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Classification of Loops in Protein Structures:  Applications on loop modeling and 
Protein Function 

                Narcís Fernandez-Fuentes 
May,  2004                                                                                                             Bellaterra  
 

This thesis is structured into five chapters. In chapter I, protein loops - the topics of this thesis work - are 
introduced. Also, a short description of biological databases and current protocols in sequence 
comparison are given. Chapters II to IV explore a major role that loop segments play in protein 
structures by using a structural bio-informatics approach: (i) the structural classification (ii) the 
relationship between the structure and function and (iii) the structure prediction of loops. The conclusive 
chapter V is devoted to several considerations that complement the conclusions given in previous 
chapters. Extensions of this thesis work are also suggested. 
  

The research project on  structural  classification of loops, which was carried out by  Dr. Oliva (Oliva et 
al. 1997), has been the starting point for all the other subsequent projects. In chapter II, a fully 
automated process for the structural classification of loops of kinases is presented. Several 
methodological improvements were made on the basis of Oliva’s original work: (i) a newly introduced re-
clustering process allows to avoid overlaps in classified loop clusters, (ii) a new web server was 
established to provide access and/or to query data through the internet, and (iii) cross referencing links 
were introduced with other biological databases. Chapter III focuses on two questions: the conservation 
of loop structures and functions and the extent of conservation of loop structures during evolution. An 
extensive analysis of a structural loop database of protein kinases was carried out. There are two main 
reasons why kinases were selected for the subject of this study: first, their critical biological relevance, 
and second the vast amount of functional information available in the literature and biological 
databases. Finally, in chapter IV, we apply  ArchDB(Espadaler et al. 2004) for loop structure prediction. 
A Jack-knife test is performed to assess the usefulness of sequence information, which is included in 
the form of profiles in our structural clusters. 
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Proteins are the machinery of life. As enzymes, they catalyze almost any biochemical reaction in the cell 

with very high accuracy and velocity, leading myriads of different products as simple as methane or as 

complex as alkaloids. They play the key role in light harvesting during photosynthesis, converting 

electromagnetic energy to a potential gradient. As fibrous proteins, they play a key role in the cellular 

cytoskeleton and body scaffold.  

 

Each protein is a macromolecule built by linking together amino acid into contiguous chains. Proteins 

are produced in the cell according to a pattern specified by organism’s DNA (DeoxyriboNucleic Acid), 

with RNA (RiboNucleic Acid) serving as an intermediate specification. The primary structure of a protein 

refers to its amino acid sequence. Regions of amino acids within the protein chain tend to arrange 

themselves into regular formation. These patterns are referred to as secondary structure, and can be 

recognized by the angles and hydrogen bonds patterns between the backbone atoms. Secondary 

structure is usually divided into three classes: α-helix, β-sheet and loops. The spatial arrangements of 

secondary structure elements lead to the tertiary structure or fold; occasionally protein structures 

contain compact modules called domains. A domain can be thought of as an independent-folding 

section of the protein. Finally, the quaternary structure refers to the assembling of individual protein 

chains into a supramolecular complex. 

 

At the beginning of the structural biology loops were named as “random coils” and a secondary role was 

assigned. However, as it will be exposed in the following pages, loops play an important role both in 

structure and protein function. 
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1.1   Loops - Historical background  

 

In 1958 Kendrew et al.(Kendrew et al. 1958) solved the first three dimensional structure of a protein, the 

sperm whale myoglobin. In 1965 Blake et al.(Blake et al. 1965) described the structure of hen egg-white 

lysozyme. Theses two structures confirmed the existence of dominant conformations of α-helices and 

β-sheets, just as  proposed earlier by Linus Pauling, Robert Corey and Herman Brason(see review 

(Eisenberg 2003)). These regions have repetitive conformation of φ and ϕ dihedral angles and 

conserved hydrogen bond patterns in  protein structures. There was however a second type of 

conformation  in the  structures with non-repetitive  patterns connecting α−helices or β-strands:  the 

loop regions. 

