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Reservo un lugar muy especial para mi familia. Nunca podré expresar con palabras mi
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Introducción

En las últimas cinco décadas, la complejidad de los modelos econométricos se ha visto

considerablemente enriquecida por la disponibilidad de datos de panel. Dado que como

este tipo de datos se caracteriza por la observación de un conjunto de individuos (hogares,

consumidores, páıses,...) a lo largo del tiempo, nos permiten extraer cierta información

desconocida sobre las caracteŕısticas idosincráticas de los individuos. De este modo, la

habilidad teórica de este tipo de datos para aislar el impacto de acciones no observadas

de los individuos nos permite realizar inferencia consistente sobre una gran variedad de

cuestiones que no es posible con otro tipo de datos, como los de sección cruzada o los de

series temporales.

Tradicionalmente, la especificación econométrica de este tipo de modelos se ha centrado

en el análisis de la relación existente entre una variable endógena y ciertas variables ex-

plicativas, teniendo en cuenta la heterogeneidad individual no observable y basándose en

supuestos bastante restrictivos sobre las formas funcionales y las densidades. Sin embargo,

como se destaca en Wooldridge (2003), estos supuestos suelen ser bastante poco realis-

tas, y existen situaciones en las cuales el riesgo de cometer errores de especificación es

elevado. Si este es el caso, los estimadores estándar basados en condiciones de momento

están sesgados y su uso puede invalidar los resultados de inferencia.

En este contexto, las técnicas de regresión no paramétricas se han convertido en un instru-

mento de gran utilidad a la hora de hacer frente a estos problemas. Los modelos de datos

de panel totalmente no paramétricos son muy atractivos dado que no realizan supuesto

alguno sobre la especificación del modelo, sino que permiten que sean los propios datos

los que dibujen la forma de la función de regresión. Sin embargo, aunque este tipo de

estimadores son robustos a la incorrecta especificación de la función de regresión, también
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están sujetos a la maldición de la dimensionalidad. En otras palabras, a medida que el

número de variables explicativas aumenta la tasa de convergencia de estos estimadores se

ve dramáticamente reducida. Con el objetivo de lograr una mejora en la tasa de conver-

gencia de estos estimadores, la solución propuesta es la incorporación de un componente

totalmente paramétrico en el modelo. Estos son los llamados modelos semi-paramétricos.

En este caso, lo que es conocido de investigaciones emṕıricas previas o de la propia teoŕıa

económica se modeliza de manera paramétrica, mientras que lo que es desconocido para

el investigador se especifica no paramétricamente.

Sin embargo, estos modelos flexibles son incapaces de capturar ciertas caracteŕısticas ocul-

tas en los conjuntos de datos. Esta es la principal razón de por qué muchos estudios

emṕıricos han fomentado la introducción de estructuras más flexibles que permitan la

variación de los parámetros desconocidos en función de ciertas variables explicativas. En

esta situación, los modelos de coeficientes variables originalmente propuestos en Cleveland

et al. (1991) aparecen como solución. En concreto, los modelos de coeficientes variables

se ca- racterizan por permitir que ciertos coeficientes de la regresión vaŕıen en función de

ciertas variables exógenas propuestas por la teoŕıa económica. De este modo, son capaces

de explotar la información contenida en el conjunto de datos.

Señalar que en los últimos 15 años los modelos de coeficientes variables han experimentado

un desarrollo sin precedentes, tanto desde el punto de vista metodológico como teórico.

Dado que abarcan caracteŕısticas tanto de los modelos no paramétricos como de los semi-

paramétricos, ofrecen un marco general para solventar buena parte de los problemas de

especificación de estos modelos. Con el objetivo de tener un mejor entendimiento sobre

las principales ventajas ofrecidas por los modelos de coeficientes variables para el análisis

emṕırico, presentamos una serie de aplicaciones.

En la literatura sobre los rendimientos educativos encontramos un primer ejemplo de la

mejora conseguida con este tipo de modelos. Como se destaca en Schultz (2003), los efectos

marginales de la educación vaŕıan en función de distintos niveles de experiencia laboral.

De este modo, la omisión de la forma no lineal de la educación junto con el efecto de

interacción entre educación y experiencia laboral nos conduce a resultados infrasuavizados

sobre el rendimiento de la educación, como se encuentra en Card (2001). En esta situación,

un modelo semi-paramétrico de coeficientes variables de la siguiente forma puede ser más

2
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recomendable,

Yi = m(Zi)Xi +W>i β + vi, i = 1, · · · , N,

donde Yi representa el salario por hora del individuo i (log), Xi denota los años de edu-

cación del individuo como una medida de su experiencia educativa, Zi es una medida de

la experiencia laboral, y Wi es un vector de variables de control que incluye indicadores

binarios para ciertas caracteŕısticas de los individuos: estado civil, tipo de trabajo rea-

lizado (ser o no funcionario) o afiliación a un sindicato, entre otras. De este modo, esta

modelización nos permite resolver buena parte de los problemas más habituales de esta

literatura. Permite que el impacto de la educación sobre el salario vaŕıe en función del

nivel de experiencia laboral y, al mismo tiempo, tiene en cuenta la forma no lineal de la

educación.

