Chapter 3

Experimental Method

The B mixing can be studied with two distinct methods. In a first method, only the total
rate of events in which one B changes flavour between the time of production and that of
decay is determined independently of the time at which the decay occurs. The particle-
antiparticle oscillation is therefore integrated over time. In the second method, instead, the
time dependence shown in Chapter 2, Section 2.2, is measured, and the actual oscillation
frequency is extracted from that distribution. These methods are known as time-integrated
mizing and oscillation measurements. Both methods were successfully used for By mesons
studies [45, 46, 47, 48, 49]. While the slow oscillation frequency of By mesons allows informa-
tion to be extracted from the time-integrated mixing measurements, the situation is different
in the case of By mesons. As a consequence of their rapid oscillation frequency with respect
to the decay time, half of the By mesons are found, when they decay, in a flavour different
from that at production. The time-integrated measurement is therefore insensitive to the
oscillation frequency.

To start this Chapter, the basic features of the time-integrated and oscillation measure-
ment methods are given, and general techniques used in B-mixing analyses are explained.
The main experimental issues are reviewed, with special emphasis on the factors which limit
the sensitivity. The most important differences between the experimental studies on By and
Bs oscillations are explained. The impact of the experimental resolution on the reconstructed
B-meson proper time (i.e., the B meson decay time in its rest frame, see Section 3.1.1) is
discussed in detail, for instance. In the case of By mesons, contrary to Bq mesons, the proper
time resolution is crucial. Although the experimental description is centred on relevant is-
sues for data taken at the Z peak (at LEP and SLC), a brief description of the B-mixing
measurements performed at CLEO or CDF is also given.

In the case of oscillation studies, a fit to the expected proper time distribution is per-
formed. The fitting procedure is explained in Section 3.2. The fit for By oscillations is most
often performed with the amplitude method [9, 56]. In this method, an amplitude A is in-
troduced in front of the oscillating term in the probability density function for Bg mesons,
(Eq.2.20), and measured as a function of the oscillation frequency. The method is explained
in detail in Section 3.3, along with a complete discussion of the expected dependence on the
frequency of the measured amplitude and its uncertainty. The interpretation of the results
in terms of the probability of being due to a statistical fluctuation is given.
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3.1 Basic features of a B mixing measurement

Time-integrated measurement

The simplest experimental approach, and first used ever, for a measurement of the BY — B’
mixing consists in the estimation of the B mesons fraction with a different flavour at the
times of production and decay. If this fraction is zero, it means that there is no mixing in
the system studied. If it is 50% it means that the oscillation is rapid enough to saturate
the integrated method, rendering it insensitive to the actual oscillation frequency. Values in
between can be turned into a measurement of the oscillation frequency (or equivalently, of the
mass difference between the two mass eigenstates, Amp,) as follows. The mixing parameter

Xq is defined as the average probability of a Bg meson to be found in a Eg state at decay:
_ fooo Py_gdt

N fooo Pg_,gdt + fooo PB—»Edt '
With the approximation of AI'; = 0 and negligible CP violation in the mixing, as discussed

Xaq (3.1)

in Section 2.2, x, reads

N (AmBq/FBq)Q
Xa= 50+ (Amp, /Ts,)7]

(3.2)

The time-integrated method has been successfully used for Bq mixing studies done with
data taken at accelerators running at the energy of the Y(4S) resonance [49]. This energy
is just enough to allow the Y(4S5) to decay in a coherent B} — Eg or BT-B™ pair, but it is
too small for a BY — ES pair to be produced. The first observation of Bg mixing, by the
ARGUS experiment, was obtained from the complete reconstruction of a single Bg — Eg
event in which the Eg had oscillated [43]: two BY were reconstructed, with the following
decay chains: B} — D*~pty,, with D*~ — 77DO, and D9 — K*+7~, and the other, B} —
D* uty,, with D*~ — 7°D~, and D~ — K*n~n~. A display of this event is shown in
Fig. 3.1. The presence of two Bg in the final state is an unambiguous proof of the oscillation.
However, complete reconstruction selections are very inefficient and therefore very few such
fully-reconstructed events are available, and most of the sensitivity to xq for the experiments
running at the T(4S5) resonance, comes from events partially reconstructed. In most of the
cases, two semileptonic decays are looked for, with like-sign leptons to identify events with a
Bg meson having oscillated.

Time-integrated mixing studies with similar techniques were performed in pp colliders
(UA1 and CDF) [46] and at the Z resonance (SLD and LEP experiments) [47]. In both cases,
however, By mesons are not the only contribution to mixing, By mesons also contribute to
the integrated mixing rate. As a result, yq is not directly measurable, and the measured
quantity ¥ is an average of the By and By mesons integrated-mixing. The average mixing
parameter is related to yq through,

X = faxa + fsxs > (33)

where fq and fg are the fractions of By in bb decays, and x, = 0.5.

As already stated, By oscillations are too rapid to be studied in a time-integrated manner:
only analyses which exploit the B-meson proper time information are sensitive to Ams.
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sample of By (or Bg) mesons. However, such pure samples cannot be isolated at the Z-boson
pole or at the pp colliders. Further selection must be performed to isolate as much as possible
the kind of events desired. Some of the most common approaches for signal enrichment and
background evaluation are given in Section 3.1.3.

Although oscillation studies are done for both By an By mesons systems, the oscillation
frequency Amgq and Amg are of different enough magnitude to render the experimental key
issues in both cases quite different. To illustrate this point, the proper time distributions
expected in both cases are presented in Fig. 3.2. In the case of By oscillations, the frequency,
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Figure 3.2: Proper time distribution for mixed/unmixed Bgq and By mesons. Full curve holds for

unmixed and dotted for mixed events.

already measured with good accuracy, is small. As it is shown Fig. 3.2a, the proper time
distribution expected for mixed and unmixed events can be disentangled even with a moderate
proper time resolution (typical values of the proper time resolution achieved at LEP are of
the order of 0.3 ps, already excellent for that purpose). For By mesons, however, the rapid
oscillation frequency (for illustration Amg = 17 ps ! is taken) makes the analysis complicated
and renders the proper time resolution crucial. The distributions shown in Fig. 3.2 refer to
the expectations in the case of perfect mixed/unmixed labelling. When the experimental
uncertainty on this labelling is taken into account, the difference between mixed and unmixed
proper time distributions is diluted. A By oscillation frequency measurement, never achieved
yet, requires excellent proper time resolution as well as very good performance in flavour

tagging.

All the ingredients of such an oscillation analysis are described in detail in the following
Sections. The experimental techniques described apply to Bg oscillations analyses, but in
most of the cases they are similar to those used for By studies.



J.1 DaS1C 1eatures Ol a b INiIXing ineasureiment

3.1.1 Proper time measurement

The determination of the B meson proper time, i.e., the B meson lifetime as evaluated in
its own rest frame, requires the measurement of its decay length and its momentum in the
laboratory rest frame. The experimental technique often depends on the event selection.
Some of the general aspects are given in this Section. More details, closely related to the
main analysis described in this thesis, can be found in Chapter 6.

