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This thesis is dedicated to

my parents, Alicia and Juan,

and my beloved, Anthi.

....Keep Ithaka always in your mind.

Arriving there is what you are destined for.

But do not hurry the journey at all.

Better if it lasts for years,

so you are old by the time you reach the island,

wealthy with all you have gained on the way,

not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.

Without her you would not have set out.

She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.

Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

section of C. P. Cavafy’s poem Ithaka
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....Ten siempre en tu mente a Ítaca.

La llegada allí es tu destino.

Pero no apresures tu viaje en absoluto.

Mejor que dure muchos años,

y ya anciano recales en la isla,

rico con cuanto ganaste en el camino,

sin esperar que te dé riquezas Ítaca.

Ítaca te dio el bello viaje.

Sin ella no habrías emprendido el camino.

Pero no tiene más que darte.

Y si pobre la encuentras, Ítaca no te engañó.

Así sabio como te hiciste, con tanta experiencia,

comprenderás ya qué significan las Ítacas.

extracto del poema Ítaca de C.P. Cavafy
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Abstract
The frontiers of computational fluid dynamics (CFD) are constantly expanding

and eagerly demanding more computational resources. During several years the
CFD codes relied its performance on the steady clock speed improvements of the
CPU. In the early 2000’s, the physical limitations of this approach impulsed the de-
velopment of multi-core CPUs for continuing Moore’s law trend. Currently, we are
experiencing the next step in the evolution of high performance computing systems
driven by power consumption constraints. Hybridization of the computing nodes
is a consolidated reality within the leading edge supercomputers. The HPC nodes
have incorporated accelerators that are used as math co-processors for increasing the
throughput and the FLOP per watt ratio. On the other hand, multi-core CPUs have
turned into energy efficient system-on-chip architectures. By doing so, the main com-
ponents of the node are fused and integrated into a single chip reducing the energy
costs.

Nowadays, several institutions and governments are investing in the research
and development of different aspects of HPC that could lead to the next gener-
ations of supercomputers. This initiatives have entitled the problem as the exas-
cale challenge. The idea consist in developing a sustainable exascale supercomputer
(1× 1018FLOP/s), with a power consumption of around 20MW. This represents a
two order of magnitude improvement of the FLOP per watt ratio of the current ma-
chines. Which can only be achieved by incorporating major changes in computer ar-
chitecture, memory design and network interfaces. As a result, a diversity of frame-
works and architectures are competing with each other to become the prominent
technology in the next generation of supercomputers.

The CFD community faces an important challenge: keep the pace at the rapid
changes in the HPC resources. The codes and formulations need to be re-design in
other to exploit the different levels of parallelism and complex memory hierarchies
of the new heterogeneous systems. The major characteristics demanded to the new
CFD software are: memory awareness, extreme concurrency, modularity and porta-
bility.

This thesis is devoted to the study of a CFD algorithm re-factoring for the adop-
tion of new technologies. Our application context is the solution of incompressible
flows (DNS or LES) on unstructured meshes. Hence, rather than focusing on the
study of the physics associated to these flows, most of the work is focused on the
implementation in the modern and leading edge architectures.

In particular, the contents of the four main chapters have been submitted or pub-
lished in international journals and conferences. Therefore, they are written to be self-
contained and only minor changes have been introduced with respect to the original
sources. Consequently, some theoretical and numerical contents are repeated along

ix



x Abstract

them. Moreover, at the end there are two appendices including material that may be
useful in order to understand some parts of this work, but that has been placed apart
so that the normal reading of the thesis is not disturbed.

Our working plan started with the analysis of the key issues of the hybrid super-
computers based on GPU co-processors. The main difficulty is the required program-
ming shift towards the stream processing model, so called Single Instruction Multi-
ple Threads (SIMT) in the NVIDIA GPUs context. This new programming model
requires major code modifications, based in creating new data structures that can be
efficiently managed by the massively parallel devices. In the SIMT model the effi-
cient execution heavy relies in the deep knowledge of the computing architecture.
This makes difficult for a common user to design efficient CFD codes in those archi-
tectures. Then, our challenge was to integrate the SIMT execution model into our
CFD code, so called TermoFluids, in the less invasive form.

The first approach was using GPUs for accelerating the Poisson solver, that is
the most computational intensive part of our application. In particular, we targeted
clusters with multiple GPUs distributed in different computing nodes and intercon-
nected using the MPI standard. Different storage formats where studied for the
sparse matrices derived from our discretizations and a two-level partitioning ap-
proach was introduced to perform the communications between host and devices.
In terms of parallelism, the bottleneck of the algorithm was the communication pro-
cess, therefore an overlapping of data transfer and computations was proposed in
order to hide part of the MPI and the CPU-GPU communications.

The positive results obtained with the first approach motivated us to port the
complete time integration phase of our application. This required major code re-
factoring. We decided not to focus only in GPUs, but to re-design the code so it
could be easily be ported to other architectures as well. The code restructuring can be
considered a big software engineering challenge, in which portability and modular-
ity are the central objectives to be accomplished, but without losing the performance
and the user friendly approach of TermoFluids. As a result, the second chapter of this
thesis presents an algebraic based implementation model for CFD applications. The
main idea was substituting stencil data structures and kernels by algebraic storage
formats and operators. By doing so, the algorithm was restructured into a minimal
set of algebraic operations. The implementation strategy consisted in the creation of
a low-level algebraic layer for computations on CPUs and GPUs, and a high-level
user-friendly discretization layer for CPUs that is fully localized at the preprocess-
ing stage where performance does not play an important role. Therefore, at the
time-integration phase the code relies only on three algebraic kernels: sparse-matrix-
vector product (SpMV), linear combination of two vectors (AXPY) and dot product
(DOT). Such a simple set of basic linear algebra operations naturally provides the
desired portability. Special attention was paid at the development of data structures
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compatibles with the stream processing model. Improvements with respect to our
first implementation were introduced in several sections of the code. In particular,
the deeper knowledge of the architecture allowed us to enhance the code in terms
of storage formats for the SpMV, reordering techniques for maximizing bandwidth
attainment and better communication schemes were developed for overlapping pur-
poses. A detailed performance analysis was studied in both sequential and paral-
lel execution engaging up to 128 GPUs. The main objective was to understand the
challenges and set some ground rules for attaining the maximum achievable perfor-
mance in single or multiple GPU execution. In addition, an accurate estimation of
the CFD performance based in the analysis of the separate kernels was proposed and
showed great accuracy.

The exascale computing challenge has encouraged the study of new energy effi-
cient technologies. In this context, the European project called Mont-Blanc was con-
ceived to design a new type of computer architecture capable of setting future global
HPC standards, built from energy efficient solutions used in embedded and mobile
devices. The Mont-Blanc consortium is formed by 13 partners from 5 different coun-
tries joining industrial technology providers and research supercomputing centers.
We were invited to test TermoFluids code in the Mont-Blanc prototypes. Therefore,
our effort was focused in presenting one of the first CFD algorithms running in this
novel architecture. The application of the portable implementation model proposed
in chapter two was straightforward. However, additional tuning was required to
take into account the specific characteristics of the mobile-based architecture. The
Mont-Blanc nodes are composed by one fused CPU/GPU where memory is physi-
cally shared between both devices. This main characteristic removes the PCI-express
overhead in the device communication and facilitates the implementation of hetero-
geneous algebraic kernels.

Chapter three exposed the work dedicated to the design of concurrent hetero-
geneous kernels using both computing devices CPU and GPU. The load balancing
between the two devices exploits a tabu search strategy that tunes the workload dis-
tribution during the pre-processing stage. An overlap of computations with MPI
communications was used for hiding at least partially the data exchange costs that
becomes a bottleneck when engaging multiple Mont-Blanc nodes. Moreover, a com-
parison of the Mont-Blanc prototypes with high-end supercomputers in terms of the
achieved net performance and energy consumption provided some guidelines of the
behavior of CFD applications in ARM-based architectures.

Finally, the experience gained in the code re-factoring allowed us to identify other
parts of TermoFluids that could be upgraded in order to exploit the new CPU tech-
nologies. In particular, we focused in the Poisson solver for discretizations with
one periodic direction, that is the most time consuming part of such simulations.
The current trend indicates that CPUs are increasing the number of vector registers,
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promoting the use of the Single Instruction Multiple Data (SIMD) extensions. Com-
monly known as vectorization, the SIMD model can be seen as a low level stream
processing modeling, and therefore some of the concepts, acquired in the previous
works, such as memory alignment and coalescence can be applied to CPUs as well.

Chapter four demonstrates the relevance of vectorization and memory aware-
ness for fully exploiting modern CPUs. This work was developed and tested in the
BlueGene/Q Vesta supercomputer of the Argonne Leadership Computing Facility
(ALCF). In particular, we present a memory aware auto-tuned Poisson solver for
problems with one Fourier diagonalizable direction. This diagonalization decom-
poses the original 3D system into a set of independent 2D subsystems.

The proposed algorithm focuses on optimizing the memory allocations and trans-
actions by taking into account redundancies on such 2D subsystems. Moreover, we
also take advantage of the uniformity of the solver through the periodic direction
for its vectorization. Additionally, our novel approach automatically optimizes the
choice of the preconditioner used for the solution of each frequency system, and dy-
namically balances its parallel distribution. Altogether constitutes a highly efficient
and robust HPC Poisson solver.

The final chapter contains the main conclusions of this thesis and the future re-
search path in order to continue with the challenge of achieving performance on the
incoming pre-exascale hybrid supercomputers.
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2 CHAPTER 1. GPUS IN POISSON EQUATION

Abstract. The preconditioned conjugate gradient (PCG) is one of the most prominent iterative
methods for the solution of sparse linear systems with symmetric and positive definite matrix
that arise, for example, in the modeling of incompressible flows. The method relies on a set
of basic linear algebra operations which determine the overall performance. To achieve im-
provements in the performance, implementations of these basic operations must be adapted
to the changes in the architecture of parallel computing systems. In the last years, one of the
strategies to increase the computing power of supercomputers has been the usage of Graph-
ics Processing Units (GPU) as math co-processors in addition to CPUs. This paper presents a
MPI-CUDA implementation of the PCG solver for such hybrid computing systems composed
of multiple CPUs and GPUs. Special attention has been paid to the sparse matrix-vector mul-
tiplication (SpMV), because most of the execution time of the solver is spent on this operation.
The approximate inverse preconditioner, which is used to improve the convergence of the CG
solver, is also based on the SpMV operation. An overlapping of data transfer and computations
is proposed in order to hide the MPI and the CPU-GPU communications needed to perform
parallel SpMVs. This strategy has shown a considerable improvement and, as a result, the
hybrid implementation of the PCG solver has demonstrated a significant speedup compared
to the CPU-only implementation.

1.1 Introduction

Scientific computing is constantly advancing due to the raising of new technologies.
The architectures with single-processor nodes evolved into multi- and many-core
platforms and, in the last years, Graphics Processing Units (GPU) have emerged
as co-processors capable to handle large amount of calculations exploiting the data
parallelism. However, except for some specific problems, obtaining the desired per-
formance from GPU devices is far from being trivial and usually requires significant
changes in the algorithms and/or its implementations. Indeed, GPU computing has
motivated the creation of new parallel programming models such as the Compute
Unified Device Architecture (CUDA) [1] developed by Nvidia or the Open Comput-
ing Language (OpenCL) [2] developed by the Khronos group. In particular, CUDA
platform provides several numerical libraries, together with a software development
kit, making it easier for software developers to encode new algorithms. Good results
attained using CUDA for problems that show a fine-grained parallelism [3] aroused
the interest of the High Performance Computing (HPC) community prompting the
research on this field. The present work explores some aspects of a hybrid MPI-
CUDA implementation of the preconditioned conjugate gradient (PCG) method, to
be executed in multi-GPU platforms. The PCG is one of the methods of choice for
the solution of symmetric and positive definite linear systems arising in many ap-
plications (e.g. discretizations of partial differential equations, computer analysis of
circuits, chemical engineering processes, etc). In particular, our target is to accelerate
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the solution of the system derived from the discretization of the Poisson equation,
which arises from the mass conservation constraint in the simulation of incompress-
ible flows. This system has to be solved once per time step dominating, in general
3D cases, the computing costs. We assume that the mesh and the physical proper-
ties of the fluid are constant, so the system matrix remains constant during all the
simulation as well. As a consequence preconditioners with high preprocessing costs
are suitable, since its per-iteration relative costs become negligible. For this reason,
and because of its parallel-friendly solution stage, we have chosen the approximate
inverse preconditioner (AIP) to enhance the CG performance.

Different implementations of the CG method for GPUs have been published in
the last years. One of the first attempts to run the CG on a GPU, using textures
as streams and shader functions as kernels, can be found in [4]. With the advent
of CUDA studies on iterative solvers, new implementations using different precon-
ditioners, such as least squared polynomials, incomplete Cholesky factorizations
or symmetric successive over relaxation smothers, have been presented in [5, 6].
The use of multi-GPU platforms on the CG can be found in [7], while ideas for
minimizing the communication overhead through overlapping techniques are ex-
plained in [8]. Most of these works focus on implementations for a single-GPU or
for multiple-GPUs located in a single node. We consider here the case of multiple
GPUs distributed in different computing nodes, interconnected using the MPI stan-
dard. Both the CG and the AIP have the SpMV as the most time consuming part of
the algorithm so we have mainly focused on the performance of this operation. The
main bottleneck for the parallelization is related with the communications between
different GPUs. As a consequence, a data transfer overlapping approach is used in
order to minimize the communication expenses, by executing the data transfer and
the MPI communications simultaneously with computations on the GPU.

The rest of the paper is organized as follows: Section 1.2 describes the fundamen-
tals of the PCG solver and the AIP preconditioner. Section 1.3 points out our appli-
cation context, the incompressible Navier-Stokes equations; in Section 1.4 the par-
allelization strategies and the CUDA model are explained; multi-GPU implementa-
tions of the operations that compose the solver are considered in detail in Section 1.5;
Section 1.6 presents performance results; and finally, concluding remarks are stated
in Section 1.7.
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1.2 Preconditioned Conjugate Gradient solver

1.2.1 Conjugate Gradient

The conjugate gradient solver is an iterative projection method for the solution of
systems

Ax = b

where A is a symmetric and positive definite matrix. In the i′th iteration, it is found
the best possible solution, xi, for the system, respect to the A-norm, within the sub-
space x0 + Di, where Di = span{r0, Ar0, ..., Ai−1r0}, r0 is the initial residual, and the
A-norm is defined as ‖ v ‖A =

√
vTAv.

In the solution procedure, in order to find the approximation xi+1, firstly an
A-orthogonal basis {d0, d1, ..., di} of Di+1 is fixed by means of the conjugate Gram-Schmidt
process (adding a new element, di, to the previously derived basis d0, ...di−1 for Di):

βi =
rT

i ri

rT
i−1ri−1

, di = ri + βidi−1,

where ri refers to the i′th residual and βi is the Gram-Schmidt constant. Then xi+1
can be represented in this new basis as

xi+1 = α0 d0 + . . . + αi−1 di−1 + αi di, (1.1)

where, indeed, α0, ..., αi−1 are obtained from the previous iterations. Hence, in the
i′th iteration it is only necessary to evaluate the component αi associated to di:

αi =
rT

i ri

dT
i Adi

.

Finally, the new approximation is:

xi+1 = xi + αidi.

A detailed explanation of the CG algorithm and a sample of code can be found
in [9]. Note that all the steps of the algorithm consist in basic linear algebra op-
erations like SpMVs, dot products, vector additions/subtractions and operations
with scalars. In the parallel executions, only two of these operations require data
exchange between different parallel processes: the dot product and the SpMV.
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1.2.2 Approximate Inverse Preconditioner

Sparse approximate inverse preconditioners (AIP) are based on the assumption that
the inverse of the system matrix contains many small entries that may be neglected.
This is the case of our application context (see Section 1.3). In the set-up process,
a sparse approximation of the inverse, M ≈ A−1, constrained to a fixed sparsity
pattern S has to be found. Then the equivalent, but better conditioned, system
MAx = Mb can be solved.

The preconditioned version of the CG algorithm [9] requires a multiplication by
M−1 at each time step. In the case of the AIP, since this inverse is evaluated explicitly,
the solution process consists only in a SpMV operation, making the algorithm attrac-
tive to be ported to GPUs. However, for symmetric and positive definite problems, in
order to preserve symmetries, A−1 is approximated by a factorization GTG instead
of a single matrix M (two products are then necessary instead of one), where G is a
sparse lower triangular matrix approximating the inverse of the Cholesky factor, L,
of A. In order to find G, the approach to the problem is:

minG∈S‖I−GL‖2
F, (1.2)

where ‖.‖F is the Frobenius norm and S is a lower triangular sparsity pattern. We
have followed Chow’s work [10], in which it is explained how to find G without
explicitly evaluate L, i.e., only using the initial matrix A. Moreover in that work
the sparsity pattern, S , is fixed a priori as the pattern of a power of Ã, where Ã is
obtained from A dropping small entries. The power used to fix the sparsity pattern
is referred as the sparsity level of the preconditioner. Here, for simplicity, we have
considered A = Ã (i.e. no elements are dropped).

In our application context (section 1.3) the system matrix A does not change dur-
ing all the simulation, therefore the evaluation of G is considered a preprocess that
is executed only once at the beginning of the simulation.

Different works proving the efficiency of the AIP strategy on the solution of
sparse linear systems can be found in the literature [11–14]. In particular, this pre-
conditioner has been successfully used in the resolution of linear systems that arise
in the CFD context [15–17]. One of its main strengths is its parallel-friendly solution
stage (it is composed of just two SpMV). This makes it specially attractive in the GPU
context, in contrast with other traditional preconditioners such as the Incomplete
Cholesky (IC) factorization that has an inherent sequential process (the backward
and forward substitutions) that limits its parallelization potential in GPUs [5], or
the multigrid-based preconditioners based in complicated multilevel operations dif-
ficult to fit in the single instruction multiple thread (SIMT) model, thus more study
is needed to be efficiently ported to the GPUs [18, 19].
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1.3 Application context: solution of Poisson system in
the simulation of incompressible flows

In the numerical solution of incompressible flows, the Poisson equation arises from
the continuity constraint and has to be solved at least once per time step. The velocity
field, u, is governed by the incompressible Navier-Stokes (NS) equations:

∇ · u = 0, (1.3)
∂u
∂t

+ (u · ∇)u = −∇p + ν∆u (1.4)

TermoFluids code [20] has been used as a software platform to perform our stud-
ies. The equations are discretized on an unstructured grid with the finite-volume
symmetry-preserving method [21]. For the temporal discretization, a second-order
explicit one-leg scheme is used in [22]. Finally, the pressure-velocity coupling is
solved by means of a fractional step projection method [23]. The steps of the projec-
tion method are: i) a predictor velocity, up, is explicitly evaluated without consider-
ing the contribution of the pressure gradient in Equation 1.4; ii) the Poisson pressure
equation is solved in order to meet the incompressibility constraint:

∆pn+1 = ∇ · up, (1.5)

where pn+1 is the pressure field at time-step n + 1. Further details on the numerical
algorithm, the math model and the code functionalities can be found in [20, 24, 25].

The discrete counterpart of Equation (1.5) is referred as

Ax = b (1.6)

where A is a symmetric and positive definite sparse matrix. With our finite-volume
discretization the action of A on x is given by

[Ax]k = ∑
j∈Nb(k)

Akj
x(j)− x(k)

δnkj
, (1.7)

where Nb(k) is the set of neighbours of the k’th node. Akj is the area of fkj, the
face between the nodes k and j, and δnkj = |nkj · vkj|, where vkj and nkj are the
vector between nodes k and j, and the normal unit vector of fkj, respectively. At the
boundary Neumann conditions are imposed. Further details can be found on [26].

In general 3D cases, the solution of this linear system dominates the computing
costs of the simulation. Assuming that the mesh and the physical properties of the
fluid are constant, the system matrix remains constant during the simulation as well.
In this situation, for simulations with large number of time-steps, it is suitable the
use of a preconditioner with high preprocessing costs, since its per-iteration relative
cost becomes negligible.
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1.4 Parallelization strategy

1.4.1 MPI parallelization via domain decomposition

The underlying MPI parallelization of the solver is based on a domain decomposi-
tion approach. Therefore, the initial mesh M, where the Poisson equation is dis-
cretized, is divided into P non-overlapping sub-meshesM0, ...,MP−1 by means of a
graph partitioning tool such as METIS library [27]. For each MPI process, the corre-
sponding unknowns of the system can be divided into different sub-sets: (1) Owned
unknowns are those associated to the nodes of Mi; (2) Inner unknowns are the
owned unknowns that are coupled only with other owned unknowns; (3) Interface
unknowns are those owned unknowns which are coupled with non-owned (exter-
nal) unknowns; and finally (4) Halo unknowns are those external unknowns (that
belong to other processes) which are coupled with owned unknowns of the MPI
process considered. In Figure 1.1 an example of a domain decomposition is shown
(left) and the sub-sets defined above are depicted for one of the sub-domains (right).
Henceforth, the subscripts owned, inner, interface and halo are used in order to refer
to the respective components of a vector or rows of a matrix. Note that halo compo-
nents of vectors are required to solve the system in parallel. These elements have to
be updated before being used if the corresponding external elements have changed.
This process is carried out by means of point-to-point communications between ad-
jacent sub-domains.

Figure 1.1: Left: Domain decomposition; Right: Distinction between the different
subsets of unknowns associated to sub-domain 0.

For each sub-domain the unknowns are ordered as follows: first the inner un-
knowns, then the interface unknowns and, finally, the halo unknowns. Thus, the
local components of any parallel vector v read vlocal = [vinner|vinter f ace|vhalo]). With
this ordering, the part of the matrix stored by a MPI process, defined as Aowned, has
a block structure such as the one represented in Figure 1.2.
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Figure 1.2: Block structure of the part of the system matrix owned by each MPI pro-
cess: Block A represents couplings between inner unknowns; B between inner and
interface unknowns; C is empty; D = BT between interface and inner unknowns; E
between interface unknowns; and F between interface and halo unknowns.

1.4.2 The CUDA programming model for GPUs

A GPU device consist of a set of streaming multiprocessors (SMs) that employ a
Single Instruction Multiple Threads (SIMT) model to create, schedule, manage and
execute hundreds of threads during the execution of a program. The threads are
grouped into warps, each thread of a warp runs the same instructions concurrently
on a SM. A CUDA program is composed of a CPU code, so called host code, that
launches tasks on a GPU device; and a GPU code, so called kernel code, that runs on
the device. The kernel functions are executed on the GPU by a large set of parallel
threads.

GPU devices have no common RAM memory space with CPUs nor with each
other. Therefore, data transfer operations via PCI-Express are required to communi-
cate between the devices. Nvidia devices of compute capability 1.1 and higher can
overlap the copies between GPU and CPU with kernel execution. Concurrent ker-
nels can be executed as well, the concurrency is managed through streams. A stream
is defined as a sequence of commands executed in order. Then multiple streams,
executed in parallel, are used to achieve the concurrency. Further details about the
GPU architecture and the CUDA programming model can be found in the official
documentation [1].

An in-house optimized implementation of the sparse matrix-vector multiplica-
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tion, based on [28], is considered further (see Section 1.5.2). Additionally, the follow-
ing kernels from the CUBLAS and CUSPARSE [29] math libraries have been used:

• sparse matrix-vector multiplication : cusparseDcsrmv().
• dot product: cublasDdot().
• vector operation y = αx + y : cublasDaxpy().
• vector operation y = αy : cublasDscal().

1.4.3 Two-level partitioning for hybrid CPU-GPU computing nodes

In our application context, GPUs are only used to accelerate the linear Poisson solver,
which is the dominant part of our CFD algorithm (representing around 80% of the
computing time). The rest of the code is based on a complex object-oriented CFD
platform for unstructured meshes, which is hard to be exported with good perfor-
mance to the GPU-model.

Modern hybrid computing nodes are generally composed of a couple of multi-
core processors (usually bringing 8∼16 CPU-cores) together with 2∼4 GPU devices.
Normally CPU-cores outnumber GPU devices. In our approach, the total MPI group
of processes consists of as many processes as CPU-cores in the computing nodes
engaged. MPI processes are thus divided into local subgroups that share the same
GPU device, which is only accessed by a master process.

Figure 1.3: Two-level partitioning approach with CPU and GPU processing modes.

Therefore, a multilevel approach is necessary to manage the data flow between
the pure-CPU and hybrid CPU-GPU mode on the resolution of the linear system.
The first level of the decomposition consists of as many subdomains as GPUs en-
gaged. The second level is obtained by dividing the first level subdomains into as
many parts as MPI processes associated to the respective GPU. As a result, the sec-
ond level of the decomposition has the number of sudomains equal to the number
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of CPU-cores engaged, and it is used for the CPU-only parts of the code; while the
first level is used to distribute work among GPUs.

