

UNIVERSITAT DE BARCELONA

Selective blockade of the sigma-1 receptor for the treatment of pain of different aetiology: Preclinical studies

Georgia Gris Ormo

ADVERTIMENT. La consulta d'aquesta tesi queda condicionada a l'acceptació de les següents condicions d'ús: La difusió d'aquesta tesi per mitjà del servei TDX (**www.tdx.cat**) i a través del Dipòsit Digital de la UB (**diposit.ub.edu**) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d'investigació i docència. No s'autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d'un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (**www.tdx.cat**) y a través del Repositorio Digital de la UB (**diposit.ub.edu**) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB. No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR o al Repositorio Digital de la UB (framing). Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions: Spreading this thesis by the TDX (**www.tdx.cat**) service and by the UB Digital Repository (**diposit.ub.edu**) has been authorized by the titular of the intellectual property rights only for private uses placed in investigation and teaching activities. Reproduction with lucrative aims is not authorized nor its spreading and availability from a site foreign to the TDX service or to the UB Digital Repository. Introducing its content in a window or frame foreign to the TDX service or to the UB Digital Repository is not authorized (framing). Those rights affect to the presentation summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate the name of the author.

FACULTAD DE FARMACIA

Selective blockade of the sigma-1 receptor for the treatment of pain of different aetiology: Preclinical studies

Georgia Gris Ormo

Barcelona, 2015

FACULTAD DE FARMACIA Programa de doctorado en Biotecnología

Selective blockade of the sigma-1 receptor for the treatment of pain of different aetiology: Preclinical studies

Memoria presentada por Georgia Gris Ormo para optar al título de doctor por la Universidad de Barcelona

Dr. Daniel Zamanillo Castanedo

Director

Dr. Enrique Portillo-Salido Director

Dra. Josefa Badia Palacín Tutora

Georgia Gris Ormo

Tesis Doctoral realizada en Esteve (Área de descubrimiento de fármacos y desarrollo preclínico)

A mi madre

Primero de todo quisiera agradecer a Esteve y, en especial, a José Miguel Vela el brindarme la oportunidad de realizar una Tesis Doctoral. No sabía yo en qué berenjenal me metía... Gracias de corazón por haber confiado en mí allá en el 2004.

Me gustaría agradecer, muy especialmente, la dirección de este trabajo a Daniel Zamanillo y Enrique Portillo, por su apoyo, entusiasmo y pasión por la investigación. Además del rigor científico y profesionalidad, cabe destacar en ellos su humanidad, comprensión y humor en momentos clave. ¡Muchas gracias!

A Manel Merlos por su ayuda, confianza y haberme permitido adentrarme en el mundo de la Biología Molecular.

Querría también agradecer a Pepita Badia su labor como tutora de Tesis. Muchísimas gracias por guiarme y facilitarme las andanzas durante este largo camino.

A tantas personas de Esteve, dentro y fuera del departamento de Farmacología, que han colaborado en este proceso. Querría agradecer muy especialmente por su aportación directa a esta Tesis a: Alicia Carceller, Luz Romero, Asun Muro y Ricard Sánchez. Mi gratitud también a: Alba Vidal, Àlex Gómez, Alicia Pardo, Ana Montero, Àngels Fisas, Araceli Tortajada, Beatriz De la Puente, Begoña Fernández, Bertrand Aubel, Carme Segalés, Javier Burgueño, Jordi Buxens, Lourdes Garriga, Marta Del Riego, Mercè Olivet, Pilar Pérez, Sílvia Castany, Xavier Codony... No me perdonaría olvidar a alguien, así que dejo el listado inacabado.

A mis amigos de aquí y de allá, por estar siempre ahí, porque sin saberlo, vuestro apoyo ha sido clave para la realización de esta Tesis.

A mi familia: padre, hermanos, cuñados, sobrinas... Gracias por enseñarme a ser perseverante en las cosas. Sin duda, ésto no habría sido posible sin vosotros. Gracias por el respaldo a lo largo de mi vida. A ti, mama, ésto es para ti. A la pequeña Lia le debo un gran agradecimiento por los grandes momentos de desconexión que, sin saberlo, me ha brindado durante estos dos últimos años. Todos ellos impagables. ¡Gracias pequeña!

Y ya por último agradecer a Michael su respaldo incondicional e incesante a lo largo de este largo proceso. Gracias por estar a mi lado cariñosamente en todo momento. Esto es mérito tuyo también.

PRESENTATION

The present Doctoral Thesis focuses on the study of the Sigma-1 receptor ($\sigma_1 R$) in the field of pain. This research has been a part of the preclinical $\sigma_1 R$ project focusing on drug discovery of $\sigma_1 R$ ligands for the treatment of pain of different aetiology at the pharmaceutical company ESTEVE.

The main goal of this Doctoral Thesis was to explore the therapeutic interest of $\sigma_1 R$ blockade in the pharmacological management of neuropathic, inflammatory and postoperative pain. The efficacy of the selective $\sigma_1 R$ antagonist S1RA (E-52862) in these different types of pain was evaluated, and its potency and efficacy was compared to other marketed analgesic drugs. To this end, two species (rat and mouse), different pain-related behavioural endpoints (hind paw withdrawal response to thermal and mechanical stimulation), and different pharmacological strategies (systemic acute and repeated E-52862 administration), were evaluated. $\sigma_1 R$ knockout mice were also used to study the *in vivo* specificity of E-52862 and the involvement of $\sigma_1 R$ in the spinal modulation of several pain-related molecular markers in order to ascertain the mechanism of action of $\sigma_1 R$.

Taken together, the results of this Doctoral Thesis provide new knowledge about $\sigma_1 R$ and support the clinical development of selective $\sigma_1 R$ antagonists as a suitable therapeutic intervention to achieve analgesia in pain conditions of different aetiology.

ABBREVIATIONS

5-HT: 5-hydroxytryptamine (serotonin) ADME: absorption, distribution, metabolism and excretion ADMET: absorption, distribution, metabolism, excretion and toxicology $\alpha_1, \alpha_2, \beta$: adrenergic receptors ANOVA: analysis of variance ASIC: acid-sensing ion channel ASO: antisense oligodeoxynucleotides **ATP:** adenosine triphosphate B1/B2: bradykinin receptors Bcl-2: B-cell lymphoma 2 BD1063: 1-[2-(3,4-dichloropheny)ethyl]-4-methylpiperazine **BDNF:** brain derived neurotrophic factor BiP: binding immunoglobulin protein Ca²⁺: calcium ion CFA: complete Freund's adjuvant CGRP: calcitonin gene related peptide CIA: collagen type II arthritis CMH: mechano-heat-sensitive C fibre CNS: central nervous system **COX:** cyclooxygenase **COX-1:** cyclooxygenase-1 COX-2: cyclooxygenase-2 **CYP:** cytochrome P450 enzymes **D**₂ : dopaminergic receptor DAG: diacylglycerol DNA: deoxyribonucleic acid DRG: dorsal root ganglion E-52862: see S1RA ED₅₀: effective dose 50 EGFR: epidermal growth factor receptor **EP:** Prostanoid receptor

ER: endoplasmic reticulum

ERK: extracellular signal-regulated kinase

Fig.: figure

FMO: flavin-containing monooxygenase

FRET: Fluorescence resonance energy transfer

GABA: gamma-aminobutyric acid

GDNF: glial-derived neurotrophic factor

GFAP: glial fibrillary acidic protein

GPCR: G protein-coupled receptors

H⁺: protons

H1: Histamine type 1

HINT1: histidine triad nucleotide bonding protein 1

HPMC: (hydroxypropyl)methyl cellulose

5-HT: serotonin receptor (5-hydroxytryptamine)

IASP: International Association for the Study of Pain

IC₅₀: half maximal inhibitory concentration

IL: interleukin

IL-R: interleukin receptor

iNOS: inducible nitric oxide synthase

IoN: infraorbital nerve

i.d.: intradermal

i.p.: intraperitoneal

i.pl.: intraplantar

IP₃: inositol-1,4,5-triphosphate

IP₃**R:** inositol-1,4,5-triphosphate receptor

i.v.: intravenous

K⁺: potassium ion

Ki: inhibition constant

KO: knockout

µ: mu (opioid receptor)

MAM: mitochondria-associated endoplasmic reticulum membrane

MAPK: mitogen-activated protein kinase

MIA: monosodium iodoacetate

morphine: morphine hydrochloride

mRNA: messenger ribonucleic acid

mTOR: mammalian target of rapamycin

n.a.: not applicable

n.d.: not determined

NGF: nerve growth factor

NK-1: neurokinin-1 receptor

NMDA: N-methyl-D-aspartate

NMEs: New molecular entities

nNOS: neuronal nitric oxide synthase

NO: nitric oxide

NPY: neuropeptide Y

NR1: N-methyl-D-aspartate receptor subunit

NSAID: nonsteroidal anti-inflammatory drug

OX: oxaliplatin

P2X: purinergic receptor

PAG: periaqueductal grey

PBS: phosphate buffered saline

PKA: protein kinase A

PCK: protein kinase C

PCR: polymerase chain reaction

PGE2: Prostaglandin E2

PGRMC1: progesterone receptor membrane component 1

PIP₂: phosphatidylinositol 4,5-biphosphate

PKA: protein kinase A

PLC: phospholipase C

PNS: peripheral nervous system

PRE-084: 2-(4-Morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride

PSNL: partial sciatic nerve ligation

RIPA: radioimmunoassay precipitation assay

ROS: reactive oxygen species

RT: room temperature

RVM: rostral ventromedial medulla

S1RA: Sigma-1 receptor antagonist (E-52862; 4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-

pyrazol-3-yl]oxy]ethyl] morpholine)

σR: sigma receptor

 $\sigma_1 R$: sigma-1 receptor

 $\sigma_2 R$: sigma-2 receptor

SBDL: steroid binding domain like

SC: spinal cord

s.c.: subcutaneous

SKF-10,047: N-allyl-normetazocine

SP: substance P

STZ: streptozotocin

TM: transmembrane

TNC: trigeminal nucleus caudalis

TNF- α : tumor necrosis factor α

TrkA: tyrosine kinase A

TRP: transient receptor potential

TRPV1: transient receptor potential vanilloid type 1

TTXr: tetrodotoxin-resistant voltage-gated sodium channel

TTXs: tetrodotoxin-sensitive voltage-gated sodium channel

VGCCs: voltage-gated Ca²⁺channels

WDR: wide dynamic range

WT: wild-type

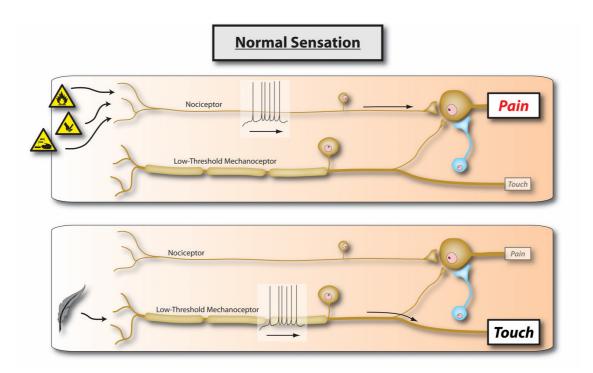
INDEX

I. INTRODUCTION	1
1. PAIN	3
1.1. General overview	
1.1.1. Pain transmission	5
1.1.2. Acute versus chronic pain	12
1.1.3. Pain-related molecular markers	15
1.2. Neuropathic pain	19
1.3. Inflammatory pain	25
1.4. Postoperative pain	
1.5. Current treatment strategies	
2. SIGMA-1 RECEPTOR	
2.1. General overview	
2.1.1. Structure of $\sigma_1 R$	
2.1.2. Anatomical and subcellular distribution of $\sigma_1 R$	40
2.1.3. Mechanism of action of $\sigma_1 R$	41
2.2. Modulation of $\sigma_1 R$ by ligands	46
2.2.1. $\sigma_1 R$ as a drug target	46
2.2.2. The selective $\sigma_1 R$ antagonist E-52862	
2.3. $\sigma_1 R$ and pain	
2.3.1. Modulation of opioid-induced antinociception	
2.3.2. Modulation of pain in sensitizing and chronic pain conditions	
2.3.3. E-52862 as analgesic drug	
II. HYPOTHESIS	63
III. OBJECTIVES	67
IV. METHODS	71

V. RESULTS	.83
1. EFFECT OF $\sigma_1 R$ BLOCKADE ON NEUROPATHIC PAIN	.87
1.1. <u>Article 1</u> : "The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats". Submitted to Scientific Reports.	. 87
2. EFFECT OF $\sigma_1 R$ BLOCKADE ON INFLAMMATORY PAIN	123
2.1. <u>Article 2</u> : "SIRA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in carrageenan and complete Freund's adjuvant models in mice". <u>Behavioural Pharmacology</u> 2014;25:226-235	123
2.2. <u>Article 3</u> : "Sigma-1 receptor and inflammatory pain". Inflammation Research 2015;64:377-381	137
2.3. <u>Annex 1</u> : "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in inflammatory models"	145
3. EFFECT OF $\sigma_1 R$ BLOCKADE ON POSTOPERATIVE PAIN	165
3.1. <u>Article 4</u> : "Role of the sigma-1 receptor in the expression and development of postoperative pain". Manuscript to be submitted	165
3.2. <u>Annex 2</u> : "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in postoperative model"	203
VI. GENERAL DISCUSSION	211
VII. CONCLUSIONS	219
VIII. REFERENCES	225
IX. APPENDIX	243

INTRODUCTION

1. PAIN


1.1. General Overview

The International Association for the Study of Pain (IASP) defines pain as:

"An unpleasant sensory or emotional experience associated with actual or potential tissue damage, or described in terms of such damage".

The concept of pain has both sensory and emotional components, and therefore its management needs to consider the multidimensional characteristics of pain by taking into account nociception, pain perception, suffering, and pain behaviour (Loeser and Melzack, 1999).

Nociception is the process by which intense noxious thermal, mechanical or chemical stimuli are detected by a subpopulation of peripheral nerve fibres called nociceptors. Nociceptive pain is described as pain occurring with a normally functioning somatosensory nervous system as opposed to the abnormal function seen in pathological pain. It is caused by a brief noxious stimulus, such as when touching something too hot, cold or sharp, and arises from actual or threatened damage to non-neural tissue, and is due to the activation of high-threshold nociceptor neurons (Fig. 1). This type of pain is maintained in the presence of noxious stimuli, so it is usually temporary and has a protective role. Loss of nociception, as in hereditary disorders associated with congenital insensitivity to pain (Indo, 2001; Cox *et al.*, 2006), leads to repeated injury and inadvertent self-mutilation, thus illustrating the highly adaptive function of nociceptive pain (Costigan *et al.*, 2009).

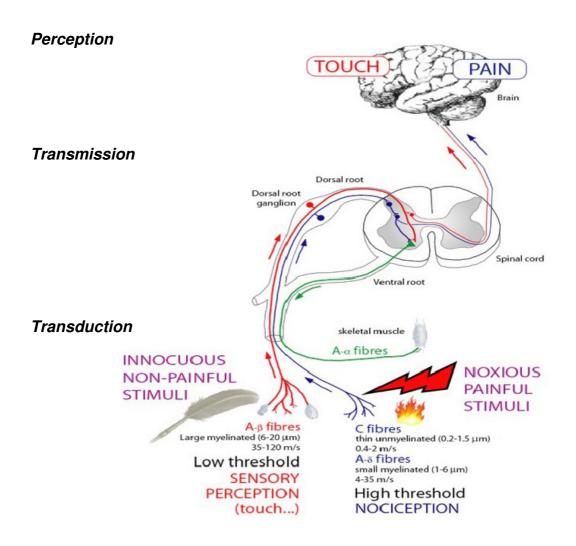


Fig. 1. The somatosensory system is organized such that the highly specialized primary sensory neurons that encode low intensity stimuli only activate the central pathways that lead to innocuous sensations, while high intensity stimuli that activate nociceptors only activate the central pathways that lead to pain and the two parallel pathways do not functionally intersect. This is mediated by the strong synaptic inputs between the particular sensory inputs and pathways and inhibitory neurons that focus activity to these dedicated circuits (From Woolf, 2011).

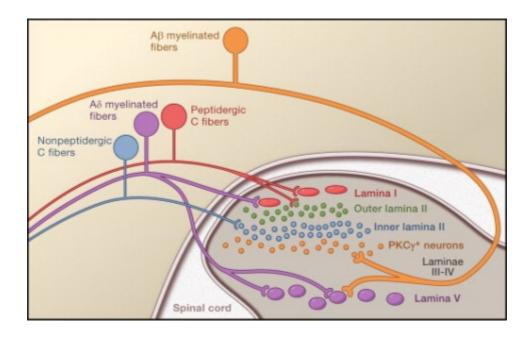
The sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn, to higher cerebral structures (Millan, 1999). The perception of pain is controlled by both ascending and descending pathways.

1.1.1. Pain transmission

Nociceptive peripheral stimulation is transmitted through the ascending pain pathway as a nerve impulse from the periphery to the cerebral cortex. The ascending tract is triggered when a peripheral noxious stimulus (biological, electrical, chemical, mechanical or thermal) is received. It is converted to electrical signal —a phenomenon called transduction. Therefore, the action potential (nerve impulse) is conducted through the axons of primary afferent fibres (nociceptors) to the dorsal horn of the spinal cord (SC). These neurons, also called first order neurons, have their cell bodies located in the dorsal root ganglion (DRG) -in the body- and in the trigeminal ganglion -in the face. These neurons have both a peripheral and central axonal branch that innervates their target organ and the SC, respectively (Basbaum et al., 2009). Thus, DRG neurons make a synapse onto dorsal horn neurons (second order neurons) in the SC, which in turn conveys projections through the contralateral side (opposite side where the insult has occurred) of the SC and ascends to supraspinal areas (brainstem nuclei) via several different ascending pathways (transmission). The main circuits mediating physiological pain are the lateral spinothalamic tract and the spinoparabrachial tract, differentiated by the anatomical route towards the brain (Kuner, 2010). Already in the brain, they make synapse onto third order neurons that transmit the impulse to the cerebral cortex, where the information is processed —a phenomenon called perception (Fig. 2).

Fig. 2. Graphic representation of the pain circuitry: Transmission of the peripheral stimulation as a nerve impulse from the periphery to the cerebral cortex through the sensory afferent fibres. The ascending circuits consist mainly of three phases: transduction (a noxious stimulus is converted to an electrical impulse), transmission (synaptic conduction of the three afferent fibres towards supraspinal structures), and perception (information processing in the cerebral cortex). A β fibres (low-threshold neurons) transmit innocuous non-painful stimuli (touch). Nociceptive fibres include C and A δ fibres (both are high-threshold neurons) that transmit noxious painful stimuli. Conversely, A α fibres provide information of proprioception and also innervate the motor function to the skeletal muscles as a reaction response in order to avoid the painful stimuli.

There are three main groups of **first order neurons**, classified according to morphology and function criteria:


- Aβ fibres: Large myelinated (6-20 µm) and fast driving (35-120 m/s) fibres. They transmit information relating to innocuous mechanical stimuli (non-painful stimuli), such as vibration and light touch.
- Aδ fibres: Small myelinated (1-6 µm) and fast driving (4-35 m/s) fibres. They are mediators of acute, well-localized "first" or fast pain (Basbaum *et al.*, 2009), upon the first adaptive response to pain (withdrawal). Electrophysiological studies have further subdivided these fibres into two main categories:
 - ✓ <u>Type I:</u> They respond to both mechanical and chemical stimuli; they have relatively high thermal thresholds (> 50 °C), and they mediate the acute "first" pain to mechanical stimuli.
 - ✓ <u>Type II:</u> Under physiological conditions, they respond to the application of thermal stimuli, but have a much lower threshold (40-45 °C). In contrast, the thresholds to mechanical stimuli are much higher. They mediate the acute "first" pain to thermal stimuli (Giordano, 2005).
- C fibres: Unmyelinated small diameter (0.2-1.5 µm) and slow conduction (0.4-2 m/s). They transmit poorly localized, diffuse pain, also called "second" or slow pain (Basbaum *et al.*, 2009). Unmyelinated C fibres are heterogeneous, most are polymodal nociceptors and heat- and mechanically sensitive (mechano-heat-sensitive C fibres, CMHs) (Snider and McMahon, 1998; Perl, 2007). Interestingly, there are certain nociceptors, called "silent" or "quiet" nociceptors, which respond to heat but not to mechanical stimuli, except at the site of tissue injury, where they also develop mechanical hypersensitivity (Schmidt *et al.*, 1995). These afferents are more responsive to chemical stimuli (capsaicin or histamine) as compared to CMHs, and likely come into play when the chemical medium of inflammation alters their properties (Basbaum *et al.*, 2009). C fibres

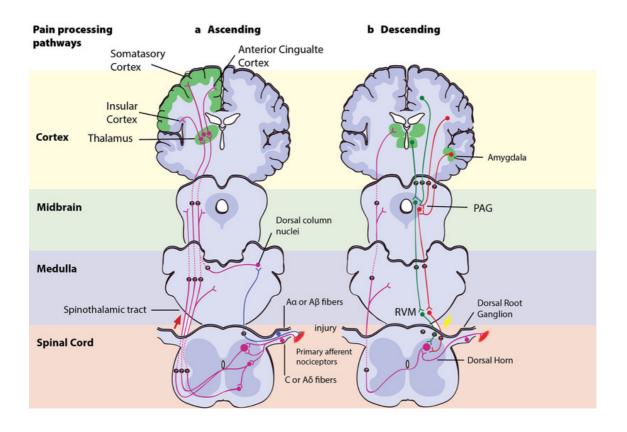
are also heterogeneous regarding the neuroactive substances (transmitters and proteins) they synthesize and release, and the receptors and ion channels they express, which confer different pain sensitivities (Tsuda *et al.*, 2005; Basbaum *et al.*, 2009):

- ✓ <u>Peptidergic C nociceptors:</u> they synthesize, store and release neuropeptides such as substance P (SP), neuropeptide Y (NPY) and the calcitonin generelated peptide (CGRP); they also express the tyrosine kinase A (TrkA) neurotrophin receptor, activated by nerve growth factor (NGF) (Basbaum *et al.*, 2009).
- ✓ <u>Non-peptidergic C nociceptors:</u> Among other proteins, they express the c-Ret neurotrophin receptor that is targeted by glial-derived neurotrophic factor (GDNF). A large percentage of those expressing c-Ret also binds isolectin IB4 and expresses G protein-coupled receptors (GPCR) of the Mrg family (Dong *et al.*, 2001), as well as some specific purinergic receptor subtypes, particularly P2X₃.

In summary, under physiological conditions, $A\delta$ and C fibres are responsible for nociceptive transmission. In contrast, $A\beta$ fibres transmit the sensation of touch. Exceptionally, under sensitization processes (pathological pain), $A\beta$ fibres can promote nociceptive transmission. In addition to these three main groups of fibres, $A\alpha$ fibres are also described as responsible for transmitting the information related to proprioception (sense of the relative position).

As mentioned above, primary afferent nerve fibres project to the dorsal horn of the SC, but fall into a specific spot depending on the fibre type. The gray matter of the SC has ten layers (Rexed laminae) based on the presence of different types of neurons, size, and the place where fibres make synapse (Rexed, 1952; Basbaum and Jessell, 2000). For example, C fibres project to laminae I and II, similarly to A δ fibres, which project to lamina I as well as to the deeper dorsal horn (lamina V). The low threshold A β fibres project to deeper laminae (III, IV and V) (Basbaum *et al.*, 2009) (Fig. 3).

Fig. 3. Connections between primary afferent fibres and the SC. There is a very precise laminar organization in the dorsal horn of the SC; subsets of primary afferent fibres target spinal neurons within discrete laminae. The unmyelinated, peptidergic C (red) and myelinated A δ (purple) nociceptors terminate mostly superficially, synapsing upon large projection neurons (red) located in lamina I and interneurons (green) located in outer lamina II. The unmyelinated, non-peptidergic nociceptors (blue) target interneurons (blue) in the inner part of lamina II. In contrast, innocuous inputs carried by myelinated A β fibres (orange) terminate on PKC γ expressing interneurons in the ventral half of the inner lamina II. A second set of projection neurons within lamina V (purple) receive convergent inputs from A δ and A β fibres (From Basbaum *et al.*, 2009).


Second order neurons constitute the major output from the dorsal horn to the brain (Basbaum and Jessell, 2000). Depending on the afferent input from the first order neuron, three types of second order neurons can be distinguished (Schaible and Grubb, 1993; Calvino and Grilo, 2006):

- Specific nociceptive neurons: They respond exclusively to noxious stimuli, both thermal and mechanical, are mediated by high intensity Aδ and C fibres, and are mostly located in laminae I (marginal zone), II, V and VI. They are involved in the encoding pain location.
- Wide dynamic range (WDR) neurons: They respond to a broad range of mechanical, thermal or chemical stimulus intensities transferred by first order neurons (Aδ, C and Aβ). Given the convergence of fibres that transmit noxious and innocuous stimuli, this cell group plays a central role in the mechanisms of inhibitory pain modulation. WDR neurons are located in laminae I, II, IV, V, VI and X.
- Non-nociceptive neurons: They respond to low intensity innocuous stimuli (both mechanical and thermal) and also to proprioceptive stimuli. They are mainly located in laminae I, II, III and IV.

Finally, **third order neurons** are found at the supraspinal level, extending from the thalamus up to the primary somatosensory area (primary cortex), where the information is processed —a phenomenon called **perception**, resulting in the "feeling" of pain.

The **descending pathways** are integrated by neurons that project from the frontal cortex, the hypothalamus and other brain areas to the midbrain and rostral ventromedial medulla, and also down to the SC, where they are activated by ascending nociceptive transmission and other influences from the brain, such as psychological factors (e.g., fear or anxiety, which exert facilitatory influences through these modulatory systems). The descending pathways play an important role in integrating the

nociceptive input at the spinal level exerting inhibitory or excitatory/facilitatory modulation (Millan, 1999) (Fig. 4).

Fig. 4. Left: Ascending pain pathways: An injury is signaled simultaneously via fast-conducting A α or A β fibres and slow-conducting C- or A δ -fibres. The C- and A δ -fibres sends pain information from nociceptors in the tissue or skin, and transmits these signals to second order neurons in the dorsal horn of the spinal cord. The second order neurons then cross over to the opposite side, where they form the ascending spinothalamic tract. This tract projects signals to nuclei in the medulla and midbrain on the way up to the thalamus. The thalamus relays the information to the somatosensory and insular cortex, as well as cortical regions mediating different aspects of the pain experience such as affective responses in the cingulate cortex. Right: Descending pain modulation pathways: Information from the environment and certain motivational states can activate this top–down pathway. Several areas in the limbic forebrain including the anterior cingulate and insular cortex, nuclei in the amygdala and the hypothalamus (H), project to the midbrain periaqueductal grey (PAG), which then modulates ascending pain transmission from the afferent pain system indirectly through the rostral ventromedial medulla (RVM) in the brainstem. This modulating system produces analgesia by the release of endogenous opioids, and uses ON- and OFF-cells to exert either inhibitory (green) or facilitatory (red) control of nociceptive signals at the spinal dorsal horn (Loseth *et al.*, 2013).

Modulation results in descending inhibition (suppression) of nociception through the release of neurotransmitters such as serotonin, norepinephrine, and endogenous opioids; or it can also potentiate descending facilitation of nociception where glia contribute to supraspinal facilitatory influences on the processing of pain messages in the SC, and consequently to pain (Basbaum *et al.*, 2009). Interneurons are also present in the SC and play a major role in the modulation of the ascending and descending sensory information, specifically in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception (Labrakakis *et al.*, 2009).

1.1.2. Acute versus Chronic pain

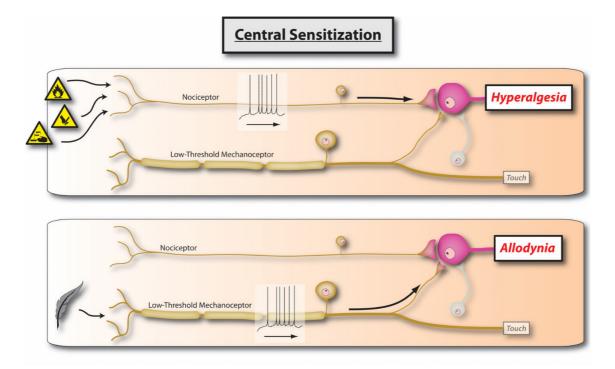
Whereas acute pain is an alarm that leads into nociceptive pathways of the central nervous system (CNS) to avoid tissue damage, chronic (pathological) pain is not protective, but maladaptive, and results from abnormal functioning of the nervous system. It is not a symptom of some disorder but rather a disease of its own (Woolf, 2010; Micheletti *et al.*, 2014), given that it is low-threshold pain characterized by sensory abnormalities. This hypersensitivity state leads to both peripheral and central sensitization and temporal summation with a progressive build-up in pain response to repeated C fibre stimulation (wind-up). Both peripheral nervous system (PNS) and CNS components of the pain transmission pathways exhibit huge **plasticity both functionally and structurally**, and are manifested as changes in individual molecules, synapses, cellular function and network activity, leading to an enhancement of pain signals and producing hypersensitivity. Neuroplasticity occurs shortly after the onset of persistent acute pain and leads to the transition from acute pain to chronic pain

(Voscopoulus and Lema, 2010). The progression from acute to chronic pain, also known as pain chronification, remains not completely understood. Several factors are involved in this transition, including peripheral and central sensitization, neuroplastic changes (including protein expression), altered pain modulation, and perception.

Peripheral sensitization is the result of peripheral changes in the expression of pain-related key receptors and ion channels, some of which are only marginally expressed under physiological conditions, which determine the excitability of the nociceptor terminal.

Central sensitization is an abnormal state of the CNS characterized by the enhancement of several mechanisms:

- Function of neurons and circuits in nociceptive pathways
- Membrane excitability (hyperexcitability) and synaptic efficacy
- Plasticity of the somatosensory nervous system


All these phenomena occur in the dorsal horn of the SC and in supraspinal structures during the development of persistent pain in response to activity, inflammation, and neural injury (Latremoliere and Woolf, 2009) (Fig. 5). Central sensitization is mainly initiated and maintained by the activity of the pathologically sensitized C fibres (homosynaptic facilitation), but also by the low-threshold A β fibres (heterosynaptic facilitation). These normally signal innocuous sensations but, after neural lesions, begin to produce mechanical sensitivity and ectopic spontaneous pain (Khan *et al.*, 2002; Witting *et al.*, 2006; Costigan *et al.*, 2009).

Central sensitization is responsible for many of the temporal, spatial and threshold changes in pain sensitivity in acute and chronic clinical pain settings, and exemplifies the fundamental contribution of the CNS to the generation of pain hypersensitivity (Latremoliere and Woolf, 2009). In summary, the typical changes of

13

individual neurons following peripheral inflammation or nerve lesion are translated into several phenomena:

- Increased responses to noxious stimulation of inflamed tissue
- Lowered threshold of nociceptive specific SC neurons
- Increased responses to stimuli applied to non-inflamed tissue surrounding the inflamed tissue
- Expansion of the receptive field

Fig. 5. Central sensitization involved in chronic pain facilitation. With the induction of central sensitization in somatosensory pathways with increases in synaptic efficacy and reductions in inhibition, a central amplification occurs enhancing the pain response to noxious stimuli in amplitude, duration and spatial extent, while the strengthening of normally ineffective synapses recruits subliminal inputs such that inputs in low threshold sensory inputs can now activate the pain circuit. The two parallel sensory pathways converge (From Woolf, 2011).

Central sensitization is translated behaviourally into symptoms and signs of persistent (chronic) pain, such as burning pain, spontaneous pain, and abnormal

stimulus-evoked pain (mainly hyperalgesia and allodynia, but also dysesthesia and paresthesia).

When a stimulus that usually causes mild pain is perceived by the patient as producing severe pain, this situation is called **hyperalgesia**. Depending on the nature of the stimulus, the resultant condition is known as heat, cold or mechanical hyperalgesia. In some cases, painless stimuli (such as the rubbing of clothes or water running down one's back in the shower) are felt as painful, and this situation is known as **allodynia** and can be very distressing for some patients. Otherwise, disesthesia is known as an unpleasant abnormal sensation of touch, different from pain, either spontaneous or evoked, and paresthesia is known as an abnormal sensation of tingling, tickling, prickling and pricking, different from pain, either spontaneous or evoked, not unpleasant (Baños *et al.*, 2003; Ji *et al.*, 2014).

1.1.3. Pain-related molecular markers

Several pain-related molecules are modulated in the CNS after injury, such as ion channels, receptors, cytokines, kinases, neuropeptides, and glial and neuronal cells, among others. The efforts to find a selective and predictive marker are very important because it would allow early diagnosis and the selective treatment for specific forms of pain. The SC, specifically laminae I and II of the dorsal horn, is a key area where the expression of many pain-related molecular markers are strongly modulated. Here, we summarize some of the most important molecules involved in the spinal responses to noxious stimuli.

c-Fos, an immediate early gene, and extracellular signal-regulated kinase (**ERK**), a mitogen-activated protein kinase (MAPK), are rarely expressed in the SC under physiological conditions,. Innocuous (non-noxious) stimuli, such as light touch,

warm water or $A\beta$ fibre activation normally do not induce the expression of c-Fos and ERK (Coggeshall, 2005; Gao and Ji, 2009). Nevertheless, the activation of smalldiameter cutaneous sensory afferents by noxious heat or chemical stimuli results in the rapid appearance of c-Fos immunoreactivity and the activation through phosphorylation of ERK in the superficial layers of the dorsal horn. During inflammation and neuropathy a large number of SC neurons induce c-Fos expression, thus suggesting that a large population of neurons is activated (Schaible *et al.*, 2006). In turn, the expression of pERK has been related to wind-up and central sensitization processes.

Nerve injury causes proliferation of microglia and astrocytes in the SC that could contribute to increased production of glial mediators and to the expression of hyperalgesia and allodynia (Ji et al., 2014). Microglial activation occurs mainly during the early phase of peripheral injury, whereas astrocytic reaction is delayed and occurs normally a few days after injury (Choi et al., 2015), thus playing both a major role in the development and maintenance of allodynia and hyperalgesia in acute, subchronic and chronic pain states. Glial fibrillary acidic protein (GFAP) is an intermediate filament component in astrocytes and its expression may increase with astrocytic activation after CNS injury (Stephenson and Byers, 1995; Sun et al., 2005). As a consequence of a peripheral lesion that persistently generates pain impulses to the SC, inhibitory interneurons eventually die. Moreover, glial cells remodel neuronal synapses to intensify nociceptive transmission, neurons become more sensitive and new connections grow, resulting in a neuroplasticity process. Hence, after a lesion, astrocytes undergo extensive hypertrophy of their cell bodies and cytoplasmic processes. The biochemical hallmarks of astrogliosis are: (i) up-regulation of intermediate filament proteins (GFAP, vimentin and/or nestin); (ii) over-expression of the intracellular signaling molecule S100B; and (iii) increased production of a variety of proinflammatory substances (Watkins and Maier, 2003; Raghavendra *et al.*, 2004). Microglia and astrocytes react to peripheral insults such as paw incision (Obata *et al.*, 2006; Romero-Sandoval and Eisenach, 2007; Romero-Sandoval *et al.*, 2008), carrageenan-induced paw inflammation (Hua *et al.*, 2005), CFA-induced paw inflammation and monoarthritis (Raghavendra *et al.*, 2004; Sun *et al.*, 2007) and peripheral nerve injury (Jin *et al.*, 2003; Tsuda *et al.*, 2003; Tanga *et al.*, 2005), among others. These results suggest that different types of pain may share a common pathophysiological mechanism.

Nitric oxide (NO) acts as a neuromodulator in laminae I and II of the SC and is involved in the modulation of thermal and inflammatory hyperalgesia after an insult. NO synthesis is primarily triggered by activation of *N*-methyl-*D*-aspartate (NMDA) receptors (Stanfa *et al.*, 1996; Freire *et al.*, 2009). Interestingly, the inhibition of the NO production dose-dependently reduces c-Fos expression and behavioural signs of pain following noxious mechanical, chemical and electrical stimuli (Hoskin *et al.*, 1999; Wu *et al.*, 2000; Coggeshall, 2005). Neuronal nitric oxide synthase (**nNOS**), the isoform of the enzyme for NO production in both CNS and PNS, has been shown to both genetically and pharmacologically modulate persistent pain, such as chronic inflammatory and neuropathic pain (Sardella *et al.*, 2011). Non-specific NOS inhibitors blocked CFA-evoked thermal and mechanical pain hypersensitivity at both the development (2 h) and the maintenance (24 h) phase in wild type (WT) mice, but had no effect in knockout mice for the nNOS gene (Chu *et al.*, 2005; Chen *et al.*, 2010).

The neuropeptide **SP** is a member of the tachykinin family that binds to the neurokinin-1 (NK-1) GPCR, causing its internalization (Mantyh *et al.*, 1989). Although, SP is released into the dorsal horn upon noxious or electrical stimulation of C fibres, without previous injury (Adelson *et al.*, 2009; Taylor *et al.*, 2014), it has been

extensively involved in the neurogenic inflammatory process triggered by peripheral inflammation or nerve injury (Abbadie *et al.*, 1996; Schaible *et al.*, 2005, 2006; Wang *et al.*, 2015). SP is co-localized with glutamate in primary afferent A δ and C fibres, and both molecules interact by modulating the nociceptive transmission from the periphery to the dorsal horn of the SC, specifically concentrated in lamina I (Abbadie *et al.*, 1996; Cuesta *et al.*, 1999). One of the main experimental models in which SP expression has been widely studied is the inflammatory model induced by an intraplantar (i.pl.) injection of carrageenan (Traub, 1996; Okano *et al.*, 1998; Taylor *et al.*, 2014). Moreover, antagonists at the NK-1 receptor have shown to attenuate central sensitization (Schaible *et al.*, 2006).

Another example of biomarker widely distributed in the CNS and PNS and having an important neuromodulator role in primary sensory neurons is the neuropeptide Y (**NPY**). NPY is a 36-amino acid peptide that acts at GPCRs to modulate a variety of physiological processes. NPY is present in superficial laminae of the dorsal horn of the SC, where it is up-regulated during inflammation. However, the mechanisms underlying its effects still remain unclear. For instance, intrathecal administration of NPY has been shown to be both pro- and anti-nociceptive in inflammatory and neuropathic pain models (Intondi *et al.*, 2008; Yalamuri *et al.*, 2013). Thus, whereas one study showed that intrathecal administration of NPY was able to inhibit hyperalgesia associated with nerve injury and inflammation and consequently reduce SP release (Taiwo and Taylor, 2002; Mahinda and Taylor, 2004; Intondi *et al.*, 2008; Kuphal *et al.*, 2008; Yalamuri *et al.*, 2013), another study showed that injecting NPY directly into DRG immediately after spinal nerve ligation injury exacerbates pain-related behaviour (Sapunar *et al.*, 2011). It has been recently shown that Y1 receptors contribute to the antihyperalgesic effects of NPY by mediating the inhibition of SP release, and that Y1

receptor signaling in the dorsal horn is enhanced during inflammatory nociception. It has also shown a significant regulation in the expression of NPY after plantar incision (Spofford and Brennan, 2012).

1.2. Neuropathic pain

Neuropathic pain has been defined by the IASP as "Pain caused by a lesion or disease of the somatosensory nervous system, either peripheral or central". This type of pain is always chronic and can be extremely severe and crippling for the individual. Neuropathic pain is described by patients as a persistent, diffuse, burning-like sensation with no specific location in a given organ or tissue. In addition, they suffer from paroxysmal pain, that is, short electric shock-like sensations alternating with remission periods. Neuropathic pain is one of the most challenging types of pain as far as understanding the relationships between symptoms and mechanisms is concerned. It is not surprising, therefore, that effective and safe neuropathic pain treatment remains a largely unmet therapeutic need (Dray, 2008). The presence of symptoms or signs (e.g., touch-evoked pain) alone does not justify the use of the term neuropathic. Nevertheless, some disease entities, such as trigeminal neuralgia, are currently defined by their clinical presentation rather than by objective diagnostic testing.

Current neuropathic pain treatments show general insensitivity to non-steroidal anti-inflammatory drugs (NSAIDs) and relative resistance to opioids. Moreover, some of these drugs involve dose limitations with respect to efficacy and side effects (dizziness, sedation, and weight gain).

19

Pathophysiology

Neuropathic pain leads to a maladaptive plasticity caused by a lesion or disease affecting the somatosensory nervous system which, in turn, modifies the nociceptive signal processing so that pain is felt in the absence of a stimulus and responses to innocuous and noxious stimuli are enhanced (Costigan *et al.*, 2009). Depending on the scope of the lesion or disease of the nervous system, central and peripheral neuropathic pain types are distinguished.

Tissue injury can result in the activation of peripheral nociceptors producing a change in the response characteristics of the nociceptors. Thus, an insult can sensitize the peripheral nociceptors to any further stimulus promoting a reduction in threshold and, therefore, an increased responsiveness of the peripheral ends of nociceptors. Two main processes have been involved in this increased sensitivity, with changes in existing nociceptor proteins (post-translational processing) and in protein expression regulation being made by the nociceptor (altered gene expression). For instance, the modulation of the expression of transient receptor potential vanilloid type 1 (TRPV1), transient receptor potential (TRP), or voltage-gated sodium/calcium channels (Basbaum et al., 2009). Another peripheral mechanism occurring during neuropathic or persistent pain and contributing to peripheral sensitization is collateral sprouting (actively growing state) of primary afferent neurons, which spread in their vicinity and eventually establish new synapses. Another level of structural plasticity is that of activitydependent changes in connectivity, such as denervation, reinnervation, sprouting, and hypertrophy. All these alterations have been reported to occur in peripheral tissues such as the skin, bone or visceral organs- in pathological pain states in humans and experimental animals (Kuner, 2010).

20

Following a peripheral nerve injury, anatomical and neurochemical changes can occur within CNS that can persist long after the injury has healed. This "CNS plasticity" may play an important role in the evolution of neuropathic pain. At the cellular level, the CNS plastic changes appear to be associated with enhanced neurotransmission via the NMDA receptor (Freire *et al.*, 2009).

Different types of neuropathic pain can be distinguished depending on their aetiology: diabetic neuropathy, post-herpetic neuropathy and trigeminal neuropathy, SC injury pain and phantom limb (post-amputation) pain, among others.

Animal models

The existence of these different pathological conditions leading to the development of neuropathic pain makes difficult the identification of a simple and reliable animal model and explains the increasing numbers of models present in the literature. Many rodent models of neuropathic pain have been used to mimic human diseases, other models have been used to explore pathophysiological mechanisms in the nervous system, and some models have been used to screen for putative analgesics. The neuropathic pain models can either have a traumatic or a non-traumatic nature (Table 1). Traumatic injury paradigms include crush, transection, ligation or any combination of these mechanical deformations to a peripheral nerve (Jaggi *et al.*, 2012). In contrast, non-traumatic injury paradigms cover a more diverse set of injury models, including the application of neurotoxic substances (such as chemotherapeutic agents), metabolic lesioning substances (such as streptozotocin), or cells or proteins associated with various neuropathic pain states (Authier *et al.*, 2009; Jaggi *et al.*, 2012). As shown in Table 1, the main experimental models have a traumatic basis as a primary mechanism.

The rat model of chronic constriction injury of the infraorbital nerve has been reported to be a good model that mimics **trigeminal neuralgia** in humans (Latrémolière *et al.*, 2008; Li *et al.*, 2014). Most neuropathic pain studies (90%) have focused exclusively on measuring hypersensitivity, i.e. mechanically (pinch/pressure) and thermally (heat/cold) evoked nocifensive behaviours (for example, vocalization and withdrawal responses) (Deseure and Hans, 2015).

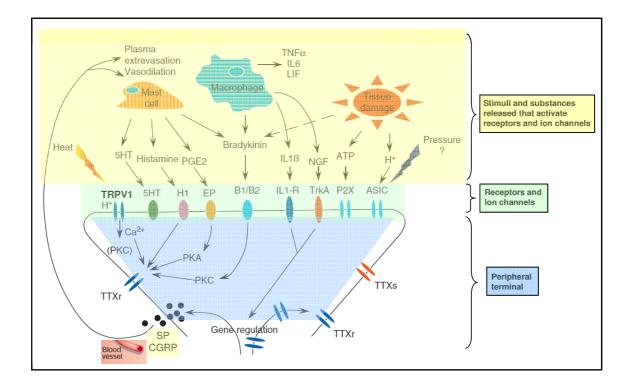
Streptozotocin-induced **diabetic neuropathy** in the rat has been increasingly used as a model of painful diabetic neuropathy to assess the efficacy of potential analgesic agents. Diabetic animals were chronically ill, with reduced growth rate, polyuria, diarrhea, and had enlarged and distended bladders. Diabetic neuropathy is evidenced by a clear hypersensitivity to a noxious pressure stimulus in diabetic rats as compared to naïve (non-diabetic) rats, thus suggesting the presence of symptoms observed in diabetic humans (Gul *et al.*, 2000; Kamei *et al.*, 2001).

Chemotherapy-induced peripheral neuropathy is considered to be the most common neurological complication of cancer treatment, and is probably the most common toxic neuropathy in our setting (Velasco and Bruna, 2010). The neurotoxic effects of chemotherapy drugs not only do not reduce cancer-evoked pain but even cause additional neuropathic pain, which contributes to a major deterioration of the patient's quality of life (Farquhar-Smith, 2011). The incidence of these neuropathies depends on the antineoplastic agent, and can vary widely (10-100%) depending on the definition of neuropathy. In general, it is estimated that neuropathy affects around 30-40% of patients receiving chemotherapy. The oxaliplatin-induced neuropathic pain model in rats is widely used to mimic chemotherapy-induced neuropathy observed in cancer-treated patients (Ling *et al.*, 2007; Weickhardt *et al.*, 2011). Oxaliplatin is a third-generation platinum-based chemotherapy drug for the treatment of advanced

metastatic colorectal cancer (Screnci *et al.*, 2000; Baker, 2003), and induces painful neuropathy characterized by symptoms including cold hypersensitivity and spontaneous pain, which can lead to drug discontinuation (Ling *et al.*, 2007; Jaggi and Singh, 2012). Although oxaliplatin is less toxic than cisplatin on peripheral organs and functions, it is more toxic on sensory nerves.

Model primary mechanism	Human relevance/disease	Experimental pain model	
Traumatic nerve injury		Chronic constriction injury (CCI; Bennet)	
		Spinal nerve ligation (SNL; Chung)	
		Partial sciatic nerve ligation (PSNL; Seltzer)	
	Normanterent	Spared nerve injury (SNI)	
	Nerve entrapment	Sciatic nerve crush cryoneurolysis	
		Phototoxicity	
		Distal nerve injury	
		Complete nerve transection	
	Spinal cord injury	Ischemic or traumatic contusion, compression or transection of spinal cord	
	Trigeminal neuralgia	Traumatic infraorbital nerve injury	
	Neuritis	Injection of inflammatory agents directly in the nerves	
Non-traumatic nerve injury	Drug-induced neuropathic pain	Systemic administration of clinically used therapeutic agent (e.g. chemotherapeutics or antiretrovirals)	
	Diabetic neuropathy	Injection of streptozotocin	
	Post-herpetic neuralgia	Inoculation of herpes simplex virus type I	
	Acute inflammatory demyelinating polyradiculo- neuropathy	Immunization with perypheral myelin P2 peptide	

Table 1. Rodent models commonly used in neuropathic pain studies.


1.3. Inflammatory pain

This type of pain is associated with inflammatory processes and may arise in conditions such as trauma events, infections by activation of the immune system, or chronic inflammatory diseases. Inflammatory pain is adaptive and protective, and assists the healing of the injured tissue by swallowing the injured organ that avoids physical contact and movement. The nociceptive system after inflammation is sensitized and the sensory nervous system undergoes a profound change in its responsiveness, and can also be activated by low-threshold innocuous inputs. Therefore, normally innocuous stimuli produce pain, and responses to noxious stimuli are both exaggerated and prolonged, as in allodynia and hyperalgesia (Juhl *et al.*, 2008; Costigan *et al.*, 2009). In fact, inflammatory pain can become a chronic disease of its own, e.g., rheumatoid arthritis (Woolf, 2010).

As mentioned, inflammatory pain is a central characteristic of highly prevalent clinical diseases such as rheumatoid arthritis and osteoarthritis, a diverse group of conditions characterized by joint swelling, pain, deformity, and disability (Pisetsky and Ward, 2012). Although inflammatory pain should dissapear after the resolution of the initial tissue injury, the pain lasts as long as inflammation is active in chronic disorders such as rheumatoid arthritis (Michaud *et al.*, 2007). The acute inflammatory response is controlled relatively effectively with NSAIDs, paracetamol, opioids, and steroids. However, inflammatory pain associated with a chronic disease such as osteoarthritis, cancer or migraine is deleterious to health and often debilitating for the patient (Rahman and Dickenson, 2013).

Pathophysiology

Tissue injury provokes a local inflammatory reaction characterized by redness, swelling, heat, pain, and decreased nociceptive thresholds (sensitization to pain). Tissue damage leads to the release of a huge number of inflammatory pain mediators by activated nociceptors or non-neural cells that reside within or infiltrate into the injured area, including mast cells, basophils, platelets, macrophages, neutrophils, endothelial cells, keratinocytes, and fibroblasts (Fig. 6). This "inflammatory soup" of signaling molecules includes histamine, ATP, neurotransmitters (serotonin, glutamate), peptides (SP, CGRP and bradykinin), eicosanoids and related peptides (eicosanoids, prostaglandins, thromboxanes, leukotrienes and endocannabinoids), chemokines and cytokines (NGF, tumor necrosis factor α (TNF- α), interleukin 1 β (IL-1 β), and extracellular proteases and protons (H⁺) (Basbaum et al., 2009). Some of these chemicals (ATP or H⁺) can directly activate or sensitize the high-threshold nociceptors by means of low intensity stimuli that signal the presence of inflamed tissue, produce pain, and result in primary hyperalgesia (Serpell, 2006). Other chemical mediators (e.g., histamine or bradykinin) are produced by activated inflammatory cells, such as neutrophils or mast cells (Julius and Basbaum, 2001). A lot of these mediators bind to membrane receptors and act via regulatory intermediates (GPCRs and second messengers) to induce changes in membrane ion channels or enzymes, thus enhancing the response to peripheral stimuli (Wang et al., 2006). Peptides such as CGRP and SP produce vasodilation, vascular endothelial disruption and extravasation of plasma and blood cells, thus contributing to the recruitment of immune cells from the circulation. In parallel, these molecules interact with complex processes of events that alter the gene expression pattern of several receptors in the DRG (Serpell, 2006).

Fig. 6. Peripheral mechanisms of nerve fibre sensitization induced by tissue damage, heat or pressure. Tissue damage leads to the release of inflammatory mediators by activated nociceptors or non-neural cells that reside within or infiltrate into the injured area. Abbreviations: Protein kinases A and C (PKA, PKC), transient receptor potential vanilloid type 1 (TRPV1), 5-hydroxytryptamine (5HT) receptors, Histamine type 1 (H1), Prostaglandin E2 (PGE2), Prostanoid receptor EP subtype (EP), bradykinin (B1/B2) receptors, interleukin-1 beta (IL-1 β), interleukin-1 receptor (IL1-R), nerve growth factor (NGF), tyrosine kinase A receptor (TrkA), adenosine triphosphate (ATP), purinergic receptor subtype P2X (P2X), protons (H+), calcium ion (Ca²⁺), tetrodotoxin-resistant voltage-gated sodium channel (TTXr), tetrodotoxin-sensitive voltage-gated sodium channel (ASIC) (Modified from Voscopoulus and Lema, 2010).

Animal models

Several animal models have been investigated in order to mimic the physiopathological processes underlying inflammation, such as rheumatoid arthritis or osteoarthritis. Experimental inflammatory pain models can be classified according to the type of inflammation induction: spontaneous, genetic, chemical, or surgical (Table 2).

Carrageenan and CFA inflammatory pain models are chemically induced following their inoculation and are extensively used in preclinical research. The oedema induced by the injection of **carrageenan** —a polysaccharide obtained from various seaweeds— in the hind paw has been widely used as an animal model in antiinflammatory drug screening tasks (Winter et al., 1962). Intraplantar injection of carrageenan induced a transient acute inflammatory state characterized by both mechanical and thermal hypersensitivity. Cardinal signs of inflammation, such as oedema, hyperalgesia and erithema, develop immediately after intraplantar injection of carrageenan into a hind paw as a result of the action of proinflammatory agents like bradykinin, histamine, prostaglandins, thromboxanes, reactive oxygen, etc., which can be generated at the site of the insult or by infiltrating cells (Di Rosa et al., 1971; Vazquez et al., 2015). The responses induced after a subcutaneous injection of carrageenan are initiated by mast cells and neutrophils, and are then followed by a phagocytic response that depends on macrophage mobilization. Another feature of carrageenan administration is the wind-up of A δ and C fibres of flexor motor neurons, which contribute to the mentioned decrease of the mechanonociceptive threshold in the injected paw (Helyes et al., 2009).

Inflammation induced by Complete Freund's Adjuvant (CFA) has also been widely used over the years to produce an arthritic condition in an experimental model of chronic pain and inflammation in rats (Pearson and Wood, 1963; Colpaert *et al.*, 1980). CFA is a water-in-oil emulsion containing heat-killed mycobacteria or mycobacterial cell wall components. Mechanical allodynia, thermal hyperalgesia and pain upon joint movement (joint hyperalgesia) are due to the prolonged presence of antigens at the injection site. CFA was first injected intradermally (i.d.) in combination with spleen cells and adjuvants. Later, it was found that injecting CFA alone was sufficient to induce arthritis. Antigenic substances of bacterial walls cause the activation of the immune system in the injection area, which involves neutrophil and macrophage extravasation, blood vessel dilation, and tissue damage. These inflammation events occur in the affected area.

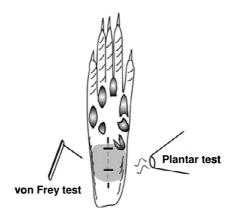
Human relevance/disease	Categories	Experimental pain model	
Neurogenic inflammation	Chemical	Hindpaw injection of formalin, capsaicin, mustard oi or bee venom	
	Spontaneous	STR/ort mouse	
Osteoarthritis	Chemical	Knee joint injection of monosodium iodoacetate (MIA), papain or collagenase	
	Surgical	Partial or total menistectomy or transection of collateral or cruciate ligaments	
Inflammatory monoarthritis Chemical		Knee joint or paw injection of kaolin/carrageenan, carrageenan, zymosan or Complete Freund's adjuvant (CFA)	
Rheumatoid arthritis	Spontaneous or transgenic animal	MRL/lpr mouse (spontaneous) or HLA-B27 mouse (transgenic)	
	Chemical	Paw, knee joint or tail injection of Complete Freund's adjuvant (CFA) or colagen type II arthritis (CIA),	
Temporomandibular joint inflammation	Chemical	Facial injection of carrageenan or CFA	
Gout	Chemical	Knee joint injection of monosodium urate crystals or uric acid	

Table 2. Rodent models commonly used in inflammatory pain studies.