The decay length of the B meson is the three-dimensional distance between the point
where the primary interaction takes place (i.e., the eTe™ annihilation, in the case of LEP),
and the point where the flying meson decays. The main interaction point determination is
not specific to a B oscillation analysis and depends on the experimental environment where
the data are taken. The method used by the ALEPH experiment is explained in Section 5.4.
The secondary vertex, i.e., the point where the B meson decays, is determined with different
methods depending on the event selection. The best resolutions are achieved for exclusive
decay reconstructions. In this configuration all the secondary particles are identified and their
comimon vertex position can be determined with high precision. For more inclusive selections,
topological techniques lead to much worse resolutions. In some cases, for semileptonic decays
for instance, the decay vertex is obtained from hybrid techniques, in which a fraction of the
decay particles are identified.

The B meson momentum measurement depends on the event selection as well. If the
decay is exclusively reconstructed, it is determined as the sum of the momenta of all decay-
ing particles and the resolution is excellent by construction. The momentum of the jet in
which the secondary vertex is found is taken as the meson momentum for an inclusive event
selection. In the case of semileptonic decays, a fraction of the B meson momentum is carried
by a neutrino which escapes the experiment without detection. The neutrino momentum is
estimated from the requirement of energy and momentum conservation in the event (the qual-
ity of this technique depends strongly on the experimental environment where the data are
taken, it is successfully used at the ALEPH experiment, as explained in Section 6.7.1). The
B momentum is then estimated as the sum of the lepton and the charm candidate momenta,
complemented with the neutrino momentum estimate.

Even though the exclusive reconstruction of decays has the advantage of an almost perfect
resolution, it implies a very tight selection. The resulting data samples available are therefore
statistically poor. In contrast, the event selection for an ultimate B oscillation measurement
has to be a compromise between exclusiveness to obtain good resolution and inclusiveness to
gain from statistics. The analysis described in Chapter 6 is based on an inclusive semileptonic
selection, which constitutes the best compromise in the LEP environment. For the SLD
experiment the situation is different. The data sample is ten times smaller than in a LEP
experiment but the intrinsic resolution of the tracking is better by a factor of 3. That makes
SLD data more adequate for analyses based on a fully inclusive selection. At the CDF
experiment, being on a pp collider, inclusive or semi-inclusive techniques are not viable, only
exclusive (or close to exclusive) methods are possible.

The proper time ¢ is determined from the decay length [ and the momentum p of the B
meson as
_lm

t = — 3.4
ol (3:4)
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where m is the B meson mass, and c is the speed of light. The proper time resolution can
be therefore expressed, by differentiation, as a function of the decay length and momentum
resolutions as

atzﬂal@t@, (3.5)
pc p

where o; is the decay length resolution, and o,/p the relative momentum resolution. The
second term of Eq. 3.5 is proportional to the measured proper time itself. In the case of By
mesons, the period of the oscillation is much shorter than the lifetime, therefore the sensitivity
comes mostly from short lived mesons, for which the contribution of the momentum resolution
vanishes. The sensitivity of an inclusive analysis is then limited by the resolution on the decay
length. In the case of By oscillations, a significant mixing rate is observed only at proper
times larger than a lifetime (¢ > 7g,). Therefore the momentum resolution term dominates
the proper time reconstruction uncertainty, which is anyway not a crucial issue for those
analyses.

3.1.2 Flavour tagging

The b-quark flavour of the B meson needs to be determined at production and decay and
compared to each other to establish the unmixed/mixed label of each data event.

Three different techniques have been used to date for the final state (decay) flavour
determination, depending on the event selection performed.

- In the case of exclusive reconstruction of flavour eigenstates there is no ambiguity. The
decay chain establishes if the parent meson was a BY or a B’ Examples of exclusive
reconstruction oscillation analyses are found in Refs. [57, 58] and in Section 7.2.

- For semileptonic decays, the electric charge of the lepton is used as a tag. Figure 3.3
shows the Feynman diagrams for semileptonic decays of both BY and B A lepton

Figure 3.3: Semileptonic B® meson decay diagrams.

with negative electric charge originates from BY and a positively charged lepton from
a BY. However, the presence of a lepton in the final state does not guarantee a direct
semileptonic decay. Cascade decays with b — ¢ — ¢ are also frequent, and have the
opposite lepton-quark electric charge sign correlation (the corresponding diagrams are
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Figure 3.4: Cascade B” meson decay diagrams.

shown in Fig. 3.4). These cascade decays need to be rejected from the final data sample.
Additional cascades decays with b — @ — ¢ are also present (Fig. 3.5). The charge
correlation between the lepton and the b quark is the same as in direct semileptonic de-
cays, therefore no specific rejection for these decays is required. Examples of oscillation

Figure 3.5: Cascade b — ¢ — £ decay diagram.

analyses using semileptonic selections are found in Refs.[58, 59].

- In the case of an inclusive selection, no decay particle is identified. A different method
has to be used. An inclusive variable sensitive to the charge flow between the secondary
and the tertiary vertices is used to statistically separate B? from B’ decays. In the case
of SLD, their excellent tracking resolution is exploited which allows the tertiary vertex
to be inclusively reconstructed. A dipole, |@p — @Qp| X |17D — VB|, is formed and used
as a final state tagging variable [60].

In ete™ and pp collisions, b-quarks are produced in bb pairs. Therefore, in addition
to the B meson studied for mixing, the event contains another b-hadron with a b-flavour
opposite to that of the B meson at production. The flavour of the B meson at production
can therefore be determined from the flavour of the second b-hadron in the event. Some
additional information is available from the fragmentation products of the B meson: the
s-quark of the By meson (or d-quark for By) is created in a s§ (dd) pair, most of the times
the second s-quark forms a kaon (pion) the electric charge of which (if non zero) is correlated
with that of the B meson. The two pieces of information can be combined to obtain a single
estimator of the initial b-flavour of the B meson. At SLC, the ete™ beams are polarized,
which allows the b-forward-backward asymmetry to be used to further improve the initial
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state b-flavour tagging. Typical effective values of the probability of incorrect initial state
flavour assignment, the initial mistag, at LEP are around n; ~ 25% while at SLD, mostly
thanks to the polarized beams, n; ~ 15% can be reached.

The final label mixed/unmixed obtained for a particular B meson decay has a certain
probability of being incorrect, which is called the total mistag probability, 7. This quantity
is evaluated from a combination of the mistag for the initial, n;, and final state, ng, of the B
meson as

L—2np =1 = 2n)(1 = 2np) . (3.6)

The combined mistag probability can be evaluated on average in the selected sample, or,
as it is done in most of the cases, computed event by event. Simulated events are usually
used to convert the combined tagging variable of each event into a mistag probability. The
use of event-by-event information increases significantly the statistical power of an oscillation
analysis.

The mistag probability, 77, is used in the fitting procedure to weight events according to
their probability of being correctly tagged.