Figure 1.3 depicts the two level partitioning approach. In this case, the first level
of decomposition divides the mesh into two subdomains linked with the GPUs. In
the second level, each subdomain is decomposed into four and distributed through
the CPU-cores. The subdomains linked with a master process are colored with green.
Yellow arrows represent the data transfers between the workers and the master,
while the red arrows symbolize the data transfers between master processes and
GPUs.

CPUcode– explicitpartCPUcode– explicitpart

Gathering r.h.s. vectorGathering r.h.s. vector

PCG solverPCG solver

ScatteringsolutionvectorScatteringsolutionvector

CPUcode– explicitpartCPUcode– explicitpart
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Figure 1.4: Two-level execution model with CPU and GPU processing modes.

In the execution model, explicit parts of the time step are carried out using the
total MPI group (second level). Then, before starting the PCG solver execution, the
worker processes of each local MPI subgroup send their parts of the right-hand-side
(r.h.s.) vector to the master process (core 0), which gathers all the data, sends it to
the GPU and runs the PCG on it. Finally, the other way round, the solution vector is
scattered from the master to the workers, switching back to the CPU-only mode, in
order to solve the next explicit parts of the time step. This gather/scatter overhead
represents generally less than 1% of the solver time and can be neglected. Figure 1.4
represents the execution of the parallel CFD algorithm on a hybrid node with 4 CPU-
cores per one GPU device. During the parallel execution of the PCG solver on mul-
tiple GPUs, communications are necessary for SpMV operations, in order to update
halo elements of the first level partition, and for the evaluation of global values like
residuals norms or dot products. This communication process, outlined in Figure 1.5,
requires three steps: i) download data from the GPUs to the host memory; ii) trans-
fer data between master MPI processes; iii) upload data back to the GPUs. The first
and the third steps are limited by the bandwidth of the PCI-Express bus, while the
second step is limited by the network bandwidth.
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Figure 1.5: Communication Scheme.

1.5 Multi-GPU implementation of basic operations

In this section are described the parallel implementations for the two basic linear op-
erations that require communications between GPUs, the dot product and the SpMV.

1.5.1 Dot product

The parallel dot product is performed in two stages: initially a local dot product is
calculated by each active MPI process by means of the cublasDdot() function of the
CUBLAS library, and then the global sum is collected by means of a reduction com-
munication via the MPI_Allreduce function. This process is illustrated in Figure 1.6.

1.5.2 Sparse matrix-vector multiplication

The SpMV execution is dominated by the memory transactions instead of the arith-
metic computations, thus it is considered a memory bounded problem. This trend is
emphasized on the GPU executions, where loading data from global memory costs
hundreds of clocks more than executing a multiplication-addition operation. There-
fore, maximize the use of the bandwidth is one of the most important aspects of any
implementation. When working with GPUs, it is also important to achieve a good
load balance between the launched threads. The sparse storage format used has a
major influence in both aspects. Different sparse matrix storage formats and a de-
scription of the corresponding kernels can be found in several works, for instance,
in [28, 30–32].

Maximum performance achievable for the unstructured case

Discarding the reuse of data stored in cache memory, which is low for the unstruc-
tured case, the ratio between floating point operations (flop) and memory accesses
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Figure 1.6: Hybrid MPI-CUDA Dot Product.

(in bytes) is lower than 1/10 for the SpMV operation: for each non-zero entry of the
matrix there are two operations (one multiplication and one addition) and its neces-
sary to read at least two 8-byte double values (the entry itself and the corresponding
vector component) and one 4 byte integer (column index). Indeed, as shown fur-
ther, sparse storage formats require reading some additional local indices of the data
structures.

The Nvidia M2090 used in the numerical experiments of this paper, can achieve a
maximum bandwidth of 165 GB/s and a peak performance of 650 GFlops. Consider-
ing the optimistic flop per byte ratio of 1/10, discarding cache effects, it is possible to
estimate the maximum performance achievable for the SpMV kernel multiplying the
flop per byte ratio by the bandwidth, leading it to a maximum expected performance
of 16.4 GFlops. Unfortunately this represents only a 3% of the peak performance of
the M2090 (measured under ideal conditions)

Formats

The present paper is devoted to the optimization of the overall parallel model but not
the GPU calculations. Consequently, we are not introducing new storage formats,
however, we have tested two of the existing formats in the numerical experiments.
The first one is the common general-purpose CSR (Compressed Sparse Row) format.
It consist of three arrays. The first two arrays store the column indices and the cor-
responding coefficient values for each non-zero entry of the matrix. The elements in
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these arrays are grouped by rows and sorted ascending the column index. The third
array stores for each row the initial position of its elements in the first two arrays and,
at the end, the total number of entries. Figure 1.7 (top) illustrates the CSR storage
format on a sample matrix. The kernels of the CUSPARSE library, used in this paper
as a reference for comparison, work with the CSR format.

Figure 1.7: Examples of sparse matrix storage formats CSR (top) and RGCSR (bot-
tom).

The second format considered is a GPU-oriented Improved row-grouped CSR
format (RgCSR) [28]. The main objectives of the RgCSR format are to keep the bal-
ance between threads and to ensure a coalesced data access. The algorithm to store
the matrix consists in the following steps:

• Create group of rows, maintaining, as equal as possible, the number of non-
zero entries per row.

• Divide each row into equally sized sub-groups of non-zero elements, called
chunks. A thread is assigned to each chunk. The number of non-zero elements
per chunk (chunk-size) is fixed for each group of rows.

• Zeros are padded when the number of non-zero elements per row is not divis-
ible by the chunk-size, this will maintain the balance across threads.
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• The vector of values and the vector of columns are stored following a chunk-
wise order. The order is based in store the first element of each chunk of the
group, after the second element of each chunk, and so on. This ordering rein-
force coalesced memory reads since the executing threads will access contigu-
ous memory adresses.

• The vector rowLengths stores the number of entries per each row, and the vec-
tor groupPtr indicates the starting position of each group.

An example of RgCSR matrix format is shown on Figure 1.7 (bottom). The matrix
has been divided in two groups of 5 and 3 rows respectively. In the first group the
chunk-size is 2 and 4 zeros have been padded, while in the second group the chunk-
size is 3 and 2 zeros have been padded.

For more details about the format the reader is referred to [28]. A kernel to ex-
ecute the SpMV using the RgCSR format was implemented following the specifica-
tions of the authors.

Non-overlapped SpMV

The sparse matrix-vector product operation, w = A · v for general sparse matrices, is
under study. Since this operation is performed on multiple GPUs using a domain de-
composition approach (see Section 1.4.3), each GPU only evaluates the components
wowned associated to its owned elements. Recalling that halo elements are the neigh-
boring external elements coupled with owned elements by entries of the matrix, it
is necessary to update the halo components of the vector v before performing the
SpMV operation. With the standard non-overlapped SpMV approach, referred here
as NSpMV, this update is performed by means of a communication procedure pre-
vious to the calculations (see Algorithm 1). Obviously, this communication affects
negatively the parallel performance.

Algorithm 1 NSpMV
1: Download vinter f ace from GPU to host CPU
2: Update vhalo (MPI point-to-point communication)
3: Upload vhalo from host CPU to GPU
4: Compute GPU kernel wowned = Aowned ∗ vlocal

Note that the ordering used (defined in Section 1.4.1), in which the elements of the
sub-sets inner, interface and halo, are grouped, facilitates the data exchange between
devices.
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Overlapped SpMV

In order to perform the Overlapped SpMV (OSpMV), the matrix Aowned is split into
its inner and interface parts, Aowned = Ainner + Ainter f ace. An example of this par-
tition is represented in Figure 1.8. The overlapped SpMV is an optimization of Al-
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Figure 1.8: Splitting of the matrix

gorithm 1 in which the communications required in order to update vhalo are per-
formed simultaneously with the evaluation of the inner components of the product,
winner = Ainner ∗ vowned. Recalling that the inner elements are those owned elements
that are coupled only with other owned elements (see Section 1.4.1), they can be pro-
cessed independently of the halo update operation. In order to overlap the two pro-
cesses, calculation of inner elements and halo update, two simultaneous streams are
launched in a concurrent execution model. These streams are then synchronized and
finally the interface components of the product can be evaluated. Normally Ainter f ace
is much smaller than Ainner since it only represents the couplings of the nodes at the
border of the sub-domain. The overall process is outlined in Figure 1.9. As a result
of this optimization, the time spend on the halo update operation is hidden (at least
partially) behind the calculation of inner elements.

1.6 Numerical Experiments

The TGCC Curie supercomputer [33], member of the pan-European computing and
data management infrastructure PRACE, was used for numerical tests. Its hybrid
nodes, with two Intel Xeon E5640 (Westmere) 2.66 GHz quad-core CPUs and two
Nvidia M2090 GPUs each, are interconnected via an Infiniband QDR network. Ver-
sion 4.0 of CUDA was used to implement the GPU kernels.

The finite-volume discretization of the Poisson equation was performed on un-
structured tetrahedral meshes over a 3D spherical domain. The discretization of this
equation is detailed in Section 1.3.
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Figure 1.9: Concurrent Execution Model

The number of nodes used in the tests ranges from 1 to 4, the size of the mesh
was varied in order to keep a fixed amount of CV per process. For all the meshes
the matrix resulting from the discretization has in average 4.9 entries per row, being
therefore tremendously sparse.

When running the MPI-CUDA PCG on multiple nodes the parameters used in
setup of the AIP were: i) sparsity level of the preconditioner is fixed S = 1, ii) and
no elements of the approximated matrix are dropped.

1.6.1 Distribution of execution time

It is well known that the cost of the CG is dominated by the SpMV operation [34–
36]. This is is exemplified in Figure 1.10 for the solution of the discrete Poisson
equation on a mesh over a spherical domain with 400, 000 control volumes (CV) on
a single CPU. The CG is preconditioned with the AIP and the distribution of time
is shown for different levels of the AIP sparsity pattern. Recalling that the solution
stage of the AIP consists of two SpMV operations (see Section 1.2), the total cost of
the SpMV operation in the overall algorithm can be obtained summing the cost of
preconditioner with the cost of the other product required in the CG (the two lower
parts in each column of the figure). Both parts take at least 78% of the total solution
time. As expected, the percentage grows (up to 90%) when increasing the power of
A used to generate the sparsity pattern, because the preconditioner becomes denser.
With this scenario in mind, we have focused in the optimization of the MPI-CUDA
implementation of the SpMV operation.
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Figure 1.10: Distribution of computing time across PCG operations.

1.6.2 Single GPU vs. single CPU-core comparison

Since no MPI communications are needed during the algorithm execution on a single
GPU, performance against a single CPU-core is directly compared. Two different
storage formats are used for the sparse matrices: the CSR and the RgCSR.

The tests were executed on meshes ranging from 100, 000 to 400, 000 control vol-
umes and the performance was analyzed for the SpMV, for the AIP with sparsity
level 1 and for the whole PCG iteration. The resulting execution times and the
achieved net performance are shown in the Table 1.1.

In all the cases the GPU outperforms the CPU execution by a factor ranging from
6 to 12 times. These results are consistent with those reported in the works [4, 6].
The comparison of the speedup with respect to the one CPU core achieved with both
formats is represented in Figure 1.11. The kernels based in RgCSR format execute up
to 5%, 40% and 8% faster in average than those based in CSR format for the SpMV,
AIP and CG respectively.

Considering that we are working with unstructured sparse matrices with an av-
erage of 4.9 entries per row and using the double-precision floating-point format, the
net performance achieved is in the range of the results reported in [31,37] for similar
matrices. The characteristics of our matrices make the SpMV operation take only
around 1% of the peek performance of the Nvidia M2090. This is the cruel reality for
such a memory-bounded operations with unstructured memory access and such a
low flop per byte ratio.
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CPU core GPU GPU
Mesh CSR CUSPARSE RgCSR
size Operation Time Gflops Time Gflops Time Gflops

100K SpMV 1.10 0.87 0.18 5.3 0.17 5.49
AIP 2.31 0.5 0.37 3.1 0.24 4.83
PCG 6.09 0.52 0.88 3.59 0.79 4.02

200K SpMV 2.67 0.73 0.31 6.3 0.29 6.52
AIP 5.00 0.48 0.61 3.9 0.44 5.35
PCG 10.1 0.63 1.15 5.55 1.04 6.11

300K SpMV 4.42 0.66 0.44 6.66 0.42 6.92
AIP 7.66 0.46 0.83 4.23 0.62 5.65
PCG 16.9 0.56 1.72 5.53 1.59 5.99

400K SpMV 6.64 0.58 0.55 7.0 0.53 7.34
AIP 10.9 0.43 1.07 4.4 0.85 5.58
PCG 24.8 0.51 2.35 5.43 2.23 5.73

Table 1.1: Comparison of the net performance in Gflops and Time in ms between
single-CPU core and single-GPU implementations based on CUSPARSE (CSR) and
RgCSR.

1.6.3 Multi-GPU SpMV. Overlapped vs. non-overlapped approach

The main objective of the tests shown in this section is to analyze the efficiency of
the parallel SpMV schemes explained in Section 1.5.2. Recalling that each supercom-
puter node contains 8 CPU-cores and 2 GPUs, each MPI subgroup corresponding to
a GPU consists of 4 MPI processes. Initially, we compare the storage formats here
considered for both, the non-overlapped and the overlapped approaches, on differ-
ent number of GPUs, keeping the load per GPU constant at 200, 000 CV. Figure 1.12
shows the speedup obtained by the RgCSR with respect to the CSR format for the
SpMV of the laplacian matrix. This acceleration is negligible for the non-overlapped
approach but reaches up to 40% for the overlapped one. This difference is produced
by the better performance of the RgCSR model on the multiplication of the extremely
sparse interface part of the matrix for the overlapped approach, because of the regu-
larity obtained by padding zeros. Being consequent with these results and the ones
obtained in the single GPU tests, we have chosen the RgCSR kernels for further ex-
periments. The achieved net performance and execution times for the OSpMV and
NSpMV are compared in Table 1.2 for different work loads and number of GPUs.
As expected, the overlapped version outperforms in each case the non-overlapped
SpMV because it minimizes the communication overhead (see Section 1.5.2). This
improvement ranges between 12% and 44% of the execution time.
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Figure 1.11: Speedup of the single GPU with respect to the single CPU execution of
the SpMV, AIP and PCG iteration using the CSR (white) and RGCSR (grey) formats
for mesh sizes 200, 000 (left) and 400, 000 (right).

Figure 1.13 shows exactly how much of the communication overhead can be hid-
den by the overlapped version. The non-overlapped SpMV time has been separated
into computation and communication parts and compared with the overall execu-
tion time of the overlapped SpMV. Despite there is a certain overhead in the decom-
position of SpMV into two kernels, which mainly comes from the kernel execution
latency, around 50% of communication costs are hidden.

1.6.4 Parallel performance. Multi-GPU vs. CPU-only version.

The RgCSR-based multi-GPU implementations of the SpMV, the AIP and the whole
PCG solver are compared with the original CPU-only versions based on the CSR for-
mat. The comparison is carried out for 32 CPU-cores versus 8 GPUs on a mesh with
400, 000 CV per GPU (i.e. 100, 000 per CPU). Execution times and GFlops are shown
in Table 1.3. The sparsity level of the AIP is fixed to 1 and, since the convergence of
the PCG is not being considered, results are shown for only one PCG iteration. As
expected, the multi-GPU version outperforms in every case the CPU-only implemen-
tation. The resulting overall speedup achieved for the PCG algorithm is around 3.3.

A weak speedup study of the PCG algorithm for the both CPU and GPU imple-
mentations is displayed in Figure 1.14. The load of 400, 000 CV per GPU (100, 000
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Figure 1.12: Speedup obtained by the RgCSR with respect to the CSR format, for the
overlapped and non-overlapped multi-GPU SpMV on different number of GPUs.

Mesh 2 4 6 8
size GPU GPU GPU GPU

per GPU SpMV Time Gflops Time Gflops Time Gflops Time Gflops
200K N 0.54 7.24 0.64 12.27 0.67 17.82 0.68 22.91
200K O 0.45 8.54 0.49 16.09 0.54 22.13 0.55 28.72
400K N 0.94 8.40 1.08 14.63 1.22 19.46 1.17 27.01
400K O 0.83 9.55 0.84 18.78 0.84 28.20 0.85 37.38
600K N 1.31 9.04 1.48 16.04 1.55 22.99 1.59 29.92
600K O 1.20 9.92 1.23 19.36 1.23 28.94 1.23 38.51

Table 1.2: Comparison of the net performance in Gflops and Time in ms, achieved
with overlapped (O) and non-overlapped (N) SpMV implementations for different
loads and number of GPUs.

32 CPU-cores 8 GPU
Mesh Operation Time, ms Gflops Time, ms Gflops
400K SpMV 3.15 10.10 0.85 37.38

AIP 4.83 9.86 1.68 28.30
PCG 11.64 10.94 3.49 36.50

Table 1.3: Comparison of multi-GPU and CPU-only implementations using 4 com-
puting nodes (32 CPU cores vs. 8 GPUs).
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Figure 1.13: Communication overlapping diagram for the load per GPU 200,000 and
400,000 control volumes.

CV per CPU) is kept constant. The plot shows nearly ideal scaling with both imple-
mentations and the difference between them keeps constant at growing the number
of GPUs/CPUs involved.
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Figure 1.14: Weak speedup for one PCG iteration with 400000 CV per GPU (100000
CV per CPU).

Finally, a comparison is performed for different loads in order to see its influence
on the resulting speedup. Figure 1.15 shows the speedup of the multi-GPU vs. the
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CPU-only version for 200, 000, 400, 000 and 600, 000 CV per GPU (50, 000, 100, 000
and 150, 000 CV per CPU). The benefits of the multi-GPU implementation increase
with the mesh size since the ratio between the GFlops obtained with both devices
increases (this trend is also observed in Table 1.1 for other mesh sizes). In this case
a maximum speedup of around 4.4× is reached for the largest load on 4, 6 and 8
GPUs.
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Figure 1.15: Speedup of the multi-GPU PCG compared to the CPU-only MPI version
for different mesh sizes and numbers of GPUs (corresponding number of CPU cores
is 4 times the number of GPUs).

Recalling that in the present approach the PCG solver is the only part of the over-
all CFD algorithm accelerated via GPU coprocessors, and considering that in the
CPU-only version takes around 80% of the time-step cost, the overall acceleration
would be up to 2.6× (and 2.4× in average over different mesh sizes).

1.7 Concluding Remarks

A hybrid MPI-CUDA implementation of the approximate inverse preconditioned
conjugate gradient method, has been presented. We have mainly focused in the
SpMV operation because it dominates the computing costs. The main characteristic
of the hybrid SpMV developed is its overlapping strategy that allows to hide part of
the data transfer overhead produced by the device-to-host and MPI communications
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behind calculations on GPUs.
The context of application has been the resolution of the Poisson equation within

the numerical process for the resolution the Navier Stokes equations in the simu-
lation of incompressible flows. Since only the Poisson solver is ported to the GPU
coprocessors, a two level domain decomposition has been proposed in order manage
the data flow between the CPU-only and CPU-GPU parallelization modes.

Performance tests, engaging different numbers of hybrid nodes and unstructured
meshes of different sizes, have demonstrated speedups of the hybrid PCG solver of
around 3.7× compared to the CPU-only solver. The corresponding speedup of the
overall CFD algorithm replacing the linear solver by the new version would be in
average 2.4×.

Moreover, it has been demonstrated that the performance of general purpose
sparse libraries such as CUSPARSE can be improved by an in-house SpMV kernels
implemented considering specific information of the matrix. This performance is
directly linked with the sparse matrix storage format being used, therefore, as future
work, new storage formats may be tested or developed in order to optimize the GPU
computations. Finally, other parts of the overall CFD code may also be ported to the
hybrid mode in order to better use the potential of GPU devices.
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Abstract.
Nowadays supercomputers are intensively adopting new technologies aiming to overcome
power wall constraints. This brings new computing architectures, programming models and,
eventually, the requirement of rewriting codes and rethinking algorithms and mathematical
models. It is a disruptive moment with a variety of novel architectures and frameworks, with-
out any clarity of which one is going to prevail. In this context, the portability of codes across
different architectures is of major importance. This paper presents a portable implementation
model for DNS and LES simulation of incompressible turbulent flows, based on an algebraic
operational approach. A strategy to decompose the non-linear operators into two SpMV is pro-
posed, without loosing any precision in the process. As a result, at the time-integration phase
the code relies only on three algebraic kernels: sparse-matrix-vector product (SpMV), linear
combination of two vectors (AXPY) and dot product (DOT), providing high modularity and,
consequently, the desired portability. Additionally, a careful analysis of the implementation
of this strategy for hybrid CPU/GPU supercomputers has been carried out. Special attention
has been paid to rely on data structures that fit the stream processing model. Moreover, a
detailed performance analysis is provided by tests engaging up to 128 GPUs. The objective
consists in understanding the challenges of implementing CFD codes on GPUs and forming
some fundamental rules to achieve the maximal possible performance. Finally, we propose an
accurate and useful method to estimate the performance of the overall time-integration phase
based only on separate measurements of the three main algebraic kernels.

2.1 Introduction

The pursuit of exascale has driven the adoption of new parallel models and architec-
tures into HPC systems in order to bypass the power limitations of the multi-core
CPUs. The last prominent trend has been the introduction of massively-parallel ac-
celerators used as math co-processors to increase the throughput and the FLOPS per
watt ratio of the HPC systems. Such devices exploit a stream processing paradigm
that is closely related to single instruction multiple data (SIMD) parallelism. A mul-
tilevel parallelization that combines different kinds of parallelism is required for hy-
brid systems with accelerators. In any case the top level needs multiple instruction
multiple data (MIMD) distributed memory parallelization in order to couple nodes
of a supercomputer. At this level there is a sufficient clarity with the programming
frameworks and algorithms: the message passing interface (MPI) standard is most
commonly used for distributed memory parallelization based on a geometric do-
main decomposition. At the bottom level a SIMD-based parallelism is needed: either
for SIMD extensions via vector registers (like in CPUs) or for streaming multiproces-
sors of GPUs.

The problem that the CFD community has to face is the variety of competing ar-
chitectures and frameworks without any clarity of which one is going to prevail. The
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key point is that if an algorithm naturally fits stream processing, the most restrictive
paradigm at the bottom level, then it will work well on upper levels (shared and dis-
tributed memory MIMD parallelization) and, it will work well on GPUs, MICs, and
CPUs. This leads to a conclusion that a fully-portable algorithm must be composed
only of operations that are SIMD-compatible.

Taking into account this diversity of frameworks and architectures, and the in-
creasing complexity of programming models, the idea proposed in this paper is that
the algorithm must: 1) only consist of operations compatible with stream processing
(portability); 2) rely as much as possible on a minimal set of common linear algebra
operations with standard interfaces (modularity). This maximizes the independence
of the implementation from a particular computing framework.

The algorithm for modeling of incompressible turbulent flows on unstructured
meshes presented in this paper is based on only three linear operators: 1) the sparse
matrix-vector product (SpMV); 2) the dot product; 3) the linear combination of vec-
tors y = αx + y (referred as AXPY in the BLAS standard nomenclature). This way,
the problem of porting the code is reduced just to switching between existing imple-
mentations of these operations. The non-linear operators are decomposed into two
SpMV operations, avoiding the introduction of new operators. As a result, the SpMV
takes more than 70% of the total execution time, so it is the dominant kernel.

Then, our portable approach has been implemented for both hybrid supercom-
puters with GPU co-processors and standard multi-core systems. This has allowed
us to carry out a detailed comparative performance analysis. This study aims at un-
derstanding the challenge of running CFD simulations on hybrid CPU/GPU super-
computers, and forming some fundamental rules to attain the maximal achievable
performance. The Minotauro supercomputer of the Barcelona Supercomputing Cen-
ter (Intel Westmere E5649 CPUs and NVIDIA Tesla M2090 GPUs) has been used for
performance tests. Consequently, the CUDA platform was chosen for implementing
the main algebraic kernels. The cuSPARSE library for CUDA provides the necessary
linear algebra operations. However, an in-house SpMV implementation optimized
for our specific sparsity patterns has been developed. It incorporates asynchronous
communications with overlapping of communications and computations on the ac-
celerators. Scalability tests engaging up to 128 GPUs were performed and the results
have been directly compared with executions on the same number of 6-cores CPUs.
The effects on the performance of the cache usage efficiency on CPUs and the mul-
tiprocessor occupancy on GPUs are analyzed in detail. Finally, it is demonstrated
that the overall performance of our CFD algorithm can be precisely estimated by
analyzing only the parallel performance of the three basic kernels individually.

Regarding the related work, an early attempt of using GPU for CFD simulations
is described in [1], where a CUDA implementation of a 3D finite-difference algorithm
based on high-order schemes for structures meshes was proposed. Other examples
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of simulations on GPU using structured meshes can be found in [2, 3]. However,
these works focused only on a single-GPU implementation and rely on stencil data
structures for structured meshes. OpenCL implementations of such a class of algo-
rithms for single GPU can be found for instance in [4], where a novel finite element
implementation based on edge stencils is presented, and in [5], where a set of basic
CFD operators based on high order schemes is studied.

