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4.1  Abstract 

 

In protein structure prediction, a frequent problem is defining the structure of a loop, fitted between two 

secondary structures. This problem is common for homology modeling and ab initio structure prediction. 

In our previous work, we presented a classification database of structural motifs, Arch DB. The 

database contains 451 classes with information about φ−ϕ angles in the loops and 1492 sub-classes 

with cover both the φ−ϕ angles in the loop and the relative locations of the bracing secondary 

structures. Here, our aim is to know how useful could be the sequence information included in our 

database for loop structure prediction and the identification of a small subset for the inclusion in a 

predicted structure and subsequent evaluation of the tertiary fold. For this reason, a jack-knife test was 

made, removing the loops belonging same SCOP super-family, and predicting afterwards against 

recalculated profiles only take into account the sequence information. Two sequence profiles were used, 

a HMM profile and a PSSM derived from Psi-blast. If we consider the top 20 classes out of 451 the 

accuracy is 85,7% while if we consider the top 20 subclasses out 1492 the accuracy is 72,3%. A Sign 

test was performed to assess the significance of the prediction compared with a random prediction. 

Because our structural loop database discriminate between ββhairpins and ββlinks for β-loop-β motifs, we 

have found that we can distinguish between a ββhairpins or ββlinks. The prediction of supersecondary 

structures formed by consecutive loops is also discussed. 
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4.2 Introduction 

 

The finished projects on large-scale sequencing of genomes and many others that are still in progress 

have generated a vast amount of gene and protein sequence data. Besides, recent improvements in the 

techniques of structure determination at atomic level, X-ray diffraction and nuclear magnetic resonance 

(NMR) spectroscopy, have enhanced the quality and speed of the determination of 3D protein-

structures. Nevertheless, there is a large difference between the number of known protein sequences (~ 

1 million)(Boeckmann et al. 2003) and the number of available protein structures (~ 20 000)(Berman et 

al. 2002).  

 

In the absence of an experimentally determined structure, ab initio(Simons et al. 1997) and  threading 

methods(Domingues et al. 2000) or comparative modeling methods(Marti-Renom et al. 2000) can 

sometimes provide a useful 3D model and fill the gap between sequence and structure space. In 

general, these methods tend to correctly predict  the protein core when the structure of a close 

homologue of the target protein is available, but not the loop regions. Up to date, the prediction of 

structure of a loop remains unsolved and the recent improvements of the performance of fold prediction 

and homology modeling methods in successive CASP experiments(Venclovas et al. 2001) have not 

proved to be  successful in loop model building. Modeling of loop conformation is neither trivial nor 

unimportant.  

 

Functional differences between the members of the same protein family are usually a consequence of 

the structural differences on the protein surface. In a given fold, structural variability is a result of 

substitutions, insertions and deletions of residues between members of the family. Such changes 
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frequently correspond to exposed loop regions that connect elements of secondary structure in the 

protein fold. Thus, loops often determine the functional specificity of a given protein framework, 

contributing to active and binding sites(Fetrow 1995).  

 

Loop prediction can be seen as a mini protein-folding problem. The correct conformation of a given 

segment of a polypeptide chain has to be calculated from the sequence of the segment influenced by 

the core limb regions that span the loop and by the structure of the rest of the protein that cradles the 

loop. Many loop-modeling procedures have been described. Similarly to the prediction of whole protein 

structures, there are ab initio and threading methods (also named conformational search)(Fine et al. 

1986; Moult and James 1986; Bruccoleri and Karplus 1987), database search methods (also named 

knowledge-based)(Jones and Thirup 1986; Chothia and Lesk 1987)and procedures that combine both 

approaches(Chothia et al. 1986; Wlijmen and Karplus 1997).  

 

The ab initio loop prediction is based on a conformational search or enumeration of conformations in a 

given environment, guided by a scoring or energy function. There are many such methods, exploiting 

different protein representations, energy function terms, and optimization or enumeration 

algorithms(Fiser et al. 2000; Tosatto et al. 2002). The limitation of this approach is the accuracy of the 

applied scoring function that often are not accurate enough to properly rank the many alternative 

conformations, especially on long loops. 

