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3 PROGRAMMABLE APODIZERS

AND FRESNEL LENSES

3.1 Image formation and non-uniform transmission
pupils

In this Section we describe the mathematical formulation and the method

we use to calculate the complex amplitude at a point in the image space for an

optical system. The calculation method is based on the works of Hopkins and

Yzuel [Hop70] and Yzuel and Arlegui [Yzu80]. The mathematical formulation is

based on the scalar theory of diffraction and the calculation method is valid for

optical systems with rotational symmetry.

We consider an extra-axial point in the object space, emitting

monochromatic light. The situation in the image space is expressed in Figure 3.1:

''OE  is the optical axis of the system and the exit pupil is in 'E . 'Q'Q'O  is the

image plane. The paraxial image of the object point is formed at 'Q  and 'Q'E  is

the principal ray of the pencil emerging from the exit pupil. Rectangular
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coordinates are used with origin at 'E  at the exit pupil plane. The coordinates

( )'Y,'X  are perpendicular to the optical axis, with the 'Y  axis lying in the

meridian plane containing 'Q . ( )',' ηξ  are the rectangular coordinates of 'Q  with

respect to 'Q  in the image plane. For convenience only, diagrams will be shown

in two dimensions, although the formulae will be treated using all three

dimensions.
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Figure 3.1. Diagram of the coordinates in the image space.

The wave aberration ( )'Y,'XW  of the pencil forming the image at 'Q  is

specified with respect to the reference sphere 'B'E , with centre at 'Q . We want

to find the complex amplitude at any point 'Q  in the image plane. This is given,

within the Kirchhoff approximation, by the formula

( ) ( )
dA

'R
'ikRexp

'Y,'Xf
i

U
'A

'Q ∫∫
−=

λ
    (3-1)

where λπ2k = , λ being the wavelength. The function ( )'Y,'Xf  is called the

pupil function and it expresses the complex amplitude over the reference sphere,

as a function of the coordinates ( )'Y,'X  of the point 'B  on the reference sphere,

so that

( ) ( ) ( )[ ]
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
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'Y,'Xf

τ
  (3-2)



3 . 1  I m a g e  f o r m a t i o n  a n d  n o n - u n i f o r m  t r a n s m i s s i o n  p u p i l s - 87 -

where ( )'Y,'Xτ  is the amplitude over the reference sphere. In the case the system

has a uniform transmission, the function ( )'Y,'Xτ  has a constant value over the

region 'A  of the pupil.

With the usual approximations [Hop70] the complex amplitude at 'Q  is

found to be

( )[ ] [ ] ( )','F'Rikexp
'R'N

','iexpi
U 'Q ηξ

λ
ηξε −−=          (3-3)

where
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and 'N  is the direction cosine of the principal ray of the extra-axial pincel 'Q'E .

Thus, the intensity at 'Q , i.e. the point-spread function (PSF) at ( )',' ηξ , is given

by

( ) ( ) 2
2

2

'Q ','F
'R'N

1
U','G ηξ

λ
ηξ 





==       (3-6)

or, neglecting the constant factor

( ) ( ) 2
','F','G ηξηξ = (3-7)

The phase factor ( )',' ηξε  is only of importance in treating the images of extended

objects in coherent, or partially coherent, light. As a conclusion the intensity at the

point 'Q  is given essentially by the squared modulus of the Fourier transform of

the pupil function ( )'Y,'Xf .

It is convenient in order to take advantage of the rotational symmetry of

the system and for the sake of precision to change the rectangular coordinates at

the exit pupil and at the image planes into polar coordinates. Then the ( )'Y,'X



3  P R O G R A M M A B L E  A P O D I Z E R S  A N D  F R E S N E L  L E N S E S- 88 -

and the ( )',' ηξ  coordinates are substituted respectively by the polar notation

( )φ,r  and ( )ψρ, , and consequently the diffraction integral in Eq. (3-5) changes

into

( ) ( ) ( )
φ

λ
ψφπρ

φψρ
π

rdrd
'R

cosr2i
exp,rf,F

1

0

2

0 



 −= ∫ ∫   (3-8)

where the pupil function is also expressed in polar coordinates ( )φ,rf  and the

maximum radius of the exit pupil is normalized to the unit. Thus, the PSF value at

a point ( )ψρ,  in the image plane is given by

( ) ( ) 2
,F,G ψρψρ =    (3-9)

In Eq. (3-8) ( )φ,rf  is the complex amplitude on the reference sphere that

in Eq. (3-2) was given in cartesian coordinates. When Eq. (3-2) is written in polar

coordinates the wave aberration is expressed as ( )φ,rW  and ( )φτ ,r  is the

amplitude transmittance of the system. Therefore, the PSF of an optical system

depends, besides the pupil size, on the wave aberration and on the amplitude

transmission of the system. The wave aberration can be written in a polynomial

expansion [Hop50] as

( ) ∑∑=
m n

nm
mn cosrW,rW φφ          (3-10)

If we are dealing with rotationally symmetric optical systems and with

object point on axis, then, the dependence with φ  dissappears and only even terms

(rm) remain. In this case the wave aberration polynomial simplifies as

( ) ..., 6
60

4
40

2
20 +++= rWrWrWrW φ (3-11)

The term 2
20rW  expresses a defocus aberration, let us say, we are

evaluating the PSF in a plane that is not the paraxial image plane. Thus, to

evaluate the PSF in different planes the coefficient W20 has to be changed. The

rest of the terms in Eq. (3-11) correspond to spherical aberrations of different

orders.
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As we have mentioned, the PSF not only depends on the wave aberration

( )φ,rW  but also on the transmittance ( )φτ ,r  of the system. As a consequence, we

can change the response of the optical system by introducing non-uniform

transmission filters. In the case of systems with rotational symmetry and with a

smooth behavior at the origin, the amplitude transmission can be written as

( ) ..., 6
60

4
40

2
2000 ++++= rArArAAr φτ      (3-12)

By changing the amplitude transmission we can modify different

characteristics of the PSF (apodization, hyperresolution) and the behavior along

the axis (increase of the depth of focus, multifoci) [She88,Yzu90].

Analytical expressions for the distributions of amplitude and intensity on

the point spread function (PSF) are obtained only for some residual aberrations

and some mathematical functions for the filter. For the general case, an accurate

numerical method to evaluate the PSF must be developed. We use the numerical

method developed by Hopkins and Yzuel [Hop70], with the improvements added

by Yzuel and Arlegui [Yzu80] and by Yzuel and Calvo [Yzu83]. Following their

numerical method, to compute the diffraction integral in Eq. (3-8) the pupil is

divided into area elements, and the integral becomes a finite sum of integrals over

each element. The amplitude function and the phase function, are developed in

series around the element central point and first order terms are considered. The

integral over each area element is obtained analytically.

In this thesis we deal with aberration-free optical systems, with object

point on axis. We modify the PSF of the optical system by the addition of non-

uniform transmission filters on the exit pupil.

3.2 Some specific non-uniform transmission pupils

Non-uniform amplitude transmission filters can be used to modify the

response of optical systems [Mil86,Chu88,Cam89]. Different filter designs can
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produce apodization or hyperresolution in either the transverse plane

[Chu88,Cam89] or along the axis [Cam89,Yzu90]. We note that in general non-

uniform transmission filters, independently of their behavior, are referred as

apodizers. In this thesis, we concentrate on four specific non-uniform transmission

filters located on the exit pupil of the optical system, that have been numerically

studied by Yzuel et al. [Yzu90]. Our motivation to choose these four filters has

been to be able to show a complete overview of the interesting possibilities that

non-uniform transmission filters may offer in the design of optical systems. Their

amplitude transmissions t(r), as a function of the normalized radius r in the plane

of the filter, are as follows:

- t(r) = 6.75r2 - 13.5r4 + 6.75r6. It is an axial apodizing filter that has

been previously proposed and studied by Yzuel et al. [Yzu90] with

polychromatic illumination. This filter increases the depth of focus

(DOF) for the optical system and decreases the oscillations in the

intensity in the axial direction.

- t(r) = 1 - 4r2 + 4r4. It is an axial hyperresolving filter. This filter

decreases the depth of focus, and increases the intensity of the

secondary maxima in the axial direction as shown in [Yzu90].

Therefore, we consider these axial hyperresolving filters as multifoci

filters.

- t(r) = 1 - r2. It is a transverse apodizing filter. It decreases the height of

the sidelobes in the best image plane (BIP), and increases the width of

the central maximum in the best image plane.

- t(r) = r2. It is a transverse hyperresolving filter. This filter decreases

the width of the central maximum in the BIP, then achieving

hyperresolution in comparison with the clear aperture system. The

intensity in the sidelobes is increased.

The profiles t(r) for the different filters are shown in Figure 3.2 as a

function of the normalized radial coordinate r in the plane of the filter. The value



3 . 2  S o m e  s p e c i f i c  n o n - u n i f o r m  t r a n s m i s s i o n  p u p i l s - 91 -

r=1 corresponds to the maximum radius of the pupil. Together with the four

filters we also display the clear aperture (uniform transmission filter). We note

that in this thesis we consider that the system does not present any aberrations.

We will see that this assumption is valid for the experimental system that we

implement.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Normalized radial coordinate r

A
m

p
lit

u
d

e 
T

ra
n

sm
is

si
o

n

Figure 3.2. Amplitude pupil filter functions corresponding to a, uniform
transmission; b, axial apodizing filter (t(r) = 6.75r2 - 13.5r4 + 6.75r6); c, axial
hyperresolving filter (t(r) = 1 - 4r2 + 4r2); d, transverse apodizing filter (t(r) = 1 - r2); e,
transverse hyperresolving filter (t(r) = r2).

Both in the numerical and in the experimental work, the calculations made

with the uniform transmission pupil serve as a frame of reference to compare the

results obtained with the other four filters. In this Section we show the numerical

results for the intensity values along the axis, i.e. the axial response, and the

intensity values in the best image plane (BIP), i.e. the transverse response, for the

different filters. The axial response is given as a function of the coefficient W20,

that is related with the shift z of the image plane along the axis. The transverse

response is given as a function of the normalized radial coordinate ρ in the image

plane. The connection between the coordinates W20 and ρ and their corresponding

scaled axial and transverse lab coordinates z and ρ’ is the following,

a

b

c d e
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( ) ( )
220 NA

mm2
Wmmz

λ
= (3-13)

( ) ( )
NA

m
m'

µλ
ρµρ =  (3-14)

where λ is the wavelength of the incident light beam and NA is the numerical

aperture of the system, given by

αsinNA =        (3-15)

where α is the angle between the optical axis of the system and the ray with origin

in the limit of the pupil as we show in Figure 3.3.

'R~
R

tg max=α          (3-16)

where Rmax and 'R~  are expressed in Figure 3.3.

Figure 3.3. Characteristic parameters in order to calculate the numerical aperture
(NA) of the optical system.

In Figure 3.4 we show the theoretical axial responses produced by the

different filters. For each filter, the intensity values are normalized by its

maximum intensity value, that for all the filters occurs at the BIP. In curve a we

display the results corresponding to the clear aperture. For this case, the intensity

oscillates according to a sinc-squared function as the distance W20 to the BIP

increases. Curve b corresponds to the axial apodizing filter. We can see that the

depth of focus (DOF) increases. We also observe that the secondary maxima

along the axis are eliminated. The response for the axial hyperresolving filter

corresponds to curve c. Comparing with the uniform transmission pupil, curve a,

we observe that in curve c the first axial minimum is closer to the BIP than in

curve a, i.e. the depth of focus has decreased. We can also see that in curve c the

secondary maxima are highly increased in value. The filters t(r)=1-r2 and t(r)=r2

α
Rmax

'R~
Exit pupil
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exhibit identical axial behavior. They correspond respectively to curve d and to

curve e that are actually overlapped. We can see that the two filters have an

axially apodizing behavior with no secondary maxima along the axis.
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Figure 3.4. Theoretically calculated intensity as a function of W20 for the amplitude
pupil filters: a, uniform transmission; b, axial apodizing filter (t(r) = 6.75r2 - 13.5r4 +
6.75r6); c, axial hyperresolving filter (t(r) = 1 - 4r2 + 4r2); d, transverse apodizing filter
(t(r) = 1 - r2); e, transverse hyperresolving filter (t(r) = r2).

In Table 3.1 we resume the results shown in Figure 3.4. We give the

values W20 at which the different filters produce the maxima and minima along the

axis with the corresponding intensity values at these points. For the filters that do

not present maxima and minima we give the values of the intensity at the planes

where the clear aperture would present the maxima and minima. The intensity

values can be normalized in two different ways which we have labeled N1 and

N2. In N1 the normalization is made with respect to the peak intensity value of the

clear aperture at the BIP, whereas in N2 the reference value for each filter is its

own intensity at the peak in the BIP. As we have seen in Figure 3.4 the clear

aperture and the axial hyperresolving filter present an oscillatory behavior with

maxima and minima. However, the other three filters have a monotonous

decreasing behavior with the value W20. The values displayed in Table 3.1 will be

of interest when analysing the experimental results that we will show in the next

a

cd,e

b
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sections. Obviously, the clear aperture presents a higher transmission than the

other filters. Actually, the drawback in using amplitude filters is that the light in

the image plane is reduced.

