgoal/vmax (58)
n
ct = Cacc + dgoal/UmaX + Z h] (59)
j=1
where dgoqa) is the optimal path length of the Dubins curve to the goal, and h; are each

of the heuristics we use to penalize a path.

We can use as many as desired penalization heuristics h; to make some configu-
rations less attractive to the planner. Our first heuristic is a local penalty inversely
proportional to the distance to the nearest obstacle in front of the robot. To compute
it, we ray-trace the environment at the robot’s heading and measure the distance to
the nearest obstacle in front of the robot de_, .. We define the penalty hy = k1 /de,_,_,

where k1 is a user selected factor to weight the contribution of this heuristic in ¢*.

96

5.2 Hybrid randomized path planning

(2)First approximation z = robotz

j :

(3) Pojected path—/

{World} X

(1) Initial path estimation, elevation z= 0

Figure 5.5: Proposed path projection step, used to estimate the local path and the final
robot orientation.

Another penalty he occurs when Ty0a1 C Cree, i-€. the Dubins path has a clear path
to the goal. Then, he = co and he = 0 otherwise. This way we avoid to explore that
node again. This is a termination condition because Tyoa1 is locally optimal so it is not

possible to find a better solution from that configuration to the goal.

5.2.3 Path projection

The presented control policies compute segment paths parallel to a plane. These paths
could be either on a local planar patch, or with respect to a global coordinate frame.
These paths however, contain no information about their elevation or orientation with
respect to the 3D surface. In [39] the authors use Lagrangian interpolation to project
2D roadmap streamlines to the 3D terrain model, and a feasibility test for each 3D
candidate path is computed. In [64], the robot is assumed to move at small distances to
little planar patches, and robot transitions between patches are assumed with constant
velocity. To compute the 3D path, we propose also a projection of the 2D local paths to
the 3D surface, but in contrast to [39], we not only validate feasibility, but an iterative

nearest neighbor search is used to refine the local path.

Local paths are computed parallel to the world zy plane. The elevation value for

97

5.2 Hybrid randomized path planning

Xi+1]

C free Co bs

Xy
Xm-A

Figure 5.6: Configuration recovery from a path segment 7(t) (blue line) in collision.
The last collision free configuration x,, € 7(t) is computed, then we return in time to
tm—»x adding a new node with the configuration x,,_j.

each new configuration in the path is initialized with that of its parent node. Then, a
NN search is performed to find its closest traversable point in the 3D map, substituting
the z coordinate with that of the NN. If the difference between any two neighbor
configurations in the 3D local path is larger than a threshold (i.e., if the hill is deemed

too steep), we enter in a loop searching for a new NN assignment, see Fig. 5.5.

Finally, as in [121], we use local planar information to compute the robot orientation
for the last configuration in the path. Employing the right hand rule and the local

normal vector that indicates the robot orientation w.r.t the world fi = [n, ny,nz|’.

5.2.4 Collision detection

Once the local 3D path is computed, we need to check whether it remains collision free
or not. If a path segment 7(¢) is found to be in collision, we keep the path segment
that lies in Cgee, i-€., 7(t) = [to, ..., tm] C Chee, and the configuration x,,_ is added
to the search tree, then we update the path and the commands. At that point, a new
exploration step is triggered. The parameter ty is introduced to avoid configurations
blocked by obstacles. Notice that if (¢, —t;,—x — Aty,) < 0, the algorithm would return
to collision. Keeping x,,_» helps to add new nodes saving time since we benefit from

recovering a part of an already computed path.

98

5.3 Planning with HRA* in 3D environments

5.2.5 Tree rewiring

The rewiring procedure proposed in this work is different from that in [56, 58]. Instead
of using vicinity information around a volume or the k-nearest neighbors for each new
added node, we use a similar approach to that in [27]. We maintain an auxiliary grid
of the configuration space C,, and mark visited cells on it. If a cell was previously
visited, we compare the cost of the new and the old paths. In contrast to [27], we do
allow rewiring even if the valid configuration at that cell has children. For this purpose
we compute the Dubins path from the best node gpes to the old position in the rewire
candidate node. Alg. 4 describes the rewiring process, whereas Alg. 5 overviews HRA*,

our hybrid randomized path planning method.

5.3 Planning with HRA* in 3D environments

We show the performance of HRA* in three different outdoor datasets of uneven chal-
lenging terrain. The data sets where classified using the classification method proposed
in the Cha. 4. The first dataset is the one acquired in the Facultat de Matematiques
i Estadistica (FME), and described in Sec. 3.4. The dataset includes 39 dense 3D
scans collected on different traversed surfaces (soil, grass and gravel), our robot Teo
was driven over bumps of about 10-15 cm height. The second dataset corresponds to a
set of point clouds from the BRL data set [131], explained in 2.4.3. The third dataset
is part of the Canadian Planetary Emulation Terrain 3D Mapping Dataset [134]. It
includes five subsets that emulate planetary terrain. We use the boxmet (BM) sub-

2. To validate and compare our method

set which has 112 scans and covers 7200 m
we extracted six different scenarios from these datasets: four from the FME, and one
from each of the BRL and BM datasets, please see Fig. 5.8. With all these datasets,
we analyzed different situations in real static environments such as: narrow passages,

cluttered obstacles, bay-like situations, ramps, forks and more.

For the RRT and RRT* algorithms, we ran 50 Monte Carlo simulations with a

maximum number of iterations 7 = 20,000 for each of the five scenarios.

For the A* algorithm, we used 7 motion primitives as described in Sec. 5.2.1. In

this case, experiments were run only once since the A* solutions are unique. We set

99

5.3 Planning with HRA* in 3D environments

TREEREWIRE(T, Gpest, Uk, Xk, @5, X)

InpPUT
T:
b

Tree.
est: Current best node, node in expansion.

ug: Estimated control commands.
Xp: Estimated robot position.

g;: Node at position xj.
X: 3D map.
OUTPUT:
T Updated Tree.
1: if ~ T(q;).blocked then
2 if (g # Gvest) A (T(qz)-parent # qyess) then
3 T(qj)-cace < GETCOST(T(q;))
4 T(gj).rewire =2
5: if HASCHILDREN(q;) then
6: (Tk> Cnew) < GETDUBINS(T(qpest)-X, T(qj).x)
7 if COLLISONCHECK (7%, X) then
8: return T
9: end if
10: else
11: T(gj).rewire =1
12: Cnew = Ug.t
13: end if
14: Caccnew = Cnew + Qbest-Cacc
15: if cacenew > T(qj).Cacc then
16: if HASCHILDREN(T(g;)) then
17: T < UPDATENODE(T, ¢, Gpest, Cnew)
18: T < UPDATECHILDREN(T, ¢j, Cnew)
19: else
20: T « UPDATENODE(T, 05, dhests Cnews X)
21: end if
22: return 7T
23: end if
24: else
25: return T
26: end if
27: else

28: return T
29: end if

Algorithm 4: Tree rewire

100

5.3 Planning with HRA* in 3D environments

HYBRIDRANDOMIZEDPATHPLANNER (X7, X, I, K, X)
INPUT:
x7: Initial configuration.
x@: Goal configuration.
I: Maximum number of iterations.
K: Number of motion samples per iteration.
X: 3D map.
OUTPUT:
7*: Path.
u*: Commands.

