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Life is too short to wake up with regrets. So love the people who treat you right.
Forget about those who don’t. Believe everything happens for a reason. If you get a
chance, take it. If it changes your life, let it. Nobody said life would be easy, they

just promised it would most likely be worth it
Harvey MacKay (1932)
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Abstract

Pedestrian detection continues to be an extremely challenging problem in real scenar-
ios, in which situations like illumination changes, noisy images, unexpected objects,
uncontrolled scenarios and variant appearance of objects occur constantly. All these
problems force the development of more robust detectors for relevant applications like
vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for
behavior analysis. Most reliable vision-based pedestrian detectors base their decision
on features extracted using a single sensor capturing complementary features, e.g., ap-
pearance, and texture. These features usually are extracted from the current frame,
ignoring temporal information, or including it in a post process step e.g., tracking
or temporal coherence. Taking into account these issues we formulate the follow-
ing question: can we generate more robust pedestrian detectors by introducing new
information sources in the feature extraction step?

In order to answer this question we develop different approaches for introducing
new information sources to well-known pedestrian detectors. We start by the inclusion
of temporal information following the Stacked Sequential Learning (SSL) paradigm
which suggests that information extracted from the neighboring samples in a sequence
can improve the accuracy of a base classifier.

We then focus on the inclusion of complementary information from different sen-
sors like 3D point clouds (LIDAR - depth), far infrared images (FIR), or disparity
maps (stereo pair cameras). For this end we develop a multi-modal framework in
which information from different sensors is used for increasing detection accuracy
(by increasing information redundancy). Finally we propose a multi-view pedestrian
detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way
the variability problem faced when a single detectors is used for the whole problem.
We show that these approaches obtain competitive results with other state-of-the-art
methods but instead of design new features, we reuse existing ones boosting their
performance.
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Resumen

La detección de peatones continua siendo un problema muy dif́ıcil en escenarios reales,
donde diferentes situaciones como cambios en iluminación, imágenes ruidosas, obje-
tos inesperados, escenarios sin control y la variabilidad en la apariencia de los objetos
ocurren constantemente. Todos estos problemas fuerzan el desarrollo de detectores
más robustos para aplicaciones relevantes como lo son los veh́ıculos autónomos basa-
dos en visión, vigilancia inteligente y el seguimiento de peatones para el análisis
del comportamiento. Los detectores de peatones basados en visión más confiables
deciden basándose en descriptores extráıdos usando un único sensor y capturando
caracteŕısticas complementarias, e.g., apariencia y textura. Estas caracteŕısticas son
extráıdas de una única imagen, ignorando la información temporal, o incluyendo
esta información en un paso de post procesamiento e.g., seguimiento o coherencia
temporal. Teniendo en cuenta estos hechos, nos formulamos la siguiente pregunta:
¿Podemos generar detectores de peatones más robustos mediante la introducción de
nuevas fuentes de información en el paso de extracción de caracteŕısticas?

Para responder a esta pregunta desarrollamos diferentes propuestas para intro-
ducir nuevas fuentes de información a detectores de peatones bien conocidos. Em-
pezamos por la inclusión de información temporal siguiendo el paradigma del apren-
dizaje secuencial apilado (SSL siglas en inglés), el cual sugiere que la información
extráıda de las muestras vecinas en una secuencia pueden mejorar la exactitud de un
clasificador base.

Después nos enfocamos en la inclusión de información complementaria proveniente
de sensores diferentes como nubes de puntos 3D (LIDAR - profundidad), imágenes in-
frarrojas (FIR) o mapas de disparidad (par estéreo de cámaras). Para tal fin desarrol-
lamos un marco multimodal en el cual información proveniente de diferentes sensores
es usada para incrementar la exactitud en la detección (aumentando la redundancia
de la información). Finalmente proponemos un detector multi-vista, esta propuesta
multi-vista divide el problema de detección en n sub-problemas. Cada uno de es-
tos sub-problemas detectara objetos en una vista espećıfica dada, reduciendo aśı el
problema de la variabilidad que se tiene cuando un único detector es usado para todo
el problema. Demostramos que estas propuestas obtienen resultados competitivos
con otros métodos en el estado del arte, pero envés de diseñar nuevas caracteŕısticas,
reutilizamos las existentes para mejorar el desempeño.
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Resum

La detecció de vianants continua essent un problema molt dif́ıcil en escenaris reals, on
diferents situacions com canvis en il·luminació, imatges sorolloses, objectes inesperats,
escenaris sense control i la variabilitat en l’aparença dels objectes ocorren constant-
ment. Tots aquests problemes forcen el desenvolupament de detectors més robustos
per a aplicacions rellevants com poden ser els vehicles autònoms basats en visió, la
vigilància intel·ligent i el seguiment de vianants per l’anàlisi del comportament. Els
detectors de vianants basats en visió més fiables decideixen basant-se en descriptors
extrets utilitzant un únic sensor i capturant caracteŕıstiques complementàries, com
poden ser l’aparença i la textura. Aquestes caracteŕıstiques són extretes d’una única
imatge, ignorant la informació temporal, o incloent aquesta informació en un pas de
post processament. Tenint en compte aquests fets, ens formulem la següent pregunta:
Podem generar detectors de vianants més robustos mitjançant la introducció de noves
fonts d’informació en el pas d’extracció de caracteŕıstiques?

Per respondre a aquesta pregunta desenvolupem diferents propostes per introduir
noves fonts d’informació a detectors de vianants ben coneguts. Comencem per la
inclusió d’informació temporal seguint el paradigma de l’aprenentatge seqüencial api-
lat (SSL sigles en anglès), el qual suggereix que la informació extreta de les mostres
vëınes en una seqüència poden millorar l’exactitud d’un classificador base.

Després ens enfoquem en la inclusió d’informació complementària provinent de
sensors diferents com núvols de punts 3D (LIDAR - profunditat), imatges infraroges
(FIR) o mapes de disparitat (parell estèreo de càmeres). Per aquest fi desenvolupem
un marc multimodal en el qual informació provinent de diferents sensors és usada per
incrementar l’exactitud en la detecció (augmentant la redundància de la informació).
Finalment proposem un detector multi-vista, aquesta proposta multi-vista divideix el
problema de detecció en n sub-problemes. Cada un d’aquests sub-problemes detecta
objectes en una vista espećıfica, reduint aix́ı el problema de la variabilitat que es té
quan un únic detector es fa servir per a tot el problema. Vam demostrar que aquestes
propostes obtenen resultats competitius amb altres mètodes en l’estat de l’art, però
en lloc de dissenyar noves caracteŕıstiques, reutilitzem les existents per millorar el
rendiment.
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Chapter 1

Introduction

Nowadays, due to increasing number of inhabitants in urban scenarios and consequent
increasing number of vehicles in the cities, accidents caused by vehicle-to-human col-
lisions are one of the principal mortal causes in urban scenarios. The World Health
Organization (WHO) reports [65] that 1.24 million people dead due to traffic causali-
ties, predicting that for 2030 traffic injuries will be the 5th cause of dead in the world.
In order to reduce fatalities in traffic accidents authorities, universities, and media
have elaborated education campaigns, new rules, and research funding to develop
intelligent systems that reduce these accidents.

In particular, automotive companies are continuously introducing smarter Ad-
vanced Driver Assistance Systems (ADAS). ADAS aim to improve mobility and traffic
safety by providing warnings and performing maneuvers in dangerous real life driving
situations. Following this line one of the most dangerous situations is the collision
vehicle-to-pedestrian. Pedestrian Protection Systems (PPS) try to avoid vehicle-to-
pedestrian collisions by detecting accurately the presence of pedestrians in the vehicle
path in order to warn the driver, perform braking actions, or even evasive maneuvers.
Accordingly, since vision is the main sense in human driving, vision-based PPS have
attracted a lot of attention. Vision-based PPS are based on image acquisition and
a processing system able to detect pedestrians in real-time, always subject to an ex-
tremely low number of false alarms and missdetections. Pedestrian detection is a hard
challenge not fully solved nowadays, because pedestrians present a very high appear-
ance variability including: clothes, pose, accessories, point of view, and size. Also,
they have to be detected on-board in real urban scenarios with problems like cluttered
background, different weather and illumination conditions, and partial occlusions gen-
erated by other objects. During the last decade research on vision-based pedestrian
detection for PPS has been a very relevant topic in the computer vision community,
as is revealed in different comprehensive state-of-the-art reviews [24,25,32,35,42,87].

The goal of a vision-based pedestrian detector is to localize all pedestrians in a
given image, providing as output the 3D position relative to the vehicle of each of
them. Usually vision-based pedestrian detection systems follow a common pipeline
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2 INTRODUCTION

which includes the following steps:(i) candidate generation, where given an image it
provides windows that could contain pedestrians; (ii) candidate description, where
features describing each candidate are extracted; (iii) candidate classification, where
a label/confidence of containing or not a pedestrian is given to each candidate based
on its features; (iv) detection fusion, where in case that two or more overlapped
windows result from the same pedestrian they are merged into a single detection. To
complement this detection phase for still images, detections are tracked over time for
assuring temporal coherence, removing spurious detections, and obtaining pedestrian
motion information such as speed or motion direction.

All the previous steps are important in the pedestrian detection pipeline, and can
influence the final result for getting a more reliable approach. However, in this process
we can identify two key steps, description and classification, which may affect in a deep
way the general performance of the detector. In the description step the main goal is
to capture the information that better represents the pedestrians. In the literature we
find different types of descriptors that try to capture this information. For instance,
based on appearance [17], texture [89] or movement [87]. While in classification
the main goal is to assign a score/probability/label to a given candidate (window
descriptor). This assignment is based on a previous learned model (classifier), which
is trained with pedestrian samples together with background ones, and defining rules
for separating both classes (classifier). In the literature we find different approaches
that perform this classification step, some taking the pedestrian as a whole object
(holistic models) [17,87,89], others defining the object as a set of parts [28,50,73], and
other base its decision looking in random patches in the candidate (patch-based) [59].

As we mentioned before, there are diverse factors challenging pedestrians detec-
tion in real on-board scenarios, for instance there are temporal problems that appear
in some instances modifying the objects perception in the scene. These type of tempo-
ral problems could be defined as those due to motion, i.e., objects movement, vehicle
movement (egomotion), noisy movement (car vibration). Those due to illumination
changes that can produce saturated or hard shadowed regions where the detection
process is much harder. Finally due to cluttered backgrounds in which objects (or
bunch of objects) could ”look” like pedestrians in a frame. These problems need to
be faced in order to develop more robust detectors. Usually these temporal problems
are addressed by the community in post-detection steps like using tracking or tem-
poral coherence techniques. In this Thesis we will propose a novel way to introduce
the temporal information at description level, obtaining significant improvements in
different well-known pedestrian datasets.

In any PPS it is imperative to work during the whole day and under different
weather conditions. Unfortunately visible spectrum cameras are affected by all these
condition, perturbing the image acquisition. When visible spectrum cameras are
exposed to sudden illumination changes, they acquire images with saturated/hard-
shadowed areas. Moreover, when they acquire images during low illumination (night
time), they produce images of low quality where pedestrians are seen only if they are
well illuminated by street/car lights, which is not always the case. In fact, each type
of sensor (Camera, RADAR, LIDAR, Ultrasound) has its own pros and cons; therefor,
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it is of great importance including sensors which provide alternative information in-
variant to illumination and time conditions. Laser sensors acquiring 3D information,
or far infrared (FIR) cameras acquiring thermal information; both provide informa-
tion invariant to illumination conditions and complementary to the visual spectrum.
Accordingly, in this Thesis we propose multi-modal detectors that outperform those
based on a single modality. In particular, we asses the combination of dense LIDAR
with the visual spectrum, as well as this spectrum with the FIR one. The different
combinations are compared with the use of the corresponding isolated modalities.

1.1 Objectives

In summary, the objectives of this Ph.D. dissertation consist of addressing the follow-
ing questions:

� How to introduce temporal information in the classification stage of a pedestrian
detector?

� The combination of depth with visual information does improve the use of these
modalities in isolation?

� The combination of FIR with visual spectrum information does improve the use
of these modalities in isolation?

In the long term, our goal is to build a pedestrian detection system robust enough
for operating under different time conditions, using information coming from different
sensors.

1.2 Contributions

Answering these questions lead to several novel contributions:

� The use of Stacked Sequential learning for incorporating both spatial and tem-
poral information at the classification stage.

� Development of a Multi-view, Multi-modal Random Forest of Local Experts
based on RGB-D information. In this case, The ”D” information stands for
either depth or disparity. In the former case the data is obtained from dense
laser data. In the latter, a stereo rig is used.

� Development of different Multi-modal pedestrian detectors based on different
types of models that incorporate FIR information as well as RGB. In this case,
we provide a comprehensive study with special focus on assessing the differences
between day and night time.



4 INTRODUCTION

Along this Ph.D. dissertation all our experiment are based on well established
protocols and publicly available datasets. In fact, as an additional contribution of
this Thesis we have acquired and annotated different new pedestrian datasets which
will be described along the corresponding chapters. It is worth to mention that one
of such datasets include RGB and FIR images acquired at the same place at the same
time, covering day and night time.

1.3 Outline

The rest of the Thesis is organized as follows. In Chapt. 2 we review the literature
related to our proposals. Chapt. 3 presents and discusses the results obtained by
using our proposal based on stacked sequential learning. In Chapt. 4 we present the
results obtained using our above mentioned multi-view RGB-D approach. In Chapt.
5 we present the study based on RGB and FIR data. Finally, Chapt. 6 draws the
main conclusions of the presented work.