 
Originally, loops were considered as an “irregular conformation” and sometimes misnamed as “random 

coils”. Due to their flexibility and non-periodic nature, loops long escaped structural classifications. It 

was in 1968 when Venkatachalam (Venkatachalam 1968) introduced three categories of four residue β-

turns. As more structures were solved new structurally conserved patterns were found. 

Venkatachalam’s classification was subsequently extended(Richardson 1981). These concepts were 

updated and refined in a classification scheme by Thornton and co-workers (Wilmot and Thornton 1988; 

Hutchinson and Thornton 1994). Three residue chain reversals, termed γ-turns first identified in 1972 by 

Matthews(Matthews 1972), were also classified(Rose et al. 1985; Milner-White 1987). 
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Several studies focused on the conformation of loops linking specific secondary. Analysis of ββ loops 

connecting two adjacent anti-parallel strands (i.e. of the β-hairpin) identified specific preferences for 

certain β-turn families and found novel, commonly occurring substructures (Milner-White and Poet 

1986; Sibanda et al. 1989). Subsequent analyses identified commonly occurring structural families, 

often accompanied  by sequence patterns, for αα, αβ, βα, and ββ arches(Edwards et al. 1987; 

Thornton et al. 1988; Rice et al. 1990; Colloch and Cohen 1991; Efimov 1991; Efimov 1993). More 

general classification of short to medium loop lengths have been done (Donate et al. 1996; Oliva et al. 

1997; Oliva et al. 1998; Wojcik et al. 1999; Burke et al. 2000) and recently we presented ArchDB, which 

classified loops up to 13 residues long length(Espadaler et al. 2004) according to bounding secondary 

structures (see figure 1.1).  

 

Figure 1.1 Type of loops according to connected secondary structures. 
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1.2  Importance of the loops in protein 

 

Loops play important roles in protein function, stability and folding(Fetrow 1995). They are found mainly 

at the surface of globular proteins(Leszczynski and Rose 1986). Loops were long considered as random 

coils, but now are recognized as an additional structural class. Loops represent an important part of the 

protein structure.  In 1986 Leszczynski & Rose(Leszczynski and Rose 1986) carried out an analysis 

over  67 known proteins structures. They found that the 26% of residues were located in α-helices, 19% 

in β-sheets, and 47% in non-repetitive regions (26% in turns –short loops- and 21% in loops). In a 

recent work, it was found that over a non-redundant set of proteins, 57% of catalytic residues were 

located in loops (Dr. P. Aloy, personal communication). On the other hand, loops sometimes correspond 

to highly flexible regions and therefore difficult to be described either by X-ray crystallography or NMR 

spectroscopy. To provide structural prediction for loop segments is of great interest and the 

classification of loops may  address this problem. 

 

1.2.1  Loops and protein function 

 

There are many examples in the scientific literature that relate loops with protein function. They can play 

a wide repertoire of roles related to protein function: (i) recognition sites (CDRs(Kim et al. 1999), (ii) 

protein-protein interactions: signaling cascades (Zomot and Kanner 2003; Bernstein et al. 2004) , 

dimerization(Fritz-Wolf et al. 1996) , PDZ-motifs(Feng et al. 2003) , (iii) ligand binding (p-loop(Saraste et 

al. 1990)  EF-hands(Kawasaki and Kretsinger 1995), NAD(P) binding loops(Wierenga et al. 1986), 

glycin-rich-loop(Schenk and Snaar-Jagalska 1999)), (iv) DNA-binding (helix-turn-helix motifs(Tainer et 



Chapter I.                                                                                                                                                         INTRODUCTION 

 

18 

al. 1995), M13 phage(Coleman et al. 1986)); (v) forming enzyme active sites (e.g. Ser-Thr 

kinases(Johnson et al. 1998)  or serine proteases(Wlodawer et al. 1989)), see figure 1.2. 

 

 

Figure 1.2. Some examples of functional loops are shown: (a) Cdrs of immunoglobulins; (b) EF-hand; (c) Catalytic loop of 
Ser-Thr kinases; (d) p-loop; (e) helix-turn-helix DNA interaction motif. 
 