Clear aperture

W20 Plane Intensity
  N1         N2

0 BIP 1 1
1 1rst min. 0 0

1.45 1rst max. 0.047 0.047
2 2nd min. 0 0

Axial Apodizing Axial Hyperresolving

W20 Plane
Intensity

  N1         N2 W20 Plane Intensity
  N1         N2

0 BIP 0.316 1 0 BIP 0.11 1
1 --- 0.055 0.17 0.65 1rst min. 0 0

1.45 --- 0.006 0.02 1.25 1rst max. 0.06 0.56
2 --- 0.002 0.007 1.9 2nd min. 0 0

2.35 2nd max. 0.02 0.16

(1-r2) r2

W20 Plane
Intensity

  N1         N2 W20 Plane
Intensity

  N1         N2
0 BIP 0.25 1 0 BIP 0.25 1
1 --- 0.025 0.10 1 --- 0.025 0.10

1.45 --- 0.012 0.05 1.45 --- 0.012 0.05
2 --- 0.006 0.03 2 --- 0.006 0.03

Table 3.1. Characteristic parameters for the numerically calculated axial response of
the amplitude pupil filters.

In Figure 3.5 we show the numerical results corresponding to the

transverse behavior of the filters in the BIP. As in Figure 3.4, for each filter the

intensity values are normalized by its maximum intensity value, that is the N2

normalization. In comparison with curve a, corresponding to the clear aperture,

we can see the apodizing effect of the filter t(r)=1-r2, curve d, with the increased

width of the central maximum. The hyperresolving effect of the filter t(r)=r2,

curve e, is also evident in comparison with curve a. The other two filters, the axial

apodizing, curve b, and the axial hyperresolving, curve c, produce a slight

increase in the width of the central maxima with respect to the clear aperture.
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Figure 3.5. Numerically calculated intensity as a function of normalized transverse
coordinate ρ in the best image plane (BIP) for the amplitude pupil filters: a, uniform
transmission; b, axial apodizing filter (t(r) = 6.75r2 - 13.5r4 + 6.75r6); c, axial
hyperresolving filter (t(r) = 1 - 4r2 + 4r2); d, transverse apodizing filter (t(r) = 1 - r2); e,
transverse hyperresolving filter (t(r) = r2).

In Table 3.2 we express the characteristic radial positions ρ of the maxima

and minima at the BIP exhibited by the different filters. We give the intensity

values at these positions according to the two normalizations N1 and N2. If we

look at Table 3.2 we can see that the first minimum for the clear aperture is at

ρ=0.60. Using this position as a reference, we determine if the other filters exhibit

a transverse apodizing or hyperresolving performance. The bigger value is ρ=0.81

for the filter t(r)=1-r2, and the smaller value is ρ=0.48 for the filter t(r)=r2. This is

the reason why we are calling these two filters transverse apodizing and transverse

hyperresolving filters respectively. The first minimum for the axial apodizing and

the axial hyperresolving filters is also bigger than ρ=0.60. Then, these two filters

are also apodizing the image of the point, even though not as much as the filter

t(r)=1-r2. Actually, the interesting property of these two filters is mainly their

axial response as we have already commented in this Section.

a
d e

b

c
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Clear aperture

ρ Position Intensity
  N1         N2

0 Center 1 1
0.60 1rst min. 0 0
0.81 1rst max. 0.018 0.018

Axial Apodizing Axial Hyperresolving

ρ Position
Intensity

  N1         N2 ρ Position Intensity
  N1         N2

0 Center 0.316 1 0 Center 0.11 1
0.65 1rst min. 0 0 0.75 1rst min. 0 0
0.95 1rst max. 0.015 0.047 1.11 1rst max. 0.004 0.038

(1-r2) r2

ρ Position
Intensity

  N1         N2 ρ Position
Intensity

  N1         N2
0 Center 0.25 1 0 Center 0.25 1

0.81 1rst min. 0 0 0.48 1rst min. 0 0
1.02 1rst max. 9E-4 4E-3 0.72 1rst max. 0.02 0.09

Table 3.2. Characteristic parameters for the numerical transverse response in the best
image plane (BIP) for the amplitude pupil filters.

Amplitude pupil filters have been made using photographic emulsions

with different techniques [Hee75,Mil86,She88]. However these pupil functions

can be difficult and expensive to fabricate accurately and cannot be changed

quickly. In this thesis we show for the first time how to program different

transmissive filters using a programmable liquid crystal display that can be

refreshed in real time. In Section 3.3 we show the implementation of the filters in

a LCSLM working in the amplitude-only regime. In Section 3.6 we show that the

programmable apodizers can also be generated on a LCSLM working in the

phase-only regime.
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3.3 Non-uniform transmission pupils onto a LCSLM
in amplitude-only regime

In a recent paper [PAPER C] we demonstrated that amplitude transmitting

filters can be easily implemented using a two dimensional programmable liquid

crystal spatial light modulator (LCSLM) operating in the amplitude-only

transmission regime. We implemented the clear aperture, the axial apodizing and

the axial hyperresolving filters, and we studied their axial responses.

In [PAPER C] the LCSLM was inserted between two polarizers with their

transmission axes perpendicular to the director of the LCSLM at the input and at

the output faces respectively. We have studied this configuration with only

polarizers both numerically and experimentally in Section 2.3.3. In Table 2.4 we

can see that this configuration is actually an amplitude-mostly configuration and it

does not exhibit a totally flat phase response. We note that the results in Table 2.4

correspond to the LCSLM at brightness = 50 and contrast = 100, while the work

in [PAPER C] was done with the LCSLM at brightness = 50 and contrast = 85.

When we decrease the value for the contrast, the range of applied voltages also

decreases as it is expressed in Eq. (2-26). As a consequence the variation of the

phase-shift ∆ψ is also smaller: the experimental measurements are ∆ψ = 124 and

∆ψ = 105 deg respectively for the positions brightness = 50 and contrast = 100

and for brightness = 50 and contrast = 85. Despite of this coupled variation in the

phase-shift, the axial apodizing and hyperresolving profiles for the PSF obtained

with the filters implemented in [PAPER C] was clearly demonstrated: we

obtained an excellent agreement between the numerical and the experimental

results. The big potential of this technique is that it allows the filters to be rapidly

changed for modifying the response of an optical system, as the LCSLM can be

refreshed at video rates.

Further research has been done on this subject and, as we have shown in

Section 2.3.3, we are able to obtain an amplitude-only configuration by inserting

the LCSLM between two polarizers and two wave plates, what we called the

general case. As we have seen in Table 2.4, in the general case with wave plates
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the coupled variation of the phase-shift ∆ψ is diminished to a value as low as 18

degrees while keeping good values for the contrast ratio Tmax/Tmin  and for the

minimum transmittance value Tmin. We note that the controls of the video

projector are at brightness = 50 and contrast = 100. At this position the range of

applied voltages is maximum, ranging from the saturation voltage to the

Freedericksz voltage, what gives more relevance to the excellent values achieved

for the amplitude-only configuration.

Once we can assure that we work with an amplitude-only configuration,

our goal has been to perform not only a qualitative but also a quantitative study of

the amplitude filters implemented on the LCSLM. In the present Section we

demonstrate that we obtain a very good quantitative agreement between the

numerical and the experimental results. We display and study the clear aperture

and the axial hyperresolving filters. We have also implemented two new filters

with respect to the ones implemented in [PAPER C]: the transverse apodizing and

the transverse hyperresolving filters. With these two filters, whose interesting

properties are exhibited at the BIP, we complete the study started in [PAPER C],

where we implemented the axial apodizing and axial hyperresolving filters, whose

interesting properties are exhibited along the optical axis.

In Table 2.4 the values to position the transmission axes of the polarizers

and the slow axes of the wave plates are written. This configuration was

optimized for the 458 nm wavelength of the Ar+ laser. At this wavelength the

retardances of the wave plates are 2φ1 = 125 degrees and 2φ2 = 94.5 degrees. In

Figure 2.32(a) and Figure 2.32(b) we show the intensity transmission and the

phase-shift curves respectively. In Figure 2.33 the complex amplitude

transmittance for this configuration is plotted on the complex plane.

We implement the non-uniform transmission filters, whose performance

was numerically demonstrated in the previous Section, displayed on the LCSLM.

The aperture of the filter is acting as the limiting aperture of the system and the

exit pupil coincides with the position of the LCSLM.
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Figure 3.6. Scheme of the optical set-up for amplitude apodizers.

The scheme for the experimental set-up is presented in Figure 3.6. The

experimental system is very simple. Light from an Ar+ laser with a wavelength of

458 nm is expanded and an optical system is responsible for the convergence of

the light beam. The LCSLM is inserted between the two polarizers and the two

wave plates as we have already mentioned. The LCLSM is the same as the one we

have characterized along Chapter 2. The aperture of the filter on the LCSLM has a

diameter of 408 pixels. Taking into account the pixel spacing of 41.3 µm, the

radius of the aperture is 8.4252 mm. The focused pencil converges at a distance d

= 1.91 meters with respect to the exit pupil. The PSF is magnified using a

microscope objective and imaged onto a CCD camera. In order to examine

various defocus planes, the distance MOd  between the microscope objective MO

and detector is fixed and the entire objective/detector system is translated.

Therefore, the images captured at the different defocus planes have the same

magnification factor. The image onto the CCD camera is captured by means of a

frame-grabber in a computer. The frame-grabber quantizes the signal from the

CCD camera into 256 levels. Normally this is enough to record an accurate

information about the intensity distribution in the corresponding plane. However,

at certain planes we have to capture images with very low levels of light. The

images we register at these planes use a small fraction of the 256 possible

quantization levels, and as a consequence the recorded intensity profile is not so

accurate.

The pixel structure of the SLM causes replica copies of the focus spot.

These multiple orders are modulated by the sinc-squared function due to the

diffraction of each pixel. The fill factor, that is the ratio of the clear aperture area
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of the pixel divided by the pixel area, influences the total transmitted light and the

distribution of the light among these replicas. In our set-up the microscope

objective also serves as a spatial filter to eliminate these higher order diffracted

images caused by the pixel structure of the LCSLM.

The transmission value for the panel is controlled by sending a voltage

signal to each pixel of the LCSLM from a VGA graphic card in a computer. The

graphic card sends gray scale levels (GSL) ranging from 0 to 255. Using the

intensity transmission curve in Figure 2.32(a) a calibration look-up table of

amplitude transmittance t versus GSL is formulated.

We have used Eq. (3-15) to calculate the numerical aperture of the optical

system obtaining NA = 0.0044. In this thesis we are actually dealing with low

numerical aperture optical systems. From Eq. (3-13) and Eq. (3-14) we calculate

the axial and the transverse scale factors that relate the coordinates W20 and ρ with

their corresponding lab coordinates z and ρ’, obtaining:

Ø Axial scale factor (in mm):   
( )

mm 1.47
NA

mm2
2

=
λ

Ø Transverse scale factor (in µm):   
( )

m 104
NA

m
µ

µλ =

Then, we proceed to capture the images of the characteristic axial planes

for the different amplitude filters and for the clear aperture (uniform

transmission). In general we are interested in capturing the transversal image

(PSF) in the axial maxima and minima planes. The procedure we follow to

capture these images and the measurements we carry out on them are:

1. First of all, we scale the numerical axial coordinate for the characteristic axial

planes to the lab coordinate in millimeters using the axial scale factor already

calculated. For convenience, we locate the origin of the axial coordinates at

the best image plane (BIP).
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2. We position the system objective/detector at the predicted axial position.

Then, we verify that this position is actually an axial maximum or minimum

as predicted. For low numerical aperture systems, we know theoretically that

the intensity along the axis is symmetrical with respect to the BIP. We

experimentally verify this symmetry.

3. We capture the images at the predicted distances. They are the experimental

images that we show in the thesis. On these images we perform different kind

of measurements that will allow us to compare the experimental values with

the numerical predictions.

4. In all the images that we capture we measure the intensity (in GSL) in the

intersection point between the optical axis and the image plane.

5. On the image corresponding to the BIP, we measure the radial distance (in

pixels) of the different transverse minima and maxima with respect to the

center of the image, and we measure the corresponding intensity value (in

GSL) at these points.

6. We need to translate the experimental radial distance in pixels of the image

into their value in micrometers in the lab. For doing so, we capture the image

of a diffraction grating whose period is known.

7. We also need to scale the predicted radial distances for the transverse maxima

and minima into their corresponding lab value in micrometers: we use the

transverse scale factor already calculated.