 

The  database approach to loop prediction consists of finding a segment of main chain that fits between 

the two stem regions of a loop(Jones and Thirup 1986; Sibanda et al. 1989; Levitt 1992). The search is 

performed on a database of known protein structures. Usually, many different alternative segments 

fitting between the two secondary structures are obtained. All template segment conformations are 
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sorted according to a geometric criteria and sequence similarity with the target loop.  The selected 

segments are superposed and annealed between the anchoring extremities. The database search 

approach to loop modeling is sufficiently efficient  when a specific set of loops is created to address the 

modeling of similar type of loops, such as β-hairpins(Sibanda et al. 1989) or the hypervariable regions in 

immunoglobulins(Chothia and Lesk 1987). There have been several attempts to classify loop 

conformations into more general categories, thus extending the possible applications of the use of key 

residues as an approach to additional cases(Ring et al. 1992; Oliva et al. 1997; Rufino et al. 1997; Oliva 

et al. 1998; Espadaler et al. 2004). 

 

The database methods are limited by the exponential increase in the number of possible conformations 

in agreement with the ring closure as a function of loop length. Only segments of 7 or less residues had 

most of their conceivable conformations present in the database of known protein structures(Fidelis et 

al. 1994) lying on the correct  positioning of the anchor groups(Lessel and Schomburg 1999). Therefore, 

the completeness of the database is the major obstacle for its use on modeling. However, a recent work 

published by Du et al.(Du et al. 2003) argued that there exist sufficient coverage to model even a novel 

fold using fragments from Protein Data Bank, as the current database of known structures has 

increased enormously in the last few years.   

 

In a recent work, we developed an automatic method of classification of protein loops based on loop 

conformation and bracing secondary structure orientation(Oliva et al. 1997; Espadaler et al. 2004) on a 

non-redundant database of proteins. Besides, Blundell and coworkers(Donate et al. 1996; Burke and 

Deane 2001; Deane and Blundell 2001) have employed their loop database in loop structure prediction 

with encouraging results.  
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Our work is a method for loop and local structure prediction between two regular secondary structures. 

The loop classification clusters the loop conformation and the geometry of the super-secondary 

structure (or structural motif ) that defines the relative positions of the flanking secondary structures. 

Hitherto, the prediction provides the information of the loop conformation plus the relative location 

between secondary structures, which can be used on a partial model building by means of loop blocks 

and in the evaluation of a model or a predicted fold.  

 

A large body of evidence suggests that protein structural information is frequently encoded in local 

sequences, and that folds are mainly made up of a number of simple local units of super-secondary 

structural motifs, consisting of a few secondary structures and their connecting loops. The reports of 

Salem et al.(Salem et al. 1999), Wood & Pearson(Wood and Pearson 1999) and Lupas et al.(Lupas et 

al. 2001) suggested that folds are mainly made up of a number of simple local units of super-secondary 

structural motifs, formed by few secondary structures connected by loops. Two applications can be 

observed from this prediction: (i) in comparative modeling, offering useful information about loop 

conformation; and (ii) in ab initio fold prediction, using local structure prediction from sequence for the 

prediction of protein structure(Bonneau et al. 2001; Yang and Wang 2002) by means of the combination 

of supersecondary structures or in the final evaluation of a predicted fold. 
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4.3  Material and Methods 

4.3.1 Loop database 

 

The database of loops was  built using a list of protein domains derived from SCOP 40(Chandonia et al. 

2002) of the 1.61 release of  SCOP(Conte et al. 2002). The set of loops was classified in classes and 

subclasses with the program ArchType(Oliva et al. 1997) forming the database ArchDB presented in 

http://sbi.imim.es (Espadaler et al. 2004). In descending order, ArchDB  is structured in three levels of 

hierarchy: (i) At the top of the classification, motifs were identified according to the bracing secondary 

structure type (α−α, β−β links, β−β hairpins, α−β and β−α); (ii) at class level, motifs are grouped 

according to the loop size and (φ,ψ) loop conformation; and (iii) at sub-class level motifs are grouped 

according to the loop size, (φ,ψ) loop conformation and orientation of secondary structures (geometry). 

According to these definitions two different types of prediction were made over query loops: prediction of 

structural class and prediction of structural sub-class. 