Functional differences between the members of the same protein family are usually a consequence of 

structural differences on the protein surface. In a given fold, structural variability is a result of 

substitutions, insertions and deletions of residues between members of the family. Such changes 

frequently correspond to exposed loop regions that connect elements of secondary structure in the 

protein fold(Blouin et al. 2004). Thus, loops often determine the functional specificity of a given protein 

framework, contributing to active and binding sites(Fetrow 1995).  
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Enzyme function often involves conformational changes in protein structures. Loop flexibility plays a vital 

role in correctly positioning catalytically important residues. Motions range form a simple bending and 

stretching of bonds to subunit rotations and translations. There are a few examples of documented 

loops that are involved in protein motion related with function. Gunasekaran et al.(Gunasekaran et al. 

2003) have identified  “triggering” loops whose conformational change is required for the catalytic 

process of β1,4-Galactosyltransferase. Zgiby et al. have described that the flexibility of a loop was 

important for the correct functioning of the class II FBPA (Fructose 1,6-bisphosphate aldolase)(Zgiby et 

al. 2002). It is well known the conformational change in the LID region of NMPKs (Nucleotide 

monophosphate kinases) linked with substrate binding and catalysis(Sinev et al. 1996), in 

triosephosphate isomerases(Joseph et al. 1990) and also the conformational change in the activation 

loop of the protein kinases(Johnson et al. 1996; Adams 2003). 

 

1.2.2 Loops and protein structure 

 

A large body of experimental and theoretical evidence suggests that local structural determinants are 

frequently encoded in short segments of protein sequence. Local sequences-sequence-structure 

relationships derived from local structure/sequence analyses could significantly enhance the capacities 

of protein structure prediction methods(Yang and Wang 2003). The reports of Salem et al.(Salem et al. 

1999), Wood & Pearson (Wood and Pearson 1999) and Lupas et al. (Lupas et al. 2001) suggested that 

folds are mainly made up of a number of simple local units of super-secondary structures (motifs), 

formed by few secondary structures connected by loops (see figure 1.3).  The smallest motif is two 

secondary structures connected by a loop.  
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Figure 1.3.  Schematic showing the hypothetical evolutionary scenario that might have led to the evolution of thioredoxin and 
DsbA from a series of different antecedent domain segments (ADSs). α-Helices are represented by circles and β-strands by 
triangles (taken from Lupas et al 2000). 
 

 
Protein loops are  also important in the folding process of proteins. Single substitutions in a loop residue 

could destabilize the whole protein structure(Hoedemaeker et al. 1993).  A stabilizing role of surface 

loops in eightfold beta alpha proteins has been shown (Ulfer and Kirschner 1992). Experimental studies 

show that for some proteins the formation of a single loop is the rate-determining step, whereas for 

others, a loop can misfold to serve as the hinge loop region for domain-swapped species(Linhananta et 

al. 2002). Batori et al. have demonstrated the relationship between loop elongation and stability in a 

fibronectin type III domain(Batori et al. 2002).  Fersht suggested in 2000 the importance of loop-loop 

long-range interaction in the folding process of proteins(Fersht 2000). Recently, Krishna et al. have 

proven the active role of loops in the folding/unfolding process in cytochrome c.(Krishna et al. 2003) and 

Collinet et al. in phosphoglycerate kinase(Collinet et al. 2001). 



Chapter I.                                                                                                                                                         INTRODUCTION 

 

21 

  

Furthermore, loops are involved in the thermo stability of proteins. The stability of proteins has been 

studied from two points of view: (i) to study and compare protein structures in folded state, and (ii)  to 

study  the chain entropy and its reduction to favor the folded state. For  both approaches, knowledge of 

loops is of great interest. In the first case, the stability of thermophilic proteins has been attributed to 

greater hydrophobicity, better atom packing, smaller and fewer cavities, increased amount of buried 

surface area upon oligomerization, residue substitution within and outside the secondary structures, 

decrease of thermolabiles residues, increased helical content, increased polar surface area, better 

hydrogen bonding, and better salt bridge; but also, the shortening of loops and an increased occurrence 

of proline residues in loops may also contribute  to thermo stability (see review (Kumar and Nussinov 

2001)). In connection with the second issue, Zhou(Zhou 2004) reviewed the importance of loops in 

entropy-based strategies, because  loop and their lengths are important elements that affect the total 

value of the chain entropy. 

