
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

David Castells Rufas

 Scalable Parallel Architectures on

Reconfigurable Platforms

Ph.D. Thesis, David Castells Rufas
Department of Microelectronics and Electronic Systems

Universitat Autònoma de Barcelona
December 2015

Scalable Parallel Architectures on
Reconfigurable Platforms

Ph.D. Thesis Dissertation

Author:
David Castells i Rufas

Advisor:
Jordi Carrabina i Bordoll

Universitat Autònoma de Barcelona
December 2015

Bellaterra, Catalonia

─ 3 ─

 I certify that I have read this dissertation and
that, in my opinion, it is fully adequate in scope
and quality as a dissertation for the degree of
Doctor of Philosophy.

 Dr. Jordi Carrabina i Bordoll

This work was carried out at the
Microelectronics and Electronic Systems Department of the
Universitat Autònoma de Barcelona

In fulfillment of the requirements for the degree of
Doctorat en Informàtica

© 2015 David Castells i Rufas

Some Rights Reserved.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

─ 4 ─

─ 5 ─

Abstract
The latest advances on reconfigurable systems resulted in FPGA devices with

enough resources to implement multiprocessing systems with more than 100 soft-cores
on a single FPGA. In this thesis I present how to implement solutions based on such
systems and two scenarios where those kind of systems would be valuable: hard real-time
systems and energy efficient HPC systems. FPGAs are increasingly being used in HPC
computing as they can bring higher energy efficiency than other alternative architectures
such as CPUs or GPGPUs. However, the programmability barrier imposed by HDL
languages is a serious drawback that limits their adoption. The recent introduction of
OpenCL toolchains for FPGAs is a step towards lowering the barrier, but still produces
application-specific designs that cannot be reused for other general-purpose computing
unless the platform is reconfigured. Building many-soft-cores solutions using simple
hardware accelerators can bring performance and energy efficiency and still provide a
general purpose system to be used for different applications. To make it possible the
current FPGA toolchains has been complemented to add support for fast many-soft-core
platform description and verification (especially at higher levels of abstraction), to
provide convenient parallel programming models and efficient methods to optimize the
designs. On the other hand, I show how the same methods can be applied to implement
systems using a task isolation approach to meet the requirements of a hard real-time safety
critical system. Finally, the application of these technologies and optimization methods
are used to efficiently implement both industrial and computational research problems.

─ 6 ─

Resum
Els últims avenços en els sistemes reconfigurables han fet possible que les darreres

famílies de FPGAs tinguin prou recursos per permetre la implementació de sistemes
multiprocessadors utilitzant més de 100 nuclis (soft-core) en una única FPGA. En aquesta
tesis presento com implementar solucions basades en aquests sistemes i dos escenaris on
aquests sistemes tenen interès: els sistemes de temps real dur i els sistemes d’altes
prestacions eficients energèticament. Les FPGAs s’utilitzen cada vegada més en la
computació d’altes prestacions ja que poden arribar a oferir més eficiència energètica que
altres arquitectures com ara CPUs o GPGPUs. Tanmateix, la baixa programabilitat
d’aquests sistemes, fruit de l’ús de llenguatges HDL és un inconvenient que limita la seva
adopció. La introducció recent de fluxos de disseny per FPGA basats en OpenCL és un
avenç per reduir la dificultat de programació, però malgrat tot, produeix arquitectures de
propòsit específic que no poden reutilitzar-se per altres aplicacions a no ser que es
reconfiguri la plataforma. Construint many-soft-cores que utilitzin acceleradors simples,
es poden aconseguir prestacions i eficiència energètica i tot i així, encara disposar d’un
sistema útil per executar altres aplicacions. Per fer-ho possible les eines de disseny actual
per FPGA s’han complementat per afegir suport per construir arquitectures many-soft-
core, proporcionar models de programació paral·lels i mètodes eficients per analitzar i
optimitzar els dissenys. Per altra banda, es mostra com els mateixos mètodes es poden
utilitzar per desenvolupar un sistema de temps real i alts nivells de seguretat mitjançant
l’aïllament de tasques en els diferents nuclis del sistema.

─ 7 ─

 Enthusiasm is followed by disappointment

and even depression, and then by renewed
enthusiasm.

 Murray Gell-Mann

─ 8 ─

─ 9 ─

Acknowledgments
When I started my particular journey to Ithaca I prayed that the road would be long.

Unfortunately, it looks as if gods were listening me…
I want express my deepest gratitude to all the people that encouraged me, that helped

me, or contributed (no matter how) to make this long journey enjoyable and fun.

To my daughters Anna and Carla. For being lovely…most of the time. Anyway, I

love you… all the time. I am happy to finish before you get to College! I will play more
with you from now on!

To my ex-wife Mar. I probably devoted too much time to this, I’m sorry…and thanks
for the many times you’ve expected a “thanks” coming out of my mouth that has never
arrived.

To my parents, my brother and his family. Thank you for being there whenever I need
help. Quite often lately.

To Txell. Thank you for the good times we have shared. I swear I am going to reach
my toes one day.

To Disposats: Àngels, Carles, Marga, Miquel, Paquito, Montse, and Rita. I miss those
dinners and adventures.

To my advisor Jordi Carrabina. Thanks for encouraging me to start, and not falling
into despair during this last sprint. I hope you never have another Ph.D. student like me!
…and this is not a self-compliment!

To Eloi. Thank you for the coffees, discussions, and everything that helped me think
that I was not travelling a lonely road. I hope our roads can cross again in the future.

To Carme. I wish you much luck in your [shorter] journey!
To Albert. For not quitting smoking for some time, and for being always ready to roll

up your sleeves if needed. Lab is empty without you, man! I wish we can climb together
again soon!

To Jaume Joven. I had much fun working together.

─ 10 ─

To Eduard. For liking disguising! All the best with you growing family!
To Joan Plana. …for our discussions about the meaning of life and for, too often,

paying my lunch. Man, I will be the one inviting next time!
To Josep Mesado and Martí Bonamusa. For continually asking me about some

Drivers… I do not know what you are talking about! I sincerely wish that you have the
success you deserve. All the best!

To colleagues from UAB, especially Lluis Terés, Toni Espinosa, Juan Carlos Moure,
and Emilio Luque. Thanks for sharing wisdom, thoughts and experiences.

To Toni Portero and David Novo. It’s long time since we worked together now. But
I’m still convinced that you are great people to have around.

To David Marin. I admire your resolution and British style.
To Josep Besora. Be prepared! I am going to beat you in the Tennis court someday.
To my “Flama’s fathers” friends, especially Pep Claret and Xavier Montanyà. Sharing

drinks and laughs with you has been one of the most effective medicines to combat
disappointment and depression.

To Chit Yeoh Cheng. Thanks for your help and for sharing your Chinese wisdom.
To Jose Duato, Greg Yeric, Rob Aitken, and Francky Catthoor, for your comments

and valuable insight.
To Takehiko Iida and David Womble, for answering my mails asking for estimations

of the power consumption of former #1 top500 machines.
To the Catalan, Spanish, and European taxpayers. Thanks for supporting my research.
To the anonymous reviewers of my papers. You were always right.
To the people that smile to strangers in the street. The world is better with you in it.

─ 11 ─

Contents

Abstract ... 5
Resum .. 6
Acknowledgments ... 9
Contents... 11
List of Acronyms ... 15
List of Figures ... 17
List of Tables ... 23
1. Introduction ... 25

1.1. Energy efficiency .. 28
1.2. Energy Efficiency evolution .. 33
1.3. Real-time systems ... 35
1.4. Objective of this thesis .. 37
1.5. Thesis organization ... 38

2. Reconfigurable Logic and Soft-Core Processors .. 39
2.1. Energy Efficiency relations and ratios between technologies 39

 40 .. ࡺ .2.1.1
 40 ... ࢑࢒ࢉࢌ .2.1.2
 41 .. ࡯ .2.1.3
 47 .. ࢑ࢇࢋ࢒ࡵ .2.1.4

2.2. Comparing the same technology nodes ... 48
2.3. Comparing latest node for FPGA with ASIC entry node .. 50
2.4. Comparing 40nm node for FPGAs with 14nm node for ASICs 51
2.5. Processor Technologies ... 53
2.6. Comparing Soft-core Processors with Processors ... 61
2.7. Soft-core Multiprocessors ... 68

2.7.1. Implementing devices ... 69

─ 12 ─

2.7.2. Type of replicated Soft-Cores ... 70
2.7.3. System Frequency ... 72
2.7.4. Number of processors replicated ... 74
2.7.5. Application domains ... 74
2.7.6. Energy Efficiency .. 75

3. Building Many-Soft-Core Processors ... 77
3.1. Building blocks ... 77

3.1.1. MIOS Soft-Core processor .. 77
3.1.2. NIOSII Soft-Core processor .. 82
3.1.3. Performance Counter ... 85
3.1.4. Floating Point Units .. 87
3.1.5. Interconnection Networks ... 94
3.1.6. Network Adapters ... 104

3.2. Architectures ... 110
3.3. Combining building blocks to create architectures ... 112
3.4. Conclusions ... 116

4. Software Development Process for Many-Soft-Cores .. 119
4.1. Parallel Programming Development Process .. 119

4.1.1. Sequential code analysis .. 119
4.1.2. Parallel Programming Languages and APIs .. 121
4.1.3. Performance Analysis ... 122

4.2. Shortcomings of the development process for soft-core multiprocessors 126
4.2.1. Lack of parallel programming support .. 126
4.2.2. Lack of appropriate Performance Analysis tools .. 127

4.3. Memory Access Pattern Analysis new Proposal ... 130
4.3.1. Proposed Method ... 132

4.4. Supporting programming models in Many-Soft-Cores ... 139
4.4.1. MPI support ... 140
4.4.2. Multithreading Support ... 147

─ 13 ─

4.5. Proposals of Novel Performance Estimation Methods .. 148
4.5.1. Performance estimation from a communication centric perspective 149
4.5.2. Transparent instrumentation in Virtual Prototyping Platforms 151

4.6. Conclusions ... 158
5. Case Studies .. 159

5.1. Laser Controller... 159
5.1.1. Design of the Real-Time critical parts .. 161
5.1.2. Multi-soft-Core design .. 164
5.1.3. Functional Validation and Performance Analysis support 166
5.1.4. Implementation and Results .. 170

5.2. Scaling up to many-soft-core processors ... 171
5.3. Increasing Energy Efficiency .. 178

5.3.1. Mandelbrot .. 178
5.3.2. Primer Numbers .. 184

5.4. Conclusions ... 194
6. Conclusions and Future Directions ... 197

6.1. Conclusions ... 197
6.2. Future directions .. 199

References ... 203
List of Publications ... 215

─ 14 ─

─ 15 ─

List of Acronyms
ALU Arithmetic-Logic Unit
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
CI Custom Instruction
CISC Complex Instruction Set Computer
CPU Central Processing Unit
DSP Digital Signal Processor
DRAM Dynamic Random-Access Memory
FF Flip Flop
FPGA Field Programmable Gate Array
FPU Floating Point Unit
GPC General Purpose Computing
GPGPU General Purpose Graphics Processing Unit
GPU Graphics Processing Unit
HPC High Performance Computing
ILP Instruction Level Parallelism
IPC Instructions per Cycle
ISA Instruction Set Architecture
ISS Instruction Set Simulator
ITRS International Technology Roadmap for Semiconductors
LASER Light Amplification by Stimulated Emission of Radiation
LE Logic Elements
LUT LookUp Table
MCAPI Multicore Communications API
MIMD Multiple Instruction Multiple Data

─ 16 ─

MISD Multiple Instruction Single Data
MPI Message Passing Interface
MPSoC Multiprocessor System-on-Chip
NA Network Adapter
NOC Network On-Chip
NORMA No Remote Memory Access
NRE Non-Recurring Engineering
NUMA Non-Uniform Memory Access
OPC Operations per Cycle
OS Operative System
PC Program Counter
QoS Quality of Service
RISC Reduced Instruction Set Computer
RTOS Real Time Operative System
SDRAM Synchronous Dynamic Random-Access Memory
SIMD Single Instruction Multiple Data
SMT Symmetric Multi-Threading
SoC System on Chip
SPMD Single Program Multiple Data
TET Total Execution Time
TLP Thread Level Parallelism
UMA Uniform Memory Access
VLIW Very Long Instruction Word
WCET Worst Case Execution Time
XML Extensible Markup Language

─ 17 ─

List of Figures
FIGURE 1 EVOLUTION OF THE REVENUES OF THE TWO MAIN FPGA PROVIDERS: XILINX AND ALTERA 25
FIGURE 2 EVOLUTION OF THE ADOPTION OF TECHNOLOGY NODES BY ASIC AND FPGA VENDORS [ALTERA15] 26
FIGURE 3 EVOLUTION OF THE LOGIC RESOURCES OF BIGGEST ALTERA DEVICES FROM 1995 TO 2015 26
FIGURE 4 POTENTIAL NUMBER OF PROCESSORS PER DEVICE ... 27
FIGURE 5 ENERGY EFFICIENCY AS FUNCTION OF  .. 32
FIGURE 6 ENERGY EFFICIENCY AS FUNCTION OF SILICON AREA / RESOURCES ... 32
FIGURE 7 ENERGY EFFICIENCY AS FUNCTION OF ILEAKAGE .. 32
FIGURE 8 ENERGY EFFICIENCY AS FUNCTION OF SUPPLY VOLTAGE ... 32
FIGURE 9 ENERGY EFFICIENCY AS FUNCTION OF OPC .. 32
FIGURE 10 ENERGY EFFICIENCY AS FUNCTION OF FCLK .. 32
FIGURE 11 EVOLUTION PERFORMANCE AND POWER CONSUMPTION OF TOP SUPERCOMPUTING SYSTEMS [TOP500] 33
FIGURE 12 EVOLUTION OF ENERGY EFFICIENCY OF SUPERCOMPUTING SYSTEMS ... 34
FIGURE 13 REAL-TIME TASK WITH A CERTAIN DEADLINE .. 35
FIGURE 14 REAL-TIME TASK TRIGGERED BY AN EVENT ... 35
FIGURE 15 CV/I FACTOR PREDICTIONS REPORTED BY VARIOUS ITRS REPORTS ([ITRS02], [ITRS06], [ITRS07], [ITRS08],

[ITRS12], AND [ITRS13]) ... 43
FIGURE 16 CG COMPUTED FROM PREDICTIONS REPORTED BY VARIOUS ITRS REPORTS ([ITRS02], [ITRS06], [ITRS07],

[ITRS08], [ITRS12], AND [ITRS13]) .. 43
FIGURE 17 DIFFERENCE BETWEEN INTEL’S DATA FOR ½ PITCH AND ITRS PREDICTIONS ... 45
FIGURE 18 DIFFERENCE BETWEEN INTEL'S DATA FOR LGATE AND ITRS PREDICTIONS ... 45
FIGURE 19 RELATIVE GATE CAPACITANCE INFERRED FROM ITRS DATA AND INDUSTRY DATA ... 46
FIGURE 20 LEAKAGE CURRENT USING (2.6) AND ITRS PREDICTIONS .. 47
FIGURE 21 LEAKAGE CURRENT ESTIMATIONS ... 48
FIGURE 22 ENERGY EFFICIENCY PENALTY OF FPGA DESIGNS VS. ASIC IMPLEMENTATION AS A FACTOR OF THE ߠ / ߜ RELATION

 ... 49
FIGURE 23 ENERGY EFFICIENCY PENALTY FOR FPGAS AS FACTOR OF 52 .. ߙ
FIGURE 24 ARCHITECTURE OF SIMPLE VON-NEUMANN PROCESSOR. THE INSTRUCTION IS FETCHED FROM MEMORY INT THE IF

PHASE. OPERANDS CAN BE FETCHED FROM MEMORY AND THE ACCUMULATOR REGISTER. RESULTS CAN BE WRITEN TO
ACCUMULATOR OR MEMORY. THE DIFFERENT STAGES CANNOT BE SIMULTANEOUSLY EXECUTED. 55

FIGURE 25 SIMPLE ARCHITECTURE WITH A REGISTER FILE. INSTRUCTION STILL NEEDS SEVERAL CYCLES TO EXECUTE BUT THE
OPERAND FETCHING TIME CAN BE REDUCED IF THEY ARE IN THE REGISTER FILE. .. 55

FIGURE 26 INTRODUCTION OF A CACHE TO REDUCE THE TIME TO ACCESS THE EXTERNAL MEMORY. 55
FIGURE 27 HARVARD ARCHITECTURE. SIMULTANEOUS ACCESS TO INSTRUCTION AND MEMORY COULD DOUBLE PERFORMANCE.

 ... 55

─ 18 ─

FIGURE 28 RELATIVE IPC AS FUNCTION OF THE PROBABILITY OF PIPELINE FLUSH FOR DIFFERENT LENGTHS OF THE PIPELINE. IN
ORANGE ݈݁݊݅݁݌݅݌ܮ = 20. IN BLUE ݈݁݊݅݁݌݅݌ܮ = 5. ... 56

FIGURE 29 PIPELINED ARCHITECTURE. PIPELINING ALLOWS TO INCREASE THE THROUGHPUT WHILE MAINTAINING THE LATENCY
OF INSTRUCTION EXECUTION. .. 57

FIGURE 30 BRANCH PREDICTION .. 57
FIGURE 31 IPC FACTOR AS FUNCTION OF PIPELINE LENGTH ASSUMING A BRANCH PREDICTION ACCURACY OF 97% AND BRANCH

PROBABILITY INSTRUCTION OF 20%. ... 57
FIGURE 32 FREQUENCY OF OPERATION OF MAINSTREAM PROCESSORS AND THEIR EXTERNAL DRAM MEMORIES DURING THE

NINETIES ... 58
FIGURE 33 LEVEL 2 CACHE .. 58
FIGURE 34 LEVEL 3 CACHE .. 58
FIGURE 35 VECTOR ARCHITECTURE ... 60
FIGURE 36 VLIW ARCHITECTURE.. 60
FIGURE 37 SUPERSCALAR ARCHITECTURE ... 60
FIGURE 38 SYMMETRIC MULTI-THREADING (SMT) ARCHITECTURE ... 60
FIGURE 39 INTEGER ENERGY EFFICIENCY .. 67
FIGURE 40 FLOATING POINT ENERGY EFFICIENCY .. 67
FIGURE 41 EFFICIENCY MEASURED IN MHZ/MW AS A FUNCTION OF THE TARGET FREQUENCY IN MULTIPLE SYNTHESIS OF THE

SAME PROCESSOR DESIGN. IMAGE EXTRACTED FROM [AITKEN14] .. 73
FIGURE 42 MIOS 3 STAGE PIPELINE .. 79
FIGURE 43 MIOS PIPELINE VISUALIZER .. 80
FIGURE 44 PROCESSOR DETAILS VISUALIZER .. 81
FIGURE 45 NIOSII/F PIPELINE ... 84
FIGURE 46 NIOSII CUSTOM INSTRUCTION INTEGRATION .. 85
FIGURE 47 ALTERA TIMER IP ... 86
FIGURE 48 ALTERA PERFORMANCE COUNTER IP .. 86
FIGURE 49 MY PERFORMANCE COUNTER ... 86
FIGURE 50 ALTERA FPH1 IP CORE ... 88
FIGURE 51 ALTERA FPH2 IP CORE ... 88
FIGURE 52 MIKEFPU IP CORE ... 88
FIGURE 53 HIGH LEVEL DESIGN OF THE SHARED FPU. MULTIPLE FUNCTIONAL UNITS HAVE DIFFERENT LATENCIES. A CPU CAN

ONLY BE PERFORMING A SINGLE FP OPERATION AT A CERTAIN TIME, BUT SEVERAL CPUS CAN SHARE THE SAME
FUNCTIONAL UNIT. .. 91

FIGURE 54 RESOURCE USAGE (LUTS+FFS) OF SHARED FPU (DARK BLUE) VS. NON SHARED FPU (RED) AFTER SYNTHESIS FOR
ALTERA EP2S15F484C3 DEVICE .. 93

FIGURE 55 MAXIMUM FREQUENCY OF OPERATION OF THE SHARED FPU (DARK BLUE) VS MULTIPLE VERSIONS OF SIMPLE FPU
(RED) AFTER SYNTHESIS FOR ALTERA EP2S15F484C3 DEVICE .. 93

FIGURE 56 MULTIPLEXED BUS ... 94

─ 19 ─

FIGURE 57 RING TOPOLOGY .. 95
FIGURE 58 DOUBLE RING TOPOLOGY .. 95
FIGURE 59 SPIDERGON TOPOLOGY ... 95
FIGURE 60 MESH TOPOLOGY... 95
FIGURE 61 TORUS TOPOLOGY .. 95
FIGURE 62 TREE TOPOLOGY .. 95
FIGURE 63 FAT-TREE TOPOLOGY .. 95
FIGURE 64 BUTTERFLY TOPOLOGY .. 95
FIGURE 65 CIRCUIT SWITCHING ... 97
FIGURE 66 STORE & FORWARD ... 97
FIGURE 67 VIRTUAL CUT-THROUGH ... 97
FIGURE 68 WORMHOLE SWITCHING ... 97
FIGURE 69 EPHEMERAL CIRCUIT SWITCHING .. 97
FIGURE 70 NOCMAKER PROCESS FLOW USED TO EXTRACT METRICS FROM DESIGN SPACE POINTS 99
FIGURE 71 SOME OF THE NOCMAKER WIZARD SCREENS TO CREATE A SIMPLE MESH NETWORK 100
FIGURE 72 HIGH LEVEL VIEW OF A 4X4 MESH CREATED IN NOCMAKER (LEFT), AND ITS RESOURCE USAGE ESTIMATION (RIGHT)

 ... 101
FIGURE 73 PREDICTED (BLUE) AND REAL (YELLOW) LOGIC ELEMENTS USAGE FOR DIFFERENT ROUTERS OF AN EPHEMERAL

CIRCUIT SWITCHING NOC WITH A 3X3 MESH TOPOLOGY. THE VALUES HAVE BEEN NORMALIZED TO THE LARGEST
ELEMENTS ... 102

FIGURE 74 JHDL INTERACTIVE SCHEMATIC VIEW OF A ROUTER. IN THE SCHEMATIC THE VALUES OF EACH WIRE IS ANNOTATED
AND IS UPDATED IN REALTIME AS THE CLOCK ADVANCES. ... 103

FIGURE 75 STANDARD NOC COMMUNICATION PROTOCOL STACK ... 105
FIGURE 76 MEMORY TRANSACTIONS ENCAPSULATION OVER NOC COMMUNICATION PROTOCOL STACK 105
FIGURE 77 NAS IN MEMORY TRANSACTION ENCAPSULATION OVER NOC ... 105
FIGURE 78 BUS ATTACHED NAS ... 105
FIGURE 79 TIGHTLY COUPLED NAS ... 105
FIGURE 80 ROUNDTRIP DELAY OF REQUEST/RESPONSE TRANSACTIONS WITH (A) LOW BANDWIDTH AND LOW LATENCY AND (B)

HIGH BANDWIDTH AND HIGH LATENCY ... 106
FIGURE 81 TOTAL DELAY IN STREAM PROCESSING APPLICATIONS WITH (A) LOW BANDWIDTH AND LOW LATENCY AND (B) HIGH

BANDWIDTH AND HIGH LATENCY .. 107
FIGURE 82 WAVEFORM OF THE BUS TRANSACTIONS AT THE SENDER AND RECEIVER PROCESSOR, AND THE NOC WIRE

PROTOCOL. NOTICE THE OVERHEAD INTRODUCED BY SOFTWARE (POLLING THE STATUS REGISTER) IN A SHORT MESSAGE
TRANSMISSION OVER A NOC ... 107

FIGURE 83 PERFORMANCE GAINS DUE TO LATENCY REDUCTION .. 109
FIGURE 84 QSYS INTERFACE FOR A 4 NIOSII MULTIPROCESSOR ... 113
FIGURE 85 QSYS MULTIPROCESSOR SYSTEM WITH 16 NIOS II PROCESSORS .. 114
FIGURE 86 MANY-SOFT-CORE ARCHITECTURE BUILDING TOOLCHAIN ... 115

─ 20 ─

FIGURE 87 MANY-SOFT-CORE BUILDER USER INTERFACE .. 116
FIGURE 88 PARALLEL PROGRAMMING DEVELOPMENT PROCESS ... 119
FIGURE 89 SCALABILITY PROFILE ... 122
FIGURE 90 SAMPLING PROFILING ... 124
FIGURE 91 INSTRUMENTATION PROFILING ... 124
FIGURE 92 TRADEOFFS BETWEEN ACCURACY AND OVERHEAD IN PROFILING. A) ORIGINAL APPLICATION EXECUTION. B)

PROFILING WITH LOW SAMPLING FREQUENCY. C) PROFILING WITH HIGH SAMPLING FREQUENCY. 125
FIGURE 93 MEMORY DIVISION ADOPTED BY ALTERA FOR SOFT-CORE SHARED MEMORY MULTIPROCESSOR 127
FIGURE 94 TRADE-OFF BETWEEN SPEED AND ACCURACY (FROM [POSADAS11]) ... 129
FIGURE 95 PLOT OF THE ITERATION SPACE OF FORMER CODE AND THE DATA DEPENDENCIES THEY EXHIBIT (FROM

[ZINENKO15]) ... 131
FIGURE 96 PLOT OF THE ITERATION SPACE OF THE TRANSFORMED CODE USING POLYEDRAL MODEL AND THE RESULTING DATA

DEPENDENCIES (FROM [ZINENKO15]) ... 131
FIGURE 97 PROPOSED PROCESS FOR DATA ACCESS PATTERN ANALYSIS ... 133
FIGURE 98 ANALYSIS OF THE DATA DEPENDENCY OF TRMM IN LOOP1. ... 138
FIGURE 99 ANALYSIS OF THE DATA DEPENDENCY OF TRMM IN LOOP2. ... 138
FIGURE 100 SPEEDUP FACTOR ACHIEVED IN TRIANGULAR MATRIX MULTIPLICATION AFTER MEMORY ACCESS PATTERN ANALYSIS

 ... 139
FIGURE 101 THREAD STATES ... 148
FIGURE 102 MEMORY ORGANIZATION FOR MULTITHREADING SUPPORT IN A NIOS MULTI-SOFT-CORE WITH 2 PROCESSORS

 ... 148
FIGURE 103 J2EMPI WORKFLOW .. 150
FIGURE 104 NOCMAKER VISUALIZER THAT INTERACTIVE SHOWS HOW NETWORKS PACKETS PROGRESS THROUGH THE

NETWORK, AND COLLECTS PERFORMANCE INFORMATION .. 151
FIGURE 105 NOCMAKER TRANSPORT PACKET VISUALIZER ... 151
FIGURE 106 PERFORMANCE ANALYSIS IN ISS-BASED VIRTUAL PROTOTYPES ... 153
FIGURE 107 LOGIC DESIGN OF A MULTI-SOFT-CORE VIRTUAL PROTOTYPE .. 153
FIGURE 108 TRANSPARENT INSTRUMENTATION METHOD .. 153
FIGURE 109 PERFORMANCE OPTIMIZATION PROCESS OF A PARALLEL MANDELBROT APPLICATION. LEFT) TRACE VISUALIZATION

OF THE INITIAL VERSION. RIGHT) TRACE VISUALIZATION OF THE OPTIMIZED VERSION ... 154
FIGURE 110 PROCESS OF NATIVE EXECUTION .. 155
FIGURE 111 TRACE VISUALIZATION OF N-QUEENS APPLICATION ON A 16-CORE MANY-CORE PROCESSOR VIRTUAL PLATFORM

 ... 156
FIGURE 112 VISUALIZATION OF THE TRACES GENERATED FOR THE JPEG APPLICATION IN A 16-CORE MANY-CORE 157
FIGURE 113 LASER MARKING MACHINE DIAGRAM .. 160
FIGURE 114 TERASIC DE0-NANO BOARD ... 161
FIGURE 115 PULSE GENERATION CUSTOM INSTRUCTION .. 162

─ 21 ─

FIGURE 116 ASYNCHRONOUS CUSTOM INSTRUCTION TIMING. FIRST CI STARTS IMMEDIATELY AND THE PROCESSOR THINKS
THAT IT HAS BEEN COMPLETED (AS DONE SIGNAL IS ASSERTED). ACTUALLY THE OPERATION IS STILL TAKING PLACE, SINCE
IT HAS TO COMPLETE THE 2000 PERIOD INFORMED IN THE OPERATION PARAMETERS. SO WHEN THE SECOND CI IS
INVOKED IT MUST WAIT UNTIL THE PREVIOUS OPERATION FINISHES TO START ITS PROCESSING. THIS ALLOW THE
PROCESSOR TO WORK ON OTHER COMPUTATION BETWEEN CONSECUTIVE CI INVOCATIONS. 162

FIGURE 117 POSITION CONTROL CUSTOM INSTRUCTION .. 163
FIGURE 118 MOTOR CONTROL ELEMENTS .. 164
FIGURE 119 TILE DESIGN .. 164
FIGURE 120 MULTI-SOFT-CORE DESIGN ... 165
FIGURE 121 VALIDATION OF THE XY2-100 SERIAL PROTOCOL MODULE WITH INTERACTIVE SIMULATION IN JHDL 166
FIGURE 122 TILE SYSTEM VALIDATION ... 167
FIGURE 123 VALIDATION IN REAL PLATFORM .. 167
FIGURE 124 TRACE REPLAY APPLICATION ... 168
FIGURE 125 ACTUATOR SIGNALS TO CONTROL X AND Y POSITION OF THE GALVANOMETERS, AND LASER ACTIVATION........ 168
FIGURE 126 EXTERNAL SIGNAL ANALYSIS OF THE REAL-TIME BEHAVIOR .. 168
FIGURE 127 VISUALIZATION OF SYSTEM TRACES IN VAMPIR ... 170
FIGURE 128 TERASIC DE4 BOARD .. 172
FIGURE 129 PERCENTAGE OF THE RESOURCE USAGE (LUTS, FFS, MEMORY BITS, AND DSP ELEMENTS) OF VARIOUS

MULTIPROCESSOR DESIGNS SYNTHESIZED FOR EP4SGX530 .. 173
FIGURE 130 TIME (LOG SCALE) CONSUMED IN THE DIFFERENT STEPS OF THE SYNTHESIS PROCESS TO SYNTHESIZE DIFFERENT

MULTIPROCESSOR DESIGNS. .. 174
FIGURE 131 FLOORPLAN OF THE SYNTHESIS RESULTS FOR 4,8,16,32,64, AND 128 CORE MULTIPROCESSORS ON

EP4SGX530. .. 175
FIGURE 132 NOCMAKER VIEW OF THE NOC BUILD FOR THE 128-CORE MANY-SOFT-CORE .. 176
FIGURE 133 HYBRID UMA+NORMA MANY-SOFT-CORE ARCHITECTURE ... 176
FIGURE 134 ELAPSED TIME OF TOKEN-PASS MICRO-BENCHMARK USING OCMPI OVER NOC .. 177
FIGURE 135 ELAPSED TIME OF TOKEN-PASS MICRO-BENCHMARK USING OCMPI OVER SHARED MEMORY 177
FIGURE 136 SCALABILITY PROFILE OF N-QUEENS ... 178
FIGURE 137 SCALABILITY PROFILE OF PI COMPUTING. BASELINE VERSION SHOWS A POOR SCALABILITY, BUT OPTIMIZED

VERSION HAS A GOOD PROFILE. .. 178
FIGURE 138 MANDELBROT SET IN THE COMPLEX NUMBER SPACE. BLACK POINTS BELONG TO THE SET. 179
FIGURE 139 MULTICOLOR REPRESENTATION OF THE MANDELBROT SET ... 179
FIGURE 140 ANALYSIS OF THE MANDELBROT APPLICATION RUNNING ON A NIOSII VIRTUAL PLATFORM USING TRANSPARENT

INSTRUMENTATION AND VISUALIZATION IN VAMPIR ... 180
FIGURE 141 ANALYSIS OF THE MANDELBROT APPLICATION RUNNING ON A NIOSII+MIKEFPU VIRTUAL PLATFORM USING

TRANSPARENT INSTRUMENTATION AND VISUALITZATION IN VAMPIR ... 181
FIGURE 142 DATA DEPENDENCY GRAPH OF THE COMPUTATION PERFORMED IN THE LOOP ITERATION 182
FIGURE 143 DESIGN OF THE CUSTOM INSTRUCTION ... 183

─ 22 ─

FIGURE 144 JHDL SCHEMATIC VIEW OF THE ITERATION MODULE, WHICH IS PART OF THE MANDELBROT CUSTOM INSTRUCTION
 ... 183

FIGURE 145 WAVEFORM TO VALIDATE THE MANDELBROT CUSTOM INSTRUCTION .. 184
FIGURE 146 RELATIVE PERFORMANCE AND ENERGY EFFICIENCY OF COMPUTING THE 106 FIRST PRIMES USING AN OPENMP

APPLICATION ON I75500U ... 186
FIGURE 147 LOOP ITERATION DATA FLOW IN PRIME NUMBER CALCULATION .. 187
FIGURE 148 CUSTOM INSTRUCTION DESIGN FOR PRIME NUMBER CHECKING ... 188
FIGURE 149 DATA FLOW OF THE OPERATIONS DONE IN THE OPTIMIZED LOOP ITERATION MODULE 189
FIGURE 150 MULTIUNIT CUSTOM INSTRUCTION ... 189
FIGURE 151 PRIME NUMBER ITERATION MODULE, WHICH IS PART OF THE CUSTOM INSTRUCTION 190
FIGURE 152 RELATIVE PERFORMANCE AND ENERGY EFFICIENCY OF COMPUTING THE 106 FIRST PRIMES USING A

MULTITHREADED APPLICATION ON A MULTI-SOFT-CORE PROCESSOR CONTAINING 8 NIOSII WITH COPROCESSORS. .. 193
FIGURE 153 FPGA LAYOUT OF THE SYNTHESIS OF THE 8-CORE PRIME NUMBER COMPUTING MULTI-SOFT-CORE FOR

EP4SGX530 ... 193

─ 23 ─

List of Tables
TABLE 1 AREA, DELAY, AND POWER OVERHEADS OF FPGAS COMPARED WITH ASICS ... 40
TABLE 2 DENNARD’S AND TAYLOR’S SCALING RULES ... 42
TABLE 3 VALUES FOR TECHNOLOGY NODES OF INTEREST .. 43
TABLE 4 ½ PITCH AND LGATE PREDICTED BY ITRS AND REPORTED BY INTEL IN DIFFERENT TECHNOLOGY NODES 44
TABLE 5 INDUSTRY REPORTED DYNAMIC POWER FACTORS BETWEEN DIFFERENT TECHNOLOGY NODES AND MY INFERRED

CAPACITANCE FACTOR VALUE... 46
TABLE 6 PROPOSED GATE CAPACITANCE RELATIVE FACTOR FOR TECHNOLOGIES, COMPUTED AS THE MEAN BETWEEN THE

 VALUES FROM INDUSTRY 47 ݃ܥ VALUES OBTAINED FROM ITRS PREDICTIONS, AND THE ݃ܥ
TABLE 7 ݈݁݃ܽ݇ܽ݁ܫ DERIVED FROM ITRS DATA .. 47
TABLE 8 ݈݁݃ܽ݇ܽ݁ܫ DERIVED FROM INDUSTRY DATA .. 48
TABLE 9 PARAMETERS USED BY COMPARISON BETWEEN FPGAS IN 14NM AND ASICS IN 65NM 50
TABLE 10 PARAMETERS USED BY COMPARISON ... 52
TABLE 11FLYNN'S TAXONOMY OF COMPUTER ORGANIZATION [FLYNN72] .. 61
TABLE 12 SOFT-CORE PROCESSORS SORTED BY ACADEMIC POPULARITY ... 62
TABLE 13 DHRYSTONE BECHMARK RESULTS IN CORE I7-5500-U AND NIOS II RUNNING AT 160 MHZ ON A STRATIX IV

530K. * MEANS ESTIMATED ... 64
TABLE 14 DHRYSTONE BENCHMARK RESULTS FROM [ROBERTS09] .. 65
TABLE 15 LINPACK BECHMARK RESULTS IN CORE I7-5500-U AND NIOS II RUNNING AT 160 MHZ ON A STRATIX IV 530K. *

MEANS ESTIMATED .. 66
TABLE 16 LINPACK BENCHMARK RESULTS FROM [ROBERTS09] ... 66
TABLE 17 RELATIVE PERFORMANCE AND ENERGY EFFICIENCY OF FPGAS/CPUS/GPGPUS .. 68
TABLE 18 MULTIPROCESSING SYSTEMS BASED ON RECONFIGURABLE LOGIC. .. 70
TABLE 19 PROPERTIES OF THE SOFT-CORE PROCESSORS USED IN THE ANALYZED LITERATURE. THE LAST ENTRY DOES NOT SHOW

ANY PROPERTY AS IT GROUPS THE WORKS THAT USE APPLICATION SPECIFIC ARCHITECTURES, IN WHICH CORES ARE
SYNTHESIZED TO ADDRESS THE NEEDS OF EACH DIFFERENT APPLICATION. .. 71

TABLE 20 MAIN SYSTEM’S CLOCK FREQUENCY ... 74
TABLE 21 NUMBER OF SOF-CORE PROCESSORS PER DESIGN.. 74
TABLE 22 APPLICATION DOMAINS OF THE MULTIPROCESSING SOFT-CORE DESIGNS IN THE LITERATURE 75
TABLE 23 ENERGY EFFICIENCY OF MULTIPROCESSING RECONFIGURABLE SYSTEMS FOUND IN THE LITERATURE 76
TABLE 24 BIT FIELDS OF I-TYPE INSTRUCTIONS .. 78
TABLE 25 BIT FIELDS OF R-TYPE INSTRUCTIONS ... 78
TABLE 26 BIT FIELDS OF J-TYPE INSTRUCTIONS .. 78
TABLE 27 SYNTHESIS RESULTS OF MIOS FOR THE CYCLONE IV FPGA FAMILY ... 82
TABLE 28 SYNTHESIS RESULTS OF NIOSII/E AND NIOSII/F FOR THE CYCLONE IV FPGA FAMILY 83
TABLE 29 SYNTHESIS RESULTS OF ALTERA’S PERFORMANCE COUNTER AND MY PERFORMANCE COUNTER ON EP4SGX530 .. 87

─ 24 ─

TABLE 30 COMPARISON BETWEEN THE SYNTHESIS RESULTS ON EP4SGX530 OF ALTERA’S FPH1, FPH2, AND MIKEFPU
FLOATING POINT UNITS .. 89

TABLE 31 DETAILED RESOURCE USAGE OF SHARED FPU VS. MULTIPLE FPUS AFTER SYNTHESIS FOR EP2S15F484C3 DEVICE
 ... 92

TABLE 32 RESOURCES FOR DIFFERENT NOCS DESIGNED IN NOCMAKER IMPLEMENTING A 4X4 MESH TOPOLOGY WITH
DIFFERENT SWITCHING STRATEGIES. BOTH, AREA ESTIMATION AND SYNTHESYS RESULTS FOR THE EP1S80F1508C5
DEVICE ARE REPORTED. .. 103

TABLE 33 PROPOSED NEW INSTRUCTIONS .. 108
TABLE 34 DIFFERENT MULTIPROCESSOR ARCHITECTURES BY THEIR MEMORY ARCHITECTURE AND CACHE USE 111
TABLE 35 AUTOMATICALLY INSTRUMENTED CODE .. 135
TABLE 36. MEMORY FOOTPRINT OF STANDARD MPI IMPLEMENTATIONS ... 140
TABLE 37. MINIMAL SET OF FUNCTIONS OF OCMPI ... 141
TABLE 38 THREAD FUNCTIONS ... 147
TABLE 39 SUPPORTED MPI FUNCTIONS IN J2EMPI ... 150
TABLE 40. EXECUTION TIME FOR JPEG ON 16-CORE VIRTUAL PLATFORM ... 157
TABLE 41 SYNTHESIS RESULTS FOR THE EP4CE22F17C6 DEVICE ... 170
TABLE 42 DETAILED RESOURCE USAGE BY BLOCK.. 171
TABLE 43 RESOURCE DETAILS OF THE SYNTHESIS OF VARIOUS MULTIPROCESSOR DESIGNS FOR EP4SGX530 174
TABLE 44 RESULTS OF MANDELBROT SET APPLICATION FOR A 640X480 FRAME AND 1000 ITERATIONS 179
TABLE 45 RESULTS OF OPTIMIZED MANDELBROT SET APPLICATION FOR A 640X480 FRAME AND 1000 ITERATIONS 181
TABLE 46RESULTS OF MANDELBROT COMPUTING USING THE CUSTOM INSTRUCTION .. 184
TABLE 47 PERFORMANCE RESULTS OF OPENMP IMPLEMENTATION FOR THE 106 FIRST PRIMES ON THE I75500U PLATFORM

 ... 186
TABLE 48 PERFORMANCE RESULTS OF COMPUTING THE 106 FIRST PRIMES ON NIOSII RUNNING AT 60 MHZ ON EP4SGX530

 ... 187
TABLE 49 PERFORMANCE RESULTS OF COMPUTING THE 106 FIRST PRIMES ON NIOSII WITH CUSTOM INSTRUCTION RUNNING

AT 60 MHZ ... 188
TABLE 50 PERFORMANCE RESULTS OF COMPUTING THE 106 FIRST PRIMES ON NIOSII WITH A CUSTOM INSTRUCTION

CONTAINING 10 UNITS RUNNING AT 60 MHZ .. 190
TABLE 51 PERFORMANCE RESULTS OF COMPUTING THE 106 FIRST PRIMES ON NIOSII WITH CUSTOM INSTRUCTION

CONTAINING 10 PIPELINED UNIT RUNNING AT 60 MHZ .. 191
TABLE 52 PERFORMANCE RESULTS OF COMPUTING THE 106 FIRST PRIMES ON A MULTIPROCESSOR HAVING 8 NIOSII WITH

CUSTOM INSTRUCTION CONTAINING 10 PIPELINED UNIT RUNNING AT 60 MHZ ... 192
TABLE 53 RESOURCE DETAILS OF THE SYNTHESIS OF THE 8-CORE PRIME NUMBER COMPUTING MULTI-SOFT-CORE FOR

EP4SGX530 ... 194

─ 25 ─

1. Introduction
Since their inception in the eighties, Field Programmable Gate Arrays (FPGAs)

have been benefiting from the continued effects of Moore’s law. The reconfigurable
devices, which were first used to reduce the glue logic to connect other more essential
chips in a design, soon showed their ability to perform computing tasks.

As the integration capacity increased over the years, FPGAs were able to
assimilate many functions that were implemented by the chips they were previously
connecting. The main advantages of that replacement were: cost reduction, size reduction,
and flexibility. In short, ASICs have fixed functions, FPGAs are flexible.

These have been good reasons for the market acceptance of this kind of devices.
In the semiconductor industry, the economy of scale rules. That means that, the more
units you fabricate, the lower the cost of production per unit you get. Since this industry
is highly influenced by the advances on the capacity to integrate more transistors per
silicon area, the level of integration can be generally predictable and are named after some
physical feature of the build transistors. The term used to refer to this feature is
“technology node”. The physical feature that it measures has been changing over time, as
the technology of transistors has been evolving as well [Arnold09]. Anyhow, as the
capacity has increased, the Non-Recurring Engineering (NRE) costs of technology nodes
has hiked as well, becoming harder to create new digital logic ASICs for low volume
markets. These effects have maintained and fostered the demand for FPGA devices (see
Figure 1). FPGAs are regular, replicable in large quantities, and flexible to be used in
several application domains were they offer great performance and power efficiency
[Coupé12].

Figure 1 Evolution of the revenues of the two main FPGA providers: Xilinx and Altera

0
1
2
3
4
5G$

Xilinx Altera

─ 26 ─

Their large unit sales and their simple replicable structure, allowed FPGA
manufacturers to adopt new technology nodes as they were available. Currently, FPGA
manufacturers are the second adopters of new technology nodes after major processor
companies (like Intel, AMD, Samsung, Apple, NVIDIA, etc.). Low volume ASIC
vendors are lagging behind (as shown in Figure 2).

Figure 2 Evolution of the adoption of technology nodes by ASIC and FPGA vendors [Altera15]
 The access to new technology nodes consequently increases the logic density of

new devices. This creates a virtuous circle in which higher logic density allows wider
adoption, rises demand, reduces manufacturing costs, and allows the access to new nodes.
Figure 3 shows the number of Logic Elements (LEs) that were available in subsequent
biggest Altera devices from 1995 to 2015.

Figure 3 Evolution of the logic resources of biggest Altera devices from 1995 to 2015

1

10

100

1000

10000

1995 2001 2006 2012

Lo
gic

 Re
so

urc
es

(KL
Es

)

Time

Logic Density (KLEs)

─ 27 ─

A LE is a block that contains Look Up Tables (LUTs) and Registers. In the late

nineties FPGAs already had thousands of them. A simple 32 bits Reduced Instruction Set
Computing (RISC) processor needs few thousands of LEs to be implemented. With the
new millennium it become possible to configure a subset of the LEs to work as a
processor, and use the rest of the available logic to implement other system interfaces that
could communicate with it by processor buses or other simple mechanisms. The term
Soft-Core Processor was coined to denote a processor implemented using the
reconfigurable cells of a reconfigurable device. Now, the logic density is high enough to
be able to implement several processors using the reconfigurable cells of the devices or
to save some portions of the silicon die to instantiate a real silicon processor design,
memory blocks, or other complex Intellectual Property block.

If it is possible to create several soft-core processors in a FPGA, the questions that
immediately arise are: How many? …and… What for?