 

4.3.2 Sequence profiles calculation 

 

Two types of sequence-profiles were calculated with the multiple alignment of the sequences of the 

loops extracted from classes and subclasses from the ArchDB classification (see figure 3.1 for a general 

overview of the process): (i) a position specific scoring matrix (PSSM) obtained with the method 

described by Altschul et al.(Altschul et al. 1997) for PSI-BLAST and adapted  on the server 3D-

PSSM(Kelley et al. 2000), and (ii) a Hidden Markov Model profile using HMMER version 2.0(Eddy 
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1998). The profiles were calculated using the maximum common length of aligned residues of each loop 

plus its bracing secondary structures, or using only the residues belonging to the loop (as defined by the 

DSSP program(Kabsch and Sander 1983) plus two residues at each side flanking the loop. In total, four 

profiles were generated for each subclass and class of loops: 1) the PSSM profile with the sequences of 

the loops, including the flanking secondary structures (FP profiles); 2) the PSSM profile with the 

sequences of the loops plus only two flanking residues at each extremity (P profiles); 3) the HMM profile 

with the sequences of the loops, including the flanking secondary structures (FH profiles) and 4) the 

HMM profile with the sequences of the loops plus only two flanking residues at each extremity (H 

profiles). 

 

4.3.3 Jack-knife test 

 

A Jack-knife test was performed to asses the validity of the prediction of loops. The scheme of the test 

is shown in Figure 3.1, where the sequence of each loop on the database of classified loops is used as 

query to search on the cluster of loops (searching space). The procedure implies to remove all the 

sequence/structure information of the query loop being redundant or homologous (even for remote 

homology with the loops in clusters an use it on the calculation of profiles). Therefore, all motifs 

belonging to the same SCOP super-family of the query were discarded from the searching space. 

Additionally those remaining subclasses with less than three motifs were removed too (in order to avoid 

meaningless clusters). This procedure assured that no homologies (even remote) would exist between a 

query loop and the searching space used for the class or subclass prediction of the query. In addition, 

100 motifs selected at random within the four classes of loop (100 αα loops, 100 βα loops, 100 

αβ loops and 100 ββ loops) were used as queries  for which homologous loops from the proteins with 
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the same SCOP super-family of the query were not removed from the searching space, hereafter 

named searching space with homologs. This experiment will allow us to compare our results with similar 

works less restrictive on the definition of the test data set. 

 

In order to assign the secondary structures flanking the query loop we used the program 

PSIPRED(Jones 1999). The secondary structure prediction of all protein chains used for this study was 

calculated with PSI-PRED and this was used to define the flanking regions of each query loop. The 

prediction of the secondary structure flanking the loop was considered correct if the assignation differed 

from the real location around the loop by less than 2 residues on each side (C- and N- terminal) of the 

loop. 

 

The sequence of the loop was extracted from the coil region between the predicted secondary 

structures and aligned with the sets of profiles for subclasses (and classes) of loops with the same 

length ± 2 residue (i.e. if the prediction is made for a motif of length 3, the alignment will be made 

against profiles containing loops with lengths between 1 and 5). The scores obtained for the alignments 

between the query and the profiles were used to calculate a mean value (µ) and standard deviation (σ). 

A Zscore was calculated with the equation 1: 

σ
µ−

=
ScoreZscore               (1) 

All Zscores of the query loop were ranked and the top hits were taken for the prediction of the class or 

subclass conformation. In order to test the specificity of the prediction the first hit, the top 5 hits and the 

20 top hits were considered as probable solutions (positives). 
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The statistical significance of the results was evaluated using the Sign-Test. The positive samples 

obtained from the prediction were compared with a random prediction obtained by randomly selecting 

one, five or twenty classes of subclasses as candidates. A success is considered when is found the 

correct subclass of class conformation on the selection (i.e. the class or subclass from where the query 

loop was removed). If the correct subclass/class was  predicted by the Zscore but not by random, a 

label “+” was given to the observation, while for the opposite case, where the prediction is successful by 

random but not by Zscores, a label “-“ was given. We define n+ as the total  of positive labels and n- as 

the total of negatives labels. The distribution of +/- labels was compared with the binomial distribution 

with probabilities 0.5 for statistical significance (which implies that sequence profiles and random 

approaches are equally predictive, also known as  null hypothesis). If the sum of + and – labels is N ( 

N=n+ + n- ) and k is the smallest of n+ and n-, the two-tailed probability of holding the true null 

hypothesis is twice the probability of finding k or less cases, and the sign-test significance is 

approximated to the two-tailed probability by equation 2: 

N
k

i iNi
Ntailedtwop 5.0*

)!(!
!*2)(

0
∑

= −
≤−   (2) 

4.3.4 Discrimination between ββhairpins and ββlinks 

 

The loops between β-strands where the PSI-PRED prediction is correct were used to test the potential 

discrimination between β-hairpins and β-links. A prediction of loop type (i.e. β-link or β-hairpin 

regardless of class or subclass) was made in order to explore the possible application to discriminate 

between both types. 
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Figure 4.1. Flowchart of the methodology for prediction and analysis. 
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4.4  Results 

