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8
Appendixes

“To divide a cube into two other cubes, a fourth power or in

general any power whatever into two powers of the same de-

nomination above the second is impossible, and I have assuredly

found an admirable proof of this, but the margin is too narrow

to contain it.”

Pierre de Fermat, on the margin of his copy of Diophantus’

Arithmetica
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B
Electronic methods

B.1 Ab initio methods

It might be daring to state that the comprehension of the chemical phenom-

ena lies entirely on the understanding of the chemical bond. Nevertheless,

The Nature of the Chemical Bond, by Linus Pauling (1939), is one of the very

first published text books on theoretical chemistry, a book that still keeps

its validity today. Heitler and London introduced in 1927 the first theoret-

ical wave function of the ground state of H2, which included only covalent

contributions to the bond:

ΨHL( �x1, �x2) =
1
√

2
[ψA(�r1)ψB(�r2) + ψA(�r2)ψB(�r1)] × Θ(S1, S2) (B.1)

B–1
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where ψX(�r) is the atomic orbital centered on the atom X, �x = (�r, S) is

the collective spatial-spin coordinate, and Θ(S1, S2) is the normalized singlet

spin wave function. That idea would be later refined by Pauling, Slater and

van Vleck in 1931, who elaborated the Valence Bond (VB) theory, which

allowed the inclusion of ionic contributions to the bond. At the same time,

Hund and Mulliken developed a different approach to the chemical bond,

which would be known as Molecular Orbital (MO) theory. In contrast to the

VB theory, the N -electron wave function in MO theory is built up as an an-

tisymmetrized Slater determinant (or antisymmetrized linear combination):

ΨMO(N) =
1

√
N !

∣∣∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) . . . χn(1)

χ1(2) χ2(2) . . . χn(2)
...

...
. . .

...

χ1(N) χ2(N) . . . χn(N)

∣∣∣∣∣∣∣∣∣∣∣
(B.2)

where each function χ constitutes a molecular spin-orbital, expressed as a

normalized linear combination of the atomic orbitals, according to the linear

combination of atomic orbitals (LCAO-MO) approach. Note that the wave

function can be either constructed with one molecular orbital ΨMO, or a

linear combination of several other ΨMO.

When ΨMO(N) (Eq. B.2) is expanded, the resulting expression for the

wave function contains both the covalent and non-bonding ionic contribu-

tions to the chemical bond. Hence, for some time, it was believed that both

VB and MO approaches could give the same description of the electronic

structure, and the choice of one description or another was left to conve-

nience. However, when Roothaan introduced the concept of basis functions

(as a way to represent the atomic orbitals from which χn(N) is built), it

was found that ΨMO was easier to handle if it was written in terms of anti-

symmetrized products of orthonormal molecular orbitals.1 For that reason,

most of the theoretical methods developed in order to solve the electronic

Schrödinger equation are based on the MO theory rather than on the VB

theory.



B.1. Ab initio methods B–3

The resolution of the electronic Schrödinger equation based on the MO

theory procedure is as follows: given a finite basis set, the coefficients of the

molecular orbital expansion are determined in order to obtain the minimum

electronic energy from ΨMO. Besides, according to the variational theorem,

the energy thus obtained is as close as possible, but aboveto respect the

exact solution. Depending on the basis set size and the number of spin-

spatial configurations included in the molecular orbital expansion, a plethora

of hyerarchic quantum chemical methods have been developed since the early

1930s, known as ab initio methods or molecular orbital approach methods.

B.1.1 The Hartree-Fock approach

The Hartree-Fock (HF) approximation constitutes the simplest of the possi-

ble models that we can construct within the MO theory. Within a finite basis

set, the N -electron HF wave function is built up with one single configuration

ΨMO(Eq. B.2). After the BO approximation is summoned, the nuclear kinetic

energy operator and nucleus-nucleus potential energy operator are ommitted

from the molecular Hamiltonian, and the resulting Hamiltonian can be fac-

torized into one term contaning only the one-electron operators and a second

term which consists on the bielectronic electron-electron repulsion:

Ĥ =

N∑
i=1

ĥ(i) +

N∑
i<j

1

rij
(B.3)

where ĥ(i) contains the kinetic energy of the electron i and the attractive

potential energy created by the nuclei of the molecule:

ĥ(i) =
N∑

i=1

[
−∇2

i

2
+

M∑
α=1

−Zα

| �ri − �Rα |

]
(B.4)

At this point, we would like to calculate the electronic energy associated

to the trial wave function ΨHF . Since the wave function ΨHF (Eq. B.2) is

normalized, we can evaluate the expected value for the corresponding energy

as:
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EHF = 〈ΨHF | Ĥ | ΨHF 〉 (B.5)

This equation implies a dependence between the energy and the trial wave

function Ψ. Since Ψ is not a function of parameters but of spin-orbitals,

according to Eq. B.2, E is a functional of Ψ, and may be represented as E[Ψ].

Replacing Eq. B.2 into Eq. B.5, and given that the ĥi operator only operates

over the electron i, and the second term in Eq. B.3 cannot be separated

into monoelectronic integrals, we arrive at the HF energy associated to the

determinant ΨHF :

E =

N∑
i=1

hii +
1

2

N∑
i=1

N∑
j=1

(Jij − Kij) (B.6)

where:

hii = 〈χi(1) | ĥ(1) | χi(1)〉 (B.7)

Jij = 〈χi(1)χj(2) |
1

r12
| χi(1)χj(2)〉 (B.8)

Kij = 〈χi(1)χj(2) |
1

r12
| χj(1)χi(2)〉 (B.9)

hii, Jij and Kij correspond to the mono-electronic, Coulomb and exchange

integrals, respectively. The exchange integral, which does not have any clas-

sical correspondence, arises because of the antisymmetric nature of the de-

terminant wave function.