Chapter 2

State of the art

In this chapter we review the literature in order to provide insights of the state-of-
the-art to our proposals. This review include works related to pedestrian detection
general scheme (Section 2.1) including: Candidate generation, detectors (description
and classification), post-detection process; detectors that extract spatiotemporal in-
formation (Section 2.2), including context information; finally review related detectors
based on other sensors: LIDAR or FIR, and multi-modal approaches (Section 2.3).

2.1 Pedestrian Detectors Scheme

Pedestrian detection methods usually follow a general pipeline [35] (Figure 2.1). This
pipeline starts after the image acquisition (input image). The first step is the prepro-
cessing, where the input image is processed in order to prepare it for the next steps.
The second step is the foreground segmentation, where the areas of interest of the
image are identified, by defining pedestrian candidates (window/ROI) covering those
areas (Subsection 2.1.1). The third step is the classification, which takes as input the
candidates of the previous step for describing and classifying them (Subsection 2.1.2).
The fourth step is the refinement and verification, where overlapped detections are
merged in a single one for final verification (Subsection 2.1.3). The next steps are op-
tional like tracking (Subsection 2.1.3) or the application. In following subsections we
will review the different methods related with each of the detection steps, providing
a wide view about current pedestrian detection approaches and their impact in the
community.

2.1.1 Foreground Segmentation - Candidate Generation

In this section we discuss different approaches for candidate generation. The most
common candidate generation technique is the sliding window approach. Most suc-

5
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Figure 2.1: Pedestrian detection system general scheme proposed in [35].

cessful pedestrian detection methods in the literature base their detection on a sliding
window strategy. One of the first authors that applied this technique for detection
was Papageorgiou et al. in [68]. Then in [23] Dollár et al. remark that non-sliding
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window approaches such as segmentation [38], or key point [53, 77], usually fail for
low to medium resolution pedestrians. Sliding window based methods usually use an
image pyramid in order to handle different detection scales; few other methods pro-
pose instead of rescaling the image to apply multi-scale classifiers [7] over the image
for efficiency purposes.

Sliding window approach, by doing an exhaustive scanning, ends up with a set
of regularly spaced candidates to be sent to the classification stage (See figure 2.2
(a)). As advantages this technique allows us to scan the full image without excluding
any possible region in it, but brings two main disadvantages: 1) it generates a large
number of possible candidates (usually thousands of them), making it unfeasible to
achieve a real-time performance, and 2) irrelevant regions are also scanned, which may
increase the number of false positives. Taking these facts into account, techniques,
which purpose is to reduce the number of candidates and avoid irrelevant regions of
the image, have seen the light.

(a) (b)

Figure 2.2: Basic candidate generation methods for pedestrian description.
(a) sliding window, and (b) linear to road approach.

In this line, when stereo/3D information is available geometric constraints can be
applied [4, 37] in the candidate generation process. Assuming that pedestrians must
be standing at the ground plane, in [37] a candidate generation based on detecting the
road plane from the 3D information, and then uniformly distributing the candidate
windows over the road (See figure 2.2 (b)) and projecting them to the image plane
(e.g. to the left image of the stereo pair). In [4], candidates are generated according
to a clustering based on 3D point density. Then a set of candidates is generated for
each cluster.

In order to avoid exhaustive sliding window search across images methods based
on 2D information has born. In [41] Hosang et al. perform a comparison from many of
these candidate generation methods. In this comparison there are methods based on
segmentation (superpixels [29]) [74,84]; others based on saliency information [3,10,30];
others based on the graph cut method [9,54]; and finally other authors start by using
sliding window and then filtering the candidates [13, 38].
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2.1.2 Detectors

Computer vision researchers have been following different research lines for improving
the localization of humans in images. This is a challenging task with more than a
decade of history by now and as a result, a plethora of features, models, and learning
algorithms have been proposed to develop the pedestrian classifiers which are at the
core of pedestrian detectors [36].

One of the researching lines for boosting the accuracy of pedestrian classifiers
is in developing image descriptors well-suited for pedestrians. These descriptors are
designed for capture different features, which differentiate between pedestrians and
background. In this line descriptors based on appearance, meaning contours and
shape, have come out. The Histogram of Oriented Gradient (HOG) descriptor pre-
sented by Dalal et al. in [17] captures the object appearance based on the idea that the
human body has a characteristic shape (vertical contours in both sizes, low contours
rate in the central part). In order to capture this shape, HOG descriptor uses his-
tograms of the gradient orientations; these histograms are computed over overlapped
blocks regular distributed across the window; in this way pedestrian contours are cap-
tures (See figure 2.3 top). Papageorgiou et al. in [68] propose to use Haar-wavelets for
obtain structural information by filtering the image with them, based in this method
another appearance based descriptor is the Speeded Up Robust Features (SURF)
descriptor presented by Bay et al. in [5]. This descriptor is based on the responses of
Haar wavelets, these responses are regular spatially distributed, and provide us with
information of changes in intensity around the region of interest; capturing in this
way the human body shape (See figure 2.3 bottom). Other descriptors try to capture
texture information. This is the case of the Local Binary Pattern (LBP) presented
by Ahonen et al in [2]. LBP captures object texture by defining unique labels to
each different texture pattern in a 3X3 pixel neighborhood, then a histogram of these
labels describes a given block (See figure 2.3 middle). Wang et al in [89] combine
HOG and LBP features for final description capturing complementary information.
Gerónimo et al. in [34] combine the Edge Orientation Histograms (EOH) with Haar
wavelets, resulting a robust and fast pedestrian detector; Walk et al. combine appear-
ance features with color self similarity histograms (CSS) [87]. Other authors focus
on fast and robust features like Integral Channels [22] or Macrofeatures [60].

The second direction that the researchers have taken, is focused on design pedes-
trian models. Most of the above descriptors deals with pedestrians as a whole objects,
learning a holistic model by fitting a Support Vector Machine (SVM) or Adaptive
Boosting (AdaBoost. SVM learns the hyperplane that better split the samples (pos-
itives and negatives) in the feature space (HOG, LBP, EOH, etc). AdaBoost learns
”weak” classifiers (decision trees) and combining their responses represents the final
output of the boosted classifier. Other authors define pedestrians as a set of parts,
Deformable Multi-component Part-based Models (DPM) [28, 50, 73], and bases the
final decision in the individual parts detection and in a deformation cost for each part
(based in the relative position in the window). Other authors define pedestrian as a
set of diferent resolution models, each model detect pedestrians in a given scale [7,70]).
Other authors recently have developed detectors based on deep learning paradigm;
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Figure 2.3: Basicfeatures for pedestrian description. Top HOG descriptor,
middle LBP descriptor, and bottom Haar descriptor.

providing frameworks where Convolutional Neural Network (CNN) are included for
pedestrian detection [40, 66, 94]
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A third research line is define by the the classification architecture proposed in
order to get robust pedestrian detectors. In this line is worth to mention, HOG-
SVM/LRF-MLP cascades [63], Haar+EOH-AdaBoost cascades with meta-stages [12],
distributed detections HOG/DOD [67], and ensemble of trees [96]. Marin et al. define
the Random Forest of Local Experts (RF) in [59], which based on HOG and LBP
features it learn SVM as local experts at each node in the trees. These SVM are
learned over random patches defined by the HOG and LBP description cells.

(a) (b) (c)

Figure 2.4: Basic models for pedestrian description. (a) Holistic SVM, (b)
part-based DPM, and (c) patch-based RF.

A fourth line followed by researchers is looking for the collection of ”good” samples
for training. Enzweiler et al. propose a generative approach method in [27], Abramson
el al. in [1] propose an active learning method called SEVILLE (SEmi-atomatic VIsual
LEarning) for sample selection, finally Vazquez el al. in [85] propose to use virtual-
world data with domain adaptation for avoiding manual annotation of sequences.

2.1.3 Post-detection Methods

After the detection step with the multi-scale sliding window framework we will obtain
several overlapped detection with different sizes for each real object. In order to obtain
a clean result it is necessary to deal with these overlapped detections, and find a way to
fuse them in a single detection per object. In order to fuse the overlapped detections it
is commonly used a non-maximum suppression algorithm. Dalal et al. pesent in [16]
a non-maximun suppression algorithm that generates the fusion of multiple detection
in a single one. This algorithm implements a mean shift framework, representing
each detection in a 3D space (position and scale). Other authors propose a iterative
process in which detection are fused with its overlapped ones keeping the detection
with higher probability/score.

2.1.4 Evaluation Protocols

In order to compare the accuracy of different detectors applied to the same images
it has been defined different measurements. False Positives per Window (FPPW)
capture the performance of the detector when the detector runs over independent
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crops (positives and negatives). FPPW curve is calculated by varying the operation
point of the detector (threshold or probability for defining a positive detection) and
counting missdetections and false positives. Then pairs of (misdetection ratio; false
positives ratio) are calculated for each operation point. This measure was used when
no large sequences of images were available and detection was evaluated over few
images or crops. When large sequences were annotated and created for pedestrian
detection tasks, the measure changes to False Positives per Image (FPPI) following
the same principle that FPPW, missdetections and false positives are counted in each
image and then average miss rate and false positive rate per image is computed.
This measurement is extended for pedestrian detection in [24, 25, 35]. This FPPI
measurement is used in order to compare methods. The average miss rate (AMR)
in the range of 10−2 to 100 FPPI is taken as indicative of each detector accuracy,
i.e., the lower the better. There is other measurement recently used in pedestrian
detection benchmarks, in which the precision-recall curve is computed and use the
average precision (AP ) as accuracy measurement, i.e., the higher the better.

2.2 Spatiotemporal information

By now we only present descriptors based in information extracted from a single
frame. However, in the community researchers have done improvements by adding
extra information extracted from the context of the window. This context can be
defined as a spatial context, which extracts information of the surroundings of the
window for enhancing the detection, or as temporal information where features from
neighboring frames are extracted.

Figure 2.5: Spatiotemporal descriptor. Top HOG3D descriptor, and bottom
ESURF descriptor.

In this line the histogram of 3D gradients (HOG3D) descriptor is an extension of
the HOG descriptor introduced by Kläser et al. in [48]. The main idea is expanding
the gradient definition in the temporal dimension. It extracts the features in the same
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way HOG descriptor does, but defining the orientation bins based on the projection
of the gradients over a 3D regular polyhedron (See Fig. 2.5 top). Another descriptor
born from the idea of including temporal information is the Extended SURF descrip-
tor (ESURF) proposed by Willems et al. in [91]. ESURF is an extension in the
time-space of the SURF descriptor. In order to expand the descriptor they generate
Haar masks in 3D, and use them for the descriptor calculations. This change allows
them to obtain not only the spatial illumination changes but also the illumination
changes presented over the time (See Fig. 2.5 bottom); other authors also propose
temporal extension to haar-like features [15, 44, 45, 86]. Popular HOG descriptor was
also extended to encode temporal information for detecting humans [18]. In this
case using optical flow to compensate motion. In the same spirit the histograms of
flow (HOF) were also introduced for detecting pedestrians [87]. In all cases mo-
tion information was complemented with appearance information (i.e., Haar/HOG
for luminance and/or color channels).

Regarding context information focusing on single frames, it has been recently
shown how pedestrian detection accuracy can be boosted by analyzing the image
area surrounding potential pedestrian detections. In particular, [11, 21] propose an
iterative method in which responses obtained in neighboring areas are merged to
enhance spatial coherent detections, while spurious ones are vanished.

2.3 Detection under different modalities

(a) (b)

(c) (d)

Figure 2.6: Different image modalities. (a) RGB image, (b) Disparity from
stereo pair, (c) dense depth map from LIDAR data, and (d) FIR image.

Up to now all the mentioned methods base their detection in a single color/grey
image acquired by a normal visible spectrum camera. By using more than one image
researchers have developed detectors that extract information from different modali-
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ties. These extra modalities provide complementary information like the mentioned
motion features. In [92] Wojek el al. propose a variation of HOF features combining
appearance and motion. Others extract information from dense stereo reconstruc-
tion. In [26] Enzweiler et al. propose a detector that combines appearance, depth,
and motion.

Going further researchers propose to extract information from alternative sen-
sors. These sensors try to solve problems of visible spectrum cameras, like problems
with illumination changes or acquiring ”good” images in low light conditions. In or-
der to fulfill the information lost in these scenarios sensors based on laser beams or
thermal/far-infrared cameras are taking relevance in the computer vision community
for object detection.

Recently authors are starting to study the impact of high-definition 3D LIDAR [6,
46, 47, 61, 72, 79, 95] in pedestrian detection. Most of these works propose specific
descriptors for extracting information directly from the 3D cloud of points [6, 46,
47, 61, 79, 95], but these methods work well in static controlled scenarios in which
few objects appear. A common approach is to detect objects independently in the 3D
cloud of points and in the visible spectrum images, and then combining the detections
using an appropriate strategy [46, 47, 95]. Most relevant approach, looking for multi-
modal detectors, is the one presented by Premebida et al. in [72], in this approach
they propose to densify the 3D cloud of points to obtain a dense depth maps; first
registering the 3D cloud of points captured by a Velodyne sensor with the RGB image
captured with the camera, and then interpolating the resulting sparse set of pixels to
obtain a dense map where each pixel has an associated depth value. Given this map
the authors perform detection over both images separately for then merge detection.

Looking in other direction some authors try to solve the problem of acquiring
image during night time with enough information for detecting pedestrians. Taking
into account that thermal information is invariant to illumination conditions, and
with the increasing resolution of far infrared (FIR) cameras, researchers have starting
to use FIR cameras in detection problems. There are applications relying on video
surveillance [19, 20] using static cameras (zenital position) and tracking objects [71].
All these approaches work in controlled scenarios where cameras are in a fixed position,
and objects to detect are the only non fixed objects in the scene. Recently [43,
49, 64] proposed methods for extracting information in non-controlled scenarios for
pedestrian detection. Hwang et al. in [43] propose a multi-model approach inspired
in [23] adding FIR images as new channels in the description process.