 

1.3  Prediction of loop structure 

 

Despite recent improvements in the techniques of structure determination at atomic level, in X-ray 

diffraction and Nuclear Magnetic Resonance (NMR) spectroscopy, there is a large difference between 

known protein sequences (~ 1.5 million)(Boeckmann et al. 2003) and protein structures (~ 24 

000)(Berman et al. 2002). In the absence of an experimentally determined structure, ab initio and 

threading methods or comparative modeling methods can sometimes provide a useful 3D model. 

 
In general, these methods tend to predict correctly the protein core when the structure of a close 

homologue of the target protein is available, but not the loop regions. Errors in loops are the dominant 
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problem in comparative modeling above 35% sequence identity. In this range of overall identity, loops 

among the homologues vary while the core regions are still relatively conserved and aligned 

accurately(Fiser et al. 2002). The recent improvements of the performance of fold prediction and 

homology modeling methods in successive CASP experiments (Critical Assessment of Techniques for 

Protein Structure Prediction)  (Venclovas et al. 2001) have not proved to be as successful in loop model 

building.  

 
Loop prediction can be seen as a mini protein-folding problem. The correct conformation of a given 

segment of a polypeptide chain has to be calculated from the sequence of the segment influenced by 

the core limb regions that span the loop and by the structure of the rest of the protein that cradles the 

loop. Many loop-modeling procedures have been described. Similarly to the prediction of whole protein 

structures, there are two basic approaches in loop structure prediction: (i)  database search methods 

(also named knowledge-based), and (ii) ab initio (also named conformational search). 

 

1.3.1 Database search methods 

 

The knowledge-based methods, which were initiated by Jones(Jones and Thirup 1986), consist of 

finding a segment of main-chain that fits two stem regions of the loop.  The stems are defined as the 

main-chain atoms that precede and follow the loop, but are not part of it. They span the loop and are 

part of the core of the spanned secondary structures. The search is performed through a database of 

many known protein structures, not only homologs of the modeled protein. Usually, many different 

alternative segments that fit the stem residues are obtained, and possibly sorted according to geometric 

criteria or sequence similarity between the template and target loop sequences. The selected segments 

are then superposed and annealed on the stem regions.  
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In the context of homology modeling, the most difficult unsolved problem after sequence alignment is 

the prediction of loop structures(Mosimann et al. 1995; Sali 1995) . Classification of loop conformations 

is of major benefit in the prediction of protein structure by comparative (homology) modeling following a 

knowledge-based approach.  Blundell and coworkers(Donate et al. 1996; Burke and Deane 2001; 

Deane and Blundell 2001) have employed their loop database, Sloop, in loop structure prediction with 

encouraging results. A work of Wojcik et al. (Wojcik et al. 1999)  showed that they were able to predict 

94% of query loops with Root Mean Square Deviation (RMSD) 3.8 A for 8-residues loops. However in 

certain cases, the  database search methods become obvious when  canonical loop conformations 

exist. This has been consistently exposed in the case of Complentary Determining Region (CDR) loop 

predictions(Chothia and Lesk 1987; Martin and Thornton 1996; Oliva et al. 1998). 

 
The database methods are limited by the exponential increase in the number of possible conformations 

in agreement with the ring closure as a function of loop length. Only segments of less than 7 residues 

had most of their conceivable conformations present in the database of known protein structures (Fidelis 

et al. 1994) (Lessel and Schomburg 1999). However, a recent work published by  Du et al (Du et al. 