Eq. B.6 provides the electronic energy derived from a wave function ΨHF ,

built up from a starting set of spin-orbitals χN(N). The question which may

arise now is: is this set of spin-orbitals {χi}
N
i=1 the one which minimizes

the energy? Most probably not. To this purpose, the HF method employes

the variational principle in order to find the optimal molecular orbitals with

which the energy of such a polielectronic function will be stationary. In other

words, with the HF method we find the best function within a restricted set
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of functions (only one determinant), using the word “best” in a variational

context. Thus, the Slater determinant (Eq. B.2) that minimizes the energy

in Eq. B.5 is the one for which a small change in the wave function implies

a null change in the energy:

E[Ψ + δΨ] = 〈Ψ | Ĥ | Ψ〉 + 〈δΨ | Ĥ | Ψ〉

+ 〈Ψ | Ĥ | δΨ〉 + 〈δΨ | Ĥ | δΨ〉 (B.10)

the second and third terms represent the first-order variation of the energy

δE, which must be zero:

δE = 〈Ψ | Ĥ | δΨ〉 + 〈δΨ | Ĥ | δΨ〉 = 0 (B.11)

Given that the spin-orbitals {χi}
N
i=1 must be orthonormal functions:

〈χi | χj〉 = δij (B.12)

the optimal Slater determinant must satisfy Eqs. B.11 and B.12. The prob-

lem of finding the best spin-orbitals is a problem of minimizing a function

submitted to restrictions, and the Lagrange multipliers procedure must be

adopted:

L = E −

N∑
i=1

N∑
j=1

εijgij (B.13)

where L is the Lagrangian function to be minimized, gij are the terms cor-

responding to the restrictions, and εij are the Lagrange multipliers to be

determined. Replacing Eq. B.6 into Eq. B.13, the set of spin-orbitals which

minimize the energy are:

f̂(1)χi(1) =
N∑

j=1

εijχj(1) i = 1, 2, . . . , N (B.14)
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These set of equations are known as the HF equations, where f̂(1) is the

Fock operator:

f̂(1) = ĥ(1) +

N∑
j=1

(Ĵj(1) − K̂j(1)) (B.15)

This operator contains the monoelectronic operator ĥ(1) and the bielectronic

operators Ĵ and K̂:

Ĵj(1)χi(1) =

(∫
χ∗

j (2)
1

r12
χj(2)dτ2

)
χi(1) (B.16)

K̂j(1)χi(1) =

(∫
χ∗

j (2)
1

r12

χi(2)dτ2

)
χi(1) (B.17)

Ĵ and K̂ are known as the Coulomb and exchange operators, respectively.

According to Eq. B.14, the HF equations are written as a linear eigenvalue

equation, however, they might best be described as a pseudo-eigenvalue equa-

tions since the Fock operator has a functional dependence on the solutions

{χi}, through the Coulomb and exchange operators. Thus the HF equations

are really nonlinear equations and have to be solved by iterative procedures.

That is the reason why the Hartree-Fock method is also known as Self Con-

sistent Field method (SCF).

The Fock equations in the form of Eq. B.14 imply an integro-diferential

mathematical problem which is far from being feasible for the majority of

molecular systems, and new approximations need to be introduced. In 1951,

Roothaan and Hall proposed to express the molecular orbitals as a linear

combination of a set of basis functions. Such functions are centered in the

atoms within the molecule, and are usually named as atomic orbitals (AO).

So now, given a molecular orbital Ψi expressed as a lineal combination of the

set of basis functions ϕv:

Ψi =

K∑
v=1

cviϕv (B.18)
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replacing (B.18) in (B.14) we arrive at:

K∑
v=1

cvi〈ϕμ(1) | f̂(1) | ϕv(1)〉 =

K∑
μ=1

cviεi〈ϕμ(1) | ϕv(1)〉 μ = 1, 2, 3, . . . , K (B.19)

where the integrals on the first member correspond to the matrix elements of

the Fock operator in the basis ϕv (Fμv), whereas the integrals in the second

term are the overlap integrals of the basis functions ϕv (Sμv). Then, Eq. B.19

can be rewritten as:

K∑
v=1

[Fμv − εiSμv]cvi = 0 μ = 1, 2, 3, . . . , K (B.20)

which are known as the Roothann-Hall equations. Note that the integro-

diferential problem presented in Eqs. B.15 has been replaced by a set of

algebraic equations, in which the only procedure is to evaluate the best ex-

pansion coeficients cvi given an accepted and unquestionable set of atomic

orbitals. Given that the ground state of a large number of molecules, both in

their equilibrium geometry region and vicinities, are well described with only

one electronic configuration, the HF approximation gained a lot of success

over the years; even though the energy obtained is just qualitatively correct.

The HF method can be applied both to closed and open shell systems.

For open-shell systems, the use of an unrestricted open-shell set of spin or-

bitals leads to unrestricted open-shell wave functions via the Pople-Nesbet

equations. As no open-shell systems have been treated in this thesis, the

derivation of the Pople-Nesbet equations have been skipped, but the inter-

ested reader can find the information elsewhere.2,3

The mathematical importance of the HF approximation is undeniable,

as it represents the starting point for more accurate methods. Only a few

computational methods of quantum chemistry bypass the HF approximation.
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However, if such algorithms cannot be automatically implemented in a kind

of routine or blackbox procedure, we would be still calculating by hand the

most simple molecules such as water or methane. For that reason, not only

the developers but also the people who worked to implement such algorithms

deserve our attention. The excellent work of Obara and Saiko4 represent a

good example of several efficient algorithms (which can be easily coded)

that can be used to compute mono- and bi-electronic integrals for electronic

methods such as HF.

B.1.2 Post Hartree-Fock methods

As has been presented in the previous section, the HF ansatz of the electronic

wave function corresponds to an antisymetrized product of spin-orbital func-

tions. The physical consequence of this method is that each electron feels

the mean potential field generated by all the other electrons. This is clearly

an unphysical situation, as the motion of a single electron depends on the in-

stantaneous position of every electron and thus, their movement is said to be

correlated. This is the so called electronic correlation. The HF ansatz is the

reason why the SCF methodology is inadequate to quantitatively describe

the majority of the polielectronic systems. In order to correct this inacuracy,

it is necessary to add the electronic correlation to the wave function. To do

so, three major methodologies, known as post Hartree-Fock methods, have

been developed: Configuration Interaction (CI), Many Body Perturbation

Theory (MBPT) and Coupled Cluster (CC) methods. In what follows in the

present section, only the Configuration Interaction method will be presented,

as this method has been employed in some of the calculations of this thesis.