Figure 4 Potential number of processors per device

 The first question is easier to answer. A simple estimation can be made, assuming
that the number of LEs used by known soft-cores like NIOSII/f, ARM Cortex-M1, and
LEON3 are 1800, 2600, and 3500 respectively, as used in [Pantelopoulos2012]. Note that
this numbers are not considering other resources usually needed to create a multiprocessor
system, such as the elements of the memory hierarchy or interconnect. To estimate the

─ 28 ─

usual additional logic needed be a system I multiplying this value by a constant factor 3,
which is obtained from the empirical observation of typical system designs. Then I divide
the number of device’s reported resources by these values. The results are shown in Figure
4.

In summary, in early 2000s biggest FPGAs could already host few soft-core
processors, by 2005 biggest FPGAs could host few tens of them, by 2010 that number
was already a hundred, and now, in 2015, we should be able to host few hundreds of them.

Once we have an estimation of the number of soft-core processors that we could
host, we face the tougher question: why would we do it?

My answer is two-fold. First, I propose that many-soft-core processors could be
used to improve energy efficiency of some high performance workloads avoiding to
invest too much effort in hardware design with classic HDL languages. Second, I maintain
that they could be used to simplify the development of some hard real-time systems.

I will try to answer the question in more detail in the rest of this thesis, but I will
also describe how it can be done.

1.1. Energy efficiency
Energy consumption of digital systems is driven by different factors determined

by the logic technology. In the early days of computing, bipolar transistors were used.
Their elementary logic gate circuitry requires to constantly drive current. After the initial
boom in transistor count, the energy required for computers soon became very large.
Power consumption was the major drawback of bipolar technology that forced the
adoption of a much more energy efficient technology: CMOS.

We are still living in the CMOS era, and the power consumption of a CMOS
circuit (1.1) is driven by two components: dynamic and static power. Dynamic power
(Pdyn) is caused by the activity of the transistors when a change of state occurs. If no state
change occurs, there is no dynamic power consumption. On the other hand, static power
(Pstatic) is always present as soon as transistors are powered, and is mainly caused by
various leakage currents happening in transistors.

௧ܲ௢௧௔௟ = ௗܲ௬௡ + ௦ܲ௧௔௧௜௖ (1.1)
In the past, static power (1.2) was usually considered as being negligible, but

nowadays it is becoming more and more significant with the scaling down of technology
nodes since the addition of the leakage produced by billions of powered transistors in a
chip becomes a significant value. This is especially important in the FPGA domain since

─ 29 ─

FPGA designs usually suffer from a worse static power consumption, compared with their
ASIC equivalents due to the fact that they need many more transistors to implement
simple logic gates due to its inherent reconfigurability. The overhead can be as much as
80x factor [Kuon07].

 If we make the simple assumptions that a circuit has a single voltage source
leakage currents are equal for all the transistors of the circuit, the total static power would
be defined by the number of transistors (N) used by the design (1.4). In FPGAs this value
must be derived from the resources used [Leow13].

௦ܲ௧௔௧௜௖ = ௟ܲ௘௔௞௔௚௘ (1.2)
௦ܲ௧௔௧௜௖ = ෍ ܸ · ௟௘௔௞௔௚௘ (1.3)ܫ

௦ܲ௧௔௧௜௖ = ܰ · ܸ · ௟௘௔௞௔௚௘ (1.4)ܫ

 On the other hand, the dynamic power consumption (1.5) has two components.
The power consumed to charge and discharge the load capacitance in every transition
between two logic states and the power consumed during the interval where both N and
P transistor networks connecting power to ground are conducting. This is known as the
power caused by short circuit current. Since there are a discrete number of transitions per
second, the formula can be rewritten as (1.6).

ௗܲ௬௡ = ௧ܲ௥௔௡௦ + ௦ܲ௖ (1.5)
ௗܲ௬௡ = ෍(ܧ௧௥௔௡௦ + ௦௖) (1.6)ܧ

The energy needed to charge a load depends on the capacitance of the load in a
linear way, and on the voltage, in a quadratic way (1.7). The short current energy (Esc)
has not a simple equation as it depends on the time needed to charge the load and other
factors such as the slope of the input transition, the ratios among transistors, etc.
However, the short-cut current is usually either negligible with respect to the charge load
current, or it is modelled as an additional load (1.8).

௧௥௔௡௦ܧ = 1
2 · ܥ · ܸଶ (1.7)

௦௖ܧ = ߚ · ௧௥௔௡௦ (1.8)ܧ

To compute the total power consumption of a circuit we need to sum up all the
contributions from all the nodes that experience transitions as expressed in (1.6). The
number of transitions (T) that occur in a circuit during a second is usually a factor of the

─ 30 ─

number transistors (N), the clock frequency (fclk), and a factor  which denotes the
probability of a transition of each transistor (also known as switching activity).

ܶ = ܰ · ߙ · 2 · ௖݂௟௞ (1.9)

We can rewrite (1.6) by using (1.7), (1.8), and (1.9) as (1.10)
ௗܲ௬௡ = ܰ · ߙ · (1 + (ߚ · ௖݂௟௞ · ܥ) · ܸଶ) (1.10)

… and taking (1.1) and using (1.10), and (1.4), we can rewrite it as (1.11)

௧ܲ௢௧௔௟ = ܰ · ൫ߙ · (1 + (ߚ · ௖݂௟௞ · ܥ) · ܸଶ) + ܸ · ௟௘௔௞௔௚௘൯ (1.11)ܫ

Power consumption if often dominated by switching activity. We are interested in
minimizing energy consumption, not power. Energy consumption is the result of
integrating the power consumption over a period of time (1.12), usually the time of a
known task that can be used as a reference to compare the energy consumption of different
systems.

௧௔௦௞ܧ = ௧ܲ௢௧௔௟ · ௧ܶ௔௦௞ (1.12)

For our convenience, we can divide a task into primitive operations. Given a task
consisting in Optask number of operations, the time to complete it depends on the number
of concurrent operations that we can execute per clock cycle, and the frequency of
operation. If we use OPC (Operations Per Cycle) to denote the first factor. The expression
would be (1.13)

௧ܶ௔௦௞ = ௧௔௦௞݌ܱ
ܥܱܲ · ௖݂௟௞

 (1.13)

To avoid working with different tasks when reporting the energy efficiency of a

system, a more task agnostic metric is usually adopted which takes into account simple
operations of typical microprocessors. We can use the letter G (from greenness) to
describe this energy efficiency metric as (1.14). The first factor of the equation is the
number of operations per second that the system can perform, and the second factor is
one over the power consumption of the system. The units of the energy efficiency factor
G are Operations per second per Watt. As the bottleneck of scientific applications is
usually floating point computing, a common variation of the metric is FLOPS/Watt
(Floating point operations per second per Watt).

─ 31 ─

 Note that Power times Time equals Energy, so (1.14) can be rewritten as (1.15),
and simply read as the number of operations that we get per energy budged. The units of
(1.15) should be Operations per Joule.

ܩ = ݌ܱ
ܶ

1
ܲ (1.14)

ܩ = ݌ܱ
ܧ (1.15)

If we substitute (1.13) into (1.14), we get an expression that depends on the power,

the ܱܲܥ and the frequency of operation (1.16)
ܩ = ௧௔௦௞݌ܱ

௧ܲ௢௧௔௟ · ௧ܶ௔௦௞ = ௧௔௦௞݌ܱ
௧ܲ௢௧௔௟ · ܥ௧௔௦௞ܱܲ݌ܱ · ௖݂௟௞ = ܥܱܲ · ௖݂௟௞

௧ܲ௢௧௔௟ (1.16)

…and if we substitute (1.10) into (1.16) we get a final expression that takes into
account most of the fundamental factors that drive the energy efficiency of a computing
system.

ܩ = ܥܱܲ
ܰ · ൬ߙ · (1 + (ߚ · ܥ) · ܸଶ) + ܸ · ௟௘௔௞௔௚௘ܫ

௖݂௟௞ ൰
 (1.17)

In order to have a better comprehension of how every parameter affects the energy

efficiency factor, one can plot the contribution of every parameter while keeping other
parameters constant. The only parameters with a positive correlation with the energy
efficiency factor are OPC and fclk. It is clear that executing more operations per cycle, if
consumed power or frequency do not change, will increase the efficiency of the system
in a linear way as shown in Figure 9. All other parameters appear in the denominator of
(1.17), and all except fclk have a negative correlation with the energy efficiency factor.

The parameter  indicates the probability of transitions occurring on transistors.
The higher its value, the less energy efficient a system will be as it contributes to increase
power consumption (see Figure 5). Nevertheless, it is unlike that the value of  goes to
extremes, as it is typically between 10% and 20%.

Similarly, the number of transistors of a design (ܰ) also contributes negatively to
energy efficiency (see Figure 6). Using more transistors increases the total charge that
causes dynamic power consumption, and also increase the silicon areas affected by
leakage currents. FPGAs have a fixed number of resources that would normally be all

─ 32 ─

powered, contributing to static power. However, some advances [Altera12] allow
controlling the number of active resources to eliminate their contribution to dynamic and
static power consumption.

Figure 5 Energy efficiency as function of 

Figure 6 Energy efficiency as function of silicon area /
resources

Figure 7 Energy Efficiency as function of Ileakage

Figure 8 Energy Efficiency as function of supply Voltage

Figure 9 Energy Efficiency as function of OPC

Figure 10 Energy Efficiency as function of Fclk

Leakage current also affects negatively to energy efficiency (as shown in Figure
7) as it increase the static power consumption, again some FPGA manufacturers
[Altera12] allow reducing it by modifying the back bias voltage of transistors.

Reducing supply voltage should be a good contributor to energy efficiency as it
contributes quadratically in the denominator (see Figure 8), however reducing it is not

0% 20% 40% 60% 80% 100%

0 0.5 1 1.5 2

─ 33 ─

straightforward because it cannot lower than the transistor threshold voltage and, often,
the frequency must also be reduced to permit a correct operation of the system. In
addition, FPGAs commercial boards usually work with a fixed supply voltage.

Finally clock frequency is positively correlated with energy efficiency, as shown
in Figure 10. This could seem counter intuitive, since reducing frequency is often
perceived as a power saving strategy (as in [Anghel11]). This is often the case when no
computing is needed, and there is no option to switch off the device or finish the task. For
instance, in a MPEG decoder that has already rendered a frame to display, but it must
wait for the appropriate time to display it to satisfy the specified frames per second (as in
[Lu02]). On the contrary, increasing clock frequency allows the task to finish faster, thus
making the contribution of static power proportionally smaller. A more detailed analysis
of the impact of frequency in energy efficiency will be done in section 2.7.3.

1.2. Energy Efficiency evolution
The energy efficiency of computing systems has evolved a lot during the last 20

years. The Top500 list [top500] collects information of the world’s top public
supercomputers. If we look at the evolution of the performance and power consumption
of the best computer on the list over time (see Figure 11) we can easily realize that
performance has increased more than 5 orders of magnitude while power consumption
just increasing 2 orders of magnitude.

Figure 11 Evolution Performance and Power Consumption of top supercomputing systems [top500]

1.00E+01 W

1.00E+02 W

1.00E+03 W

1.00E+04 W

1.00E+05 W

1.00E+06 W

1.00E+07 W

1.00E+08 W

1.00E+10 FLOPS

1.00E+11 FLOPS

1.00E+12 FLOPS

1.00E+13 FLOPS

1.00E+14 FLOPS

1.00E+15 FLOPS

1.00E+16 FLOPS

1.00E+17 FLOPS

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Performance
Power Consumption

10 GFLOPS

100 GFLOPS

1 TFLOPS

10 TFLOPS

100 TFLOPS

1 PFLOPS

10 PFLOPS

100 PFLOPS

100 KW

1 MW

10 MW

100 MW

G1 = 50 KW

G1 = 350 TFLOPS

─ 34 ─

This means that the High Performance Computing (HPC) community has

increased the energy efficiency of computing platforms by more than three orders of
magnitude (see Figure 12). That is a remarkable achievement! The biggest advance was
done between 2000 and 2005, when the whole HPC community understood that energy
consumption, which had never been an important design constraint before, suddenly
became a mandatory issue to tackle [Feng03]. This power-awareness forced the adoption
of dynamic and voltage frequency scaling (DVFS), as well as other techniques (see
[Valentini13]) as major drivers of energy efficiency. While a frequency reduction causes
a decrease in energy efficiency, it also opens the possibility to reduce voltage. Voltage
contributes quadratically to the denominator of (1.17), thus, the resulting combination of
reducing both fclk and V allows for an energy efficiency gain.

Figure 12 Evolution of energy efficiency of supercomputing systems

Another big improvement was done from 2008 to 2012, with the introduction of
the IBM Blue Gene/Q chip, which used multiple techniques to reduce the power
consumption while working at higher frequencies than its predecessors. Again, this
example illustrates the fact that an increase in frequency can positively contribute to
energy efficiency. The other used techniques are described in [Sugavanam13] and include
clock gating, new floating point units, and multiple clock domains. Clock gating can be
interpreted as a method to reduce the switching activity (). When no clock is present in
a circuit, no transition happens, so transition probability for that circuit becomes zero, as
well as its dynamic power consumption. When averaged with the rest of the system, the
effect is perceived as a reduction of global . On the other hand, a new floating point unit

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Energy EfficiencyGFLOPS/W
1 MFLOPS/Watt

0.1 MFLOPS/Watt

10 MFLOPS/Watt

100 MFLOPS/Watt

1 GFLOPS/Watt

10 GFLOPS/Watt G1 = 7 GFLOPS/W

─ 35 ─

with multiple ways is a mean to increase the number of operations executed per cycle
(OPC), which gives a linear increase to energy efficiency.

The recent move towards heterogeneous computing and the widespread use of
accelerators like GPGPUs is also focusing on increasing OPC, but still has not produced
a similar impact. The green500 list [green500], collects information from the systems
listed in top500 but sorts the list by a descending value of the energy efficiency measured
in GFLOPS/Watt. Green500 list is recently dominated by systems based on GPGPUs and
many-cores, but the highest reported value is just 7.

1.3. Real-time systems
Real-time systems are described as the computing systems that have real-time

constraints. Such constraints could be: to complete a certain task before a dead-line (as in
Figure 13), or to react to a certain event in a given time frame (as in Figure 14). In other
words, the correctness of a real-time system depends not only on the correctness of the
program output, but also on the time at which the output is produced.

Figure 13 Real-time task with a certain deadline Figure 14 Real-time task triggered by an event

Generalizing, a real-time system works correctly if the time constraints (1.18) are

met for all the tasks of the system.

௔ܶ௖௧௜௩௔௧௜௢௡ + ௧ܶ௔௦௞ < ௗܶ௘௔ௗ௟௜௡௘ (1.18)

The complexity of real-time systems comes from different angles. First, task time
can often not be well specific, as in (1.13), because of the variability on the inputs of the
task. For example, the number of operations to encode a MPEG frame depend on the
image to encoder. Images with high frequency components need more operations, while
images with low frequency components need less. In most cases, these variations can be
computed and expressed as a mean number of operations multiplied by a factor that
considers the statistical variability at inputs ߛ௜௡ as expressed in (1.19).

Task

Time

deadline

Task

Time

deadlineEvent

activation

─ 36 ─

௧௔௦௞݌ܱ = ௠௘௔௡(1݌ܱ ± ௜௡) (1.19)ߛ

Real-time system designers usually try to determine the worst case execution time
(WCET) with various means (like in [Lv09] and [Bernat12]). In an ideal single task
environment, it could be just computed as (1.20).

ܧܥܹ ௧ܶ௔௦௞ = ௠௘௔௡(1݌ܱ + (௜௡ߛ
ܥܱܲ · ௖݂௟௞

 (1.20)

On the other hand, in the same ideal environment activation time could be
determined by the time needed to respond to an external event, for instance a hardware
interrupt (1.21).

௔ܶ௖௧௜௩௔௧௜௢௡ = ூܶௌோ (1.21)

But in reality real-time systems deal with many concurrent different tasks and their
associated time constraints. Tasks are usually scheduled by a real-time operating system,
and tasks potentially share resources interfering with each other. Thus, activation time
depends heavily on the OS scheduler and the presence of other tasks. To cope with that,
we need to rewrite (1.21) as (1.22) to introduce ௦ܶ௖௛ as the time to decide which is the
next task to execute, and ௘ܶ௡௤ as the time devoted to finish other tasks that the scheduler
considers more urgent than current one.

௔ܶ௖௧௜௩௔௧௜௢௡ = ூܶௌோ + ௦ܶ௖௛ + ௘ܶ௡௤ (1.22)

 Real-time systems community has been addressing the problems of scheduling
and resource sharing for a long time. Several methods have been proposed in the literature
to address them, like associating priorities to tasks and taking them into account for the
scheduling decisions. In this context, the WCET has also to be rewritten to consider the
interferences caused by sharing resources ߛ௥௦௛ , and the time elapsed when the task was
preempted by the scheduler ௣ܶ௥௘ as shown in (23).

ܧܥܹ ௧ܶ௔௦௞ = ௠௘௔௡݌ܱ · (1 + (௜௡ߛ · (1 + (௥௦௛ߛ

ܥܱܲ · ௖݂௟௞
+ ௣ܶ௥௘ (1.23)

If we rewrite (1.18) by using (1.22) and (1.23) we get a complex expression (1.24).

─ 37 ─

ூܶௌோ + ௦ܶ௖௛ + ௘ܶ௡௤ + ௠௘௔௡݌ܱ · (1 + (௜௡ߛ · (1 + (௥௦௛ߛ
ܲܮܫ · ௖݂௟௞

+ ௣ܶ௥௘ < ௗܶ௘௔ௗ௟௜௡௘ (1.24)

If we consider that applications can be executing on a multicore system and tasks

can be parallel, with variable degree of scalability, it is even more complex (if even
possible) to get an expression that allows analyzing system feasibility. Obviously, some
academic attempts are made (like [David11]), but problems in industry are often solved
by over-engineering. Note that the ܱܲܥ · ௖݂௟௞ factor appears in the denominator of the
quotient as well as the quotients that you would get after expanding ூܶௌோ, ௦ܶ௖௛, ௘ܶ௡௤, and

௣ܶ௥௘ (since all them result from executing a number of instructions on a processor). Thus,
increasing OPC would reduce the task activation and execution times so that the deadline
could be easily met.

My main proposal is to use many-soft-cores architectures to provide a particularly
appropriate platform to implement real-time applications used in cyber-physical systems,
and to obtain a better estimation whether the deadline goals can be met.

Activation time (௔ܶ௖௧௜௩௔௧௜௢௡) can be reduced if tasks are isolated in processors,
meaning that a whole processor is devoted to every single task. This will be possible if
the number of tasks is lower than the number of processors. But this is not unlikely in a
many-soft-core as the potential number of cores that they can embed is very large.
Additionally, by implementing a system following this approach ௦ܶ௖௛, ௘ܶ௡௤ disappear and
activation is just determined by ூܶௌோ. (1.21)

As ௘ܶ௡௤ also disappears, and the worst case execution time equation (ܹܧܥ ௧ܶ௔௦௞)
is again determined by the single task equation function (1.20) simplifying the
development of complex hard real-time systems.

1.4. Objective of this thesis
The main objective of this thesis is to propose a framework and set of

methodologies to build and program effectively multiprocessor systems based of soft-
core processors, and to analyze and provide estimates of the benefits of building such
systems, in terms of their real-time capabilities, energy efficiency, and design
productivity.

This goal can be unfolded on several specific bullet points, which are detailed as
follows:

─ 38 ─

1. Demonstrate how applications can benefit from many-soft-cores in the real
time domain. Making it easier to estimate its worst case execution time, and
reducing their activation times.

2. Provide the framework to materialize many-soft-architectures in a

systematic way. Current FPGA tools allow the creation of almost all required
building blocks, but they still lack a complete effective toolchain.

3. Adapt standard parallel programming models to many-soft-core

architectures, so that applications codes can be developed and deployed fast
enough to cope with market demands.

4. Enhance the development toolchain to provide a complete development

process that can iteratively improve and optimize applications to meet their
requirements.

5. Determine whether many-soft-cores can provide energy efficiency

platforms, which can help to solve the challenges of the HPC community in their
path to Exascale.

1.5. Thesis organization
This thesis is organized in the following way. Chapter 2 will describe the benefits

that FPGAs could theoretically provide, and the existing experiences to implement
MPSoC systems in them. Chapter 3 will detail the proposed methods and tools that will
allow creating many-soft-core processor architectures in a systematic way. Chapter 4 will
focus on the adaptation of parallel programming models to many-soft-core architectures
and the need of additional tools to get the complete development flow starting from the
embedded application. Chapter 5 will present the implementation of several solutions
based on multi-soft-core and many-soft-core platforms. They will be used to demonstrate
their convenience and efficiency for hard real-time systems and to provide high
performance energy efficient platforms. Finally Chapter 6 will present conclusions and
outline potential future research in this domain.

─ 39 ─

2. Reconfigurable Logic and Soft-Core
Processors

In the last 20 years, the microelectronics market has witnessed a fierce competition
between ASICs and FPGAs to become the vehicle for new custom-computing systems.
This battle has been fought in a changing context according to the evolution provided by
the Moore’s law. FPGAs have been increasing their market share during this period,
displacing ASICs implementations to those requiring very high volumes. Flexibility,
price and much shorter time-to-market are the main advantages of FPGAs vs. ASICs
[Trimberger15]. At the same time, there is a strong interest in the HPC community on the
energy efficiency that FPGAs could provide since it is no clear that alternative
architectures (like processors and GPGPUs) can provide a significant increase on
efficiency that would allow to reach the Exascale Challenge [Donofrio09] [Trefethen10].
Although the flexibility of FPGAs comes at a price on area and speed overheads
compared with ASICs, market dynamics and economies of scale must be considered to
have a better picture of the benefits that FPGAs can offer in terms of energy efficiency.
A hardened design is obviously better in terms of area, speed, and power. However, it has
to be sold in large quantities and must not need any structural change in order to be mass
produced in ASIC technology. As shown in previous chapter, many designs cannot afford
to use the latest technology nodes and must use more mature ones, e.g. 65nm instead of
14nm. When comparing FPGAs vs. ASICs it would be necessary to consider this
difference in the access to technology nodes. Moreover, system-level designs have other
alternative implementing platforms, such as general-purpose, or application-specific or
domain-specific standard processors. In the following sections I intend to quantify the
expected energy efficiency differences offered by those main alternative implementation
platforms.

2.1. Energy Efficiency relations and ratios between technologies
As shown in (1.17) energy efficiency is determined by some technology

parameters (like ܸ, ߚ ,ܥ and ܫ௟௘௔௞௔௚௘) and some design constraints (like ܥܱܲ ,ܰ ,ߙ, and
௖݂௟௞). In this section I will intend to extract the relations between parameters on different

─ 40 ─

technology nodes and between FPGAs and ASICs. Those relations would allow to predict
or speculate about the energy efficiency achievable on different platforms.

 ࡺ .2.1.1
When comparing FPGAs against ASICs we cannot assume that ܰ is the same.

FPGAs are organized in logic blocks that usually include few LUTs and registers together
with the configuration circuitry, while ASICs directly instantiate logic gates and registers.
Due to this organization the same exact design uses more transistors (and silicon area) in
FPGAs than in ASICs.

[Kuon07] studied the overheads of FPGAs on several small benchmark designs
using a 90 nm process. Their conclusion is that the overhead in area, delay, and power is
around 35, 3, and 14 respectively. [Lu07] did a similar analysis with a much complex
design: a complete Pentium processor. Their results showed a factor 53, and 30, for area
and delay respectively. More recently, [Wong11] did a similar analysis based on
OpenSparc, Atom and Nehalem processors, again with similar results (see Table 1).

Table 1 Area, delay, and power overheads of FPGAs compared with ASICs

 Technology Area Delay Power
Small Benchmarks [Kuon07] 90 nm 23-55 2-6 9-18
Pentium [Lu07] 65 nm 53 30 -
OpenSparc, Atom, Nehalem [Wong11] 65 nm 17-27 18-26 -

 Given the inherent variability in the reported results, and in order to perform a

simple analysis, I make the assumption that, for the same technology, the penalty factor
for area is 40 when implementing in FPGAs (2.1).

௔ܭ = ிܰ௉ீ஺
஺ܰௌூ஼

≈ 40 (2.1)

 ࢑࢒ࢉࢌ .2.1.2
Operation frequency is a design parameter, but since we will try to increase it as

much as possible to get higher energy efficiency factors we will be limited by a
technology parameter: the maximum frequency of operation. [Kuon07] reports only a 3
or 4 factor for speed of ASICs vs. FPGAs, but I argue that this value could only be
achieved for very small designs.

─ 41 ─

As circuit complexity increase the contribution of the flexible interconnection
network increases, causing a degradation of the maximum attainable frequency. This is
experienced in [Lu07], which reports a factor 30. [Wong11] estimates a factor between
18 and 26, which is much in line my experience. The operation frequency for most of the
designs I implemented using different FPGAs is below 150 MHz, while standard
processors have much stabilized its operation frequency around few GHz. Since this
frequency of operation looks quite stable during recent years, I select a constant penalty
factor of 20 for clock frequency between FPGAs and ASICs (2.2) for most technologies
except 14nm.

௙ܭ = ௖݂௟௞ ஺ௌூ஼
௖݂௟௞ ி௉ீ஺

≈ 20 (2.2)

With its line of devices implemented in the 14 nm process, Altera has introduced
a new registered interconnect that allows to duplicate clock frequency. So in that case the
frequency relation should be defined as (2.3), giving a penalty factor of 10. Nevertheless,
this value is speculative and based on marketing announcements and not backed by any
research.

௙,ଵସܭ = ௖݂௟௞ ஺ௌூ஼
௖݂௟௞ ி௉ீ஺,ଵସ

≈ 10 (2.3)

 ࡯ .2.1.3
One of the problems of the analytical model presented in (1.17) is that the total

effective load capacitance per transistor is usually not reported. Dennard’s scaling rules
[Dennard74] stated some scaling factors for CMOS technologies that were valid until
2005. They use a scaling factor ݏ, which was empirically found to be √2ర per year.
[Taylor13] recently revisited them to adapt to the recent industrial regime (see Table 2).

The C reported in Dennard’s and Taylor’s scaling rules is related to the transistor
capacitance, not the total effective load capacitance. The effective load capacitance
depends on the transistor input gate capacitance, the drain-source capacitance, and other
parameters linked with the circuit dimensions and wiring density. For the same circuit, a
similar scaling factor of the effective load capacitance could be expected.

─ 42 ─

Table 2 Dennard’s and Taylor’s scaling rules

 Dennard Taylor
Device Dimension tox, W, L 1 ൗݏ 1 ൗݏ
Devices ݏଶ ݏଶ
Voltage V 1 ൗݏ 1
Current I 1 ൗݏ 1
Capacitance C 1 ൗݏ 1 ൗݏ
Intrinsic delay CV/I 1 ൗݏ 1 ൗݏ
Power dissipation VI 1 ଶൗݏ 1
Power density 1 ݏଶ

Both predictions agree in that C scales as

1 ൗݏ because it is basically determined by device dimensions. The International
Technology Roadmap for Semiconductors (ITRS) do not reports the effective transistor
load capacitance, but reports some figures that follow a similar trend. Namely, the total
gate capacitance of transistors (ܥ௚,௧௢௧௔௟), and the intrinsic delay (ܫ/ܸܥ). Figure 15 shows
the predictions values for ܫ/ܸܥ found in [ITRS02], [ITRS06], [ITRS07], [ITRS08],
[ITRS12], and [ITRS13]. The important mismatches between the predicted values in
2008 and 2013 reports suggest that the reports have lost some of its predictive power for
 When reporting the capacitance value of transistors, ITRS do not report .ܫ/ܸܥ
“capacitance per transistor”. Instead, the reported ܥ௧௢௧௔௟ value is a relative measure in
fF/m. To get the final gate capacitance value, we should multiply by the W of the
transistors, but a design will have different Ws for different transistors. We cannot use a
specific value for W, but we can assume that W scales with nodes ([Dennard74],
[Taylor13]), so we obtain a gate capacitance value multiplying the ITRS relative gate
capacitance (expressed in fF/um) by the ½ pitch length of the technology node (2.4). A
quite similar approach is used in [Meenderinck09] to estimate the effective gate
capacitance.

௚ܥ ∝ ௧௢௧௔௟ܥ · Pitch/2 (2.4)

─ 43 ─

Figure 16 depicts the values of ܥ௚ (expressed in aF) derived from the previous
ITRS reports. In this case the predictive power for ܥ௚ seems slighly better than until year
2013, where an important mismatch occurs.

Figure 15 CV/I factor predictions reported by various
ITRS reports ([ITRS02], [ITRS06], [ITRS07], [ITRS08],
[ITRS12], and [ITRS13])

Figure 16 Cg computed from predictions reported by
various ITRS reports ([ITRS02], [ITRS06], [ITRS07],
[ITRS08], [ITRS12], and [ITRS13])

Although ITRS predictions report the expected evolution of different parameters

along the coming years, the silicon market uses node names. Below the micron scale the
node name is not directly related to any physical dimension but to the general view that
the integration density still scales as square, as it used to be ([Arnold09] and [Iwai09]).

Table 3 Values for technology nodes of interest

Node Name “65nm” “45nm” “32nm” “22nm” “16/14nm”
Year 2005 2007 2009 2011 2013

 ℎ (݊݉) 90ܿݐ݅݌ ½
[Arnold09]

68
[Arnold09]

52
[Arnold09]

38
[ITRS12]

40
[ITRS2013]

 ௚௔௧௘ (݊݉) 32ܮ
[Arnold09]

38
[Arnold09]

29
[Arnold09]

24
[ITRS12]

20
[ITRS13]

ܸܥ ൗܫ 0.87 (ݏ݌)
[ITRS06]

0.64
[ITRS07]

0.73
[ITRS08]

0.64
[ITRS12]

0.56
[ITRS13]

൫ܸܥ ൗܫ ൯௡௢ௗ௘
൫ܸܥ ൗܫ ൯௡௢ௗ௘ିଵ

- 0.73 1.14 0.87 0.88

௚,௧௢௧௔௟ܥ 0.81 (݉ߤ/ܨ݂)
[ITRS06]

0.71
[ITRS07]

0.87
[ITRS08]

0.93
[ITRS12]

1.1
[ITRS13]

 ௚ (2.3) 72.9 48.28 45.24 35.34 44ܥ
௚௡௢ௗ௘ିଵܥ௚௡௢ௗ௘ܥ

 - 0.66 0.93 0.78 1.24

Relative ܥ௚ 1 0.66 0.62 0.48 0.60

0
0.5

1
1.5

2

2000 2010 2020

CV/
I

0
50

100
150
200

2000 2010 2020Effe
c. C

apa
cita

nce
 (aF

)

─ 44 ─

I am particularly interested in recent technology nodes 65nm, 45nm, 32nm, 22nm

and 14nm. Table 3 collects some information from the ITRS reports with the node name
equivalence of [Arnold09]. Note that the selected technologies follow a two year period,
and the scaling factor ݏ for a two year period is √2 [Moore75]. Nevertheless, the
predictions show that ܫ/ܸܥ and ܥ௚ do not follow the 1 ൗݏ factor very well.

 ௚ does not decreases much in the 32nm node, and even increases in the 14nmܥ
node. We do not have to forget that ITRS reports predictions, and that those predictions
should be backed by industry data. To validate the quality of the predictions, a comparison
can be made between the data provided by Intel and that contained in the ITRS reports.
This comparison can be made, for instance, taking the values for ½ pitch and gate length
reported by both organizations.

Table 4 ½ pitch and Lgate predicted by ITRS and reported by Intel in different technology nodes

Node Name “65nm” “45nm” “32nm” “22nm” “16/14nm”
ITRS
 (݉݊) ℎܿݐ݅݌ ½

90
[Arnold09]

68
[Arnold09]

52
[Arnold09]

38
[ITRS12]

40
[ITRS13]

Intel’s
 (݉݊) ℎܿݐ݅݌ ½

110
[Bai04]

80
[Mistry07]

56
[Packan09]

45
[Auth12, Jan12]

35
[Natarajan14]

ITRS
 (݉݊) ௚௔௧௘ܮ

32
[Arnold09]

38
[Arnold09]

29
[Arnold09]

24
[ITRS12]

20
[ITRS13]

Intel’s
 (݉݊) ௚௔௧௘ܮ

35
[Bai04]

35
[Mistry07]

30
[Packan09]

26
[Natarajan14]

20
[Natarajan14]

 Table 4 shows such analysis. ITRS reports are in line with industry with a typical

error of ±10% (as shown in Figure 17, and Figure 18). So we would expect to get an ܥ௚
estimate from the data reported by Intel in line with ITRS reports that allow us further
analysis.

Intel follows a two-step approach (called tick-tock) to evolve the architecture of
its processor lines. They change the technology node in the tick step, and they try to
implement the new architectural changes in the tock step. This scheme seems perfect to
make comparisons about the contributions of node scaling done in the tick step, however
it looks like some tick steps are not as ideally isolated from architectural changes as we
would like.

─ 45 ─

Figure 17 Difference between Intel’s data for ½ pitch
and ITRS predictions Figure 18 Difference between Intel's data for Lgate and

ITRS predictions
 [George07] reports the improvements on power consumption, comparing the

Penryn architecture implemented in the 45nm node, with the Memron core 2 architecture
implemented in the 65nm node. [Czechowski14] do not directly report C but analyzes the
power consumption (both static and dynamic) of 45nm, 32nm, and 22nm. By comparing
first the same Nehalem processor implemented in 45nm, and 32nm, and seconds the
Sandy Bridge processor implemented in 32nm and 22nm. [Deval15] and [Nalamalpu15]
report power savings for the Broadwell architecture (14nm) compared with previous
Haswell architecture (22nm) running different applications. I take the worst value
corresponding to a video display application. In top demanding applications there will be
less opportunities to do clock gating or voltage scaling, methods that new Intel processors
use extensively. I assume that remaining power savings should be caused by the
technology node advance. In this case the power saving is 21%.

ௗܲ௬௡ is determined by the expression (1.10). Although it is not possible to direcly
get C from ௗܲ௬௡ without knowing the rest of the parameters, I assume that most of them
will be constant across technology nodes because they are replicating exactly the
architecture. [Czechowski14] relates dynamic power is basically determined by C, but
considering that all processors in this range include DVFS it is hard to make a strong
statement from their data. Assuming that we are working at the full potential (௠݂௔௫, ௠ܸ௔௫)
I consider that maximum frequency is quite stable across the analyzed nodes. This makes
sense due to the power density limit and the intrinsic delay evolution observed in ITRS
predictions. On the other hand voltage has been decreasing moderately. Thus, I include a
voltage correction factor from ITRS considering the quadratic contribution of voltage to
power (2.5).

0

50

100

65 45 32 22 16/14

1/2
 pit

ch (
nm

) ITRS Intel

0
10
20
30
40

65 45 32 22 16/14

Gat
e le

ngt
h (n

m) ITRS Intel

─ 46 ─

௚,௡௢ௗ௘ܥ
௚,௡௢ௗ௘ିଵܥ

∝
ௗܲ௬௡,௡௢ௗ௘

ௗܲ௬௡,௡௢ௗ௘ିଵ
ቀ ௡ܸ௢ௗ௘

௡ܸ௢ௗ௘ିଵቁଶ
(2.5)

Table 5 Industry reported dynamic power factors between different technology nodes and my inferred capacitance

factor value
Node Name 65nm 45nm 32nm 22nm 14nm

ௗܲ௬௡,௡௢ௗ௘
ௗܲ௬௡,௡௢ௗ௘ିଵ

 - 0.7
[George07]

0.57
[Czechowski14]

0.68
[Czechowski14]

0.79
[Nalamalpu15]

௡ܸ௢ௗ௘ 1.1
[ITRS06]

1.1
[ITRS07]

0.97
[ITRS08]

0.9
[ITRS12]

0.86
[ITRS13]

௡ܸ௢ௗ௘
௡ܸ௢ௗ௘ିଵ

 1 1 0.88 0.92 0.95

 ஼೒,೙೚೏೐
஼೒,೙೚೏೐షభ - 0.7 0.73 0.78 0.86

Relative ܥ௚ 1 0.7 0.51 0.40 0.35

 When we compare the numbers obtained from industry data with the ITRS

predictions there is a slight divergence, especially in the 14nm node (see Figure 19). The
work described in [Martins15] synthesizes the same circuit for two different technologies
using NanGate open cell libraries. The effective capacitance factor they found between a
45nm and a 15nm node is is 0.85. Taking the ITRS derived data our factor for the same
technologies would be 0.91, and taking the data from industry is would be 0.50. Since the
value reported by [Martins15] is between both estimates, I decided to take the mean of
both estimates for our analytical model. The final values are reported in Table 6.

Figure 19 Relative gate capacitance inferred from ITRS data and Industry data

0
0.2
0.4
0.6
0.8

1
1.2

65 45 32 22 16/14

Rela
tive

 Ga
te

Cap
acit

anc
e es

tim
atio

n ITRS Industry

─ 47 ─

Table 6 Proposed gate capacitance relative factor for technologies, computed as the mean between the ܥ௚ values
obtained from ITRS predictions, and the ܥ௚ values from industry

Node Name 65nm 45nm 32nm 22nm 14nm
 ௚ (aF) 72.9 49.65 41.32 32.44 34.78ܥ

Relative ܥ௚ 1 0.68 0.56 0.44 0.47

 ࢑ࢇࢋ࢒ࡵ .2.1.4
 The leakage current is also not easily found. ITRS reports leakage in relative

dimension units. Again we use a correction factor to infer the leakage current per
transistor as (2.6).

௟௘௔௞ܫ ∝ ௟௘௔௞ܫ · Pitch/2 (2.6)
Figure 20 depicts the obtained leakage current per transistor base on the

information of previously mentioned ITRS reports. In this case the predictive power is
almost inexistent until year 2012.

Figure 20 Leakage current using (2.6) and ITRS predictions

Table 7 ܫ௟௘௔௞௔௚௘ derived from ITRS data
 “65nm” “45nm” “32nm” “22nm” “16/14nm”
ITRS

 (݉݊) ℎܿݐ݅݌ ½
90

[Arnold09]
68

[Arnold09]
52

[Arnold09]
38

[ITRS12]
40

[ITRS2013]
 60 (݉ߤ/ܣ݊) ௢௙௙ܫ

[ITRS06]
340

[ITRS07]
170

[ITRS08]
100

[ITRS12]
100

[ITRS13]
 4 3.8 8.84 23.12 5.4 (ܣ݊) ௟௘௔௞௔௚௘ܫ

0
10
20
30
40
50

2000 2010 2020

Lea
kag

e C
urre

nt (
nA)

─ 48 ─

Again I try to confront this information with data from industry. Collecting the

 ௢௙௙ values reported in [Bai04], [Mistry07], [Packan09], [Auth12], and [Natarajan14] Iܫ
compose Table 8.

Table 8 ܫ௟௘௔௞௔௚௘ derived from industry data
 “65nm” “45nm” “32nm” “22nm” “16/14nm”
Intel’s

 (݉݊) ℎܿݐ݅݌ ½
110

[Bai04]
80

[Mistry07]
56

[Packan09]
45

[Auth12, Jan12]
35

[Natarajan14]
 100 (݉ߤ/ܣ݊) ௢௙௙ܫ

[Bai04]
100

[Mistry07]
200

[Packan09]
10

[Auth12]
10

[Natarajan14]
 0.35 0.45 11.2 8 11 (ܣ݊) ௟௘௔௞௔௚௘ܫ

There is some divergence (see Figure 21). Again, to test we compare with the data

from [Martins15]. They report 8.6 nA for 45nm and 5.3 nA for 15nm. Given the fact that
ITRS predictive power seems limited for ܫ௟௘௔௞௔௚௘ and that [Martins15] is also based on a
predictive model, we use the values of Table 8 as a reference for our study.

Figure 21 Leakage current estimations

2.2. Comparing the same technology nodes
In the case of having to decide between implementing a given circuit using FPGA

or ASIC platforms on the same technology node, we should have to analyze the relation
between the energy efficiency for both implementations by using a ratio based on the
expression (1.17). Again, I consider that this scenario is highly improbable because the
costs of ASIC manufacturing and market dynamics make new technology nodes only
accessible to high volume manufacturing devices like processors and FPGAs.

0
5

10
15
20
25

65 45 32 22 16/14

Lea
kag

e Cu
rren

t (n
A) ITRS Intel

─ 49 ─

Anyhow, if that would be the case, the efficiency factor would be defined by
equation (2.7). Since, in this case, the technology node and the circuit are the same, ߚ ,ߙ,
 .௟௘௔௞௔௚௘, and ܸ would be the same for both designsܫ ,ܥ

ி௉ீ஺ܩ
஺ௌூ஼ܩ

= ஺ܰௌூ஼
ிܰ௉ீ஺

· ൬ߙ · (1 + (ߚ · ܥ) · ܸଶ) + ܸ · ௟௘௔௞௔௚௘ܫ
௖݂௟௞ ஺ௌூ஼ ൰

൬ߙ · (1 + (ߚ · ܥ) · ܸଶ) + ܸ · ௟௘௔௞௔௚௘ܫ
௖݂௟௞ ி௉ீ஺ ൰

(2.7)

The differences would be due to the area overhead of FPGA designs and the lower
maximum frequencies available to them. If we define some common factors from
dynamic power as (2.8) and common factors from static power as (2.9) and use the area
and frequency overheads that were defined by (2.1) and (2.2), we can rewrite (2.7) as
(2.10).

ߜ = ߙ · (1 + (ߚ · ܥ) · ܸଶ) (2.8)
ߠ = ܸ · ௟௘௔௞௔௚௘ܫ

௖݂௟௞ (2.9)

ி௉ீ஺ܩ
஺ௌூ஼ܩ

= 1
40 · ߜ + ߠ

ߜ + ௙ܭ · ߠ
(2.10)

The (2.10) expression should be interpreted as being determined by the activity
factor ߙ. If the activity factor is high, ߜ will probably be significantly higher than ߠ and
the efficiency relation will tend to be 1/40. This means that the FPGA implementation
will be 40 times more energy inefficient than ASIC one. In case that activity is low, static
power will dominate, and things will get even worse, up to 800 or 400 when using the
14nm node. Figure 22 depicts the penalty factor ܩ஺ௌூ஼ ⁄ி௉ீ஺ܩ , which is the inverse of
(2.9), as function of the quotient ߠ /ߜ.

Figure 22 Energy Efficiency penalty of FPGA designs vs. ASIC implementation as a factor of the ߠ / ߜ relation

0
200
400
600
800

1000

0.001 0.01 0.1 1 10 100 10001/101/101/1000 1 10 100 1000

─ 50 ─

2.3. Comparing latest node for FPGA with ASIC entry node
Being mass market devices, FPGA manufacturers have been able to be second to

access new technology nodes like 14nm, while the increasing NRE costs and foundry
market dynamics have relegated ASIC designs to the older 65nm nodes (as shown in
Figure 2). When comparing the same implementations in ASIC and FPGA for medium
volume, where economics would not be the main constraint, it would make sense to
compare 14nm node for FPGA (as Stratix 10) and 65nm for ASIC implementations
(available in major foundries like TSMC, UMC, and Global Foundries).

 To perform the comparison, for exactly the same design, we could assume the
same ߚ ,ߙ, but we should consider diferent values for ܥ, and ܸ. As proposed in Table 6
the relation factor between device capacities in 65nm and 14nm is given by (2.10) and
the relation between voltages would be given by (2.11) as reported in Table 3. A summary
of the used parameters are shown in Table 9. I speculate that the total effective
capacitance could be a constant factor (like 10) from the gate capacitance. This is an over
simplification, but could be useful to get an idea of the relative values.

Table 9 Parameters used by comparison between FPGAs in 14nm and ASICs in 65nm

 FPGA ASIC
Node Name “14/16” “65”

 ௚ (F) 34.78·10-18 72.9·10-18ܥ
C (F) 347.8·10-18 729·10-18
ܸ (V) 0.86 1.1

௖݂௟௞ (Hz) 300·106 3·109
 ௟௘௔௞௔௚௘ 0.35·10-9 11·10-9ܫ

஺ௌூ஼లఱܩி௉ீ஺భరܩ
= ஺ܰௌூ஼లఱ

ிܰ௉ீ஺భర
· ൬ߙ · (1 + (ߚ · ஺ௌூ஼లఱܥ) · ஺ܸௌூ஼లఱ

ଶ) + ஺ܸௌூ஼లఱ · ௟௘௔௞௔௚௘ܫ
௖݂௟௞ ஺ௌூ஼ ൰

൬ߙ · (1 + (ߚ · ி௉ீ஺భరܥ) · ிܸ௉ீ஺భర
ଶ) + ிܸ௉ீ஺భర೙೘ · ௟௘௔௞௔௚௘ܫ

௖݂௟௞ ி௉ீ஺ ൰

(2.11)

஺ௌூ஼లఱܩி௉ீ஺భరܩ

= 1
40 · ߙ) · 8.82 + 0.04)

ߙ) · 2.57 + 0.01)
(2.12)

─ 51 ─

In short, the FPGA implementation would be around 11 times less energy efficient
than its ASIC equivalent.

At that point I am asking myself whether we could do anything to reduce G even
further.

The flexibility of the FPGA could allow us to re-spin the design to get higher OPC
factor or reduce the N in a higher factor. Another option to increase G would be to reduce
the static power by powering off inactive cells of the FPGA as proposed in [Gayasen04].
But power gating can be generally applied in ASIC as well.

2.4. Comparing 40nm node for FPGAs with 14nm node for ASICs
FPGAs could be just an order of magnitude less energy efficient than ASICs when

comparing different nodes (such as 65nm vs 14nm). Considering the flexibility of the
FPGAs and their faster time-to-market, there would be less reasons to choose ASIC
instead of FPGA as the implementation platform for many designs. But, how do FPGAs
compare against processors? Do processors achieve better energy efficiency?

Mainstream processors are already build. They are top selling products, and they
have first access to technology nodes. They are fast and super-flexible. Is there any reason
to use FPGAs instead of processors for energy efficiency?