2003) argued that there exists sufficient coverage to model even a novel fold using fragments from the 

Protein Data Bank, as the current database of known structures has increased enormously in the last 

few years (see figure 1.4). 
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Figure 1.4. Protein Data Bank content growth (taken from  http://www.rcsb.org 01-Apr-2004) 
 

1.3.2 Ab initio methods  

 

The ab initio methods are based on a conformation search or enumeration of conformation, or decoys, 

in a given environment, guided by a scoring or energy function. There are many such methods, 

exploiting different protein representations, energy function terms and optimization or enumeration 

algorithm (Moult and James 1986; Fiser et al. 2000; Xiang et al. 2002). 

 

Candidate loops (up to 12 residues) with conformations close to the native can always be found if the 

number of loops generated is large enough(Rapp and Friesner 1999). Usually native conformation does 

not mean lowest energy(Smith and Honig 1994; Pellequer and Chen 1997). Thus, limitations of this 

approach are two: (i) the accuracy of the applied scoring function that often are not accurate enough to 
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properly rank the many alternative conformations, especially in case of longer loops; and (ii) how to sort 

all these loop candidates so that the best one has the lowest energy. Despite of recent advances in ab 

initio loop modeling approaches, modeling loops beyond 8-10 residues remains uncertain. 

 

1.3.3 Combined methods 

 

Combined methods use both database search and ab initio methods. The underlying idea is the use of 

database search methods to find candidate loops to a given target loop and subsequently evaluated 

and optimized in the target protein. 

 

An example of a combined algorithm is that of Martin et al. (1989), in which antibody hypervariable loops 

were predicted using a database search followed by reconstruction of sections of the predicted loops ab 

initio and addition of side chains using the CONGEN conformational searching algorithm(Bruccoleri and 

Karplus 1987). This idea has been also applied by van Vlijmen & Karplus(van Vlijmen and Karplus 

1997)  selecting  loops from a fragment databank, followed by the optimization and ranking of the 

possible fragments using the CHARMM energy function(Brooks et al. 1983). The method has been 

tested for loop of different lengths (4 to 16 residues) showing usefulness for up to nine residues loops.  

Recently, Deane et al.(Deane and Blundell 2001) presented the CODA a combination of two algorithms: 

FREAD (a knowledge-based method) and PETRA(Deane and Blundell 2000) (an ab initio method). 
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1.4  Bioinformatic Tools 

 

The enormous quantities of biological sequence and structural data produced represent a wealth of 

information. However, this information has to be classified in order to be understanding and useful. 

Some of the most important databases (some of them cited within this work) are briefly described. Also, 

a short description of the main sequence comparison protocols used in bioinformatic is exposed. 

 

1.4.1 Protein Structure Databases 

  

1.4.1.1   PDB (http://www.rcsb.org)  

The protein Data Bank(Berman et al. 2002) is the single worldwide archive of structural data of 

biological macromolecules. It was established at Brookhaven National Laboratories in 1971 as an 

archive for biological macromolecules crystal structures. In the 1980s the number of deposited 

structures began to increase dramatically due to the improved technology for all aspects of 

crystallographic process, the addition of structures determined by NMR methods, and changes in the 

community views about data sharing. The current numbers of deposited structures is around 25000. 

 

1.4.1.2 SCOP (http://scop.mrc-lmb.cam.ac.uk/scop) 

 

Structural Classification of Proteins (SCOP) database(Lo Conte et al. 2002) provides a detailed and 

comprehensive description of the relationships of known structures. The classification is on hierarchical 
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levels: the first two levels, family and superfamily, describe near and distant evolutionary relationships; 

the third, fold, describes topological relationships. 

 

On family level protein are clustered based of one of two criteria that imply their have a common 

evolutionary origin: first, all the proteins have 30% residue identity or greater; second, proteins with 

lower sequence identities but whose functions and structures are very similar. On superfamily level, 

proteins share low sequence identities but both structure or functional features suggest a common 

evolutionary origin. Finally, superfamilies and families are defined as having common fold if their 

proteins have the same major secondary structures in the same arrangement and with the same 

topological connections. 