For further information about Many Body Perturbation Theory and Cou-

pled Cluster approach, the reader is directed to some excellent text books on

quantum chemistry.3,5, 6

The CI method is the simplest of the aforementioned post HF methods,

conceptually speaking. Basically, the wave function is built as a linear com-

bination of determinants formed with the spin-orbitals obtained from the HF
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method:

ΨCI = c0Ψ0 +
∑

S

cSΨS +
∑
D

cDΨD +
∑

T

cT ΨT + . . . (B.21)

where Ψ0 is the HF determinant, and ΨS, ΨD, ΨT ,. . . are determinants which

represent single, double, triple,. . . excitations of the fundamental determinant

Ψ0 i.e. to replace one, two, three,. . . occupied spin orbitals with virtual spin

orbitals. The exact electronic energy can be obtained, if the atomic orbitals

basis set is complete, and every possible excited determinant is considered.

However, such a calculation is far from being feasible for the majority of the

molecular systems due to the huge number of excited states. Instead of that,

the monoelectronic basis set of atomic orbitals must be truncated. Now, if

we consider all the possible determinants within a finite monoelectronic basis

set, it is possible to obtain the exact eigenvectors and eigenfunctions for that

space. The resulting solutions are known as full configuration interaction

(FCI) solutions, in other words, the exact solutions within a given basis

space. Nevertheless, even the FCI solutions are only accessible for small

molecular systems, which forces to truncate both the monoelectronic and

polielectronic basis sets. These two limitations are the main error sources in

every quantum chemical calculation.

B.1.3 Configuration Interaction with Single Excitations

If we limit the expansion of the wave function to only singly excited determi-

nants formed by replacing, with respect to the reference wave function, one

occupied spin orbital with a virtual spin orbital, the CI method is reduced

to the Configuration Interaction Singles (CIS) approach:

ΨCIS =
∑
ia

ca
i Ψ

a
i (r) (B.22)

where Ψa
i (r) denotes the singly excited Slater determinant formed replacing

the occupied orbital i with the virtual orbital a, and ca
i are the expansion
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coefficients. Since the singly excited determinants constitute electronic ex-

cited configurations of the molecule, it is possible to derive expression for

the computation of excitation energies and total energies within electronic

excited states. Replacing Eq. B.22 into the electronic Schrödinger equation,

and projecting onto 〈Ψb
j |, yields:

∑
ia

〈Ψb
j | Ĥ | Ψa

i 〉c
a
i = ECIS

∑
ia

ca
i δijδab (B.23)

where:

〈Ψb
j | Ĥ | Ψa

i 〉 = (E0 + εa − εi)δijδab + (ia || jb) (B.24)

with Eqs. B.23 and B.24, it is easy to obtain an expression for the CIS

excitation energies, defined as ωCIS = ECIS − E0:

∑
ia

{(εa − εi)δijδab + (ia || jb)}ca
i =

ωCIS

∑
ia

ca
i δijδab〈Ψ

b
j | Ĥ | Ψa

i 〉 =

(E0 + εa − εi)δijδab + (ia || jb) (B.25)

where εa and εi are the orbital energies of the single-electron orbitals ϕa

and ϕi, respectively, and (ia || jb) corresponds to the antisymmetrized two-

electron integrals. Eq. B.25 can be rewritten as a secular equation:

(H− ω)X = 0 (B.26)

where H is the matrix representation of the Hamiltonian in the space of the

singly excited determinants, X is the matrix of the CIS expansion coefficients,

and ω is the diagonal matrix of the excitation energies. Thus, solving

Eq. B.26 to obtain the excitation enrgies ω, is only a matter of diagonal-

izing the matrix H.
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Besides, we can obtain an analytic expression for the total energy of

electronic excited state from Eq. B.25 by adding E0 and multiplying from

the left with the corresponding CIS vectors:

ECIS = EHF +
∑
ia

(ca
i )

2(εa − εi) +
∑
ia,jb

ca
i (ia || jb) (B.27)

Note that according to Eq. B.27, ECIS is analytically differentiable with

respect to external parameters, for example, nuclear displacements and ex-

ternal fields. This allows for the application of analytic gradient techniques

for the calculation of excited-state properties, such as equilibrium geometries

and vibrational frequencies. That is the reason of why the CIS approach was

widely employed for many years in the treatment of excited electronic states.7

Despite these advantages, the CIS method presents some important flaws.

First, electron correlation is neglected, as according to Brillouni’s theorem,

the solutions of these equations are orthogonal to the ground state.2 Thus,

excitation energies are largely overestimated by ∼1 eV. Second, CIS does

not obey the Thomas-Reiche-Kuhn dipole sum, which states that the sum of

transition dipole moments must be equal to the number of electrons. Thus,

transition moments cannot be expected to be more than qualitatively accu-

rate.8 And third, the computational cost for CIS calculations scales with

n4, being n the number of occupied molecular orbitals. Thus, large basis

set calculations become easily very expensive. In order to overcome these

limitations, it is necessary to go beyond the CI approach.

B.1.4 Complete Active Space Self-Consistent Field meth-

ods

As we have previously said, the CIS method is not able to include the elec-

tronic correlation of a given system, by virtue of Brillouni’s theorem. Nev-

ertheless, this situation can be overcome if not only mono-excited but multi-

excited determinants are included in the wave function’s expansion. Al-

ternatively, the molecular orbitals coefficients of each determinant can also
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be optimized, so that they are not the same as in the ground state, and

hence not longer orthogonal to the solutions of the CI equations. Among

the methodologies adressed to the optimization of both the coefficients of

the determinants and the molecular orbitals coefficients of each determi-

nant, the multiconfigurational self-consistent field (MCSCF) approach should

be mentioned. There exist many molecular systems in which several ex-

cited electronic configurations are in close degeneracy with the ground state.