The answer is yes. FPGAs can be more energy efficient than processors. More
details to elaborate this answer will be given in section 2.7 The better energy efficiency
of FPGAs vs. processors is often the result of creating a specific architecture that increases
the OPC to a high number. Processors have a fixed maximum OPC determined by their
architecture.

However, my thesis is that, for certain applications, better energy efficiency can
be obtained using soft-core processors instead of processors.

In section 2.6 I will compare the energy efficiency level obtained in the Intel i7-
5500u processor (a modern low power microprocessor) with the energy efficiency level
achieved in a NIOSII on a Stratix IV 530K FPGA.

Before this comparison, it would be necessary to know the contributions of having
a different technology node, and a different implementation platform. In Table 10 I list
the technological parameters used to do the comparison. The core Voltage in Stratix IV
is reported to be 0.9 V (from Altera). I compare i7-5500u, build in 14nm with Stratix IV
530K build in 40nm.

─ 52 ─

Table 10 Parameters used by comparison
 ASIC FPGA

Node Name “14/16” “40”
 ௚ (F) 34.78·10-18 49.65·10-18ܥ
 347.8·10-18 496.5·10-18 (F) ܥ
ܸ (V) 0.86 0.9

௖݂௟௞ (Hz) 3·109 150·106
 ௟௘௔௞௔௚௘ 0.35·10-9 8·10-9ܫ

The expression (2.13) if obtained from expanding (1.17) in the energy efficiency

factor of FPGA vs. ASIC.
஺ௌூ஼భరܩி௉ீ஺రబܩ

= ஺ܰௌூ஼రబ
ிܰ௉ீ஺భర

· ൬ߙ · (1 + (ߚ · ஺ௌூ஼భరܥ) · ஺ܸௌூ஼భర
ଶ) + ஺ܸௌூ஼భర · ௟௘௔௞௔௚௘ܫ

௖݂௟௞ ஺ௌூ஼ ൰
൬ߙ · (1 + (ߚ · ி௉ீ஺రబܥ) · ிܸ௉ீ஺రబ

ଶ) + ிܸ௉ீ஺రబ೙೘ · ௟௘௔௞௔௚௘ܫ
௖݂௟௞ ி௉ீ஺ ൰

(2.13)

By substituting the parameters of Table 10 in (2.13), an expression depending of

ߙ · (1 + .is obtained (2.14) (ߚ

ி௉ீ஺రబܩ = ஺ௌூ஼భర40ܩ · ߙ) · (1 + (ߚ · 2.57 + 0.01)
ߙ) · (1 + (ߚ · 4.01 + 0.48)

(2.14)

Figure 23 Energy Efficiency penalty for FPGAs as factor of ߙ

Figure 23 depicts the energy efficiency relation for various values of switching
activity. For the same design, working above a 10% activity the energy efficiency penalty
of FPGAs is around 100 with respect to ASICs in the last technology node.

0
200
400
600
800

0% 5% 10% 15% 20%

─ 53 ─

2.5. Processor Technologies
The evolution of computing has been basically a quest for higher OPC. To

increase OPC the application must have some degree of parallelism, i.e. parts of the code
must be able to execute concurrently. Depending on whether the concurrent parts are fine
grain or coarse grain, we find Instruction Level Parallelism (ILP) or Thread Level
Parallelism (TLP). ILP is found when, in the stream of instructions executed by a
processor, several of them can be executed concurrently.

Before comparing soft-core processors and mainstream processors, we should
briefly review some of the optimizations that have been introduced during processor
architecture evolution to understand the differences that we will find in terms of ILP,
often measured as Instructions executed Per Cycle (IPC). A much more detailed analysis
is found in [Hennessy11].

In the most simplistic way, a processor is a system containing an ALU, and all the
necessary complements to keep it busy.

Usually, a memory is indispensable to keep it busy. From the early days of
computing, most computers works following the concept of stored program
[VonNewmann45]. Meaning that the memory contains the program which is executed as
well as the data used by the program to operate. Data can also be exchanged with the
external world through I/O operations, but for our analysis we would ignore that. In order
to analyze the problem we will present the stages needed to execute an instruction.
Whatever the implementation is, either hardwired in an FSM, microcoded, etc. First, in
the IF stage the instruction has to be fetched from memory. In the ID stage the instruction
has to be decoded in order to know what to do. Usually instructions need operands, so
there is a OF stage to fetch the operands. When operands are ready the instruction can be
executed during the EX stage. Finally the result has to be stored during the WR stage.

First computers, like the EDSAC [Wilkes49], where taking the Von Neumann
architecture ideas. EDSAC clock frequency was very low (500 KHz), but worse, the IPC
as low as 1/769. The problem with early designs is that they needed several cycles to
complete the execution of an instruction, since the control execute one stage every clock
cycle. In early designs only a single accumulator register was used and hardwired as an
input to the ALU (see Figure 24). So, typically 3 memory accesses would be needed
complete an instruction, one to read the instruction, another one to read the operand (as
the other was implicitly the accumulator register), and an additional one to store the result.

─ 54 ─

The move to transistorized electronics first, and microelectronics later, gave a
boost to performance. So, it took a while before implementing architectural changes to
increase the IPC. First, mass production microprocessors, like Intel 4004, Motorola 6800,
Zilog Z80, MOS 6502 (running at 1Mhz), started to use more registers, as well as higher
systems like VAX11, creating register files that later were a central part of the RISC
concept [Patterson85]. Having more registers a program can avoid going that often to
external memory, thus reducing the cycles waiting for memory. Register files are often
considered as a kind of cache of level zero, as depicted in Figure 25. In these processors
the number of operations executed per cycle was still around 1/10.

Mainframe IBM System/360/85 introduced the use of cache memory in 1969, and
during the 80s, various processors like Motorola 68000, and Intel 80386 (running at 16
MHz) used cache memories. Cache memories, as depicted in Figure 26, were introduced
after the observation that memory positions accessed by programs are often repeated, so
some cycles could be saved if some accessed positions could be stored in faster memories
[Goodman83]. This recall of same accessed positions happen when fetching instructions
for a number of reasons, mainly because of loops and function calls. But it also happens
with memory positions, due to variable use. Because the external memory was cheap, but
very slow compared with on-chip registers, cache were implemented using fast SRAM
memory while external memory was high latency DRAM. SRAMs could cope with chip
processor speed, while DRAMs not. The ILP was still around 1/10.

The processor has a bottleneck in memory access; [Cragon80] describes how the
Harvard architecture can improve performance by having separate code and data memory.
In this case instruction fetch and operand fetch can happen simultaneously. Although
originally thought as separate memories like many DSP processors (as [Yasui91]),
implementing Harvard architectures with different caches connected to the memory, had
a good performance while allowing the Von-Neumann idea of stored program.

The RISC concept proposed by [Patterson85] and executed by [Hennessy81]
exploited the concept of pipelining. Although instructions still need several clock cycles
to complete all needed stages, the different stages can be executed concurrently so that
different instructions can be executed simultaneously on different stages. Pipelining is
implemented by introducing registers between stages (as shown in Figure 29). In a
pipelined processor an instruction could be fetched every cycle. Since RISC processors
have a common instruction size, the PC register can be automatically increased to fetch
the next consecutive instruction without needing extra cycles. The benefit in performance

─ 55 ─

is obvious and, since the architectural changes are not significant, the benefits in energy
efficiency as well. Not only because the higher ratio of ILP per power, but also because
power consumption can be reduced as a consequence of glitch reduction (as explained in
[Wilton04]). However there are situations in which the processor pipeline cannot be fully
utilized. For instance when there are cache misses, when there are dependencies from
registers, or when there are branches. In these situations the pipeline must be either stalled
or filled with bubbles. Because of shorter combinational paths, pipelining had a size effect
of allowing to increase fmax. Processors like MIPS R2000, Intel i860, HP PA-RISC were
implemented following the RISC principle, achieving not only higher frequencies, but
much higher values of IPC (close to 1).

Figure 24 Architecture of simple Von-Neumann
processor. The instruction is fetched from memory int
the IF phase. Operands can be fetched from Memory and
the Accumulator register. Results can be writen to
Accumulator or memory. The different stages cannot be
simultaneously executed.

Figure 25 Simple architecture with a register File.
Instruction still needs several cycles to execute but the
operand fetching time can be reduced if they are in the
register file.

Figure 26 Introduction of a cache to reduce the time
to access the external memory.

Figure 27 Harvard architecture. Simultaneous
access to instruction and memory could double
performance.

Acc

Memory

IF ID OF EX WR

L0

Memory

IF ID OF EX WR

L0

Memory

IF ID OF EX WR

I/D$
L0

IF ID OF EX WR

Memory

DI

─ 56 ─

One of the important penalties paid by pipelined designs is the amount of in-flight
operations that must be canceled when a branch occurs. All the pipeline is filled with
sequential instructions after the branch operation instead of having the instructions from
the addresses where the program branch to, so all those operations must be discarded.
Early studies showed that up to 30% of the instructions could be branches [Wiecek82].
The effect on the relative IPC of the application is given by the expression (44), where

௙ܲ௟௨ is the probability of pipeline flush due to executing a branch instruction and
 ௣௜௣௘௟௜௡௘ the number of pipeline stages that have to be invalidated. Figure 28 shows howܮ
IPC can be affected by the probability of branches and the pipeline length. A processor
with a pipeline of 20 stages (in orange) is much penalized than a processor with a pipeline
of 5 stages (in blue) if branches occur.

ܭ = 1
൫1 − ௙ܲ௟௨௦௛൯ + ௙ܲ௟௨௦௛ · ௣௜௣௘௟௜௡௘ܮ

 (2.15)

Figure 28 Relative IPC as function of the probability of pipeline flush for different lengths of the pipeline. In orange ܮ௣௜௣௘௟௜௡௘ = 20. In blue ܮ௣௜௣௘௟௜௡௘ = 5.

Actually, there is a way to mitigate this penalty: branch prediction. Branch

prediction can be implemented in many different ways. The idea is that a new stage is
introduced in the pipeline to predict whether the next instruction is a branch and what
should be the branch address. By knowing the predicted target branch address the
instruction fetch unit move the PC to it and fetches it, instead of fetching PC + instruction
size. Branch predictors usually store the same history of the branches taken, to be able to
optimize them (see Figure 30). After much research during the nineties, accuracy of

Pipeline Length = 5
Pipeline Length = 20

0
0.2
0.4
0.6
0.8

1

0% 3% 6% 9% 12% 15% 18% 21% 24% 27% 30%

─ 57 ─

branch prediction stabilized around 97% for many benchmarks ([Yeh14]), so the
probability of misprediction (௠ܲ௜௦௣௥௘ௗ௜௖௧௜௢௡) is around 3%.

Figure 29 Pipelined architecture. Pipelining
allows to increase the throughput while
maintaining the latency of instruction execution.

Figure 30 Branch prediction

Currently it is assumed modern programs have a probability of branch ௕ܲ௥௔௖௛

around 20% [Yeh14]. As the probability of a pipeline flush (௙ܲ௟௨௦௛) is given by (2.16),
the current probability of flushing the pipeline is 0.6%.

௙ܲ௟௨௦௛ = ௕ܲ௥௔௖௛ · ௠ܲ௜௦௣௥௘ௗ௜௖௧௜௢௡ (2.16)

By using (44) we can plot the case penalty factor K as function of pipeline length.

Figure 31 IPC factor as function of pipeline length assuming a branch prediction accuracy of 97% and branch
probability instruction of 20%.

During the nineties, as the processor frequency was increasing, but the external
memory performance, based on Dynamic Random-Access Memory (DRAM), was not
increasing at the same pace [Matas97]. This divergence, illustrated in Figure 32,

IF ID EX WROF

L0DI

Memory

IF ID EX WROF

L0DI

BP

BTB

 -
 0.2
 0.4
 0.6
 0.8
 1.0

 - 5 10 15 20 25
Pipeline Length

IPC

─ 58 ─

motivated for the insertion of customized cache memories implemented in DRAM
technologies, but with lower latencies than external memory. First, L2 was introduced
and then L3, as shown in Figure 33, and Figure 34. More levels and bigger caches
contributed to reduce cache misses and reduce the probability to be negatively impacted
by them in the IPC, however they did not allow to increase the IPC over the factors already
achieved.

Figure 32 Frequency of operation of mainstream processors and their external DRAM memories during the nineties

Figure 33 Level 2 Cache Figure 34 Level 3 Cache

DRAMMemory Processor

0
200
400
600

1988 1993 1998

Fre
que

ncy
 (M

Hz)

L2

Memory

IF ID EX WROF

L0DI

BTB

L3

Memory

L2

IF ID EX WROF

L0DI

BTB

─ 59 ─

Previous reviewed optimizations were good to reach and maintain the IPC factor

1. However they were not allowing to go over 1.
To get higher values, functional units must be replicated, so the idea changes from

being an ALU and all the necessary surrounding components to keep it busy, to the
concept of having multiple ALUs and all what it’s needed to keep them busy.

One of the early implemented options was to replicate the ALUs and make them
execute the same instruction simultaneously on different data (see Figure 35). This kind
of architecture was called vector architecture because the different data fed to the different
ALUs were though as elements of a vector of registers. See Figure 35. Vector
architectures were made popular in HPC by Cray during the 70s, and later by NEC during
the early 2000s. NEC SX-9 (as described in [Zeiser09]) was able to reach ILP to 32 by
having 8 sets of pipelines containing 2 multiply and 2 add functional units. During late
nineties AMD and Intel incorporated vector instructions into the x86 architecture. There
were some of them, 3Dnow, MMX, SSE, SSE2, SSE3, SSE4, XOP, FMA, CVT16, The
outcomes of these instructions can be 4, 8, or 16 depending on the processor. It is not
clear whether it is economically viable to sustain the manufacture of vector processor,
although vector units in consumer processors are widely used as their benefits in
multimedia workloads [Chi15].

The drawback of vector processing is that functional units (vector units on its
jargon) have to execute the same instructions. The alternative is to let functional units
execute different instructions. The Very Long Instruction Word (VLIW) architectures
implement this approach by combining different instructions on a single wider
instruction. In this case data dependency must be controlled by the compiler. The
compiler has the challenge to try to put as many instructions in parallel as possible,
(instead of filling with nops) to fully utilize the available performance. There are some
drawbacks to this approach, the code is usually bigger (because of the padding) and more
bandwidth is needed by the instruction fetch unit (see Figure 36). VLIW has been used
extensively in embedded DSP processors by Texas Instruments, Analog, and other firms,
They usually include 4 or 8 functional units, so max IPC is usually 8 [Kozyrakis02].

Vector and VLIW architectures put the pressure to the compiler to be able to fully
exploit the functional units. The other alternative is to try to put the pressure on the
architecture itself. So that the compiler produces a standard stream of instructions, and
the architecture tries to execute them in parallel. That’s what superscalar architectures do.

─ 60 ─

They fetch multiple instructions per cycle, but instead different than VLIW the
instructions are from sequential positions on the stream (see Figure 37). As VLIW this
has the drawback of increasing the memory bandwidth. In order to execute instructions
the processor has to determine dependencies between operations and registers. To do so
all operations are usually inserted in a queue and scheduled and dispatched to functional
units. Pipelines of superscalar processors are usually much larger than simple processors.
Pentium was the first Intel Superscalar processor. Pentium 4 reached up to 31 pipeline
stages.

Figure 35 Vector architecture Figure 36 VLIW architecture

Figure 37 Superscalar architecture Figure 38 Symmetric Multi-Threading (SMT)
architecture

 With the superscalar design there is some probability that data dependencies do
not allow to fully utilize the pipeline. Since processors were executing multitasking OS
for long time, wouldn’t it be wise to fetch instructions from different threads instead of
the same one. In this way no data dependency would occur and pipelines would be fully
occupied. This is why Symmetric Multi-Threading (SMT) architectures were proposed

IF
ID

EX STOF

L0DI

BTB EX STOF
BP

IF
ID EX STOF

L0DI

BTB ID EX STOF
BP

ID

L0DI

IS

BTB

IF ID EX STOFBP
IQ

BP IF OF EX ST ID

L0DI

IS

BTB

IF ID EX STOFBP
IQ

BP IF OF EX ST

BTB

L0

─ 61 ─

(see Figure 38). SMT architectures are more efficient because they share functional units,
instead of duplicating them.

In the context of the famous Flynn’s taxonomy of computer organization (see
Table 11), the increment of the instructions per cycle has been achieved by moving from
SIMD architectures, to SIMD and MIMD. Vector, Superscalar, and even pipelined
architectures can be considered SIMD architectures. VLIW, and SMT can be considered
MIMD architectures.

Table 11Flynn's taxonomy of computer organization [Flynn72]

 Data Streams
Single Multiple

Instruction Streams Single SIMD SIMD
Multiple MISD MIMD

To continue increasing the number of instructions executed per cycle previous

architectures can be replicated to create parallel architectures. Those, would fall in the
MIMD classification. A deeper analysis of such architectures will be done in the next
chapter.

2.6. Comparing Soft-core Processors with Processors
A soft-core is a simple processor available as HDL source code that can be

synthesized on a FPGA. They were first introduced in 2001 by FPGA manufacturers like
Xilinx, Altera and Lattice to compete with microcontrollers and DSPs simplifying the
SoC concept. Some of their first uses were targeting the telecommunications market and
embedded real-time equipment [Dalay03]. They were useful to cooperate in the control
of DSP datapaths (like in [Guan01]), and provide control logic that was becoming too
complex to implement using FSMs. But soon, they were able to displace microcontrollers
doing all kind of real-time tasks.

Today, most popular soft-core processors are 32bits RISC processors with a not
very long pipeline. Some processors like (Microblaze, NIOS, and RISC-V) allow to
choose between some shorter and longer pipelines. Shorter pipelines allow for a much
compact design by sacrificing performance. On the other hand, longer pipelines allow
higher frequencies and higher performance.

─ 62 ─

Table 12 Soft-Core Processors sorted by academic popularity
Processor Arch. ISA Open Source Bits Pipeline Popularity
MicroBlaze [Xilinx06] RISC Microblaze No 32 3/5 6970
NIOSII [Altera10] RISC NIOS No 32 1/5/6 6640
LEON3 [Gaisler07] RISC SPARC V8 Yes 32 7 1400
PicoBlaze [Chapman03] RISC PicoBlaze Yes 16 3 1320
LEON2 [Gaisler03] RISC SPARC V8 Yes 32 5 1020
OpenRISC [Tandon11] RISC OpenRISC Yes 32 5 644
JOP [Schoeberl03] CISC Java Yes 32 4 343
Cortex-M1 [ArmM1] RISC Thumb-2 No 32 3 269
OpenSPARC T1 [Parulkar08] RISC SPARC V9 Yes 64 6 204
LatticeMico32 [LM32] RISC LM32 Yes 32 6 103
SecretBlaze [Barthe11b] RISC Microblaze Yes 32 5 50
TSK3000A [AltiumTsk] RISC MIPS No 32 5 48
RISC-V [Waterman11] RISC RISC-V Yes 64 2/3/5 48
xr16 [Gray00] RISC xr16 No 16 3 47
Zet [Zet] CISC 8086 Yes 16 8 13

Table 12 shows some of the most popular soft-cores. The majority of soft-cores
have a RISC architecture with the exception of JOP and Zet. CISC is more complex then
RISC to implement, it usually performs worse, and it is less energy efficient.

In order to glimpse the energy efficiency differences between processors and soft-
core processors I propose to compare NIOS II implemented in a Stratix IV device (on a
40nm die) against a low power computer processor, the Intel Core i7-5500-U (Broadwell
architecture implemented in a 14nm node). Laptop processors are especially designed
with energy efficiency in mind.

There are some measures of the energy efficiency of Intel Core i7 in the literature.
[Vasudevan10] reports 0.01 GFLOPS/Watt for a Nehalem architecture, which is
implemented in 32nm. [Amsler12] reports 1.43 GFLOPS/Watt for a Sandy Bridge
architecture, implemented in 32nm. This is a big difference that would need further
analysis.

In [Renbi09] the energy efficiencies of different implementations of matrix
multiplication are analyzed. One of the designs is software based running on a NIOSII\e
implemented on a Cyclone II (TSMC 90nm) running at 50 MHz. The work reports a
power consumption of 160mW and an energy consumption of 18015nJ. By applying

─ 63 ─

(1.12) we can deduce that the application execution time was 0.1125 s. As the IPC for
NIOSII\e is 0.15, as reported in [Altera15b], this results on 843.75 KFLOPS. By applying
(1.16), this results in 0.00527 GFLOPS/Watt. The IPC value of NIOSII\f is 6.6 times
higher than NIOSII\e, so if we take the previous value and multiply it by 6.6, the energy
efficiency would be around 0.035 GFLOPS/Watt. It seems that literature do not shed
enough light for a consistent comparison on the energy efficiency of both platforms, but
if we take the best value for the Intel platform a first impression is that energy efficiency
factor could be about 40x in favor of i7 processor.

Another approach to obtain comparable values could be to apply the analytical
model presented in chapter 1. The issue width (number of instructions fetched per cycle)
of Broadwell is 8, and the total thermal power reported for Intel Core i7-5500-U is 15 W.
Considering a maximum frequency of 2.9 GHz, if we apply (1.16) we get an energy
efficiency factor of 1.54 GFLOPS/W. A similar reasoning can be followed for the NIOS.
In this case there is no manufacturer information of the processor total thermal power, but
it can be obtained by the PowerPlay Altera tool. PowerPlay reports 2.1 W for a simple
NIOS processor with FPU running at 160 MHz, from which only 0.6 W are from dynamic
power. By applying (1.16) we get 0.07 GFLOPS/Watt.

So, this second look, which gives similar results for Intel processor, indicates that
the energy factor could be just 20x in favor of i7.

In order to try to have a better approximation to the real energy efficiency ratio I
execute some benchmarks on an FPGA system and a last generation laptop computer.
The FPGA system is a Terasic DE4 board containing a Stratix IV 530K with the NIOS II
design running at 160MHz. The laptop is a Lenovo Yoga 3 containing a Intel Core i7-
5500-U. The power measurement is done with a power meter smart plug that reports
power consumption in Watts with an error of ±10mW. Since both systems contains more
elements than just the FPGA device and microprocessor the power consumption in idle
state must be subtracted. The power measurement for idle state in the FPGA device is
done by applying a global reset signal. This reduces the dynamic power to zero, but not
the static one. The power measure for the idle state in the laptop is a little trickier. Intel
processors have several power modes that basically modify the voltage and frequency
operating points. I forced the highest performance setting on the operative system, which
forces the highest voltage and frequency point, and run the minimal applications on the
system. Once the idle state power is measured for both systems I execute the benchmarks
in an infinite loop, so that their power consumption can be obtained. Having obtained the

─ 64 ─

benchmark execution time in both platforms and taking into account the baseline idle
power, an energy efficiency factor considering only dynamic power ܩௗ௬௡ is obtained
(2.4).

ௗ௬௡ܩ = ݌ܱ
ܶ

1
ௗܲ௬௡

 (2.17)

The first benchmark I executed is the Dhrystone benchmark. This is a small
synthetic benchmark that measures the time to execute a simple integer arithmetic small
loop. Results are given in MIPS௏஺௑. The benchmark is so simple that the code and data
fits in the processor caches so that cache misses (ignored in my energy efficiency
expression) do not occur. This ensures that architectures are executing in similar
conditions because both are accessing internal memory. Test results are shown in Table
13.

These results show that the core i7 is 130 times faster than the NIOS but just 5
times better in dynamic power consumption. If we add an estimation of the consumed
static power the energy efficiency relation between the i7 and the NIOS is around 15,
which is slightly less than previously computed.

Table 13 Dhrystone bechmark results in core i7-5500-U and NIOS II running at 160 MHz on a Stratix IV 530K.
* means estimated

 i75500U NIOSII NIOSII+FPU
௖݂௟௞ 2.9 GHz 160 MHz 160 Mhz

MIPS௏஺௑ 20028 153.82 153.82
MIPS௏஺௑

௖݂௟௞
 6.91 0.96 0.96

ௗܲ௬௡ 11.812 W 0.451 W 0.490 W
ௗ௬௡ܩ = MIPS௏஺௑

ௗܲ௬௡
 1696 341 314

relative MIPS௏஺௑ 1 1/130 1/130
relative ௗܲ௬௡ 1 1/25.5 1/23.4
relative ܩௗ௬௡ 1 1/4.97 1/5.40

ܲ* 12.812 W 1.451 W 1.49 W
 106 103 1563 *ܩ

relative 1/15.1 1/14.7 1 *ܩ

─ 65 ─

I compare our results with [Roberts09], which analyzes the energy efficiency of a
Cortex A8 in the OMAP3530 implemented in 65nm, and the Intel Atom 330 implemented
in 45nm. We see in Table 14 that the energy efficiency of a NIOS is 16 times smaller
than the Cortex A8 and 8 times smaller than the Atom 330 implemented in a 45nm node.
The Cortex A8 has a 2-issue superscalar architecture while the Atom is a simple scalar.
Being implemented in a comparable node (45nm vs. 40nm for the Stratix IV), it is
interesting to realize that the energy efficiency factor is just 8 and not 40 as predicted.

Table 14 Dhrystone benchmark results from [Roberts09]

 Cortex A8 Atom 330
௖݂௟௞ 600 MHz 1.6 GHz

MIPS௏஺௑ 883 1822
MIPS௏஺௑

௖݂௟௞
 1.47 1.14

ܲ 0.5 W 2 W
ܩ = MIPS௏஺௑

ܲ 1766 911

The Dhrystone benchmark is based on integer arithmetics, but many modern codes
are based on floating point arithmetics. To test the performance and energy efficiency of
floating point code I execute the Linpack benchmark on NIOSII and core i7. Results are
shown in Table 15. The dynamic power efficiency of the i7 is 49 times higher than the
NIOSII, and if we take into account the static power it raises to 91 times. This significant
different between integer and floating point efficiency has a very simple explanation.

Notice that the number of floating point instructions per cycle ܥܲܫ have been
reduced drastically from 0.96 to 0.06 in NIOS. The reason for this drop is that floating
point unit in NIOS is not part of the processor pipeline but it is implemented as a custom
instruction. This means that the pipeline cannot be fully used when executing floating
point instructions and the performance drops according to the latency of the floating point
instructions.

─ 66 ─

Table 15 Linpack bechmark results in core i7-5500-U and NIOS II running at 160 MHz on a Stratix IV 530K. *
means estimated

 i75500U NIOS+FPU
௖݂௟௞ 2.54 GHz 160 Mhz

 ௅௜௡௣௔௖௞ 5364873 10243ܱܵܲܮܨܭ
 0.06 1.85 ܥܱܲ

ௗܲ௬௡ 10.12 W 0.95 W
ௗ௬௡ܩ = ௅௜௡௣௔௖௞ܱܵܲܮܨܭ

ௗܲ௬௡
 530126 10782

relative ܱܵܲܮܨܭ௅௜௡௣௔௖௞ 1 1/524
relative ௗܲ௬௡ 1 1/10.6
relative ܩௗ௬௡ 1 1/49

ܲ* 11.12 W 1.95 W
 5253 482453 *ܩ

relative 1/91.84 1 *ܩ

If we compare with [Roberts09] we realize that in this occasion the Cortex-A8 is
just 9 times more efficient than the NIOS, while the Atom is 89 times more efficient (see
Table 16). The reason for the performance drop in the Cortex performance is very similar
to the drop experienced by the NIOS in floating point operations. Floating point support
for the Cortex A8 is implemented either by the VFP-lite coprocessor or through the
NEON vector unit. Some compilers by default use the VFP-lite unit which has a latency
of 18-21 cycles. As a consequence performance is penalized and energy efficiency drops.

Table 16 Linpack benchmark results from [Roberts09]

 Cortex A8 Atom 330
௖݂௟௞ 600 MHz 1.6 GHz

 ௅௜௡௣௔௖௞ 23376 933638ܱܵܲܮܨܭ
 0.58 0.04 ܥܱܲ

ܲ 0.5 W 2 W
ܩ = ௅௜௡௣௔௖௞ܱܵܲܮܨܭ

ܲ 46752 466819

─ 67 ─

Figure 39 Integer Energy Efficiency Figure 40 Floating Point Energy Efficiency

 Seeing the previous results in integer (Figure 39) and floating point arithmetic
(Figure 40) I realized that, with the right architectural choices, the energy efficiency of a
soft-core implemented on a FPGA can be just about order of magnitude lower than that
of a processor, even when not accessing the last technology nodes. It is clear that the
increasing the IPC is crucial to increase the energy efficiency [Czechowski14]. Modern
processors have limited architectural choices to be able to increase IPC because they have
to maintain the general purpose, and moreover they have to deal with the increasingly
important dark silicon problem [Esmaeilzadeh11], which states that, as transistor capacity
increase, higher and higher portions of the chip must remain inactive to reduce thermal
density.

On the other hand FPGAs can be tailored to application specifics and can
implement specialized units to significantly increase the IPC for particular functions. By
doing this, both performance and energy efficiency will be increased. But, moreover,
coprocessors can be combined with parallel processors to increase even more the
performance. Parallelism does not allow increasing energy efficiency per se. But it can
indirectly do it applying the following logic: If an application is parallelized by a factor
M and exhibits a linear scalability, the clock frequency could be reduced by a factor 1/M.
Thus, would allow to reduce the voltage supply, which is a major driver to energy
efficiency, or relax the synthesis requirements that would reduce the total effective
capacitance of the circuit (as will be explained in more detail in 2.7.3).

 Nevertheless, this strategy is often out of reach of FPGA designers if using
commercial platforms. First, because they would have a fixed voltage supply. Second,
because FPGA logic blocks are pre-build, and designers cannot modify the width of the
transistors to adapt to a more relaxed requirements.

 -
 0.50
 1.00
 1.50
 2.00

i7 NIOSFPU NIOS A8 Atom330

GIP
S/W

att

 -
 0.20
 0.40
 0.60

i7 NIOSFPU CortexA8 Atom330

GFL
OPS

/W
att

─ 68 ─

2.7. Soft-core Multiprocessors
The higher performance and better energy efficiency of FPGAs compared with

CPUs and GPGPUs has been already demonstrated by several works (see Table 17).
Although FPGAs are not always the best option in terms of performance, they usually
become the best energy efficient alternative. A usual argument against FPGA
implementations is the complexity in developing complete solutions using HDL
languages. High performance applications in CPUs are easily programmed with high
level programming languages like C/C++. GPGPUs use languages like CUDA, OpenCL,
etc. that are based on C/C++, but introduce some constraints in the code executed by the
coprocessor. It is not straightforward for a programmer to exploit the peak performance
of GPGPUs because programming style must be very aware of the particularities of the
GPGPU architecture, like its SIMD execution style and memory hierarchy. The skills
needed for an optimal implementation in FPGA are even higher since designers have the
challenge to create a complete new architecture from scratch and map the algorithm
effectively on it.

Table 17 Relative performance and energy efficiency of FPGAs/CPUs/GPGPUs
 Relative Performance Relative Energy Efficiency
 FPGA CPU GPGPU FPGA CPU GPGPU
[Tian09] 1 1/25 1/9 1 1/37 1/35
[Hamada09] 1/2.12 1/9.75 1 1 1/24.5 1/8.75
[Tian10] 1 1/544 1/10.8 1 1/336 1/16
[Kestur10] 1/3.15 9.81 1/3.24 1 1/3.3 1/13.3

To break this programmability barrier, FPGA manufacturers have promoted the

adoption of OpenCL as a design entry language to build application specific accelerators
that work in cooperation with an external host processor in a similar way than is done
with GPGPUs. This approach is an important step forward in programmability, but limits
the execution of the created designs to some very specific applications, and relegates the
FPGA as a coprocessor of a host system and cannot execute other generic applications.

The superior energy efficiency of FPGA designs, shown in Table 17, is reached
by combining deep pipelining, data parallelism, and data locality. They all contribute to
a much higher level of effective instructions executed per cycle, which is the main driver
of energy efficiency. As demonstrated in previous section, soft-core processors do not

─ 69 ─

have a superior energy efficiency level than hardened standard processors, but they have
the flexibility to be extended. It is possible to easily attach soft-core coprocessors having
the properties that make FPGAs so efficient: deep pipelines, and local memories.

The evolution on logic density of the last decade mimics the experienced by
processors, which is the self-fulfilling prophecy described in Moore’s law. But the
availability of that huge number of reconfigurable logic elements puts pressure to design
teams, who have challenge to take profit from all of them. There is a general feeling that
the rate at which new resources are available is usually higher than the rate at what
designers make use of them. This illusion was widespread in the microelectronic design
community that called it the “design productivity gap”. Recent studies [Foster13] suggest
it did not happen thanks to the increase of IP reuse and the emerging of bus standards. In
any case, replicating larger IP blocks, such as processors, is an easy way to close the gap.

Soft-core processors could be easily replicated to build multiprocessing
architectures to exploit data parallelism. This could provide the energy efficiency that
FPGAs have already proven to have, but with a simpler programming model based on
parallel programming standards complemented with coprocessor invocation. With this
approach they would still provide the flexibility of standard processors to allow their reuse
for a wider range of applications.

 The idea of replicating soft-core processors to collaborate in order to increase
system performance appeared almost simultaneously as the introduction of the soft-cores
themselves. At the beginning, FPGA devices had limited resources, allowing only the
instantiation of just few soft-core processors. As mentioned in chapter 1, soft-core
processors can be implemented with few thousands of look-up-tables and flip-flops.

2.7.1. Implementing devices
As FPGAs were implemented in new technology nodes, they increased its logic

density and allowed the instantiation of larger numbers of soft-cores. Table 18 lists the
FPGAs devices used to implement reconfigurable multiprocessing systems. The first
collected device is a Xilinx XCV1000 FPGA, which was implemented in a 0.22µm node,
and offered 22 K LUT/FF pairs. This early device was already able to host an 8-core
multiprocessor system, as detailed in [Martina02]. Recently I have proven how an Altera
EP4SGX530 device, which is implemented in a 40nm node, and is not the biggest device
from Altera, can embed a 128-core multiprocessor system [Castells15].

─ 70 ─

Table 18 Multiprocessing systems based on reconfigurable logic.

Device Node Voltage K
LUTs

K
FFs

Mem
(Mb) References

XCV1000 220 2.5 24 24 0.52 [Martina02]
XCV1000E 180 1.8 24 24 0.78 [Li03]
XC2V3000 150 1.5 28 28 2.16 [Hubner05]
XC2V6000 150 1.5 67 67 3.64 [Huerta05]
EP1S40 130 1.5 41 41 3.42 [Hung05] [Lehtoranta05] [Salminen05] [Kulmala06]
XC2VP20 130 1.5 20 20 1.8 [Freitas07]
XC2VP30 130 1.5 30 30 2.8 [Dykes07] [Tumeo07] [Tumeo10]
XC2VP50 130 1.5 53 53 4.91 [Jin05] [Ravindran09]
XC2VP70 130 1.5 74 74 6.93 [Krasnov07]
XC4VFX12 90 1.2 10 10 0.73 [Huerta07]
XC4VFX20 90 1.2 17 17 1.35 [Kornaros10]
XC4VFX140 90 1.2 142 142 10.92 [Wang08]
EP2C35 90 1.2 33 33 0.4 [Pitter08] [Bao09]
EP2C70 90 1.2 68 68 1.15 [Lee09]
EP2S60 90 1.2 60 60 2.54 [Khan09]
EP2S180 90 1.2 143 143 9.38 [Yan09] [Fernandez10] [Castells11]
XC5VLX110T 65 1.0 69 69 6.45 [Giefers10] [Kiefer15]
XC5VLX155T 65 1.0 97 97 9.27 [Lebedev10]
XC5VFX130T 65 1.0 81 81 12.31 [Chen11] [Jing13]
XC5VLX330 65 1.0 207 207 10.36 [Wang10]
XC5VLX330T 65 1.0 207 207 15.08 [Mplemenos08]
EP3C40 65 1.2 39 39 1.1 [Han12]
EP4CE22 60 1.0 22 22 0.60 [Castells12]
EP4CGX150 60 1.0 149 149 6.48 [Rashtchi14]
XC6VLX240T 40 1.0 150 301 18.60 [Stevens12] [Kondo13] [Plumbridge13] [Plumbridge14]
EP4SGX530 40 0.9 531 531 20.74 [Choi13] [Castells15]
XC7K325T 28 0.9 203 402 20.02 [Raza14]
XCZ7020 28 0.9 53 106 4.48 [Vestias14] [Jose15]
5SGXEA7 28 0.85 622 622 50.00 [Baklouti14] [Podobas14]

2.7.2. Type of replicated Soft-Cores
Some works have already surveyed how soft-core processors can be replicated to

build reconfigurable multiprocessors [Dorta10],[Göhringer14]. The multi-soft-core
processors and many-soft-core processors in the literature that are analyzed in this thesis
listed in Table 19. A large number of research and industrial works use the soft-cores
provided by the main FPGA vendors: Microblaze from Xilinx, and NIOS from Altera.
Researchers usually embrace them because they provide a mature infrastructure that
allows building complex systems using a standard toolchain to program it. Although I
personally do not consider this toolchain mature enough for multiprocessing purposes, it
clearly offers an advantage over alternative soft-cores.

─ 71 ─

Microblaze and NIOS have a classic 32 bit RISC architecture. They have a short
pipeline, branch prediction, and Harvard architecture. As we could expect the maximum
IPC they can reach is close to 1, but they offer a mechanism to surpass this value with
custom instructions and coprocessors. An effective way to increase the IPC is including
multiply-accumulate units (MAC), as done in [Martina02]. MACs are regularly used in
digital signal processors (DSPs) and the typical signal processing algorithms (like FIR
filters) can easily take profit of them. Since MACs combine a multiply and add operation
they should tend to double the IPC.

Table 19 Properties of the soft-core processors used in the analyzed literature. The last entry does not show any
property as it groups the works that use application specific architectures, in which cores are synthesized to address

the needs of each different application.

Soft-Core
Instruction Width Pipeline IPC FPU Instruction Stream LUTs

Data Width Branch Prediction Data Stream FFs
References

Microblaze

32 5 1 Opt. I-Cache 1290
32 Opt. D-Cache 1290

[Hubner05] [Huerta05] [Jin05] [Ravindran09] [Dykes07] [Freitas07] [Huerta07] [Krasnov07] [Tumeo07]
[Mplemenos08] [Wang08] [Giefers10] [Kornaros10] [Tumeo10] [Chen11] [Jing13] [Plumbridge13]
[Plumbridge14]

NIOS
32 6 1 Opt.

I-Cache 1700

32 Opt D-Cache 1700
[Hung05] [Lehtoranta05] [Salminen05] [Kulmala06] [Khan09] [Yan09] [Lee09] [Bao09] [Fernandez10]
[Castells11] [Castells12] [Han12] [Rashtchi14] [Baklouti14] [Castells15]

Prop. DSP
[Martina02]

24 5 1.9 No ScratchPad 3024
16 No ScratchPad 1618

[Martina02]
SIMD PIC
[Li03]

16 3 31 No ScratchPad 18420
8 No ScratchPad 18420

[Li03]
JOP
[Schoeberl03]

32 4 <1 No I-Cache 2100
32 No D-Cache 2100

[Pitter08]
LE1
[Stevens10]

32·n 8 n Opt. I-Cache 5648
32 Yes Local 2032

[Stevens12]
Geyser
[Seki08]

32 5 1? No? I-Cache 10942
32 ? D-Cache 7083

[Kondo13]
LWP
[Raza14]

32 5 <1 No ScratchPad 249
32 ? ScratchPad 401

[Raza14]
OpenRISC
derivative

32 3 0.5 No Shared Cache 3300
32 ? Shared Cache 3300

[Kiefer15]

App. Spe.
- - - - - -
- - - -

[Wang10] [Choi13] [Podobas14] [Lebedev10] [Vestias14] [Jose15]

─ 72 ─

Vector processing is not commonly used in FPGAs, although there are several
remarkable examples of them. For instance [Li03] uses 95 vector units that achieve an
IPC level of approximately 31, [Yiannacouras08] uses 16 vector units achieving an
approximately IPC level of 6. Although it initially can be though as a great idea to increase
IPC, there are few codes that exhibit the regularity needed to take profit of the peak
performance offered by a vector architecture.

 The same problem is found with VLIW architectures, since they usually suffer
from the limited ILP of the code to execute. [Jones04] studies some benchmarks
considering an infinite number of executing units finding that the effective IPC is still
below 2. Similar results can be found in [Stevens10] where the speedups coming from
increasing the issue width of the VLIW processor are modest, and its best speedup is
obtained by using specialized coprocessors and replicating cores.

Most of the systems analyzed in Table 19 use a Harvard architecture. In some
cases caches are used and in other cases scratchpad memories are preferred. Scratchpad
memories are simpler and faster than caches but limit the generality of the systems
because the number of applications that can fit in them is severely reduced. On the other
hand, they provide a perfectly predictable access time, which is usually a good feature to
estimate WCET in hard real-time systems.

2.7.3. System Frequency
It is important to stress that frequency has a complex relation with energy

efficiency. When synthesizing a circuit, system designers usually specify some frequency
requirements. If the requirements are very easy to meet the synthesis tool can focus on
optimizing the area and power consumption for the design, producing a smaller netlist
with less transistors (N), and probably smaller transistors as well, decreasing their
capacitance (C). On the other hand, if the frequency goal is hard to achieve, the effort will
probably be spent in creating redundant and larger transistors. Frequency will have a
negative impact during circuit synthesis because higher frequencies will produce larger
N and C which are negatively correlated with G in equation (1.17). As detailed by
[Aitken14] this effect is even exacerbated with new technology nodes. This is shown in
Figure 41 where energy efficiency is presented in terms of MHz/mW when the same
design is synthesized targeting a given target frequency. It is also interesting to realize
how new nodes are particularly energy efficient working at low frequencies.

─ 73 ─

Figure 41 Efficiency measured in MHz/mW as a function of the target frequency in multiple synthesis of the same

processor design. Image extracted from [Aitken14]
On the other hand, it is obvious that performance is linearly dependent on

frequency (௖݂௟௞), but, once the circuit is synthesized, it is not so obvious that ܩ also has a
positive correlation with ௖݂௟௞. The answer is also in the equation (1.17), and should be
understood by the following reasoning. Performance is linear with frequency, and
dynamic power as well. Since they appear in the numerator and denominator of (1.16)
they should cancel themselves, but this has ignored static power. If we take it into account,
we see that static power must be integrated during the execution of the task. The longer
it takes the execution, the more power will be integrated. So higher frequencies will cause
shorter integration times of the static power, thus reducing the energy efficiency.

Given this dual nature of the relation between ݂ ௖௟௞ and energy efficiency, I analyze
the clock frequency values reported in the literature (see Table 20). Most designs use
frequencies below 150 MHz. Since FPGAs use predefined logic blocks, synthesis tools
do not have the same degrees of freedom like in full custom ASIC design. This would
explain why frequency has not evolved much during the last decade. However, latest
advances seem to begin to allow a jump on attainable maximum clock frequencies, for
instance [Baklouti14] reaches the 328 MHz with a recent 5SGXEA7 Stratix V device,
and Altera promises to double the attainable frequency in their new Stratix 10 devices.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700

Effi
cien

cy (
MH

z/m
W)

Clock Frequency (MHz)
28nm 20nm 14nm (4-fin) 10nm (3-fin)

─ 74 ─

Table 20 Main system’s clock frequency
Freq Range (Mhz) Reference

 ? [Mplemenos08] [Wang08] [Yan09] [Lee09] [Chen11] [Jin05]
< 50 [Kondo13] [Vestias14] [Kiefer15]

 50-74 [Li03] [Huerta05] [Hung05] [Hubner05] [Lehtoranta05] [Kulmala06] [Tumeo07] [Bao09]
[Fernandez10] [Tumeo10] [Castells11] [Castells12] [Podobas14] [Castells15]

 75-99 [Salminen05] [Choi13] [Rashtchi14] [Han12] [Pitter08] [Krasnov07]
100-149 [Ravindran09] [Dykes07] [Huerta07] [Khan09] [Stevens12] [Plumbridge13] [Plumbridge14]

[Giefers10] [Kornaros10] [Wang10] [Freitas07] [Martina02]
 150-250 [Lebedev10] [Jing13] [Jose15]

>250 [Raza14] [Baklouti14]

2.7.4. Number of processors replicated
The number of soft-cores that a design can embed depends on the resource usage

of the soft-core (see Table 19) and the available resources of the hosting FPGA (see Table
18). Table 21 shows the number of processors of the systems reported in the literature.

Table 21 Number of sof-core processors per design
#Cores Reference

<6
[Hubner05] [Lehtoranta05] [Kulmala06] [Freitas07] [Huerta07] [Tumeo07] [Dykes07] [Yan09]
[Lee09] [Bao09] [Kornaros10] [Castells12] [Chen11] [Han12] [Jing13] [Raza14]

8-10
[Martina02] [Huerta05] [Hung05] [Salminen05] [Pitter08] [Wang10] [Tumeo10] [Stevens12]
[Kondo13] [Kiefer15] [Plumbridge13]

11-20
[Jin05] [Krasnov07] [Ravindran09] [Fernandez10] [Castells11] [Plumbridge14] [Rashtchi14]
[Jose15]

23-50 [Wang08] [Khan09] [Giefers10] [Lebedev10] [Vestias14] [Baklouti14]
51-100 [Mplemenos08] [Li03]

>100 [Choi13] [Podobas14] [Ben14] [Castells15]

As could be expected systems with a larger number of cores can be built as devices
increase their logic density. An exception is [Li03], but the reason for that is that it uses
a vector architecture with 95 small arithmetic units that I have classified as being “cores”.
It is worth mentioning that my 128-core system is the system with a higher number of
standard 32 bits cores on the list. [Ben14] replicates 1024 modified PacoBlaze processors.

2.7.5. Application domains
The applications found in the literature are in many different domains (see Table

22). From pure number crunching to biomedical or industrial applications.