Within the class of multi-GPU CFD implementations, a successful example of a
high-order finite difference and level set model for simulating two-phase flows can
be found in [6]. In addition, a Hybrid MPI-OpenMP-CUDA fully 3D solver is pre-
sented in [7]. Both implementations are restricted to structured grids. Some efforts
for porting unstructured CFD codes to multi-GPU were conceived by porting only
the most computational intensive parts of the algorithm (Poisson equation), as ex-
plained in [8, 9]. Although, this methodology fails to attain the maximum of GPU
potential because of Amdahl’s law limitations. Finally, DNS simulation using un-
structured meshes and multi-GPU platforms were shown in [10, 11]. The strategy
adopted there was based on a vertex-centered finite volume approach including a
mixed precision algorithm. Nevertheless, in all the mentioned examples the overall
implementation seem to be tightly coupled with the framework it relies upon . There-
fore, portability of those codes requires a complex procedure and large programming
efforts. In contrast, the present paper focuses on fully-portable implementation of a
CFD algorithm on unstructured meshes that can run on multiple accelerators with-
out restrictions to a particular architecture.

The rest of the paper is organized as follows: Section 2.2 describes the math
background for the numerical simulation of incompressible turbulent flows; in Sec-
tion 2.3 the portable implementation model based on algebraic operations is de-
scribed; Section 2.4 focuses on its implementation on hybrid systems engaging both
CPU and GPU devices; numerical experiments on the Minotauro supercomputer of
the Barcelona Supercomputing Center are shown in Section 2.5; and, finally, conclud-
ing remarks are stated in Section 2.6.

2.2 Math model and numerical method

The simulation of a turbulent flow of an incompressible Newtonian fluid is consid-
ered. The flow field is governed by the incompressible Navier-Stokes equations writ-
ten as:

∇ · u = 0, (2.1)
∂u
∂t

+ (u · ∇)u = −∇p + ν∆u (2.2)
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where u is the three-dimensional velocity vector, p is the kinematic pressure scalar
field and ν is the kinematic viscosity of the fluid.

In an operator-based formulation, the finite-volume spatial discretization of these
equations reads

Muc = 0c, (2.3)

Ω
duc

dt
+ C(us)uc + Duc + ΩGpc = 0c, (2.4)

where uc and pc are the cell-centered velocity and pressure fields, us is the velocity
field projected to the faces’ normals, Ω is a diagonal matrix with the sizes of control
volumes on the diagonal, C(us) and D are the convection and diffusion operators,
and finally, M and G are the divergence and gradient operators, respectively. In this
paper, a second order symmetry-preserving and energy conserving discretization
is adopted [12]: the convective operator is skew symmetric, C(uc) + C(uc)∗ = 0,
the diffusive operator is symmetric positive-definite and the integral of the gradient
operator is minus the adjoint of the divergence operator, ΩG = −M∗. Preserving
the (skew-) symmetries of the continuous differential operators has shown to be a
very suitable approach for accurate numerical simulations [13–15]. For the tempo-
ral discretization, a second order explicit Adams-Bashforth scheme is used, and the
fully-discretized problem reads

Ω
un+1

c − un
c

∆t
= R

(
3
2

un
c −

1
2

un−1
c

)
+ M∗pn+1

c , (2.5)

Mun+1
c = 0c, (2.6)

where R(uc) = −C(us)uc−Duc. The pressure-velocity coupling is solved by means
of a classical fractional step projection method [16]. In short, reordering Eq. 2.5 is
obtained the next expression for un+1

c

un+1
c = un

c + ∆tΩ−1
(

R
(

3
2

un
c −

1
2

un−1
c

)
+ M∗pn+1

c

)
. (2.7)

Then, substituting this into Eq. 2.6, leads to a Poisson equation for pn+1
c ,

−MΩ−1M∗pn+1
c = M

(
un

c
∆t

+ Ω−1R
(

3
2

un
c −

1
2

un−1
c

))
, (2.8)

which must be solved once per time-step. The left hand side of (2.8) is the discrete
Laplace operator, L = −MΩ−1M∗, which is symmetric and negative definite.

At each time step, the non-linear convective operator is re-evaluated according to
the velocity at the faces of the control volumes, C(us). In our collocated scheme the
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evaluation of the velocity at the faces is based on [17]. Two additional operators are
required: Γc→s to project a cell-centered vector field to the faces’ normals; and Gs, to
evaluate the gradient of a face-centered scalar field. The evaluation of us reads:

us = Γc→sun+1
c − ∆t

(
Gs pn+1

c − Γc→sgn+1
c

)
(2.9)

where gn+1
c is the cell-centered pressure gradient field.

In addition, when the LES model is activated, the viscosity at the faces νs needs
to be updated at each time-step according to the turbulence eddie viscosity at faces
νts. As a result, the diffusive term becomes a non-linear operator that also needs to
be re-evaluated at each time-step as D(νs). The computation of νts = K(uc) requires
the calculation of the velocity gradients to construct the tensor operators, and, de-
pending of the LES model, perfom certain tensor operations. Various modern LES
models fit this approach, including Smagorinsky, WALE, QR, Sigma, S3PQR (for de-
tails about models see, for instance, [18] and references therein). Further details on
this integration method and some options for the definition of the discrete operators
can be found in [12, 17]. The overall time-step algorithm is outlined in Algorithm 1.

Algorithm 1 Time integration step

1: Evaluate the predictor velocities: up
c = un

c + ∆tΩ−1
(

R( 3
2 un

c − 1
2 un−1

c )
)

(R evaluated according to us and νs)
2: Solve the Poisson equation: Lpn+1

c = 1
∆t

(
Mup

c
)

3: Correct the centered velocities: gn+1
c = Gpn+1

c , un+1
c = up

c − ∆t(gn+1
c )

4: Calculate the velocities at the faces: us = Γc→sun+1
c − ∆t

(
Gs pn+1

c − Γc→sgn+1
c

)
5: Calculate the eddie viscosity (if LES used): νt

n+1
s = K(un+1

c ), νn+1
s = νs + νt

n+1
s

6: Calculate ∆t based on the CFL condition: ∆t = CFL(un+1
c )

2.3 Operational algebraic implementation approach

Leaving aside the linear solver, the most common form of implementing a CFD code
is by using stencil data structures. This is how it is arranged our CFD code, Ter-
moFluids [19], that is an object oriented code written in C++. TermoFluids includes
a user-friendly API to manage the basic discrete operations of the geometric dis-
cretization. This API is used on the pre-processing stage to generate stencil raw data
structures, storing in a compact form the geometric information required by the nu-
merical methods. On the time integration phase, where most of computing time
is spent, most of computations are based on sweeping through the stencil arrays
and operating on scalar fields that represent physical variables. Basing the opera-
tions on raw flattened stencil data structures, rather than on our higher level object-
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oriented intuitive API, optimizes the memory usage and increases the arithmetic
intensity of the code resulting in higher performance. In this paper we present a
new implementation approach, we have replaced stencil data structures and stencil
sweeps by algebraic data structures (sparse matrices) and algebraic kernels (SpMV).
The high-level abstractions based on object-oriented programming are the same but
the data structures at the bottom layer, used to accelerate the time integration phase,
are sparse matrices stored in compressed formats instead of stencil arrays. Both
implementations are equivalent in terms of the physical results and very similar in
terms of performance. However, with the algebraic approach a perfect modularity is
achieved since the code mainly results on a concatenation of three algebraic kernels:
the sparse-matrix vector product (SpMV), the linear combination of two vectors (de-
noted “AXPY” in the BLAS standard) and the dot product of two vectors (DOT). In
the numerical experiments section is shown how these three kernels represent more
than 95% of the computing time. As a result, the portability of the code becomes also
straightforward since we need to focus only on three algebraic kernels. Moreover,
note that these standard kernels are found in many linear algebra libraries, some of
them optimized to perform well on specific architectures [20].

The linear operators that remain constant during all the simulation can be evalu-
ated as a sparse-matrix vector product in a natural way. For the non-linear operators,
such as the convective term, the sparsity pattern remains constant during all the sim-
ulation but the matrix coefficients change. For these operators, we have followed
the strategy of decomposing them into two SpMV: the first product is to update the
coefficients of the operator, and the second to apply it.

In particular, the coefficients of the convective operator are updated at each time
step according to us. If N f is the number of mesh faces, us is a scalar field living
in RN f . On the other hand, in practice, the coefficients of the convective term are
stored in a one-dimensional array of dimension Ne, where Ne is the number of non-
zero entries in C(us). The arrangement of this array depends on the storage format
chosen for the operator. Under these conditions, we define the evaluation of C(us)

as a linear operator EC : RN f 7→ RNe , such that:

C(us) ≡ ECus. (2.10)

Therefore, the evaluation of the non-linear term, C(us)uc, results on the concatena-
tion of two SpMV. In particular, the definition of EC for the sliced ELLPACK storage
format used in this paper is presented in Section 2.4.

In an analogous way, when the LES model is activated, the coefficients of the
diffusive term need to be updated according to νs. Therefore, the evaluation of the
diffusive operator is performed as a linear map ED : RN f 7→ RNe , such that:
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Step of Algorithm 1 SpMV axpy dot extras
1 - predictor velocity 8 6 0 0
2.1 - Poisson equation (r.h.s) 3 1 0 0
2.2 - Poisson equation (per iteration) 2 3 2 0
3.1 - velocity correction 3 3 0 0
4 - velocity at faces 7 0 0 0
5 - eddie viscosity (optional) 9 0 2 1
6 - CFL condition 0 0 0 1
Total outside Poisson solver 30 10 2 2

Table 2.1: Number of times that each basic operation is performed in the numerical
algorithm

D(νs) ≡ EDνs. (2.11)

This strategy allows the evaluation of the non-linear operators by calling two
consecutive SpMV kernels with constant coefficients, without adding new functions
to the implementation.

Table 2.1 sums up the number of times that each kernel is called at the different
steps of Algorithm 1. The column “extra” corresponds to operations different from
our three main algebraic kernels. In Section 2.5 is shown that these operations have
a relatively negligible computing cost.

In our implementation the vector fields uc and gc are stored as three scalar fields,
one for each cartesian component. Therefore the linear operators applied to them
result in three SpMV calls. In particular, for the convective and diffusive terms, the
three components are multiplied by the same operator, so this can be optimized by
using a generalized SpMV (see Section 2.4). On the other hand, the vectorial operator
G is decomposed into the matrices Gx, Gy,Gz which are operated independently.

In the first step of Algorithm 1 the SpMV kernel is called eight times: one to re-
evaluate the coefficients of the convective operator (EC), then (considering the LES
model activated) another one is needed to update the diffusive operator (ED), and
finally six calls are required to apply the convective (C) and diffusive (D) operators
to the velocity components. Additionally six AXPY operations are performed, three
to evaluate the linear combination of the velocities ( 3

2 un
c − 1

2 un−1
c ) and three more to

multiply by Ω−1, that is a diagonal matrix stored as a scalar field. Step 2 is separated
into two sub-steps: firstly, the right hand side of the Poisson equation is calculated,
here the divergence operator (M) requires 3 SpMV; secondly, the preconditioned
conjugate gradient (PCG) method is used to solve the Poisson equation. Within a
PCG iteration one SpMV, three AXPY and two DOT are performed, the precondi-
tioner is counted as an additional SpMV. In the step 3 the velocity is corrected using
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the pressure gradient, the gradient operator (G) requires three SpMV. The projection
of the velocities at the faces in step 4 requires six SpMV coming from the operator
Γc→s and one instance of Gs.

When LES model is activated, the eddie viscosity is evaluated (νts = K(uc)) at
the fifth step of Algorithm 1. The most costly part of this computation is the evalua-
tion of a tensor dot product over the gradients of the velocity fields. For portability
purposes, the linear part of the LES model, that derives on nine SpMV and two DOT,
is separated from “extra” operations (pow exp ,etc) that depend on the model se-
lected. Moreover, if a dynamic choice of the time step size is enabled one more extra
operation is performed at step 6 . This operation consists on calculating the local
CFL condition and obtaining the minimum value across the mesh cells.

In summary, the explicit part of the time step requires 30 calls to the SpMV ker-
nel, 10 AXPY, 2 DOT products and few additional operations on the evaluation of
the turbulence model and the CFL condition. These “extra” operations are simple
kernels compatible with stream processing and easily portable to any architecture.
On the other hand, at the solution of the Poisson solver, the repetitions of each ker-
nel depends on the number of iterations required but the ratio is 2 SpMV and 2 DOT
for each 3 AXPY.

2.4 Implementation in a hybrid CPU/GPU supercomputer

Once the CFD algorithm has been reconstructed in a portable mode, based on an al-
gebraic operational approach, our aim is to implement this strategy to port our code
to hybrid architectures engaging both multi-core CPUs and GPU accelerators. The in-
troduction of accelerators into leading edge supercomputers has been motivated by
the power constraints that require to increase the FLOPS per watt ratio of HPC sys-
tems. This seems to be a consolidated trend according to the top500 list statistics [21].
Therefore, this development effort is aligned with the current HPC evolution trend.
In particular, our computing tests were performed on the Minotauro supercomputer
of the Barcelona Supercomputing Center (BSC). Its nodes are composed of two 6-
core Intel Xeon E5649 CPUs and two NVIDIA M2090 GPUs, and are coupled via an
InfiniBand QDR interconnect. The kernels were implemented in CUDA 5.0 since it
is the natural platform to implement a code in NVIDIA GPUs [22]. Moreover the
availability of the cuBLAS and cuSPARSE libraries provides all the necessary lin-
ear algebra operations, making the code portability straightforward. Nevertheless,
for the SpMV kernel, we have focused on optimizing the implementation targeting
our specific application context, i.e. targeting the sparsity pattern derived from our
unstructured discretizations. On the other hand, note that the AXPY and DOT are
algebraic kernels independent of any application context, so we have relied on the
efficient implementations of the cuBLAS 5.0 library. The rest of this section is focused
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on the implementation of the SpMV kernel on single GPU and multi-GPU platforms.

Theoretical performance estimation

For a performance estimation of the SpMV we count the floating point operations
to be performed and the bytes to be moved from the main memory to the cache,
then we can estimate the cost of both processes by comparing with the presumed
computing performance and memory bandwidth of the device where the kernel is
executed.

We consider as a representative problem the discrete Laplacian operator over a
tetrahedral mesh, a second order discretization results in 5 entries per row (diagonal
+ 4 neighbors of a tetrahedron, except boundary cells). Therefore, if the mesh has N
cells the Laplacian operator will contain approximately 5N entries. The size of the
matrix in memory is 60N bytes (with double precision 8-byte values): 5N double
entries (40N bytes), plus 5N integer entries (20N bytes) to store the column indices
of the non-zero elements (additional elements to store row indices depend on the
chosen storage format). We need to add also the two vectors engaged in the SpMV
which contribute with 16N additional bytes. Regarding the arithmetics, 5 multipli-
cations and 4 additions are required per each row of the Laplacian matrix, so this
results in a total of 9N floating point operations. In our performance estimation we
assume an infinitely fast cache, zero-latency memory and that each component of
the input vector is read only once, i.e. ideal spatial and temporal locality. For the
NVIDIA M2090 accelerator with ECC mode enabled the peak memory bandwidth
is 141.6 GB/s. Therefore, the total time for moving data from DRAM to cache is
76N/141.6 = 0.54Nns. On the other hand, the peak performance of the NVIDIA
M2090 for double precision operations is 665.6 GFLOPS (fused multiplication addi-
tion is considered). Therefore, the total time to perform the floating point operations
of the SpMV is estimated as: 9N/665.6 = 0.014Nns, which is 38× lower than the
time to move data from DRAM to cache! This is therefore a clearly memory-bounded
kernel characterized by a very low FLOP per byte ratio: 9N/76N = 0.12. Thus,
the efficiency of the implementation basically depends on the memory transactions
rather than on the speed of computations. Under these conditions, a tight upper
bound for the achievable performance is the product of the arithmetic intensity by
the device bandwidth, this gives 16.8 GFLOPS, i.e. 2.5% of the peak performance
of the M2090 GPU! With this estimation in mind, that is based in some optimistic
assumptions, special attention has been paid to the memory access optimization.

Heterogeneous implementation

The utilization of all resources of a hybrid system, such as Minotauro supercomputer,
to run a particular kernel requires a heterogeneous implementation. As shown in
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the previous subsection, the maximum performance achievable with the SpMV ker-
nel is proportional to the memory bandwidth of the device where the kernel is exe-
cuted. The memory bandwidth of the CPU and the GPU composing the Minotauro
supercomputer is 32GB/s and 142 GB/s, respectively. Thus, in idealized conditions
the GPU outperforms the CPU by 4.4× (numerical experiments in Section 2.5 show
higher accelerations up to 8×). Consequently, considering the 4.4× ratio, a balanced
workload distribution would be 82% of the rows for the GPU and 18% for the CPU.
However, this partition requires a data-transfer process between both devices, to
transfer the components of the vector stored on each device that are needed by the
other. This communication episode, that needs to be performed through the PCI-e,
cancels most of the benefit obtained from the simultaneous execution in both devices.
Moreover, if the SpMV kernel is distributed between both devices, the other two ker-
nels need to be partitioned as well. Otherwise, the data transfer requirements to
perform the SpMV increase. A heterogeneous implementation of the AXPY does not
require any data transfer, but the performance of the DOT operation would be clearly
degraded. Therefore, considering the low potential profit of the heterogeneous im-
plementations in the Minotauro supercomputer, in this paper we have performed
all computations on the GPU device. However in the parallel implementation (de-
scribed latter in this section), CPUs are used to asynchronously manage inter-GPU
communications by overlapping them with calculations on the GPUs. We expect for
the future a closer level of integration between CPUs and GPUs, given by improved
interconnection technologies or, as shown in different examples, by the integration
of both devices on a single chip.

Unknowns reordering

A two-level reordering is used in order to adapt the SpMV to the stream processing
model and to improve the efficiency of the memory accesses. Firstly, the rows are
sorted according to the number of non-zero elements. For hybrid meshes this means
that the rows corresponding to tetrahedrons, pyramids or prisms are grouped con-
tinuously. The boundary elements are reordered to be at the end of the system ma-
trix. This ordering aims to maintain regularity from the SIMD point of view: threads
processing rows of the same group have identical flow of instructions. Secondly, a
band-reduction Cuthill-McKee reordering algorithm [23] is applied at each subgroup
in order to reduce the number of cache misses when accessing the components of the
multiplying vector. Note that in the SpMV kernel the random memory accesses af-
fect only the multiplying vector, the matrix coefficients and the writes on the solution
vector are sequential. Each component of the multiplying vector is accessed as many
times as neighbors has the associated mesh cell, so this is the measure of the potential
temporal locality or cache reuse.
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Generalized SpMV

Another way to reduce the memory communications is by grouping wherever pos-
sible different SpMV into a so-called “Generalized SpMV” (GSpMV), that multiplies
the same matrix to multiple vectors simultaneously. For instance, the velocity vector
in any cell is described by three components (u, v, w), which in practice are stored
on three independent scalar fields. Some operators are multiplied by each of the
three velocity components, resulting in three calls to the SpMV kernel using the same
sparse matrix. Therefore, if the components are operated independently, the same
matrix coefficients and indices are fetched three times from the DRAM to the cache.
With the GSpMV the matrix elements are fetched only once and the arithmetic in-
tensity increases by ≈ 2.1×. However the reuse of components of the multiplying
vector stored in the cache may reduce, because it is filled with elements of the three
velocity vectors instead of only one. Nevertheless, in our numerical experiments we
have obtained in average 30% time reduction by using the GSpMV.

Storage formats

Given a sparse matrix, its sparsity pattern determines the most appropriate stor-
age format. The goal is to minimize the memory transmissions and increase the
arithmetic intensity by: i) reducing the number of elements required to describe the
sparse matrix structure, ii) minimizing the memory divergence caused by its poten-
tial irregularity. The sparse matrices used in our CFD algorithm arise from discretiza-
tions performed on unstructured meshes. Considering that we are using second or-
der schemes for the discretization of the operators, and that the typical geometrical
elements forming the mesh are tetrahedrons, pyramids, prisms and hexahedrons,
generally the number of elements per row ranges between 5 and 7 for the interior el-
ements and is 1 or 2 for the few rows associated to boundary nodes. Since we are not
concerned in modifying the mesh, we restrict our attention to static formats, without
considering elements insertion or deletion.

With this scenario in mind, an ELLPACK-based format is the best candidate to
represent our matrices. The standard ELLPACK format is parametrized by two in-
tegers: the number of rows, N, and the maximum number of non-zero entries per
row, K. All rows are zero-padded to length K forcing regularity. The matrix is stored
in two arrays: one vector of doubles with the matrix coefficients (Val), and a vector
of integers with the corresponding column indices (Col). The row indices do not
need to be explicitly stored because it is assumed that each K components of the
two previous vectors correspond to a new row. This regularity, benefits the stream
processing model because each equal-sized row can be operated by a single thread
without imbalance.

However, the zero-padding to the maximum initial row-length can produce an



2.4. IMPLEMENTATION IN A HYBRID CPU/GPU SUPERCOMPUTER 39

important sparse overhead, specially when there is a reduced number of polygons
in the mesh with maximal number of faces. To overcome this overhead, a gener-
alization of the previous algorithm, called sliced ELLPACK (sELL) [24], has been
implemented. In the sELL format the matrix is partitioned into slices of S adjacent
rows, which are stored using the ELLPACK format. The benefit of this approach is
that each slice has its particular K parameter, reducing the overall sparse overhead.
The reordering strategy described above, i.e. grouping rows by its length, addition-
ally increases the regularity within each slice. In the sELL format it is added an
integer-vector, called slice_start, holding the indices of the first element on each
slice. Thus, for the i’th slice, the number of non-zero entries per row (including the
zero-padded elements) can be calculated as

Ki =
slice_start[i + 1]− slice_start[i]

S
.

If S = N the sELL storage format becomes the standard ELLPACK. On the other
hand, if S = 1 no zeros are padded and the format becomes equivalent to the Com-
pressed Sparse Row format (CSR). For GPU implementations S is set equal to the
number of threads launched per block, this way a single thread is associated to each
row of the slice.

Figure 2.1: An example of sELL format and its memory layout for CPUs and GPUs.

Figure 2.1 shows the storage of a sparse matrix using the sELL format for both a
CPU and a GPU execution. In this case S=4 and the matrix is divided in two slices
with 3 and 4 elements per row, respectively. However, note that the memory layout
is different in both cases. In the CPU execution the elements are stored in row-major
order within each slice, because a sequential process operates one row after the other.
In the GPU execution a single thread is associated to each row, consequently, the
elements are stored in column-major order to achieve coalesced memory accesses to
the Val and Col arrays. Further details of this aspects can be found in [25].
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Non linear operators

Since the sliced ELLPACK storage format has already been described in previous
subsection, now it can be explicitly defined the respective operator EC : RN f 7→ RNe

that, given us, generates the array Val storing the corresponding coefficients of the
convective operator in the sELL format. However, first of all the discretization of the
convective operator needs to be explicitly specified:

[C(us)uc]i = ∑
j∈nb(i)

(uc j + uci)
usij Aij

2
(2.12)

where i is a mesh node, nb(i) are its neighboring nodes, Aij is the area of the face
between node i and node j, and usij the corresponding component of the field us. For
each node i, the indices of the non-zero entries of its row are: entries(i) = nb(i) ∪ i.
Being these indices sorted in ascending order, we refer to the relative position of
any index j ∈ entries(i) with the notation ordi(j). For each ordered pair (i, j) of
neighboring nodes, the next two coefficients are introduced to EC:

EC(ind(i, j), ij) = EC(ind(i, i), ij) =
Aij

2
(2.13)

where ij is the index corresponding to the face between nodes i and j, and the func-
tion ind(i, j), that fixes the layout of the elements of the convective operator in the
array Val, is defined as:

ind(i, j) = i%S + ordi(j) ∗ S + ∑
l< i

S

Kl ∗ S, (2.14)

where S and Kl are parameters of the sELL format described in previous subsection.
The first two terms of Equation 2.14 define the position of the new index within its
slice: the first term represents the row and the second the column. The third term is
the offset corresponding to all previous slices.

The sparse matrix EC has constant coefficients and is also stored in a compressed
format. However, its rows can not be reordered since the order is determined by
the sELL layout of C(us). Therefore, with the purpose of avoiding a high sparse
overhead produced by the zero-padding, EC is stored using the standard CSR for-
mat [26].