For these systems, the appropiate wave function should contemplate the

multiconfigurational nature of the electronic structure, and the MCSCF ap-

proach is very suitable.

The main restriction of the MCSCF methods is the size of the refer-

ence wave function. Within a few configurations, the computational cost

grows exponentially. A possible solution for that limitation is the choice of

a reduced configurational space which has chemical relevance for the system

under study. Such a choice must be done based on chemical criteria and (why

not?) chemical intuition, according to the information available on the sys-

tem. This is the main idea of the most popular MCSCF method among the

theoretical chemical community, the complete active space SCF (CASSCF)

method,9–11 developed by B. O. Ross and collaborators at the University of

Lund.

Within this method, the configurational space is specified by a number

of active orbitals and electrons, with which all the possible configurations

(consistent with a given spatial and spin symmetry) will be formed. Thus,

the CASSCF wave function is a FCI in the configurational space defined

by the active space. For example, one might define an active space (11,8),

meaning that 11 valence electrons are distributed between all configurations

that can be constructed from 8 molecular orbitals. However, the number

of configurations quickly increases with the number of active orbitals, along

with the computational cost.

In order to perform a consistent CASSCF study of a chemical reaction,

the active space describing reactants, products, transition states, interme-
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diates. . . should be the same. Thus, the choice of the active space must

be flexible enough to consistently describe all the chemical processes under

study. Along a chemical reaction, the energetic order of the orbitals which

are relevant to describe the change in the electronic structure are likely to

change (and they probably will do) from reactants to products. An active

space large enough to foresee and include such changes easily becomes un-

feasible. Mainly for that reason, CASSCF methods are very well suited for

spectroscopy studies, but more limited for reactivity. It is precisely the choice

of the active space the main argument which both detractors and support-

ers use to justify the rejection and the greatness, respectively, of this kind

of methodologies. It is true that the selection of the active space is not a

black-box procedure. It might not be straightforward, but it is far from be-

ing impossible for most cases. It helps a lot to know something about the

electronic structure of the system under study. As a general rule, the active

space should contain those molecular orbitals whose occupation numbers will

significantly vary from 2 and 0 along the chemical process.

The CASSCF method includes the static correlation, also called long

range interaction, which describes the effect of quasidegeneracies between

configurations. The dynamic correlation, which reflects the short range

electron-electron interaction, can be properly described by variational meth-

ods, like the multireference-CI (MRCI) method,12 or by perturbation theory,

like the CAS perturbation theory to second order (CASPT2) method.13,14

The ansatz of the wave function according the MRCI method is:

ΨMRCI = Ψref + ΨSD (B.28)

where Ψref is a reference function, for example a CASSCF function or part of

it, and ΨSD represents single and double replacement configurations. How-

ever, as previously commented, the CI methods grow quickly out of hand,

and are only feasible for small molecules. A second procedure to include the

dynamic correlation is by using the perturbation theory, up to second order.

In second order perturbation theory, we solve a set of linear equations:
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(Ĥ0 − E0)Ψ1 = −(Ĥ1 − E0)Ψ0 (B.29)

where Ψ1 is the first order wave function and Ĥ1 is the perturbation, defined

as Ĥ − Ĥ0. Then, the second order energy is given as:

E2 = 〈Ψ0 | Ĥ1 | Ψ1〉 (B.30)

Thus, only terms in Ψ1 that interact with the reference function Ψ0 will

contribute to the second order energy. Ψ0 is the CASSCF reference function

and | Ψ1〉 can be defined as:

| Ψ1〉 =
∑
pq,rs

Cpq,rsÊpqÊrs | Ψ0〉 (B.31)

where the indices q, s refer to inactive or active orbitals, and p, r refer to

active or secondary orbital.

Because the CASSCF method is a multiconfigurational approach, it is

very suitable to compute regions of the PES where energy crossing points

occur, like conical intersections. A minimum energy crossing point (MECP)

can be obtained by finding the lowest energy of the excited state at which

two states are degenerate. Hence, in an optimization calculation, the energy

difference berween the two states can be used as a constraint:

r = E1 − E0 (B.32)

However, this constraint condition will only lead to a single MECP. If we

are interested in exploring the seam of a conical intersection, for example,

we should also explore the spatial extension of the intersection subspace by

combining the constraint of the intersection in Eq. B.32 with those employed

for a minimum energy path search.
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B.2 Electronic density-based methods

The theoretical methods presented so far, are enclosed within the MO theory,

in which the energy of the system is a functional of the well known wave

function (E[Ψ]). That functional relationship could be read as “by placing

an appropiate wave function Ψ inside the [ ], we can obtain the energy E”.

The functional E[Ψ] is perfectly known, as seen in Eq .B.5. However, the Ψ

is a function which depends on the 3N spatial coordinates of the N particles

describing the system. The dependence of so many variables makes Ψ a very

complex mathematical function to deal with in order to obtain the energy.

The density functional theory (DFT) provides a very similar framework

(conceptually speaking) to the one of the ab initio methods, in the way we

can express the energy of the system as a functional of a different magni-

tude: the electronic density ρ(�r). Density provides information about how

something is distributed in space, and for a chemical system, electron den-

sity tells us where the electrons are likely to be. Because of the electronic

density is a function which depends only on 3 spatial coordinates, it becomes

an attractive function to work with, in contrast to the 3N -dimensional wave

function Ψ. Hence, in the DFT scheme, the number of variables is consid-

erably reduced. However, with regard to the ab initio methods, the main

disadvantage of DFT is that the functional E[ρ(�r)] is not known, and only

approximations to it can be made.