─ 75 ─

Table 22 Application domains of the multiprocessing soft-core designs in the literature

Domain Reference
Number
Crunching

[Huerta05] [Pitter08] [Fernandez10] [Castells11] [Vestias14] [Baklouti14] [Jose15]
[Martina02] [Lee09] [Kondo13] [Krasnov07] [Pitter08] [Vestias14] [Podobas14]
[Castells15] [Kiefer15] [Giefers10] [Lebedev10] [Choi13]

Multimedia [Lehtoranta05] [Kulmala06] [Tumeo07] [Yan09] [Khan09] [Fernandez10]
[Tumeo10] [Kornaros10] [Jing13]

Cryprography [Li03] [Huerta05] [Plumbridge13] [Plumbridge14] [Raza14]
Industrial [Dykes07] [Castells12] [Pitter08]
BioMedical [Mplemenos08] [Kornaros10] [Stevens12]
System Testing [Hung05] [Huerta07] [Salminen05]
Automotive [Hubner05] [Khan09]
Communications [Jin05] [Ravindran09] [Rashtchi14]
Database [Wang10]
Space [Han12]
Militar [Chen11]
None [Freitas07] [Wang08] [Bao09]

2.7.6. Energy Efficiency
Surprisingly the authors tend to stress the performance achieved by

multiprocessing reconfigurable systems without much analysis of their energy efficiency.
This is surprising because, generally (as shown in Table 17), the best benefit from using
FPGAs is their energy efficiency, not only their performance.

In fact, there are few works that report power consumption at all (see Table 23).
In the reported works energy efficiency comes from different sources. In [Martina02] a
relatively high number is the product of working with 16 bits datapath, a MAC unit that
allows to reach 1.9 IPC, and 8 cores. One could argue that a 16 bit datapath is not
comparable to a 32 bit datapath, but this is essentially the good point of FPGAs, that we
can change the architecture to fit our application requirements. So, reducing the number
of bits of the datapath is a perfect valid option. In a similar way, other proposals suggest
to implement a subset of the ISA depending on the application to run [Yiannacouras06].
In [Castells12] the energy efficiency level is reached by replicating 4 cores and
implementing custom instructions to reach the IPC to 3 while working with a low
frequency. On the other hand [Raza14] replicates very simple processors combined with
coprocessors, which allow an IPC close to 1, with a high frequency resulting on the
highest observed energy efficiency value. Finally I present a system replicating 128 cores

─ 76 ─

with a modest frequency and a relatively high power consumption. Although performance
is higher than previous systems, energy efficiency is lower because I do not use any
method to increase the IPC of individual cores.

Table 23 Energy efficiency of multiprocessing reconfigurable systems found in the literature

Reference Device Power
(Watts) IPC Cores Freq

(Mhz) GOPS GOPS/Watt
[Martina02] XCV1000 0.231 1.9 8 89 1.35 5.8
[Castells12] EP4CE22 0.360 3 4 50 0.60 1.6

[Raza14] XC7K325T 0.102 1 3 289 0.86 8.5
[Castells15] EP4SGX530 4.500 1 128 50 6.40 1.4

After the analysis of previous results, it is apparent that there is still the need for

more research to analyze the energy efficiency levels that many-soft-cores should be able
to provide, by combining parallel architectures and custom logic. On the following
chapters I will try to address this need, although there still will be much work to be done
in the future.

─ 77 ─

3. Building Many-Soft-Core Processors
The main motivation to build many-soft-core MPSoCs is to achieve a high energy-

efficient factor, without scarifying the flexibility and generality of a “mainly” software-
based approach. As studied in the previous chapter, the energy efficiency starting point
for a soft-core processor is rather low, around 15 times worse than a standard processor.
But on the contrary, soft-core processors have an architectural flexibility not present in
hard-cores. I am proposing to take profit of this key feature to improve the OPC as much
as possible to increase the system performance and energy efficiency factors. Additional
performance gains can be reached with parallel architectures.

The resulting systems would include special hardware to be more energy efficient
addressing application specific workloads, but they could still be used by general
applications.

This chapter will focus in describing how to build the hardware infrastructure
needed by many-soft-core MPSoCs.

3.1. Building blocks
The productivity gap was closed by reusing hardware blocks. Thus, I am

proposing to reuse big hardware blocks like processors, coprocessors, and all the required
infrastructure to make the resulting system easily programmable. Reusable hardware
blocks (also called IP blocks, or IP cores) are sometimes pieces of HDL code that can be
directly instantiated on an FPGA design, but a lot of times are given as the product of
hardware generators, which allow tuning to specify some parameters before the HDL is
created.

In the following subsections I will present some of the IP cores I have used in this
thesis.

3.1.1. MIOS Soft-Core processor
Altera provides the NIOS processor, a 32 bit RISC processor highly optimized

implementation addressing the particularities of the FPGA environment. NIOS is, in fact,
created by a generator software that allows to configure a multitude of architectural
parameters. I will describe it in depth in the following section. Nevertheless, NIOS source
code is not available, and unlike Microblaze, which has open source ISA compatible
processors like SecretBlaze [Barthe11], it does not have an open source alternative.

─ 78 ─

Hence, I decided to create my own NIOS ISA compatible processor for educational
purposes, and to have more design freedom to test new architectural ideas. I called my
processor “MIOS”.

 The instruction set of the NIOS processor contains three types of instructions,
Immediate (I), Register (R), and Jump (J). I-Type instructions contain 2 register
references, a 16 bit immediate value and an operand (see Table 24). They are usually used
to perform an operation between the register specified in A and the immediate value
specified in Imm16. The result is then stored into the register specified in B, as shown in
(3.1).

ܤ ܴ݃݁ ← ,ܣ ܴ݃݁)݊݋݅ݐܽݎ݁݌݋ (3.1) (16݉݉ܫ

Table 24 Bit fields of I-Type instructions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reg A Reg B Imm16 Opcode

R-Type instructions contain 3 register references (see Table 25). A large number
of operations of the NIOS ISA are implemented as R-Type instructions. Since the five
bits of the opcode are not enough to encode them all, R-Type instructions use additional
6 bits identified as Opcode Extension to encode them. The rest 5 bits are used optionally
used as an immediate value.

ܥ ܴ݃݁ ← ,ܣ ܴ݃݁)݊݋݅ݐܽݎ݁݌݋ ,ܤ ܴ݃݁ (3.2) ([5݉݉ܫ]

Table 25 Bit fields of R-Type instructions
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reg A Reg B Reg C Opcode Ext. Imm5 Opcode

Finally J-Type instructions use an immediate value of 26 bits to encode memory
addresses (Table 26). Only jmp and call operations use this type of encoding.

Table 26 Bit fields of J-Type instructions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Imm26 Opcode

 MIOS implements all the NIOS ISA, but have significant differences with the
later. MIOS does not have separated buses for instruction and data memory streams (like

─ 79 ─

in Harvard architectures). A single bus to access memory is used, so it has a Von-
Neumann architecture. The processor pipeline has three stages: Fetch, Decode, and
Execute (see Figure 42).

Figure 42 MIOS 3 stage pipeline

The Fetch stage fetches instructions directly from memory, without using any
instruction cache. The instructions are fetched every cycle unless a data memory
operation is executed in the execution stage. When that happens, all the pipeline is freezed
until the data memory operation is completed and a new instruction can be fetched. Since
data memory instructions are not executed every cycle the penalty is not that high. MIOS
does not use branch prediction.

The Decode stage basically decodes the fetched instruction into the opcode, the
register references (up to 3 in the R-Type instructions), and the immediate values, either
26, 16, or 5 bit long. The opcode, is in fact further decoded to provide a one-hot signal
for every instruction of the repertory.

The Execute stage contains all the execution units, i.e. an Arithmetic Logic Unit
(ALU), a Branch Unit and a data memory Load/Store Unit. The register file is embedded
in the Execute stage, so register operands are fetched during the same cycle when result
is written to the target register. With this design, it is no possible to have instructions in

─ 80 ─

the pipeline that cannot be executed because a target register has not been written yet.
Hence, it simplifies the pipeline, avoiding the dependency checking and bypass
multiplexors needed in longer pipelines. The register file is implemented with real
registers, and not with memory as other implementations. Some arithmetic instructions
(like mult and div) take several cycles to complete. In these cases, like in load/store
operations, which also take several cycles to complete, the pipeline is frozen until the
results are available, or the memory operation has finished.

MIOS is designed in 5188 lines of Java code using the JHDL framework
[Bellows98]. Since it is totally compatible with NIOS ISA, the toolchain based on GNU
tools provided by Altera’s NIOS can be used to generate executable files for MIOS. The
power of JHDL is shown with its verification capabilities. JHDL allows to visualize signal
traces and interactively interact with the schematic view of all the circuit hierarchy. In
addition, complex test-benches and custom visualizers can be built that extract and
display information of the HDL model in the most convenient way. As an example, I
created a visualizer of the processor pipeline (see Figure 43). With this visualization, one
can easily see how the instructions progress through the processor pipeline. For every
pipeline stage the program counter, the instruction in its hexadecimal form and a
disassembly version of the instruction is shown. When the memory map of the application
is provided, the disassembly output substitutes memory addresses by function names.

When the pipeline is frozen due to an arithmetic, or memory operation, it is
signaled in the bottom-left part of the window. When a pipeline stall occurs, the pipeline
stages are signaled as invalid and they are shown in red color.

Figure 43 MIOS pipeline visualizer

─ 81 ─

I provide another visualizer to shown the state of the processor. Thus, allowing an
easy debug at the assembly level (see Figure 44). In this window, the value of all the
registers of the processor is displayed, as well as the instruction stream being executed.
Some buttons interact with the simulation framework to allow to do the typical “Step
Into”, “Step Over”, and “Run to Cursor” debugging actions. The application symbol map
can be generated with the objdump GNU tool and provided to the framework to enhance
the visualization of the instruction stream with function names. The call-stack is not
shown, but the currently executed function is presented instead.

Figure 44 Processor details visualizer

 Following the JHDL coding style, the MIOS source code is not a static HDL code,
but rather a highly parameterizable generator framework. Instruction subsets can be
implemented, as suggested in [Yiannacouras06], and latency of some pipelined
operations like mult and div can be modified.

 The performance of MIOS is low because of several factors. First the maximum
clock frequency is not very high due to the complexity of the execution stage. Although
synthesis results inform that other units could run at 300 MHz on the Altera Cyclone IV
FPGA family, the Execute stage reduces significantly this number to 60 MHz. On the
other hand, the IPC is also low. The simulation of simple application shows that 54% of
clock cycles are spent in the frozen state because of the multi-cycle memory and

─ 82 ─

arithmetic operations. In addition, 13% of bubbles are inserted in the pipeline due to the
lack of a branch prediction unit. The resulting effect is that the IPC is 0.33.

Table 27 Synthesis results of MIOS for the Cyclone IV FPGA family
Parameter Value

LUTs 5890
FFs 3070
fmax 60 MHz
Pdyn 104.12 mW

Combining the results shown in Table 27 obtained with the Altera tools for
synthesis, timing analysis and power estimation, I rewrite (1.16) as (3.3). With this, I
compute the peak theoretical efficiency of MIOS processor in a Cyclone IV device
considering that all the necessary circuits and peripherals that would be needed in a real
scenario consume 0 Watts. Although this is unrealistic scenario, by isolating the processor
element, I will be later able to compare its relative efficiency against the Altera NIOS
processor. The efficiency factor of MIOS is 0.19 GOPS/Watt.

ெூைௌܩ = 0.33 · ܱܵܲܩ 0.060

= ݏݐݐܹܽ 0.104 (3.3) ݐݐܹܽ/ܱܵܲܩ 0.19

3.1.2. NIOSII Soft-Core processor
As already mentioned, Altera’s soft-core offering is NIOSII. Like MIOS, NIOS is

not a monolithic piece of HDL code, but the product of a highly configurable generation
process. All possible NIOSII instantiations have in common a Harvard architecture and a
subset of the implemented instruction set. So, in fact, NIOSII already implements ISA
subsetting. The most “economical” version of the processor is NIOSII/e does not support
some instructions, such as mult, and div. They must be emulated by software.

The parameter selection to control the processor generation process is done in the
QSys tool, an Altera tool included in their Quartus II IDE that superseded the former
SOPC tool. The tool lets the designer choose values for several dozens of parameters.
Users can select if caches are used, their size, how to implement various arithmetic
operations, the size of the branch prediction table, and many other parameters that affect
the operation of the system. In order to have a simple perspective of how efficient NIOS
is, I instantiate two minimal systems, by isolating the processor elements in order to
measure some of their parameters. First I created a NIOSII/e processor, which do not

─ 83 ─

support mult and div operations and does not have any branch prediction logic, and no
caches. I assume that NIOSII/e IPC is approximately 0.12 [Altera15b]. This system
would identify the lower bound of the performance achievable by the NIOSII processor.
Then I created a NIOSII/f processor with instruction and data caches of 2 KB each, with
full hardware support for arithmetic operations and branch prediction with 256 entries.
Although caches could be bigger and more entries could be used by branch prediction, I
use the minimal settings and still assume that the IPC that I will get is close to 1. This
would identify somehow the upper bound for performance, and energy efficiency. Then,
I synthesized both systems with Altera’s Quartus II to measure the maximum frequency
with Altera’s Time Quest, and to estimate the dynamic power consumption of the
processors with Altera’s Power Play. For that, I measured power at 60 MHz first, in order
to have a quick reference value to compare NIOSII with the power consumption running
at MIOS’s maximum frequency. The results are shown in Table 28.

Table 28 Synthesis results of NIOSII/e and NIOSII/f for the Cyclone IV FPGA family
Parameter NIOSII/e NIOSII/f

LUTs 1466 3114
FFs 841 1858

Memory Bits 10240 44800
DSP Elements 0 8

fmax 174 MHz 165 MHz
Pdyn at 60 MHz 14.67 mW 35.27 mW

Pdyn at fmax 41 mW 94.04 mW
IPC 0.12 1

 ேூைௌ 0.512 1.75ܩ

 It is interesting to see that both NIOS designs are much more efficient than MIOS.
The reason for this high efficiency is detailed in [Ball07]. Many optimizations were done
to increase the performance and reduce the power consumption of NIOSII. In NIOSII/f
some arithmetic functions are implemented as DSP blocks. Not only the multiplication,
but also shift and rotate operations. This reduces the number of logic needed by the ALU
dramatically. Another optimization is done at the register file. In MIOS, the register file
is implemented as a collection of registers. The power consumed by the register file alone
in MIOS is 33.38 mW. That is a huge number, considering that NIOSII/e total consumed

─ 84 ─

power is 14mW. The difference is that NIOSII implements the register file as embedded
memory, rather than registers like in MIOS.

Figure 45 NIOSII/f pipeline

On the other hand, NIOSII/f is a more complex processor than MIOS. It includes
cache memories, and supports tightly coupled memories as well. Memory protection and
virtual memory are optional through MPU and MMU units. The virtual memory support

─ 85 ─

implemented in the MMU includes translation look-ahead buffers. Debug support is
provided through JTAG.

 A high frequency of operation is achieved by using a six stage pipeline (see Figure
45), and the use of the embedded multipliers. To reduce the impact of branches a dynamic
branch prediction is used, avoiding the high number of pipeline bubbles seen in MIOS.
But as the number of pipeline states is increased there is a probability that an incoming
instruction in the decode stage needs to read the value of a register that is targeted by the
instructions already executing on the execute stage. Dependency checks and bypass
circuits must be included to manage these issues. The result of all those elements result
on an IPC close to 1.

 Altera proposes two methods to be able to increase the IPC achieved by a NIOS
system. Attaching a coprocessor to the Avalon Bus, or implementing a custom-
instruction. Custom Instructions (CIs) are a method to implemented extensions to the
processor ALU (see Figure 46).

Figure 46 NIOSII Custom Instruction integration

Custom logic implemented as CIs must conform to the interface of an ALU
functional unit, i.e. having a maximum of two operands and a result. The instruction to
invoke CIs is an R-Type instruction that can use an embedded immediate value of 8 bits
to specify the custom instruction to execute. Thus, a NIOSII processor supports up to 256
different custom instructions.

3.1.3. Performance Counter
Measuring the elapsed time of the tasks executed by the system is the main method

to estimate the performance of the system. Hence, a good time reference is needed. By
good I mean having high resolution and low granularity. Resolution is determined by the
units of measure used to express the time value. In most computing systems time

─ 86 ─

references are expressed as integer numbers. So, the resolution is given by the unit
representing this integer value.

 Granularity is determined by the minimum distance between two different time
measurements. Although time references can be represented with very high resolution,
time references can be sampled at different sampling rates. Low sampling rates give
coarse grain time references, and higher sampling rates give fine grain time references.

 In a digital sequential circuit, such as a processor, the maximum resolution needed
for time measurements is given by the frequency of the system clock. There is no point
of having better resolution references, because everything happens in multiples of clock
cycles.

 Altera provides two IP cores that can be used to measure time:
altera_avalon_timer (Figure 47) and altera_avalon_performance_counter (Figure 48).

Figure 47 Altera timer IP Figure 48 Altera performance counter IP Figure 49 My Performance counter

 Timer core is an Avalon Slave IP core that includes a programmable counter. It
has several modes of operation, but the usual mode is to program the counter so that it
generates an Interrupt when it reaches the specified period and automatically resets to
count again. This is used to periodically generate interrupts at a certain frequency. The
core is programmed to generate interrupts every 10 ms by default. An ISR routine in the
NIOS HAL software layer increments a counter. The C runtime can access this tick
counter with the clock function, and can use the CLOCKS_PER_SEC macro to convert
the tick count into clocks. This method limits the granularity of the clock because
sampling frequency cannot be increased much since a software routine must be executed
every clock tick, thus becoming a bottleneck.

The other available core is also an Avalon Slave IP core that implements a 64 bit
counter that is automatically increased every clock cycle. Additionally there are several
sections that can take snapshots of the counter. This is provided to reduce the number of
software cycles needed to process snapshots of the high resolution clock reference.
However the number of sections is limited a low number, not being useful for a global
method to take time references.

I created a simple performance counter similar to the Altera performance counter, but
without any section and without a counter to collect the number of invocation like Altera does.

─ 87 ─

This results on a resource reduction as shown in Table 29. It is a 64 bits automatically incremented
counter. Since the Avalon bus is 32 bits wide, two bus read operations must be performed to
obtain the complete counter value.

Table 29 Synthesis results of Altera’s performance counter and my performance counter on EP4SGX530

 Altera’s Perf. Cnt. My Perf. Cnt.
LUTs 303 69
FFs 226 64

A 64 bits counter running at a 100 MHz will overrun after 58 centuries of
operation. This seems more than enough time period for any need. On the other hand, a
32 bit counter running at 100 MHz will overrun after 43 seconds. Time references are
usually taken to compute the elapsed time between two points in time. If we know that
the period is below 43 seconds we can work with just 32 bits, avoiding many cycles to
fetch the high part of the counter and to compute the difference between two 64 bits
numbers.

3.1.4. Floating Point Units
Soft-core processors do not usually include a Floating-Point Unit (FPU), although

it can generally be attached to them by using specific extension interfaces. In Altera
NIOSII, for instance, it is often done through the CI mechanism [Altera10]. In LEON3,
through special floating point unit interface or a generic coprocessor interface (as
described in [Gupta04]). In Cortex M1, it can be done through a bus interface [Joven11].

The IEEE standard for binary floating-point Arithmetic (IEEE-754)
[Stevenson85] is the most widely-used standard (since 1985) for floating-point
computation, and it is followed by many processors, compilers and custom hardware FPU
implementations. The standard defines formats for representing floating-point numbers
in single and double precision (i.e. including zero and denormal numbers, infinities and
NaNs) and special values together (such as ±1 or ±0). The number of floating-point
operations in a typical application is generally low. However, they usually appear in hot
execution paths having an important contribution to application bottlenecks.

Altera FPUs
Altera has two generations of single precision floating-point custom instruction

units. The first generation (FPH1, Figure 50) supports four operations, add, sub, mult and
div in a multi-cycle custom instruction. Although is the unit that supports less instructions

─ 88 ─

the LUT and FF resources it uses is the largest compared with the other analyzed units
(see Table 30). This could be the result of no use of memory and moderated use of DSP
elements. The second generation (FPH2, Figure 51) implements two custom instruction
units. One for the instructions that can be implemented as combinational functions, and
another for multi-cycle instructions. This allows to better integrate the combinational
instructions into the processor pipeline avoiding to freeze the processor. This unit
supports 24 instructions, adding comparisons, conversions and square root function. The
LUT and FF resource usage is almost ¼ of the FPH1, although it makes extensive use of
memory and more DSP resources.

Figure 50 Altera FPH1 IP core Figure 51 Altera FPH2 IP core

Figure 52 MikeFPU IP core

MikeFPUs
 Instead of using Altera floating point units I use MikeFPU [MikeFPU] a simple

floating-point custom instruction unit implemented by Michael Schoeggl using Altera’s
floating point macro-functions (Figure 52). The good point of MikeFPU is that it is
simple, its resource needs are moderate and source code is available. Compared with
FPH2 it lacks support for max, min, and sqrt instructions. Max and min functions can be
easily implemented with comparisons, and sqrt is not very common in most source codes.

─ 89 ─

Table 30 Comparison between the synthesis results on EP4SGX530 of Altera’s FPH1, FPH2, and MikeFPU floating
point units

 FPH1 FPH2 MikeFPU
LUTs 4063 1337 1134
FFs 4033 658 1250

Memory bits 0 15360 4608
DSP elements 4 9 20
instructions 4 24 16

abs  
neg  
max 
min 

compare  
add   
sub   
mult   
div   

convert  
sqrt 

Shared FPU
The availability of the floating-point unit source code allows the following simple

observation. The floating-point custom instruction is divided in ܰ different independent
pipelines that will be heavily underutilized. If ܮ௣௜௣௘௟௜௡௘ is the mean pipeline length of the
functional units, and ௖݂௟௞ the system frequency, the theoretical peak performance of the
unit would be given by (3.4).

௣௘௔௞ܱܵܲܮܨ = ܰ · ௖݂௟௞ (3.4)

But the custom instruction design allows to execute just one instruction
simultaneously, so just one unit of ܰ will be active, and just one stage of the pipeline will
be effectively used when executing an instruction. Furthermore, floating point
instructions are typically just a subset of the instructions that a processor execute. If we
let ிܲ௉௜௡௦ to be the probability of executing a floating point instruction, the average
floating point operations executed will be determined by (3.5).

─ 90 ─

௔௩௚ܱܵܲܮܨ = ௖݂௟௞ · ிܲ௉௜௡௦
௣௜௣௘௟௜௡௘ܮ

 (3.5)

 The underutilization factor would be given by the expression 3.5. As an example,

if we had an application with ிܲ௉௜௡௦ = 10% using the MikeFPU that has ܰ = 7 and
௣௜௣௘௟௜௡௘ܮ = 4.4 the underutilization factor would be 308.

 ௔௩௚ܱܵܲܮܨ
௣௘௔௞ܱܵܲܮܨ

= ிܲ௉௜௡௦
ܰ · ௣௜௣௘௟௜௡௘ܮ

 (3.6)

 Superscalar processors increase the efficiency of floating point unit utilization by

analyzing data dependencies and independently enqueuing operations to functional units
so that the pipelines can be better filled. As they also fetch multiple instructions at every
cycle, the probability of having floating point instructions is also increased. The result is
that they are usually designed to be close to peak performance in floating point intensive
code.

 I propose to increase its utilization by sharing the same floating point unit among
a number of processors. This is not a new idea, shared FPU designs were introduced by
several processor manufacturers like IBM [Meltzer99] [Kahle04], AMD [Oberman99],
and Texas Instruments [Dao00]. However the limited number of processors able to
include in a single chip by that time did not raised the interest to study the scalability of
such solution. Kumar’s work introduce the topic [Kumar04]. Nowadays the capacity of
integration is high enough to justify a deeper analysis of that subject as we try to do here.
But many-core IC designs are usually taking advantage of regularity in order to ease large
IP blocks reuse. Such a large block could contain a processor with some cache/scratch-
pad memory, a FPU and a network routers and lateral connections to allow tiled
compositions. Tiled designs are much more convenient than irregular ones since the tile
can be replicated as many times as needed with not much extra design effort.

Since many-cores are usually created without a single target application in mind,
the optimal sharing factor of FPUs among processors is difficult to predict. A worst case
analysis would suggest a low order of sharing, for instance 1 FPU for every 2 or 4
processors, as in previously cited examples.

On the contrary many-soft-cores have two different features that motivate the
potential sharing among larger number of cores. First, in FPGAs there are fewer

─ 91 ─

incentives for tile regularity. Second, the reconfigurability allows designing architectures
tailored to specific applications. In this case, for instance, an application that is not
intensive in floating-point operations could increase the level of sharing because
collisions accessing the FPU would be very unlikely. These observations were already
made in the RAMP Blue many-soft-core project, and conveniently described in
[Krasnov07]. However, their design introduces some unnecessary overhead because each
floating-point operation requires two processor instructions and again not much attention
is given to its scalability.

One of my goals is to allow simultaneous access to the different operation units.
An access collision will not occur when two processors access the FPU, but when both
processors are accessing the very same operational unit of the processor. In the 2 CPUs
scenario if a collision happens one CPU will be given immediate access to the functional
unit while the other will have to wait to next clock cycle to queue its operands into the
pipeline of the functional unit. So the penalty for the waiter will be just one clock cycle,
not the whole functional unit latency. If there are more processors competing for the unit
they will contribute to increase the latency linearly with the number of competitors. To
design a shared floating point unit (as illustrated in Figure 53), the access to functional
units must be granted by an arbiter that redirects the operands towards each functional
unit by using a crossbar switch. In the absence of collisions n operand sets can be
delivered to functional units per cycle. After the functional units another crossbar must
redirect the results to the respective processors.

Figure 53 High level design of the shared FPU. Multiple functional units have different latencies. A CPU can only be

performing a single FP operation at a certain time, but several CPUs can share the same functional unit.

─ 92 ─

A parameterizable shared FPU design was created with JHDL and compared with
the previous MikeFPU design. The design can be scaled up to be used with any given
number of processors. I synthesized the design for an increasing number of processors
and compared the resource usage with the resources used when replicating the MikeFPU
as many times as processors used.

A more detailed analysis of the resource costs is presented in Table 31. Both, the
shared FPU and the Multiple FPU designs have a linear progress with the number of
processors, but the former has a much smaller slope than the latter (see Figure 54).

The shared version starts with an important number of resources for 2 processors.
In this case, the main contributions are from the floating-point functional units.
Obviously, the aim is to share those functional units, when number of processors increase,
the additional costs come from bigger arbiters, bigger crossbars and bigger delay lines. It
is not that we are having longer delay lines, but that we are saving wider crossbar decision
matrices.

Table 31 Detailed resource usage of shared FPU vs. multiple FPUs after synthesis for EP2S15F484C3 device

Processor
Ports

Shared FPU Multiple FPUs
LUTs FF LUTs FF

2 3529 1557 6798 2938
4 3657 1701 13596 5876
6 3987 1745 20394 8814
8 4109 1839 27192 11752
10 4213 1933 33990 14690
12 4377 2027 40788 17628
14 4459 2121 47586 20566
16 4590 2215 54384 23504
18 4674 2314 61182 26442
20 4820 2410 67980 29380
22 4993 2496 74778 32318
24 5039 2590 81576 35256
26 5158 2684 88374 38194
28 5228 2778 95172 41132
30 5365 2871 101970 44070
32 5495 2965 108768 47008

─ 93 ─

 Figure 54 Resource usage (LUTs+FFs) of shared FPU (dark blue) vs. non shared FPU (red) after synthesis for
Altera EP2S15F484C3 device

The area savings are extraordinary as the number of processors increase.
However, sharing a resource increases the fan-out of some logic cells and increases the
length of some combinational logic paths, which obviously have the undesired effect of
increasing the signal delay and reducing the maximum frequency at which the circuit can
operate. This effect is clearly shown in Figure 55, which depicts how the maximum
frequency of operation is reduced as the number of processors keep increasing.

 Figure 55 Maximum frequency of operation of the shared FPU (dark blue) vs multiple versions of simple FPU (red)
after synthesis for Altera EP2S15F484C3 device

Shared FPU

Multiple FPUs

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Processors

KL
UT

s +
 KF

Fs

Shared FPU

Multiple FPUs

0
20
40
60
80

100
120
140

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Processors

MH
z

─ 94 ─

3.1.5. Interconnection Networks
FPGA manufacturers promote to interconnect IP cores using multiplexed buses

(see Figure 56). In this case, multiplexed does not mean that addresses and data are shared
and multiplexed in time, but it means that the bus is implemented with multiplexors rather
than tri-state logic gates. A multiplexed design allows simultaneous transactions in multi-
master designs if no collisions occur.

The bus principle relies in the fact that a bus master can place read and write
operations to any address of the system memory map. Slaves connected to the bus must
have a starting address, and a size span so that masters can correctly address them.

 Figure 56 Multiplexed Bus

 Altera uses the Avalon bus to interconnect the system elements. Networks on chip

(NOCs) were proposed to overcome the scalability limitations of bus-based systems in
complex SoCs [Dally01] [Benini02]. NOCs are often more energy efficient than other
interconnects, are highly scalable and allow boosting design productivity by reusing large
blocks like processors, and network elements. NOCs evolved from all the work
previously done by the HPC community in highly parallel architectures [Duato03]
[Dally04].

Networks connect IP cores (typically CPU cores) by links and routing circuits.
When all routing elements are connected to IP cores we have a Direct Networks. When
there exist routing elements in intermediate layers that are not connected to any IP core
we have Indirect Networks.

─ 95 ─

Networks can be classified by their network topologies. The topology is the
physical arrangement of routers, links and cores. Some example network topologies are
shown in Figure 57-Figure 64.

Direct Network Topologies

 Figure 57 Ring Topology Figure 58 Double Ring Topology Figure 59 Spidergon Topology

Figure 60 Mesh Topology Figure 61 Torus Topology

Indirect Network Topologies

Figure 62 Tree Topology Figure 63 Fat-Tree Topology Figure 64 Butterfly Topology

A hop is defined as the number of steps over the network elements that a

transmission unit has to perform to go from the transmitting endpoint to the receiving
endpoint. Spidergon, and trees topologies focus on reducing the number of hops traversed
when transmitting between two any given endpoints. Reducing the number of hops
reduces the communication latency.

─ 96 ─

Other topologies, like mesh and torus, can increase the necessary number of hops
to communicate various endpoints, but on the other hand, they are better in terms of
regularity, which eases their implementation and eventually allows higher levels of
scalability.

Switching strategy is also an important parameter of NOCs. The main

classification is between circuit switching and packet switching. In circuit switching a
channel is first established by a signaling protocol. When available, the channel is
completely devoted to that communication, whether or not there is information to
transmit. When no more communication is needed, the channel is tear-down by signaling
protocol. Figure 65 illustrates a communication between node N1 to node N4, going
through nodes N2 and N3. Green boxes represent signaling information; white boxes the
transmitted payload; red patterned bars represent that the channel is busy with another
communication; a transparent red patterned bar is used to indicate that another party is
requesting to use the channel but it is unable to do it because this ongoing transmission;
and finally the black arrows represent the acknowledgement responses from receiving
endpoints.

In Circuit Switching the channel is blocked by communicating parties, so if
another party wants to use it it must wait until channel is tear-down. Circuit switching
networks can be implemented with low resource needs, but their blocking nature is a usual
cause of inefficiency, often solved by over dimensioning the number of channels.

 To avoid blocking channels for a long period of time, packet switching networks
divide the information to transmit into packets that are transmitted individually. Different
flavors of packet switching differ in how they manage storage in the intermediate network
nodes.

 In Store & Forward (see Figure 66), a packet arriving to an intermediate node
is completely stored before forwarding it to the next destination. On the other hand, in
Virtual Cut-Through (see Figure 67) the packet is forwarded as soon as possible but if
channel contention appears packets must be stored like in Store & Forward. The high
number of resources needed to store several packets on the routing elements make these
methods unpractical for systems on chip.

The alternative solution is the Wormhole strategy (Figure 68), which subdivides
the packets into smaller flits, which become the unit of transmission. Router storage is
dimensioned to be able to store just few flits per channel. If no congestion occurs the

─ 97 ─

transmitting endpoint injects the packet into the network like in previous schemes.
However, if congestion happens the packet is only partially injected, and all the path to
reach the congestion point is blocked by the different flits of the packet trying to progress.
Although collisions can occur and channels can be blocked for some time due to limited
amount of storage in the intermediate network elements, the resource needs of this
switching scheme is moderate, and in practice is the most used switching method in NOC
design.

 In order to reduce the number of resources needed by network routers I proposed
another switching strategy, which I named “Ephemeral Circuit Switching” [Castells06]
(see Figure 69). In this scheme, payload is embedded with signaling. After the circuit is
just established it is automatically tear-down because the payload has already been
delivered along with the signaling information. For small packets, this is the lowest
possible latency switching strategy. Moreover, the sender has feedback of the successful
reception of the packet. On the contrary, its drawback is its low throughput.

 Figure 65 Circuit Switching Figure 66 Store & Forward

 Figure 67 Virtual Cut-Through Figure 68 Wormhole Switching

 Figure 69 Ephemeral Circuit Switching
 Besides topologies and switching schemes, there are a lot of other network
parameters, like routing strategies, flow control, packet layout, virtual channels, dead-
lock and live-lock avoidance, etc. Moreover, the traffic pattern play a crucial role to
determinate whether the NOC is adequate for the system. If traffic pattern is fixed
beforehand we could create an optimal network addressing that traffic pattern. However,
traffic pattern is impossible to predict in general purpose computing (GPC) systems since

N1
N2
N3

Time
N4

N1
N2
N3

Time
N4

N1
N2
N3

Time
N4

N1
N2
N3

Time
N4

N1
N2
N3

Time
N4

─ 98 ─

different applications exhibit very different network activity and GPC systems are always
ready to host new applications. This is more feasible in embedded systems with few
application scenarios. But as application scenarios can be very different, they could led
to a large amount of different network designs best adapted to each scenario.

Tools for building NOCs: NocMaker
NOC design tools are not only needed to design few general purpose NOCs but to

design a large number of application specific networks. NOC design tools should be able
to create the network and determine system metrics but also to validate it, identify design
errors and system bottlenecks.

Being a logic circuit, NOCs can be designed by building HDL models and
analyzing them. This strategy is followed by tools like xPipes [Bertozzi04], NoCGen
[Chan04], xeNoC [Joven08], and others.

The drawback to work with a detailed HDL model is their low simulation speed.
Higher abstraction models based on SystemC and TLM design level can offer faster
simulation speeds (like in [Talwar08]), but then it is difficult to extract area information,
and synthesis is more complex and too much dependent on the quality of synthesis tools.

To address this issue some frameworks (like xPipes) choose to maintain several
models at different levels of abstraction, so that simulation is fast and synthesis is more
deterministic. But this is non-desirable since maintaining models synchronized is difficult
and error prone.

In order to measure the network characteristics it is important that the circuit is
stimulated appropriately. Hence, stimulation traffic must be created to go through the
network. Statistical traffic pattern generators have been widely used for this (e.g. NoCSim
[Jantsch06], Pande [Pande05]) but tend to be very different from traffic patterns observed
in real systems. It is more convenient to work with real traffic patterns produced by real
processors.

An alternative to inject realistic traffic patterns is to use processor simulation
platforms executing applications that inject traffic to the network, like in MPARM
[Mahadevan05], or by simulating abstract CPU models like in [Bouchhima05].

To make analysis more complex, traffic characteristics can vary depending on the
location arrangements of the computing elements on the network. Tools like SunFloor
[Murali06] and Arteris [Lecler11] addresses the need for such mapping phase.

─ 99 ─

I created my own NOC design tool called NocMaker [Castells09]. The main focus
of NocMaker was to create synthesizable designs, and that the tool provided a rich set of
verification and validation features not common in HDL design tool-flows.

As described before, the NOC design space is a multidimensional space. In some
dimensions only a few discrete values are possible, but other dimensions have a large
number of possible values.

NocMaker can actually create a small subset of all the possible designs. NocMaker
creates a detailed HDL model of all the network elements to obtain accurate information
of the build systems. It can also be seen as a complex HDL generator based on the JHDL
framework as depicted in Figure 70. All the generator parameters are passed to the
generator as an object instance of the NocDesignSpacePoint Java class (NDSP, in short).
NDSPs can be serialized as XML files (see code below) or can be created interactively
through a Wizard process as shown in Figure 71

 Figure 70 NocMaker process flow used to extract metrics from design space points

<org.cephis.nocmaker.model.NoCDesignSpacePoint>
<topology>MESH</topology><removeInputLocalQueue>false</removeInputLocalQueue>
<removeOutputLocalQueue>false</removeOutputLocalQueue>
<queueLength>0</queueLength><routingAlgorithm>XY</routingAlgorithm>
<switchingMode>EPHEMERAL_CIRCUIT_SWITCHING</switchingMode>
<flowControlMethod>FOUR_PHASE_HANDSHAKE</flowControlMethod>
<trafficPattern>PERFECT_SHUFFLE</trafficPattern>
<processorType>ABSTRACT_32_BITS</processorType>
<packetSourceAddressBits>8</packetSourceAddressBits>
<packetDestinationAddressBits>8</packetDestinationAddressBits>
<packetMinPayloadBits>16</packetMinPayloadBits>
<packetMaxPayloadBits>16</packetMaxPayloadBits>
<channelWidth>32</channelWidth><injectionRatio>0.1</injectionRatio>
<injectedBytes>0</injectedBytes><dyadRouting>false</dyadRouting>
<meshWidth>4</meshWidth><meshHeight>4</meshHeight>
</org.cephis.nocmaker.model.NoCDesignSpacePoint>

─ 100 ─

No matter how the NDSP is created, it is used by the building process to create all

the necessary JHDL logic elements. The NDSP object is passed among the different
elements of the circuit hierarchy as they are instantiated, so that appropriate circuits are
created to respond the NDSP requirements. The model, can then be exported to Verilog,
analyzed to get early estimations of area consumption, or simulated to get performance
and power estimations. Those estimations are often used to find an optimal design (or
trade-off) satisfying application requirements.

Figure 71 Some of the NoCMaker Wizard screens to create a simple Mesh Network

JHDL encourages the use of the structural level of design. Designers normally
instantiate very simple logic elements like and gates and registers to build large blocks,
which can be instantiated again to build even larger blocks, and so on and so forth until
the whole system is built. The result of this process is a hierarchy of logic circuits whose
leaves are primitive logic elements. The number of these primitive elements is limited

─ 101 ─

and they originally do not contain any information of area usage. Area usage is usually
counted as number of Logic Elements (LEs) for FPGA devices and number of gates for
ASICs. NocMaker estimates area usage by assigning a number of logic elements (LEs)
or an equivalent gate count to each primitive logic element. Then, the area usage of a
NOC design is computed by summing up the resource count of all the leaves of the
structural hierarchy (see Figure 72).

This kind of measurement is simplistic and should not be considered an exact
prediction of the real area occupancy of the final design because synthesis tools perform
resource trimming of unnecessary logic. Moreover, FPGA devices have very different LE
architectures. So from vendor to vendor, or even from device to device they can embed a
varying amount of logic. Nevertheless, for architectural design space exploration, it is
only required that the relations found in early area estimations of circuits match with the
relations of their real synthesized versions.

Figure 72 High level view of a 4x4 mesh created in NocMaker (left), and its resource usage estimation (right)

A comparison between the resource estimation and the real resource needs of the

different routers of a simple NOC is shown in Figure 73. The results have been
normalized to eliminate the effect of the disparity between the absolute value of the
estimated and synthesis results. This graph shows that, although resource estimations can

─ 102 ─

be far from the real observed resource needs, they still maintain the same proportion with
a maximum error around 15%, which I consider quite reasonable.

Figure 73 Predicted (blue) and real (yellow) logic elements usage for different routers of an Ephemeral Circuit

Switching NoC with a 3x3 mesh topology. The values have been normalized to the largest elements

NOC building parts are mainly Routers and Network Adapters (NAs). These
circuits can be fairly simple and easy to independently verify. However when several
modules are combined to form a network on chip verification becomes very complex. A
simple 4x4 mesh NOC, for instance, has 80 communication links among routers. If each
link has 32 data bits and two control bits the number of wires that interconnect the routers
is 2720. Analyzing the behavior of such a system at the inter-router level with classical
waveform analysis becomes impossible as, after grouping 32 data bits, you still have 240
waveforms to look at. Moreover, the network dynamics is crucial in the appearance of
errors. The problems that can arise can involve several flits at several different routers, or
could be triggered when a very specific traffic pattern has occurred at a certain region of
the NOC. It is mandatory to be able to mix classic HDL verification methods (like
waveforms) with high level network analysis tools. NocMaker provides high level
visualizations, but I will cover them in the following chapter. On the other hand,
NocMaker uses other techniques like hardware assertions and the preexisting JHDL
facilities such as the circuit browser, the interactive schematic view (Figure 74), which
presents all the values of the circuit wires in real time during simulation.

0
0,2
0,4
0,6
0,8

1
1,2

Route
r(0,0

)

Route
r(2,0

)

Route
r(0,2

)

Route
r(2,2

)

Route
r(1,0

)

Route
r(0,1

)

Route
r(2,1

)

Route
r(1,2

)

Route
r(2,2

)

─ 103 ─

Figure 74 JHDL interactive schematic view of a router. In the schematic the values of each wire is annotated and is
updated in realtime as the clock advances.

Combining all these techniques a designer can detect problems at a high level and
successively go to deeper levels of detail to identify the final causes and correct them.
The resulting design can be automatically exported to Verilog to be later synthesized by
FPGA synthesis tool-chains. Several networks have been synthesized using this process
for Xilinx and Altera FPGAs. Table 32 shows some example synthesis results of different
4x4 mesh NOCs implemented in NocMaker and synthesized in FPGAs.
Table 32 Resources for different NoCs designed in NocMaker implementing a 4x4 Mesh topology with different
switching strategies. Both, area estimation and synthesys results for the EP1S80F1508C5 device are reported.

Design NocMaker FPGA
estimated resources (LUTs+FFs) LUTs FFs Total resources

Wormhole Switching 31760 16592 6640 23232
Ephemeral Circuit Switching 8020 5488 2468 7956

─ 104 ─

3.1.6. Network Adapters
Network adapters are used to connect an IP core (like a processor) to a network.

Obviously network adapters must comply with the protocol used by the network.
NocMaker, already creates the network adapters to interface Microblaze and NIOS soft-
core processors with the created NOCs.

 NOCs can be designed to avoid dead-locks [Duato93], but sometimes dead-locks
can be introduced by message dependencies on the higher layers of the communication
stack as described in [Murali06b]. A usual technique to avoid message-dependent
deadlocks is to use multiple networks, such as used in [Volos12]. Network adapters must
play an important role, especially if they have to make the use of several networks
transparent to higher layers. In fact, a detail that is not sufficiently stressed from my point
of view in NOC research is the possible roles of the network adapter in the communication
stack.

 In many shared memory CMPs (like [Kwon15]) the NOC is part of the memory
hierarchy, and memory read and write transactions are encapsulated over the underlying
transport and network layers of the communication stack (see Figure 76). NOCs usually
implement up to the network layer of the ISO stack. In distributed memory architectures
the network adapter usually implements the adaptation between a transport layer
implemented in software and the network layer provided by the NOC (like in
[Matilainen11]). It is worth to mention that any given architecture favors one
programming model or the other, but it does not completely determine it. In fact, a shared
memory programming model is possible on a distributed memory machine (as described
in [Basumallik07]), and a message passing programming model is possible on a shared
memory machine. Actually, most Message Passing Interface (MPI) implementations
handle intra-node communications through shared memory (as described in [Tang00]).

─ 105 ─

Figure 75 Standard NOC communication
protocol stack

Figure 76 Memory transactions encapsulation over NOC
communication protocol stack

 Network adapters can be even more complex if the communication system

provides services of higher level layers. In [Fernandez14] the NOC and the adapters
provide support for MPI primitives. In [Joven13] the network and the adapters provide
support for QoS.

 As shown in Figure 77 , in memory transactions over NOC encapsulation network
adapters must be coupled transparently in the memory hierarchy, as part of the cache
structure, or serving as a bus bridge. In any case, the programmer is not necessary aware
of the existence of the NOC as bus transactions are transparently translated to packet
communications. On the other hand, in non-transparent NOCs, networking primitives
must be explicitly invoked by programmers, either directly or through intermediate
system libraries such as message passing APIs. In this case network adapters can be
coupled to processors either as core connected to the processor bus (as shown in Figure
78) or as part of the processor functional units (as shown in Figure 79).

Figure 77 NAs in memory
transaction encapsulation
over NOC

Figure 78 Bus attached NAs Figure 79 Tightly coupled NAs

 Application
MP API

Transport
Network
Data Link
Physical

Application
MP API

Transport
Network
Data Link
Physical

Network
Adapter

wire protocol

Network
Data Link
Physical

Application

Memory
System

Transport
Network
Data Link
Physical

wire protocol

Memory
transaction

encapsulation

Processor
Network
Adapter

Transport

Memory
transaction

encapsulation

Memory

Memory
Network
Adapter

─ 106 ─

In NIOS tighter coupled NAs can be implemented by using custom instructions.
In Microblaze a tight coupling can be achieved by using FSL interfaces. The benefit of a
tighter coupling is a latency reduction.

Latency measures the time between message generation and message arrival.
Point to point latency depends on the distance between the communicating endpoints,
often measured as number of hops, but also on the architecture of the different NOC
modules. It is interesting to understand how latency and throughput influence the time to
complete the running application. Although total network throughput if often the most
considered metric, latency can be the dominant factor that determines performance for a
number of application. For instance, in a request/response transaction, if the packet is
short, the round trip delay of the transaction is dominated by latency. A big latency causes
a big round trip delay whereas a low bandwidth does no deteriorate it significantly, as
shown in Figure 80. In the case b of this example, although a higher bandwidth allows a
lower injection time (ITb < ITa) the higher latency (Lb > La) dominates, thus producing a
bigger roundtrip delay (RTb > RTa).