This is the procedure we have followed both for the experimental images

that we show in this Section and for the ones that we show in Section 3.5 and

Section 3.6.

First of all, we show in Figure 3.7 the images captured for the clear

aperture. The images correspond to the best image plane (BIP), Figure 3.7(a), the

first axial minimum, Figure 3.7(b), and the first secondary axial maximum, Figure

3.7(c). The BIP position is taken as the origin for the axial lab coordinate. Under

the figures we indicate the corresponding axial position in millimeters. We also
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provide on the figures the equivalent transverse scale in microns for the radial

distances. The images were captured under identical conditions of illumination in

order to measure the relative values of intensity between them. Nevertheless, we

note that in Figure 3.7 the images have been digitally saturated to show the

sidelobes. We can see that the images keep a good rotational symmetry.

(a)    (b)    (c) 

Figure 3.7. Experimental images of the intensity distribution for the clear aperture at
the following planes. (a) BIP; (b) First axial minimum; (c) First secondary axial
maximum.

Clear aperture (axial response)

Plane z (mm) Intensity
N2 (theory)

Intensity
N2 (exper.)

BIP 0 1 1

1rst min. 47 0 0

1rst max. 68 0.05 0.10

Table 3.3. Comparison between the numerical and the experimental results for the
intensity values at the characteristic axial planes for the clear aperture.

In Table 3.3 we show the comparison between the numerical predictions

and the experimental results for the intensity measurements performed on the

images captured at the axial planes shown in Figure 3.7. We show the intensity

values normalized with respect to the intensity maximum at the BIP (N2

normalization ). First, we want to remark that the experimental maxima and

minima planes coincide with the predicted positions. This is actually an excellent

result that, as we will see along the different Sections, we obtain with the other

filters as well. We want to quote that the three images in Figure 3.7 have been

taken under identical illumination conditions and this produces a very low

dynamic range (about 20 quantization levels) for the first secondary maximum

image. This limits the accuracy in the measurement of the peak value at this plane.

As a whole, we can say that the experimental intensity values are close to the

numerical ones.

z = 0 mm z = 47 mm z = 68 mm
50 µm 50 µm 50 µm
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In Table 3.4 we compare the radial distances of the maxima and minima

and the intensity values at these positions for the BIP image. In this case, both the

agreement between the numerical and the experimental radial distances and the

agreement between the intensity values is very good.

Clear aperture (transverse response)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 62.3 0 65.8 0

1rst max. 84.1 0.02 92.1 0.02

Table 3.4. Comparison between the numerical and the experimental results for the
intensity values at the characteristic transverse positions at the BIP for the clear
aperture.

In the following we will study the axial hyperresolving filter. In Figure 3.8

we show the images captured for this filter at its characteristic axial positions.

(a)  (b) 

(c)  (d)  (e) 

Figure 3.8. Experimental measurements of the response for the amplitude filter t(r) =
1 - 4r2 + 4r4 at the following planes. (a) BIP; (b) First axial minimum; (c) First
secondary maximum; (d) Second axial minimum; (e) Second axial maximum.

The images in Figure 3.8 have been taken under identical conditions of

illumination in order to compare their respective intensity values. As in Figure

3.7, the images in Figure 3.8 have been digitally saturated in order to show the

sidelobes. We appreciate a rather good rotational symmetry in all the axial planes.

The slight lack of rotational symmetry can be due to minor misalignments in the

experimental set-up, and to the residual aberrations introduced by the different

z = 0 mm z = 31 mm

z = 59 mm z = 89 mm z = 111 mm

50 µm 50 µm

50 µm 50 µm 50 µm
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plane-parallel surfaces existing in the set-up, mainly polarizers and wave plates.

We note that the LCSLM that we are using is almost free of aberrations and

allows us to obtain diffraction limited images.

For the axial hyperresolving filter the interesting response is the axial

response. In Table 3.5 we show the measurements done at the center of the

different planes. The multifoci behavior is clearly demonstrated by the high values

for the intensity at the secondary maxima. We also remark that the different

minima and maxima planes coincide with the numerical prediction.

Axial hyperresolving filter (axial response)

Plane z (mm) Intensity
N2 (theory)

Intensity
N2 (exper.)

BIP 0 1 1

1rst min. 31 0 0

1rst max. 59 0.56 0.31

2nd min. 89 0 0

2nd max. 111 0.16 0.10

Table 3.5. Comparison between the numerical and the experimental results for the
intensity values at the characteristic axial planes for the axial hyperresolving filter.

Now we study the filters t(r) = 1 - r2 and t(r) = r2. Along the optical axis

we have experimentally verified that both filters provide approximately the same

values as theoretically predicted. Actually the interesting properties of these filters

are at the BIP. In Figure 3.9 we show the BIP images captured for both filters.

The images have been digitally saturated in order to show the sidelobes. In Figure

3.9(a) we have combined the focused spots from the filter t(r) = 1 - r2 (upper half)

and from the filter t(r) = r2 (lower half). We can clearly appreciate the larger

width of the central maximum for the filter t(r) = 1 - r2 with respect to the filter

t(r) = r2. We can also distinguish the radial sidelobe for the filter t(r) = r2. These

features are indicative of the relative apodizing and hyperresolving properties at

the BIP between the two filters t(r) = 1 - r2 and t(r) = r2. On Figure 3.9(b) and on

Figure 3.9(c) we present again the images at the BIP for both filters, where we

indicate their respective peak intensity values (in gray level). We can see that the

peak intensity is exactly equal in both images. This is actually what the numerical

results predict. On the images we also show the equivalent transverse scale in
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microns for the radial distances. We use this scale to measure the position of the

maxima and minima at the BIP.

                    

Figure 3.9. Experimental PSF images at the BIP of the intensity of the focused spot.
(a) Combination of saturated images (upper half, filter t(r) = 1 - r2; lower half, filter t(r)
= r2). (b) For filter t(r) = 1 - r2. (c) For filter t(r) = r2.

In Table 3.6 we resume the different measurements carried out on the

images in Figure 3.9. We compare these measurements with the numerical

predictions. We can see that once again, the agreement between the numerical and

the experimental values is very good. It is also important to compare the results

for these two filters with respect to the clear aperture results in Table 3.4. We see

that the first transverse minimum for the clear aperture, at ρ’=65.8 µm, is located

at an intermediate position between the corresponding distances ρ’=88.3 µm for

the filter t(r) = 1 - r2, and ρ’=54.3 µm for the filter t(r) = r2. Therefore, the filter

t(r) = 1 - r2 apodizes the PSF while the filter t(r) = r2 is clearly hyperresolving. As

a final comment, we note that we could not measure the position for the first

secondary maximum at the image for the filter t(r) = 1 - r2 because it is out of the

area of the sensor of the CCD camera. We can conclude after this quantitative

analysis that we are able to produce transverse apodizing and hyperresolving

performances at the BIP using the LCSLM.

50 µm(a)

(b)

(c)

50 µm

50 µm

195

195
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t(r) = 1 - r2 (transverse response)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 84.1 0 88.3 0

1rst max. 105.9 0.004 --- ---

t(r) = r2 (transverse response)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 49.8 0 54.3 0

1rst max. 74.7 0.08 79.9 0.07

Table 3.6. Comparison between the numerical and the experimental results for the
intensity values at the characteristic transverse positions at the BIP for the filters: (a)
t(r) = 1 - r2; (b) t(r) = r2.

In conclusion, we report the use of an amplitude transmitting LCSLM for

introducing programmable apodizing filters into optical systems. Experimental

results for the axial and the transverse positions of the characteristic minima and

maxima for the different filters are in excellent agreement with theoretical

predictions. In general, the agreement is also very good between the numerical

and the experimental intensity values shown in the different tables. After the

quantitative analysis performed in this Section we can assure that the apodizing

and hyperresolving properties of the different filters have been clearly

demonstrated using the LCSLM. The technique is easy to implement and should

allow experimental results for various transmissive filters to be obtained easily.

The big potential of this technique is that the video rate refreshment of the

LCSLM allows the filters to be rapidly changed for modifying the PSF of an

optical system.

3.4 Encoding amplitude information onto a focusing
element

A very powerful and attractive property of diffractive optical elements

(DOEs) is the possibility to combine different functions in the same DOE. In this
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thesis we present a proposal which takes advantage of this possibility. Our interest

is to combine the PSF transformation property of non-uniform transmission filters

with the focusing property of lenses. This combination leads to a new device, the

programmable focusing apodizer, whose focal length and whose apodizing or

hyperresolving action on the image formation behavior of the system can both be

changed in real time.

In order to generate programmable focusing apodizers with the LCSLM

we have to take into account several considerations that we develop in Section 3.4

and 3.5. The first point, that we develop in this Section, deals with the need to

codify complex amplitude information into a media with modulation constraints

as the LCSLM. The second point, developed in Section 3.5, deals with an effect

associated with the pixelated nature of the LCSLM that modifies the performance

of lenses, and as a consequence the performance of the programmable focusing

apodizers as well.

The first point to consider is that we want to combine an amplitude-only

element, the non-uniform transmission filter, with a phase-only element, the lens.

We have to implement a complex amplitude transmittance onto the LCSLM and

we should be able to control independently the amplitude and the phase

modulations. As we have already seen along Chapter 2, the amplitude and the

phase are coupled magnitudes in the LCSLMs. In fact, there is no SLM device

that can simultaneously provide independent amplitude and phase modulation.

This limitation is important in different fields of optical information processing

and in diffractive optics where elements with a complex amplitude transmittance

are needed. This is the motivation for a variety of works where different strategies

are designed to implement complex amplitude information on media with a

restricted modulation capability. One of the earliest methods was described by

Kirk and Jones [Kir71]. A continuous (low-frequency) surface-relief profile that

controls the phase is superimposed with an amplitude-modulated (high-frequency)

sinusoidal carrier grating that deflects a controlled amount of light into higher

carrier orders and, therefore, simulates an absorbing layer. This technique is
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extremely difficult to implement, particularly with SLMs, because of the need for

a high-frequency carrier. In an alternate approach [Gre92,Gon96] two LCSLMs

were combined to achieve total amplitude and phase operation. This is difficult to

implement experimentally. Moreover, it is more interesting to achieve amplitude

and phase information with a single SLM. Davis et al. [Dav99d] performed a

good revision of the different methods available to implement complex amplitude

information on media with a restricted modulation capability. In this paper

[Dav99d] they proposed a new procedure which is suitable for low resolution

media as the LCSLMs. We note that the highest spatial frequency that can be

displayed in a LCSLM is about 30 lines/mm. This is the method that we have used

in the work performed in this thesis to encode the programmable focusing

apodizers. In what follows we will explain this codification method.

The programmable focusing apodizers are generated on the LCSLM in the

phase-only regime. This is the suitable regime to display the lens, as it is a phase

encoded element. In order to achieve the lens and the non-uniform amplitude filter

displayed in the same LCSLM, in the phase-only regime, in [PAPER E] we

extended to a quadratic phase carrier the method proposed by Davis et al.

[Dav99d] with a linear phase carrier.

The method is based on the encoding of an arbitrary complex function by

means of an adequate phase function. In Ref. [Dav99d] the proposal was to add a

linear phase grating to a phase-only filter for pattern recognition. The intuitive

idea of this method can be viewed in Figure 3.10 where a blazed phase grating

with different values for the phase depth is shown. If the phase depth equals 2π

radians, Figure 3.10(a), all the incident light is diffracted into the first diffraction

order. In the case the phase depth is π  radians, Figure 3.10(b), an equal percentage

of 40.5 % of the incident light is distributed into the first and the zero diffraction

orders and the remaining 19 % is sent to the other orders. If the phase depth were

zero, then all the incident light would be sent into the zero order. Thus, if we vary

the phase depth along the blazed grating, we can obtain a spatial modulation of the

light diffracted to the zero order and to the first order. For example, in Figure
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3.10(c), the phase depth is 2π  at the center of the grating and gradually diminishes

to zero at the edges. Therefore the center of the grating is sending all the light into

the first diffraction order while the edges send the light into the zero order. The

complementary effect would be obtained with the profile in Figure 3.10(d).
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Figure 3.10. Blazed phase grating with different phase depth. (a) 2π radians; (b) π
radians; (c) Modulated with 2π radians at the center; (d) Modulated with 2π radians at
the edges.

With the blazed phase grating we have shown that a phase element is able

to encode amplitude transmission information to spatially modulate a beam of

light. With the proper design of the phase depth across the phase grating we can

obtain a specific response in the desired diffraction order.

In this thesis we concentrate on a different geometry, that was proposed in

[PAPER E]. We consider a quadratic phase carrier instead of the linear phase

carrier considered in [Dav99d]. By means of the quadratic phase carrier we can

display the complex amplitude information represented by the combination of the

amplitude filter and the lens in a single LCSLM working in the phase-only mode.