1: Tinit(xr, X)

2: Cfree + COMPUTEDISCRETIZEDCSPACE(X)
3: €r < UPDATEAUXILIARCSPACE((, T0)

4: solution = 0

5: fori=1to I do

6 Qvest < GETBESTNODE(T)

7 u <~ GENERATERANDOMCOMMANDS(K)
8 for k=1to K do

9: (X,) < FORWARDKINEMATICS(T, Uk, @pest)
10: m <— COLLISONCHECK (Tk, Ctree, X)
11: if m then
12: (XK, Tk, Uk) < UPDATEDATA(m, Xk, Tk, Uk)
13: end if
14: if ~ solution then
15: visited <— AREVISITEDCELLS(Ty,)
16: end if
17: if (~ m) A (~ visited) then
18: qj < GETNODEINCELL (X, Cfree)
19: if ¢; then
20: T < TREEREWIRE(T, Qpest, Xk, 45)
21: else
22: Cr < UPDATEAUXILIARCSPACE(C,, Tk)
23: Cacc — INCREMENTCOST(xy, T)
24: (cgoal; Tgoal) < DUBINSTOGOAL (X, Xg)
25: m <— COLLISONCHECK (Tgoal, X)
26: H <+ COMPUTEPENALTIES
27: (c¢t,¢™) + COMPUTEBOUNDS(Cacc; Cgoal s H)
28: T < TREEUPDATE(T, Xk, Tk, Uk, cT,c)
29: end if
30: if ~m then
31: (u*, 7*) < SELECTSHORTESTPATH(T)
32: solution = 1
33: end if
34: end if
35: end for
36: end for

37: RETURN (u*,7*)

Algorithm 5: HRA*: Hybrid Randomized Path Planning

101

5.3 Planning with HRA* in 3D environments

1 = 10,000 for the FME scenarios and ¢ = 20,000 for the BRL and BM scenarios. To

allow for a more fare comparison, rewiring is allowed as described in Sec. 5.2.5.

For HRA*, we run two sets of 50 Monte Carlo simulations each, 7 = 10,000 itera-
tions, and we enable the heuristics hy, hs, and rewiring. In the first set, HRA*1, cell
bookkeeping is disabled, whereas in the second set, HRA*2, bookkeeping is enabled.
The parameter [, limiting the ratio between translational and angular velocities was
selected empirically, by testing HRA*2 for different values of I,,. A value of [, = 4 is
a good compromise between path quality improvement and execution time. The other

parameters were chosen as k1 = 0.1m and dgoa = 0.3m.

When using cell bookkeeping we consider that a path is new if the ratio between
new cells and visited cells is larger than 1%. Incredibly, such a small percentage of new
cells was enough to obtain a significant boost in computation speed. The discretization

of the configuration space was set to (Az, Ay, Af) = (0.3m, 0.3m, 5deg).

Experiments were run in MATLAB. Some functions were implemented in C++ and
embedded as mex files. We use the ANN library [89] for the nearest neighbor search.
All experiments are executed on an Intel Core i7-2720 system @ 2.20 GHZ, with 8 GB
of RAM memory running Ubuntu 12.04 64 bits.

We also show first, on a synthetic scene, how the different planners perform space
exploration, see Fig 5.7. We plot the state of the planner tree at 100, 250 and 500
iterations for each method before reaching the solution. Note however that HRA*2

does not take more than 250 iterations to reach the solution.

Table 5.1 shows the first and best computed path lengths for all methods, indicating
the mean value of the first length obtained for each of the Monte Carlo runs, and the
minimum path length obtained over all Monte Carlo runs, respectively. The table
shows that the two versions of the proposed approach HRA*1, and HRA*2 are able to
compute path lengths comparable to A* with rewiring in all datasets, and significantly
shorter than RRT.

102

5.3 Planning with HRA* in 3D environments

100 Iteration 250 Iteration 500 Iteration Solution

Xgoal Xgoal
@; 9

Kstart

Xgoal

Xstart,

HRA*2

Figure 5.7: Examples of different path planners in a synthetic environment. The green
robot indicates the start position and the red one the goal. Moreover, in the RRT
planners we draw the goal region.

103

ironments

3D env

m

ith HRA* i

ing wi

.

5.3 Plann

"SUOIIN[OS 1S9 PUR JSII "SPOYJSU [[€ I0] SPU0ILS Ul sowily) uorpenduwo)) :g'G 9[qr],

98°119 | L£STv | %9'1% | &hol e80F | TL¥I | 68°IF | 98°0% | 0TEE 89'8 | 90°S% 68°1 LY
GG'0¥8E | GOTIET | T0'9TST | SV'1.g | 83'8€SE | T9'SS9 | LT7L0G | 08°6€¢ | ST¥9TH | 28L8E | 2F'G85G | ST'ETI w19 Y
evveL | PTAF | TOT6T | 04% | 99687 | TS'OT | L£69T | S0'9 | £996¢ | SS'€T | z0ehe | 03I CxVHH
89°TLE | €P'808 | ¥89% | 68%5 | S9°9L 07T | 69.F | 1€'ST 0129 | 8891 | @6gel | LET L VHH
17°66L | 28¢eh | 06%8T | 06781 | €6°T2 | @90z | ¥9¢8 | 2.1¢ | S0O'OT | %001 GL°S6 10'c | Suumor /m v
3sog] 3sILg 3s0g 1SIL] 180g 3sILg 180 IsILg 3s0g 1SIL] 1sog] 3s11q PO
g Tad PHINA EHINA cdINA THNA
OLIRUSOG
"SUOIIN[OS 1S9 PUR ISII] 'SPOYIOW [[e 10} payndurod siojowr ur yjsuoy yyed [eUr] :1°C S[qR],
szce | 9T'Ty | @6el | 81'Tg | 9vle | 60F%y | 84T | 626c | 9968 | LT9v | 68°ST | LS6T RRSE
09'6% | 8¢'T¢ | §2°ST | 94°FT | 95'8€ | G8'9¢ | LS°9T | OT'ST | 9908 | 8%'SE | €4'PT | 8S'GI 1Y
6508 | se1e | 0971 | 6.7 | 096e | 6598 | 8¢'LT | 0S'ST | 82%E | ovSe | €491 | Ov9T T+ VUH
0c0e | cote | 9pvT | ¥9'ST | s6ce | 8¥9e | 68LT | 6281 | ©6%E | ¥S¥E | ¥E9T | 299l LVHUH
€808 | 246708 | LLFT | LL¥T | LF9¢ | 26'9% | PSLT | 1981 | €6'¢s | ¥8'ee | €941 | TI'ST | Sumimor yum ,v
1s9g 1S 1s9g 1SI1q 1s9g IS 1s9g IS 1s9g 1SI1 1s9g 1SI1q POYIOIN
Nd Tad YANA SHINA CHINA TN
OLIRUIOG