Finally, note that the definition of ED, the sparse linear operator used to evaluate
the coefficients of D(νs), is performed following the same strategy than with EC.
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Multi-GPU parallelization

At the top level the parallelization strategy to run the code on multiple GPUs is
based on a standard domain decomposition: the initial mesh,M, is divided into P
non-overlapping sub-meshesM0, ...,MP−1, and an MPI process executes the code
at each sub-mesh. For the i′th MPI process its unknowns can be categorized into
different sub-sets:

• owned unknowns are those associated to the nodes ofMi;

• external unknowns are those associated to the nodes of other sub-meshes;

• inner unknowns are the owned unknowns that are coupled only with other
owned unknowns;

• interface unknowns are the owned unknowns coupled with external unknowns;

• halo unknowns are the external unknowns coupled with owned unknowns.

In our MPI+CUDA implementation, the mesh is divided into as many sub-domains
as GPUs engaged. The communication episodes are performed on three stages:
i) copy data from GPU to CPU, ii) perform the required MPI communication, iii) copy
data from CPU to GPU. Note that the inter-CPU communications are performed
through the system network while the communications between the CPU and GPU
through the PCI-e bus. For the SpMV kernel, we have developed a classical over-
lapping strategy, where the sub-matrix corresponding to the inner unknowns is mul-
tiplied at the same time that the halo unknowns are updated. Once the updated
values of the halo unknowns are available at the GPU, the sub-matrix correspond-
ing to the interface unknowns can also be multiplied. An schematic representation
of this two-stream concurrent execution model is depicted in Figure 2.2. Note that
a synchronization episode is necessary after both parts of the matrix are multiplied.
This strategy is really effective because communications and computations are per-
formed simultaneously on independent devices that do not disturb each-other (see
examples on Section 2.5).

In order to facilitate and optimize the partition of the sparse matrices to perform
the overlapped parallel SpMV, a first reordering of variables is performed forming
three groups: inner, interface and halo variables. This ordering precedes and is prior-
itized versus the orderings described above for grouping rows with the same num-
ber of elements and for band-reduction. Therefore, for parallel executions a three-
level reordering strategy is applied in order to optimize the data locality and reg-
ularity. Further details of our overlapping strategy can be found in our previous
work [9].
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Figure 2.2: Two-stream concurrent execution model.

2.5 Computing experiments and performance analysis

The performance testing has been carried out on the Minotauro supercomputer of
the Barcelona Supercomputing Center (BSC), its characteristics are summarized in
Section 2.4. In the Minotauro supercomputer there is one 6-core CPU for each GPU,
therefore, at comparing the multi-CPU vs the multi-GPU implementation we have
respected this ratio running 6 CPU-cores for each GPU.

2.5.1 Profiling the algorithm on a turbulent flow around a complex
geometry

First of all, the MPI-only and the MPI+CUDA versions of the code are profiled. The
percentage of the total execution time spent in each algebraic kernel has been mea-
sured during the time integration process. The test case is the turbulent flow around
the ASMO car geometry (Re = 7× 105), for which a detailed study was previously
published in [27]. The mesh has around 5.5 millions of control volumes that include
tetrahedrons, pyramids and triangular prisms that are used in the boundary layer.
The solver tolerance relative to the right-hand-side norm for the Poisson equation
is set to 10−5. In this particular case the number of PCG solver iterations averaged
across a large number of time steps is around 37 when using a Jacobi preconditioner.
Additionally, the LES turbulence modeling is enabled with the WALE [28] eddie-
viscosity model.

The profiling results on different number of CPUs and GPUs are shown in Fig-
ure 2.3. Results for the multi CPU implementation show that the contribution of
the SpMV in the overall algorithm stays constant at around 78% with a growth of
the number of 6-core CPUs from 4 to 128. This indicates that the SpMV acceler-
ates equally as the overall time-step. On the other hand, the AXPY operation is
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the leader in speedup: its contribution reduces from 14% to around 6%. This was
expected since there are no communications in the AXPY operation. Finally, the con-
tribution of the DOT operation grows with number of CPUs due to the collective
reduction communications, its negative contribution is counteracted by the AXPY
super-linearity. Finally, the remaining 2% of time is spent in other operations (the
evaluation of the eddie viscosity on step 5 of Algorithm 1, and the evaluation of the
CFL condition on step 6 of Algorithm 1). Therefore, the three basic algebraic kernels
sum up to 98% of the time-step execution time on CPUs. This fact emphasizes the
strong natural portability of the algorithm.
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Figure 2.3: Relative weight of the main operations for different number of CPUs and
GPUs (left) and diagrams of the average relative weight (right)

The GPU execution shows a lower percentage of time spent on the SpMV kernel.
As demonstrated in next subsection, this is due to a better exploitation of the device
bandwidth by the SpMV kernel on GPUs. It is also observed a significant increase
of the DOT percentage, which is mainly penalized by the all-reduce communication
and the overhead of the PCI-Express host-device transactions.

In Figure 2.3 (right) are depicted the average results for all the previous tests.
Note that the distribution of the computing cost among different kernels depends
on the number of iterations required by the Poisson solver, because the distribution
is substantially different for the solver and for the explicit part of the time step. For
instance, if PCG solver in the same test is considered separately, the average time
distribution for a single CG iteration executed on the GPUs is 58% for the SpMV,
23% for the AXPY and 17% for the DOT kernel. For the explicit part of the time step,
the distribution is 92%, 2% and 5%, respectively.



44 CHAPTER 2. PORTABLE IMPLEMENTATION MODEL FOR CFD

2.5.2 Performance of SpMV on a single GPU and a single 6-core
CPU

The SpMV tests have been carried out for the discrete Laplace operator since it rep-
resents the dominant sparsity pattern. The Laplace operator has been discretized on
3D unstructured meshes. The number of non-zero entries per row ranges from 5 to
7 for tetrahedral, prismatic, pyramidal and hexahedral cells. Our implementation of
the CPU and GPU SpMV with the sELL storage format is compared with general-
purpose SpMV implementations of commonly used standard libraries: Intel Math
kernel library (MKL) 13.3 for CPUs and cuSPARSE 5.0 for GPUs. Intel MKL only
supports the CSR format, while cuSPARSE supports the CSR format and a hybrid
(HYB) format, which automatically determines the regular parts of the matrix that
can be represented by ELLPACK while the remaining are solved by COO format [26].
The execution on the 6-core CPUs employs OpenMP shared memory loop-based par-
allelization with a static scheduling. In all cases, the two-level reordering explained
in Section 2.4 (grouping of rows with equal number of non-zero entries + band reduc-
tion reordering) is used in order to improve the memory performance. Unknowns
reordering results in 40% time reduction in average for CPU executions.

The achieved net performance, in GFLOPS for the different storage formats under
consideration and for different mesh sizes is shown in Table 2.2. In all the cases our
in-house sELL format shows the best performance. In average the speedup versus
the Intel MKL and NVIDIA cuSPARSE library is 38% and 11%, respectively. Conse-
quently, the sELL format has been chosen for the rest of this paper.

Device, SpMV format Mesh size, thousands of cells
50 100 200 400 800 1600

CPU CSR MKL 2.45 2.18 1.49 1.37 1.30 1.18
CPU sliced ELLPACK 3.44 3.02 2.89 2.76 2.41 2.06
GPU CSR cuSPARSE 3.64 4.10 4.40 4.58 4.79 4.70
GPU HYB cuSPARSE 8.74 11.25 13.36 14.93 15.62 15.94
GPU sliced ELLPACK 10.91 12.79 14.90 15.92 16.15 16.37

Table 2.2: Net performance in GFLOPS obtained with different implementations of
various matrix storage formats

Figure 2.4, shows the performance evolution of the sELL executions for matrices
of different sizes and for both the CPU and GPU devices. There is a solid horizontal
line on the plots that indicates an estimation of the maximal theoretically achievable
performance evaluated as explained in Section 2.4. Up to 90% of the peak estimation
is achieved on the CPU and up to 97% on the GPU. It is important to note that the
CPU shows better performance on a smaller matrices while the GPU on bigger ones.
This trend can be clearly seen in Figure 2.4. The CPU performance decreases with the
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matrix size due to the increasing weight of cache misses. In other words, the perfect
temporal locality assumed in our estimation is not met when the problem size grows.
In particular, some of the multiplying vector components that need to be reused can
not be held on the cache because of its limited size. On the GPU the effect is the
opposite, there is a net performance growth with the matrix size due to the resulting
higher occupancy of the stream multiprocessors, which allows to more efficiently
hide memory latency overheads by means of hardware multi-threading. Saying it
from the opposite perspective, if the amount of parallel threads (i.e. rows) is not
enough the device can not be fully exploited. For the executions on the GPU the grid
of threads was parametrized in accordance to the occupancy calculator provided by
NVIDIA [22]. Moreover, on the NVIDIA M2090 GPU the distribution of the local
memory between shared memory and L1 cache can be tuned. For the SpMV kernel
the best performance is obtained when the maximum possible fraction of the local
memory of the stream multiprocessors is used for cache functions (48KB).
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Figure 2.4: Net performance achieved on a single Intel Xeon E5649 6-core CPU (left)
and a single NVIDIA M2090 GPU (right) for different mesh sizes. Solid line indicates
an estimation of maximal theoretically achievable performance

Finally, Figure 2.5 depicts the speedup of the execution on a single GPU ver-
sus the execution on a single 6-core CPU. Due to the trends observed in the above-
mentioned tests the speedup significantly grows with the mesh size, since the CPU
performance goes down with size and the GPU performance goes up. The speedup
ranges in the tests from around 3× up to 8×. Being the ratio between the GPU and
CPU peaks memory bandwidth 4.4 (141.6GB/s for the GPU and 32GB/s for the CPU
), and recalling that the SpMV is a clearly memory bounded operation, we can con-
clude from the result shown in Figure 2.5 that the bandwidth is better harnessed on
the GPU than on the CPU, because in most of cases the speedup achieved is greater
than 4.4. For the matrix with 50K rows the opposite result is observed, however this
case is particularly small for devices with 6 GB and a 12 GB of main memory such as
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the the GPU and CPU under consideration, so it does not represent realistic usage.
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Figure 2.5: Speedup of the SpMV execution on a single GPU vs. on a 6-core CPU, for
different mesh sizes.

2.5.3 Parallel performance of the SpMV on multiple GPUs

Firstly, we evaluate the benefit of overlapping computations with communications.
In Figure 2.6 is compared the time needed to perform the SpMV with and without
overlapping, engaging 128 GPU for different matrix sizes. The matrices used range
between 50 and 200 million (M) rows, corresponding to workloads between 0.4M
and 1.6M per GPU, respectively. From 64% up to 86% of the communication costs are
hidden behind computations using the overlapping strategy. The benefit increases
with the problem size since the weight of the computations grows and the communi-
cations can be more efficiently hidden . All the remaining parallel performance tests
are carried out using the overlap mode. Further details on the implementation of the
SpMV with the overlapping strategy are in Section 2.4.

Weak speedup tests for the SpMV on multiple GPUs are shown in Figure 2.7.
Three different local matrix sizes are considered: 0.4M, 0.8M, and 1.6M rows. The ex-
ecution time grows for the biggest load only 1.2×while the problem size is increased
128×. For the smallest load considered this factor is around 2×. The slowdown is
caused by an increase of the communication costs with the number of GPUs engaged,
and is proportional to the relative cost of communications. The maximal load of 1.6M
cells per GPU was chosen according to the limitation of the mesh size that could fit
in memory if we would run a complete CFD simulation.

Furthermore, the strong speedup of the SpMV kernel is shown in Figure 2.8 (left)
for matrices of different sizes. Certainly, the larger is the size of the problem the
better is the speedup obtained, because the relative weight of the communications is
inversely proportional to the problem size. In the right part of the figure the same
results are shown in terms of parallel efficiency (PE). It can be observed that in the
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Figure 2.6: Effect of overlapping communications and computations in the SpMV
for different mesh sizes on 128 GPU
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Figure 2.7: Weak speedup tests for different local matrix sizes

range of tests performed the PE achieved mainly depends on the local workload
rather than on the number of devices engaged: ∼80% PE is obtained for a workload
of 400K rows, 55-60% for 200K rows, 37-41% for 100K rows and ∼30% for 50K rows.
Therefore, if we are seeking for high PE we should not reduce the local problem
below 400K rows per GPU. This result is consistent with the decrease of the GPU
performance for matrices below 400K rows shown in Figure 2.4, that is produced
by a lack of occupancy of the device. Indeed, note that the load of 400K unknowns
could be considered a moderate one for a GPU with 6 GB of main memory. In any



48 CHAPTER 2. PORTABLE IMPLEMENTATION MODEL FOR CFD

case, the resources engaged in a simulation should be consistent with this evaluation
in order to use efficiently the granted computing time.
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Figure 2.8: Strong speedup on multiple GPUs for different mesh sizes (left). Parallel
efficiency on multiples GPU for different mesh sizes (right)

In Figure 2.8 is also included the speedup of the multi-CPU SpMV execution for
the 12.8M cells mesh, which appears to be much higher than for GPUs: 127× vs.
53× on 128 devices. The PE degradation with the number of GPUs is twofold: i)
an increase of the communications overhead ii) the sequential performance of the
GPU on the solution of the local problem reduces when the occupancy falls. An
opposite situation is observed for the CPUs. The performance of the CPU increases
when the local problem reduces since the cache memories reach a larger portion of
the problem. In this situation the increase of the communication is compensated
by the boost on the CPU performance. Figure 2.9 (left) demonstrates this effect in
detail. It shows how the net performance of one device changes with the growth of
the number of computing devices (CPUs or GPUs) engaged, i.e with the reduction of
the local problem size. Results shown are normalized by the performance achieved
when running the whole matrix on a single device. The CPU performance increases
more than twice due to the cache effect while there is a 25% degradation of the GPU
performance.

Figure 2.9 (right) shows an estimation of how the speedup plot would look like if
the CPU and GPU performance would remain the same as the achieved on a single
device. i.e. canceling cache and occupancy effects. The CPU and GPU plots in these
imaginary conditions appear very close to each other, therefore, we conclude that
eventually the speedup on the CPUs is produced by the cache driven super-linear
acceleration of the local computations that lacks on the GPUs. The variation between
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the real case and the imaginary estimation is minimal in the GPUs, the reason is
that the communications dominate the computations in the overlapping scheme, so
canceling the degradation produced by the occupancy fall only affects the cost of
the interface sub-matrix product (see Section 2.4). This result also demonstrates the
efficiency of the overlapping communications scheme versus the standard strategy,
because, despite the GPU execution is 9× faster for the sequential run, when the
cache effects are canceled the speedup on CPUs and GPUs is very similar. Therefore,
the overhead produced by the overlapped communications is much lower than the
one obtained with the standard communication process.
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Figure 2.9: Relative net performance of CPUs and GPUs compared to the perfor-
mance on a single device for the mesh of 12.8M cells (left); estimation of how
speedup would look like if the CPU and GPU performance would remain the same
as on a single device (right)

2.5.4 Experiments with complete CFD simulations

The overall CFD algorithm has been evaluated on two test cases: the LES of the
ASMO car (Re = 7× 105) executed on a mesh of 5.5M cells, that has been previously
used for profiling; and the LES of a driven cavity (Re = 105) with a mesh of 12.8M
cells (the driven cavity was chosen in this paper just for its simple geometry that
makes generation of meshes of different sizes very easy). In Figure 2.10 (left) strong
speedup results are shown for the two cases. The measurements are averaged across
numerous time steps during the period when the flow already reaches the statisti-
cally stationary regime. The Poisson solver tolerance was set to 10−5, and the LES
turbulence modeling is enabled with the WALE [28] eddie-viscosity model.

In Figure 2.10 (left) are also includes estimations of the strong speedup. These
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are based only on measurements for the three basic algebraic kernels evaluated sepa-
rately and the number of calls of each kernel shown in Table 2.1. The simple formula
reads:

Texp = 30Tspmv + 10Taxpy + 2Tdot

Timp = 2Tspmv + 3Taxpy + 2Tdot

Ttotal = Texp + it · Timp

where the subindex of T indicates the corresponding kernel, and it refers to the itera-
tions required by the Poisson solver. The high level of agreement achieved provides
also great portability in terms of performance evaluation: we can predict the perfor-
mance and scalability of our code in any architecture by just studying the three main
kernels separately.
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Figure 2.10: Strong speedup for the overall time-step (real, and estimation based
on evaluation of performance of the basic operations) for the ASMO car case with
mesh of 5.5M cells and the driven cavity (DC) case with mesh of 12.8M cells (left);
speedups on GPUs vs 6-core CPUs, ASMO case (right)

Finally, the speedups achieved for the overall CFD algorithm comparing the
MPI+CUDA implementation on multiple GPUs with the MPI only implementation
on the equal number of 6-core CPUs is shown in Figure 2.10 (right). The different
loads per device correspond to the different number of devices engaged. The GPU
version outperforms the CPU one by a factor that ranges from 4× to 8× and increases
with the local problem size.



2.6. CONCLUDING REMARKS 51

2.6 Concluding remarks

The contribution of this paper is twofold. Firstly, we propose a portable modeling for
LES of incompressible turbulent flows based on an algebraic operational approach.
The main idea is substituting stencil data structures and kernels by algebraic stor-
age formats and operators. The result it that around 98% of computations are based
on the composition of three basic algebraic kernels: SpMV, AXPY and DOT, provid-
ing a high level of modularity and a natural portability to the code. Among the
three algebraic kernels the SpMV is the dominant one, it substitutes the stencil itera-
tions and the non-linear terms, such as the convective operator, are rewritten as two
consecutive SpMVs. The modularity and portability requirements are motivated by
the current disruptive technological moment, with a high level of heterogeneity and
many computing models being under consideration without any clarity of which
one is going to prevail.

The second objective has been the implementation of our model to run on het-
erogeneous clusters engaging both CPU and GPU co-processors. This objective is
motivated by the increasing presence of accelerators on HPC systems, driven by
power efficiency requirements. We have analyzed in detail the implementation of
the SpMV kernel on GPUs, taking into account the characteristics of the matrices
derived from our discretization. Our in-house implementation based on a sliced
ELLPACK format clearly outperforms other general purpose libraries such as MKL
on CPUs and cuSPARSE on GPUs. Moreover, for multi-GPU executions we have
developed a communication-computations overlapping strategy. On the other hand,
the AXPY and DOT kernels don’t require specific optimizations because they are
application-independent kernels with optimal implementations in libraries such as
cuSPARSE.

Finally, several numerical experiments have been performed on the Minotauro
supercomputer of the Barcelona Supercomputing Center, in order to understand in
detail the performance of our code on multi-GPU platforms, and compare it with
multi-core executions. First we have profiled the code for both implementations
showing that certainly 98% of time is spent on the three main algebraic kernels. Then,
we have focused on the SpMV kernel, we have shown its memory bounded nature,
and how the throughput oriented approach of the GPU architecture better harnesses
the bandwidth than the standard latency reducing strategy implemented on CPUs by
means of caches and prefetching modules. The result is that although the bandwidth
ratio between both devices is 4.4 the speedup of the GPU vs the CPU implementa-
tion reaches up to 8× in our tests. Then the benefits of the overlapping strategy for
multi-GPU executions has been tested, showing that large part of the communica-
tion (86%) can be hidden. We have also included strong and week speedup tests
engaging up to 128 GPUs, in general good PE is achieved if the workload per GPU is
kept reasonable. Considering the overall time-step, the multi-GPU implementation
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outperforms the multi-CPU one by a factor ranging between 4× and 8× depending
on the local problem size. Finally, we have demonstrated that the performance of
our code can be very well estimated by only analyzing the three kernels separately.
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Abstract. The challenge of exascale computing is fomenting the investigation of new com-
puter architectures that satisfy the power consumption constraints. Supercomputers have
drifted into hybridization of the systems with nodes composed by multicore-CPUs and accel-
erators to increase the FLOP per watt ratio. In this context, the Mont-Blanc project aims at
creating the first mobile-based hybrid supercomputer with the potential of becoming a refer-
ence of exascale systems. This paper reports the performance of our portable implementation
model for CFD simulations in the Mont-Blanc ARM-based platforms. Our CFD algorithm
is composed of a minimal set of basic linear algebra operations compatible with stream pro-
cessing and SIMD parallelism. Its implementation is focused in engaging all the comput-
ing resources in each ARM-node by performing a concurrent heterogeneous execution model
that distributes the work between CPUs and GPUs. The load balancing algorithm exploits
a tabu search strategy that tunes the optimal workload distribution at run-time. In addition,
an overlap of computations with MPI communications is used for hiding part of the data ex-
change costs that become the bottleneck when engaging multiple Mont-Blanc nodes. Finally,
a comparison of the Mont-Blanc prototypes with high-end supercomputers in terms of the
net performance and energy consumption provides some guidelines of the behavior of CFD
applications in ARM-based architectures.

3.1 Introduction

The HPC community is constantly exploring alternative architectures and program-
ming models for surpassing the power limitations of the multi-core CPUs. Hy-
bridization of the computer nodes is a trend that have consolidated its position
within the current leading edge supercomputers. The hybrid nodes are composed by
multi-core CPUs and massively parallel accelerators, requiring several levels of par-
allelism for exploiting the different execution models. Such systems benefits from the
accelerators that employ the stream processing paradigm for increasing the through-
put and the FLOP per watt ratio. On the other hand, the traditional multi-core CPUs
systems have evolved towards energy efficient system-on-chip (SoC) architectures.
By doing so, the different components of the node are fused and integrated into a
single chip in order of minimizing the energy costs.

Nowadays, several institutions and governments are investing in the investiga-
tion of different aspects of HPC that could lead to the future generation of supercom-
puters. This set of initiatives have entitled the problem as the exascale challenge [1, 2].
In short, the problem consist in developing a sustainable exascale computing system
(1× 1018FLOP/s) with a maximum power consumption of 20MW. As a consequence,
a benchmark was necessary for determining the top power efficient supercomputers.
The Green500 list [3] classifies the supercomputers according to the energy efficient
metric (GFLOP/s/Watt) when running the LINPACK tests. By extrapolating the en-
ergy consumption of the #1 system in the current Green500 list, we conclude that
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would be necessary a 25× efficiency improvement for achieving exascale computing
at the proposed power constraint.

In this context, the Mont-Blanc project [4] is an European initiative devoted into
designing a new type of computer architecture for HPC systems. Its hybrid nodes
are based in embedded mobile devices (ARM) capable of providing energy efficient
solutions. The strategy aims at taking advantage of the commodity trend of the
mobile devices, in the same way that CMOS trend was adopted in the 90s in despite
of vector machines. The heterogeneous ARM-nodes are comprised by CPUs and
GPUs fused in a SoC approach. This low power architecture has the potential of
becoming the leading edge trend in the future.

The early developments of the Mont-Blanc project using the Tibidabo prototype
are reported in [5], it consists of a full description of the cluster deployment and
summarizes the main implementation aspects for HPC. Other results based in port-
ing common HPC kernels in the mobile processors are found in [6, 7]. These works
present a detailed performance comparison between three mobile processors and a
commodity CPU. On the other hand, the interconnection between low power nodes
and its limitations is explained in [8]. The new mobile GPUs, supporting OpenCL,
motivated the strategy of porting the same basic HPC kernels to the device [9], this
work demonstrates the efficiency of the GPU with respect to mobile CPUs. The first
attempt for porting CFD applications based on different mathematical models is de-
scribed in [10], their study is focused in the scalability of the application when engag-
ing up to 96 nodes using ARM Cortex A9 processors. A case of the Nbody algorithm
developed in OpenCL for mobile GPUs is studied in [11]. However, all of this early
implementations are based on using only one of the computing devices integrated
in the modern mobile chips.

We were invited to test TermoFluids code in the Mont-Blanc prototypes. Ter-
mofluids software is a general purpose unstructured CFD code written in C++ uti-
lized to perform simulations in different industrial areas such as: renewable power
generation, thermal equipments and refrigeration. The algorithm for modeling of in-
compressible turbulent flows is based in a portable algebraic based implementation
model explained in detail in [12]. As a result, the code is based on only the follow-
ing three linear algebra operations: 1) the sparse matrix-vector product (SpMV); 2)
the dot product; 3) the operation of the form y = αx + y, so called "axpy" operation.
This strategy have made the code naturally portable to a any architecture and the
problem of porting the code is reduced just to switching between existing implemen-
tations of these operations. All the algorithmically complex preprocessing stage is
implemented only for traditional CPUs in a object-oriented user-friendly way. This
stage includes processing of the mesh geometry, construction of control volumes, cal-
culation of the coefficients of underlying discrete operators, etc. On the other hand,
the time integration phase relies on a restricted set of operations and is free from
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complex object-oriented overhead. It operates with a raw flattened data represented
in common storage formats compatible with linear algebra libraries.