Asimismo, la literatura sobre macroeconomı́a y economı́a internacional proporciona otro

ejemplo relevante. Cuando examinamos el papel de la inversión directa extranjera (FDI)

sobre el crecimiento económico de los páıses, autores como Kottaridi and Stengos (2010)

resaltan que, dado que el efecto positivo de la FDI sobre el crecimiento económico sólo

tiene lugar en aquellos páıses con un mayor nivel de ingresos, en un modelo de crecimiento

el coeficiente asociado al flujo de FDI debe ir variando en función del nivel ingreso inicial de

cada páıs. En esta situación, el siguente modelo semi-paramétrico de coeficientes variables

es especialmente atractivo dado que nos permite tener en cuenta tanto el impacto no lineal

de la FDI como el efecto de interacción entre FDI y el nivel de ingreso,

Yit = α0 + α1Dj + α2ln(Idit/Y ) + α3ln(nit) + α4(lnXit)(Ifit/Y ) + α5hit + εit,

para i = 1, · · · , N y t = 1, · · · , T , donde Yit es la tasa de crecimiento del ingreso per cápita

en el páıs i y el peŕıodo t, Idit/Y la tasa de inversión doméstica respecto del PIB, nit la

tasa de crecimiento de la población, hit el capital humano, Ifit/Y el ratio FDI/PIB y Xit

el ingreso per cápita al comienzo de cada peŕıodo.

Finalmente, encontramos otro ejemplo relevante cuando tratamos de determinar el papel

de los recursos naturales en el desarrollo económico de las regiones. Como es bien sabido

en la literatura sobre economı́a del desarrollo, las regiones con abundantes recursos tien-

den a crecer más lentamente que aquellas con recursos excasos; ver Sachs and Warner

3
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(2001). Sin embargo, dado que dentro de los páıses ricos en recursos naturales nos encon-

tramos tanto con páıses ganadores como perdedores en términos de crecimiento, el papel

de la calidad de las instituciones puede ser un factor decisivo a la hora de determinar el

impacto de dichos recursos. De este modo, con el objetivo de tener en cuenta el hecho

de que la variación en los resultados de crecimiento entre las regiones con abundantes

recursos naturales depende de cómo las rentas de estos recursos son distribuidas a través

del acuerdo institucional existente, en Fan et al. (2010) se propone el siguiente modelo

semi-paramétrico de coeficientes variables

Yi = β0 + β1X1i + β2X2i + β3X3i + β4(Zi)X4i + vi, i = 1, · · · , N,

donde Yi representa la tasa de crecimiento media del páıs i, X1i, X2i, X3i y X4i denotan el

nivel de ingreso inicial, grado de apertura, inversiones y abundancia de recursos, respecti-

vamente, y Zi es una medida de la calidad institucional aproximada via el procentaje de

exportaciones primarias respecto del PIB en 1970.

En este contexto, el objetivo que persigue esta tesis doctoral tiene una doble vertiente. Por

un lado, desarrollar nuevas técnicas de estimación que nos permitan obtener estimadores

consistentes para modelos de coeficientes variables de datos de panel en los cuales la he-

terogeneidad individual no observable está correlacionada con algunas covariables. Por

otro lado, resaltar las ganancias ofrecidas por esta nueva metodoloǵıa para el análisis

emṕırico. Con este objetivo, se presenta un análisis no paramétrico de un modelo estruc-

tural sobre la evolución de los ahorros preventivos de los hogares españoles bajo distintas

fuentes de incertidumbre. De este modo, esta tesis doctoral se divide en cinco caṕıtulos y

la estructura de la discusión es la siguiente.

En el Caṕıtulo 1, se realiza una revisión intensiva de la literatura econométrica sobre

modelos de datos de panel semi-paramétricos y totalmente no paramétricos. Primero,

los modelos de datos de panel totalmente no paramétricos son analizados tanto con efec-

tos fijos como aleatorios. Posteriormente, se repasan los modelos parcialmente lineales

bajo tres especificaciones distintas: efectos fijos y aleatorios, y presencia de covariables

endógenas. Concluimos con una revisión sobre los modelos de coeficientes variables de

datos de panel. Para cada una de estas áreas, discutimos tanto el modelo básico a estimar

como la metodoloǵıa propuesta. Además, también analizamos las principales propiedades

4
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asintóticas de los estimadores propuestos.

En el Caṕıtulo 2, presentamos una nueva técnica de estimación para modelos de datos

de panel en los cuales los coeficientes a estimar son funciones suaves de otras variables

explicativas establecidas por la teoŕıa económica y donde los efectos individuales están ar-

bitrariamente correlacionados con los regresores del modelo de forma desconocida. Como

se puede apreciar, la estimación directa a través de técnicas no paramétricas nos propor-

ciona estimadores inconsistentes de los parámetros (funciones) de interés. Para resolver

esta situación, recurrimos a una transformación en primeras diferencias. De este modo,

siguiendo la idea original propuesta en Yang (2002) para un contexto totalmente distinto,

el estimador propuesto se basa en la regresión local lineal de un modelo en primeras dife-

rencias. Como se demuestra en Lee and Mukherjee (2008), dado que originalmente la

ecuación de regresión transformada se localiza alrededor de un valor fijo de la muestra,

sin considerar el resto de valores, la aplicación directa de técnicas de regresión local li-

neal a transformaciones en diferencias de modelos de datos de panel genera un sesgo que

no desaparece asintóticamente. Para evitar este problema, proponemos recurrir a una

ponderación de kernel de mayor dimensión.