 

The loop structural classification, ArchDB(Espadaler et al. 2004), employed in this study, 

includes 12665 motifs clustered in 451 classes and 1492 sub-classes(see figures 4.2a, 4.2b for 

distribution of class and subclass vs loop length). The Jack-knife process generated a test set 

of 10492 motifs for which PSI-PRED correctly predicted the type of connected secondary 

structures (α or β), loop length and loop location for 6585 motifs. For 2708 motifs the prediction 

failed to  assign the correct bracing secondary structure and  for 1199 motifs the assignment of 

loop residues or loop location was erroneous. The set of queries (test set) was formed by the 

6585 motifs for which the prediction of the secondary structure flanking the loop was correct 

plus the 1199 motifs where the assignation was partially correct. In figure 4.3 it is shown the 

distribution of loops vs length, where the αβ motifs are the most abundant, especially for 

lengths between 3 and 4. 

 

Figure 4.2(a,b). (a) Number of classes vs. loop length in ArchDB, classes are shown according to different 
secondary structure types. (b) Number of subclasses vs. loop length in ArchDB. Number of subclasses is shown 
according to different secondary structure types. 
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Figure 4.3. Distribution of predicted loops vs. length. Lengths of query loops are defined as the number of coil 
residues between flanket secondary structures predicted by PSI-PRED. 
 

4.4.1 Overview of results 

 

Table 4.1 shows the values of accuracy for class and sub-class prediction over the  test set of 

queries. The results obtained  with HMM  profiles  are better than with PSSM derived profiles. 

Also, the accuracy of the prediction was  not highly improved by using the full sequence length 

of the super-secondary alignment (FP and FH profiles) rather than using the loop sequence 

plus two residues (P and H profiles). In addition, the values of accuracy for 400 motifs selected 

at random (100 αα loops, 100 βα loops, 100 αβ loops and 100 ββ loops)  and predicted on 
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the searching space with homologs, are also exposed. The study of accuracy of prediction was 

made based in the length of the loop and type of flanking secondary structures.  

 

Table 4.1. Percentages of accuracy of class and sub-class prediction using the four types of sequences profiles, 

FP, P, FH and H. 

 

Profile RANK % accuracy of prediction on 
searching space without homologsa 

% accuracy of prediction on searching space 
with homologs (only for 400 loops)b 

  Class Sub-class Class Sub-class 

1 15,9  (13,5) 5,9 (3,4) 43,1 14,5 
5 47,7 (42,3) 23,1 (19,5) 75,1 42,3 FP 

20 81,1 (79,4) 53,8 (51,2) 98,8 85,2 
 

1 15,3 (12,9) 4,4 (3,1) 40,2 12,2 
5 45,8 (40,8) 19,5 (16,9) 73,2 39,8 P 

20 82,7 (80,1) 55,5 (53,2) 97,2 87,3 
 

1 21,2 (19,9) 10,5 (8,2) 51,8 26,4 
5 54,8 (52,1) 37,1 (35,4) 85,4 57,6 FH 

20 85,7 (81,2) 72,3 (70,7) 100,0 95,8 
 

1 18,6 (16,6) 6,4 (4,3) 48,7 17,2 
5 54,1 (51,8) 30,3 (28,6) 81,4 50,2 H 

20 81,7 (80,3) 66,3 (64,5) 100,0 92,5 
 
a Values of accuracy obtained in a searching space without homologs and b searching space with homologs are 
shown. Between parenthesis values of accuracy including these motifs where the assignation of secondary 
structure boundaries  by PSI-PRED was in part correct (i.e. location of loop). 

 

4.4.2 Class prediction 

 

Although ArchDB database contains classes with loops  up to nineteen residues long (see 

figure 4.2a), theses classes are poorly populated, therefore these classes  were discarded. 

Thus, class prediction was made for αα motifs from length 1 to 8, length 0 to 10 for αβ motifs, 
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length 0 to 8 for βα motifs and 1 to 9 for ββ motifs. The information provided by the structural 

class could be informative since a structural class implies different sub-classes that share a 

common loop conformation.  

 

There is a general tendency in which the accuracy decreases with loop length (see figures 

4.4A, 4.4B, 4.4C, 4.4D, 4.4E and 4.4F). This is  general  for loop structure prediction methods,  

either  ab initio methods or  database search methods.  The increase in length brings an 

increase on the number of possible loop conformations and the larger variability of the 

structural classes.  