This article is devoted to the study of a heterogeneous implementation of the
algebraic kernels used in our CFD implementation in the Mont-Blanc nodes. The
strategy consist in the distribution of the working load for engaging the CPUs and
GPUs of the ARM-based nodes. The auto-balancing approach proposed is based in
a tabu search algorithm for obtaining the optimal distribution of work. OpenCL [13]
is the programming model selected for exploiting the massive parallelism execution
of the GPU and its implementation also considers the use of vectorized operations
(SIMD). For the CPU, OMP [14] is responsible for launching the threads in the multi-
core processors. Communications are managed by means of by the Message Passage
Interface (MPI) [15] in a domain decomposition approach. In addition, this multiple
level execution model is studied in terms of net performance and power efficiency.

The rest of the article is organized as follows: Section 3.2 describes the math
model and the numerical algorithm that leads to our algebraic based implementa-
tion; the details of the Mont-Blanc prototypes and the main considerations in the
implementation are explained in Section 3.3; the SpMV implementation details and
the auto-balancing hybrid algorithm for our algebraic kernels are proposed in Sec-
tion 3.4; the numerical results showing the efficiency of our algorithm are presented
in Section 3.5; finally, Section 3.6 is devoted to the main conclusions of our work.

3.2 Governing equations and implementation model

The simulation of a turbulent flow of an incompressible Newtonian fluid is consid-
ered. The flow field is governed by the incompressible Navier-Stokes equations writ-
ten as:

∇ · u = 0, (3.1)
∂u
∂t

+ (u · ∇)u = −∇p + ν∆u (3.2)

where u is the three-dimensional velocity vector, p is the kinematic pressure scalar
field and ν is the kinematic viscosity of the fluid.

TermoFluids code has been adapted for facilitating the adoption of new tech-
nologies. The time integration phase is based in a portable implementation model
for DNS and LES simulation of incompressible turbulent flows explained in detail
in Chapter 2. The main idea is substituting stencil-based data structures and ker-
nels by algebraic storage formats and operators. The result it is that around 98% of
computations are based on the composition of three basic algebraic kernels: SpMV,
AXPY and DOT, providing a high level of modularity and a natural portability to
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Step of Algorithm SpMV axpy dot extras
1 - predictor velocity 8 6 0 0
2.1 - Poisson equation (r.h.s) 3 1 0 0
2.2 - Poisson equation (per iteration) 2 3 2 0
3.1 - velocity correction 3 3 0 0
4 - velocity at faces 7 0 0 0
5 - eddie viscosity (optional) 9 0 2 1
6 - CFL condition 0 0 0 1
Total outside Poisson solver 30 10 2 2

Table 3.1: Number of times that each basic operation is performed in the numerical
algorithm

the code. Among the three algebraic kernels the SpMV is the dominant one, it substi-
tutes the stencil iterations and the non-linear terms, such as the convective operator,
are rewritten as two consecutive SpMVs. Table 3.1 sums up the number of times that
each kernel is called at the different steps of the fractional step algorithm.

3.3 Mont-Blanc Prototypes

3.3.1 Architecture of a Prototype

The Mont-Blanc project is an European initiative that aims at developing the basis for
an exascale supercomputer based on power efficient embedded technologies. The
prototype nodes are composed by ARM system-on-chip (SoC) technology adapted
from the mobile industry. The idea is to profit the impulse of the mobile market
mainstream trend and redirect its efforts into the development of energy efficient
supercomputers. The components of the mobile chip that are useless for high per-
formance computing (bluetooth, wireless, etc.) are removed with the intention to
reduce as much as possible the power consumption. The primary components of the
Mont-Blanc prototypes are the following:

• ARM Cortex-A15 CPU: The cortex-A15 is a dual core CPU designed with ad-
vanced power reduction techniques. This processor is based on the Reduced In-
struction Set Computing (RISC), requiring significantly fewer transistors than
traditional computers, and reducing costs, power and heat. The processor pro-
vides a highly out-of-order processing engine with a 15 stage pipeline, enabling
a high level instruction parallelism. In addition, the memory hierarchy is de-
fined by 32KB L1 instruction cache and 32KB L1 data cache per core, moreover
both cores share a 1MB L2 cache. In addition, the ARM Neon SIMD engine
is incorporated for accelerating the single-precision computations because it
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can perform the same instruction on multiple sets of 128-bit wide in parallel.
Unfortunately, our CFD cases demand double-precision and it is impossible to
profit this engine for the moment.

• ARM Mali T604 GPU: This ARM GPU is composed by four shader cores with
two arithmetic pipelines per core. Mali-T604 pipelines provides the standard
IEEE double-precision floating-point math in hardware. This is an important
characteristic for providing accuracy and correctness when running CFD sim-
ulations. Moreover, each core is capable of supporting up to 256 active threads,
and as in the discrete GPUs it is necessary to keep active a sufficient number
of threads in order to hide the instruction latency. Arithmetic logical units con-
sists of 128-bit vector registers allowing the concurrent execution of 2 double-
arithmetic operations. The main differences from discrete GPUs are in the
memory layout. Firstly, both cache and global memories are located physically
in the main memory of the device, and consequently its accesses have the same
transfer costs. Secondly, the device memory is physically shared with the CPU
memory, sharing the same memory bandwidth. This results in ideal conditions
for heterogeneous implementations because the PCI express bottleneck is not
present.

• Network: Commodity mobile SoC are not designed with network interfaces
for working in a cluster environment. As a consequence, the interconnection
between ARM nodes becomes a major issue when implementing a mobile-
based supercomputer. The Mont-Blanc team developed a way of bypass this
problem by creating a network interface on the USB port that allows to con-
nect the Mont-Blanc nodes through a Gigabit Ethernet network. However, this
network runs several times slower than the current standard in the supercom-
puters.

3.3.2 Programming Model

As mentioned in Section 3.2, our code is manly composed by three algebraic ker-
nels: SpMV, AXPY and DOT. These memory bounded functions offer the potential
to profiting different execution models. Consequently, we have considered an imple-
mentation in which the following frameworks coexists:

• OpenMP: The multicore ARM CPUs are utilized by means of a shared memory
multiprocessing approach [14], suitable for avoiding data replication in this
low memory prototypes. Enough OMP-threads are launched for fully engage
all the CPU-cores.
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• OpenCL: The Mali GPU architecture is conceived to support OpenCL 1.1 pro-
gramming standard [13]. The stream processing model is used for creating,
scheduling, managing and launching the thousands of OpenCL-threads. The
memory latency is hidden by context switching, the idea is keeping active the
maximum number of threads maximizing the memory throughput. The pro-
grammer assumes the responsibility of creating efficient execution paths and
memory footprints. This framework also permits the execution of SIMD opera-
tions within the OpenCL-threads for profiting the 128-bit vector registers of the
ARM-GPU. Further implementation details for running applications in mobile
devices with OpenCL can be found in [16].

• MPI: The interconnected nodes require a distributed memory approach based
in a geometrical domain decomposition. The message passing interface (MPI)
standard is the most mature programming framework for engaging multiple
nodes. In our case, the number of MPI tasks is equal to the number of ARM
nodes engaged. Then, each task performs the successive calls to OMP and
OpenCL kernels in a concurrent mode.

3.3.3 ARM-nodes main considerations

The architecture of the Mont-Blanc nodes differs in many aspects from the high-end
nodes of the traditional supercomputers. The hardware characteristics requires spe-
cific considerations when implementing the main kernels of our CFD code. The main
features that impact the performance are:

• Compilation: An important aspect for tunning the execution of our CFD ker-
nels is to provide the proper compilation flags. The recent versions of GNU
compilers gcc, mpic++ contain the necessary extensions for ARM-based com-
pilation. First of all, we must define the architecture we are working with by
using the flag -mcpu=cortex-a15. Double precision is specified by the flag
-mfpu=vfpv4 and to explicitly allow its execution the flag -mfloat-abi=hard

must be added as well.

• Unified memory accesses: The main advantage of the ARM SoC architecture
is that allows the interaction between host and device by means of a unified
memory space. This feature is already supported in the discrete GPU devices,
but it is more profitable in the fused CPU+GPU architecture. In such devices
the memory is physically shared between host and device, and memory band-
width is the same for both computing units. As consequence, the overhead of
memory transfers through the PCI-express is avoided. This characteristics are
important in the development of the kernels because it makes attractive the use
of concurrent execution between computing units.
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The unified memory space is a region of memory (Buffer) that is accessible
from OpenCL-threads and OMP-threads. Note that this memory can not be
allocated by means of the standard malloc operation, because in that case
OpenCL-threads could not access it. The solution consist in allocate buffers
by means of the OpenCL API using the clCreateBuffer function. This oper-
ation requires the definition of a parameter that describes the type of usage of
the buffer. The best option for concurrent execution algorithms is using the
flag CL_MEM_ALLOC_HOST_PTR. By doing so, a zero-copy mode is established
when accessing the buffer from the CPU. This means that OMP-threads do
not create local copies of the memory region, but operate directly on it. The
access from OpenCL kernels is straightforward by using the pointer obtained
from the buffer definition. However, a memory mapping function needs to
be used for enabling the access to a unified memory region from CPU. The
clEnqueueMapBuffer and clEnqueueUnmapMemObject functions are used con-
trolling the accesses from the OMP-threads.

• Vectorization: Both computing units, CPU and GPU, support vector registers
for increasing the throughput of the algorithms. In the case of the CPU, the
NEON Advanced SIMD is the engine that provides vectorization functional-
ities. However, it was designed to accelerate media and signal processing
functions of up to 32-bit registers and therefore it can not be used to perform
double precision arithmetics. Each ARM Mali GPU core contains 128-bit wide
vector registers. This allows to perform SIMD operations within each OpenCL-
thread. In particular, up to two double precision operations can be executed
at once. Rather than using automatic vectorization, we utilize the vector types
(double2) provided by the OpenCL API. This permits us controlling the sec-
tions of the code that exploit the vector registers.

The implementation of our algebraic CFD kernels also considers some more gen-
eral aspects that are not unique from the ARM-based nodes. In particular, the imple-
mentation details explained in Chapter 2 are suitable for the development of kernels
that profit the stream processing. The main aspects adopted are the following:

• Occupancy and Thread Divergence: As in the discrete GPUs, the ARM Mali
necessitates a sufficient number of concurrent threads for hiding the execu-
tion latency of instructions. The number of active threads is limited by phys-
ical resources (registers and shared memory), and by logical implementation
(threads, blocks). Therefore, our algebraic kernels are based on utilizing the
minimum number of registers per threads, aiming at keeping active the maxi-
mum threads (256) per shader core.

• Memory aware programming: The maximum performance in the streaming
processing model combined with the SIMD instructions can only be achieved
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by using appropriate data arrangements. The AXPY and DOT kernels are
dense vector operations that do not need special data structures. On the con-
trary, the SpMV performance is determined by the storage format selected. In
this case, we use a sliced ELLPACK format presented in [17]. Memory is ac-
cessed following coalescing and alignment rules facilitating the memory local-
ity. This data structure has proven to be an efficient way for handling the lapla-
cian matrices arisen from the discretization of the Navier–Stokes equations.

3.4 SpMV implementation details

The main algebraic kernels of our implementation model are the SpMV, AXPY and
DOT product. The modularity and portability of our approach aims at profiting the
existent libraries that provide a straightforward implementation. However, these li-
braries are not tuned for working with the fused CPU+GPU architecture of the Mont-
Blanc nodes. We focus our attention in the development of an optimized SpMV for
the ARM nodes. As commented in Section 3.3.3, the sliced ELLPACK format is the
most appropriate format for the matrices arisen from the discretization on unstruc-
tured meshes. On the other hand, AXPY and DOT operations are independent of
the application context, exploiting the same enhancements that are explained for the
SpMV.

3.4.1 Vectorized SpMV

The single-CPU implementation is straightforward and can be found in [17]. On
the other hand, the single-GPU requires extra tunning for profiting the 128-bit wide
registers of the mali GPU. By doing so, the algorithm is capable to perform two
double operations at the same time. The vectorization of the algorithm is imple-
mented by means of the OpenCL vector data types: double2 and int2. The load,
store and arithmetic operations are overridden by the OpenCL compiler, implicitly
calling SIMD instructions when working with vector data types. Note that the arith-
metic intensity of the SpMV can not be improved by vectorization because there is
not data reuse. However, the memory accesses of the matrix elements and the output
vector can gain performance by being executed with SIMD instructions. The reason
is that SIMD store/load instructions bring into memory two memory addresses at
once in a single memory transaction. This results in a better harness the memory
bandwidth. Therefore, the strategy for the vectorization consists in double the work-
load per work item. Each OpenCL-thread is responsible of computing two rows of
the matrix, instead of one as in traditional GPU implementation. By doing so, ma-
trix elements are read in pairs making suitable the use of vectorization. The final
vectorized algorithm is shown in Kernel 3.1.
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1 ELL_SPMV_VECT( g loba l double2 * Val , g loba l i n t 2 * Index / * m a t r i x * / ,
2 g loba l double * b / * i n p u t v e c t o r * / , g loba l double2 * x / * o u t p ut v e c t o r * / ,
3 i n t m/ * h a l f number o f rows * / , i n t K / * number o f non−z e r o s p e r row * / )
4 {
5 i n t row= g e t _ g l o b a l _ i d ( 0 ) ;
6 i n t o f f s e t = ( row −g e t _ l o c a l _ i d ( 0 ) ) *K;
7 i f ( row >= m) return ;
8 double2 dot =( double2 ) 0 ;
9 i n t 2 c o l s ;

10 double2 xs ;
11 for ( i n t i =0 ; i <K; i ++) {
12 c o l s =Index [ g e t _ l o c a l _ i d ( 0 ) + o f f s e t + i * g e t _ l o c a l _ s i z e ( 0 ) ] ;
13 xs . x=x [ c o l s . x ] ;
14 xs . y=x [ c o l s . y ] ;
15 dot+= Val [ g e t _ l o c a l _ i d ( 0 ) + o f f s e t + i * g e t _ l o c a l _ s i z e ( 0 ) ] * xs ;
16 }
17 y [ row]= dot ;
18 }

Kernel 3.1: sliced ELLPACK kernel implementation

In an analogous way, the same approach of increasing the thread workload is
applied for creating vectorized version of the AXPY and DOT operations.

3.4.2 Auto-balance of heterogeneous implementations

Heterogeneous computing is of major importance for making competitive the in-
frastructures based in mobile technology. As explained in Section 3.3.3, the idea of
using all the computing units of the Mont-Blanc nodes is conceived by the uniform
memory model supported by a physically shared memory. The balancing algorithm
consist in finding the best workload partition to be processed by each computing
unit. The total time of execution can be estimated by measuring the independent
execution in each computing unit as T = max(TGPU , TCPU). However, this first
approximation of the execution time is not always correct because is based in an
independent performance of the computing units. Note, that performance in each
device is complex to be predicted without executing the kernels, because it depends
on how effectively works the cache in the CPU, or the occupancy hides the instruc-
tion latency in the GPU. Moreover, the ARM nodes are configured with a frequency
downscaling system for avoid overheating after intense computation periods. As a
result, under stress situations CPU performance downgrades and negatively affects
the work balance. As we will see in Section 3.5, the independent analysis of the
CPU/GPU kernels may lead to not optimal configurations, for this reason it is better
to base our calculation of T in measuring the concurrent execution of the kernels.

The complexity of finding, a priori, an optimal distribution makes necessary the
use of an iterative process. Our balancing meta-heuristic is based in a tabu search
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strategy [18], in which the target function consist in minimizing the concurrent ex-
ecution time described by T(x). Let us consider the function that describes the
total execution time of the distributed algorithm defined as T(x) : [0, N] 7→ R+

,where N is the number of rows. The work balancing consists in finding the num-
ber m ∈ [0, N/2] such that minimizes T. Given a m, the distribution of workload
is defined as: elements within the range [0, 2m] are processed by the GPU, and the
remaining elements [2m + 1, N] are handled by the CPU. For practical purposes we
have established the parameter r = 2m/N that represents the ratio of elements in
GPU. Our approach is described in Algorithm 1.

Algorithm 1 Auto-balancing algorithm
1: m0 ← initial solution
2: calculate time T(m0)
3: mopt ← m0
4: Topt = T(m0)
5: tabuList[ ]← push({m0})
6: candidates[ ]← push({m0 + ∆m, m0 − ∆m})
7: while candidates[ ] 6= φ do
8: mi = pop(candidates[ ])
9: tabuList[ ]← push({mi})

10: calculate time T(mi)
11: if T(mi) < Topt then
12: mopt ← mi
13: Topt = T(mi)
14: candidates[ ]← push({mi + ∆m, mi − ∆m} − tabuList[ ])
15: end if
16: end while

The algebraic based CFD kernels of our implementation model are memory bounded,
which means its performance is dominated by the memory transactions rather than
the computations. Therefore, we can estimate an initial distribution, m0, based in the
memory bandwidth (BW) of the computing unit and the total number of elements
(N), such as:

2m
BWGPU

=
(N − 2m)

BWCPU
(3.3)

therefore,

m =
BWGPU

2(BWGPU + BWCPU)
N (3.4)
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In Mont-Blanc nodes, the bandwidth of both computing units is the same, con-
sequently the initial distribution consist in distribute an equal amount of work for
each computing unit or m = N/4. The tabu search requires the definition of a step
function which determines the candidate movements for the next iterations. When a
distribution m is selected, it is also added in the tabulist[]. This list represents the
previous configurations that have been tested and it is used for avoiding repetition
in the movements. Then, since our search is performed in a one-dimensional space
[0, N], our step function consists in ±∆m such as the new candidates are not in the
tabulist[]. The function is defined as:

∆m = n× bsize (3.5)

where bsize is the number of elements processed by an OpenCL work-group, and n
is a constant integer parameter that can take values in the range of [1, N

bsize − 1)]. The
parameter n determines the granularity of the auto-balancing algorithm. A small size
of n spans a larger search space allowing a more precise partition, but is more likely
to be stuck in local minima. On the other hand, a big n avoids local minima at ex-
penses of precision since the search space is more coarse. Note that those parameters
may not be defined as constants, but for simplicity purposes we avoid introducing
more complex strategies that may have a bigger overhead in the algorithm. Once
the possible candidates are obtained, they are push in a stack called candidates[]

that operates in a LIFO (last in, first out) arrangement. This implementation detail
is necessary for being able of following positive tendencies, since it privileges the
selection of candidates arisen from the last movement that improved the balancing.

The algorithm can also include a restarting procedure, in which the auto-balancing
starts from a different initial solution, in doing so, it avoids the stagnation in local
minima. This balancing strategy is applied during the preprocessing stage of the
CFD algorithm until an optimum solution is reached. Note that each algebraic ker-
nel may have a different distribution since the individual performance depends on
how much of the bandwidth can be profited by the function. The overhead intro-
duced by the auto-balancing method is negligible because the CFD algorithms need
O(105 ∼ 106) of iterations for converge.

3.4.3 Multi ARM SoC SpMV implementation

The underlying MPI parallelization of the present unstructured CFD code is based
on a domain decomposition approach. Therefore, the initial meshM, is divided into
P non-overlapping submeshesM0, ...,MP−1 by means of a graph partitioning tool.
For each MPI process, the corresponding unknowns of the system can be categorized
into different sub-sets for a given i-th subdomain:
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• owned unknowns are those associated to the nodes ofMi;
• external unknowns are those associated to the nodes of other submeshes;
• inner unknowns are the owned unknowns that are coupled only with other

owned unknowns;
• interface unknowns are those owned unknowns which are coupled with exter-

nal unknowns;
• halo unknowns are those external unknowns which are coupled with owned

unknowns.

To facilitate the communication schemes a block reordering is applied in order to
group inner, interface and halo elements. By doing so, the interface rows are stored
contigously in memory, minimizing the indirect accesses and the indexes for identify
them.

Therefore, the communication episodes, involved in the halo update, consist
only in the non-blocking point-to-point MPI communications MPI_Isend, MPI_Irecv,
MPI_Waitall. Similarly than in high-end hybrid nodes, the communication costs can
be partially hidden by using overlapping strategies.

GPU CPU

I

II

Figure 3.1: Execution model OSpMV with adapted distribution

The overlapping SpMV (OSpMV) is based in our previous experience working
with discrete CPU/GPU systems [19]. However, certain modifications need to be
introduced in the execution model for adjusting it to the characteristics of the ARM-
based nodes. The main change consist in performing part of the calculations in the
CPU. This is suitable in the Mont-Blanc nodes, because in the unified memory space
it is not necessary to execute additional data transfers from CPU to GPU.

The tabu search algorithm is utilized for determining the optimal workload. In
the parallel version, the algorithm considers as CPU-work both MPI communica-
tions and SpMV computations. The minimal load of the SpMV for the CPU is the
interface part of the matrix, because that part can only be operated after the commu-
nication process is finished.
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The remaining kernels do not need to introduce changes, since the load distribu-
tion within the nodes is not affected by the parallelization process. In AXPY there are
not communications involved so the results are the same than operating in a single-
node mode. For DOT product the parallel reduction is performed by MPI_Allreduce,
and since this operation can not be overlapped there is no need to redistribute the
workload.

3.5 Numerical Experiments

The three main algebraic kernels that compose our CFD algorithm are the AXPY,
DOT and SpMV operations. The performance of this algebraic kernels has been mea-
sured and analyzed independently for each computing device. Moreover, a hybrid
implementation that combines CPU and GPU execution has been tested as well. The
benchmark case known as ASMO car was selected for testing our kernel implemen-
tation. The test case consist in simulating the turbulent flow around the ASMO car
geometry (Re = 7 × 105) using a 5.5M unstructured mesh, the implementation de-
tails can be found in Chapter 2. The relative weight of the operations is shown in
Figure 3.2. As expected, the profiling demonstrates that SpMV is the dominant oper-
ation with 82% of contribution to the algorithm. This result is in agreement with Ta-
ble 3.1 that shows the number of SpMV calls during our fractional step. On the other
hand, the three basic algebraic kernels sum up to 98% of the time-step execution
time. This fact validates our approach of focusing our attention in the development
of the main algebraic kernels. Note that we are not running any simulation in Mont-
Blanc nodes, but we have used the estimation of performance proposed in Chapter 2.
The numerical experiments have been carried out on the Mont-Blanc prototypes de-
scribed in Section 3.3. The code has been implemented adopting an execution model
in which three different frameworks coexist: OpenCL, OpenMP and MPI.

SpMV

82%

DOT

9%
AXPY

7%
OTHERS

2%

Figure 3.2: Relative weight of the algebraic kernels in a CFD simulation
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3.5.1 Single node results

First of all, the net performance of the main kernels was tested for different work-
loads in the range of a traditional CFD application. The Mont-Blanc prototypes are
equipped with only 1GB of RAM memory per node, limiting the size of the problem
that fits on them. In the case of SpMV, the laplacian matrix and the sliced ELLPACK
format have been chosen as the most appropriate for our application context.
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Figure 3.3: Net performance of the SpMV, AXPY and DOT respectively

The net performance and the benefits of the hybrid approach are depicted in
Figure 3.3, the results are compared with respect to the single-CPU and single-GPU
execution. Notice that the kernels are memory bounded, and in this ARM-nodes
the memory bandwidth is the same for the CPU and the GPU (physically shared
memory). Therefore, it is expected to obtain about the same net performance in the
single execution for each computing device. However, this trend is not totally in
agreement with the plots for different reasons in each kernel.

For the SpMV, the discrepancy in the results is explained by the different execu-
tion models of CPU (MIMD) and GPU (stream processing + SIMD). Our conclusion
is that the stream processing model of the GPU harness more efficiently the band-
width as explained in detail in Chapter 2. In fact, the ARM-CPU memory hierarchy
consist only in a two level small size cache (L2 cache is 1MB), resulting in an optimal
bandwidth achievable for unrealistic small workloads. On the other hand, the ARM-
GPU requires less active threads for achieving maximum occupancy, in comparison
with the discrete GPUs. Both issues explain why the net performance of the device
is nearly constant when increasing the workload. The average speedup of the GPU
with respect to the CPU for the SpMV is 1.5× in such meshes.