Desafortunadamente, esta técnica nos permite eliminar el sesgo, pero al precio de aumen-

tar el término de la varianza de modo que los estimadores resultantes alcanzan una más

lenta tasa de convergencia no paramétrica. Para solventar este problema, proponemos

un algoritmo de backfitting de una etapa que nos proporciona estimadores que alcanzan

la tasa óptima de convegencia de este tipo de problemas. Además, los estimadores re-

sultantes exhiben la propiedad de eficiencia oráculo. En otras palabras, esta técnica nos

proporciona un estimador no paramétrico cuya matriz de varianzas y covarianzas de sus

componentes es asintóticamente la misma que si el resto de componentes de la ecuación

de regresión transformada fueran conocidos. En este caṕıtulo también obtenemos la dis-

tribución asintótica de los dos estimadores. Asimismo, dado que la matriz de anchos de

banda juega un papel crucial en la estimación consistente de las funciones desconocidas,

también proporcionamos un método para calcular esta matriz de manera emṕırica. Final-

mente, a través de un experimento de Monte Carlo comprobamos el buen comportamiento

del estimador propuesto en muestras finitas.

En el Caṕıtulo 3, se presenta un estimador basado en una transformación en desviaciones

5
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respecto a la media del modelo de regresión. Al igual que ocurre en el ajuste totalmente

paramétrico, la principal ventaja de esta transformación respecto a cualquier otra similar

es que nos permite obtener las propiedades asintóticas estándar de los estimadores no

paramétricos bajo el supuesto de que los términos de error idiosincráticos son i.i.d. De este

modo, el estimador de efectos fijos que se presenta en este caṕıtulo se obtiene a través de

una aproximación local sobre las T funciones aditivas resultantes de esta transformación

en desviaciones respecto de la media, donde T es el número de observaciones por cada

individuo. Dado que el uso directo de técnicas de aproximación local estándar en la

estimación de estos componentes aditivos omite información tan relevante como la suma

de las distancias existentes entre un término fijo y los otros valores de la muestra, genera

un problema de sesgo más relevante incluso que el del Caṕıtulo 2. Con el objeto de

solventar este problema, proponemos considerar una aproximación local alrededor del

vector completo de observaciones temporales de cada individuo.

No obstante, el bien conocido equilibrio entre sesgo y varianza vuelve a aparecer. Aunque

el uso de una función de kernel de dimensión T resuelve el problema del sesgo, el término

de la varianza se ve incrementado considerablemente de modo que el estimador resultante

muestra una tasa de convergencia incluso más lenta que la de la transformación en primeras

diferencias. Para resolver esta situación y obtener estimadores que alcancen la tasa óptima

de convegencia de este tipo de problemas no paramétricos, recurrimos a un algoritmo de

backfitting de una etapa. Analizando la distribución asintótica de este estimador de dos

etapas apreciamos que un suavizado adicional, introducido a través del procedimiento de

backfitting, no logra reducir el sesgo pero permite disminuir la varianza, tal y como se

establece en Fan and Zhang (1999). De este modo, este procedimiento de backfitting

permite a los estimadores de las funciones desconocidas de interés alcanzar tasas óptimas

de convergencia no paramétricas. Asimismo, mostramos que el estimador de efectos fijos

propuesto también es oráculo eficiente. Finalmente, a través de un experimento de Monte

Carlo se trata de confirmar los resultados teóricos del estimador de efectos fijos.

En el Caṕıtulo 4, se aborda un estudio comparativo sobre el comportamiento de los esti-

madores propuestos en los caṕıtulos anteriores. Analizando las propiedades asintóticas de

los dos estimadores de regresión local lineal (primeras diferencias y efectos fijos) se aprecia

que ambos mantienen el mismo orden de magnitud del término de sesgo, pero muestran
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ĺımites asintóticos distintos para el término de la varianza. En ambos casos las conse-

cuencias son la obtención de tasas de convergencia no paramétricas subóptimas. Como

se demuestra en los Caṕıtulos 2 y 3, para solventar este problema es necesario explotar

la estructura aditiva del modelo de regresión en diferencias y algoritmos de backfitting

de una etapa son propuestos. Bajo condiciones bastante generales, se obtiene que los dos

estimadores de backfitting son asintóticamente equivalentes, por lo que un análisis sobre

su comportamiento en tamaños muestrales pequeños es muy interesante.

En un contexto totalmente paramétrico, está demostrado que bajo supuestos de exogenei-

dad estricta el comportamiento de los estimadores en diferencias depende de la estructura

estocástica del término de error idiosincrático; ver Wooldridge (2003). Sin embargo, en el

ajuste no paramétrico, además de la estructura estocástica existen otros factores como la

dimensionalidad y el tamaño muestral que son de gran interés. En concreto, en un estudio

comparativo entre estos estimadores analizamos cómo se comporta su error cuadrático

medio en promedio (AMSE) bajo diversos escenarios. Destacar que los resultados de si-

mulación obtenidos del AMSE confirman básicamente los resultados teóricos. Asimismo,

encontramos que los estimadores de efectos fijos son bastante sensibles al tamaño del

número de observaciones temporales por individuo.