Chapter 3

Stacked Sequential Learning

Pedestrian detectors base the detection on the responses obtained by aplying a clas-
sifier to decide which image windows contain a pedestrian. These responses usually
provide with relatively high response to neighboring windows overlapped with a real
pedestrian, while the responses around potential false positives are expected to be
lower. Applying a non-maximun suppression algorithm turn these overlapped high
responses windows in a single detection, but false positives remain without changes.
Same coherence is expected for image sequences. If there is a pedestrian located
within a frame, the same pedestrian is expected to appear close to the same loca-
tion in neighbor frames. This location has chances of receiving high response during
several frames, while false positives are expected to be more spurious. Following this
expected behavior in this chapter we propose a method to exploit such correlations
for improving the accuracy of base pedestrian classifiers. To this end we propose
a method that introduce information of this spatiotemporal behavior at description
level. In order to validate our proposal it will be tested over different well-known
pedestrian detection datasets.

3.1 Introduction

The outcome of a pedestrian classifier, termed here as base classifier, determines
if a given image window contains a pedestrian or background by assigned to it a
score/probability. In practice, such classifiers provide a relatively high response at
neighbor windows overlapping a pedestrian, while the responses surrounding non-
pedestrian windows are expected to be lower. In fact, non-maximum suppression
(NMS) is usually performed as last detection stage in order to reduce multiple detec-
tions arising from the same pedestrian to a single one. The same reasoning applies
when we detect in image sequences. If in a given location is detected a pedestrian,
high classification scores are expected in the same location of neighboring frames,
while false positives are expected to be more spurious. Usually, these spourious de-

15



16 SSL

tection may be removed by the use of a tracking algorithm. In this chapter we propose
to exploit such expected response correlations for improving the accuracy of the clas-
sification stage itself. Instead of only exploiting spatiotemporal coherence by means
of general post-classification stages like NMS and tracking, we propose to add such a
type of reasoning in the classification stage itself as well. In particular, we propose
to use two-stage classification strategy which not only relies on the image descriptors
required by the base classifiers, but also on the response of the own base classifiers in a
given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers
using a stacked sequential learning (SSL) paradigm [14].

Temporal SSL involves the analysis of window temporal volumes. The different
types of temporal volumes can be potentially useful for different applications depend-
ing on the motion of the camera and the targets of interest, as well as the working
frame rate. As we are specially interested in on-board pedestrian detection within
urban scenarios, we will face camera and targets movements. Accordingly, we test
our SSL approach for a fixed neighborhood (i.e., fixed spatial window coordinates
across frames) and for an scheme relying on an ego-motion compensation approxima-
tion (i.e., varying spatial window coordinates across frames). Moreover, in order to
assess the dependency of the results with respect to the frame rate, we acquired our
own pedestrian dataset at 30fps (CVC08 dataset) by normal driving in an urban
scenario. This new dataset is used as main guide for our experiments, but we also
complement our study with other challenging datasets publicly available.

To perform this study, we start by using a competitive baseline in pedestrian
detection [24], namely a holistic base classifier based on HOG+LBP features and
linear SVM. Note that HOG/linear-SVM is the core of more sophisticated pedestrian
detectors as the popular deformable part-based model (DPM) [28]. Moreover, HOG
with LBP are also used as base descriptors of multi-modal multi-view pedestrian
models [26], and HOG+LBP/linear-SVM has been used for classifiers with occlusion
handling [58,89], as well as for acting as node experts in random forest ensembles [59].
In addition, it has recently been shown that HOG+LBP/linear-SVM approaches are
well suited for domain adaptation [85]. Altogether, we think that HOG+LBP/linear-
SVM is a proper baseline to start assessing our proposal. Moreover we have extended
this baseline with the HOF [87] motion descriptor that complements the appearance
and texture features of the baseline.

In this chapter we will conduct experiments over the new CVC08 dataset together
with the well known datasets: Caltech, Daimler, CVC02, KITTI. The obtained results
show that our SSL proposal boosts detection accuracy significantly with a minimal
impact on the computational cost. Interestingly, SSL improves more the accuracy at
the most dangerous situations, i.e. when a pedestrian is close to the camera.

This chapter is organized as follows. In section 3.2 we review some works related
to our proposal. Section 3.3 briefly introduces the SSL paradigm. In section 3.4 we
develop our proposal. Section 3.5 presents the experiments carried out to assess our
spatiotemporal SSL, and discuss the obtained results. Finally, section 3.6 draws our
main conclusions.
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3.2 Related Work

The use of motion patterns as image descriptors was already proposed as an extension
of spatial Haar-like filters for video surveillance applications (static zenital camera)
[15,44,86] and for detecting human visual events [45]. In these cases, original spatial
Haar-like filters were extended with a temporal dimension. Popular HOG descriptor
was also extended to encode temporal information for detecting humans [18], in this
case using optical flow to compensate motion. In the same spirit the histograms of
flow (HOF) were also introduced for detecting pedestrians [87]. In all cases motion
information was complemented with appearance information (i.e., Haar/HOG for
luminance and/or color channels).

In contrast with these approaches, our proposal does not involve to compute new
temporal image descriptors as new features for the classification process. As we will
see, we use the responses of a given base classifier in neighbor frames as new features
for our SSL classifier. In fact, our proposal can be also applied to base classifiers
that already incorporate motion features. Therefore, the reviewed literature and our
proposal are complementary strategies.

Focusing on single frames, it has been recently shown how pedestrian detection
accuracy can be boosted by analyzing the image area surrounding potential pedestrian
detections. In particular, [11, 21] follow an iterative process that uses contextual fea-
tures of several orders (e.g., involving co-occurences) for progressively enhancing the
response of base classifiers for true pedestrians and lowering it for hallucinatory ones.
Our SSL proposal does not require new image descriptors of pedestrian surroundings
and is not iterative, which makes it inherently faster. Moreover, we treat equally
spatial and temporal response correlations, i.e., under the SSL paradigm, giving rise
to a more straightforward method.

Finally, we would like to clarify that our SSL proposal is not a substitute for NMS
and tracking post-classification stages. What we expect is to allow these stages to
produce more accurate results by increasing the accuracy of the classification stage.
For instance, tracking must be used for predicting pedestrian intentions [76], thus,
if less false positives reach the tracker, we can reasonably expect to obtain more
reliable pedestrian trajectories and so guessing intentions in the very short time this
information is required (i.e., around a quarter of second before a potential collision).

3.3 Stacked sequential learning (SSL)

Stacked sequential learning (SSL) was introduced by Cohen et al. [14] with the aim of
improving base classifiers when the data to be processed has some sort of sequential
order. In particular, given a data sample to be classified, the core intuition is to
consider not only the features describing the sample but also the response of the base
classifier in its neighbor samples. Figure 3.1 summarizes the SSL learning process
that we explain in more detail in the rest of this section.
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Figure 3.1: SSL learning. See main text in Sect. 3.3 for details

Let τ be an ordered training sequence of cardinality N . In order to avoid overfit-
ting, the SSL approach involves to select a sub-sequence for training a base classifier,
CB, and the rest to apply CB and so training the SSL classifier, CSSL. If this is done
once, then the final classifier CSSL would be trained with less than N samples. Thus,
to avoid this, it is followed a cross-validation style were τ is divided in K > 0 disjoint
sub-sequences, τ = ∪K

k=1τk ∧ i 6= j ⇒ τi ∩ τj = ∅, and K rounds are performed by
using a different subset each round to test the CBk

and the rest of subsets for training
this CBk

. At the end of the process, joining the K sub-sequences processed by the
corresponding CBk

, we can have N augmented training samples for learning CSSL.
K = 1 means to train the CB and CSSL on the same training set, without actually
doing partitions.

Let us explain what means augmented training samples. The elements of τ , i.e.,
the initial training samples, are of the form < xn; yn >, where xn is a vector of
features with associated label yn. Therefore, the elements of each sub-sequence τk
are of the same form. As we have mentioned before, during each round k of the
cross-validation-style process, a sub-sequence τ ′′ is selected among {τ1, . . . , τK}, while
the rest are appended together to form a sub-sequence τ ′. From τ ′ it is learned
CBk

and applied to τ ′′ to obtain a new τ ′′′. The elements of τ ′′′ are of the form
< (xn, sn); yn >, where we have augmented the feature xn with the classifier score
sn = CBk

(xn). Therefore, after the K rounds, we have a training set of N samples of
the form < (xn, sn); yn >. It is at this point when we can introduce the concept of
neighbor scores into the learning process. In particular, the final training samples are
of the form < (xn,N (sn, T )); yn >, where N (sn, T ) denotes a neighborhood of size
T > 1 anchored to the sample n. For instance, N (sn, T ) = (sn−T+1, . . . , sn−1, sn) is a
past neighborhood, N (sn, T ) = (sn, sn+1, . . . , sn+T−1) is a future neighborhood, and
N (sn, T ) = (sn−T

2

, . . . , sn, . . . , sn+T
2

) is a centered neighborhood, which are analogous
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Figure 3.2: Different types of neighborhood for SSL. See main text in Sect.
3.4.1 for details.

concepts to the ones of filtering, extrapolation and smoothing, resp., used in the
classical tracking literature.

3.4 SSL for pedestrian detection

In this section, without loosing generality, we will assume the use of the past neigh-
borhood (Sect. 3.3) to illustrate and explain our SSL approach (use previous images
to do detection in the current one). Actually there is no need to save the previous
images, saving the already computed scores is enough to compute the current SSL
descriptor making the computation of SSL very computational efficient.

3.4.1 Spatiotemporal neighborhoods for SSL

For object detection in general and for pedestrian detection in particular, applying
SSL starts by defining which are the neighbors of a given window under analysis. In
learning time, such a window will correspond either to the bounding box of a labeled
pedestrian or to a rectangular chunk of the background. In operation time (i.e.,
testing), such a window will correspond to a candidate generated by a pyramidal
sliding window scheme or any other candidate selection method. In this paper we
assume the processing of image sequences and, consequently, we propose the use of a
spatiotemporal neighborhood.

Temporal SSL involves the analysis of window volumes. Therefore, there are sev-
eral possibilities to consider (see Fig. 3.2). Let us term as Wf the set of coordinates
defining an image window in frame f , and Vf = vol(∪T−1

t=0 Wf−t) the window volume
defined by a temporal neighbor of T frames. The simplest volume is obtained by as-
suming fixed locations across frames, which we term as projection approach. In other
words, Wf = Wf−1 = ... = Wf−(T−1). Another possibility consists in building vol-
umes taking into account motion information. For instance, Wf = Wf−1+tOF (Wf−1),
where tOF (Wf−1) is a 2D translation defined by considering the optical flow contained
in Wf−1, and

′+′ stands for summation to all coordinates defining Wf−1.

Spatial SSL involves the analysis of windows spatially overlapping the window of
interest (see Fig. 3.2). For instance, we can fix a 2D displacement ∆ = (δx, δy) and
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Figure 3.3: Two-stage pedestrian detection based on SSL. See main text in
Sect. 3.4.3 for details.

nx displacements in the x axis, to the left and to the right, an analogously for the y
axis given a ny number of up and down displacements.

Our proposal combines both ideas, i.e., the temporal volumes and the spatial
overlapping windows, in order to define the spatiotemporal neighborhood required by
SSL (Sect. 3.3).

3.4.2 SSL training

As usual, we assume an image sequence with labeled pedestrians (i.e., using bounding
boxes) for training. Negative samples for training are obtained by random sampling of
the same images, of course, these samples cannot highly overlap labeled pedestrians.
The cross-validation-style rounds of SSL (Sect. 3.3) are performer with respect to
the images of the sequence, not with respected to the set of labeled pedestrians and
negative samples as it may suggest the straightforward application of SSL (note that
pedestrian/negative labels are for individual windows not for full images). Moreover,
as we have seen in Sect. 3.4.1, the neighborhood relationship is not only temporal but
spatial too. The training process is divided in two stages. First, we train the auxiliary
classifiers (CBk

) as usual, using three bootstraping rounds. Then we train the SSL
classifier (using final CBk

as auxiliary), again we run three bootstrapping rounds for
obtaining the final classifier (CSSL).

Using the full training dataset, we also assume the training of a base classifier
CB. Another possibility is to understand the different CBk

as the result of a bagging
procedure and ensemble them to obtain CB. Without loosing generality, in this paper
we have focused on the former approach.
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3.4.3 SSL detector

The proposed pedestrian detection pipeline is shown in Fig. 3.3. As we can see there
are two main stages. The first stage basically consists in a classical pedestrian detec-
tion method relying on the learned base classifier CB. In Fig. 3.3 we have illustrated
the idea for a pyramidal sliding window approach, but using other candidate selection
approaches is also possible. Detections at this stage are just considered as potential
ones. Then, the second stage applies the spatiotemporal SSL classifier, CSSL, to such
potential detections in order to reject or keep them as final detections.

There are some details worth to mention. First, the usual non-maximum suppres-
sion (NMS) step included in pedestrian detectors is not performed for the output of
the first stage, but it is done for the output of the second stage. Second, for ensuring
that true pedestrians reach the second stage, we apply a threshold on CB such that it
guarantees a very high detection rate even having a very high rate of false positives.
In our experiments this usually implies that while the CB processes hundred of thou-
sands windows (for pyramidal sliding window), CSSL only process a few thousands.
Third, although in Fig. 3.3 we show pyramids of images for a temporal neighborhood
of T frames, what we actually keep from frame to frame are the already computed
features, so that we compute them only once. However, this depends on the type of
temporal neighborhood we use (Sect. 3.4.1). For instance, using projection style no
feature re-computing is required (i.e., keeping the scores would be sufficient). How-
ever, if we use either optical flow style, we may need to compute features in previous
frames if the window under consideration does not map to a location where they were
already computed.