The AXPY and DOT product are vectors operations that are based in coalesced
memory accesses. In fact, all the bandwidth of the CPU can be harnessed because of
the good memory locality of those kernels. Therefore, the CPU can achieve nearly
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the same net performance than the GPU.
For the dot product the main difference is that is composed by a reduction op-

eration. In the case of the GPU, this reduction operation is performed by means of
allocating a shared memory that can be read by all the threads within a block. As
difference of discrete GPUs, the shared memory in ARM-GPUs is not located in the
streaming multiprocessors, but in the the global memory. Therefore, the reduction
operation penalizes the GPU execution. The net performance in this case only out-
performs the CPU when the workload is large enough (200K and 400k). In such
cases, the relative weight of the reduction operation is smaller with respect to the
total computation time. For those large cases, the GPU achieved an average speedup
of 1.15× with respect to the CPU execution.
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Figure 3.4: Auto-balancing for the kernels in the 200K case

Our auto-balance heterogeneous implementation of the kernels presented in Sec-
tion 3.4.2 utilizes both devices concurrently, obtaining the best results for every case.
The average speedups with respect to the best case of single execution for the SpMV,
AXPY and DOT are 1.60×, 1.38× and 1.40× respectively. The work load is dis-
tributed between both computing devices by means of a tabu search algorithm. In
optimal circumstances, when the performance in single-CPU and single-GPU are
similar, the use of the hybrid algorithm should report ≈ 2× speedup. However, the
best hybrid case obtained a speedup of≈ 1.85×. In order to explain this, we decided
to study the load balancing algorithm for the case of workload 200K.The results of
the tabu search algorithm for the three kernels are illustrated in Figure 3.4. In the
plots the x-coordinate denotes the percentage of workload in the GPU, 1.0 stands for
fully GPU execution and 0.0 fully CPU execution. The dashed line represents the ex-
pected performance for the balancing algorithm based in the separated execution of
the kernels in CPU and GPU. On the other hand, the continued line portraits the real
performance obtained when both kernels are executed concurrently. Note that based
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in the separated execution, the SpMV and DOT optimal workload consist in assign-
ing more elements to the GPU. While for the AXPY the optimal would be an equal
distribution of workload for both computing unit. However, there is a disagreement
when calculating the workload based the concurrent execution. In such case, for all
kernels the optimal execution time is achieved when a larger portion of the work is
executed in the GPU. This results in variation of the peak net performance, which
it is smaller than the calculated based in separate execution. This behavior when
running concurrent kernels is explained by the dynamic frequency scaling incorpo-
rated in Mont-Blanc prototypes. The ARM architecture is a technology developed for
working without a cooling fan, therefore when a threshold of temperature is reached
the CPU throttles back and the expected performance degrades. As consequence,
the hybrid algorithm is forced to assign more rows to the GPU for finding a optimal
solution. The concurrent execution of our hybrid algorithm propitiates the rises in
the temperature of the chip because both devices are computing at the same time.

3.5.2 Parallel results

The main constrain of the mobile based supercomputers is the interconnection of the
nodes. InfiniBand is not supported yet, therefore minimizing the impact of the com-
munication episodes is highly important. In our CFD kernels, DOT product requires
a collective communication that cannot be avoided; AXPY do not need communica-
tion at all; and the SpMV demands a point to point communication before operating
the interfaces elements of the matrix. Therefore, for AXPY and DOT operations we
can profit the same load balancing approach utilized when working in single node.
On the other hand, for SpMV we focused our attention in the implementation of an
overlapping strategy that hide part of the communications stage. This approach in-
corporates the weight of the communication time in the CPU when performing the
tabu search for finding the optimal load balance. As a result, the new distribution
consist in increasing the workload in the GPU whenever the relative weight of the
communications get higher. The new ratio of rows is shown in Figure 3.5. The plot
shows the new ratio for three mesh sizes 1.6M, 3.2M and 6.4 when engaging up to
64 nodes Note that in accordance with our overlapping model the ratio is limited to
1.0. This ratio represents executing the inner part of the matrix in the GPU, while the
interface part is processed by the CPU. We can find a minimum number of nodes n
when the ratio becomes 1.0. This means that when engaging n or more nodes, the
cost of the communications is higher than the product of the inner matrix on the
GPU. In the plot is shown that this is produced when working with a workload per
node ≤ 200K. This inflection point is found when engaging 8,16 and 32 nodes for
meshes of sizes 1.6M, 3.2M and 6.4M respectively

Next we compare our OSpMV with a non-overlapping SpMV implementation
(NSpMV). The NSpMV consist in first executing the halo update in the CPU, and
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Figure 3.5: Distribution of rows for the OSpMV with different meshes

6.4 12.8 25.4
0

2

4

6

8

10

12

Matrix size (Millions of rows)

T
im

e
(m

s)

Communications
SpMV Computations
SpMV Overlapped

100 200 400
0

0.2

0.4

0.6

0.8

1

thousands of rows

G
F
L
O
P
S

NSpMV OSpMV SpMV-1Node

Figure 3.6: Left: Execution times of NSpMV and OSpMV. Right: Net performance of
the NSpMV and OSpMV compared with single node SpMV

right after perform the hybrid approach of single node to all the matrix. Figure 3.6
(left) shows the execution time of both algorithms when engaging 64 nodes for three
mesh sizes 6.4M, 12.8M and 25.4M. In such cases, the OSpMV obtains a speedup
of 1.2×, 1.3× and 1.6× that can be explain by its capability of hiding part of the
communication costs. The main difference with single node execution is that the
CPU most of the time is performing communications instead of computations. In the
right side of the figure, we compare the net performance of the parallel algorithms
with the SpMV execution in a single node. In such case, the performance is degraded
in 25%, 31% and 50% for the workloads 100K, 200K and 400K respectively. This
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demonstrates how important is the degradation produced by the communicaton in
the Mont-Blanc nodes.
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Figure 3.7: Weak speedup of the algebraic kernels. Left: SpMV , Right: AXPY and
DOT

The scalability of the algorithm is analyzed by means of the weak speedup de-
picted in Figure 3.7. The test consist in keeping constant the workload per node
while gradually engaging up to 64 Mont-Blanc nodes. Three different workloads in
the range of a CFD simulation were selected: 100K, 200K and 400K. The overlapping
strategy was chosen for the SpMV. In the cases running up to 8 nodes, the overlap-
ping approach effectively hides part of the communication with a maximum slow-
down of 1.3× in the performance with respect to the execution engaging 2 nodes. For
larger cases, the domain decomposition introduces an overhead due to the partition
of the mesh. In such cases, it is more likely to find sub-domains which are totally
surrounded by other domains. Consequently, the halos and interfaces nodes of such
sub-domains are larger and slowdown the whole communication episode. Note that
this negative effect of the domain decomposition is a constant overhead that is ob-
served when working with 16 nodes or more. Such negative issue is minimized
when using a larger workload per node, because the relative weight of communi-
cations decreases. In any case, the overlapped SpMV algorithm scales nearly linear
before and after this leap. The maximum slowdowns when engaging 64 nodes for
the workloads of 100K, 200K and 400K per ARM-node are 2.6×, 2.24× and 1.53×,
respectively. In the right part of the Figure 3.7 is shown the scaling of the AXPY and
DOT kernels. As expected, AXPY shows a perfect scaling since the absence of com-
munications, and DOT performance is characterized by a nearly linear degradation
produced by the collective communication.

The parallel efficiency of the strong speedup for the algebraic kernels is shown
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in Figure 3.8. There different meshes were tested 1.6M, 3.2M and 6.4M. The meshes
remain constant while gradually engaging up to 64 Mont-Blanc nodes. Results are in
agreement with the observations made for the weak speedup. In contrast to discrete
GPU execution, for the SpMV the occupancy effects do not play an important role
here because its performance is nearly identical for the workload tested, as shown in
Figure 3.3. Therefore, we can conclude that the main drawback of the prototypes are
the communication episodes. Good scaling results are shown when engaging up to 8
nodes where an 80% efficiency is attained. From 16 nodes an up, the negative effects
of the communications produce a rapidly decrease in performance. As a result, in the
best case scenario engaging 64 nodes achieves only 40% of the expected efficiency.
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Figure 3.8: Parallel Efficiency of the algebraic kernels. Left: SpMV , Right: AXPY
and DOT

In the future, the interconnection between ARM-nodes is expected to improve,
and may be closer to the current supercomputers. For illustrating this point, we pro-
vide an estimation of the parallel performance if the nodes were interconnected by
means of an InfiniBand QDR of 40 Gbps. Figure 3.9 shows that when working with
the 6.4M mesh, the parallel efficiency engaging 64 nodes would be more than 80%.
By doing so, the scalability of the prototypes would be as good as the traditional
high-end supercomputers. However, we must consider that the ARM CPU+GPU
runs up to ≈ 20× slower than the Tesla GPUs, which are not the faster GPUs in the
market. Consequently, for obtaining the same performance in an ARM-based cluster
it would be necessary engaging up to 20 times more nodes. This would require a
better parallel efficiency than the current high-end nodes.
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3.5.3 Energy efficiency

The main bottleneck in the development exascale computing systems is the energy
cost. So, the FLOP per watt is a metric with major relevance when analyzing a HPC
system. Such metric is used by the Green 500 list for indexing the top energy effi-
cient supercomputer according to the LINPACK benchmark. With this in mind, we
proceeded to compare the Mont-Blanc prototypes with a current high-end hybrid
supercomputer. Minotauro is a 128-nodes hybrid CPU/GPU supercomputer. Each
node is composed by two NVIDIA M2090 and two Intel hexacore CPUs. The nodes
are interconnected by means of an InfiniBand QDR interface. Both implementation
are based in our algebraic-based CFD code and properly tuned for the different ar-
chitectures of the systems. The calculations have considered a 6.4M cells mesh, en-
gagging up to 64 nodes. The net performance and the energy efficiency are shown
in Figure 3.10.

Minotauro’s net performance is in average 20× better than the Mont-Blanc pro-
totypes. This huge difference can be explained manly by three factors: discrete GPUs
have 13× faster bandwidth; Minotauro nodes does not suffer from frequency down-
scaling; and the better network infrastructure for connecting the nodes. A qualitative
approximation of the FLOP per watt ratio can be obtained by considering the factory
power requirements for each node. The estimation considers that a Mont-Blanc fused
CPU+GPU consumes 5W, and Minotauro’s node configuration with Xeon+M2090 re-
quires 300W. Note that by doing so, we are not counting the network or refrigeration
consumption. The results are shown in the right part of the figure. Under such
circumstances, the Mont-Blanc nodes are up to 2.4× more efficient than Minotauro
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Figure 3.10: The net performance comparison between both implementations

nodes, even considering the limiting factors aforementioned. The main reason is
that the ARM CPU+GPU architecture is developed for using reduced power sup-
ply in order to increase the battery usage of the mobile devices. Therefore using
the same number of nodes on both systems, we conclude that Mont-Blanc would be
more efficient, but the results would take 20× higher execution time. This shows
us the potential of the utilization of ARM technology in HPC systems. Note that
the advances in this low power processors are estimulated by strong market trends.
Therefore, future improvements in this technology are expected, encouraging us into
continuing exploring this line of investigation.

3.6 Conclusions

High performance computing is exploring new energy efficient technologies aiming
to reach the exascale paradigm. In this chapter we present a study of the perfor-
mance of TermoFluids code on the Mont-Blanc mobile-based prototypes. Our so-
lution is based in the specific implementation of the portable model proposed in
Chapter 2. Note that scientific computing in such embedded architectures is still
in its early stages, therefore there are not algebraic libraries that facilitate the imple-
mentation yet. Consequently, our focus was the implementation of the three main
algebraic kernels that compose our computations: SpMV, AXPY and DOT. Such ker-
nels are memory bounded operations, then its performance mostly depends of the
memory bandwidth of the computing device where they run.

In Mont-Blanc prototypes, the CPU and GPU are equipped with the same mem-
ory bandwidth, so similar performance was expected for the kernels in sequential
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execution. However, the SpMV shows a 1.5× speedup in average of the GPU versus
the CPU implementation. This confirms that the stream processing model of GPUs
better harnesses the bandwidth for the SpMV as explained in detail in Chapter 2.

Our main contribution in the implementation of the kernels consists in a hybrid
implementation of them for simultaneity enggaging both devices of the Mont-Blanc
prototypes. This approach is possible because of two reasons: the physically shared
memory of the mobile architecture that avoids PCI-e communication episodes be-
tween GPU and CPU, and the similar net performance of both computing devices
that makes it worth the sharing. The problem consists in finding the best workload
distribution to maximize the net performance. Our solution has been the develop-
ment of an auto-balancing algorithm based in a tabu search that tunes the kernels
workload in a pre-processing stage. Following this approach the SpMV, AXPY and
DOT have been accelerated in average by 1.64× , 1.60× and 1.74×, respectively.

In the parallel execution, the load distribution includes the inter-node communi-
cation that is performed by the CPU. Therefore, the communications are overlapped
with computations on the GPU that increases its workload to balance the cost of the
communication performed by the CPU. Several parallel experiments have been per-
formed with meshes of different sizes and engaging up to 64 nodes. The best parallel
efficiency achieved on 64 nodes has been 40% for a mesh of 6.4M nodes. However
the communication technology of the Mont-Blanc nodes is still based on the Gigabit
network and we estimate that the performance would be much higher with an state
of the art Infiniband network.

Summarizing, we found two main limitations for running CFD in the mobile ar-
chitecture. Firstly, the slow network in comparison with the current supercomputers
because Infiniband is not supported yet. Secondly, error correction code is not in-
corporated in the mobile chips, this makes unfeasible the execution of large scale
simulations because the correctness of the results is not guaranteed. However, many
of the aforementioned limitations were encountered in the early days of the GPU
computing and were improved during the evolution of such technology. Finally, by
means of a qualitative approximation we conclude that at running our CFD code the
Mont-Blanc nodes are in average 2.4× more energy efficient than a current hybrid
high-end supercomputer such as MinoTauro of the BSC. It is expected that mobile
technology continues its evolution due to the strong market trends. Therefore, we
consider that this technology has the potential of becoming an important part of the
future supercomputing technology.
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Abstract. Problems with some sort of divergence constraint are found in many
disciplines: computational fluid dynamics, linear elasticity and electrostatics are ex-
amples thereof. Such a constraint leads to a Poisson equation which usually is one
of the most computationally intensive parts of scientific simulation codes. In this
work, we present a memory aware auto-tuned Poisson solver for problems with one
Fourier diagonalizable direction. This diagonalization decomposes the original 3D
system into a set of independent 2D subsystems. The proposed algorithm focuses on
optimizing the memory allocations and transactions by taking into account redun-
dancies on such 2D subsystems. Moreover, we also take advantage of the uniformity
of the solver through the periodic direction for its vectorization. Additionally, our
novel approach automatically optimizes the choice of the preconditioner used for
the solution of each frequency subsystem and dynamically balances its parallel dis-
tribution. Altogether constitutes a highly efficient and robust HPC Poisson solver.

4.1 Introduction

Divergence constraints are ubiquitous in physical problems. Under certain assump-
tions, they follow from basic conservation principles such as the mass conservation,
the electrical charge conservation or the conservation of probability in quantum me-
chanics. Such a constraint leads to a Poisson equation for a some sort of scalar poten-
tial. Hence, it is not surprising that the Poisson equation plays a fundamental role in
many areas of science and engineering such as computational fluid dynamics (CFD),
linear elasticity, electrostatics and quantum mechanical continuum solvation models.
Furthermore, it is usually one of the most time-consuming and difficult to parallelize
parts of scientific simulation codes. Therefore, the development of efficient and scal-
able Poisson solvers is of great interest.

On the other hand, the sustained growth of the computing capacity of modern
high performance computing (HPC) systems is given by the combination of two fac-
tors. Firstly, as the clock frequency is constrained by physical limitations the number
of computing units (i.e. the concurrency) keeps increasing. This trend requires more
and more scalable algorithms with higher degree of parallelism Secondly, driven by
power limitations heterogeneous architectures have become popular in the last years.
The heterogeneity is expressed at the node level with the introduction of massive par-
allel co-processors in addition to the hosting multicore CPUs. And at the CPU level
with an increasing percentage of the net performance relying on vectorization, sup-
ported by wider vector lengths This requires adaptation of the algorithms to a hetero-
geneous (hybrid) architecture and even more complex parallel model that combines
principally different kinds of parallelism. Namely, MIMD (multiple instruction mul-
tiple data) and SIMD (single instruction multiple data). In this context, we focus
our attention on the development of a parallel Poisson solver flexible enough to run
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efficiently on different kind of parallel systems.
Regarding the applications, the present work is restricted to CFD problems. In

particular, direct numerical simulations (DNS) and large-eddy simulations (LES) of
incompressible turbulent flows. The following four aspects, which are also relevant
in the context of this paper, are commonly present in many DNS/LES applications:

• The Poisson equation has to be solved repeatedly with different right-hand-
side terms (for DNS/LES problems the number of time-steps can easily reach
O(106)), while the system matrix remains constant. Hence, a pre-processing
stage with large computing demands can be accepted.

• Wall-bounded flows and/or flows around internal obstacles are common in
most of the applications. Therefore, in order to solve all relevant turbulent
scales near the walls, arbitrary unstructured meshes are required.

• The solution obtained in the previous time step(s) can be used as an initial
guess for iterative solvers in order to accelerate the convergence.

• Periodicity in at least one direction is of interest in many cases.

For flows fulfilling the last property the Fourier diagonalization [1] in the peri-
odic direction(s) is the best choice. The uniformity of the grid in each of such direc-
tions imposed by the method is suitable with the isotropic nature of the flow along
it. Fourier diagonalization allows the original three-dimensional (3D) Poisson equa-
tion to decompose into a family of independent two-dimensional (2D) systems of
equations. On this basis, several approaches can be adopted for (i) the paralleliza-
tion strategy in the periodic direction and (ii) the choice of the parallel solver(s) for
the 2D problems. Roughly speaking, their choice depend on the size of the problem
and the computational architecture. Our successive adaptions have been mainly mo-
tivated by the irruption of new supercomputers with a clear tendency to increase
the number of processing units without increasing but rather decreasing the amount
of RAM memory available per core. For instance, the strategy adopted for small
problems and reduced number of CPUs was a sequential approach in the periodic
direction and a direct Schur-complement (DSD) based solver for the 2D frequency
subsystems [2,3]. Then, for bigger problems it was necessary to adopt a hybrid strat-
egy combining DSD for some frequencies with an iterative solver [4] for the others.
This was mainly due to the RAM requirements of the DSD method. Alternatively,
the range of applicability of the DSD could be extended by using an efficient paral-
lelization in the periodic direction [5]. In both cases, scalability tests up to O(104)
shown a good performance. These successive improvements in the Poisson solver
led to the possibility to compute bigger and bigger simulations. Starting from the
simulation of a turbulent air-filled differentially heated cavity at different Rayleigh
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Figure 4.1: Examples of DNS simulations with one periodic direction. Top: turbu-
lent air-filled differentially heated cavity [8, 9]. Bottom: flow around a circular cylin-
der [13].

(Ra) number [6, 7], many cutting-edge DNS simulations have been computed in the
last decade. This initial works were carried out on a Beowulf PC cluster using up
to 36 CPUs. Subsequent works [8, 9] were carried out on the first version of the
MareNostrum supercomputer in the Barcelona Supercomputing Center (BSC). That
time it was the number one European supercomputer and was ranked fourth in the
Top500 list. These new DNS simulations were carried out using up to 512 CPUs
(see Figure 4.1, top). More recent examples of DNS simulations can be found in [10]
and, for unstructured meshes, in [11–13]. Figure 4.1 (bottom) displays the results
presented in [13]: this simulation was carried out using up to 5000 CPUs on the
MareNostrumIII in the BSC.

In this context, the present work proposes several improvements and adapta-
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tions of the algorithm for Peta-scale simulations on modern HPC systems. The most
remarkable new features are threefold: (i) the algorithm has been evolved to a fully
iterative mode in order to avoid memory constraints derived from the memory re-
quirements of direct factorization methods. (ii) it optimizes the memory allocations
and transactions by taking into account redundancies on the set of 2D frequency
subsystems, (iii) it also takes advantage of the uniformity of the solver through the
periodic direction for its vectorization and (iv) automatically optimizes the choice of
the preconditioner used for the solution of 2D problems and dynamically balances
its parallel distribution. Altogether constitutes a highly efficient and robust HPC
Poisson solver.

The rest of the paper is arranged as follows. In Section 4.2, the discretization
method is briefly presented. The basic ideas for the solution of Poisson systems
derived from discretizations with one periodic direction are described in Section 4.3.
The parallelization strategy is discussed in Section 4.4. The novel optimizations for
the fully iterative version are presented in Section 4.5. In Section 4.6 are shown some
numerical experiments performed on the Bluegene/Q Vesta supercomputer. Finally,
relevant results are summarized and conclusions are given in Section 4.7.

4.2 Numerical methods

4.2.1 Problem geometry and topology

In this work, geometric discretisations obtained by the uniform extrusion of generic
2D meshes are considered. Periodic boundary conditions are imposed in the ex-
truded direction. Consequently, the resulting linear couplings of the Poisson equa-
tion in such a direction result into circulant submatrices. Since the proposed algo-
rithm do not impose any restriction for the initial 2D mesh it is suitable for unstruc-
tured meshes. Nevertheless, this lack of structure leads to a more complex data man-
agement. An illustrative example of such a geometric discretisation is displayed in
Figure 4.2.

The following notation is used. The initial 2D mesh and the 1D uniform discreti-
sation of the periodic direction are referred asM2d andMper, respectively. The total
number of nodes is N := N2dNper, where N2d and Nper are the number of nodes in
M2d andMper, respectively. For simplicity, we assume that Nper is an even number.
The constant mesh step inMper is ∆per. Two indexes define a node on the resultant
3D meshM, namely the positions inM2d andMper. Hence, two different node or-
derings are used: the 2D-block-order and the 1D-block-order. They are lexicographical
orders of the Cartesian productsM2d ×Mper andMper ×M2d, respectively. Using
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Figure 4.2: 3D mesh around a cylinder generated by the uniform extrusion of a 2D
unstructured mesh.

the 2D-block-order, a scalar field v ∈ RN reads

v ≡
[
v2d

0 , ..., v2d
(Nper−1)

]
, (4.1)

whereas using the 1D-block-order it becomes

v ≡
[
vper

0 , ..., vper
(N2d−1)

]
, (4.2)

where v2d
k ∈ RN2d and vper

k ∈ RNper are the k-th plane of the extrusion and the k-th
span-wise subvectors, respectively.

4.2.2 Poisson equation

The simulation of turbulent incompressible flows of Newtonian fluids is considered.
Under these assumptions the velocity field, u, is governed by the Navier-Stokes (NS)
and continuity equations

∂tu + (u · ∇)u− 1
Re

∆u +∇p = 0, (4.3)

∇ · u = 0, (4.4)
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where Re is the dimensionless Reynolds number. In an operator-based formulation,
the finite volume spatial discretisation of these equations reads

Ω
duh
dt

+ C (uh) uh + Duh + ΩGph = 0h, (4.5)

Muh = 0h, (4.6)

where uh and ph are the velocity and pressure fields defined in the nodes of the mesh
M, Ω is a diagonal matrix with the size of the control volumes, C(uh) and D are the
convective and diffusive operators and, finally, M and G are the divergence and
gradient operators, respectively. In this paper, a “symmetry-preserving”/“energy
conserving” discretisation is adopted. Namely, the convective operator is skew-
symmetric (C(uh)+C(uh)

∗ = 0), the diffusive operator is symmetric positive-definite
and the integral of the gradient operator is minus the adjoint of the divergence oper-
ator (ΩG = −M∗). Preserving the (skew-)symmetries of the continuous differential
operators when discretising them has been shown to be a very suitable approach for
DNS [7, 14, 15].

For the temporal discretisation, a second-order explicit one-leg scheme is used.
Then, assuming ΩG = −M∗, the resulting fully-discretised problem reads

Ω
un+1

h − un
h

δt
= R

(
3
2

un
h −

1
2

un−1
h

)
+ M∗pn+1

h , (4.7)

Mun+1
h = 0h, (4.8)

where R(uh) = −C(uh)uh−Duh. The pressure-velocity coupling is solved by means
of a classical fractional step projection method [16,17]. In short, reordering the equa-
tion (4.7), an expression for un+1

h is obtained,

un+1
h = un

h + δtΩ−1
(

R
(

3
2

un
h −

1
2

un−1
h

)
+ M∗pn+1

h

)
, (4.9)

then, substituting this into (4.8), leads to a Poisson equation for pn+1
h ,

−MΩ−1M∗pn+1
h = M

(
un

h
δt

+ Ω−1R
(

3
2

un
h −

1
2

un−1
h

))
, (4.10)

that must be solved once at each time-step.

4.2.3 Discrete Laplace operator

The Laplacian operator of equation (4.10),

L = −MΩ−1M∗, (4.11)
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Figure 4.3: Elements of the geometric discretisation.

is by construction symmetric and negative-definite. Its action on ph is given by

[Lph]k = ∑
j∈Nb(k)

Akj
ph(j)− ph(k)

δnkj
, (4.12)

where Nb(k) is the set of neighbors of the k’th node. Akj is the area of fkj, the face
between the nodes k and j, and δnkj = |nkj · vkj|, where vkj and nkj are the vector
between nodes and the normal unit vector of fkj, respectively (see Figure 4.3). For
details about the spatial discretization the reader is referred to [18].