Figure 80 Roundtrip delay of request/response transactions with (a) low bandwidth and low latency and (b) high
bandwidth and high latency

Other illustrative situations are found in stream processing applications. For
instance, an audio communications system, where audio samples are produced at a certain
interval and are processed by various modules in a dataflow pipeline. A usual goal in such
a system is to reduce the total system delay. As shown in Figure 81, in case b a bigger
latency (Lb > La) contributes to a large total delay (TDb > TDa) whereas a high bandwidth
reduces the injection time (ITb < ITa), but as a consequence it only reduces the time
window in which processing can occur but does not affect significantly the total delay.
Again latency is the dominant factor.

 RTa RTb a) b)

ITa ITb

La Lb
Time

─ 107 ─

Figure 81 Total delay in stream processing applications with (a) low bandwidth and low latency and (b) high bandwidth
and high latency

Reducing latency is important, but, in absence of congestion, what are the sources
of latency? There are four possible sources of latency, the links, the routers, the NAs and
the system software. Much research is devoted to try to reduce the link delay and the
routers delay. System software can have a big influence in latency but this is more usually
approached by application specific analysis. Network adapters are the other source of
latency. As described in [Henry92] there are several contributions to latency that are
related with the NA. First, NAs are usually attached to the processor bus, and a bus
transaction usually involves several clock cycles to complete. Second, the communication
with the NAs is encapsulated a non-negligible amount of device drivers code that has to
be executed at every message transfer. This is a considerable cost when data to transmit
is short. Finally, doing some polling on a status register is a usual technique to wait for
the occurrence of an expected event, like a received packet. From the processor
perspective this supposes a conditional branch that causes stalls in a simple processor
pipelines, with the corresponding performance loss.

Figure 82 Waveform of the bus transactions at the sender and receiver processor, and the NoC wire protocol. Notice
the overhead introduced by software (polling the status register) in a short message transmission over a NoC

An empiric test of the mentioned problems is shown in Figure 82. In this case I

show a short packet transfer over a NOC between two NIOS II processors that use a bus-

TDa TDb Time

a) b)

La Lb

ITa ITb

NoC
wire protocol

READ
status register
is data available?
 READ Received

Packet

WRITE Packet to
Send

─ 108 ─

based NA. Notice that the sending processor injects the message in just two cycles and
the NOC needs four additional cycles to transmit it to the receiving node. However,
twenty cycles are wasted between the successful polling of the status register to sense the
incoming message and the actual ejection. Considering these results, it seems reasonable
to firstly optimize the NA design before paying attention the network architecture.

In order to reduce the latency I propose to extend the instruction set of the
processor to add specific communication instructions that help to offload the functions of
a message passing programming framework. A similar approach is used by [Henry92]
[Lu03].

 The proposed new instructions are listed in Table 33. They try to be general
enough to be applicable to different network topologies, switching methods, and network
adapter architectures.

Table 33 Proposed new instructions

Mnemonic OPERANDS Result
setdsaddr A=address -
setsraddr A=address -
istxready - 1 = ready, 0 = otherwise
txtto32 A=packet -
txdst A=payload -
tx32 A=flit -
tail32 A=tail flit -
isda - 1=data available, 0 = otherwise
istail - 1=is tail flit, 0 = otherwise
waitda - -
rxsize - packet size
rx32 - flit

The setsrcaddr and setdstaddr are used to inform the network adapter of the source

and destination addresses of the next packet to transmit. Payload can be injected using
txdst instruction. This approach allows to avoid the software overhead of adding the
message headers at each packet. On the other hand, txto32 is used to send a whole packet
of 32 bits containing the header and payload. This instruction only has sense in Ephemeral
Circuit Switching with a packet size of 32 bits, longer packets in Wormhole switching
would not use it.

Packets in wormhole switching would use tx32 to inject flits of a packet and tail32
to inject the last flit of the packet. The first flit is not explicitly identified as it can be
automatically detected with the following call to tx32 after a tail32. This avoids using an
additional instruction to specify the header. All sending instructions txdst, tx32, and

─ 109 ─

tail32 are blocking to avoid polling for the availability of the transmit channel, although
a istxready instruction is also available to allow a non-blocking operation. Support for
multi-cycle custom instructions is necessary to allow blocking operation. Although not
covered in this work blocking instructions could be used to gate the processor clock until
data is received in order to save energy.

On the receiving part, rx32 is used to receive a complete packet or flit in a blocking
way. In ephemeral circuit switching it receives a whole packet. In wormhole switching if
the network adapter stores the entire incoming packet the processor could ask for the size
of the incoming packet with rxsize instruction and perform multiple rx32 instructions to
eject the packet. If the NA does not store the whole packet istail instruction should be
used in a loop to sense the tail. To wait until some incoming data is received either the
blocking waitda instruction or the non-blocking isda can be used.

Figure 83 Performance gains due to latency reduction

The impact in latency reduction can be up to a factor of 3 if we compare the same
system using a bus attached NA vs. a custom instruction implementation on NIOS II.
Figure 83 shows the obtained results when running two micro-benchmarks (tokenpass
and reqmas) on a small NOC-based MPSOC. The tokenpass benchmark consist of a short
message (token) that is being sent from a node to the next one until the token returns to

1,21 1,18

2,91

2,43

0

100

200

300

400

500

600

700

NocMaker
tokenpass

NocMaker
reqmas

tokenpass reqmas
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

Avalon NA CI NA Speedup

─ 110 ─

the original sender. The reqmas benchmark consists of a request and response transaction
that a master node sequentially performs to all their slaves.

3.2. Architectures
In chapter 2 I already described some architectural methods that try to increase

the operations per second achieved by a processor. Another option to achieve the same
goal is to replicate processors. Ideally a number of processors could be replicated as much
as it is allowed by the available resources, and the performance would be multiplied by
the number of the processors of the system in case of optimal implementation.

 However, there are two important drawbacks that limit the performance
improvement of this approach for any application. First, parallel processors must share
some resources, and this is a source of contention that will limit the ideal linear speedup.
Second, applications cannot always be transformed from sequential code perfectly
parallel code. Often, parallel applications still have portions of sequential code and, as
observed by [Amdahl67], those parts eventually limit the potential speedups of the system
when executed in a parallel computer. Its application to parallel programming is as
follows, let ܨ௣௔௥௔௟௟௘௟ be the fraction of parallel code, and ܰ the number of processors. The
speedup factor ܵ௧௢௧௔௟ of parallel execution is determined by (3.7).

ܵ௧௢௧௔௟ = 1

൫1 − ௣௔௥௔௟௟௘௟൯ܨ + ௣௔௥௔௟௟௘௟ܰܨ
 (3.7)

Parallel architectures would fall in the MIMD classification in the Flynn’s

Taxonomy, but the number of possible designs is huge. Multiprocessors are composed by
assembling processors, caches, memories, and interconnection networks in different
possible architectures.

One of the crucial design options is how the memory is accessed by the different
processors, and whether it shared or not. When memory is shared, it is important to decide
if its access latency must be uniform across all the system or not, or even if a notion of
shared memory is needed although it actually does not exist. With these considerations I
made the following classification:

─ 111 ─

Table 34 Different multiprocessor architectures by their memory architecture and cache use
 No Cache Independent Caches Coherent Caches

NORMA

n/a

UMA

NUMA

COMA n/a

NORMA: NO Remote Memory Access. Usually called distributed memory, or message
passing architectures. In this kind of architectures no memory is shared among processors.
Each processor has its own private memory and cooperation is achieved by explicit
communication calls.

UMA: Uniform Memory Access. Some network designs can enforce the exact same
latency for all memory banks. This simplifies the logical view of memory, which can be
seen as a simple block in contrast with what happens in NUMA.

NUMA: Non Uniform Memory Access. When memory is shared among a large number
of processors it is often split in several memory segments that are connected to all
processors through a network. It is usually difficult to maintain the same access latency

─ 112 ─

from all the processors to all memory blocks. In NUMA, applications must consider data
location to obtain optimal performance.

COMA: Cache Only Memory Architecture. Local memory is used only as cache.

Another important aspect is whether cache memories are present, and whether
they maintain coherency. Maintaining coherency is an important overhead for the
memory system. If we combine the previous classifications we get a number of possible
multiprocessor organizations.

3.3. Combining building blocks to create architectures
The building blocks presented in section 3.1 are often created by complex circuit

generators, but they always result in an HDL code that can be integrated more or less
easily to create even more complex parallel systems.

Nevertheless, as the number of modules can be of the order of hundreds and the
number of connections can easily grow to the order of thousands, coding the instantiation
and connection of all the modules of such a complex system in classic HDL languages
like VHDL or Verilog can be a daunting task. More modern HDL languages like
SystemVerilog can slightly alleviate it, by introducing the concept of interfaces to group
several related input and output ports. However the numbers are still excessive, and can
easily cause coding errors.

This process can be improved by using high level architecture creation tools
provided by FPGA manufacturers. Altera, for instance, provide QSys, which supersede
the former SOPC design tool that was addressing the same process. In QSys designers
can integrate IP blocks and connect them graphically. Connections are based on
interfaces, not signals, simplifying the visualization and minimizing the probability of
introducing design errors.

─ 113 ─

Figure 84 QSys interface for a 4 NIOSII multiprocessor

Figure 84 depicts the QSys user interface to describe an MPSoC system with 4

NIOSII cores sharing an On-Chip Memory, a PerformanceCounter, and a Hardware
Mutex. Although the system is not very complex the user interface to describe all system
elements and connections is considerably big. For bigger systems, like the 16 core
MPSoC shown in Figure 85, the user interface is already limiting the capacity to glimpse
the connectivity of the system and debug for potential errors.

─ 114 ─

Figure 85 QSys multiprocessor system with 16 NIOS II processors

QSys allows working with hierarchies of elements. That could allow to describe

some systems in a graphical way, and still, with a manageable complexity. However, I
propose a custom generator approach to define the complete system with simple
parameters. The toolchain is depicted in Figure 86.

─ 115 ─

Figure 86 Many-soft-core architecture building toolchain

The main part of the system is the Many-Soft-Core Builder application (see Figure

87). This is a Java application that I have developed that generates a QSys file with the
system properties selected in the user interface. This allows to define QSys files with a
large number of elements without being limited by the QSys graphical user interface,
which is not enough efficient when working with a large number of elements.

The generated QSys file uses IP cores from the Altera IP library. Some of the
cores (like UARTs and Memories) are already provided by Altera, but other IP cores are
imported from external IP core providers. External IP cores can be provided as Verilog
or VHDL files, but I usually develop my cores with JHDL for easier verification and I
export them into Verilog. Actually, JHDL did not originally support exporting designs to
Verilog. I implemented this feature, and the automatic creation of QIP and TCL files for
easier integration of modules in Quartus.

The NOC and NAs are created by NocMaker. When exporting to Verilog,
NocMaker creates an IP block for the NOC and potentially multiple IP blocks for NAs
depending on the characteristics of the NOC. This is so because some NOC designs can
reuse the same NA IP for all the nodes, while in other cases the NA is specific for every
node.

.java JHDL
framework .v.v.v

.qip
HDL

Model
VerilogNetlister

QIPWriter

TCLWriter _hw.tcl

IP Library
Quartus
Import

IP

Many-
Soft-Core

builder
design

parameters .qsys

.v Quartus
Import

IP

.v.v.vQuartus
Qsys

generation

.v.v.v

Quartus
Synthesis bitstream

Altera
Programmer

FPGA

.xml NocMaker HDL
Model

wizard

.v.v.v

.qip

VerilogNetlister

QIPWriter

TCLWriter _hw.tcl
Quartus
Import

IP

NOC and NAs

Additional IP cores described in JHDL

Additional IP cores described in Verilog

Many-Soft-Core Architecture

─ 116 ─

Figure 87 Many-Soft-Core builder user interface

 The resulting IPs are incorporated to the Quartus IP repository and later referenced
by the QSys file created by the Many-Soft-Core builder tool. Quartus translates the QSys
file into multiple HDL files during the synthesis process, and they are combined with
other HDL files that could be part of the project to define additional blocks of the system
to address the particularities of the FPGA board in which the system is running. The
synthesis process creates a bitstream file that is programmed into the FPGA for its
execution.

3.4. Conclusions
Many-soft-core platforms are created by combining many IP blocks to build

parallel architectures. FPGA vendors already provide IPs for most of the required blocks.
For instance, Altera offers the QSys tool to easily instantiate elements from a large library
of IP (proprietary o third party). The main element that is replicated when creating a
many-soft-core is the processor.

In this chapter I presented the details of the Altera NIOSII processor and the
methods provided for its customization to increase of the performance and energy
efficiency. Also, I introduced the alternative MIOS processor, which is ISA compatible
with NIOSII, is also presented. Having full access to the source code of the processor
gives the flexibility to implement ISA subsetting or other architectural changes that could
impact the energy efficiency of the system.

─ 117 ─

I analyzed the different possible floating-point support options. Single precision
FPUs use as many resources (if not more) as a NIOSII processor. I demonstrated that
those resources are highly underutilized and that better efficiency could be achieved by
sharing them among a number of processors.

QSys automatically creates the necessary interconnect among the instantiated IPs,
although not many parameters of the created interconnect can be tuned. I described
NocMaker, a tool to create many possible different NOC designs that can be used to
interconnect processors by an alternative mean. NOCs can be implemented with different
topologies, routing algorithms, switching strategy, etc. I introduced a particular switching
strategy, “Ephemeral Circuit Switching”, which I used to minimize latency in NOC
designs. Processors are connected to the NOC through NAs. I described different
implementations of NAs stressing the benefits of tightly coupling NAs to processors.

The lack of cache coherency in commercial tools limits the types of parallel
architectures that can be build.

Finally I described the limitations of graphical-based design tools to create a
many-soft-core platforms and proposed the Many-Soft-Core Builder application that I
will use in the rest of the thesis to create highly scalable systems. The tool is able to create
non-coherent cache UMA, NORMA, or a hybrid UMA-NORMA by combining shared
memory with message passing support over NOC.

─ 118 ─

─ 119 ─

4. Software Development Process for
Many-Soft-Cores

The expected benefit of using Many-Soft-Cores instead of creating specific
hardware is that designs will be generic and more easily reused for several applications,
and that programmability will be easier. But that would not be possible without the
support for convenient parallel programing models.

The main focus of this chapter consists in providing effective parallel
programming models for them, so that those benefits can be reached.

4.1. Parallel Programming Development Process
The development of parallel code is much focused on obtaining the best possible

performance that a parallel platform can provide. It usually starts with a sequential code
that has to be transformed into a parallel program to be later compiled to the target parallel
platform. Performance information has to be collected and analyzed to detect bottlenecks
in order to guide changes to achieve potential improvements. The development process
is highly iterative (see Figure 88), and it is usually complex one due to the usually huge
amount of information to analyze. The techniques used to reduce the execution time need
a deep understanding of the underlying hardware architectures.

Figure 88 Parallel Programming Development Process

4.1.1. Sequential code analysis
Parallelization is often understood as rewriting a sequential program source code

into one using a parallel programming language or API for its execution in an architecture
containing multiple processing units, i.e. architectures falling in the SIMD and MIMD
classification of the Flynn’s taxonomy. Most often, for SIMD architectures, it is not

.c Performance
Info

Sequential Code

Compile.c

Optimization

Parallel Code

Execution.exe

Analysis /
VisualizationOptimization hints

Parallelization

─ 120 ─

required to rewrite the source code as parallelization is usually performed by compilers,
and programmers do not need to be aware of it. For vector architectures parallelization is
synonymous of vectorization (like as used in [Lorenz05]), and in VLIW it is often just
called VLIW compilation (like in [Stümpel98]).

 Unless optimization is done at the assembly language, parallelization for SIMD
architectures is seldom a manual process. Compilers have an important role in this case.
Performance can vary depending on the optimizations selected by compilation flags like
presented in [Inglart08]. Tools like MAQAO [Djoudi05] can be used to determine the
quality of the binary code generated by the compiler.

 However, In MIMD architectures, parallelization is usually a complex manual
process that might involve complex source code refactoring. Thus, the goal of
parallelization is to transform the application to execute it using ܰ processors and reduce
its execution time by a factor ܰ. Before investing too much time in this process, some
observations must be made:

1. In software, a Pareto Principle often occurs [Jensen08]. Most of the execution
time is used to execute a small portion of the code. This implies that not too much
effort should be devoted to parallelize the whole application, since most of the
time is spent on just portions of it. Those are usually called hot-spots or
bottlenecks.

2. The achievable speed-up can be limited by the non-parallelizable (sequential) part
of the code, as stated by Amdahl’s law [Amdahl67].

3. Data dependence can limit the parallelization factor as operations cannot start on
processors if they are still waiting for results of other processors.

4. Due to the implementation details of the memory hierarchy data locality can have
a great impact on performance [Kennedy14].

Before manually parallelizing a sequential application, it is often required to

analyze its performance in order to detect its hot-spots, so that optimization is focused on
improving the performance of the detected bottlenecks.

Commonly, data access must be carefully analyzed. It is interesting to determine
what are the existing dependencies and the locality of data accesses.

There are some tools that help in both aspects of this analysis, like Intel’s Vtune
[IntelVt], Valgrind [Nethercote07], Acumem’s Threadspotter [Acumem], Critical Blue’s
Prism [CritBlueP], VectorFabrics’ Pareon [VectorFabricsP], etc. The principle behind

─ 121 ─

these tools is to collect information about the instructions executed and the memory
positions accessed. They usually combine static analysis of the code to predict
performance and data accesses, with dynamic analysis to have better insights of the
runtime behavior of the applications.

 Once bottlenecks, dependencies, and data access details are obtained, sequential
code can be manually parallelized to transform it into some kind of parallel description.

 On the other hand, some parallelizing compilers that can do this tasks semi-
automatically. Some assistance is usually needed to determine the hot-spots and
techniques to use.

4.1.2. Parallel Programming Languages and APIs
When parallel architectures, which were able to execute several instruction

streams concurrently, were widespread the next challenge became how to efficiency
describe those multiple instruction streams. The basic ideas were already sketched almost
forty years ago in many works, like [Critcklow63][Hansen70] [Hoare76] [Wirth77]
[Hoare78][Birrell87] [Cooper88] and many more. The basic principle of most approaches
is that several units of execution exist. Proposals differ in how they call these units of
execution (either tasks, processes, or threads), in the resources associated with them, their
communication methods, and how its execution is scheduled.

The dominant approaches were derived from 1) the notion of communicating
sequential processes explicitly through communication primitives [Hoare78] and 2) the
notion of independent processes working with a shared state accessible from processes
that can coordinate by using special synchronization primitives [Cooper88].

From those initial works, there have been a lot of proposals trying to rise the
abstraction layer and ease the description of parallel workloads. New programming
languages have been addressing parallelism from the start, like Java, Erlang, Chapel, Cilk,
Haskell, StreamIt, SmallTalk, UPC, Scala, F# and many more. They support previous
concepts in different ways but still have not been widely adopted by the HPC community.

[Diaz12] identify Threads, OpenMP and MPI as pure parallel programming
models. The pure parallel programming model concept is used to illustrate how these
programming models adapt naturally to the possible underlying architectures. Threads
and OpenMP to shared memory architectures, and MPI to distributed memory
architectures.

Nevertheless, since programming with threads is complex and error prone, the
HPC de-facto standards are OpenMP, and MPI. They both have good support for gcc.

─ 122 ─

Using standards is also a good way to reuse all the knowledge and tools that the
community has created for decades, and this goes in favor of increasing the, productivity
factor by reducing the time needed to learn new languages, but also by being able to reuse
all the available tools.

MPI provides a communication library, and a runtime system to execute parallel
applications on multiple processors. MPI is in fact a specification defined by the MPI
Forum, and there are many conformant implementations like OpenMPI and MPICH. It
advocates for explicitly embedding communication primitives in the source code, making
it hard to read and maintain.

On the other hand OpenMP advocates for a pragma based approach making the
compiler responsible for the efficient parallelization of the application. A fairly easy way
of parallelizing is by using OpenMP compiler directives. With this approach the compiler
takes care of managing the threads needed for the code to work in parallel.

4.1.3. Performance Analysis
After first parallelizing an application it is unlikely that a speedup factor of ܰ is

achieved running on ܰ processors, or even if this almost achieved for a certain low value
of ܰ, it is not generally applicable for an increasing value of ܰ. The speedup factor can
be plotted as a function of N, we call it scalability profile. A generic goal is to get an
almost linear scalability profile as shown in Figure 89, but due to many possible reasons
a bad scalability profile is often shown. An optimization process is needed to refactor the
parallel source code in a way that a scalability profile as close as possible to the ideal
linear speedup is achieved. In some uncommon cases even super-linear speedup is
achieved. This is usually the result of improving data locality when partitioning the
workload among the collaborating processors.

Figure 89 Scalability profile

Ideal Good

BadSpe
edu

p

Processors

─ 123 ─

The optimization process, often called performance tuning, is an iterative process
in which the performance is measured and analyzed to decide how to modify the
application source code to increase the performance.

Collecting and analyzing performance information is crucial to optimize the
application, but what information do we need?

One could measure total task time and make assumptions about the reasons that
limit performance. Then one should modify the code to address the assumed reasons and
execute and measure again to validate them. If one suspects that the performance is driven
by a limited number of factors that can have a discrete number of values, one could try to
follow a brute force approach and measure all the design space, or a representative subset.
Although it is not used to optimize a parallel application, the approach of measuring total
task time is used in [Silva08] similarly to find optimal points in a design space.
Nevertheless, total task time is an indirect measure of the real reasons that block
performance. It is neither useful to identify Hot-spots.

A slightly better picture of the performance determinants can be obtained by
collecting the total amount of time spent in every function of the application, and the
number of invocations of them. This information can be used to effectively detect hot-
spots and avoid optimizing non critical parts of the code, which majority as described by
the Pareto Principle. Collecting aggregated information of function invocations and time
spent in function is called profiling. There are two techniques to do profiling: Sampling
and Instrumenting.

In sampling based profiling (Figure 90) a timer is programmed to get the value of
the program counter (PC) periodically. With the PC value and the application symbols
table the profiler infer the name of the function being called at every sample. By collecting
all the measures over the execution time the profiler can get the number of invocations
and the time spent in each function. A good things of this method is that it can work with
the binary file, so no modifications to the source code are needed. On the other hand, if
sampling frequency is low the overhead introduced by profiling can be very low. This, of
course, can go against the accuracy of the measurements, since events could be even
missed. If sampling frequency is too high, the overhead can be excessive and modify the
normal program behavior. Sampling based profiling in many tools like Intel’s Vtune and
Microsoft Visual Studio 2015, and GNU gprof, to name a few.

─ 124 ─

Figure 90 Sampling Profiling. The upper bar represents the execution of functions as time progresses on the

application under test. The lower bar represents the perceived execution of functions. Notice that the sampling
process introduces some error.

In instrumentation based profiling (Figure 91) the compiler introduces hooks at
the prolog and the epilog of every function to collect time and invocation information.
The aggregated information for every functions is usually maintained in memory during
runtime by the profiling code added by the compiler and flushed to disk at application
exit. The resulting information is analyzed and presented by another tool at the end of the
profiling session.

Figure 91 Instrumentation Profiling. . The upper bar represents the execution of functions as time progresses on the

application under test. The lower bar represents the perceived execution of functions. In this case no error is
introduced by sampling period.

Application profiling is usually understood as the process of gathering histogram
information from the functions of an application. The usual observed metrics are the
number of function calls and the time spent inside every function. Profilers can be based
on periodically sampling and collecting the value of the program counter or either
instrumenting the entry and exit of every function. Sampling profiling has usually lower
overhead although it also has lower accuracy. Accuracy vs. overhead if a tradeoff
controlled by the sampling frequency as depicted in Figure 92. The blue boxes represent
the time spent in the function that collects the necessary information. When sampling
frequency is low (b) the original execution time of the application (a) is only slightly
incremented, but the profiler never knows that function f2 is called. So the results will be

─ 125 ─

misleading. On the other hand if sampling frequency is incremented (c) the profiler will
know that f2 is called but the execution time will be substantially affected.

Figure 92 Tradeoffs between Accuracy and Overhead in Profiling. a) Original application execution. b) Profiling with
low sampling frequency. c) Profiling with high sampling frequency.

Profiling helps in identifying hot-spots, but still do not provide enough
information to completely identify the causes of bottlenecks. Some bottlenecks could be
caused by data dependencies, or by sequential parts dominating over parallelized code,
as described by Amdahl’s law. These behaviors would not be captured by profilers, as
they work on aggregated information.

A way to catch them is to record the absolute timestamps of every function call at
prolog and epilog. Data dependencies can be found, at some extend, by analyzing the
details of messages exchanged among processors in MPI applications, and in calls to
synchronization functions for OpenMP applications. Compiler instrumentation can be
used to automatically insert hooks that record this information in memory and later flush
it to disk. This method is often known as tracing, and it is implemented by tools like
VampirTrace [William09] and Score-P [Knüpfer12].

But sometimes, with this information, it is still not possible to understand the
source of performance penalties, an even more insight is necessary. This happens, for
instance, if the bottlenecks are caused by the memory hierarchy and too many cache
missed occur, or it could also happen because of too many processor stalls, or a limit on
the functional units of the processor. To measure this details it is usually needed to collect
the values of special processor counters that collect this kind of information, when
possible. This information can be also included in activity traces.

 All this potentially huge amount of information can be later analyzed. This activity
is known as Post-mortem trace analysis, and it is a usual technique used by the HPC
community to optimize parallel applications. Tools like and Vampir [Nagel96]
[Brunst01], Paraver [Pillet95], TAU [Bell03] are commonly using this approach to
perform performance analysis on very-large systems with thousands of processors.

─ 126 ─

In order to reduce the amount of information produced in tracing, there is usually
the option to manually instrument the code to select just the functions of interest. With
this method the overhead can also be minimized but some resolution is lost.

4.2. Shortcomings of the development process for soft-core
multiprocessors
Although FPGA providers provide the means to build multiprocessors they still

lack a complete toolchain that allows to follow the iterative process depicted in Figure 88
effectively. There is also a fundamental difference on the resources available in typical
systems using soft-core processors and the resources available to standard processors
used in HPC, and this differences also influence the features offered by toolchains.
Computers using standard processors have large storage in forms of memory and disks
and powerful user interaction methods, either via human interface devices or via
networking devices and remote terminals. The large storage allows to include complex
operative systems like GNU/Linux, and complete software development toolchains
covering all the steps previously described.

On the other hand, soft-core based systems are often resource limited, having less
memory and no disks. They usually do not support operative systems and user interaction
is limited. Development cannot be done from the same system but it must be done from
a host computer that interacts with the reconfigurable system.

 This forces to use cross-compilation to develop applications for soft-cores, i.e. the
compilation process is done in a host computer with a compiler emitting a stream of
instructions of the target soft-core ISA. The executable must be downloaded to the target
system and debugging is done remotely. This limits the visibility of the executable
program.

 But this is not the most limiting factor, in fact some embedded systems using
standard processors are also developed under similar constraints.

4.2.1. Lack of parallel programming support
Altera and Xilinx provide a development toolchain based on GNU tools, but they

still do not support OpenMP or MPI. Soft-cores are usually used to run embedded
applications with no operative system or with minimal runtime systems like eCos
[Massa03] or Xilkernel [Saha13]. This small runtime systems (also called kernels)

─ 127 ─

provide threads, but limited to a one processor scenario. Lack of threads for SMP
architecture is partly motivated as well by the usual lack of cache coherency support.

To make it worse, manufacturers are not promoting the Single Program Multiple
Data (SPMD) paradigm. When implementing shared memory systems, Altera, for
instance, promotes to completely divide the memory among the processors. Figure 93
depicts such division for a system with two processors. The Reset section contains the
code executed on processor boot. The Code section contains the instructions of the
application. The Heap section contains the objects dynamically allocated, and finally
Stack section contains the local function variables, that are allocated and unallocated as
functions are called and exited.

Figure 93 Memory division adopted by Altera for Soft-Core shared memory multiprocessor

 This division can be reasonable in Multiple Program Multiple Data scenarios, i.e.
when cores execute totally different applications, but there would be few reasons to share
the same memory. If all CPUs should execute the same code Reset and Code sections
(which are read-only) would be replicated as many times as processors in memory, and
the Heap space available to a processor allocating memory would be limited to a the
subsection of the allocating processor, ignoring the available Heap space on other
processors Heaps. This is completely inefficient.

4.2.2. Lack of appropriate Performance Analysis tools
A large number of applications implemented on FPGAs described in academia

focus on performance of the design related to other possible implementations, comparing
the Total Execution Time (TET) to determine the best implementation. This is even the
case for works based on soft-core processors. Surprisingly there is little work on more
detailed performance analysis for soft-core systems to understand the ultimate roots that

─ 128 ─

determine the performance. There are some very notable exceptions ([Curreri10]
[Koehler11]) but do not focus on the specific multi-soft-core and many-soft-core specific
issues.

Compared with typical HPC performance analysis techniques FPGA provide both
some constraints and some additional features that can be used to get information of the
system performance.

Logic Analyzer based analysis
A quite rudimentary approach available to FPGAs is to obtain time information

by asserting a signal that can be traced externally by a digital logic analyzer. This is a
very old idea ([Sun99]), but with the proliferation of embedded logic analyzers inside
FPGA devices it became possible without the need of an external logging device
([Altera07]). However the limitation on the signals that can be traced, and the size of the
trace buffer, does not make it a convenient way to analyze a typical complex application.
On the other hand, if the application is partitioned in subsets that are analyzed separately
by this technique the number of re-synthesis and run steps increases making it an
extremely time consuming process.

Profiling
The GNU toolchain includes the gprof profiler, a sampling profiler which is

usually available to popular soft-cores. Performance analysis using gprof is a common
technique to get performance information from soft-cores [Altera-AN391] [Tong07]. It
consists in a three step process, first the application if instrumented by adding the -pg
compilation flag in gcc. When the -pg flag is enabled, the compiler inserts a call to a
function that will keep the count of every function invocation, and registers a timer
callback function that will record the program counter at every sampling period. Second,
the application is executed and its execution generates an output file containing all the
collected information. Since soft-cores do not usually have a file system, the collected
information is typically transferred automatically through JTAG by the nios2-elf-
download tool as described in [Altera-AN391].

And third, the output file is analyzed in a host computer by a visualization tool to
present all the information to the developer. In case of the Altera toolchain, this
application is called nios2-elf-gprof.

Sampling based profiling can be very misleading if the sampling frequency is very
low, because there is a high probability to miss the execution of short functions. On the

─ 129 ─

other hand, if the sampling frequency is very high, it can produce a high overhead causing
a significant alteration on the usual application behavior.

Transparent profiling
An alternative approach to reduce the overhead is to monitor the program counter

(PC) with specific additional hardware. Shannon et al. in [Shannon04] described a method
to continuously monitor the value of the PC. In that work, a hardware module includes a
low address and high address register, comparison logic and a counter. When the PC value
is between the low and high value the counter is incremented. Those registers are typically
programmed with the address boundaries of a function. In addition, the circuit can be
replicated as many times as functions you have to measure. Although this approach is
limited to just a small number of functions the lack of overhead is appealing.

Functional simulation
A large body of research has been devoted to performance modeling based of high

level of abstraction descriptions (for instance [Monton07] [Posadas04] [Posadas11]
[Böhm10]). Starting with RTL hardware simulation one can try to speed up the system
simulation by using higher level models of the same circuits, or one can start directly
from high level design to get to the hardware implementation in an iterative process. This,
of course, comes at losing accuracy (see Figure 94). Why is simulation preferred to
execution on those works? The argument is that hardware design is a costly process and
it is desirable to start software integration as soon as possible to minimize the Time-to-
Market. To do it, functional models can be quickly described to avoid postponing the
development of software.

Figure 94 trade-off between speed and accuracy (from [Posadas11])

This makes sense for ASIC design and for the design of FPGA applications where

custom hardware must be developed from scratch, or when it is too expensive to replicate
the hardware platform. However, for many FPGA based systems the premise of the

─ 130 ─

hardware not being available is more difficult to hold given the large number of IP Cores,
the availability of soft-core processors, and the low cost of some FPGA platforms. So, in
those cases, building a complex virtual platform does not make sense, since building the
actual platform is easier, and, then, it is more convenient to measure timings directly
actual platform to have full accuracy.

Virtual platforms can give a lot of information, however they suffer several
drawbacks. If simulation is done at a low level (RTL) or at a combination of to include
the existing descriptions of hardware IP Cores, the simulation speed is slow. Also, as
mentioned before, if binary translation or functional simulation is used simulation is
greatly accelerated but then time accuracy is lost and some development effort is needed
to provide IP cores as functional descriptions.

Moreover, to analyze the interaction with some real physical (non-virtual) device
and determine if the real-time constraints are met, virtual platforms cannot be generally
used.

4.3. Memory Access Pattern Analysis new Proposal
One of the fundamental roadblocks to parallelize applications is data dependency.

When an operation depends on data that has to be previously computed we have to delay
execution of the operation until operands are available. Interdependencies between
variables are terribly common in procedural programming languages that were conceived
to be executed sequentially like C/C++, Java, and many others. A common code structure
that has been always addressed as an easy candidate to parallelize are bounded loops.
Some of such loops can be easily executed in parallel if they do not exhibit dependency.

The following code, shows a simple loop.
for (int i=0; i < 10; i++)
{
 a[i] = k * b[i];
}

In this case all ten iterations could be executed simultaneously because iterations
do not exhibit any dependency.

The following code is slightly more complex as introduces dependency.
for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 z[i+j] += x[i] * y[j];

─ 131 ─

In this case the iterations should be executed sequentially because iterations need
data that are produced in former iterations. The operations that are executed between the
operands are irrelevant, any operation would produce the same data dependency.

Figure 95 plots the iteration space of the former loop in a graphical way the data
dependencies between iterations as arrows.

Figure 95 Plot of the iteration space of former code and the data dependencies they exhibit (from [Zinenko15])

If either the inner or the outer loop did not had dependencies it could be

parallelized. This could be done, for instance, with OpenMP #parallel omp for pragma.
But since it has dependencies in both dimensions it cannot be done.

However, as explained in [Zinenko14] [Zinenko15], applying the polyhedral
model, the loop can be transformed into an equivalent code. And the loop iteration space
is now represented as Figure 96.

for (i = 0; i < 7; i++)
 for (j = max(0,i-3); j <= min(3,i); j++)
 z[i] += x[i-j] * y[j];

Although there are still dependencies, they occur just on the j iterations (the inner

loop). And now the outer loop can be parallelized with safe.

Figure 96 Plot of the iteration space of the transformed code using polyedral model and the resulting data

dependencies (from [Zinenko15])

─ 132 ─

Memory hierarchy can be serious bottlenecks to scalability. Cache sizes can
influence the parallelism that a system can achieve. If the data accessed by different cores
do not reuse data from caches and has constantly go main memory, the penalties of cache
misses can make the efforts to paralyze the application worthless. Cache misses can be
measured with hardware counters (if available) or can be simulated. Hardware counters
can be measured by tools like Intel VTune Amplifier XE as described in [Gromova12],
but this method is limited to x86 based systems that support Performance Monitoring Unit
(PMU) hardware counters and is useless for a soft-core cross-compilation toolchain. The
later approach is followed by cache-grind, a tool included in the Valgrind framework
[Nethercote07] to profile the cache behavior by simulating two levels of cache.
Identifying that the rate of cache misses is higher than expected has an important value,
although it cannot be straightforward to easily understand why it happens.

Simple codes can be relatively easy to understand and to decide if they can be
parallelized, however, in complex code, including conditional clauses and function
invocations, determining data dependency can be really hard.

A more detailed analysis of the memory access pattern would be needed to
understand how memory is accessed by applications. This could help in identifying
dependencies in complex code and help to determine why cache misses occur.

I propose a new method to analyze the memory access pattern exhibited by
applications. The idea has similarities with the proposed by [Brewer88], [Corina10], and
more recently in [Subotic14].

4.3.1. Proposed Method
I propose to record the memory read and write operations of a subset of the

variables of the application under test during its normal execution. In my proposal the
programmer instruments the code, either by introducing some pragmas in the code to
identify the section and variables to be analyzed, or by manual instrumentation. Then he
executes the program. This creates a memory access trace, which is later analyzed by a
visualization tool. The process is illustrated in Figure 97. The visualization tool shows
the data access pattern of the application and potentially detects if there are dependencies
that prevent loops from being unrolled.

─ 133 ─

Figure 97 Proposed process for data access pattern analysis

Manual instrumentation
I propose the following functions to determine the loop context, i.e. to identify

when a loop starts and ends, and when every iteration starts and ends. Each loop is given
a name, and each iteration is based on a variable that takes a constant value during the
iteration. If loops do not follow this rule, they cannot be analyzed.

void mem_trace_loop_start(char* loop);
void mem_trace_loop_end(char* loop);

void mem_trace_iter_start(char* var, int v);
void mem_trace_iter_end(char* var, int v);

The idea is that we can later identify which accesses are performance during any
iteration of any loop. Loops will be unequally identify by a name, and iterations inside a
loop will be identified by the value of its iteration variable.

Variable characteristics need to be known before recording their accesses. The
systems needs to know their name, their dimensions, and their place in memory. By
knowing the total size of the variable (that is, the number of dimensions, and size of each
dimension), the base memory position, and the type size of variables, it is possible to track
exactly which variable elements are accessed just by recording the addresses of memory
accesses.

void mem_trace_def_array1d(char* v, int d1);
void mem_trace_def_array2d(char* v, int d1, int d2);
void mem_trace_def_array3d(char* v, int d1, int d2, int d3);
void mem_trace_def_mem(char* var, void* ptr, int typeSize, int varSize);

To trace the memory accesses the following functions are used.

void mem_trace_read(char* var, void* idx);
void mem_trace_write(char* var, void* idx);

.c Memory
Access Trace

Source Code

Compile.c

Instrumented Code

Execution.exe

Analysis /
VisualizationParallelization hints

Instrument

Automatic
Instrumentation

─ 134 ─

Besides previous functions, we provide a method to disable logging, and setting
alias. This is useful if function calls are present inside the analyzed loops.

void mem_trace_enable(int v);
void mem_trace_set_alias(char* v, char* w);

Automatic Instrumentation
Manually instrumenting the code can be a tedious process. Another option is to

automatically instrument the interesting loops. I propose to use the source to source
compiler developed in [Saa16] to transform the original code so that tracing functions are
inserted. I use pragmas to identify the interesting loops.

The instrumentation is done automatically by the use of a S2S compiler based on
BSCs Mercurium framework [Balart04] that includes traces on the original code that later
will be used as log traces on execution. Mercurium gives us a S2S compilation
infrastructure aimed at fast prototyping and supports C and C++ languages. This platform
is mainly used in the Nanos environment to implement OpenMP but since it is quite
extensible it has been used to implement other programming models or compiler
transformations, providing the S2S compiler with an abstract representation of the input
source code: the Abstract Syntax Tree (AST) having then easy access to source code
structure representation, the table of symbols and the context of these.

To automatically introduce login function to an input source code, the
implemented tool requires a source code marked using a created new pragma directive
that is dedicated to describe the information needed to analyze inside the marked block.
In our case, the marked blocks will contain always a for loop.

 The created directive is named analyze_access_pattern, and this could be
completed using two clauses var and iter. We show an example of the use this new
directive using both clauses on Table 35. The var clause is used to determine the target
variables in which we suspect that could appear a data dependency (marked on red) and,
on the other hand, iter clause will determine the iterators on which we will target the
access log(marked on blue).

Having the variables of interest and the iterators that define our loop for to check
on the annotated new pragma directive, we traverse the AST detecting memory accesses
to these and including the proper log functions in the points on which we detect the
aforementioned uses. The result of that S2S compilation process can be seen on Table 35,
on the left we illustrate an example of an input code and on the right there is the generated

─ 135 ─

source code. A particular case to consider is when S2S tool detects a function call inside
the annotated pragma block, in that case the tool will do an inline transformation before
traversing the AST.

Table 35 Example of an automatically instrumented code

Input Code
double alpha, A[N][N], B[N][N];
int main(int argc, char** argv) {
 int i, j, k, n = N;
 init_array();
 // B := alpha*A'*B, A triangular
 #pragma analyze_access_pattern var(B) iter(i,j)
 for (i = 1; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < i; k++)
 B[i][j] += alpha * A[i][k] * B[j][k];
 return 0;
}
Transformed Code
double alpha, A[N][N], B[N][N];
int main(int argc, char** argv) {
 int i, j, k, n = N;
 init_array();
 mem_trace_def_array2d("B", N, N);
 mem_trace_def_mem("B", &B, sizeof(double), sizeof (B));
 mem_trace_loop_start("loop1");
 for (i = 1; i < n; i++) {
 mem_trace_iter_start("i", i);
 mem_trace_loop_start("loop2");
 for (j = 0; j < n; j++) {
 mem_trace_iter_start("j", j);
 for (k = 0; k < i; k++) {
 mem_trace_read("B", &B[j][k]);
 mem_trace_read("B", &A[i][j]);
 mem_trace_read("A", &A[i][k]);
 mem_trace_write("B", &B[i][j]);
 (B[i][j] += alpha * A[i][k] * B[j][k]);
 }
 mem_trace_iter_end("j", j);
 }
 mem_trace_loop_end("loop2");
 mem_trace_iter_end("i", i);
 }
 mem_trace_loop_end("loop1");
 return 0;
}

─ 136 ─

Execution
When the application is instrumented, it can be executed to obtain its memory

access pattern trace. Logging the memory accesses produces an overhead. Moreover it
also generates a great demand for memory when visualizing the accesses. Here, an
observation must be made. Quite often the data access pattern is determined by the
algorithmic nature of the application rather than the size of the input data. For instance,
to understand how a matrix multiplication access pattern occurs it is not necessary to work
with 1000x1000 matrices, analyzing a 10x10 can provide the same kind of information
that allows an effective parallelization strategy, although it will provide totally different
information about data locality.

Working with smaller workloads is highly encouraged, although it is not always
possible.

Data analysis and Visualization
Before visualizing the data, information is aggregated so that it can be usefully

presented. The first principle is that all memory access happening in the same iteration
are aggregated. There is no point in looking at individual read and write operations.
Developers are interested in detecting which memory positions are accesses in different
loop iterations.

The visualization tool keeps information about if read or write operations have
happened in each variable. In case of arrays, it keeps this information for each element of
the array. This information is aggregated for every iteration of the loop.

Each iteration is identified by a keyword formed by by the name of the loop and
the value of the iteration value. If a hierarchy of loops are analyzed the keyword is formed
by the combination of each iteration identifier.

Before visualizing the trace, some analysis of the logs are made to detect the read-
only variables. Read-Only variables can be usually ignored if the analysis is focused on
detecting parallelism potential, but no if there is interest on detecting the memory accesses
that could generate a bottleneck.

The visualization tool let the user play back the application iterations and detect if
dependencies are found. It allows to select which loop is analyzed. When a loop is
selected, all the memory accesses happening inside each iteration are aggregated.
Memory positions receiving only Read accesses are displayed in blue. Memory positions

─ 137 ─

receiving only write accesses are displayed in red. Memory positions receiving both Read
and Write accesses are displayed in orange.

When data dependency check is enabled, memory positions that are written in one
iteration and read or written by another iteration of the same loop are marked in yellow
to inform that there are memory collisions in them.

Example: Triangular Matrix Multiplication
I take, for instance, triangular matrix multiply from Polybench, instrument it and

execute it to generate the memory trace file for later analysis. The code defines the size
of the matrix in a constant N. For the analysis I put N to 20, so that it reduces the amount
of collected data, and eases the visualization of it.

// loop1
for (i = 1; i < n; i++){
 // loop2
 for (j = 0; j < n; j++) {
 for (k = 0; k < i; k++) {
 B[i][j] += alpha * A[i][k] * B[j][k];
 }
 }
}

When running the visualization tool and selecting to detect data dependency in

loop1 (see Figure 98), there are positions of the B marked in yellow because they are read
in an iteration and were previously written in other previous iterations. As the iteration
variable i is bigger, the number of read after write (RAW) collisions increases. With this
simple analysis it is clear that loop 1 is no directly parallelizable.

─ 138 ─

Figure 98 Analysis of the data dependency of trmm in loop1.

I run the analyzer again focusing on loop2 (see Figure 99). In this case collisions

still occur. But they only occur when j is equal to i. When j is lower than i, the memory
accesses are done to compute the values that go in the first positions of the i row. And
those values are not written in this i iteration. When j is higher than i the computed values
are written for the last positions of the i row that are no read.

Figure 99 Analysis of the data dependency of trmm in loop2.

─ 139 ─

Seeing this behavior the code can be restructured to create three inner loops with
the objective to isolate the line where collisions occur and be able to parallelize the other
loops

// loop1
for (i = 1; i < n; i++) {
 // loop2
 for (j = 0; j < i; j++) {
 for (k = 0; k < i; k++) {
 B[i][j] += alpha * A[i][k] * B[j][k];
 } }
 // loop3
 for (j = i; j <=i; j++) {
 for (k = 0; k < i; k++) {
 B[i][j] += alpha * A[i][k] * B[j][k];
 } }
 // loop4
 for (j = i+1; j < n; j++) {
 for (k = 0; k < i; k++) {
 B[i][j] += alpha * A[i][k] * B[j][k];
 } } }

After this change loop1 is still showing dependency, but now loop2, and loop4

have no dependency and can be parallelized.
I execute it on a Bullion machine, but now for N = 1000, and the maximum

speedup factor achieved is 12 for 30 cores (see Figure 100).