3.5 Experimental results

Protocol As evaluation methodology we follow the de-facto Caltech standard for
pedestrian detection [24], i.e. we plot curves of false positives per image (FPPI) vs
miss rate. The miss rate average in the range of 10−2 to 100 FPPI is taken as indicative
of each detector accuracy, i.e.. the lower the better. Moreover, during testing we
consider three different subset: Near subset includes pedestrians with height equal
or higher than 75 pixels, medium subset includes pedestrian between 50 and 75 pixel
height. Finally we group the two previous subset in the reasonable subset (height >=
50 pixels).

CVC08 On-board Sequence (CVC08) Since the temporal axis is important
for the SSL classifier, we acquired our own dataset to be sure we have stable 30
fps sequences. The sequences were acquired on-board under normal urban driving
conditions. The images are monochrome and of 480 × 960 pixels. We used a 4mm
focal length lens, so providing a wide field of view. We drove during 30 minutes
approximately, giving rise to a sequence of around 60,000 frames. Then, using steps
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(a)

(b)

Figure 3.4: (a) Four images samples of our new dataset (CVC08). (b) Six
pedestrian crops samples extracted from CVC08 dataset.

of 10 frames we annotated all the pedestrians1. This turns out in 7,900 annotated
pedestrians, 5,400 reasonable and non occluded ( See images and pedestrian crops
examples in figure 3.4). We have divided the video sequence into three sequential
parts, the first one for training (3,600 pedestrians), the last one for testing (1,300
pedestrians), in the middle we have leaved a gap for avoiding testing and training
with the same persons.

Other publicly available datasets We have also used other three popular
datasets acquired on-board. The Caltech dataset [24], which contain 3,700 reasonable
pedestrians for training. The KITTI object detection dataset [33], which contains
7,481 training images, we split it in two sets (3,740 images for training and testing
each) due to the absence of annotations in the original testing images. Finally the
15 sequences of the CVC02 dataset [37]. In this case, we took 10 first sequences for
training and five last ones for testing. Overall, there are 5,090 mandatory pedestrians

1Publicly available in: http://www.cvc.uab.es/adas/site/?q=node/7
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Figure 3.5: Left - Results using different neighborhoods. (∆x ×∆y ×∆f)
stands for the spatial (∆x, ∆y) displacements in HOG/LBP cell units and
the temporal (∆f) window in frames (past window style). The projection
approach is assumed here. Right - Results using SSL experiments training
and testing under different frame rates.

for training and 2,900 for testing. It is worth to mention that, Caltech and KITTI
images were acquired at 25 fps and CVC02 at 10 fps.

Base detectors For the experiments presented in this section we use our own im-
plementation of HOG and LBP features [85], using TV-L1 [98] for computing optical
flow, we obtain HOF features [87] as well. We call Base to the HOG+LBP/Linear-
SVM and Base+HOF to the HOG+LBP+HOF/Linear-SVM.

Experiment 1 In Fig. 3.5 we show the results corresponding to only using spatial
neighbors, only temporal neighbors, and both. Note how in all cases there is a large
accuracy improvement, of even 12 perceptual points with respect to the base classifier
for the spatiotemporal case. The rest of experiments will be based on the spatiotem-
poral SSL (with past temporal window style) and settings (∆x,∆y,∆f) = (3, 3, 5).
Also in Fig. 3.5 we observe that the SSL descriptor trained at 3 fps keeps its accuracy
when it is tested on 30 fps, while the opposite is not true.

Experiment 2 In table 3.1 we show results for the spatiotemporal projection
approach as well as for the spatiotemporal one based on optical flow computation over
different subsets. Again, we observe large accuracy improvements for all the tested
frame rates (30 fps, 10 fps, 3 fps) in CVC08 dataset and for the different evaluated
datasets (Caltech, CVC02 and KITTI datasets). However, no significant difference is
observed between the projection and optical flow cases. Also in figures 3.6, and 3.7,
confirms the SSL improvement for all datasets, over different testing subsets. In this
case, a relevant improvement is observed for so-called near pedestrians (> 75 pixels
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of height). Figure 3.8 shows some qualitative results from CVC08 for the projection
case.

Discussion SSL approach outperforms its baseline in almost all the tested config-
urations. However, the improvement is more clear for near pedestrians at high frame
rates. If we generate the past neighborhood over the far away pedestrians, we should
expect a past neighborhood with pedestrians smaller than the minimum pedestrian
size that the base detector can detect. That is why the SSL improvement is not so
clear for the medium subset. However, in near pedestrians past neighborhood is more
probable to find a history of confident responses. This is a very relevant improve-
ment since for close pedestrians the detection system has less time to take decisions
like braking or doing any other manoeuvre. Regarding the neighborhood generation
approaches, the optical flow slightly improves the projection.

3.6 Conclusion

In this chapter we have presented a new method for improving pedestrian detection
based on spatiotemporal SSL. We have shown how even simple projection windows
can boost the detection accuracy in different datasets acquired on-board. We have
shown that our approach is effective for different frame rates and using different pedes-
trian base classifiers as: HOG+LBP/Linear-SVM and HOG+LBP+HOF/Linear-
SVM. Thus, looking at the promising obtained results we propose as future work
to focus on testing the same approach for other base classifiers of the pedestrian de-
tection state-of-the-art. Also, regarding the improvement obtained using optical flow
neighborhood, we propose to further explore different approaches for dealing with
the neighborhood generation for moving pedestrians, for instance the application of a
affine transform based on optical flow that adapt not only the spatial position but also
the size of the neighboring window in the temporal axis. Also weighted approaches
that capture better the object movements ignoring the scene egomotion.
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Table 3.1: Evaluation of SSL over different datasets, frame rates and pedes-
trian sizes. For FPPI ∈ [0.01, 1], the miss rate average % is indicated.

Dataset FPS Experiment Near Medium Reasonable

CVC08

N/A Base: HOG+LBP 39.71 50.83 45.91

3
SSL(Base) Proj. - OptFl. 36.03 - 36.72 50.01 - 50.04 44.40 - 44.02
Base+HOF 47.98 56.65 50.88
SSL(Base+HOF) Proj. 37.62 52.21 45.47

10
SSL(Base) Proj. - OptFl. 35.49 - 34.79 50.22 - 49.42 43.56 - 42.10
Base+HOF 39.24 52.37 42.43
SSL(Base+HOF) Proj. 29.42 44.62 37.13

30
SSL(Base) Proj. - OptFl. 34.18 - 34.01 49.84 - 48.04 42.90 - 41.73
Base+HOF 37.81 53.39 38.78
SSL(Base+HOF) Proj. 27.37 46.53 35.85

Caltech 25

Base 45.4 82.3 59.4
SSL(Base) Proj. - OptFl. 40.6 - 38.9 81.2 - 80.4 59.4 - 57.6
Base+HOF 33.8 78.4 52.9
SSL(Base+HOF) Proj. 32.0 77.1 51.6

CVC02 10
Base 30.19 51.86 40.18
SSL(Base) Proj. - OptFl. 25.43 - 25.31 48.97 - 48.63 35.06 - 35.54

KITTI 25

Base Pedestrian 27.02 51.92 35.99
SSL(Base Pedestrian) Proj. - OptFl. 20.75 - 21.39 49.27 - 46.02 30.50 - 30.62
Base Cyclist 20.28 42.22 31.40
SSL(Base Cyclist) Proj. 17.60 35.01 27.27
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Figure 3.6: Results for CVC08, and Caltech datasets. At the top row there
are the 30fps, 10fps and 3fps cases of CVC08 using the near testing subset.
The last two cases are obtained by sub-sampling the video sequence, but
always keeping the same training and testing pedestrians. At the bottom row
there are the experiments over the near, medium and reasonable testing of
Caltech.
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Figure 3.7: Results for CVC02 and KITTI datasets. At the top row there
are experiments over CVC02 dataset. At the bottom there are experiments
over KITTI dataset. Both rows contain experiments performed over near,
medium and reasonable subsets.
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Figure 3.8: Qualitative results from the CVC08 dataset comparing the base
classifier and the SSL for 3, 10 and 30 fps. The first three columns focus on
improvements regarding false positives rejection, while the rest focus on ex-
amples where SSL avoids missing pedestrians. The non-detected pedestrians
with the SSL approach (last two columns) correspond to occluded pedestrians.





Chapter 4

Multi-view, Multi-modal Random
Forest of Local Experts

Despite recent significant advances, object detection continues to be an extremely
challenging problem in real scenarios. In order to develop a detector that success-
fully operates under these conditions, it becomes critical to leverage upon multiple
cues, multiple imaging modalities and a strong multi-view classifier that accounts for
different object views and poses. In this chapter we provide an extensive evalua-
tion that gives insight into how each of these aspects (multi-cue, multi-modality and
strong multi-view classifier) affect accuracy both individually and when integrated to-
gether. In the multi-modality component we explore the fusion of RGB images with
depth maps obtained by high-definition LIDAR, and by a stereo-pair reconstruction.
In the multy-view component we extend the evaluation to other objects relevant to
autonomous vehicles: cyclists, and cars. As our analysis reveals, although all the
aforementioned aspects significantly help in improving the accuracy, the fusion of vis-
ible spectrum and depth information allows to boost the accuracy by a much larger
margin. The resulting detector not only ranks among the top best performers in the
challenging KITTI benchmark, but it is built upon very simple blocks that are easy
to implement and computationally efficient.

4.1 Introduction

Developing a reliable object detector enables a vast range of applications such as video
surveillance and the practical deployment of autonomous and semi-autonomous vehi-
cles. In order to obtain a detector that successfully operates under realistic conditions,
it becomes critical to exploit sources of information along different orthogonal axis
like: i) the integration of multiple feature cues (contours, texture, etc.), ii) the fusion
of multiple image modalities (color, depth, etc.), and iii) the use of multiple views
(frontal, lateral, etc.) of the object by learning a strong classifier that accommodates

31
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Figure 4.1: General scheme: From RGB images and LIDAR data to ob-
ject detection. RGB images and LIDAR data synchronized for multi-modal
representation. Multi-modal representation based on RGB images and dense
depth maps. Multi-cue feature extraction over the multi-modal representa-
tion. Multi-view detection of different objects.
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for both different 3D points of view and multiple flexible articulations (See general
scheme in Fig. 4.1). These three axis allow us to increase robustness of detectors.
This increase is due to: i) capture complementary features that increase description
of objects; ii) include redundant information that compensate bad performance of one
modality with information from the other one; and iii) reducing intra-class variability
by spliting the pedestrian detection problem in n− views sub-problems.

In order to integrate different cues we use HOG [17], that provides a good descrip-
tion of the object contours, and LBP [2] as texture-based feature. These two types of
features provide complementary information and the fusion of both types of features
has been seen to boost the performance of either feature separately [26,58,89]. Both
types of features are extracted for the different image modalities. We show that by
appropriately choosing the parameters used in the computation of these features for
each modality we can obtain an important gain in accuracy.

In order to integrate multiple image modalities, we considered the fusion of depth
maps with visible spectrum images (Multi-modal scheme specification in Fig. 4.2).
The use of depth information has gained attention thanks to the appearance of cheap
sensors such as the one in Kinect, which provides a dense depth map registered with
an RGB image (RGB-D). However, the sensor of Kinect has a maximum range of ap-
proximately 4 meters and is not very reliable in outdoor scenes, thus having limited
applicability for objects detection in on-board sequences. On the other hand, Light
Detection and Ranging (LIDAR) sensors such as the Velodyne HDL-64E have a max-
imum range of up to 50 meters and are appropriate for outdoor scenarios. Although
they produce a sparse cloud of points and they are only recently starting to receive
attention for application to object detection. Also depth information coming from
3D stereo reconstruction has received low attention for pedestrian detection. Even it
produce a dense depth map, author usually do not pay attention in this information
source. In this Chapter we explore the fusion of dense depth maps (obtained based
on the sparse cloud of points or by 3D stereo reconstruction) with RGB images. Fol-
lowing [39], the information provided by each modality can be fused using either an
early-fusion scheme, i.e. at the feature level, or a late-fusion scheme, i.e. at the
decision level.

Learning a model flexible enough for dealing with multiple views and multiple
positions of an articulated object is a hard task for a holistic classifier. In order to
fulfill this aspect we make use of Random Forests (RF) of local experts [59], which
has a similar expressive power than the popular Deformable Part Models (DPM) [28]
and less computational complexity. In this method, each tree of the forest provides a
different configuration of local experts, where each local expert takes the role of a part
model. At learning time, each tree learns one of the characteristic configurations of
local patches, thus accommodating for different flexible articulations occurring in the
training set. In [59] the RF approach consistently outperformed DPM. An advantage
of the RF method is that only a single descriptor needs to be extracted for the whole
window, and each local expert re-uses the part of the descriptor that corresponds
to the spatial region assigned to it. Its computational cost is further significantly
reduced by applying a soft cascade, operating in close to real time. Contrary to the
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Figure 4.2: Multi-cue, Multi-modal detector scheme. 1) Generate a multi-
modal representation using RGB and depth. 3) Extract multi-cue features.
4) Train multi-modal, multi-cue classifier.