En el Caṕıtulo 5 y con el objetivo de demostrar la gran utilidad de los métodos pro-

puestos para el análisis emṕırico, se considera la estimación no paramétrica de un modelo

estructural sobre los ahorros preventivos de los hogares motivado por el modelo del ciclo

vital de Modigliani and Brumberg (1954). A partir de esta especificación, estimamos un

modelo en el cual los ahorros de los hogares están relacionados tanto con la incertidumbre

sobre gastos médicos imprevistos como con la aversión al riesgo de los hogares.

En las pasadas dos décadas, existe una gran cantidad de estudios emṕıricos que tratan

de mejorar nuestro entendimiento sobre el consumo óptimo de los hogares y su compor-

tamiento bajo distintas fuentes de incertidumbre (seguros por desempleo o programas

sanitarios públicos) pero sin llegar a resultados concluyentes; ver Starr-McCluer (1996),

Gruber (1997), Egen and Gruber (2001), Gertler and Gruber (2002) o Gourinchas and

Parker (2002), entre otros. Sin embargo, la mayor parte de estos estudios sufren de es-

casez de robustez contra distintos tipos de errores de especificación. En este contexto, el

objetivo de este quinto caṕıtulo es contribuir a la literatura sobre los ahorros preventivos
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extendiendo el modelo semi-paramétrico propuesto en Chou et al. (2004) al análisis de

modelos de datos de panel. De este modo, lo que nos proponemos es estimar un mo-

delo de ciclo vital que nos permita determinar el comportamiento de los hogares haciendo

frente, de manera simultánea, a los errores de especificación más habituales en este tipo de

modelos: (i) heterogeneidad de sección cruzada no observada correlacionada con las cova-

riables del modelo; (ii) ciertas funciones que relacionan variables endógenas y exógenas

en la ecuación de Euler son desconocidas y deben ser estimadas; y (iii) existencia de

covariables endógenas.

En este sentido, el estimador de las funciones de interés que se propone en este caṕıtulo

resuelve el problema de endogeneidad utilizando los valores predichos de las variables

endógenas y que han sido generados en la estimación no paramétrica de la ecuación en

forma reducida. De este modo, el estimador que se presenta tiene la forma de un esti-

mador simple de mı́nimos cuadrados de dos etapas localmente ponderado. Además, ciertas

técnicas de integración marginal son necesarias para estimar un subconjunto de las fun-

ciones de interés. Para determinar el comportamiento de estos estimadores obtenemos

sus principales propiedades asintóticas. El caṕıtulo finaliza con un experimento de Monte

Carlo que analiza el buen comportamiento de los estimadores propuestos en muestras fini-

tas y con una aplicación emṕırica sobre los ahorros de los hogares españoles bajo distintas

fuentes de incertidumbre.

Finalmente, concluimos esta tesis doctoral resaltando las principales conclusiones que se

desprenden de estos cinco caṕıtulos y se apuntan posibles ĺıneas futuras de investigación.

Las pruebas de los principales resultados obtenidos a lo largo de este trabajo aśı como los

programas de estimación desarrollados para estos estimadores son relegados al apéndice.
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Introduction

In the past five decades, the complexity of econometric models has been greatly enriched by

the availability of panel data. Since these data sets are characterized by the observation of

a group of individuals (households, consumers, countries, etc.) over time, they allow us to

extract some unknown information about the idiosyncratic characteristics of individuals.

In this way, the theoretical ability of these data to isolate the impact of unobserved actions

of individuals enables us to make consistent inferences on a variety of topics that are not

possible with other types of data, such as cross-sectional or time series data.

Traditionally, the econometric specification of such models has focused on the analysis of

the relationship between an endogenous variable and some explanatory variables taking

into account the unobserved individual heterogeneity. This analysis has been based on

rather restrictive assumptions about functional forms and densities. However, as it is noted

in Wooldridge (2003), sometimes these assumptions are quite unrealistic, and there are

situations where the risk of misspecification is high. If this is the case, standard estimators

based on moment conditions are biased and their use can invalidate the inference results.

In this context, nonparametric regression techniques have become a very useful tool to

address these problems. Fully nonparametric panel data models are very appealing since

they do not make any assumption about the model specification, but they allow data

set to draw the shape of the regression function by themselves. However, although such

estimators are robust to misspecification of the regression function, they are subject to the

curse of dimensionality. In other words, as the number of explanatory variables increases,

the rate of convergence of these estimators is dramatically reduced. In order to improve

their rate it has been usually proposed to include a fully parametric component. These are

the so-called semi-parametric models. In this case, what is known from previous empirical
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research or economic theory is modeled in a parametric way, whereas what is unknown for

the researcher is specified nonparametrically.

However, these flexible models are unable to capture some features hidden in data sets.

That is the main reason why many empirical studies have encouraged the introduction of

more flexible structures that allow for variation of the unknown parameters according to

some explanatory variables. In this situation, varying coefficient models originally pro-

posed in Cleveland et al. (1991) appear as a solution. In particular, they are characterized

by allowing for certain regression coefficients to vary with some exogenous variables sug-

gested by economic theory. Therefore, they are able to exploit the information of the data

set.