1.4. Postoperative pain

Surgical injuries trigger a cascade of events designed to fight infection, limit further damage, and initiate repair. Postoperative pain involves nociception, inflammation, and nerve cell remodeling (Voscopoulus and Lema, 2010). Surgery aims either to repair a part of the body by reshaping or replacing it, or to remove dysfunctional elements. To this end, various procedures are required which may transiently but strongly activate the nociceptive network, thus inducing long-term central sensitization. The acute postoperative pain is an important clinical issue (Brennan, 2011); indeed, approximately 60% of patients undergoing surgery have moderate to severe pain despite receiving analgesic treatment (Wu and Raja, 2011). Moreover, acute postoperative pain can become chronic in a high percentage of patients (15-60%) (Lavand'homme, 2011). Whereas acute postoperative pain has been classified as nociceptive pain, the underlying mechanisms of chronic postsurgical pain with persistent pain lasting at least 3-6 months are complex and poorly understood (Vandenkerkhof et al., 2013). However, the syndromes are, at least in part, neuropathic as a result of neuroplastic changes after injury (Macrae, 2008; Voscopoulos and Lema, 2010). This transition to chronicity is most obvious after surgical nerve lesions, where the extent and timing of the lesion are defined (Kehlet et al. 2006).

Several pharmacological approaches have been used to attenuate chronic postoperative pain. For example, pre-emptive analgesia —the analgesic treatment prior to surgery causing peripheral inflammation— has shown to prevent central and peripheral mechanisms leading to neuronal sensitization and subsequent chronic pain. Moreover, considerable controversy currently exists over whether pre-emptive treatment targeting central sensitization is better than postoperative treatment in treating either acute postoperative pain or its transition to chronic pain (Woolf and Chong, 1993; Dirks *et al.*, 2002; Woolf, 2011). Hence, further studies of the mechanisms underlying postoperative pain are needed.


Pathophysiology

The factors contributing to postoperative pain can broadly be divided into patient factors and surgical factors. Patient factors include psychosocial status, pre-existing pain conditions, genetic predisposition to exaggerated pain response, and gender. Surgical factors include type of anaesthesia administered (general vs. regional technique) and surgical approach, including the ability to identify and avoid nerve injury when possible. Additional surgical factors include postoperative period, treatment of pain type and duration thereof, full assessment of pain and its consequences, and neurophysiological examination (Kehlet et al., 2006; Kehlet and Rathmell, 2010; Voscopoulus and Lema, 2010). Surgery triggers a cascade of pro-inflammatory cytokines, chemokines and neurotrophins that induce both peripheral and central sensitization to limit further injury to the affected area (Voscopoulus and Lema, 2010). After surgery, patients experience ongoing pain or are sensitive to incidental, normally non-painful stimulation. This period of time varies; with uncomplicated wound healing, this type of pain should progressively abate and disappear (Voscopoulus and Lema, 2010). The transition from acute to chronic pain appears to occur in discrete pathophysiological and histopathological steps. As mentioned, surgery causes the release of inflammatory and other mediators. For many surgery-related reasons, such as prolonged inflammatory states with the insertion of mesh materials or chronic nerve stretching in bunionectomy, this process of sensitization and facilitation can cause phenotypic and pathophysiological changes in nociceptors. Once these structural

changes occur, chronic (neuropathic) postoperative pain becomes established (Voscopoulus and Lema, 2010).

Animal models

Today, few experimental models in rodents cause postoperative pain following surgical mechanical trauma: laparotomy (De Winter, 2003), ovariohisterectomy (Lascelles *et al.*, 1995; González *et al.*, 2000), postthoractomy pain (Buvanendran *et al.*, 2008), or incisional pain (Pogatzki *et al.*, 2003; Brennan, 2011). The most commonly used postoperative pain model is induced by a surgical incision in the plantar surface of mice (Brennan *et al.*, 1996) (Fig. 7). This animal model has shown to be a useful tool for studying the neurobiological mechanisms of pain after surgery.

Fig. 7. Stimulation area of the hind paw in the postoperative model of rodents. The shaded area represents the area where heat and mechanical stimuli were applied. The dark horizontal lines in the shaded area represents the sutures, and the vertical line represents the surgical incision (Modified from Banik *et al.*, 2006).

1.5. Current treatment strategies

Today, pharmacological therapies for acute and chronic pain primarily rely on NSAIDs, opioids and a diverse group of drugs used as direct or adjuvant treatments (e.g., antidepressants, anticonvulsants, local anesthetics, and α_2 -adrenoreceptor agonists). These types of drugs are limited in terms of clinical utility as a consequence of significant adverse effects that often limit tolerability (i.e., they possess a relatively low therapeutic index) and prevent "dosing to effect" from achieving adequate or tolerable management of some chronic pain states, such as neuropathic pain (Porreca *et al.*, 2006).

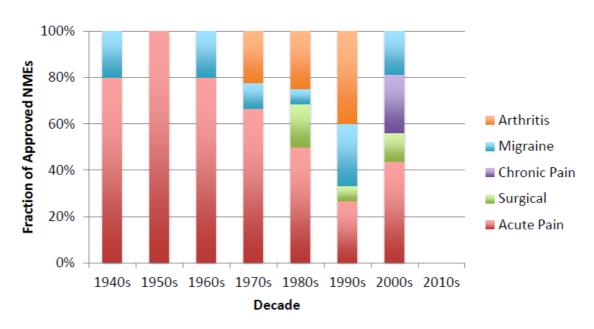
Opioid receptor agonists (e.g., morphine and tramadol) have strong efficacies for various nociceptive type of pains. The opioid agonists are the gold standard drugs for the treatment of moderate to severe chronic pain, interacting with the mu (μ), delta (δ) and kappa (κ) receptors (Martin and Eisenach, 2001).

Antipyretics like acetaminophen or NSAIDs like indomethacin and diclofenac are the first line drugs in the treatment of arthritic pain, and these cyclooxygenase (COX) inhibitors play an adjunctive role in chronic pain. COX inhibitors are the first step in the World Health Organization scheme for the treatment of chronic pain, and the majority of patients with chronic pain receive these agents as a base throughout their treatment (Martin and Eisenach, 2001). NSAIDs inhibit COX enzymes, which in turn convert arachidonic acid to prostaglandin H₂, converted by other enzymes to several prostaglandins, mediators of pain, inflammation, and fever. Hence, the main mechanism of action of NSAID is considered to be a reduction in the production of prostaglandins and thromboxanes.

Antidepressants (e.g., amitriptyline), antiepileptics (e.g., carbamazepine and gabapentin) and local anesthetics administered intravenously (i.v.) have been

frequently used in the treatment of chronic pain in addition to their original use (Nagakura *et al.*, 2003). For instance, antidepressants are usually given at doses much lower than those required to treat depression (McQuay and Moore, 1997)(Table 3).

OpioidsVietnamePentazocine1967"Nalbuphine1979"Alfentanil1986"Pentazocine1968Buprenorphine1981"Tramadol1995"Butorphanol1978"Sufentanil1984"Remifentanil1996"NSAIDsIndomethacin1965"Piroxicam1982"Nabumetone1991"Indomethacin1965"Piroxicam1982"Oxaprozin1992"Indomethacin1966"Diflunisal1982"Oxaprozin1992"Ibuprofen1974"Ketoprofen1986"Ketorolac1992"Naproxen1976"Fenoprofen1988"Bromfenac1992"Naproxen1978"Flurbiprofen1988"Meloxicam2000"Meclofenamate1980"Diclofenac1988"Nepafenac2000"Meclofenamate1992"Rizatriptan1998"2000"2000"Metosan1992"Rizatriptan1998"2000"2000"Martitiptan1992"Rizatriptan2001"21000"2004"Antitornvulsants1996"Almotriptan2001"Pregabalin2001-2003 (FDA)Carbamazepine1966-1995" (3)"Valproate1979-2000 (FDA)"2001-2003 (FDA)Antitornvulsants1964-1995 (3)Gabapentin1996-2002 (FDA)Carbamazepine1964-1995 (3)Gabapentin1986-2002 (FDA)Choxepin1975-1995 (3)Topiramate2001-2003 (FDA)Antidepressants1964-1992 (4)<							
Pentazocine 1967 ^a Nalbuphine 1979 ^a Alfentanil 1986 ^a Fentanyl 1968 Buprenorphine 1981 ^a Tramadol 1995 ^a Butorphanol 1978 ^a Sufentanil 1984 ^a Remifentanil 1995 ^a NSAIDs	Drugs developed for the treatment of pain						
Fentanyl 1968 Buprenorphine 1981° Tramadol 1995° Butorphanol 1978° Sufentanil 1984° Remifentanil 1996° NSAIDs							
Butorphanol 1978" Sufentanil 1984" Remifentanil 1996" NSAIDs Indomethacin 1965" Piroxicam 1982" Nabumetone 1991" Indomethacin 1965" Diffunisal 1982" Oxaprozin 1992" Mefenamic acid 1974" Ketoprofen 1986" Ketorolac 1992" Naproxen 1976" Diclofenac 1988" Bromfenac 1997" Tolmetin 1976" Fenoprofen 1988" Melcocabib 1998" Sulindac 1978" Flurbiprofen 1988" Meloxicam 2000" Meclofenamate 1980" Diclofenac 1988" Meloxicam 2000" Other drugs Sumitptan 1992" Rizatriptan 1998" Ziconotide 2004" Zolmitriptan 1999" Almotriptan 2001" Pregabalin 2004" Naratriptan 1998" Isofe-1995" (3)" Valproate 1979-2000 (FDA)" Phenytoin 1966-1995" (3)" <td< th=""><th>Pentazocine</th><th></th><th></th><th></th><th></th><th></th></td<>	Pentazocine						
NSAIDsIndomethacin1965° 1967°Piroxicam1982° 1982°Nabumetone1991° 1992°Mefenamic acid1967° 1974°Diffunisal1982° 1982°Oxaprozin1992° 1992°Ibuprofen1974° 1976°Ketoprofen1988° 1988°Ketorolac1992° 1992°Naproxen1976° 1978°Fenoprofen1988° 1988°Celecoxib1997° 1998°Sulindac1978° 1978°Filurbiprofen1988° 1988°Meloxicam2000° 2000°Meclofenamate1992° 1980°Diclofenac1988° 1988°Nepafenac2005° 2005°Other drugs2001° 2001°Ziconotide2004° 2004°Sumatriptan1996° 1996°Almotriptan2001° 2001°Ziconotide2004° 2004°Anticonvulsants1966–1995° (3)° 1975–1995 (3)Valproate1979–2000 (FDA)° 2001–2003 (FDA) ClonazepamAnticonvulsants1966–1995° (3)° 1975–1995 (3)Valproate1979–2000 (FDA)° 2001–2003 (FDA) 4Antichpressants1964–1992 (4) 1964–1992 (4)Desipramine1984–1996 (5)° 2001–2003 (FDA) 4Antitriptine1964–1992 (4) 1973–1992 (4)Desipramine1984–1996 (5)° 2004 (FDA)Doxepin1973–1992 (4) 1962–1996 (5)Duloxetine2004 (FDA) 2004 (FDA)Other drugs1962–1996 (5) 2004 (FDA)2004 (FDA)	Fentanyl		Buprenorphine		Tramadol		
Indomethacin1965°Piroxicam1982°Nabumetone1991°Mefenamic acid1967°Diffunisal1982°Oxaprozin1992°Ibuprofen1974°Ketoprofen1986°Ketorolac1992°Naproxen1976°Diclofenac1988°Bromfenac1997°Toimetin1976°Fenoprofen1988°Celecoxib1998°Sulindac1978°Flurbiprofen1988°Meloxicam2000°Meciofenamate1980°Diclofenac1988°Meloxicam2000°Meciofenamate1998°Diclofenac1988°Meloxicam2000°Other drugs1999°Rizatriptan1998°Eletriptan2002°Pentosan1999°Aimotriptan2001°Ziconotide2004°Zolmitriptan1997°Frovatriptan2001°Ziconotide2004°Naratriptan1998°Eletriptan2002°2004°2004°Naratriptan1998°Information2001°2004°2004°Anticonvulsants1966–1995° (3)°Valproate1979–2000 (FDA)°Carbamazepine1966–1995° (3)°Valproate1979–2000 (FDA)°Antidepressants1964–1992 (4)Desipramine1984–1996 (5)°Antidepressants1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Venlafaxine1996–2005 (6)Doxepin1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)D		1978 ^a	Sufentanil	1984 ^a	Remifentanil	1996 ^a	
Mefenamic acid1967°Diffunisal1982°Oxaprozin1992°Ibuprofen1974°Ketoprofen1986°Ketorolac1992°Naproxen1976°Diclofenac1988°Bromfenac1997°Tolmetin1976°Fenoprofen1988°Celecoxib1998°Sulindac1978°Flurbiprofen1988°Meloxicam2000°Mectofenamate1980°Diclofenac1988°Meloxicam2000°Other drugsUU1998°Eletriptan2002°Pentosan1996°Almotriptan1998°Eletriptan2004°Naratriptan1997°Frovatriptan2001°Zioonotide2004°Naratriptan1998°Firovatriptan2001°Pregabalin2004°AnticonvulsantsUUSappentin1975–2000 (FDA)°Carbamazepine1966–1995' (3)°Valproate1979–2000 (FDA)°Phenytoin1964–1995 (3)Gabapentin1966–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)°AntidepressantsU1964–1992 (4)Desipramine1984–1996 (5)°Antitiptyline1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Venlafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)							
Ibuprofen 1974^a Ketoprofen 1986^a Ketorolac 1992^a Naproxen 1976^a Diclofenac 1988^a Bromfenac 1997^a Toimetin 1976^a Fenoprofen 1988^a Celecoxib 1998^a Sulindac 1978^a Flurbiprofen 1988^a Meloxicam 2000^a Meclofenamate 1980^a Diclofenac 1988^a Nepafenac 2005^a Other drugs 2001^a Ziconotide 2004^a Sumatriptan 1997^a Rizatriptan 1998^a Eletriptan 2002^a Pentosan 1997^a Frovatriptan 2001^a Ziconotide 2004^a Naratriptan 1997^a Frovatriptan 2001^a Ziconotide 2004^a Naratriptan 1997^a Frovatriptan 2001^a Ziconotide 2004^a Anticonvulsants $2066-1995^b$ $(3)^c$ Valproate $1979-2000$ (FDA) ^d Carbamazepine $1966-1995^b$ $(3)^c$ Valproate $1979-2000$ (FDA) ^d $2001-2003$ (FDA)Clonazepam $1964-1995$ (3) Gabapentin $1996-2002$ (FDA)Antidepressants $2064-1992$ 4 Veniafaxine $1984-1996$ Antitiptyline $1964-1992$ 4 Veniafaxine $1986-2005$ 6 Doxepin $1973-1992$ 4 Veniafaxine $1996-2005$ 6 Impramine $1962-1996$ 5 Duloxetine 2004 6 Other drugs	Indomethacin		Piroxicam		Nabumetone		
Naproxen1976°Diclofenac1988°Bromfenac1997°Tolmetin1976°Fenoprofen1988°Celeoxib1998°Sulindac1978°Flurbiprofen1988°Meloxicam2000°Mectofenamate1980°Diclofenac1988°Meloxicam2005°Other drugs1996°Almotriptan1998°Eletriptan2002°Sumatriptan1992°Rizatriptan1998°Eletriptan2002°Pentosan1997°Frovatriptan2001°Ziconotide2004°Zolmitriptan1997°Frovatriptan2001°Ziconotide2004°Naratriptan1997°Frovatriptan2001°Pregabalin2004°Anticonvulsants1966–1995° (3)°Valproate1979–2000 (FDA)°Carbamazepine1966–1995° (3)°Valproate1979–2000 (FDA)°Clonazepam1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepan1964–1995 (3)Topiramate2001-2003 (FDA)Antidepressants1964–1992 (4)DesipramineAmitriptyline1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Veniafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Mefenamic acid	1967ª	Diflunisal	1982 ^a	Oxaprozin	1992*	
Toimetin1976"Fenoprofen1988"Celecoxib1998"Sulindac1978"Flurbiprofen1988"Meloxicam2000"Meclofenamate1980"Diclofenac1988"Nepafenac2005"Other drugs1992"Rizatriptan1998"Eletriptan2002"Sumatriptan1992"Rizatriptan1998"Eletriptan2002"Pentosan1996"Almotriptan2001"Ziconotide2004"Zolmitriptan1997"Frovatriptan2001"Pregabalin2004"Naratriptan1998"Forvatriptan2001"Pregabalin2004"Anticonvulsants1966–1995" (3)"Valproate1979–2000 (FDA)"Carbamazepine1966–1995" (3)"Valproate1979–2000 (FDA)"Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)Antidepressants1964–1992 (4)Desipramine1984–1996 (5)"Doxepin1973–1992 (4)Veniafaxine1996–2005 (6)1996–2005 (6)Impramine1965–1996 (5)Duloxetine2004 (FDA)Other drugs1966–1996 (5)Duloxetine2004 (FDA)	Ibuprofen	1974 ^a	Ketoprofen	1986 ^a	Ketorolac	1992 ^a	
Sulindac1978°Flurbiprofen1988°Meloxicam2000°Meclofenamate1980°Diclofenac1988°Nepafenac2005°Other drugs1992°Rizatriptan1998°Eletriptan2002°Sumatriptan1996°Almotriptan2001°Ziconotide2004°Zolmitriptan1997°Frovatriptan2001°Pregabalin2004°Naratriptan1998°Eletriptan2004°204°Drugs developed for Indications other than pain but effective in the treatment of pain4000°4000°2004°Anticonvulsants1966–1995° (3)°Valproate1979–2000 (FDA)°Carbamazepine1966–1995° (3)°Valproate1979–2000 (FDA)°Phenytoin1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)°Antidepressants1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Veniafaxine1996–2005 (6)1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Naproxen	1976 ^a	Diclofenac	1988 ^a	Bromfenac		
Meclofenamate1980°Diclofenac1988°Nepafenac2005°Other drugsSumatriptan1992°Rizatriptan1998°Eletriptan2002°Pentosan1996°Almotriptan2001°Ziconotide2004°Zolmitriptan1997°Frovatriptan2001°Ziconotide2004°Naratriptan1998°Eletriptan2001°2004°Drugs developed for Indications other than pain but effective in the treatment of pain2001°Yergabalin2004°Anticonvulsants1966–1995° (3)°Valproate1979–2000 (FDA)°Carbamazepine1966–1995 (3)Gabapentin1996–2002 (FDA)Phenytoin1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)Antidepressants1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Veniafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Tolmetin	1976 ^a	Fenoprofen	1988 ^a	Celecoxib	1998 ^a	
Other drugsRizatriptan1998°Eletriptan2002°Sumatriptan1996°Almotriptan2001°Zlconotide2004°Pentosan1997°Frovatriptan2001°Zlconotide2004°Zolmitriptan1997°Frovatriptan2001°Pregabalin2004°Naratriptan1998°Drugs developed for Indications other than pain but effective in the treatment of painPregabalin2004°AnticonvulsantsCarbamazepine1966–1995° (3)°Valproate1979–2000 (FDA)°Carbamazepine1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)AntidepressantsInterpressantsInterpressantsInterpressionAmitriptyline1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Venlafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Sulindac	1978 ^a	Flurbiprofen	1988 ^a	Meloxicam	2000 ^a	
Sumatriptan1992aRizatriptan1998aEletriptan2002aPentosan1996aAlmotriptan2001aZiconotide2004aZolmitriptan1997aFrovatriptan2001aPregabalin2004aNaratriptan1998a1998a2001aPregabalin2004aDrugs developed for Indications other than pain but effective in the treatment of painAnticonvulsants1966–1995b (3)cValproate1979–2000 (FDA)aCarbamazepine1966–1995b (3)cValproate1979–2000 (FDA)aClonazepam1975–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)Antidepressants1964–1992 (4)Desipramine1984–1996 (5)cDoxepin1973–1992 (4)Venlafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Meclofenamate	1980 ^a	Diclofenac	1988 ^a	Nepafenac	2005ª	
Pentosan1996 ^a Almotriptan2001 ^a Ziconotide2004 ^a Zolmitriptan1997 ^a Frovatriptan2001 ^a Pregabalin2004 ^a Naratriptan1998 ^a 2004 ^a 2004 ^a 2004 ^a Drugs developed for Indications other than pain but effective in the treatment of painAnticonvulsants1966–1995 ^b (3) ^c Valproate1979–2000 (FDA) ^a Carbamazepine1966–1995 ^b (3) ^c Valproate1979–2000 (FDA) ^a Clonazepam1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA) ^a Antidepressants1964–1992 (4)Desipramine1984–1996 (5) ^c Doxepin1973–1992 (4)Veniafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine	Other drugs						
Zolmitriptan1997aFrovatriptan2001aPregabalin2004aNaratriptan1998a1998a2004a2004aDrugs developed for Indications other than pain but effective in the treatment of painAnticonvulsantsCarbamazepine1966–1995b' (3)cValproate1979–2000 (FDA)dPhenytoin1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)dAntidepressants1964–1992 (4)Desipramine1984–1996 (5)cDoxepin1973–1992 (4)Veniafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)Duloxetine2004 (FDA)	Sumatriptan	1992 ^a	Rizatriptan	1998 ^a	Eletriptan	2002 ^a	
Naratriptan1998°Drugs developed for indications other than pain but effective in the treatment of pain AnticonvulsantsCarbamazepine1966–1995° (3)°Valproate1979–2000 (FDA)°Phenytoin1964–1995 (3)Gabapentin1996–2002 (FDA)Clonazepam1975–1995 (3)Topiramate2001–2003 (FDA)Antidepressants1964–1992 (4)Desipramine1984–1996 (5)°Doxepin1973–1992 (4)Venlafaxine1996–2005 (6)Impramine1962–1996 (5)Duloxetine2004 (FDA)Other drugs1962–1996 (5)2004 (FDA)	Pentosan	1996 ^a	Almotriptan		Ziconotide	2004ª	
Drugs developed for Indications other than pain but effective in the treatment of pain Anticonvulsants Carbamazepine 1966–1995 ^b (3)° Valproate 1979–2000 (FDA) ^d Phenytoin 1964–1995 (3) Gabapentin 1996–2002 (FDA) Cionazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants 1964–1992 (4) Desipramine 1984–1996 (5)° Doxepin 1973–1992 (4) Veniafaxine 1996–2005 (6) Imipramine 1962–1996 (5) Duloxetine 2004 (FDA) Other drugs 1962–1996 (5) Duloxetine 2004 (FDA)	Zolmitriptan	1997 ^a	Frovatriptan	2001 ^a	Pregabalin	2004 ^a	
Anticonvulsants Valproate 1979–2000 (FDA) ^d Carbamazepine 1966–1995 ^b (3) ^c Valproate 1979–2000 (FDA) ^d Phenytoin 1964–1995 (3) Gabapentin 1996–2002 (FDA) Clonazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants 1964–1992 (4) Desipramine 1984–1996 (5) ^c Doxepin 1973–1992 (4) Venlafaxine 1996–2005 (6) Imperative 1996–2005 (6) Other drugs 1962–1996 (5) Duloxetine 2004 (FDA)	Naratriptan	1998 ^a					
Anticonvulsants Valproate 1979–2000 (FDA) ^d Carbamazepine 1966–1995 ^b (3) ^c Valproate 1979–2000 (FDA) ^d Phenytoin 1964–1995 (3) Gabapentin 1996–2002 (FDA) Clonazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants 1964–1992 (4) Desipramine 1984–1996 (5) ^c Doxepin 1973–1992 (4) Venlafaxine 1996–2005 (6) Imperative 1996–2005 (6) Other drugs 1962–1996 (5) Duloxetine 2004 (FDA)	Drugs developed for indications	other than pain b	ut effective in the treatment (of pain			
Phenytoin 1964–1995 (3) Gabapentin 1996–2002 (FDA) Clonazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants		other than pair s		, pani			
Phenytoin 1964–1995 (3) Gabapentin 1996–2002 (FDA) Clonazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants	Carbamazepine		1966–1995 ^b (3) ^c	Valproate		1979-2000 (FDA)d	
Clonazepam 1975–1995 (3) Topiramate 2001–2003 (FDA) Antidepressants	· · · · · · · · · · · · · · · · · · ·						
Antidepressants Designamine 1984–1996 (5)° Amitriptyline 1964–1992 (4) Designamine 1984–1996 (5)° Doxepin 1973–1992 (4) Venlafaxine 1996–2005 (6) Imipramine 1962–1996 (5) Duloxetine 2004 (FDA) Other drugs 1 1 1 1							
Amitriptyline 1964–1992 (4) Desipramine 1984–1996 (5)° Doxepin 1973–1992 (4) Venlafaxine 1996–2005 (6) Imipramine 1962–1996 (5) Duloxetine 2004 (FDA) Other drugs 1962–1996 (5) Duloxetine 1964–1996 (5)			(-/				
Doxepin 1973–1992 (4) Venlafaxine 1996–2005 (6) Imipramine 1962–1996 (5) Duloxetine 2004 (FDA) Other drugs 2004 (FDA) 2004 (FDA)	Amitriptyline		1964-1992 (4)	Desipramine		1984-1996 (5) ^c	
Other drugs			1973-1992 (4)	Venlafaxine		1996-2005 (6)	
Other drugs	Imipramine		1962-1996 (5)	Duloxetine		2004 (FDA)	
			(-/				
Propranolol 1968–1991 (7) Mexiletine 1986–2005 (10)			1968-1991 (7)	Mexiletine		1986-2005 (10)	
Capsaicin (topical) 1987–1994 (8) Ketamine 1974–2006 (21)				Ketamine			
Cyclobenzaprine 1989–2004 (9) Dronabinol 1975–2007 (22)				Dronabinol			
Lidocaine (systemic, topical) 1982–2005 (10,11) Dexamethasone 1967–2008 (12)				Dexamethasone			


Table 3. Analgesic drugs developed from 1960 to 2009 and currently in use. (From Kissin, 2010).

^a Year of Food and Drug Administration (FDA) approval as a new molecular entity.

^b Period of publications leading to the confirmation of effectiveness in pain by meta-analysis or to FDA approval for the treatment of pain as an additional indication. ^c Reference for meta-analysis (Cochrane review).

^d FDA approval for the treatment of pain as an additional indication.

Pain management is most effective when the underlying disease conditions are cured. Unfortunately, the number of disease-modifying drugs is relatively low. The unmet need for better efficacy and safety has resulted in substantial interest for treating these conditions. In addition, side effects have been associated with their antinociceptive efficacy, thus hindering the effective treatment of chronic pain. For instance, the use of μ opioid agonists has been related to the development of tolerance and dependence as well as adverse effects such as sedation, dysphoria, and constipation (Martin and Eisenach, 2001). Hence, treatment of persistent/chronic pain continues to

be a troublesome clinical issue and new drugs and targets to design optimal pharmacological treatments are being pursued (Fig. 8).

Fig. 8. New molecular entities (NMEs) targeting pain. Note that three NMEs, such as morphine, aspirin and gallamine triethiodide had been approved before 1930. Instead of acute pain, chronic pain, as well as different types of complex pain are currently filling pharmacological research worldwide (From Kinch, 2015).

2. THE SIGMA-1 RECEPTOR

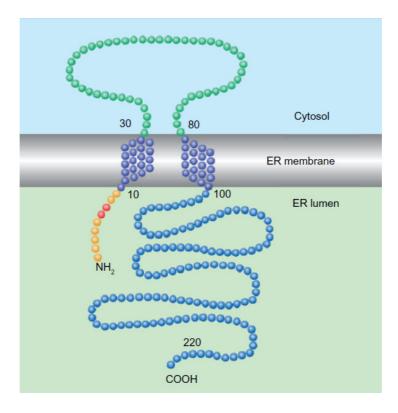
2.1. General Overview

The sigma-1 receptor ($\sigma_1 R$) is a ligand-regulated molecular chaperone that interacts with other proteins to modulate their activity. It has been implicated in a variety of physiological and pathological conditions such as pain, psychosis, neuroprotection and cardioprotection, cognitive processes, drug dependence, cancer and locomotor behaviours, as well as in the regulation of certain endocrine and immune functions (Walker *et al.*, 1990; Bowen, 2000; Kitaichi *et al.*, 2000; Almansa and Vela 2014).

The σ receptor (σ R) was discovered almost 40 years ago. It was firstly misclassified as a subclass of the opioid receptor family to account for the psychotomimetic effects exhibited by racemic N-allyl-normetazocine $((\pm)$ -SKF-10,047) and other benzomorphans (Martin et al., 1976). The differences in the enantioselectivity of ((±)-SKF-10,047) for the opioid receptors further clarified the nature of σR (Su *et al.*, 1982). σR binds with high affinity to (+)-benzomorphans such as N-allyl-normetazocine ((+)-SKF-10,047) or (+)-pentazocine, and exhibits lower affinity for the corresponding (-)-enantiomer (Walker et al., 1990). Based on the selectivity profile of some ligands and the molecular mass, two subtypes of σR were described: $\sigma_1 R$ and sigma-2 receptors $(\sigma_2 R)$ (Hellewell and Bowel, 1990; Quirion *et al.*, 1992). They have been shown to colocalize but they are present in different ratios (Leitner et al., 1994; McCann et al., 1994; Bouchard and Quirion 1997; Guitart et al., 2004). Recent data have found that $\sigma_2 R$ and the PGRMC1 (progesterone receptor membrane component 1) form a complex that shares the same binding site. In turn, this complex seems to be coupled with EGFR (epidermal growth factor receptor), mTOR (mammalian target of rapamycin), caspases, and ion channels (Xu *et al.*, 2011; Ahmed *et al.*, 2012). $\sigma_2 R$ has been related to cancer,

Introduction

arguing that the complex σ_2 R-PGRMC1 is induced in multiple types of cancer, where it regulates tumor growth and is implicated in progesterone signaling (Huang *et al.*, 2014). σ_2 R has also been related to many cellular events, such as proliferation, apoptosis, dendritogenesis, synaptogenesis and neuronal plasticity, activation of cytochrome P450 and steroid signaling, among others (Cahill, 2007; Losel *et al.*, 2008). Despite these data, σ_2 R remains largely elusive, since both the cloning of σ_2 R and the identification of its endogenous ligand have not been successfully resolved and the lack of structural information has severely hindered the understanding of its physiological roles, its signaling pathways, and the development of more selective σ_2 R ligands (Huang *et al.*, 2014).


 σ_1 R, in contrast, has been cloned from several tissues; it was first cloned from guinea pig liver, and later from mouse kidney, human choriocarcinoma cell line and brain, and rat and mouse brain (Hanner *et al.*, 1996; Kekuda *et al.*, 1996; Seth *et al.*, 1997; Pan *et al.*, 1998; Prasad *et al.*, 1998; Mei and Pasternak, 2001). σ_1 R cloning enabled a series of expression studies and allowed studying this receptor through sequence-specific antibodies (Alonso *et al.*, 2000; Palacios *et al.*, 2003; Aydar *et al.*, 2006) and antisense oligodeoxynucleotides (Kitaichi *et al.*, 2000; Maurice *et al.*, 2001a, b; Matsumoto *et al.*, 2002; Nguyen *et al.*, 2005; Espallergues *et al.*, 2007), as well as generating a knockout (KO) mouse by homologous recombination (Langa *et al.*, 2003). The viability of σ_1 R KO mice suggests that σ_1 R is not determinant at the embryogenic stages, thus allowing mutant mice to grow and behave, apparently, as wild-type (WT) mice.

The $\sigma_1 R$ gene is positioned on chromosome 9 (9p13.3, band p13, a region known to be associated with different psychiatric disorders). It is approximately 7 kbp long and contains four exons interrupted by three introns (Prasad *et al.*, 1998). The $\sigma_1 R$ gene

encodes a 24-kDa protein of 223 amino acids with high sequence homology among species (above 90%). $\sigma_1 R$ shares no sequence homology with any known mammalian protein although exhibits 35% identity and 67% similarity to the yeast gene that codes a sterol C8-C7 isomerase, which is essential to ergosterol synthesis and cell proliferation. It has been shown that some $\sigma_1 R$ ligands are able to inhibit sterol biosynthesis due to the high-affinity drug binding site. However, $\sigma_1 R$ does not possess sterol isomerase activity because $\sigma_1 R$ knockdown does not alter cholesterol metabolisms in mammalian cells (Hanner *et al.*, 1996; Moebius *et al.*, 1996; Seth *et al.*, 2001).

2.1.1. Structure of $\sigma_1 R$

The structure of $\sigma_1 R$ has been ascertained by several studies using hydrophobicity analysis, photoaffinity probes, and site-directed mutagenesis (Fig. 9). Firstly, it was proposed that $\sigma_1 R$ was a single transmembrane protein. Years later, however, immunohistochemistry and protease protection assays allowed Aydar and coworkers (2002) to suggest that the structure of $\sigma_1 R$ consists of two transmembrane (TMI and TMII) segments with the NH₂ (N-) and COOH (C-) termini on the cytoplasmic side of the membrane (Aydar *et al.*, 2002; Hayashi and Su, 2007; Ishikawa and Hashimoto, 2010) (Fig. 9). Apart from the transmembrane domains, there are two other hydrophobic regions that form the 'steroid binding domain like' (SBDL-I and SBDL-II), so named because of the sequence homology to yeast sterol isomerase, where $\sigma_1 R$ ligands could bind to the receptor. The extracellular loop consists of approximately 50 amino acids, whereas the intracellular C-terminal has 125 amino acids (Aydar *et al.*, 2002). The N-terminal has been described to contain a helix followed by a large dynamic region and a structured helical C-terminal region that surround a membraneassociated domain containing four helices, three of which map the cholesterol and drug recognition sites (Almansa and Vela, 2014).

Fig. 9. The putative molecular structure model of $\sigma_1 R$ proposed by Aydar. $\sigma_1 R$ contains two hydrophobic transmembrane regions. The N- and C- terminals are shown on the intracellular side of the membrane. Circles represent amino acids (From Ishikawa and Hashimoto, 2010).

Pabba (2013) has recently described that the N- and C- terminals of $\sigma_1 R$ could be facing the extracellular side at the plasma membrane. This new configuration of the $\sigma_1 R$ placement is consistent with some recent studies on the interaction of $\sigma_1 R$ with other receptors and channels (Balasuriya *et al.*, 2013; Pabba, 2013; Almansa and Vela, 2014).

2.1.2. Anatomical and subcellular distribution of $\sigma_1 R$

 $\sigma_1 R$ cloning also helped document their wide distribution in the **anatomical compartments**. $\sigma_1 R$ is ubiquitously expressed in mammalian tissues and is distributed in peripheral organs, such as digestive tract, liver, kidney and skin, and different areas of the CNS involved in memory, emotion, and sensory and motor function (Hellewell *et al.*, 1994; Kekuda *et al.*, 1996; Zamanillo *et al.*, 2000; Bangaru *et al.*, 2013; Sánchez-Fernández *et al.*, 2014).

The localization of $\sigma_1 R$ in the **subcellular compartment** is dynamic in nature, $\sigma_1 R$ is found in several membranes —such as microsomal, endoplasmic reticulum (ER), nuclear and plasmatic membranes— as highly clustered globular structures enriched in cholesterol and in lipid-containing microdomains. At the ER, it is located at the interface with mitochondria at the mitochondria-associated ER membrane (MAM) (Vance, 1990; Hayashi and Su 2007; Cobos *et al.*, 2008; Su *et al.*, 2010) (Fig 10). It has been shown to translocate from the MAM to other areas of the cell where they can interact with several membrane targets to modulate the function or production of various intracellular secondary messengers (Hayashi and Su, 2001; Aydar *et al.*, 2002; Hayashi and Su, 2003; Su *et al.*, 2010; Kourrich *et al.*, 2012).

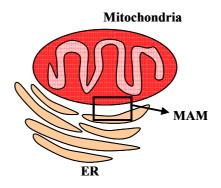
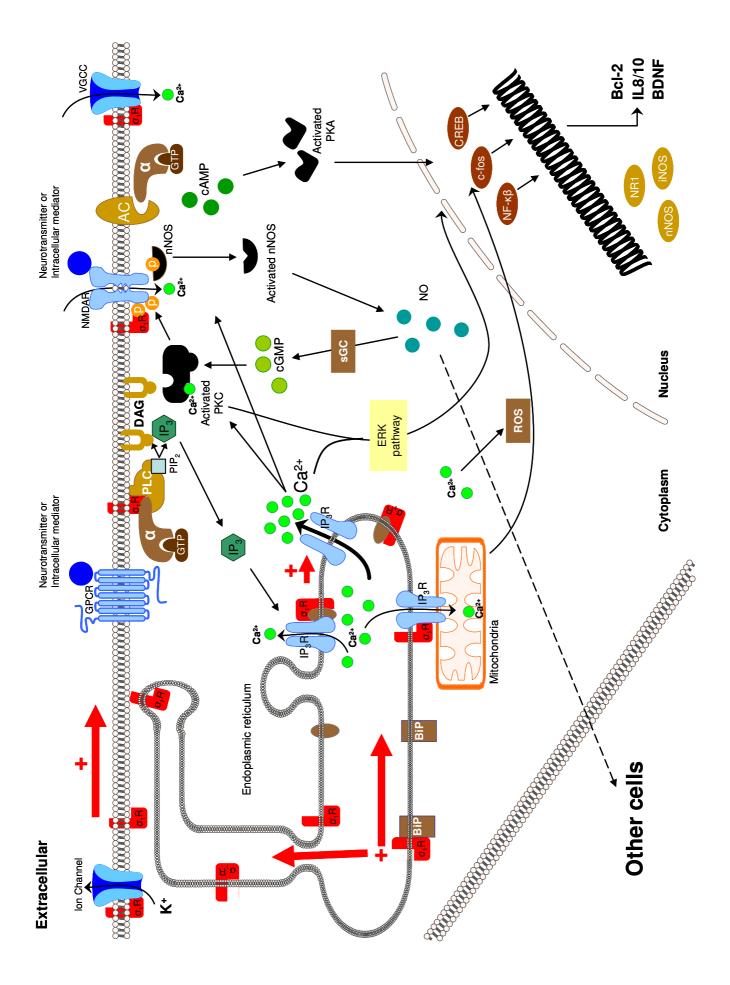


Fig. 10. Subcellular localization of $\sigma_1 R$ at the MAM (mitochondria-associated endoplasmic reticulum membrane). ER: Endoplasmic reticulum.

2.1.3. Mechanism of action of $\sigma_1 R$

Chaperones are proteins that assist the correct non-covalent folding and operation of other proteins, either when they are being synthesized or at their functional localities. $\sigma_1 R$ is an integral membrane protein classified as the first unique ligand-regulated molecular chaperone whose activity focuses on modulating the inter-organelle signaling incurred on activation of the protein (receptor, enzyme or ion channel) that $\sigma_1 R$ is interacting with, and also through the binding of $\sigma_1 R$ ligands (agonists or antagonists) (Su and Hayashi, 2003; Hayashi and Su, 2007; Tsai *et al.*, 2009a; Hayashi and Su, 2010; Su *et al.*, 2010; Hayashi *et al.*, 2011; Zamanillo *et al.*, 2013).

 $\sigma_1 R$ is associated with functionally and structurally diverse proteins, including inositol-1,4,5-triphosphate receptor (IP_3R) and binding immunoglobulin protein (BiP) (Aydar *et al.*, 2002; Hayashi and Su, 2007). Under resting conditions, $\sigma_1 R$ modulates Ca^{2+} signaling through functional IP₃R, particularly subtype IP₃R3, at the MAM, to ensure proper Ca^{2+} signaling from the ER into mitochondria (Mendes *et al.*, 2005; Tsai *et al.*, 2009a). Under pathological conditions where cells experience stress or when $\sigma_1 R$ binds to agonists, the ER loses its global Ca^{2+} homeostasis and there is a transcriptional up-regulation of chaperone proteins to counteract the ER stress response (Schroder and Kaufman, 2005; Hayashi and Su, 2007). Thus, in the presence of high concentrations of cytosolic IP₃, the Ca²⁺ concentration at the ER falls dramatically, $\sigma_1 R$ dissociates from BiP and begins to chaperone conformationally unstable proteins to enhance Ca²⁺ signaling and increase the production of ATP in the cell (Su *et al.*, 2010; Almansa and Vela, 2014). Then, $\sigma_1 R$ binds to unstable IP₃R to prevent their rapid ubiquitination and degradation by proteosomes and to ensure a proper Ca^{2+} influx into the mitochondria, a key organelle that plays a central role in energy production (Alzayady and Wojcikiewicz, 2005; Bhanumathy et al., 2006; Hayashi and Su, 2007;


Tsai *et al.*, 2009a). $\sigma_1 R$ translocates from MAM to other subcellular locations (cytoplasm, plasma membranes, and nuclear envelope) and counteracts the arising apoptosis (Fig. 11).

Once $\sigma_1 R$ is found at the **plasma membrane**, it can interact with other receptors to form heteromers (e.g., with dopamine receptors or simultaneously with u-opioid and NMDA receptors functioning as a unique machinery) and even with itself to generate homomers (Navarro et al., 2010, 2013; Chu et al., 2013; Rodríguez-Muñoz et al., 2015). When $\sigma_1 R$ becomes activated, stimulates phospholipase C (PLC) to hydrolyze phosphorylated phosphatidylinositol 4,5-biphosphate (PIP₂) to produce diacylglycerol (DAG) and IP₃ (Morin-Surun et al., 1999). IP₃ will bind to IP₃R at the ER to promote the Ca²⁺ efflux to the cytoplasm. In the same direction, the activation of $\sigma_1 R$ creates an amplification of the intracellular signal transduction that increases intracellular Ca²⁺ concentrations via NMDA receptors and voltage-gated Ca²⁺channels (VGCCs) (Su and Hayashi, 2003; Martina et al., 2007; De la Puente et al., 2009). In parallel, the activation of $\sigma_1 R$ in the membrane has been reported to enhance the phosphorylation of the NMDA receptor NR1 subunit (at both the protein kinase C (PKC)-dependent Ser⁸⁹⁶ and the protein kinase A (PKA)-dependent Ser⁸⁹⁷) (Kim et al., 2008; Roh et al., 2008a, b). Moreover, the activation of $\sigma_1 R$ reduces the recruitment of nNOS in the membrane and thereby its association with NMDA receptor subunit NR2 (Yang et al., 2010; Zamanillo et al., 2013). $\sigma_1 R$ inhibition have recently been reported to release μ opioid receptors from the negative influence of NMDA receptors (Rodríguez-Muñoz et al., 2015).

At the **cytoplasm**, $\sigma_1 R$ has not been found in its free form. However, its activation either by $\sigma_1 R$ agonist binding to the membrane or by a stressful trigger, produces an increase of intracellular Ca²⁺ that in turn reduces nNOS phosphorylation.

Thus, the activity of this enzyme increases notably and forms NO that can be diffused to other cells. Then, the increment of NO promotes the activation of the NR1 subunit and ERK through PKC-dependent phosphorylation (Roh *et al.*, 2011; Zamanillo *et al.*, 2013) (Fig. 11).

At the **nucleus**, $\sigma_1 R$ activation transcriptionally modulates the gene expression of several proteins related to inflammation, nociception, neuronal survival, synaptogenesis and neurogenesis, such as nNOS, inducible nitric oxide synthase (iNOS), NR1, B-cell lymphoma 2 (Bcl-2), brain derived neurotrophic factor (BDNF), and interleukins 8 (IL-8) and 10 (IL-10). Some of these proteins are expressed through the regulation of their corresponding transcription factors, such as c-Fos (Yang *et al.*, 2007; Meunier and Hayashi, 2010; Hayashi *et al.*, 2011)(Fig. 11).

Activation of σ, receptor can be immediately triggered by cellular stress, putative endogenous ligands or exogenous σ, receptor agonists.

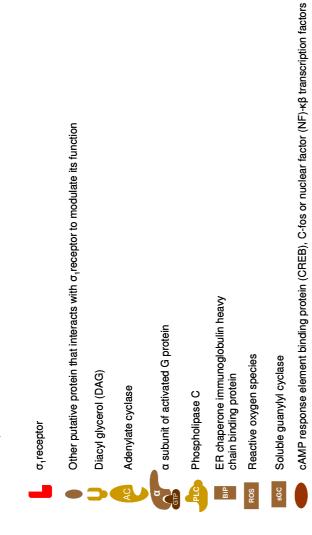


Fig. 11. Involvement of $\sigma_1 R$ in signal transduction pathways. $\sigma_1 R$ modulates downstream signaling pathways activated upon the stimulation of other targets. Under stressful conditions or when $\sigma_1 R$ binds to agonists, there is a transcriptional up-regulation of chaperones and an increase of the cytosolic IP₃, thus $\sigma_1 R$ dissociates from the chaperone BiP and binds to IP₃R at the ER to enhance Ca^{2+} signaling from the ER into mitochondria to increase ATP. In addition, its activation also promotes redistribution of $\sigma_1 R$ from to produce diacylglycerol (DAG) and IP₃. The active $\sigma_1 R$ modulates the activity of neurotransmitter receptors and ion channels, including voltage-gated Ca²⁺ channels (VGCCs), and µ-opioid and the ionotropic NMDA receptors, leading to an increased cytosolic Ca²⁺. In parallel, $\sigma_1 R$ regulates protein kinases (PKC and PKA) and the subsequent phosphorylation of the NMDA receptor. At the cytoplasm, increased cytosolic Ca²⁺ reduces nNOS phosphorylation (i.e., resulting in an increase in nNOS activity). The NO generated from nNOS stimulates cGMP production via sGC, which in turn leads to an increased PKC activity (activating NR1 subunit and ERK). At the nucleus, $\sigma_1 R$ activation transcriptionally modulates the gene expression of several proteins and the corresponding transcription factors, such as nNOS, interleukins, and c-Fos MAM to other subcellular locations to bind to ion channels, receptors or protein kinases. At the plasma membrane, $\sigma_i R$ becoming activated stimulates phospholipase C (PLC) (Modified from Zamanillo et al., 2013)

2.2. Modulation of $\sigma_1 R$ by ligands

 $\sigma_1 R$ is a unique target in the sense that it displays chaperone activity to modulate inter-organelle signaling while simultaneously regulated by ligands in a clear agonist/antagonist fashion.

2.2.1. $\sigma_1 R$ as a drug target

The discovery of selective $\sigma_1 R$ ligands has been intricate due to the promiscuity of $\sigma_1 R$ —many different molecules with diverse structures have affinity for this receptor. The overlap of the $\sigma_1 R$ pharmacophore with that of a number of other receptor systems and proteins responsible for off-target effects makes it intricate to find selective ligands and explains why different drug classes bind to $\sigma_1 R$ (Zamanillo *et al.*, 2012).

Historically, the distinction between $\sigma_1 R$ agonists and $\sigma_1 R$ antagonists has lied in the pharmacological response in specific systems, which has added to the difficulty in determining the mechanism of action of $\sigma_1 R$ (Schrock *et al.*, 2013). Today, the discovery of new selective ligands as well as the assessment of their functional behaviour is still complex for this target class, among others reasons due to some issues (Cobos *et al.*, 2005; Su *et al.*, 2010; Zamanillo *et al.*, 2012; Almansa and Vela, 2014):

> • $\sigma_1 R$ is mainly localized intracellularly and exerts a modulatory action on several receptors, ion channels and enzymes, rather than an easily estimated direct effect. Ligand accessibility to $\sigma_1 R$ is expected to be more difficult, and the signaling outcome less predictable, than for other membrane targets as GPCRs. Thus, there is a discrepancy between the binding affinity and efficacy of $\sigma_1 R$ ligands. Therefore, the

hydrophobicity of ligands is a major determinant to predict the potency of $\sigma_1 R$ ligands *in vivo*.

- σ₁R activity can vary depending on the conformational state of the target proteins, given that σ₁R is a chaperone protein and only exerts its activity when proteins are misfolded. Therefore, the nature of the disease provides the selectivity of σ₁R ligands.
- Some σ₁R ligands do not show the classical linear dose-response curve in biochemical, behavioural and electrophysiological studies (sometimes a biphasic bell-shaped curve is obtained).
- Many of the widely accepted $\sigma_1 R$ antagonists (BD1063, BD1047 or NE-100) bind at nanomolar affinities to the $\sigma_2 R$. The effect of these nonselective ligands could thus result in apparent discrepancies due to the activation of one subtype of receptor at low doses and the activation of other subtypes at higher doses.
- The assay conditions and readouts used notably affect the outcome (e.g., agonists can behave as antagonists depending on the readout used).

All these obstacles have been recently overcome by using several approaches to discern if a ligand is an agonist or an antagonist:

• *In vivo* tests. The antinociceptive activity in animal models such as formalin or capsaicin test has been often used for establishing the antagonist nature of ligands (Entrena *et al.*, 2009a; Cendán *et al.*, 2005b).

- Phenytoin assay. It is a low-potency allosteric modulator of σ₁R that discriminates affinities of σ₁R ligands depending on their agonistic or antagonistic nature. Phenytoin discriminates between σ₁R receptor agonists and antagonists as it is able to shift known agonists to significant higher affinities (Ki ratios without phenytoin *vs.* with phenytoin >1) while antagonists show no shift or a very little shift to lower affinity values (Ki ratios without phenytoin *vs.* with phenytoin <1) (Cobos *et al.*, 2005, 2006).
- Fluorescence resonance energy transfer (FRET) studies. They detect conformational changes due to the binding of the ligand to $\sigma_1 R$, depending on the functional nature of the molecule (Gómez-Soler *et al.*, 2013).

At present, many drugs of very different structural classes that bind with high to moderate/weak affinity and with low selectivity for $\sigma_1 R$ have shown a wide range of therapeutic applications. Compounds launched onto the market include, among others, antipsychotics (e.g., haloperidol, chlorpromazine), antidepressants (e.g., fluvoxamine, sertraline, clorgyline), antitussives (carbetapentane, dextromethorphan, dimemorfan), drugs for the treatment of neurodegenerative disorders such as Parkinson's disease (amantadine) or Alzheimer's disease (memantine, donepezil), and drugs of abuse (cocaine, methamphetamine) (Zamanillo *et al.*, 2012; Tsai *et al.*, 2014; Vela *et al.*, 2015). Some $\sigma_1 R$ ligands have reached Phase II and III clinical trials for the treatment of neuropsychiatric disorders (Cutamesine and Anavex 2-73), but others have been discontinued (Table 4).

While different endogenous $\sigma_1 R$ ligands have been proposed, such as neurosteroids, NPY, sphingolipids and dimethyltryptamines, their exact physiological roles in the context of $\sigma_1 R$ modulation are still unclear.

Table 4. Summary of $\sigma_1 R$ ligands that are used as pharmacological tools or that are currently in clinical trials, have been discontinued, or are already marketed.

Status	Compounds	Function on $\sigma_1 R$	Other pharmacological actions	
Pharmacological tools	(+)-SKF-10,047	Agonist	NMDA receptor ligand (PCP site)	
	DTG	?	$\sigma_2 R$ agonist	
	PRE-084	Agonist		
arm	BD-1063	Antagonist	$\sigma_2 R$	
Ph	BD-1047	Antagonist	$\sigma_2 R$, α adrenoceptor	
	(+)-Pentazocine	Agonist	Highly selective $\sigma_1 R$ agonist	
	Carbetapentane	Agonist	Muscarinic antagonist, $\sigma_2 R$ agonist	
	Donepezil	Agonist	Cholinesterase inhibitor	
	Dextromethorphan	Agonist	NMDA receptor allosteric antagonist	
70	Imipramine	Agonist	Monoamine reuptake Inhibitor (Tricyclic Antidepressant)	
rugs	Fluvoxamine	Agonist	Selective 5-HT reuptake inhibitor	
p pa	Sertraline	Agonist	Selective 5-HT reuptake inhibitor	
Marketed drugs	Haloperidol	Antagonist	Dopamine D_2 and D_3 antagonist, $\sigma_2 R$ agonist	
Mar	Opipramol	Agonist	Dopamine D_2 , 5-HT ₂ and histamine H1	
	Verapamil	?	Ca ²⁺ channels blocker	
	Clorgyline	Agonist?	Irreversible monoamine oxigenase A inhibitor	
	Citalopram	?	Selective 5-HT reuptake inhibitor	
	(±)Fluoxetine	Agonist	Selective 5-HT reuptake inhibitor	
	Tamoxifen	?	Estrogen receptor	
l ed	Siramesine	Antagonist	$\sigma_2 R$ agonist, α_1 adrenoceptor ligand	
Drugs in clinical trials discontinued	NE-100	Antagonist	$\sigma_2 R$	
	Panamesine	Antagonist	DAT inhibitor	
	Rimcazole	Antagonist	DAT inhibitor	
	BMY-14802	Antagonist	5-HT _{1A} agonist	
	Eliprodil	Antagonist	NMDA antagonist, α_1 adrenoceptor ligand	
in "	E-52862	Antagonist		
Drugs in clinical trials	Cutamesine	Agonist	Acetylcholine release enhancer	
Dr cl t	Anavex 2-73	Agonist	Muscarinic agonist, NMDA, Na ⁺ channels	

2.2.2. The selective $\sigma_1 R$ antagonist E-52862

Esteve developed a medical chemistry program aimed at the discovery of novel and selective $\sigma_1 R$ ligands taking into account the pharmacophoric features of $\sigma_1 R$ (Díaz *et al.*, 2009). As a result of this chemical campaign, the structure-activity relationship studies of a series of 1-arylpyrazoles led to the discovery of the new chemical entity 4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl] morpholine (E-52862, S1RA) (Fig. 12) (Díaz *et al.*, 2012).

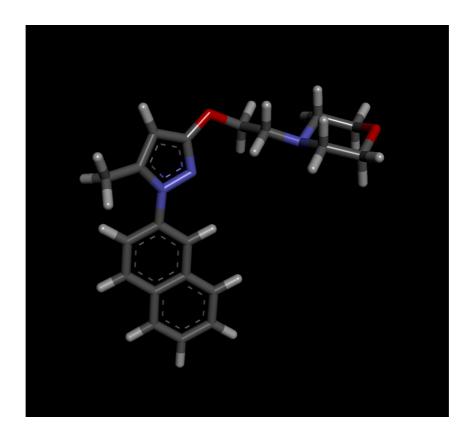


Fig. 12. Molecular structure of the selective $\sigma_1 R$ antagonist E-52862 in 3D layout. Nitrogen atoms are represented in blue and oxygen atoms are represented in red.

E-52862 has shown high $\sigma_1 R$ affinity in humans (K_i = 17 nM) and guinea pigs (K_i = 23.5 nM), whereas $\sigma_2 R$ affinity is not significant (K_i > 1000 nM) in guinea pigs and rats). Thus, E-52862 exhibited an excellent σ_1/σ_2 selectivity ratio (> 550).

So far, many $\sigma_1 R$ ligands have shown high selectivity against $\sigma_2 R$, 5-HT_{1A}, 5-HT₆, 5-HT₇, alpha_{1A}, alpha₂, and NMDA receptors (Oberdorf *et al.*, 2008). However, E-52862 has not been significantly active on another 170 receptors, transporters, ion channels and enzymes (Díaz *et al.*, 2012; Romero *et al.*, 2012; Zamanillo *et al.*, 2013). In the phenytoin assay —a low-potency allosteric modulator of $\sigma_1 R$ that discriminates affinities of $\sigma_1 R$ ligands depending on their agonistic or antagonistic nature (Cobos *et al.*, 2005, 2006)— E-52862 produced a small shift to lower-affinity values when incubated in the presence of phenytoin, thus suggesting antagonistic properties of $\sigma_1 R$.

E-52862 interactions with other drugs based on the inhibition of cytochrome P450 were evaluated in recombinant human cytochrome P450 (CYP) isoforms, and no alerts regarding CYP subtype inhibition or induction were found. E-52862 is metabolized *in vitro* by multiple human CYPs (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, CYP2E1 and CYP3A4) and by flavin-containing monooxygenase (FMO; FMO1 and FMO3). It is thus unlikely that E-52862 clearance *in vivo* would be significantly susceptible to interactions with drugs that induce or inhibit specific enzyme isoforms, or to inter-individual variations due to genetic polymorphisms in specific isoforms.