DPM, the original RF method learns a single model, thus not considering different
viewpoints separately. In this work, we extend this method to learn multiple models,
one for each 3D pose, and evaluate both the original single model approach and the
multi model approach. Several authors have proposed methods for combining local
detectors [28, 93] and multiple local patches [31, 52, 81]. The method in [97] also
makes use of RF with local classifiers at the node level, although it requires to extract
many complex region-based descriptors, making it computationally more demanding
than [59].

In this chapter we perform an extensive evaluation providing insights about how
each of these three aspects affect accuracy, both individually and when integrated
together. The proposed method (General scheme in Fig. 4.1) will be evaluated in
well-known KITTI pedestrian dataset pedestrians, under different base classifiers. As
our analysis reveals, the fusion of visible spectrum and depth information allows to
boost the accuracy by a much larger margin.

The rest of the chapter is organized as follows.In Sect. 4.2 we present the related
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work to our proposal. In Sect. 4.3 we develop our proposal. Section 4.4 presents the
experiments carried out to assess our proposal step by step, and discuss the obtained
results. Finally, section 4.5 draws our main conclusions.

4.2 Related Work

From the seminal work of Dalal and Triggs [17] it has been seen that using different
types of gradient-based features and their spatial distribution, such as in the HOG
descriptor [17] provides a distinctive representation of both humans and other objects
classes. However, there exist in the literature other approaches such the integral
channel features proposed by Dollar et al. [22] that allows to integrate multiple kinds
of low-level features such as the gradient orientation over the intensity and LUV
images, extracted from a large number of local windows of different sizes and at
multiple positions, allowing for a flexible representation of the spatial distribution.
In [8], [75] it has been seen that including color boosts the performance significantly,
being this type of feature complementary to the ones we used in this study. Context
features have also been seen to aid [88], [11] and could be easily integrated as well.
Exploring alternative types of spatial pooling of the local features is also beneficial as
shown in [90] and is also complementary to the approach used in this paper.

Object detection based on data coming from multiple modalities has been a rel-
atively active topic of study [36], and in particular the use of 2D laser scanners
and visible spectrum images has been studied in several works, for instance [72, 79].
Only recently authors are starting to study the impact of high-definition 3D LI-
DAR [6, 46, 47, 61, 72, 79, 95]. Most of these works propose specific descriptors for
extracting information directly from the 3D cloud of points [6, 46, 47, 61, 79, 95]. A
common approach is to detect objects independently in the 3D cloud of points and in
the visible spectrum images, and then combining the detections using an appropriate
strategy [46,47,95]. Following the steps of [72], dense depth maps are obtained by first
registering the 3D cloud of points captured by a Velodyne sensor with the RGB image
captured with the camera, and then interpolating the resulting sparse set of pixels to
obtain a dense map where each pixel has an associated depth value. Given this map,
2D descriptors in the literature can be extracted in order to obtain a highly distinctive
object representation. Our work differ from [72] in that we use multiple descriptors
and adapt them to have a good performance in dense depth images. While [72] em-
ploys a late fusion scheme, in our experimental analysis we evaluate both early and
late fusion approaches in the given multi-cue, multi-modality framework.

Most relevant to our approach is the presented in [26] where the authors combine
multiple views (front, left, back, right), modalities (luminance, depth based on stereo,
and optical flow), and features (HOG and LBP). The main differences between [26]
and our work are as follows: i) in order to complement RGB information, we make
use of a sensor modality, high-definition 3D LIDAR, which has received relatively
little attention in pedestrian detection until now, but it is being used for autonomous
driving, and ii) while [26] makes use of an holistic classifier, we make use of a more
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Figure 4.3: Dense depth map generation scheme. From a cloud of points to
a dense depth map: Filter cloud of points for synchronize with view field of
image. Projection of 3D points into 2D image coordinates. Interpolate depths
for getting a dense depth map.

expressive patch-based model, and iii) in [26] multiples cues are combined following
late-fusion style, while we consider also early-fusion, which, in fact, gives better results
in our framework.

Our analysis reveals that, although all the aforementioned components (the use
of multiple feature cues, multiple modalities and a strong multi-view classifier) are
important, the fusion of visible spectrum and depth information allows to boost the
accuracy significantly by a large margin in pedestrian class, but the multi-view axis in
the one with high impact in cyclists, and cars. The resulting detector not only ranks
among the top best performers in the challenging KITTI benchmark, but it is built
upon very simple blocks that are easy to implement and computationally efficient.
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4.3 Multi-modal Detector for Pedestrian Detection

We propose a complete framework in which our final model incorporates the multi-
cue characteristic by extracting HOG and LBP descriptors. Also the multi-modal
characteristic by extracting information from RGB and depth modalities, which will
be combined at feature level (early fusion) or at decision level (late fusion). In addition
we will model objects both holistically and as a set of relevant patches. In the former
case the model will be learnt with linear SVM; and in the latter with a Random Forest
of Local Experts [59].

4.3.1 Multi-cue feature representation

In order to improve the pedestrian detection accuracy it is widely used the incorpo-
ration of different cues or features. This incorporation looks for complementarity by
using different cues for describing the same object. In order to incorporate different
cues in our framework we use the HOG [17] descriptor (shape) and the LBP [62]
descriptor (texture). Both descriptors are combined using an early fusion technique,
concatenating them, obtaining a robust descriptor with complementary information
(HOGLBP). HOG descriptor is composed by a histogram of gradient orientations.
Given a candidate window the histograms are calculated on overlapped blocks inside
it. LBP descriptor calculates histograms of texture patterns over the same overlapped
blocks than HOG. This texture patterns are based on value differences between the
central pixel and the surrounding ones in a 3×3 neighborhood. We use our own imple-
mentation that includes some modifications that improve the final detection rate. The
first modification is included in the image pyramid construction. The image re-size
process is done by bilinear interpolation with antialiasing, which helps the gradient
calculation and thereby the HOG descriptor classification accuracy. The second mod-
ification is included in the LBP descriptor. When the value differences are calculated
we accept as equal values the ones included in a defined range, this range (defined
as ClipTh) allows that small noises (small value changes) do not affect the texture
pattern.

4.3.2 Multi-modal image fusion

Keeping in mind that more complementarity is better for pedestrian detection, we
want to explore the integration of different modalities. Usually information is ex-
tracted from a single-modal sensor (RGB camera), but we combine this visual in-
formation with Depth information. This depth information can be acquired by to
different sources.

First depth source is based on 3D information extracted from a LIDAR sensor.
Lidar sensor provide a sparse point cloud. In order to transform the point cloud
obtained using the LIDAR into a dense depth map, we follow the approach presented
by Premediba et al. [72]. In this method, the 360◦ 3D point cloud from the LIDAR
sensor is filtered in order to take only those points included in the viewfield of the RGB
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Figure 4.4: Multi- View Random Forest scheme. For each view is learnt a
different random forest, and each tree has different configuration of random
patches.

camera. In order to do this each point Pi is projected into the image plane using the
calibration and projection matrices provided in the dataset, using TM = P2×R0×
V tC, where, P2 is the projection matrix from camera coordinate system to left color
image coordinate system, R0 is the rectification matrix, and V tC is the projection
matrix from velodyne coordinate system to camera coordinate system. Once we have
the transformation matrix (TM) we can project any 3D point (defined by its 3D
coordinates [x3D, y3D, z3D]) to its correspondent point in the image plane (defined
by its 2D coordinates [x2D, y2D]) by applying [x2D, y2D, 1] = TM ∗ [x3D, y3D, z3D, 1].
Then the points that fall inside the image borders are selected, while the others are
rejected, ending up with points that form a sparse depth image, time and space
synchronized with the visual image. At this step by defining a neighborhood (N)
for each valid pixel of the depth map we interpolate the information for filling the
missing values. In order to calculate the missing values we use the bilateral filtering
formalism [69]: Dp = 1

Wp
∗
∑

qǫN Gd(‖p− q‖) ∗ Gi(|Iq|) ∗ Iq where Iq is the depth

value of the point q, Gd weights points q inversely to their distance to position p, Gi

penalizes as function of their range values, and Wp is a normalization factor. After
this process, the pixels without depth information will be filled, ending up in a dense
depth map (see Fig. 4.3).

Second depth information is based on 3D stereo reconstruction. The input of
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this system is a stereo-pair calibrated camera. This calibration provides for each
camera the intrinsic (internal parameters such lens distortion and focal length) and
extrinsic (external parameters such relative position and orientation) parameters. The
calibration process needs point correspondences between the two images to compute
the calibration matrix. For stereo processing both cameras should have exactly the
same internal parameters (sensor size, focal length, lens distortion) and be totally
parallel (no rotation, and same position except for the baseline distance). In practice
this is is very difficult to achieve due to camera manufacturing errors and mounting
imprecision. In order to make a correct 3D reconstruction first a rectification of the
images must be done. This rectification transforms both images as if they would
be acquired from two ideal cameras (same internal parameters, totally parallels and
with no lens distortion). After the rectification process matching points from one
image to the other lie at the same horizontal line. This fact reduces the time of the
disparity computation. The disparity image is a gray level image that indicate for
each pixel the distance (in pixels) to its corresponding pixel in the other image (both
pixels represent the same 3D world point). From disparity images, it can be easily
computed the depth map using the following formula: Depth = (b ∗ f)/Disparity,
where b is the baseline and f the focal length.

4.3.3 Multi-view classifier

In general, reducing intra-class variability is a good way to better discriminate a class
from potential false positives (background). One of the biggest causes of the large
variability in object detection, is the pose and orientation of the object. In order
to solve this problem we propose to use a multi-view approach (Fig. 4.5). Given
a set of annotated pedestrians for training a detector, we propose to separate them
into n different views depending on its orientation and aspect ratio. For this goal
we cluster the training set samples using regular-spaced seeds in orientation using K-
Means algorithm [56]. By spliting in this way the samples we can adjust the canonical
size of the detection window for each subset, selecting the mean size of the samples
in the partition set. Thus, allowing the final detector to deal with objects in different
orientation having each orientation its own aspect ratio (e.g. it is not the same
bounding box for a frontal-viewed pedestrian than for a side-viewed pedestrian). In
figure 4.6, 4.7, and 4.8 it is shown the training samples and their views definition based
on the clustering process for the pedestrians, cyclists, and cars classes respectively.
In order to cluster we use the the orientation angle (α) and the aspect ratio (AR) of
the sample.

4.3.4 Object model

In our study we focus on two different models: one holistic, where the whole object
view is considered as the model; and a patch-based one where only a subset of object
patches are considered as model. As holistic model we use the descriptor/SVM
with a linear kernel (linSVM) which has a good compromise between computation
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Figure 4.5: Multi-view, Multi-cue, Multi-modal detector scheme. 1) Split
training set samples in different views. 2) Generate a multi-modal representa-
tion using RGB and depth. 3) Extract multi-cue features. 4) Train a random
forest of local experts for each view. 5) Ensemble different views detection.

time and accuracy. As patch based model we use descriptor/RandomForest(RF ).
Following the implementation in [59], each node in the tree learns a classifier based
on a random patch inside the candidate window, obtaining a RF in which each tree
has different configuration of patches (see Fig. 4.4), and the classification decision is
made by taking into account the configuration learned in each tree of the forest. We
will use the RF formed by 100 trees, 7 levels as maximum depth and each node in a
tree will be a linSVM local expert (see [59] for details).
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Figure 4.6: Pedestrian Orientation Histogram and Distribution. Upper im-
age shows the assigned views against the angle for each sample. Down images
show the samples distribution in the clustering space (angle and aspect ratio).
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Figure 4.7: Cyclist Orientation Histogram and Distribution. Upper image
shows the assigned views against the angle for each sample. Down images show
the samples distribution in the clustering space (angle and aspect ratio).
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Figure 4.8: Car Orientation Histogram and Distribution. Upper image
shows the assigned views against the angle for each sample. Down images
show the samples distribution in the clustering space (angle and aspect ra-
tio).
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Table 4.1: Results for PEDESTRIAN detection using different modalities,
and detectors; tested over the validation set. For each detector AMR for
caltech evaluation protocol is shown . Best AMR for each detector across the
different modalities is indicated in bold

Evaluation Detector RGB Disp. Depth RGB/Disp. RGB/Depth

AMR (Reasonable)
HOG/SVM 50.29 66.30 42.17 44.26 40.04

LBP/SVM 48.91 72.72 41.42 42.37 38.59
HOGLBP/SVM 38.66 58.63 38.05 32.30 33.15

4.4 Experimental results

In this section we will evaluate each step of the proposed approach: multi-cue, multi-
modal, and multi-view as we have described in previous sections, in order to fulfill
this evaluation we will use HOG and LBP features and as classifier the SVM with
linear kernel, and the Random Forest of local experts. Letting us with a bunch of
possibles detectors: HOG/linSVM, LBP/linSVM, HOGLBP/linSVM, HOGLBP/RF.
We will use as baseline for comparing the different steps the HOG/linSVM detector
which was the first milestone in pedestrian detection.

KITTI Dataset We use the KITTI dataset since it provides synchronized stereo-
pair camera and LIDAR data. KITTI dataset for object detection includes 7,481
training images and 7,518 test images, comprising a total of 80,256 labeled objects.
Annotations are provided only for the training set. For this reason we split the
training set into a training set (the first 3,740 images) and a validation set (the last
3,741 images) as in [72], these subsets are used for the evaluation of each step of our
approach. The original training and testing set will be used for training and testing
the optimal configuration of the detector. During training we consider pedestrians
higher than 25 pixels and not occluded (Reasonable subset).