The set Nb(k) can be split into two subsets: Nb(k) = Nbper(k) ∪ Nb2d(k), where
Nbper(k) and Nb2d(k) refer to the neighbor nodes along the periodic direction and
in the same plane of the extrusion, respectively. In this way, the expression (4.12)
becomes

[Lph]k = ∑
i∈Nbper(k)

Aki
ph(i)− ph(k)

∆per

+ ∆per ∑
j∈Nb2d(k)

akj
ph(j)− ph(k)

δnkj
, (4.13)

where akj is the length of the edge of fkj contained inM2d (see Figure 4.3). This can
be written in a more compact form by means of the Kronecker product of matrices.
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Using the 1D-block-order, the Laplacian operator of the equation (4.13) reads

L = (Ω2d ⊗ Lper) + ∆per(L2d ⊗ INper ), (4.14)

where L2d ∈ RN2d×N2d and Lper ∈ RNper×Nper are the Laplacian operators discretised
on the meshesM2d andMper, respectively; Ω2d ∈ RN2d×N2d is the diagonal matrix
representing the areas of the control volumes of M2d, and INper is the identity ma-
trix of size Nper. With the above-mentioned conditions (uniformly meshed periodic
direction), Lper results into a symmetric circulant matrix of the form

Lper =
1

∆per
circ(−2, 1, 0, · · · , 0, 1). (4.15)

This allows to use a Fourier diagonalisation algorithm in the periodic direction. Note
that this particular solution corresponds to a second-order finite volume discretiza-
tion (see [18], for instance). However, the proposed algorithm relies on the fact that
the Laplacian operator has the structure given in Eq.(4.14). This is the case for most of
the existing numerical approximations of the Laplacian operator for problems with
one periodic direction.

4.3 FFT based Poisson solver

In this section the basic ideas for the solution of Poisson systems with one Fourier
diagonalizable direction are presented. As mentioned above, the problem under
consideration reads

Lxi = bi i = 1, ...., Nt, (4.16)

where the Laplacian operator, L, remains constant during the simulation and Nt is
the total number of time-steps. Thus, the computational cost (per time-step) of any
preprocessing stage is reduced by Nt times. Typically, for CFD applications applica-
tions Nt = 105 ∼ 106; therefore, in general, the pre-processing costs become negligi-
ble.

Since the couplings in the periodic direction are circulant matrices, the initial
system (4.16) can be diagonalized by means of a Fourier transform. As a result, it
is decomposed into a set of Nper mutually independent 2D subsystems, drastically
reducing the arithmetical complexity and the RAM memory requirements (see next
subsection). Different aspect to be taken into account on the solution of the resulting
2D subsystems are considered in subsection 4.3.2.
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4.3.1 Fourier diagonalisation

Any circulant matrix is diagonalizable by means of the discrete Fourier transform
(DFT) of the same dimension [19, 20]. Then, the circulant matrix, Lper, defined in
equation (4.15) verifies

F∗Nper
LperFNper = Λ, (4.17)

where FNper and F∗Nper
are the Nper-dimensional Fourier transform and its inverse/ad-

joint, respectively; and Λ = diag(λ0, λ1, ..., λNper−1) is the resultant diagonal matrix.
A general expression for the eigenvectors can be found in [19, 20], in this particular
case

λk = −
2

∆per

(
1− cos

(
2πk
Nper

))
k = 0, ..., Nper − 1. (4.18)

Then, if the unknowns are labeled adopting the 1D-block-order, the operator (IN2d ⊗ F∗Nper
)

transforms all the span-wise subvectors, vper
k , of any field, v, defined inM, from the

physical to the Fourier spectral space; (IN2d ⊗ FNper ) carries out the inverse transforma-
tion. Applying the same change-of-basis to L, the Laplacian operator in the spectral
space, L̂, is obtained 1:

L̂ = (IN2d ⊗ F∗Nper
)L(IN2d ⊗ FNper )

= (Ω2d ⊗Λ) + ∆per(L2d ⊗ INper ). (4.19)

Comparing the last expression term-by-term with equation (4.14) it is observed that
the change-of-basis affects only to the couplings in the periodic direction, whereas
the couplings in the non-periodic directions are not modified. This is a consequence
of the mesh uniformity in the periodic direction.Then, switching to the 2D-block-order,
L̂ reads

L̂ = (Λ⊗Ω2d) + ∆per(INper ⊗ L2d)) =

Nper−1⊕
k=0

L̂k, (4.20)

where
L̂k = λkΩ2d + ∆perL2d k = 0, ..., Nper − 1. (4.21)

Note that the matrices L̂k only differ in the eigenvalue, λk, multiplying the diagonal
contribution Ω2d.

Therefore, the original system (4.16) is decomposed into a set of Nper mutually
independent 2D systems

L̂k x̂2d
k = b̂2d

k k = 0, ..., Nper − 1, (4.22)

1Given matrices A, B, C and D, with appropriate size, (A⊗B) · (C⊗D) = AC⊗BD
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where each system, hereafter denoted as frequency system, corresponds to a frequency
in the Fourier space. In summary, the process to solve the Poisson system is detailed
in Algorithm 1.

Algorithm 1:

1. Transform the right-hand-side b, b̂ = (IN2d ⊗ F∗Nper
)b

2. Solve the the frequency systems, L̂k x̂2d
k = b̂2d

k

3. Restore the solution vector: x = (IN2d ⊗ FNper )x̂

At this point, some relevant issues must be addressed. Namely,

1. Fourier decomposition of real-valued problems. Since the subvectors bper
k are real-

valued, the corresponding discrete Fourier coefficients are paired as follows[
b̂per

k

]
i
=

[
b̂per

k

]∗
Nper−i

i = 1, ..., Nper − 1. (4.23)

Thus, the 2D subvectors b̂2d
k meet

b̂2d
k = (b̂2d

Nper−k)
∗ k = 1, ..., Nper − 1. (4.24)

On the other hand, the eigenvalues of the real-valued Lper, defined in equa-
tion (4.18), fulfill the following property

λ0 = 0,
λk = λNper−k k = 1, ..., Nper − 1. (4.25)

Hence, plugging the two previous identities into equation (4.21) leads to

L̂0 = L2d,
L̂k = L̂Nper−k k = 1, ..., Nper − 1. (4.26)

Finally, the last equation together with equation (4.24) imply that the solution
of the frequency systems are paired as follows

x̂2d
k = (x̂2d

Nper−k)
∗ k = 1, ..., Nper − 1. (4.27)
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Therefore, recalling that Nper is an even number, the solution of Nper/2− 1 of
the frequency systems is directly obtained by taking complex conjugates.

2. Complex systems. The subvectors b̂2d
0 and b̂2d

Nper/2 are real-valued whereas the

rest of subvectors b̂2d
k have non-null imaginary components [19, 20]. This im-

plies that the Nper/2− 1 paired systems have a complex-valued solution. Nev-
ertheless, since the coefficients of the matrices L̂k are real, they can be solved as
follows:

L̂k

[
Re(x̂2d

k ) | Im(x̂2d
k )

]
= [ Re(b̂2d

k ) | Im(b̂2d
k ) ], (4.28)

where k = 1, ..., Nper/2− 1. Therefore, summing up, Nper real-valued 2D sys-
tems need to be solved in total.

3. Fast Fourier Transform. The inverse and forward Fourier transformations can
be carried out by means of a FFT algorithm; here the implementation in [21]
is used. This reduces the complexity of steps 1 and 3 of Algorithm 1 from
O((Nper)2N2d) to O(Nper log2(Nper)N2d).

4. Conditioning of the frequency systems. The frequency systems are ordered by de-
scending condition number. That is,

κ
(
L̂k

)
> κ

(
L̂k+1

)
k = 0, · · · ,

Nper

2
. (4.29)

This follows from equation (4.21), and the ordering of the eigenvalues defined
in (4.18): 0 ≤ i < j ≤ Nper/2⇒ 0 ≤ λi < λj .

4.3.2 Solution of the frequency systems

Once the FFT algorithm has been applied, we must focus on the efficient solution of
the set of decoupled 2D subsystems given in Eq.(4.22). In our previous work [5], we
considered a direct Schur-complement based Decomposition method (DSD). Schur-
complement based algorithms are non-overlapping decomposition methods [4, 22–
25] that can be used for the parallel solution of linear systems. In particular, our
DSD implementation is based on the definition of an interface subset of variables
which decouples the different subdomains, the resulting decoupled local problems
are solved by means of a Cholesky factorization and the interface system is solved
by means of an explicit evaluation of its inverse, for a detailed explanation see [5].
Although the DSD algorithm has been successfully used to perform DNS simulations
on different supercomputers, engaging up to 5120 CPU-cores and meshes with up to
600M nodes [13], there are some critical limitations to go beyond these figures.
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The first and most important constraint is related to the RAM memory require-
ments: the size of the interface subsystem grows with the number of processes en-
gaged on its solution and, as an explicit evaluation of the inverse is used to solve
them, the memory requirements become unfordable. An approach to mitigate this
problem consists in solving the most ill-conditioned frequency systems by means of
the DSD method and using an iterative solver for the rest [4]. However, in the con-
text of petascale simulations, engaging O(105) CPU-cores, the DSD has to be scaled
up to thousands of CPU-cores requiring unfordable memory resources. Apart from
the memory problems, there are other issues such as the increasing cost of collective
communication when P and N2d increases that may prevent the efficient use of the
DSD solver for large-scale problems.

Therefore, recalling the objective of extending the solver to petascale simulations,
the DSD solver is replaced by a preconditioned Conjugate Gradient (PCG) [22]. The
memory requirements are drastically reduced and, the scalability largely extended.
Nonetheless, in lower scale simulations, the direct approach generally represents a
faster and obviously a more robust solution.

The PCG algorithm is very well-known and can be found in [22], for instance.
However, there are several features of the set of problems given in Eq.(4.22) that
may affect the convergence of the algorithm. Namely, as mentioned in Eq.(4.29), the
frequency systems are ordered by descending condition number, κ. The number of
iterations needed to converge a Krylov-subspace method like PCG is closely related
with κ. Well-conditioned systems (κ keeps close to unity) converge easily whereas
they tend to degrade quickly when the system becomes ill-conditioned (κ � 1).
Therefore not all the frequency systems will have the same computing cost so this
must be taken into account when they are distributed among the parallel processes.

For example, in Figure 4.4 are shown, for different simulations of the flow around
circular cylinder, the number of iterations required by the PCG solver as a function
of the relative number of frequency, defined as

ξ(i, Nper) =
2i

Nper
i = 0, ...,

Nper

2
. (4.30)

The lowest frequencies, which couple larger parts of the domain, require more it-
erations and thus more computing time. For further details on this study see [5].
All the optimizations developed for the new fully iterative approach are exposed in
Section 4.5

4.4 Domain decomposition

The parallelisation of the solver is based on a geometric domain decomposition into
P subdomains, one for each parallel process. The partition of M is carried out by
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Figure 4.4: Number of iterations needed by the PCG depending on the relative num-
ber of frequency for different configurations of the flow around circular cylinder.

dividingM2d andMper into P2d and Pper parts respectively, being P = P2dPper. This
is referred as a P2d × Pper-partition. To exemplify it, a 2× 2 and a 4× 1-partitions of a
mesh are displayed in Figure 4.5. The parallelisation of Algorithm 1 can be divided
in two parts: (i) the parallelisation of steps 1 and 3, which are the change-of-basis
from the physical to the spectral space and vice versa; and (ii) the parallelisation of
step 2, which is the solution of the frequency systems.

Looking at step 1, the r.h.s of the frequency systems, b̂, is given by

b̂ = (IN2d ⊗ F∗Nper
)b. (4.31)

Actually, this is not more than N2d mutually independent Fourier transformations.
Since a distributed memory parallelisation for the FFT is out of consideration, the
span-wise component of the mesh is not partitioned. Thus, M2d is divided into P
subdomains and a P× 1-partition ofM follows. In this way, the span-wise subvec-
tors of any field are not split between different processes, and a sequential FFT al-
gorithm [21] can be used. An identical reasoning is applied to the change-of-basis
from the spectral to the physical space, choosing the same P× 1-partition. To obtain a
balanced partition ofM2d, the graph partitioning tool METIS [26] is used.

On the other hand, in the step 2 of the Algorithm 1, the solution of the frequency
systems (4.28) is obtained as follows

L̂k x̂2d
k = b̂2d

k k = 0, ...,
Nper

2
, (4.32)
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where a linear solver is used to solve each system. In this case, the P× 1-partition
chosen for the steps 1 and 3 can be sub-optimal if P2D is too large according to the
strong scalability of the linear solver being used for the frequency systems. Thus,
partitions with Pper > 1 may be necessary to kept P2d in the region of linear scalability
of the linear solver. In this case, the Nper frequencies to be solved are divided into
Pper subsets, and groups of P2D = P/Pper processes are used to solve the frequencies
of each subset. The number of frequency systems contained in the k’th subset is
referred as Nper,k. Note that in the iterative approach, in order to keep a balanced
workload distribution, not all the subsets may have the same number of frequency
systems because the frequency systems differ in the solution cost.

Therefore, since in general the optimal partitions for the change-of-basis (steps 1
and 3) and for the solution of the frequency systems (step 2) are different, two parti-
tions are used in the parallelisation. As a consequence, two redistributions of data
between those partitions are needed. Hence, the following algorithm replaces Algo-
rithm 1:

Algorithm 2:

1. Evaluate b̂ = (IN2d ⊗ F∗Nper
)b on the P× 1-partition.

2. Redistribute b̂ from the P× 1- to the P2d× Pper-partition (collective comm.).

3. Solve the the frequency systems, L̂k x̂2d
k = b̂2d

k , on the P2d × Pper-partition.

4. Redistribute x̂ from the P2d× Pper- to the P× 1-partition (collective comm.).

5. Evaluate x = (IN2d ⊗ FNper )x̂ on the P× 1-partition.

Figure 4.5: Illustration of a 2× 2 (right) and a 4× 1 (left) partitions of a mesh.
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In order to simplify the redistributions of data (steps 2 and 4), a multilevel parti-
tion strategy is used. To do so, the P-partition ofM2d, used in steps 1 and 5, is ob-
tained from the P2d-partition used in the step 3 by dividing each of its subdomains in
Pper parts. An example is shown in Figure 4.5: the 2D subdomains in the right part,
are directly obtained by splitting the 2D subdomains in the left. As a result, in this ex-
ample, when redistributing the data between these two partitions, two independent
transmissions are done involving the subdomainsM00,M01 andM00,M10 on the
one hand, and the subdomainsM10,M11 andM20,M30 on the other. In the general
case, P2d independent transmissions need to be done, and Pper parallel processes are
involved in each of them. These collective communications are performed by means
of the MPI_Alltoall routine.

Note that, in Algorithm 2, increasing Pper has two counteracting effects on the
computing costs: they increase for steps 2 and 4, because more processes are in-
volved in the redistributions of data; whereas it benefits step 3 when P2d is beyond
the scalability limit of the 2D solver. Therefore, for each problem and computing
platform an optimal Pper needs to be found.

4.5 Optimizations for the iterative approach

4.5.1 Storage formats

The data structures used in the PCG algorithm are sparse matrices and vectors. As
shown in section 4.3.1, after the Fourier diagonalization, the Laplacian matrix is de-
composed into a set Nper matrices that differ only in the eigenvalue λk multiplying
the diagonal contribution Ω2d.

L̂k = λkΩ2d + ∆perL2d k = 0, ..., Nper − 1. (4.33)

A naive implementation would be storing independently each one of the Nper fre-
quency systems. This approach facilitates the implementation of the algorithm be-
cause it relies on standard functions and data structures. However, it does not take
advantage of the data redundancies resulting from the Fourier diagonalization. Our
strategy consists in storing all the frequency systems on a single data structure avoid-
ing redundancies, and creating the corresponding unified kernel which has a higher
FLOP per by ratio. The set of matrices of frequency systems is represented by the
Laplacian matrix ∆perL2d and the diagonal matrix Ω2d, both of dimension N2d; and
the vector λk of dimension Nper containing the eigenvalues of the Fourier operator.

The vectors involved in the solution of the frequency systems are dense data
structures, therefore the only variant regarding its storage is in the ordering of the
variables. In our implementation we use the 1D-block-order described in Section 4.2.1.
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Figure 4.6: Left: Unified storage format. Right: Vectors arrangement

This arrangement propitiates regular accesses to memory through the periodic direc-
tion. Figure 4.6 illustrates the unified storage format for the frequency systems and
the corresponding vectors.

A compressed storage of any sparse matrix requires at least the individual storage
of the coefficients values and its corresponding columns indexes. The number of the
non-zero entries is determined by the mesh geometry and the discretization scheme.
In our application context, a 2.5D mesh is composed by triangles extruded through
the periodic direction forming prismatic cells. We use a second order scheme for
the spatial discretization, consequently, the 2D systems resulting from the decompo-
sition contain 4 entries per row. Table 4.1 shows in detail the minimal number of
bytes necessary to represent the set of frequency systems with both the naive and
our novel approach.

Data Structure Naive Unified approach
Values (double) Nper × (4N2d)× 8 (4N2d)× 8
Columns (Int) Nper × (4N2d)× 4 (4N2d)× 4
Eigenvalues (double) – Nper × 8
Total (bytes) (48× N2d × Nper) (8Nper + 48N2d)

Table 4.1: Summary of SpMV memory usage for both storage approaches

Generally the N2d is several times larger than Nper, for this cases the new ap-



98 CHAPTER 4. VECTORIZATION FOR CFD

proach is almost Nper times more efficient in memory usage than explicitly storing
each frequency system. Hence, the low memory footprint makes suitable the new ap-
proach when running simulations on systems-on-chip platforms, like Bluegene/Q,
where the memory space is a scarce resource.

The SpMV kernel has to be adapted to the new storage format. Our implemen-
tation consists in computing the product by ∆perL2d simultaneously for all the Nper
frequency systems, while adding the corresponding contribution to the diagonal of
each frequency system. This process is explicitly described in Algorithm 3:

Algorithm 3 Unified SpMV
1: for i in N2d do
2: for j in [L2d]i do
3: [b]i = 0
4: for k in [0, Nper) do
5: bik+ = L2dijxjk
6: if i = j then
7: bik+ = λkΩ2dixjk
8: end if
9: end for

10: end for
11: end for

Where b and x are arrays of dimension Nper N2d, and the subindex ik refers to the
position iNper + k in the arrays. On the other hand, [L2d]i refers to the set of column
indexes of the non-zero entries in the ith row of L2d. Apart of reducing the global
memory requirements, a key aspect of this implementation is the reduction of the
memory traffic. Each coefficient of the matrix L2dij is only fetched once from the
RAM to the cache for all the frequency systems, this derives in important computing
time savings as shown in Section 4.6.

4.5.2 Vectorization

The unified storage format used for the set of frequency systems implies uniform
memory accesses through the subsets of Nper components aligned in the periodic di-
rection. Consequently, random accesses to the vector x are reduced, minimizing the
cache misses, and the prefetching functions to speedup RAM accesses become more
effective. Moreover, the kernels executes the same operation through all the vari-
ables aligned in the periodic direction, making suitable the use of the SIMD model



4.5. OPTIMIZATIONS FOR THE ITERATIVE APPROACH 99

by means of vectorization.
In the case of Blue Gene/Q systems, the IBM XL C/C++ compiler supports SIMD

extensions. The vectorization can be generated by adding some compilation flags
(automatically) or by using vector data types and the corresponding SIMD instruc-
tions (manually).

To handle automatic vectorization is used the compiler flag -qsimd=auto, which
indicates the compiler to enable vector registers when possible. In addition, the
pragma directives # pragma disjoint() need to be embedded in the code speci-
fying the parts where there is no pointer aliasing.

On the other hand, manual vectorization requires of code refactoring, the critical
parts of the code are rewritten using the vector4double data type (quad) and vector
intrinsic operations such as:

• vec_ld : loads data from a regular data type into quads

• vec_st : stores data from quads to a regular data type

• vec_mult : performs the multiplication of two quads

• vec_madd : executes the axpy operation with quads

These functions perform 4 instructions in a single CPU-core cycle taking advan-
tage of coalesced memory accesses. Another important aspect that influences the
performance is the memory alignment, the data is stored and loaded in groups of
32-byte words (four doubles), therefore the minimum data transaction is produced
when the memory address requested corresponds to the beginning of a word. Mis-
aligned data requests introduce additional load instructions and shift or permute
operations that degrade the performance of the vectorized code. Our SpMV vector-
ized kernel is shown in Algorithm 4. The vector variables are written with a v at the
beginning of the name. In addition, the definition of a temporal quad vti is necessary
to calculate the contribution of the eigenvalues. The new kernel requires more calls
to intrinsic functions than the traditional implementation. However, the inner loop
that sweeps through the periodic directions have been reduced in four times. As
shown in the numerical experiments, the vectorized kernel accelerates up to 3× the
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SpMV.

Algorithm 4 SpMV Vectorized b = Lx
1: for i in N2d do
2: vΩ2di = vec_ld (0, Ω2di)
3: for j in [L2d]i do
4: [vb]i = 0
5: vti = 0
6: vL2dij = vec_ld (0, L2dij)
7: for k in Nper/4 do
8: vxjk =vec_ld(0, xjk)
9: vbik=vec_madd(vxjk, vL2dij, vbik)

10: if i = j then
11: vλk = vec_ld (0, λk)
12: vti =vec_mult(vλk, vΩ2di)
13: vbik=vec_madd(vxjk, vti, vbik)
14: end if
15: end for
16: end for
17: vec_st(vbik,0,bik)
18: end for

4.5.3 Communication reduction

As mentioned in the previous section, the Nper frequency systems that result from
the Fourier diagonalization, are divided into Pper sub-sets containing Nper,k subsys-
tems each, and P2d processors are assigned to the solution of each sub-set. There-
fore, for the solution of each frequency system are engaged P2d parallel processes.
In our approach each operation of the PCG solver is performed simultaneously for
the Nper,k frequency systems composing a subset. As a consequence, the the all-to-all
and point-to-point communications required by the norm, dot and SpMV operations
are grouped and executed synchronously for all the P2d processes, the benefit of this
strategy is the reduction of the inter-core communications by a factor of Nper,k.

4.5.4 Auto-tuning

In section 4.3.2, it is shown that not all the frequency systems have the same solution
costs. This means that a uniform partition of the set of frequency systems would de-
rive in a significant imbalance, being the subset with the lowest frequencies the most
expensive. Our approach to solve this problem is a dynamic load balance. The cost
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for the solution of each subset of frequency systems is monitored and the partition
is adapted periodically, however a residual imbalance is tolerated in order to avoid
an excessive overhead produced by the balance process. In particular, in our appli-
cation context, once the flow reaches the statistically stationary regime, the solution
cost (i.e. iterations) of the frequency systems remains almost constant for the rest
of the simulation. Therefore, once a balanced state is achieved, additional balance
operations are rarely required for the remaining steps of the simulation. Using an
asymmetric partition of the frequency systems requires some changes in the com-
munication pattern, because different processors need to send and receive different
amounts of data. In particular, the change of basis from the physical to the spec-
tral space and vice-versa requires substituting the MPI_Alltoall communications by
MPI_Alltoallv. Changing the distribution of the frequency systems requires also to
reevaluate the preconditioner for the systems that are redistributed, this produces
an overhead but, as mentioned, in our application context the load balance process
could be considered as “runtime preprocessing” which is only executed on the initial
stages of the time integration process. The second aspect that is automatically tuned
is the choice of the preconditioner for each subset of frequency systems. A unique
preconditioner is adopted for each subset in order to favor the vectorization. How-
ever, different subsets may be more efficiently solved by different preconditioning
methods. In general, for the lowest frequencies is more optimal an accurate precon-
ditioner since those are more ill-conditioned systems. While, the highest frequencies
are much more diagonal dominant, therefore the Jacobi diagonal scaling performs
very well. In the current version of our algorithm we combine two preconditioners,
the sparse Approximate Inverse (AIP) [27] and the Jacobi diagonal scaling. A greedy
algorithm based in alternate the use of the preconditioners and its parameters is uti-
lized to estimate the best configuration. In the same way than the balancing, the
preconditioners tuning takes place during the first steps of the simulation and its
costs become negligible in our application context.

4.6 Numerical experiments

The numerical experiments of this study were performed on the Blue Gene/Q Vesta
supercomputer of the Argonne Leadership Computing Facility (ALCF), this is a test
and development platform used as a pad for researchers to the largest ALCF super-
computer Mira (ranked 5th in the Top500 list). Vesta has two computer racks that
sum up a total of 32,768 cores with a peak performance of ≈ 0.5 PFlops.
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4.6.1 Vectorization

Figure 4.7 shows the GFLOPS achieved with the vectorized SpMV using our novel
storage format versus the GFLOPS achieved with the naive approach that consists
in multiplying separately one frequency system after the other. The test case is the
Laplacian matrix discretized on meshes generated by the extrusion of a 2D mesh
with 577K nodes, Nper varies from 4 to 32. The performance of the naive approach is
independent of Nper, because increasing Nper is just repeating more times the same
kernel. On the contrary, the performance of the unified SpMV improves with Nper,
because the larger it is Nper the larger is the uniform part of the problem in which
the vectorization and memory prefetching produce acceleration. Since the vectoriza-
tion is performed using vector datatypes composed of four doubles (quads). When
Nper is multiple of 4 there is a perfect alignment and all the components of the mul-
tiplying vector fetched to the cache are effectively used, this results on the peaks of
performance observed in the figure. The speedup of the unified SpMV versus the
naive approach ranges between 1.4× and 3.5×.
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Figure 4.7: Unified SpMV versus naive approach for meshes generated by the extru-
sion of a 2D grid with 577K nodes

Figure 4.8 shows the speedup of the unified versus the naive approach of both the
SpMV and the CG with diagonal scaling (CG-diag). The performance improvement
on the SpMV benefits the CG solver, but the improvement is limited by Amdahl’s law
since the relative weight of the SpMV on the CG-diag is around 60%. Using other
methods such as the Approximate Inverse Preconditioner results in higher speedups
versus the naive approach.
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Figure 4.8: The speedup of cg and unified SpMV for meshes generated by the extru-
sion of a 2D grid with 577K nodes.