104

5.3 Planning with HRA* in 3D environments

Note how cell bookkeeping (HRA*2) improves the best solution on almost all sce-
narios when compared to (HRA*1) at the expense of a possible larger first solution.
The reason is that cell bookkeeping enforces sparsity in exploration gaining speed in
finding the first solution. Our method is able to compute the first solution faster in all
but one of the scenarios. This is shown in Table 5.2 in which we report mean first and
best solution computation times for all Monte Carlo runs. Note also how RRT is the
fastest method in computing its best solution, whereas RRT* is an order of magnitude
slower. The reason is because, each reconnection step involves a sum of costly opera-
tions: computing Dubins paths, reprojection, and collision detection, which for RRT*
is computed for all neighbors within a radius, a significantly larger number of times

than in our approach, in which bookkeeping is performed.

Fig. 5.8 shows the computed paths for the six scenarios and all of the above-
mentioned methods, but HRA*1. Notice that even when RRT* has smaller paths
than HRA*, the paths computed by our method are smoother. Note also that the pro-
posed approach cannot be as good as RRT* in finding the shortest path because it uses
discretized configuration space for bookkeeping and rewiring, whereas RRT* explores

the entire nearest neighbor set.

Finally, an interesting metric to compare path planning methods is the length vs
time plot. This is, how quickly can any given method compute a solution with some
given quality, say a fixed path length. These computational complexity per performance
improvement plots are given in Fig. 5.9 for all the scenarios explored. The plots nicely
show how RRT* is the most expensive algorithm able to compute shortest paths with
computation times an order of magnitude larger than the rest of the methods. On
the other side of the scale, RRT is the fastest of them all, but the path lengths it
computes are in general larger than the rest of the methods. Furthermore, the plots
also show that increased computational time does not necessarily mean better solutions
with respect to path length for the case of RRT. Our proposed strategies HRA*1 and
HRA*2, — randomized action sampling with heuristic cost penalties, with and without
bookkeeping —, outperform competing methods in both ends. HRA* implementations
take significantly less time to compute solutions with the same quality as those of
RRT*, and are also able to compute shorter paths than RRT for the same allocated

execution time.

105

5.3 Planning with HRA* in 3D environments

Figure 5.8: Path planning scenarios and computed paths. The scenarios, from upper
left to bottom right, correspond to the FME1, FME2, FME3, FM4, BRL and BM
subsets. The green dots indicate the traversable areas and the degraded blue and gray
dots represent non-traversable regions. The start and goal positions are indicated by red
and gray spheres, respectively. The resulting paths are: A* with rewiring (magenta),
HRA* (red), RRT* (pink) and RRT (dark blue).

106

5.3 Planning with HRA* in 3D environments

FME1 FME2
T T T T TRA T T T —— HRAT
10° b —— HRA*2] ——HRA*2
——RRT* 10k ——RRT*
—s—RRT ——RRT
(2 ' o
10° b
@)
o o 10°F
E E
= 10' =
1
10'F E
100' T/I’—’
14.5 15.5 16.5 17.5 18.5 19.5 30 32 34 36 38 40
Lenght (m) Lenght (m)
FME3 FME4
5 ——HRA*1 ——HRA*1
107 ——HRA"2 ——HRA"2
——RRT* 5 ——RRT*
—o—RRT 107 —e—RRT |]
- () N c
E 2|
o 10°F
£
'_
10'}
155 16.5 17.5 18.5 19.5 205 215 34 36 38 40 42 44
Lenght (m) Lenght (m)
BRL Canada
5 ‘ ‘ ‘ ‘ ——HRA*1 ‘ —— HRA"1
107 ——HRA"2 ——HRA*2
——RRT* ——RRT*
—e—RRT —e—RRT
3 o
10’
w10 @
[0 (]
£ £
[=
10'}
10°}
14 15 18 19 20 30 31 32 33 35 36 37 38

16 17 %
Lenght (m) Lenght (m)

Figure 5.9: Length vs. time plots for the two HRA* proposed methods, RRT and
RRT*. The grey ticks show one standard deviation bounds from the various Monte
Carlo runs. Note the logarithmic scale of the time axis.

107

Chapter 6

Conclusions

Throughout this thesis we presented a framework for mapping, traversability analy-
sis and planning for autonomous mobile robots in 3D environments using 3D range

scanning as the main sensing device.

We summarize the key contributions as follows. We propose a hierarchical algo-
rithm to compute the registration of point clouds, using point-to-point correspondence
search at the coarser levels and point-to-plane correspondence search at the finest ones.
Moreover, we propose a new very fast technique to compute multiple scan registration
that benefits from prior known correspondences, as well as adequate linearized models
of uncertainty for such registration estimates, which are used as inputs to a SLAM al-
gorithm. These maps are then used for terrain classification, identifying safe navigable
regions in the 3D map. These classified regions are further used in a proposed path
planning scheme that computes feasible paths in 3D matching the kinematic constraints

of the robot and which outperforms other state of the art planners.

In our study of the scan matching problem in Chapter 2 we followed initially the
spirit of the Iterative Closest Point algorithm [14], a common algorithm used for 2D
point cloud registration in mobile robotics and computer vision [19, 43, 82|, and further
extended for 3D data [17, 95]. We proposed a new variation of the ICP, introducing a
hierarchical new correspondence search that uses a combined point-to-plane and point-
to-point correspondence search at different levels of granularity. The advantage of the
point-to-plane projection is that it better models cloud fitting on sparse regions on the

point cloud using local planarity assumptions [20]. The use of this hybrid approach

108

allows to perform good fitting at irregular surfaces such as trees or bushes, and also
at regular ones such as the surface or on walls. It should be noted however, that this
increase in precision comes at the expense of slightly higher computational costs, since
the fitting local planar patches to the entire point cloud increases the time execution

by a constant factor with respect to the point-to-point only strategy.

In our approach we adopted the minimization metric proposed in [17], which intro-
duces a weight factor for rotations. In our implementation, the weighting parameter is
set slightly higher than as reported previously, producing better registration than what
can be obtained with an Euclidean distance only. The setting of the value of this pa-
rameter is very sensitive. Its use helps avoid overshooting and consequently divergence
during the minimization step of the ICP filtering by enlarging artificially the distance
between candidate matches for different orientations. An order of magnitude increase
in this parameter to a range between 45 and 70 seemed to work well for our data sets,

in contrast to the original work of Biota with values of in the order of 3 to 5.