Evaluation protocol As evaluation methodology we follow the de-facto Caltech
standard for pedestrian detection [24], i.e., we plot curves of false positives per image
(FPPI) vs miss rate. The average miss rate (AMR) in the range of 10−2 to 100

FPPI is taken as indicative of each detector accuracy, i.e.. the lower the better. Also
we will evaluate using the KITTI evaluation framework in which the precision-recall
curve is calculated for ranking the methods by the average precision (AP ), i.e., the
higher the better. For testing we use the reasonable subset in the caltech evaluation
and the KITTI evaluation is performed over three different subsets depending on
height and occlusion level: easy subset (Min height: 40 px; max occlusion level: fully
visible; max truncation: 15%), moderate subset (Min height: 25 px; max occlusion
level: partly occluded; max truncation: 30%), hard subset (Min height: 25 px; max
occlusion level: difficult to see; max truncation: 50%). This KITTI evaluation will
be performed in the validation set.
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Figure 4.9: Results over Validation Set for HOG/LinSVM, LBP/LinSVM,
and HOGLBP/LinSVM, using RGB disparity (stereo), and depth (LI-
DAR).Experiments using: (a) RGB modality, (b) Disparity (Stereo) modality,
(c) Depth (LIDAR) modality, (d) multi-modal RGB+Disparity, (e) multi-
modal RGB+Depth.

Multi-cue We start by evaluating the gain obtained by using multiple cues, for
that reason we start by comparing detectors over different modalities isolated, com-
paring single-cues based detectors (HOG and LBP) against multi-cue based one
(HOGLBP). However, first of all we have tuned the LBP parameters, getting ClipThRGB =
4, ClipThDisparity = 6, and ClipThDepth = 0.2. These parameters mean that, for
calculating the texture pattern, we will treat as the same value those in the range
on 4 luminance units for the RGB modality, 6 pixels in disparity, and 0.2 meters
in depth. As it is usual for pedestrian detection to use the Caltech standar eval-
uation method, in table 4.1 we tabulate the AMR, and in Fig. 4.9 we plot the
FPPI curves for different detectors. Comparing the AMR in HOG/linSVM detec-
tor against HOGLBP/linSVM one, we can see that the gain in AMR is around 12
points with RGB modalities, around 8 with disparity, and around 4 with depth. The
same behavior can be seen also if we compare the LBP/linSVM detector against
the HOGLBP/linSVM one where we obtain improvements of around 10 , 14 and 3
respectively.

Multi-modal Regarding the evaluation of the multi-modal approach, we compare
the HOG/linSVM detector over RGB, Disparity, and Depth against its combinations
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Table 4.2: Results for PEDESTRIAN detection using different modalities,
and detectors, tested over the validation set. For each detector AP for KITTI
evaluation is shown . Best AP for each detector across the different modalities
in bold

Evaluation Detector RGB Depth Early Fusion Late Fusion

AP (Easy)

HOG/SVM 0.50 0.59 0.71 0.63
LBP/SVM 0.52 0.62 0.69 0.66
HOGLBP/SVM 0.64 0.65 0.74 0.70
HOGLBP/RF 0.73 0.74 0.79 0.77

AP (Moderate)

HOG/SVM 0.38 0.46 0.57 0.49
LBP/SVM 0.41 0.48 0.57 0.52
HOGLBP/SVM 0.50 0.51 0.61 0.56
HOGLBP/RF 0.59 0.58 0.65 0.62

AP (Hard)

HOG/SVM 0.33 0.40 0.50 0.43
LBP/SVM 0.36 0.42 0.50 0.45
HOGLBP/SVM 0.43 0.45 0.53 0.49
HOGLBP-RF 0.51 0.50 0.56 0.54

RGB+Depth, and RGB+Disparity. We start this multi-modal study by applying
a naive late fusion technique, which merge the detections over each of the different
modalities in a single multi-modal detection. In Fig. 4.1 are tabulated the AMR
for the different detectors over the different modalities and their combination. We
can see that the late fusion experiment outperform the single-modality one for all
the proposed detectors. Regarding the RGB-based detectors against RGB+Disparity
based ones we obtain a gain in AMR of around 16 point over HOG/SVM detector,
6 over LBP/SVM detector, and 6 over HOGLBP/SVM. Similar results are obtained
when we compare RGB-based detectors aging the RGB+Depth-based ones; Disparity-
based against RGB+Disparity-based ones; and Depth-based against RGB+Depth-
based ones. Regarding the results obtained in these previous experiments, we can
observe the better performance of detector based on depth information coming from
a LIDAR sensor. Therefore, we decide that from now ahead we will use only depth
information provided from a LIDAR, over depth information provided from 3D stereo
reconstruction.

Multi-cue, Multi-modal Random Forest of Local Experts Concluding
that multi-modal approaches outperform single-modal ones. we propose to extend the
study to random forest of local experts (RF) [59]. In order to perform a deeper study,
we exploit the implementation of an early fusion technique, which fuse the descriptors
from both modalities in a single one. To this end we test the detectors used in previous
experiments adding to this study the implementation of a multi-modal RF. In figure
4.10 are shown the FPPI curves obtained for the different configurations of detectors
and multi-modal techniques. Regarding the results ovserved in figure 4.10 we conclude
that early fusion technique outperform late fusion one in all the tested detectors.
In table 4.2 we resume the results obtained over the different testing subset (easy,
moderate, and hard) in KITTI evaluation protocol. Regarding moderate subset in
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Figure 4.10: Results over validation set of detectors using early and
late fusion. Descriptors: HOG/linSVM, LBP/linSVM, HOGLBP/linSVM,
HOGLBP/RF under the different sources: RGB, Depth and RGB+Depth
(late and early).

table 4.2 we observe that multi-modal (MM) approach using a early fusion techniche
has a gain in AP against the single-modal (SM) detectors. MM-HOG/LinSVM has
a gain of 19 points against SM-HOG/LinSVM(RGB), and a gain of 11 points against
SM-HOG/LinSVM(Depth). Same behavior is observed for all detectors.

Multi-view detector In order to evaluate the multi-view (MV) axis improve-
ments introduced in a single-view (SV) model, we will compare the SV-detector
against the MV one. In table 4.3 are tabulated the different views relevant val-
ues, min and max angle, aspect ratio and number of samples. We define a two-view
approach for pedestrians and cyclist grouping the left and right views (Lateral-view)
and the front and back views (Frontal-view), for cars we define eight-view approach
using a detector for each one of these orientations: right, right-front, left-front, left,
left-back, back and back-right. Looking in Table 4.4, 4.5, and 4.6 where the results
for the different classes are tabulated, and comparing the SV-HOG/SVM against its
MV counterpart, for pedestrian detection (table 4.4) we obtain an AP improvement
of ∼ 4 (RGB), ∼ 3 (Depth) and ∼ 2 (Early Fusion) and ∼ 2% (Late Fusion). The
same behavior is obtained by comparing the other SV pedestrian models against its
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Table 4.3: Multi-view partition specification for pedestrians, cyclists, and
cars.

Class View
Angle

Aspect Ratio Num. Samples
min max

Pedestrian

Left 136 219
2.50 940

Right -42 37
Front 37 136

2.69 1415
Back 219 318

Cyclist

Left 127 234
1.85 328

Right -68 49
Front 49 127

0.97 760
Back 234 292

Car

Right -44 4 0.37 902
Right-Front 4 65 0.36 274
Front 65 107 0.74 1713
Front-Left 107 151 0.50 4170
Left 151 219 0.37 1194
Left-Back 219 257 0.57 1850
Back 257 284 0.84 4061
Back-Right 284 316 0.55 1542

MV counterpart: LBP/linSVM (∼ 4 / ∼ 3 / ∼ 6 / ∼ 2), HOGLBP/linSVM (∼ 4 /
∼ 2 / ∼ 2 / ∼ 3) and HOGLBP/RF (∼ 2 / ∼ 1 / ∼ 0 / ∼ 2). Following the same
analysis in cyclists (table 4.5) and cars detection (table 4.6), we observe a similar
behavior getting improvements in each one of the proposed detectors.

Discussion Each of the mentioned detectors in this section is developed using
RGB, Depth and Early Fusion and Late Fusion information sources in order to com-
pare the accuracy under the different conditions. Also for evaluating the multi-view
performance the experiments are carried out using a single-view (all samples) and a
multi-view (samples divided in different views). In Table 4.4, 4.5, and 4.6 there are
the accuracy measurements over the validation set. The measurements include the
KITTI evaluation methodology for easy, moderate and hard pedestrian subset. Re-
garding the obtained results it is easy to see the accuracy improvements at each step
of the proposed method. First we can see the improvement introduced by the RF over
the other detectors. Comparing the results obtained in each column (training subset
and information source) we obtain always the best accuracy in the HOGLBP/RF
detector. The second improvement is introduced by the multi-view proposed method,
comparing each row (detector) we obtain the best performance for each of the infor-
mation sources (RGB, Depth, Early Fusion and Late Fusion) when we perform the
multi-view ensemble classifier. The third improvement is introduced by the early fu-
sion of information sources, in this case for each detector and given a training subset
we obtain the best performance in the Early Fusion experiment.

Finally if we compare the baseline method SM-HOG/linSVM against our proposed
MM-RF/LinSVM we obtain an AP gain of ∼ 29, ∼ 27, and ∼ 23 in pedestrians
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Table 4.4: Results for PEDESTRIAN detection using different subsets for
training (Single-view (SV), Multi-view (MV)), modalities, and detectors,
tested over the validation set. For each detector AP for KITTI evaluation
is shown . Best AP for each detector in each modality is indicated in bold,
while the best detector across the different modalities in red

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/SVM 0.50 0.54 0.59 0.62 0.71 0.73 0.63 0.65

LBP/SVM 0.52 0.56 0.62 0.65 0.69 0.75 0.66 0.68
HOGLBP/SVM 0.64 0.68 0.65 0.67 0.74 0.76 0.70 0.73

HOGLBP/RF 0.73 0.75 0.74 0.75 0.79 0.79 0.77 0.79

AP (Moderate)

HOG/SVM 0.38 0.41 0.46 0.47 0.57 0.58 0.49 0.51

LBP/SVM 0.41 0.44 0.48 0.50 0.57 0.61 0.52 0.54

HOGLBP/SVM 0.50 0.54 0.51 0.52 0.61 0.62 0.56 0.58

HOGLBP/RF 0.59 0.60 0.58 0.58 0.65 0.66 0.62 0.63

AP (Hard)

HOG/SVM 0.33 0.35 0.40 0.41 0.50 0.51 0.43 0.44

LBP/SVM 0.36 0.38 0.42 0.43 0.50 0.53 0.45 0.47

HOGLBP/SVM 0.43 0.47 0.45 0.46 0.53 0.55 0.49 0.51

HOGLBP-RF 0.51 0.52 0.50 0.50 0.56 0.57 0.54 0.55
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Table 4.5: Results for CYCLIST detection using different subsets for training
(Single-view (SV), Multi-view (MV)), modalities, and detectors, tested over
the validation set. For each detector AP for KITTI evaluation is shown .
Best AP for each detector in each modality is indicated in bold, while the
best detector across the different modalities in red

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/SVM 0.43 0.52 0.44 0.42 0.62 0.66 0.48 0.51

LBP/SVM 0.34 0.48 0.48 0.46 0.62 0.62 0.50 0.53

HOGLBP/SVM 0.49 0.60 0.48 0.49 0.69 0.69 0.55 0.59

HOGLBP/RF 0.64 0.70 0.49 0.49 0.72 0.73 0.54 0.57

AP (Moderate)

HOG/SVM 0.31 0.41 0.30 0.29 0.44 0.49 0.34 0.39

LBP/SVM 0.29 0.41 0.34 0.33 0.48 0.50 0.38 0.43

HOGLBP/SVM 0.39 0.50 0.34 0.35 0.52 0.54 0.42 0.48

HOGLBP/RF 0.50 0.57 0.33 0.35 0.52 0.55 0.41 0.45

AP (Hard)

HOG/SVM 0.28 0.38 0.28 0.27 0.41 0.45 0.32 0.36

LBP/SVM 0.26 0.38 0.31 0.30 0.45 0.46 0.35 0.39

HOGLBP/SVM 0.35 0.46 0.32 0.33 0.48 0.50 0.38 0.44
HOGLBP/RF 0.45 0.52 0.31 0.32 0.47 0.50 0.38 0.41
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Table 4.6: Results for CAR detection using different subsets for training
(Single-view (SV), Multi-view (MV)), modalities, and detectors, tested over
the validation set. For each detector AP for KITTI evaluation is shown .
Best AP for each detector in each modality is indicated in bold, while the
best detector across the different modalities in red

Evaluation Detector
RGB Depth Early Fusion Late Fusion

SV MV SV MV SV MV SV MV

AP (Easy)

HOG/SVM 0.26 0.72 0.22 0.78 0.29 0.77 0.17 0.78

LBP/SVM 0.11 0.62 0.04 0.70 0.11 0.71 0.10 0.71
HOGLBP/SVM 0.16 0.66 0.18 0.70 0.21 0.72 0.06 0.72

HOGLBP/RF 0.29 0.81 0.38 0.81 0.37 0.82 0.24 0.82

AP (Moderate)

HOG/SVM 0.21 0.67 0.17 0.56 0.24 0.69 0.18 0.71

LBP/SVM 0.11 0.60 0.03 0.61 0.11 0.65 0.12 0.67

HOGLBP/SVM 0.14 0.65 0.16 0.63 0.19 0.67 0.11 0.68

HOGLBP/RF 0.26 0.75 0.28 0.61 0.29 0.76 0.24 0.75

AP (Hard)

HOG/SVM 0.17 0.52 0.14 0.44 0.19 0.54 0.15 0.57

LBP/SVM 0.10 0.48 0.03 0.49 0.09 0.52 0.09 0.54

HOGLBP/SVM 0.11 0.52 0.13 0.50 0.14 0.54 0.09 0.55

HOGLBP/RF 0.21 0.61 0.22 0.48 0.23 0.62 0.20 0.62
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Figure 4.11: Results over validation set using HOG/linSVM, LBP/linSVM,
HOGLBP/linSVM, HOGLBP/RF under the different sources: RGB, Depth
and RGB+Depth.

detection over the validation set for easy, moderate, and hard respectively (Table
4.4).