Figure 100 Speedup factor achieved in triangular matrix multiplication after memory access pattern analysis

4.4. Supporting programming models in Many-Soft-Cores
In order to effectively exploit the power of the parallel architectures it is important

to focus on the methods and techniques that help programming such Many-soft-core

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Sp
eed

up

Processors

─ 140 ─

systems. The main goal must be to offer programming models and languages to the
programmer that raise the productivity, in terms of executable code written per time,
effectiveness, in terms of performance achieved per time spent, and obtain a good
scalability, understood as the ability to increase the performance of the application by
adding processors to share the workload.

It would be desirable that programming models would hide the hardware
complexity of the systems as much as possible, while taking into account that many-soft-
core systems will probably be heterogeneous because custom hardware could be created
just in certain processors if needed.

Since commercial soft-core toolchains are based in gcc it would be reasonable to
use a parallel programming framework with good support for gcc.

I believe that the MPI programming model is the best option for many-soft-core
systems as it offers scalability for distributed memory systems, where usually OpenMP
is not easyly used, and can be even more scalable in multi-core processors [Mallón09].

Message Passing Interface is the standard de facto used in distributed memory
systems, like HPC clusters, for communication among processors.

MPI promotes data locality, which usually goes in favor of scalability. MPI is a
real option to program highly parallel and scalable many-soft-cores. Furthermore, the
portability and extensibility of MPI API make it easy to be tailored to many-soft-cores,
and MPI API is a very well-known programming model for the programmer community.

I propose to support MPI and Threads as a starting point. Since OpenMP can be
based on threads I propose to port it in the future.

4.4.1. MPI support
The lack of cache coherency and the lower complexity of distributed memory

reconfigurable multiprocessors vs. shared memory reconfigurable multiprocessors have
promoted some initiatives to adapt message passing libraries to multi-soft-cores and
many-soft-cores. Table 2 presents information for the two most popular implementation
of the MPI standard and some embedded MPI implementations. It is obvious that an
adaptation is needed. OpenMPI and MPICH are not suitable for many-soft-core systems
due to the prohibitive size of the libraries. Moreover, OpenMPI and MPICH support
around 300 standard MPI primitives, which are very seldom used.

Table 36. Memory footprint of standard MPI implementations

─ 141 ─

 Availability Library Size Supported Functions
OpenMPI [Gabriel04] Open 25 MB 300

MPICH [Gropp99] Open 7 MB 300
TDM-MPI Saldana06] Propietary 9 KB 11

SoCMPI [Mahr08] Propietary 11-16 KB 6 - 18
RAMSoC-MPI [Göhringer10] Propietary 37 KB 18

TMD-MPI, SoC-MPI and RAMPSoC-MPI implementations are lightweight

solutions for embedded domain. SoC-MPI can be configured with up to 18 MPI functions
using 16Kb of memory size for the library, while TMD-MPI uses 9Kb for 11 MPI
functions. RAMPSoC-MPI has 18 MPI commands implemented, and uses 37Kb for the
MPI library.

The drawback of these implementations is that they are proprietary and addressing
specific systems. Hence, they are not easy portable to other platforms.

I re-implemented ocMPI as an open-source library available in
https://github.com/davidcastells/ocmpi. It is an evolution of the work done in [Joven10]
and [Fernandez14]. Unlike some other implementations of MPI, it can be ported to other
platforms and architectures. OcMPI is similar to other embedded implementations in
terms of number of supported primitives and library size. It has been developed in ANSI
C to minimize the footprint of the library. It can be compiled for many processors that
support the gcc tool-chain, like NIOS II, MicroBlaze, ARM, and x86. On ocMPI a
minimal selection of standard MPI functions are selected. Table 37 shows the main
functions of a minimal working configuration of ocMPI.

Using these functions many MPI applications can be developed and other more
complex MPI functions (like collective communication primitives) can be implemented
by invoking this simple ones.

Table 37. Minimal set of functions of ocMPI
Function Description
MPI_Init Initializes MPI execution environment

MPI_Finalize Terminates MPI execution environment

─ 142 ─

MPI_Comm_rank Determines the rank of the calling process in the communicator
MPI_Comm_size Determines the size of the group associated with a communicator

MPI_Send Performs a basic send (blocking send)
MPI_Recv Performs a basic receive (blocking receive)
MPI_Wtime Returns the time on the calling processor

MPI_Init and MPI_Finalize are management primitives. MPI_Init, sets

up the MPI environment and, as in the homonymous standard MPI function, no other
ocMPI function can appear previously, and MPI_Finalize finalizes the execution
environment and no other ocMPI function can appear after MPI_Finalize is called.
Additionally, MPI_Comm_Size and MPI_Comm_rank are management primitives.
The relevance of those functions is explained in the following sections. MPI_Send and
MPI_recv are point-to-point communication primitives that implement the basic
blocking send/receive primitives. In section IV these functions can be seen with more
details. Finally, MPI_Wtime primitive can be used for time measurement.

Process Identification
Within MPI environment a group of processors can exchange information through

a communicator. There can be multiple communicators involving different processors.
For simplicity ocMPI only supports one communicator involving all the processors of the
system, known as COMM_WORLD in MPI terminology.

Each processor can be source and/or destination of messages. Processors are
identified within a communicator using a unique variable called rank. In MPI context,
each processor can know its own rank and the number of processors that participate in
the communicator, which is denoted as size. This knowledge is obtained by invoking the
MPI_Comm_size and MPI_Comm_rank functions respectively.

The way of determine the mapping of the ranks in the system is free to the MPI
library implementer, so it can be done in different ways. The determination of the rank of
the processors can be done statically at compile time, or dynamically at runtime. In case
a dynamic approach is used, a manager entity is needed to centralize the assignment of
ranks to each processor.

In any case a processor identifier is needed. Since the rank is a logic identifier that
could be distributed during runtime, we need an invariable physical identifier for each

─ 143 ─

processor. The NIOSII processor has a bank of control registers, register number 5 (cpuid)
was specially created for this mission. In this case a simple C implementation of
MPI_Comm_rank can just call the macro NIOS2_READ_CPUID(x) to obtain its
value.

However, this is not the only physical processor identifier we could have. If the
many-soft-core contains a NOC with NAs, having a hardcoded physical address, that
physical network address could be used as physical processor identifier.

A typical example of this approach would be a many-soft-core system with a 2D
mesh NOC with NAs having hardcoded network addresses. In this case, a certain
processor would become the Master (rank 0), could be in charge to set the rank of each
other processor in the environment by sending network packets to other processors during
the initialization phase started with the invocation of MPI_Init..

Message Delivery
The most basic communication primitives of MPI that allow to exchange

information between two processors are MPI_Send and MPI_Recv. When using
MPI_Send the rank of the destination process must always be informed. However, when
using MPI_Recv the rank of the source process is not mandatory, one can inform the
parameter ANY_SOURCE if it is interested in receiving any packet regardless of its
originator. From the programmer point of view, the memory architecture of the system is
completely transparent when using ocMPI and it’s the ocMPI implementation itself that
carry out the task of using the properties of the system in the most efficient way.
Therefore, depending of the memory architecture the inner implementation of the
communication library will be different.

Two are the main options for the memory architecture of the many-soft-core:.
ocMPI for shared memory architectures
Several options appear when trying to implement ocMPI over shared memory

architecture; however these options can be gather in two main options: implement a single
queue where the communication must happen, or create several queues.

When a single queue is created the writers leave the messages on the first free
position available on the queue and, when receive is posted, the reader analyzes the
headers of the messages to find the whished message. This implementation can be an
option when the application performed is not intensive in communication or in messages.

─ 144 ─

When implementing several queues, three options appear. The first one,
implementing a single queue for each receiver, in that case, the sender’s access to the
specific queue of the receiver to leave the message, and it’s the duty of the receiver to
analyze the queue and find the message wanted. In the case of receiving from
ANY_SOURCE the complexity is similar because it is the same queue that has to be
analyzed.

The second option is to implement a queue, not in the receivers but, in the senders.
Using that solution, the sender writes always on the same queue and it is the receiver that
access different queues depending on the source of the message, and, also, searches for
the wanted message or messages. In the case of receiving from ANY_SOURCE the
receiver has to analyze all the queues from all the senders, which makes it quite an
impractical option.

Finally, the third option is to create a matrix of queues where each couple of
sender/receiver has a dedicated queue. In that solution, it is not necessary to analyze the
messages to find the wanted one/ones, since the use of such queues is deterministic and,
therefore, all the messages inside a queue have the same source and destination. In the
case of receiving from ANY_SOURCE the receiver has to analyze just the queues of the
matrix where it is the destination.

Regarding the method chosen, all the queues must be accessed from different
points at the same time. That implies that all the queues must be synchronized and
protected. That can be done using both, software or hardware solutions. For software
solutions a mutual exclusion algorithm can be implemented, such as a Lamport’s bakery-
based algorithm [Lamport74]. For hardware solutions, a hardware mutex can be used.
NIOS-II tools already includes a Hardware mutex IP-Core.

In addition, the implementer has to decide what to post to the queues. Either
pointer to messages or complete messages. The ocMPI implementation only post
messages pointers into the queues, and bypasses the data cache by using direct I/O
processor instructions such as ldwio and stwio.

ocMPI for distributed memory architectures
For distributed memory architectures the implementation of MPI_Send and

MPI_Recv functions use the network to transmit messages, therefore, it is not necessary
to implement any additional communication mechanism as happened for shared memory
architectures.

─ 145 ─

However, it is necessary to implement a delivery protocol to synchronize the
sender and the receiver. This may be expressed as a choice between two different options:
using eager protocol or using rendezvous protocol [Rashti08].

In eager protocol, the sender sends messages regardless of the state of the receiver.
Therefore, implementing eager protocol requires also the implementation of a software
transport layer at the receiver point to be able to multiplex several streams from several
sources.

Eager protocol could achieve better results in terms of performance in some
applications, however, since messages are sent regardless of the state of the receiver,
incoming messages whose MPI_Recv has not been invoked must be stored within a
buffer at the destination until a receive call is posted by the MPI application. Such
situation becomes worst in a multipoint communication scenario where this protocol has
a great probability of going out of order at the delivery of the messages emitted from
several sources. This behavior implies the need of several buffers in the destination nodes
to order the messages coming from each source.

The need of buffers in the reception nodes creates an overhead at managing the
memory copies, which implies penalizations in execution time due to these copies, and
in extra memory space request for the implementation of such buffers, which are a serious
handicap for the usual lack of memory resources of distributed many-soft-core systems.

In rendezvous protocol, there is a global flow control synchronizing all the system.
The use of this protocol solves the problem of needing extra buffer space to copy
incoming messages in the reception node, and also removes the extra time required to
manage the copies and organize the source of incoming messages because these messages
are now arriving in order. However, rendezvous protocol introduces its own overhead.
This overhead is produced by the short signaling messages that must be sent to
synchronize the supply and demand of messages. These signaling messages require time
to be generated in the transfer node and to be processed in the receiver node, in the
software layer. Moreover, this time required by the software level is increased by the time
spent to transfer the message through the network, resulting a relevant total latency. If the
data packets are small, the overhead is considerable, because the creation and delivery of
small signaling messages add several software instructions for a rather simple process.

─ 146 ─

Initialization
MPI usually is described as a programming model adapted to the Single Program

Multiple Data computer architecture. In order to increase productivity it is desirable to
have a single program that is distributed to all the processors for its execution. We started
with the assumption that the many-soft-cores that we describe execute a single application
which must be loaded from flash.

This was a reasonable assumption because Altera already provides support to
execute an application stored in flash on its NIOSII processor. The way Altera supports
this is a little tricky. To be able to boot from Flash the processor has to contain an EPCS
controller attached to the bus. Then, the programmer has to instruct that the reset address
of the processor is in the EPCS device. Actually what happens is that a small memory is
inserted into the system and the actual reset address of the processor is pointing there.
That memory contains a boot-loader that, using the EPCS device, loads the program from
flash and then jumps to its initial starting address.

This boot process cannot be easily generalized to all the processors in a many-
soft-core. First because it is usually only one processor that has access to the EPCS
controller. Second because the compiled program knows the address of the stack pointer,
and if all processors load the same program the stack pointer will be the same and all
processors will collide their stacks.

If only one processor (let’s call it master) has access to the EPCS controller it must
be responsible to transfer the program to the rest of the processors and then make them
boot. In the case of a shared memory architecture there is no need to transfer the program
because the slave processors can directly access to the code memory that has already been
loaded by the master processor. In this case the slave processors have to modify the Stack
Pointer to avoid collisions with other processors. In fact the algorithm to assign different
stack pointer to the processors must be embedded into the application initialization
function, and must use a physical identifier of the processor such as the cpuid control
register.

In addition, the master processor has to control the reset of all the slaves to be able
to start their execution once the program has been loaded into memory.

On distributed architectures there is no risk of stack collisions, so stack pointer
modification could be possibly avoided. However the program is no longer accessible
from the slave processors, so it must be transferred to them through networking
primitives. This means that slave processors need to have a small boot-loader

─ 147 ─

implemented in fixed memory (like the EPCS boot-loader provided by Altera). But in this
case the slave boot-loader has to wait for the master to send the program by using
networking primitives and then transfer execution to its starting address.

4.4.2. Multithreading Support
On shared memory many-soft-cores multithreading is possible. The architectures

that I can build do not support cache coherency. Multithreading code assumes that shared
memory is consistently viewer by all processors. On the absence of cache coherency an
alternate method to support multithreaded is by using un-cacheable regions should be
used like proposed in [Mattson10]. If used indiscriminately that would limit the
scalability of the application. It should only be used on shared variables.

 Many-soft-cores are determined by having a large number of processors. High
performance applications tend to benefit from each processor when there is a mapping
between one thread per processor. If only one thread per processor is provided, this
simplifies the implementation because no preemption must be implemented. In addition,
it also minimizes the use of memory because only a stack per processor must be
maintained.

 The implementation is very simple, just the three functions listed in Table 38 are
provided. When the system starts each slave processors execute a boot-loader, which
initializes the stack pointer and waits until a thread is assigned to the processor. When
thread_create is called it is assigned to the first idle processor and its state is change
to START. When the boot-loader detects the START state it changes the state to
RUNNING and actually calls the thread function. When the thread function invokes the
thread_exit function the thread state is changed to DEAD. The thread states are
illustrated in Figure 101.

Table 38 thread functions
thread_create Creates a thread that will run the provided

function in an idle processor.
thread_exit Terminates a thread
thread_join Waits until a thread has finished

─ 148 ─

Figure 101 Thread states

Figure 102 Memory organization for Multithreading
support in a NIOS multi-soft-core with 2 processors

In a multi-soft-core system I always assign a special role to CPU0. It is the CPU

the boots from the standard reset address in main memory as provided by the Altera
toolchain. The rest of the CPUs boot from a small separate ROM memory containing the
boot-loader. The master is responsible to determine the stack organization of the system
and it is the only allowed to allocate memory in the global heap. After boot all the slaves
can execute functions from the Code section if they are instructed to do so. Hence, no
code is replicated, heap space is global and data from any region in memory can be shared
among all processors. Figure 102 depicts the memory organization of a multithreaded
system with two processors.

4.5. Proposals of Novel Performance Estimation Methods
Compared with HPC systems or generic desktop multicore processors many-soft-

core processors could offer more visibility of the system state, since software can be
debugged and analyzed with similar techniques and hardware details can also be observed
through embedded signal analyzers and event specific hardware can be created to increase
the visibility of certain parts of the system. But in practice this is not the case due to
several factors. The typical limited resources available to reconfigurable systems is a
drawback. Trace analysis in HPC systems often involves the generation of trace files of
several Giga bytes, and this usually over the storage capacity found in many
reconfigurable systems. Moreover, this amount of information has to be transmitted to a
host computer for its analysis, the communication link between the host computer and the

─ 149 ─

reconfigurable system can easily become a bottleneck. Additionally, although deeper
lower level analysis can be performed in reconfigurable platforms, it usually involves the
re-synthesis of the designs, which is usually a time consuming process that make it
impractical as a method to use frequently.

Binary compatibility is another aspect that allows faster iterations in HPC than in
reconfigurable systems. Applications for HPC systems can be compiled and executed in
several platforms. A development team can implement applications on several desktop
computers to validate functional requirements and measure performance and test them
further on remote systems. This binary compatibility is not found in reconfigurable
systems. The design has to be tested on the specific platform for that it was build. When
working with a development team, the access to the platform can become a bottleneck in
itself. This problem can be addressed by building a model of the system that can be
executed on the host machine.

4.5.1. Performance estimation from a communication centric perspective
Given that the processors that constitute a many-soft-core must cooperate to

achieve a certain task, they must exchange information either by sharing variables in
memory, or by exchanging messages. The latency and bandwidth of these
communications can determine the total performance of the system, and can easily
become a bottleneck that limits application scalability. Either shared memory or
messaging is used, Networks-on-chip are often behind the hardware infrastructure needed
for this communication to happen. The efficiency of a NOC design can be greatly
influenced by the traffic pattern exhibited by the application using it. So before creating
it it would good to test it with the expected traffic patterns, so that changes can be made
on the topology, switching scheme, flow control, buffering, packet size, or other possible
parameter.

With this goal in mind I contributed to create j2empi [Joven09], an add-on
software to NocMaker that allow to use a MPI-like application description to get
performance information of the underlying network. The whole process workflow is
depicted in Figure 103.

─ 150 ─

Figure 103 j2empi workflow

 A C MPI application has to be manually translated to Java using the MPI
primitives implemented by j2empi (see Table 39). Then the application can be used as a
communication pattern generator for any NOC design described in NocMaker. As
explained in chapter 2, NocMaker builds an HDL model of the NOC and the NAs, but
uses an abstract functional model for processors. Processing time in processors can be
defined by explicitly annotating the j2empi application with primitives to consume cycles
of the abstract processors. Otherwise, all computing between two interactions with the
NAs are virtually executed in just one cycle. NocMaker already provides some
visualization of the network performance.

Table 39 Supported MPI functions in j2empi

Types of MPI functions Ported MPI functions
Management MPI_Init, MPI_Finalize, MPI_Finalized,

MPI_Initialized, MPI_Comm_size, MPI_Comm_rank,
MPI_Get_processor_name,
MPI_Get_version

Profiling MPI_Wtick, MPI_Wtime
Point-to-point communication MPI_Send, MPI_Recv, MPI_SendRecv
Collective communication MPI_Broadcast, MPI_Gather, MPI_Scatter,

MPI_Barrier MPI_Reduce, MPI_Scan

 To illustrate the methodology a simple MPI mandelbrot application is translated
from C to Java using j2empi and used as a traffic pattern generator to evaluate a simple
4x4 mesh network. The simulation infrastructure can be interactively controlled to
advance the clock an arbitrary number of cycles (see Figure 104). The control flow of the
links is illustrated by a color code, and established connections in routers are also shown.
It is assumed that every processor only runs a thread, so only a MPI operation can be
executed on each processor at any instant on time. Aggregated performance information
is also presented, for each communication stack layer.

.c Manual Code
Translation .java

NocMaker
Simulation

.xml

NocMaker HDL
Modelwizard Performance

Info

─ 151 ─

Figure 104 NocMaker visualizer that interactive shows how networks packets progress through the network, and
collects performance information

NocMaker can also visualize a time line with the transport layer packets being

transmitted. Figure 105 shows the time line for the former mandelbrot application. Notice that
small packets show a smaller latency while bigger packets have bigger latency.

Figure 105 NocMaker transport packet visualizer

4.5.2. Transparent instrumentation in Virtual Prototyping Platforms

─ 152 ─

Virtual prototyping platforms can be used to do functional validation or
performance estimation of applications targeting embedded systems. This is a very
popular method to test applications for embedded systems and mobile devices. For mobile
devices they are usually called emulators [AndroidEmu].

Virtual prototypes use a host computer that runs a virtual machine supporting the
Instruction Set of the target system. The hardware resources of the platform are simulated
and they are potentially implemented using the host computer features. In mobile device
emulators, for instance, the wireless internet access of the mobile devices is provided by
using the Internet connectivity of the host. Similarly the internal SD-Card storage is
implemented as a subdirectory of the host machine.

When virtual prototypes are used for functional validation the time accuracy is
usually ignored. In this case the performance of the emulation of platform can be
maximized by using techniques that minimize the time used to execute the instructions of
the target machine on the host. The most successful technique is dynamic binary
translation [Bellard05], where the executable is dynamically translated from target ISA to
host ISA as it is executed. Since the the architecture of the host can be totally different
than the target, the time characteristics of the application using this technique are
completely altered.

Performance estimation of many-soft-core applications requires time accuracy, so
typical binary translation is usually discarded. An alternative is to complement binary
translation with a performance model of the target platform like done in [Böhm10].
Another alternative is to work with Instruction Set Simulators (ISSs) that offer a better
time accuracy with some time penalty.

Trace generation in ISS
An ISS takes the executable generated for the target system together with a model

of the hardware present on the target system, and then interprets every instruction of the
target application and emulates its behavior considering the hardware model, as shown in
Figure 106. Interpret based ISSs are slower than compiled ISSs but they have been used
to simulate multi-core processors, like in [Silvano11]. However the kind of performance
analysis done when using this simulators are often very coarse grain.

─ 153 ─

Figure 106 performance analysis in ISS-based virtual prototypes

In [Castells10] I proposed to implement transparent instrumentation in ISSs to
obtain much more detailed performance information of a multi-soft-core system. I
combine a detailed HDL model of the hardware system together with multiple ISSs. A
diagram of the architecture is depicted in Figure 107.

Figure 107 Logic design of a multi-soft-core virtual prototype

The multiple ISSs intercept the execution of certain instructions of the target ISA

to automatically produce traces. By transferring the responsibility to inject traces to the
ISS the time characteristics of the application under test is unaltered. Typically
intercepting the execution of the call and ret instructions would be equivalent to what
compiler automatically instrumentation do. Figure 108 shows how the transparent ISS-
based instrumentation is performed.

Figure 108 transparent instrumentation method

.c cross-
compilation .elf

libs
execution in
ISS based

virtual prototype
Performance

Info

Virtual
Platform

Vir
tua

l
Tim

e

─ 154 ─

The benefits of using transparent instrumentation in virtual prototypes are that we

can overcome two of the typical issues faced in performance analysis. One, the potential
excessive overhead caused by instrumentation. Here it is totally eliminated because we
spend host time (instead of target time) to produce the traces. Two, we are not constrained
by the limited memory or communication resources of the target system. So we can
generate huge trace files into the host hard disk for later analysis.

Those trace files can be later visualized with tools like Vampir and after human
analysis the application bottlenecks can be found and solved to get new optimized
versions of the applications. In the example depicted in Figure 109 we show how the
visualization of the event traces shed light about the inefficiencies of the communication
primitives used by implementation of a parallel version of the Mandelbrot application.
The orange and pink color bars show the periods of time spent in communication libraries.
In this case the slave processors are wasting a lot of time in waiting for new messages,
while the master processor is busy composing new messages through the communication
stack (light blue color). Hence, no computation overlap is happening and very low parallel
efficiency is achieved. After the optimization of the communication primitives,
computation is overlapping in slave processors and a much higher parallel efficiency is
achieved.

Figure 109 Performance optimization process of a parallel Mandelbrot application. Left) trace visualization of the

initial version. Right) trace visualization of the optimized version

The concept of transparent instrumentation from the ISS can also be applied to
obtain other kind of information from the processor. In [Hubert07] authors describe
memtrace, an extension to the ARM ISS ARMulator that allows capturing the memory
accesses of an application.

─ 155 ─

Trace generation in Native Simulation
A different type of virtual platforms can be build using native simulation. In native

simulation, the application source code is annotated with the time and/or energy that a
piece of code is estimated to consume. During execution, the annotations are aggregated
enabling to estimate the execution time and power consumption of the complete simulated
system. It is possible to use manual annotation, or automatic annotation. The annotation
resolution can be coarse grain (function level, for instance) or fine grain (instruction
level). Obviously fine grain annotations will be more accurate.

All the process is done in the host computer where the simulation is performed
(see Figure 110). Virtual platforms based on native simulation allow the embedded
software development process to be started even before the HW platform is completely
defined because a limited number of high-level HW-platform parameters are needed.

Figure 110 Process of native execution

In [Castells14] I propose to extend the ScoPE [Posadas11] native simulation
framework to introduce transparent instrumentation. ScoPE supports modeling parallel
systems, especially addressing shared memory architectures with OpenMP support. In
ScoPE the annotation of the code with the performance details is done during compilation.
Given a platform model, the compiler analyzes the instructions to execute and
automatically inserts time and power annotations. Determining the time required to
execute an instruction and the source code level is challenging since compilation can
optimize the code with different techniques producing different codes with different time
and power consumption characteristics. To estimate this value SCoPE automatically
compiles the code to target ISA and analyze the resulting machine instructions with a
time and power model of every instruction of the ISA. SCoPE also models the cache
memories of the target system statistically to determine the time consumed by memory
access instructions.

In SCoPE, virtual time is advanced by the annotations introduced in the
application code during the compilation flow. If a section of code is not annotated with
this time information it is eventually seen as happening in a zero time delta.

.c native execution Performance
Infocompilation

Platform
model

.exe

─ 156 ─

 I benefit from this property by introducing trace generation calls at function prolog
and epilog but avoiding to complement these tracing calls with time annotations.

Figure 111 Trace visualization of n-queens application on a 16-core many-core processor virtual platform

To test the system I use two applications. The first one is n-queens, a simple
application which computes the different solutions of placing a number of n queens in a
chess board of n by n tiles in such a way that they not threaten each other.

This application is not a typical embedded workload but it is convenient because
it can be simply parallelized by using simple OpenMP pragma directives and does not
require accessing external files through I/O interfaces.

We test the execution of the application with n=5 in different virtual platforms
with different number of cores. The used cores are equivalent to arm926tnc as they
support its instruction set. Trace generation adds a small overhead when flushing trace
data to disk, but in all virtual platforms the execution of the application takes less than
one second of the host time. In terms of target time the application execution time depends
on the virtual platform in use. For instance in 16-core platform it takes 27 ms to execute.
But this time is no effected at all by the time devoted to trace logging since this only
consumes host time.

Figure 111 shows how trace visualization tools present the collected information.
On the top right hand side of the picture we can find a report of the execution time by
application function. This is the kind of information that we could get from a profiler.
The left top panel shows the dynamics of the application and all its threads. Below we
can show how the call-stack of each thread is progressing. In the example we just show
the call-stack from processor 10 and 13.

─ 157 ─

The second application analyzed is a JPEG encoder, a typical embedded
workload. There are several implementations of the image compression algorithm. I have
used [PJPEGENC]. Some operations like color conversion, DCT transform, and
quantization can be performed in parallel since there is no data dependency among
different blocks of the image. However Huffman encoding must be serialized because of
several data dependencies of the algorithm.

Table 40. Execution time for JPEG on 16-core virtual platform
 Host Target

Platform Intel XEON E5620 Virtual arm926tnc
Cores 4 16

Clock Frequency 2.40 GHz 470 Mhz
Execution Time 18ms 26ms

As in the previous example, different Hardware configurations are tested with the

same application. The visualization of the traces (as shown in Figure 112) give a clear
idea of why the application does not scale well above a certain number of cores (typically
5 as explained in [Castells10b]). After the parallelization of the first loop the sequential
part of the algorithm (Huffman coding, and I/O) dominates.

In this case, the simulation of the application running on a 16-core target system
is executed in 18ms, in host’s system time (see Table 40). Thus, target expected execution
time is bigger than the simulation time, even with the overhead of trace generation.

Figure 112 Visualization of the traces generated for the JPEG application in a 16-core many-core

─ 158 ─

4.6. Conclusions
The materialization of many-soft-core hardware architectures is supported by

FPGA vendors in a much higher degree than is the software development for them. Their
strategic investment to address the HPC market is centered in OpenCL based compilation
toolchains that allow creating application specific designs. Thus, the result is that the
programmability of multiprocessors using soft-cores is not equivalent to that of a typical
multiprocessor system. Their main limitations are: 1) reduced visibility and
controllability of cross-compilation tool-chains which are very common in the embedded
domain and 2) lack of SPMD programming model. Instead, they promote a MPMD
model, which require implementing as many applications as processors.

 To circumvent this limitation, I implemented the support for MPI and threads,
making possible to execute a single program on all replicated processors. Since I can
create different types of architectures, like UMA and NORMA, the implementation of the
MPI runtime makes use of the features of the underlying platform. On the other hand,
threads are only supported on shared memory architectures. Nevertheless, their support
is an intermediate step towards a future support for OpenMP as the de-facto standard for
shared-memory parallel programming.

 Another roadblock for parallel programming is the lack of effective performance
analysis methods. FPGA vendors support either low-level or simple performance analysis
tools, like embedded logic analyzers or profilers. However, for successful optimization
of parallel applications, a more detailed analysis is required.

I added support for trace generation so that post-mortem trace analysis using HPC
tools (like Vampir) can be performed, and the code can be iteratively improved until it
reaches the required scalability level. Trace logs can be generated in real platforms, but
they can also be produced by virtual platforms. I presented a novel technique (Transparent
Instrumentation) to generate traces in virtual platforms without modifying the time
characteristics of applications.

Finally I complemented the tool-chain with a data access-pattern analysis tool,
which used on sequential code (prior to parallelization) provides better understanding
about its parallelism potential.

─ 159 ─

5. Case Studies
On this chapter I will present some case studies that demonstrate the techniques

presented in former chapters.

5.1. Laser Controller
In [Castells12] I presented a case study in which several methods are combined to

implement an industrial laser controller system. Laser processing is increasingly used in
the manufacturing and packaging of several goods. Faster systems are always in demand
to increase the productivity of manufacturing plants without compromising the quality of
the processes. In many systems, the laser light beam is continuously irradiating but a
mechanical system is used to block or divert the beam to apply it in a proper way over the
treated surfaces to obtain the desired results. These mechanical parts often become the
bottleneck of such systems, preventing them to increasing their productivity. As a result,
the laser beam is typically blocked during 75% of the time.

A way to increase laser marker systems productivity is parallelism. Multiple laser
markers could be replicated to multiply the number of processing units per minute.
However, the laser light emitter is one of the most expensive parts of the system, and it
seems unwise to replicate it when it is already heavily underutilized. A better solution is
to replicate the final optical control system and time multiplex the laser light source as
presented in [Vila12]. This was the principle of the system implemented in [Castells12].

The design of an embedded system to control such machine imposed some
challenging requirements such as the hard real time control of the different heads while
managing a shared resource (the laser beam) in a synchronized way. The need to
implement fast motion control loops is not the only challenging part that motivates the
use of reconfigurable hardware. It is also the very accurate control of the laser activation
and the adaptation to different galvanometer control protocols such as the XY2-100 and
SL2-100. The galvanometer control protocols are based on serial transmission with a 2
MHz clock, and require to periodically transmit the position values for every axis every
10s. The laser activation must be controlled at the microsecond resolution.

While the control of a single head itself is already too demanding to be
implemented by a single microcontroller, the situation is worse when it comes to control
four heads simultaneously.

─ 160 ─

The laser marking system is used to mark cork stoppers and is based on rotary
systems that make the cork stoppers rotate while a laser beam is irradiated on their surface
depending on the design to be marked. The laser beam is shared among multiple heads to
increase the utilization factor of the beam as shown in Figure 113.

Figure 113 Laser Marking Machine Diagram
In each head, the beam is diverted by two galvanometers that make it possible to

cover a 2D surface. In order to be able to mark all the surface of the cork stopper the
stopper is rotated by a motor. Due to the slow response of the motor an encoder is used
to give feedback of the actual position of the motor rotator.

The laser beam is shared among the different marking heads. The idea is that the
different heads cooperate to time multiplex the usage of the beam. So, in principle, only
a single head would be using the beam at a given time. The diversion of the beam to the
appropriate head is controlled by some optical switches.

Marking is achieved by pulsing the laser during a short period of time. Although
it is variable, depending on different factors the pulse period to mark a black dot can be

─ 161 ─

around 40us. Shorter periods produce lighter grey dots. This is used surpass the limitation
of marking black and white images and allow to mark grey scale images.

I decided to build a multi-soft-core system based on NIOSII processor and
prototype it in a low-cost Terasic DE0 Nano board (see Figure 114), which is connected
to another PCB that interfaces with the sensors and actuators of the industrial machine.
The communication with an external computer is done through USB.

Figure 114 Terasic DE0-nano board

5.1.1. Design of the Real-Time critical parts
I started with analyzing the hard real time requirements of the system. The most

sensible part of the system is the control of the laser pulse. This is a safety critical
requirement, because if the pulse is too long it is easy to set fire to the system. A 40s
pulse produces a black dot, and shorter pulses produce lighter colors. 8 bits are used to
represent the greyscale of a pixel in an image, so the pulse period is divided by 28 to
obtain the resolution at which pulse period should be varied to produce grey scale colors.
In this case a difference of 156.25 ns in pulse length would produce a different color level
from the possible 256.

It could be challenging to control those short periods of time by an embedded
processor running a RTOS for just a head, it’s even worst considering that four
simultaneous heads could be active. Popular RTOS have a latency of some µs
[Hambarde14].

To address that challenge, I created a hardware unit to create a pulse and attach it
to the processor by extending the instruction set of the processor. In contrast with a bus

─ 162 ─

attached device, the custom instruction interface ensured that no extra latency would be
inserted due to bus arbitration.

Figure 115 Pulse Generation Custom Instruction
The Laser pulse was controlled by a 32 bit decrement counter that decrements at

every clock cycle. At first the pulse is asserted, and when the counter value reaches a
specified value the pulse is de-asserted. The design is depicted in Figure 115.

Moreover, the custom instruction was implemented in an asynchronous fashion
with the goal to avoid blocking, if possible, to let the processor progress with computing
when performing a pulse operation. In case the unit is busy and several pulse operations
are performed, the unit becomes blocked until it finishes the operation (see Figure 116).
For instance, this allows calculating new pixel coordinates during the pulse generation.

Figure 116 Asynchronous Custom Instruction Timing. First CI starts immediately and the processor thinks that it has been
completed (as done signal is asserted). Actually the operation is still taking place, since it has to complete the 2000 period informed

in the operation parameters. So when the second CI is invoked it must wait until the previous operation finishes to start its
processing. This allow the processor to work on other computation between consecutive CI invocations.

Simultaneously to the laser activation, the laser beam has to be diverted by an
external galvanometer system, which is controlled through the XY2-100 serial protocol.
This protocol enforces to continuously update the beam position, and the serial protocol
has to drive a clock signal of 2 MHz.

Another Custom Instruction controls the position of the heads through the
galvanometers. The heads are controlled by commercial drivers which are controlled by
the XY2-100 communication protocol. The instruction updates some internal registers

CI start
a operand
b operand

CI done

Laser Pulse

2000
1200

2000
200

P Instruction CI CIother computation other computation

─ 163 ─

and a FSM is responsible to continually send the values of X and Y to the galvanometers.
The design is depicted in Figure 117.

Figure 117 Position Control Custom Instruction

The motor has a slow response, and initially it was controlled by a parallel I/O.
However an accurate control of the actual position is needed to ensure a good quality of
the marking. So a feedback loop was created by the use of an encoder. The encoder can
give information about the actual position of the motor by reading the value of marks into
a rotating disk. There are two concentric set of marks A and B, that can be interpreted as
a continuous digital sequence 00, 01, 11, 10. To convert the encoder readings to a certain
position one can periodically sample the values A and B and when observing a change
determine if the position was increased or decreased depending on the direction of the
sequence. For instance, if the last reading was a 01 and the new reading is 11 it can be
determined that the position was increased, otherwise if the new reading is 00 position
was decreased.

A position decoder can be designed with simple logic that stores the previous state
and use so simple combinational circuit to compares it with current one and provide two
signals to increment or decrement a counter that will store the position into a register (as
shown in Figure 118). This register is used by the software to correct the coordinates sent
to the galvanometers which have a faster response. Following this approach, marking can
be performed simultaneously to rotation, increasing the speed of the marking process.

─ 164 ─

Figure 118 Motor control elements

5.1.2. Multi-soft-Core design
The controller had to perform 4 tasks that cooperate by using a multiplexed

resource. Each task was isolated in a processor. A processor was, in fact, part of a tile that
includes the necessary specific hardware to control the laser head. The full system
consisted on four replicated tiles to control the four independent heads. In addition to the
encoder adapter and the custom instructions each tile has some additional modules. There
were some inputs to be able to handle various alarms. A 64 bit performance counter was
used to get accurate time measurements during the operation.

Figure 119 Tile design

─ 165 ─

The first CPU, which we call Master had some extra modules. An EPCS interface
to read the configuration device, which is important in the boot-loading process as we
will later detail. A JTAG UART to communicate with a host computer through the JTAG
channel implemented through the USB connector. The whole system is depicted in Figure
120.

To build the multi-processor, four tiles were connected through a shared bus that
also connected to several shared devices as shown in Figure 120. First the SDRAM
controller, which gives access to external SDRAM memory, where all the programs and
data will be stored. An additional On-Chip memory was used to share frequently used
information and implement a message passing mechanism. Finally a mutex device was
used to implement critical sections in the code.

The independent laser pulse signals that were produced in the custom instructions
were also combined to be sent to the laser light controller. The combination was done
with a simple OR gate because software was responsible to make them not activate
simultaneously.

Figure 120 Multi-soft-core design

SDRAM
Controller

Shared Avalon Bus

Processor
Tile 0

On-Chip
Memory

Processor
Tile 1

Processor
Tile 2

Processor
Tile 3

Mutex

Laser Pulse

Optical Switch 0
Optical Switch 1
Optical Switch 2
Optical Switch 3

─ 166 ─

The marking application was described in MPI. The ocMPI library was
implemented over shared memory using a mailbox approach. Using the SPMD instead of
the MPMD approach supported by Altera is not only a way to simplify development and
minimize errors, but it is also an important way to reduce executable size enabling to store
the complete application in the flash device used to boot the system.

The system communicates with an external computer through the JTAG UART
channel. Although the master processor controls the channel and receives all the
commands from the host, the console commands can be targeted to other processors other
than the master. The master processor redirects those commands by using the message
passing facilities of the system. In order to have the ability to diagnose the correct
operation of all the systems connected to the controller, a set of test commands was
included. Other commands were used to download images and change operational
parameters, like pulse period, or marking dimensions. Finally, there were some
commands devoted to control the marking process for all the marking heads.

5.1.3. Functional Validation and Performance Analysis support
Functional validation was done at various levels. First, unit testing was done for

modules implemented in hardware. Complex stimuli can be generated in the JHDL
environment and cycle accurate performance information is collected. In Figure 121 a
waveform to validate the correct operation of the XY2-100 generation module is shown.

Figure 121 Validation of the XY2-100 serial protocol module with interactive simulation in JHDL

After unit testing was done for all basic modules, system integration and

verification was done at HDL level. Since software was part of the system, the verification
could be done by using an ISS or a processor model at the HDL level.

─ 167 ─

To validate the integration of the different modules in a tile, I created a JHDL
module combining the module that generates the laser pulses and the XY2-100 protocol
to control the galvanometer system, the encoder module, and a MIOS processor and a
memory containing a test application developed with NIOSII toolchain. The interactive
simulation framework is shown in Figure 122. The drawback of simulation was speed,
but also lack of real stimuli. As soon as the tile unit was validated, the system could be
tested in the real hardware. Figure 123 shows the same system marking a metal surface.

Figure 122 Tile system validation

Figure 123 Validation in real platform

But being a complex system, validation did not end at this level. To reach high
volume productivity it was necessary to control that the marking process was executed so
that it minimized the dependence on the slowest parts of the system, which were the
mechanical parts: galvanometers, and servos. To analyze and optimize the performance
of the marking process, the system can dump a trace of all the operations it performs at a
very low level. This trace is sent to an external computer through the JTAG UART device
that works over the USB cable of the board.

I developed a software application to analyze the trace and visualize the marking
process so that errors and potential improvements could be easily detected for further
optimization. The application allows to replay the trace and observe the result marking
(see Figure 124), and the evolution of the values sent to the actuators to control the

─ 168 ─

galvanometer positions and the laser activation (Figure 125). This tool is not only
important for validation, but for performance optimization as well. It is important to stress
that the first source of inefficiency is often algorithmic, so it is much valuable to identify
the algorithmic bottlenecks.

Figure 124 Trace replay application Figure 125 Actuator signals to control X and Y position

of the galvanometers, and Laser activation

The real-time operation was extensively tested. Both, by using signal-tap analysis
and also by external signal analyzer. Figure 126 depicts how an external signal analyzer
was used to measure how the optical switches (F0, F1, F2, F3 in negative logic) are
coordinated to share the laser beam during a laser process.

 Figure 126 External signal analysis of the real-time behavior

─ 169 ─

Trace based Performance Analysis was also supported. I introduced automatic
compiler instrumentation. This is enabled by the -finstrument-functions flag in gcc,
which inserts a calls to a tracing function in the prolog and epilog of every function unless
it is annotated with the no_instrument_function attribute.

My implementation of the tracing function just save a simple log containing the
time captured from the performance counter, and the instrumented function address. Due
to the limited space for logging, I provided enable/disable logging functions to have a
fine grain control of when traces are generated. Captured traces could be downloaded to
the host by a console command. The download process had to gather all the traces
produced by different processors before sending them to the host.

In the host, the traces were converted into a standard format like OTF with a tool
I created (named ConvertTraceToOTF) that converts the time, address pairs into the
appropriate format as defined by the OTF format. As part of this process, the map-file of
the application must be parsed to be able to get the function names related to the observed
function addresses.

The ability to get and visualize trace files from the real system operation greatly
simplified the optimization process. Figure 127 shows a Vampir screenshot where it can
be seen how the laser beam is correctly shared between the four processors. The top panel
shows a combined view of the four processors activity, while the panels below visualize
the call stack of each processor. We can see that laser beam usage (in blue color) is not
overlapped, so the system is properly synchronized. The lock acquisition function is
shown in red, so while other functions are shown in green and pink. We can see that
processors can do some computation, and not only block waiting for the shared resource.

─ 170 ─

 Figure 127 Visualization of system traces in Vampir

After the optimization performed in several iterations using performance analysis,
we reached a 92% laser beam utilization rate.

5.1.4. Implementation and Results
The design was synthesized for the Cyclone IV EP4CE22F17C6 device, and the

whole system was implemented in the Terasic DE0-Nano prototyping board. A brief
summary of the synthesis results is presented in Table 41.

Table 41 Synthesis results for the EP4CE22F17C6 device

Property Design Device Total
LUTs 14619 22320
FFs 10398 22320

Memory bits 257704 608256
fmax 62.98 MHz

The four core multi-soft-core processor with its custom hardware units fitted into
the Cyclone Device, using 14 KLEs of the 22 KLEs available, giving an occupancy rate
of 63%. The internal memory consumption was 42%, which is mainly devoted to
processor caches, since main memory is implemented in the external SDRAM. Table 42
gives the resource consumption details for each block of the system.

─ 171 ─

Table 42 Detailed resource usage by block
Name LUTs FFs

NIOSII Processor 0 2214 1663
NIOSII Processor 1 2192 1643
NIOSII Processor 2 2194 1645
NIOSII Processor 3 2198 1644

Custom Instruction 0 365 357
Custom Instruction 1 365 354
Custom Instruction 2 366 355
Custom Instruction 3 369 356

PWM Slave 0 186 96
PWM Slave 1 179 96
PWM Slave 2 186 96
PWM Slave 3 186 96

Performance Counter 0 132 64
Performance Counter 1 132 64
Performance Counter 2 132 64
Performance Counter 3 132 64

Encoder Adapter 0 73 68
Encoder Adapter 1 78 68
Encoder Adapter 2 80 68
Encoder Adapter 3 89 68

JTAG UART 146 104
Mutex 56 36

EPCS Controller 117 115
SDRAM Controller 301 212

Other 3860 1336
TOTAL 14619 10398

An important aspect of this industrial system is cost. The prototyping board used

to implement the design costs around 60€. The final custom PCB containing a low-cost
Cyclone device can be manufactured for the same price or less. This system supports 4
simultaneous scan heads. The price per head would be less than 15€. To the best of my
knowledge there is no scan head controller with this low cost. Some offerings can go from
few hundred dollars to 1 thousand dollars, for just one head. So the achieved price
efficiency is estimated to be about an order of magnitude with respect to alternative
solutions.

5.2. Scaling up to many-soft-core processors
In [Castells15] I presented another case study to test the ability to scale up the

methodology up to a large number of soft-core processors. Thus, creating a 128 core
many-soft-core system based on 32 bit commercial soft-cores supporting MPI. To my

─ 172 ─

knowledge, the biggest such system ever build in a single FPGA. There are some works
with more processors. In [Ben14] they embed up to 1024 modified PacoBlaze processors
in a single device to demonstrate the scalability of the Distributed Memory Machine
concept, a UMA architecture without caches where the memory is distributed in various
nodes and accessed through an indirect network that performs hashing on the address. In
this case, a SPMD multithreading programming model is used, but programs are limited
in size to be able to be stored in a small instruction ROM memory. In RAMP Blue
[Krasnov07] the complete system has up to 1008 cores, but they are embedded in 84
FPGA devices, and each device only embeds 12 soft-cores.

Figure 128 Terasic DE4 board

 The 128 core system is implemented on a Terasic DE4 board containing a
EP4SGX530 device (see Figure 128). The system created with the tools presented in
Chapter 3. In fact, I used the tools to create a number of systems with an increasing
number of processors to find the highest number of processors that could be embedded in
the used FPGA. Replicating a tile containing a NIOSII processor with 4KB instruction
and data caches and a FPU, the limit was found to be 64. Figure 129 shows the resource
usage percentage per design. The 64 cpu+fpu exhaust the number of DSP elements of the
FPGA, and when FPUs have to be implemented with standard logic (LUTs+FFs) the
resource consumption skyrockets. A 128 cpu+fpu design is not able to fit into the
EP4SGX530 device as the synthesis flow reports a resource usage of 169% ot the total
device. If FPUs are not used a system with 128 core must reduce the cache sizes from
4KB to 2KB to fit in the device. Although the reported total memory bits consumption is
less than half of the device capacity, in fact the designs exhaust all the M144K and M9K

─ 173 ─

memory blocks. The unused capacity is in MLABs, which are small memory elements
distributed in the device.