3.1.3 Signal enrichment and background evaluation

Inclusive or semi-inclusive event sample selections result on poor signal purity: as in an
unbiased bb sample, only about 10% of the events contain By meson decays. Some decay
properties like the estimated electric charge of the secondary vertex, or the presence of kaons
both in the fragmentation and the decay of the By candidate, can be used to statistically
increase the effective signal purity. All the relevant discriminant variables are combined, and
the result is used to define an event-by-event signal purity. More detailed explanations on
this subject are given in Section 6.9.

Semi-exclusive selections, like the Dgf reconstruction explained in Section 7.1, have an
average signal purity of the order of 40%. The effective signal purity can still be increased with
techniques similar to those used in inclusive selections. In the case of hadronic reconstruction
of specific decays, the average purity is even higher, of the order of 60%, and can be increased
in an analogous manner with the By constructed mass as a key discriminant variable.

The non-signal components in the selected sample, the background, need to be identified
and properly characterized. In the case of inclusive or semi-inclusive selections, the back-
ground contains mostly other b-hadrons (Byq, B*/~, and b-baryons), but also a small fraction
of hadrons formed with lighter quarks, called udsc-background in the following. The estima-
tion of the relative amount of the background components is explained in Section 6.9, for the
b-hadron species, and in Section 6.4, for the udsc background, in the case of the inclusive
semileptonic selection. The background treatment of semi-exclusive or exclusive selections is
slightly different and explained in Sections 7.1, 7.2.

3.1.4 Effect of mistag, background, and resolution

The non-perfect flavour tagging, the presence of background, and the finite detector reso-
lution introduce a dilution on the oscillation signal studied. Figure 3.6 is used to illustrate
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this point. On the three plots the expected fraction of events tagged as mixed is plotted
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Figure 3.6: By oscillations signal resolution as a function of analysis parameters. The typical error
bar for proper time values below 2 ps in an inclusive semileptonic analysis in ALEPH is shown.

as a function of the measured proper time. An inclusive selection with 10% Bs, 40% By,
40% Bt and 10% b-baryons is considered, with oscillation frequencies Amg = 0.487 ps~! and
Amg = 17ps~!. In Fig. 3.6a) perfect flavour tagging, both at production and decay, is as-
sumed, as well as negligible proper time resolution. The rapid Bg meson oscillation is seen
convoluted with the B4 mesons oscillation. In Fig. 3.6b) the effect of a global mistag prob-
ability of 30% is shown. The effective By oscillation amplitude is reduced rendering it more
difficult to resolve. In Fig. 3.6¢) the effect of the experimental resolution on the proper time
measurement is also introduced, with momentum resolution o,/p = 7% and decay length
resolution & = o;m/pyoc = 0.1ps (these values are better than the average in most of the
inclusive By oscillation analyses). As a consequence, By oscillations become only a marginal
distortion on the By oscillation pattern, only visible at small proper time values. The typical
experimental uncertainty for proper time values below 2 ps is shown both for the proper time
and the asymmetry measurements in the case of an inclusive semileptonic analysis with the
ALEPH data (Chapter 6). This last plot, compared to the others, is a clear illustration of
the importance of the proper time resolution on By oscillations, as well as of the experimental
difficulty of the measurement. The proper time resolution expression in Kq. 3.5 shows that
the momentum resolution does not contribute at very small proper time values, the crucial
issue for By oscillations analyses is therefore the decay length resolution.



mxperimneritial vietnoa

3.2 Fitting procedure

Once the proper time of the selected B mesons and the mixed /unmixed label are determined,
a fit to the expected proper time distribution is performed, to tentatively determine the value
of the oscillation frequency.

A selected data sample is a mixture of signal, By mesons in this case, and different type of
backgrounds. The probability density function (p.d.f.) has therefore to take into account the
expected proper time properties of all the components in the sample, i) the oscillating signal
component, (Bg mesons); i) the oscillating background component (Bgq mesons); iii) the non-
oscillation background component (B+/ ~ and b-baryons); and iv) the udsc-background. The
different parts of the p.d.f. are explicited below for events labelled as unmixed and mixed.

- Oscillating B mesons (Bs and By mesons):

1-+cos AmBq to

p_d_f.unmix(t) — qu |:(1 o 77T) 27Bq 6—t0/TBq +
nr 71_(:0;?}:1% o e_tO/TBq] ® Rlto,t),
i 17005A:’LB to —to/m (37)
p.d.f.mlx(t) == qu |:(1 —77T) qu e 0/7Bq +
nr 71+00;an:30‘ o e—to/mq] ® Rlto,t)-
- Non oscillating B hadrons (B*/~ and b-baryons):
unmix e—to/™B
pdfrmi ) = fy[(1-nr) SLE] @ R(to.?) 68
pd f () = fo[mr =] © R(tot) .
- The udsc background is most often parametrized from simulated events.
p'd'f.unrnix (t) — fudsc |:(1 o 77T) Fsimul(t) , (3 9)
pd () = Fucse [ e Fm(2)

In the above expressions f; (i = By, B, udsc) are the fractions of each component in the
selected sample, with }°; f; = 1, and 7y is the mistag probability, which can be different for
each component. The function R (g, t) is the proper time resolution function, built as a con-
volution of the decay length and momentum resolutions. All lifetimes, 7;, are experimentally
known, Amyg is measured as well. The only free parameter, to be fit to the data, is the Bg
oscillation frequency Ams.

The above expressions are used, convoluted with the experimental proper time efficiency,
and resolution in a global likelihood function of the data sample minimized with respect to
Amsg. To date, no minimum deep enough for a Amg measurement has ever been found. Only
lower limits on Amg have been set.
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3.3 The amplitude method

Many different By oscillations analyses are being (or have been) performed by the LEP Col-
laborations, SLLD and CDF. A method to easily combine their results and therefore increase
the global final reach on Amg, known as the amplitude method, was first used by the ALEPH
Collaboration [61] and is presented in Refs. [56, 9]. In this Section the basics of the method
are explained, along with its interpretation.

The By oscillations are slow enough to allow the oscillation frequency Amg to be deter-
mined by several analyses in all experiments where b-hadrons are produced. An average value
of Amyg is obtained from the individual results of these analyses. In the case of By mesons,
instead, as no analysis has yet been able to resolve the oscillation, the analogous approach is
not applicable.

In the amplitude method the probability density function for the By signal is transformed
by the introduction of the amplitude, A, in front of the oscillation term as

TeTst e Tst

p.d.f.VR(t) = 5 [1 £ cos(Amgt)] = p.d.f.2"(t) = 5

[1+ Acos(wt)] . (3.10)

The method consists in measuring A, i.e., maximizing the likelihood with respect to A, as
a function of the test frequency w (throughout this thesis w stands for the frequency folded
in the fitting function, whereas Amg or Am indicates the frequency of the oscillations in the
sample studied). A value of A = 1 is expected to be measured at w = Amg. Far below
the true oscillation frequency A = 0 is expected; a more detailed description of the expected
values of the amplitude A as a function of the test frequency is derived in Section 3.3.2.