 

In general, the Sign test shows a minimum p-value for loops with length of about 4 residues 

length. This reason is because the major number of classes is in this region (see figure 4.2a). 

The values of accuracy shows different behavior with respect to the loop length depending in 

the type of loop and in the number of hits (1, 5 or 20) used for prediction (see figures 4.4A, 

4.4B, 4.4C, 4.4D, 4.4E and 4.4F).   

 

We have obtained values of accuracies between 80-90% when the 20 first hits were taken into 

account. The accuracy decreased to a range between 60% and 70% when only the top five hits 

where considered and to a range  between 10% and 40% for the first hit. The classes  of the 

αβ motifs were predicted with higher significance.  
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The advantage of using the twenty first hits instead of using the first hit or top five hits  is a 

larger range of correct prediction. Nevertheless, the  significance is worse, especially for loops 

with either short or long length. The pvalue was around above 0.05 for lengths larger than 7 

residues or the shortest length of 0, 1 or 2 residues (see figures 4.4A, 4.4B, 4.4C, 4.4D, 4.4E 

and 4.4F). 

 

 

 

 

 

 

 

Figure 4.4A to 4.4F. Loops class prediction. Variation of the accuracy of the prediction and ln(pvalue) vs loop length 
and split according to the type (A for αα motifs, B for αβ motifs, C for βα motifs, D for ββ motifs, E for ββhairpins 
motifs and F for ββlinks motifs). Accuracy of prediction for first hit (solid square (■) and continuous line) and for 
ln(pvalue) (solid square (■) and broken line). Accuracy of prediction for the top five hits (solid triangle (▲) and 
continuous line) and for ln(pvalue) (solid triangle (▲) and broken line). Accuracy of prediction for the top twenty hits 
(solid diamond (♦) and continuous line) and for ln(pvalue) (solid diamont (♦) and broken line). ββ motifs include both 
ββhairpins and ββlinks. The values of accuracy have been obtained with FH profiles. The values of accuracy have 
been obtained with FH profiles and the values of significance have been obtained comparing each motif prediction 
against 100 independent randomly selected loop subclass on the searching space (see material and methods). 
The red line marks the limit  of significance (p = 0.05 ). 
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Figures 3.4A to 3.4F (legend opposite) 
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4.4.3 Sub-class prediction 

 

Sub-class structural prediction is more informative because it  gives information about the 

conformation of the loop plus the relative position of the secondary structures of the motif, this 

being a characteristic feature of the 3D packing useful on fold prediction and ab initio folding.  

 

The accuracy values for sub-class prediction are not as good as for class prediction but the 

values of significance were improved (see figures 4.5A, 4.5B, 4.5C, 4.5D, 4.5E and 4.5F). 

Structural sub-class prediction is more difficult than structural class prediction because of the 

larger number of clusters (see figure 4.2b) and further reduction of sequences aligned on the 

profiles. Nevertheless, the larger number of possible loop clusters also implies that a random 

prediction will decrease the specificity and this produces the improvement of the pvalues . 

 

 

 

Figure 4.5A to 4.5F. Loops subclass prediction. Variation of the accuracy of the prediction and ln(pvalue) vs loop 
length and split according to the type (A for αα motifs, B for αβ motifs, C for βα motifs, D for ββ motifs, E for 
ββhairpins motifs and F for ββlinks motifs). Accuracy of prediction for first hit (solid square (■) and continuous line) 
and for ln(pvalue) (solid square (■) and broken line). Accuracy of prediction for the top five hits (solid triangle (▲) 
and continuous line) and for ln(pvalue) (solid triangle (▲) and broken line). Accuracy of prediction for the top twenty 
hits (solid diamond (♦) and continuous line) and for ln(pvalue) (solid diamont (♦) and broken line). ββ motifs include 
both ββhairpins and ββlinks. The values of accuracy have been obtained with FH profiles. The values of accuracy 
have been obtained with FH profiles and the values of significance have been obtained comparing each motif 
prediction against 100 independent randomly selected loop subclass on the searching space (see material and 
methods). The red line marks the limit  of significance (p = 0.05 ). 
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Figure 3.5A to 3.5F (legend opposite) 
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4.4.4 Discrimination between ββlinks and ββhairpins 

 

An important result derived from our study was the discrimination between ββlinks and ββhairpins 

on the prediction of loops braced by two β strands. A loop braced by two beta strands can be 

either  ββlink or a ββhairpin. Topologically, the ββhairpin implies the formation of main-chain 

hydrogen bonds between both beta strands and usually a tight turn in the backbone, while 

strands of a  ββlink motif do not have a network of main-chain hydrogen bonds. An association 

of ββhairpins  forms a beta sheet called β-meander, while a combination of ββlinks and ββhairpins 

produces different types of Greek key motifs.  