 

1.4.1.3 Dali / FSSP (http://www.ebi.ac.uk/dali) 

 

Dali/FSSP(Holm and Sander 1997) is a fully automatic classification method of all known 3D protein 

structures. The classification is derived using and automatic structure alignment program (Dali) for all-

against-all comparison of structure in the Protein Data Bank. From the resulting enumeration of 

structural neighbors a discrete fold classification is derived in three steps: (i) sequence-related families 

are covered by a representative set of protein chains; (ii) proteins chains are decomposed into structural 

domains based on the recurrence of structural motifs; (iii) folds are defined as tight clusters of domains 

in fold space. The FSSP database has one entry per representative, reporting the structural alignments 

with the representative’s sequence homologues. 
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1.4.2 Protein Sequence Databases 

1.4.2.1 SWISS-PROT (http://www.ebi.ac.uk/swissprot/) 

 

The SWISS-PROT database(Bairoch and Apweiler 2000) is currently seen as one of the best annotated 

general protein sequence databases. SWISS-PROT is a curated protein sequence database that 

provided a high level of annotation, such as description of function, domains structure, post-translational 

modifications, variants, etc. A minimal level of redundancy and a high level of integration with other 

databases is another key aim. The current release of SWISS-PROT (version 43) contains 149913 

entries. 

 

TrEMBL is a computational derived supplement to SWISS-PROT that contains translations of EMBL 

nucleotide sequence entries. Annotations for TrEMBL entries are automatically derived and are 

generally not of the same high quality as SWISS-PROT entries. Both databases can be accessed and 

searched through the Sequence Retrieval System (SRS) (Etzold et al. 1996). 

 

1.4.2.2 PIR  (http://pir.georgetown.edu) 

 

The Protein Information Resource (PIR)(Wu et al. 2002) is a division of the United Stated National 

Biomedical Research Foundation (NBRF). The PIR database strives to be comprehensive, accurate, 

consistently annotated and well organized. The last release of PIR (2.52) contains 1,226,875 entries. 

However, from a curation and annotation point of view, SWISS-PROT database is probably more 

desirable.  
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By the time of the writing of this thesis it has been published the merging between SWISS-PROT and 

PIR databases, to establish the United Protein Database (UniProt), a central resource of protein 

sequence and function.  

1.4.3 Other Databases 

 

1.4.3.1 Organism Specific Databases 

 

For many model organisms, there exist specialized genome databases that have been expertly 

annotated by researchers with extensive knowledge of the biology of specific organisms. These 

databases exist for a variety of organisms, but three of these databases (SGD, FlyBase and Ensembl) 

are exceptional, both in terms of methodology and annotation quality. 

 

The FlyBase(Ashburner and Drysdale 1994) (http://flybase.bio.indiana.edu/) resource was one of the 

earliest model organism databases. This database endeavors to capture large amounts of biological 

information regarding the complete genome sequence of Drosophila melanogaster. Detailed information 

has been gradually added to the database which includes: genes, proteins, genetic elements, 

chromosomal maps, aberrations, literature references and images. 

 

The Saccharomyces Genome Database (SGD)(Christie et al. 2004) (http://genome-

www.stanford.edu/Saccharomyces/ )  is a similar resource concerning the complete genome of 

Saccharomyces cerivisiae and related yeast strains 

 

Finally, the Ensembl resource(Birney et al. 2004) (http://www.ensembl.org) is a joint initiative of the 

European Bioinformatic Institute and the Wellcome Trust Sanger Institute. The project is a complete 
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pipeline of genome assembly, gene prediction, large-scale annotation and analysis of the draft human 

genome sequence. Ensembl also contains information pertaining to predicted genes and proteins, 

cytological markers, single nucleotide polymorphisms, protein families, and other information. Current 

distribution of Ensembl (build 34b) encloses 23,531 predicted genes and 31,609 gene transcripts. 

 

1.4.3.2 Protein Domain and Family Database: Pfam and InterPro 

 

Pfam(Bateman et al. 2004) (http://www.sanger.ac.uk/Software/Pfam/) is a database of multiple 

alignments of protein domains constructed using profiles hidden Markov models (HMM) (see below). 