Regarding safety pharmacology, no significant effects of E-52862 were observed at doses associated with preclinical analgesic activity. No teratogenic, genotoxic, phototoxic or skin irritation effects were found in the toxicological studies conducted to preclude further development of E-52862.

E-52862 (cLogP=3.9) has shown to penetrate the blood-brain barrier and to bind to $\sigma_1 R$ in the CNS, thus showing a significant correlation between the extent of CNS $\sigma_1 R$ occupancy and the antinociceptive effect. At a mechanistic level and consistent with the results obtained in $\sigma_1 R$ KO mice, E-52862 at 30 μ M produced an attenuation of

51

the wind-up responses in SC sensitized by repetitive nociceptive stimulation (De la Puente *et al.*, 2009; Romero *et al.*, 2012). Altogether, this makes E-52862 suitable to selectively antagonize $\sigma_1 R$ and to study the role of these receptors in nociception.

2.3. $\sigma_1 R$ and pain

 σ_1 R is expressed in areas related to pain control such as DRG, the superficial layers of the dorsal horn of the SC, where the first synapse with the second order neurons occurs, and also in areas related to the descending pain pathways, such as the PAG, the locus coeruleus, and the RVM (Zamanillo *et al.*, 2013; Almansa and Vela *et al.*, 2014; Sánchez-Fernández *et al.*, 2014).

2.3.1. Modulation of opioid-induced antinociception

The fact that $\sigma_1 R$ was related to antinociception was first suggested by studies showing a relationship between σR systems and opioid analgesia, where $\sigma_1 R$ had been proposed as an antiopioid system in which $\sigma_1 R$ exerted a tonic inhibitory control on the opioid receptor-mediated signaling pathways (Chien and Pasternak, 1994, 1995a). In the acute thermal nociception (tail-flick test), $\sigma_1 R$ antagonists or $\sigma_1 R$ antisense oligodeoxynucleotides have no effects by themselves when given alone, but significantly increase the analgesic response to mu (μ) and kappa (κ) opioid agonists (King *et al.*, 1997; Mei and Pasternak, 2002). Otherwise, the $\sigma_1 R$ agonist (+)pentazocine blocks this potentiation effect (Chien and Pasternak, 1995b).

It is important to note that this increase in opioid potency appears to be limited to analgesia and not side effects. E-52862 has been used to characterize the pharmacological effect of antagonizing $\sigma_1 R$ on opioid-induced antinociception and adverse effects in mice. When co-administered, E-52862 enhanced the antinociceptive effect of opioids in the tail-flick test, an effect that was attributed to the $\sigma_1 R$ based on studies in $\sigma_1 R$ KO mice (Table 5). In contrast, morphine induced antinociceptive tolerance and rewarding were attenuated whereas physical dependence, inhibition of gastrointestinal transit, or mydriasis were not modified (Vidal-Torres *et al.*, 2013).

Regarding the site of action, the modulation of opioid-induced antinociception has been observed peripherally, and centrally (spinal and supraspinal) suggesting that σ_1 R-mediated pain modulation occurs at different sites (Sánchez-Fernández *et al.*, 2013, 2014; Vidal-Torres *et al.*, 2013). The $\sigma_1 R$ receptor agonist (+)-pentazocine supraspinally administered (microinjected in periaqueductal gray, locus coeruleus, or rostal ventromedial medulla) diminished systemic opioid analgesia in mice, and the $\sigma_1 R$ receptor antagonist haloperidol (and also antisense oligonucleotides) microinjected into the rostal ventromedial medulla markedly enhanced the analgesic actions of coadministered morphine In contrast, $\sigma_1 R$ agonists spinally administered did not alter opioid analgesia (Mei and Pasternak, 2002). Finally, BD1063 or E-52862, among other $\sigma_1 R$ antagonists, locally co-administered in the paw markedly potentiated the opioid antinociception and its effects were reversed by the selective $\sigma_1 R$ agonist PRE-084. (Sánchez-Fernández *et al.*, 2013, 2014), In addition, $\sigma_1 R$ KO mice exhibited an enhanced mechanical antinociception in response to morphine (local or systemic) (Sánchez-Fernández *et al.*, 2013). All these data support the use of $\sigma_1 R$ antagonists as systemic or local opioid adjuvants.

Nociceptive model	Anatomical scope (route)	E-52862 effect on opioid antinociception	Effect of σ ₁ R knockout mice on opioid antinociception	References
Tail-flick test	Systemic (i.p.)	Enhancement	No effect	Vidal-Torres et al., 2013
Paw pressure test	Systemic (s.c.) and local (i.pl.)	Enhancement	Enhancement	Sánchez-Fernández <i>et al.</i> , 2013

Table 5. Summary of the involvement of $\sigma_1 R$ on opioid antinociception: effects of E-52862 and $\sigma_1 R$ KO mice. Abbreviations: i.p.: intraperitoneal; i.pl.: intraplantar; s.c.: subcutaneous.

 $\sigma_1 R$ is physically associated with μ opioid receptors, and $\sigma_1 R$ antagonists (but not agonists) potentiate opioid transduction without influencing opioid receptor binding (Kim *et al.*, 2010). A crosstalk between $\sigma_1 R$, NMDA and μ opioid receptors and regulated by the μ opioid receptor-associated histidine triad nucleotide binding protein 1 (HINT1) has been recently discovered. $\sigma_1 R$ antagonists enhance opioid analgesia in naïve mice by releasing μ opioid receptors from the negative influence of NMDA receptor, and they also reset antinociception in morphine-tolerant animals (Rodríguez-Muñoz *et al.*, 2015).

Opioids are the gold standard painkillers used for the treatment of moderate to severe pain. Although they are used worldwide, they present with side effects such as constipation, dizziness and nausea, among others, which usually lead to treatment discontinuation (Kurz and Sessler, 2003). Other side effects, such as tolerance and dependence, appear in long-term treatments with opioids, and treatment effectiveness is dramatically reduced. $\sigma_1 R$ antagonists have been shown to potentiate opioid analgesia but not opioid-related adverse effects (or even reducing), which suggest an application for $\sigma_1 R$ antagonists as opioid adjuvant therapy, even at a peripheral level.

2.3.2. Modulation of pain in sensitizing and chronic pain conditions

Unlike opioid drugs, $\sigma_1 R$ ligands fail to modify pain by themselves in classical models of thermal and mechanical acute nociception, as seen in the tail-flick, the hot plate and the paw pressure test in rodents (Marrazzo *et al.*, 2006; De la Puente *et al.*, 2009; Sánchez-Fernández *et al.*, 2013). However, $\sigma_1 R$ ligands play a key role in modulating pain behaviour, particularly in sensitizing and chronic pain conditions. These aspects have been studied using $\sigma_1 R$ receptor knockout mice and selective $\sigma_1 R$ receptor antagonists (Table 6).

 $\sigma_1 \mathbf{R}$ KO mice are a useful genetic tool to study the involvement of $\sigma_1 \mathbf{R}$ in several pain types, given that KO mice perceive and respond normally to stimuli of different nature (mechanical, chemical and thermal). Thus, the absence of $\sigma_1 R$ in KO mice has been shown not to interfere with the perception of several stimuli applied to the hind paw or with the motor response required for paw withdrawal (Cendán et al., 2005a; De la Puente et al., 2009; Nieto et al., 2012; Romero et al., 2012; González-Cano *et al.*, 2013). In $\sigma_1 R$ KO mice, both phases of formalin-induced paw licking were clearly reduced (Cendán et al., 2005b) and capsaicin injected intraplantarly did not induce mechanical allodynia (Entrena et al., 2009a). Regarding the neuropathic pain models, cold and mechanical hypersensitivity were strongly attenuated in $\sigma_1 R$ KO mice treated with paclitaxel (Nieto et al., 2012) or exposed to partial sciatic nerve ligation (PSNL) (De la Puente et al., 2009). In a visceral pain model induced by intracolonic injection of capsaicin, $\sigma_1 R$ KO mice have shown a reduction in the number of pain behaviours as compared to WT mice (González-Cano et al., 2013). From a mechanistic point of view, $\sigma_1 R$ KO do not completely develop the windup response after stimulation of C fibres using isolated spinal cord which is indicative of the role of $\sigma_1 R$ amplification in mechanisms underlying central sensitization and synaptic plasticity.

partial sciatic nerv	partial sciatic nerve ligation; TNC: trigeminal nucleus caudalis.	cleus caudalis. For other abbreviations see abbreviations list.	abbreviations list.	
Pain type	Experimental pain model	Genetic σ ₁ R antagonism effect (using σ ₁ R KO mice)	Pharmacological σ ₁ R antagonism effect	References
	Tail-flick test	Similar to WT	No effect by itself, but reversed the facilitatory effects of agonists (increasing the tail-flick latency)	Chien and Pasternak 1995a, b; Ronsisvalle <i>et al.</i> , 2001; Cendán <i>et al.</i> , 2005a; Marrazzo <i>et al.</i> , 2006; Roh <i>et al.</i> , 2008b; De la Puente <i>et al.</i> , 2009; Tseng <i>et al.</i> , 2011
	Hot plate test	Similar to WT		De la Puente <i>et al.</i> , 2009
Acute nociception	von Frey test	Similar to WT	No effect by itself, but reversed the facilitatory effects of agonists (reducing the frequency of paw withdrawal)	Roh <i>et al</i> . , 2008b; De la Puente <i>et al</i> . , 2009
	Paw pressure test	Similar to WT	No effect	Sánchez-Fernández <i>et al.</i> , 2013
	Paw-pinch test		No effect by itself, but reversed the fos up-regulation induced by agonists	Roh <i>et al.</i> , 2008b
	Formalin test	Attenuation	Antinociception (phase I and II) Decreased fos and pNR1 expression in the spinal cord	Cendán <i>et al.</i> , 2005a, b; Kim <i>et al.</i> , 2006; Díaz <i>et al.</i> , 2009; Romero <i>et al.</i> , 2012
Acute and sensitization- related pain induced by	NMDA-induced pain		Reversion of the effects of agonists (both expression of pNR1 and spontaneous pain behaviour)	Kim <i>et al.</i> , 2008
	Orofacial-Formalin model		Reduced nociceptive responses Decreased fos and pp38 expression in the TNC	Roh and Yoon, 2014

Table 6. Effects of genetic ($\sigma_1 R$ KO mice) and pharmacological blockade of $\sigma_1 R$ in different experimental pain models. Abbreviations: DRG: dorsal root ganglia; PSNL: -1-2 مسططم ي نبدني معطوات مع بلب dalia Ea. 5 in louis li cotion: TNC: triac tiol cointin

	Capsaicin-induced mechanical allodynia	No development of mechanical allodynia	Antiallodynic (mechanical) effect	Entrena <i>et al.</i> , 2009a, b; Wiese <i>et al.</i> , 2009; Romero <i>et al.</i> , 2012
	Capsaicin-induced headache (migraine model)		Reduced face grooming Decreased fos and pNR1 expression in the TNC	Kwon <i>et al.</i> , 2009
Acute inflammatory (arthritic) pain	Carrageenan-induced acute inflammatory pain	Similar to WT (heat hyperalgesia) Attenuation (mechanical hyperalgesia)	Antihypersensitivity (mechanical and heat) effects	Parenti <i>et al.</i> , 2014a, b; Tejada <i>et al.</i> , 2014
Acute visceral pain	Intracolonic capsaicin- induced visceral pain	Reduced number of behaviours Similar to WT (referred hyperalgesia)	Reduced pain-related behaviours (number of behaviours and referred antihyperalgesia)	González-Cano <i>et al.</i> , 2013
	Chronic constriction injury- induced neuropathic pain (Bennett model)		Antiallodynic (mechanical) but not antihyperalgesic (heat) effects Decreased GFAP, pNR1 and pp38 expression in the spinal cord	Roh <i>et al.</i> , 2008a; Choi <i>et al.</i> , 2013; Moon <i>et al.</i> , 2013, 2014
Neuropathic pain	Chronic constriction of the dorsal root ganglion-induced neuropathic pain		Antiallodynic (mechanical and cold) effect Decreased pERK expression in the spinal cord	Son and Kwon, 2010
	PSNL-induced neuropathic pain	No development of mechanical and cold allodynia Similar to WT (heat hyperalgesia) No increase of pERK	Antihypersensitivity effects (both mechanical /cold allodynia and thermal hyperalgesia) Inhibition of anhedonic state	De la Puente <i>et al.</i> , 2009; Romero <i>et al.</i> , 2012; Bura <i>et al.</i> , 2013; Kotagale <i>et al.</i> , 2013
	Paclitaxel-induced neuropathic pain	No development of mechanical and cold allodynia No increase of pERK	Antiallodynic (mechanical and cold) effect	Nieto <i>et al.</i> , 2012, 2014; Riganas <i>et al.</i> , 2012

The **pharmacological antagonism on** $\sigma_1 \mathbf{R}$ produced similar results. The antagonist haloperidol, its metabolites I and II and E-52862 inhibited formalin-induced pain (Cendán *et al.*, 2005a, Romero *et al.*, 2012) and somatic capsaicin-induced sensitization in mice (Entrena *et al.*, 2009b; Romero *et al.*, 2012). Several $\sigma_1 \mathbf{R}$ antagonists, including E-52862, also inhibited visceral capsaicin-induced sensitization in mice (González-Cano *et al.*, 2013). In neuropathic pain, some pain-related behaviours have also been reversed using $\sigma_1 \mathbf{R}$ antagonists in animal models, such as the chronic compression of the DRG (Son and Kwon, 2010), the migraine model induced by intracisternal infusion of capsaicin (Kwon *et al.*, 2009), PSNL (Romero *et al.*, 2012) and paclitaxel-induced neuropathic pain (Nieto *et al.*, 2012), among others. All these results are summarized in Table 6.

From a mechanistic point of view, several studies have shown the involvement of $\sigma_1 R$ in neuropathic pain models, with significant changes being observed in the expression of this receptor in some phases of the development of experimental neuropathic models. All these results are summarized in Table 7.

Pain type	Experimental pain model	$\sigma_1 R$ molecular changes induced by pain	References
	Streptozotocin-induced diabetic neuropathy	Decreased $\sigma_1 R$ expression in brain homogenates 10 weeks post-stz. No changes 5 weeks post-stz	Mardon <i>et al.</i> , 1999
Neuropathic	Chronic constriction injury- induced neuropathic pain	Increased $\sigma_1 R$ expression in the spinal cord during the induction (1- 3 days), but not the maintenance phase of neuropathic pain	Roh <i>et al.</i> , 2008a; Moon <i>et al.</i> , 2014
pain	Chronic constriction of the dorsal root ganglion- induced neuropathic pain	Increased $\sigma_1 R$ expression in the spinal cord 3-14 days post-surgery	Son and Kwon, 2010
	Spinal nerve ligation- induced neuropathic pain	Decreased $\sigma_1 R$ expression in axotomized DRG neurons 21 days post-injury	Bangaru <i>et al.</i> , 2013

Table 7. Changes in $\sigma_1 R$ expression in the nervous system induced in several models of neuropathic pain. Abbreviations: DRG: dorsal root ganglia; STZ: streptozotocin.

2.3.3. E-52862 as analgesic drug

E-52862 has so far been pharmacologically characterized *in vivo* as an effective analgesic in several pain types (results summarized in Table 8).

- Acute nociception: E-52862 potentiates morphine analgesia (tail-flick and paw pressure tests) without affecting some undesirable side effects of morphine such as gastrointestinal transit (section 2.3.2, Vidal-Torres *et al.*, 2013).
- Chemical-induced sensitization: E-52862 was able to systemically reverse capsaicin-induced allodynia and formalin-induced paw licking in mice (Romero *et al.*, 2012; Vidal-Torres *et al.*, 2014).
- Visceral pain: E-52862 has shown to exert a $\sigma_1 R$ selective effect on visceral pain induced by intracolonic injection of capsaicin, given that its effect on referred hyperalgesia is completely abolished in $\sigma_1 R$ KO mice (González-Cano *et al.*, 2013).
- Neuropathic pain: E-52862 has been widely studied in neuropathic pain models like PSNL and paclitaxel-induced neuropathic pain. These antihypersensitivity effects have been observed using several treatment paradigms (acute and chronic) and studying different endpoints (Nieto *et al.*, 2012; Romero *et al.*, 2012). Interestingly, the effects of E-52862 have been shown on both pain sensitivity and motivation, thus addressing both the neurophysiological and the affective aspects of neuropathic pain. E-52862 has been associated with an improvement of the emotional negative state without reinforcing effects, as observed by a sucrose preference for E-52862 as well as an operant response to obtain this drug in animals subjected to nerve ligation (Bura *et al.*, 2013).

In parallel to our findings, Tejada and coworkers recently described for the first time that $\sigma_1 R$ is involved in **inflammatory pain** where E-52862 showed analgesic activity both systemically and locally. These findings are summarized in the article 3 of this Doctoral Thesis.

From a mechanistic point of view, E-52862 did not modify the AB fibremediated non nociceptive signaling and the response to single stimuli in C fibres in isolated neonatal mice SC, which is consistent with the behavioural observation that $\sigma_1 R$ antagonists do not alter the normal response to sensory and nociceptive inputs in non-sensitizing conditions (Romero et al., 2012; Mazo et al., 2014, Vela et al., 2015). However, E-52862 reduced spike number and wind-up index elicited by repetitive stimulation of nociceptive C fibres in isolated neonatal mice spinal cords, which is also in accordance with the observation that the wind-up response was attenuated in the $\sigma_1 R$ KO mice. This is also consistent with the behavioural observation that under sensitizing conditions, the effect of blocking $\sigma_1 R$ is antiallodynic and antihyperalgesic (de la Puente et al., 2009; Romero et al., 2012; Mazo et al., 2014). Finally, a factor contributing to its antinociceptive effects has been suggested to be the E-52862-induced potentiation of descending noradrenaline pain inhibitory control, evidenced in the formalin-induced pain model. Local administration of E-52862 (intracerebroventricular, intrathecal and intraplantar) evidenced not only a central, but also a peripheral site of action for E-52862's antinociceptive effects (Vidal-Torres et al., 2014).

At present, E-52862 has successfully completed single- and multiple-dose phase I studies showing good safety, tolerability, and pharmacokinetic and pharmacodynamic profiles in healthy subjects after single (5-800 mg) and multiple (50-400 mg x eight days) oral doses (Abadias *et al.*, 2013). E-52862 is currently undergoing phase II

clinical trials for the treatment of pain and is the first-in-class compound for this indication (Laurini 2013).

intraperitoneal; i.pl.:intraplantar; i.t.: intrathecal; i.v.: intravenous; p.o.: oral; PSNL: Partial sciatic nerve ligation; s.c.: subcutaneous (Adapted from Zamanillo et al., 2013). Table 8. Effects of pharmacological blockade by E-52862 in different experimental pain models. Abbreviations: b.i.d: twice a day; i.c.v.: intracerebroventricular; i.p.:

Experimental pain model	Specie	Dose/Route	E-52862 effect	References
Tail-flick test		40 mg/kg, i.p.	No effect	Vela et al., 2010; Vidal- Torres et al., 2013
Paw pressure test	Mouse	32 mg/kg, s.c.; 100 μg/paw, i.pl.	No effect	Sánchez-Fernández <i>et al.</i> , 2013
		20-80 mg/kg, i.p.	Antinociception (phase I and II)	Romero et al., 2012
Formalin test	Rat	40-80 mg/kg, i.p.; 160-320 μg/area, i.t., i.c.v.; 320 μg/paw, i.pl.	Antinociception (phase I and II)	Vidal-Torres et al., 2014
Capsaicin-induced mechanical allodynia		16-64 mg/kg, i.p.; 32-128 mg/kg, p.o.	Antiallodynic (mechanical) effect	Romero et al., 2012
Carrageenan-induced acute inflammatory pain		2-32 mg/kg, s.c.; 75-150 μg/paw, i.pl.	Antihyperalgesic (mechanical and thermal) effects, not due to an antioedematous effect. Selective thermal antihyperalgesic effect of E-52862 in $\sigma_1 R$ (no effect in $\sigma_1 R$ KO mice)	Tejada <i>et al</i> . , 2014
Intracolonic capsaicin- induced visceral pain		32-128 mg/kg, s.c.	Reduction of the number of behavioural responses and referred antihyperalgesic (mechanical) effect. Selective effect of S1RA in $\sigma_1 R$ (no effect in $\sigma_1 R$ KO mice)	González-Cano <i>et al.</i> , 2013
		16-64 mg/kg, i.p.	Antiallodynic (mechanical) and antihyperalgesic (thermal) effects	Romero et al., 2012
PSNL-induced neuropathic	Mouse	25 mg/kg, i.p., b.i.d. x 21 days (chronic treatment)	Inhibition of the development of mechanical and thermal hypersensitivity	Romero et al., 2012
pain		6 mg/kg/infusion, i.v. x 10 days (operant self-administration)	Antiallodynic (mechanical and thermal) and antihyperalgesic (thermal) effects	Bura <i>et al.</i> , 2013
		25 mg/kg, i.p.	Inhibition of anhedonic state (inhibition of the decreased consumption of 2% sucrose solution)	Bura <i>et al</i> ., 2013
Paclitaxel-induced		32-128 mg/kg, s.c.	Antiallodynic (mechanical and cold) effect	Nieto et al., 2012
neuropathic pain		32-64 mg/kg, s.c. (cotreatment with paclitaxel)	Antiallodynic (mechanical and cold) effect in a preventive paradigm	Nieto et al., 2012

HYPOTHESIS

Since σR was discovered over 35 years ago, a large number of therapeutic applications related to central nervous system disorders have been proposed for σR ligands. Lately, selective $\sigma_1 R$ antagonists have shown promising results in the field of pain. The first preclinical evidences of the $\sigma_1 R$ in the field of analgesia were related to acute nociception, where pharmacological antagonism effectively potentiated the antinociceptive effects of opioid agonists (Chien and Pasternak, 1995a, b). Later on, it has also been related to pain sensitization processes induced by chemicals such as formalin and capsaicin (Cendán *et al.*, 2005a, b; Entrena *et al.*, 2009a, b; Kwon *et al.*, 2009) or induced by peripheral nerve injury (De la Puente *et al.*, 2009, Romero *et al.*, 2012). Since then, the potential interest of $\sigma_1 R$ as a therapeutic target for neuropathic pain has moved the selective $\sigma_1 R$ antagonist E-52862 forward into clinical development.

However, there are still some gaps of information in the existing preclinical pain studies. Firstly, there is no information about other rat neuropathic pain models different from those triggered by a traumatic extra-cephalic nerve injury. Secondly, the efficacy of repeated administration of $\sigma_1 R$ antagonists has been poorly explored. Thirdly, no information is available on the pain relief effect of $\sigma_1 R$ antagonists or on the spinal expression of any molecular pain markers in $\sigma_1 R$ KO in other types of pain such as inflammatory or postoperative pain.

Finally, very little information is available regarding the $\sigma_1 R$ antagonistic efficacy in comparison to other marketed analgesic drugs. These studies are important because $\sigma_1 R$ is considered to be a unique ligand-regulated molecular chaperone, very different from many other target proteins for pain where the concept of antagonist/inhibitor is more clearly defined. In addition, some of the data found in the literature regarding the antinociceptive effects of $\sigma_1 R$ may be challenged because of the use of non-selective tools. In general, most pharmacology studies have been performed with antagonists that showed a low selectivity for $\sigma_1 R$, as they also bind to $\sigma_2 R$ at the nanomolar range, among other receptors (Zamanillo *et al.*, 2013, Almansa and Vela, 2014). Thus, further studies using highly selective $\sigma_1 R$ antagonists such as E-52862 are required to validate previous observations as well as to investigate other unexplored pain models of different aetiology.

Thus, studies focusing on the clarification of these knowledge gaps and using adequate pharmacological tools will be important to validate $\sigma_1 R$ antagonism as a new strategy for pain management. Based on previous findings reported in the literature and in the context of ESTEVE's Sigma-1 receptor project seeking new approaches to pain management, we hypothesise that $\sigma_1 R$ triggers general mechanisms leading to a sensitization process in pathological pain conditions that could be counteracted when it is blocked. Therefore:

- 1) The use of selective $\sigma_1 R$ antagonists could attenuate, not only neuropathic pain, but also inflammatory and postoperative pain.
- 2) The genetic ablation of $\sigma_1 R$ may induce changes in both behavioural and molecular endpoints after peripheral injuries from inflammatory and/or postsurgery origin that will determine the involvement of $\sigma_1 R$ in the development of inflammatory and postoperative pain.

66

OBJECTIVES

The **global objective** of this Doctoral Thesis was to explore the therapeutic interest of selective $\sigma_1 R$ blockade for the treatment of pain of different aetiology: **neuropathic, inflammatory and postoperative.** The following specific objectives were established to meet this global objective:

1. To use three different **neuropathic pain models** in rats representative of clinical conditions with unmet needs regarding pharmacologic treatment: the chronic constriction injury of the infraorbital nerve as a translational model of trigeminal neuropathic pain; the streptozotocin-induced diabetes as a diabetic neuropathic pain model; and the oxaliplatin-induced neuropathy as an antitumoral-induced neuropathic pain model.

2. To evaluate the acute analgesic effects of the selective $\sigma_1 R$ antagonism E-52862 as compared to other marketed drugs measuring several endpoints (mechanical allodynia, mechanical hyperalgesia and thermal/cold allodynia) in these neuropathic pain models.

3. To compare the analgesic efficacy of $\sigma_1 R$ antagonism in acute and repeated treatment schedules in these models.

4. To set up the carrageenan-induced or complete Freund's adjuvant (CFA)induced hypersensitivity in mice as acute and chronic **inflammatory pain models**, respectively. 5. To study the involvement of $\sigma_1 R$ in the development of pain-related behaviours as well as in the spinal expression of several molecular pain markers in these models of inflammatory pain . $\sigma_1 R$ KO mice were used to meet this objective.

6. To evaluate the acute analgesic efficacy of $\sigma_1 R$ antagonism as compared to other marketed drugs (morphine, ibuprofen and celecoxib) measuring several endpoints (mechanical allodynia and thermal/heat hyperalgesia) in these inflammatory pain models. The $\sigma_1 R$ antagonist E-52862 was used to meet this objective.

7. To set up the plantar incision-induced hypersensitivity in mice as a model of **postoperative pain**.

8. To study the involvement of $\sigma_1 R$ in the development of pain-related behaviours as well as in the spinal expression of several molecular pain markers in this model of postoperative pain. $\sigma_1 R$ KO mice were used to meet this objective.

9. To evaluate the acute analgesic efficacy of $\sigma_1 R$ antagonism in comparison to other marketed drugs (morphine, ibuprofen and celecoxib) measuring several endpoints (mechanical allodynia and thermal/heat hyperalgesia) in this model. The $\sigma_1 R$ antagonist E-52862 was used to meet this objective.

METHODS

Materials and methods used in the present Doctoral Thesis are widely described in its respective published article or manuscript. Here, we present a summary to give a quick picture of the different experimental approaches (Table 1 and 2).

Table 1. Summary of methods for the behavioural studies

Experimental model	Animals	Pain-related behaviours	Method
Chronic constriction injury of the infraorbital nerve	Sprague-Dawley rats	Mechanical allodynia	von Frey test
Oxaliplatin-induced neuropathy	Sprague-Dawley lats	Cold allodynia	Acetone test
Streptozotocin-induced neuropathy	Wistar rats	Mechanical hyperalgesia	Randall-Selitto test
Carrageenan-induced acute inflammatory pain	CD-1 (WT and σ ₁ R KO) mice	Mechanical allodynia and thermal hyperalgesia	von Frey test and Plantar test
CFA-induced chronic inflammatory pain			
Plantar incision-induced postoperative pain			

Table 2. Summary of methods for the molecular studies

Experimental model	Animals	Pain-related molecular markers	Method
Carrageenan-induced acute inflammatory pain			
CFA-induced chronic inflammatory pain	CD-1 (WT and $\sigma_1 R$ KO) mice	pERK, c-Fos, GFAP, nNOS, SP and NPY	Western Blot and Immunohistochemistry
Plantar incision-induced postoperative pain			

1. Subjects

- Adult male Sprague-Dawley (chronic constriction of the infraorbital nerve and oxaliplatin experiments) and Wistar rats (streptozotocin experiments) were used for neuropathic pain studies.
- Adult male CD-1 WT mice were used throughout the inflammatory and postoperative pain studies.
- Adult male CD-1 $\sigma_1 R$ knockout mice were used throughout the inflammatory and postoperative pain studies. The homozygous KO mice (Langa *et al.*, 2003) were backcrossed for 10 generations onto the CD-1 background to reduce to less than 1% the genetic material remaining from the original background.

2. Drugs

- Selective $\sigma_1 R$ antagonist: E-52862 or S1RA (4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl] morpholine).
- **Opioid:** morphine hydrochloride (μ-opioid receptor agonist).
- **NSAIDs:** ibuprofen (non-selective COX-1 and COX-2 inhibitor) and celecoxib (selective COX-2 inhibitor).
- Gabapentinoids: gabapentin and pregabalin (ligands of the $\alpha_2\delta$ subunit of calcium channels).

3. Animal models of pain

• Chronic constriction injury of the infraorbital nerve (IoN)-induced trigeminal neuropathic pain: Rats were anesthetized and the IoN was exposed using a surgical procedure similar to that described previously (Gregg, 1973; Jacquin and Zeigler, 1983). The edge of the orbit was dissected free and two

chronic catgut ligatures (5-0, Ethicon; Johnson and Johnson, Brussels, Belgium) were loosely tied around the IoN (2 mm apart). The neuropathic pain was evidenced by mechanical allodynia (more details in Article 1).

- Streptozotocin (STZ)-induced diabetic neuropathic pain: Diabetes was induced in rats through chemical pancreatectomy by a single intraperitoneal (i.p.) injection of STZ (75 mg/kg body weight) dissolved in saline, whereas control rats received saline alone (Aubel *et al.*, 2004). The neuropathic pain was evidenced by mechanical hyperalgesia (more details in Article 1).
- Chemotherapy oxaliplatin (OX)-induced neuropathic pain: Peripheral neuropathy was induced by repeated i.p. injections of OX (3 mg/kg, i.p.) 3 times a week during 2 weeks (7 injections; cumulative dose = 21 mg/kg, i.p.) (Polomano *et al.*, 2001). The neuropathic pain was evidenced by cold allodynia (more details in Article 1).
- Carrageenan-induced acute inflammatory pain: Peripheral inflammation was induced by intraplantar (i.pl.) injection of 50 µl of 2.5% (w/v) carrageenan (λ-carrageenan, 1% in 0.2 M of KCl solution; Sigma-Aldrich) into the mid-plantar surface of the right hind (ipsilateral) paw of nonanaesthetized mice (adapting from the method firstly described by Winter *et al.*, 1962). Acute inflammatory pain was evidenced by mechanical allodynia and thermal hyperalgesia 3 hours after carrageenan injection (more details in Article 2).

- Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain: Mice were intraplantarly injected with a volume of 20 µl of CFA solution (1 mg/ml of heat-killed *Mycobacterium tuberculosis* in 85% paraffin oil and 15% mannide monoleate; Sigma-Aldrich) into the mid-plantar surface of the ipsilateral hind paw. Chronic inflammatory pain was evidenced by mechanical allodynia and thermal hyperalgesia 4 days after CFA injection (more details in Article 2).
- Plantar incision-induced postoperative pain: Postoperative pain model was adapted to the mouse according to the previously described plantar incision method in rat by Brennan *et al.* (1996). A longitudinal incision of 0.7 cm was made with a number 11 blade through the skin, fascia, and muscle of the right hind paw, starting 0.3 cm from the proximal edge of the heel and extending towards the toes. The underlying plantaris muscle was exposed and incised longitudinally, keeping the muscle origin and insertion intact. After hemostasis with slight pressure, the skin was closed with two simple sutures of braided silk (ref. 6/0, B. Braun). Postoperative pain was evidenced by mechanical allodynia and thermal hyperalgesia 4 hours after surgery (more details in Article 4).

In this Doctoral Thesis the behavioural experiments related to the chronic constriction injury of the infraorbital nerve (IoN)-induced trigeminal neuropathic pain and the oxaliplatin-induced chemotherapy neuropathic pain have been performed under the guidance of Esteve in the following Laboratories: Laboratory of Pain Research (University of Antwerp, Belgium) and Laboratoire de Neurobiologie de la Cognition (Centre National de la Recherche Scientifique, France), respectively.

- 4. Evaluation of pain-related behaviours
 - Evaluation of mechanical allodynia in the IoN-induced trigeminal neuropathic pain in rats (von Frey test): Responsiveness to mechanical stimulation of the territory of the IoN was measured using a series of five von Frey hairs (0.015 to 2.15 g). A mean score for the five von Frey hairs was determined. The scoring system described by Vos *et al.* (1994) was used to evaluate the reaction of the rats to the stimulation. The response of an animal was analysed according to different response categories: 0: no response, 1: detection, 2: withdrawal reaction, 3: escape/attack and 4: asymmetric face grooming. Lower scores indicate a weak responsiveness to mechanical stimulation, whilst higher scores indicate a strong responsiveness (more details in Article 1).
 - Evaluation of mechanical allodynia in inflammatory and postoperative pain models in mice (von Frey test): The animals were placed into compartment enclosures in a test chamber with a framed metal mesh floor through which von Frey monofilaments (bending force range from 0.04 to 2 g) were applied onto the plantar surface, and thresholds were measured using the up-down method paradigm (more details in Articles 2 and 4) (Fig. 1).

Fig. 1. von Frey test (North Coast Medical, Inc.) to evaluate hind paw withdrawal response in mice.

- Evaluation of thermal/cold allodynia (Acetone test): Cold allodynia was assessed using the acetone test. In this test, the intensity of the response was scored within 20 sec (cut-off) after acetone application: 0 (no response), 1 (quick withdrawal, flick of the paw), 2 (prolonged withdrawal or marked flicking of the paw), 3 (repeated flicking of the paw with licking or biting). The cumulative cold score is defined as the sum of the 6 scores for each rat together (more details in Article 1).
- Evaluation of mechanical hyperalgesia (Randall-Selitto test): Mechanical hyperalgesia was quantified using the Randall-Selitto test (Randall and Selitto, 1957) by means of a commercially available apparatus (Ugo Basile) (Fig. 2). This test allows determine pain threshold in response to increasing pressure applied on the dorsum of the animal's hind paw. The nociceptive threshold was defined as the pressure, in grams, at which the rat withdraws its paw. The cut-off was fixed at 270 g (more details in Article 1).

Fig. 2. Randall-Selitto test (Ugo Basile) to evaluate paw withdrawal in rats.

• Evaluation of thermal/heat hyperalgesia (Plantar test): Thermal (heat) hyperalgesia was assessed using the plantar test analgesia meter by determination of the hind paw withdrawal latency in response to a thermal stimulus (radiant heat) (Fig. 3). The plantar test was performed according to the Hargreaves method (Hargreaves *et al.*, 1988). The heat source, a mobile infrared photobeam, was positioned under the plantar surface of a hind paw, the nocifensive withdrawal reflex interrupts the light reflected from the photocell onto the paw and automatically turns off the light and the timer. The latency of the withdrawal response (as an indirect measure of the heat-pain threshold) was thus automatically recorded (more details in Articles 2 and 4).

Fig. 3. Plantar test (Ugo Basile or IITC Life Science Inc).

5. Molecular studies

• Western blotting:

The lumbar enlargement (L4-S1) of spinal cord was removed from WT and $\sigma_1 R$ KO mice and ipsilateral hemicord segments were dissected, homogenized by sonication in radioimmunoprecipitation assay (RIPA) buffer and the supernatant was used. Equal amounts of protein (30 µg) were fractionated by 10% (w/v) SDS–PAGE and transferred onto a polyvinylidene difluoride membrane, blocked with 5% non-fat

dry milk in Tris–Tween 20-buffered Saline (T–TBS) for 1 h. Membranes were then incubated in 1% non-fat dry milk in T–TBS overnight at 4 °C with rabbit primary polyclonal antibodies recognizing the mitogen-activated protein kinase (MAPK, total ERK 1/2) or mouse monoclonal antibodies recognizing the activated MAPK (diphosphorylated MAPK, pERK 1/2) at a 1:40,000 and a 1:1000 dilution, respectively. Mouse monoclonal anti-GAPDH antibody (1:80,000) or rabbit policlonal anti-GAPDH antibody (1:10,000) was used as a loading control. After washing with T–TBS, the blots were then incubated for 1 h with horseradish peroxidase–conjugated goat anti-rabbit IgG (1:4000) or goat anti-mouse IgG (1:2000). The immunoreactive bands were detected by a peroxidase reaction using an enhanced chemiluminescence method (WesternSure[®] PREMIUM Chemiluminescent Substrate, Li-cor) and C-DiGit[®] Blot Scanner (Li-cor).

• Immunohistochemistry:


The expression of proteins was estimated as c-Fos-, nNOS- and NPYimmunopositive neurons or immunoreactive area of GFAP and SP in the dorsal horn (laminae I + II) of the spinal cord. After perfusion, the lumbar region of the spinal cord was dissected out, postfixed for 4 h in 4% paraformaldehyde and cryopreserved in 30% sucrose solution at 4 °C for 48 h. The section from L4 to S1 of the spinal cord was selected and then embedded in frozen section medium and sliced in 40 μ m sections on a cryostat, and collected in phosphate-buffered saline (PBS) to be processed immunohistochemically as free-floating sections. Sections were pre-incubated with 0.3% H₂O₂ in PBS for 30 min to block endogenous peroxidase activity and, after washing with PBS, were incubated with normal goat pre-immune serum diluted 1.5:100 in PBS for 1 h at room temperature (RT) to prevent unspecific staining. Sections were then incubated for 48 h at 4 °C with the primary antibody: rabbit policonal anti-c-Fos (diluted 1:6000), rabbit policlonal anti-GFAP (diluted 1:4000), rabbit policlonal anti-nNOS (diluted 1:3000), rat monoclonal anti-SP (diluted 1:750) or rabbit policlonal anti-NPY (diluted 1:10000). After washing, sections were incubated with the appropriate secondary biotinylated antibodies diluted 1:200 for 1 h at RT. After washing, an avidin-biotin-peroxidase complex was applied diluted 1:100 for 1 h at RT. The sections were washed again in PBS and placed in a chromogen solution containing 0.05% 3,3'-diaminobenzidine and 0.01% H₂O₂ in PBS for 5 min. The immunostained sections were placed on slides and coverslipped with glycergel mounting medium for microscopic observation and photography.

• Polymerase chain reaction (PCR) assays in WT and σ1R KO mice:

In order to ensure the proper selection of the genetic background (WT or $\sigma_1 R$ KO), genotype was periodically studied at the end of the behavioural testing (Entrena *et al.*, 2009).

Genomic deoxyribonucleic acid (DNA) was obtained from tail tips using the DNeasy Blood & Tissue kit (QIAGEN) according to the manufacturer's instructions. Amplifications for PCR were performed with HotStarTaq Plus Master Mix Kit (QIAGEN, Madrid, Spain) and with 0.5 μM of each primer (Invitrogen Ltd, Paisley, UK). The PCR was done with a thermal controller using the following program. Initial template denaturation at 94 °C, followed by 35 cycles: 30 s at 94 °C, 45 s at 55 °C and 2 min at 70 °C; and, as a final extension step, 10 min at 70 °C. The oligonucleotide primer (5'– 3') sequences specific for the genes examined were as follows: 5'-AAT TTT GCT CCC CTC CTC-3' and 5'-CGT TCA CAA ATA CCC ACT G-3' for the wild-type allele; 5'-GGA CAC CAA GAT TGA ACC CAA CAG GGT GGC-3' and 5'-CGC

CAT TCA GGC TGC GCA ACT GTT GGG-3' for the mutant allele (Langa *et al.*, 2003). Amplified products were analysed by electrophoresis on 2% agarose gel containing ethidium bromide. The gels were then photographed with a UV transilluminator to visualize the ethidium bromide-stained bands (Fig. 4).

Fig. 4. Mice genotyping. (A) Map of the location of the primers inside the gene. Restriction enzyme sites for HindIII (H), EcoRI (E) and XhoI (X) are shown (for more details see Langa *et al.*, 2003). (B) Example of an electrophoresis of the PCR products. The lane 1 shows the molecular weight marker; lane 2, shows the absence of product amplification with primers for the WT allele; lane 3 shows a 529-bp product amplification with primers for the mutant allele; lane 4 shows a 1160-bp product amplification with primers for the absence of product amplification with allele; lane 5 shows the absence of product amplification with primers for the mutant allele (From Entrena *et al.*, 2009a).

RESULTS

LIST OF RESULTS

1. EFFECT OF $\sigma_1 R$ BLOCKADE ON NEUROPATHIC PAIN

1.1. <u>Article 1</u>: "*The selective sigma-1 receptor antagonist E-52862 attenuates* neuropathic pain of different aetiology in rats". Submitted to *Scientific Reports*.

2. EFFECT OF $\sigma_1 R$ BLOCKADE ON INFLAMMATORY PAIN

2.1. <u>Article 2</u>: "SIRA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in carrageenan and complete Freund's adjuvant models in mice". Behavioural Pharmacology 2014;25:226-235.

2.2. <u>Article 3</u>: "Sigma-1 receptor and inflammatory pain". Inflammation Research 2015;64:377-281.

2.3. <u>Annex 1</u>: "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in inflammatory models".

3. EFFECT OF $\sigma_1 R$ BLOCKADE ON POSTOPERATIVE PAIN

3.1. <u>Article 4</u>: "Role of the sigma-1 receptor in the expression and development of postoperative pain". Manuscript to be submitted.

3.2. <u>Annex 2</u>: "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in postoperative model".

1. EFFECT OF $\sigma_1 R$ BLOCKADE ON NEUROPATHIC PAIN

1.1. <u>Article 1</u>: "The selective sigma-1 receptor antagonist E-52862 attenuates

neuropathic pain of different aetiology in rats". (Submitted to Scientific Reports)

Georgia Gris^a, Enrique Portillo-Salido^a, Bertrand Aubel^a, Yassine Darbaky^b, Kristoff Deseure^c, José Miguel Vela^a, Manuel Merlos^a, Daniel Zamanillo^a.

^aDepartment of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE Barcelona, Spain.

^bANS Biotech. Facultés de Medicine et Pharmacies.

^cLaboratory of Anesthesiology, University of Antwerp, Universiteltsplein 1, B-2610 Antwerp, Belgium.

Summary of the Article 1:

"The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats".

Background

The sigma-1 receptor ($\sigma_1 R$) is a unique target class with chaperoning functions over different molecular targets involved in the transmission and amplification of nociceptive messages (Almansa and Vela, 2014); it is located in areas of the central and peripheral nervous system that are important for pain control, such as the spinal cord dorsal horn, periaqueductal gray matter, and dorsal root ganglia. Although previous reports have shown that $\sigma_1 R$ ligands did not affect acute pain perception, the role of $\sigma_1 R$ in modulating pain behaviour under sensitizing conditions has been widely demonstrated. The pharmacological and genetic blockade of $\sigma_1 R$ has shown to prevent the development of pain-related behaviours in some preclinical models of neuropathic pain. A repeated (preventive) treatment with $\sigma_1 R$ antagonists (E-52862 — S1RA— and BD-1063) on the development of sciatic nerve-injury or chemotherapy (paclitaxel)induced neuropathic pain in mice supressed mechanical and thermal (heat or cold) hypersensitivity (Romero et al., 2012; Nieto et al., 2012). Moreover, cold and mechanical allodynia failed to develop or were strongly attenuated in $\sigma_1 R$ KO mice in these experimental pain models (De la Puente et al., 2009; Nieto et al., 2012). Acute administration of $\sigma_1 R$ antagonists also reversed pain-related behaviours after these had fully developed in different pain models, such as the capsaicin-induced headache model (Kwon et al., 2009) or the orofacial-formalin model (Roh and Yoon, 2014).

Because neuropathic pain represents a critical unmet medical need that requires long-term pharmacological treatments in clinical practice, it is necessary to use neuropathic pain models with better predictability in human pain diseases.

Objectives

The objective of this study was to investigate the effect of single and repeat administration of E-52862 on the expression (treatment effect once pain has developed) of different pain-related behaviours of neuropathic models in rats with an elevated translational validity for different clinical conditions: trigeminal neuropathic pain following chronic constriction injury (CCI) of the infraorbital nerve (IoN), streptozotocin (STZ)-induced diabetic neuropathy, and cold allodynia in oxaliplatin (OX)-induced painful neuropathy. Finally, given the potential benefit of coadministering patients with antineoplastic drugs and drugs counteracting antineoplastic undesired effects, the possible preventive effect of E-52862 on the development of OX-induced neuropathic pain was also investigated.

Results

Firstly, the development of mechanical allodynia following CCI of the IoN from day 15 to 25 post-surgery was observed. E-52862 induced a dose-dependent attenuation of mechanical allodynia when it was acutely administered by intraperitoneal route on day 25. Moreover, a higher antiallodynic effect was obtained with repeated administration of E-52862.

Secondly, streptozotocin (STZ)-induced diabetic neuropathy was investigated 21 days after intraperitoneal injection of STZ. Diabetic rats exhibited statistically significantly reduced paw withdrawal thresholds in response to a noxious pressure

stimulus (mechanical hyperalgesia) that lasted at least until day 28. As in the trigeminal model, E-52862 was able to attenuate mechanical hyperalgesia when it was given either acutely (at day 21) or after repeated administration over 7 days (until day 28). Interestingly, repeat E-52862 administrations have a cumulative analgesic effect in diabetic rats.

Finally, in the chemotherapy OX-induced neuropathy model, repeated OX administration induced robust cold allodynia, as evidenced by paw withdrawal after acetone application on days 8, 15 and 16. As expected, E-52862 reversed nociceptive hypersensitivity in a dose-response manner in both acute and repeat administration. Interestingly, E-52862 is able to maintain its analgesic effect 24h after the completion of repeated administration. Moreover, preventive treatment with E-52862 (40mg/kg) inhibits the development of cold hypersensitivity.

Conclusions

Selective pharmacological $\sigma_1 R$ blockade with E-52862 was active in reducing mechanical and thermal hypersensitivity when administered both acutely and repeatedly in trigeminal neuralgia, chemotherapy-induced neuropathic pain, and diabetic painful polyneuropathy. Repeated daily administration of E-52862 caused an increased antinociceptive effect in baseline pain behaviours, thus supporting a sustained inhibitory effect on underlying pain-generating mechanisms. Hence, E-52862 could represent an alternative treatment for alleviating neuropathic pain of different aetiology.

90

<u>Article 1</u>: "The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats".

ABSTRACT

E-52862 is a selective $\sigma_1 R$ antagonist currently undergoing phase II clinical trials for neuropathic pain and represents a potential first-in-class analgesic. Here, we investigated the effect of single and repeated administration of E-52862 on different pain-related behaviours in several neuropathic pain models in rats: mechanical allodynia in cephalic (trigeminal) neuropathic pain following chronic constriction injury of the infraorbital nerve (IoN), mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic polyneuropathy, and allodynia in oxaliplatin (OX)-induced cold polyneuropathy. Mechanical hypersensitivity induced after IoN surgery or STZ administration was reduced by acute treatment with E-52862 and morphine, but not by pregabalin. In the OX model, single administration of E-52862 reversed the hypersensitivity to cold stimuli similarly to 100 mg/kg of gabapentin. Interestingly, repeated E-52862 administration twice daily over 7 days did not induce pharmacodynamic tolerance but an increased antinociceptive effect in all three models. Additionally, as shown in the STZ and OX models, repeated daily treatment with E-52862 attenuated baseline pain behaviours, which supports a sustained modifying effect on underlying pain-generating mechanisms. These preclinical findings support a role for $\sigma_1 R$ in neuropathic pain and extend the potential for the use of selective $\sigma_1 R$ antagonists (e.g., E-52862) to the chronic treatment of cephalic and extra-cephalic neuropathic pain.

Keywords

Allodynia, E-52862, hyperalgesia, hypersensitivity, neuropathic pain, sigma-1 receptor.

1. Introduction

Neuropathic pain is characterized by spontaneous ongoing or shooting pain and evoked amplified pain responses after noxious or non-noxious stimuli¹. The current therapy for neuropathic pain is not satisfactory and thus new drugs acting on new molecular targets are being investigated²⁻⁴. Several therapeutic approaches targeting different modulatory proteins have emerged. Among them, the sigma-1 receptor ($\sigma_1 R$) has been described to play a role in pain control⁵. $\sigma_1 R$ is an intracellular chaperone protein that interacts with other proteins, including plasma membrane and endoplasmic reticulum receptors and ion channels. In the context of pain, $\sigma_1 R$ modulates central sensitisation phenomena^{6,7}, which are responsible for many of the temporal, spatial, and threshold changes in pain sensitivity in acute and chronic pain⁸. Accordingly, pharmacological treatment with $\sigma_1 R$ antagonists in wild-type (WT) mice exerted antinociceptive effects and $\sigma_1 R$ knockout (KO) mice showed a pain-reduced phenotype in different experimental pain models^{7,9-17}.

The *in vitro* and *in vivo* pharmacological profile of the $\sigma_1 R$ antagonist E-52862 (S1RA) has been described⁷. E-52862 shows high $\sigma_1 R$ affinity and selectivity. It binds to $\sigma_1 R$ in the CNS when administered systemically, as shown by autoradiographic ex *vivo* binding assays in mice, and its efficacy correlates with the occupancy of $\sigma_1 Rs$. It shows a good preclinical safety and efficacy profile in mice⁷. Specifically, formalininduced nociception⁷, capsaicin-induced mechanical allodynia⁷, paclitaxel-induced cold and mechanical allodynia¹⁷, nerve injury-induced mechanical and thermal hypersensitivity⁷ and inflammation-induced mechanical and thermal hypersensitivity^{15,16} were dose-dependently inhibited by acute systemic administration of E-52862.

E-52862 has completed single- and multiple-dose phase I clinical studies demonstrating good safety, tolerability and pharmacokinetic profiles in humans¹⁸, and is currently in phase II clinical trials for the treatment of neuropathic pain. In the present study, we tested the efficacy of E-52862 in three rat models of neuropathic pain of different aetiologies: trigeminal neuropathic pain following chronic constriction injury to the infraorbital nerve (IoN)¹⁹, streptozotocin (STZ)-induced diabetic neuropathy²⁰, and oxaliplatin (OX)-induced painful neuropathy²¹. These neuropathic pain models simulate clinical pain conditions with diverse aetiologies²², such as trigeminal neuralgia²³, diabetic painful polyneuropathy²⁴, and chemotherapy-induced neuropathic pain²⁵. As neuropathic pain is a persistent (chronic) type of pain which, in clinical practice, frequently requires long-term pharmacological treatments, E-52862 was repeatedly administered to neuropathic rats for several days, and its analgesic effects were compared with acute effects. In addition, the effects of some marketed analgesic drugs in these three models of neuropathic pain were investigated.

2. Methods

2.1. Animals

Adult male Sprague-Dawley rats (IoN and OX experiments) and Wistar rats (STZ experiments) weighing between 150-250 g at the beginning of the experimental phase were used. Animals were provided with food and water *ad libitum* and kept in controlled laboratory conditions with the temperature maintained at 21 ± 1 °C and 12-hour light cycles (reversed dark/light cycle in IoN experiments, lights on at 20 h). Experiments were carried out in a soundproof and air-regulated experimental room. All experimental procedures and animal husbandry were conducted according to the ethical principles of the I.A.S.P. for the evaluation of pain in conscious animals²⁶ and the European Parliament and the Council Directive of 22 September 2010 (2010/63/ EU), and were approved by the local Ethics Committee.

2.2. Drugs

Oxaliplatin (OX) was provided by Shan Dong Boyuan Chemical Co, dissolved in distilled water and administered by intraperitoneal (i.p.) route. Streptozotocin (STZ) and acetone were provided by Sigma Aldrich. STZ was dissolved in 0.9% saline solution and administered by i.p. route. All analgesic drugs, except gabapentin, were administered i.p. Gabapentin was provided by Zhejiang Chiral Medicine Chemicals (China) and was administered at 100 mg/kg by oral (p.o.) route. E-52862 was synthesized by Laboratories Esteve (Spain), pregabalin by Mercachem (The Netherlands), and morphine was provided by the General Directorate of Pharmacy and Drugs (Spanish Ministry of Health; Madrid, Spain). Drugs were dissolved in saline, 0.5% hydroxypropyl methylcellulose (HPMC; Sigma Aldrich) or carboxymethylcellulose (CMC; Sigma Aldrich) as indicated. All drugs were administered at a volume of 10 ml/kg except in the IoN experiments —volume used 5 ml/kg.

2.3. Experimental models

2.3.1. Chronic constriction of the infraorbital nerve (IoN)-induced trigeminal neuropathy

Surgical procedure

The infraorbital part of the nerve was exposed and ligated as described by Vos et al.¹⁹. Briefly, rats were anesthetized with pentobarbital (Nembutal, 60 mg/ml) at 60 mg/kg, i.p. followed by a fixed dose of 0.1 ml atropine. The head of the rat was fixed in a stereotaxic frame and a mid-line scalp incision was made, exposing skull and nasal bone. The IoN was exposed using a surgical procedure similar to that described previously^{27,28}. The edge of the orbit, formed by the maxillary, frontal, lacrimal, and zygomatic bones, was dissected free. The orbital contents were gently deflected with a cotton-tipped wooden rod, thus the IoN was dissected free at its most rostral extent in the orbital cavity. Two chronic catgut ligatures (5-0, Ethicon; Johnson and Johnson, Belgium) were loosely tied around the IoN (2 mm apart). To obtain the desired degree of constriction, a criterion proposed by Bennet and Xie²⁹ was applied: the ligatures reduced the diameter of the nerve by a just noticeable amount and slowed but did not interrupt the circulation through the superficial vasculature. The scalp incision was closed using polyester sutures (4-0, Ethicon; Johnson and Johnson). In sham-operated rats, the IoN was exposed on one side using the same procedure, but the exposed IoN was not ligated.

Evaluation of mechanical allodynia

The responsiveness to mechanical stimulation of the IoN territory was measured using a series of five von Frey hairs (Stoelting Co): 0.015 g, 0.127 g, 0.217 g, 0.745 g and 2.150 g. Following a 10-min habituation, the different von Frey hairs were applied at every designated time to the ipsilateral side of the IoN territory. A mean score for the filaments was determined. Baseline data were obtained one day before surgery and on postoperative days 5, 15 and 25 (Fig. 1A). The scoring system described by Vos *et al.* (1994) was used to evaluate the reaction of the rats to the stimulation. The response of an animal was analyzed according to different response categories: 0: no response, 1: detection, 2: withdrawal reaction, 3: escape/attack and 4: asymmetric face grooming. Lower scores indicated a weak responsiveness to mechanical stimulation, whilst higher scores indicated a strong responsiveness. Rats were injected i.p. twice daily (b.i.d.) with compounds dissolved in 0.5% CMC. Behavioural testing was performed 30 min following injection.

2.3.2. Streptozotocin-induced diabetic neuropathy

Development of diabetes

Diabetes was induced in rats through chemical pancreatectomy by a single i.p. injection of STZ (75 mg/kg body weight) dissolved in saline, whereas control rats received saline alone³⁰. Blood glucose levels were assessed before behavioural testing. Blood was extracted from the tail vein four days after STZ administration to calculate blood sugar levels by means of glucometer (Cholestech LDX). Upon diabetes induction (blood sugar levels above 240 mg/dl), food and water consumption, urinary volume and glucose levels increased in diabetic *versus* normal animals.