The idea behind the amplitude method is to define a measurable quantity, with well
defined uncertainties, in such a way that an average between different analyses can be easily
performed. The amplitude A fulfils these requirements.

The frequency range for which the amplitude is found to be compatible with zero and
incompatible with one can be excluded at 95% C.L., i.e.,

wo excluded at 95% C.L. if Ay, +1.64504 <1. (3.11)

wo)

The sensitivity of an analysis is defined as the expected limit at 95% C.L. given the analysis
performance, i.e., the limit which would be set if the measured value of A, was zero. The
corresponding sensitivity frequency w?® fulfils,

w? & 1645 x 044 = 1. (3.12)

It is equivalent to the frequency for which amplitude values zero and one can be distinguished
at 95% C.L.

The amplitude A has well behaved parabolic uncertainties, and therefore a combination
of different analyses is easily performed. A combined limit is obtained applying the above
prescription to the combined amplitude scan as a function of w.

As already mentioned, the amplitude measurements are obtained by maximizing the like-
lihood L of the proper time distributions of mixed and unmixed events with the amplitude
of the oscillating term A as the free parameter, and w fixed at a chosen value. Denote
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L = —log L, its expansion at second order around the minimum of £, £,(A), can be approx-
imated by
1A= A
Lo(A) ~ L,(A)+ = ( ) , (3.13)
2 TA )

where A is the measured value of the amplitude, and o4 is the uncertainty on 4. This
approximation turns out to be very accurate in reality, £, (A) being parabolic in a wide
range around A.

From Eq. 3.13 it follows that, again for each value of w:

N2
Lo(A=1) ~ LW(A)+%<1;AA> . (3.14)

w

The oscillation vanishes for A = 0 on the one hand, and it averages to zero for w — o
due to finite resolution on the other. Therefore, the following equality can be written

Ly—oc(any A) = Lany w(A=0) (= L), (3.15)

and therefore, from Eq. 3.13,

A

w

.2
Lo = Lo(A)+ %<i> . (3.16)

If Eq. 3.16 is subtracted from Eq. 3.14, the following formula is obtained

ALW) = Ly(A=1)— Lo~ [%(1—A> _%<i>

, (3.17)

A OA

which allows the value of AL to be calculated, for each w, from the fit amplitude and its un-
certainty. This formula was already given in Ref. [56] and allows a minimum of the likelihood
of the world combined data (or any other combination) to be looked for.

3.3.1 Interpretation

The properties of the amplitude method for By oscillations were studied in detail in a paper
(Ref. [9]) written by Duccio Abbaneo and myself. The three main Sections of this paper are
reproduced below (some changes of notation are introduced for coherence with the rest of
this thesis). In Section 3.3.2 analytical expressions for the expected shape of the measured
amplitude and its uncertainty are, for the first time, derived. The small and large frequency
limits are discussed, and an approximate interpretation in terms of Fourier transformations
is proposed. Several mis-concepts present in the previous literature are clarified. The prob-
ability of observing statistical fluctuations which would fake a signal in a sample with the
oscillation frequency far beyond the sensitivity is also discussed. In Section 3.3.3 the structure
and the features of a toy-experiment generator used throughout the paper, and this thesis,
are described. A procedure to tune the parameters of the simulation in order to reproduce
the observed uncertainties in a particular analysis or combination of analyses is given. In
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Figure 3.7: Winter 1999 combined amplitude measurements as a function of w, from the B Oscillation

Working Group.

Section 3.3.4 a procedure to extract a confidence level value from the likelihood function is
presented and discussed. The uncertainty arising from the lack of a detailed simulation is
investigated. The method described in this Section is used in Chapter 8 for the interpretation
of the results of this thesis.

At the time of the paper publication, the latest results on By oscillations available were
those presented in the 1999 winter conferences, and therefore these are the results used for
illustration throughout the paper and in its reproduction below. For the sake of completeness,
the combined amplitude measurements obtained from published and preliminary analyses
available at the time of the 1999 winter conferences [8] are presented in Fig. 3.7.

The likelihood difference AL(w) obtained for these data is shown in Fig. 3.8. A good
parametrization for the shape of AL is obtained with a function f(w) o< 1/w® with o = 1.64,
plus some Gaussian functions to describe the deviations. A parabolic fit of the three lowest
points of the plot gives a minimum for w = 14.8 ps~™!, with a value ALy, = —2.9. As dis-
cussed in the following sections, the significance of this minimum cannot be extracted in an
analytical way, but needs to be determined with toy experiments.
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Figure 3.8: Likelihood as a function of w derived from the combined amplitude measurements. A

1

minimum is observed for w = 14.8 ps~!. The parametrization described in the text is shown in (a)

and (b); the parabolic fit to the three lowest points in (c).
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3.3.2 The amplitude analysis

The true proper time distribution of mixed and unmixed B meson decays is written as follows:

1+ cos Amtg E%to) + fR,,,(to)

p-d'f'?l,m(tO) = D'exp (*FtO) 9 = 2 ’ (318)

where R, (to) contains the oscillation term. The plus (minus) sign holds for unmixed (mixed)
events. Any difference in the decay widths of the two mass eigenstates has been neglected.

The reconstructed proper time distributions can then be written as:

pd-fam® = [ dt B0 2 1300 g, = ZOL Somll), (3.19)

For the sake of simplicity, no time dependent selection efficiency has been considered in the
calculations. In what follows, it is assumed that the relative uncertainty on the b-hadron mo-
mentum, and the absolute uncertainty on the decay length are Gaussian. This approximation
follows what typically happens in real analyses, where the uncertainty on the reconstructed
b-hadron momentum is found to roughly scale with the momentum itself, while the uncer-
tainty on the decay length does not. This fact has important consequences in the way the
two resolution components affect the amplitude shape.

Under these assumptions, the resolution function R(%g,t) can be written as:

R(to.t) = /_OO dp . exp <_ w _p0)2> 1 exp (- M) pe

V2m oy, 207 V27 oy 2 (may)? m
1 (t — to)? )
~ exp| - w0} (3.20)
27 [62 + (S,t)2] ( 2[07 + (9pt)?]
where 0; = oym/(pg c). 6, = 0p/po. The approximation is valid if 0, is significantly smaller

than one, which is anyway required to assume Gaussian uncertainties, since the reconstructed
momentum cannot be negative. Furthermore, py is not accessible in real data; the recon-
structed momentum is therefore used in the evaluation of the uncertainty from the decay
length resolution: ¢6; ~ o;m/(pc).

A set of parameters is chosen here for the purpose of illustration. Resolution values of
0p = 0.15 and ¢; = 0.14ps are used; the latter one would correspond to a monochromatic
sample of By mesons with py = 32 GeV/c and o; = 250 um. In a real analysis the normaliza-
tion of the non oscillating component is the total number N of b-hadron decays (differences
in lifetime are neglected), while the oscillation term is multiplied by N fg, (1 —2nr), fs,
being the fractions of By in the sample, and 7y the global mistag rate. For an inclusive
analysis, fp, (1 — 2np) is typically about 0.05. The curves obtained with these parameters,
normalization factors omitted, are shown in Fig. 3.9. As the frequency increases, the oscilla-
tion amplitude is damped because of the resolution. For very large frequencies only the first
period can be resolved.