B.2.1 Density Functional Theory

The electronic density of a system of N -electrons can be defined as:

ρ(�r) = N

∫
| Ψ(�r1, �r2, . . . , �rN , ) |2 d�r2, . . . , d�rN (B.33)

and its corresponding quantum operator is:

ρ̂(�r) = 〈Ψ |

N∑
i=1

δ(�r − �ri) | Ψ〉 (B.34)
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The main difference between the wave function Ψ and the electronic density

ρ(�r) is that the latter is an observable magnitude, whereas the former not.

Through X-ray crystallography experiments, the electronic density, defined

in the real space �r, can be determined using the expression:

ρ(�r) =

∫
d�q

(2π)3
F (�q)ei�q·�r (B.35)

where F (�q) is the Fourier transform of the electronic density defined in the

reciprocal space �q. Since its development by Sir William Henry Bragg and

Sir William Lawrence Bragg,15 X-ray crystallography has become one of the

most piercing experimental techniques to unveil the structure of molecules,

from inorganic compounds to large biomolecules.16–18 But it also provides

the starting point for the development of the DFT methods.

A single molecule can be fully characterized if the atomic number of

the nuclei, their positions, and the total number of electrons are known

i.e. {Zα, �Rα, N}. The question that now arises is: if we knew the electronic

density of a molecule, by X-ray crystalography for example, could we obtain

from it the information {Zα, �Rα, N}? The answer is yes.

The total number of electrons can be straightforward obtained integrating

the electronic density over all the electronic space:∫
ρ(�r)d�r = N (B.36)

The position of the nuclei can be obtained by taking into account that the

electronic density is a maximum over the nuclei. Thus, the maxima of the ρ(�r)

function directly give {�Rα}. Finally, according to Kato’s nucleus-electron

cusp condition,19,20 the derivative of the logarithm of the electronic density

gives the atomic numbers of the nuclei:

−
1

2

(
∂ log ρ(�r)

∂�r

)
�r→�Rα

= Zα, ∀ α (B.37)

However, it has to be noted that Kato’s theorem is only valid in the electronic

ground state.1 To sum up, with the electronic density it is possible to have
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a complete knowledge of a molecule ({ZA, �RA, N}), which in turn allows us

to derive its corresponding Hamiltonian operator (plus the electron-electron

repulsion operator). From its solution, we can obtain its associated wave

function, and therefore all the observable properties of the system:

ρ(�r) ⇒ {Zα, �Rα, N} ⇒ Ĥ ⇒ Ψ ⇒ Observable molecular properties

From this explanation, it cannot be inferred that the relationship between

ρ(�r) and the corresponding wave function of the system is unique. Otherwise,

all the formulation of the DFT theory would fall into a problem of ambigu-

ity. This can be clarified by means of the Hohenberg-Kohn theorem (HK).

Hohenberg and Kohn proved, by reductio ad absurdum, that two different

external potential could not generate the same electron density. The justifi-

cation of the HK theorem is widely known in theoretical chemistry, and can

be found in many reference works.1,21

Accepting the univocal correspondence between external potentials, wave

functions and electronic densities, any molecular property A can be then

determined by the density ρ(�r) of the ground state:

Ψ0 = Ψ0[ρ(�r)] ⇒ 〈A0〉 = A[ρ(�r)] = 〈Ψ0[ρ(�r)] | Â | Ψ0[ρ(�r)]〉 (B.38)

Concretely for the electronic energy of a molecule:

E[ρ] = Te[ρ] + Een[ρ] + Eee[ρ] (B.39)

where Te[ρ] is the electronic kinetic energy, Een[ρ] is the electron-nucleus

energy interaction and Eee[ρ] is the electron-electron energy interaction. Even

though the HK theorem is mathematically exact and states the univocal

correspondence ρ(�r) ↔ Ĥ , it cannot unveil the explicit analytic form of such

functionals, except for local one-particle operators, like the external (nuclear)

potential. Therefore, approximate solutions have to be adopted in order to
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generate accurate expressions of the unknown functional. Some important

contributions are the statistical mechanical approach by Thomas and Fermi,1

or the constrained search procedure of M. Levy.22 Here only the Kohn-Sham

(KS) implementation of DFT will be presented, as it has gained ground

within the quantum chemical community, mainly due to its similarity with

the SCF method.

According to the KS model, for each real system of interacting electrons

with ground state density ρ(�r), there exists a suitable chosen model system

of non-interacting electrons which exhibits the same ground state density

ρS(�r):

ρS(�r) =

N/2∑
i=1

2 | ϕi(r) |
2= ρ(�r) (B.40)

In that way, Equation B.39 can be rewritten as:

E[ρ] = TS[ρ] + Een[ρ] + J [ρ] + Exc[ρ] (B.41)

where J [ρ] is the classical electron-electron Coulomb interaction energy, TS[ρ]

is the kinetic energy of a non-interacting N -electron system (which is an

approximation to the the real Te[ρ]) and Exc[ρ] is the so-called exchange-

correlation energy term:

TS[ρ] =

N∑
i=1

〈Ψi | −
1

2
∇2

(1) | Ψi〉 (B.42)

Exc[ρ] = Te[ρ] − TS[ρ] + Eee[ρ] − J [ρ] (B.43)

where ∇2
(1) is the one-particle kinetic term. The KS procedure for minimizing

the energy in Eq. B.40 reminds us of the HF procedure. One has to find a set

of orthogonal molecular orbitals Ψi which minimize the energy. With these

restrictions, the KS equations become:
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ĥKS(1)Ψi =
[
−

1

2
∇2

(1) + v̂ef(1)
]
Ψi = εiΨi (B.44)

where v̂ef(1):

v̂ef (1) = V̂en(1) + 2
N∑

i=1

Ĵi(1) + V̂xc(1) (B.45)

is an effective potential which includes the electron-nucleus attractive poten-

tial Ven, the classical electron-electron repulsive potential
∑N

i=1 Ji(1), and the

exchange-correlation potential V̂xc = ∂Exc

∂ρ(�r)
. Given that the effective poten-

tial depends on the total electronic density via Eq. B.45, the KS equations

represent a self-consistent field (SCF) problem that has to be solved in itera-

tive fashion. However, the KS equations are formally simpler than the Fock

equations because the effective potential is local, in contrast to the non-local

nature of the exchange of the Fock operator (see Eq. B.17). Besides, the KS

procedure takes electron correlation into account, while HF does not. Even

though the mathematical development of Kohn and Sham is exact, there is

a very important weak point of the whole theory: The analytic form of the

exchange-correlation functional Exc[ρ] is not known.