We also bring in a novel ICP variation for simultaneous multiple scan registration
that benefits from prior known correspondences. Speed up gain is substantial when
compared with other methods. The method uses a voxel structure to efficiently search
for correspondences to the first cloud in the set. The method was devised to search for

loop closure after long sequences in open loop traverse.

In Chapter 3 we approached the problem of computing an approximate to the
covariance of the ICP registration. The method linearly propagates the noise on the
estimation of the 3D point coordinates to that of the rototranslation between the two
point clouds being registered. Since the ICP is an iterative optimization algorithm, the
method makes use of the implicit theorem, which allows to compute the Jacobian of the
optimization even when its form is not explicit. Once these covariance estimates are
found, they can be used as input to our SLAM choice, the Pose SLAM algorithm. Pose
SLAM presents advantages related to scalability and precision by reducing the state size
and the number of loop closures, considering only non-redundant poses and informative
links. Thus, linearization effects are delayed, maintaining the filter consistent for longer
sessions [51]. Although, we proved experimentally that ICP covariance estimates using
the point-to-pint cost function are useful for our global estimation machinery, and we

did not find inconsistencies in the filter, i.e the poses map covariances were also used

109

in a path planner with uncertainty [132], a further refinement would be to compute a
more accurate covariance estimate for the point-to-plane projection. This would further

improve our uncertainty estimates but presumably also adding extra computation.

In Chapter 4 we presented a system for 3D terrain classification in outdoor en-
vironments. The method is a high-level off-line terrain classification mechanism that
processes 3D point clouds to generate traversability maps for the computation of global
paths. The method uses Gaussian processes to classify the terrain as traversable or not,
and has the advantage that it can be trained purely from positive samples. These sam-
ples can easily be acquired whilst maneuvering the robot in the intended terrain. Using
two variants of supervised learning —GP regression and GP classification— we are able
to classify dense point clouds acquired with Pose SLAM. We showed that with only
two features, one for local roughness, and one for slope, we can get classification per-
formance with f-scores better than SVM and naive parametric classification. Collision
free regions for path planning were extracted from the filtered classified points, using
obstacle detection and a novel border detection heuristic. Given that the GP encodes
also the variance of the distribution, we leave also as future work, exploiting such in-
formation to also guide the path planning strategy, making the robot navigate along

areas with least classification uncertainty, such as in [139].

Finally, we presented in Chapter 5 a method to compute paths for a mobile robot
in outdoor challenging environments. The method, called HRA*, is a modified A* algo-
rithm that uses a hybrid node expansion technique that combines a random exploration
of the action space meeting vehicle kinematic constraints, with a cost to goal metric
that considers only kinematically feasible paths to the goal. The method is extended
with a number of heuristics to penalize configurations near obstacles that accelerate
search time. The technique was successfully tested on several real outdoors environ-
ments and was shown to outperform A* with rewiring, RRT and RRT* in computation

time, and A* with rewiring and RRT in path length.

The three topics addressed, point cloud registration, terrain classification, and path
planning, serve as a basis for a complete solution for the autonomous navigation of

mobile robots in complex 3D terrains.

110

Bibliography

1]

D. Akca and A. Gruen. Fast correspondece search for 3D surface matching. ISPRS
Workshop Laser Scanner, pages 186—191, September 2005.

D. Akca and A. Gruen. Fast correspondece search for 3D surface matching. In

Proc. ISPRS Workshop on Laser Scanning, pages 186-191, Enschede, Sep. 2005.

J. Andrade-Cetto, M. Morta, P. Grosch, and E.H. Teniente. Dispositivo medi-
dor de distancia y magnitudes omnidireccional. Patent application P201231044,
Spanish Patent and Trademark Office, 2012.

J. Andrade-Cetto, A. Ortega, E. Teniente, E. Trulls, R. Valencia, and A. San-
feliu. Combination of distributed camera network and laser-based 3D mapping
for urban service robotics. In Proc. IEEE/RSJ IROS Workshop Network Robot
Syst., pages 69-80, Saint Louis, Oct. 2009.

J. Andrade-Cetto and M. Villamizar. Object recognition. In J. G. Webster,
editor, Wiley Encyclopedia of Electrical and Electronics Engineering, pages 1-28.
John Wiley & Sons, New York, 2007.

A. Angelova, L. Matthies, D.M. Helmick, and P. Perona. Fast terrain classification
using variable-length representation for autonomous navigation. In Proc. 21st

IEEFE Conf. Comput. Vis. Pattern Recognit., pages 1-8, Minneapolis, Jun. 2007.

D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and
A. Ng. Discriminative learning of Markov random fields for segmentation of 3D
scan data. In Proc. 19th IEEE Conf. Comput. Vis. Pattern Recognit., pages
169-176, San Diego, Jun. 2005.

112

BIBLIOGRAPHY

8]

[10]

[11]

[16]

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891-923, Nov. 1998.

S. Arya and D.M. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. In Proc. ACM SIAM Sym. Discrete Algorithms, pages 271-280, Austin,
Jan. 1993.

J Barraquand and J-C Latombe. Nonholonomic multibody mobile robots: con-
trollability and motion planning in the presence of obstacles. In Proc. IEEE Int.
Conf. Robotics Autom., pages 2328-2335, Sacramento, Apr. 1991.

O. Bengtsson and A.-J. Baerveldt. Robot localization based on scan-matching
estimating the covariance matrix for the IDC algorithm. Robotics Auton. Syst.,
44(1):29-40, 2003.

R. Benjemaa and F. Schmitt. Fast global registration of 3D sampled surfaces
using a multi-z-buffer technique. Image Vis. Comput., 17:113-123, 1999.

J.L. Bentley. K-d trees for semidynamic point sets. Annual ACM Symposium
Computational Geometry, pages 187-197, 1990.

P.J. Besl and N.D. McKay. A method for registration of 3D shapes. IEEFE Trans.
Pattern Anal. Mach. Intell., 14(2):239-256, Feb. 1992.

P. Biber and W. Strafler. The normal distributions transform: A new approach to
laser scan matching. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., volume 3,
pages 2743-2748, Las Vegas, Oct. 2003. IEEE.

L. Biota. Algoritmos de scan matching basados en métricas para estimar el
movimiento de robots que se desplazan en espacios tridimensionales. Technical

report, Centro Politécnico Superior de Zaragoza, Jun. 2005.

L. Biota, L. Montesano, J. Minguez, and F. Lamiraux. Toward a metric-based
scan matching algorithm for displacement estimation in 3D workspaces. In Proc.
IEEE Int. Conf. Robotics Autom., pages 4330-4332, Orlando, May 2006.

113

BIBLIOGRAPHY

[18]

[21]

[22]

[27]

G. Blais and M.D. Levine. Registering multiview range data to create 3D com-
puter objects. IEEE Trans. Pattern Anal. Mach. Intell., 17(8):820-824, Aug.
1995.

A. Censi. An accurate closed-form estimate of ICP’s covariance. In Proc. IEEE

Int. Conf. Robotics Autom., pages 3167-3172, Rome, Apr. 2007.