 

The correct discrimination between ββhairpins and ββlinks can be very useful to predict different 

types of these complex super-secondary structures. There are two basic approaches 

attempting to predict ββhairpins, by means of learning algorithms as neural networks(Cruz et al. 

2002) and by means of statistical analyses (see reviews (Chou 2000; Kaur and Raghava 

2002)). The present work relies on the statistical basis of sequence profiles for the distinction 

between ββlink and ββhairpins. 

 

Table 4.2 shows the prediction of ββhairpins or ββlinks assignations among the top one, top five 

and top twenty scores within the profiles. The results exposed on table 2 reveals that 87.5%  of 

loops are ββhairpins  type prediction for first hit, 89.5% considering the top five hits and 82.2% for 
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the top twenty, using FH profiles.  With this, we contemplate the possibility of reconstructing a 

complex super-secondary structure formed by several continuous β-strands by combination of 

ββlinks and ββhairpins 

Table4.2 Percentages of ββlinks or ββhairpins type on the first hit, the top five hits and top twenty hits. 

 
Predicting  ββlinks 

 
Predicting ββhairpins 

 

Profile 
% of a ββlink 

loop type 
with highest 

score 

% of a ββlink 
loop type 

among top 
five scores 

% of a ββlink loop 
type among top 
twenty scores 

% of a ββhairpin 
loop type with 
highest score 

% of a ββhairpin loop 
type  among top 

five scores 

% of a ββhairpin 
loop type among 
top twenty scores 

FP 61,2 60,2 59,5 83,1 75,2 65,8 

P 64,7 63,9 63,1 87,2 80,1 73,1 

FH 71,7 79,4 69,5 87,5 89,4 82,2 

H 68,5 69,8 64,8 

 

80,6 85,6 75,7 
 

The prediction of loop type was made for  ββhairpins and ββlink over all ββ profiles. 

4.4.5 Prediction of supersecondary structures 

 

Table 4.3 shows the results of consecutive loops correctly predicted using the top five hits and 

with high significance (pvalue < 0.05). By the prediction of loop class we are capable to find 231 

pairs of consecutive motifs and  26 triads of consecutive loops. In subclass prediction, we 

predicted 79 pair of consecutive motifs and 7 triads.  

 

If we increase the rank up to 20 top hits we were able to find a larger set of consecutive loops 

in class prediction (subclass prediction between parenthesis): 420 (377) with 2 loops, 90 (61) 

with 3 loops, 9 (8) with 4 loops, 2  (0) with 5 loops  and 1 (1) with 6 loops.  
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Table 4.3 Types of predicted supersecondary structures. 

Number of contiguous motifs predicted  
with Zscores between rank 1 and 5 and high 

significance (pvalue < 0.05) 

 
Profile 

2 3 

Class prediction FP 231 

         80     βαβ  
         66     αβα 
         29     ααα  
         16     βββ 
         15    ααβ 
           9     αββ 
           9     βαα  
           7     ββα  

26 

12     αβαβ  
 8     βαβα 
 2     αβαα 
 2     αααα 
 1      ββαβ 
 1      ααββ 

 

Sub-class 
prediction 

FP 79 

31      βαβ  
23      αβα 
13      ααα  
 5      βββ 
 3      αββ 
 2     ααβ 
  1     ββα  
  1     βαα  

7  
    3     αβαβ  

          3     βαβα 
          1     αααα 

 
Supersecondary structures with consecutive motifs that loop class or sub-class have been predicted among the 
top five hits were considered. 
 
 
Interestingly, the prediction  is better for alternate β-strands and α-helices (see table 4.3), 2 

super motifs; 80 of βαβ and 66 of αβα motifs ( 12 and 8 using the sub-class prediction 

respectively).The rest of combinations of motifs (i.e. βββ, αββ, ββα, ...) are less represented.  

This being a result of the classical βαβ and αβα super-secondary structures in proteins of 

class α/β. 