Figure 129 Percentage of the resource usage (LUTs, FFs, Memory bits, and DSP elements) of various multiprocessor
designs synthesized for EP4SGX530

An important factor that can determine the success of a development process is
the iteration speed, i.e. how fast a change is implemented, and tested in the system.
Modern development practices encourage Agile methodologies [Dahlby04] that focus on
frequent and fast iterations. In this context it is convenient to evaluate the time consumed
in synthesizing the many-soft-core designs. Figure 130 shows the time used for the
different steps of the synthesis process to synthesize the previous multiprocessor designs.
Notice that the time scale is logarithmic, so synthesis process can actually go to several
hours and even to the day scale for large complex designs. Software iterations are much
faster in comparison, usually in the minutes scale. The obvious implication is that
evolving and optimizing software is much faster than optimizing the architecture.

0.00%

25.00%

50.00%

75.00%

100.00%

1cpu 2 cpu 2 cpu
2 fpu

4 cpu 4 cpu
4 fpu

8 cpu 8 cpu
8 fpu

16 cpu 16 cpu
16 fpu

16 cpu
16 fpuNOC

32 cpu 32 cpu
32 fpu

32 cpu
32 fpuNOC

64 cpu 64 cpu
64 fpu

64 cpu
64 fpuNOC

128
cpu

128
cpu16 fpu
NOC

LUTs
FFs
Memory bits
DSP

─ 174 ─

Figure 130 Time (log scale) consumed in the different steps of the synthesis process to synthesize different
multiprocessor designs.

Table 43 Resource details of the synthesis of various multiprocessor designs for EP4SGX530
Design Fmax

CPUs FPUs NOC LUTs FFs Memory bits DSP (MHz)
1 2072 1870 587840 4 145
2 4144 3739 717120 8 128
2 2 7098 6477 718144 48 118
4 9368 12785 4217216 16 74
4 4 14288 17565 6204928 96 62
8 16175 19343 4468352 32 73
8 8 26273 28290 6304000 192 71
16 30335 31572 4970624 64 71
16 16 50631 49775 6502144 384 73
16 16 4x4 mesh 55239 52823 6502144 384 73
32 62834 57767 5975168 128 60
32 32 100896 92681 6898432 768 65
32 32 8x4 mesh 109662 99097 6898432 768 65
64 121184 106867 7984256 256 59
64 64 260904 178577 7702848 1024 55
64 64 8x8 mesh 280651 191847 7702848 1024 52
128 200029 161307 8686336 512 52
128 16 16x8 mesh 273884 243064 8763024 832 52

0.01 Hours
0.1 Hours

1 Hours
10 Hours

100 Hours
1000 Hours

1cpu 2 cpu 2 cpu
2 fpu

4 cpu 4 cpu
4 fpu

8 cpu 8 cpu
8 fpu

16
cpu

16
cpu
16
fpu

16
cpu
16
fpu

NOC

32
cpu

32
cpu
32
fpu

32
cpu
32
fpu

NOC

64
cpu

64
cpu
64
fpu

64
cpu
64
fpu

NOC

128
cpu

128
cpu
16
fpu

NOC

Analysis
Fitter
Assembler
Timing Analyzer

─ 175 ─

Figure 131 Floorplan of the synthesis results for 4,8,16,32,64, and 128 core multiprocessors on EP4SGX530.

Table 43 shows the resource usage details shown in Figure 129, corresponding to

various multiprocessor designs. The system has a shared memory architecture with
uniform memory access and caches, but also a distributed architecture is implemented by
connecting the processors through another interconnection network. The processor
interconnect is implemented in NocMaker. Figure 132 shows the design of the 16x8 mesh
NOC for the 128-core many-soft-core. All the NOCs build for the previous designs have
a 2D mesh topology using ephemeral circuit switching, XY distributed routing, and 4
phase handshaking flow control. Processors are attached to the NOC through custom
instruction NAs. So, they architecture could be considered and hybrid UMA+NORMA
with independent caches. The interconnect connecting the processors with the main
memory is a standard QSys system provided by Altera.

─ 176 ─

Figure 132 NocMaker view of the NOC build for the 128-core many-soft-core

Figure 133 Hybrid UMA+NORMA many-soft-core architecture

 This architecture allows an easy implementation of the SPMD paradigm, since a
single program is stored in memory and each processor has its own stack. The MPI
adaptation library (ocMPI) can be implemented using the shared memory or the NOC.
The performance can be very different. ocMPI over shared memory introduces a lot of
overhead to manage the queues needed to exchange messages among processes. If the
size of the packet is large, the bandwidth to main memory can mitigate the high latency
introduced by the software stack. On the other hand the ephemeral circuit switching NOC
minimizes latency, but sacrifices bandwidth. Figure 134 and Figure 135 show the
performance of the token-pass MPI micro-benchmark using shared memory or NOC
respectively. The micro-benchmark measures the time that a token is returns to the master
node after being passed from node to node until no more nodes are found in the

─ 177 ─

communication. The test is repeated for an increasing number of nodes participating in
the communication. Notice that the total latency for NOC-based communication starts in
the order of tens of picoseconds, while shared memory based communications start in the
order of tens of milliseconds.

Figure 134 Elapsed time of token-pass micro-

benchmark using ocMPI over NOC

Figure 135 Elapsed time of token-pass micro-
benchmark using ocMPI over shared memory

 Two MPI applications are tested to validate that the system effectively can scale
up for some workloads. The first application is an n-queens application, which computes
the number of queens that can be placed in an n x n chess-board without attacking each
other. The second application is PI computing, which computes the value of PI by Monte
Carlo simulation.

The n-queens application fits very well to the platform, and benefits ideally from
having a large number of processors (see Figure 136). This is so because the application
is dominated by computation over communication and also because the amount of code
to execute fits in the small instruction caches of all processors, and also because memory
accesses are limited to small arrays that are also accessed from the data cache. The result
is that, even the platform has an apparent bottleneck in the shared bus, when application
locality benefits from cache a good scalability can be achieved.

On the other hand the PI application scales very poorly, only up to factor x 2. In
this case the code executed by slaves includes calls to functions (like rand) and does not
fit in the instruction cache. This provokes cache misses in all processors, which then
congest the main bus to fetch instructions from the main memory. Moreover, cache misses
are also happen in data caches.

To solve the issue, a simple optimization can be done to compact the code so that
the hot-spot of the program can fit into the instruction cache of the processors. Instead of
calling rand function, we create a simple and small pseudo-random number generation

0.00E+00
5.00E-05
1.00E-04
1.50E-04
2.00E-04

0 50 100

Tim
e

Processors
0

0.05
0.1

0.15
0.2

0 50 100

Tim
e

Processors

─ 178 ─

and implement it as a macro. We also use the register C/C++ variable modifier to try to
avoid accessing main memory during the hot-spot.

The result of this optimization is depicted in Figure 137. The obtained scalability
profile is almost linear up to 100 processors.

Figure 136 Scalability Profile of n-queens

Figure 137 Scalability profile of PI computing. Baseline
version shows a poor scalability, but optimized version

has a good profile.

5.3. Increasing Energy Efficiency
In chapter 2 we observed that soft-cores can be, in the best case, an order of

magnitude less energy efficient than modern low power processors. On the other hand,
they offer more flexibility to try to increase the number of operations per cycle, thus
allowing to increase the energy efficiency. In this section I will explore how to increase
the energy efficiency of the designs by exploiting from the flexibility offered by the
FPGA.

5.3.1. Mandelbrot
Computing the Mandelbrot Set [Mandelbrot13] is often used to test scalability of

a parallel system (like in [Choi13]). The Mandelbrot set is created by the mathematical
iterative formula described in (5.1) and (5.2), where ܼ௡ and c are complex numbers. A
value of c belongs to the mandelbrot set (also called Mandelbrot sea, see Figure 138) if
after iterating the formula ܼ௡ never scapes outside the circle of radius 2 (5.3). It can be
graphically represented as Figure 138. A software implementation cannot test an infinite
number of iterations, so typically a maximum iteration value is defined to build the set in
reasonable time. Points that do not belong to the Mandelbrot set can escape from the circle
of radius 2 at different iterations. The escape iteration is often used to produce multicolor
representations of the Mandelbrot set (Figure 139).

─ 179 ─

Figure 138 Mandelbrot Set in the complex number
space. Black points belong to the set.

Figure 139 Multicolor representation of the Mandelbrot
Set

ܼ଴ = 0 (5.1)
ܼ௡ାଵ = ܼ௡ଶ + c (5.2)

ܿ ∈ ܯ ⇔ lim௡→ஶ|ܼ௡| < 2 (5.3)

Computing the Mandelbrot Set is, what it is called, an embarrassingly parallel

problem. It exhibits an uncommon level of data parallelism because all different values
of ܿ can be tested independently. But points belonging to the set need more computation
than the rest of the points. This variability motivates to use load balancing strategies to
effectively parallelize it.

Table 44 Results of Mandelbrot Set application for a 640x480 frame and 1000 iterations

 i75500U NIOSII
F (MHz) 2900 175

Time
(seconds)

0.131 289

ௗܲ௬௡(Watts) 8.4 0.6
FPS/Watt 0.90 0.005

I code a sequential version of the simple application, and test the performance and

power consumption on a laptop computer and a NIOSII running at 175MHz that I build
on the EP4SGX530 FPGA device. I compute a 640x480 frame with a maximum iteration
of 1000. The results are shown in Table 44.

─ 180 ─

To analyze the reasons of the bad performance achieved on the NIOSII I use an
ISS-based virtual platform to test the code. The platform supports transparent
instrumentation, so a detailed analysis can be made without altering the time
characteristics of the program. As shown in Figure 140 the computePoint function, which
should be the most active function is not so active, instead computing is dominated by
floating point emulation functions. This is reasonable as the design does not have an FPU.

Figure 140 Analysis of the Mandelbrot application running on a NIOSII virtual platform using transparent
instrumentation and visualization in VAMPIR

I synthesize a new design adding a MikeFPU and recompile the code to make use
of it. I modify the virtual platform to mimic the same architecture, and execute on it the
compiled code so that traces are generated. As shown in Figure 141 the floating point
emulation calls are remove, but now the most time consuming function is still not
computePoint, but the function I was using to store the results. By a simple optimization
I remove this bottleneck and obtain a new version that I measure again.

The change does not alter the performance on the NIOSII system without FPU
support as it was dominated by floating point emulation functions. It slightly improve the
performance of the laptop system. The performance of the NIOSII with the FPU is
improved by a factor x15 (see Table 45). But still the energy efficiency of the
NIOSII+FPU system is 20 times worse than that of the laptop system.

─ 181 ─

Table 45 Results of optimized Mandelbrot Set application for a 640x480 frame and 1000 iterations

 i75500U NIOSII+FPU
F (MHz) 2900 175

Time (seconds) 0.125 19.09
ௗܲ௬௡(Watts) 8.4 1
FPS/Watt 0.95 0.052

Figure 141 Analysis of the Mandelbrot application running on a NIOSII+MikeFPU virtual platform using transparent
instrumentation and visualitzation in VAMPIR

 Can the energy efficiency of the single core NIOSII system be raised anymore?
Actually, the equation (5.2) is implemented with the following code.

float x = x0; // x co-ordinate of pixel float y = y0; // y co-ordinate of pixel
 int iter = 0; int colour;
 while ((x*x + y*y < (2*2)) && (iter < max_iteration))
{ float xtemp = x*x - y*y + x0; float ytemp = 2*x*y + y0; x = xtemp; y = ytemp; iter++; }

─ 182 ─

For every iteration 6 floating point multiplications, 3 floating point additions, and

2 integer additions are executed. A specific hardware can be build that implements this
operations in parallel when possible, thus, reducing the latency introduced by the
processor.

Figure 142 Data dependency graph of the computation performed in the loop iteration

Figure 142 shows the data dependency graph of the operations performed in the
computePoint loop. The sequential execution of the loop uses 12 operations, 8 being
floating point. In a completely parallelized implementation of the loop iteration the
latency would be dominated by the 3 floating point operation steps needed to produce X’
and Y’. Hence, we could expect, at least, a 8/3 speedup factor.

─ 183 ─

Figure 143 design of the Custom Instruction

The operations performed in the loop iteration can be parallelized, but
unfortunately the loop cannot be unrolled as there is dependency between the values of X
and Y among different iterations.

Figure 144 JHDL schematic view of the iteration module, which is part of the Mandelbrot custom instruction

─ 184 ─

Figure 145 Waveform to validate the mandelbrot custom instruction

After this optimization, the performance is improved by a factor x4.7 vs. the
NIOSII+FPU architecture and a factor x72 vs. the optimized NIOSII implementation.

Table 46Results of Mandelbrot computing using the custom instruction

 NIOSII+Custom Instruction
F (MHz) 175

Time
(seconds) 4.01
ௗܲ௬௡(Watts) 1.2
FPS/Watt 0.20

Unfortunately it still does not reach to the same energy efficiency level than the

i75500U. This is so because we cannot benefit from increasing the parallelism that could
be at the loop level due to the data dependency.

5.3.2. Primer Numbers
Floating point support for soft-core processors is not implemented as part of the

data path of the processor, but as an external logic that has to be accessed through custom
instructions. Since the floating point units have a significant latency due to their pipelined
design, on a soft-core processor, they are underutilized most of the time, whereas in a
modern superscalar processor the pipeline is optionally filled by independent instructions
on queue. This penalty is one of the reasons why Mandelbrot set application is more
energy efficient on laptop processor.

─ 185 ─

Integer computing should draw better results as integer units are part of soft-core
data paths. Computing the first prime numbers from 1 to 106 is another embarrassingly
parallel application that can be used to test the methodology presented in this thesis. A
brute force approach can be used to determine the primes. There exist alternative more
efficient algorithms, but the algorithm used can be illustrative of how energy efficiency
can be obtained using many-soft-cores. Basically, all numbers in the range must be
evaluated for being prime. The function to determine if a number is prime can be
described with the following code:

int isPrime(int v) { int i; if (v >= 0 && v <= 3) return 1;
 if (v % 2 == 0) return 0; for (i = 3; (i*i) < v; i++) { if (v % i == 0) return 0;
 } return 1; }

 Indeed, the application has a lot of parallelism, and it can be easily parallelized

using OpenMP as shown in the following code.

#pragma omp parallel for private(i,n) shared(primes) for (i = 2; (i*i) < n; i++)
{ if (isPrime(i))
 { #pragma omp atomic
 primes++; } }

 I execute the application on the i75500U processor to get its performance and

energy efficient. The OpenMP code is compiled in gcc with full optimization (-O3) and
executed on the processor, which has support for 4 threads. The minimum execution time
is 22.35 seconds when using 8 threads. Thus, the OpenMP parallel implementation
achieves an speedup factor of 2.3 with respect to the sequential implementation. Table 47
shows the detailed results.

The estimated MOPS/Watt is calculated aggregating the number of operations
done in each iteration of the loop inside isPrime. The best energy efficiency obtained

─ 186 ─

in the i75500U is 27.7 MOPS/Watt using 6 threads (see Figure 146). The energy
efficiency increases with the number of threads but not more than a factor 1.5 with respect
to the sequential version.

Table 47 Performance results of OpenMP implementation for the 106 first primes on the i75500U platform

Threads Time (seconds) ௗܲ௬௡(Watts) Estimated
MOPS/Watt

1 51.42 10.7 17.571
2 39.77 15.6 15.582
3 31.33 14.6 21.135
4 27.45 15.3 23.018
5 25.63 15.6 24.179
6 23.89 14.6 27.716
7 22.92 16.6 25.409
8 22.35 16.6 26.057

Figure 146 Relative Performance and Energy Efficiency of computing the 106 first primes using an OpenMP

application on i75500U

To analyze the performance of a soft-core based solution, I build a simple NIOS
II system running on 60 MHz. A reduced clock frequency is used to avoid modifying the
clock frequency as the design is iteratively modified, so that an easier comparison can be
made. The single thread application is compiled using the gcc tool-chain and full
optimization. The system is synthesized for the EP4SGX530 FPGA. Table 48 shows the

Relative Energy Efficiency

Relative Speedup

0
0.5

1
1.5

2
2.5

1 2 3 4 5 6 7 8
Number of Threads

─ 187 ─

performance and efficiency results. As expected, the performance of the system is very
poor, the execution time is 630 times worse than the laptop version, but the energy
efficiency is just an order of magnitude worse.

Table 48 Performance results of computing the 106 first primes on NIOSII running at 60 MHz on EP4SGX530

Time (seconds) ௗܲ௬௡(Watts) Estimated
MOPS/Watt

14093 0.28 2.45

 Analyzing the source code of the application we can detect opportunities to create

custom hardware that could allow us to increase the instruction parallelism, and improve
performance and energy efficiency. Figure 147 shows the data flow graph of the
instructions executed in the loop of the isPrime function, which is obviously the hot-
spot of the application.

Figure 147 loop iteration data flow in prime number calculation

To try to improve the performance of the isPrime function I propose to
implement the whole loop on a custom instruction that receives the number to check
whether it is prime as an argument, and returns a boolean value informing the result.

I implement the logic described in Figure 147 as a logic block in JHDL which I
call it Iter. Similarly, I implement a NIOS II custom instruction with the design shown in
Figure 148. The operation is very simple: the value to check is passed as the a argument
to the custom instruction and it is stored in register v. An i register is initialized with value
2 and it is passed to the Iter module, which keeps incrementing it at every iteration. If v
is divisible by i the isPrime signal is asserted. If not, the loop signal indicates wether a

─ 188 ─

next iteration should be performed with the next value of i. A simple FSM controls the
data path.

Figure 148 Custom Instruction Design for prime number checking

The design is synthesized and integrated into the former NIOS II system. The

application must be modified to take profit of the new custom instruction. The results of
the new design are shown in Table 49. The new system shows a speedup of x7 approx.
vs. the previous one, while the energy consumption is almost the same. This increases the
energy efficiency to a similar to that of the laptop system. Although the performance is
much lower, 274 times worse.

Table 49 Performance results of computing the 106 first primes on NIOSII with custom instruction running at 60 MHz

Time (seconds) ௗܲ௬௡(Watts) Estimated
MOPS/Watt

1879 0.3 17.146

Unlike the Mandelbrot case, the loop of prime number computing can be unrolled

nicely since there is no data dependencies between iterations. Unrolling means to execute
concurrently some of the different iterations simultaneously. This could be done by
replicating the iter loop units and assigning different values of i to each one. But, the
nature of the algorithm allows further optimization. Is not necessary to do the check for
the loop bounds in every iteration, by doing it in blocks the behavior is not altered and
some hardware resources can be saved. To implement this idea it a new optimized unit
without the hardware resources to check the bounds is done (see Figure 149).

─ 189 ─

Figure 149 Data flow of the operations done in the optimized loop iteration module

 Figure 150 depicts the new custom instruction, which combines the former iter
unit with the new optimized one to save some resources. A system with 10 units is build
following this strategy. Like in previous design, the system is easily implemented and
verified in JHDL. As an example, in Figure 151 the interactive schematic view of the
optimized iteration module is shown.

Figure 150 MultiUnit Custom instruction

─ 190 ─

Figure 151 Prime Number Iteration Module, which is part of the Custom Instruction

The new design is synthesized an included in the NIOSII system. The application

must be modified again to use the new custom instruction. The results of the new design
are shown in Table 50. Power consumption is slightly increased, but performance is
increased by almost a factor x10. This, boost the energy efficiency to a higher level than
that of the laptop.

Table 50 Performance results of computing the 106 first primes on NIOSII with a custom instruction containing 10

units running at 60 MHz
Time (seconds) ௗܲ௬௡(Watts) Estimated

MOPS/Watt
188.19 0.4 128.42

The system is still underutilized, since the divider units have a latency of 5 cycles

due to its pipelined design, but just one unit of the pipeline is active per cycle. In addition,
some additional cycles are used by the control unit. Is it possible to increase the utilization
of the dividers pipeline?

─ 191 ─

Again, the algorithmic nature of the problem allows it. The value of i could be
increased every cycle without the need to wait for the completion of the previous modulo
operation. All the iterations are done to find if any number give a zero remainder. So it
does not matter if we detect it with some latency, or that we lose the reference of the
number that produced the result. Thus, a new value of i can be injected in every unit every
cycle. The latency of the detection is increased but it can be easily handled by the control
unit.

After implementing this change the system has to be synthesized again and the
application has to be modified and recompiled to use the new custom instruction. The
results are show in Table 51. Again, the increase in power consumption is minimal since
we are just adding a small amount of logic to use the resources more efficiently. The
speedup factor vs. the previous version is almost x6, which is in line with the number of
cycles that were waster before. The performance efficiency factor is boosted again by a
similar factor.

 The system has a comparable performance to the laptop, but its energy efficiency
is 23 times better that the best implementation with 8 threads on the multicore standard
processor.

Table 51 Performance results of computing the 106 first primes on NIOSII with custom instruction containing 10

pipelined unit running at 60 MHz
Time (seconds) ௗܲ௬௡(Watts) Estimated

MOPS/Watt
31.63 0.5 611.27

To continue increasing the performance of the system, more parallel units could

be added to the custom instructions. There is also the possibility to increase the pipeline
levels of the divider. The presented designs use a pipeline of 5 stages, and this certainly
limits the maximum frequency of the system. It is reasonable to increase the pipeline
levels up to 35 for higher frequency operation. Having this long latency would increase
the opportunity to both increase the frequency and still benefit from the new levels of
pipeline.

Another option to increase performance is to replicate the processor with its
custom instructions and implement a parallel version of the application. The initial
computer application was parallelized using OpenMP. Since there is not support for

─ 192 ─

OpenMP yet in the architectures presented in this thesis I use threads on an 8-core multi-
soft-core that includes the best performing custom instruction.

 After synthesis, compilation and execution on the platform, the results shown in
Table 52 are obtained.

Table 52 Performance results of computing the 106 first primes on a multiprocessor having 8 NIOSII with custom
instruction containing 10 pipelined unit running at 60 MHz

Threads Time
(seconds)

ௗܲ௬௡(Watts) Estimated
MOPS/Watt

1 31.63 0.75 407.51
2 15.55 0.9 690.76
3 10.32 1 936.75
4 7.57 1.1 1160.95
5 6.35 1.2 1268.67
6 5.27 1.35 1358.81
7 4.53 1.4 1524.33
8 3.97 1.5 1623.39

 The best performance achieved is 5.6 times better than that of the computer, but

the energy efficiency is 58 times larger. Moreover the scalability profile for the
application is almost ideal (Figure 152). Given the theoretical background presented in
chapter 2, it can be surprising that the energy efficiency increases with the number of
threads since the number of active transistors should have a linear relation with the
number of used processors. This is true, but we must also consider shared resources that
are basic part of the architecture. They contribute to power consumption whatever number
of processors are executing. Obviously, this contribution will have less impact as number
of processors keep increasing.

─ 193 ─

Figure 152 Relative Performance and Energy Efficiency of computing the 106 first primes using a multithreaded

application on a multi-soft-core processor containing 8 NIOSII with coprocessors.

Figure 153 FPGA layout of the synthesis of the 8-core prime number computing multi-soft-core for EP4SGX530

This case study was tested up to 8 cores, but (if more time had been available)
more processors could have been added as the FPGA occupation was approximately 26%.
The resource usage is detailed in Table 53. The custom instruction units consume more
resources than the soft-cores themselves. This can easily be seen in Figure 153, in which
CIs have been shown in blue colors.

If we revisit one of my goals, it was to create application-specific energy
efficiency systems that could be simple to program, and that could still be used for general

Relative Energy Efficiency

Relative Speedup

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8
Number of Threads

─ 194 ─

purpose processing. The prime-number computing system reaches a high efficiency ratio
and still offers a general purpose platform.

Table 53 Resource details of the synthesis of the 8-core prime number computing multi-soft-core for EP4SGX530

Element LUTs FFs Memory bits DSP
CPU 0 1419 1600 63104 4
CPU 1 1200 1305 20224 4
CPU 2 1201 1306 20224 4
CPU 3 1202 1306 20224 4
CPU 4 1202 1306 20224 4
CPU 5 1202 1306 20224 4
CPU6 1204 1306 20224 4
CPU 7 1205 1306 20224 4
FPU0 1343 1254 4608 20
FPU1 1340 1254 4608 20
FPU2 1340 1254 4608 20
FPU3 1340 1254 4608 20
FPU4 1340 1254 4608 20
FPU5 1343 1254 4608 20
FPU6 1343 1254 4608 20
FPU7 1340 1254 4608 20
CI0 10474 1817 0 0
CI1 10474 1817 0 0
CI2 10478 1817 0 0
CI3 10471 1817 0 0
CI4 10471 1817 0 0
CI5 10472 1817 0 0
CI6 10472 1817 0 0
CI7 10502 2140 0 0

Other 6811 6773 9528320 0
TOTAL 111190 42401 9769856 192

5.4. Conclusions
In this chapter, I used several cases studies to validate that many-soft-core

platforms can be implemented and used effectively for certain application domains.
Hard real-time systems are one of them. In that context, FPGAs can better adapt

to real-time requirements by implementing specific hardware when needed. Alternative
platforms like GPGPUs, DSPs or CPUs, do not have this choice.

On the other hand, the task isolation approach simplifies the required WCET
analysis making it easier to meet real-time constraints.

The number of processors that can be implemented in a FPGA is only limited by
its resources. I demonstrated the implementation of complete application with 128 cores

─ 195 ─

as an outstanding result according to the state of the art, much in line with my original
simple estimation.

 Finally I have proven that, although not generally reaching the best performance,
many-soft-core platforms can be a good vehicle to increase energy efficiency of certain
HPC workloads. This can be achieved by just coding a limited part of HDL code to boost
the energy efficiency ratio, and then scaling up the design by using parallel architectures.

─ 196 ─

─ 197 ─

6. Conclusions and Future Directions
6.1. Conclusions

Reconfigurable devices provide a flexible platform to experiment with different
computing architectures. The microelectronics industry still foresee ways to continue
increasing the transistor density for some years, at least, up to the few nanometer nodes
(7nm, 5nm). However the access to new nodes will increase even more the NRE costs.
The ability to be generally enough to be used in many applications and systems will be a
necessity for the chips using that technology. In this context, Reconfigurable systems can
play a growing important role, since they design complexity is limited due to its
regularity. Moreover their structure could absorb better the expected decrease of yield
(number of good devices per total manufactured device) in future nodes. Actually
reconfigurable device manufactures have a recent history of being the second customers
of silicon foundries after major microprocessor manufacturers.

 Future FPGAs will probably increase the capacity to the order of the millions of
Logic Cells while reducing their energy consumption. Current FPGAs can already embed
more than 100 soft-core processors. Although the energy efficiency of a soft-core is, at
best, an order of magnitude lower than that of a modern low power microprocessor, the
architectural flexibility provided by these platforms can be used to close that gap and beat
alternative architectures for certain applications.

 In this thesis I have proposed a new methodology for building highly scalable
multiprocessors based on standard soft-core processors. To make it possible I have
complemented the synthesis toolchains of device manufacturers with several tools to
cover the gaps that were not still addressed in commercial toolchains. I have created the
NocMaker tool to build different NOC and NA designs that can be integrated in FPGA-
based MPSoCs. A lot of effort has been made to allow NocMaker designs be easily
imported in Quartus II toolchain.

 Given the complexity of systems containing hundreds of IP cores, I have shown
that working with graphical interfaces is not practical to describe the connection among
these blocks. The use of higher level tools is proposed so that this complexity is hidden
to make design possible. I have developed such a tool and demonstrated that can it be

─ 198 ─

used to build large systems like the challenging and top state-of-the-art 128 core many-
soft-core processor.

 FPGA manufacturers are promoting the use of high level synthesis with the use of
OpenCL language to build application specific architectures trying to maximize
performance and energy efficiency, especially for the HPC domain. I advocate that
building many-soft-cores can be a more flexible alternative because, once synthesized
and running on the device, the processors are not bound to a single application, but can
be used as general purpose devices. In this context software development plays a crucial
role. I identified the missing elements on the soft-core software tool chains necessary to
build and optimize parallel applications on many-soft-core architectures. Namely, support
for parallel programming models, and support for advanced performance analysis.

 To close this gap I evolved the ocMPI library and added support for various
delivery strategies. I also provided a method to allow a SPMD approach, avoiding the
need to recompile the same source code for several devices. With similar techniques I
provide support for threads.

 By analyzing many potential workloads to execute in the created platforms I
realized that there is a lack of tools that help identifying the parallelism potential of
generic sequential applications. I contributed with a new tool that can be useful to detect
data dependencies that could block the scalability of applications.

 What applications would benefit from reconfigurable multiprocessors? My
argument is that there are, at least, two scenarios where they could be applicable. Hard
real-time systems and energy efficient HPC workloads.

Electronic systems are increasingly intermingled with mechanical or physical
systems, giving birth to the recent concept of cyber-physical systems. Embedded systems
taking part on such systems are regularly used in complex control loops where hard-real
time requirements are usually found. RTOS have been frequently used to tackle the
problems found trying to meet the requirements. RTOS can try to efficiently remove the
uncertainties introduced with multitasking OSs, but as multicore processors are
widespread, the memory hierarchies are increasingly complex, and the level of resource
sharing rises, the level uncertainty in modern processors is surging. The large number of
processors in many-soft-core systems can be used to map one task per processor. This
task isolation model can remove the uncertainty produced by multitasking. On the other
hand the hardware flexibility gives the freedom to try to further reduce the uncertainty
produced by resource sharing or memory hierarchies. This simplification can also

─ 199 ─

produce a benefit in terms of economic cost (an order of magnitude in my presented
example).

 Another scenario where many-soft-cores are valuable is in the quest for energy
efficiency in the HPC domain. It is well known that FPGAs can be more energy efficient
that GPGPUs and standard processors for certain applications. But high levels of
efficiency are frequently reached after a timely HDL coding process, or lately by using
high level synthesis languages and related tools (like OpenCL). These processes create
application specific solutions. In designs coded with HDL, the performance driver is often
a small piece of hardware implementing an optimized data path, which is replicated many
times and is controlled by an additional logic which is responsible for feeding data to the
datapath. Then, the development effort of the surrounding control logic is bigger that the
performance driver block. In these cases it seems easier to reuse a many-soft-core
processor with its parallel programming support to distribute the data among processors
and to implement the performance driver modules as coprocessing units of the cores.

I demonstrate that both ideas are feasible. First I applied the methodology to create
a Laser controller system with hard real time safety-critical requirements. In this context
task isolation and ad-hoc hardware removes the uncertainties of the system, achieving a
remarkable performance, and a remarkable reduction of economic cost. Second, I proved
that large many-soft-core systems can be built, and that reconfigurable processors can
exploit their flexibility in many ways to provide higher levels of energy efficiency without
wasting much development time on the control parts that do not determine the
performance of the system.

6.2. Future directions
This work tickles the surface of many interconnected domains: Hardware design,

computer architecture, compiler architecture, runtime support, performance analysis,
application mapping. When thinking on opportunities to evolve this work I feel like in
the middle of an open Blue Ocean.

On the hardware level there are many things to be explored in many fronts. On
computer architecture I have the opportunity to evolve the MIOS processor to explore
new ideas. MIOS uses more resources than NIOSII and it has a worse performance,
however I have full flexibility to introduce any change. A potential improvement to MIOS
would be to link the communications activity with a clock gating support. Meaning that
processors in a many-soft-core reconfigurable platform could be clock-gated until some

─ 200 ─

work is sent to them to process and, when completed, return to the sleep state. This could
have an impact on the energy efficiency of the system.

On the other hand multilevel or shared caches could be implemented to reduce the
cache misses for big many-soft-cores and could allow implementing up to 256 processors
in the same device used in this work.

 Other hardware evolutions could be done in the network and network adapter
design. I have shown that the level of overhead introduced by software stacks in message
passing architectures is considerable. Most of the overhead is related to the management
of the packet storage. Working with simpler primitives, focused on reducing storage
needs, would minimize those overheads and provide a performance boost.

 Many networks are still not supported by NocMaker, like most indirect networks.
It would be very interesting to add support for those networks so that they could be
integrated in future MPSoC designs. Indirect networks could offer better performance for
certain applications. NocMaker is also limited to the build message passing adapters. This
is reasonable for distributed memory systems but limits its applicability to adapters that
work with the memory transaction encapsulation approach, which is necessary for
embedding the NOC in a shared memory system.

 On a similar way, Altera allows specifying the latency used by system
interconnect used to access memory mapped devices. Further research should be made to
compare how the increase the latency of the bus affects the performance of a many-soft-
core system.

 Better integration between the Many-soft-core builder and NocMaker could be
done. By now NOCs have to be pre-created in NocMaker, and then manually imported in
many-soft-core builder. A better integration would allow to speedup the architecture
creation.

 Another potential improvement to the many-soft-core tool would be to
automatically create a virtual prototyping platform from the description generated in the
tool. Other methods to create virtual prototyping platforms with transparent
instrumentation could be explored, like binary patching or binary translation.

 On the programming models domain, an obvious improvement would be to
include support for OpenMP and MCAPI, promoted by the Multicore Association.

One of the arguments of the thesis is that we can build an application specific
system that still has some general purpose support. Compared with other FPGA based
methodologies (like OpenCL toolchains), the benefit could be to avoid to reconfigure the

─ 201 ─

FPGA device or to allow simultaneous execution of several workloads. This should be
tested and verified.

 Finally, more applications should be tested to demonstrate the ability of the
platform to reach high levels of energy efficiency. In this case a multi-device analysis
comparing CPUs, GPGPUs, and FPGAs would be necessary, considering the effort to
program each solution.

─ 202 ─

─ 203 ─

References

[Acumem] Acumem: Acumem Threadspotter. http://www.roguewave.com/products/threadspotter.aspx
[Aitken14] Aitken, R.; Yeric, G.; Cline, B.; Sinha, S.; Shifren, L.; Iqbal, I. & Chandra, V. Physical design and

FinFETs Proceedings of the 2014 on International symposium on physical design, 2014, 65-68
[Altera07] Altera Corporation, “Design Debugging Using the SignalTap II Embedded Logic Analyzer”, Mar. 2007
[Altera10] Altera Nios II Processor Reference Handbook Document Version: v10.1, 2010
[Altera-AN391] Altera Profiling Nios II Systems Application Note AN-391-3.0 2011
[Altera12] Altera. “Reducing Power Consumption and Increasing Bandwidth on 28-nm FPGAs”, WP-01148-2.0,

White Paper 2012.
[Altera15] Stephen Lim, “Expect a Breakthrough Advantage in Next-Generation FPGAs”, WP-01199-1.1 White

Paper 2015
[Altera15b] Altera, “NIOS II Core Implementation Details”, NII51015 2015
[AltiumTsk] http://techdocs.altium.com/display/FPGA/TSK3000A
[Amdahl67] Amdahl, Gene M. "Validity of the single processor approach to achieving large scale computing

capabilities." Proceedings of the April 18-20, 1967, spring joint computer conference. ACM, 1967.
[Amsler12] Amsler, C. The effects of hardware acceleration on power usage in basic high-performance computing

Kansas State University, 2012
[AndroidEmu] http://developer.android.com/tools/help/emulator.html
[Anghel11] Anghel, I.; Cioara, T.; Salomie, I.; Copil, G.; Moldovan, D. & Pop, C. Dynamic frequency scaling

algorithms for improving the CPU's energy efficiency Intelligent Computer Communication and
Processing (ICCP), 2011 IEEE International Conference on, 2011, 485-491

[ArmM1] http://www.arm.com/products/processors/cortex-m/cortex-m1.php
[Arnold09] Arnold, B. Shrinking possibilities IEEE Spectrum, 2009, 4, 26-28
[Auth12] Auth, C.; Allen, C.; Blattner, A.; Bergstrom, D.; Brazier, M.; Bost, M.; Buehler, M.; Chikarmane, V.;

Ghani, T.; Glassman, T. & others A 22nm high performance and low-power CMOS technology featuring
fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors VLSI Technology
(VLSIT), 2012 Symposium on, 2012, 131-132

[Bai04] Bai, P.; Auth, C.; Balakrishnan, S.; Bost, M.; Brain, R.; Chikarmane, V.; Heussner, R.; Hussein, M.;
Hwang, J.; Ingerly, D. & others A 65nm logic technology featuring 35nm gate lengths, enhanced channel
strain, 8 Cu interconnect layers, low-k ILD and 0.57 $m 2 SRAM cell Electron Devices Meeting, 2004.
IEDM Technical Digest. IEEE International, 2004, 657-660

[Balart04] Balart, J.; Duran, A.; Gonzalez, M.; Martorell, X.; Ayguade, E. & Labarta, J. “Nanos mercurium: a
research compiler for openmp”. In Proceedings of the European Workshop on OpenMP , volume 8, 2004.

[Ball07] Ball, J. Designing Soft-Core Processors for FPGAs Processor Design, Springer, 2007, 229-256
[Baklouti14] Baklouti, M. & Abid, M. Multi-Softcore architecture on FPGA International Journal of Reconfigurable

Computing, Hindawi Publishing Corp., 2014, 2014, 14
[Barthe11] Barthe, Lyonel, et al. "Optimizing an open-source processor for FPGAs: A case study." Field

Programmable Logic and Applications (FPL), 2011 International Conference on. IEEE, 2011.
[Barthe11b] Barthe, Lyonel, et al. "The secretblaze: A configurable and cost-effective open-source soft-core

processor." Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on. IEEE, 2011.

[Basumallik07] Basumallik, Ayon, Seung-Jai Min, and Rudolf Eigenmann. "Programming distributed memory sytems
using OpenMP." Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International. IEEE, 2007.

[Bao09] Bao, Y. & Brorsson, M. An Implementation of Cache-Coherence for the Nios II™ Soft-core processor
2nd Swedish Workshop on Multi-core Computing, 2009

[Bell03] Bell, Robert, Allen D. Malony, and Sameer Shende. "ParaProf: A portable, extensible, and scalable tool
for parallel performance profile analysis." Euro-Par 2003 Parallel Processing. Springer Berlin
Heidelberg, 2003. 17-26.

─ 204 ─

[Bellard05] Bellard, Fabrice. "QEMU, a Fast and Portable Dynamic Translator." USENIX Annual Technical
Conference, FREENIX Track. 2005.

[Bellows98] Bellows, P. & Hutchings, B. JHDL-an HDL for reconfigurable systems FPGAs for Custom Computing
Machines, 1998. Proceedings. IEEE Symposium on, 1998, 175-184

[Ben14] Ben Asher, Yosi, et al. "1K manycore FPGA shared memory architecture for SOC." Proceedings of the
2014 ACM/SIGDA international symposium on Field-programmable gate arrays. ACM, 2014.

[Benini02] Benini, L. & De Micheli, G. Networks on chips: a new SoC paradigm Computer, IEEE, 2002, 35, 70-78
[Bernat12] Bernat, G.; Colin, A. & Petters, S. M. WCET analysis of probabilistic hard real-time systems Real-Time

Systems Symposium, 2002. RTSS 2002. 23rd IEEE, 2002, 279-288
[Bertozzi04] D. Bertozzi, et al. . "Xpipes: A Network-on-Chip Architecture for Gigascale Systems-on-Chip". IEEE

Circuits and Systems Magazine, v.4(2), pp. 18-31, 2004
[Birrell87] Birrell, Andrew, et al. Synchronization primitives for a multiprocessor: A formal specification. Vol. 21.

No. 5. ACM, 1987.
[Böhm10] Böhm, I.; Franke, B. & Topham, N. Cycle-accurate performance modelling in an ultra-fast just-in-time

dynamic binary translation instruction set simulator Embedded Computer Systems (SAMOS), 2010
International Conference on, 2010, 1 -10

[Bohr11] Bohr, M. The evolution of scaling from the homogeneous era to the heterogeneous era Electron Devices
Meeting (IEDM), 2011 IEEE International, 2011, 1-1

[Bouchhima05] Bouchhima, Aimen, et al. "Using abstract CPU subsystem simulation model for high level HW/SW
architecture exploration." Proceedings of the 2005 Asia and South Pacific Design Automation
Conference. ACM, 2005.

[Brewer88] Brewer, O.; Dongarra, J. & Sorensen, D. “Tools to aid in the analysis of memory access patterns for
FORTRAN Programs” Parallel Computing, Elsevier, 1988, 9, 25-35

[Brunst01] Brunst, Holger, et al. "Performance optimization for large scale computing: The scalable VAMPIR
approach." Computational Science-ICCS 2001. Springer Berlin Heidelberg, 2001. 751-760.

[Castells06] Castells-Rufas, David, Jaume Joven, and Jordi Carrabina. "A validation and performance evaluation tool
for ProtoNoC." System-on-Chip, 2006. International Symposium on. IEEE, 2006.

[Castells09] Castells-Rufas, D., et al. "NocMaker: A cross-platform open-source design space exploration tool for
networks on chip." INA-OCMC Workshop, Paphos, Cyprus. 2009.

[Castells10] Castells-Rufas, David, et al. "MPSoC performance analysis with virtual prototyping platforms." Parallel
Processing Workshops (ICPPW), 2010 39th International Conference on. IEEE, 2010.

[Castells10b] Castells-Rufas, D.; Joven, J. & Carrabina, J. “Scalability of a Parallel JPEG Encoder on Shared Memory
Architectures” 2010 39th International Conference on Parallel Processing, 2010, 502-507

[Castells11] Castells-Rufas, D.; Fernandez-Alonso, E.; Carrabina, J. & Joven, J. Sharing FPUs in many-soft-cores
Field-Programmable Technology (FPT), 2011 International Conference on, 2011, 1-6

[Castells12] Castells-Rufas, D.; Vila-Closas, O. & Carrabina, J. Design of a multi-soft-core based Laser Marking
controller Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on, 2012,
1-6

[Castells14] Castells-Rufas, D.; Carrabina, J.; González de Aledo Marugán, P. & Sánchez Espeso, P. “Fast Trace
Generation of Many-Core Embedded Systems with Native Simulation” In proceeding of: High
Performance Energy Efficient Embedded Systems (HIP3ES 2014), 2014

[Castells15] Castells-Rufas, D. & Carrabina, J. 128-core Many-Soft-Core Processor with MPI support
Jornadas de Computación Reconfigurable y Aplicaciones (JCRA), 2015

[Chan04] Chan, J. et al. "NoCGEN: A Template Based Reuse Methodology for Networks on Chip Architecture".
In: VLSI’04. 2004, pp 717-720

[Chapman03] Chapman, Ken. "Picoblaze 8-bit microcontroller for virtex-e and spartan-ii/iie devices." Xilinx
Application Notes (2003).

[Chen11] Chen, H.; Yin, L. & Peng, G. Implementation of multi-core embedded system on compound guidance
system Electronics, Communications and Control (ICECC), 2011 International Conference on, 2011,
4348-4351

[Chi15] Chi, C. C.; Alvarez-Mesa, M.; Bross, B.; Juurlink, B. & Schierl, T. SIMD Acceleration for HEVC
Decoding Circuits and Systems for Video Technology, IEEE Transactions on, 2015, 25, 841-855

[Choi13] Choi, J.; Brown, S. & Anderson, J. From software threads to parallel hardware in high-level synthesis for
FPGAs Field-Programmable Technology (FPT), 2013 International Conference on, 2013, 270-277

[Cichowski12] Cichowski, P.; Keller, Jö. & Kessler, C. Modelling power consumption of the Intel SCC The 6th Many-
core Applications Research Community (MARC) Symposium, 2012, 46-51

[Cooper88] Cooper, E. and Draves, R. C Threads. Technical Report CMU-CS-88-154, Computer Science Department,
Carnegie Mellon University, June, 1988.

─ 205 ─

[Corina10] Corina, M. “Quantitative analysis and visualization of memory access patterns” TU Delft, Delft University
of Technology, 2010

[Coupé12] Cheryl Coupé, “Bandwidth Demands Drive FPGA/PLD Market” 2012
http://eecatalog.com/fpga/2012/01/27/bandwidth-demands-drive-fpgapld-market/

[CritBlueP] Critical Blue. Prism, http://www.criticalblue.com/
[Curreri10] Curreri, J.; Koehler, S.; George, A.; Holland, B. & Garcia, R. Performance analysis framework for high-

level language applications in reconfigurable computing ACM Transactions on Reconfigurable
Technology and Systems (TRETS), ACM, 2010, 3, 5

[Czechowski14] Czechowski, K.; Lee, V. W.; Grochowski, E.; Ronen, R.; Singhal, R.; Vuduc, R. & Dubey, P. Improving
the energy efficiency of big cores Proceeding of the 41st annual international symposium on Computer
architecuture, 2014, 493-504

[Cragon80] Cragon, H. G. The elements of single-chip microcomputer architecture Computer, IEEE, 1980, 27-41
[Critcklow63] Critcklow, A. J. "Generalized multiprocessing and multiprogramming systems."Proceedings of the

November 12-14, 1963, fall joint computer conference. ACM, 1963.
[Dahlby04] Dahlby, Doug. "Applying agile methods to embedded systems development."Embedded Software Design

Resources 41 (2004): 1014123.
[Dalay03] Dalay, B. Accelerating system performance using SOPC builder System-on-Chip, 2003. Proceedings.

International Symposium on, 2003, 3-5
[Dally01] Dally, W. J. & Towles, B. Route packets, not wires: On-chip interconnection networks Design Automation

Conference, 2001. Proceedings, 2001, 684-689
[Dally04] Dally, W. J. & Towles, B. P. Principles and practices of interconnection networks Elsevier, 2004
[Dao00] Dao, Tuan Q., and Donald E. Steiss. "Shared floating-point unit in a single chip multiprocessor." U.S.