The reliability of a DFT calculation then lies in the capacity of generating

approximate Exc[ρ] functionals. In that direction, three major approaches

have been developed. Slater proposed in the early 1950s the local-density

approximation (LDA), where the functional is considered to depend only on

the electronic density at the coordinate where the functional is evaluated.

Under such approximation, an analytic expression for the Exc[ρ] functional

can only be obtained for a homogeneous electron gas. For that system, Dirac

developed the expression for the exchange energy:

ELDA
x (ρ) = −

3

2

(
3

4π

)1/3 ∫
ρ4/3(�r)d�r (B.46)

The expression for the correlation energy was obtained from Monte Carlo

calculations by Vosko, Wilk and Nusair in 1980,23 called the VWN func-
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tional. Even though the homogeneous electron gas approximation worked

surprisingly well for small molecules, it soon became clear that such an ap-

proximation was too simple in order to treat larger molecular systems.

One way to correct the limitations of the LDA functionals is to consider

that the functional also depends on the gradient of the density at the same

coordinate where it is evaluated, which is the basis of the generalized gradient

approximations (GGA). Usually, GGA functionals start off from known LDA

functionals, adding correcting terms to the gradient. Some of the most well-

knonw GGA functionals are the Becke’s functional of 1988 (B88), the Perdew

and Wang functions of 1991 (PW91), or the Lee, Yang and Parr functional

(LYP). These functionals can be combined among them to give the new

functionals like BPW91 or BLYP. In spite of the improvements that the

GGA functionals supposed, difficulties in expressing the exchange part of

the energy still arise. They could be relieved by including a component of

the exact exchange energy calculated from HF theory. Functionals of this

type are known as hybrid functionals, like the B3-LYP, probably the most

widely used functional among the quantum chemical community.

In many cases, with GGA and hybrid functionals it is possible to achieve

results with a similar precision compared to post-HF methods (like MP2),

but with a substantially lower computational cost. For that reason, DFT

methods have become an important alternative in the study of many-electron

systems.

B.2.2 Time-Dependent DFT

The traditional KS formulation of the DFT is limited to time-independent

systems, that is, ground states (lowest energy states of a given symmetry

and multiplicity). However, many molecular properties in quantum mechan-

ical electronic structure theory can be considered to be the result of the

response of a time-dependent perturbation, like excitation energies or oscil-

lator strengths. If one wants to apply the DFT formalism to these situ-

ations one could, for instance, first establish an analogous time-dependent
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version of the HK theorem, and then reformulate the KS procedure in a

time-dependent scheme. These steps lead to the theoretical foundation of

the Time-Dependent Density Functional Theory (TDDFT), which is mainly

concerned with the change in molecular properties induced by an external

and perturbing time-dependent field (often an electric field).

An aspect on TDDFT that might confuse people, is that the time de-

pendence referred to in TDDFT is usually not time dependence of the nuclei

(that is dynamics!). Instead, it is the time dependence of the electrons when

the fixed nuclear framework is subject to a periodic radiation field.

The TDDFT method is based on the Runge-Gross (RG) theorem,24 which

is the time-dependent analogue of the HK theorem in the ground state DFT.

The basic principle is very similar to the HK theorem: an univocal corre-

spondence between an external time-dependent potential, the initial state on

which the potential acts, and the resulting time-dependent electronic density

is proved. The interested reader can find an elegant proof of that theorem in

Ref. 7.

The time-dependent KS equations can be derived in a similar fashion that

the KS DFT equations. The existence of a model time-dependent system

of non-interacting electrons with the same one-electron density as the true

time-depedent system of interacting electrons, can be assured by virtue of

the generalization of the RG theorem by van Leeuwen.8 The resulting time-

dependent Kohn-Sham equations are:

i
∂

∂
ϕ(�r, t) =

(
−

1

2
∇2 + vKS(�r, t)

)
ϕ(�r, t) (B.47)

where the time-dependent effective potential vKS(�r, t) is:

vKS(�r, t) = ve(r, t) +

∫
ρ(r′, t)

| r − r′ |
d3r′ +

δAxc[ρ]

δρ(r, t)
(B.48)

Here, δ denotes functional differentation (not function differentiation ∂).

ve(r, t) is the time-dependent external potential, and the integral term ap-

proximates the electron-electron repulsion.
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In order to approximate the effective potential (the last term in Eq. B.48)

Runge and Gross adopted a Dirac’s action formulation:24

A[Ψ] =

∫
〈Ψ(t) | Ĥ − i

∂

∂t
| Ψ(t)〉 (B.49)

Given the unique mapping between densities and wave functions, Runge

and Gross treated the Dirac’s action as a density functional and, derived a for-

mal expression for the exchange-correlation component of the action, which

determines the exchange-correlation potential by functional differentiation.

However, approximate expression for the action functional are even less

known than for the functional Exc[ρ] in DFT.1 A practical solution for this

problem is to assume the external potential to be time-independent, which

constitutes the so-called adiabatic local density approximation (ALDA):

δAxc[ρ]

δρ(r, t)
=

δExc[ρt]

δρt(r)
(B.50)

Since this replacement is only exact when the external potential is time-

independent, one can argue that it should be a reasonable approximation

when the external potential is only weakly time-dependent, and then the

ground state exchange-correlation functional Exc can be used.