Y. Chen and G. Medioni. Object modeling by registration os multiples ranges
images. In Proc. IEEE Int. Conf. Robotics Autom., volume 3, pages 2724-2729,
Sacramento, Apr. 1991.

D. Chetverikov. Fast neighborhood search in planar point sets. Pattern Recognit.
Lett., 12(7):409-412, Jul. 1991.

D. Chetverikov, D. Stepanov, and P. Krsek. Robust euclidean alignment of 3D
point sets: the trimmed iterative closest point algorithm. Image and Vision
Computing, 23(3):299-309, 2005.

D.M. Cole and P.M. Newman. 3D SLAM in outdoor environments. In Proc.
IEEE Int. Conf. Robotics Autom., pages 15561563, Orlando, May 2006.

A. Corominas Murtra, E. Trulls, J.M. Mirats-Tur, and A. Sanfeliu. Efficient use of
3D environment models for mobile robot simulation and localization. In Proceed-
ings of the International Conference on Simulation, Modelling and Programming
for Autonomous Robots (SIMPAR’10), Lecture Notes on Artificial Intelligence,
Darmstadt, Germany, November 2010.

R. Dechter and J. Pearl. Generalized best-first search strategies and the optimal-
ity of A*. J. ACM, 32(3):505-536, Jul. 1985.

G. Dissanayake, S. B. Williams, H. Durrant-Whyte, and T. Bailey. Map manage-
ment for efficient simultaneous localization and mapping (SLAM). Auton. Robots,
12(3):267-286, May 2002.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for au-
tonomous vehicles in unknown semi-structured environments. Int. J. Robotics

Res., 29(5):485-501, 2010.

114

BIBLIOGRAPHY

28]

[29]

32]

[33]

[34]

[35]

B. Douillard, J. Underwood, N. Kuntz, V. Vlaskine, A. Quadros, P. Morton, and
A. Frenkel. On the segmentation of 3D lidar point clouds. In Proc. IEEFE Int.
Conf. Robotics Autom., pages 2798-2805, Shanghai, May 2011.

L.E. Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. Am. J. Math.,
79:497-516, 1957.

A. Elfes. Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6):46-57, 1989.

C. Elkan and K. Nato. Learning classifiers from only positive and unlabelled
data. In Proc. 14th Int. Conf. Knowl. Discov. Data Min., pages 213-220, Las
Vegas, 2008.

R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparse delayed-state filters
for view-based SLAM. IEEFE Trans. Robotics, 22(6):1100-1114, Dec. 2006.

O. Faugeras. Three-Dimensional Computer Vision. A Geometric Viewpoint. The
MIT Press, Cambridge, 1993.

D. Ferguson and A. Stentz. Anytime, dynamic planning in high-dimensional
search spaces. In Proc. IEEFE Int. Conf. Robotics Autom., pages 1310-1315, Rome,
Apr. 2007. IEEE.

S. Foix, G. Alenya, J. Andrade-Cetto, and C. Torras. Object modeling using a
ToF camera under an uncertainty reduction approach. In Proc. IEEE Int. Conf.

Robotics Autom., pages 1306-1312, Anchorage, May 2010.

E. Frazzoli, M.A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. J. Guid. Control Dyn., 25(1):116-129, 2002.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM T. Math. Software, 3(3):209-226,
Sep. 1977.

R. Galego, A. Ortega, R. Ferreira, A. Bernardino, J. Andrade-Cetto, and J. Gas-
par. Uncertainty analysis of the DLT-lines calibration algorithm for cameras with

radial distortion. Comput. Vis. Image Underst., 140:115-126, 2105.

115

BIBLIOGRAPHY

[39]

[42]

[45]

[47]

[48]

D. Gingras, E. Dupuis, G. Payre, and J. de Lafontaine. Path planning based on
fluid mechanics for mobile robots using unstructured terrain models. In Proc.
IEEE Int. Conf. Robotics Autom., pages 19781984, Anchorage, May 2010.

H. Gonzélez-Bafios and J.C. Latombe. Navigation strategies for exploring indoor
environments. Int. J. Robotics Res., 21(10):829-848, 2002.

M. Greenspan and G. Godin. A nearest neighbor method for efficient ICP. In
Proc. 3rd Int. Conf. 3D Digital Imaging Modeling, pages 161-168, Quebec, May
2001.

S. Gumhold, X. Wang, and R. MacLeod. Feature extraction from point clouds.
In Proc. 10th Int. Meshing Roundtable, pages 293-305, New Port Beach, Oct.
2001.

J.-S. Gutmann. Robuste Navigation autonomer mobile Systeme. PhD thesis,

University of Freiburg, Germany, 2000.

M. Héselich, D. Lang, M. Arends, and D. Paulus. Terrain classification with
Markov random fields on fused camera and 3D laser range data. In Proc. Eur.

Conf. Mobile Robots, pages 153-158, Orebro, Sep. 2011.

M. Hebert, C. Caillas, E. Krotkov, I. Kweon, and T. Kanade. Terrain mapping
for a roving planetary explorer. In Proc. IEEE Int. Conf. Robotics Autom., pages
997-1002, Scottsdale, May 1989.

A. Howard, M. Turmon, L. Matthies, B. Tang, A. Angelova, and E. Mjolsness.
Towards learned traversability for robot navigation: From underfoot to the far
field. J. Field Robotics, 23(11-12):1005-1017, 2006.

A. Howard, D.F. Wolf, and G.S. Sukhatme. Towards 3D mapping in large urban
environments. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 419-424,
Sendai, Sep. 2004.

S. Huang, Z. Wang, and G. Dissanayake. Exact state and covariance sub-matrix
recovery for submap based sparse EIF SLAM algorithm. In Proc. IEEE Int. Conf.
Robotics Autom., pages 1868—1873, Pasadena, May 2008.

116

BIBLIOGRAPHY

[49]

[51]

[52]

M. Hwangbo, J. Kuffner, and T. Kanade. Efficient two-phase 3D motion planning
for small fixed-wing UAVs. In Proc. IEEE Int. Conf. Robotics Autom., pages
1035-1041, Rome, Apr. 2007.

V. Ila, J. Andrade-Cetto, R. Valencia, and A. Sanfeliu. Vision-based loop closing
for delayed state robot mapping. In Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., pages 3892-3897, San Diego, Nov. 2007.

V. Ila, J. M. Porta, and J. Andrade-Cetto. Information-based compact Pose
SLAM. IEEE Trans. Robotics, 26(1):78-93, Feb. 2010.

V. Ila, J.M. Porta, and J. Andrade-Cetto. Reduced state representation in delayed
state SLAM. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 4919-4924,
Saint Louis, Oct. 2009.

V. Ila, J.M. Porta, and J. Andrade-Cetto. Amortized constant time state estima-
tion in Pose SLAM and hierarchical SLAM using a mixed Kalman-information

filter. Robotics Auton. Syst., 59(5):310-318, 2011.