Evaluation of mechanical hyperalgesia

Mechanical hyperalgesia threshold was quantified using the Randall-Selitto test³¹ by means of a commercially available apparatus (Ugo Basile, Italy). The response to increasing pressure applied on the dorsum of the animal's hind paw was measured. The nociceptive threshold was defined as the pressure, in grams, at which the rat withdraws its paw.

The mechanical sensitivity of naïve rats was first tested before STZ treatments and again three weeks after STZ administration in both left and right hind paws in order to select those animals showing a nociceptive mechanical threshold lower than 270 g. Pharmacological treatments were initiated 21 days after STZ injection, immediately after baseline determination, with vehicle (0.5% HPMC), morphine (10 and 20 mg/kg), pregabalin (80 mg/kg) and E-52862 (40 and 80 mg/kg) by i.p. route (Fig. 2A). Mechanical hyperalgesia was assessed 1 hour and 15 min after reference compounds and E-52862 administration, respectively. To determine the effects of repeated dosing on the hypersensitivity developed by STZ-treated rats, separate groups of STZ-treated rats were dosed b.i.d. for 7 consecutive days (from day 21 to 27) with 40 mg/kg of E-52862 (cumulative dose per day 80 mg/kg) or its solvent (0.5% HPMC). Mechanical sensitivity following repeated 7-day administration was assayed on day 28 before (predose effect; washout period of approximately 16 hours after the last administration on day 27) and after additional dosing on day 28 (post-dose effect).

2.3.3. Chemotherapy-induced neuropathy after oxaliplatin (OX) treatment

Acquisition of neuropathy

Peripheral neuropathy was induced by repetitive i.p. injections of OX (3 mg/kg, i.p.) 3 times a week for 2 weeks (7 injections; cumulative dose = 21 mg/kg, i.p.)³².

Distilled water injections were used to reproduce the non-neuropathic condition in a control (baseline) group (Fig. 3A).

Evaluation of cold allodynia

Cold allodynia was assessed using the acetone test. In this test, the intensity of hind paw withdrawal was measured upon application of a drop of acetone to the plantar surface of both hind paws by using a score. Responses to acetone were graded to the following 4-point scale: 0 (no response), 1 (quick withdrawal, flick of the paw), 2 (prolonged withdrawal or marked flicking of the paw), 3 (repetitive flicking of the paw with licking or biting). The cumulative cold score is defined as the sum of the 6 scores for each rat, the minimum score being 0 (no response to any of the 6 trials) and the maximum score being 18 (repetitive flicking and licking or biting of paws on each of the six trials). Cold allodynia was assessed by measuring the responses to acetone on days 8, 15 and 16.

In order to assess the treatment effect of E-52862 on the expression of OXinduced neuropathic pain ("curative" protocol once pain has developed) (Fig. 3A), the compound was administered i.p. (20, 40 and 80 mg/kg) in a repeated dosing paradigm from day 8 until day 15, and its effect on cold allodynia was assessed on day 8 (first day of administration), day 15 (last day of administration) and after treatment completion on day 16. On testing days 8 and 15, E-52862 and vehicle (0.5% HPMC) were administered 30 min before the test. Gabapentin (100 mg/kg, p.o.) was used as a positive reference compound. Animals from the gabapentin-treated group were dosed 120 min before testing on days 8, 15 and 16.

In order to assess a possible preventive effect of E-52862 on the development of OX-induced neuropathic pain (Fig. 4A), E-52862 was co-administered with OX. For this purpose, E-52862 was administered repeatedly b.i.d. at 40 mg/kg i.p., starting 2

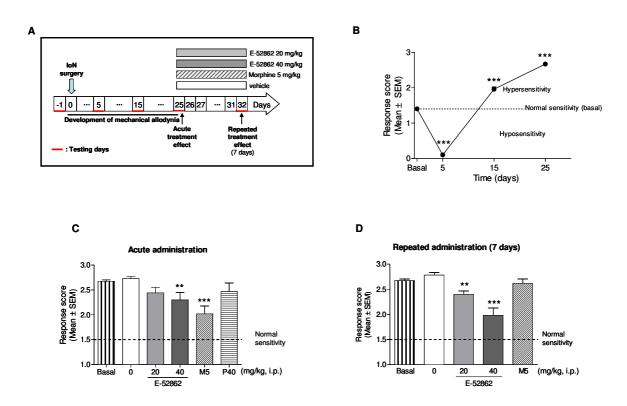
days before the first injection of OX (3 mg/kg; i.p.) and throughout the OX treatment period (last OX injection on day 15). On the day of OX treatment, animals were dosed with the compound E-52862 30 min before OX injection. The acetone test was performed on days 8, 15 and 16 (24 h after the last administration).

2.4. Statistical analysis.

All data are presented as mean \pm SEM. When several means were compared, all values were subjected to one-way analysis of variance (ANOVA) followed by post hoc Newman-Keuls test. To evaluate the development of diabetes, the comparison between baseline and post-STZ (day 4) glucose values was analyzed using the Student's t-test. GraphPad Prism software (version 5.0; GraphPad Software Inc., La Jolla, CA, USA) was used. In all cases, the criterion for statistical significance was established at a *p* value less than 0.05.

3. Results

3.1. Development of mechanical allodynia in the neuropathic pain model of constriction injury of the infraorbital nerve (IoN)


Baseline values were obtained one day before surgery, setting the normal response to von Frey filaments (Fig. 1A). Chronic constriction of the IoN induced significant changes in response to mechanical stimulation of the territory innervated by the ligated ipsilateral IoN (Fig. 1B). Initially, 5 days after surgery, the response score dropped significantly, indicating hyposensitivity, but this was followed by a robust hypersensitivity to von Frey filament stimulation on days 15 and 25 after IoN surgery, and hypersensitivity was maintained at least for 32 days after IoN constriction ($F_{3,212} = 585.6$, p < 0.001, ANOVA; p < 0.001 for days 5, 15 and 25 vs. baseline).

3.2. Effect of acute administration of E-52862, morphine and pregabalin on mechanical allodynia developed after chronic constriction injury of the IoN

Drugs were administered when mechanical allodynia fully developed, on day 25 post-surgery. Single i.p. administration of E-52862 significantly inhibited mechanical allodynia at 40 mg/kg, but not at 20 mg/kg. Similarly, morphine (5 mg/kg) exerted an antiallodynic effect ($F_{5,124}$ = 8.5, *p* < 0.001, ANOVA; *p* < 0.01 for E-52862 40 mg/kg *vs*. vehicle; *p* < 0.001 for morphine 5 mg/kg *vs*. vehicle) but pregabalin (40 mg/kg) was ineffective (Fig. 1C).

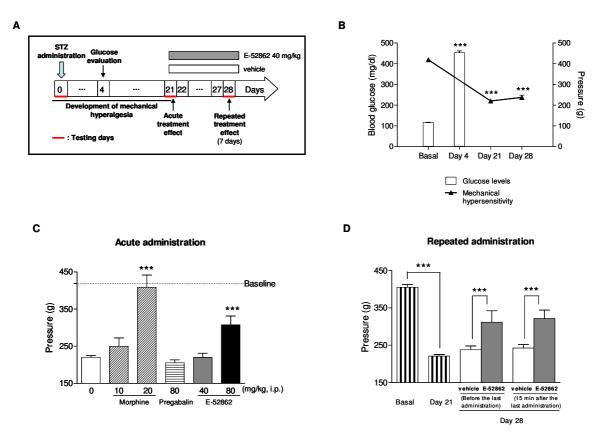
3.3. Effect of repeated administration of E-52862 and morphine on mechanical allodynia developed after chronic constriction injury of the IoN

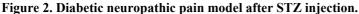
To evaluate the effect of repeated administrations, E-52862 and morphine were administered b.i.d. for 7 days (from day 25 to day 32 post-surgery) (Fig. 1A). After 7 days of administration, E-52862 exerted antinociceptive effect (antiallodynic; reduction of the response score) at both 20 and 40 mg/kg. In contrast, morphine (5 mg/kg) was devoid of antinociceptive effects when assayed after repeated administration for 7 days ($F_{3,49} = 17.4$, p < 0.001, ANOVA; p < 0.001 and p < 0.01 for E-52862 40 and 20 mg/kg, respectively, *vs.* vehicle).

A) Experimental protocol. The acute treatment effects of the drugs were evaluated on day 25 after IoN surgery. The repetitive administrations of the drugs were evaluated on day 32 after 7 days of repeated daily administration. B) Time-related course of mechanical allodynia after IoN ligation. Evaluation was performed one day before surgery (baseline) and on postoperative days 5, 15 and 25 (black circles). C) Effect of a single i.p. administration of E-52862 (10, 20 and 40 mg/kg, i.p.; grey bars), morphine (5 mg/kg; diagonal dashed bars) and pregabalin (40 mg/kg; horizontal dashed bars) on mechanical allodynia. D) Effect of repeated i.p. administration of E-52862 (20 and 40 mg/kg; grey bars) and morphine (5 mg/kg; diagonal dashed bars) on mechanical allodynia. Each point and vertical line represent the mean \pm S.E.M. of the values obtained in at least 10 rats per treatment and baseline groups. *** p < 0.001 vs. presurgery in B. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. vehicle group in C and D (one-way ANOVA followed by Newman–Keuls test).

3.4. Development of mechanical hyperalgesia in the STZ-induced neuropathic pain model

Rats showed increased glucose levels 4 days after STZ injection (453.3 \pm 9.0 mg/dl vs. 115.7 \pm 1.8 mg/dl, p < 0.001; Fig. 2B) and exhibited a robust reduction of paw withdrawal thresholds in response to noxious pressure stimulation (mechanical hyperalgesia) by 3-4 weeks after the injection of STZ (from 418.9 \pm 5.4 to 220 \pm 5.6 grams, F_{2,162} = 354.4, p < 0.001, ANOVA; p < 0.001 for days 21 and 28 post-STZ vs. baseline) (Fig. 2B).


3.5. Effect of acute administration of E-52862, morphine and pregabalin on mechanical hyperalgesia in the STZ-induced neuropathic pain model


Systemic acute administration of 80 mg/kg —but not 40 mg/kg— of E-52862 significantly decreased mechanical hypersensitivity in STZ-treated rats by 44% ($F_{6,122}$ = 20.9, p < 0.001, ANOVA; p < 0.001 for E-52862 80 mg/kg vs. vehicle; Fig. 2C). Morphine at 20 mg/kg reversed mechanical hypersensitivity in diabetic rats. In contrast, morphine at 10 mg/kg and pregabalin at 80 mg/kg failed to show any significant effect (Fig. 2C).

3.6. Effect of repeated administration of E-52862 on mechanical hyperalgesia developed in the STZ-induced neuropathic pain model

The effect of repeated dosing b.i.d. for 7 consecutive days (from day 21 to day 27 after STZ injection) with 40 mg/kg of E-52862 (cumulative dose per day 80 mg/kg) on mechanical hypersensitivity developed in STZ-treated rats was evaluated (Fig. 2D). As expected, STZ administration induced hyperalgesia to mechanical stimulation of hind paws ($F_{7,112}$ = 37.4, *p* < 0.001, ANOVA; *p* < 0.001 for baseline *vs.* day 21). On day

28, the day after completion of the 7-day treatment period (16 hours after the last E-52862 administration) and before treatment (pre-dose), mechanical hypersensitivity was decreased in STZ-treated rats that received E-52862 (from 237.8 ± 10.5 g in HPMCtreated rats to 311.7 ± 30.8 g in E-52862-treated rats). The administration of one additional dose of 40 mg/kg of E-52862 on day 28 (post-dose) failed to significantly change the mechanical threshold respect to the pre-dose value (hyperalgesia was reduced as compared to 7-day vehicle-treated rats and similar to pre-dose, but additional dosing was unable to further reduce hyperalgesia) ($F_{7,112}$ = 37.4, *p* < 0.001, ANOVA; *p* < 0.001 for E-52862 40 mg/kg *vs.* HPMC at both pre- and post-dose assessments on day 28).

A) Experimental protocol. The acute treatment effects of the drugs were evaluated on day 21 after the STZ injection. The repeated administrations of the drugs were evaluated on day 28 after 7 days of daily administration. B) Time-related course of mechanical hyperalgesia after IoN ligation (black triangles) and blood glucose levels (white bars) evaluated 4 days post-STZ injection. C) Effects of a single i.p. administration of E-52862 (40 and 80 mg/kg; grey and black bars), morphine (10 and 20 mg/kg; diagonal dashed bars) and pregabalin (80 mg/kg; horizontal dashed bars) on mechanical hyperalgesia. D) Effect of repeated i.p. administration of E-52862 (40 mg/kg; grey bars) on mechanical hyperalgesia. Rats were evaluated before and 15 min after the last administration. Each point and vertical line represents the mean \pm S.E.M. of the values obtained from at least 8 animals per treatment group. Difference between pre- and post-STZ in glucose levels and mechanical hyperalgesia: *** p < 0.001 (Student's t-test for glucose values and one-way ANOVA followed by Newman–Keuls test for hyperalgesia development of); *** p < 0.001 vs. vehicle group (HPMC 0.5%) (one-way ANOVA followed by Newman–Keuls test for hyperalgesia test).

3.7. Development of cold allodynia in the OX-induced neuropathic pain model

OX administration (Fig. 3A) induced cold allodynia, i.e., increased cumulative cold score in the acetone test respect to HPMC (vehicle)-treated animals on days 8, 15 and 16 ($F_{3,36}$ = 10.1, *p* < 0.001 for the cumulative cold score; Fig. 3B).

3.8. Effect of acute administration of E-52862 and gabapentin on cold allodynia in the OX-induced neuropathic pain model

Neuropathy-related cold allodynia was already statistically significant as compared to the non-neuropathic group on day 8 after initiating OX administration (1.1 \pm 0.4 vs. 5 \pm 0.8, respectively; p < 0.01 and p < 0.001; Fig. 3B). In the acute treatment experiments (day 8), E-52862 exerted a dose-dependent antiallodynic effect on the cumulative cold score (Fig. 3C). The lowest tested dose (20 mg/kg) did not significantly reduce cold allodynia but E-52862 exerted a significant antinociceptive effect when administered at 40 mg/kg (F_{5,54} = 10.2, p < 0.001, ANOVA; p < 0.05 for E-52862 40 mg/kg vs. vehicle) and reversed cold allodynia back to normal baseline values at 80 mg/kg. As a clinically validated analgesic drug, the acute effect of gabapentin was also evaluated. Gabapentin orally administered at 100 mg/kg on day 8 reversed OX-induced cold allodynia as evidenced by a significantly decreased cumulative score in the acetone test.

3.9. Effect of repeated administration of E-52862 on the expression of cold allodynia in the OX-induced neuropathic pain model

To evaluate the effect of repeated administration, E-52862 was dosed from day 8 to 15 (Fig. 3A). On day 15 (last day of administration), cold allodynia was significantly inhibited by E-52862 at all three doses (20, 40 and 80 mg/kg) and in a dose-dependent

manner ($F_{4,45} = 8.5$, p < 0.001, ANOVA; p < 0.001, p < 0.01 and p < 0.05 for E-52862 at 80, 40 and 20 mg/kg, respectively, *vs.* vehicle; Fig. 3D). Interestingly, reduced cold allodynia was still noticeable after treatment completion on day 16, 24 h after last administration ($F_{4,45} = 8.0$, p < 0.001, ANOVA; p < 0.01 for E-52862 at 40 and 80 mg/kg *vs.* vehicle; Fig. 3D).

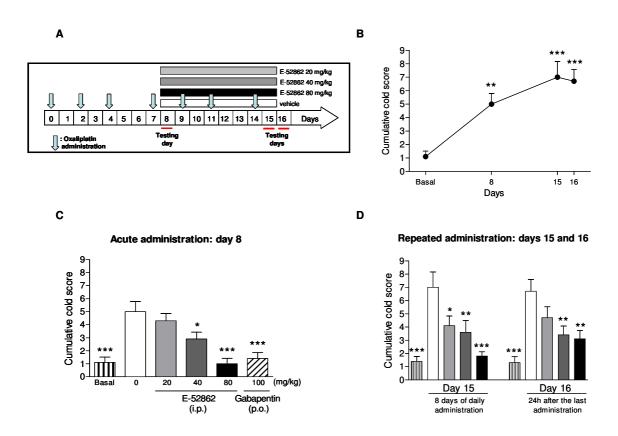
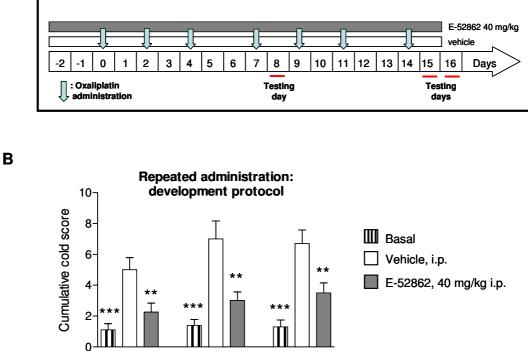


Figure 3. Chemotherapy-induced neuropathic pain after OX treatment.


A) Experimental protocol. The acute treatment effects of the drugs were evaluated on day 8 after four OX administrations. The repeated administration of drugs was evaluated on day 15 after 7 days of daily administration. The cumulative cold scores in response to acetone were evaluated on days 8, 15 and 16 after the baseline reading (testing days). B) Time-related course of cold allodynia after OX treatment evaluated as cumulative cold score. C) Effects of a single i.p. administration of E-52862 (grey and black bars) and gabapentin (diagonal dashed bars) at 40 and 100 mg/kg, respectively, on cold allodynia. D) Dose-response effects of repeated administration of E-52862 (20, 40 and 80 mg/kg) and response to cold stimulus one day after the last administration (day 16). Each point and vertical line represents the mean \pm S.E.M. of the values obtained from 10 animals per group. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. each vehicle group and # p < 0.05 vs. baseline (one-way ANOVA followed by Newman–Keuls test).

3.10. Effect of repeated administration of E-52862 on the development of cold allodynia in the OX-induced neuropathic pain model (preventive protocol)

Unlike other neuropathic pain conditions, chemotherapy administration to cancer patients is a planned/scheduled procedure and thus neuropathic pain can be awaited (and anticipated) in a short term frame following administration of the cytostatic. Thus, it makes sense in this case to investigate preventive approaches that could attenuate this undesired effect of antineoplastics.

Therefore, given the potential benefit of co-administering patients with antineoplastic drugs and drugs counteracting antineoplastic's undesired effects, the possible preventive effect of E-52862 on the development of OX-induced neuropathic pain (i.e., cold allodynia) was also investigated. For this purpose, E-52862 was administered i.p. b.i.d at 40 mg/kg starting 2 days before the first injection of OX and throughout the OX treatment period (last OX injection on day 15) (Fig. 4A). On day 8, rats co-treated with OX and E-52862 b.i.d. at 40 mg/kg exhibited significantly lower cumulative cold scores as compared to the OX + vehicle group (p < 0.01 for comparisons between E-52862 40 mg/kg vs. vehicle; Fig. 4B). One week later, on day 15, the antiallodynic effect of the treatment was maintained ($F_{2,25} = 13.5$, p < 0.001, ANOVA; p < 0.05 E-52862 40 mg/kg vs. vehicle). Interestingly, 24 hours after E-52862 treatment completion (day 16) animals showed reduced cold allodynia ($F_{2,25}$ = 16.4, p < 0.001, ANOVA; p < 0.01 E-52862 40 mg/kg vs. vehicle) compared to the vehicle-treated OX-treated group $(3.5 \pm 0.7 \text{ vs. } 6.7 \pm 0.9)$, although cumulative pain scores were higher than baseline values in non-neuropathic animals that did not receive OX ($F_{2,25} = 16.4$, p < 0.001, ANOVA; p < 0.05 for comparisons between E-52862 40 mg/kg vs. baseline).

A

Figure 4. Effect of repeated administration of E-52862 on cold allodynia in a preventive paradigm in OX-induced neuropathy in rats.

Day 16

Day 15

Day 8

A) Experimental preventive protocol. In this case, the administration of E-52862 started two days before the first OX injection. The preventive effect was evaluated on days 8, 15 and 16 after the first injection of OX (testing days). The evaluation on day 16 was performed one day after the last administration of E-52862. B) Effects of the repeated administration of E-52862 at 40 mg/kg (grey bars) in the preventive protocol on cold allodynia evaluated as cumulative cold score. Each point and vertical line represents the mean \pm S.E.M. of the values obtained from 10 animals per group. * p < 0.05; ** p < 0.01; *** p < 0.001 *vs.* vehicle group (one-way ANOVA followed by Newman–Keuls test).

4. Discussion

A rather compelling role of $\sigma_1 R$ in pain has been proposed from preclinical studies in models of different types of pain, but most studies have used mice as experimental subjects, peripheral nerve surgery as experimental model and acute treatment approaches. In the present study, these findings were broadened by using rats in three different models of neuropathic pain with translational value to measure disease-related pain processes of diverse aetiology and huge unmet need for treatment. In this sense, trigeminal neuralgia²³, diabetic painful polyneuropathy²⁴, and chemotherapy-induced neuropathic pain²⁵ are important clinical pain conditions often refractory to current pharmacotherapies. Not only single (acute) but also repeated (subchronic/chronic) treatment with E-52862⁷, a selective $\sigma_1 R$ antagonist, was investigated to find out if sustained pharmacological blockade of $\sigma_1 R$ induces tolerance and if repeated administrations could interfere with the expression of neuropathic pain. Different evoked mechanical and thermal readouts were measured to monitor pain development and the antinociceptive effect of drug treatments. The main findings were that E-52862 exerted antinociceptive effects across the different models of neuropathic pain in rats and that its effects were not only maintained but increased following repeated administration. The present data extend recent evidence that $\sigma_1 R$ antagonism constitutes a new mechanism of analgesia the spectrum of which may also encompass chronic treatment of both cephalic (trigeminal) and extra-cephalic neuropathic pain.

Most neuropathic pain models are actually models of extra-cephalic neuropathic pain as they rely on the injury of spinal nerves with primary relay involving neurons at the dorsal root ganglia and the dorsal horn of the spinal cord. As opposed to the extracephalic one, cephalic neuropathic pain affects cranial nerve territories and involves primary synaptic relay by neurons at cephalic ganglia and brainstem nuclei. Not only the anatomy but also the pathophysiology and the response to analgesics differ when comparing extra-cephalic and cephalic neuropathic pain, both preclinically and clinically³³⁻³⁷. The rat model of chronic constriction injury of the fifth cranial nerve (infraorbital nerve; IoN) has been reported to be a model for cephalic (trigeminal) neuropathic pain (i.e., trigeminal neuralgia) in humans³⁶⁻³⁸. As shown in previous studies^{19,39}, we found that nociceptive behaviours following IoN injury were characterized by a robust mechanical hypersensitivity preceded by a transient phase of lower responsiveness to mechanical stimulation of the IoN territory. Acute administration of morphine and E-52862 —but not pregabalin— reversed mechanical allodynia observed in this pain model. The acute antinociceptive effect of morphine and the lack of efficacy of gabapentin (another gabapentinoid similar to pregabalin) had been previously reported^{40,41}. The antinociceptive effect of E-52862 was the first evidence of efficacy with a $\sigma_1 R$ ligand in this cephalic pain model, where antimigraine drugs such as triptans (sumatriptan and but zolmitriptan), dihydroergotamine and olcegepant ----that are essentially inactive in extra-cephalic pain— are effective^{33,37}. The efficacy of E-52862 in the IoN model is in agreement with some recent literature showing acute inhibitory effects of the $\sigma_1 R$ antagonist BD1047 on the nociceptive activation of the trigeminal nucleus caudalis in the capsaicin-induced headache model in rats⁴² and the behavioural nociceptive responses in the orofacial formalin model in mice⁴³. In turn, activation of $\sigma_1 R$ by intracisternal administration of the $\sigma_1 R$ agonist PRE084 evoked nociceptive activation of trigeminal nucleus caudalis in rats, which the antagonist BD1047 reversed⁴⁴. Finally, it is important to note that administration of the $\sigma_1 R$ antagonist E-52862 for 7 days did not induce antinociceptive tolerance in a protocol where tolerance to the antinociceptive effect of morphine was

clearly seen. On the contrary, the effect was increased when preceded by previous administrations as efficacy following repeated dosing was significant at 20 mg/kg (the lower dose used), a dose that was insufficient to elicit significant antiallodynic effects after single acute administration.

Diabetic neuropathy is amongst the most frequent long-term complications of diabetes mellitus, and current treatments are only partially effective. STZ was administered to rats as a model of diabetic painful polyneuropathy. In agreement with previous reports^{30,45}, rats injected with this toxin for pancreatic β -cells exhibited significantly increased plasma glucose and water intake, decreased body weight, and increased sensitivity to noxious pressure stimuli (i.e., mechanical hyperalgesia) as compared to control, non-diabetic rats, thus reproducing symptoms observed in diabetic humans^{46,47}. In addition to E-52862, two marketed drugs (morphine and pregabalin) with different mechanism of action were used to treat mechanical hypersensitivity of STZ-treated rats. Single administration of morphine at 10 mg/kg (a rather high dose) did not produce any significant effect but morphine reversed mechanical hyperalgesia when administered at 20 mg/kg (a sharply high dose). This result adds to the evidence that sensitivity to the analgesic effect of morphine is low in diabetic animals⁴⁸⁻⁵⁰, and it is consistent with clinical reports that morphine lacks efficacy for the symptomatic relief of neuropathic pain in diabetic patients^{51,52}. Similarly, the administration of a quite high dose of pregabalin (80 mg/kg) was ineffective in our model. In this sense, pregabalin has shown to provide some degree of pain relief in patients with painful diabetic neuropathy⁵³, and other studies reported significant antinociceptive effects of this drug on STZ-induced diabetic rats; however, this effect was modest when mechanical hyperalgesia was evaluated⁵⁴. Single administration of E-52862 significantly reduced mechanical hypersensitivity in STZ-treated rats at the dose of 80 mg/kg, but not at 40

mg/kg. This is the first reporting of efficacy of a $\sigma_1 R$ ligand in a model of diabetic neuropathy and thus cannot be discussed against findings in other studies, but it is consistent with the antihyperalgesic effects exerted by E-52862 and other $\sigma_1 R$ antagonists^{5,7,15,55} and the "pain-resistant" phenotype of $\sigma_1 R$ KO mice in a spectrum of pain conditions^{10,12,13,17}. Just to note that STZ-induced mechanical hyperalgesia seems to be a difficult to treat pain condition, at least in our hands, based on both the lack of efficacy/reduced potency of marketed drugs and the activity of E-52862, lower than in other models/readouts, including the previously described IoN model. Interestingly, the dose of 40 mg/kg, that failed to produce any significant effect in the acute treatment, was effective against mechanical hypersensitivity in diabetic rats when preceded by repeated E-52862 40 mg/kg administration b.i.d. for 7 consecutive days. In fact, hyperalgesia was attenuated already before the last administration (previous injection of 40 mg/kg of E-52862 the day before), which supports not only lack of tolerance but suggests a modifying effect on the underlying baseline pain (or alternatively drug accumulation, as discussed later).

A third model, the OX-induced neuropathy model in rats was used to mimic neuropathic pain observed in cancer patients receiving this chemotherapy $agent^{21,56}$. OX is a third-generation platinum-based antineoplastic drug used for the treatment of colorectal cancer^{57,58} that induces painful neuropathy characterized by marked cold sensitivity^{21,59}. Consistent with clinical symptoms, OX-treated rats showed cold allodynia already by day 8 after initiating OX treatment. Single oral administration of 100 mg/kg of gabapentin on day 8 reduced this pain-related behaviour, which is in accordance with previous findings in the same neuropathic pain model^{21,60,61}. Regarding σ_1 R modulation, E-52862 reduced cold allodynia. The effect of acute administration of E-52862 on day 8 was dose-dependent and equivalent in efficacy to gabapentin. Again, this is the first study describing efficacy of a $\sigma_1 R$ ligand in this model, but in this case our data are supported by findings in a different chemotherapy model and species, the paclitaxel-induced neuropathic pain model in mice. Paclitaxel-induced mechanical and cold allodynia was dose-dependently reverted by E-52862 and BD1063, another $\sigma_1 R$ antagonist, and it did not develop in $\sigma_1 R$ KO mice, which reinforces pharmacological data with the antagonists^{17,62}. In this way, it is important to note that antineoplastic drugs produce a painful peripheral neuropathy characterized by mitochondrial alterations in peripheral nerves, that prophylactic treatment of mice with BD1063 prevented not only paclitaxel-induced allodynia but also mitochondrial alterations, and that paclitaxel treatment did not induce mitochondrial abnormalities in $\sigma_1 R$ KO mice⁶². Moreover, as in the two previous models, no tolerance but increased activity respect to the acute treatment was found following repeated E-52862 administration in the OX model (e.g. the dose of 20 mg/kg, ineffective after single treatment, exerted significant antiallodynic effect on day 15, the last day of treatment, when preceded by repeated E-52862 administration for 7 consecutive days). Also, similar to findings in the STZ model, the pain-related behaviour was attenuated in the OX model one day after the last administration of E-52862 (day 16; 24 h washout, in the absence of active treatment) both when administered from day 8 for 7 consecutive days and when co-administered with OX throughout the OX treatment period (E-52862 administered i.p. b.i.d at 40 mg/kg starting 2 days before the first injection of OX and until the last OX injection on day 15), which again suggests a modifying effect on the underlying baseline pain (or alternatively drug accumulation, as discussed below).

Repeated treatments with E-52862 resulted in higher efficacy and potency respect to single/acute treatments consistently in all three neuropathic pain models. That is, higher antinociceptive activity and lower doses were required to reduce the different

pain-related behaviours if the administration the day of the test was preceded by repeated E-52862 daily (7 days, b.i.d.) administrations. This discards pharmacodynamic tolerance phenomena but opens the possibility that repeated treatments could exert a modifying effect on baseline pain (i.e., a sustained pharmacodynamic effect on nociceptive thresholds over time due to the continued action of the compound that results in a progressive attenuation of pain). The observation that pain-related behaviours were reduced the day after repeated treatment completion in E-52862-treated respect vehicle-treated animals further support the possibility of a sustained pharmacodynamic effect. Alternatively, increased antinociceptive effects following repeated administration could be explained by a pharmacokinetic effect due to drug accumulation over time. However, this is highly unlikely due to the pharmacokinetic profile of E-52862 in rodents. The maximum plasma concentration is achieved shortly after its administration to rodents ($t_{max} = 15$ min after i.p. administration to mice and rats) and is quickly metabolized, having a short half-life ($t_{1/2} = 1.4$ h after administration to mice and rats). Undetectable plasma levels were found by 6 h after its administration, its metabolites are inactive and it does not accumulate in tissues, including the brain and the spinal cord⁷. All together, pharmacodynamics, but not phamacokinetics (i.e., drug accumulation), can explain the increased antinociceptive effect after repeated administration of E-52862 and also the attenuated hyperalgesia and allodynia found without E-52862 administration the day after treatment completion. Interestingly, it is in line with the mechanism of action of $\sigma_1 R$ and the inhibitory effect attributed to $\sigma_1 R$ antagonism on central sensitization phenomena, as reported at the behavioural, electrophysiological and molecular level. Behaviourally, it is known that a) capsaicininduced secondary mechanical hypersensitivity (e.g., allodynia) results from central sensitization (i.e., plastic changes at the spinal cord due to the initial intense nociceptive

discharges that follows the capsaicin injection and result in subsequent increased pain sensitivity), that b) $\sigma_1 R$ antagonists block capsaicin-induced mechanical allodvnia^{7,11,12}: and that c) capsaic does not induce mechanical allodynia when injected to $\sigma_1 R$ KO mice¹². Electrophysiologically, it is known that repetitive stimulation of the dorsal root at stimulus intensities activating C fibres produces a typical amplification of the nociceptive signals in the spinal cord (wind-up response). Wind-up is the result of the sensitization of spinal dorsal horn neurons whose increased excitability is evoked by repetitive stimulation of afferent C fibres, and stands for a spinal amplification of the message coming from peripheral nociceptors⁶³⁻⁶⁵. $\sigma_1 R$ antagonists (i.e., E-52862) dosedependently inhibit the spinal wind-up phenomenon when trains of nociceptive stimuli (repetitive stimulation of nociceptive afferent fibres) were applied^{7,66} and, accordingly, spinal wind-up amplification of the nociceptive signals is highly reduced in spinal cords from $\sigma_1 R$ KO mice¹³. Finally, at the molecular level, increased signalling through the glutamatergic NMDA receptor on dorsal horn neurons is known to be a key mediator of spinal wind-up^{65,67}, and account for sensitization and pain hypersensitivity⁸. The NMDA receptor itself becomes phosphorylated in dorsal horn neurons following noxious stimulation or nerve injury, and this facilitates NMDA responses and thus central sensitization and pain hypersensitivity. Ligands of $\sigma_1 R$ are postsynaptic regulators of NMDA receptor-mediated synaptic transmission. Activation of $\sigma_1 R$ enhances the NMDA receptor-mediated rise in cytosolic Ca^{2+} concentration and currents^{68,69}. In contrast, the NMDA receptor-mediated responses are inhibited and the enhancing effects of $\sigma_1 R$ agonists on NMDA receptors blocked by antagonizing $\sigma_1 R^{68,70}$. Accordingly, activation of spinal $\sigma_1 R$ by intrathecal administration of the $\sigma_1 R$ agonist PRE084 evoked⁷¹ pain concomitant with increased phosphorylation of the NMDA receptor NR1 subunit, and both nociceptive behaviours and increased phosphorylation

of NR1 in the spinal cord were inhibited by antagonizing spinal $\sigma_1 R$ with BD1047⁷¹⁻⁷³. From the mechanistic point of view, we now know that $\sigma_1 R$ interact with the NR1 subunit of NMDA receptors and that $\sigma_1 R$ antagonists (E-52862) remove the binding of $\sigma_1 R$ to NR1 subunits, facilitating the entrance of negative regulators of NMDA receptor activity, likely Ca²⁺/calmodulin, which results in reduced glutamate-dependent NMDA receptor-mediated pain signalling and amplification⁷⁴. Overall, evidence supports a role for $\sigma_1 R$ in modulating nociception by inhibiting augmented excitability secondary to sustained afferent drive as a mechanism underlying its modulatory effect. Attenuation of plastic changes (central sensitization) following nerve injury could thus underlie the sustained pharmacodynamic modifying effect on pain hypersensitivity exerted by E-52862 following its repeated administration.

Preclinical findings herein support a role for $\sigma_1 R$ antagonists (e.g., E-52862) in both the expression (to treat pain once it has developed) and development (to attenuate pain hypersensitivity progression) of neuropathic pain and extend the potential for the use of $\sigma_1 R$ antagonists (e.g., E-52862) to the chronic treatment of cephalic (trigeminal) and extra-cephalic neuropathic pain.

References

- 1. Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. *Lancet Neurol.* **9**, 807-819 (2010).
- 2. Kinloch RA, Cox PJ. New targets for neuropathic pain therapeutics. *Expert Opin Ther Targets*. 9, 685-698 (2005).
- Burgess G, Williams D. The discovery and development of analgesics: new mechanisms, new modalities. *J Clin Invest.*;120, 3753-3759 (2010).
- 4. McDougall JJ. Peripheral analgesia: Hitting pain where it hurts. *Biochem Biophys Acta*. **1812**, 459-467 (2011).
- Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. *Eur J Pharmacol.* 716, 78-93 (2013).
- 6. Drews E, Zimmer A. Central sensitization needs sigma receptors. *Pain*; 145, 69-270 (2009).
- 7. Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segalés C, Laloya M, Hernández E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueño J, Merlos M, Baeyens JM, Giraldo J, López-García JA, Maldonado R, Plata-Salamán CR, Vela JM. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. *Br J Pharmacol.* 166, 2289-2306 (2012).
- 8. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. *J Pain.* **10**, 895-926 (2009).
- 9. Cendán CM, Pujalte JM, Portillo-Salido E, Baeyens JM. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. *Psychopharmacology*. **182**, 485–493 (2005a).
- Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma(1) receptor knockout mice. *Eur J Pharmacol.* 511, 73-74 (2005b).
- Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Baeyens JM, Del Pozo E. Antagonism by haloperidol and its metabolites of mechanical hypersensitivity induced by intraplantar capsaicin in mice: role of sigma-1 receptors. *Psychopharmacology*. 205, 21–33 (2009a).
- Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. *Pain.* 143, 252-261 (2009b).
- 13. De la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, López-García JA, Maldonado R, Zamanillo D, Vela JM. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. *Pain.* 145, 294-303 (2009).
- Son JS, Kwon YB. Sigma-1 receptor antagonist BD1047 reduces allodynia and spinal ERK phosphorylation following chronic compression of dorsal root ganglion in rats. *Korean J Physiol Pharmacol.* 14, 359-364 (2010).

- 15. Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. *Behav Pharmacol.* **25**, 226-235 (2014).
- Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. *Psychopharmacology (Berl).* 231, 3855-3869 (2014).
- Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 13, 1107–1121 (2012).
- Abadias M, Escriche M, Vaqué A, Sust M, Encina G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. *Br J Clin Pharmacol.* **75**:103-117 (2013).
- Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve. *J Neurosci.* 14, 2708-2723 (1994).
- 20. Ahlgren SC, Levine JD. Mechanical hyperalgesia in streptozotocin-diabetic rats. *Neuroscience* **52**, 1049-1055 (1993).
- Ling B, Coudoré-Civiale MA, Balayssac D, Eschalier A, Coudoré F, Authier N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. *Toxicology* 234, 176-184 (2007).
- 22. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. *Fundam Clin Pharmacol.* **25**, 1-28 (2011).
- 23. Obermann M, Katsarava Z. Update on trigeminal neuralgia. *Expert Rev Neurother.* 9, 323-329 (2009).
- Pluijms W, Huygen F, Cheng J, Mekhail N, van Kleef M, Van Zundert J, van Dongen R. Evidence-based interventional pain medicine according to clinical diagnoses. 18. Painful diabetic polyneuropathy. *Pain Pract.* 11, 191-198 (2011).
- 25. Farquhar-Smith P. Chemotherapy-induced neuropathic pain. *Curr Opin Support Palliat Care.* **5**,1-7 (2011).
- 26. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. *Pain* **16**, 109-110 (1983).
- 27. Gregg JM. A surgical approach to the ophthalmic-maxillary nerve trunks in the rat. *Journal of dental research.* **52**, 392 (1973).
- 28. Jacquin MF, Zeigler HP. Trigeminal orosensation and ingestive behavior in the rat. *Behavioral neuroscience* **97**, 62–97 (1983).
- 29. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. *Pain* **33**, 87-107 (1988).

- Aubel B, Kayser V, Mauborgne A, Farré A, Hamon M, Bourgoin S. Antihyperalgesic effects of cizolirtine in diabetic rats: behavioral and biochemical studies. *Pain* 110, 22-32 (2004).
- Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. *Arch Int Pharmacodyn Ther.* 111. 409-419 (1957).
- 32. Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. *Pain* **94**, 293-304 (2001).
- 33. Kayser V, Aubel B, Hamon M, Bourgoin S. The antimigraine 5-HT 1B/1D receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. *Br J Pharmacol.* 137, 1287-1297 (2002).
- 34. Bennett GJ. Neuropathic pain in the orofacial region: clinical and research challenges. *J Orofac Pain.* **18**, 281-286 (2004).
- 35. Hamon M, Kayser V, Bourgoin S. Neuropathic pain. Physiopathological mechanisms and therapeutic perspectives. *Bull Acad Natl Med.* **192**, 921-926 (2008).
- 36. Latrémolière A, Mauborgne A, Masson J, Bourgoin S, Kayser V, Hamon M, Pohl M. Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. *J Neurosci.* 28, 8489-8501 (2008).
- 37. Michot B, Bourgoin S, Viguier F, Hamon M, Kayser V. Differential effects of calcitonin generelated peptide receptor blockade by olcegepant on mechanical allodynia induced by ligation of the infraorbital nerve vs the sciatic nerve in the rat. *Pain* 153, 1939-1948 (2012).
- Li KW, Kim DS, Zaucke F, Luo ZD. Trigeminal nerve injury-induced thrombospondin-4 upregulation contributes to orofacial neuropathic pain states in a rat model. *Eur J Pain*. 18, 489-495 (2014).
- Colpaert FC, Deseure K, Stinus L, Adriaensen H. High-efficacy 5-hydroxytryptamine 1A receptor activation counteracts opioid hyperallodynia and affective conditioning. *J Pharmacol Exp Ther.* 316:892-899 (2006).
- 40. Christensen D, Gautron M, Guilbaud G, Kayser V. Effect of gabapentin and lamotrigine on mechanical allodynia-like behaviour in a rat model of trigeminal neuropathic pain. *Pain* **93**, 147-153 (2001).
- 41. Deseure K, Koek W, Adriaensen H, Colpaert FC. Continuous administration of the 5hydroxytryptamine1A agonist (3-Chloro-4-fluoro-phenyl)-[4-fluoro-4-[[(5-methyl-pyridin-2ylmethyl) -amino]-methyl]piperidin-1-yl]-methadone (F 13640) attenuates allodynia-like behavior in a rat model of trigeminal neuropathic pain. *J Pharmacol Exp Ther.* **306**, 505-514 (2003).
- 42. Kwon YB, Jeong YC, Kwon JK, Son JS, Kim KW. The Antinociceptive Effect of Sigma-1 Receptor Antagonist, BD1047, in a Capsaicin Induced Headache Model in Rats. *Korean J Physiol Pharmacol.* 13, 425-429 (2009).
- Roh DH, Yoon SY. Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model. *Biol Pharm Bull.* 37, 145-151 (2014).

- 44. Pyun K, Son JS, Kwon YB. Chronic activation of sigma-1 receptor evokes nociceptive activation of trigeminal nucleus caudalis in rats. *Pharmacol Biochem Behav.* **124**, 278-283 (2014).
- 45. Courteix C, Bardin M, Chantelauze C, Lavarenne J, Eschalier A. Study of the sensitivity of the diabetes-induced pain model in rats to a range of analgesics. *Pain* **57**, 153-160 (1994).
- Gul H, Yildiz O, Dogrul A, Yesilyurt O, Isimer A. The interaction between IL-1beta and morphine: possible mechanism of the deficiency of morphine-induced analgesia in diabetic mice. *Pain* 89, 39-45 (2000).
- 47. Kamei J, Mizoguchi H, Narita M, Tseng LF. Therapeutic potential of PKC inhibitors in painful diabetic neuropathy.*Expert Opin Investig Drugs* **10**, 1653-1664 (2001).
- Malcangio M, Tomlinson DR. A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. *Pain* 76, 151-157 (1998).
- 49. Kiguchi S, Imamura T, Ichikawa K, Kojima M. Oxcarbazepine antinociception in animals with inflammatory pain or painful diabetic neuropathy. *Clin Exp Pharmacol Physiol.* **31**, 57-64 (2004).
- Doğrul A, Gül H, Yildiz O, Bilgin F, Güzeldemir ME. Cannabinoids blocks tactile allodynia in diabetic mice without attenuation of its antinociceptive effect. *Neurosci Lett.* 368:382 (2004).
- Arnér S, Meyerson BA. Lack of analgesic effect of opioids on neuropathic and idiopathic forms of pain. *Pain* 33, 11-23 (1988).
- 52. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. *Diabetes Metab Res Rev.* **28** Suppl 1, 8-14 (2012).
- Moore RA, Straube S, Wiffen PJ, Derry S, McQuay HJ. Pregabalin for acute and chronic pain in adults. *Cochrane Database Syst Rev.* 3:CD007076 (2009).
- 54. Beyreuther B, Callizot N, Stöhr T. Antinociceptive efficacy of lacosamide in a rat model for painful diabetic neuropathy. *Eur J Pharmacol.* **539**, 64-70 (2006).
- 55. Vela JM, Merlos M, Almansa C. Investigational sigma-1 receptor antagonists for the treatment of pain. *Expert Opin Investig Drugs* **24**, 883-896 (2015).
- 56. Weickhardt A, Wells K, Messersmith W. Oxaliplatin-induced neuropathy in colorectal cancer. J Oncol. 2011, 201593 (2011).
- Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC. Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. *Br J Cancer* 82, 966–972 (2000).
- 58. Baker DE. Oxaliplatin: a new drug for the treatment of metastatic carcinoma of the colon or rectum. *Rev Gastroenterol Disord.* **3**, 31-38 (2003).
- Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. *Toxicology* 291, 1-9 (2012).
- Sakurai M, Egashira N, Kawashiri T, Yano T, Ikesue H, Oishi R. Oxaliplatin-induced neuropathy in the rat: involvement of oxalate in cold hyperalgesia but not mechanical allodynia. *Pain* 147, 165-174 (2009).

- Gauchan P, Andoh T, Ikeda K, Fujita M, Sasaki A, Kato A, Kuraishi Y. Mechanical allodynia induced by paclitaxel, oxaliplatin and vincristine: different effectiveness of gabapentin and different expression of voltage-dependent calcium channel alpha(2)delta-1 subunit. *Biol Pharm Bull.* 32, 732-734 (2009).
- 62. Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, Baeyens JM. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxelinduced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. *Mol Pain*.10, 11 (2014).
- 63. Dickenson AH, Sullivan AF. Evidence for a role of the NMDA receptor in the frequency dependent potentiation of deep rat dorsal horn nociceptive neurones following C fibre stimulation. *Neuropharmacology* **26**, 1235-1238 (1987).
- 64. Li J, Simone DA, Larson AA. Windup leads to characteristics of central sensitization. *Pain* **79**, 75-82 (1999).
- 65. Herrero JF, Laird JM, López-García JA. Wind-up of spinal cord neurones and pain sensation: much ado about something? *Prog Neurobiol.* **61**, 169-203 (2000).
- 66. Mazo I, Roza C, Zamanillo D, Merlos M, Vela JM, Lopez-Garcia JA. Effects of centrally acting analgesics on spinal segmental reflexes and wind-up. *Eur J Pain* **19**, 1012-1020 (2014).
- 67. Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. *Pain* 44, 293-299 (1991).
- 68. Monnet FP, Debonnel G, Junien JL, De Montigny C. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors. *Eur J Pharmacol.* **179**, 441-445 (1990).
- Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. *J Neurosci.* 16, 1193-1202 (1996).
- Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. *J Physiol* 578, 143-57 (2007).
- 71. Roh DH, Yoon SY, Seo HS, Kang SY, Moon JY, Song S, Beitz AJ, Lee JH. Sigma-1 receptorinduced increase in murine spinal NR1 phosphorylation is mediated by the PKCalpha and epsilon, but not the PKCzeta, isoforms. *Neurosci Lett.* 477, 95-99 (2010).
- 72. Kim HW, Kwon YB, Roh DH, Yoon SY, Han HJ, Kim KW, Beitz AJ, Lee JH. Intrathecal treatment with sigma1 receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. *Br J Pharmacol.* 148, 490-498 (2006).
- 73. Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Na HS, Lee JH. Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia

and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. *Anesthesiology* **109**, 879-89 (2008).

74. Rodríguez-Muñoz M, Sánchez-Blázquez P, Herrero-Labrador R, Martínez-Murillo R, Merlos M, Vela JM, Garzón J. The σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control. *Antioxid Redox Signal.* 22, 799-818 (2015).

2. EFFECT OF $\sigma_1 R$ BLOCKADE ON INFLAMMATORY PAIN

2.1. <u>Article 2</u>: "SIRA, a selective sigma-1 receptor antagonist, inhibits inflammatory

pain in carrageenan and complete Freund's adjuvant models in mice".

(Behavioural Pharmacology 2014;25:226-235)

Georgia Gris, Manuel Merlos, José Miguel Vela, Daniel Zamanillo and Enrique Portillo-Salido.

Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE Barcelona, Spain.

Summary of the Article 2:

"SIRA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in carrageenan and complete Freund's adjuvant models in mice".

Background

The sigma-1 receptor ($\sigma_1 R$) has been related to pain sensitization processes induced by chemicals agents (Cendán *et al.*, 2005a, b; Entrena *et al.*, 2009a, b; Kwon *et al.*, 2009) or by pathological conditions using $\sigma_1 R$ KO mice and selective $\sigma_1 R$ receptor antagonists (de la Puente *et al.*, 2009, Romero *et al.*, 2012). In $\sigma_1 R$ KO mice, both phases of formalin-induced paw licking were clearly reduced (Cendán *et al.*, 2005b) and capsaicin injected intraplantarly failed to induce mechanical allodynia (Entrena *et al.*, 2009a). Regarding neuropathic pain models, cold and mechanical hypersensitivity were strongly attenuated in $\sigma_1 R$ KO mice treated with paclitaxel (Nieto *et al.*, 2012) or exposed to partial sciatic nerve ligation. Similarly, $\sigma_1 R$ antagonists, including E-52862 (S1RA), also inhibited formalin-induced pain (Cendán *et al.*, 2005a, Romero *et al.*, 2012), capsaicin-induced sensitization and pain-related behaviours (Entrena *et al.*, 2009b; Romero *et al.*, 2012) after partial sciatic nerve ligation (Romero *et al.*, 2012) or paclitaxel-induced neuropathic pain (Nieto *et al.*, 2012) in WT mice.

Objectives

The objective of this work was to study the involvement of $\sigma_1 R$ in acute and chronic inflammatory pain for the first time using $\sigma_1 R$ KO mice and selective $\sigma_1 R$ antagonist E-52862. The analgesic effect of E-52862 on pain-related behaviours

induced by carrageenan or CFA was investigated, and its effect was compared with those of other reference compounds (morphine, ibuprofen and celecoxib).

Results

Intraplantar injection of carrageenan caused both mechanical allodynia and thermal (heat) hyperalgesia that peaked at 3 h and reverted to baseline levels 3–4 days after injection in WT mice. Intraplantarly injected CFA caused robust, long-lasting mechanical allodynia (from days 1 to 9), whereas thermal heat hyperalgesia failed to fully develop in WT mice. The development of pain-related behaviours observed after CFA and carrageenan injection were similar in $\sigma_1 R$ KO and WT mice. The pharmacological study revealed that acute systemic administration of E-52862 dose-dependently inhibited mechanical and thermal (heat) hypersensitivity induced by both carrageenan and CFA in WT mice, but not in $\sigma_1 R$ KO mice. As compared to reference compounds, E-52862 showed an efficacy similar to that of ibuprofen and celecoxib in inhibiting inflammatory painful hypersensitivity. E-52862, however, failed to modify paw volume in mice.

Conclusions

Although the genetic inhibition of $\sigma_1 R$ failed to prevent the development of mechanical and heat hypersensitivity in all inflammatory pain models, acute systemic administration of E-52862 in WT mice dose-dependently supressed both mechanical and thermal (heat) hypersensitivity induced by carrageenan, and inhibited mechanical allodynia induced by CFA. E-52862 failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice, thus suggesting that the analgesic activity induced by E-52862 in these models was clearly mediated by the interaction with $\sigma_1 R$.

In summary, the pharmacological blockade of $\sigma_1 R$ by E-52862 represents a new promising therapy for the treatment of inflammatory pain.

226 Research report

S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice

Georgia Gris, Manuel Merlos, José M. Vela, Daniel Zamanillo and Enrique Portillo-Salido

The therapeutic potential of S1RA (E-52862), a selective sigma-1 receptor ($\sigma_1 R$) antagonist, has been explored in experimental neuropathic pain, but not in inflammatory pain models. The present study investigated the effect of the intraperitoneal administration of S1RA on the hind paw withdrawal response to thermal and mechanical stimulation following an intraplantar injection of carrageenan (CARR) and complete Freund's adjuvant (CFA), which are two well-characterized models of acute and chronic inflammatory pain, respectively. S1RA fully reversed both mechanical [dose of drug that produced half of its maximal response (ED₅₀)=35.9 and 42.1 mg/kg for CARR-induced and CFA-induced pain, respectively] and thermal (ED₅₀=27.9 mg/kg, CARR) hypersensitivity, whereas ibuprofen (CARR, mechanical allodynia) and celecoxib (CARR, thermal hyperalgesia; CFA, mechanical allodynia) failed to reach maximum efficacy. Morphine also showed maximum efficacy in all tests. Unlike celecoxib and ibuprofen, which decreased paw volume significantly. CARR-induced paw oedema was not reduced by S1RA

Introduction

Pain is a central feature of highly prevalent clinical diseases such as rhcumatoid arthritis and ostcoarthritis, a diverse group of conditions characterized by inflammation of the joints, pain, deformity and disability (Pisetsky and Ward, 2012). Even with optimal 'disease-modifying' treatment and proper control of disease severity and patient activity, persistent pain occurs secondary to structural joint damage, and analgesic treatment is therefore required in patients with arthritis (Radner *et al.*, 2012; Walsh and McWilliams, 2012). Pain is generally treated with opioids and antiinflammatories including cyclooxygenase (COX) inhibitors, but their side effects and toxicities prevent both long-term use and dosage levels likely to provide superior analgesia (Van Laar *et al.*, 2012; Whittle *et al.*, 2013).

The sigma-1 receptor $(\sigma_1 R)$ is a unique ligand-regulated molecular chaperone with two transmembrane domains located mainly in the endoplasmic reticulum and the plasma membrane. The intrinsic activity of drugs targeting $\sigma_1 R$ (e.g. agonist vs. antagonist) is based on the regulation of some ion channels (e.g. small conductance calciumactivated potassium channels and voltage-gated calcium channels), G-protein-coupled receptors (e.g. dopamine D1 and μ -opioid receptors), neurotransmission (e.g. glutama-

0955-8810 © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

and morphine, thus suggesting that the antinociceptive effect of S1RA does not involve a major anti-inflammatory (antioedema) action. S1RA was devoid of efficacy when administered to $\sigma_1 R$ knockout mice, thus suggesting the involvement of $\sigma_1 R$ in the antinociceptive effects exerted by S1RA. We conclude that S1RA represents a promising novel analgesic therapy for inflammatory pain. *Behavioural Pharmacology* 25:226–235 © 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Behavioural Pharmacology 2014, 25:226-235

Keywords: allodynia, carrageenan, complete Freund's adjuvant, E-52862, hyperalgesia, hypersensitivity, inflammatory pain, σ₁R knockout mouse, S1RA, sigma-1 receptor

Drug Discovery and Preclinical Development, Esteve, Parc Cientific de Barcelona, Barcelona, Spain

Correspondence to Enrique Portillo-Salido, PhD, Drug Discovery and Preclinical Development, Esteve, Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028 Barcelona, Spain E-mail: eoptillo@esteve.es

Received 21 October 2013 Accepted as revised 14 March 2014

tergic), and second messenger systems (e.g. PLC/PKC/ InsP3), for which the $\sigma_1 R$ plays a role as a regulatory chaperone protein (Su *et al.*, 2010; Gómez-Soler *et al.*, 2014). For pain modulation, the $\sigma_1 R$ has been shown to be expressed in key areas for pain control such as the dorsal root ganglia, the superficial layers of the dorsal horn, the periaqueductal grey matter, the locus coeruleus, and the rostroventral medulla. Recent behavioural studies using $\sigma_1 R$ ligands and $\sigma_1 R$ knockout (KO) mice have shown a role of this receptor in pain control, particularly under sensitizing conditions (see Zamanillo *et al.*, 2013 for a review). Successful drug targeting of this protein would represent a new therapeutic approach to clinical pain management (Zamanillo *et al.*, 2012).

The in-vitro and in-vivo pharmacological profile of a novel and selective $\sigma_1 R$ antagonist, S1RA, has been reported recently (Romero *et al.*, 2012). This compound has high affinity for human $\sigma_1 R$ ($K_i = 17 \text{ nmol/l}$), but no affinity for the sigma-2 receptors. Moreover, this compound does not show significant affinity for other additional 170 molecular targets (receptors, transporters, ion channels and enzymes). S1RA has a good pharmacokinetic profile, crosses the blood–brain barrier and binds to CNS $\sigma_1 Rs$ when administered systemically, as shown by autoradiographic

DOI: 10.1097/FBP.000000000000038

ex-vivo binding experiments in mice (Romero *et al.*, 2012). All these properties make S1RA a good pharmacological tool to investigate σ_1 R-mediated effects.