Finally if we compare the baseline method SV-HOG/linSVM against our proposed
multi-cue, multi-modal and multi-view Random Forest of Local Experts we obtain an
AP gain of ∼ 29 in pedestrians detection, ∼ 30 in cyclists detection, and ∼ 50 in cars
detection, in the validation set (Table 4.4, 4.5, and 4.6 respectively).

Regarding the final approach MV-HOGLBP/RF early fusion of RGB and Depth
in table 4.7 and comparing against the methods with an associated paper in the
object detection competition, we obtain an AP of 73.30%, 56.59%, 49.63% for the
easy, moderate and hard subset respectively, ranking the second best pedestrian
detector in the challenge. In table 4.8, we obtain an AP of 53.97%, 42.61%, 37.42%
for the easy, moderate and hard subset respectively, ranking the second best cyclist
detector in the challenge. Finally in table 4.9, we obtain an AP of 70.40%, 69.92%,
57.47% for the easy, moderate and hard subset respectively, ranking the fifth best
car detector in the challenge. Fig. ??, shows the precision-recall curves obtained over
each subset using the final approach.

It is worth to mention that one of the first ranked method, i.e.Regionlets [57],
appeared posterior to our random forest of local experts but has common key ideas
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Figure 4.12: Precision-recall curve of the testing set for each subset: easy,
moderate and hard, for pedestrian, cyclist and car classes.

Table 4.7: Evaluation and comparison of Multi-view RGBD RF detector
using the final test set for PEDESTRIAN detection

Rank Method Moderate Easy Hard

1 Regionlets 61.15 % 73.14 % 55.21 %
2 MV-RGBD-RF 56.59 % 73.30 % 49.63 %

3 pAUCEnsT 54.49 % 65.26 % 48.60 %

such as using HOG and LBP as features, and being patch-based. Thus we think our
conclusions also apply for it.

4.5 Conclusions

In this chapter we develop a complete multi-cue, multi-modal and multi-view frame-
work for object detection. We have shown the applicability to different models
(holistic, patch-based), obtaining significant accuracy improvements. In this chapter
we focus on object detection using HOG/linSVM as baseline applying the different
proposed method: different cues (HOG and LBP), different modalities (RGB and
Depth) and different views (Frontal, Lateral, etc.). As future work we propose to
focus on detection using more complex features (motion, context), classification al-
gorithms (CNN), and modalities (far infrared). Also the candidate generation and
re-localization based on segmentation as in [57] could be integrate in this pipeline
improving the obtained results.

Table 4.8: Evaluation and comparison of Multi-view RGBD RF detector
using the final test set for CYCLIST Detection

Rank Method Moderate Easy Hard

1 Regionlets 58.72 % 70.41 % 51.83 %
2 MV-RGBD-RF 42.61 % 52.97 % 37.42 %

3 pAUCEnsT 38.03 % 51.62 % 33.38 %



Table 4.9: Evaluation and comparison of Multi-view RGBD RF detector
using the final test set for Car Detection

Rank Method Moderate Easy Hard

1 Regionlets 76.45 % 84.75 % 59.70 %
2 3DVP 75.77 % 87.46 % 65.38 %
3 SubCat 75.46 % 84.14 % 59.71 %
4 AOG 71.88 % 84.36 % 59.27 %
5 MV-RGBD-RF 69.92 % 76.40 % 57.47 %



Chapter 5

Combining the Visible and Far
Infrared Spectrum

Regarding the results obtained in previous chapters, pedestrian detection remains as
an extremely challenging problem in real scenarios. In order to develop a detector
that successfully operates under different lighting conditions, it becomes necessary
to combine multiple imaging modalities including visible and far infrared (FIR). FIR
cameras capture energy emitted in the far infrared spectrum not visible to the human
eye. FIR cameras capture to thermal information, which is quite invariant to illu-
mination conditions. In this chapter we want to compare the accuracy of pedestrian
detectors based on visible images with detectors based on FIR images. Specially we
want to study how the accuracy is affected during day and night time. In order to do
so we have created a multi-modal dataset containing several on-board sequences si-
multaneous acquired with visible and FIR cameras during day and night time. Then
we trained and evaluated different state-of-the-art detectors over those sequences.
Results show that accuracy for FIR sequences is not affected by time conditions.
However on visible sequences, as expected, detector accuracy is similar to its FIR
counterpart during day time, while during nigh time its accuracy drops dramatically.
Finally we tested the multi-modal approach presented in chapter 4 adapted to deal
with visible/FIR images. we performed this test in KAIST dataset [43] obtaining
competitive results in this benchmark.

5.1 Introduction

Visual pedestrian detection has been receiving attention for more than a decade [37]
in the computer vision community due to its multiple applications like Advance Driver
Assistance System (ADAS) [23, 25], autonomous vehicles [33], and video surveil-
lance [71], [82], [83]. Pedestrian detection continues being a challenging task still
waiting for better solutions. Although different research lines have been proposed,

55
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the accuracy/performance of pedestrian detection methods remains limited in hard
scenarios like occlusions, cluttered backgrounds, bad visibility conditions, illumina-
tion changes, etc. In this chapter we focus on improving the performance in the latter
case. The use of infrared images will allow us to operate under different illumina-
tion scenarios during day and night time, addressing the problem of visible spectrum
cameras for operating under hard visibility conditions.

Figure 5.1: Setup for dataset acquisition: Stereo-pair FIR/Visible, images
with different resolution and field of view.

The infrared/thermal cameras for autonomous vehicles exibit two types of sen-
sors, typically: near infrared (0.75 ∼ 1.3µm), and far infrared (7.5 ∼ 13µm). In [80] it
is shown that human body radiates in far infrared (FIR) spectrum (9.3µm). Accord-
ingly, FIR images have been successfully employed for pedestrian detection in [78],
[43], taking advantage of its invariant to different illumination conditions allowing to
detect under day/night time (24 hours) without image acquisition problems.
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In this chapter we will carry out a comparison of detectors trained with visual
and/or FIR images acquired during day and night time. We want to check which
modality or combination of tem perform the best in each lighting conditions. At the
time of starting this study there was no dataset publicly available, so we acquired
a new dataset with sequences at day and night. These sequences are acquired on-
board simultaneously with a visible and a FIR cameras in normal driving sessions
through urban scenarios. Both cameras are facing forward recording the same scene
at the same frame rate but not synchronized (due to hardware limitations of the FIR
camera). Our hypothesis is that at day time detectors based on visible spectrum
images will outperform FIR-based ones, and the opposit behavior at night. to test it
we will evaluate different state-of-the-art features as HOG, LBP and their combination
HOGLBP, input to linear SVM, Random Forest and DPM classifiers. The obtained
results proved the hypothesis correct during night time when visible-based detectors
drop their accuracy drastically, but we found similar performance at day time. Facing
this new fact, we propose to use during the day a multi-modal detector which extracts
information from both modalities simultaneously as explained in chapter 4. In order
to test this approach we required a time and space synchronized dataset that allows
us to extract the multi-modal information. Given that our dataset is not synchronized
we test the multi-modal approach in the KAIST dataset [43]. Finally our multi-modal
results outperform the state-of-the-art methods reported in this dataset.

The rest of the chapter is organized as follow. In section 5.2 we will review
the state-of-the-art in FIR detection. Section 5.3 will explain the methodology used
to acquire our dataset and the multi-modal approach. Section 5.4 will present the
dataset and the experiments carried out to perform our comparison. Finally, section
5.5 draws our main conclusions and future work.

5.2 FIR Detection

Recently FIR images have acquired relevance in object detection applications but
very few studies have been carried out about pedestrian detection under FIR images
on different times (Day/Night).

There are applications relying on video surveillance [19], [20] and objects tracking
[71]. All these approaches work in controlled scenarios in which cameras are in a fixed
position.

More related works in on-board detection based in FIR images propose different
features, setups, etc. Hwang et al. in [43] introduce a new on-board dataset with
FIR-visible image pair acquired using a beam splitter hardware, ending up with a
space/time synchronized image pair. In order to test their new dataset they propose
a multispectral ACF [23] detector adding as a new channels the FIR image intensity
and the HOG descriptor calculated over the FIR image. Olmeda et al. [64] present a
new descriptor, HOPE – Histograms of Oriented Phase Energy, specifically targeted
for infrared images, and a new adaptation of the latent variable SVM approach to
FIR images. HOPE is a contrast invariant descriptor that encodes a grid of local
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oriented histograms extracted from the phase congruency of the images computed
from a joint of Gabor filters. In [49] is presented an analysis of color-, infrared-, and
multimodal-stereo pedestrian detection approaches, using a four-camera experimental
setup consisting of two color and two infrared cameras. In order to detect pedestrians
they use a detector based on [17] using HOG descriptor and SVM with a radial basis
kernel. This detector is evaluated over different modalities and a combination of
them. All these approaches mentioned above try to cover different aspects of FIR
detection, such as new features designed for enhance FIR images characteristics [64],
or advantages of a multimodal-stereo approach [49], or a new multispectral descriptor
which extracts information from both sources simultaneously [43]. In contrast to
these approaches we test state-of-the-art methods and perform a fair comparison of
them under different time/modality conditions. Providing in this way a solid baseline
which can be used as starting point for designing new multi-modal approaches getting
the maximum advantages of both sensors during each time condition.

5.3 Methodology

In this section we will start by introduce our new dataset setup acquisition method
(Subsection 5.3.1). Finally the multi-modal approach combining visible and FIR
images in presented in subsection 5.3.2.

(a) (b)

Figure 5.2: Geometry of a pinhole camera model. (a) shows a 3D view of
the model and (b) a 2D view seen from the X2 axis.

5.3.1 Dataset Acquisition Setup

In order to get a dataset that allows us to evaluate the performance under differ-
ent conditions we recorded two sequences using a couple of cameras one visible the
other FIR (see Fig. 5.1), one during the day time and the other at night. We
used UI-3240CP camera (Visible images) and FLIR Tau 2 camera (FIR images), see
specifications of mentioned cameras in Table 5.1. Notice that neither resolution nor
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Table 5.1: FLIR Tau 2 and UI-3240CP camera specifications.

Specifications FLIR Tau 2 IDS UI-3240CP

Resolution 640 x 512 pixels 1280 x 1024 pixels

Pixel size 17 µm 5.3 µm

Lens length 13mm Adjustable

Sensitive area 10.88mm x 8.7mm 6.784 mm x 5.427 mm

Frame rate 30/25 Hz (NTSC/PAL) 60 fps

field-of-view match, capturing images of different size and covering different area of
the scenes. The visible camera produces a wide field of view with high resolution,
whereas the FIR camera resolution is very limited. However, we expect that FIR
camera resolution will be increasing in the next years.

For the purpose of this work, we must have images with same field of view ans
resolution, because it is mandatory that every target object have similar number of
pixels assigned in both images, visible and FIR. Since the FIR camera specifications
can not be changed, we need to adjust the visual camera settings. A plausible solution
would be to calculate the size of the lens that the camera must have to produce the
same image as the FIR camera in terms of field of view and resolution. To do so, it
is necessary to follow the pinhole camera model.

Pinhole camera model is a geometric model which states that a 3D point (real
world coordinates) can be mapped to a 2D point (image plane coordinates) by geomet-
ric calculation, as shown in Figure 5.2. Following this model and taking into account
that the visible camera geometry can be modified, we adjust the focal length to as-
sure that a given object in the real world is projected to both cameras with the same
height in pixels. In order to calculate the focal length of the visible camera we follow
the following procedure. The point O represents the origin in the < X1, X2, X3 >
world coordinate system, where P and Q are a real world point and its projection in
the image plane, respectively. The X3 represents the distance from P to the (X1;X2)
image plane and f is the distance from O to the image plane.

If we apply trigonometry basics to this problem we can compute the distance from
the X2 axis to the points P and Q. According to the similar triangles principle we
realize that y1 (Figure 5.2b) can be calculated as follows:

|y1| =
f ∗X1

X3
(5.1)

Since the aim of this work is to have similar pixel distribution in both FIR and
visual images, it is necessary to compute the pixel distribution for the FIR camera and
adjust the visual camera settings to the FIR output. Suppose having a target object of
1.5m tall that is located 3.0m away from the camera. Here, it is necessary to find out
the number of pixels of this object in the image. Hence, equation 5.1 can be applied



60 FAR INFRARED

to solve the problem. Considering the FIR camera parameters we have f = 13mm
and using the object height (X1 = 1500mm) and distance (X3 = 3000mm), hence,
y1 represents the number of pixels of the target object. According to equation 5.1
y1 = 6.5mm, taking in to account the size of a pixel (17µm) we obtain 382.35 pixels
for this object. For getting the focal length needed for the visual camera and taking
into account the pixel size for the visible camera, by using eq. 5.1 we obtain that
382.35 pixels corresponds to 2.027mm (y1) in this camera. Replacing y1, X1, and X3

if equation 5.1 we obtain f = 4.054mm. Accordingly we set this value in our visible
camera, capturing objects with same height in both images. In Figure 5.3 we have
image examples for acquired sequences using this setup, where objects in both images
(Visible and FIR) have the same height and recorded images have same field of view.