In order to obtain excitation energies and oscillator strengths from the

time-dependent KS equations, the KS wave function can be propagated in

time, which is referred as known as real-time TDDFT.8 However, the most

widely used approach, and also the only one implemented in standard quan-

tum chemistry packages, is the linear-response TDDFT. Basically, if a exter-

nal perturbation is small enough so that it does not completely destruct the

ground state structure of the system, one can analyze the linear response of

the system. The variation of the system will depend (to first order) only on

the ground state wave function, so that we can simply use all the properties

of DFT. Within this context, excitation energies can be obtained in several

ways. The most direct is through the introduction of a basis set in the KS

orbitals and rewrite the time-dependent KS equations as secular equations,8
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a procedure that recalls the one seen for the CIS level. In fact, CIS can be

obtained as a limit of TDDFT when using a hybrid functional with 100% of

HF exchange.

As electronic correlation is introduced in DFT via the electronic density

ρ(�r) (and so it is in TDDFT), the values of vertical excitation energies are

more accurate when compared with CIS. Moreover, TDDFT satisfies the

Thomas-Reiche-Kuhn dipole sum. However, there exist some notorious dis-

advantages. It is well-known that TDDFT has severe problems with the

correct description of Rydberg states, valence states of molecules exhibiting

extended π systems, and doubly excited states; but most important, TDDFT

systematically overstabilizes charge-transfer states.25,26 To our knowledge,

some semiquantitative procedures have been proposed to correct this short-

coming of TDDFT,27–30 but the correct TDDFT description of such states is

still an unsolved problem.
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C
Mathematical derivation of the SMA’s

kinetic energy operator

According to our discussion on the dynamics of SMA in Section 5.1, our re-

duced SMA’s dynamical model contains three significant fragments as for the

ESIPT is concerned: the proton, the oxygen atom (attached to the aromatic

ring) and the nitrogen-methyl segment. These fragments are related through

the set of dynamical coordinates (R, r, ρ), as depicted in Figure 5.4 (c).

Assuming that the motion of the proton is restricted to a plane, a pair

of Cartesian coordinates (x, y) can be assigned to each dynamical fragment.

Hence, the kinetic energy operator can be initially written as:

C–1
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T̂ = −
1

2mO

(
∂2

∂x2
O

+
∂2

∂y2
O

)
−

1

2mNCH3

(
∂2

∂x2
NCH3

+
∂2

∂y2
NCH3

)
−

1

2mH

(
∂2

∂x2
H

+
∂2

∂y2
H

)
(C.1)

In order to derive a mathematical expression of T̂ in terms of the dy-

namical set {R, r, ρ}, it is necessary to stablish the formal relationships

between the six Cartesian coordinates in Eq. C.1 and the set (R, r, ρ). Given

that both sets of coordinates must define the same space, we included three

additional dynamical coordinates: the Cartesian coordinates of the center

of mass (xCM , yCM) and the in-plane global rotation angle (θ). From the

representation of both sets of coordinates into a Cartesian coordinate sys-

tem, as depicted in Figure 5.4 (d), it is possible to obtain the transformation

relationships between the dynamical and Cartesian sets of coordinates:

R =

√
(xN − xO)2 + (yN − yO)2 (C.2)

r =
1
2

(
x2

NCH3
− x2

O

)
+ xH

(
x2

O − x2
NCH3

)√
(xO − xNCH3)

2 + (yO − yNCH3)
2

+
1
2

(
y2

NCH3
− y2

O

)
+ yH

(
y2

O − y2
NCH3

)√
(xO − xNCH3)

2 + (yO − yNCH3)
2

(C.3)

ρ =

∣∣∣∣∣∣xH (yO − yNCH3) + yH (xNCH3 − xO)√
(xO − xNCH3)

2 + (yO − yNCH3)
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ xOyNCH3 − xNCH3yO√
(xO − xNCH3)

2 + (yO − yNCH3)
2

∣∣∣∣∣∣ (C.4)
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xCM =
mOxO + mNCH3xNCH3 + mHxH

mO + mNCH3 + mH
(C.5)

yCM =
mOyO + mNCH3yNCH3 + mHyH

mO + mNCH3 + mH
(C.6)

θ = arctan

(
yNCH3 − yO

xNCH3 − xO

)
(C.7)

From Eqs. C.2-C.7, it is possible to express Eq. C.1 in terms of the

dynamical set of coordinates, applying the chain rule. On the resulting ex-

pression of the kinetic energy operator, every second derivative term with

respect to the center of mass can be separated, given the traslational motion

of the center of mass has to be uncoupled from the internal motion. Taking

0 (for convenience) as the initial value for the angle θ, and assuming that the

global in-plane rotation of the fragments are not significantly coupled to the

proton transfer process (thus cancelling the derivative terms with respect to

θ), we arrive to the final expression of T̂ ((R, r, ρ)) introduced in Section 5.1:

T̂N = −
1

2

(
1

mN−CH3

+
1

mO−ring

)
∂2

∂R2

−
1

2

[(
1

mN−CH3

+
1

mO−ring

) (
1

4
+

ρ2

R2

)
+

1

mH

]
∂2

∂r2

−
1

2

[(
1

mN−CH3

+
1

mO−ring

) (
1

4
+

r2

R2

)
+

r

R

(
1

mN−CH3

−
1

mO−ring

)
+

1

mH

]
∂2

∂ρ2

+
1

2

(
1

mN−CH3

−
1

mO−ring

)
∂

∂R

∂

∂r

+

[
rρ

R2

(
1

mN−CH3

+
1

mO−ring

)
+

ρ

2R

(
1

mN−CH3

−
1

mO−ring

)]
∂

∂r

∂

∂ρ

−
1

2R

(
1

mN−CH3

+
1

mO−ring

)
∂

∂R

(Continues on next page.)
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+
1

2

[
1

R

(
1

mN−CH3

−
1

mO−ring

)
+

r

R2

(
1

mN−CH3

+
1

mO−ring

)]
∂

∂r

+
ρ

2R2

(
1

mN−CH3

+
1

mO−ring

)
∂

∂ρ
(C.8)



D
SMA’s Fortran77 routine

The construction of the PES corresponding to the dynamical simulations on

SMA (see Paper II), was performed through the generation of 720 molecular

geometries as a function of the set of dynamical coordinates (R, r, ρ). Here

we present the Fortran77 rutine coded to that end.