The database is comprehensive well curated and very useful for determining the presence of domains 

or motifs within protein sequences. Domain families are constructed by building a seed alignment of 

related sequences. Great care is taken in the building of seed alignment. A profile HMM is constructed 

form a finished seed alignment using the HMMER package(Eddy 1998). This profile is used to search 

over SWISS-PROT database and a multiple sequence alignment for the full family is generated. Theses 

finished full alignments are stored in the PfamA database. In order to enrich the database further and to 

cover sequences in SWISS-PROT that are not already part of the PfamA database, another automatic 

protocol is used. The Domainer algorithm(Sonnhammer and Kahn 1994) is applied to SWISS-PROT 

BLAST similarity data, and used to automatically detect conserved domains and motifs within proteins. 

Profiles are once again constructed from these automatically generated alignments, and are used to 

detect more family members that are built into a final alignment. These results are stored in the PfamB 

division. Currently, Pfam contains 7426 families (version 13.0 April 2004). 

 

Interpro initiative (Apweiler et al. 2001) (http://www.ebi.ac.uk/interpro/) has linked the major family 

databases into a single resource. This database contains families from the Pfam, Prosite, Prints, 
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ProDom, SMART and TIGR-Fams resources. InterPro is an exceptionally useful resource as it allows 

the strengths of each separate family database to be combined into a single comprehensive resource 

for information regarding protein sequence motifs and domains. Current InterPro release 7.2 contains 

10,709 entries, representing 2,411 domains, 8,035 families, 197 repeats, 20 binding sites and 20 post-

translational modification sites. 

 

1.4.4 Algorithms for sequence analysis  

 

1.4.4.1 Pair-wise sequence comparison methods 

 

A simplistic yet systematic approach to sequence homology detection was first developed by Fitch in 

1966(Fitch 1966). This method used a substitution matrix based on the number of nucleotide mutations 

required to translate between amino acids. This matrix was used to calculated similarity scores for all 

possible ungapped alignment of a pair of sequences, and hence the significance of the homology. The 

first systematic sequence comparison procedure which allowed for gaps and insertions in the 

sequences was published by Needleman and Wunsch  in 1970(Needleman and Wunsch 1970). This 

work was a major breakthrough at the time, offering the capability to automatically detect homology 

between much more divergent sequences than was previously possible. Through the use of a dynamic 

programming algorithm the method was also very efficient, and could be used to compare large 

numbers of sequences. In 1981 major improvements were made to the substitution matrix by Dayhoff 

and Schwartz(Dayhoff and Schwartz 1981). 

 

The next major advance was the result of the work by Smith and Waterman in 1981(Smith and 

Waterman 1981), which introduced local scoring and included affined gap penalties. An extension to the 
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dynamic programming algorithm developed by Needleman & Wunsch allowed the detection of local 

similarities. This allows for a match between individual domains (subsequences) belonging to larger 

multi-domain sequences. 

 

The dynamic programming algorithm used by Smith and Waterman guarantees an optimal local 

alignment, and hence the maximum score, for a given pair of sequences and a substitution matrix. It is 

however possible to increase the efficiency of the algorithm by adding heuristics which consider a 

window of residues along the sequence. The optimal alignment is no longer guaranteed but something 

very close is usually achieved. In 1988 Pearson and Lipman introduced a heuristic method called 

FASTA(Pearson and Lipman 1988) for Fast Alignment Search Tool, and in 1990 another by Altschul et 

al. called BLAST(Altschul et al. 1990) for Basic Local Alignment Sequencing Tool. Further 

improvements were made available introducing substitution matrices, such BLOcks Substitution Matrix 

(BLOSUM)  by Henikoff and Henikoff in 1992 (Henikoff and Henikoff 1992) or Percent Accepted 

Mutations (PAM) matrices(Dayhoff et al. 1978). Substitution matrices give a score for any given pair of 

aligned residues according to their substitution likelihood in a protein family at a certain evolutionary 

distance. The BLAST and FASTA programs are still in common use, although some continuing work 

has been done to improve the BLAST algorithm, and the loss in sensitivity due to the heuristic effect is 

now far less.  