Although the therapeutic potential of S1RA has been explored with positive results in animal models of neuropathic pain (Nieto *et al.*, 2012; Romero *et al.*, 2012; Zamanillo *et al.*, 2013), there is a lack of substantial information on its effects in inflammatory pain models. The two types of pain differ in their aetiology, but share some common mechanisms in that they both involve sustained afferent peripheral input that give rise to central sensitization phenomena (Woolf, 2011; Walsh and McWilliams, 2012), which are modulated by $\sigma_1 Rs$ (De la Puente *et al.*, 2009; Drews and Zimmer, 2009) and inhibited by the $\sigma_1 R$ antagonist S1RA (Romero *et al.*, 2012).

Inflammatory pain can be induced experimentally by intraplantar administration of agents such as carrageenan (CARR) or complete Freund's adjuvant (CFA) (Bendele, 2001: Cobos and Portillo-Salido, 2013), and is behaviourally evidenced by both mechanical and thermal (heat) hypersensitivity. CFA is known to induce a more chronic inflammation compared with the transient acute CARRinduced inflammatory response. The present study aimed to investigate the analgesic effect of S1RA in both acute and chronic inflammatory pain models, and compare its effect with those of other relevant analgesics acting through other mechanisms of action: morphine (u-opioid agonist), ibuprofen (nonselective COX-1 and COX-2 inhibitor) and celecoxib (selective COX-2 inhibitor). We also took advantage of the genetic approach using $\sigma_1 R$ KO mice to determine whether the effect of S1RA was actually because of $\sigma_1 R$ modulation.

Methods

Subjects

Male wild-type CD-1 mice, supplied by Charles River or Harlan Ibérica and aged 6-8 weeks, were used. To obtain CD-1 $\sigma_1 R$ KO mice, homozygous KO mice (Langa *et al.*, 2003) were backcrossed for 10 generations onto the CD-1 background to reduce to less than 1% the genetic material remaining from the original background (Wong, 2002). Mice carrying the mutation were then bred to homozygosity and used in the experiments. Animals were acclimated in our animal facilities for at least 1 week before testing, provided free access to food and water and kept under controlled laboratory conditions with the temperature at $21 \pm 1^{\circ}$ C and a light-dark cycle of 12 h (lights on at 07:00 h). Behavioural testing was carried out in a soundproof and air-regulated experimental room. All experimental procedures and animal husbandry were conducted according to the ethical principles of the I.A.S.P. for the evaluation of pain in conscious animals (Zimmermann, 1983) and the European Parliament and the Council Directive of 22 September 2010 (2010/63/ EU), and were approved by the local Ethical Committee.

S1RA efficacy in mouse inflammatory pain models Gris et al. 227

CARR-induced and CFA-induced inflammatory pain

Unilateral inflammation was induced by an intraplantar injection of $50 \,\mu$ l of 2.5% (w/v) CARR solution or $20 \,\mu$ l of 1 mg/ml CFA. Injections were administered into the subcutaneous tissue of the plantar surface of the right hind paw of nonanaesthetized mice. CFA was freshly prepared, whereas CARR was dissolved in saline and stored at room temperature for 1–2 days before administration.

To select the optimal time point to evaluate the analgesic effect of drugs, the time courses of hypersensitivity to CARR-induced and CFA-induced thermal and mechanical stimuli were characterized. After baseline measurements of thermal or mechanical sensitivity, mice were injected with the proinflammatory agent, and thermal hyperalgesia or mechanical allodynia was evaluated in both hind paws at 1, 3, 5 and 24 h, and 2, 3 and 4 days (CARR) or at days 1, 2, 3, 4, 7, 9 and 11 (CFA).

Evaluation of thermal hyperalgesia (plantar test)

Thermal (heat) hyperalgesia was assessed using the plantar test analgesia metre [dynamic plantar aesthesiometer; Ugo Basile, Comerio (VA), Italy] by determination of hind paw withdrawal latency in response to a thermal stimulus (radiant heat). The plantar test was performed according to the Hargreaves method (Hargreaves et al., 1988). On the day of the test, mice were placed in Plexiglas compartment enclosures on the surface of the plantar test device and allowed to acclimate for 1 h. The heat source, a mobile infrared photobeam, was then positioned under the plantar surface of the hind paw. The nocifensive withdrawal reflex interrupts the light reflected from the photocell onto the paw and automatically turns off the light and the timer. The intensity of the light beam was adjusted on the basis of preliminary studies to produce baseline response latencies of around 12 ± 2 s in untreated control mice. A digital timer connected to the heat source automatically recorded the response latency for paw withdrawal to the nearest 0.1 s. The mean withdrawal latencies for the ipsilateral and contralateral hind paws were determined from the average of three separate trials for each animal, with intervals of at least one minute between successive measurements.

Evaluation of mechanical allodynia (von Frey test)

Mechanical allodynia was quantified by measuring the hind paw withdrawal response to punctate mechanical stimulation using von Frey filaments (North Coast Medical Inc., San Jose, California, USA). Mice were placed in compartment enclosures in a test chamber with a framed metal mesh floor through which von Frey monofilaments (bending force range from 0.04 to 2 g) were applied onto the plantar surface, and thresholds were measured using the up–down method paradigm. This method was previously described by the nonparametric method of Dixon (1980), and represents the mechanical threshold that produces 50% of responses (Chaplan *et al.*, 1994). Briefly, the 0.4 g filament

228 Behavioural Pharmacology 2014, Vol 25 No 3

(i.e. middle range) was used first. Then, the strength of the next filament was decreased when the animal responded or increased when the animal did not respond. This up-down procedure was stopped four measures after the first change in animal responding. The application of each filament was perpendicular to the plantar surface and was applied for 2s at intervals of about 5-10s between each stimulation. Clear paw withdrawal, shaking or licking was considered as a nociceptive-like response. Both ipsilateral and contralateral (noninjected) hind paws were tested. The mechanical threshold that produced 50% of responses was calculated using the Dixon formula: 50% paw withdrawal threshold (g) = $\left[\left(\frac{10^{(X_f + \kappa \delta)}}{10000} \right) \right]$, where $X_{\rm f}$ is the value (in logarithmic units) of the final von Frey filament used, κ is a fixed tabular value for the pattern of positive/negative responses and δ is the mean difference (in log units) between stimuli.

Evaluation of CARR-induced paw oedema

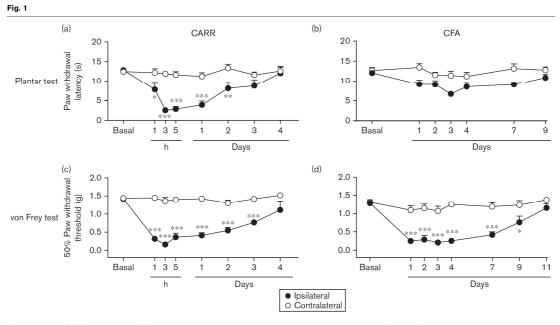
Hind paw volume was determined using a plethysmometer (Panlab, S.L.U.; Barcelona, Spain). The hind paw was immersed in a conductive solution (15 drops of Triton X-100 in 11 of 0.2% NaCl solution) and the displaced volume was measured with a resolution of 10 µl. Paw oedema volume was determined by the difference between the values obtained before and after the intraplantar injection of CARR or its solvent. To minimize variations in the readings within each animal, the junction of hairy and glabrous skin was marked with a pen before the first measurement and used as a reference for subsequent determinations. Animals receiving 50 µl of saline in their ipsilateral paw were used as noninflamed controls. Paw volume determinations were performed before and 3 h after the administration of CARR; the time of maximal paw volume increase. Mice were administered pre-emptively with the drugs or vehicle (HPMC) 30 min before CARR injection to allow the detection of possible antioedema effects of the drugs tested. Two or three measurements per paw were performed.

Drugs

CARR (λ -carrageenan, 1% in 0.2 mol/l KCl solution) and CFA (1 mg/ml of heat-killed *Mycobacterium tuberculosis* in 85% paraffin oil and 15% mannide monooleate) were provided by Sigma-Aldrich (St Louis, Missouri, USA).

S1RA (E-52862; 4-[2-[[5-methyl-1-(2-naphthalenyl)-1Hpyrazol-3-yl]oxy]ethyl] morpholine) was used as hydrochloride and doses were expressed as weights of this form. S1RA and celecoxib were synthesized by Laboratories Esteve (Barcelona, Spain) and ibuprofen was supplied by Tci Europe N.V. (Zwijndrecht, Belgium). Morphine was supplied by the General Directorate of Pharmacy and Drugs, Spanish Ministry of Health (Madrid, Spain). All analgesic drugs were suspended in an aqueous solution (0.5% hydroxypropylmethyl cellulose, HPMC; Sigma-Aldrich) and administered by the intraperitoneal route at a volume of 10 ml/kg 30 min before behavioural testing.

Statistical analysis


Data were represented as mean \pm SEM. Data for thermal hyperalgesia and mechanical allodynia were obtained by measuring paw withdrawal expressed as latency (s) or 50% threshold (g), respectively. Data obtained in the CARR and CFA models were subjected to repeated-measures two-way analysis of variance (ANOVA) (comparisons vs. contralateral noninjected paws), followed by post-hoc Bonferroni's test when appropriate. The percentage of antiallodynic or antihyperalgesic effect was calculated as follows: % effect = $[(PWD - PWV)/(PWN - PWV)] \times 100$, where PWD and PWV are the paw withdrawal latency (s) or threshold (g) in drug-treated and vehicle-treated animals, respectively, and PWN is the paw withdrawal in naïve animals (12.5 s latency in the plantar test and 1.5 g mechanical threshold in the von Frey test). These percentages were expressed as antihypersensitivity percentage when the effect on both mechanical allodynia and thermal hyperalgesia was shown simultaneously. A dose-response curve was plotted using nonlinear regression analysis, and ED₅₀ (dose of drug that produced half of its maximal response) and E_{max} (maximum effect) values were obtained. SEs were calculated on the basis of the best-fit values \pm SEs of regression. The differences between WT and KO mice were analysed using Student's t-test. One-way ANOVA, followed by the Bonferroni test was used to compare paw volumes. GraphPad Prism software (version 5.0; GraphPad Software Inc., La Jolla, California, USA) was used. The criterion for statistical significance was set at a P value of less than 0.05.

Results

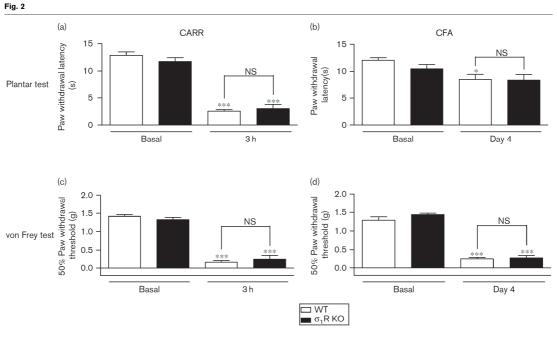
Time course for thermal hyperalgesia and mechanical allodynia induced by CARR and CFA

No significant differences were found in baseline paw withdrawal latencies between the ipsilateral and contralateral paw in the plantar test before CARR injection. Thermal hyperalgesia was evidenced by a decreased withdrawal latency of the ipsilateral paw in response to a noxious heat stimulus (Fig. 1a). Intraplantar injection of CARR caused a marked thermal hyperalgesia from 3 h to 2 days after injection. Repeated-measures ANOVA (time \times paw) showed significant effects of time $(F_{7,182} = 9.5, P < 0.001)$ and paw ($F_{1,182} = 89.3$, P < 0.001) and a significant time \times paw interaction ($F_{7,182} = 6.5$, P < 0.001). However, intraplantar administration of CFA did not produce a clear thermal hyperalgesia (Fig. 1b). A two-way ANOVA showed significant effects of time ($F_{6,152} = 3.5$, P < 0.01) and paw $(F_{1,152} = 39.2, P < 0.001)$, but no significant time × paw interactions ($F_{6,152} = 1.4$, NS).

No significant differences were found between groups in baseline 50% paw withdrawal thresholds in the von Frey test before CARR. Upon intraplantar injection, CARR injection caused significant mechanical hypersensitivity

S1RA efficacy in mouse inflammatory pain models Gris et al. 229

Time course of CARR-induced and CFA-induced thermal hyperalgesia and mechanical allodynia in WT mice. Thermal hyperalgesia and mechanical allodynia were found immediately after pain induction. There were significant differences between ipsilateral and contralateral paws under all experimental conditions, except for CFA in the plantar test. Statistically significant differences, compared with the contralateral paw for each animal model: **P<0.001; *P<0.01; *P<0.05 (two-way repeated-measures analysis of variance, followed by the Bonferroni test). Each point and vertical line represent the mean ± SEM of the values obtained in 7–20 animals. The results are an average of two independent experiments for each curve. CARR, carrageenan; CFA, complete Freund's adjuvant.


in the ipsilateral paw from 1 h to day 3 after injection with a maximum at 3 h and recovery to baseline values by day 4 (Fig. 1c). Repeated-measures ANOVA (time × paw) showed significant effects of time ($F_{7,148} = 15.6$, P < 0.001) and paw ($F_{1,148} = 341.1$, P < 0.001), and a significant time × paw interaction ($F_{7,148} = 11.5$, P < 0.001). CFA-induced mechanical allodynia was observed as of day 1 and lasted up to day 9, with recovery to baseline values by day 11 after injection (Fig. 1d). Repeated-measures ANOVA (time × paw) showed a significant effect of time ($F_{7,178} = 13.6$, P < 0.001) and paw ($F_{1,178} = 156.2$, P < 0.001) and a significant time × paw interaction s ($F_{7,178} = 6.0$, P < 0.001).

Thermal hyperalgesia and mechanical allodynia induced by CARR and CFA in σ_1 receptor knockout mice

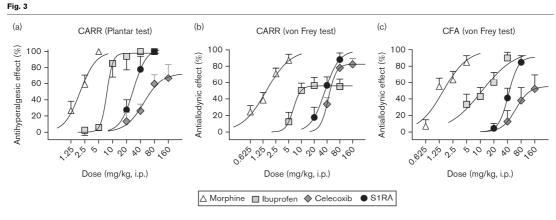
Baseline responses in the plantar test were not significantly different when comparing $\sigma_1 R$ KO and WT mice subsequently treated with CARR (Fig. 2a). Intraplantar injection of CARR markedly reduced paw withdrawal latency in both WT and $\sigma_1 R$ KO mice 3 h after injection ($F_{3,55} = 77.3$, P < 0.001), with no statistically significant differences between genotypes. Similarly, baseline responses in the plantar test of $\sigma_1 R$ KO and WT mice subsequently treated with CFA were not significantly different (Fig. 2b). Four days after the administration of CFA, mice showed nonsignificant (KO) to weak (WT) thermal hyperalgesia, but no statistically significant differences were found in the response to heat stimulus when the two genotypes were compared (Fig. 2b).

Basal mechanical sensitivity was also similar in both genotypes. Intraplantar injection of CARR induced a robust reduction of 50% paw withdrawal threshold 3 h after CARR injection ($F_{3,47} = 106.7$, P < 0.001), with no differences in CARR-induced mechanical allodynia between WT and $\sigma_1 R$ KO mice (Fig. 2c). Similarly, CFA-induced mechanical allodynia did not differ when the two genotypes were compared (Fig. 2d). CFA injection clearly decreased the pressure threshold, inducing withdrawal of the ipsilateral paw in both genotypes (from 1.3 ± 0.1 to 0.3 ± 0.04 g and from 1.4 ± 0.04 to 0.3 ± 0.06 g in WT and $\sigma_1 R$ KO mice, respectively).

Effects of S1RA and reference compounds on thermal hyperalgesia and mechanical allodynia in wild-type mice. The effects of drugs were investigated, 30 min after intraperitoneal administration, as the change in thermal and mechanical hypersensitivity expressed as the mean \pm

230 Behavioural Pharmacology 2014, Vol 25 No 3

Inflammation-induced thermal and mechanical hypersensitivity in σ_1 receptor knockout mice. No significant differences in pain sensitivity were observed between WT and $\sigma_1 R$ KO mice. Statistically significant differences as compared with the baseline values for each mouse type: ***P<0.001; *P<0.05 (one-way analysis of variance, followed by the Bonferroni test). Each point and vertical line represents the mean ± SEM of the values obtained in 8–18 animals. The results are an average of two independent experiments. CARR, carrageenan; CFA, complete Freund's adjuvant.


SEM (Table 1) and as the percentage of antihyperalgesic and antiallodynic effect, respectively (Fig. 3). On the basis of previous data obtained in time-course experiments, the effect of drugs on behavioural hypersensitivity was assessed 3 h (CARR) or 4 days (CFA) after an intraplantar injection of the proinflammatory agent. Administration of S1RA dose dependently inhibited CARR-induced thermal hyperalgesia with maximum efficacy ($E_{\rm max} = 104.0 \pm 15.7\%$) (Fig. 3a). Morphine and ibuprofen, but not celecoxib ($E_{\rm max} = 73.1 \pm 16.4\%$), also reached a maximum effect ($E_{\rm max} = 102.2 \pm 4.3$ and 98.0 $\pm 5.0\%$, respectively). The order of potency (ED₅₀ values) of all tested drugs was as follows: morphine (2.0 ± 0.2 mg/kg) > ibuprofen (7.5 ± 1.0 mg/kg) > S1RA (27.9 ± 5.2 mg/kg) > celecoxib (47.5 ± 16.3 mg/kg).

For CARR-induced mechanical allodynia, all analgesic drugs reversed, in a dose–response manner, the 50% withdrawal threshold. S1RA, morphine and celecoxib achieved the maximum possible effect ($E_{\rm max} = 99.1 \pm 23.7$, 102.6 ± 4.4 and 82.6 ± 7.6%, respectively). However, ibuprofen did not exert maximum efficacy ($E_{\rm max} = 55.8 \pm 6.7\%$; Fig. 3b). The order of potency (ED₅₀ values) was as follows: morphine ($1.5 \pm 0.2 \text{ mg/kg}$) > ibuprofen

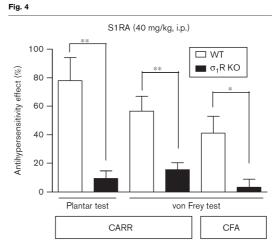
Table 1 Hind paw withdrawal in response to punctate mechanical stimulation (g) and thermal-heat stimulus (s) in the CARR and CFA models of inflammatory pain expressed as the mean \pm SEM for each drug and tested dose

		CA	CFA	
	Dose (mg/kg)	PT (s)	VF (g)	VF (g)
Morphine	0	2.2 ± 0.2	0.2 ± 0.0	0.4 ± 0.1
	0.625	ND	0.5 ± 0.1	0.5 ± 0.1
	1.25	4.9 ± 1.2	0.7 ± 0.1	1.0 ± 0.1
	2.5	8.3±1.2	1.1 ± 0.1	1.1 ± 0.1
	5	13.3 ± 1.5	1.4 ± 0.1	1.4 ± 0.1
Ibuprofen	0	2.8 ± 0.2	0.4 ± 0.0	0.4 ± 0.1
	2.5	3.0 ± 0.6	ND	ND
	5	3.3 ± 0.4	0.5 ± 0.1	0.7 ± 0.1
	10	11.1 ± 1.6	1.0 ± 0.1	0.9 ± 0.1
	20	11.9 ± 1.6	1.0 ± 0.1	1.1 ± 0.1
	40	14.6 ± 1.1	ND	1.4 ± 0.1
	80	13.1 ± 1.0	1.0 ± 0.1	ND
Celecoxib	0	2.8 ± 0.2	0.2 ± 0.0	0.6 ± 0.1
	20	4.1 ± 1.1	ND	ND
	40	5.3 ± 0.8	0.7 ± 0.1	0.7 ± 0.7
	80	8.6 ± 1.1	1.2 ± 0.1	0.9 ± 0.7
	160	9.3 ± 1.7	1.3 ± 0.1	1.1 ± 0.2
S1RA	0	2.3 ± 0.3	0.2 ± 0.0	0.3 ± 0.0
	20	5.1 ± 1.3	0.4 ± 0.2	0.3 ± 0.1
	40	10.3 ± 1.6	0.9 ± 0.1	0.8 ± 0.1
	80	16.1 ± 1.0	1.4 ± 0.1	1.3 ± 0.1

CARR, carrageenan; CFA, complete Freund's adjuvant; ND, not determined; PT (s), plantar test latency (s); VF (g), von Frey filaments threshold (g).

S1RA efficacy in mouse inflammatory pain models Gris et al. 231

Effects of S1RA and reference compounds on mechanical allodynia and thermal hyperalgesia. All drugs dose dependently reversed thermal and mechanical hypersensitivity. Each point and vertical line represents the mean ± SEM of the values obtained in 6–10 animals. CARR, carrageenan; CFA, complete Freund's adjuvant.


 $(6.4 \pm 1.3 \text{ mg/kg}) > \text{S1RA}$ $(35.9 \pm 9.8 \text{ mg/kg}) > \text{celecoxib}$ $(43.3 \pm 4.6 \text{ mg/kg}).$

The results observed in CFA-treated mice are shown in Fig. 3c. All the drugs tested inhibited CFA-induced mechanical allodynia in a dose-dependent manner. All drugs reached maximum efficacy ($E_{\rm max} = 91.3 \pm 18.6$, 100.4 \pm 5.5 and 106 \pm 8.1% for S1RA, morphine and ibuprofen, respectively), except celecoxib, with a maximum percentage of antiallodynic effect of 55.3 \pm 27.4%. The order of potency (ED₅₀ values) matches that found in the CARR model: morphine ($1.5 \pm 0.2 \text{ mg/kg}$) > ibuprofen ($11.1 \pm 2.2 \text{ mg/kg}$) > S1RA ($42.1 \pm 7.1 \text{ mg/kg}$) > celecoxib ($60.9 \pm 38.0 \text{ mg/kg}$).

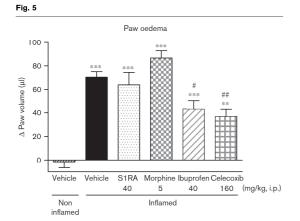
Effects of S1RA on thermal hyperalgesia and mechanical allodynia induced by CARR and CFA in $\sigma_1 R$ knockout mice

To explore whether the analgesic effects exerted by S1RA in both models were specifically mediated by $\sigma_1 R$, the antiallodynic and antihyperalgesic effects of S1RA at 40 mg/kg (effective dose in WT) were tested in $\sigma_1 R$ KO mice and compared with WT mice (Fig. 4).

S1RA administered intraperitoneally at 40 mg/kg reversed the thermal (heat) and mechanical hypersensitivity induced by the intraplantar injection of CARR (efficacy = 78.0 \pm 16.1 and 56.5 \pm 10.8% for thermal and mechanical hypersensitivity, respectively; Fig. 4). However, the same dose of S1RA did not reduce thermal and mechanical hypersensitivity in σ_1 R KO mice, and the differences versus the effect in WT mice (corresponding to 10.3 \pm 1.6 s of paw withdrawal latency) versus 9.4 \pm 5.2% in σ_1 R mice (3.4 \pm 0.5 s), t₁₃ = 3.8, P < 0.01 and 56.5 \pm 10.8% in WT mice (corresponding to 0.9 \pm 0.1 g of paw withdrawal

Antihypersensitivity effect of S1RA in the absence of sigma-1 receptor $(\sigma_1 R)$ by genetic inactivation. S1RA reversed both mechanical allodynia and thermal hyperalgesis with statistically significant differences between mouse types: **P<0.01; *P<0.05 (*i*-test). Each point and vertical line represents the mean ± SEM of the values obtained in 7–8 animals. CARR, carrageenan; CFA, complete Freund's adjuvant.

response) versus $15.5 \pm 4.8\%$ in $\sigma_1 R$ mice $(0.4 \pm 0.1 \text{ g})$, $t_{14} = 3.5$, P < 0.01, in the plantar test and the von Frey test, respectively. CFA-induced mechanical allodynia was also inhibited by S1RA at 40 mg/kg in WT mice, but not in $\sigma_1 R$ KO mice: $41.1 \pm 11.9\%$ in WT mice $(0.8 \pm 0.1 \text{ g})$ versus $3.3 \pm 5.7\%$ in $\sigma_1 R$ mice $(0.3 \pm 0.1 \text{ g})$, $t_{13} = 2.7$, P < 0.02.


232 Behavioural Pharmacology 2014, Vol 25 No 3

Effect of S1RA and reference compounds on CARRinduced paw oedema

CARR induced a robust increase in paw volume (~70 µl) 3 h after injection ($F_{5,74} = 21.2$, P < 0.001, ANOVA; P < 0.001 and P < 0.01 for comparison between inflamed vs. noninflamed; Fig. 5). As expected, oedema was significantly reduced by preventive treatment (30 min before CARR injection) with the NSAIDs ibuprofen and celecoxib. In contrast, paw volume was not modified by treatment with S1RA or morphine (P > 0.05 vs. vehicle).

Discussion

In this study, the analgesic efficacy of the selective $\sigma_1 R$ antagonist S1RA was investigated in acute and chronic inflammatory pain models induced by an intraplantar injection of CARR and CFA to mice. S1RA exerted antinociceptive effects in both experimental models of inflammatory pain. Administration of S1RA failed to reduce CARR-induced paw oedema, thus suggesting that the reduction of thermal and mechanical hypersensitivity elicited by S1RA does not involve major anti-inflammatory action. Finally, S1RA-induced analgesia was abolished in $\sigma_1 R$ knockout mice, thus showing the in-vivo $\sigma_1 R$ mediated specificity of this compound. CARR and CFA are among the most commonly used substances to induce inflammatory pain in animal models. Because both agents produce chemical sensitization and inflammation that can be pharmacologically inhibited by analgesics, they are used to predict the efficacy of new analgesics for the

Effect of S1RA, morphine, ibuprofen and celecoxib on paw oedema induced by CARR. All CARR-injected mice showed an increase in the paw volume vs. noninflamed paws (vehicle treated): ***P<0.001; **P<0.01 (one-way ANOVA, followed by the Bonferroni test). Celecoxib and ibuprofen partially reversed paw oedema with statistically significant differences vs. the vehicle-treated inflamed group: #H<0.01; #P<0.05 (one-way ANOVA, followed by the Bonferroni test). Each point and vertical line represents the mean ± SEM of the values obtained in 9–22 animals. ANOVA, analysis of variance.

treatment of inflammatory pain conditions (Bendele, 2001). Our results showed that CARR induced a transient acute inflammatory state, characterized by both mechanical and thermal hypersensitivity, that peaked at 3-5 h and reverted to baseline levels 3-4 days after injection. In contrast, CFA induced a robust and long-lasting mechanical hypersensitivity (not returning to baseline levels until day 11), but no or only mild heat hypersensitivity. This is in agreement with previous studies carried out under similar experimental conditions (i.e. injection of 20 µl of 1 mg/ml CFA solution) where CFA-induced thermal hyperalgesia developed to a lesser extent than mechanical allodynia (Bellavance and Beitz, 1996; Almarestani et al., 2011) or even failed to develop, depending on the mouse strain (Liang et al., 2006). Accordingly, multiple studies support differences in the outcome of the animal model depending on the nature of the painful stimuli (i.e. thermal vs. mechanical) (Bennet et al., 2000; Mansikka et al., 2000; Schepers et al., 2008). Finally, it is worth emphasizing that mechanical and thermal thresholds of the contralateral paw were stable across time (from the beginning to the end of experimental measurements), thus ruling out the possibility of sensitization because of successive nociceptive stimulation in the time-course experiments (Casarrubea et al., 2011; Rahn et al., 2013). Altogether, data obtained in this study are consistent with previous studies in mice and rats (Bellavance and Beitz, 1996; Sammons et al., 2000; Molina and Herrero, 2006; Almarestani et al., 2011), thus suggesting that CARR produces an acute inflammatory state whereas the effect produced by CFA is related more to chronic inflammatory pain conditions.

Mechanical thresholds and thermal latencies were similar in naïve WT and $\sigma_1 R$ KO mice, which indicates that KO mice perceive and respond normally to mechanical and thermal stimuli. This is in agreement with previous studies, where the absence of $\sigma_1 R$ in KO animals has been shown not to interfere with the perception of mechanical and thermal (heat and cold) stimuli applied to the hind paw or with the motor response required for paw withdrawal (Cendán et al., 2005; De la Puente et al., 2009; Nieto et al., 2012; Romero et al., 2012; González-Cano et al., 2013). However, unlike other experimental pain models (formalin, capsaicin and neuropathic pain models), where $\sigma_1 R$ KO mice showed a 'pain-resistant' phenotype (i.e. nociceptive behaviours did not develop or were inhibited vs. WT) (Cendán et al., 2005; De la Puente et al., 2009; Entrena et al., 2009; Nieto et al., 2012), the genetic inactivation of $\sigma_1 R$ did not prevent the acquisition of CARR-induced and CFA-induced pain-related behaviours. Similarly, $\sigma_1 R$ KO mice exposed to partial sciatic nerve ligation showed fully developed heat hypersensitivity, although mechanical allodynia was blocked and cold allodynia was attenuated (De la Puente et al., 2009). As different injuries are known to recruit different pain pathways and mechanisms (Lee et al., 1998; Dowdall *et al.*, 2005; Li *et al.*, 2013), the different phenotypes observed throughout the various models suggest a distinct involvement of the $\sigma_1 R$ system in the mechanisms underlying hypersensitivity, depending on the pain model and the readout.

The selective $\sigma_1 R$ antagonist S1RA inhibited pain behaviours in mice rendered arthritic following intraplantar CFA or CARR injection. This confirms and extends the spectrum of analgesic activity shown in previous studies, where S1RA was effective in a broad range of acute and chronic pain models (Nieto et al., 2012; Romero et al., 2012; González-Cano et al., 2013). S1RA achieved full efficacy in both pain models, with an ED_{50s} of 27.9, 35.9 and 42.1 mg/kg for CARR-induced thermal hyperalgesia, CARR-induced mechanical allodvnia and CFAinduced mechanical allodynia, respectively. These ED₅₀ values are well within the range of doses active in other pain models, including chemical sensitization with capsaicin $(ED_{50} = 26 \text{ mg/kg})$ or formalin $(ED_{50} = 40 \text{ mg/kg})$ and neuropathic pain induced by partial sciatic nerve ligation $(ED_{50} = 23 \text{ mg/kg})$ (Romero *et al.*, 2012). To assess the invivo selectivity of this compound and to unambiguously attribute the antinociceptive effect of S1RA to $\sigma_1 R$, we tested whether S1RA shows activity in the absence of its putative target (Petrus et al., 2007; González-Cano et al., 2013; Vidal-Torres et al., 2013). To this end, we took advantage of the fact that $\sigma_1 R$ KO mice show fully developed behavioural hypersensitivity after CARR and CFA. We found that S1RA was devoid of antiallodynic and antihyperalgesic effects in mice lacking $\sigma_1 Rs$, which suggests that the antinociceptive effect of S1RA in acute (CARR) as well as chronic (CFA) inflammatory pain models is actually mediated by $\sigma_1 R$. The high selectivity of this compound, which shows no interaction with a wide variety of putative pain as well as inflammation-related targets such as COX-1, COX-2, cytokines, prostanoid and steroid receptors, leukotrienes and others, also supports this conclusion (Romero et al., 2012).

The pharmacological blockade of hypersensitivity to thermal and mechanical stimuli by S1RA in the CARR and CFA models suggests that $\sigma_1 R$ modulates inflammatory pain. However, the finding that $\sigma_1 R$ KO mice normally develop CARR-induced and CFA-induced pain-related behaviours would seem contradictory and deserves discussion. The absence of the modulatory system (as in KO mice) precludes the regulation by ligands, but does not mimic the modulatory (inhibiting) effect elicited by an antagonist acting on $\sigma_1 R$. This can be explained by the chaperone nature of $\sigma_1 R$, which exerts its action by physical protein-protein interactions. Accordingly, the absence of the regulatory mechanism in KO mice is not equivalent to the decrease or gain of function promoted by a $\sigma_1 R$ ligand (i.e. S1RA) through conformational changes relating to and affecting the activity of the target protein with which $\sigma_1 R$ interacts. With respect to the intrinsic

S1RA efficacy in mouse inflammatory pain models Gris et al. 233

activity of S1RA, in-vitro data derived from the use of phenytoin confirmed its antagonistic nature. Phenytoin shifts known $\sigma_1 R$ agonists (e.g. dextromethorphan, PRE-084) to significantly higher affinities, whereas $\sigma_1 R$ antagonists (e.g. haloperidol, BD-1063, NE-100) show no shift or a small shift to lower-affinity values (Cobos *et al.*, 2005; Nahas *et al.*, 2008). S1RA produced a small shift to lower-affinity values when incubated in the presence of phenytoin, which indicated antagonist properties at the $\sigma_1 R$ (Romero *et al.*, 2012).

For thermal hyperalgesia (CARR model), the efficacy of S1RA was similar to that of celecoxib and ibuprofen. For mechanical allodynia, S1RA was more effective than ibuprofen in the CARR model and more effective and potent than celecoxib in the CFA model. Morphine was the most potent analgesic in both inflammatory pain models. These results are in agreement with previous data reporting increased paw withdrawal latencies to heat and mechanical stimuli after systemic administration of opioids in the same animal models (Luger et al., 2002; Lähdesmäki et al., 2003; Bileviciute-Ljungar et al., 2006; Liang et al., 2006; Ortiz et al., 2007). The nonselective COX inhibitor ibuprofen showed higher potency than the selective COX-2 inhibitor celecoxib in both inflammatory models. Moreover, ibuprofen showed higher efficacy than celecoxib in the inhibition of CARRinduced thermal hyperalgesia and CFA-induced mechanical allodynia. Studies using CFA but evaluating a different behavioural outcome have shown that celecoxib is less effective than other NSAIDs (Cobos et al., 2012). However, in the present study, celecoxib dose dependently reversed CARR-induced mechanical hypersensitivity more effectively than ibuprofen. Accordingly, limited efficacy of ibuprofen on CARR-induced and CFA-induced mechanical hypersensitivity has been reported (Gould et al., 2004; Rutten et al., 2011).

Finally, prophylactic treatment with S1RA did not reduce CARR-induced paw oedema. As expected, ibuprofen and celecoxib, but not morphine, elicited a significant inhibition of oedema volumes of CARR-injected paws in the same experiments. The lack of anti-inflammatory actions by S1RA indicates that the reduction of hypersensitivity to thermal and mechanical stimuli elicited by antagonizing $\sigma_1 Rs$ is not secondary to an anti-inflammatory effect, but rather results from nociceptive inhibition.

Celecoxib (a selective COX-2 inhibitor) and ibuprofen (a COX-1 and COX-2 inhibitor) were selected as positive controls from a therapeutic class used widely in the clinical management of inflammatory pain. Both COX inhibitors exert potent anti-inflammatory and analgesic effects. However, their COX-inhibiting properties underlie their ulcerogenic potential and cardiovascular risk, which represent a limitation to their therapeutic use. This is of particular importance in arthritic conditions requiring

234 Behavioural Pharmacology 2014, Vol 25 No 3

chronic treatments, and it has been reported that patients with rheumatoid arthritis are more prone to NSAIDinduced gastropathy than other NSAID users (Dijkmans et al., 1995). On this basis, the discovery of drugs with efficacy similar to COX inhibitors but with a better safety profile could be of great clinical value for arthritic patients. Weak opioids such as codeine or tramadol may be effective in the short-term management of inflammatory pain, but the development of tolerance to the analgesic effect, as well as significant and common adverse effects, leads to consideration of alternative painkillers for these patients (Whittle et al., 2013). Safety studies carried out following administration of S1RA to animals showed a good profile (Romero et al., 2012; Vidal-Torres et al., 2013). Furthermore, S1RA has successfully completed single-dose and multipledose phase I clinical studies in healthy volunteers, with good safety and tolerability profiles (Abadias et al., 2013), and it is currently undergoing phase II clinical trials.

Conclusion

Acute pretreatment of mice with S1RA produced a full antinociceptive effect in two well-characterized models of acute and chronic inflammatory (CARR and CFA) pain when evaluated by mechanical and heat hypersensitivity in the hind paw. The analgesic activity induced by S1RA was clearly mediated by the interaction with $\sigma_1 R$ and was not because of a reduction in paw oedema. These results support that $\sigma_1 R$ antagonists – particularly S1RA – could be an effective treatment for pain in conditions with underlying inflammatory mechanisms, as an alternative or complementary to NSAIDs or opioids.

Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References

- Abadias M, Escriche M, Vaqué A, Sust M, Encina G (2013). Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 75:103–117.
- Almarestani L, Fitzcharles MA, Bennett GJ, Ribeiro-da-Silva A (2011). Imaging studies in Freund's complete adjuvant model of regional polyarthritis, a model suitable for the study of pain mechanisms, in the rat. *Arthritis Rheum* 63:1573–1581.
- Bellavance LL, Beitz AJ (1996). Altered c-fos expression in the parabrachial nucleus in a rodent model of CFA-induced peripheral inflammation. J Comp Neurol 366:431-447.
- Bendele A (2001). Animal models of rheumatoid arthritis. J Musculoskelet Neuronal Interact 1:377–385.
- Bennet AD, Everhart AW, Hulsebosch CE (2000). Intrathecal administration of an NMDA or a non-NMDA receptor antagonist reduces mechanical but not thermal allodynia in a rodent model of chronic central pain after spinal cord injury. Brain Res 859:72–82.
- Bileviciute-Ljungar I, Spetea M, Guo Y, Schütz J, Windisch P, Schmidhammer H (2006). Peripherally mediated antinociception of the mu-opioid receptor agonist 2-[(4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino]acetic acid (HS-731) after subcutaneous and oral administration in rats with carrageenan-induced hindpaw inflammation. J Pharmacol Exp Ther 317:220–227.
- Casarubea M, Sorbera F, Santangelo A, Crescimanno G (2011). Learning influence on the behavioral structure of rat response to pain in hot-plate. *Behav Brain Res* 225:177-183.

- Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM (2005). Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 511:73-74.
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994). Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63.
- Cobos EJ, Portillo-Salido E (2013). "Bedside-to-bench" behavioral outcomes in animal models of pain: beyond the evaluation of reflexes. *Curr Neuropharmacol* 11:560–591.
- Cobos EJ, Baeyens JM, Del Pozo E (2005). Phenytoin differentially modulates the affinity of agonist and antagonist ligands for sigma 1 receptors of guinea pig brain. *Synapse* **55**:192–195.
- Cobos EJ, Ghasemlou N, Araldi D, Segal D, Duong K, Woolf CJ (2012). Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia. *Pain* **153**:876–884.
- De la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, et al. (2009). Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. *Pain* 145:294–303. Dijkmans BA, Janssen M, Vandenbroucke JP, Lamers CB (1995). NSAID-
- Dijkmans BA, Janssen M, Vandenbroucke JP, Lamers CB (1995). NSAIDassociated upper gastrointestinal damage in patients with rheumatoid arthritis. Scand J Gastroenterol Suppl 212:105–108.
- Dixon WJ (1980). Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441-462.
- Dowdall T, Robinson I, Meert TF (2005). Comparison of five different rat models of peripheral nerve injury. *Pharmacol Biochem Behav* 80:93–108. Drews E, Zimmer A (2009). Central sensitization needs sigma receptors. *Pain*
- Drews E, Zimmer A (2009). Central sensitization needs sigma receptors. Pain 145:269–270.
- Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, et al. (2009). Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. *Pain* 143:252–261.
- Gómez-Soler M, Fernández-Dueñas V, Portillo-Salido E, Pérez P, Zamanillo D, Vela JM, et al. (2014). Predicting the antinociceptive efficacy of o(1) receptor ligands by a novel receptor fluorescence resonance energy transfer (FRET) based biosensor. J Med Chem 57:238–242.
- González-Cano R, Merlos M, Baeyens JM, Cendán CM (2013). o1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. *Anesthesiology* **118**:691–700.
- Gould HJ 3rd, England JD, Soignier RD, Nolan P, Minor LD, Liu ZP, et al. (2004). Ibuprofen blocks changes in Na v 1.7 and 1.8 sodium channels associated with complete Freund's adjuvant-induced inflammation in rat. J Pain 5:270–280.
- Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. *Pain* 32:77–88.
- Lähdesmäki J, Šcheinin M, Pertovaara A, Mansikka H (2003). The alpha2Aadrenoceptor subtype is not involved in inflammatory hyperalgesia or morphine-induced antinociception. *Eur J Pharmacol* 468:183-189.
 Langa F, Codony X, Tovar V, Lavado A, Giménez E, Cozar P, *et al.* (2003).
- Langa F, Codony X, Tovar V, Lavado A, Giménez E, Cozar P, et al. (2003). Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. *Eur J Neurosci* 18:2188–2196.
- Lee BH, Yoon YW, Chung K, Chung JM (1998). Comparison of sympathetic sprouting in sensory ganglia in three animal models of neuropathic pain. *Exp Brain Res* 120:432–438.
- Li K, Tan YH, Light AR, Fu KY (2013). Different peripheral tissue injury induces differential phenotypic changes of spinal activated microglia. *Clin Dev Immunol* **2013**:901420.
- Liang DY, Guo T, Liao G, Kingery WS, Peltz G, Clark JD (2006). Chronic pain and genetic background interact and influence opioid analgesia, tolerance, and physical dependence. *Pain* 121:232–240.
 Luger NM, Sabino MA, Schwei MJ, Mach DB, Pomonis JD, Keyser CP, et al. (2002).
- Luger NM, Sabino MA, Schwei MJ, Mach DB, Pomonis JD, Keyser CB, et al. (2002). Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain. *Pain* **99**:397–406.
- Mansikka H, Sheth RN, DeVries C, Lee H, Winchurch R, Raja SN (2000). Nerve injury-induced mechanical but not thermal hyperalgesia is attenuated in neurokinin-1 receptor knockout mice. *Exp Neurol* **162**:343–349.
- Molina C, Herrero JF (2006). The influence of the time course of inflammation and spinalization on the antinociceptive activity of the alpha2-adrenoceptor agonist medetomidine. *Eur J Pharmacol* **532**:50–60.
 Nahas RI, Lever JR, Lever SZ (2008). Synthesis and structure-activity relation-
- Nahas RI, Lever JR, Lever SZ (2008). Synthesis and structure-activity relationships of N-(3-phenylpropyl)-N'-benzylpiperazines: potent ligands for sigma1 and sigma2 receptors. *Bioorg Med Chem* 16:755–761.
 Nieto FR, Cendan CM, Sanchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA,
- Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, et al. (2012). Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 13:1107–1121.
- Ortiz MI, Ponce-Monter H, Fernández-Martínez E, Pérez-Hernández N, Macias A, Rangel-Flores E, Castañeda-Hernández G (2007). Evaluation of the interaction between acemetacin and opioids on the hargreaves model of thermal hyperalgesia. *Pharmacol Biochem Behav* 88:47–54.

S1RA efficacy in mouse inflammatory pain models Gris et al. 235

- Petrus M, Peier AM, Bandell M, Hwang SW, Huynh T, Olney N, et al. (2007). A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain 3:40.
- Pisetsky DS, Ward MM (2012). Advances in the treatment of inflammatory arthritis. Best Pract Res Clin Rheumatol 26:251–261.
- Radner H, Ramiro S, Buchbinder R, Landewé RB, van der Heijde D, Aletaha D (2012). Pain management for inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and other spondylarthritis) and gastrointestinal or liver comorbidity. *Cochrane Database Syst Rev* 1:CD008951.
 Rahn EJ, Guzman-Karlsson MC, David Sweatt J (2013). Cellular, molecular, and
- epigenetic mechanisms in non-associative conditioning: Implications for pain and memory. *Neurobiol Learn Mem* **105**:133–150.
- Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, et al. (2012). Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitiza-
- tion. *Br J Pharmacol* **166**:2289-2306. Rutten K, De Vry J, Robens A, Tzschentke TM, van der Kam EL (2011). Dissociation of rewarding, anti-aversive and anti-nociceptive effects of different classes of anti-nociceptives in the rat. *Eur J Pain* **15**:299–305.
- Sammons MJ, Raval P, Davey PT, Rogers D, Parsons AA, Bingham S (2000). Carrageenan-induced thermal hyperalgesia in the mouse: role of nerve growth factor and the mitogen-activated protein kinase pathway. Brain Res 876:48-54.
- Schepers RJ, Mahoney JL, Gehrke BJ, Shippenberg TS (2008). Endogenous kappa-opioid receptor systems inhibit hyperalgesia associated with localized peripheral inflammation. *Pain* **138**:423–439.

- Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE (2010). The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 31:557-566.
- Van Laar M, Pergolizzi JV Jr, Mellinghoff HU, Merchante IM, Nalamachu S, O'Brien J, et al. (2012). Pain treatment in arthritis-related pain: beyond NSAIDs. Open Rheumatol J 6:320-330.
- Vidal-Torres A, de la Puente B, Rocasalbas M, Touriño C, Andreea Bura S, Fernández-Pastor B, et al. (2013). Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. *Eur J Pharmacol* **711**:63–72.
- Walsh DA, McWilliams DF (2012). Pain in rheumatoid arthritis. Curr Pain Headache Rep 16:509-517.
- Whittle SL, Richards BL, Buchbinder R (2013). Opioid analgesics for rheumatoid arthritis pain. JAMA 309:485–486.
- Wong GT (2002). Speed congenics: applications for transgenic and knock-out mouse strains. Neuropeptides ${\bf 36}:$ 230-236. Woolf CJ (2011). Central sensitization: implications for the diagnosis and
- treatment of pain. Pain 152:S2-S15.
- Zamanillo D, Portillo-Salido E, Vela JM, Romero L (2012). Sigma 1 receptor Zamanilio D, Portilio-Salido E, Vela JM, Komero L (2012). Sigma 1 receptor chaperone: pharmacology and therapeutic perspectives. In: Botana M, Loza M, editors. *Therapeutic targets: modulation, inhibition, and activation*. Hoboken, NJ, USA: John Wiley & Sons Inc. pp. 225–278.
 Zamanillo D, Romero L, Merlos M, Vela JM (2013). Sigma 1 receptor: A new therapeutic target for pain. *Eur J Pharmacol* **71**6:78–93.
- Zimmermann M (1983). Ethical guidelines for investigations of experimental pain in conscious animals. *Pain* 16:109–110.

2.2. <u>Article 3</u>: "Sigma-1 receptor and inflammatory pain".

(Inflammation Research 2015;64:377-81)

Georgia Gris, Enrique José Cobos, Daniel Zamanillo and Enrique Portillo-Salido.

Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE Barcelona, Spain.

Note that this publication is a commentary, a bibliographic review of the topic sigma-1 receptor in inflammatory pain, without adding new experimental results. Therefore, we have considered not necessary to summarize it.

COMMENTARY

CrossMark

Inflammation Research

Sigma-1 receptor and inflammatory pain

Georgia Gris¹ · Enrique José Cobos² · Daniel Zamanillo¹ · Enrique Portillo-Salido¹

Received: 30 January 2015/Revised: 23 March 2015/Accepted: 8 April 2015 © Springer Basel 2015

Abstract

Introduction The sigma-1 receptor (Sig-1R) is a unique ligand-regulated molecular chaperone that interacts with several protein targets such as G protein-coupled receptors and ion channels to modulate their activity. Sig-1R is located in areas of the central and peripheral nervous system that are key to pain control. Previous preclinical studies have suggested a potential therapeutic use of Sig-1R antagonists for the management of neuropathic pain.

Discussion Recent studies using pharmacological and genetic tools have explored the role of Sig-1R in inflammatory pain conditions. Mice lacking the Sig-1R have shown different patterns of phenotypic responses to inflammatory injury. Systemic or peripheral administration of several Sig-1R antagonists, including the selective Sig-1R antagonist S1RA, inhibited both mechanical and thermal hypersensitivity in several preclinical models of inflammatory pain. These recent studies are summarized in the present commentary.

Conclusion Central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.

Responsible Editor: Ji Zhang.

Enrique Portillo-Salido eportillo@esteve.es

² Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Granada, Spain

Published online: 23 April 2015

Keywords Sigma-1 receptor · Inflammatory pain · Analgesic · Arthritis · Carrageenan · Complete Freund's adjuvant

Introduction

The sigma-1 receptor (Sig-1R) is a unique ligand-regulated target class with chaperoning functions over different molecular targets. In its role as a molecular chaperone, Sig-1R modulates downstream signalling pathways activated upon the stimulation of other systems [1, 2]. The function of Sig-1R can be modulated by agonists and antagonists that differentially affect the ability of Sig-1R to interact with different proteins. It has been postulated that Sig-1R ligands have no effects by themselves, but are able to modulate signalling pathways under pathological conditions [1]. Sig-1R is distributed in peripheral organs and in different areas of the central nervous system (CNS) involved in memory, emotions, and sensory and motor functions [3]. In particular, it is expressed in key areas for pain control, such as the dorsal root ganglia, the superficial layers of the dorsal horn, the periaqueductal grey matter, the locus coeruleus, and the rostroventral medulla [4, 5]. Sig-1R was first linked to analgesia by Chien and Pasternak 20 years ago. These authors described Sig-1R as an endogenous anti-opioid system because they found that Sig-1R agonists counteracted opioid receptor-mediated analgesia, while Sig-1R antagonists potentiated it [6]. At the preclinical level, several recent studies using knockout (KO) mice (genetic approach) and selective Sig-1R antagonists (pharmacological approach) have suggested a potential use of Sig-1R antagonists for the treatment of (particularly, neuropathic) pain in the absence of opioids [2]. Indeed, the selective Sig-1R antagonist S1RA is

 $\textcircled{}{ \underline{ \mathscr{O}} }$ Springer

¹ Drug Discovery and Preclinical Development, ESTEVE, Baldiri Reixach, 4-8, 08028 Barcelona, Spain

currently undergoing phase II clinical trials in neuropathic pain patients. Different laboratories using similar preclinical studies have recently added a further piece to the puzzle by looking at inflammatory pain conditions [7–10].

Insights from Sig-1R knockout mice

The generation of a Sig-1R KO mouse was a key milestone in establishing the role of Sig-1R in pain modulation. Behavioural baseline responses of normal, unlesioned Sig-1R KO mice to mechanical and thermal stimuli were found to be undistinguishable from those of wild-type (WT) mice, thus suggesting that normal sensory thresholds are not affected by the absence of the gene. Sig-1R KO mice, however, exhibited a reduced pain phenotype under some pain conditions. Pain behaviours elicited by intraplantar (i.pl.) administration of formalin and capsaicin are attenuated in Sig-1R KO mice [11, 12]. In the case of neuropathic pain, either induced by sciatic nerve ligation or after treatment with the antineoplastic agent paclitaxel, cold and mechanical allodynia did not develop or were strongly attenuated in Sig-1R KO mice [13, 14]. In contrast, thermal (heat) hyperalgesia developed to the same extent as in WT mice following nerve injury [13] (Table 1).

New studies have evaluated the role of Sig-1R receptors in inflammatory pain [7–10]. Inflammatory pain can be induced experimentally by i.pl. injection of agents such as carrageenan (CARR) or complete Freund's adjuvant (CFA) and is behaviourally evidenced by both mechanical and thermal (heat) hypersensitivity. CARR produces an acute inflammatory state, whereas the effect produced by CFA better models chronic inflammatory pain conditions [15].

Unlike neuropathic pain models without mechanical allodynia, the genetic inactivation of Sig-1R failed to prevent the development of CARR-induced and CFA-induced mechanical allodynia when von Frey filaments were applied [7]. In contrast, pain-like responses evoked by a blunt mechanical stimulus (different from the "allodynic" punctate stimulation elicited by von Frey filaments) were inhibited in the CARR-sensitized Sig-1R KO mice [10]. Finally, Sig-1R KO mice developed heat hyperalgesia to the same extent as WT mice in the CARR-induced acute inflammation model (Table 1). Taken together, these data indicated that the lack of Sig-1R did not impact enough on the development of behavioural hypersensitivity induced by peripheral inflammation. Because neuropathic and inflammatory pain is known to involve different pathways, the different phenotypes observed in Sig-1R KO mice suggest-depending on the pain model and the readout-a distinct involvement of the Sig-1R system in the mechanisms underlying hypersensitivity [7].

Insights from selective Sig-1R antagonists

Many studies in the Sig-1R field led to conclusions that were often blurred by the non-selective nature of many of the compounds used [16, 17]. The recent discovery of S1RA (E-52862), a selective Sig-1R antagonist, is a step forward in studying the role of Sig-1R in nociception and pain [18]. S1RA shows high affinity for Sig-1R (Ki = 17 nM) and a good Sig-1R/Sig-2R selectivity ratio (>550). Moreover, it is selective over a panel of 170 molecular targets. It behaves as an antagonist, penetrates the blood–brain barrier, and binds to Sig-1R in the CNS [18]. As a practical in vivo proof of Sig-1R selectivity and

Table 1 Summary of pain behaviours shown by Sig-1R KO mice in several models of neuropathic and inflammatory pain

Pain type	Animal model	Readout	Method (units)	Sig-1R KO response	References
Neuropathic pain	Partial sciatic nerve ligation-induced	Mechanical allodynia Thermal (cold) allodynia	von Frey test (pressure, g) Cold plate test (score)	Attenuation Attenuation	De la Puente et al. [13]
	neuropathy	Thermal (heat) hyperalgesia	Plantar test (latency, s)	Similar to WT	
	Chemotherapy (paclitaxel)- induced neuropathy	Mechanical allodynia	von Frey test (pressure, g)	Attenuation	Nieto et al. [14, 19]
		Thermal (cold) allodynia	Acetone test (latency, s)	Attenuation	
Inflammatory pain	Carrageenan-induced acute inflammation	Mechanical allodynia	von Frey test (pressure, g)	Similar to WT	Gris et al. (2014)
		Thermal (heat) hyperalgesia	Plantar test (latency, s)	Similar to WT	Gris et al. [7]; Tejada et al. [10]
		Mechanical hyperalgesia	Paw pressure test (latency, s)	Attenuation	Tejada et al. [10]
	CFA-induced chronic inflammation	Mechanical allodynia	von Frey test (pressure, g)	Similar to WT	Gris et al. [7]

🖄 Springer

G. Gris et al.

Sigma-1 receptor and inflammatory pain

Pain type	Readout	Method (units)	Animal model	Treatment protocol	Sig-1R antagonist	Effect	References
Inflammatory pain	Mechanical allodynia	von Frey test (pressure, g)	Carrageenan (2.5 %, 50 µl) in male mice	Curative	S1RA (i.p.)	Attenuation	Gris et al. [7]
			CFA (1 mg/ml, 20 µl) in male mice	Curative	S1RA (i.p.)	Attenuation	
			Carrageenan (2 %, 100 µl) in male rats	Preventive	(-)-MRV3 and (+)- MR200 (s.c.)	Attenuation	Parenti et al. [8, 9]
	Mechanical hyperalgesia	Paw pressure test (latency, s)	Carrageenan (1 %, 50 µl) in female mice	Curative	BD-1063 and S1RA (s.c. and i.pl.)	Attenuation	Tejada et al. [10]
	Thermal (heat) hyperalgesia	Plantar test (latency, s)	Carrageenan (2.5 %, 50 µl) in male mice	Curative	S1RA (i.p.)	Attenuation	Gris et al. [7]
			Carrageenan (1 %, 50 µl) in female mice	Curative	S1RA (s.c. and i.p.)	Attenuation	Tejada et al. [10]
			Carrageenan (2 %, 100 µl) in male rats	Preventive	(-)-MRV3 and (+)- MR200 (s.c.)	Attenuation	Parenti et al. [8, 9]
		Plethysmometer (volume, μl)	Carrageenan (2.5 %, 50 µl) in male mice	Preventive	S1RA (i.p.)	No effect	Gris et al. [7]
			Carrageenan (1 %, 50 µl) in female mice	Preventive	BD-1063 and S1RA (s.c.)	No effect	Tejada et al. [10]
			Carrageenan (2 %, 100 µl) in male rats	Preventive	(-)-MRV3 and (+)- MR200 (s.c.)	Attenuation	Parenti et al. [8, 9]

CFA complete Freund's adjuvant, *i.p.* intraperitoneal, *s.c.* subcutaneous, *i.pl.* intraplantar

unequivocal involvement in its antinociceptive effects, Gris et al. [7] took advantage of the fact that Sig-1R KO mice developed behavioural hypersensitivity in inflammatory pain models and found that S1RA was devoid of antiallodynic and antihyperalgesic effects in mice lacking the Sig-1R. In turn, Tejada et al. [10] proved the in vivo selectivity of S1RA (and BD1063, another known Sig-1R antagonist) by means of a pharmacological strategy, i.e., using the Sig-1R agonist PRE-084 to revert its antihyperalgesic effects.