The fitting technique commonly used in the amplitude analysis is a simultaneous maximum-—
likelihood fit to the proper time distributions of mixed and unmixed events, as explained in
Section 3.2. Alternatively, the difference of the two distributions, i.e. the oscillating term,
can be fit with a binned y? method. These two methods are discussed in the following.
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Figure 3.9: Reconstructed proper time distributions for the non—oscillating component, E(t), and the
oscillating component, fam(t), at different values of Am. Resolutions of 6, = 0.15 and §; = 0.14 ps

are assumed.
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The maximum likelihood fit. Using the aforementioned formalism, the likelihood func-
tion can be written as:

—logL = 5 [ dt B+ fan(®) lg () + AL(D)
B(t) — fam(®)] log[E(t) — Afu(t)] + Const,

where again Am is the frequency of the oscillations in the sample analysed, and w is the value
chosen in the fitting function. The minimization with respect to A leads to the condition

/ dt fw fAm() Af2() =0, (3_21)
0 (1-A5G)

which allows A to be determined.

The x? fit. Similarly, the x? can be written as

the minimization of which gives

(t) fam(t) — ASS(H) _
/ it L 0 0. (3.23)

Equations 3.21 and 3.23 both give A = 1 for w = Am. For w # Am they are equivalent
if Af,(t) is negligible compared to E(t).

The expression of Aa,(w) can be derived from Eq. 3.23 as

/ dt fw ){A)m( )
. (3.24)
[ £

-1

Aam(w) =

The resulting amplitude curves for Am =5, 10, 15 ps™+ are shown in Fig. 3.10a. On top of
the curves, values obtained from the likelihood fit (Eq. 3.21) are also shown. The two fitting
methods are indeed equivalent for w =~ Am, as expected, while some difference appears for

w # Am.

The expected amplitude is unity at w = Am. For w > Am, the behaviour depends
on Am (for given resolutions). In this example, for Am = 15ps ! the expected amplitude
increases monotonically.

The expressions derived for the x? fit allow also the expected uncertainty on the measured
amplitude to be extracted,

Y(A+0o4) —X3HA) = 1, (3.25)

which in turn gives

op(w) = . (3.26)
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Figure 3.10: (a) Expected amplitude values for Am = 5, 10, 15, ps— 1.

The curves refer to the x?
minimization, the points to the likelihood fit.

(b) Amplitude significance curves (x? fit). The expected shape of o(w) is also shown.

(c) Expected shape of the likelihood, derived from the amplitude and its uncertainty. The dashed line
corresponds to the the limit Am — oc.

Resolutions of §, = 0.15 and o; = 250 pm are assumed for the three plots.



9.9 111€ amplituae meinoa S

If a global mistag probability nr, and the By signal fraction in the data f; are introduced,
the expression for the amplitude curve remains unchanged, but the expected uncertainty on
the amplitude becomes, for a statistics of N events,

olw) = VN1 277T)fs,//_o; dt g((f)) . (3.27)

The significance of the measured amplitude is therefore:

/ y fAm( )

Sam(w) = Aﬁm(‘*’) _BE®) VN (1 —2n7) fs - (3.28)
o™ (W) / 130
e B(t)

This latter equation is correct only because A and o4 are independent.

The amplitude significance curves for Am =5, 10, 15ps—! are shown in Fig. 3.10b. The
normalization of the uncertainty, in the same figure, is arbitrarily chosen to have 04 = 0.5
at w = 15ps L.

The expected significance is maximal at w = Am. For w > Am it decreases without
reaching zero in the range explored. The decrease is more smooth for high values of Am.

The expected shape of the likelihood, as calculated from the amplitude and its uncertainty
using Eq. 3.17, is shown in Fig. 3.10c.

Limits for small and large Am

In the limit of very small or very large Am, some approximations can be made in the formulae,
which yield simplified expressions of easier interpretation.

Small Am. If §; < 1/Am, 6,/T' < 1/Am, the oscillation is slow and marginally affected
by the resolution. This limit holds in the case of B4 oscillations. If the resolution effects are
neglected, Eq. 3.24 can be rewritten as

o
/ dt T'exp(—T't) coswt cos Amt
0

Aam(w) = = (3.29)
/ dt T exp(—Tt) cos® wt
0
which gives
r? r?
_I_
I+ w+Am)2 T2+ (w—Am)?
Aam(w) ~ ( ) . ( )’ (3.30)
1 -
* 2+ 40?2

The resulting shape is shown in Fig. 3.11. The dots superimposed are obtained with toy
experiments generated at the same value of the frequency, including resolution effects (for
details on the simulation see Section 3.3.3; the parameters used in the generation are those
of samples S there defined). The two shapes are in qualitatively good agreement.
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Figure 3.11: The full curve gives the expected shape of the amplitude for a signal at Am = 0.5 ps~*

when all resolution effects are neglected. The dots are obtained with a toy experiment in which
resolution effects are simulated (where §, = 0.15 and o; = 250 pm). The two shapes are in agreement.

Large Am. In this limit, which corresponds to the regime of By oscillations, the resolution
effects dominate. If Amg ~ 15ps~! and &, = 0.15, then 6,/T" ~ 0.23 ps, which is larger than
1/Amg ~ 0.07 ps and therefore implies that only events with small proper time contribute to
the sensitivity. Similarly, taking §; = 0.14 ps gives §; > 1/Ams, which implies a substantial
damping of the amplitude of the oscillating term due to the decay length resolution. In
this case, a useful approximation is to assume that the term E(t) in Eq.3.24 varies slowly
compared to the fast oscillating term f,,(¢), which is non-zero in a limited time range (Fig. 3.9),
and take it out of the integral. In this way the expression can be simplified and rewritten in
terms of the Fourier transformation of the oscillating components,

/ T dt (1) fam(D) / T v L) Tam(v)
AATTL(“U) N s = == 50 ~
/_oo dt f(t) /_oo dv fwz(u)

(3.31)

The approximation is valid only if both w and Am are large. The functions [, are shown
in Fig. 3.12a for a few different values of w > 10ps~!. Fig 3.12¢ shows the product of two of
these Fourier transformations to illustrate the behaviour of the ratio in Eq. 3.31.

With increasing Am, the frequency spectra, fw, become broader and smaller in amplitude.
High true frequencies, Am, have their spectrum damped faster than low frequencies, and the
peak at w ~ Am disappears for Am well beyond the sensitivity (Fig. 3.12b). Due to the
broadening of the spectra, the product f,, (v)f,,(v) is peaked around the smallest between
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Figure 3.12: (a) Expected shapes of the Fourier spectra fa,, for different values of Am. The spectra

become broader and lower in amplitude when Am increases.
(b) Detail of the spectra for high Am.