Note that in the past 15 years varying coefficient models have experienced an unparalleled

growth, from both a methodological and theoretical point of view. As they encompass both

nonparametric and semi-parametric models, they offer a quite general setting to handle

many of the specification problems of such models. In what follows, we present some

empirical applications of varying coefficient models in order to have a better understanding

of the main advantages that they offer for empirical analysis.

In the literature on the returns to education we can find a first example of the improvement

achieved with this new type of models. As it is noted in Schultz (2003), marginal returns

to education vary with different levels of work experience. Thus, the omission of the

nonlinearity of education as well as the interaction impact between education and work

experience leads us to undersmoothing outcomes of the education performance, as it is

found in Card (2001). In this situation, a semi-parametric varying coefficient model of the

following form may be more advisable,

Yi = m(Zi)Xi +W>i β + vi, i = 1, · · · , N,

where Yi is the hourly wages of individual i (log), Xi denotes the years-of-schooling of

the individual as a measurement of his education experience, Zi is a measure of working

experience, and Wi denotes a vector of control variables that includes binary indicators

for some features of the individuals such as marital status, government employed, union

status and so on. In this way, this modeling overcomes the most common problems in
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this literature. It allows the impact of education on performance to vary with the level of

work experience and to consider, at the same time, the nonlinearity shape of education.

Furthermore, the macroeconomic and international economic literature provides another

relevant example. When we examine the role of foreign direct investment (FDI) in the

economic growth of the countries, authors like Kottaridi and Stengos (2010) claim that,

because the positive effect of the FDI on the economic growth only occurs in those countries

with a higher level of income, the coefficient of FDI inflows in a growth model must be

varying over the initial income level of each country. In this situation, the following semi-

parametric varying coefficient model is specially appealing since it enables us to take into

account both the nonlinear impact of FDI as well as the interactive effect between FDI

and level of income,

Yit = α0 + α1Dj + α2ln(Idit/Y ) + α3ln(nit) + α4(lnXit)(I
f
it/Y ) + α5hit + εit,

for i = 1, · · · , N and t = 1, · · · , T , where Yit is the growth rate of income per capita in

country i and period t, Idit the domestic investment rate to GDP, nit the population growth

rate, hit the human capita, Ifit/Y is the ratio of FDI to GDP and Xit is income per capita

at the beginning of each period.

Finally, we find another relevant example when we try to establish the role of natural

resources in the economic development of regions. As it is well-known in the literature on

development economics, resource-abundant regions tend to grow slower than those with

poor resources; see Sachs and Warner (2001). However, since the former constitute both

growth losers and winners, the role of the quality of the institutions can be a decisive

issue to identify the impact of the natural resources. Thus, in order to take into account

the fact that the variation of growth performance among regions with abundant natural

resources depends on how resource rents are distributed via the institutional arrangement,

in Fan et al. (2010) it is proposed the following semi-parametric varying coefficient model

Yi = β0 + β1X1i + β2X2i + β3X3i + β4(Zi)X4i + vi, i = 1, · · · , N,

where Yi is the average growth rate of country i, X1i, X2i, X3i and X4i denote initial income

level, is a measure of the institutional quality approximated via the share of primary

exports in GNP in 1970.
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In this context, the objective of this doctoral dissertation is twofold. On one hand, to

develop new estimation techniques that allow us to obtain consistent estimators for varying

coefficient panel data models where the unobserved individual heterogeneity is correlated

with some covariates. On the other hand, to emphasize the gains offered by this new

methodology for empirical analysis. To this end, a nonparametric analysis of a structural

model on the precautionary savings of the Spanish households to different sources of

uncertainty is presented. In this way, this doctoral thesis is divided into five chapters and

the structure of the dissertation is as follows.

In Chapter 1, an intensive review of the econometric literature on semi-parametric and

fully nonparametric panel data models is performed. First, fully nonparametric panel

data models with both random and fixed effects are analyzed. Second, we survey partially

linear models under three different specifications: fixed and random effects, and presence

of endogenous covariates. We conclude with a review of panel data varying coefficient

models. For each of these areas, we discuss both the basic model to estimate and the

proposed methodology. We also analyze the main asymptotic properties of the resulting

estimators.

In Chapter 2, we present a new estimation technique for panel data models where the

coefficients to estimate are smooth functions of other explanatory variables established

by economic theory, and where the individual effects are arbitrarily correlated with the

regressors of the model in an unknown way. As it can be shown, direct estimation through

nonparametric techniques renders inconsistent estimators of the parameters (functions) of

interest. In order to circumvent this problem, we use a transformation in first differences.

Thus, following the original idea in Yang (2002) for an entirely different context, the

proposed estimator is based on a local linear regression of a model in first differences.

As it is proved in Lee and Mukherjee (2008), since the transformed regression equation is

originally located around a fixed value of the sample, without considering the other values,

direct application of local linear regression techniques to differencing transformations of

panel data models generates a bias that does not disappear asymptotically. To avoid this

problem, we propose to use a higher-dimensional kernel weight.

Unfortunately, this technique allows us to eliminate this bias, but at the price of increas-

ing the variance term so the resulting estimators achieve a slower nonparametric rate of
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convergence. We propose to overcome this problem via a one-step backfitting algorithm

that provides estimators that achieve the optimal rate of convergence of such problems.