 

 As an example for class prediction of three adjacent motifs, the region between residue 104 

and 158 of structure 1i2o chain A was predicted by: (i) a βα motif (104-132) in top hit, (ii) a βα 

motif (128-147) in the third rank and (iii) a αβ motif (136-158) also in the top hit. 
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On the prediction of supersecondary structures formed by consecutive β-hairpins or 

intercalated β-hairpins and β-links we have found that 13 out 16 predicted motifs are two 

consecutive ββhairpins, forming a β-meander,  2 out 16 are two consecutive ββlinks and 1 out of 

16 is a ββhairpin following by a ββlink, likely forming a β-greek key.  For instance, a β-meander 

was predicted in the region between residue 2 and 13 of structure 1a7f chain A by: (i) a ββhairpin 

motif (2-13) in top hit and (ii) a ββhairpin motif (8-23) in top hit. A  supersecondary structure of 

ββhairpins followed by a ββlink was correctly predicted in the region between residues 236 and 

254 of structure 1qhd chain A by: (i) a ββhairpin motif (236-249) in the third rank and (ii) a ββlink 

motif (245-254) in top hit.   

 

Additionally, in the case of a β-meander we do not need to know the structural class or 

subclass of the ββharpins. In the database used for prediction, ArchDB, we have a total of 78 

continuous pairs of ββhairpins, 24 triplets and we not have any further combination. We 

accurately predicted  54 β-meanders formed by 3 strands(2 consecutive ββhairpins) and 8 β-

meanders of 4 strands (3 consecutive ββhairpins) by means of distinguishing between ββlinks and 

ββhairpins.  

 

4.4.6 Examples of predicted classes and sub-classes of loops 

 

There are 58 motifs in the test that belong to the αβ-4.1 class, 30 out of them belong to sub-

class αβ4.1.1, 16 to sub-class αβ4.1.2 and 12 to sub-class αβ4.1.3. A correct prediction of 

the class was obtained with the top five hits for 75% of these motifs. For sub-class prediction 
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among the five first hits, 67% motifs were correctly predicted for αβ4.1.1 subclass, 62.5% 

motifs for αβ4.1.2 subclass and 60% motifs for αβ4.1.3 sub-class. The consensus sequence 

of this class is XXXPpXXh (where X: any residue; p: for polar residue; h: for hydrophobic 

residue; and one code letter for conserved residue). The common structural feature of this 

class is a Pro in position L2 (see figure 4.6, motifs belonging to sub-class αβ-4.1.1 are shown). 

The examination of the structure of the motif indicates that the conserved Pro bends the 

capping of the helix. In addition, the conserved hydrogen bond between the carboxylic oxygen 

of the residue in position L1 and the nitrogen atom of the residue in position L4 may contribute 

to maintain the structure of the loop.  

 

Figure 4.6 Coiled coil representation of αβ4.1.1 subclass. Conserved Pro and conserved hydrogen bonds are 
represented in the picture. Residue positions within clusters are denoted by the secondary structure: B for β-
sheet, A for α−helix, and L for coil; and counting backwards from the C-terminal residue of the first secondary 
structure and forwards from the N-terminal residue of the loop. Figures 4.6 to 4.8 were generated using PREPI 
v.0.9 (SA Islam and MJE Sternberg; available upon request at: http://www.sbi.bio.ic.ac.uk/prepi/index.html).  
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On the queries of βα type of motifs there are 38 motifs of the class βα-3.1, 27 out of them 

belong to sub-class βα-3.1.1 and 11 to sub-class βα-3.1.2. We have predicted 48% of motifs  

with the first hit and 92%  with the five top hits. The prediction of sub-class was correct for 40% 

of  motifs of subclass βα-3.1.1 with the first hit and for 90% of  motifs when considering the five 

top hits. For sub-class βα-3.1.2 the assignation of the correct sub-class on the top hit was 

correct for 55% of motifs, and for 91% of motifs when considering the five top hits. The 

consensus sequence of this class is hhGXGXh and the analysis of the structure of the motifs 

illustrates that the two gly residues in L1 and L3 could allow a severe turn in the chain without 

steric impediments. A conserved hydrogen bond between the carboxylic oxygen of the residue 

in position L3 and the nitrogen in position A3 probably stabilize the N terminus capping of the 

α-helix (see figure 4.7; motifs belonging to sub-class βα-3.1.1 are shown). 

 

Figure 4.7. Trace plate of the sub-class βα3.1.1 subclass. Conserved gly residues and conserved hydrogen 
bonds are shown. 
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Finally, on the ββ queries we have predicted 68 motifs of the class ββhairpin-5.1. Taking into 

account the five top hits, the subclass prediction was correct for 72% motifs of subclass 

ββhairpin5.1.1, 69% motifs for ββhairpin5.1.4 subclass, 59% motif of subclass ββhairpin5.1.5, 82% 

motifs for ββhairpin5.1.6 subclass, 75% motifs of subclassββhairpin5.1.7, 66% motifs of subclass 

ββhairpin5.1.11, 50% motif of subclass ββhairpin5.1.12 and 66% motifs of subclass ββhairpin5.1.15.   