(c) Products of pairs of Fourier spectra. The resulting functions are peaked around the smallest of

the two frequency values.
Resolutions of 6, = 0.15 and o; = 250 pm are assumed.
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w1 and wo (Fig. 3.12¢). This fact implies that when a sample with oscillations at frequency
Am is analysed with a function containing a frequency w < Am, the measured amplitude
is dominated by the frequencies around w; therefore the shape of Aan,(w) for w < Am
resembles that of fa,,(w). For w > Am the frequencies around Am are always tested, with
a normalization factor which increases with w (in Eq. 3.31, the denominator decreases very
fast), therefore Aam(w) increases monotonically.

In order to understand better the effect of the decay length and proper time resolution,
it is useful to study them separately. Setting J, = 0 in Eq.3.20, the following simplified

F2 F2 52 2
+ )21 exp (— %) , (3.32)

expression can be obtained,

1
2

f —
am (@) 24+ (w+Am)?2  I?4 (w— Am

which shows that the decay length resolution is responsible for the damping of the high
frequencies.

Considering the momentum resolution alone, the following expression is obtained,

~ 0 1 I? I? w—1v)?
fam{w) = /ﬂo dv 2 [FQ + (v + Am)? e + (v — Am)Ql P ( (2(5pw))2 )  (3.33)

which shows that the momentum resolution causes the broadening of the frequency spectrum

(as intuitively expected, since a shift in the reconstructed momentum is equivalent to a
change of scale on the time axis). For Am = 15ps~! and dp = 0.15, the width of the
frequency spectrum is dominated by the momentum resolution.

A broader frequency spectrum corresponds to a broader structure in the amplitude spec-
trum, or, equivalently, to higher correlations between values of the amplitude measured at
different frequencies. This property is relevant for the confidence level estimation as explained
in Section 3.3.4.

Fluctuations

The expected shape of the likelihood for a sample with oscillations at a frequency far beyond
the sensitivity is shown in Fig. 3.10c. In a given frequency range, statistical fluctuations
of the likelihood can produce values below 0 which can fake a signal. The probability of
observing that AL is lower than a given value AL at a given frequency w can be estimated
from Eq. 3.17, using the fact that the uncertainties on the measured amplitudes are found to
be Gaussian with high precision:

P(AL,w) = P(AL<AL), = %erfc [(—A—EUA(CU) —i—#@)/\/ﬂ . (3.34)

The function P(AL,w) is shown in Fig 3.13a, where the same parameters and normaliza-
tion as for Fig. 3.10 are used. This function can be used as an estimator of the signal-ness of a
given sample. Estimator contours, equidistant on a logarithmic scale, are drawn in Fig. 3.13b.
Small negative values are most probable at high frequencies, while for larger negative values
the maximum of the probability is found at lower frequencies.
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3.3.3 The toy experiments

The probability that the minimum observed in the likelihood (Fig. 3.8) is caused by a fluc-
tuation can be evaluated by means of toy experiments with the above estimator (Eq. 3.34).

In a general case, the depth of the likelihood minimum can be translated to a statistical
significance in the approximation that the likelihood is parabolic, which is not the case here.

At each frequency point, the probability that the measured AL is lower than a given
value AL can be calculated as explained in Section 3.3.2, starting from the uncertainties on
the measured amplitude. This procedure cannot be applied to the minimum, since ALy, is
not an “unbiased” value, but it is chosen as the lowest value found over a certain frequency
range explored.

The sum of the probabilities of obtaining a likelihood value lower than observed at all
points where the amplitude is measured does not provide a good estimate either. The different
points are highly correlated and they cannot fluctuate independently, therefore the sum of the
individual probabilities would give a gross overestimate of the overall probability of finding
a minimum as or more unlikely than the one observed.

The only viable possibility is to calibrate the significance of the structure observed with the
help of toy experiments. The worldwide combination includes many analyses, and a detailed
simulation of each of them is highly impractical. The procedure adopted here is to choose
a set of parameters for the generation of the toy experiments such that each experiment
is equivalent to the world average. The set of parameters cannot be uniquely determined
from the data: it turns out that some parameters need to be fixed a priori, and therefore the
dependence of the result obtained upon the particular choice adopted needs to be understood.
The possible effects of the lack of a detailed simulation are investigated in Section 3.3.4
by studying the dependence of the correlations in the amplitude measurements upon the
parameters chosen to generate the toy experiments.

Generation

The basic features of the toy experiments used to estimate the significance of the likelihood
minimum can be summarized as follows.

- Bottom hadron species are generated according to a chosen composition.

- For each species, the true proper time ¢y of each b-hadron is generated according to an
exponential with decay constant equal to its width, I', multiplied by a given efficiency
function.

- Neutral B mesons are allowed to mix. Mixed and unmixed particles have their proper
time distributions modified by the appropriate oscillating term, with given frequency.

- The true momentum pgy is generated according to a Peterson distribution, tuned to
reproduce a given mean scaled energy (zy).
- The true decay length is then obtained, for each b-hadron, from

to po
—C.
m

lo =
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- A smearing is applied to the true decay length and momentum according to given
resolution functions, to obtain the measured decay length and momentum, [ and p.

- The measured proper time is hence calculated as

lm
t=—.
pc

- A mixed/unmixed tag is assigned to the generated hadrons using specified mistag rates.

The udsc background is neglected.

The choice of the parameters

The only information, at the level of the world combination, which can drive the choice of
the parameters for the simulation is provided by the uncertainty on the measured amplitude

1is due to some

as a function of the frequency w. The step (seen in Fig. 3.7) at w = 15ps~
analyses in which the scan was not performed beyond that value of the frequency. The step
at w = 19ps~! is due to the SLD analyses, for which no measurement was provided for
w > 19ps~!. In all what follows the four points with w > 19ps™! are ignored, in order to

reduce the pathologies in the uncertainty shape.

The uncertainties on the measured amplitudes can be formally written as (see also
Eq.3.27)
oM w) = VN fp, (1 —2n7) E(0p, 01,w) - (3.35)

The factor k = /N fg, (1 — 2757) gives the normalization of the uncertainty distribution,
without affecting the shape, and obviously the three parameters can not be disentangled. It
is chosen to fix fg, and 5y to some “typical” values (namely fgp, = 0.15, np = 0.25), and
adjust N to fit the uncertainties in the data. The effect of a different choice which yields the
same k value is investigated in Section 3.3.4.

The decay length and momentum resolution terms both affect the shape of the measured
uncertainty as a function of w. The sensitivity is not enough to get a reliable simultaneous
determination of both. It is thus chosen to fix J,, again, to a “typical” value of 4, = 0.15,
and tune the value of ;. This choice is preferred because, as explained later, J, plays an
important role in the determination of the confidence level, and needs anyway to be varied
over a wide range to check the stability of the result obtained.

Samples are generated at three starting points for o;, which are chosen to be 200 um,
250 pm and 300 pm, each with 30000 events and the other parameters as described above.