 

1.4.4.2  Profile sequence comparison methods 

 

The problem with pair-wise sequence comparison methods is that each position is treated with equal 

importance and they use the same substitution matrix for every position in the sequence. In reality some 

positions are far more important than others. For instance, residues of the hydrophobic core of a protein 
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are less variable than site in loop regions, and so a difference between a pair of proteins in core 

residues should be more heavily penalized than at a site on the surface. Furthermore, some positions 

are conserved for different reason than other (i.e. catalytic residues, recognition sites, …), so certain 

types of substitution should be more penalized than the same type of substitution at a different site. 

 

By considering the 3D structure of a protein, some properties of the residues at each site can be 

characterized. Information can also be gained by creating a multiple sequence alignment of related 

sequences, and observing the frequency of the occurrence of different residues at each position. These 

two sources of information can be used together or separately to characterize the features of the 

sequences at different positions. A Position Specific Scoring Matrix (PSSM) representing these 

characteristics can be constructed. This is called also a profile, and can be used to match and align 

sequences of far more distantly related proteins than simple pair-wise sequence homology methods. 

 

An early attempt at using a profile to identify protein sequence homology was made by Taylor in 

1986(Taylor 1986). He demonstrated that the use of a profile-based procedure using what he called 

“templates fingerprints” can be used to identify conserved features in immunoglobulin sequences, and 

attempted to define a general algorithm for the recognition of sequence patterns in globular proteins. 

Further template generation and matching was subsequently carried out on the globins by Bashford et 

al in 1987(Bashford et al. 1987), but the focus of this work was to identify the sequence features that 

determine a protein fold, rather than developing a general procedure for sequence alignment and 

searching. As the conserved features were found to be common to all globins, they were able to 

distinguish globins from any other sequences. 

 

Growing out of this work, Gribskov et al. presented PROFMAKE(Gribskov et al. 1987) a new method 

with specific position gap penalties and a dynamic algorithm for pair-wise comparison. 
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1.4.4.3  Iterative procedures 

 

The most recent developments in the field of profile-based sequence searching that have made a big 

difference are the use of iterative procedures. In 1997 Altchul et al. presented Position Specific Iterated 

– BLAST, PSI-BLAST(Altschul et al. 1997), which is probably the most commonly used profile-based 

method. PSI-BLAST is an improvement, and more importantly, an extension of the original BLAST 

algorithm. The procedure requires a large database of known protein sequences that it uses to 

iteratively search for homologues to build a profile. The initial query sequence is searched against the 

large database for close homologues, which are then aligned. Position specific score matrices are 

constructed form the alignment and used to search the database for further homologues not detectable 

by the initial query sequence search using BLAST. The procedure repeats itself a number of times 

improving the profile by adding more homologous sequences from the large database to the alignment. 

The resulting automatically generated profile can be used to search for sequences related to the initial 

query sequence. 

 

1.4.4.4 HMMs 

 

 

Hidden Markov Models (HMMs) introduced by David Haussler and co-workers(Krogh et al. 1994) belong 

to the cited profile sequence comparison methods. HMM put the profile methods on firmer mathematical 

ground by casting statistical the problem within a tight probabilistic framework. This fact resolves many 

of the problems associated with profile analysis, improved performance and by 1996 were two 

independent (freely available) software packages being applied to larger-scale problems(Eddy 1996).  
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Without the probabilistic framework provided by the hidden Markov model theory, previous methods had 

been assigning the position specific scores and gap penalties in a relative ad hoc manner. A HMM is a 

type of dynamic statistical profile, constructed by analyzing the distribution of amino acids and other 

features in a training set of proteins. The HMM concept is more complex than a simple profiles and can 

be visualized as a finite state machine. They use position-specific scores for amino acid (or nucleotides) 

and position specific scores for opening and extending and insertion or deletion. This property of profiles 

captures important information about the degree of conservation at various positions in the multiple 

alignments, and the varying degree to which gaps and insertions are permitted. HMMs have been used 

to detect distant relationship between proteins, prediction of trans-membrane segments(Krogh et al. 

2001), CpC islands, gene prediction and signal peptides(Kall et al. 2004). 
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