D. Joho, C. Stachniss, P. Pfaff, and W. Burgard. Autonomous exploration for 3D
map learning. In Karsten Berns and Tobias Luksch, editors, Autonome Mobile

Systeme, pages 2228, Kaiserslautern, Oct. 2007. Springer.

M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and
mapping. IEEE Trans. Robotics, 24(6):1365-1378, 2008.

S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-
mental sampling-based methods. In Proc. IEEE Conf. Decision Control, pages
7681-7687, Atlanta, Dec. 2010.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. Int. J. Robotics Res., 30(7):846-894, 2011.

S. Karaman, M.R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion
planning using the RRT*. In Proc. IEEE Int. Conf. Robotics Autom., pages
1478-1483, Shanghai, May 2011.

117

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[65]

[66]

[68]

[69]

S. Karumanchi, T. Allen, T. Bailey, and S. Scheding. Non-parametric learning to
aid path planning over slopes. Int. J. Robotics Res., 29(8):997-1018, May 2010.

L. Kavraki, M.N. Kolountzakis, and J.-C. Latombe. Analysis of probabilistic
roadmaps for path planning. IEEE Trans. Robotics Autom., 14(1):166-171, 1998.

L. Kavraki, P. Svestkaand, J. C. Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high dimensional configuration spaces. IEEE

Trans. Robotics, 12(4):566-580, 1996.

D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. F. Bobick. Traversability classi-
fication using unsupervised on-line visual learning for outdoor robot navigation.
In Proc. IEEFE Int. Conf. Robotics Autom., pages 518525, Orlando, May 2006.

M. Kobilarov. Cross entropy motion planning. Int. J. Robotics Res., 31(7):855—
871, 2012.

M. B. Kobilarov and G. S. Sukhatme. Near time-optimal constrained trajectory
planning on outdoor terrain. In Proc. IEEE Int. Conf. Robotics Autom., pages
1821-1828, Barcelona, Apr. 2005.

K. Konolige and M. Agrawal. FrameSLAM: from bundle adjustment to realtime
visual mapping. IEEE Trans. Robotics, 24(5):1066-1077, 2008.

D.J. Kriegman, E. Triendl, and T.0O. Binford. Stereo vision and navigation in

buildings for mobile robots. IEEE Trans. Robotics Autom., 5(6):792-803, 1989.

J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In Proc. IEEE Int. Conf. Robotics Autom., volume 2, pages 995-1001,
San Francisco, Apr. 2000.

Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, JP How, and G. Fiore. Real-time
motion planning with applications to autonomous urban driving. IEEE Trans.
Control Syst. Technol., 17(5):1105-1118, 20009.

S. Lacroix, A. Mallet, R. Chatila, and L. Gallo. Rover self localization in
planetary-like environments. In Proc. 3th Int. Sym. Artif. Intell., Robotics Autom.
Space, pages 433-440, Noordwijk, Jun. 1999.

118

BIBLIOGRAPHY

[70]

[71]

[72]

73]

J. F. Lalonde, N. Vandapel, D. Huber, and M. Hebert. Natural terrain classi-
fication using three-dimensional ladar data for ground robot mobility. J. Field

Robotics, 23(1):839-861, Nov. 2006.

P. Lamon, C. Stachniss, R. Triebel, P. Pfaff, C. Plagemann, G. Grisetti, S. Kolski,
W. Burgard, and R. Siegwart. Mapping with an autonomous car. In IEEE/RSJ
IROS Workshop: Safe Navigation in Open and Dynamic Environments, Oct.
2006.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic, London, 1991.

S. LaValle. Rapidly-exploring random trees: A new tool for path planning. Tech-
nical Report TR 98-11, Comp. Sc. Dept., lowa St. Univ., 1998.

S. LaValle and J.Kuffner. Randomized kinodynamic planning. In Proc. IEEE
Int. Conf. Robotics Autom., pages 473—479, Detroit, May 1999.

S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In Algorithmic and Computational Robotics:New Directions, 2000.

S.M. LaValle. Planning Algorithm. Cambridge University Press, 2006.

K. Lingemanna, A. Niichter, J. Hertzberg, and H. Surmann. High-speed laser
localization for mobile robots. Robotics and Autonomous Systems, 51(4):275—

296, 2005.

B. Liu, W.S. Lee, P.S. Yu, and X. Li. Partially supervised classification of text
documents. In Proc. 19th Int. Conf. Mach. Learning, pages 387-394, Sydney, Jul.
2002.

M.C. Martin and H.P. Moravec. Robot evidence grids. Technical Report CMU-
RI-TR-96-06, Robotics Institute. Carnegie Mellon University, 1996.

T. Masuda. Registration and integration of multiple range images by matching
signed distance fields for object shape modeling. Comput. Vis. Image Underst.,
87(1):51-65, 2002.

119

BIBLIOGRAPHY

[81]

[82]

[84]

[85]

[36]

[38]

T. Masuda, K. Sakaue, and N. Yokoya. Registration and integration of multiple
range images for 3D model construction. International Conference on Pattern
Recognition, 20(1):879-883, 1996.

J. Minguez, F. Lamiraux, and L. Montesano. Metric-based scan matching al-
gorithms for mobile robot displacement estimation. In Proc. IEEE Int. Conf.
Robotics Autom., pages 3568-3574, Barcelona, Apr. 2005.

J. Minguez, L. Montesano, and F. Lamiraux. Metric-based iterative closest
point scan matching for sensor displacement estimation. IEEE Trans. Robotics,
22(5):1047-1054, Oct. 2006.

H. P. Moravec. Robot spatial perception by stereoscopic vision and 3D evidence

grids. Technical report, Carnegie Mellon University, The Robotics Institute, 1996.

H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In

Proc. IEEE Int. Conf. Robotics Autom., pages 116-121, St. Louis, Mar. 1985.

F. Moreno-Noguer, V. Lepetit, and P. Fua. EPnP: An accurate O(n) solution to
the PnP problem. Int. J. Comput. Vis., 81(2):155-166, 2009.

M. Morta. Disseny i construccié d’un laser 3D per al mapejat d’entorns exteriors.
Technical report, Escola Técnica Superior d’Enginyeria Industrial de Barcelona,
June 2008.

R.D. Morton and E. Olson. Positive and negative obstacle detection using the
HLD classifier. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 1579—
1584, San Francisco, Sep. 2011.

D. M. Mount and S. Arya. ANN: A library for approximate nearest neighbor
searching. In Proc. 2nd Fall Workshop Comput. Geom., Durham, Oct. 1997.

D. Munoz, N. Vandapel, and M. Hebert. Onboard contextual classification of
3-D point clouds with learned high-order markov random fields. In Proc. IEEE
Int. Conf. Robotics Autom., pages 2009-2016, Kobe, May 2009.

L. Murphy, S. Martin, and P. Corke. Creating and using probabilistic costmaps
from vehicle experience. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages
4689-4694, Vilamoura, Oct. 2012.