For each value of g;, the number of events in the toy experiments is tuned by minimizing
the sum of the differences with the data uncertainties,

2

> (o o) (3.36)
i

where the scaling low of Eq.3.35 is used (Fig. 3.14a). The three minima found are then

compared and interpolated with a parabolic fit (Fig. 3.14b) to find the absolute minimum,

which turns out to be very close to 250 yum. The number of events needed at this point is

34000.
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Figure 3.14: (a) Optimization of the number of events for three different values of the decay length
resolution.
(b) Choice of the optimal decay length resolution.

Samples description

On the basis of the procedure described above, a set of parameters S is defined as follows:

- a single purity class: 15% By 38% Bq 38% BT 9% Ay;
- a single tagging class: mistag rate np = 25% for all species;
- a single resolution class:

o1 = 250 um both Gaussian with no tails;

Up/pO = 015

- Monte Carlo parametrized efficiency (taken from the analysis of Ref. [10]). The curve
is shown in Fig. 3.15;

- b-hadron masses and lifetimes, and Amg from Ref. [13];
- {ap) = 0.7
- Amyg fixed at different values, according to the study considered;

- statistics of 34000 b-hadron decays.

A second set of parameters S’ is defined to generate a second family of toy experiments.
The momentum resolution is chosen to be o,/py = 0.07, which is significantly better than
what is typically achieved in inclusive analyses. In order to keep the agreement with the world
average uncertainties on the measured amplitudes, the number of events is reduced to 29000
(obtained with the procedure described above). The other parameters are left unchanged.
These experiments are used in the following to investigate the dependence of the confidence
level upon the momentum resolution.
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Figure 3.16: Amplitude uncertainties comparison: simulated experiments versus world average data.

The uncertainties on the amplitude, o4, obtained with these two sets of experiments
are compared to the uncertainties from the world combined data in Fig. 3.16. The step at
w = 15ps~! could be reproduced by averaging, for each “experiment”, two “analyses”, of
which one has its scan stopped at that point. No attempt was made in this direction.

A third set of samples S” with §, = 0.15, 0; = 200 pm and statistics of 16500 decays
(which correspond to the optimization of Fig. 3.14) is used to investigate the dependence of
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Figure 3.17: (a) Expected amplitude and uncertainty for samples of type S, with Ams = 15ps™1, as

a function of w.
(b) Expected likelihood shape. The plots are obtained by averaging 2000 samples. Resolutions of
dp = 0.15 and 07 = 250 pm are assumed.

the confidence level upon the decay length resolution.

Finally samples of type s are defined from samples S by increasing fg, by a factor of
five (i.e., having fg, = 0.75) and reducing the statistics by a factor of 25 (which gives 1360
decays).

In Fig. 3.17 the expected shape of the amplitude and the likelihood is shown, as obtained
by averaging 1000 samples of type S, generated with Amg = 150ps~!. The expected value
is consistently zero, and the uncertainties on A are Gaussian, which confirms the validity of
the amplitude method to set limits on the oscillation frequency.

3.3.4 The estimate of the significance

As demonstrated in Section 3.3.2, the probability that, at a given point in the frequency
scan, a value of the likelihood AL < AL be found, can be calculated, given AL, from the
uncertainty on the measured amplitude, which is available from the data.

For the purpose of establishing the significance of the minimum, however, this probability
is not enough, since what is needed is the probability that anywhere in the range explored
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a configuration more unlikely than the one observed may appear (in the hypothesis of large
Amg). This significance is driven not only by the uncertainties, but also by the correla-
tions between the amplitude measurements at different frequencies, which are not controlled
from the data, and might depend on the particular combination of parameters chosen for the
simulation. It is therefore mandatory to identify the most relevant sources of systematic un-
certainty which might affect the extraction of the confidence level. This point is investigated
in what follows.

Correlations

From the discussion of Section 3.3.2, it turns out that the momentum resolution is the most
critical parameter to determine the point—to—point correlation in the amplitude scan. In a
sample with better momentum resolution, correlations are smaller and therefore the proba-
bility of having significant deviations from A = 0 in a sample with no signal is larger, in a
given frequency range explored.

In order to investigate the dependence of the point to point correlation upon the param-
eters used in the generation, a sensitive quantity is the average difference between amplitudes
measured at two given points in the frequency scan. If there were no correlations, this dif-
ference could be written in terms of the uncertainties on the amplitude as

(A1) = 2ol (3.37)

Correlations reduce this value if i and j are close enough. A scan in steps of 0.25ps™! is

assumed, as for the data analyses.

For each of the four set of parameters, S, S/, S” and s defined in Section 3.3.3, 150
samples are produced, and the quantity (| A; —A; |) is calculated, for i —j = 1, 4, 7, 10.
The results are shown in Fig. 3.18, where they are compared with the expectation for no
point—to—point correlation.

Compared to the most “realistic” samples, S, the largest deviation is observed, as ex-
pected, when the momentum resolution is changed (samples S’). At low w, the difference
between the no-correlation limit (curve) and the values found in the simulation (markers),
decreases rapidly as the distance between the points increases: fori—j = 4 (& Aw = 1ps 1)

L can be taken as

it is reduced by about a factor of two compared to i —j = 1, so Aw = 1ps~
an estimate of the “correlation length” at small frequencies. When w increases, the difference
between the curve and the simulation remains substantial even when the points are a few

inverse pico-seconds apart, demonstrating the increase of the correlation length with w.

Samples S’ can be used to estimate a “systematic uncertainty” on the confidence level
obtained, coming from the specific choice of the parameters used in the simulation.

The Confidence Level

The significance of the minimum observed in the AL distribution (Fig. 3.8) is estimated by
computing the probability that a structure as or more unlikely is observed in a sample with
Amg far beyond the sensitivity.
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Figure 3.19: Minima of AL for 2000 samples of type S, with Amg = 150 ps—!. The curves represent

(=]

contours of equal probability of observing a value of AL smaller than AL, as a function of w (as in
Fig. 3.13).

In order to do that, it is taken into account that the probability of observing a given
value of AL is a non-trivial function of w. Probability contours in the (AL,w) plane (as
in Fig. 3.13b) are built from the data uncertainties. The contour corresponding to the data
sample is computed. N = 2000 samples of type S with Amg = 150 ps—! are analysed and the
number Ng;[f of those that give a minimum AL, < 0 outside the contour corresponding to
the data is recorded. Since the expected value of the likelihood is positive for all frequencies
(see Fig. 3.17b), occasionally the minimum in the range 0 — 19ps~! is also positive. These
minima are not counted, independently of the frequency at which they occur, since they can

not be interpreted as a signal of oscillations.

The population of the toy experiments in the (AL,w) plane along with the point corre-
sponding to the data sample, is shown in Fig. 3.19.