4.6.2 Autotuning

Figure 4.9 illustrates the auto-tuning process. Tests have been performed on a mesh
of about 90 Million nodes composed of 128 planes of 700K nodes each. This was one
of the intermediate meshes used on the LES simulations performed on our study
of the Drag crisis of the flow around circular cylinder [13]. In particular, the re-
sults shown are for a 512 × 4 partition. In (a) is shown the imbalance reduction
achieved with the auto-balance process used to define the distribution of the fre-
quency systems, in this case the Diagonal Jacobi preconditioner is used for all blocks
of frequency systems. The imbalance is measured as the maximum difference on the
solution of different subsets of frequency systems, divided by the average time. In
(b) is shown the initial and final distribution of planes, as expected, the block con-
taining the larger frequencies are more loaded that the blocks containing the lower
ones since the solution costs grow with the frequency number. Finally (c) shows the
solution time obtained for the same test case with different preconditioning config-
urations. The first column corresponds to the case where Jacobi diagonal scaling is
used for all the blocks of frequency systems, AIP1 refers to the case where only the
first block is solved with the AIP preconditioner and the rest with the Jacobi diagonal
scaling,for a AIP2 the two first blocks are solved with the AIP preconditioner and for
AIP3 the first three blocks. The auto-tuning process ends when at increasing the num-
ber of blocks solved with the AIP preconditioner the solution time does not reduce.
Therefore, in this particular case, the final configuration would be AIP2. Changing
the preconditioning configuration has some associated costs: the set up for the new
preconditioner and re-balance the distribution of frequency systems. But this can be
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considered as a runtime setup that does not require interruptions on the simulation
process. In particular in this case the speedup achieved from the initial to the final
configuration is 2.3×.
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Figure 4.9: Auto-tuning process: (a) Load Imbalance reduction, (b) Initial an final
distribution of frequency systems, (c) Preconditioner choice.

4.6.3 Scalability

A strong scalability test has been performed comparing our previous direct approach
FFT-DSD, in which the frequency systems where solved by means of a Direct Schur-
complement based Decomposition (DSD) [5], and the iterative solution here pro-
posed (FFT-PCG). The same test case of the previous subsection is used here. The di-
rect approach has been used in other supercomputers for LES simulations on meshes
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with up to 300M nodes [13], however 2GB of RAM per core where used in those sim-
ulations. The reduced size of of 1Gb per core on Vesta supercomputer, allowed us
to use only 8 of the 16 CPU-cores of the Vesta nodes. For this reason, we could only
attest the performance of the FFT-DSD approach up to 8192 CPU-cores. In fact, this
limitations are one of the reasons to evolve our solver. Results show that in the region
where the FFT-DSD is applied (wasting half of cores allocated) it is faster than our
new iterative approach. However the iterative approach scales better, initially (using
2048 CPU-cores) the FFT-DSD is 35% faster but with 8192 CPU-cores this difference
reduces at 16%, finally using 16384 CPU-cores the iterative approach overcomes the
FFT-DSD by 29%. The overall parallel efficiency of the FFT-PCG approach is 77%.
Note that the load per CPU-core in the last case is only of about 5500 cells, which
is a very small load for the Vesta CPU-cores, this fact glimpses a great scalability
potential of the code.
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Figure 4.10: Strong speedup test for the direct (FFT-DSD) and iterative (FFT-PCG)
approaches.

4.7 Concluding remarks

This chapter presents the efforts to evolve our Poisson solver for simulations with
one FFT diagonalizable direction in order to align our strategy with the evolution of
supercomputing systems. This evolution brings larger number of parallel processes
involved in a single task and less RAM memory per parallel process.

Our previous strategy, was based on a direct solution of all or part of the mutu-
ally independent frequency systems that result from the Fourier diagonalization by
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means of a Direct Schur-complement based Decomposition (DSD). This strategy has
showed highly efficient and robust, and has been applied to DNS and LES simula-
tions, engaging up to 5120 CPU-cores and meshes with up to 600M nodes. How-
ever, both the reduced RAM memory per parallel process and the increase of the
memory requirements to solve the interface system in the DSD method, become an
overwhelming wall for its further scalability.

We have evolved into a purely iterative strategy, by solving all the frequency sys-
tems by means of a Preconditioned Conjugate Gradient method. In this new imple-
mentation we have focused on optimizing the memory allocations and transactions
and on taking advantage of the regularity of the memory accesses and operations
through the periodic direction for its vectorization. The speedup achieved with the
vectorization of the SpMV kernel, for which a specific format has been developed, av-
erages 1.6×, with peaks of about 3×when perfect alignment is achieved and enough
frequency systems are operated simultaneously. Since the SpMV is the dominant ker-
nel of the simulation code, a potential acceleration of all the code turns up, specially
on the explicit parts of it. In the Poisson solver, we have observed that the accelera-
tion of the Jacobi preconditioned CG averages 1.2× with peaks of 1.5×, with respect
of solving each frequency system separately. This result is consistent with the rela-
tive weight of the SpMV within the linear solver.

The second focus of our algorithm design has been the auto-tuning capabilities.
The iterative solution of the frequency systems has variable cost according to the con-
ditioning of each system. In general, the lower frequencies couple larger parts of the
domain and require more iterations. On the other hand, the optimal precondition-
ing requirements of the frequency systems differ, the higher frequencies are strongly
diagonal dominant and Jacobi diagonal scaling performs very well but the lower re-
quire a more accurate approximation. In order to deal with these variable situation,
that depends on the physical problem being considered and the computing system
engaged, we have developed a run-time auto-tuning that adjusts both aspects on the
time integration process of the simulation without requiring user intervention nei-
ther the simulation interruption. Finally the strong scalability of the new algorithm
has been successfully attested up to 16384 CPU-cores.

The reduced memory requirements of our new approach, its demonstrated scal-
ability and auto-tuning capabilities, and its good performance compared with the
direct approach previously used in several HPC systems, make it a highly efficient
and portable code adapted to the characteristics of ongoing HPC systems.
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5

Conclusions and Future

research

5.1 Conclusions

The objective of this thesis was the development of strategies to facilitate the adapta-
tion of the computing approach of our unstructured CFD code to the new high per-
formance computing trends, and in particular to the incoming hybrid architectures.
In this context, our main contribution was the development of a highly portable and
modular CFD implementation model and its optimized implementation for various
leading edge systems . Our solution consisted in substituting stencil data structures
and kernels by algebraic storage formats and operators. The result is that around
98% of our CFD computations are based in three basic algebraic kernels: SpMV,
AXPY and DOT, providing a high level of modularity and a natural portability to
the code. By doing so, the most intensive computing part of the algorithm and the
complex architecture tuning is isolated on a low level portable API. Moreover, in its
current state, new models and physics can be easy implemented through this API.
The portability of our model has been tested with positive results in Minotauro and
Mont-Blanc supercomputers, for which specific optimizations have been developed
on the basic algebraic kernels. Additionally, some concepts learned from the refac-
toring processes have been applied on the development of a Poisson solver capable
of exploiting peta-scale computing systems.

A brief list of the main contribution of this thesis is listed by chapters:

• MPI-CUDA Sparse Matrix-Vector Multiplication for the Conjugate Gradient
Method with an Approximate Inverse Preconditioner:
The context of application was the numerical resolution of the Navier Stokes
equations in the simulation of incompressible flows. In particular, we focused
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our attention into porting the Poisson equation to GPUs, because it dominates
the computing costs. Two major issues were identified when working with
hybrid CPU/GPU clusters: i) the node configuration is usually asymmetric,
this means that exists more CPU-cores than GPUs; ii) there is no direct link
between discrete devices, therefore communications are negatively affected by
PCI-express speed. Our solution for the asymmetric configuration is based in a
two level domain decomposition. A master-worker execution model has been
proposed in order manage the data flow between the CPU-only and CPU-GPU
parallelization modes. This scheme consist of two functions for scattering and
gathering data between the two level topologies. The relative weight of this
operations is minor in comparison with the computing costs of the PCG solver.
On the other hand, the main characteristic of the hybrid SpMV developed is
its overlapping strategy that allows to hide part of the data transfer overhead,
produced by the device-to-host and MPI communications, behind calculations
on GPUs. Performance tests, engaging different numbers of hybrid nodes and
unstructured meshes of different sizes, have demonstrated speedups of the hy-
brid PCG solver of around 3.7× compared to the CPU-only solver. The cor-
responding speedup of the overall CFD algorithm replacing the linear solver
by the new version would be up to 2.4×. Moreover, it has been demonstrated
that the performance of general purpose sparse libraries such as cuSPARSE
can be improved by application specific in-house SpMV kernels implemented
considering specific information of the matrix. This performance is directly
linked with the sparse matrix storage format being used. The positive results
obtained encouraged us to explore the portability of the whole time integration
phase into GPUs.

• Portable implementation model for CFD simulations. Application to hybrid
CPU/GPU supercomputers:

The contribution of this chapter is twofold. Firstly, we propose a portable mod-
eling for LES of incompressible turbulent flows based on an algebraic opera-
tional approach. The main idea is substituting stencil data structures and ker-
nels by algebraic storage formats and operators. The result it that around 98%
of computations are based on the composition of three basic algebraic kernels:
SpMV, AXPY and DOT, providing a high level of modularity and a natural
portability to the code. Note that optimal implementations of such three ker-
nels can be found in many software libraries. Among the three algebraic ker-
nels the SpMV is the dominant one, it substitutes the stencil iterations and the
non-linear terms, such as the convective operator, are rewritten as two consec-
utive SpMVs. Aiming a high level of modularity and portability for our code
is motivated by the current disruptive technological moment, with a high level
of heterogeneity and where many computing models are under consideration
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without any clarity of which one is going to prevail.

The second objective has been the implementation of our model to run on het-
erogeneous clusters engaging both CPU and GPU coprocessors. This objective
is motivated by the increasing presence of accelerators on HPC systems, driven
by power efficiency requirements. We have analyzed in detail the implemen-
tation of the SpMV kernel on GPUs, taking into account the general charac-
teristics of CFD operators. Our in-house implementation based on an sliced
ELLPACK format outperforms other general purpose libraries such as MKL
on CPUs and cuSPARSE on GPUs. Moreover, for multi-GPU executions we
have developed a communication-computations overlapping strategy. On the
other hand, for the AXPY and DOT kernels no specific optimizations have been
developed because they are application-independent kernels with optimal im-
plementations in libraries such as cuSPARSE.

Finally, several numerical experiments have been performed on the MinoTauro
supercomputer of the Barcelona Supercomputing Center in order to under-
stand the performance of our code on multi-GPU platforms, and compare it
with multi-core executions. First we have profiled the code for both implemen-
tations showing that certainly 98% of time is spent on the three main algebraic
kernels. Then, we have focused on the SpMV kernel, showing its memory
bounded nature, and how the throughput oriented approach of GPUs better
harnesses the bandwidth than the low latency oriented approach of CPUs. The
result is that although the bandwidth ratio between both devices is 4.4 the
speedup of the GPU vs the CPU implementation reaches up to 8× in our tests.
Then the benefits of the overlapping strategy for multi-GPU executions has
been tested, showing that large part of the communication (86%) can be hid-
den. We have also included strong and week speedup tests up to 128 GPUs, in
general good PE is achieved if the workload per GPU is kept reasonable. Con-
sidering the overall time-step the multi-GPU implementation outperforms the
multi-CPU one by a factor ranging between 4× and 8× depending on the local
problem size. Finally, we have shown that the performance of our code can be
very well estimated by only analyzing the three main kernels separately.

• Hybrid auto-balanced implementation of parallel unstructured CFD kernels
in Mont-Blanc ARM-based platforms:

High performance computing is exploring new energy efficient technologies
aiming to reach the exascale paradigm. In this chapter we present a study of
the performance of TermoFluids code on the Mont-Blanc mobile-based proto-
types. Our solution is based in the specific implementation of the portable
model proposed in Chapter 2. Note that scientific computing in such embed-
ded architectures is still in its early stages, therefore there are not algebraic
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libraries that facilitate the implementation yet. Consequently, our focus was
the implementation of the three main algebraic kernels that compose our com-
putations: SpMV, AXPY and DOT. Such kernels are memory bounded opera-
tions, then its performance mostly depends of the memory bandwidth of the
computing device where they run.

In Mont-Blanc prototypes, the CPU and GPU are equipped with the same mem-
ory bandwidth, so similar performance was expected for the kernels in sequen-
tial execution. However, the SpMV shows a 1.5× speedup in average of the
GPU versus the CPU implementation. This confirms that the stream process-
ing model of GPUs better harnesses the bandwidth for the SpMV as explained
in detail in Chapter 2.

Our main contribution in the implementation of the kernels consists in a hybrid
implementation of them for simultaneity engaging both devices of the Mont-
Blanc prototypes. This approach is possible because of two reasons: the physi-
cally shared memory of the mobile architecture that avoids PCI-e communica-
tion episodes between GPU and CPU, and the similar net performance of both
computing devices that makes it worth the sharing. The problem consists in
finding the best workload distribution to maximize the net performance. Our
solution has been the development of an auto-balancing algorithm based in a
tabu search that tunes the kernels workload in a pre-processing stage. Follow-
ing this approach the SpMV, AXPY and DOT have been accelerated in average
by 1.64× , 1.60× and 1.74×, respectively.

In the parallel execution, the load distribution includes the inter-node com-
munication that is performed by the CPU. Therefore, the communications are
overlapped with computations on the GPU that increases its workload to bal-
ance the cost of the communication performed by the CPU. Several parallel
experiments have been performed with meshes of different sizes and engag-
ing up to 64 nodes. The best parallel efficiency achieved on 64 nodes has been
40% for a mesh of 6.4M nodes. However the communication technology of
the Mont-Blanc nodes is still based on the Gigabit network and we estimate
that the performance would be much higher with an state of the art Infiniband
network.

Summarizing, we found two main limitations for running CFD in the mobile
architecture. Firstly, the slow network in comparison with the current super-
computers because Infiniband is not supported yet. Secondly, error correction
code is not incorporated in the mobile chips, this makes unfeasible the exe-
cution of large scale simulations because the correctness of the results is not
guaranteed. However, many of the aforementioned limitations were encoun-
tered in the early days of the GPU computing and were improved during the



5.1. CONCLUSIONS 115

evolution of such technology. Finally, by means of a qualitative approximation
we conclude that at running our CFD code the Mont-Blanc nodes are in aver-
age 2.4× more energy efficient than a current hybrid high-end supercomputer
such as MinoTauro of the BSC. It is expected that mobile technology contin-
ues its evolution due to the strong market trends. Therefore, we consider that
this technology has the potential of becoming an important part of the future
supercomputing technology.

• Poisson solver for Peta-scale simulations with one FFT diagonalizable direc-
tion:

This chapter presents the efforts to evolve our Poisson solver for simulations
with one FFT diagonalizable direction in order to align our strategy with the
evolution of supercomputing systems. This evolution brings larger number of
parallel processes involved in a single task and less RAM memory per parallel
process.

Our previous strategy, was based on a direct solution of all or part of the mu-
tually independent frequency systems that result from the Fourier diagonaliza-
tion by means of a Direct Schur-complement based Decomposition (DSD). This
strategy has showed highly efficient and robust, and has been applied to DNS
and LES simulations, engaging up to 5120 CPU-cores and meshes with up to
600M nodes. However, both the reduced RAM memory per parallel process
and the increase of the memory requirements to solve the interface system in
the DSD method, become an overwhelming wall for its further scalability.

We have evolved into a purely iterative strategy, by solving all the frequency
systems by means of a Preconditioned Conjugate Gradient method. In this
new implementation we have focused on optimizing the memory allocations
and transactions and on taking advantage of the regularity of the memory ac-
cesses and operations through the periodic direction for its vectorization. The
speedup achieved with the vectorization of the SpMV kernel, for which a spe-
cific format has been developed, averages 1.6×, with peaks of about 3× when
perfect alignment is achieved and enough frequency systems are operated si-
multaneously. Since the SpMV is the dominant kernel of the simulation code,
a potential acceleration of all the code turns up, specially on the explicit parts
of it. In the Poisson solver, we have observed that the acceleration of the Jacobi
preconditioned CG averages 1.2× with peaks of 1.5×, with respect of solving
each frequency system separately. This result is consistent with the relative
weight of the SpMV within the linear solver.

The second focus of our algorithm design has been the auto-tuning capabilities.
The iterative solution of the frequency systems has variable cost according to
the conditioning of each system. In general, the lower frequencies couple larger
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parts of the domain and require more iterations. On the other hand, the opti-
mal preconditioning requirements of the frequency systems differ, the higher
frequencies are strongly diagonal dominant and Jacobi diagonal scaling per-
forms very well but the lower require a more accurate approximation. In order
to deal with these variable situation, that depends on the physical problem
being considered and the computing system engaged, we have developed a
run-time auto-tuning that adjusts both aspects on the time integration process
of the simulation without requiring user intervention neither the simulation
interruption. Finally the strong scalability of the new algorithm has been suc-
cessfully attested up to 16384 CPU-cores.

The reduced memory requirements of our new approach, its demonstrated
scalability and auto-tuning capabilities, and its good performance compared
with the direct approach previously used in several HPC systems, make it a
highly efficient and portable code adapted to the characteristics of ongoing
HPC systems.

5.2 Future Research

The portable implementation model proposed in this thesis has been developed for
DNS and LES simulation of incompressible turbulent flows. Following the same
principles our intention is to expand the model to more physical phenomena and
algebraic solvers. In this context, the main subjects to be explored in the near future
are:

• Poisson solver with one FFT diagonalizable direction in GPUs: Chapter 4
shows a novel data arrangement for the vectorization of the periodic direction.
The same approach is suitable for GPU accelerators, but instead of vectoriza-
tion, each thread should be responsible of perform the periodic computations.
As a result, the arithmetic intensity of the algorithm increases since each coeffi-
cient of the matrix is reused as the number of periodic planes.

• Preconditioners: In Chapters 1 and 2, the Jacobi and Approximate inverse
preconditioners are used for accelerating the solution of the Poisson equation.
However, other preconditioners suitable with the algebraic implementation
model should be study as well [1]. For instance, the linelet preconditioner [2]
has shown good results when dealing with body-fitted meshes, and seems suit-
able for its hybrid implementation as well.

• Hybrid precision: The new architectures have been conceived with an imbal-
ance between double and single precision components. The tendency is to have
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at least twice more single precision ALUs in GPU devices. Therefore, CFD com-
munity must consider the possibility of using mix precision algorithms in order
to benefit of all the computing resources available. This means that the most
computational intensive parts are calculated in single precision and its solution
is corrected in double precision. Since CFD problems are memory bounded an
acceleration of at least 2× is estimated due the fact of moving half of the bytes
and perform the calculations in half of time. Early attempts at providing mixed
precision solvers based in iterative refinement can be found in [3, 4].

• Multiphysics in GPUs: New algorithms need to be studied for the incorpora-
tion of multi-physics (radiation, combustion, etc) into our portable implemen-
tation model. Some algorithms that were discarded for CPU execution because
of its heavy computational costs, may be suitable for GPU execution. Lattice
Boltzmann lighting models [5] seem to be perfect for GPUs since they provide
highly parallel sections that can be exploited by the massively parallel proces-
sors. In combustion multi-dimensional simulations, the current research lines
are focused in the development of hybrid strategies that exploits the explicit
and implicit parts of the simulation, combining the strengths of the different
CPU and GPU architectures [6].

• Next generation of accelerators: Our portable implementation model for CFD
proposed in Chapter 2 has structured our code in a way that is very easy to
test its performance in any platform. Therefore, our objective is to follow very
closely the supercomputing trends and in particular the novel pre-exascale su-
percomputers based in the next generation of accelerators.
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Appendix A

Computing resources

This appendix lists different parallel computing systems where the codes devel-
oped in this thesis have been executed. The access to most of these equipments is
obtained gaining competitive calls, in which the evaluated criteria are both the scien-
tific relevance of the presented projects and the capability of the software to obtain a
good parallel performance with the offered resources.

A.1 JFF supercomputer, Terrassa

Figure A.1: JFF supercomputer

JFF supercomputer consists in 168 computer nodes with 2304 cores and 4.6 TB of
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RAM in total. There are 128 nodes with 2 AMD Opteron 2376 quad-core processors
at 2.3GHz and 16 GB of RAM linked with the infiniband DDR 4X network, and 40
nodes with 2 AMD Opteron 6272 16-core processors at 2.1 GHz and 64 GB RAM
linked with the infiniband QDR 4X network.

A.2 Minotauro supercomputer, Barcelona

Figure A.2: Minotauro supercomputer

Minotauro supercomputer, from the Barcelona Supercomputing Center (BSC), is
a hybrid cluster composed by 128 Bull B505 blades each blade with the following
configuration. Each node contains 2 Intel E5649 (6-Core) processors at 2.53 GHz, 24
GB of RAM and 2 M2090 NVIDIA GPU cards. Nodes are linked by means of 14 links
of 10 GbitEth to connect to BSC GPFS Storage. The peak performance is estimated in
185.78 TFlops.
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A.3 Vesta supercomputer,Chicago

Figure A.3: Vesta supercomputer

Vesta is an IBM Blue Gene/Q supercomputer at the Argonne Leadership Com-
puting Facility and it is part of the MIRA supercomputer project. It is utilized for
test and development platform, serving as a launching pad for researchers planning
to use larger supercomputers of Argonne facilities. The supercomputer is based in
System-on-Chip architecture, each node is composed by 16 1600 MHz PowerPC A2
cores and 16 GB RAM. The interconnection is based in a 5D Torus Proprietary Net-
work. In total it is possible to engagge up to 32768 cores and a theoretical peak of
357.776 TFlops.

A.4 Lomonosov supercomputer, Moscow

Lomonosov supercomputer, from the Research Computing Center in the Moscow
State University, is a supercomputer with 35, 360 cores and 60 TB of RAM installed
in 5100 nodes. There are 4420 nodes with 2 quad-core Intel EM64T Xeon 5570 at 2930
MHz and and 12 GB RAM, and 680 nodes with 2 6-core Intel EM64T Xeon 5670 at
2930 MHz and 12 GB of RAM. The interconnection network is an Infiniband QDR.
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Figure A.4: Lomonosov supercomputer

A.5 K100 supercomputer, Moscow

K100 supercomputer, from the Keldysh Institute of Applied Mathematics of the Rus-
sian Academy of Science (KIAM RAS), is composed of 64 nodes with 2 6-core Intel
Xeon X5670 at 2930 MHz, 3 NVIDIA Fermi 2050 and 96 GB of RAM each one. Im-
plying in total 768 CPU cores, 192 GPUs and 6 TB of RAM. The interconnection of
nodes is carried out by means of an Infiniband QDR networks and a PCI-Express.
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Figure A.5: K100 supercomputer

A.6 Curie supercomputer, Paris

Figure A.6: Curie supercomputer
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The Curie supercomputer, owned by the Grand Equipement National de Calcul
Intensif (GENCI) and operated into the Très Grand Centre de Calcul (TGCC) by the
Commissariat à l’énergie atomique (CEA), is the first French Tier0 system open to
scientists through the French participation into the Partnership for Advanced Com-
puting in Europe (PRACE) research infrastructure.

Curie is offering 3 different partitions of x86-64 computing resources, in the con-
text of this thesis the “Curie hybrid nodes” have been used. The hybrid nodes clus-
ter is composed of 16 bullx B chassis with 9 hybrid GPUs B505 blades, in each blade
there are 2 quad-core Intel Westmere 2.66 GHz and 2 Nvidia M2090 T20A, in total
1152 CPU cores and 288 GPUs. In both cases and InfiniBand QDR Full Fat Tree net-
work is used for the interconnection of nodes.

A.7 Mont-Blanc prototypes, Barcelona

Mont-Blanc project is an ARM-based system that aims to set the basis for achieving
exascale computing. Each node is composed by SoC Samsung Exynos 5 Dual, the
chip consist of 1 dual core Cortex-A15 CPU and 1 ARM Mali T-604 GPU. It is the
first cluster based in mobile technology and therefore its configuration is in constant
development.

Figure A.7: MontBlanc supercomputer
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