Patent No. 6,148,395. 14 Nov. 2000.
[Davis11] Davis, R. I. & Burns, A. A Survey of Hard Real-time Scheduling for Multiprocessor Systems ACM

Comput. Surv., ACM, 2011, 43, 35:1-35:44
[Dennard74] Dennard, R. H.; Rideout, V.; Bassous, E. & Leblanc, A. Design of ion-implanted MOSFET's with very

small physical dimensions Solid-State Circuits, IEEE Journal of, IEEE, 1974, 9, 256-268
[Deval15] Deval, A.; Ananthakrishnan, A. & Forbell, C. Power management on 14 nm Inteltextregistered Core- M

processor Low-Power and High-Speed Chips (COOL CHIPS XVIII), 2015 IEEE Symposium in, 2015, 1-
3

[Dhrystone] Weicker, R. P. Dhrystone: a synthetic systems programming benchmark
Communications of the ACM, ACM, 1984, 27, 1013-1030

[Diaz12] Diaz, Javier, Camelia Munoz-Caro, and Alfonso Nino. "A survey of parallel programming models and
tools in the multi and many-core era." Parallel and Distributed Systems, IEEE Transactions on 23.8
(2012): 1369-1386.

[Djoudi05] Djoudi, Lamia, et al. "Maqao: Modular assembler quality analyzer and optimizer for itanium 2." The 4th
Workshop on EPIC architectures and compiler technology, San Jose. 2005.

[Donofrio09] Donofrio, D.; Oliker, L.; Shalf, J.; Wehner, M. F.; Rowen, C.; Krueger, J.; Kamil, S. & Mohiyuddin, M.
Energy-efficient computing for extreme-scale science
Computer, IEEE, 2009, 62-71

[Dorta10] Dorta, Taho, et al. "Reconfigurable multiprocessor systems: a review."International Journal of
Reconfigurable Computing 2010 (2010): 7.

[Duato93] Duato, José. "A new theory of deadlock-free adaptive routing in wormhole networks." Parallel and
Distributed Systems, IEEE Transactions on 4.12 (1993): 1320-1331.

[Duato03] Duato, J.; Yalamanchili, S. & Ni, L. M. Interconnection networks: An engineering approach Morgan
Kaufmann, 2003

[Dykes07] Dykes, J.; Chan, P.; Chapman, G. & Shannon, L. A Multiprocessor System-on-Chip Implementation of a
Laser-based Transparency Meter on an FPGA Field-Programmable Technology, 2007. ICFPT 2007.
International Conference on, 2007, 373-376

[Ellis85] Ellis, John R. Bulldog: A compiler for VLIW architectures. Yale Univ., New Haven, CT (USA), 1985.
[Esmaeilzadeh11] Esmaeilzadeh, H.; Blem, E.; Amant, R. S.; Sankaralingam, K. & Burger, D.

Dark silicon and the end of multicore scaling Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, 2011, 365-376

[Feng03] Feng, W.-C. Making a case for efficient supercomputing Queue, ACM, 2003, 1, 54
[Fernandez10] Fernandez-Alonso, E.; Castells-Rufas, D.; Risueno, S.; Carrabina, J. & Joven, J.

A NoC-based multi-soft-core with 16 cores Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE
International Conference on, 2010, 259 -262

─ 206 ─

[Fernandez14] Fernandez-Alonso, E. Offloading Techniques to Improve Performance on MPI Applications in NoC-
Based MPSoCs Engineering School. Universitat Autònoma de Barcelona.,2014

[Flynn72] Flynn, Michael J. "Some computer organizations and their effectiveness."Computers, IEEE Transactions
on 100.9 (1972): 948-960.

[Foster13] Foster, H. D. Why the Design Productivity Gap Never Happened Proceedings of the International
Conference on Computer-Aided Design, IEEE Press, 2013, 581-584

[Freitas07] Freitas, H.; Colombo, D.; Kastensmidt, F. L. & Navaux, P. Evaluating Network-on-Chip for
Homogeneous Embedded Multiprocessors in FPGAs Circuits and Systems, 2007. ISCAS 2007. IEEE
International Symposium on, 2007, 3776-3779

[Gabriel04] Gabriel, Edgar, et al. "Open MPI: Goals, concept, and design of a next generation MPI
implementation." Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer
Berlin Heidelberg, 2004. 97-104.

[Gaisler03] Gaisler, Jiri. "The LEON-2 processor user’s manual." Version 1 (2003): 14.
[Gaisler07] Gaisler, Jiri, et al. "GRLIB IP core user’s manual." Gaisler research (2007).
[Gayasen04] Gayasen, A.; Tsai, Y.; Vijaykrishnan, N.; Kandemir, M.; Irwin, M. J. & Tuan, T. Reducing leakage energy

in FPGAs using region-constrained placement Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays, 2004, 51-58

[George07] George, V.; Jahagirdar, S.; Tong, C.; Smits, K.; Damaraju, S.; Siers, S.; Naydenov, V.; Khondker, T.;
Sarkar, S. & Singh, P. Penryn: 45-nm next generation Inteltextregistered core™ 2 processor Solid-State
Circuits Conference, 2007. ASSCC'07. IEEE Asian, 2007, 14-17

[Giefers10] Giefers, H. & Platzner, M. A Triple Hybrid Interconnect for Many-Cores: Reconfigurable Mesh, NoC
and Barrier Field Programmable Logic and Applications (FPL), 2010 International Conference on, 2010,
223-228

[Goodman83] Goodman, J. R. Using cache memory to reduce processor-memory traffic ACM SIGARCH Computer
Architecture News, 1983, 11, 124-131

[Gong08] Gong, N.; Guo, B.; Lou, J. & Wang, J. Analysis and optimization of leakage current characteristics in
sub-65nm dual V t footed domino circuits Microelectronics Journal, Elsevier, 2008, 39, 1149-1155

[Gray00] Gray, J. Building a RISC system in an FPGA Circuit Cellar Magazine, 2000, 117
[green500] http://www.green500.org/
[Gropp99] Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with

the message-passing interface. Vol. 1. MIT press, 1999.
[Göhringer10] Göhringer, Diana, et al. "Message passing interface support for the runtime adaptive multi-processor

system-on-chip RAMPSoC." Embedded Computer Systems (SAMOS), 2010 International Conference on.
IEEE, 2010.

[Göhringer14] Göhringer, Diana. "Reconfigurable Multiprocessor Systems: Handling Hydras Heads--A Survey." ACM
SIGARCH Computer Architecture News 42.4 (2014): 39-44.

[Gromova12] Gromova, V. Optimize Data Structures and Memory Access Patterns to Improve Data Locality
Intel Guide for Developing Multithreaded Applications, 2012

[Guan01] Guan, D.; Yu, S.; Liang, C. & Wang, X. MPEG-2 TS generate system and its implementation with FPGA
ASIC, 2001. Proceedings. 4th International Conference on, 2001, 510-513

[Gupta04] Gupta, H. Integration of a Floating Point Unit with the Leon Processor Indian Institute of Technology
Delhi, 2004

[Hamada09] Hamada, T.; Benkrid, K.; Nitadori, K. & Taiji, M. A Comparative Study on ASIC, FPGAs, GPUs and
General Purpose Processors in the O(N^2) Gravitational N-body Simulation Adaptive Hardware and
Systems, 2009. AHS 2009. NASA/ESA Conference on, 2009, 447-452

[Hambarde14] Hambarde, Prasanna, Rachit Varma, and Somesh Jha. "The Survey of Real Time Operating System:
RTOS." Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014
International Conference on. IEEE, 2014.

[Han12] Han, Z.; Wang, J. & Zeng, Y. Qsys NOC-based MPSOC design for LAMOST Spectrographs SPIE
Astronomical Telescopes+ Instrumentation, 2012, 84513D-84513D

[Hansen70] Hansen, Per Brinch. "The nucleus of a multiprogramming system. "Communications of the ACM 13.4
(1970): 238-241.

[Hennessy81] Hennessy, J.; Jouppi, N.; Baskett, F. & Gill, J. MIPS: a VLSI processor architecture
Springer, 1981

[Hennessy11] Hennessy, John L., and David A. Patterson. Computer architecture: a quantitative approach. Elsevier,
2011.

[Henry92] Henry, Dana S., and Christopher F. Joerg. "A tightly-coupled processor-network interface." ACM
SIGPLAN Notices. Vol. 27. No. 9. ACM, 1992.

─ 207 ─

[Hoare76] Hoare, C. A. R. Parallel programming: an axiomatic approach. Springer Berlin Heidelberg, 1976.
[Hoare78] Hoare, Charles Antony Richard. "Communicating sequential processes."Communications of the

ACM 21.8 (1978): 666-677.
[Howard10] Howard, J.; Dighe, S.; Hoskote, Y.; Vangal, S.; Finan, D.; Ruhl, G.; Jenkins, D.; Wilson, H.; Borkar, N.;

Schrom, G. & others A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, 108-109

[Hubert07] Hubert, H.; Stabernack, B. & Wels, K.-I. Performance and Memory Profiling for Embedded System
Design Industrial Embedded Systems, 2007. SIES '07. International Symposium on, 2007, 94 -101

[Hubner05] Hubner, M.; Paulsson, K. & Becker, J. Parallel and Flexible Multiprocessor System-On-Chip for Adaptive
Automotive Applications based on Xilinx MicroBlaze Soft-Cores Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, 2005, 149a-149a

[Huerta05] Huerta, P.; Castillo, J.; Mártinez, J. & Lopez, V. A microblaze based multiprocessor soc
WSEAS transactions on circuits and systems, 2005, 4, 423-430

[Huerta07] Huerta, P.; Castillo, J.; Martinez, J. & Pedraza, C. Exploring FPGA Capabilities for Building Symmetric
Multiprocessor Systems Programmable Logic, 2007. SPL '07. 2007 3rd Southern Conference on, 2007,
113-118

[Hung05] Hung, A.; Bishop, W. & Kennings, A. Symmetric multiprocessing on programmable chips made easy
Design, Automation and Test in Europe, 2005. Proceedings, 2005, 240-245 Vol. 1

[Inglart08] Inglart, N.; Niar, S.; Cohen, A. “Hybrid performance analysis to accelerate compiler optimization space
exploration for in-order processors.” In 2ndWorkshop on Statistical and Machine learning approaches
applied to ARchitectures and compilaTion (SMART), Gothenburg, Sweden, January 2008

[IntelVt] Intel: Intel Vtune Amplifier XE. www.intel.com/software/products/vtune
[Islam10] Islam, R.; Sabbavarapu, A.; Patel, R.; Kumar, M.; Nguyen, J.; Patel, B. & Kontu, A.

Next generation Inteltextregistered ATOM™ processor based ultra low power SoC for handheld
applications Solid State Circuits Conference (A-SSCC), 2010 IEEE Asian, 2010, 1-4

[ITRSXX] International technology roadmap for semiconductors (ITRS) Semiconductor Industry Association, 20XX
[Iwai09] Iwai, H. Roadmap for 22nm and beyond Microelectronic Engineering, Elsevier, 2009, 86, 1520-1528
[Jan12] Jan, C.-H.; Bhattacharya, U.; Brain, R.; Choi, S.-J.; Curello, G.; Gupta, G.; Hafez, W.; Jang, M.; Kang,

M.; Komeyli, K. & others A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate,
optimized for ultra low power, high performance and high density SoC applications Electron Devices
Meeting (IEDM), 2012 IEEE International, 2012, 3-1

[Jantsch06] Jantsch A. Nocsim: A NoC Simulator. School of Information and Communication Technology, Royal
Institute of Technology, Stockholm, version 0.4 alpha edition, 2006.

[Jensen08] Jensen, David W. "Developing System-on-Chips with Moore, Amdahl, Pareto, and
Ohm." Electro/Information Technology, 2008. EIT 2008. IEEE International Conference on. IEEE, 2008.

[Jin05] Jin, Y.; Satish, N.; Ravindran, K. & Keutzer, K. An Automated Exploration Framework for FPGA-based
Soft Multiprocessor Systems Proceedings of the 3rd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ACM, 2005, 273-278

[Jing13] Jing, F.; xia null, L. J.; Long, M. & He, C. Feature level fusion of SAR and optical image and MPSoC
IMPLEMENTATION Radar Conference 2013, IET International, 2013, 1-6

[Jones04] Jones, A.; Hoare, R.; Kourtev, I.; Fazekas, J.; Kusic, D.; Foster, J.; Boddie, S. & Muaydh, A. A 64-way
VLIW/SIMD FPGA architecture and design flow Electronics, Circuits and Systems, 2004. ICECS 2004.
Proceedings of the 2004 11th IEEE International Conference on, 2004, 499-502

[Jose15] Jose, W.; Neto, H. & Vestias, M. A Many-Core Co-Processor for Embedded Parallel Computing on FPGA
Digital System Design (DSD), 2015 Euromicro Conference on, 2015, 539-542

[Joven08] Joven, J., et al. "xENoC-an experimental network-on-chip environment for parallel distributed computing
on NoC-based MPSoC architectures." Parallel, Distributed and Network-Based Processing, 2008. PDP
2008. 16th Euromicro Conference on. IEEE, 2008.

[Joven09] Joven, Jaume, et al. "NoCMaker & j2eMPI A Complete HW-SW Rapid Prototyping EDA Tool for Design
Space Exploration of NoC-based MPSoCs."IEEE/ACM Design, Automation and Test in Europe. 2009.

[Joven10] Joven Murillo, Jaume, and Jordi Carrabina i Bordoll. HW-sw components for parallel embedded
computing on noc-based mpsocs. Universitat Autònoma de Barcelona,, 2010.

[Joven11] Joven, J. et al. "Hw-sw implementation of a decoupled fpu for arm-based cortex-m1 socs in
fpgas." Industrial Embedded Systems (SIES), 2011 6th IEEE International Symposium on. IEEE, 2011.

[Joven13] Joven, Jaume, et al. "QoS-driven reconfigurable parallel computing for NoC-based clustered
MPSoCs." Industrial Informatics, IEEE Transactions on 9.3 (2013): 1613-1624.

[Kahle04] Kahle, James Allan, and Charles Roberts Moore. "Shared execution unit in a dual core processor." U.S.
Patent No. 6,725,354. 20 Apr. 2004.

─ 208 ─

[Kennedy14] Kennedy, Ken, and Kathryn S. McKinley. "Optimizing for parallelism and data locality." 25th
Anniversary International Conference on Supercomputing Anniversary Volume. ACM, 2014.

[Kestur10] Kestur, S.; Davis, J. D. & Williams, O. Blas comparison on fpga, cpu and gpu VLSI (ISVLSI), 2010 IEEE
computer society annual symposium on, 2010, 288-293

[Khan09] Khan, J.; Niar, S.; Saghir, M.; El-Hillali, Y. & Rivencq-Menhaj, A. Trade-Off Exploration for Target
Tracking Application in a CustomizedMultiprocessor Architecture EURASIP Journal on Embedded
Systems, 2009, 2009, 21-pages

[Kiefer15] Kiefer, G.; Seider, M. & Schaeferling, M. ParaNut-An Open, Scalable, and Highly Parallel Processor
Architecture for FPGA-based Systems Embedded world Conference, 2015

[Knüpfer12] Knüpfer, Andreas, et al. "Score-p: A joint performance measurement run-time infrastructure for
periscope, scalasca, tau, and vampir." Tools for High Performance Computing 2011. Springer Berlin
Heidelberg, 2012. 79-91.

[Koehler11] Koehler, S.; Stitt, G. & George, A. D. Platform-aware bottleneck detection for reconfigurable computing
applications ACM Trans. Reconfigurable Technol. Syst., ACM, 2011, 4, 30:1-30:28

[Koliaï13] Koliaï, Souad, et al. "Quantifying performance bottleneck cost through differential analysis." Proceedings
of the 27th international ACM conference on International conference on supercomputing. ACM, 2013.

[Kondo13] Kondo, M.; Nguyen, S.; Hirao, T.; Soga, T.; Sasaki, H. & Inoue, K. SMYLEref: A reference architecture
for manycore-processor SoCs Design Automation Conference (ASP-DAC), 2013 18th Asia and South
Pacific, 2013, 561-564

[Kornaros10] Kornaros, G. A soft multi-core architecture for edge detection and data analysis of microarray images
Journal of Systems Architecture, 2010, 56, 48 – 62

[Kozyrakis02] Kozyrakis, C. & Patterson, D. Vector vs. superscalar and VLIW architectures for embedded multimedia
benchmarks Proceedings of the 35th annual ACM/IEEE international symposium on Microarchitecture,
2002, 283-293

[Krasnov07] Krasnov, A.; Schultz, A.; Wawrzynek, J.; Gibeling, G. & Droz, P. RAMP Blue: A message-passing
manycore system in FPGAs Field Programmable Logic and Applications, 2007. FPL 2007. International
Conference on, 2007, 54-61

[Kulmala06] Kulmala, A.; Lehtoranta, O.; Hämäläinen, T. D. & Hännikäinen, M. Scalable MPEG-4 encoder on FPGA
multiprocessor SOC EURASIP journal on Embedded Systems, Hindawi Publishing Corp., 2006, 2006, 8-
8

[Kumar04] Kumar, R.; Jouppi, N. & Tullsen, D. Conjoined-Core Chip Multiprocessing Microarchitecture, 2004.
MICRO-37 2004. 37th International Symposium on, , 195-206

[Kuon07] Kuon, I. & Rose, J. Measuring the gap between FPGAs and ASICs Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, IEEE, 2007, 26, 203-215

[Kwon15] Kwon, W.-C. & Peh, L.-S. A Universal Ordered NoC Design Platform for Shared-memory MPSoC
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, IEEE Press, 2015,
697-704

[Lamport74] Lamport, Leslie. "A new solution of Dijkstra's concurrent programming problem." Communications of
the ACM 17.8 (1974): 453-455.

[Lebedev10] Lebedev, I.; Cheng, S.; Doupnik, A.; Martin, J.; Fletcher, C.; Burke, D.; Lin, M. & Wawrzynek, J. MARC:
A many-core approach to reconfigurable computing Reconfigurable Computing and FPGAs (ReConFig),
2010 International Conference on, 2010, 7-12

[Lecler11] Lecler, Jean-Jacques, and Gilles Baillieu. "Application driven network-on-chip architecture exploration
& refinement for a complex SoC." Design Automation for Embedded Systems 15.2 (2011): 133-158.

[Lee09] Lee, S.-h. The Design and implementation of parallel processing system using the Nios II embedded
processor Journal of the Korea Society of Computer and Information, Korean Society of Computer
Information, 2009, 14, 97-103

[Lehtoranta05] Lehtoranta, I.; Salminen, E.; Kulmala, A.; Hannikainen, M. & Hamalainen, T.
A parallel MPEG-4 encoder for FPGA based multiprocessor SoC Field Programmable Logic and
Applications, 2005. International Conference on, 2005, 380-385

[Leow13] Leow, Y. K.; Akoglu, A. & Lysecky, S. An Analytical Model for Evaluating Static Power of
Homogeneous FPGA Architectures ACM Transactions on Reconfigurable Technology and Systems
(TRETS), ACM, 2013, 6, 18

[Li03] Li, S. Y.; Cheuk, G. C.; Lee, K.-H. & Leong, P. H. FPGA-based SIMD processor
Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’03), 2003, 267

[LM32] LatticeMico32 Website: http://www.latticesemi.com/
[Lorenz05] Lorenz, Juergen, et al. "Vectorization techniques for the Blue Gene/L double FPU." IBM Journal of

Research and Development 49.2.3 (2005): 437-446.

─ 209 ─

[Lu02] Lu, Y.-H.; Benini, L. & De Micheli, G. Dynamic frequency scaling with buffer insertion for mixed
workloads Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, IEEE,
2002, 21, 1284-1305

[Lu03] Lu, Zhonghai, and Raimo Haukilahti. "NOC application programming interfaces: high level
communication primitives and operating system services for power management." Networks on chip.
Kluwer Academic Publishers, 2003.

[Lu07] Lu, S.-L. L.; Yiannacouras, P.; Kassa, R.; Konow, M. & Suh, T. An FPGA-based Pentium® in a complete
desktop system Proceedings of the 2007 ACM/SIGDA 15th international symposium on Field
programmable gate arrays, 2007, 53-59

[Lv09] Lv, M.; Guan, N.; Zhang, Y.; Deng, Q.; Yu, G. & Zhang, J. A survey of WCET analysis of real-time
operating systems Embedded Software and Systems, 2009. ICESS'09. International Conference on, 2009,
65-72

[Mahadevan05] Mahadevan, S. et al., “A network traffic generator model for fast network-on-chip simulation,” in Proc.
DATE, Mar. 2005, pp. 780-785.

[Mahr08] Mahr, Philipp, et al. "SoC-MPI: A flexible message passing library for multiprocessor systems-on-
chips." Reconfigurable Computing and FPGAs, 2008. ReConFig'08. International Conference on.
IEEE, 2008.

[Mallón09] Mallón, Damián A., et al. "Performance evaluation of MPI, UPC and OpenMP on multicore
architectures." Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer
Berlin Heidelberg, 2009. 174-184.

[Mandelbrot13] Mandelbrot, Benoit. Fractals and chaos: the Mandelbrot set and beyond. Vol. 3. Springer Science &
Business Media, 2013.

[Martina02] Martina, M.; Molino, A. & Vacca, F. FPGA system-on-chip soft IP design: a reconfigurable DSP Circuits
and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, 2002, 3, III-196-III-199 vol.3

[Martins15] Martins, M.; Matos, J.; Ribas, R.; Reis, A.; Schlinker, G.; Rech, L. & Michelsen, J.
Open Cell Library in 15nm FreePDK Technology Proc. of the Int’l Symp. on Physical Design (ISPD),
2015

[Massa03] Massa, Anthony J. Embedded software development with eCos. Prentice Hall Professional, 2003.
[Matas97] Matas, B. & DeSubercausau, C. Memory, 1997: Complete Coverage of DRAM, Sram, EPROM, and Flash

Memory IC's Integrated Circuit Engineering Corp., 1997
[Matilainen11] Matilainen, Lauri, et al. "Multicore Communications API (MCAPI) implementation on an FPGA

multiprocessor." Embedded Computer Systems (SAMOS), 2011 International Conference on. IEEE,
2011.

[Mattson10] Mattson, Timothy G., et al. "The 48-core SCC processor: the programmer's view." Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE Computer Society, 2010.

[Meenderinck09] Meenderinck, C. & Juurlink, B. (When) Will CMPs Hit the Power Wall? Euro-Par 2008 Workshops-
Parallel Processing, 2009, 184-193

[Meltzer99] Meltzer, David. "Single chip multiprocessor with shared execution units." U.S. Patent No. 5,987,587. 16
Nov. 1999.

[MikeFPU] Schoegg, M. Configurable FPU http://www.alterawiki.com/wiki/Configurable_FPU
[Mistry07] Mistry, K.; Allen, C.; Auth, C.; Beattie, B.; Bergstrom, D.; Bost, M.; Brazier, M.; Buehler, M.; Cappellani,

A.; Chau, R. & others A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu
interconnect layers, 193nm dry patterning, and 100% Pb-free packaging Electron Devices Meeting, 2007.
IEDM 2007. IEEE International, 2007, 247-250

[Monton07] Monton, M.; Portero, A.; Moreno, M.; Martinez, B. & Carrabina, J. “Mixed SW/systemC SoC emulation
framework” Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on, 2007, 2338-2341

[Moore75] Moore, G. E. & others Progress in digital integrated electronics IEDM Tech. Digest, 1975, 11
[Murali06] Murali, S., et al. "Sunfloor: Application-Specific Design of Networks-on-Chip."Poster presentation at

University Booth at the Design, Automation and Test in Europe Conference and Exhibition. 2006.
[Murali06b] Murali, Srinivasan, et al. "Designing message-dependent deadlock free networks on chips for application-

specific systems on chips." Very Large Scale Integration, 2006 IFIP International Conference on. IEEE,
2006.

[Mplemenos08] Mplemenos, G. & Papaefstathiou, I. MPLEM: An 80-processor FPGA Based Multiprocessor System
Field-Programmable Custom Computing Machines, Annual IEEE Symposium on, IEEE Computer
Society, 2008, 0, 273-274

[Nagel96] Nagel, Wolfgang E., et al. "VAMPIR: Visualization and analysis of MPI resources." (1996).
[Nakatani89] Nakatani, Toshio, and Kemal Ebcioğlu. "“Combining” as a compilation technique for VLIW

architectures." ACM SIGMICRO Newsletter. Vol. 20. No. 3. ACM, 1989.

─ 210 ─

[Nalamalpu15] Nalamalpu, A.; Kurd, N.; Deval, A.; Mozak, C.; Douglas, J.; Khanna, A.; Paillet, F.; Schrom, G. & Phelps,
B. Broadwell: A family of IA 14nm processors VLSI Circuits (VLSI Circuits), 2015 Symposium on, 2015,
C314-C315

[Natarajan14] Natarajan, S.; Agostinelli, M.; Akbar, S.; Bost, M.; Bowonder, A.; Chikarmane, V.; Chouksey, S.;
Dasgupta, A.; Fischer, K.; Fu, Q. & others A 14nm logic technology featuring 2 nd-generation FinFET,
air-gapped interconnects, self-aligned double patterning and a 0.0588 $m 2 SRAM cell size Electron
Devices Meeting (IEDM), 2014 IEEE International, 2014, 3-7

[Nethercote07] Nethercote, Nicholas, and Julian Seward. "Valgrind: a framework for heavyweight dynamic binary
instrumentation." ACM Sigplan notices. Vol. 42. No. 6. ACM, 2007.

[Oberman99] Oberman, S. Floating point division and square root algorithms and implementation in the AMD-K7TM
microprocessor Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium on, 1999, 106-115

[Packan09] Packan, P.; Akbar, S.; Armstrong, M.; Bergstrom, D.; Brazier, M.; Deshpande, H.; Dev, K.; Ding, G.;
Ghani, T.; Golonzka, O. & others High Performance 32nm Logic Technology Featuring 2 nd Generation
High-k+ Metal Gate Transistors Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, 1-4

[Pande05] Pande, P. P. et al., “Performance evaluation and design trade-offs for network-on-chip interconnect
architectures,” IEEE Trans. Comput., vol. 54, no. 8, pp. 1025–1039, Aug. 2005.

[Podobas14] Podobas, A. Accelerating Parallel Computations with OpenMP-Driven System-on-Chip Generation for
FPGAs Embedded Multicore/Manycore SoCs (MCSoc), 2014 IEEE 8th International Symposium on,
2014, 149-156

[Pantelopoulos12] Pantelopoulos, S. & Brokalakis, A. “Deliverable D2. 4 - Parallel Hardware System Specifications”, from
Project No: FP7-ICT- 247615, 2012

[Parulkar08] Parulkar, Ishwar, et al. "OpenSPARC: An open platform for hardware reliability experimentation." Fourth
Workshop on Silicon Errors in Logic-System Effects (SELSE). 2008.

[Patterson85] Patterson, D. A. Reduced instruction set computers Communications of the ACM, ACM, 1985, 28, 8-21
[Pillet95] Pillet, Vincent, et al. "Paraver: A tool to visualize and analyze parallel code."Proceedings of WoTUG-18:

Transputer and occam Developments. Vol. 44. mar, 1995.
[Pitter08] Pitter, C. & Schoeberl, M. Performance evaluation of a java chip-multiprocessor

Industrial Embedded Systems, 2008. SIES 2008. International Symposium on, 2008, 34-42
[PJPEGENC] https://github.com/davidcastells/pjpegenc
[Plumbridge13] Plumbridge, G. & Audsley, N. Programming FPGA based NoCs with Java

Reconfigurable Computing and FPGAs (ReConFig), 2013 International Conference on, 2013, 1-6
[Plumbridge14] Plumbridge, G.; Whitham, J. & Audsley, N. Blueshell: A Platform for Rapid Prototyping of

Multiprocessor NoCs and Accelerators SIGARCH Comput. Archit. News, ACM, 2014, 41, 107-117
[Posadas04] Posadas, H.; Herrera, F.; Sanchez, P.; Villar, E. & Blasco, F. System-level performance analysis in

SystemC Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, 2004,
1, 378 - 383 Vol.1

[Posadas11] Posadas, H.; Real, S. & Villar, E. M3-SCoPE: Performance Modeling of Multi-Processor Embedded
Systems for Fast Design Space Exploration Multi-Objective Design Space Exploration of Multiprocessor
SOC Architectures: The Multicube Approach, Springer Verlag, 2011, 19

[Rashtchi14] Rashtchi, V. & Nourazar, M. A MULTIPROCESSOR Nios II IMPLEMENTATION OF DUFFING
OSCILLATOR ARRAY FOR WEAK SIGNAL DETECTION Journal of Circuits, Systems, and
Computers, World Scientific, 2014, 23, 1450054

[Rashti08] Rashti, M. & Afsahi, A. Improving communication progress and overlap in MPI Rendezvous protocol
over RDMA-enabled interconnects 22nd International Symposium on High Performance Computing
Systems and Applications (HPCS 2008), 2008, 95-101.

[Ravindran09] Ravindran, K.; Satish, N.; Jin, Y. & Keutzer, K. An FPGA-based soft multiprocessor system for IPv4
packet forwarding Field Programmable Logic and Applications, 2005. International Conference on,
2005, 487-492

[Raza14] Raza, M. & Azeemuddin, S. Multiprocessing on FPGA using light weight processor
Electronics, Computing and Communication Technologies (IEEE CONECCT), 2014 IEEE International
Conference on, 2014, 1-6

[Renbi09] Renbi, A. & Lindh, L. Power and energy efficiency evaluation for HW and SW implementation of nxn
matrix multiplication on Altera FPGAs Proceedings of the 6th FPGAworld Conference, 2009, 45-51

[Roberts09] Roberts-Hoffman, K. & Hegde, P. ARM cortex-a8 vs. intel atom: Architectural and benchmark
comparisons Dallas: University of Texas at Dallas, 2009

[Saa15] Saa-Garriga, Albert, David Castells-Rufas, and Jordi Carrabina. "OMP2MPI: Automatic MPI code
generation from OpenMP programs." In proceeding of: High Performance Energy Efficient Embedded
Systems (HIP3ES 2015), (2015).

─ 211 ─

[Saa16] Saà-Garriga, A. Automatic Source Code Adaptation for Parallel and Heterogenous Platforms. Universitat
Autònoma de Barcelona, 2016

[Sakran07] Sakran, N.; Yuffe, M.; Mehalel, M.; Doweck, J.; Knoll, E. & Kovacs, A. The implementation of the 65nm
dual-core 64b merom processor Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical
Papers. IEEE International, 2007, 106-590

[Saha13] Saha, Simanto, Anandaroop Chakrabarti, and Rajesh Ghosh. "Exploration of Multi-thread Processing on
XILKERNEL for FPGA Based Embedded Systems."Control Systems and Computer Science (CSCS),
2013 19th International Conference on. IEEE, 2013.

[Saldana06] Saldana, Manuel, and Paul Chow. "TMD-MPI: An MPI implementation for multiple processors across
multiple FPGAs." Field Programmable Logic and Applications, 2006. FPL'06. International Conference
on. IEEE, 2006.

[Salminen05] Salminen, E.; Kulmala, A. & Hämäläinen, T. D. HIBI-based multiprocessor SoC on FPGA
Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 2005, 3351-3354

[Schoeberl03] Schoeberl, M. JOP: A Java optimized processor On The Move to Meaningful Internet Systems 2003: OTM
2003 Workshops, 2003, 346-359

[Seki08] Seki, N.; Zhao, L.; Kei, J.; Ikebuchi, D.; Kojima, Y.; Hasegawa, Y.; Amano, H.; Kashima, T.; Takeda, S.;
Shirai, T. & others A fine-grain dynamic sleep control scheme in MIPS R3000 Computer Design, 2008.
ICCD 2008. IEEE International Conference on, 2008, 612-617

[Shannon04] Shannon, L. & Chow, P. Using reconfigurability to achieve real-time profiling for hardware/software
codesign Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable
gate arrays, 2004, 190-199

[Silva08] Silva-Filho, Abel G., and Sidney ML Lima. "Energy consumption reduction mechanism by tuning cache
configuration usign NIOS II processor." SOC Conference, 2008 IEEE International. IEEE, 2008.

[Silvano11] Silvano, Cristina, et al. "Multicube: Multi-objective design space exploration of multi-core
architectures." VLSI 2010 Annual Symposium. Springer Netherlands, 2011.

[Stevens10] Stevens, D. & Chouliaras, V. LE1: a parameterizable VLIW chip-multiprocessor with hardware pthreads
support VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on, 2010, 122-126

[Stevens12] Stevens, D.; Chouliaras, V.; Azorin-Peris, V.; Zheng, J.; Echiadis, A. & Hu, S.
BioThreads: A Novel VLIW-Based Chip Multiprocessor for Accelerating Biomedical Image Processing
Applications Biomedical Circuits and Systems, IEEE Transactions on, 2012, 6, 257-268

[Stevenson85] Stevenson, D. & others IEEE 754-1985 IEEE Standard for Binary Floating-Point Arithmetic 20pp, IEEE,
July, 1985

[Stümpel98] Stümpel, Esther, Michael Thies, and Uwe Kastens. "VLIW compilation techniques for superscalar
architectures." Compiler Construction. Springer Berlin Heidelberg, 1998.

[Subotic14] Subotic, Vladimir, et al. "Automatic exploration of potential parallelism in sequential applications."
Supercomputing. Springer International Publishing, 2014.

[Sun99] Sun, T.S.J. and Leu, D.R. Software performance analysis using hardware analyzer. Patent US 5903759.
1999.

[Sugavanam13] Sugavanam, K.; Cher, C.-Y.; Gunnels, J. A.; Haring, R. A.; Heidelberger, P.; Jacobson, H. M.; McManus,
M. K.; Paulsen, D.; Satterfield, D. L.; Sugawara, Y. & others Design for low power and power
management in IBM Blue Gene/Q IBM Journal of Research and Development, IBM, 2013, 57, 3-1

[Talwar08] Talwar, B. et al. "A System-C based Microarchitectural Exploration Framework for Latency, Power and
Performance Trade-offs of On-Chip Interconnection Networks", First International Workshop on
Network on Chip Architectures (NoCArc 2008), Lake Como, Italy, 2008.

[Tandon11] Tandon, James. "The openrisc processor: open hardware and linux." Linux Journal 2011.212 (2011): 6.
[Tang00] Tang, Hong, Kai Shen, and Tao Yang. "Program transformation and runtime support for threaded MPI

execution on shared-memory machines." ACM Transactions on Programming Languages and Systems
(TOPLAS) 22.4 (2000): 673-700.

[Taylor13] Taylor, M. B. A landscape of the new dark silicon design regime Micro, IEEE, IEEE, 2013, 33, 8-19
[Tian09] Tian, X. & Benkrid, K. Mersenne Twister Random Number Generation on FPGA, CPU and GPU

Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on, 2009, 460-464
[Tian10] Tian, X. & Benkrid, K. High-Performance Quasi-Monte Carlo Financial Simulation: FPGA vs. GPP vs.

GPU ACM Trans. Reconfigurable Technol. Syst., ACM, 2010, 3, 26:1-26:22
[Tong07] Tong, J. & Khalid, M. A Comparison of Profiling Tools for FPGA-Based Embedded Systems Electrical

and Computer Engineering, 2007. CCECE 2007. Canadian Conference on, 2007, 1687 -1690
[top500] http://top500.org/
[Trimberger15] Trimberger, S. M. Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology

Proceedings of the IEEE, IEEE, 2015, 103, 318-331

─ 212 ─

[Trefethen10] Trefethen, A. E. Extreme Computing: Challenges, Constraints and Opportunities
Fujitsu HPC Users Group Meeting, 2010

[Tumeo07] Tumeo, A.; Monchiero, M.; Palermo, G.; Ferrandi, F. & Sciuto, D. A Design Kit for a Fully Working
Shared Memory Multiprocessor on FPGA Proceedings of the 17th ACM Great Lakes Symposium on VLSI,
ACM, 2007, 219-222

[Tumeo10] Tumeo, A.; Regazzoni, F.; Palermo, G.; Ferrandi, F. & Sciuto, D. A Reconfigurable Multiprocessor
Architecture for a Reliable Face Recognition Implementation Proceedings of the Conference on Design,
Automation and Test in Europe, European Design and Automation Association, 2010, 319-322

[Valentini13] Valentini, G. L.; Lassonde, W.; Khan, S. U.; Min-Allah, N.; Madani, S. A.; Li, J.; Zhang, L.; Wang, L.;
Ghani, N.; Kolodziej, J. & others An overview of energy efficiency techniques in cluster computing
systems Cluster Computing, Springer, 2013, 16, 3-15

[Vangal08] Vangal, S. R.; Howard, J.; Ruhl, G.; Dighe, S.; Wilson, H.; Tschanz, J.; Finan, D.; Singh, A.; Jacob, T.;
Jain, S. & others An 80-tile sub-100-w teraflops processor in 65-nm cmos
Solid-State Circuits, IEEE Journal of, IEEE, 2008, 43, 29-41

[Vasudevan10] Vasudevan, V.; Andersen, D.; Kaminsky, M.; Tan, L.; Franklin, J. & Moraru, I. Energy-efficient cluster
computing with FAWN: Workloads and implications Proceedings of the 1st International Conference on
Energy-Efficient Computing and Networking, 2010, 195-204

[VectorFabricsP] Vector Fabrics. Pareon, http://www.vectorfabrics.com/products
[Vestias14] Véstias, Má. & Neto, H. A Many-Core Overlay for High-Performance Embedded Computing on FPGAs

arXiv preprint arXiv:1408.5401, 2014
[Vila12] Vila-Closas, O. "Method and device for rotational marking." U.S. Patent No. 8,319,810. 27 Nov. 2012.
[Volos12] Volos, Stavros, et al. "CCNoC: Specializing on-chip interconnects for energy efficiency in cache-coherent

servers." Networks on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on. IEEE, 2012.
[VonNewmann45] Von Newmann, J. First draft of a report on the EDVAC 1945
[Wang08] Wang, Z. & Hammami, O. External DDR2-constrained NOC-based 24-processors MPSOC design and

implementation on single FPGA Design and Test Workshop, 2008. IDT 2008. 3rd International, 2008,
193-197

[Wang10] Wang, Q.; Jiang, W.; Xia, Y. & Prasanna, V. A message-passing multi-softcore architecture on FPGA for
Breadth-first Search Field-Programmable Technology (FPT), 2010 International Conference on, 2010,
70-77

[Waterman11] Waterman, Andrew, et al. "The risc-v instruction set manual, volume i: Base user-level isa." EECS
Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 (2011).

[Weerasekera08] Weerasekera, R. System Interconnection Design Trade-offs in Three-Dimensional (3-D) Integrated
Circuits KTH, 2008

[Wiecek82] Wiecek, C. A. A case study of VAX-11 instruction set usage for compiler execution
ACM SIGARCH Computer Architecture News, 1982, 10, 177-184

[Wilkes49] Wilkes, M. V. & Renwick, W. The EDSAC-an electronic calculating machine Journal of Scientific
Instruments, IOP Publishing, 1949, 26, 385

[William09] William, Thomas, et al. "Enhanced performance analysis of multi-core applications with an integrated
tool-chain." Parallel Computing (2009).

[Wilton04] Wilton, S. J.; Ang, S.-S. & Luk, W. The impact of pipelining on energy per operation in field-
programmable gate arrays Field Programmable Logic and Application, Springer, 2004, 719-728

[Wirth77] Wirth, Niklaus. "Modula: A language for modular multiprogramming." Software: Practice and
Experience 7.1 (1977): 1-35.

[Wong11] Wong, H.; Betz, V. & Rose, J. Comparing FPGA vs. Custom Cmos and the Impact on Processor
Microarchitecture Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ACM, 2011, 5-14

[Xilinx06] Xilinx, I. A. R. R. "Microblaze processor reference guide." reference manual 23 (2006).
[Yan09] Yan, L.; Dongsheng, L.; Duoli, Z.; Gaoming, D.; Jian, W.; Minglun, G.; Haihua, W. & Luofeng, G.

Performance evaluation of the memory hierarchy design on CMP prototype using FPGA
ASIC, 2009. ASICON '09. IEEE 8th International Conference on, 2009, 813-816

[Yiannacouras06] Yiannacouras, P.; Steffan, J. G. & Rose, J. Application-specific customization of soft processor
microarchitecture Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field
programmable gate arrays, 2006, 201-210

[Yiannacouras08] Yiannacouras, P.; Steffan, J. G. & Rose, J. VESPA: portable, scalable, and flexible FPGA-based vector
processors Proceedings of the 2008 international conference on Compilers, architectures and synthesis
for embedded systems, 2008, 61-70

[Yasui91] Ikuo Yasui. Microprocessor with Harvard Architecture. US Patent 5,034,887, 1991

─ 213 ─

[Yeh14] Yeh, T.-Y.; Marr, D. T. & Patt, Y. N. Author retrospective for increasing the instruction fetch rate via
multiple branch prediction and a branch address cache 25th Anniversary International Conference on
Supercomputing Anniversary Volume, 2014, 24-25

[Zeiser09] Zeiser, T.; Hager, G. & Wellein, G. Benchmark analysis and application results for lattice Boltzmann
simulations on NEC SX vector and Intel Nehalem systems Parallel Processing Letters, World Scientific,
2009, 19, 491-511

[Zet] http://zet.aluzina.org/index.php/Zet_processor
[Zinenko14] Zinenko, Oleksandr, Stéphane Huot, and Cédric Bastoul. "Clint: A direct manipulation tool for

parallelizing compute-intensive program parts." Visual Languages and Human-Centric Computing
(VL/HCC), 2014 IEEE Symposium on. IEEE, 2014.

[Zinenko15] Zinenko, Oleksandr, Cédric Bastoul, and Stéphane Huot. "Manipulating Visualization, Not
Codes." International Workshop on Polyhedral Compilation Techniques 2015 (IMPACT).

─ 214 ─

─ 215 ─

List of Publications
[Castells06] Castells-Rufas, D., Jaume Joven, and Jordi Carrabina. "A validation and performance evaluation tool for

ProtoNoC." System-on-Chip, 2006. International Symposium on. IEEE, 2006.
[Joven08] Joven, J., Font-Bach, O., Castells-Rufas, D., Martinez, R., Teres, L., & Carrabina, J "xENoC-an

experimental network-on-chip environment for parallel distributed computing on NoC-based MPSoC
architectures." Parallel, Distributed and Network-Based Processing, 2008. PDP 2008. 16th Euromicro
Conference on. IEEE, 2008. (Best Paper Award)

[Castells09] Castells-Rufas, D., et al. "NocMaker: A cross-platform open-source design space exploration tool for
networks on chip." INA-OCMC Workshop, Paphos, Cyprus. 2009.

[Joven09] Joven, J., Castells-Rufas, D., Risueo, S., Fernandez, E., & Carrabina, J. "NoCMaker & j2eMPI A
Complete HW-SW Rapid Prototyping EDA Tool for Design Space Exploration of NoC-based
MPSoCs."IEEE/ACM Design, Automation and Test in Europe (DATE). 2009.

[Castells10] Castells-Rufas, D., et al. "MPSoC performance analysis with virtual prototyping platforms." Parallel
Processing Workshops (ICPPW), 2010 39th International Conference on. IEEE, 2010.

[Castells10b] Castells-Rufas, D.; Joven, J. & Carrabina, J. “Scalability of a Parallel JPEG Encoder on Shared
Memory Architectures” 2010 39th International Conference on Parallel Processing (ICPP), 2010, 502-
507

[Fernandez10] Fernandez-Alonso, E.; Castells-Rufas, D.; Risueno, S.; Carrabina, J. & Joven, J.
A NoC-based multi-soft-core with 16 cores Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE
International Conference on, 2010, 259 -262

[Castells11] Castells-Rufas, D.; Fernandez-Alonso, E.; Carrabina, J. & Joven, J. Sharing FPUs in many-soft-cores
Field-Programmable Technology (FPT), 2011 International Conference on, 2011, 1-6

[Joven11] Joven, J., Strict, P., Castells-Rufas, D., Bagdia, A., De Micheli, G., & Carrabina, J. "Hw-sw
implementation of a decoupled fpu for arm-based cortex-m1 socs in fpgas." Industrial Embedded Systems
(SIES), 2011 6th IEEE International Symposium on. IEEE, 2011.

[Castells12] Castells-Rufas, D.; Vila-Closas, O. & Carrabina, J. Design of a multi-soft-core based Laser Marking
controller Reconfigurable Computing and FPGAs (ReConFig), 2012 International Conference on, 2012,
1-6

[Joven13] Joven, J., Bagdia, A., Angiolini, F., Strid, P., Castells-Rufas, D., Fernandez-Alonso, E., Carrabina, J.,
and De Micheli, G.. "QoS-driven reconfigurable parallel computing for NoC-based clustered
MPSoCs." Industrial Informatics, IEEE Transactions on 9.3 (2013): 1613-1624.

[Castells14] Castells-Rufas, D.; Carrabina, J.; González de Aledo Marugán, P. & Sánchez Espeso, P. “Fast Trace
Generation of Many-Core Embedded Systems with Native Simulation” In proceeding of: High
Performance Energy Efficient Embedded Systems (HIP3ES 2014), 2014

[Saa15] Saa-Garriga, A., Castells-Rufas, D., and Carrabina, J.. "OMP2MPI: Automatic MPI code generation
from OpenMP programs." In proceeding of: High Performance Energy Efficient Embedded Systems
(HIP3ES 2015), (2015).

[Castells15] Castells-Rufas, D. & Carrabina, J. 128-core Many-Soft-Core Processor with MPI support Jornadas de
Computación Reconfigurable y Aplicaciones (JCRA), 2015 (Best Paper Award)

	Títol de la tesi: Scalable Parallel Architectures on
Reconfigurable Platforms
	Nom autor/a: David Castells Rufas