Also, the resulting estimators exhibit the oracle efficiency property. In other words, this

procedure provides a nonparametric estimator whose variance-covariance matrix of all its

components is asymptotically the same as if the other components of the transformed

regression equation were known. In this chapter, we also obtain the asymptotic distribu-

tion of both estimators. Likewise, since the bandwidth matrix plays a crucial role in the

consistent estimation of unknown functions, we also provide a method to calculate this

matrix empirically. Finally, through a Monte Carlo experiment we test the good behavior

of the proposed estimator in finite samples.

In Chapter 3, we present an estimator based on a deviation from the mean transforma-

tion of the regression model. As in the fully parametric setting, the main advantage of

this transformation compared to other similar is that we obtain the standard asymptotic

properties of nonparametric estimators under the assumption that the idiosyncratic error

terms are i.i.d. In this way, the fixed effects estimator that we present in this chapter is

obtained via a local approximation of the T additive functions of the deviation from the

mean transformation, where T is the number of observations for each individual. Since

the direct use of standard local approximation techniques in the estimation of these ad-

ditive components omits relevant information as the sum of the distances between a fixed

term and the other values of the sample, it provides nonparametric estimators with a bias

term even more relevant than the obtained in Chapter 2. Thus, to overcome this prob-

lem we propose to consider a local approximation around the entire vector of temporal

observations of each individual.

Nevertheless, the well-known trade-off between bias and variance reappears. Although

the use of a kernel function of dimension T solves the bias problem, the variance term is

considerably enlarged so the resulting estimator shows a slower rate of convergence than

the first differences transformation estimator. In order to solve this situation and obtain

estimators that achieve the optimal rate of convergence of this type of nonparametric

problems, we use a one-step backfitting algorithm. Analyzing the asymptotic distribution

of this two-stage estimator we appreciate that additional smoothing, introduced through

the backfitting procedure, fails to reduce bias but decreases the variance term, as it is
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established in Fan and Zhang (1999). Therefore, this backfitting procedure allows to the

estimators of the unknown functions of interest to achieve optimal nonparametric rates

of convergence. Also, we show that the proposed fixed effects estimator is oracle efficient.

Finally, through a Monte Carlo experiment we try to corroborate the theoretical findings

obtained for the fixed effects estimator.

In Chapter 4, a comparative study on the behavior of the estimators proposed in the

previous chapters is addressed. Analyzing the asymptotic properties of the two local linear

regression estimators (first-differences and fixed effects) we observe that both maintain the

same order of magnitude of the bias term, but they show different asymptotic limits for

the variance term. In both cases the consequences are suboptimal nonparametric rates of

convergence. As it is shown in Chapters 2 and 3, to solve this problem it is necessary to

exploit the additive structure of the regression model in differences and one-step backfitting

algorithms are proposed. Under fairly general conditions we find that the two backfitting

estimators are asymptotically equivalent, so the analysis of their behavior in small sample

sizes is very interesting.

In a fully parametric context, it is shown that under strict exogeneity assumptions the

behavior of differencing estimators depends on the stochastic structure of the idiosyncratic

error terms; see Wooldridge (2003). However, in the nonparametric setting, apart from

the stochastic structure, there exist other factors such as the dimensionality and sample

size that are of great interest. Specifically, in a comparative study between these two

estimators we analyze how their average mean squared error (AMSE) behave under fairly

different scenarios. Note that the simulation results obtained for the AMSE essentially

confirm the theoretical outcomes. Also, we have also found out that fixed effects estimators

are rather sensitive to the number of time series observations per individual.

In Chapter 5 and with the aim of showing the feasibility and possible gains of the proposed

methods for empirical analysis, we consider the estimation of a structural model of house-

hold’s precautionary savings motivated by the life-cycle hypothesis model of Modigliani

and Brumberg (1954). Starting from this specification, we estimate a model where house-

hold’s savings are related to both uncertainty about unforeseen medical expenses and

household risk aversion.
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In the past two decades, there is a plethora of empirical studies that seek to improve

our understanding about household’s optimal consumption and its behavior under various

sources of uncertainty (i.e., unemployment insurances or public health programs) but

without reaching conclusive results; see Starr-McCluer (1996), Gruber (1997), Egen and

Gruber (2001), Gertler and Gruber (2002) or Gourinchas and Parker (2002), among others.

However, most part of these studies suffers from lack of robustness against various types of

misspecification problems. In this context, the aim of this fifth chapter is to contribute to

the literature on precautionary savings by extending the semi-parametric model proposed

in Chou et al. (2004) to the analysis of panel data models. Thus, we propose to estimate

a life-cycle hypothesis model that allows us to determine the behavior of households while

facing simultaneity the misspecification problems that are more common in such models:

(i) unobserved cross-sectional heterogeneity correlated with the explanatory variables of

the model; (ii) some functions that relate endogenous and exogenous variables in the Euler

equation are unknown and must be estimated; and (iii) existence of some endogenous

covariates.

In this sense, the estimator of the functions of interest that we propose in this chapter

solves the endogeneity problem using the predicted values of the endogenous variables

that are generated in the nonparametric estimation of the reduced form equation. Thus,

the estimator presented here has the simple form of a two-step weighted locally constant

least-squares estimator. Also, certain marginal integration techniques are necessary to

estimate a subset of the functionals of interest. To determine the behavior of these es-

timators, we analyze their main asymptotic properties. The chapter concludes with a

Monte Carlo experiment that analyzes the good performance of the proposed estimators

in finite samples and with an empirical application about savings of Spanish households

under different sources of uncertainty.