120

BIBLIOGRAPHY

[92]

[93]

[101]

L. Murphy and P. Newman. Planning most-likely paths from overhead imagery.
In Proc. IEEE Int. Conf. Robotics Autom., pages 3059-3064, Anchorage, May
2010.

D. Murray and C. Jennings. Stereo vision based mapping and navigation for
mobile robots. In Proc. IEEFE Int. Conf. Robotics Autom., volume 2, Albuquerque,
Apr. 1997.

D. Murray and J.J. Little. Using real-time stereo vision for mobile robot naviga-

tion. Autonomous Robots, 8(2):161-171, 2000.

A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM with
approximate data association. In Proc. 12th Int. Conf. Advanced Robotics, pages

242-249, Seattle, Jul. 2005.

A. Niichter, K. Lingemann, J. Hertzberg, and H. Surmann. Heuristic-based laser
scan matching for outdoor 6D SLAM. In Heidelberg Springer Berlin, editor, KI
2005: Advances in Artificial Intelligence, volume 3698, pages 304-319. Springer-
Link, September 2005. Heuristic-based laser scan matching for outdoor 6D SLAM.

A. Nichter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM-3D map-
ping outdoor environments. J. Field Robotics, 24(8-9):699-722, 2007.

A. Nuchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun. 6D SLAM
with an application in autonomous mine mapping. In Proc. IEEE Int. Conf.
Robotics Autom., pages 1998-2003, New Orleans, Apr. 2004.

S. T. O’Callaghan and F. Ramos. Gaussian process occupancy maps. Int.
J. Robotics Res., 31(1):42-62, 2012.

A. Ortega, B. Dias, E. Teniente, A. Bernardino, J. Gaspar, and Juan Andrade-
Cetto. Calibrating an outdoor distributed camera network using laser range finder
data. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 303-308, Saint
Louis, Oct. 2009.

A. Ortega, M. Silva, E.H. Teniente, R. Ferreira, A. Bernardino, J. Gaspar, and
J. Andrade-Cetto. Calibration of an outdoor distributed camera network with a
3D point cloud. Sensors, 14(8):13708-13729, 2014.

121

BIBLIOGRAPHY

[102]

103

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

S-Y. Park and M. Subbarao. A fast point-to-tangent plane technique for multi-
view registration. In Proc. 4th Int. Conf. 8D Digital Imaging Modeling, pages
276-283, Banff, Oct. 2003.

R. Paul, R. Triebel, D. Rus, and P. Newman. Semantic categorization of out-
door scenes with uncertainty estimates using multi-class Gaussian process clas-
sification. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 2404-2410,
Vilamoura, Oct. 2012.

F. Pauling, M. Bosse, and R. Zlot. Automatic segmentation of 3D laser point
clouds by ellipsoidal region growing. In Proc. Australasian Conf. Robotics Autom.,

Sydney, 2009.

P. Pfaff and W. Burgard. An efficient extension of elevation maps for outdoor
terrain mapping. In Proc. 5th Int. Conf. Field and Service Robotics, volume 25 of
Springer Tracts Adv. Robotics, pages 195-206, Port Douglas, Jul. 2005. Springer.

P. Pfaff, R. Triebel, C. Stachniss, P. Lamon, w.Burgard, and R. Siegwart. Towards
mapping of cities. In Proc. IEEE Int. Conf. Robotics Autom., Rome, Apr. 2007.

J.C. Platt. Probabilities for SV machines. Advances in large margin classifiers.

Advances in Large Margin Classifiers. MIT Press, 2000.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in C,

volume 2. Cambridge university press Cambridge, 1992.

K. Pulli. Multiview registration for large data sets. In Proc. 2nd Int. Conf. 3D
Digital Imaging Modeling, pages 160-168, Ottawa, Oct. 1999.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-

ing. Adaptive Computation and Machine Learning. The MIT Press, 2006.

C.E. Rasmussen and H. Nickisch. Gaussian processes for machine learning
(GPML) toolbox. J. Mach. Learning Res., 11:3011-3015, 2010.

E. Rimon and D.E. Koditschek. Exact robot navigation using artificial potential

functions. IEEE Trans. Robotics Autom., 8(5):501-518, 1992.

122

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

P.J. Rousseeuw. Least median of squares regression. Journal of the American

Statistical Association, 79(388):871-880, 1984.

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proc.
3rd Int. Conf. 3D Digital Imaging Modeling, pages 145-152, Quebec, May 2001.

A. Sanfeliu and J. Andrade-Cetto. Ubiquitous networking robotics in urban set-
tings. In Proc. IEEE/RSJ IROS Workshop Network Robot Syst., pages 14-18,
Beijing, Oct. 2006.

A. Santamaria-Navarro, E.H. Teniente, M. Morta, and J. Andrade-Cetto. Ter-
rain classification in complex three-dimensional outdoor environments. J. Field

Robotics, 32(1):42-60, 2015.

A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Robotics: Science and
Systems V, Seattle, Jun. 2009.

C. Siagian, C. Chang, and L. Itti. Autonomous mobile robot localization and
navigation using a hierarchical map representation primarily guided by vision.
J. Field Robotics, 31(3):408-440, 2014.

D. Silver, J. A. Bagnell, and A. Stentz. Applied imitation learning for autonomous
navigation in complex natural terrain. In Proc. 7th Int. Conf. Field and Service
Robotics, volume 62 of Springer Tracts Adv. Robotics, pages 249-259, Cambridge,
Jul. 2009. Springer.

D. Silver, J. A. Bagnell, and A. Stentz. Learning from demonstration for au-
tonomous navigation in complex unstructured terrain. Int. J. Robotics Res.,
29(12):1565-1592, 2010.

T. Simeon and B. Dacre-Wright. A practical motion planner for all-terrain mobile
robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 1357-1363,
Tokyo, Jul. 1993.

D.A. Simon, M. Hebert, and T. Kanade. Real-time 3D pose estimation using a
high-speed range sensor. In Proc. IEEE Int. Conf. Robotics Autom., volume 3,
pages 2235-2241, New Orleans, Apr. 2004.

123

BIBLIOGRAPHY

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

B. Sofman, E. Lin, J. A. Bagnell, N. Vandapel, and A. Stentz. Improving robot
navigation through self-supervised online learning. In Robotics: Science and Sys-
tems II, Philadelphia, Aug. 2006.

D. Stavens and S. Thrun. A self-supervised terrain roughness estimator for off-
road autonomous driving. In Proc. 22nd Conf. Uncertain. Artif. Intell., pages
13-16, Cambridge, Jul. 2006.

T. Stoyanov, M. Magnusson, H. Andreasson, and A.J. Lilienthal. Path planning
in 3D environments using the normal distributions transform. In Proc. IEEE/RSJ

Int. Conf. Intell. Robots Syst., pages 3263-3268, Taipei, Oct. 2010.