Let us consider the general case of a complex amplitude filter. We can represent

the complex transmittance of this filter as a function

[ ])y,x(iexp)y,x(M)y,x(T Φ= , where 1)y,x(M ≤  represents the amplitude

(a) (b)

(c) (d)
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information and πΦπ ≤≤−  is the phase information. In the case of amplitude-

only transmission filters we simply have to substitute 0=Φ .

Let Z*(x,y) be the quadratic phase introduced by a lens with focal f,

illuminated with a plane wave of wavelength λ,

( )







+−= 22 yx

f
iexp)y,x(*Z
λ
π

           (3-17)

Thus, to display both the filter and the lens on the same LCSLM in phase-

only regime, we have to phase encode the next complex function

( )







+−== 22 yx

f
iexp)y,x(T)y,x(*Z)y,x(T)y,x(G
λ
π

       (3-18)

As in Ref. [Dav99d], we define the phase function [ ]ϕϕ Miexp)´,M´(G ′= ,

with 1´ ≤M  and πϕπ ≤≤− , where 
f

)yx(
)y,x(

22

λ
π

Φϕ
+−= . Then, we

define the periodical extension G´´(M´, ϕ) of this function by repeating it in the

range ∞≤≤∞− ϕ . The Fourier expansion of this periodical function will be

[ ]∑
∞=

−∞=

=
n

n
n niGMG ϕϕ  exp)´,´´(         (3-19)

where ( )nMsincGn −′= , with the usual definition sinc(x) = sin(πx)/(πx). We can

rewrite G´´ in terms of x and y

[ ] 












 +−Φ−′= ∑
∞

−∞= f
yx

yxninyxMsincyxG
n λ

π )(
),( exp),(),´´(

22

    (3-20)

We consider that a plane wave with wavelength λ illuminates a LCSLM

where this transmission has been displayed. According to the Fresnel diffraction

theory, the resulting electric field ( )v,u'U  on the plane (u,v) placed at a distance f

of the plane (x,y) will be proportional to
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(3-21)

The sum over the n-indices in Eq. (3-21) can be taken out of the integral

symbol. Thus, the resulting amplitude distribution U´(u,v) is equal to the addition

of the Fresnel diffraction produced by each of the n-terms. For the term n=1 we

see that the quadratic phase functions inside the integral cancel. The contribution

of the term n=1 to the amplitude U´(u,v) will be the Fourier transform of

[ ] [ ]),(exp1),( yxiyxMsinc Φ−′ . Additionally, we can choose the function

),( yxM ′  so that [ ] ),(1),( yxMyxMsinc =−′ . In this way, the term n=1 produces

on the plane (u,v) the Fourier transform of the amplitude function ),( yxM  that

we wanted to encode onto the Fresnel lens. Thus, we have demonstrated that the

term n=1 is carrying the desired amplitude-only information ),( yxM .

For the other terms ( 1n ≠ ), the quadratic phase ( )[ ]fyxni λπ 22 exp +  in

Eq. (3-21) is not compensated. In general, the phase of the n-term can be thought

as produced by a lens with a focal length f/n. These terms will appear defocused

and their contribution will be almost a constant on the plane (u,v). Moreover, the

intensities of these defocused terms are governed by the function

[ ]n)y,x(Msinc −′  and because 1)y,x´(M0 ≤≤  the main contribution is given

by the zero order term. Even for this term the resulting intensity will be lower than

the contribution given by the term n=1. In conclusion, the resulting intensity in

the plane (u,v) will be the Fourier transform of the function that we have encoded

(given by the term n=1) plus a low background noise (given by the other terms).

In an example given in [PAPER E], we have evaluated the signal to noise

ratio (SNR) of the intensity when an apodizing function M(x,y) is encoded. We

have chosen 
2

max

22

R

yx
1)y,x(M

+−= , with Rmax the lens radius. In this case the
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SNR was 1:0.005. This high value shows that the contribution of the terms 1n ≠

can be neglected.

Concluding, we have demonstrated a method that is able to encode

complex amplitude information, in particular amplitude-only information, onto a

phase-only medium. When we encode an amplitude-only transmission function

onto the quadratic phase function corresponding to the lens, the contribution of the

first order term is enhanced at the focal plane of the lens function while the terms

where 1n ≠  are defocused. Therefore at the focal plane of the encoded lens, the

field distribution produced by the encoded function will be the Fourier transform

of the desired function immersed on a very low background noise.

3.5 Inherent equivalent apodizing effect in pixelated
Fresnel lenses

3.5.1 Theory

In a recent work [PAPER D] we introduced what we called the inherent

equivalent apodizing effect. This is a phenomenon that is originated in devices

with a pixelated structure as the LCSLMs. This effect is particularly important not

only for lenses encoded onto LCSLMs but also for all focusing DOEs, such as the

programmable focusing apodizers, that we show in Section 3.6. Along the present

Section we introduce this effect and we show that it leads to apodization of the

image produced by the lens on the LCSLM. As a consequence it distorts the

response of the programmable focusing apodizers as well. We demonstrate a

technique to measure and compensate for this effect.

In this Section we concentrate our attention on the generation of lenses

onto the LCSLM. The results obtained can be extended to other focusing DOEs.

These lenses belong to the category of the diffractive Fresnel lenses, explained in

Section 1.3.2. In the case of the LCSLM it is obvious that the phase profile of the

lens is sampled by the pixelated structure of the LCSLM. Furthermore, the profile
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of the lens is quantized in 256 levels, corresponding to the VGA resolution of the

LCSLM we are using in this thesis (Sony Model LCX012BL).

Different authors [Dav89a,Cot90,Lau98] have reported that Fresnel phase-

encoded lenses can be displayed on a programmable SLM. The sampling of the

Fresnel lens causes the appearance of multiple lenses when the sampling

frequency is lower than the Nyquist frequency as we show in Figure 3.11. This

leads to the appearance of secondary maxima in the focal plane with a loss of

efficiency in the principal focus.

Figure 3.11. Fresnel lenses with different focal lengths and with the same sampling
frequency. The shorter the focal length the higher the Nyquist frequency needed to
sample the lens function. (a) Sampling frequency higher than the Nyquist frequency;
(b) Sampling frequency lower than the Nyquist frequency and we can see the
appearance of secondary lenses.

Carcolé et al. [Car94a,Car94b,Car95] studied theoretically low resolution

Fresnel lenses and they provided some optimization procedures in order to

enhance the fraction of energy that goes to the focus of the main lens. In Ref.

[Car94a] Carcolé et al. developed a mathematical model that describes the

behavior of the low resolution Fresnel lenses and they obtained expressions for

the light distribution in the focal plane due to the main lens and to the secondary

lenses. A very important result is that the image produced by a lens encoded onto

a SLM appears to be convolved with the function that describes the pixel shape.

This result leads to the apodizing effect reported by Arrizón et al. [Arr99]. This

phenomenon is what, in [PAPER D], we have named as the inherent equivalent

apodizing effect. In the paper we provide the means to measure this effect and to

compensate for it.

(a) (b)
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In this Section we follow the approach by Carcolé et al. In the Appendix

we develop an alternative theoretical approach based on the concept of diffraction

efficiency. The approach in the Appendix is not as general as the one given in this

Section, however, it provides an intuitive idea of the phenomenon of the inherent

equivalent apodizing effect.

W D

Figure 3.12. Pixelated structure of the LCSLM. The existence of dead areas for the
electrode wires between the clear aperture of the pixels makes that the width W of the
pixel is smaller than the distance D between center to center of consecutive pixels.

In order to display a converging lens we send a quadratic phase ( )y,xQφ

to the SLM working in the phase-only regime. This phase function is given by

( ) ( )[ ] ( )







+−=−= 22

Q yx
f

iexpy,xiexpyx,*Z
λ
π

φ  (3-22)

where f is the focal length. In what follows we use a one-dimensional notation for

simplicity. If we encode this lens on a pixelated device having a length L with

pixel spacing of D and pixel width of W (Figure 3.12), the transmission of the

SLM is


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rect )nDx()x(Z)x(T
n

δ   (3-23)

Here the symbol ⊗ represents the convolution operation. The operations we are

performing in Eq. (3-23) when encoding the quadratic phase function are the

following: sampling the function at distances D given by the spacing of the pixels,

spatially limiting because of finite extent L of the SLM and convolving this

sampled function by the shape of the pixel, due to the finite width W of the pixel.
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It is important to note that across the pixel the phase value is constant, as we

observed in the stepped phase profile for the diffractive lens in Figure 1.5. We

will demonstrate that this constant phase value across the pixel constitutes the

origin for the inherent equivalent apodizing effect in pixelated lenses.

When the SLM is illuminated with a plane wave the amplitude distribution

( )uU  in the focal plane of the encoded lens is given by Fresnel diffraction and can

be obtained by convolving Eq. (3-23) with a quadratic diverging phase function

given by Z(x),

dx)xu(Z)x(T)u(U ∫ −=       (3-24)

We have to perform two convolutions in Eq. (3-23) and Eq. (3-24). By

using the associative and commutative properties of the convolution function, we

can write the amplitude in the focal plane as

( ) 

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δ    (3-25)

The amplitude in the focal plane can be evaluated by calculating first the

propagation of the sampled lens (without taking into account the pixel size), and

then convolving the result with the pixel shape. Apart from a constant

multiplicative factor, the result is given by
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  (3-26)

where ( ) ( ) xxsinxsinc ππ= . We can see that Eq. (3-26) yields a superposition of

sinc functions having widths of (λf)/L and separations of (λf)/D, as we show in

Figure 3.13. The separations between the sinc functions are much larger than their

widths because L=ND where N is the number of pixels in a row of the SLM.

Because we are interested in evaluating the amplitude in the central zone of the

focal plane, we only have to consider the contribution of the n=0 sinc function. In

addition, the quadratic phase term in Eq. (3-26) can be neglected in the central
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zone because its phase variations across the rectangle function and the central lobe

of the sinc function are much less than 2π radians. In this case the amplitude in the

focal plane can be written as







⊗








=

W
u

rect
f

Lu
sinc)u(U

λ
           (3-27)

This result shows that the shape of the focused spot will be convolved with

a rectangle function having the width of the pixels in the SLM.

u

Focal plane

2λf/L

λf/D

Figure 3.13. The separation between the different replicas due to the pixelated
structure of the LCSLM is much larger than the width of the sinc functions.

In image formation, the point-spread function is equal to the Fourier

transform of the pupil function. The PSF produced by the encoded lens is given

by Eq. (3-27). Consequently, we have an effective pupil function that is equal to

the inverse Fourier transform of Eq. (3-27). This pupil function is given by the

product of a rectangle function of width L that corresponds to the size of the SLM

and a sinc function that corresponds to the Fourier transform of the pixel. This

sinc function acts as a non-uniform transmission pupil τ(x). It is a transmission

function whose profile decays at the edges. Thus, the sinc function acts as an

equivalent apodizing function that is given by

( ) 







=

f
Wx

sincx
λ

τ (3-28)
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The effects of this equivalent apodizing function will become more severe

as the width of the pixel increases or as the focal length of the lens decreases.

Taking into account that the pixel shape in the LCSLMs that we use is square and

with a pixel width W the actual equivalent apodizing function in the two

dimensions (x,y) is

( ) 





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


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f

Wx
sincy,x

λλ
τ (3-29)

At this point, we want to remark the difference existing with the case in

which no lens is addressed onto the pixelated SLM and the focusing of light is

produced by a refractive lens placed just behind the SLM. In this case the

amplitude of the wave front behind the lens is expressed by
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Note that now the phase across the pixel dimension is not constant. As we

did in Eq. (3-24) the amplitude distribution in the focal plane of the lens is given

by Fresnel diffraction and can be obtained by convolving Eq. (3-30) with a

quadratic diverging phase function given by Z(x). Apart from a constant

multiplicative factor, the result is
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where the effect of the pixel in the amplitude distribution in the focal plane is the

product with the sinc(Wx/λf) function. The effect of the pixel is clearly different in

this case with respect to the case when a lens is displayed onto the SLM (Eqs. (3-

26) and (3-27)), in which we obtain in the focal plane a convolution operation

with the rectangle function that expresses the shape and width of the pixel. In the

case of the encoded lens in the SLM this effect can be considered as an

apodization on the plane of the lens.
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3.5.2 Calibration method with annular masks

In the present Section we demonstrate an experimental method to obtain

direct measurements for the amplitude transmission profile along the aperture of

the lens. These experimental data can be used to calculate the function that

compensates the actual non-uniform amplitude transmission profile along the

aperture of the lens.

Let us introduce the theory in which the experimental method that we

present in this Section is based. We know that the amplitude U(ρ=0) in the center

of the focal plane (ρ is the radial coordinate in the focal plane) of an optical

system without aberrations is given by

( ) ∫∫==
R

rdrd),r(0U φφτρ      (3-32)

where (r,φ) are the polar coordinates in the pupil plane and τ(r,φ) is the amplitude

transmission of the pupil. The integral is extended to the pupil region R. In the

case of radial symmetry, the above expression becomes

( ) ∫==
R

rdr)r(20U τπρ   (3-33)

Figure 3.14. Annular ring with central radius rR , where we can see the encoded lens.