Systemically administered S1RA provided efficacy similar to that of ibuprofen and celecoxib in inhibiting inflammation-induced (CARR or CFA) hypersensitivity. Unlike anti-inflammatory agents, its activity was purely antinociceptive—the CARR-induced oedema remained unaffected in Sig-1R KO mice or after treatment with S1RA or BD1063 in WT mice [7, 10]. Interestingly, systemically administered Sig-1R antagonists inhibited all pain-related behaviours evaluated in WT mice, including those developed by Sig-1R KO mice (mechanical allodynia and thermal hyperalgesia) (Table 1). This brings out the difference between the effect of genetics (i.e., the absence of the receptor and adaptive changes) and the pharmacological blockade of Sig-1R (i.e., the modulatory effect of a ligand at the time of the test) [2].

By administering other Sig-1R antagonists such as MRV3 and (+)–MR200 before CARR i.pl. injection (preventive protocol), Parenti et al. [8, 9] also showed a dose-dependent inhibition of mechanical allodynia and

thermal hyperalgesia. They, however, found a reduction of paw oedema which was not observed in either the Gris or the Tejada studies (Table 2). An effect of MRV3 and (+)– MR200 on molecular targets other than Sig-1R—by modulating inflammatory reactions—cannot be ruled out. To confirm this possibility, the selectivity profile of MRV3 and (+)–MR200 should be thoroughly investigated. Alternatively, whether these drugs do or do not maintain their antioedematous activity in Sig-1R KO mice could also be studied. If these drugs still had an effect even in the absence of their purported pharmacological target, off-target effects responsible for the anti-inflammatory effect should be considered.

Thus, all the above results suggest that the use of selective Sig-1R antagonists could be a valid approach for the treatment of inflammatory pain, thereby extending the spectrum of analgesic activity shown for this drug class in previous studies.

Insights from the periphery

Increasing evidence suggests that activity from the periphery is essential to not only initiate, but also maintain painful symptoms. Targeting the peripheral nervous system would overcome the typical side effects related to central nervous system actions. While the role of peripheral Sig-1R on pain modulation has not been extensively studied

Deringer

[10], the fact that the inhibition of peripheral Sig-1R potentiates opioid antinociception was recently reported. The peripheral role of Sig-1R is also supported by its high density in peripheral nervous tissues such as dorsal root ganglia [19]. The peripheral mechanism for Sig-1R modulation in inflammatory pain has been recently addressed by Tejada et al., who first described the role played by peripheral Sig-1R in inflammatory pain conditions in vivo and brought out the possibility of targeting peripheral Sig-1R to ameliorate inflammatory hyperalgesia. These authors used a behavioural approach where i.pl. administration of Sig-1R agonist PRE-084 abolished the systemic antinociceptive effect of selective Sig-1R antagonists in the CARR pain model. Moreover, i.pl. administration of S1RA in the inflamed paw was sufficient to completely reverse hyperalgesia.

Previous studies focussing on neuropathic pain have shown that the inhibition of Sig-1R leads to decreased amplification of pain signalling within the spinal cord (central sensitization) [13, 18]—this supporting the use of centrally acting Sig-1R compounds. Today, recent data of the study by Tejada et al. [10] in inflammation-induced pain suggest that the effects exerted by Sig-1R antagonists at the periphery contribute to their antinociceptive effect, and perhaps not only in inflammatory conditions but also in other pain conditions involving peripheral sensitization, including neuropathic pain.

Underlying anti-inflammatory pain mechanisms of Sig-1R

Inflammatory pain is characterized by a pronounced enhancement of nociceptor responsiveness (peripheral sensitization) in response to mediators released at the inflammation site. Due to its pleiotropic chaperoning nature Sig-1R could, by acting downstream to the activation of different receptors and channels, modulate the intracellular signalling of a variety of algesic mediators. In fact, bradykinin and nitric oxide (NO) are key mediators released during inflammation that contributes to peripheral sensitization [20] and Sig-1R activation is known to enhance both bradykinin-induced Ca²⁺ signalling [21] and NO signalling [22]. In addition, pain sensitization after peripheral inflammation involves plastic changes mediated by an increase in spinal excitatory neurotransmission together with activation of kinases, including ERK_{1/2}, which are known to be modulated by Sig-1R [13, 23-27]. The antinociceptive effects induced by Sig-1R antagonists could be reasonably attributed to an inhibition of such intracellular cascades.

Final remarks

Sig-1R is being cited as an example of great interest from a translation perspective and because it represents a potentially new therapeutic approach to pain management [28]. In particular, a rather compelling role for Sig-1R in neuropathic pain has been suggested by preclinical models of several different forms of pain [2]. Now, the systemic effects of several structurally different compounds including S1RA, a selective compound for this receptor, have been tested in preclinical models of acute and chronic inflammatory pain with positive results [7-10]. The analgesic effect in the inflammatory pain models was also observed after local application of selective Sig-1R antagonists to inflamed tissue, which suggests a role for Sig-1R in peripherally mediated analgesia. Thus, both central and peripheral pharmacological blockade of Sig-1R could be an effective option to treat inflammatory pain.

Acknowledgments Enrique J Cobos was partially supported by Grant SAF2013-47481-P from the Spanish Government (Madrid, Spain), FEDER funds, Grant CTS109 from the Junta de Andalucía (Seville, Spain), and the Research Program of the University of Granada.

References

- Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci. 2010;31:557–66.
- Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol. 2013;716:78–93.
- Wolfe SA Jr, Culp SG, De Souza EB. Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology. 1989;124:1160–72.
- Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the sigma-1 receptor in the adult rat central nervous system. Neuroscience. 2000;97:155–70.
- Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma-1 (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat. 2000;20:375–87.
- Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther. 1994;271:1583–90.
- Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. Behav Pharmacol. 2014;25:226–35.
- Parenti C, Marrazzo A, Aricò G, Cantarella G, Prezzavento O, Ronsisvalle S, Scoto GM, Ronsisvalle G. Effects of a selective sigma-1 antagonist compound on inflammatory pain. Inflammation. 2014;37:261–6.

D Springer

G. Gris et al.

Sigma-1 receptor and inflammatory pain

- Parenti C, Marrazzo A, Aricò G, Parenti R, Pasquinucci L, Ronsisvalle S, Ronsisvalle G, Scoto GM. The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm Res. 2014;63:231–7.
- Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology. 2014;31:3855–69.
- Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma-1 receptor knockout mice. Eur J Pharmacol. 2005;511:73–4.
- Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain. 2009;143:252–61.
- De la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, López-García JA, Maldonado R, Zamanillo D, Vela JM. Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain. 2009;145:294–303.
- Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain. 2012;13:1107–21.
- Cobos EJ, Portillo-Salido E. "Bedside-to-bench" behavioral outcomes in animal models of pain: beyond the evaluation of reflexes. Curr Neuropharmacol. 2013;11:560–91.
- Zamanillo D, Portillo-Salido E, Vela JM, Romero L. Sigma 1 Receptor Chaperone: pharmacology and therapeutic perspectives. In: Botana M, Loza M, editors. Therapeutic targets: modulation, inhibition, and activation. Hoboken: John Wiley & Sons Inc.; 2012. p. 225–78.
- 17. Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem. 2014;6:1179–99.
- Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segalés C, Laloya M, Hernández E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueño J, Merlos M, Baeyens JM, Giraldo J, López-García JA, Maldonado R, Plata-Salamán CR, Vela JM.

Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol. 2012;166:2289–306.

- Sánchez-Fernández C, Montilla-García Á, González-Cano R, Nieto FR, Romero L, Artacho-Cordón A, Montes R, Fernández-Pastor B, Merlos M, Baeyens JM, Entrena JM, Cobos EJ. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J Pharmacol Exp Ther. 2014;348:32–45.
- 20. Meller ST, Gebhart GF. Nitric oxide (NO) and nociceptive processing in the spinal cord. Pain. 1993;52:127–36.
- Hayashi T, Maurice T, Su TP. Ca(2+) signaling via sigma(1)receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther. 2000;293:788–98.
- 22. Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol. 2011;163:1707–20.
- Karim F, Wang CC. Gereau RW 4th Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signalregulated kinase signaling required for inflammatory pain in mice. J Neurosci. 2001;21:3771–9.
- Galan A, Lopez-Garcia JA, Cervero F, Laird JM. Activation of spinal extracellular signaling-regulated kinase-1 and -2 by intraplantar carrageenan in rodents. Neurosci Lett. 2002;322:37–40.
- 25. Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci. 2002;22:478–85.
- Adwanikar H, Karim F, Gereau RW 4th. Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation. Pain. 2004;111:125–35.
- Cruz CD, Neto FL, Castro-Lopes J, McMahon SB, Cruz F. Inhibition of ERK phosphorylation decreases nociceptive behaviour in monoarthritic rats. Pain. 2005;116:411–9.
- Barrett JE. The pain of pain: challenges of animal behavior models. Eur J Pharmacol. 2015. doi:10.1016/S0014-2999(15)00017-5.

2.3. <u>Annex 1</u>: "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in inflammatory models".

Annex 1 details complementary experiments that support and extend some of the conclusions obtained from Articles 2 and 3. Article 2 described for the first time the role of $\sigma_1 R$ in inflammatory pain using either genetic ($\sigma_1 R$ KO mice) or pharmacological (E-52862) tools. Article 3 reviewed these results and other recent data published on inflammatory pain and $\sigma_1 R$, and compared them with previous results published on neuropathic pain.

Changes in the spinal cord (SC) were addressed here, as it is a prime site of action for analgesia where $\sigma_1 R$ plays an important role by facilitating central sensitization mechanisms both electrophysiologically (wind-up phenomenon) and biochemically (pERK enhancement) (De la Puente *et al.*, 2009; Nieto *et al.*, 2012; Romero *et al.*, 2012). The spinal expression of several key molecular markers was specifically studied by using the inflammatory pain models induced by intraplantar injection of carrageenan and CFA in WT and $\sigma_1 R$ KO mice. The evaluation of the spinal expression was performed 3 h and 4 days following injection of carrageenan and CFA, respectively (Article 2), using two different approaches:

- Study of the spinal expression of pERK by western blot.
- Study of the spinal expression of c-Fos, GFAP, nNOS, SP and NPY by immunohistochemistry.

Study of the spinal expression of pERK by western blot.

Several studies have reported the involvement of $\sigma_1 R$ in the activation of the extracellular signal-regulated kinase (ERK) in the SC sensitization process in neuropathic pain models such as chronic constriction compression of the DRG, partial sciatic nerve ligation, and paclitaxel-induced neuropathic pain (De la Puente *et al.*, 2009; Son and Kwon, 2010; Nieto *et al.*, 2012). In particular, ERK phosphorylation within the SC has been associated with mechanical and cold allodynia in animal models of neuropathic pain: ERK phosphorylation in the SC was found in neuropathic WT but not $\sigma_1 R$ KO mice, and $\sigma_1 R$ KO mice exhibited reduced cold allodynia and did not develop mechanical allodynia as compared to WT mice (De la Puente *et al.*, 2009; Nieto *et al.*, 2012) (Table 1).

The **objective** of this part of the present Annex was to investigate whether the changes in the activation (phosphorylation) of spinal ERK related to both acute and chronic inflammatory pain models are affected in $\sigma_1 R$ KO mice.

The **experimental approach** was basically performed according to Nieto *et al.*, 2012, with minor modifications as detailed in the Methods section. Sample processing was performed separately for WT and $\sigma_1 R$ KO mice.

Western blot experiments using antibodies against total ERK and phosphorylated ERK (pERK) identified two bands with molecular weights of 44 and 42 KDa , which correspond to the ERK subunits 1 and 2, respectively. As expected, the GAPDH antibody identified a band with a molecular weight of 37 KDa. pERK immunodetection in SC was low in baseline (naïve) conditions, as previously described (Borges *et al.*, 2015), but it was higher in WT than in σ_1 R KO mice, which could reflect actual differences in the baseline threshold for ERK activation but methodological differences due to separate processing of WT and σ_1 R KO mice

146

samples cannot be discarded. No significant changes in the intensity of pERK immunoreactive bands were found in carrageenan- and CFA-treated mice as compared to the control (naïve) group in both mouse types (WT and $\sigma_1 R$ KO) (Fig. 1A and 1B). Therefore, the pain-related hypersensitivity observed in WT mice 3 hours or 4 days after carrageenan and CFA injection, respectively, was not accompanied by a selective increase of ERK phosphorylation within SC at the time of behavioural evaluation. As mentioned above, the phosphorylation of ERK is a key process involved in the sensitization of pain pathways, and the increased pERK levels in the dorsal SC during neuropathy were attenuated by $\sigma_1 R$ inhibition. However, no apparently increased pERK levels in the dorsal horn of the SC were observed after either carrageenan or CFA administration. This not only suggests the involvement of different mechanisms in the sensory hypersensitivity of experimental models of inflammatory and neuropathic pain, but also in the different mechanisms in which $\sigma_1 R$ is involved (Table 1 and Figure 2) (Gris *et al.*, 2015).

We hypothesized that spinal pERK is up-regulated in neuropathic pain conditions in WT mice and that the lack of $\sigma_1 R$ in KO mice prevents such an increase in pERK and attenuates the development of mechanical and cold allodynia (De la Puente *et al.*, 2009). This is supported by studies showing that spinal up-regulation of pERK and mechanical hypersensitivity in neuropathic animals (e.g., streptozocininduced diabetic neuropathy) are both suppresed by spinal inhibition of ERK phosphorylation (e.g., intrathecal administration of the selective MAPK/ERK-kinase inhibitor PD 198306) (Ciruela *et al.*, 2003). In contrast, these new results suggest that pERK at the SC might not be a key mediator in the modulation by $\sigma_1 R$ of pain hypersensitivity either in acute or chronic inflammatory processes, which is consistent with the observation that $\sigma_1 R$ KO mice develop mechanical allodynia to the same extent as WT mice (Figure 2 and Table 1).

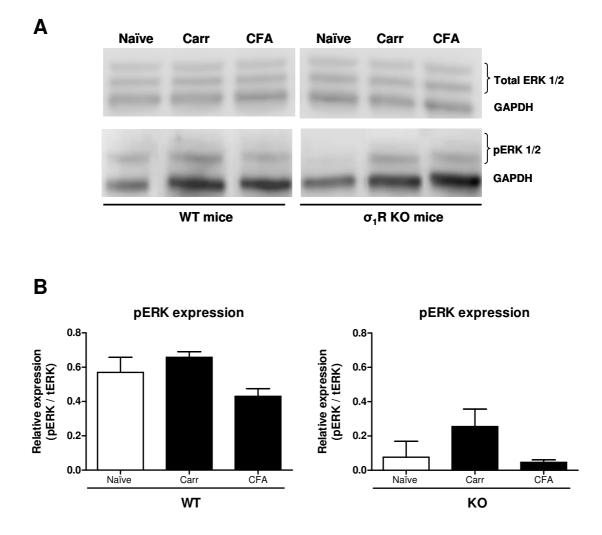


Fig. 1. Total ERK and pERK expression in the ipsilateral dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. (A) Representative immunoblots of total ERK and pERK in WT and $\sigma_1 R$ KO mice. GAPDH was used as loading control. (B) Quantification of immunoblotting for pERK in WT and $\sigma_1 R$ KO mice. The intensity of pERK bands was relativized to those of their corresponding loading control GAPDH bands, and then normalized respect to the mean control group intensity. pERK was finally normalized to total ERK protein. No significant differences *versus* corresponding control group (one-way ANOVA followed by Bonferroni test) were found. Each bar and vertical line represents the mean \pm SEM of the densitometric values obtained from 3 pools of 4 animals each.

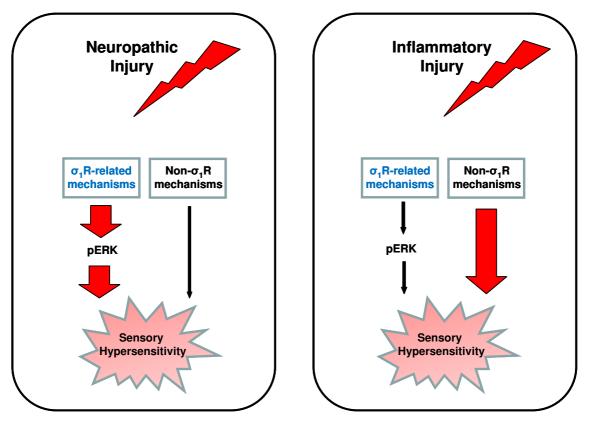


Fig. 2. Schematic diagram suggesting the different role of $\sigma_1 R$ in the development of pain hypersensitivity in neuropathic and inflammatory processes. The left and right panels represent the relative importance of spinal $\sigma_1 R$ -related ERK activation on sensory hypersensitivity after inflammatory or neuropathic injury, respectively. The absence of $\sigma_1 R$ in KO mice prevents ERK activation in the SC and the development of sensory hypersensitivity after neuropathic injury (De la Puente *et al.*, 2009; Nieto *et al.*, 2012). In contrast, spinal pERK does not seem to be a key component in the development of sensory hypersensitivity after inflammatory injury.

		WT mice		$\sigma_1 R$ KO mice		
Pain Type	Animal model	Pain expression	pERK expression	Pain expression	pERK expression	Reference
Neuropathic pain	Partial sciatic nerve ligation- induced neuropathy	Allodynia	Up-regulation	Attenuation	Attenuation	De la Puente <i>et al.</i> , 2009
	Chemotherapy (paclitaxel)- induced neuropathy	Allodynia	Up-regulation	Attenuation	Attenuation	Nieto <i>et al.</i> , 2012, 2014
Inflammatory pain	Carrageenan-induced acute inflammation	Allodynia	No up-regulation	Similar to WT	Similar to WT	Gris <i>et al.</i> , 2014
	CFA-induced chronic inflammation	Allodynia	No up-regulation	Similar to WT	Similar to WT	Gris <i>et al.</i> , 2014

Table 1. Summary of pain behaviours and pERK expression shown by WT and $\sigma_1 R$ KO mice in several models of neuropathic and inflammatory pain.

Study of the spinal expression of c-Fos, GFAP, nNOS, SP and NPY by immunohistochemistry.

As mentioned, $\sigma_1 R$ plays an important role in facilitating central sensitization mechanisms in the dorsal horn of the SC after peripheral injury, where several painrelated molecular markers such as c-Fos, GFAP, nNOS, SP and NPY are involved:

- The immediate early gene c-Fos has been related to neuronal activation (Gao and Ji, 2009). In fact, the activation of nociceptive afferent neurons by noxious heat, mechanical stimuli or chemical stimuli results in the rapid appearance of c-Fos immunoreactivity in the superficial layers of the dorsal horn. The pharmacological blockade of σ_1 R has shown to attenuate the c-Fos expression in several pain models, such as the formalin test or the migraine models induced by either formalin or capsaicin (Kim *et al.*, 2006; Kwon *et al.*, 2009; Roh and Yoon, 2014).
- GFAP is an intermediate filament component distributed in the cytoplasm of some glial cells. While its expression is low in the intact adult CNS, it increases after astrocytic activation due to synaptic remodeling in chronic pain states (Stephenson and Byers, 1995; Sun *et al.*, 2005). It has been recently discovered that σ₁R activates astrocytes via p38 MAPK phosphorylation, thus leading to mechanical allodynia in a peripheral neuropathic pain model (Moon *et al.*, 2014).
- The enzyme nNOS plays a key role in the nociceptive processes that regulate NO production in laminae I and II of the SC (Sardella *et al.*, 2011). The spinal activation of $\sigma_1 R$ induced sensitization that is mediated by an increase in nNOS activity, which in turn is associated with a NO-induced increase in PKCdependent NR1 expression (Roh *et al.*, 2011).

• Neuropeptides such as NPY and SP are released after injury, are widely distributed in the CNS and PNS, and play an important neuromodulatory role in primary sensory neurons (Cuesta *et al.*, 1999; Yalamuri *et al.*, 2013). While no clear evidence has related $\sigma_1 R$ to these neuropeptides in pain models (Ohsawa *et al.*, 2011), it is known that NPY-induced increases in hippocampal dopamine can be mediated by $\sigma_1 R$ (Meurs *et al.*, 2007).

The **objective** of this second part of the present Annex was to investigate the role of $\sigma_1 R$ in the expression of spinal c-Fos, GFAP, nNOS, SP and NPY in inflammatory pain models. To this end, the expression of these proteins in $\sigma_1 R$ KO and WT mice was compared by immunohistochemistry after acute and chronic inflammatory pain processes.

The **material and methods** are the same than those described in Article 4 (immunohistochemistry methods) and are also detailed in the Methods section. The main points are briefly summarized below.

The changes in protein immunoreactivity in the spinal hemicord (ipsilateral and contralateral) segments L4-S1 were assessed by quantifying laminae I and II in two different ways:

- c-Fos, nNOS and NPY expression were evaluated by counting the number of immunopositive cells.
- GFAP and SP expression were determined by evaluating the mean grey intensity of the immunoreactive area.

In order to maintain a constant threshold for each image and to compensate for subtle immunostaining variability, only immunoreactivity at least 70% darker than the

151

average grey level of each image after background substraction was quantified for each antibody (Choi *et al.*, 2012).

The control group corresponds to naïve animals from the same experimental set. Four experimental groups were run in parallel for immunostaining purposes: naïve WT, injured WT (carrageenan or CFA), naïve $\sigma_1 R$ KO, and injured $\sigma_1 R$ KO (carrageenan or CFA). The values obtained from 4 mice of at least 4 sections for each mice were averaged for each experimental group.Results are expressed in two ways:

- Absolute values of immunopositive neurons (cFos, nNOS and NPY) or mean grey intensity values (GFAP and SP) of the ipsilateral dorsal horn (B and C of Figures 3, 4, 5, 6, 7).
- Percentages of change *versus* control animals for each hemicord (contralateral and ipsilateral side) segments (D and E of Figures 3, 4, 5, 6, 7).

In all experimental conditions, **c-Fos** was mainly expressed in laminae I–II of the SC. In the control groups (WT and $\sigma_1 R$ KO), similar number of c-Fos positive neurons (13-20) were detected in both the ipsilateral and contralateral sides of the lumbar SC. No significant differences were found between WT and KO naïve groups (Fig. 3A). Consistent with previous studies (Chapman *et al.*, 1995; Morgenweck *et al.*, 2010), the c-Fos expression in the ipsilateral dorsal horn was markedly increased in WT mice 3 h after carrageenan injection (p < 0.05, 2.1-fold increase *versus* control). A similar increase was also found in the ipsilateral dorsal horns of $\sigma_1 R$ KO mice (1.8-fold increase *versus* control; Fig. 3B and 3D). No statistically significant differences between genotypes were found when the ipsilateral dorsal horns were compared after carrageenan injection. No changes in c-Fos-immunopositive cells following injection of carrageenan were found in the contralateral WT and $\sigma_1 R$ KO dorsal horns (Fig. 3D). Unlike observations in the acute inflammatory pain model, no significant changes were found 4 days after CFA intraplantar injection in WT mice. This is consistent with the fact that c-Fos is an immediate early gene that is rapidly activated at the beginning of a potentially harmful stimulus (i.e. inflammatory injury). Conversely, $\sigma_1 R$ KO mice with inflamed paw showed a significant ipsilateral increase of positive cells expressing c-Fos (p < 0.05 versus control, Fig. 3C). No changes were observed in c-Fos-immunopositive cells following CFA injection in WT and $\sigma_1 R$ KO contralateral dorsal horns (Fig. 3E).

In summary, c-Fos was selectively expressed in the superficial dorsal horn of the ipsilateral SC after carregeenan injection in both WT and $\sigma_1 R$ KO mice. In contrast, c-fos expression in the ipsilateral dorsal horn 4 days after CFA injection was found in $\sigma_1 R$ KO mice, but not in WT mice, thus suggesting a prolonged activation of some SC neurons after chronic inflammation in the absence of $\sigma_1 R$.

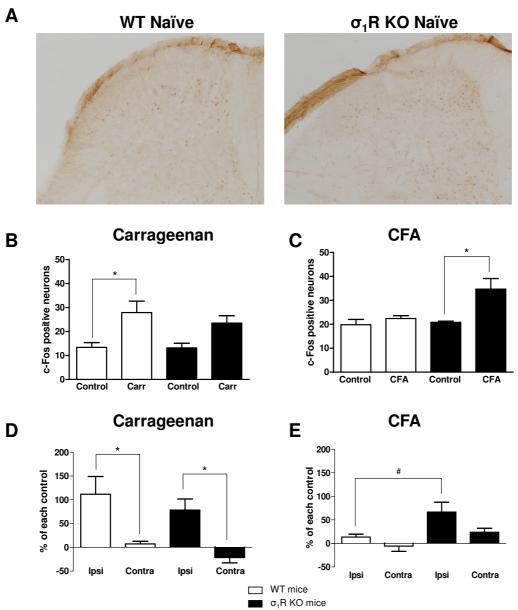


Fig. 3. c-Fos expression in the dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. Representative slices of c-Fos immunostaining in the dorsal horn of SC in WT and $\sigma_1 R$ KO naïve mice (A). c-Fos quantification as the number of immunoreactive c-Fos neurons in the ipsilateral dorsal horn of the SC secondary to carrageenan (B) and CFA (C) intraplantar injection in WT and $\sigma_1 R$ KO mice. Note that the control group corresponds to naïve animals within the same experimental set. Percentage of c-Fos immunoreactivity *versus* control following carrageenan (D) or CFA (E) injection in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of WT and $\sigma_1 R$ KO mice. Statistically significant differences obtained by comparing each control group in WT and $\sigma_1 R$ KO mice: * p < 0.05; and by comparing WT and $\sigma_1 R$ KO mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

Expression of GFAP within laminae I and II of the SC was found in all experimental groups. Both naïve groups (WT and $\sigma_1 R$ KO) showed similar GFAP immunostaining patterns, thus suggesting similar baseline expression of this astrocytic marker (mean grey intensity values around 140; Fig. 4A). GFAP immunostaining in the superficial layers of the SC in WT and $\sigma_1 R$ KO was not significantly modified as compared to the respective control groups 3 hours after carrageenan intraplantar injection. This result is consistent with previous reports where intraplantar injection of carrageenan failed to produce early, acute significant change in spinal GFAP immunoreactivity (Schreiber et al., 2008; Choi et al., 2015). Accordingly, no statistically significant increase (of 5%) in GFAP immunostaining was observed in the ipsilateral and contralateral sides of both WT and $\sigma_1 R$ KO mice following intraplantar carrageenan injection (Fig. 4B and 4D), but these differences were not statistically significant. This is consistent with studies describing that microglial activation occur during the early phase of peripheral inflammation (Choi et al., 2015), whereas astrocytic reaction is delayed and occurs a few days after injury. Therefore, 3 hours after carrageenan may be too early to observe GFAP changes in both WT and $\sigma_1 R$ mice. CFA injection also failed to produce any noticeable change in GFAP expression in the ipsilateral WT dorsal horn of the SC (Fig. 4C). While other studies have shown an enhanced GFAP expression in rats several days after CFA injection (Zhang et al., 2008; Meng et al., 2013; Wu et al., 2014), our results are consistent with another report performed in mice where no differences in the morphology or level of immunoreactivity of astrocytes were found 4 days after CFA injection (Rabchevsky et al., 1999). However, in the absence of $\sigma_1 R$ in KO mice, GFAP expression slightly increased in the SC 4 days after CFA injection in both the ipsilateral and contralateral sides, being statistically significant (p < 0.01; Fig. 4E) only when the contralateral

slices were compared (p < 0.01; Fig. 4E). This is the first time that a σ_1 R-related change of GFAP expression has been described in inflammatory pain conditions. A previous report related σ_1 R to astrocytic reaction in a neuropathic pain model induced by chronic constriction injury. In contrast to findings here using σ_1 R KO mice in the CFA model of inflammatory pain, this report showed that blocking this receptor inhibited the pathological activation of astrocytes in the SC 3 days after injury (Moon *et al.*, 2014).

In summary, the absence of $\sigma_1 R$ did not change the pattern of spinal expression of GFAP in the acute carrageenan-induced inflammatory pain model. However, the lack of $\sigma_1 R$ slightly increased GFAP expression in the contralateral dorsal horn 4 days in the chronic CFA-induced inflammatory pain model.

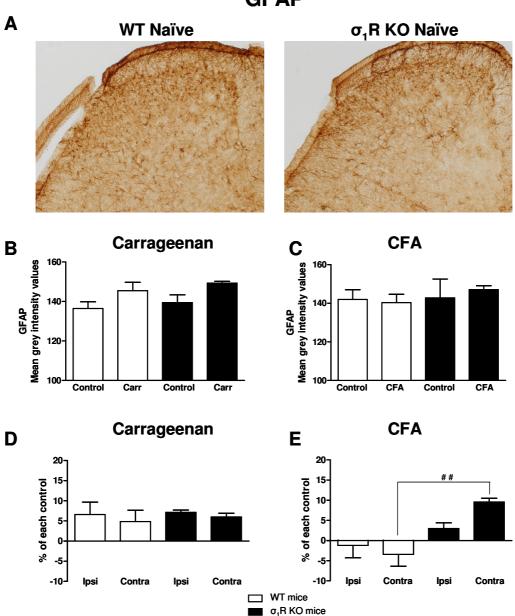


Fig. 4. GFAP expression in the dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. Representative slices of GFAP immunostaining in a dorsal horn of the SC in WT and $\sigma_1 R$ KO naïve mice (A). Quantification of GFAP immunoreactivity (expressed as mean grey intensity values) in the ipsilateral dorsal horn of the SC secondary to carrageenan (B) and CFA (C) intraplantar injection in WT and $\sigma_1 R$ KO mice. Note that the control group corresponds to naïve animals within the same experimental set. Percentage of GFAP immunoreactivity *versus* control following carrageenan (D) or CFA (E) injection in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of WT and $\sigma_1 R$ KO mice. Statistically significant differences comparing WT and $\sigma_1 R$ KO mice: ## p < 0.01 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

GFAP

nNOS was mainly expressed in dendrites and axons forming a dense plexus in the superficial dorsal horn, particularly in laminae I and II. nNOS-immunoreactive cell bodies were also detected in this region. No main differences were found between WT and KO naïve groups (Fig. 5A). In WT mice, nNOS-immunopositive cells were slightly increased after carrageenan injection *versus* control in both sides of the SC (increase of approximately 7 immunopositive cells; Fig. 5B and 5D). Similarly increased nNOS expression was observed in $\sigma_1 R$ KO mice —statistically significant differences obtained at both the ipsilateral side when comparing to control group (p < p0.05; Fig. 5A) and the contralateral side *versus* corresponding group in WT mice (p < p0.05; Fig. 5D). Indeed, the lack of $\sigma_1 R$ did not modify ordema and hyperalgesia (Gris et al., 2014), and thus the similar spinal increment of nNOS in carrageenan-inflamed paws of both mouse types would suggest a similar $\sigma_1 R$ -independent involvement of NO in the molecular pathways triggered by carrageenan (Omote et al., 2001). Regarding chronic inflammatory pain, no significant changes in the number of nNOSimmunoreactive cells were found between groups in both WT and KO mice 4 days after CFA injection (Fig. 5C and 5E). An earlier nNOS up-regulation can not be discarded, as it has been previously described 24h after intraplantar injection of CFA (Chu et al., 2005), but it seems that nNOS is not primarily regulated by $\sigma_1 R$ in inflammatory acute and chronic pain conditions.

In conclusion, the lack of $\sigma_1 R$ failed to change the pattern of spinal expression of nNOS in the acute and chronic inflammatory pain model induced by carrageenan and CFA, respectively.

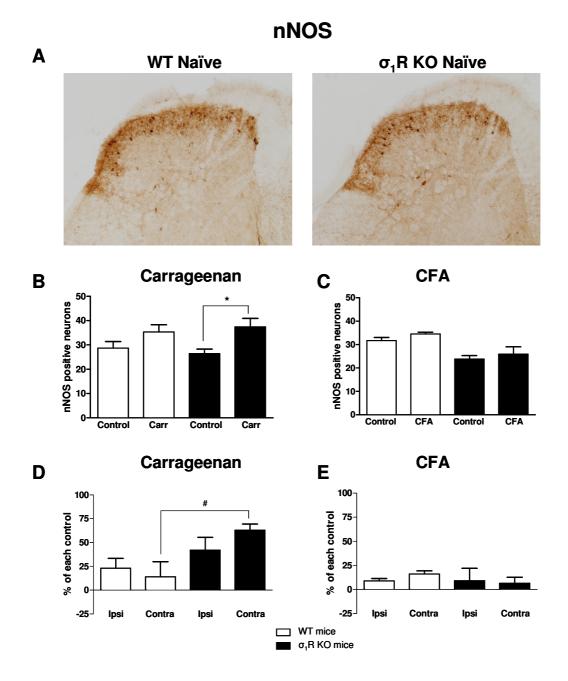


Fig. 5. nNOS expression in the dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. Representative slices of nNOS immunostaining in a dorsal horn of the SC in WT and $\sigma_1 R$ KO naïve mice (A). Quantification of nNOS as number of immunoreactive nNOS-neurons in the ipsilateral dorsal horn of the SC secondary to carrageenan (B) and CFA (C) intraplantar injection in WT and $\sigma_1 R$ KO mice. Note that the control group corresponds to naïve animals within the same experimental set. Percentage of nNOS immunoreactivity *versus* control following carrageenan (D) or CFA (E) injection in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of WT and $\sigma_1 R$ KO mice. Statistically significant differences *versus* each control group in WT and $\sigma_1 R$ KO mice: * p < 0.05; and between WT and $\sigma_1 R$ KO mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

159

SP immunoreactivity was mainly concentrated in neurons of lamina I of the superficial dorsal horn. Both naïve groups (WT and $\sigma_1 R$ KO) showed comparable baseline expressions (Fig. 6A). Carrageenan-induced acute inflammatory pain in WT mice was unable to promote any significant change in the spinal expression of SP in either the ipsilateral or the contralateral dorsal horn (p > 0.05 versus WT control mice; Fig. 6B and 6D). This result is consistent with a previous report in rats which also failed to observe any significant change in SP immunoreactivity 3 h and 24 h after carrageenan injection (Ma and Eisenach, 2003), and it is in line with the fact that SP is synthesized in DRG and mainly released from primary afferent neurons at the periphery in the acute phase of inflammation (Ma and Eisenach, 2003). Similarly, carrageenan injected intraplantarly to $\sigma_1 R$ KO mice failed to modify spinal SP immunostaining. In chronic inflammation (CFA) laminae I and II of the ipsilateral (Fig. 6C and 6E) and contralateral (Fig. 6E) sides were less immunostained with SP antibodies than control slices in WT mice. This result is consistent with a previous report showing a decrease in SP immunoreactivity in the DRG 5 days after CFA injection (Calzà et al., 1998). In contrast, no significant changes in SP expression in the chronic condition induced by CFA were found in either side of the SC in the absence of $\sigma_1 R$ in KO mice.

In summary, SP expression did not change in the superficial dorsal horn of the ipsilateral SC after carrageenan injection in both WT and $\sigma_1 R$ KO mice. In contrast, WT mice experienced a slight down-regulation in SP expression 4 days after CFA injection, whereas this expression remained unchanged in the ipsilateral dorsal horn in the absence of $\sigma_1 R$.

SP

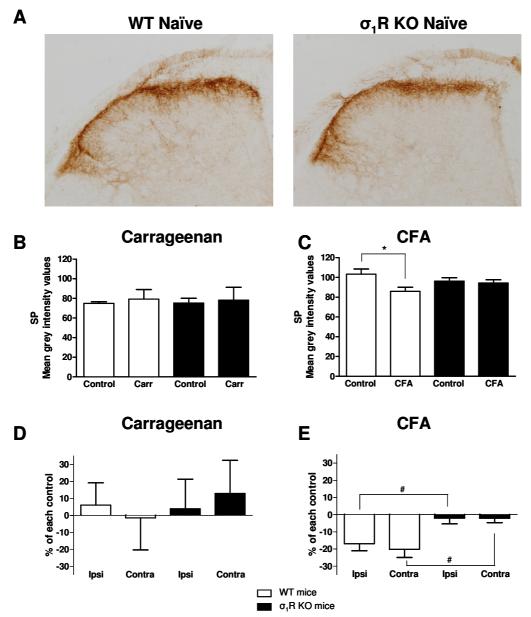


Fig. 6. SP expression in the dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. Representative slices of SP immunostaining in a dorsal horn of the SC in WT and $\sigma_1 R$ KO naïve mice (A). Quantification of SP immunoreactivity (expressed in mean grey intensity values) in the ipsilateral dorsal horn of the SC secondary to carrageenan (B) and CFA (C) intraplantar injection in WT and $\sigma_1 R$ KO mice. Note that the control group corresponds to naïve animals within the same experimental set. Percentage of SP immunoreactivity *versus* control following carrageenan (D) or CFA (E) injection in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of WT and $\sigma_1 R$ KO mice. Statistically significant differences comparing each control group in WT and $\sigma_1 R$ KO mice: * p < 0.05; and between WT and $\sigma_1 R$ KO mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean \pm SEM of the values obtained in 4 animals.

NPY positive neurons were found in laminae I and II, and no differences were found between naïve mice (WT and $\sigma_1 R$ KO) (Fig. 7A). No significant changes were found in NPY expression in either side of the SC after carrageenan injection in WT mice (Fig. 7B and 7D). Similarly, the number of NPY positive neurons in the dorsal horn of the ipsilateral SC did not change in the absence of $\sigma_1 R$ in KO mice in acute inflammatory pain. Like in the acute condition, in the case of chronic inflammatory pain (CFA), WT mice did not experience any significant change in NPY immunoreactive cells at either side of the SC (Fig. 7C and 7E). To this point, it is important to note that NPY has been described to act at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting SP release (Taylor *et al.*, 2014). Thus, the reduction of SP (Figure 6), but not NPY, found in the CFA model could indicate that peptide expression in the SC shows distinct and individual temporal patterns: when peptide expression at the SC was evaluated, NPY expression restored to control level but the effect of reduced SP expression was still present. However, the absence of $\sigma_1 R$ in KO mice seems to lead to a different temporal pattern of expression for NPY and SP: while CFA injection led to a slightly reduced NPY expression, SP reached the level of expression of the control group in the SC of $\sigma_1 R$ KO.

In conclusion, the absence of $\sigma_1 R$ failed to significantly alter the pattern of expression of NPY in the carrageenan-induced acute inflammatory pain model. In contrast, the lack of $\sigma_1 R$ led to significant down-regulation of NPY immunostainning 4 days after CFA injection.

NPY

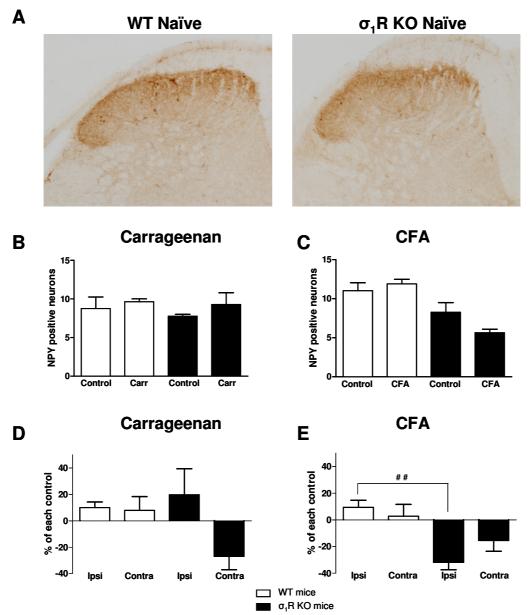


Fig. 7. NPY expression in the dorsal horn of the SC secondary to carrageenan and CFA intraplantar injection in WT and $\sigma_1 R$ KO mice. Representative slices of NPY immunostaining in a dorsal horn of the SC in WT and $\sigma_1 R$ KO naïve mice (A). Quantification of NPY immunoreactivity (expressed in mean grey intensity values) in the ipsilateral dorsal horn of the SC secondary to carrageenan (B) and CFA (C) intraplantar injection in WT and $\sigma_1 R$ KO mice. Note that the control group corresponds to naïve animals within the same experimental set. Percentage of NPY immunoreactivity *versus* control following carrageenan (D) or CFA (E) injection in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of WT and $\sigma_1 R$ KO mice. Statistically significant differences comparing WT and $\sigma_1 R$ KO mice: ## p < 0.01; ### p < 0.001 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

A summary of the spinal expression changes of the pain-related molecular markers analysed in acute and chronic inflammatory models, and how the lack of $\sigma_1 R$ could interfere in the expression pattern, is shown in Table 2. The expression changes of pain markers observed in WT and KO mice are different when acute and chronic models of inflammation are compared.

- A similar expression pattern in WT and $\sigma_1 R$ KO mice was found in carrageenan-induced acute inflammatory pain, thus suggesting that $\sigma_1 R$ would not have an impact on the expression of these pain-related molecular markers.
- While CFA-induced chronic inflammatory pain did not lead to significant changes *versus* the naïve condition in WT mice, σ₁R KO mice showed a different expression pattern, thus suggesting that the lack of σ₁R would alter the expression of the molecular markers under pain conditions.

Table 2. Summary of the spinal expression of the pain-related molecular markers used in this study in WT and $\sigma_1 R$ KO mice in the carrageenan and CFA models of inflammatory pain. Significant protein up-regulation is shown in dark green, slightly increased or tendency to protein up-regulation (no significant) is shown in light green, and significant protein down-regulation is shown in orange, according to our previous discussion for each target. The lack of $\sigma_1 R$ seems to differentially affect the expression pattern in the acute and chronic inflammatory models.

	Spinal changes after carrageenan							
	pERK	c-Fos	GFAP	nNOS	SP	NPY		
WT								
КО								

	Spinal changes after CFA								
	pERK	c-Fos	GFAP	nNOS	SP	NPY			
WT									
КО									

Spinal changes after carrageenan

Decrease
No change
Slight increase
Increase

3. EFFECT OF $\sigma_1 R$ BLOCKADE ON POSTOPERATIVE PAIN

3.1. <u>Article 4:</u> "Role of the sigma-1 receptor in the expression and development of postoperative pain".

(Manuscript to be submitted)

Georgia Gris, Enrique Portillo-Salido, Alicia Carceller, Ricard Sanchez-Arroyos, José

Miguel Vela, Manuel Merlos, Daniel Zamanillo.

Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE Barcelona, Spain.

Summary of the Article 4:

"Role of the sigma-1 receptor in the expression and development of postoperative pain".

Background

Sigma-1 receptor ($\sigma_1 R$) is a unique ligand-regulated molecular chaperone that is expressed in areas that are key for pain control. genetic inactivation of $\sigma_1 R$ caused a marked attenuation of pain responses in some sensitizing conditions: formalin-induced pain, capsaicin-induced hypersensitization and some neuropathic pain models, such as the chemotherapy-induced neuropathic model or the sciatic nerve ligation model (De la Puente *et al.*, 2009; Nieto *et al.*, 2012). The genetic ablation of $\sigma_1 R$, however, failed to prevent the acquisition of some inflammatory pain-related behaviours in mice. Carrageenan- and complete Freund adjuvant-induced pain models in mice were equally developed in WT and $\sigma_1 R$ KO mice (Gris *et al.*, 2014). In contrast, the pharmacological antagonism of $\sigma_1 R$ was effective as analgesic under all these sensitizing conditions, including the inflammatory pain models (Gris *et al.*, 2014; Tejada *et al.*, 2014). The mechanisms of post-incisional pain and chronic postsurgical pain are complex and have inflammatory and neuropathic components. Acute postoperative pain remains a significant medical problem —most treatments for postoperative pain have only minimal analgesic effects.

Objectives

The general objective of this work was to study the involvement of $\sigma_1 R$ in the expression and development of postoperative pain for the first time, using the model of plantar incision. The development of pain-related behaviours as well as the spinal

expression of some pain-related molecular targets in wild-type (WT) and $\sigma_1 R$ knockout (KO) mice were compared, and the analgesic effects of selective $\sigma_1 R$ antagonist E-52862 were evaluated.

Results

Firstly, the development of mechanical allodynia and thermal hyperalgesia following plantar incision was observed. Interestingly, the genetic inactivation of $\sigma_1 R$ produced a marked attenuation of mechanical hypersensitivity on days 1, 3 and 4 as compared to WT mice. However, thermal hyperalgesia developed to a similar extent in both mouse types, from 4 hours to 4 days post-surgery.

Secondly, the spinal protein expression of key molecular pain markers was studied in both WT and $\sigma_1 R$ KO mice by western blot and immunohistochemistry. pERK, c-Fos, GFAP and NPY —but not nNOS and SP— were up-regulated 4 hours post-incision in the ipsilateral dorsal horn of the spinal cord in WT mice, whereas they were attenuated in $\sigma_1 R$ KO mice.

Finally, the pharmacological study was also evaluated 4 h after paw incision. E-52862 failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice, thus suggesting that the antinociceptive effects of E-52862 were mediated by $\sigma_1 R$. In contrast, E-52862 was able to dose-dependently attenuate both mechanical allodynia and thermal hyperalgesia with better efficacy than other marketed drugs (morphine, ibuprofen and celecoxib) in WT mice.

Conclusions

The genetic inhibition of $\sigma_1 R$ failed to prevent the development of heat hypersensitivity in postoperative pain and showed an attenuation of mechanical

allodynia and some molecular markers in the spinal cord. E-52862 dose-dependently supressed both mechanical and thermal (heat) hypersensitivity induced by paw incision but failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice, thus suggesting that the analgesic activity induced by E-52862 in this model was clearly mediated by the interaction with $\sigma_1 R$. In summary, these results represent the first evidence of the role of $\sigma_1 R$ in postoperative pain. Also, the pharmacological blockade of $\sigma_1 R$ by E-52862 represents a new promising therapy for the treatment of postoperative pain.

<u>Article 4</u>: "Role of the sigma-1 receptor in the expression and the development of postoperative pain".

ABSTRACT

Genetic inactivation of sigma-1 receptors ($\sigma_1 R$) produced a marked attenuation of pain responses in several sensitizing conditions, but did not prevent the acquisition in others, such as the inflammatory pain-related behaviours in mice. However, the pharmacological antagonism of $\sigma_1 R$ was effective as analgesic in all these sensitizing conditions, including the inflammatory pain models. The present study was aimed to compare the development of pain-related behaviours and the spinal expression of several pain-related molecular markers in the postoperative pain model of paw incision in wild-type (WT) and $\sigma_1 R$ knockout ($\sigma_1 R$ KO) mice, and to evaluate the analgesic effects of the selective $\sigma_1 R$ antagonist E-52862 (S1RA). Maximum mechanical and thermal hypersensitivity were observed 4 h after injury, and evidenced for at least 4 days in WT mice. No differences were observed in WT and $\sigma_1 R$ KO mice in the acquisition of thermal hyperalgesia after plantar incision, whereas $\sigma_1 R$ KO mice showed a faster recovery in mechanical hypersensitivity. Increased phosphorylated extracellular signal-regulated kinase (pERK), c-Fos, glial fibrillary acidic protein (GFAP) and neuropeptide Y (NPY) expression in the dorsal horn of the spinal cord was observed in operated versus control (sham-operated) WT mice 4 h after surgery, which was attenuated in $\sigma_1 R$ KO mice. E-52862 produced a dose-dependent antinociceptive effect on mechanical allodynia (Emax = 70%) and thermal hyperalgesia (Emax = 58%) 4 h after surgery, whereas ibuprofen and celecoxib failed to produce any significant effect on thermal hyperalgesia. E-52862 was devoid of efficacy when administered to $\sigma_1 R$ KO mice, thus confirming the involvement of $\sigma_1 R$ in E-52862-mediated effects. These

findings suggest that $\sigma_1 R$ contribute to the sensitization to noxious stimuli induced by plantar incision in mice.

Keywords

Allodynia, E-52862, hyperalgesia, hypersensitivity, postoperative pain, sigma-1 receptor

1. Introduction

The mechanisms underlying acute pain after surgery and its evolution to chronic postoperative pain are complex and still not completely understood. Chronic postoperative pain is a relatively frequent pain condition which seriously affects quality of life. Patients with severe postoperative pain are at greater risk of developing chronic pain (Perkins and Kehlet, 2000). After surgery, patients experience ongoing pain and are sensitive to normally non-painful stimuli. Surgery may cause nerve damage, as well as the release of inflammatory mediators that activate A δ - and C- fibre nociceptors, which trigger changes in the spinal cord. These changes lead to a sensitization process that is essentially responsible for the allodynia and hyperalgesia observed in patients. Postoperative pain is experimentally induced by a surgical incision in the plantar surface of mice or rats (Brennan et al. 1996) that causes evoked pain behaviours and spontaneous activity leading to the establishment and maintenance of nociceptiveinduced plasticity in the spinal cord. Nitric oxide (NO), protein kinase C, mitogenactivated protein kinases (MAPKs), glial fibrillary acidic protein (GFAP) and neuropeptides, among others, are key molecular markers involved in these changes at the spinal cord level (Chu et al., 2007; Campillo et al., 2010). Increased phosphorylation of the extracellular signal-regulated kinase (ERK) levels associated with c-Fos expression in dorsal horn neurons is also evidenced after postoperative pain (Kawasaki et al., 2004; Obata et al., 2004).

The sigma-1 receptor ($\sigma_1 R$) is a neuromodulatory chaperone protein of 223 amino acids found in the endoplasmic reticulum and the plasma membranes (Zamanillo *et al.*, 2013) and present in areas of the central and peripheral nervous system important in pain control, including the dorsal horn of the spinal cord (Alonso *et al.*, 2000; Kitaichi *et al.*, 2000). Genetic and pharmacological studies using $\sigma_1 R$ knockout ($\sigma_1 R$ KO) mice and $\sigma_1 R$ antagonists have shown the involvement of $\sigma_1 R$ in the modulation of pain-related behaviours. Pain behaviours elicited by intraplantar (i.pl.) administration of formalin and capsaicin are attenuated in $\sigma_1 R$ KO mice (Cendán *et al.*, 2005; Entrena *et al.*, 2009). Mechanical and cold allodynia were strongly attenuated in $\sigma_1 R$ KO mice in neuropathic pain conditions induced by partial sciatic nerve ligation (PSNL) or by treatment with the antineoplastic agent paclitaxel, respectively (De la Puente *et al.*, 2009; Nieto *et al.*, 2012). In contrast, thermal (heat) hyperalgesia developed to the same extent as in WT mice following nerve injury (PSNL) (De la Puente *et al.*, 2009). On the contrary, the genetic inactivation of $\sigma_1 R$ failed to prevent the development of carrageenan- and complete Freund adjuvant-induced mechanical allodynia when von Frey filaments were applied (Gris *et al.*, 2014).

The selective $\sigma_1 R$ antagonist E-52862 shows high affinity for $\sigma_1 R$ (Ki = 17 nM), good $\sigma_1 R / \sigma_2 R$ selectivity ratio (550), and selectivity over a panel of 170 molecular targets. E-52862 was effective in several experimental models of acute and chronic pain (Nieto *et al.*, 2012; Romero *et al.*, 2012b; González-Cano *et al.*, 2013), even in the painrelated behaviours (inflammatory pain or PSNL-induced heat hyperalgesia) where $\sigma_1 R$ failed to sufficiently influence the development of behavioural hypersensitivity in $\sigma_1 R$ KO mice (Gris *et al.*, 2015 for review).

The purpose of the present study was to investigate the role of $\sigma_1 R$ in postoperative pain by using the paw incision model. The development of mechanical and thermal hypersensitivity and the spinal expression of several key molecular markers, including phosphorylated ERK (pERK), c-Fos, GFAP, neuronal NO synthase (nNOS), substance P (SP), and neuropeptide Y (NPY), after surgical incision in WT and $\sigma_1 R$ KO mice and the effect of the pharmacological blockade of $\sigma_1 R$ compared to the analgesic effect of marketed drugs such as morphine, ibuprofen and celecoxib were investigated.

2. Material and methods

2.1. Animals

Male WT CD-1 mice supplied by Charles River and aged 6 to 8 weeks were used in the experiments. $\sigma_1 R$ KO mice were generated on a CD-1 background as previously described (Langa *et al.*, 2003). Animals were acclimatized in our animal facilities for at least 1 week before testing, supplied with food and water ad libitum, and kept under controlled laboratory conditions at a temperature of $21 \pm 1^{\circ}C$ and a lightdark cycle of 12 h (lights on at 7:00 a.m.). Experimental behavioural testing was carried out in a soundproof, air-regulated experimental room. All experimental procedures and animal husbandry were conducted according to the ethical principles of the I.A.S.P. for the evaluation of pain in conscious animals (Zimmermann, 1983) and the European Parliament and the Council Directive of 22 September 2010 (2010/63/EU), and were approved by the local Ethics Committee.

2.2. Drugs and drug administration

E-52862 (4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl] morpholine) was used as hydrochloride, and doses were expressed as weight of the base. E-52862 and celecoxib were synthesized by Laboratories Esteve (Barcelona, Spain). Ibuprofen was supplied by Tci Europe N.V. (Zwijndrecht, Belgium). Morphine was supplied by the General Directorate of Pharmacy and Drugs, Spanish Ministry of Health (Madrid, Spain). All drugs were dissolved in aqueous solution (0.5% hydroxypropylmethyl cellulose, HPMC; Sigma–Aldrich) and were administered by intraperitoneal (i.p.) route at a volume of 10 ml/kg. All treatments were performed in independent groups of mice and were evaluated 30 min after administration and 4 h after surgery.

2.3. Plantar incision-induced postoperative pain model

The postoperative pain model was adapted to mice according to the previously described plantar incision method in rats by Brennan (1996). Animals were placed in the prone position under anesthesia with isoflurane 2.5% (v/v). Anesthesia was maintained throughout surgery by means of a tube that conducted isoflurane vapors to the animal's nose. A 0.7-cm longitudinal incision was made with a number 11 blade through the skin, fascia and muscle of the right hind paw, starting 0.3 cm from the proximal edge of the heel and extending towards the toes. The underlying plantaris muscle was exposed and incised longitudinally, keeping the muscle origin and insertion intact. After hemostasis with slight pressure, the skin was closed with two simple sutures of braided silk (ref. 6/0, B. Braun). Finally, the wound was wiped with povidone-iodine antiseptic ointment (Topionic; Esteve) to prevent infection. After surgery the animals were allowed to recover in cages provided with sterile beddings. Control animals (sham-operated mice) underwent a sham procedure consisting in the administration of isoflurane under identical conditions.