H Surmann, J. Huser, and J. Wehking. Path planning far a fuzzy controlled
autonomous mobile robot. In Proceedings of the Fifth IEEE International Con-
ference on Fuzzy Systems, volume 3, pages 1660-1665, 1996.

H. Surmann, A. Nuchter, and J. Hertzberg. An autonomous mobile robot with a
3D laser range finder for 3D exploration and digitalization of indoor environments.
Robotics Auton. Syst., 45(3-4):181-198, 2003.

E.H. Teniente and J. Andrade-Cetto. Registration of 3D point clouds for urban
robot mapping. Technical report, IRI, UPC, 2008.

E.H. Teniente and J. Andrade-Cetto. FaMSA: Fast multi-scan alignment with
partially known correspondences. In Proc. Eur. Conf. Mobile Robots, pages 139—
144, Orebro, Sep. 2011.

E.H. Teniente and J. Andrade-Cetto. HRA*: Hybrid randomized path planning
for complex 3D environments. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
pages 1766-1771, Tokyo, Nov. 2013.

E.H. Teniente, M. Morta, A. Ortega, E. Trulls, and J. Andrade-Cetto. Barcelona
Robot Lab data set. [online] http://www.iri.upc.edu/research/webprojects/pau/

datasets/BRL/php/dataset.php, 2011.

E.H. Teniente, R. Valencia, and J. Andrade-Cetto. Dense outdoor 3D mapping
and navigation with Pose SLAM. In Proc. III Workshop de Robdtica: Robdtica
Ezxperimental, pages 567-572, Seville, 2011.

124

http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/php/dataset.php
http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/php/dataset.php

BIBLIOGRAPHY

[133]

[134]

[135]

[136]

137]

[138]

[139]

[140]

[141]

[142]

[143]

OBJ file format, —. http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj/.

C.H. Tong, D. Gingras, K. Larose, T.D. Barfoot, and E. Dupuis. The cana-
dian planetary emulation terrain 3D mapping dataset. [online]http://asrl.utias.

utoronto.ca/datasets/3dmap/, 2012.

R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for outdoor terrain
mapping and loop closing. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
pages 2276-2282, Beijing, Oct. 2006.

E. Trulls, A. Corominas Murtra, J. Pérez-Ibarz, G. Ferrer, D. Vasquez, Josep M.
Mirats-Tur, and A. Sanfeliu. Autonomous navigation for mobile service robots in

urban pedestrian environments. Journal of Field Robotics, 28(3):329-354, 2011.

J. Tu and S. Yang. Genetic algorithm based path planning for a mobile robot.
In Proc. IEEE Int. Conf. Robotics Autom., volume 1, pages 1221-1226, Taipei,
Sep. 2003.

G. Turk and M. Levoy. Zippered polygon meshes from range images. In Computer
Graphics. Proc. ACM SIGGRAPH Conf., pages 311-318, Orlando, Jul. 1994.
ACM Press.

R. Valencia, M. Morta, J. Andrade-Cetto, and J.M. Porta. Planning reliable
paths with Pose SLAM. IEEE Trans. Robotics, 29(4):1050-1059, 2013.

R. Valencia, E.H. Teniente, E. Trulls, and J. Andrade-Cetto. 3D mapping for
urban service robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages
3076-3081, Saint Louis, Oct. 2009.

S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte. Gaussian process
modeling of large-scale terrain. J. Field Robotics, 26(10):812-840, 2009.

T. Vidal-Calleja, A.J. Davison, J. Andrade-Cetto, and D.W. Murray. Active
control for single camera SLAM. In Proc. IEEE Int. Conf. Robotics Autom.,
pages 1930-1936, Orlando, May 2006.

C. Warren. Global path planning using artificial potential fields. In Proc. IEEE
Int. Conf. Robotics Autom., pages 316-321, Scottsdale, May 1989.

125

http://local.wasp.uwa.edu.au/~pbourke/dataformats/obj/
http://asrl.utias.utoronto.ca/datasets/3dmap/
http://asrl.utias.utoronto.ca/datasets/3dmap/

BIBLIOGRAPHY

[144]

[145]

[146]

[147]

[148]

[149]

J. Weingarten and R. Siegwart. EKF-based 3D SLAM for structured environment
reconstruction. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 3834—
3839, Beijing, Oct. 2006.

O. Wulf, A. Niichter, J. Hertzberg, and B. Wagner. Benchmarking urban six-
degree-of-freedom simultaneous localization and mapping. J. Field Robotics,
25(3):148-163, Mar. 2008.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
tomap: A probabilistic, flexible, and compact 3D map representation for robotic
systems. In Proc. IEEE ICRA Workshop Best Practices 3D Perception and Mod-
eling for Mobile Manipulation, Anchorage, May 2010.

S.M. Yamany, M.N. Ahmed, and A.A. Farag. A new genetic-based technique for
matching 3-D curves and surfaces. Pattern Recognit., 32(10):1827-1820, 1999.

B. Yamauchi. Frontier-based exploration using multiple robots. In Int. Conf.

Autonomous Agents, pages 47-53, Minneapolis, 1998.

Z. Zhang. Iterative point matching for registration of free-form curves and sur-

faces. Int. J. Comput. Vis., 13:119-152, 1994.

126

	Agradecimientos
	Acknowledgements
	Abstract
	Resumen
	Resum
	List of Figures
	List of Symbols
	1 Introduction
	1.1 Summary of contributions
	1.2 Publications derived from this thesis

	2 Point cloud registration
	2.1 Related work
	2.2 Range image registration
	2.3 A hybrid hierarchic ICP
	2.3.1 Metrics for data association
	2.3.2 Hybrid hierarchic ICP algorithm
	2.3.3 3D range data filtering and data reduction
	2.3.4 Hybrid hierarchic ICP comparison

	2.4 Fast multi scan alignment with partially known correspondences
	2.4.1 Using kd-trees for nearest neighbor search
	2.4.2 Box structures for nearest neighbor search and multi-scan matching
	2.4.3 Barcelona Robot Lab
	2.4.4 FAMSA execution times

	3 3D range mapping
	3.1 Related work
	3.2 Propagation of error from point cloud registration to relative pose estimation
	3.3 3D mapping with Pose SLAM
	3.4 Mapping 3D scenarios

	4 Terrain classification
	4.1 Related work
	4.2 Gaussian processes for off-line terrain classification
	4.2.1 Regression analysis
	4.2.2 Least-squares classification
	4.2.3 Gaussian process training
	4.2.4 Covariance function choice
	4.2.5 Off-line classification

	4.3 Point cloud classification results

	5 Path planning
	5.1 Related work
	5.2 Hybrid randomized path planning
	5.2.1 Steering functions
	5.2.2 Cost estimation
	5.2.3 Path projection
	5.2.4 Collision detection
	5.2.5 Tree rewiring

	5.3 Planning with HRA* in 3D environments

	6 Conclusions