Let us consider that we display a lens function whose clear aperture is

given by a ring with central radius rR. We illustrate in Figure 3.14 an annular ring

of central radius rR where the encoded lens can be distinguished through the clear

rR
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area of the ring. We take the annular ring with a width small enough so that τ(r) is

almost constant inside of the area A of the ring. Then from Eq. (3-33) we obtain

( ) )r(A0U Rτρ ==            (3-34)

Experimentally, the magnitude that we can measure is the intensity. The

modulus of the amplitude in the center of the focal plane U(ρ=0) is given by the

square root of the intensity I(ρ=0). Thus, taking into account Eq. (3-34) we can

calculate the value of τ(rR) as follows

A

)0(I
)r( R

=
=

ρ
τ  (3-35)

If the apodizing effect were not present we would have that τ(rR)=1

independently of the central radius rR of the ring. The annular rings would yield

focused intensities that are proportional to the square of the areas of the annular

rings. But with the apodizing effect these intensities will be proportional to the

product of the square of the area of the annular rings by the square of the

apodizing function. Then, by measuring the intensities produced by annular rings

centered in different radius rR, we are able to deduce the inherent apodization

function τ(rR) along the aperture of the lens.

The basis for the experimental method we propose is to program annular

rings having different central radii and areas onto the lens function. Then, we

measure the focused intensity from each ring. According to Eq. (3-35), from these

intensity measurements we can extract the value for the equivalent transmission

τ(rR) along the aperture of the pupil. For these experiments, the quadratic phase

function is encoded inside the area corresponding to the transmissive part of the

annular ring while a constant phase is encoded for the remaining region of the

lens. We note that the annular mask has a rotational symmetry, while the

theoretical apodizing function obtained in Eq. (3-29) has a cartesian symmetry

due to the shape of the pixel in the LCSLM. Then, the results obtained with the

annular masks have to be considered as the angular average along the region of

the LCSLM in the clear area of the ring.
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In what follows we describe the experimental set-up that we use to

generate the Fresnel lenses on the LCSLM, and in general any phase encoded

DOE. We show the set-up in Figure 3.15, where we can observe that it is very

similar to the set-up used in Section 3.3, Figure 3.6, to generate the programmable

apodizers on the LCSLM working in the amplitude-only regime. In the present

case we are interested in displaying a phase encoded element, the Fresnel lens,

thus, we need the LCLSM working in the phase-only regime. Another difference

with respect to Figure 3.6 is that we do not need an external lens to form the

image as the lens is displayed on the LCSLM itself.

Optical
System

LCSLM
P1Spatial

filter

CCD
camera

Laser

WP2 MO

f = 1m dMO

Figure 3.15. Scheme of the optical set-up for diffractive optics elements in the
LCSLM in the phase-only regime.

In both papers [PAPER D, PAPER E] we have measured the inherent

equivalent apodizing effect. In [PAPER E] we use a shorter wavelength and the

lens has a larger aperture than in [PAPER D]. This makes that the inherent

equivalent apodizing effect is stronger and clearer on the results presented in

[PAPER E] than on the results in [PAPER D]. In this Section we reproduce the

results of [PAPER E]. We use light from an Argon laser with a wavelength of 458

nm. The beam is filtered, expanded and collimated. Then it is sent through the

LCSLM inserted between the polarizers and the wave plates. We need the

LCSLM working in the phase-only regime. To achieve this we take advantage of

the configuration that we named as the “general configuration” in Table 2.3. The

phase retardance values are 125 and 95 degrees for the input (WP1) and the output

(WP2) wave plates respectively. We remember that the values for the angles of

the transmission axis of the input polarizer (P1) and the slow axis of the input
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wave plate (WP1) is 26 deg and 0 deg respectively with respect to the director

axis in the input face of the LCSLM. For the transmission axis of the output

polarizer (P2) and the slow axis of the output wave plate (WP2) the angles are -16

deg and 11 deg respectively with respect to the director axis in the output face of

the LCSLM. This configuration provides excellent values for phase-only

performance as we discussed in Section 2.3.2. In Figure 2.30 we plotted the

intensity and the phase-shift curves for this configuration and in Figure 2.31 we

showed the complex amplitude transmittance in the complex plane. In order to

display phase-encoded elements in the LCSLM working in the phase-only regime

we have generated a calibration phase versus gray level look-up table using the

phase-shift curve in Figure 2.30(b).

The spot focused by the lens encoded on the LCSLM is magnified, Figure

3.15, with a microscope objective and imaged onto a CCD camera. The

microscope objective (MO) also serves as a spatial filter to eliminate higher-order

diffracted images caused by the pixel structure of the SLM. To examine various

defocus planes, we fix the distance dMO between the microscope objective and the

detector and we translate the entire objective-detector system. The Fresnel lens

implemented in the SLM has a focal length of 1 meter and a radius of 204 pixels,

i.e. 8.4252 mm. The LCSLM we use has square pixels with a side size W of 34

µm and separated by a distance D of 41.3 µm.

We have obtained measurements with 12 annular masks. The central

radius rR of the different masks has been designed in order to be able to sample

the equivalent amplitude transmission profile along the whole aperture of the lens.

In Figure 3.16 we show the equivalent amplitude distribution points τ(rR) (circles)

calculated from the experimental intensity measurements obtained with the 12

annular masks. The X-axis corresponds to the radial distance in millimeters r’ in

the lens plane. As expected, the amplitude in the center of the focal plane

decreases as the radius increases, indicative of the apodizing effect. The

experimental data are fitted to a polynomial function that we show in Figure 3.16.
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The polynomial function τP(r) that fits the equivalent amplitude transmission of

the lens is given by

642 04.027.089.01)( rrrrP −+−=τ   (3-36)

where we have preferred to express the polynomial function as a function of the

normalized radial coordinate r in the pupil plane.
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Figure 3.16. Amplitude distribution along the radius of the lens r’ (in mm). The
experimental data measured with the annular masks is compared with the theoretical
simulation provided by the theory for the inherent equivalent apodizing effect. The
experimental data are fitted with a polynomial function.

In order to compare these experimental results with the theoretically

expected equivalent amplitude profile, we evaluated Eq. (3-29) with the

dimensions of the pixels. The two dimensional pupil function is given by

( ) ( ) ( )y074.0sincx074.0sincy,x =τ  (3-37)

where x and y are expressed in millimeters. The angular average τ(r) of this curve

is numerically calculated and plotted in Figure 3.16. Actually, the angular average

function τ(r) is practically equal to the one dimensional amplitude profile along

the X (or the Y) cartesian axis.

We note that the experimentally measured intensity is slightly lower than

the theoretical values expected by the inherent apodizing effect. The difference

between experiment and theory is due to the presence of aberrations in the system.
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The effect of the aberrations is to send light to the sidelobes, thus producing an

intensity value in the maximum lower than expected. Despite of the aberrations

these measurements confirm the existence of an equivalent non-uniform

transmission pupil that will produce an apodization of the point spread function

(PSF) of the focused spot.

As we commented in Section 3.3, we have verified that the LCSLM we are

using in this thesis does not introduce aberrations in the wave front. Nevertheless,

the beam traverses a big number of optical elements (lenses, polarizers, wave

plates) which in our case are responsible for the additional decrease in the

equivalent amplitude profile.

3.5.3 Compensation method

Along the previous Section we have measured and calculated the

equivalent non-uniform amplitude transmission along the lens displayed on the

LCSLM. The next step is to provide some method to compensate for this

amplitude profile. Normally we want to remove the apodizing effect on the

response of the pixelated lens so that it can provide the same performance as a

refractive lens of equal focal length and aperture. To compensate for this

apodizing effect, one should use a filter with an amplitude transmission τI(r) equal

to the inverse function of the equivalent amplitude profile described by the

polynomial τP(r) in Eq. (3-36). The amplitude transmission of the inverse of this

polynomial is displayed with the lens using the procedure developed in Section

3.4. This procedure makes possible to encode amplitude and phase information

onto a LCSLM working in the phase-only regime. In this way the apodizing effect

due to the pixelated structure of the LCSLM is compensated.

The inverse function τI(u,v) is calculated applying the condition

k)r()r( IP =ττ  where k is a constant. We are working with passive devices, i.e.

they do not add energy to the wave front, therefore 1)r(P ≤τ  and 1)r(I ≤τ .
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Then, 1k ≤  and in order to maximize the transmission of the inverse function

τI(r) we set k equal to the minimum transmission value of )r(Pτ  in Eq. (3-36).

In Section 3.2 we showed the theoretical results expected for the axial and

for the transverse response in the BIP for the clear aperture. These are the results

expected if no inherent equivalent apodizing effect is present along the aperture of

the lens on the LCSLM. We want to compare the numerical results when the

inherent equivalent amplitude is considered and when it is not considered. In

Figure 3.17 we show, respectively in curve a and in curve b, the numerical axial

responses due to the clear aperture and to the equivalent amplitude function

described by )r(Pτ  in Eq. (3-36). The axial responses are plotted as a function of

the coordinate W20, and the intensity values are normalized to the unit for both

curves a and b, i.e. normalization N2 explained in Section 3.2. We observe that

the axial response for the function )r(Pτ  is axially apodized, and we can clearly

see that the first minimum is not zero as in the clear aperture.
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Figure 3.17. Numerically calculated intensity as a function of normalized axial
coordinate W20 for the amplitude pupil functions: a, uniform transmission; b,
equivalent amplitude function (τP(r) = 1 - 0.89r2 + 0.27r4 – 0.04r6).

a b
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In Table 3.7 we have summarized the values for the positions of the axial

maxima and minima for the clear aperture and for the equivalent amplitude

function. We also provide the value for the intensity according to the two possible

normalizations explained in Section 3.2. We can see that the equivalent amplitude

function has not shifted significantly the positions of the maxima and minima with

respect to the clear aperture. The main difference is that the intensity value at the

minima is not null for the function )r(Pτ . We can also observe that the function

)r(Pτ  diminishes the intensity in the focus to 0.41 times the value provided by

the clear aperture.

Clear aperture Equiv. amplitude

Plane W20
Intensity

  N1         N2
W20

Intensity
  N1         N2

BIP 0 1 1 0 0.41 1

1rst min. 1 0 0 1.05 0.01 0.025

1rst max. 1.45 0.047 0.047 1.45 0.02 0.053

2nd min. 2 0 0 2.02 0.0001 0.0003

Table 3.7. Characteristic parameters for the theoretical axial response for the clear
aperture and for the equivalent amplitude profile τP(r).

We display in Figure 3.18 the transverse responses in the BIP as a function

of the normalized transverse coordinate ρ for the two functions: the clear aperture

in curve a, and the equivalent amplitude function in curve b. As expected, the

function )r(Pτ  provides a transverse apodization. We can observe that the

sidelobes have been removed and the width of the central maxima is increased

with respect to the clear aperture response.

In Table 3.8 we provide the values for the positions and the intensity

values at the maxima and minima points in the BIP. As we can see in Figure 3.18

curve b, the height of the sidelobe (first maximum) is approximately zero. We

consider the width of the central maximum measured from the center to the first

transverse minimum. The principal maximum due to )r(Pτ  has increased its

width a 22% with respect to the clear aperture.



3  P R O G R A M M A B L E  A P O D I Z E R S  A N D  F R E S N E L  L E N S E S- 126 -

0

0,2

0,4

0,6

0,8

1

0 0,25 0,5 0,75 1 1,25 1,5

Normalized radial coordinate ρ ρ 

In
te

n
si

ty

Figure 3.18. Theoretically calculated intensity as a function of normalized transverse
coordinate ρ in the best image plane (BIP) for the amplitude pupil functions: a,
uniform transmission; b, equivalent amplitude function (τP(r) = 1 - 0.89r2 + 0.27r4 –
0.04r6).

Clear aperture Equiv. amplitude

Plane ρ Intensity
  N1         N2 ρ Intensity

  N1         N2
Center 0 1 1 0 0.41 1

1rst min. 0.60 0 0 0.73 3E-5 8E-5

1rst max. 0.81 0.018 0.018 0.9 0.002 0.005

Table 3.8. Comparison between the theoretical transverse response in the best image
plane (BIP) for the clear aperture and for the equivalent amplitude profile τP(r).