2.4. Evaluation of mechanical allodynia (von Frey test)

Mechanical allodynia was quantified by measuring the hind paw withdrawal response to a punctate mechanical stimulation using von Frey filaments (North Coast Medical, Inc., San Jose, CA, USA). Mice were placed into compartment enclosures in a test chamber with a framed metal mesh floor through which von Frey monofilaments (bending force range of 0.04 to 2 g) were applied onto the plantar surface, and thresholds were measured using the up-down method paradigm (Chaplan *et al.*, 1994).

This method was based on Dixon's non-parametric method in 1980 and measures the mechanical threshold that produces 50% of responses (Dixon, 1980). Briefly, the (medium range) 0.4 g filament was first used. Then, the strength of the next filament was decreased when the animal responded or increased when the animal failed to respond. This up-down procedure was stopped four measurements after the first change in animal response. Each filament was applied perpendicular to the plantar surface for 2 s at intervals of 5-10 s between each stimulation. The threshold producing 50% of responses was calculated by means of an up-down spreadsheet. Clear paw withdrawal, shaking or licking was considered as a nociceptive-like response. Both ipsilateral and contralateral (non-operated) hind paws were tested.

2.5. Evaluation of thermal hyperalgesia (plantar test)

Thermal (heat) hyperalgesia was assessed using the plantar test apparatus (IITC Life Science Inc, model 390G, Los Angeles, CA, USA) by determination of the hind paw withdrawal latency in response to a thermal stimulus (radiant heat). The plantar test was performed according to the Hargreaves method with slight modifications (Hargreaves *et al.*, 1988). On the day of the test, mice were placed into Plexiglas compartment enclosures and upon a tempered glass surface of the plantar test device, and were allowed to habituate to their environment for 1 h. The heat source —a mobile infrared photobeam— was then positioned under the plantar surface of the hind paw. The nocifensive withdrawal reflex interrupts the light reflected from the photocell onto the paw and automatically turns off the light and the timer. The intensity of the light beam was adjusted based on preliminary studies to produce baseline response latencies of around 12 ± 2 s in untreated control mice. The digital timer connected to the nearest

0.1 s. The mean withdrawal latencies for the ipsilateral and contralateral hind paws were determined from the average of two or three separate trials for each animal, with at least a one-minute interval between successive measurements.

2.7. Western Blotting

The lumbar enlargement (L4-S1) of the spinal cord was removed from WT and $\sigma_1 R$ KO mice 4 hours after plantar surgery, and ipsilateral hemicord segments were dissected, frozen immediately in dry ice, and stored at -80°C. Tissue was homogenized by sonication in RIPA buffer containing a 0.5% protease and 1% phosphatase inhibitor cocktail (all supplied by Sigma-Aldrich). The homogenate was centrifuged at 16,000 g for 10 min at 4 °C and the supernatant was used. The protein concentration in the homogenate was measured using the Lowry protein assay (DC assay from Biorad). Equal amounts of protein (30 µg) were fractionated by 10% (w/v) SDS-PAGE and transferred onto a polyvinylidene difluoride membrane blocked with 5% non-fat dry milk in Tris-Tween 20-buffered Saline (T-TBS) for 1 h. Membranes were then incubated in 1% non-fat dry milk in T-TBS overnight at 4 °C with rabbit primary polyclonal antibodies recognizing the mitogen-activated protein kinase (MAPK, total ERK 1/2) or with mouse monoclonal antibodies recognizing the activated MAPK (diphosphorylated MAPK, pERK 1/2) at a 1:40,000 and a 1:1,000 dilution, respectively. Mouse monoclonal anti-GAPDH antibody (1:80,000) or rabbit polyclonal anti-GAPDH antibody (1:10,000) was used as loading control. All antibodies were purchased from Sigma-Aldrich. Blots were washed four times with T-TBS for 15 min and then incubated for 1 h with horseradish peroxidase-conjugated goat anti-rabbit IgG (1:4,000) or goat anti-mouse IgG (1:2,000), supplied by Sigma-Aldrich. Immunoreactive bands were detected by a peroxidase reaction using an enhanced

chemiluminescence method (WesternSure[®] PREMIUM Chemiluminescent Substrate, Li-cor) and by a C-DiGit[®] Blot Scanner (Li-cor). The densitometric analysis of immunoreactive bands was performed using the Image studio lite software and normalized with respect to the intensity of the corresponding GAPDH immunoreactive bands. pERK was finally normalized with respect to total ERK protein.

2.8. Immunohistochemistry

Protein expression was estimated 4 h after plantar incision as c-Fos-, nNOS-, and NPY-immunopositive cells or immunoreactive area of GFAP and SP in the dorsal horn (laminae I + II) of the spinal cord. Animals were not exposed to nociceptive testing before tissue extraction (non-stimulated). Four mice per group were deeply anesthetized with isoflurane 2.5% (v/v) and then intracardially perfused with 200 ml of saline solution followed by 250 ml of 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. After perfusion, the lumbar region of the spinal cord was dissected out, postfixed for 4 h in 4% paraformaldehyde, and cryopreserved in 30% sucrose solution at 4 °C for 48 h. The section from L4 to S1 of the spinal cord was selected and then embedded in frozen section medium (Neg-50, Thermo scientific, MA, USA), sliced in 40 µm sections on a cryostat (Leica Model CM3050 S, Madrid, Spain), and collected in phosphatebuffered saline (PBS) to be processed immunohistochemically as free-floating sections. Sections were pre-incubated with 0.3% H₂O₂ in PBS for 30 min to block endogenous peroxidase activity and, after washing three times in PBS, with normal goat pre-immune serum diluted 1,5:100 in PBS for 1 h at room temperature (RT) to prevent unspecific staining. Sections were then incubated for 48 h at 4 °C with the primary antibody: rabbit polyclonal anti-c-Fos (diluted 1:6,000 in PBS; Santa Cruz Biotechnology, CA, USA), rabbit polyclonal anti-GFAP (diluted 1:4,000 in PBS; Dako, Glostrup, Denmark), rabbit polyclonal anti-nNOS (diluted 1:3,000 in PBS; Cayman chemical, MI, USA), rat monoclonal anti-SP (diluted 1:750 in PBS; AbD Serotec, Oxford, UK), or rabbit polyclonal anti-NPY (diluted 1:10,000 in PBS; Peninsula Laboratories LLC, CA, USA). After washing three times in PBS for 10 min, sections were incubated with the appropiate secondary biotinylated antibodies from Vector Laboratories Inc. (Burlingame, CA, USA) diluted 1:200 in PBS for 1 h at RT. After washing the sections three times in PBS, an avidin–biotin–peroxidase complex (Vector Laboratories, Inc.) was applied diluted 1:100 in PBS for 1 h at RT. The sections were washed again in PBS and placed in a chromogen solution containing 0.05% 3,3'-diaminobenzidine and 0.01% H_2O_2 in PBS for 5 min. The immunostained sections were placed on slides and coverslipped with glycergel mounting medium (DakoCytomation, Inc., Barcelona, Spain) for microscopic observation and photography.

2.9. Quantification of immunohistochemistry

Changes in protein immunoreactivity in the dorsal horn were assessed by quantifying positive profiles of immunopositive cells (relative size and circularity) or immunoreactive areas (measured in terms of mean grey intensity values). Sixteen to eighteen images were analysed for each experimental group, and fields containing ipsilateral and contralateral dorsal horn were digitized using a video camera (Olympus, model DP70, Madrid, Spain) connected to a microscope (Olympus, model BX61, Madrid, España) and interfaced to a computer. Individual immunodensity values were corrected by subtracting the background for each section. In order to maintain a constant threshold for each image and to compensate for subtle immunostaining variability, only immunoreactivity at least 70% darker than the average grey level of each image after background substraction was counted for each antibody. The boundary of the dorsal horn (laminae I + II) was traced and the immunopositive c-Fos, nNOS and NPY expressing cells or the immunoreactive density area of GFAP and SP were counted based on the inverse computer grayscale (from 0 = white to 255 = black) by means of the National Institutes of Health (NIH) Image J software. Immunoreactivity values were compared using WT and $\sigma_1 R$ KO at the ratio between sham and operated mice.

2.10. Statistical analysis

Data were represented as means \pm SEM. In the assessment of mechanical allodynia and thermal hyperalgesia, data were obtained by measuring paw withdrawal expressed as 50% threshold (g) or latency (s), respectively. The mechanical threshold that produced 50% of responses was calculated using Dixon's formula: 50% paw withdrawal threshold (g) = $[(10^{(Xf + \kappa\delta)} / 10000)]$, where Xf = value (in logarithmic units) of the final von Frey filament used, κ = tabular value for the pattern of positive/negative responses, and δ = mean difference (in log units) between stimuli. Data obtained in the development of postoperative pain model were subjected to two-way repeated measures ANOVA (paw and genotypes as between factors of variation; time and pain-related behaviour as within group levels) followed by post hoc Bonferroni test. The percentage of antiallodynic or antihyperalgesic effect was calculated as follows: % effect = [(PWD-PWV)/(PWN-PWV)]x100, where PWD and PWV are the paw withdrawal threshold (g) or latency (s) in drug- and vehicle-treated animals, respectively, and PWN is the paw withdrawal threshold in naïve animals (1.51 g and 12.5 s for the von Frey test and the plantar test, respectively). These data were subjected to one-way ANOVA followed by Bonferroni comparison. These percentages post hoc were expressed as antihypersensitivity percentage when the effect on both mechanical allodynia and thermal hyperalgesia was shown simultaneously, and a two-way ANOVA followed by post hoc Bonferroni test was applied to compare both pain-related behaviours. Similarly, the comparisons of the E-52862 antiallodynic and antihyperalgesic effects between WT and KO mice were analysed using two-way ANOVA followed by Bonferroni comparison. In the immunohistochemistry studies, percentages between sham (mice exposed to anesthesia with isoflurane only) and operated mice were calculated to obtain the increment of protein expression under pain conditions. Thus, immunoreactivity for several antibodies in Western blots and immunohistochemistry was performed using two-way ANOVA followed by Bonferroni test. GraphPad Prism software (version 5.0; GraphPad Software Inc., La Jolla, CA, USA) was used. The criterion for statistical significance was established at a *p* value below 0.05.

3. Results

3.1. Time course of mechanical allodynia and thermal hyperalgesia induced by plantar incision

No significant differences between groups were found in the paw withdrawal threshold in the von Frey test before surgery (Fig. 1A). The contralateral hind paws of both genotypes (WT and KO) were similar at the different time points. A significantly decreased paw withdrawal threshold (mechanical allodynia) was observed in the ipsilateral (injured) paw of both mouse types 4 h after surgery, lasting up to 3 and 4 days in σ_1 R KO and WT mice, respectively. Repeated measures ANOVA (time x genotype) showed a significant effect of time (F_{6,219} = 59.6, *p* < 0.001), genotype (F_{1,219} = 26.2, *p* < 0.001), and interaction between these two factors (F_{6,219} = 3.6, *p* < 0.001). A significant increase in 50% paw withdrawal threshold was found in σ_1 R KO mice as compared to WT mice at 1, 3 and 4 days after surgery.

Baseline values before surgery did not reveal significant differences between genotypes, either contralaterally or ipsilaterally, in paw withdrawal latencies in the plantar test (Fig. 1B). Surgical incision caused a marked thermal hyperalgesia in the ipsilateral hind paws from 4 h to day 4 in both mouse types. Repeated measures ANOVA (time x genotype) showed a significant effect of time ($F_{6,153} = 53.8$, p < 0.001) and genotype ($F_{1,153} = 5.8$, p < 0.05), but no interaction between these two factors ($F_{6,153} = 0.9$, p = 0.5). Therefore, no differences were found between WT and σ_1 R KO in the time course of thermal hypersensitivity.

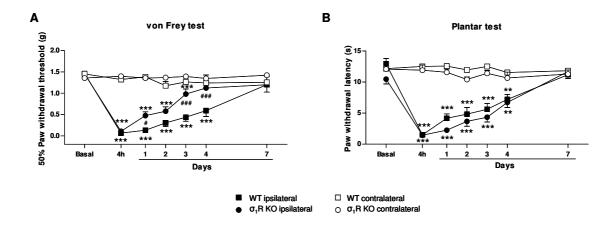


Fig. 1. Time course of mechanical allodynia and thermal hyperalgesia induced by paw incision. Mechanical allodynia and thermal hyperalgesia were found 4 h after surgery (A and B). Statistically significant differences as compared to contralateral values for each time point: ** p < 0.01; *** p < 0.001; and between WT and $\sigma_1 R$ KO mice at the same time point: # p < 0.05; ### p < 0.001 (two-way repeated measures ANOVA followed by Bonferroni test). No statistically significant differences in the contralateral hind paw were observed between both groups. Each point and vertical line represents the mean ± S.E.M of the values obtained from at least 6 animals.

3.2. pERK and c-Fos expression in $\sigma_1 R$ KO and WT mice exposed to plantar incision

Western blot experiments with total ERK and phosphorylated ERK antibodies identified two bands with a molecular weight of 44 and 42 kDa corresponding to the ERK subunits 1 and 2, respectively. As expected, GAPDH antibody identified a band of 37 KDa of molecular weight. Sham WT and σ_1 R KO mice showed similar ERK1/2 levels. No significant changes in total ERK protein were found in WT or σ_1 R KO mice when plantar-injured and sham-operated mice were compared (Fig. 2A). Phosphorylated ERK1/2 (pERK1/2) was significantly higher in σ_1 R KO mice (1.8-fold; p < 0.05). However, while ERK phosphorylation was notably increased (3.0-fold; p <0.01) in the ipsilateral spinal cord of WT mice exposed to plantar incision as compared to sham-operated WT mice, this increase was not found in σ_1 R KO animals (1.6 ± 0.3 and 1.6 \pm 0.2 units of relative pERK expression for sham and operated $\sigma_1 R$ KO mice, respectively; p > 0.05).

c-Fos immunoreactivity from histological sections was mainly observed in laminae I and II of the ipsilateral dorsal horn. No differences were found between WT and KO sham groups. Similarly to pERK, c-Fos expression was significantly higher in the ipsilateral spinal cord of WT mice exposed to plantar incision as compared to shamoperated WT mice (216% higher than in the control (sham) group; p < 0.01) whereas c-Fos immunopositive neurons were not significantly changed in $\sigma_1 R$ KO mice after surgery (Fig. 2B). Two-way ANOVA (dorsal horn × genotype) showed significant effects of dorsal horn (F_{1,12} = 13.9, p < 0.01) and genotype (F_{1,12} = 7.1, p < 0.05) after surgery, but no significant interaction between these two factors (F_{1,12} = 2.0, p > 0.05). In summary, the expression of pERK and c-Fos was clearly and selectively up-regulated in the ipsilateral dorsal horn of the spinal cord of WT mice 4 h after surgery, and these changes were attenuated in $\sigma_1 R$ KO mice.

Fig. 2. pERK and c-Fos expression in the spinal cord secondary to plantar incision injury in WT and $\sigma_1 R$ KO mice. Note that pERK and c-Fos are selectively up-regulated in the ipsilateral dorsal horn of WT mice, but not of KO mice 4 hours after surgery. Representative immunoblots and quantification of total ERK and pERK, and GAPDH as loading control in the spinal cord of WT and $\sigma_1 R$ KO mice. (A). Statistically significant differences operated (PO) *versus* sham: ** p < 0.01; and between WT and $\sigma_1 R$ KO sham mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the densitometric values obtained from 2-3 pools of 4 animals each. (B) Representative slices and quantification of c-Fos immunopositive cells in ipsilateral (ipsi) and contralateral (contra) dorsal horn of the spinal cord of operated WT and $\sigma_1 R$ KO mice. Statistically significant differences comparing % of each sham in operated WT: ** p < 0.01; and between WT and $\sigma_1 R$ KO operated mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained of operated WT and $\sigma_1 R$ KO mice. Statistically significant differences comparing % of each sham in operated WT: ** p < 0.01; and between WT and $\sigma_1 R$ KO operated mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

3.3. GFAP, nNOS, SP and NPY expression in $\sigma_1 R$ KO and WT mice exposed to plantar incision

No differences were found in the spinal expression of all pain-related molecular markers when comparing both sham groups (WT and $\sigma_1 R$ KO mice).

Increased GFAP expression was observed 4 h after paw incision surgery in both sides of the spinal cord (laminae I-II and deep laminae) of WT mice (approximately 15% *versus* corresponding side of sham mice; Fig. 3A). However, GFAP up-regulation in $\sigma_1 R$ KO mice was almost not found (increase in 3.5% above the sham condition). Two-way ANOVA (dorsal horn × genotype) showed a non-significant effect of dorsal horn after plantar incision ($F_{1,12} = 0.3$, p > 0.05), with genotype effect ($F_{1,12} = 10.6$, p < 0.01) and without significant interaction between these two factors ($F_{1,12} = 0.2$, p > 0.05). Hence, the comparison between both sides of the spinal cord failed to show any significant difference in GFAP expression following plantar incision in any group (p > 0.05). Conversely, a significant difference was found between genotypes when both ipsilateral dorsal horns were compared (from 16.5 ± 3.4 to 3.7 ± 2.6% of each sham in WT and $\sigma_1 R$ KO operated mice, respectively; p < 0.05; Fig. 3A).

The expression of nNOS-immunoreactive neurons 4 h after plantar incision was mainly found in laminae I and II of the ipsilateral dorsal horn (Fig. 3B). The plantar incision did not significantly modify the number of nNOS-immunoreactive cells among groups, either in WT or $\sigma_1 R$ KO mice.

SP immunostaining was primarily observed in lamina I of the lumbar spinal cord (Fig. 3C). SP expression in the dorsal horn of WT mice was increased as compared to the WT control group (increase in $19.0 \pm 5.0\%$ and $8.8 \pm 5.1\%$ in the ipsilateral and contralateral sides, respectively, *versus* the corresponding side of the sham group), although no significant differences were found. No changes in SP expression were observed in the dorsal horns of $\sigma_1 R$ KO mice after paw incision.

Four hours after paw incision, ipsilateral and contralateral NPY immunopositive cell numbers were higher in WT operated mice as compared to the sham group (32% and 94% in the ipsilateral and contralateral side, respectively; Fig. 3D). Conversely, the

spinal cord dorsal horn of $\sigma_1 R$ KO operated mice expressed less NPY-immunopositive cells than in sham $\sigma_1 R$ KO animals (around 40%), in both contralateral and ipsilateral sides. A significant difference was found between genotypes when both contralateral dorsal horns were compared (p < 0.05; Fig. 3D).

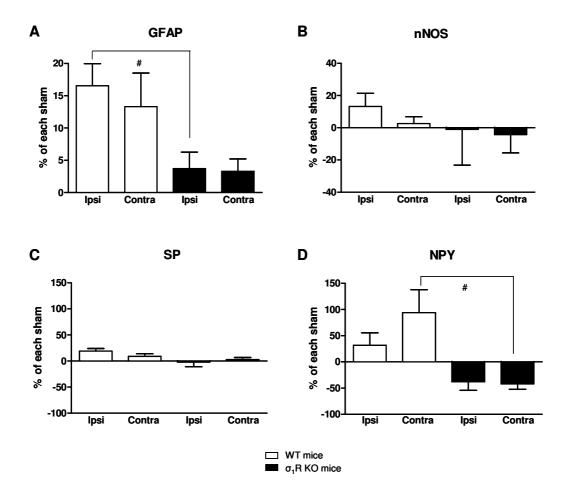


Fig. 3. GFAP, nNOS, SP and NPY expression in the spinal cord secondary to plantar incision injury in WT and $\sigma_1 R$ KO mice. Quantification of GFAP (A), nNOS (B), SP (C) and NPY (D) immunoreactivity in the ipsilateral (ipsi) and contralateral (contra) dorsal horn of the spinal cord of WT and $\sigma_1 R$ KO operated mice. Statistically significant differences comparing % of each sham in operated WT and $\sigma_1 R$ KO mice: # p < 0.05 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

3.4. Effects of E-52862 and reference compounds on mechanical allodynia and thermal hyperalgesia in WT mice

The i.p. administration of E-52862 (40-160 mg/kg) and morphine (1.25-8 mg/kg) dose-dependently inhibited plantar incision-induced mechanical allodynia (Emax = 69.6 ± 12.6 and $51.0 \pm 8.8\%$, respectively). On the contrary, ibuprofen and celecoxib showed reduced efficacy (Emax = 22.5 ± 5.0 and $25.7 \pm 4.5\%$, respectively; Fig. 4A).

Regarding thermal hyperalgesia, E-52862 reached a maximum efficacy of around 60%, while morphine, ibuprofen and celecoxib did not exceed 25% (Fig. 4B). Morphine was only able to produce a mild antihyperalgesic effect at the dose of 8 mg/kg ($F_{4,40} = 3.2$, p < 0.05; Emax = 22.7 ± 9.3%). Higher doses were not investigated due to the well known opioid-induced increase in locomotor activity in mice. The response of the contralateral hind paw to von Frey filaments and plantar test was unchanged after the drug treatments (data not shown). In order to compare the E-52862 effect on both pain-related behaviours, the antiallodynic and antihyperalgesic curves were plotted in the same chart (Fig. 4C). Two-way analysis of variance (ANOVA) showed a significant effect of the dose ($F_{3,86} = 35.4$, p < 0.001), but no effect of painrelated behaviours ($F_{1,86} = 0.5$, p = 0.5) and interaction between these two factors ($F_{3,86} =$ 1.4, p = 0.2), thus suggesting that both curves had a similar slope. The comparison between treatments revealed a similarly significant increase of paw withdrawal threshold and latency after E-52862 administration at 80 and 160 mg/kg (p < 0.001) *versus* the vehicle group in both experimental tests.

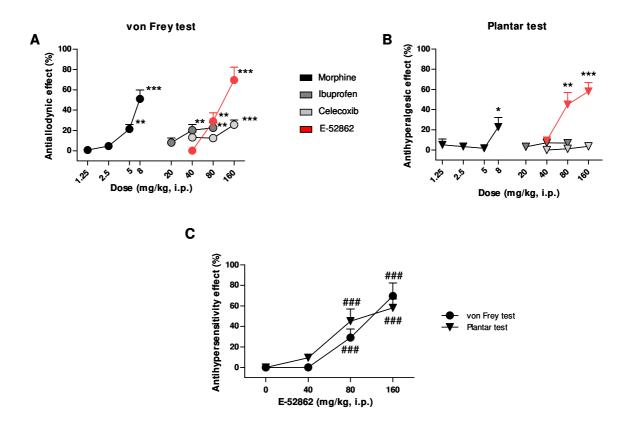


Fig. 4. Effects of E-52862 and reference compounds on mechanical allodynia and thermal hyperalgesia. Antiallodynic and antihyperalgesic effect of morphine, ibuprofen, celecoxib and E-52862 in the von Frey (A) and plantar test (B), respectively. Statistically significant differences compared to vehicle group: p < 0.05; p < 0.01; p < 0.01; p < 0.001 (one-way ANOVA followed by Bonferroni test). Comparison of the antihypersensitivity effect of E-52862 in the von Frey and plantar test (C). Statistically significant differences compared to vehicle group: p < 0.001 (two-way ANOVA followed by Bonferroni test). Each point and vertical line represents the mean \pm S.E.M. of the values obtained in 6-16 animals.

3.5. Effects of E-52862 on mechanical allodynia and thermal hyperalgesia induced by plantar incision in $\sigma_1 R$ KO mice.

In order to study whether the analgesic effects exerted by E-52862 were specifically mediated by $\sigma_1 R$, the antiallodynic and antihyperalgesic effects of E-52862 were tested in $\sigma_1 R$ KO mice and compared with WT mice (Fig. 5). No antihypersensitivity effects were found in $\sigma_1 R$ KO mice treated with E-52862 in response to either mechanical or thermal stimulation of the operated hind paw, whereas WT mice showed a dose-dependent response after E-52862 administration in both painrelated behaviours (29.1 ± 8.3% at 80 mg/kg and 69.6 ± 12.6% at 160 mg/kg in WT mice) (Fig. 5A and 5B). Two-way ANOVA showed a significant effect of dose ($F_{3,85}$ = 17.6, *p* < 0.001), genotype ($F_{1,85}$ = 34.8, *p* < 0.001), and interaction between these two factors ($F_{3,85}$ = 15.2, *p* < 0.001). The comparison between treatments revealed a significantly increased paw withdrawal threshold after E-52862 administration at 80 and 160 mg/kg in WT mice, but not in σ_1 R KO mice (*p* < 0.001).

E-52862 was unable to reverse thermal hyperalgesia in $\sigma_1 R$ KO mice at 40 and 80 mg/kg, thus demonstrating its *in vivo* specificity (Fig. 5B). The maximum tested dose (160 mg/kg) caused a mild antihyperalgesic effect in $\sigma_1 R$ KO mice that failed to achieve statistical significance *versus* the vehicle. Two-way ANOVA revealed a significant effect of dose (F_{3,61} = 22.1, p < 0.001), genotype (F_{1,61} = 18.5, p < 0.001), and interaction between these two factors (F_{3,61} = 4.5, p < 0.01). The comparison between treatments revealed a significantly increased paw withdrawal latency after E-52862 administration at 80 and 160 mg/kg in WT mice, but not in $\sigma_1 R$ KO mice (p < 0.001 and p < 0.05, respectively).

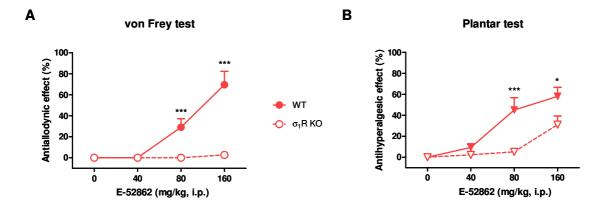


Fig. 5. Effects of E-52862 on mechanical allodynia and thermal hyperalgesia induced by plantar incision in WT and $\sigma_1 R$ knockout mice. Effect of E-52862 in the von Frey (A) and plantar test (B) in WT and $\sigma_1 R$ KO mice. Statistically significant differences compared to $\sigma_1 R$ KO mice: * p < 0.05; *** p <

0.001 (two-way ANOVA followed by Bonferroni test). Each point and vertical line represents the mean \pm S.E.M. of the values obtained in 8-16 animals.

4. Discussion

The present study has evaluated for the first time the role of $\sigma_1 R$ in postoperative pain by using two experimental strategies. First, $\sigma_1 R$ KO mice were used to study the effect of the absence of $\sigma_1 R$ on the development of pain-related behaviours (mechanical and thermal hypersensitivity) and on changes in spinal cord pain-related molecular markers (pERK, c-Fos, GFAP, SP, NPY, and nNOS) in the postoperative pain model of paw incision. Second, pharmacological modulation with E-52862 was used to selectively block the $\sigma_1 R$ function in the same model.

Paw incision model has proved to be a useful tool for studying the neurobiological mechanisms of pain after surgery (Brennan *et al.*, 1996). Although the postoperative pain model was first characterized and widely used in rats, several studies in mice have also been published (Pogatzki and Raja, 2003; Célérier *et al.*, 2006; Cabañero *et al.*, 2009). The main advantage of using this species is that the role of a specific receptor can be studied by using genetically modified mice (Pogatzki and Raja, 2003). In our study, paw withdrawal responses in the contralateral side of mice were unchanged by surgery, and the behavioural responses were stable over time after successive nociceptive stimulation. Consistent with previous data reported by other groups, mechanical allodynia and thermal hyperalgesia were evidenced by strong hypersensitivity immediately after surgery (4 h in our study), with normal thresholds being gradually restored in WT mice on day 7 post-surgery (Célérier *et al.*, 2006; Cabañero *et al.*, 2009). Mechanical and thermal sensitivity were similar in WT and $\sigma_1 R$ KO mice before surgery, thus suggesting that basic mechanisms for transduction, transmission and perception of sensory inputs are intact in mice lacking $\sigma_1 R$. In our

study, although maximal mechanical allodynia was reached at 4 h after surgery in $\sigma_1 R$ KO mice, an attenuation of mechanical allodynia was observed at 24 h after surgery. Baseline sensitivity recovery was also faster in $\sigma_1 R$ KO compared to WT mice. On the contrary, the time course of thermal hyperalgesia was similar in $\sigma_1 R$ KO and WT mice, thus suggesting that $\sigma_1 R$ plays a more determinant role in the development of mechanical allodynia as compared to thermal hyperalgesia. No differences between WT and $\sigma_1 R$ KO mice have also been reported when thermal hyperalgesia induced by carrageenan (Gris *et al.*, 2014; Tejada *et al.*, 2014) or by PSNL (De la Puente *et al.*, 2009) was evaluated.

Tissue injury activates nociceptors that induce plastic changes, which include the release of inflammatory and other mediators, changes in gene expression, receptor translocation to the cell membrane, and sustained activation of glial cells in the spinal cord that result in central sensitization and ultimately in pain hypersensitivity (Voscopoulus et al., 2010; Brennan, 2011; Romero et al., 2012a). Accordingly, 4 h after peripheral surgery of WT mice (at maximum mechanical and thermal hypersensitivity), selective up-regulation of pERK and c-Fos expression in the ipsilateral dorsal horn of WT mice was observed, thus suggesting a concomitant action leading to a central sensitization process. The absence of $\sigma_1 R$ attenuated the ipsilateral increase of both pERK and c-Fos immunoreactivity 4 hours after injury, coinciding with a faster recovery of mechanical allodynia to baseline. As in the present study, the absence of $\sigma_1 R$ prevented the increase in pERK and attenuated the development of mechanical allodynia in the PSNL model (De la Puente et al., 2009) and cold allodynia in the paclitaxel model (Nieto et al., 2012). pERK is up-regulated in neuropathic pain processes underlying the development of mechanical and cold allodynia in WT mice (Romero et al., 2012b). Campillo and coworkers (2010) reported partial colocalization

of pERK and c-Fos in the superficial laminae of the dorsal horn in the same model, both regulating prodynorphin mRNA levels, which roughly correlated with the time course of postoperative pain sensitization. c-Fos is an immediate-early gene whose expression in the spinal cord has been extensively used as a marker of peripheral noxious stimulation and "early" pain (Jinks et al., 2002; Coggeshall 2005; Campillo et al., 2010). It has been widely reported to be increased in several animal models of nociception, including paw inflammation (carrageenan and complete Freund's adjuvant models), postoperative pain, neuropathic injury, and cancer pain (Coggeshall, 2005; Campillo et al., 2010; Romero et al., 2012a; Arun et al., 2013; Hossaini et al., 2014). In the present study, the immunohistochemistry images in operated WT mice showed a specific spot (medial zone of the dorsal horn of the spinal cord) in the c-Fosimmunoreactive neurons where they were preferentially located. Interestingly, a previous report in which the tibial branch of the sciatic nerve was ligated (Corder et al., 2010) showed that the topography (distal and central termination sites) of the protein expression was located in the same area as in our study. Thus, although no dissection of the nerve ending was performed in our plantar incision model, adjacent areas of the tibial nerve might have been altered. c-Fos was clearly induced in ipsilateral laminae I-II of the dorsal horn of the spinal cord of WT mice, consistent with that previously observed (Sun et al., 2004). In our study, no differences in c-Fos expression between both control (sham) groups (WT and $\sigma_1 R$ KO mice) were observed. However, c-Fos immunoreactivity was ipsilaterally attenuated in $\sigma_1 R$ KO spinal cords 4 h after surgery as compared to WT slices, thus agreeing with a previous work by Yamada et al. (2006) where $\sigma_1 R$ agonists induced c-Fos expression in the CNS.

Expression changes in the spinal cord of GFAP, nNOS and neuropeptides SP and NPY were also studied. Consistent with previous studies where an increased GFAP expression following plantar incision was observed and associated with the initiation and maintenance of mechanical hypersensitivity (Romero-Sandoval *et al.*, 2008), an upregulation of GFAP in both sides of the spinal cord 4 h after surgical incision was observed. The induction of spinal GFAP following chronic constriction injury has been recently related to $\sigma_1 R$ in both astrocytric expression and pain-related behaviours (Moon *et al.*, 2014). Consistently, a significant attenuation in GFAP immunoreactivity in $\sigma_1 R$ KO mice *versus* WT mice was found in the present study.

It has been reported that NO produced by nNOS in the spinal cord participates in the early induction (Levy and Zochodne, 2004) and the maintenance (Xu *et al.*, 2007; Roh *et al.*, 2011) of neuropathic pain. However, in our study, no significant changes in nNOS expression 4 h after plantar incision in WT mice were observed, and nNOS expression was unchanged by the absence of $\sigma_1 R$. A possible explanation to these observations could be that changes in NO production are not only linked to nNOS expression in the spinal cord, but also to the relationship between the phosphorylated and non-phosphorylated forms of nNOS. At this regard, intratecal administration of PRE-084, a $\sigma_1 R$ agonist, produces mechanical and thermal hypersensitivity which is linked to a decreased ratio of phosphorylated nNOS to nNOS expression. Both hypersensitivity and changes in nNOS phosphorylation were prevented by the $\sigma_1 R$ antagonist BD-1047 (Roh *et al.*, 2011).

In our study, in line with the fact that SP is synthesized in DRG and mainly released from primary afferent neurons to the periphery in the post-surgery acute phases (Yaksh *et al.*, 1980; Adelson *et al.*, 2009; Chen and Marvizon, 2009a; Taylor *et al.*, 2014), spinal SP did not achieve statistical significance difference in WT mice. The absence of $\sigma_1 R$ did not alter significantly the expression of SP. However, spinal NPY expression was bilaterally (both dorsal horns) up-regulated in WT mice and attenuated in $\sigma_1 R$ KO mice 4 h after plantar incision. It has been shown that NPY acts at neuropeptide Y1 receptors in the dorsal horn to decrease nociception by inhibiting SP release (Taylor *et al.*, 2014). Further molecular studies at different time points would be necessary to understand a possible involvement of $\sigma_1 R$ in the pattern expression of these neuropeptides. In fact, it is known that NPY-induced increases in hippocampal dopamine can be mediated by $\sigma_1 R$ (Meurs *et al.*, 2007), but no studies had been performed to link NPY with $\sigma_1 R$ at the spinal cord.

The pharmacological blockade of $\sigma_1 R$ with E-52862 attenuated the behavioural hypersensitivity to thermal and mechanical stimuli in the plantar incision model 4 hours after injury, although the absence of $\sigma_1 R$ (KO mice) failed to prevent the acquisition of pain-related behavioural hypersensitivity 4 h after surgery. To confirm that the efficacy of E-52862 in this particular model was due to the specific pharmacological blockade of $\sigma_1 R$ in vivo, we tested whether E-52862 shows activity in the absence of its putative target. No effects in $\sigma_1 R$ KO mice were found using E-52862 doses active in WT mice, thus suggesting the involvement of $\sigma_1 R$ in E-52862-mediated effects on mechanical allodynia and thermal hyperalgesia. This result is consistent with recent reports where E-52862 was devoid of efficacy when administered to $\sigma_1 R$ KO mice in other pain models (Gris et al., 2014; Tejada et al., 2014). These results bring out the difference between the effect of genetic blockade (i.e. the absence of the receptor and development of adaptive changes) and the pharmacological blockade of $\sigma_1 R$ (i.e. the modulatory effect of a ligand at the time of the test) (Zamanillo et al., 2013). Similar results were also obtained with other pain-related behaviours such as inflammatory pain or PSNLinduced heat hyperalgesia (De la Puente et al., 2009; Gris et al., 2014), where the absence of $\sigma_1 R$ did not affect the development of behavioural hypersensitivity but pharmacological blockade was able to attenuate these pain behaviours.

In the present study, the analgesic efficacy of E-52862 was compared to morphine, ibuprofen and celecoxib in the postoperative pain model. Morphine produced a dose-dependent antinociceptive effect, whereas ibuprofen and celecoxib showed very low activity. Although the analgesic efficacy of opioids and NSAIDs (celecoxib and ibuprofen) have been validated in postoperative pain and are commonly used in the clinical setting (Derry and Moore, 2013), these compounds failed to be strongly effective in our study. A previous study using the same model but in rats found partial antihypersensitivity effects of celecoxib (Emax = 47%) and naproxen (Emax = 43%), whereas indomethacin and morphine reached >75% efficacy (Whiteside et al., 2004). On the contrary, full antihypersensitivity effect of oral celecoxib has been reported in mice (Oliveira et al., 2014). The reason for these discrepancies is unclear, but differences in the experimental protocols could account for them. The fact that mechanical hypersensitivity was resistent to the action of opioids and NSAIDs might suggest that these drugs are not fully effective for this type of pain. Opioid resistance is present in other painful conditions such as neuropathic pain (Benedetti et al., 1998). In this sense, surveys have shown that approximately half of all patients experience moderate to severe pain after surgery, thus suggesting that postoperative pain is still poorly treated despite the use of available drugs (Pogatzki-Zahn et al., 2007). Drugs that are clinically used to produce postoperative analgesia are NSAIDs, opioids, ketamine, peripheral local anesthetics, and gabapentin (Oliveira et al., 2014). However, because these drugs are known to cause side effects that often limit their use (Dahl and Kehlet. 2006), the development of more effective drugs with fewer side effects for the treatment of postoperative pain is necessary.

In summary, while no differences between WT and $\sigma_1 R$ KO mice were found in the development of thermal hypersensitivity, $\sigma_1 R$ KO mice did show a faster recovery in mechanical hypersensitivity and an attenuation of pERK, c-Fos, GFAP and NPY in the dorsal horn of the spinal cord 4 h after injury, i.e. at the maximal mechanical and thermal hypersensitivty. E-52862 exerted antinociceptive effects in both pain-related behaviours, comparing favourably with morphine and NSAIDs celecoxib and naproxen. The results of the present study suggest that $\sigma_1 R$ plays an important role in postoperative pain and support that $\sigma_1 R$ antagonists, particularly E-52862, could be effective for treating postoperative pain.

References

- Adelson D, Lao L, Zhang G, Kim W, Marvizón JC (2009). Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers. Neuroscience 161:538-53.
- Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T (2000). Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 97:155-70.
- Arun O, Canbay O, Celebi N, Sahin A, Konan A, Atilla P, Aypar U (2013). The analgesic efficacy of intra-articular acetaminophen in an experimental model of carrageenan-induced arthritis. Pain Res Manag 18:63-7.
- Benedetti F, Vighetti S, Amanzio M, Casadio C, Oliaro A, Bergamasco B, Maggi G. (1998). Doseresponse relationship of opioids in nociceptive and neuropathic postoperative pain. Pain 74:205-11.
- Brennan TJ, Vandermeulen EP, Gebhart GF (1996). Characterization of a rat model of incisional pain. Pain 64:493-501.
- Brennan TJ (2011). Pathophysiology of postoperative pain. Pain 152(3 Suppl):S33-40.
- Cabañero D, Campillo A, Célérier E, Romero A, Puig MM (2009). Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery. Anesthesiology 111:1334-45.
- Campillo A, González-Cuello A, Cabañero D, Garcia-Nogales P, Romero A, Milanés MV, Laorden ML, Puig MM (2010). Increased spinal dynorphin levels and phospho-extracellular signal-regulated kinases 1 and 2 and c-Fos immunoreactivity after surgery under remiferitanil anesthesia in mice. Mol Pharmacol 77:185-94.
- Célérier E, González JR, Maldonado R, Cabañero D, Puig MM (2006). Opioid-induced hyperalgesia in a murine model of postoperative pain: role of nitric oxide generated from the inducible nitric oxide synthase. Anesthesiology 104:546-55.
- Cendán CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM (2005). Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 511:73-4.
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994). Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55-63.
- Chen W, Marvizón JC (2009). Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization. Neuroscience 161:157-72.
- Chu YC, Chan KH, Tsou MY, Lin SM, Hsieh YC, Tao YX (2007). Mechanical pain hypersensitivity after incisional surgery is enhanced in rats subjected to neonatal peripheral inflammation: effects of N-methyl-D-aspartate receptor antagonists. Anesthesiology 106:1204-12.
- Coggeshall RE (2005). Fos, nociception and the dorsal horn. Prog Neurobiol 77:299-352.
- Corder G, Siegel A, Intondi AB, Zhang X, Zadina JE, Taylor BK (2010). A novel method to quantify histochemical changes throughout the mediolateral axis of the substantia gelatinosa after spared nerve injury: characterization with TRPV1 and substance P. J Pain 11:388-98.
- Dahl JB, Kehlet H (2006). Treatment of postoperative pain--a status report. Ugeskr Laeger 168:1986-8.

- De la Puente B, Nadal X, Portillo-Salido E, Sánchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, López-García JA, Maldonado R, Zamanillo D, Vela JM (2009). Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 145:294-303.
- Derry S, Moore RA (2013). Single dose oral celecoxib for acute postoperative pain in adults. Cochrane Database Syst Rev 10:CD004233.
- Dixon WJ (1980). Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441-62.
- Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens JM (2009). Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 143:252-61.
- González-Cano R, Merlos M, Baeyens JM, Cendán CM (2013). σ1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. Anesthesiology 118:691-700.
- Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E (2014). S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. Behav Pharmacol 25:226-35.
- Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E (2015). Sigma-1 receptor and inflammatory pain. Inflamm Res 64:377-81.
- Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77-88.
- Hossaini M, Duraku LS, Kohli SK, Jongen JL, Holstege JC (2014). Spinal distribution of c-Fos activated neurons expressing enkephalin in acute and chronic pain models. Brain Res 1543:83-92.
- Jinks SL, Simons CT, Dessirier JM, Carstens MI, Antognini JF, Carstens E (2002). C-fos induction in rat superficial dorsal horn following cutaneous application of noxious chemical or mechanical stimuli. Exp Brain Res 145:261-9.
- Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR (2004). Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 24:8310-21.
- Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R (2000). Expression of the purported sigma(1) (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 20:375-87.
- Langa F, Codony X, Tovar V, Lavado A, Giménez E, Cozar P, Cantero M, Dordal A, Hernández E, Pérez R, Monroy X, Zamanillo D, Guitart X, Montoliu L (2003). Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 18:2188-96.
- Levy D, Zochodne DW (2004). NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract 4:11-8.
- Maurice T, Su TP (2009). The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195-206.

- Moon JY, Roh DH, Yoon SY, Choi SR, Kwon SG, Choi HS, Kang SY, Han HJ, Beitz AJ, Oh SB, Lee JH (2014). σ1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 171:5881-97.
- Nieto FR, Cendán CM, Sánchez-Fernández C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM (2012). Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 13:1107-21.
- Obata K, Noguchi K (2004). MAPK activation in nociceptive neurons and pain hypersensitivity. Life Sci 74:2643-53. Review.
- Oliveira SM, Silva CR, Wentz AP, Paim GR, Correa MS, Bonacorso HG, Prudente AS, Otuki MF, Ferreira J (2014). Antinociceptive effect of 3-(4-fluorophenyl)-5-trifluoromethyl-1H-1tosylpyrazole. A Celecoxib structural analog in models of pathological pain. Pharmacol Biochem Behav 124:396-404.
- Perkins FM, Kehlet H (2000). Chronic pain as an outcome of surgery. A review of predictive factors. Anesthesiology 93:1123-33.
- Pogatzki EM, Raja SN (2003). A mouse model of incisional pain. Anesthesiology 99:1023-7.
- Pogatzki-Zahn EM, Zahn PK, Brennan TJ (2007). Postoperative pain--clinical implications of basic research. Best Pract Res Clin Anaesthesiol 21:3-13. Review.
- Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH (2011). Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 163:1707-20.
- Romero A, González-Cuello A, Laorden ML, Campillo A, Vasconcelos N, Romero-Alejo E, Puig MM (2012a). Effects of surgery and/or remifentanil administration on the expression of pERK1/2, c-Fos and dynorphin in the dorsal root ganglia in mice. Naunyn Schmiedebergs Arch Pharmacol 385:397-409.
- Romero L, Zamanillo D, Nadal X, Sánchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segalés C, Laloya M, Hernández E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueño J, Merlos M, Baeyens JM, Giraldo J, López-García JA, Maldonado R, Plata-Salamán CR, Vela JM (2012b). Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 166:2289-306.
- Romero-Sandoval EA, Horvath RJ, DeLeo JA (2008). Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs 9:726-34.
- Sahbaie P, Shi X, Guo TZ, Qiao Y, Yeomans DC, Kingery WS, Clark JD (2009). Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision. Pain 145:341-9.
- Taylor BK, Fu W, Kuphal KE, Stiller CO, Winter MK, Chen W, Corder GF, Urban JH, McCarson KE, Marvizon JC (2014). Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated

inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience 256:178-94.

- Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ (2014). Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 231(19):3855-69.
- Voscopoulos C, Lema M (2010). When does acute pain become chronic? Br J Anaesth 105 Suppl 1:69-85.
- Whiteside GT, Harrison J, Boulet J, Mark L, Pearson M, Gottshall S, Walker K (2004). Pharmacological characterisation of a rat model of incisional pain. Br J Pharmacol 141:85-91
- Xu L, Mabuchi T, Katano T, Matsumura S, Okuda-Ashitaka E, Sakimura K, Mishina M, Ito S (2007). Nitric oxide (NO) serves as a retrograde messenger to activate neuronal NO synthase in the spinal cord via NMDA receptors. Nitric Oxide 17:18-24.
- Yaksh TL, Jessell TM, Gamse R, Mudge AW, Leeman SE (1980). Intrathecal morphine inhibits substance P release from mammalian spinal cord in vivo. Nature 286:155-7.
- Yamada M, Nakao S, Sakamoto S, Takamori Y, Tamura Y, Mochizuki-Oda N, Kataoka Y, Yamada H, Shingu K (2006). Propofol acts at the sigma-1 receptor and inhibits pentazocine-induced c-Fos expression in the mouse posterior cingulate and retrosplenial cortices. Acta Anaesthesiol Scand 50:875-81.
- Zamanillo D, Romero L, Merlos M, Vela JM (2013). Sigma 1 receptor: A new therapeutic target for pain. Eur J Pharmacol 716:78-93.
- Zimmermann M (1983). Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109-10.

3.2. <u>Annex 2</u>: "Spinal modulation of pain-related molecular markers by genetic inactivation of $\sigma_1 R$ in postoperative models".

The role of $\sigma_1 R$ in postoperative pain is investigated for the first time, using either genetic ($\sigma_1 R$ KO mice) or pharmacological (S1RA) tools, in Article 4. The immunohitochemistry results were expressed as percentages of change *versus* control animals for each hemicord (contralateral and ipsilateral side).

Annex 2 shows representative slices from immunohistochemistry studies and expresses the results of Article 4 as absolute values of immunopositive neurons (c-Fos, nNOS and NPY) or mean grey intensity values (GFAP and SP) of the ipsilateral dorsal hemicord.

The material and methods used are the same as those described in Article 4 (immunohistochemistry methods).

Table 1 shows a summary of the spinal expression changes in the pain-related molecular markers analysed in the postoperative model, and how the lack of $\sigma_1 R$ interferes in the expression pattern. The expression changes of pain-related markers observed in WT and KO mice are different when the two mice are compared: the lack of $\sigma_1 R$ attenuated ERK, c-Fos, GFAP and NPY up-regulation induced 4 hours after paw incision. These differences contrast with previous findings where the inflammatory injury is used (Annex 1). Acute inflammation failed to substantially alter the expression pattern while the chronic inflammatory injury tends to increase the expression in KO mice.

Therefore, changes in the spinal expression pattern (ERK, c-Fos, GFAP, nNOS, SP and NPY) in the absence of $\sigma_1 R$ depends on the nature of the injury and the

203

mechanism that triggers sensitization in the mouse (acute or chronic inflammation or acute postsurgery).

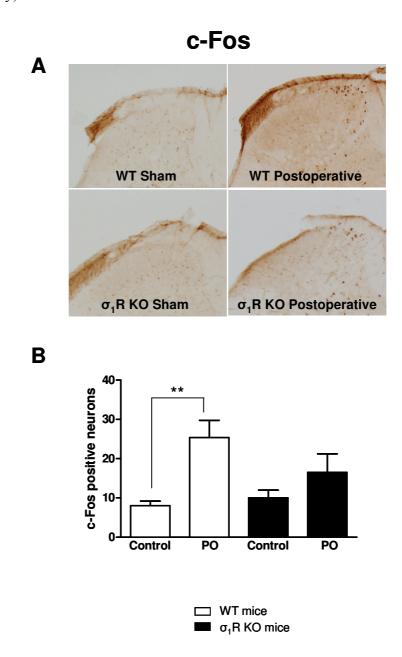


Fig. 1. c-Fos expression in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice. Representative slices of c-Fos immunostaining in a dorsal horn of the SC of sham and operated WT and $\sigma_1 R$ KO mice 4h after surgery (A). Quantification of c-Fos as number of immunoreactive c-Fos neurons in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice (B). Statistically significant differences comparing each control group in WT and $\sigma_1 R$ KO mice: ** p < 0.01 (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean ± SEM of the values obtained in 4 animals.

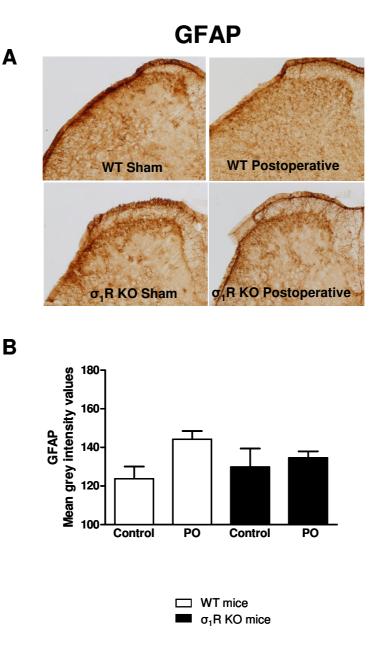


Fig. 2. GFAP expression in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice. Representative slices of GFAP immunostaining in a dorsal horn of the SC of sham and operated WT and $\sigma_1 R$ KO mice 4h after surgery (A). Quantification of GFAP immunoreactivity (expressed in mean grey intensity values) in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice (B). No significant differences *versus* corresponding control group (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean \pm SEM of the values obtained in 4 animals.

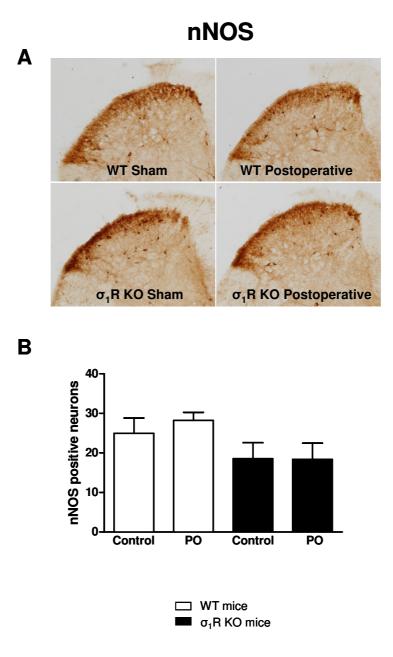


Fig. 3. nNOS expression in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice. Representative slices of nNOS immunostaining in a dorsal horn of the SC of sham and operated WT and $\sigma_1 R$ KO mice 4h after surgery (A). Quantification of nNOS as number of immunoreactive nNOS neurons in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice (B). No significant differences *versus* corresponding control group (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean \pm SEM of the values obtained in 4 animals.

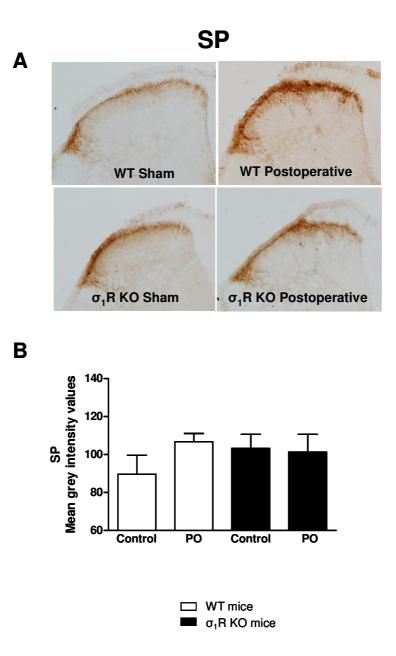


Fig. 4. SP expression in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice. Representative slices of SP immunostaining in a dorsal horn of the SC of sham and operated WT and $\sigma_1 R$ KO mice 4h after surgery (A). Quantification of SP immunoreactivity (expressed in mean grey intensity values) in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice (B). No significant differences *versus* corresponding control group (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean \pm SEM of the values obtained in 4 animals.

NPY Α **WT** Postoperative WT Sham σ₁R KO Sham σ₁R KO Postoperative В 10 NPY positive neurons 8-6-4. 2. 0 PO PO Control Control WT mice σ₁R KO mice

Fig. 5. NPY expression in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice. Representative slices of NPY immunostaining in a dorsal horn of the SC of sham and operated WT and $\sigma_1 R$ KO mice 4h after surgery (A). Quantification of NPY as number of immunoreactive NPY neurons in the ipsilateral dorsal horn of the SC secondary to plantar incision in WT and $\sigma_1 R$ KO mice (B). No significant differences *versus* corresponding control group (two-way ANOVA followed by Bonferroni test). Each bar and vertical line represents the mean \pm SEM of the values obtained in 4 animals.

		pERK	c-Fos	GFAP	nNOS	SP	NPY
W	/T						
K	0						
Decrease No change Slight increase Increase							

Spinal changes after plantar incision

Table 1. Summary of the spinal expression of the pain-related molecular markers used in this study in WT and $\sigma_1 R$ KO mice in the plantar incision model of postoperative pain. Significant protein up-regulation is shown in dark green, slightly increased or tendency to protein up-regulation (no significant) is shown in light green, and significant protein down-regulation is shown in orange, according to previous discussion in Article 4. The lack of $\sigma_1 R$ seems to differentially affect the expression pattern in the postoperative model.

GENERAL DISCUSSION

The overall purpose of this Doctoral Thesis was to explore the role of $\sigma_1 R$ and its pharmacological blockade under important clinical pain conditions of different aetiology. To this end, two species, six pain-related animal models and different pharmacological, molecular and genetic approaches were used. The pharmacological antagonism of $\sigma_1 R$ was found to cause a reduction of the different pain behaviours in both species and in all pain models. Interestingly, a cumulative analgesic effect when $\sigma_1 R$ was chronically blocked, as well as a better analgesic profile as compared to some reference compounds in some of the pain models evaluated, were observed. Furthermore, the possible therapeutic effects of the pharmacological blockade of $\sigma_1 R$ for trigeminal-related and diabetic painful neuropathies, as well as in inflammatory and postoperative pain, has been demonstrated for the first time. Finally, we also found that $\sigma_1 R$ acts through different mechanisms depending on the type of pain, as evidenced by the differential expression patterns of several pain-related molecular markers. All these results strongly support the involvement of $\sigma_1 R$ in pain-related syndromes of different aetiology. Since most of our results have been obtained after the administration of E-52862 — a selective $\sigma_1 R$ compound developed by ESTEVE— the present Doctoral Thesis supports to move E-52862 forward into clinical development as a new therapeutic approach to pain management.