Finally, we conclude this dissertation by highlighting the main results extracted from these

five chapters and possible future research. The proofs of the main results obtained along

this work and the computational programs developed for these estimators are relegated to

the appendix.
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Chapter 1

Nonparametric and

semi-parametric panel data

models: recent developments

1.1 Introduction

When we estimate econometric models, a relevant issue is the type of data that we use in

the specification/estimation of the model because good statistical properties of estimation

results depend largely on the information provided by the data set. In empirical research,

longitudinal or panel data sets are specially attractive since, for each individual in the

sample, they contain many observations over time. Therefore, these data sets allow us

to access certain unobserved information about individuals’ behavior, which cannot be

captured with other data type, such as conventional cross-section or time series data.

As it is noted in Hsiao (2003), the main advantages relating to longitudinal data set can

be classified into two groups. On one hand, the efficiency of the econometric estimators is

improved because this type of data structure usually exhibits large sample sizes. Therefore,

the degrees of freedom are increased while, at the same time, the collinearity between

explanatory variables is usually reduced. On the other hand, its theoretical ability to

isolate the effects of specific actions or treatments allows us to make suitable inferences
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to analyze a variety of economic questions that would not be possible with other data

set. Nevertheless, panel data models also present some disadvantages that are mainly

related to the presence of unobserved heterogeneity in the form of individual or temporal

effects. As it is well-known, in this panel data context a key issue to provide consistent

estimators of the parameters (functions) of interest is the role played by the unobserved

effects. Ignoring this information may lead us to biased estimators by the omission of

relevant variables. Thus, in many empirical applications it is common to consider the cross-

sectional heterogeneity as a random variable distributed independently of the regressors

(the so-called random effects). However, sometimes this assumption is too strong, specially

when correlation between the cross-sectional heterogeneity and the regressors is allowed.

In this case of fixed effects, a random effects estimator is inconsistent and we must resort

to specific panel data techniques to deal with this statistical dependence. We refer to

Arellano (2003), Baltagi (2013) or Hsiao (2003) for an intensive review about parametric

panel data models and Maddala (1987) to obtain good arguments about random versus

fixed effects.

Nevertheless, the suitable treatment of these unobserved effects is not enough to guarantee

the consistency of the estimators because the estimation of the parameters of interest might

also depend on some statistical restrictions imposed on the data generated process as well

as on the relative values of the number of individuals N and the number of time periods

T . Sometimes these assumptions are too restrictive with respect to functional forms and

densities and the risk of misspecification is high.

In this context, nonparametric panel data models are very appealing as they do not make

any assumption on the specification of the model and allow data to tailor the shape

of the regression function by themselves. However, sometimes this flexibility presents

some drawbacks. On one hand, it is unable to incorporate prior information properly to

the nonparametric modeling and the resulting estimator of the unknown function tends

to have a higher variance term. On the other hand, its worst disadvantage is the so-

called curse of dimensionality that practically disables standard nonparametric methods

when the dimension of the nonparametric covariates is high. In order to solve these

drawbacks, semi-parametric panel data models that embody both general nonparametric

specification and fully parametric, have been proposed. In contrast to the slower rate of
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convergence of the nonparametric estimators, semi-parametric models enable us to obtain
√
N -consistent estimators of the unknown parametric components. For early discussions

on semi-parametric panel data models see Ullah and Roy (1998), while we refer to Ai and

Li (2008) for a review about partially linear and limited dependent nonparametric and

semi-parametric panel data models.

In this chapter, we provide an intensive review of the econometric literature about semi-

parametric and fully nonparametric panel data models when N tends to infinity and T

is fixed. Note that in Su and Ullah (2011) a similar modeling is analyzed, although in

this case we include the most recent results and pay special attention to the treatment of

models with fixed effects as well as with endogenous explanatory variables.

Throughout the chapter, we denote individuals as i and time as t. Also, we use a

standard data sampling scheme in nonparametric panel data regression analysis such

as the strict stationarity assumption of the variables involved in the model, i.e., let

(Xit, Zit, Yit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically distributed (i.i.d.)

IRd+q+1-random variables in the subscript i for each fixed t and strictly stationary over t

for fixed i. Yit is a scalar response variable and (Xit, Zit) are explanatory random vari-

ables. Also, ⊗ and � denote the Kronecker and Hadamard product, respectively. In the

following, K is a kernel function that we assume it is bounded. Furthermore, we assume

that
∫
uu>K(u)du = µ2(K)Iq and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0

are scalars.

The rest of the chapter is organized as follows. In Section 1.2 we analyze the literature

on fully nonparametric panel data models. In Section 1.3 we focus on partially linear

models. Finally, in Section 1.4 we review panel data varying coefficient models. In all

sections we distinguish among random effects, fixed effects and we also consider the case

of endogenous covariates.
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1.2 Nonparametric panel data models

1.2.1 Random effects

In nonparametric panel data models with random effects, the response variable is generated

through the following statistical model

Yit = m (Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T, (1.1)

where Zit is a q×1 vector of exogenous variables, vit and µi are independent and identically

distributed terms with zero mean and homoscedastic variances, σ2
v <∞ and σ2

µ <∞, re-

spectively. We assume µi and vjt are uncorrelated with each other for all i, j = 1, 2, · · · , N

and T . Note that the error term follows a one-way error component structure; see Balestra

and Nerlove (1966) or Hsiao (2003). Therefore, this means that the disturbance term is

formed by both the idiosyncratic error term vit and the unobserved cross-sectional hetero-

geneity µi, so it has the following form

εit = µi + vit. (1.2)

In this situation, E(µi|Zit) = 0 and E(vit|Zit) = 0. The researcher is interested in the

estimation of the unknown smooth function m(z) = E(Yit|Zit = z).