The confidence level is computed as

Nout

1-CL = =2 = 0.021 £0.003. (3.38)
Nexp

The study is repeated with 2000 samples of type S/, and yields

1—C.L. = 0.033+0.004. (3.39)

This value has to be understood as a conservative estimate of the probability of statistical
fluctuations, since it is obtained with experiments built to have lower point—to—point corre-
lations than that expected for the average of real analyses. The distribution of the minima
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Figure 3.20: Minima of AL for 2000 samples of type S’ with Amg = 150 ps~!. The same curves as

=]

in Fig 3.19 are shown.

for this case is shown in Fig. 3.20. The difference between the values of Eq. 3.38 and Eq. 3.39
gives an upper limit for the uncertainty coming from the lack of a detailed simulation.

The probability that the winter 1999 result of the world combination of By oscillation
analyses was due to a statistical fluctuation can be therefore quantified to be around 3%.
The uncertainty on this number coming from the inaccuracies of the simulation is below 1%.

Comparison with the oscillation hypothesis

In order to check that the amplitude spectrum observed in the data is in qualitative agreement
with the hypothesis of oscillations, 500 samples of type S have been produced, with input
frequency Amg = 14.8 ps~!. The expected amplitude and uncertainty at each frequency value
are shown in Fig. 3.21, with the data points superimposed. The agreement is good over the
whole frequency range.

A quantitative study of the compatibility of the data with the signal hypothesis would
require to perform a fine scan on Amg with many samples at each value, in order to define a
probability that the results observed are produced by an oscillation with a frequency in the
range explored. This kind of study is not attempted here.

A simple check is performed instead. The 500 samples with the true oscillation at a
value Amg = 14.8 ps~! are analysed in terms of their incompatibility with the no oscillation
hypothesis. The scatter plot of the likelihood minima in the (AL, w) plane, as for the samples
with Amg = 150ps™1, is presented in Fig 3.22.

An enhanced density in the region 14ps™ < w < 16ps™!, =3 < AL < —1 is shown

min
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Figure 3.21: Average amplitude and expected uncertainty as a function of w for a signal at
Amg = 14.8ps~!. The amplitude values, obtained by averaging 500 toy experiments, are in good

agreement with the data measurements (solid points).
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Figure 3.22: Minima of AL for 500 samples of type S, with Amg = 14.8 ps~!. The same curves as

in Fig. 3.19 are shown.
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in the plot. A cluster of experiments with minima at w = 19ps~! is also clearly visible:
for these experiments the lowest point of the likelihood was at the boundary of the region
analysed. Experiments with AL, 5, < —5 appear at frequencies lower than the true one,

where fluctuations which can produce deep minima are more likely.

Out of these 500 samples, 80 were found outside the estimator contour corresponding
to the data, which gives a probability of 16%. If the data results were perfectly “typical”
compared to the toy samples, the expected result would be 50%.

3.3.5 Sensitivity limiting factors

Different factors determine the performance of a By oscillations analysis and its relevance at
high values of w, where the present interest is. Toy experiments are very useful to simulate
the impact of each analysis ingredient (such the number of events, the resolution on the
momentum or on the decay length) on the final shape of the amplitude statistical uncertainty
as a function of the test frequency w. The toy experiments described in Section 3.3.3 are also
used here.

For a By oscillations analysis with N selected events, a By fraction fs, a total mistag
probability 77, and momentum and decay length resolutions o,/p and ¢d;, the statistical
uncertainty on the measured amplitude as a function of the test frequency w is given by
Eq. 3.27. This equation shows that the number of events, the global mistag probability, and
the fraction of signal events in the sample contribute to the normalization of the uncertainty
distribution without affecting its shape.

Proper time resolution

The proper time resolution affects the shape of the amplitude statistical uncertainty as a
function of w. In general, a better resolution corresponds to a smaller degradation of the
precision on the amplitude at high frequency. The two components from which the proper
time is estimated have a different impact on the shape of the uncertainty. Toy experiments
can be used in this case to illustrate separately the effect of o; and o,/p. In Fig. 3.23 all
uncertainty lines are obtained from the average of 20 samples with N = 20000, f, = 15%,
nr = 25%, the resolutions are varied as follows.

The reference sample, full line: o; = 200 um, o,/p = 15%.

Varying momentum resolution, dash-dotted line: o,/p = 7%.

Varying momentum resolution, dash-dotted line: o,/p = 4%.

Varying decay length resolution, dashed line: o; = 160 pm.

- Varying decay length resolution, dashed line: g; = 250 pym.

For values of the frequency smaller than ~ 1.5ps™!, all the curves coincide: the proper
time resolution does almost not affect the uncertainty curve in that region. However, as
the frequency increases, the effect of varying one of the two resolution components becomes
visible. An improvement of the momentum resolution leads to a flatter curve at mid-range
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Figure 3.23: Proper time resolution effect on the amplitude uncertainty. The decay length and
momentum resolutions are varied in turn to illustrate their separate impact on the shape of the

amplitude uncertainty as a function of w.

frequencies ~ 1.5 — 12ps™!, but the uncertainty curve remains as steep as the reference one,
at high frequency. A change of the decay length resolution results in a change of the slope of
the uncertainty curve for all values of the frequency w, this effect is particularly important
in the region of interest, at high frequencies. The different impact observed for o; and o, /p,
shows the crucial réle of the decay length resolution in a By oscillation analysis.

Event-by-event decay length uncertainty

In all toy experiments presented up to here, the same decay length resolution is taken for
the smearing of all events in the generated sample and this resolution is then used in the
fitting function. However, in a real analysis not all events have their secondary vertex re-
constructed with the same uncertainty. It is important to use an event-by-event estimate of
the uncertainty and not the average of the sample. To illustrate this last point, 20 samples
of 20000 events with different decay length resolution values (18% at 80 um, 35% at 150 pm,
27% at 210 pm, 10% at 350 um, 10% at 1.1 mm) were generated. Two different fits were
performed; in the first case, each event was fit using the decay length resolution it had been
generated with, in the second, all events were fit with the average resolution of the whole
sample (~ 270 um). The other parameters o,/p, fs, and 77 were chosen as in the reference
sample used in the previous Section.
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Figure 3.24: Effect of the decay length resolution treatment on the amplitude uncertainty. The use

of event-by-event uncertainties is compared to the use of the average uncertainty.

The result is shown in Fig. 3.24. The dash-dotted line corresponds to the fit where each
event was treated with its own decay length resolution. The same fitting function was used
for the reference line and for the dotted line, with a single resolution value of 270 um. The
difference between these last two uncertainty curves (full and dotted) is due to the presence of
some events with very small decay length resolution in the second sample. The fit is sensitive
to these events, even if they are not treated at their best. However, the big difference is
appreciated between the dotted and the dash-dotted lines. The event samples are exactly the
same: the difference illustrates that an adequate event-by-event characterization increases
significantly the potential of a By oscillation analysis.

This little exercise shows how much can be gained just by using event-by-event uncertain-
ties, or dividing the sample in resolution classes at least. This point is also illustrated with
the real data sample used for the inclusive semileptonic analysis presented in this thesis, in
Chapter 8.