5.3.2 Multi-modal Approach

Keeping in mind that more complementarity information is better for pedestrian
detection, we want to explore the integration of different modalities. In this case
visible and FIR images. In order to generate a multi-modal detector we propose
to use a similar approach than in previous chapter ??. For each candidate window
we extract HOG and LBP features over each modality (visual and FIR). Then, we
combine these features into a single detector (Random Forest of local experts). We
combine the features using an early fusion approach; using this approach we train a
single model using as descriptor the concatenation of the features computed at each
modality. Keeping in mind that the acquired dataset is not synchronized in time
(lag) and space (stereo disparity), we propose to test our approach in the KAIST
dataset [43]. This dataset is time and space synchronized, meaning that each pixel
in a pair of images refers to the same point in the scene, allowing us to extract
multi-modal information.

5.4 Experimental Results

In this section we assess the performance comparison between detectors trained un-
der different modalities (FIR/Visible), analyzing the impact in the performance when
the same detector operates under different time conditions (Day/Night). For com-
parison, we have chosen a bunch of detectors starting with features like HOG [17],
LBP [89] and the concatenation of both (HOG+LBP), using linear-SVM as classi-
fier. Then evaluating with more complex detectors based on the previous ones but
using a random forest of local experts (RF) [59] or a deformable part-based model
(DPM) [28].

Evaluation Protocol As evaluation methodology we follow the de-facto Caltech
standard for pedestrian detection [24], i.e., we plot curves of false positives per image
(FPPI) vs miss rate. The miss rate average AMR in the range of 10−2 to 100 FPPI
is taken as indicative of each detector accuracy, i.e.. the lower the better. Moreover,
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Figure 5.3: CVCMultispectral FIR/Visible Pedestrian Dataset image exam-
ples. During day time both sensors provide useful information, During Night
visible camera cant capture details of pedestrians providing poor information.

during testing we consider three different subset: Near, medium, and reasonable.
The near subset includes pedestrians with height equal or higher than 75 pixels. The
medium subset includes pedestrian between 50 and 75 pixel height. Finally we group
the two previous subset in the reasonable subset (height >= 50px).

CVC Multispectral FIR/Visible Pedestrian Dataset In order to per-
form this study we acquire and present a new multispectral pedestrian dataset. In
this case, FIR and visible cameras were not hardware synchronized. However, they
were running at same frame rate (10 fps) and started at the same time for record-
ing sequences concurrently. Thus even there is a time shift between FIR and visible
sequence pair, this is negligible for comparing the performance of the pedestrian de-
tectors (e.g., see image pair in Fig. 5.3).

In Table 5.2 is summarized the number of frames and annotated pedestrian for
each one of the subsets: Day/FIR, Night/FIR, Day/Visible, and Night/Visible. There
is defined as mandatory pedestrian the ones with height larger than 50 pixels. This
new dataset has more than 2000 annotated pedestrian of each subset, where more
than 1300 are mandatory. Finally for testing it has more than 1500 annotated, where
more than 1300 are mandatory. In Figure 5.3 are shown examples of image pairs
Visible-FIR for both time condition scenarios. In Figure 5.4 are shown some examples
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Day Night
Visible FIR Visible FIR

Figure 5.4: CVC Multispectral FIR/Visible Pedestrian Dataset crops exam-
ples.

of pedestrian crops. During day time we can see that in shadows areas objects are
well defined in FIR images, while areas with normal light conditions objects are well
defined in visible image (if background is not clutter). During night time while in
visible images only objects in areas illuminated by car lights are well defined, in
FIR images objects are clearly recognizable no matter their position and illumination
conditions.

KAIST Multispectral Pedestrian Dataset The KAISTMultispectral Pedes-
trian dataset [43] is acquired using a hardware consisting of a color camera, a thermal
camera and a beam splitter to capture the aligned multispectral (RGB color + Ther-
mal). The sequences are acquired in on-board traffic scenarios. This dataset consists
of 95k color-thermal pairs (640x480, 20Hz) taken from a vehicle, and manually anno-
tated (person, people, and cyclist). Ending up 103,128 dense annotations and 1,182
unique pedestrians.

Table 5.2: New dataset resume of images and annotated pedestrian.

Set Variable
FIR Visible

Day Night Day Night

Training

Positive Frames 2232 1386 2232 1386
Negative Frames 1463 2004 1463 2004

Annotated Pedestrians 2769 2222 2672 2007
Mandatory Pedestrians 1327 1787 1514 1420

Testing
Frames 706 727 706 727

Annotated Pedestrians 2433 1895 2302 1589
Mandatory Pedestrians 2184 1541 2079 1333

Experiments over CVC dataset In order to evaluate the detection accu-
racy over different modalities, we train/test a bunch of detectors under all possible
combinations of modalities and time conditions. In Figures 5.5, and 5.6 we can see
the plots obtained using the caltech standard evaluation protocol for the different
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proposed detectors: HOG/LinSVM, LBP/LinSVM, HOG+LBP/LinSVM, HOG/RF,
HOG+LBP/RF, HOG/DPM, and HOG+LBP/DPM. AMR from all experiments in
Figures 5.5, and 5.6 are summarized in Table 5.3. Obtained results show that the same
detector using FIR images as information source outperforms (less miss rate) the one
which uses visible spectrum images, no matter the time condition (Day/Night) under
the experiments is performed. Also shows the invariance to time conditions when
the detector is applied over FIR images, obtaining similar performance for sequences
during day and night time, while the experiments over visible images have different
performance, due to the lack of information in visible images during the night time.
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Figure 5.5: Results using SVM detectors over CVC multispectral dataset.

Experiments over KAIST dataset In order to evaluate the multimodal de-
tector in the new benchmark presented in [43] for RGB/FIR images we perform
HOG+LBP/RF detector with and early fusion techniques for merge the different
modalities. For providing a complete comparison we test the proposed method in
different subsets of annotated pedestrians: Reasonables, near, and medium. In Table
5.4 are the average miss rates for the different detectors over the different subsets. In
Figure 5.7 is shown the complete curves of some representative results.
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Figure 5.6: Results using different detectors over CVC multispectral dataset.
Top row detectors based on DPM, bottom row based on RF.

Discussion Results obtained during the performed study reveal that during day
time visible and FIR cameras provide useful information for applying vision-based
pedestrian detection algorithm; obtaining similar accuracy in those conditions. While
in night time visible cameras can not capture pedestrian details. This problem is
solved by a FIR camera; making the detector to perform well obtaining low miss
rate in the whole FPPI evaluation range. This can be explained by the temperature
difference between humans and the scene, which highlights humans profiles in the
scene giving rise to well-defined contours. In consequence, we propose a multi-modal
detector and test it on the KAIST dataset. This multi-modal approach outperforms
single-modal approaches during the day when both sensors provide useful information.
During night due to the bad performance of visible spectrum cameras, the multi-modal
solution perform similar to FIR-based one but is affected by the noisy information of
the visible spectrum information decreasing its accuracy. In this evaluation we obtain
competitive detectors in this benchmark.
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Table 5.3: CVC Multispectral FIR/Visible Pedestrian Dataset results for
different detectors over different time conditions

Detector
FIR Visible

Day Night Day Night

HOG/LinSVM 22.74 25.44 42.85 71.66

LBP/LinSVM 21.56 32.08 40.57 87.56

HOGLBP/LinSVM 21.52 22.80 37.55 76.86

HOG/DPM 18.87 24.11 28.58 73.60

HOGLBP/DPM 18.34 31.59 25.22 76.38

HOG/RF 20.71 24.39 39.90 68.21

HOGLBP/RF 16.66 24.84 26.61 81.21

5.5 Conclusions

In this chapter we have presented an exhaustive study of pedestrian detection using
visible and FIR sensors operating during day and night time. This evaluation is based
on well known features HOG and LBP and holistic, patch-based, and part-based mod-
els. Taking into account the detector performances under the different time conditions
and the sensor used for acquiring the images, we propose a multi-modal approach that
extracts information from both sensors during the day time. This approach outper-
forms the state-of-the-art method in the KAIST dataset [43], showing that a simple
early fusion of features extracted from both sensors can generate competitive detec-
tors. Regarding the obtained results we propose the study of convolutional neural
networks to pedestrian detection in FIR images, and the design of a network that
deals with multi-modal information.
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Table 5.4: KAIST Multispectral Pedestrian Dataset multi-modal results for
HOG/LinSVM, LBP/LinSVM nad HOGLBP/RF detectors over different sub-
sets: Reasonables, near, medium, partial occluded and heavy occluded.
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Visible 87.23 66.30 91.13
FIR 59.25 31.94 63.34

Multi-modal 61.54 32.57 66.98
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Day
Visible 72.66 39.75 74.52
FIR 70.52 31.52 72.53

Multi-modal 65.75 28.75 66.44

Night
Visible 91.43 75.91 93.22
FIR 53.51 25.33 59.96

Multi-modal 56.68 29.36 61.69
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Figure 5.7: Results using different test subsets over KAIST multispectral
dataset during day time. Left plot include results tested over reasonable
subset, middle plot over near subset, right plot over medium dataset.
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Figure 5.8: Qualitative Results comparing HOG/LinSVM detector in dif-
ferent time/sensor conditions. Blue boxes represent correct detections (True
Positive), while red boxes represent misdetections (False Negative), number
on the top of detection represent the classification score.



Chapter 6

Conclusions

In this Thesis we explore the inclusion of multiple information sources in order to
increase the robustness of base pedestrian detectors. During this Thesis we develop
approaches that include temporal information, information from different modalities,
and develop of a strong multi-view approach.

The work included in this dissertation can be divided in three main topics. First
the study and development of a method that includes spatiotemporal information.
Second the developments of a multi-view, multi-modal, and multi-cue detector. Fi-
nally the study of FIR images as an alternative information source for vision-based
pedestrian detectors.

In chapter 3 we develop a novel method for introducing spatiotemporal informa-
tion. This information until now was introduced in post-detection stages, instead we
propose to include it at the pedestrian description level. We show how even simple
projection windows can boost the detection accuracy of different base classifiers in
on-board sequences.

In chapter 4 we perform a full study of a multi-cue, and multi-modal approach,
which combines information of visible cameras with depth information. To this end we
test two different depth information sources (stereo and LIDAR). Finally we extend
the Random Forest of local Experts detector for dealing with multi-modal information.
Following this line, we extend the previous approach with the inclusion of a strong
multi-view technique. We propose an automatic partition of the training set for views
definition. This multi-view extension boost the detectors accuracy by reducing the
intra-class variability regarding the samples of each view. Finally this multi-view,
multi-modal, and multi-cue approach ranks among the top detectors in the KITTI
benchmark for pedestrians, cyclists, and cars detection.

In chapter 5 we perform a an exhaustive study of applicability for far infrared
(FIR) cameras to pedestrian detection during day and night time. This evaluation
was performed under different detectors: holistic, patch-based, and part-based mod-
els. Obtaining as a result clear evidence about the better performance of FIR-based
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detectors against visible-based one at night, while at day time both detectors perform
similar. Also in this chapter we adapt the multi-modal approach of previous chapter
for introducing FIR/thermal information in the pedestrian detection framework, this
multi-modal approach outperform the single-modal ones and we obtain competitive
results in the KAIST multi-spectral dataset.

At the end of this Thesis we present two new on-board dataset for pedestrian
detection. The first one acquired for spatiotemporal information was record at 30
FPS, and allows comparison at three different frame rates 30 FPS, 10 FPS and 3
FPS. The second acquired with a not synchronized pair visible/FIR during day and
night time. Both datasets and their specifications are presented in chapters 3, and 5
respectively.

Therefor, with respect to the questions we set as objectives in chapter 1, we can
state that:

� How to introduce temporal information in the classification stage of a pedestrian
detector?
Answer. Introducing spatiotemporal information by following SSL paradigm,
allow us to boost accuracy of base classifiers. Re-utilizing the descriptors pre-
viously computed in previous frames, SSL paradigm does not introduce extra
description calculation having same computational cost that base classifiers.

� The combination of depth with visual information does improve the use of these
modalities in isolation?
Answer. Multi-modal RGB-D approaches boost accuracy of single-modal ones.
Multi-modal approaches capture complementary information obtaining more
robust classifiers.

� The combination of FIR with visual spectrum information does improve the use
of these modalities in isolation?
Answer. Multi-modal Visible-FIR approaches boost accuracy of single-modal
ones during day time, but at night visible information is so poor that detectors
using the multi-modal approach have lower accuracy that FIR one.

6.1 Future Work

Pedestrian detection remains as a not-completed solved challenge. In this Thesis we
include robustness to base classifiers by introducing alternative information sources,
despite of these improvements, detection rates in real urban scenarios is still a big
challenge. Regarding the recent big improvements in different computer vision task of
techniques based on neural networks, we propose as future research line to adapt these
neural network approaches for including our proposed information sources (Temporal,
multi-view, and multi-modal).

As a first proposed future work, we propose to research the Recurrent Convo-
lutional Neural Networks (R-CNN) [51, 55], which include temporal/sequential in-
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formation in their architecture. R-CNN define concatenated CNN where outputs of
previous stages go to following stages as features. This architecture follows the same
paradigm as SSL, so it is expected that a good adaptation of it to spatiotemporal
pedestrian detection could boost the accuracy. Continuing with the spatiotemporal
information, to research for motion invariant methods for volume definition, will allow
a better temporal description of pedestrian. These volume definition method should
avoid object motion and egomotion, also should be aware of object size changes during
the sequence.

As a second future research line, the definition of a CNN architecture that allows
the integration of multiples modalities, should provide with a high accuracy detector.
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3D-Guided Multiscale Sliding Window for Pedestrian Detection. In Iberian
Conf. on Pattern Recognition and Image Analysis. 2015.
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