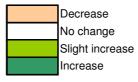
The potency and efficacy following acute treatment with E-52862 were different depending on the experimental model (Table 1). The highest antihypersensitivity effect obtained with E-52862 was found in inflammatory pain models and oxaliplatin-induced neuropathy. The inhibitory effects of E-52862 on pain-related hypersensitivity were not due to an antioedematous action because E-52862 was unable to reduce paw oedema in the carrageenan model. Moreover, these effects have shown to be specifically mediated by $\sigma_1 R$ given that E-52862 was devoid of any antinociceptive effect when administered

to $\sigma_1 R$ KO mice. The efficacy of $\sigma_1 R$ antagonism on oxaliplatin-induced neuropathy is consistent with previous reports demonstrating the involvement of $\sigma_1 R$ in chemotherapy (paclitaxel)-induced neuropathy in mice (Nieto *et al.*, 2012, 2014). Furthermore, our results obtained with a translational experimental model of facial pain support targeting $\sigma_1 R$ as a new strategy for the treatment of cephalic pain, including migraine. Accordingly, two previous reports with other $\sigma_1 R$ antagonist (BD1047) have shown some benefit in reducing acute facial pain in the formalin- and capsaicin-induced headache model (Kwon *et al.*, 2009; Roh and Yoon, 2014).

The antihypersensitivity (antiallodynic and antihyperalgesic) effects of E-52862 in neuropathic (diabetic and trigeminal) and postoperative pain models were superior than those obtained with some reference compounds (NSAIDs and pregabalin), which were unable to exert a significant effect.

Pain type	Experimental pain model	Specie	Readout	Effect of E-52862 (Maximum efficacy reached; tested dose)	KO phenotype
Neuropathic pain	Chronic constriction of the infraorbital nerve (trigeminal)		Mechanical allodynia	33% (40mg/kg, acute) 62% (40mg/kg, repeated)	n.a.
	Streptozotocin-induced diabetic neuropathy	Rats	Mechanical hyperalgesia	43% (80mg/kg, acute) 46% (40mg/kg, repeated)	n.a.
	Oxaliplatin-induced chemotherapy neuropathic pain		Cold allodynia	100% (80mg/kg, acute) 93% (80mg/kg, repeated)	n.a.
Inflammatory pain	Carrageenan-induced acute	Mice	Mechanical allodynia	88% (80 mg/kg, acute)	Similar to WT
	inflammatory pain		Thermal hyperalgesia	100% (80 mg/kg, acute)	Similar to WT
	CFA-induced chronic	Mice	Mechanical allodynia	85% (80 mg/kg, acute)	Similar to WT
	inflammatory pain		Thermal hyperalgesia	n.a.	Similar to WT
Postoperative pain	Plantar incision-induced	Mice	Mechanical allodynia	70% (160 mg/kg, acute)	Attenuated
	postoperative pain		Thermal hyperalgesia	58% (160 mg/kg, acute)	Similar to WT

Table 1. Antihypersensitivity effects of E-52862 administered by i.p. route. Abbreviations: n.a.: not applicable.


No tolerance but increased activity respect to the acute treatment was found following repeated E-52862 administration in diabetic and oxaliplatin-treated rats and was not associated with drug accumulation (Romero *et al.*, 2012). While we cannot assume that E-52862 is a disease-modifying analgesic drug, we can assure that its effects last longer than expected based on its pharmacokinetic profile, which suggests a sustained pharmacodynamic effect (i.e., a modifying effect on the underlying baseline pain over time due to the continued action of the compound that results in a progressive attenuation of pain).

A genetic approach using $\sigma_1 R$ KO mice was used to study the involvement of this receptor in the development of inflammatory and postoperative pain, as well as to study the spinal expression of some key protein mediators involved in pain pathways (Table 2).

No differences in pain hypersensitivity were found in the carrageenan and CFA models when WT and $\sigma_1 R$ KO mice were compared. Moreover, whereas carrageenan did not elicit any significant difference in protein expression between mouse types, CFA did produce an increased pattern in $\sigma_1 R$ KO mice *versus* WT mice, probably due to the chronic nature of the CFA model. Interestingly, $\sigma_1 R$ KO mice recovered normal mechanical sensitivity faster than WT mice following plantar incision, thus suggesting that $\sigma_1 R$ plays a role in postoperative pain. The attenuated pattern in the expression of pain-related molecular markers (pERK, c-Fos, GFAP, SP and NPY) observed in $\sigma_1 R$ KO mice in postoperative pain also support the role played by $\sigma_1 R$ in this particular type of pain (Table 2 and 3).

Table 2. Summary of the spinal expression of the pain-related molecular markers in WT and $\sigma_1 R$ KO mice in the carrageenan and CFA inflammatory pain models and postoperative pain model of plantar incision.

Spinal changes after pain induction							
Pain model	Genotype	pERK	c-fos	GFAP	nNOS	SP	NPY
Carrageenan	WT						
	КО						
CFA	WT						
U A	КО						
Postoperative	WT						
Fostoperative	КО						

Pain type	Experimental pain model	Mechanical hypersensitivity	Protein expression pattern	
Inflammatory	Carrageenan-induced acute inflammatory pain	Similar to WT	Similar to WT	
pain	CFA-induced chronic inflammatory pain	Similar to WT	Increased pattern versus WT	
Postoperative pain	Plantar incision-induced postoperative pain	Attenuation versus WT	Attenuation versus WT	

Table 3. Behavioural and molecular effects of the genetic blockade of $\sigma_1 R$.

Some limitations of the present study include the fact that behavioural studies have focused on reflex withdrawal responses that only rely on the sensorydiscriminative component of pain. Also, the molecular studies have been performed at one time point. The investigation of molecular markers at different time points and in DRGs and additional somatosensory areas would be interesting, as it would be the investigation of the pharmacological modulation of pain-related changes of these molecular markers by $\sigma_1 R$ ligands.

In summary, the present Doctoral Thesis has demonstrated the potential therapeutic use of $\sigma_1 R$ antagonists for the clinical management of pain in a wide range of aetiologies, thus supporting progress to further studies in human populations.

CONCLUSIONS

Specific conclusions:

1.- Selective pharmacological $\sigma_1 R$ blockade with E-52862 was active in reducing mechanical and cold allodynia and mechanical hyperalgesia when administered acutely and after repeated administration in trigeminal neuralgia, chemotherapy-induced neuropathic pain and diabetic painful polyneuropathy, respectively. Preventive treatment with E-52862 inhibited the oxaliplatin-induced development of cold allodynia.

2.- Repeated daily treatment with E-52862 produced an increased antinociceptive effect and attenuated baseline pain behaviours, thus supporting not only a lack of tolerance but also a sustained inhibitory effect on underlying pain-generating mechanisms.

3.- Intraplantar injection of **carrageenan** caused both mechanical allodynia and thermal (heat) hyperalgesia that peaked at 3 h and reverted to baseline levels 3–4 days after injection in WT mice. The genetic inactivation of $\sigma_1 R$ failed to prevent the development of mechanical and heat hypersensitivity. Three hours after carrageenan injection c-Fos and GFAP expression was equally up-regulated in the dorsal horn of the spinal cord of inflamed WT and $\sigma_1 R$ KO mice. In contrast, nNOS expression was not modified in the dorsal horn of the spinal cord of WT mice, whereas it was clearly up-regulated in $\sigma_1 R$ KO mice. Finally, pERK, SP and NPY expressions were not modified in either WT or $\sigma_1 R$ KO mice.

4.- Acute systemic administration of E-52862 dose-dependently inhibited both mechanical and thermal (heat) hypersensitivity induced by carrageenan in WT mice. E-52862 failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice suggesting that the

analgesic activity induced by E-52862 in this model was clearly mediated by the interaction with $\sigma_1 R$. Unlike NSAIDs (ibuprofen and celecoxib), E-52862 did not modify the paw volume.

5.- Intraplantar injection of CFA produced a robust and long-lasting mechanical allodynia (not returning to baseline levels until day 11), but no or only mild thermal (heat) hyperalgesia in WT mice. The genetic inactivation of $\sigma_1 R$ failed to prevent the development of mechanical allodynia. Four days after CFA injection c-Fos expression was not modified in the dorsal horn of the spinal cord of WT mice, whereas it was ipsilaterally up-regulated in $\sigma_1 R$ KO mice. SP expression was reduced in the dorsal horn of the spinal cord of WT mice, whereas horn of the spinal cord of WT mice, and this change was attenuated in the $\sigma_1 R$ KO mice. Conversely, the NPY expression was not modified in WT mice, while it was decreased in $\sigma_1 R$ KO mice. Finally, pERK, GFAP and nNOS expressions were not modified in either WT or $\sigma_1 R$ KO mice.

6.- Acute systemic administration of E-52862 dose-dependently inhibited mechanical allodynia induced by CFA in WT mice. E-52862 failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice, thus suggesting that the analgesic activity induced by E-52862 in this model was clearly mediated by the interaction with $\sigma_1 R$.

7.- Plantar incision caused both mechanical and thermal (heat) hypersensitivity that peaked at 4 h and reverted to baseline levels 9 days after surgery in WT mice. $\sigma_1 R$ KO mice showed a faster recovery in mechanical hypersensitivity, whereas no differences were observed in WT and $\sigma_1 R$ KO mice in the acquisition of thermal hyperalgesia after plantar incision. Four hours after surgery the expression of pERK, c-Fos, GFAP and NPY — but not nNOS and SP— were up-regulated in the dorsal horn of the spinal cord in WT mice, and these changes were attenuated in $\sigma_1 R$ KO mice.

8.- Unlike NSAIDs (ibuprofen and celecoxib), the acute systemic administration of E-52862 dose-dependently inhibited both mechanical and heat hypersensitivity induced by paw incision in WT mice. E-52862 was less potent but showed an efficacy similar to that of morphine. E-52862 failed to exert any antihypersensitivity effect in $\sigma_1 R$ KO mice, thus suggesting that the analgesic activity induced by E-52862 in this model was clearly mediated by the interaction with $\sigma_1 R$.

General conclusion:

The pharmacological blockade of $\sigma_1 R$ represents a promising new therapy for the treatment of pain of different aetiologies such as neuropathic, inflammatory and postoperative pain. The *in vivo* efficacy observed in two species (mouse and rat), supports moving E-52862 forward into clinical development as a new therapeutic approach to pain management.

REFERENCES

- Abadias M, Escriche M, Vaque A, Sust M, Encina G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 2013;75:103-117.
- Abbadie C, Brown JL, Mantyh PW, Basbaum AI. Spinal cord substance P receptor immunoreactivity increases in both inflammatory and nerve injury models of persistent pain. Neuroscience 1996;70:201-209.
- Adelson D, Lao L, Zhang G, Kim W, Marvizon JC. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers. Neuroscience 2009;161:538-553.
- Ahmed IS, Chamberlain C, Craven RJ. S2R(Pgrmc1): the cytochrome-related sigma-2 receptor that regulates lipid and drug metabolism and hormone signaling. Expert Opin Drug Metab Toxicol 2012;8:361-370.
- Almansa C, Vela JM. Selective sigma-1 receptor antagonists for the treatment of pain. Future Med Chem 2014;6:1179-1199.
- Alonso G, Phan V, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the sigma(1) receptor in the adult rat central nervous system. Neuroscience 2000;97:155-170.
- Alzayady KJ, Wojcikiewicz RJ. The role of Ca2+ in triggering inositol 1,4,5-trisphosphate receptor ubiquitination. Biochem J 2005;392:601-606.
- Aubel B, Kayser V, Mauborgne A, Farré A, Hamon M, Bourgoin S. Antihyperalgesic effects of cizolirtine in diabetic rats: behavioral and biochemical studies. Pain 2004;110:22-32.
- Authier N, Balayssac D, Marchand F, Ling B, Zangarelli A, Descoeur J, Coudore F, Bourinet E, Eschalier A. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurotherapeutics 2009;6:620-629.
- Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002;34:399-410.
- Aydar E, Onganer P, Perrett R, Djamgoz MB, Palmer CP. The expression and functional characterization of sigma (sigma) 1 receptors in breast cancer cell lines. Cancer Lett 2006;242:245-257.
- Baker DE. Oxaliplatin: a new drug for the treatment of metastatic carcinoma of the colon or rectum. Rev Gastroenterol Disord 2003;3:31-38.
- Balasuriya D, Stewart AP, Edwardson JM. The sigma-1 receptor interacts directly with GluN1 but not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci 2013;33:18219-18224.
- Bangaru ML, Weihrauch D, Tang QB, Zoga V, Hogan Q, Wu HE. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain 2013;9:47.
- Banik RK, Woo YC, Park SS, Brennan TJ. Strain and sex influence on pain sensitivity after plantar incision in the mouse. Anesthesiology 2006;105:1246-1253.
- Baños JE, Sanchez G, Berrendero F, Maldonado R. Neuropathic pain: some clues for future drug treatments. Mini Rev Med Chem 2003;3:719-727.
- Basbaum A, Jessell T. The perception of pain. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of Neural Science. 4th ed. New York: McGraw-Hill, Health Professions Division; 2000.

- Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267-284.
- Bhanumathy CD, Nakao SK, Joseph SK. Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells. J Biol Chem 2006;281:3722-3730.
- Borges BE, Appel MH, Cofré AR, Prado ML, Steclan CA, Esnard F, Zanata SM, Laurindo FR, Nakao LS. The flavo-oxidase QSOX1 supports vascular smooth muscle cell migration and proliferation: Evidence for a role in neointima growth. Biochim Biophys Acta 2015;1852:1334-1346.
- Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative sigma1 and sigma2 receptor subtypes. Neuroscience 1997;76:467-477.
- Bowen WD. Sigma receptors: recent advances and new clinical potentials. Pharm Acta Helv 2000;74:211-218.
- Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain 1996;64:493-501.
- Brennan TJ. Pathophysiology of postoperative pain. Pain. 2011;152(3 Suppl):S33-40.
- Bura AS, Guegan T, Zamanillo D, Vela JM, Maldonado R. Operant self-administration of a sigma ligand improves nociceptive and emotional manifestations of neuropathic pain. Eur J Pain 2013;17:832-843.
- Buvanendran A, Lubenow TJ. Efficacy of transverse tripolar spinal cord stimulator for the relief of chronic low back pain from failed back surgery. Pain Physician 2008;11:333-338.
- Cahill MA. Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol 2007;105:16-36.
- Calvino B, Grilo RM. Central pain control. Joint Bone Spine 2006;73:10-16.
- Cendan CM, Pujalte JM, Portillo-Salido E, Montoliu L, Baeyens JM. Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 2005a;511:73-74.
- Cendan CM, Pujalte JM, Portillo-Salido E, Baeyens JM. Antinociceptive effects of haloperidol and its metabolites in the formalin test in mice. Psychopharmacology (Berl) 2005b;182:485-493.
- Chapman V, Honoré P, Buritova J, Besson J M. The contribution of NMDA receptor activation to spinal c-Fos expression in a model of inflammatory pain. Br J Pharmacol 1995;116: 1628-1634.
- Chen Y, Boettger MK, Reif A, Schmitt A, Uceyler N, Sommer C. Nitric oxide synthase modulates CFAinduced thermal hyperalgesia through cytokine regulation in mice. Mol Pain 2010;6:13.
- Chien CC, Pasternak GW. Selective antagonism of opioid analgesia by a sigma system. J Pharmacol Exp Ther 1994;271:1583-1590.
- Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci Lett 1995a;190:137-139.
- Chien CC, Pasternak GW. (-)-Pentazocine analgesia in mice: interactions with a sigma receptor system. Eur J Pharmacol 1995b;294:303-308.
- Choi SR, Roh DH, Yoon SY, Kang SY, Moon JY, Kwon SG, Choi HS, Han HJ, Beitz AJ, Oh SB, Lee JH. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol Res 2013;74:56-67.

- Choi HS, Roh DH, Yoon SY, Moon JY, Choi SR, Kwon SG, Kang SY, Han HJ, Kim HW, Beitz AJ, Oh SB, Lee JH. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain. Pain 2015;156:1046-1059.
- Jae-Gyun Choi, Suk-Yun Kang, Jae-Min Kim, Dae-Hyun Roh, Seo-Yeon Yoon, Jin Bong Park, Jang-Hern Lee, and Hyun-Woo Kim. Antinociceptive Effect of *Cyperi rhizoma* and *Corydalis tuber* Extracts on Neuropathic Pain in Rats. Korean J Physiol Pharmacol 2012;16:387-392.
- Calzà L, Pozza M, Zanni M, Manzini CU, Manzini E, Hökfelt T. Peptide plasticity in primary sensory neurons and spinal cord during adjuvant-induced arthritis in the rat: an immunocytochemical and in situ hybridization study. Neuroscience 1998;82:575-589.
- Chu UB, Ramachandran S, Hajipour AR, Ruoho AE. Photoaffinity labeling of the sigma-1 receptor with N-[3-(4-nitrophenyl)propyl]-N-dodecylamine: evidence of receptor dimers. Biochemistry 2013;52:859-868.
- Chu YC, Guan Y, Skinner J, Raja SN, Johns RA, Tao YX. Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain. Pain 2005;119:113-123.
- Ciruela A, Dixon AK, Bramwell S, Gonzalez MI, Pinnock RD, Lee K. Identification of MEK1 as a novel target for the treatment of neuropathic pain. Br J Pharmacol 2003;138:751-756.
- Cobos EJ, Baeyens JM, Del PE. Phenytoin differentially modulates the affinity of agonist and antagonist ligands for sigma 1 receptors of guinea pig brain. Synapse 2005;55:192-195.
- Cobos EJ, Lucena G, Baeyens JM, Del PE. Differences in the allosteric modulation by phenytoin of the binding properties of the sigmal ligands [3H](+)-pentazocine and [3H]NE-100. Synapse 2006;59:152-161.
- Cobos EJ, Entrena JM, Nieto FR, Cendan CM, Del PE. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2008;6:344-366.
- Coggeshall RE. Fos, nociception and the dorsal horn. Prog Neurobiol 2005;77:299-352.
- Colpaert FC, De WP, Maroli AN, Awouters F, Niemegeers CJ, Janssen PA. Self-administration of the analgesic suprofen in arthritic rats: evidence of Mycobacterium butyricum-induced arthritis as an experimental model of chronic pain. Life Sci 1980;27:921-928.
- Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009;32:1-32.
- Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006;444:894-898.
- Cuesta MC, Arcaya JL, Cano G, Sanchez L, Maixner W, Suarez-Roca H. Opposite modulation of capsaicin-evoked substance P release by glutamate receptors. Neurochem Int 1999;35:471-478.
- De la Puente B, Nadal X, Portillo-Salido E, Sanchez-Arroyos R, Ovalle S, Palacios G, Muro A, Romero L, Entrena JM, Baeyens JM, Lopez-Garcia JA, Maldonado R, Zamanillo D, Vela JM. Sigma-1

receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 2009;145:294-303.

- Deseure K, Hans G. Behavioral study of non-evoked orofacial pain following different types of infraorbital nerve injury in rats. Physiol Behav 2015;138:292-296.
- De Winter, B.Y. (2003) Study of the Pathogenes is of Paralytic Ileus in Animal Models of Experimentally Induced Postoperative and Septic Ileus, Verh K Acad Geneeskd Belg., Vol.65, No 5, pp. 293-324.
- Di RM, Giroud JP, Willoughby DA. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 1971;104:15-29.
- Diaz JL, Zamanillo D, Corbera J, Baeyens JM, Maldonado R, Pericas MA, Vela JM, Torrens A. Selective sigma-1 (sigma1) receptor antagonists: emerging target for the treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 2009;9:172-183.
- Diaz JL, Cuberes R, Berrocal J, Contijoch M, Christmann U, Fernandez A, Port A, Holenz J, Buschmann H, Laggner C, Serafini MT, Burgueno J, Zamanillo D, Merlos M, Vela JM, Almansa C. Synthesis and biological evaluation of the 1-arylpyrazole class of sigma(1) receptor antagonists: identification of 4-(2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl)morpholine (S1RA, E-52862). J Med Chem 2012;55:8211-8224.
- Dirks J, Moiniche S, Hilsted KL, Dahl JB. Mechanisms of postoperative pain: clinical indications for a contribution of central neuronal sensitization. Anesthesiology 2002;97:1591-1596.
- Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 2001;106:619-632.
- Dray A. Neuropathic pain: emerging treatments. Br J Anaesth 2008;101:48-58.
- Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Gris G, Del PE, Zamanillo D, Baeyens JM. Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 2009a;143:252-261.
- Entrena JM, Cobos EJ, Nieto FR, Cendan CM, Baeyens JM, Del PE. Antagonism by haloperidol and its metabolites of mechanical hypersensitivity induced by intraplantar capsaicin in mice: role of sigma-1 receptors. Psychopharmacology (Berl) 2009b;205:21-33.
- Espallergues J, Lapalud P, Christopoulos A, Avlani VA, Sexton PM, Vamvakides A, Maurice T. Involvement of the sigma1 (sigma1) receptor in the anti-amnesic, but not antidepressant-like, effects of the aminotetrahydrofuran derivative ANAVEX1-41. Br J Pharmacol 2007;152:267-279.
- Farquhar-Smith P. Chemotherapy-induced neuropathic pain. Curr Opin Support Palliat Care 2011;5:1-7.
- Freire MA, Guimaraes JS, Leal WG, Pereira A. Pain modulation by nitric oxide in the spinal cord. Front Neurosci 2009;3:175-181.
- Gao YJ, Ji RR. c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J 2009;2:11-17.
- Giordano J. The neurobiology of nociceptive and anti-nociceptive systems. Pain Physician 2005;8:277-290.
- Gómez-Soler M, Fernández-Dueñas V, Portillo-Salido E, Pérez P, Zamanillo D, Vela JM, Burgueño J, Ciruela F. Predicting the antinociceptive efficacy of $\sigma(1)$ receptor ligands by a novel receptor fluorescence resonance energy transfer (FRET) based biosensor. J Med Chem 2014;57:238-42.

- Gonzalez-Cano R, Merlos M, Baeyens JM, Cendan CM. sigma1 receptors are involved in the visceral pain induced by intracolonic administration of capsaicin in mice. Anesthesiology 2013;118:691-700.
- Gonzalez MI, Field MJ, Bramwell S, McCleary S, Singh L. Ovariohysterectomy in the rat: a model of surgical pain for evaluation of pre-emptive analgesia? Pain. 2000;88:79-88.
- Gregg JM. A surgical approach to the ophthalmic-maxillary nerve trunks in the rat. Journal of dental research 1973;52:392.
- Gris G, Merlos M, Vela JM, Zamanillo D, Portillo-Salido E. S1RA, a selective sigma-1 receptor antagonist, inhibits inflammatory pain in the carrageenan and complete Freund's adjuvant models in mice. Behav Pharmacol 2014;25:226-235.
- Gris G, Cobos EJ, Zamanillo D, Portillo-Salido E. Sigma-1 receptor and inflammatory pain. Inflamm Res. 2015;64:377-381.
- Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl) 2004;174:301-319.
- Gul H, Yildiz O, Dogrul A, Yesilyurt O, Isimer A. The interaction between IL-1beta and morphine: possible mechanism of the deficiency of morphine-induced analgesia in diabetic mice. Pain 2000;89:39-45.
- Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 1996;93:8072-8077.
- Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 1988;32:77-88.
- Hayashi T, Su TP. Regulating ankyrin dynamics: Roles of sigma-1 receptors. Proc Natl Acad Sci U S A 2001;98:491-496.
- Hayashi T, Su TP. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 2003;306:718-725.
- Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007;131:596-610.
- Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010;51:381-398.
- Hayashi T, Tsai SY, Mori T, Fujimoto M, Su TP. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets 2011;15:557-577.
- Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 1990;527:244-253.
- Hellewell SB, Bruce A, Feinstein G, Orringer J, Williams W, Bowen WD. Rat liver and kidney contain high densities of sigma 1 and sigma 2 receptors: characterization by ligand binding and photoaffinity labeling. Eur J Pharmacol 1994;268:9-18.
- Helyes Z, Pinter E, Sandor K, Elekes K, Banvolgyi A, Keszthelyi D, Szoke E, Toth DM, Sandor Z, Kereskai L, Pozsgai G, Allen JP, Emson PC, Markovics A, Szolcsanyi J. Impaired defense

mechanism against inflammation, hyperalgesia, and airway hyperreactivity in somatostatin 4 receptor gene-deleted mice. Proc Natl Acad Sci U S A 2009;106:13088-13093.

- Hoskin KL, Bulmer DC, Goadsby PJ. Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 1999;266:173-176.
- Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M. Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. Eur J Neurosci 2005;22:2431-2440.
- Huang YS, Lu HL, Zhang LJ, Wu Z. Sigma-2 receptor ligands and their perspectives in cancer diagnosis and therapy. Med Res Rev 2014;34:532-566.
- Indo Y. Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum Mutat 2001;18:462-471.
- Intondi AB, Dahlgren MN, Eilers MA, Taylor BK. Intrathecal neuropeptide Y reduces behavioral and molecular markers of inflammatory or neuropathic pain. Pain 2008;137:352-365.
- Ishikawa and Hashimoto. The role of sigma-1 receptors in the pathophysiology of neuropsychiatric diseases. Journal of Receptor, Ligand and Channel Research 2010;3:25-36.
- Jacquin MF, Zeigler HP. Trigeminal orosensation and ingestive behavior in the rat. Behavioral Neuroscience 1983;97:62-97.
- Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012;291:1-9.
- Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 2014;13:533-548.
- Jin SX, Zhuang ZY, Woolf CJ, Ji RR. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 2003;23:4017-4022.
- Juhl GI, Jensen TS, Norholt SE, Svensson P. Central sensitization phenomena after third molar surgery: a quantitative sensory testing study. Eur J Pain 2008;12:116-127.
- Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature 2001;413:203-210.
- Kamei J, Mizoguchi H, Narita M, Tseng LF. Therapeutic potential of PKC inhibitors in painful diabetic neuropathy. Expert Opin Investig Drugs 2001;10:1653-1664.
- Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet 2006;367:1618-1625.
- Kehlet H, Rathmell JP. Persistent postsurgical pain: the path forward through better design of clinical studies. Anesthesiology 2010;112:514-515.
- Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 1996;229:553-558.
- Khan GM, Chen SR, Pan HL. Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience 2002;114:291-299.

- Kim FJ, Kovalyshyn I, Burgman M, Neilan C, Chien CC, Pasternak GW. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding. Mol Pharmacol 2010;77:695-703.
- Kim HW, Kwon YB, Roh DH, Yoon SY, Han HJ, Kim KW, Beitz AJ, Lee JH. Intrathecal treatment with sigmal receptor antagonists reduces formalin-induced phosphorylation of NMDA receptor subunit 1 and the second phase of formalin test in mice. Br J Pharmacol 2006;148:490-498.
- Kim HW, Roh DH, Yoon SY, Seo HS, Kwon YB, Han HJ, Kim KW, Beitz AJ, Lee JH. Activation of the spinal sigma-1 receptor enhances NMDA-induced pain via PKC- and PKA-dependent phosphorylation of the NR1 subunit in mice. Br J Pharmacol 2008;154:1125-1134.
- Kinch MS. An analysis of FDA-approved drugs for pain and anesthesia. Drug Discov Today 2015;20:3-6.
- King M, Pan YX, Mei J, Chang A, Xu J, Pasternak GW. Enhanced kappa-opioid receptor-mediated analgesia by antisense targeting the sigmal receptor. Eur J Pharmacol 1997;331:R5-6.
- Kissin I. The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg 2010;110:780-789.
- Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma(1) (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000;20:375-387.
- Kotagale NR, Shirbhate SH, Shukla P, Ugale RR. Agmatine attenuates neuropathic pain in sciatic nerve ligated rats: modulation by hippocampal sigma receptors. Eur J Pharmacol 2013;714:424-431.
- Kourrich S, Su TP, Fujimoto M, Bonci A. The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 2012;35:762-771.
- Kuner R. Central mechanisms of pathological pain. Nat Med 2010;16:1258-1266.
- Kuphal KE, Solway B, Pedrazzini T, Taylor BK. Y1 receptor knockout increases nociception and prevents the anti-allodynic actions of NPY. Nutrition 2008;24:885-891.
- Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 2003;63:649-671.
- Kwon YB, Jeong YC, Kwon JK, Son JS, Kim KW. The Antinociceptive Effect of Sigma-1 Receptor Antagonist, BD1047, in a Capsaicin Induced Headache Model in Rats. Korean J Physiol Pharmacol 2009;13:425-429.
- Labrakakis C, Lorenzo LE, Bories C, Ribeiro-da-Silva A, De Koninck Y. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn. Mol Pain 2009;5:24.
- Langa F, Codony X, Tovar V, Lavado A, Gimenez E, Cozar P, Cantero M, Dordal A, Hernandez E, Perez R, Monroy X, Zamanillo D, Guitart X, Montoliu L. Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 2003;18:2188-2196.
- Lascelles BD, Waterman AE, Cripps PJ, Livingston A, Henderson G. Central sensitization as a result of surgical pain: investigation of the pre-emptive value of pethidine for ovariohysterectomy in the rat. Pain 1995;62:201-212.

- Latremoliere A, Mauborgne A, Masson J, Bourgoin S, Kayser V, Hamon M, Pohl M. Differential implication of proinflammatory cytokine interleukin-6 in the development of cephalic versus extracephalic neuropathic pain in rats. J Neurosci 2008;28:8489-8501.
- Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009;10:895-926.
- Laurini E, Da Col V, Wunsch B, Pricl S. Analysis of the molecular interactions of the potent analgesic S1RA with the sigma1 receptor. Bioorg Med Chem Lett 2013;23:2868-2871.
- Lavand'homme P. From preemptive to preventive analgesia: time to reconsider the role of perioperative peripheral nerve blocks? Reg Anesth Pain Med 2011;36:4-6.
- Leitner ML, Hohmann AG, Patrick SL, Walker JM. Regional variation in the ratio of sigma 1 to sigma 2 binding in rat brain. Eur J Pharmacol 1994;259:65-69.
- Li KW, Kim DS, Zaucke F, Luo ZD. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model. Eur J Pain 2014;18:489-495.
- Ling B, Coudore-Civiale MA, Balayssac D, Eschalier A, Coudore F, Authier N. Behavioral and immunohistological assessment of painful neuropathy induced by a single oxaliplatin injection in the rat. Toxicology 2007;234:176-184.
- Loeser JD, Melzack R. Pain: an overview. Lancet 1999;353:1607-1609.
- Losel RM, Besong D, Peluso JJ, Wehling M. Progesterone receptor membrane component 1--many tasks for a versatile protein. Steroids 2008;73:929-934.
- Loseth GE, Ellingson DM, Lekness S. Touch and pain. 2013. R. Biswas-Diener & E. Diener (Eds), Noba Textbook.
- Ma W, Eisenach JC. Intraplantar injection of a cyclooxygenase inhibitor ketorolac reduces immunoreactivities of substance P, calcitonin gene-related peptide, and dynorphin in the dorsal horn of rats with nerve injury or inflammation. Neuroscience 2003;121:681-690.
- Macrae WA. Chronic post-surgical pain: 10 years on. Br J Anaesth 2008;101:77-86.
- Mahinda TB, Taylor BK. Intrathecal neuropeptide Y inhibits behavioral and cardiovascular responses to noxious inflammatory stimuli in awake rats. Physiol Behav 2004;80:703-711.
- Mantyh PW, Johnson DJ, Boehmer CG, Catton MD, Vinters HV, Maggio JE, Too HP, Vigna SR. Substance P receptor binding sites are expressed by glia in vivo after neuronal injury. Proc Natl Acad Sci U S A 1989;86:5193-5197.
- Mardon K, Kassiou M, Donald A. Effects of streptozotocin-induced diabetes on neuronal sigma receptors in the rat brain. Life Sci 1999;65:281-286.
- Marrazzo A, Parenti C, Scavo V, Ronsisvalle S, Scoto GM, Ronsisvalle G. In vivo evaluation of (+)-MR200 as a new selective sigma ligand modulating MOP, DOP and KOP supraspinal analgesia. Life Sci 2006;78:2449-2453.
- Martin TJ, Eisenach JC. Pharmacology of opioid and nonopioid analgesics in chronic pain states. J Pharmacol Exp Ther 2001;299:811-817.
- Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine- and nalorphinelike drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197:517-532.

- Martina M, Turcotte ME, Halman S, Bergeron R. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007;578:143-157.
- Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology 2002;42:1043-1055.
- Maurice T, Phan VL, Privat A. The anti-amnesic effects of sigma1 (sigma1) receptor agonists confirmed by in vivo antisense strategy in the mouse. Brain Res 2001a;898:113-121.
- Maurice T, Phan VL, Urani A, Guillemain I. Differential involvement of the sigma(1) (sigma(1)) receptor in the anti-amnesic effect of neuroactive steroids, as demonstrated using an in vivo antisense strategy in the mouse. Br J Pharmacol 2001b;134:1731-1741.
- Mazo I, Roza C, Zamanillo D, Merlos M, Vela JM, Lopez-Garcia JA. Effects of centrally acting analgesics on spinal segmental reflexes and wind-up. Eur J Pain 2014;19:1012-1020.
- McCann DJ, Weissman AD, Su TP. Sigma-1 and sigma-2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 1994;17:182-189.
- McQuay HJ, Moore RA. Antidepressants and chronic pain. BMJ 1997;314:763-764.
- Mei J, Pasternak GW. Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol 2001;62:349-355.
- Mei J, Pasternak GW. Sigma1 receptor modulation of opioid analgesia in the mouse. J Pharmacol Exp Ther 2002;300:1070-1074.
- Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF. The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 2005;280:40892-40900.
- Meng X, Zhang Y, Lao L, Saito R, Li A, Bäckman CM, Berman BM, Ren K, Wei PK, Zhang RX. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain 2013;154:294-305.
- Meunier J, Hayashi T. Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 2010;332:388-397.
- Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y. Eur J Neurosci 2007;26:3079-3092.
- Michaud K, Bombardier C, Emery P. Quality of life in patients with rheumatoid arthritis: does abatacept make a difference? Clin Exp Rheumatol 2007;25:S35-S45.
- Micheletti L, Radici G, Lynch PJ. Provoked vestibulodynia: inflammatory, neuropathic or dysfunctional pain? A neurobiological perspective. J Obstet Gynaecol 2014;34:285-288.
- Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999;57:1-164.
- Moebius FF, Bermoser K, Reiter RJ, Hanner M, Glossmann H. Yeast sterol C8-C7 isomerase: identification and characterization of a high-affinity binding site for enzyme inhibitors. Biochemistry 1996;35:16871-16878.

- Moon JY, Roh DH, Yoon SY, Kang SY, Choi SR, Kwon SG, Choi HS, Han HJ, Beitz AJ, Lee JH. Sigma-1 receptor-mediated increase in spinal p38 MAPK phosphorylation leads to the induction of mechanical allodynia in mice and neuropathic rats. Exp Neurol 2013;247:383-391.
- Moon JY, Roh DH, Yoon SY, Choi SR, Kwon SG, Choi HS, Kang SY, Han HJ, Beitz AJ, Oh SB, Lee JH. sigmal receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 2014;171:5881-5897.
- Morgenweck J, Abdel-aleem OS, McNamara KC, Donahue RR, Badr MZ, Taylor BK. Activation of peroxisome proliferator activated receptor γ in brain inhibits inflammatory pain, dorsal horn expression of Fos, and local edema. Neuropharmacology 2010;58:337-345.
- Morin-Surun MP, Collin T, Denavit-Saubie M, Baulieu EE, Monnet FP. Intracellular sigma1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci U S A 1999;96:8196-8199.
- Nagakura Y, Okada M, Kohara A, Kiso T, Toya T, Iwai A, Wanibuchi F, Yamaguchi T. Allodynia and hyperalgesia in adjuvant-induced arthritic rats: time course of progression and efficacy of analgesics. J Pharmacol Exp Ther 2003;306:490-497.
- Navarro G, Moreno E, Aymerich M, Marcellino D, McCormick PJ, Mallol J, Cortes A, Casado V, Canela EI, Ortiz J, Fuxe K, Lluis C, Ferre S, Franco R. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci U S A 2010;107:18676-18681.
- Nguyen EC, McCracken KA, Liu Y, Pouw B, Matsumoto RR. Involvement of sigma (sigma) receptors in the acute actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology 2005;49:638-645.
- Nieto FR, Cendan CM, Sanchez-Fernandez C, Cobos EJ, Entrena JM, Tejada MA, Zamanillo D, Vela JM, Baeyens JM. Role of sigma-1 receptors in paclitaxel-induced neuropathic pain in mice. J Pain 2012;13:1107-1121.
- Nieto FR, Cendan CM, Canizares FJ, Cubero MA, Vela JM, Fernandez-Segura E, Baeyens JM. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014;10:11.
- Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M. Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain 2006;7:816-822.
- Oberdorf C, Schepmann D, Vela JM, Diaz JL, Holenz J, Wunsch B. Thiophene bioisosteres of spirocyclic sigma receptor ligands. 1. N-substituted spiro[piperidine-4,4'-thieno[3,2-c]pyrans]. J Med Chem 2008;51:6531-6537.
- Ohsawa M, Carlsson A, Asato M, Koizumi T, Nakanishi Y, Fransson R, Sandström A, Hallberg M, Nyberg F, Kamei J. The effect of substance P1-7 amide on nociceptive threshold in diabetic mice. Peptides 2011;32:93-98.
- Okano K, Kuraishi Y, Satoh M. Involvement of spinal substance P and excitatory amino acids in inflammatory hyperalgesia in rats. Jpn J Pharmacol 1998;76:15-22.
- Omote K, Hazama K, Kawamata T, Kawamata M, Nakayaka Y, Toriyabe M, Namiki A. Peripheral nitric oxide in carrageenan-induced inflammation. Brain Res 2001;912:171-175.

- Pabba M. The essential roles of protein-protein interaction in sigma-1 receptor functions. Front Cell Neurosci 2013;7:50.
- Pan YX, Mei J, Xu J, Wan BL, Zuckerman A, Pasternak GW. Cloning and characterization of a mouse sigmal receptor. J Neurochem 1998;70:2279-2285.
- Parenti C, Marrazzo A, Arico G, Cantarella G, Prezzavento O, Ronsisvalle S, Scoto GM, Ronsisvalle G. Effects of a selective sigma 1 antagonist compound on inflammatory pain. Inflammation 2014a;37:261-266.
- Parenti C, Marrazzo A, Arico G, Parenti R, Pasquinucci L, Ronsisvalle S, Ronsisvalle G, Scoto GM. The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm Res 2014b;63:231-237.
- Pearson CM, Wood FD. Studies of arthritis and other lesions induced in rats by the injection of mycobacterial adjuvant. VII. Pathologic details of the arthritis and spondylitis. Am J Pathol 1963;42:73-95.
- Perl ER. Ideas about pain, a historical view. Nat Rev Neurosci 2007;8:71-80.
- Pisetsky DS, Ward MM. Advances in the treatment of inflammatory arthritis. Best Pract Res Clin Rheumatol 2012;26:251-261.
- Pogatzki EM, Raja SN. A mouse model of incisional pain. Anesthesiology 2003;99:1023-1027.
- Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel. Pain 2001;94,293-304.
- Porreca F, Vanderah TW, Guo W, Barth M, Dodey P, Peyrou V, Luccarini JM, Junien JL, Pruneau D. Antinociceptive pharmacology of N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]methyl]-2-[2-[[(4methoxy-2,6-dimethyl phenyl) sulfonyl]methylamino]ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist. J Pharmacol Exp Ther 2006;318:195-205.
- Prasad PD, Li HW, Fei YJ, Ganapathy ME, Fujita T, Plumley LH, Yang-Feng TL, Leibach FH, Ganapathy V. Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene. J Neurochem 1998;70:443-451.
- Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP. A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 1992;13:85-86.
- Rabchevsky AG, Degos JD, Dreyfus PA. Peripheral injections of Freund's adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Res 1999;832:84-96.
- Raghavendra V, Tanga FY, DeLeo JA. Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci 2004;20:467-473.
- Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett 2013;557:19-26.
- Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther 1957;111:409-419.

- Rexed B. The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 1952;96:414-495.
- Riganas S, Papanastasiou I, Foscolos GB, Tsotinis A, Serin G, Mirjolet JF, Dimas K, Kourafalos VN, Eleutheriades A, Moutsos VI, Khan H, Georgakopoulou S, Zaniou A, Prassa M, Theodoropoulou M, Mantelas A, Pondiki S, Vamvakides A. New adamantane phenylalkylamines with sigma-receptor binding affinity and anticancer activity, associated with putative antagonism of neuropathic pain. J Med Chem 2012;55:10241-10261.
- Rodriguez-Muñoz M, Sanchez-Blazquez P, Herrero-Labrador R, Martinez-Murillo R, Merlos M, Vela JM, Garzon J. The sigmal receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid Redox Signal 2015;22:799-818.
- Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Na HS, Lee JH. Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology 2008a;109:879-889.
- Roh DH, Kim HW, Yoon SY, Seo HS, Kwon YB, Kim KW, Han HJ, Beitz AJ, Lee JH. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: involvement of a protein kinase C-dependent pathway. J Neurosci Res 2008b;86:3644-3654.
- Roh DH, Choi SR, Yoon SY, Kang SY, Moon JY, Kwon SG, Han HJ, Beitz AJ, Lee JH. Spinal neuronal NOS activation mediates sigma-1 receptor-induced mechanical and thermal hypersensitivity in mice: involvement of PKC-dependent GluN1 phosphorylation. Br J Pharmacol 2011;163:1707-1720.
- Roh DH, Yoon SY. Sigma-1 receptor antagonist, BD1047 reduces nociceptive responses and phosphorylation of p38 MAPK in mice orofacial formalin model. Biol Pharm Bull 2014;37:145-151.
- Romero-Sandoval A, Eisenach JC. Spinal cannabinoid receptor type 2 activation reduces hypersensitivity and spinal cord glial activation after paw incision. Anesthesiology 2007;106:787-794.
- Romero-Sandoval A, Chai N, Nutile-McMenemy N, DeLeo JA. A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res 2008;1219:116-126.
- Romero L, Zamanillo D, Nadal X, Sanchez-Arroyos R, Rivera-Arconada I, Dordal A, Montero A, Muro A, Bura A, Segales C, Laloya M, Hernandez E, Portillo-Salido E, Escriche M, Codony X, Encina G, Burgueno J, Merlos M, Baeyens JM, Giraldo J, Lopez-Garcia JA, Maldonado R, Plata-Salaman CR, Vela JM. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 2012;166:2289-2306.
- Ronsisvalle G, Prezzavento O, Marrazzo A, Vittorio F, Bousquet E, Di TR, Spampinato S. Synthesis and binding affinity of cis-(-)- and cis-(+)-N-ethyleneamino-N-nordeoxymetazocine and cis-(-)-Nnormetazocine analogues at sigma1, sigma2 and kappa opioid receptors. Eur J Pharm Sci 2001;12:277-284.
- Sanchez-Fernandez C, Nieto FR, Gonzalez-Cano R, Artacho-Cordon A, Romero L, Montilla-Garcia A, Zamanillo D, Baeyens JM, Entrena JM, Cobos EJ. Potentiation of morphine-induced mechanical antinociception by sigma(1) receptor inhibition: role of peripheral sigma(1) receptors. Neuropharmacology 2013;70:348-358.

- Sanchez-Fernandez C, Montilla-Garcia A, Gonzalez-Cano R, Nieto FR, Romero L, Artacho-Cordon A, Montes R, Fernandez-Pastor B, Merlos M, Baeyens JM, Entrena JM, Cobos EJ. Modulation of peripheral mu-opioid analgesia by sigma1 receptors. J Pharmacol Exp Ther 2014;348:32-45.
- Sapunar D, Vukojević K, Kostić S, Puljak L. Attenuation of pain-related behavior evoked by injury through blockade of neuropeptide Y Y2 receptor. Pain 2011;152:1173-1181.
- Sardella TC, Polgar E, Watanabe M, Todd AJ. A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 2011;192:708-720.
- Schaible HG, Grubb BD. Afferent and spinal mechanisms of joint pain. Pain 1993;55:5-54.
- Schaible HG, Del RA, Matucci-Cerinic M. Neurogenic aspects of inflammation. Rheum Dis Clin North Am 2005;31:77-101.
- Schaible HG, Schmelz M, Tegeder I. Pathophysiology and treatment of pain in joint disease. Adv Drug Deliv Rev 2006;58:323-342.
- Schmidt R, Schmelz M, Forster C, Ringkamp M, Torebjork E, Handwerker H. Novel classes of responsive and unresponsive C nociceptors in human skin. J Neurosci 1995;15:333-341.
- Schrock JM, Spino CM, Longen CG, Stabler SM, Marino JC, Pasternak GW, Kim FJ. Sequential cytoprotective responses to Sigma1 ligand-induced endoplasmic reticulum stress. Mol Pharmacol 2013;84:751-762.
- Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569:29-63.
- Schreiber KL, Beitz AJ, Wilcox GL. Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett. 2008;440:63-67.
- Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC. Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 2000;82:966-972.
- Serpell M. Anatomy, physiology and pharmacology of pain. Surgery 2006;24:350-353.
- Seth P, Leibach FH, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 1997;241:535-540.
- Seth P, Ganapathy ME, Conway SJ, Bridges CD, Smith SB, Casellas P, Ganapathy V. Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor. Biochim Biophys Acta 2001;1540:59-67.
- Snider WD, McMahon SB. Tackling pain at the source: new ideas about nociceptors. Neuron 1998;20:629-632.
- Son JS, Kwon YB. Sigma-1 Receptor Antagonist BD1047 Reduces Allodynia and Spinal ERK Phosphorylation Following Chronic Compression of Dorsal Root Ganglion in Rats. Korean J Physiol Pharmacol 2010;14:359-364.
- Spofford CM, Brennan TJ. Gene expression in skin, muscle, and dorsal root ganglion after plantar incision in the rat. Anesthesiology 2012;117:161-172.
- Stanfa LC, Misra C, Dickenson AH. Amplification of spinal nociceptive transmission depends on the generation of nitric oxide in normal and carrageenan rats. Brain Res 1996;737:92-98.
- Stephenson JL, Byers MR. GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp Neurol 1995;131:11-22.

- Su TP, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem 2003;10:2073-2080.
- Su TP, Hayashi T, Maurice T, Buch S, Ruoho AE. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci 2010;31:557-566.
- Sun YN, Luo JY, Rao ZR, Lan L, Duan L. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats. World J Gastroenterol 2005;11:4827-4832.
- Sun S, Cao H, Han M, Li TT, Pan HL, Zhao ZQ, Zhang YQ. New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 2007;129:64-75.
- Taiwo OB, Taylor BK. Antihyperalgesic effects of intrathecal neuropeptide Y during inflammation are mediated by Y1 receptors. Pain 2002;96:353-363.
- Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci U S A 2005;102:5856-5861.
- Taylor BK, Fu W, Kuphal KE, Stiller CO, Winter MK, Chen W, Corder GF, Urban JH, McCarson KE, Marvizon JC. Inflammation enhances Y1 receptor signaling, neuropeptide Y-mediated inhibition of hyperalgesia, and substance P release from primary afferent neurons. Neuroscience 2014;256:178-194.
- Tejada MA, Montilla-Garcia A, Sanchez-Fernandez C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014;231:3855-3869.
- Traub RJ. The spinal contribution of substance P to the generation and maintenance of inflammatory hyperalgesia in the rat. Pain 1996;67:151-161.
- Tsai SY, Hayashi T, Mori T, Su TP. Sigma-1 receptor chaperones and diseases. Cent Nerv Syst Agents Med Chem 2009a;9:184-189.
- Tsai SY, Pokrass MJ, Klauer NR, De Credico NE, Su TP. Sigma-1 receptor chaperones in neurodegenerative and psychiatric disorders. Expert Opin Ther Targets 2014;18:1461-1476.
- Tseng LF, Hogan QH, Wu HE. (+)-Morphine attenuates the (-)-morphine-produced tail-flick inhibition via the sigma-1 receptor in the mouse spinal cord. Life Sci 2011;89:875-877.
- Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 2003;424:778-783.
- Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci 2005;28:101-107.
- Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 1990;265:7248-7256.
- VanDenKerkhof EG, Peters ML, Bruce J. Chronic pain after surgery: time for standardization? A framework to establish core risk factor and outcome domains for epidemiological studies. Clin J Pain 2013;29:2-8.

- Vazquez E, Navarro M, Salazar Y, Crespo G, Bruges G, Osorio C, Tortorici V, Vanegas H, Lopez M. Systemic changes following carrageenan-induced paw inflammation in rats. Inflamm Res 2015;64:333-342.
- Vela JM, Merlos M, Almansa C. Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin Investig Drugs 2015;24:883-896.
- Velasco R, Bruna J. Chemotherapy-induced peripheral neuropathy: an unresolved issue. Neurologia 2010;25:116-131.
- Vidal-Torres A, de la Puente B, Rocasalbas M, Tourino C, Bura SA, Fernandez-Pastor B, Romero L, Codony X, Zamanillo D, Buschmann H, Merlos M, Baeyens JM, Maldonado R, Vela JM. Sigma-1 receptor antagonism as opioid adjuvant strategy: enhancement of opioid antinociception without increasing adverse effects. Eur J Pharmacol 2013;711:63-72.
- Vidal-Torres A, Fernandez-Pastor B, Carceller A, Vela JM, Merlos M, Zamanillo D. Effects of the selective sigma-1 receptor antagonist S1RA on formalin-induced pain behavior and neurotransmitter release in the spinal cord in rats. J Neurochem 2014;129:484-494.
- Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve. J Neurosci 1994;14:2708-2723.
- Voscopoulos C, Lema M. When does acute pain become chronic? Br J Anaesth 2010;105 Suppl 1:i69i85.
- Walker JM, Bowen WD, Walker FO, Matsumoto RR, De CB, Rice KC. Sigma receptors: biology and function. Pharmacol Rev 1990;42:355-402.
- Wang H, Ehnert C, Brenner GJ, Woolf CJ. Bradykinin and peripheral sensitization. Biol Chem 2006;387:11-14.
- Wang H, Zhang X, He JY, Zheng XF, Li D, Li Z, Zhu JF, Shen C, Cai GQ, Chen XD. Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip. Arthritis Res Ther 2015;17:24.
- Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003;2:973-985.
- Weickhardt A, Wells K, Messersmith W. Oxaliplatin-induced neuropathy in colorectal cancer. J Oncol 2011;2011:201593.
- Wiese C, Grosse ME, Schepmann D, Vela JM, Holenz J, Buschmann H, Wunsch B. Pharmacological and metabolic characterisation of the potent sigmal receptor ligand 1'-benzyl-3-methoxy-3Hspiro[[2]benzofuran-1,4'-piperidine]. J Pharm Pharmacol 2009;61:631-640.
- Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962;111:544-547.
- Witting N, Kupers RC, Svensson P, Jensen TS. A PET activation study of brush-evoked allodynia in patients with nerve injury pain. Pain 2006;120:145-154.
- Woolf CJ, Chong MS. Preemptive analgesia--treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993;77:362-379.
- Woolf CJ. What is this thing called pain? J Clin Invest 2010;120:3742-3744.

- Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011;152:S2-15.
- Wu CL, Raja SN. Treatment of acute postoperative pain. Lancet 2011;377:2215-2225.
- Wu J, Fang L, Lin Q, Willis WD. Fos expression is induced by increased nitric oxide release in rat spinal cord dorsal horn. Neuroscience 2000;96:351-357.
- Wu HH, Yin JB, Zhang T, Cui YY, Dong YL, Chen GZ, Wang W. Inhibiting spinal neuron-astrocytic activation correlates with synergistic analgesia of dexmedetomidine and ropivacaine. PLoS One 2014; 21;9:e92374.
- Xu J, Zeng C, Chu W, Pan F, Rothfuss JM, Zhang F, Tu Z, Zhou D, Zeng D, Vangveravong S, Johnston F, Spitzer D, Chang KC, Hotchkiss RS, Hawkins WG, Wheeler KT, Mach RH. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2011;2:380.
- Yalamuri SM, Brennan TJ, Spofford CM. Neuropeptide Y is analgesic in rats after plantar incision. Eur J Pharmacol 2013;698:206-212.
- Yang S, Bhardwaj A, Cheng J, Alkayed NJ, Hurn PD, Kirsch JR. Sigma receptor agonists provide neuroprotection in vitro by preserving bcl-2. Anesth Analg 2007;104:1179-1184.
- Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC. Sigma receptor ligand 4-phenyl-1-(4phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons. Exp Neurol 2010;221:166-174.
- Zamanillo D, Andreu F, Ovalle S, Perez MP, Romero G, Farre AJ, Guitart X. Up-regulation of sigma(1) receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand. Neurosci Lett 2000;282:169-172.
- Zamanillo D, Portillo-Salido E, Vela JM, Romero L. Sigma 1 receptor chaperone: Pharmacology and therapeutic perspectivas, in therapeutic targets: Moculation, inhibition, and activation. In: Botana LM, Loza M, editors. Hoboken, NL, USA: John Wiley & Sons, Inc.; 2012. p 225-278.
- Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 2013;716:78-93.
- Zhang RX, Li A, Liu B, Wang L, Ren K, Zhang H, Berman BM, Lao L. IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain 2008;135:232-239.

APPENDIX

Other publications

- "Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: Studies with selective sigma-1 ligands and sigma-1 knockout mice". Pain. 2009 Jun;143(3):252-61. Entrena JM, Cobos EJ, Nieto FR, Cendán CM, Gris G, Del Pozo E, Zamanillo D, Baeyens, JM.
- "Analgesic efficacy in rat models of experimental pain of a new selective sigma- *1 receptor antagonist*". Pain in Europe. Lisboa, 2009. European Journal of Pain, Volume 13, Supplement 1, September 2009, Page S102. Gris G, Vidal A, Fort M, Aubel B, Romero L, González A, Portillo-Salido E, Baeyens JM, Vela JM, Deseure K, Zamanillo D.
- 3. "Pharmacological characterization of a new selective sigma-1 receptor antagonist showing antihyperalgesic and antiallodynic activity in different pain models in mice". European Journal of Pain, Volume 13, Supplement 1, September 2009, Page S104. Zamanillo D, Burgueño J, Nadal X, Dordal A, Gris G, Vidal A, Romero L, Laloya M, Aubel B, Segalés C, Baeyens JM, López-García JA, Maldonado R, Vela JM.
- "In vivo characterisation of the new selective sigma-1 receptor antagonist (S1RA): Potential use for the treatment of neuropathic pain". Neuropathic pain Congress. Athens, 2010. European Journal of Pain Supplements, Volume 4, Issue 1, April 2010, Page 52.Fort M, Gris G, Aubel B, Vidal A, Romero L, González A, Portillo-Salido E, Darbaky Y, Deseure K, Vela JM, Zamanillo D.

- *"A new selective sigma-1 receptor antagonist (S1RA) reduces neuropathic pain behaviors and activity-induced spinal sensitisation".* Neuropathic pain Congress. Athens, 2010. European Journal of Pain Supplements, Volume 4, Issue 1, April 2010, Page 63. Zamanillo D, Romero L, Burgueño J, Nadal X, Dordal A, Gris G, Vidal A, Laloya M, Segalés C, Portillo-Salido E, Baeyens JM, López-García JA, Maldonado R, Vela JM.
- "Analgesic efficacy in rat models of experimental neuropathic pain of a new selective sigma-1 receptor antagonist S1RA". 13th World congress on Pain. Montreal, 2010. Vela JM, Darbaky Y, Gris G, Fort M, Aubel B, Vidal A, Romero L, González A, Portillo-Salido E, Deseure K, Zamanillo D.
- *"Role of the sigma-1 receptor (σ₁R) in postoperative pain in mice".* 15th World congress on Pain. Buenos Aries, 2014. Gris G, Portillo-Salido E, Vela JM, Merlos M, Zamanillo D.
- "Comparison of antinociceptive effects of standard analgesics in attenuating carrageenan-induced mechanical allodynia and thermal hyperalgesia in rats".
 9th congress of the European Pain Federation. Viena, 2015. Aubel B, Portillo-Salido E, Gris G, Merlos M, Zamanillo D.