We have captured experimental images of the intensity distribution at

some axial positions focused by the Fresnel lens displayed on the LCSLM. We

use the set-up shown in Figure 3.15 and, as in Section 3.5.2, the Fresnel lens has a

focal length of 1 meter and a radius of 204 pixels. We use Eq. (3-15) to calculate

the numerical aperture for the optical system obtaining NA = 0.0084. As in

Section 3.3 we deal with a low numerical aperture optical system. In order to scale

the numerical normalized coordinates to the lab coordinates we calculate the axial

and the transverse scale factors, given by Eq. (3-13) and Eq. (3-14), that is,

a b
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Ø Axial scale factor (in mm):   
( )

mm 13
NA

mm2
2

=
λ

Ø Transverse scale factor (in µm):   
( )

m 54
NA

m
µ

µλ =

We have implemented the Fresnel lens in two different ways. On one

hand, we display the quadratic phase directly on the LCSLM. This is what we

label as the encoded lens. Obviously, the aperture of the encoded lens exhibits the

equivalent amplitude profile )r(Pτ  already measured. On the other hand, we

encode the inverse function )r(Iτ  onto the quadratic phase, using the procedure

in Section 3.4, in order to compensate for the inherent equivalent apodizing effect.

This is what we call the compensated lens. In Figure 3.19 we show the

experimental images obtained with the encoded lens and with the compensated

lens. These images are saturated in order to make the sidelobes visible.

      

Figure 3.19. Experimental images of the intensity of the focused spot. (a)
Combination of saturated images in the BIP (upper half, encoded lens; lower half,
compensated lens). (b) and (c) are the first axial minimum and the first secondary axial
maximum planes respectively. Upper row, (b1) and (c1), for the encoded lens, and
lower row, (b2) and (c2), for the compensated lens.

The BIP is shown in Figure 3.19(a), where we have combined the focused

spot from the encoded lens (upper half) and the compensated lens (lower half).

We can see in the encoded lens (upper half) the shift in the position of the first

transverse minimum and the lower intensity of the first secondary maximum.

These features indicate the existence of an apodizing effect on the transverse

50 µm

z = 0 mm z = 13 mm z = 19 mm

(b1) (c1)

(c2)(b2)

(a)

50 µm 50 µm

50 µm 50 µm
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response of an encoded lens in the LCSLM. We provide on the figure the actual

lab scale in microns for the distances in the image.

The images in Figure 3.19(b) and Figure 3.19(c) show respectively the

first axial minimum and the first secondary maximum for the encoded lens (upper

row) and for the compensated lens (lower row). These planes are located at the

axial distances predicted numerically.

We note that the images in Figure 3.19 are not totally symmetric probably

due to the existence of aberrations produced by the different elements in the set-up

(polarizers, wave plates, lenses) as we commented in Section 3.5.2. Actually, the

modulator that we are using is almost free of aberrations and allows us to obtain

diffraction-limited images.

In Table 3.9 we compare the numerically predicted and the experimentally

measured values for the intensity at the different axial positions shown in Figure

3.19. On one hand, the numerical results for the clear aperture have to be

compared with the experimental results obtained with the compensated lens. On

the other hand, the numerical results for the equivalent amplitude function )r(Pτ

have to be compared with the experimental results using the directly encoded lens.

There is a good agreement between the numerical and the experimental intensity

values in the two cases. We remark that we have obtained the expected non-null

value at the first axial minimum for the encoded lens.

Clear aperture (compensated lens) Equiv. amplit. (encoded lens)

Plane z
(mm)

Intensity
N2 (theory)

Intensity
N2 (exper.)

Intensity
N2 (theory)

Intensity
N2 (exper.)

BIP 0 1 1 1 1

1rst min. 13 0 0 0.03 0.03

1rst max. 19 0.05 0.09 0.05 0.09

Table 3.9. Comparison between the numerical and the experimental results for the
intensity values at the characteristic axial planes for the clear aperture and for the
equivalent amplitude pupil function τP(r).

We show in Table 3.10 the numerical and the experimental results for the

transverse response at the BIP for the clear aperture (compensated lens). In Table
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3.11 these results are summarised for the equivalent amplitude function )r(Pτ

(directly encoded lens). The experimental distance ρ’ for the radial positions in

these tables is obtained as the average of a number of measurements taken at

different angular positions in the image of the BIP. A reasonable estimation of the

error in the determination of the radial positions is about ±2 µm. We could not

measure the position for the first transverse maximum for the encoded lens, Table

3.11, because the intensity level is very close to the background.

In Table 3.10 and in Table 3.11 we can see the very good agreement

between the numerical and the experimental values. The predicted positions

coincide very well with the experimental measurements. It is especially interesting

to note that the first minimum for the compensated lens is at the position predicted

for a clear aperture pupil. This fact confirms that using the compensation

procedure proposed in [PAPER D], that we have explained in this Section, we are

able to compensate for the inherent equivalent apodizing effect exhibited by the

pixelated lens.

Clear aperture (compensated lens)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 32.6 0 33.2 0

1rst max. 44.0 0.02 41.2 0.03

Table 3.10. Comparison between the numerical and the experimental results for the
intensity values at the characteristic transverse positions at the BIP for the clear
aperture.

Equivalent amplitude (encoded lens)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 39.4 8E-5 39.9 0

1rst max. 48.9 0.005 --- ---

Table 3.11. Comparison between the numerical and the experimental results for the
intensity values at the characteristic transverse positions at the BIP for the equivalent
amplitude pupil function τP(r).
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3.6 Focusing apodizers onto a LCSLM in phase-only
regime

We commented in the first paragraph of Section 3.4 that a very powerful

and attractive property of diffractive optics elements (DOEs) is the possibility to

combine different functions in the same DOE. Our goal is to combine the PSF

transformation property of non-uniform transmission filters with the focusing

property of lenses. This new device is what we called in Section 3.4 the

programmable focusing apodizer, whose focal length and action on the PSF of the

system can both be changed in real time. To generate this combined element on

the LCSLM we have to overcome two limitations that have been the focus of

Section 3.4 and Section 3.5. In a recent paper [PAPER E] we demonstrated

experimentally that we are able to combine non-uniform amplitude transmission

filters together with a Fresnel lens onto the LCSLM working in the phase-only

regime. In this Section we will introduce and complement these results.

We have selected three filters with very different features in the BIP and

along the axis. We want to show the wide range of programmable focusing

apodizers that can be implemented using the technique we propose. These three

amplitude filters were introduced in Section 3.2. They are the axial

hyperresolving, the transversal apodizing and the transversal hyperresolving

filters, whose profiles we showed in Figure 3.2 as a function of the normalized

radial coordinate r in the pupil plane.

We note that the transmission in the pupil is modified by the inherent

equivalent apodizing effect, treated in Section 3.5. In this Section the Fresnel lens

that we implement has the same values as in previous Section 3.5.2 and Section

3.5.3, i.e. 1 meter of focal length and 204 pixels of radius. We note that the

experimental set-up to produce the programmable focusing apodizers is the one

we showed in Figure 3.15. Therefore, the results presented in Section 3.5.2 for the

equivalent amplitude profile across the aperture of the lens remain valid and they

are described by the function )r(Pτ  in Eq. (3-36). The equivalent amplitude

function )r(Pτ  modifies the amplitude profile of any amplitude filter that is
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encoded with the lens onto the LCSLM. The resultant amplitude transmission on

the exit pupil for the programmable focusing apodizers is given by the product of

the desired amplitude filter and the function )r(Pτ . In Figure 3.20 we show the

modified amplitude profile on the exit pupil for the three filters.
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Figure 3.20. Amplitude pupil filter functions modified by the equivalent amplitude
function function τP(r) = 1 - 0.89r2 + 0.27r4 – 0.04r6. a, axial hyperresolving filter (t(r)
= (1 - 4r2 + 4r2) * τP(r)); b, transverse apodizing filter (t(r) = (1 - r2) * τP(r)); c,
transverse hyperresolving filter (t(r) = r2 * τP(r)).

Thus, we intend to produce the filters described in Figure 3.2, but due to

the inherent equivalent apodizing effect, we obtain the filters shown in Figure

3.20. Note that the transmission of the transversal apodizing filter is practically

equal in both figures, while the profile for the transversal hyperresolving filter is

greatly distorted with respect to the desired case. The axial multifocusing filter is

also distorted. Therefore, to obtain the desired amplitude transmission on the exit

pupil we have to compensate for the equivalent amplitude function )r(Pτ , as we

did in Section 3.5.3. For each filter, we multiply the corresponding amplitude

profile by the function )r(Iτ , which is the inverse of )r(Pτ . The resultant

amplitude profile is a compensated version of the filter where the inherent

equivalent apodizing effect has been removed. To implement the combination of

a
b

c
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an amplitude filter and the Fresnel lens onto the LCSLM working in the phase-

only regime we use the encoding procedure developed in Section 3.4.

We want to show the distortion produced by the inherent equivalent

apodizing effect, given by the function )r(Pτ , on the response for the

programmable focusing apodizers. When this distortion is important, the

compensation for the inherent apodizing effect is totally justified. To show this we

provide the results obtained for the transverse apodizing and for the transverse

hyperresolving filters in the BIP.
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Figure 3.21. Theoretically calculated intensity as a function of normalized transverse
coordinate ρ in the best image plane (BIP) for the amplitude pupil functions: a,
transverse apodizing filter (t(r) = 1 - r2); b, transverse hyperresolving filter (t(r) = r2); c,
modified transverse apodizing filter (t(r) = (1 - r2) * τP(r)); d, modified transverse
hyperresolving filter (t(r) = r2 * τP(r)).

In Figure 3.21 we show the numerically calculated transverse responses in

the BIP as a function of the normalized radial coordinate ρ. Curves a and c are the

responses for the transverse apodizing filter when there is no inherent apodizing

effect in the pupil and when this effect, described by )r(Pτ , exists. Similarly,

curves b and d are the responses for the transverse hyperresolving filter when

there is no inherent apodizing effect in the pupil and when this effect, described

a

b

c

d
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by )r(Pτ , exists. Actually, curves a and b have been previously reported in

Figure 3.5 as curves d and e respectively. The intensity values are normalized to

the peak value corresponding to the clear aperture, i.e. normalization N1. The

most evident point to remark is that when no inherent apodizing effect exists,

curves a and b, the peak intensities are equal for both filters. When the inherent

equivalent apodizing effect described by )r(Pτ  is present, the filter (1-r2) gives a

peak that is twice more intense than the maximum given by the filter r2.

t(r) = 1 - r2 t(r) = (1 - r2) *ττP(r)

Plane ρ Intensity
  N1         N2

ρ Intensity
  N1         N2

Center 0 0.25 1 0 0.14 1

1rst min. 0.81 0 0 0.95 3E-7 2E-6

1rst max. 1.02 0.001 0.004 1.13 1E-4 8E-4

Table 3.12. Comparison between the theoretical transverse response in the best image
plane (BIP) for the transverse apodizing filter and for the transverse apodizing filter
modified by the equivalent amplitude function τP(r).

t(r) = r2 t(r) = r2 *ττP(r)

Plane ρ Intensity
  N1         N2 ρ Intensity

  N1         N2
Center 0 0.25 1 0 0.07 1

1rst min. 0.48 5E-5 2E-4 0.53 1E-5 2E-4

1rst max. 0.72 0.02 0.09 0.78 0.005 0.07

Table 3.13. Comparison between the theoretical transverse response in the best image
plane (BIP) for the transverse hyperresolving filter and for the transverse
hyperresolving filter modified by the equivalent amplitude function τP(r).

In Table 3.12 and in Table 3.13 we provide further details for the

theoretical response for the filters shown in Figure 3.21. In Table 3.12 we analyse

the transverse apodizing filter, and in Table 3.13 the results for the transverse

hyperresolving filter are given. In Table 3.12 we observe the apodization of the

response when there is inherent equivalent apodizing effect on the pupil: the width

of the principal maximum is increased to a value of ρ=0.95, and the height of the

first sidelobe has decreased in one order of magnitude. The distortion caused by

the inherent equivalent apodizing effect can also be observed in Table 3.13: the
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width of the main maximum is increased by 10%. This width is measured from

the center to the first transverse minimum.

In Figure 3.22 we show the experimental images obtained when we

directly send the programmable focusing apodizers to the LCSLM and do not

compensate for the inherent apodizing effect. Figure 3.22(a) corresponds to the

transverse apodizing filter while Figure 3.22(b) corresponds to the transverse

hyperresolving filter. In the experimentally obtained images we can still see the

apodizing and hyperresolving effects. The central maximum is wider for the

apodizing filter than for the hyperresolving filter. Nevertheless, the inherent

equivalent apodizing effect is adding some apodization to the PSF of both filters.

Measurements carried out on these experimental images show that as predicted

the intensity distribution is distorted by the inherent equivalent apodizing effect,

described by the function )r(Pτ . The most significant result in this direction is

the relation between the peak intensities measured on the two images. The

experimental intensity values in the maxima for the apodizing and the

hyperresolving filters are 190 and 95 respectively as we show in Figure 3.22.