program SMAgeometry

implicit none

integer i,j

integer label1(12)

double precision x1(12,3)

integer label2(4)

double precision x2(4,3)

integer labelO,labelN,labelH

double precision xO(3),xN(3),xH(3)

double precision Rbig,Rsmall

double precision Nghost(3),Oghost(3)

D–1



D–2 D. SMA’s Fortran77 routine

double precision Ulength,U(3),W(3)

double precision deltaR,deltaRox,deltaRnit

double precision UM,M(3),Vlength,V(3)

double precision Mlength,Wlength,Hpos,dotprod

double precision N(3),rho

C

C

open (file=’fragment_1.xyz’,status=’old’,unit=10)

do i=1,12

read(10,*) label1(i),x1(i,1),x1(i,2),x1(i,3)

end do

close (unit=10)

open (file=’fragment_3.xyz’,status=’old’,unit=10)

do i=1,4

read(10,*) label2(i),x2(i,1),x2(i,2),x2(i,3)

end do

open (file=’fragment_oxigen.xyz’,status=’old’,unit=10)

read(10,*) labelO,xO(1),xO(2),xO(3)

open (file=’fragment_nitrogen.xyz’,status=’old’,unit=10)

read(10,*) labelN,xN(1),xN(2),xN(3)

open (file=’fragment_proto.xyz’,status=’old’,unit=10)

read(10,*) labelH,xH(1),xH(2),xH(3)

read(5,*) Rbig,Rsmall,Rho

C

C

do i=1,12

write(6,*) label1(i),x1(i,1),x1(i,2),x1(i,3)

end do

C

C

do i=1,3

Nghost(i)=xN(i)

Oghost(i)=xO(i)

end do

C

C

Ulength=0.0d0

do i=1,3

U(i)=xO(i)-xN(i)

M(i)=xH(i)-0.5d0*(xO(i)+xN(i))

Ulength=Ulength+U(i)**2
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Mlength=Mlength+M(i)**2

end do

Ulength=sqrt(Ulength)

Mlength=sqrt(Mlength)

do i=1,3

U(i)=U(i)/Ulength

M(i)=M(i)/Mlength

end do

C

C

deltaR=Rbig-Ulength

C

C

deltaRox=deltaR/(1.0d0+sqrt(16.0d0/29.0d0))

deltaRnit=deltaR/(1.0d0+sqrt(29.0d0/16.0d0))

C

C

do i=1,3

xO(i)=Oghost(i)+U(i)*deltaRox

xN(i)=Nghost(i)-U(i)*deltaRnit

end do

write(6,*) labelO,(xO(i),i=1,3)

write(6,*) labelN,(xN(i),i=1,3)

C

C

do i=1,4

do j=1,3

x2(i,j)=x2(i,j)-U(j)*deltaRnit

end do

end do

do i=1,4

write(6,*) label2(i),(x2(i,j),j=1,3)

end do

C

C

UM=0.0d0

do i=1,3

UM=UM+U(i)*M(i)

end do

UM=UM*Ulength*Mlength

Wlength=0.0d0
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do i=1,3

W(i)=(U(i)*Ulength)-(Ulength**2/UM)*M(i)*Mlength

Wlength=Wlength+W(i)**2

end do

Wlength=sqrt(Wlength)

do i=1,3

W(i)=W(i)/Wlength

end do

Hpos=0.0d0

do i=1,3

Hpos=Hpos+M(i)*W(i)*Wlength*Mlength

end do

Vlength=0.0d0

do i=1,3

V(i)=xO(i)-xN(i)

Vlength=Vlength+V(i)**2

end do

Vlength=sqrt(Vlength)

do i=1,3

V(i)=V(i)/Vlength

end do

do i=1,3

N(i)=xH(i)-0.5d0*(xO(i)+xN(i))-Rsmall*V(i)

end do

dotprod=0.0d0

do i=1,3

dotprod=dotprod+N(i)*W(i)

end do

C

C

do i=1,3

xH(i)=0.5d0*(xO(i)+xN(i))-Rsmall*V(i)+W(i)*(dotprod-rho)

end do

write(6,*) labelH,(xH(i),i=1,3)

C

C

end
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For the correct running of this routine, the SMA molecule is divided in five

portions, and each portion is provided to the code via five external files: frag-

ment 1.xyz, fragment 2.xyz, fragment nitrogen.xyz, fragment oxigen.xyz and

fragment proto.xyz.

Each file contains the atomic number and the Cartesian coordinates (in

Å) of each atom. Concretely, files fragment 1.xyz and fragment 2.xyz dis-

play the aromatic ring and the C–H portion, and the the methyl group, re-

spectively; whereas files fragment nitrogen.xyz, fragment oxigen.xyz and frag-

ment proto.xyz contain the position of the nitrogen, oxygen and the proton,

respectively.

In what follows, we include an example of a starting SMA geometry

divided on each file:

fragment_1.xyz

6 -2.125116 1.667348 0.000000

6 -0.738163 1.675638 0.000000

6 0.000000 0.477899 0.000000

6 -0.695501 -0.762654 0.000000

6 -2.099322 -0.763131 0.000000

6 -2.798877 0.436791 0.000000

1 -2.681418 2.598766 0.000000

1 -0.196868 2.619098 0.000000

1 -2.611444 -1.719450 0.000000

1 -3.885147 0.417720 0.000000

6 1.454251 0.516427 0.000000

1 1.919660 1.513936 0.000000

fragment_2.xyz

6 3.616611 -0.431977 0.000000

1 4.026540 -0.938431 0.881195

1 4.026540 -0.938431 -0.881195

1 3.964593 0.611673 0.000000
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fragment_nitrogen.xyz

7 2.172386 -0.548950 0.000000

fragment_oxigen.xyz

8 -0.047815 -1.936263 0.000000

fragment_proto.xyz

1 0.930067 -1.730178 0.000000