The consensus sequence for these motifs is XXXppGpXX. A gly in position L4 is well 

conserved and the loop conformation is maintained by the main-chain hydrogen bond between 

-B1 (carboxylic oxygen) and L4 (nitrogen) that hold the structure of the loop (see figure 4.8, 

motifs of sub-class ββhairpin5.1.1 are shown).  A careful study of the structure of the motifs 

explains that the conservation of the gly is due to avoid side-chain hindrances. 

 

 

Figure 4.8. Coiled coil representation of the ββhairpin5.1.1 subclass. Conserved gly residues and conserved 
hydrogen bonds are described. 
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4.5  Discussion and Conclusions. 

4.5.1 Applications   

We have shown by an extensive analysis that it is possible to obtain good prediction results 

using our loop structure database, ArchDB. Values of accuracy and significances of predictions 

justify the usefulness of our database in loop structure prediction, both for loop class prediction 

and sub-class prediction.  

 

The loop structure prediction can be applied on: (i) comparative modeling, (ii) fold recognition 

and (iii) ab initio prediction. The relative high values of accuracy in class prediction validate the 

use of  loop structure prediction in homology modeling of proteins where  errors in loops are the 

dominant problem. In ranges of  identity larger than 35%, loops from homolog proteins vary 

while in the core regions are still conserved and accurately aligned(Fiser et al. 2002). On the 

other hand, the sub-class prediction adds a topological value (as it is the orientation between 

secondary structures) worth for fold recognition.  

 

Since the prediction is made using only sequence information, knowledge of the local structural 

environment of the loop can be used to identify incorrect predictions. In addition, geometry 

definitions of loop sub-classes can be considered as a validation for loops built on to homology 

models, discarding predictions based on the fitting to a structure or suggesting changes to the 

orientation of the bounding secondary structures.  
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Furthermore, for each query loop a rank of possible conformations is given. This set can be 

combined in a combinatorial fashion to construct several candidates in an ab initio fold building.  

 

The success obtained in the absence of an exact prediction of the boundaries of the secondary 

structure suggests that the alignment between the motifs and the profiles might help in the 

refinement of secondary structure prediction.  

 

Further positive aspects of the presented method are the short computing times compared with 

ab initio approaches and the fact that the database grows in a natural manner with the PDB, 

which will lead to better prediction accuracies continuously. 

 

4.5.2 Discrimination between ββhairpins and ββlinks 

 

A secondary structure prediction of a beta-beta motif does not give information about the 

structural arrangement of two consecutive β-strands, this information is important in fold 

recognition because of its structural implications. As discussed before, the structural 

arrangement of a ββhairpin is different from a ββlink and indicates topological characteristics to 

distinguish one fold and the 3D contact map. We have correctly predicted 54 β-sheets forming 

a β-meander by continuous ββhairpins that would help on fold prediction. The discrimination 

between ββhairpins and ββlinks also helps on folding ab initio as it may describe β-sheet  cores 
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4.5.3 Comparison with other previously published works 

 

The obtained results compare very favorably with other protein loop prediction methods. The 

closer related work to test the performance of a loop database in loop prediction was done by 

Burke & Deane(Burke and Deane 2001) using Sloop database(Burke et al. 2000). They got an 

accuracy of 58%, 78% and 85% considering  the highest score, the three highest scores and 

the five highest scores respectively. The percentages of accuracy are higher that those 

obtained in our work. We can argue different reasons to explain the differences in the accuracy 

values. First, the size of the database. Burke and Deane used a database of 560 classes 

(equivalent to sub-classes in our database format) while our database has 1492 sub-classes. 

Second, for cross-validation they used a 7-fold cross validation splitting randomly the loops in 

seven sets of  ~1700 loops each set where homology may exist between the searching space 

and the test set. In our case, the jack-knife test was made by removing all possible homology 

between the query and its searching space. 

 

To measure whether or not the homology could affect the accuracy of the prediction, the 

prediction was made on the searching space with homologs. The results are shown in table 1 

indicate that accuracy of prediction is higher when only the query loop is removed  than when 

the whole super-family of the query is removed. In class prediction, the gain in prediction is 

around 20 %, considering the first hit and in subclass prediction,  the gain  was around 15-20% 

when considering the first hit. 
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