These intensity values are measured in gray levels of the frame grabber. The ratio

between them is about 0.5, which coincides with the numerical ratio between the

maxima for the curves c and d in Figure 3.21, corresponding respectively to the

transverse apodizing and the transverse hyperresolving filters modified by )r(Pτ .

                

Figure 3.22. Experimental images of the intensity of the focused spot when the
inherent apodizing effect is not compensated. (a) transversal apodizing filter; (b)
transversal hyperresolving filter.

(a) (b)

190 95

50 µm 50 µm



3 . 6  F o c u s i n g  a p o d i z e r s  o n t o  a  L C S L M  i n  p h a s e - o n l y
r e g i m e

- 135 -

We have performed distance and intensity measurements of the

characteristic points on the two images in Figure 3.22. In Table 3.14 for the

apodizing filter and in Table 3.15 for the hyperresolving filter, we compare the

experimental measurements with the numerically predicted values. The distance

measurements are expressed in microns. The predicted values ρ’ in microns are

calculated by scaling the normalized ρ values given in Tables 3.12 and 3.13 to the

lab coordinates. In both tables, Tables 3.14 and 3.15, there is a very good

agreement between the experimental and the numerical results. We remark the

excellent accordance between the experimental and the predicted radial positions.

This accordance confirms the shift in the positions of the first minimum and the

first secondary maximum due to the inherent equivalent apodizing effect. The first

secondary maximum for the transverse apodizing filter, Table 3.14, can not be

measured because it has a very low intensity value close to the background.

t(r) = (1 - r2) (no compensation)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 51.6 2E-6 52.3 0

1rst max. 61.1 8E-4 --- ---

Table 3.14. Comparison between the numerical and the experimental results for the
intensity values at the characteristic positions at the BIP for the transverse apodizing
filter (no compensation).

t(r) = r2 (no compensation)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 28.5 2E-4 28.8 0

1rst max. 42.1 0.07 40.8 0.09

Table 3.15. Comparison between the numerical and the experimental results for the
intensity values at the characteristic positions at the BIP for the transverse
hyperresolving filter (no compensation).

We have verified experimentally that the response for the two amplitude

filters is distorted because of the inherent apodizing effect. Now, we introduce in

the programmable focusing apodizers the compensation given by the inverse

function )r(Iτ . These compensated programmable focusing apodizers produce
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the experimental intensity distribution in the BIP that we show in Figure 3.23.

Figure 3.23 (a) corresponds to the transverse apodizing filter while Figure 3.23 (b)

corresponds to the transverse hyperresolving filter. We can easily visualize the

apodizing and hyperresolving effects produced by these filters in the BIP.

            

Figure 3.23. Experimental images of the intensity of the focused spot when the
inherent apodizing effect has been compensated. (a) transversal apodizing filter; (b)
transversal hyperresolving filter.

t(r) = 1 - r2 (compensated)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 44.0 0 49.6 0

1rst max. 55.4 0.004 --- ---

Table 3.16. Comparison between the numerical and the experimental results for the
intensity values at the characteristic positions at the BIP for the transverse apodizing
filter (compensated).

t(r) = r2 (compensated)

Position ρ’ (µm)
(theory)

Intensity
N2 (theory)

ρ’ (µm)
(exper.)

Intensity
N2 (exper.)

Center 0 1 0 1

1rst min. 26.1 2E-4 27.9 0

1rst max. 39.1 0.09 39.4 0.11

Table 3.17. Comparison between the numerical and the experimental results for the
intensity values at the characteristic positions at the BIP for the transverse
hyperresolving filter (compensated).

Our goal is to verify that we have removed the distortion caused by the

inherent apodizing effect. The peak values of intensity measured in Figure 3.23(a)

and (b) are 197 and 186 respectively. Therefore, they are practically equal and this

197 186

(a) (b) 50 µm50 µm
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result is in a clearly good agreement with the predicted results for the case when

no inherent apodizing effect exists.

In Tables 3.16 and 3.17 we compare experimental measurements carried

out on the images in Figure 3.23 with the numerically predicted values provided

in Tables 3.12 and 3.13. In both tables, Tables 3.16 and 3.17, we find a very good

agreement between the experimental and the predicted values. It is especially

important the confirmation that the radial maxima and minima occur at the

predicted positions. Therefore, we have verified that when the inherent apodizing

effect is compensated the desired optical response is recovered.

Finally, we demonstrate that we are able to generate the axial

hyperresolving filter encoded onto the Fresnel lens. We compensate for the

inherent apodizing effect in order to generate the numerically predicted axial

response shown in Figure 3.4 curve (c), in which we can see the characteristic

multifoci behavior of this filter: it produces very high secondary maxima along

the axis.
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Figure 3.24. Experimental images of the intensity at various defocus planes for the
axial hyperresolving filter compensated for the inherent equivalent apodizing effect. In
the first row the experimental images are shown, in the second row the corresponding
numerically calculated transverse responses.
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In Figure 3.24 we show the experimental images captured at different

defocused planes. These images have been digitally saturated to show the

sidelobes in the transverse response. The numerically calculated transverse

responses at these planes are shown in the second row. The intensity values in the

numerical graphs are normalized with respect to the peak value for the clear

aperture (normalization N1). The X-axis in the numerical graphs is scaled to the

radial lab coordinate ρ’ in millimeters. The origin of coordinates (ρ’ = 0 µm)

corresponds to the center of the experimental images in the first row. The planes

(a) and (c) show the principal maximum and the first secondary maximum, and

the planes (b) and (d) show the first and the second axial minimum. These planes

coincide with the axial position predicted numerically, that is indicated in

millimeters underneath each figure.

In Figure 3.24(b) and Figure 3.24(d), which correspond to the positions of

the minima along the axis, the transverse responses present a ring. The positions

for these rings, that can be determined using the length scale on the figure, agree

very well with the numerical prediction (second row). In Figure 3.24(a) and

Figure 3.24(c), we show the values of the gray levels for the peak intensity for the

best image plane (200) and for the first secondary maximum (109). The

experimental ratio of the intensity of the first secondary maxima with respect to

the peak intensity in the best image plane is 0.55, which agrees with the

theoretical ratio (0.56) given in Table 3.1. We can also observe this ratio looking

at the intensity values for the numerically calculated figures in the second row in

Figure 3.24.

Along this Section we have demonstrated the feasibility of combining

different functions in the same DOE. We have generated programmable focusing

apodizers which can modify the PSF and the focal length in real time. We have

verified that the agreement between the experiment and the numerical predictions

is excellent.
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4 CONCLUSIONS

In the first part of this thesis we have presented a new reverse-engineering

approach which provides accurate prediction of the optical transmission of the

TN-LCSLM. In the second part we have demonstrated the possibility of

generating programmable apodizers and programmable focusing apodizers with

the requested performance. Among the several results provided along the thesis

we emphasize the following:

Ø We have developed a simplified model to describe the molecular director

orientation n
r

 across the TN-LCSLM. The model includes the molecules near

either edge of the LCSLM that are unable to twist and tilt under an applied

voltage. This edge effect depends on the magnitude of the applied voltage. We

have calculated an analytical expression for the Jones matrix of the TN-

LCSLM according to the proposed model.

Ø We have characterized the voltage independent parameters of the TN-LCSLM

by means of a reverse-engineering approach.
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Ø We have demonstrated a technique to experimentally measure the

birefringences of both the central part and the edge layers of the TN-LCSLM

as a function of the applied voltage (gray scale levels).

Ø The proposed reverse-engineering approach confirms that in the field-off state

there is no edge effect. Nevertheless, we have confirmed that in the field-on

state the edge effect is very significant: the ratio between the maximum

birefringences for the edge layers and the central part, 2δmax/βmax, tell us that

the edge layers can represent a 22% of the total thickness of the LCSLM.

Ø We have demonstrated the capability of the approach to predict with a high

degree of accuracy the amplitude and phase modulations as a function of the

applied voltage (gray scale level). We have shown that the new approach

improves significantly the accuracy with respect to previous reverse-

engineering approaches.

Ø Using the new approach, we have proved that we can perform computer

searchs to calculate the optimum configuration of the polarizing elements in

front of and behind the TN-LCSLM leading to a desired modulation behavior

of the set-up. We have looked for polarization configurations leading to phase-

only modulation or amplitude-only modulation, which are interesting

configurations in a number of applications.

Ø A generalised architecture to generate and detect elliptically polarized light

has been proposed. It has been shown that adding wave plates to the optical

set-up (in front of and behind the TN-LCSLM) greatly improves the

modulation capabilities of the TN-LCSLM. We have also shown that the

concept of the average eigenvector to obtain phase-only modulation is a

particular case of the more general approach to generate and detect elliptically

polarized light that we have presented.

Ø We have proved that we can obtain amplitude-only and phase-only

modulations with thin LCDs by adding wave plates to the optical system and

by lowering the wavelength of the incident light.
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Ø We have analysed theoretically several possible actions that a non-uniform

transmission filter may perform on the PSF of an optical system: axial

apodization, axial hyperresolution, transverse apodization at the BIP, and

transverse hyperresolution at the BIP. The PSF for the clear aperture has also

been calculated, serving as a reference to classify the action of the different

filters.

Ø We report the use of TN-LCSLMs, in the amplitude-only regime, to display

non-uniform transmission filters, the so-called programmable apodizers. We

have displayed an axially apodizing filter, an axially hyperresolving filter, a

transverse apodizing filter, a transverse hyperresolving filter, and the uniform

transmission filter (clear aperture).

Ø The measurements done on the point-spread function (PSF) of the optical

system confirm the optimum performance of the programmable apodizers. By

means of the technique we propose it is very easy to implement any amplitude

filter. Moreover, the technique permits the rapid modification of the PSF of an

optical system.

Ø We have developed a method to encode complex amplitude information onto a

quadratic phase-encoded function. This method is both valid for high and for

low resolution media. We have used it to encode the amplitude filters onto the

Fresnel lens, and we call this new device programmable focusing apodizer.

Ø We have shown both theoretically and experimentally an apodizing effect

which is inherent to the encoding of a lens, or any other focusing element, in a

pixelated device, such as the TN-LCSLM. We have called this phenomenon

the inherent equivalent apodizing effect. This effect apodizes the PSF of an

optical system. We have obtained the same result both using an image

formation approach and a diffraction efficiency approach.

Ø From the diffraction efficiency approach, the equivalent non-uniform

amplitude profile across the exit pupil can be viewed as originated by the local

change in the diffraction efficiency across the aperture of the lens. This change



4  C O N C L U S I O N S- 142 -

in the diffraction efficiency is produced by the variation in the number of

pixels per period.

Ø We have proposed a method to measure and compensate for the inherent

equivalent apodizing effect. A non-uniform transmission filter that

compensates for the equivalent non-uniform transmission profile across the

exit pupil is encoded onto the lens. Experimental results have proved that the

inherent equivalent apodizing effect can be removed.

Ø We have demonstrated that a phase-only TN-LCSLM can be used to generate

the programmable focusing apodizer, i.e. the combination of a lens and a non-

uniform amplitude transmission filter in a single DOE. We have implemented

an axially hyperresolving filter, a transverse apodizing filter, a transverse

hyperresolving filter, and the uniform transmission filter (clear aperture).

Ø Experimental measurements of the PSF for the different programmable

focusing apodizers are in excellent agreement with the numerical predictions.

The technique permits the rapid modification of the PSF and/or the focal

length of an optical system.
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APPENDIX: PIXELATED PHASE-BLAZED

GRATING AND THE INHERENT EQUIVALENT

APODIZING EFFECT

In Section 3.5.1 we developed the theory for the inherent equivalent

apodizing effect based on the approach by Carcolé et al. We obtained Eq. (3-29),

which describes the equivalent amplitude profile along the aperture of a lens

displayed on a pixelated device, such as the LCSLM. In this Appendix we show

an alternative theoretical approach to study the inherent equivalent apodizing

effect. This theoretical approach deals with the concept of diffraction efficiency.

The diffraction efficiency is the fraction of the incident light that is distributed

into a certain diffraction order. This approach is not as general as the one given in

Section 3.5.1, however, it provides an intuitive explanation of the phenomenon of

the inherent equivalent apodizing effect.

We give the outline of this Appendix. First, we will develop the

expressions for the diffraction efficiency of a phase-blazed grating displayed on a

pixelated device. Then, we will see that a Fresnel lens can be considered as a

phase blazed grating with a spatially variable period. This fact enables us to obtain
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the expression for the local diffraction efficiency exhibited by the Fresnel lens

along its aperture. Actually, this local diffraction efficiency expression coincides

with the equivalent amplitude profile, Eq. (3-28), in Section 3.5.1. Through all the

Appendix we consider a one dimensional geometry. Finally, we will generalise

the results to the case of the two dimensional geometry.

In a LCSLM, not the whole pixel area is transmissive. A part of the pixel,

the dead area occupied by the electrode wires, is blocking the pass of light as we

showed in Figure 3.12. We have to take into account this dead area into the

theoretical development that follows. Our goal is to calculate the analytical

expressions for the diffraction efficiency of a phase-blazed grating displayed on

the LCSLM.

dead area
D W P

clear aperture

φ0

Phase
φ0

0

∆φ

φ0 < 2π

Figure A.1. Phase profile for a multilevel blazed grating displayed on a pixelated
device. In certain pixelated devices, as the LCSLMs, we note the existence of dead
areas that do not transmit the light.

In Figure A.1 we show the phase profile for a blazed grating with period P,

phase depth φ0, defined along a length L. We limit the phase depth φ0 to a

maximum value of 2π  radians. This simplification does not represent any loss of

generality because equal phase values (modulus 2π) produce the same effect. Note

in Figure A.1 the existence of dead areas in the pixels. Consequently, we

distinguish between the distance between pixels D and the width W of the clear

aperture of the pixel. The pixelated structure of the LCSLM samples the blazed

profile with a sampling period D. The sampling generates a quantization of the
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phase profile, with ∆φ being the value for the phase jump between consecutive

pixels. It is important to note, as we represent in Figure A.1, that along the clear

aperture width W of the pixel the phase is a constant, thus, the blazed grating has a

stepped phase profile. First, we calculate the analytical expression for the phase

profile illustrated in Figure A.1. Then, the diffraction efficiencies for the different

diffracted orders will be obtained as the Fourier transform of this analytical

expression.

Let us calculate the analytical expression for the phase profile. According

to the notation in Figure A.1, the phase-blazed profile has a slope P0φ , repeated

with a periodicity P , i.e.,

( )∑
+∞
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−⊗




















n

nPx
P
x

rectx
P

i δ
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with the usual definitions for the rectangle and for the delta functions [Goo96].

The complex exponential in expression (A-1) represents a linear phase with a

slope P0φ . This linear phase profile is limited to a period P by the rectangle

function, and it is periodically repeated with a periodicity P by the array of delta

functions.

Now, the blazed grating in expression (A-1) needs to be sampled with a

sampling period D, equal to the separation between the pixels. The sampled points

are then convolved by the clear aperture W of the pixel to obtain the stepped

profile shown in Figure A.1. This convolution leads to a constant phase value

along the width W for the clear aperture of the pixels. Thus, the expression for the

amplitude transmission ( )xt  (we use coherent illumination) for the blazed grating

is
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where we have taken into account the finite extent L for the grating. Using the

definition for the comb function

( )∑
+∞

−∞=

−=






k

kDx
D
x

comb δ (A-3)

we can express Eq. (A-2) in a more compact form, i.e.,
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We Fourier transform Eq. (A-4) where we apply the next typical pairs of

transforms,

( )PucombP
P
xcomb  ↔
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We also take into account the convolution theorem. As a result the amplitude

distribution ( )uT  in the Fourier plane is given by
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We proceed with the first convolution,
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We see that the shift in the sinc function is linearly related with the slope

P0φ  for the blazed profile. Using Eq. (A-7) and the explicit expression for the

functions comb(Pu) and comb(Du) we rewrite Eq. (A-6) as follows,
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The index n corresponds to the diffraction orders produced by the periodic

blazed profile. The height for these diffraction orders is given by the product with

the shifted sinc calculated in Eq. (A-7). Thus, only the orders contained inside of

the width, 2/P, of the principal maximum of the sinc have a significant height.

We see in Eq. (A-8) that the sampling produced by the pixel structure of

the LCSLM generates different replicas, labeled with the index k, of the

diffraction orders of the blazed grating. We can consider that there is no aliasing

between the different replicas, separated by a distance 1/D. This is correct because

the separation between replicas, 1/D, is larger than the distance, 2/P, where the

diffraction orders of the blazed grating have a significant height. This simplifies

the analysis because we can study independently each one of the replicas. In

principle we are just interested in the replica corresponding to the 0-order of the

pixelation, i.e. k=0,
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We observe that the height of the diffraction orders n produced by the

blazed grating is given by the product with the shifted sinc already commented

and the product with the function sinc(Wu). The diffraction orders n are then

convolved by the function sinc(Lu). This sinc function has a width equal to 2/L for

its principal maximum. In principle, this width is very small in comparison with

the separation 1/P between the different orders n. Thus, we can approximate the

sinc functions by delta functions using the identity

( ) ( )uLuLsinclim
L

δ=
∞→

  (A-10)

Thus, Eq. (A-10) can be simplified as
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Apart from common factors, the expression for the diffraction efficiency Tn (in

amplitude) for the n-th diffraction order of the blazed grating is given by,
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            (A-12)

The width of a period of the blazed profile can be expressed as P=pD,

where p is in general a real positive number. We note that the analytical

expression given in Eq. (A-4) is general enough to include the case when the

period of the blazed grating P is not a multiple number of pixels. With this

substitution, P=pD, we obtain a more convenient expression for the diffraction

efficiencies of the blazed grating,
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As we will see, for the purposes of this Appendix we are mainly interested

in the diffraction efficiency for the first order, n=1, for a blazed grating with a

phase depth πφ 20 = . As a result, we obtain

( ) 





=== D

W
p
1

sinc2T 01n πφ      (A-14)

In Figure A.2 we plot the values given by Eq. (A-14) as a function of the

number p of pixels per period. The values of W and D are the ones corresponding

to the LCSLM shown in Section 3.5. The ratio W/D is equal to 0.83. We can see

that the diffraction efficiency has a fast increase: for p = 3 pixels/period the

diffraction efficiency is already higher than 0.8. The diffraction efficiency tends to

a saturation behavior.
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Figure A.2. Diffraction efficiency (in amplitude) for the first diffraction order n=1 as
a function of the number of pixels per period p. We consider a blazed grating with a
phase depth of 2π radians. The values for W and D are the ones corresponding to the
LCSLM shown in Section 3.5, thus, W=0.83 D.

We note in Figure A.2 that for p = 1 the diffraction efficiency is higher

than zero. This result may look incorrect because for p = 1 no blazed grating

profile exists on the LCSLM. Let us analyse this particular case so that we can

fully understand Eq. (A-14). For p=1 the period of the grating is equal to the

separation between the pixels, i.e. P = D. Thus, the first diffraction order n=1 in

Eq. (A-14) is actually expressing the first diffraction order produced by the

pixelation. We can distinguish two different cases. When W<D we have a binary

amplitude grating on the LCSLM, composed of the dead areas and the clear

apertures of the pixels. In this case Eq. (A-14) expresses the light directed into the

first diffraction order of this binary amplitude grating. When W=D the LCSLM is

acting as a monopixel device and no light is diffracted. Thus, in this case the

diffraction efficiency for the order n=1 given by Eq. (A-14) is zero.

Till this point we have discussed the case of the phase-blazed grating

displayed on a pixelated device. Now we concentrate our attention on the case of

the Fresnel lenses encoded on a pixelated device, such as the LCSLM. For the

sake of simplicity we consider the one-dimensional case, i.e. a cylindrical lens. In

Figure A.3 we show the phase profile for a one-dimensional lens displayed on a

pixelated device.
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Figure A.3. Phase profile for a multilevel diffractive Fresnel lens.

In Figure A.3 we observe the stepped profile due to the pixelation. We also

observe that the phase values are restricted to a maximum of 2π radians.The

Fresnel lens can be viewed as a phase blazed grating with a spatially variable

period P and with a phase depth πφ 20 = .

In the blazed grating the diffraction orders are located on a plane parallel

to the plane of the grating. In the case of the Fresnel lens, the diffraction orders

are located along the symmetry axis perpendicular to the lens. We consider a

collimated beam of light incident perpendicular to the plane of the Fresnel lens.

The zero diffraction order n=0 for the pixelated Fresnel lens corresponds to the

light not deviated by the lens. The first order, n=1, corresponds to the light

focused at a distance f from the plane of the lens, where f is the focal length of the

lens. We note that as it is a cylindrical lens the focus of the lens is a line. The

remaining positive orders n correspond to the light focused into secondary foci

located at submultiple distances f/n along the optical axis. The negative orders -n

correspond to diverging light as if produced by a diverging lens with focal length

-f/n.

In this Appendix, as in Section 3.5, we are interested in the light directed

into the focus of the lens, i.e. diffraction order n=1. The diffraction efficiency for

the order n=1 and for a phase depth πφ 20 =  is given by Eq. (A-14). In the

Fresnel lens, the local number of pixels ( )xp  per period is not constant. Thus, the

diffraction efficiency across the lens is not a constant value. This locally varying

diffraction efficiency can be thought as an equivalent amplitude filter multiplying
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the Fresnel lens. Using Eq. (A-14), it is trivial to calculate the amplitude profile

( )xτ  across the aperture of the lens for this equivalent filter,

( ) ( ) 
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sincxτ   (A-15)

Now, we calculate the local number of pixels ( )xp  per period due to the

quadratic phase profile ( )xϕ  of the lens

( ) 2x
f

x
λ
π

ϕ =        (A-16)

where λ and f are respectively the wavelength of the incident light and the focal

length of the lens. The phase variation ∆ϕ across the length of a period P=pD is

given by
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Taking into account that each period presents a phase variation ϕ∆  equal

to the phase depth πφ 20 =  we can write,
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After some algebraic manipulations the simplified expression is

π
λ
π

2xpD2
f

=         (A-19)

And the resultant expression for the local number of pixels ( )xp  is expressed by

( )
xD

f
xp

λ=      (A-20)

Finally, we substitute Eq. (A-20) into Eq. (A-15) and we obtain the

expression for the equivalent amplitude transmission ( )xτ  across the aperture of

the lens
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Thus, following a different formalism we have obtained an identical

expression to Eq. (3-28) obtained in Section 3.5.1. With the approach developed

in this Appendix we have obtained a more intuitive explanation: the non-uniform

amplitude profile ( )xτ  can be viewed as originated by the local change in the

diffraction efficiency across the aperture of the lens. This change in the diffraction

efficiency is produced by the variation in the number of pixels ( )xp  per period. It

is important to note that the profile ( )xτ  is controlled by the clear aperture width

W instead of the distance between pixels D.

We note that in the theoretical development in Section 3.5.1 our goal was

to calculate the PSF for a pixelated lens. The resulting PSF was equal to the PSF

for a non-pixelated lens convolved by the function describing the shape of the

pixel. In this Appendix the strategy has been to calculate the local diffraction

efficiency ( )xτ  across the aperture of the lens. The PSF is then obtained by

Fourier transforming the function ( )xτ , which is limited by the finite extent L of

the lens. This leads to the same expression Eq. (3-27) as in Section 3.5.1.

The results presented in this Appendix can be extrapolated to two

dimensional lenses displayed on a pixelated device. The quadratic phase ( )yx,ϕ

for a two dimensional lens is described by

( ) ( )22, yx
f

yx +=
λ
π

ϕ      (A-22)

This 2D function can be expressed as a product of the separable functions

( ) ( ) ( )yxyx ϕϕϕ =,    (A-23)

where the separable functions are given by Eq. (A-16). Thus, the same arguments

applied to ( )xϕ  can now be applied to ( )yϕ  to obtain the expression for the

equivalent amplitude transmission ( )yτ  across the aperture of the lens. Taking
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into account that the pixel shape in the LCSLMs that we use is square and with a

pixel width W the actual equivalent apodizing function in the two dimensions (x,y)

is

( ) 
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which is equal to the expression in Eq. (3-29) in Section 3.5.1. This approach is

valid for rectangular pixels. In the general case when the pixel shape is not

rectangular we would use the formalism followed in Section 3.5.1.

Finally, we mention that the general expression that we have obtained for

the diffraction efficiency, Eq. (A-13), can be used as the starting point to analyse

other DOEs displayed on a pixelated device with more general phase profiles

( )xϕ .
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http://www.heptagon.fi/

[LCH@] Website for the Liquid Crystal Group in Hamburg with a lot of resources
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List of acronyms

Acronym                    Meaning                                                                     

AOSLM Acousto-optic spatial light modulator

BIP Best image plane

CCD Charge coupled device

CGH Computer-generated holograms

CRT Cathode ray tube

DMD Deformable mirror devices

DOE Diffractive optical element

DOF Depth of focus

DP Dichroic polymer

DVD Digital versatile disc

ECB Electrically controlled birefringence

EOSLM Electro-optic spatial light modulator

FPC Flexible printed circuit

FPD Flat panel display

GGOA Generalised geometrical-optics approximation

GSL Gray-scale level

HOE Holographic optical element

LC Liquid crystal

LCD Liquid crystal display

LCSLM Liquid crystal spatial light modulator

MOSLM Magneto-optic spatial light modulator

MQW Multiple quantum well
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Acronym                    Meaning                                                                     

PCB Printed circuit board

PSF Point-spread function

SLM Spatial light modulator

STN Supertwisted nematic

TFT Thin-film transistor

TN Twisted-nematic

TV Television

VGA Video graphics array