Denote by εi = (εi1, · · · , εiT )> a T × 1 vector and V = E(εiε
>
i ) a T × T matrix that takes

the form

V = σ2
vIT + σ2

µıT ı
>
T (1.3)

and since the observations are independent along individuals, the variance-covariance ma-

trix of the error term has the standard form

Ω = E(εε>) = IN ⊗
[
σ2

1ıT ı
>
T /T + σ2

v(IT − ıT ı>T /T )
]

= IN ⊗ V, (1.4)

where ε is a NT × 1 vector that contains the εi’s vectors, σ2
1 = Tσ2

µ + σ2
v and V =

σ2
1ıT ı

>
T /T + σ2

v

(
IT − ıT ı>T /T

)
.

The function of interest in (1.1) and its derivatives were at first estimated through a pooled

local linear least-squares procedure. However, the resulting estimator should be inefficient
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given that, by the presence of µi in each time period, the composed error term is seri-

ally correlated. Therefore, efficient inference using these pooled estimators should require

considering the information contained in the variance-covariance matrix. In order to solve

this situation, several have been the developments when N → ∞ and T is fixed. Ullah

and Roy (1998), Lin and Carroll (2000) or Su and Ullah (2007), among others, consider

the estimation of this nonparametric model via a local polynomial regression approach.

Later, and with the aim of improving the efficiency of these estimators, Ruckstuhl et al.

(2000) and Henderson and Ullah (2005) propose different strategies to incorporate the in-

formation contained in the disturbance terms and to improve the efficiency of the previous

nonparametric estimators.

For any z ∈ A, where A is a compact subset in a nonempty interior of IR, the basic idea

behind the standard nonparametric estimation of m(z) = E(Yit|Zit = z) is to obtain a

smoothed average of the Yit values taking into account the values of Zit contained in a

small interval of z such as Zit − z = Op(h), where h is a bandwidth that tends to zero

when N →∞.

In order to understand later developments, it is useful to begin by the analysis of the

univariate least-squares procedure. In this simplest case where q = 1, this is equivalent to

make a Taylor expansion of the unknown smooth function around z, i.e.,

m (Zit) ≈ m(z) +m′(z) (Zit − z) +
1

2
m′′(z) (Zit − z)2 + · · ·+ 1

p!
m(p)(z) (Zit − z)p (1.5)

and the above exposition suggests that we can estimate m(z),m′(z), · · · ,m(p)(z) by re-

gressing Yit on the terms (Zit − z)λ, for λ = 0, 1, · · · , p, with kernel weights. Here, the

quantities of interest can be estimated by minimizing the following criterion function

N∑
i=1

T∑
t=1

(
Yit −

p∑
λ=0

βλ(Zit − z)λ
)2

Kh(Zit − z), (1.6)

where we denote by β̂ = (β̂0, β̂1, · · · , β̂p) the vector of minimizers of (1.6). This expression

suggests β̂0 = m̂h(z), β̂1 = m̂′h(z), · · · , β̂p = m̂
(p)
h (z). K is a weight function defined in

such way that takes low values when Zit is far away from z and high values when Zit is

close to z. Also, for each u it holds∫
K(u)du = 1 and Kh(u) =

1

h
K(u/h). (1.7)
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Now, if we set p = 0 we obtain the standard Nadaraya-Watson regression estimator (see

Nadaraya (1964) and Watson (1964)), i.e.,

m̂NW (z;h) =

∑N
i=1

∑T
t=1Kh(Zit − z)Yit∑N

i=1

∑T
t=1Kh(Zit − z)

. (1.8)

For the case of a panel data set under random effects models, this estimator was originally

proposed in Ullah and Roy (1998). If we set p = 1 we obtain the local linear regression

estimator; see Ruppert and Wand (1994), Fan and Gijbels (1995b) or Zhan-Qian (1996)

for a detailed description of this technique. For applications to panel data models with

random effects see Lin and Carroll (2000), Ruckstuhl et al. (2000) and Su and Ullah (2007),

among others.

If we extend the criterion function (1.6), for p = 1, to the multivariate case, i.e., Z ∈ IRq,

we obtain the following criterion function

N∑
i=1

T∑
t=1

(
Yit − β0 − β>1 (Zit − z)

)2
Kh(Zit − z), (1.9)

where now we denote by β̂ = (β̂0 β̂1)> a (1 + q)-vector that minimizes (1.9). Then, let

Dm(z) = ∂m(z)/∂z> be a q × 1 vector of partial derivatives of the function m(z) with

respect to the elements of the q-vector z, the above exposition suggests m̂(z;h) = β̂0 and

D̂m(z;h) = β̂1 as estimators for m(z) and Dm(z), respectively.

Assuming Z>z KzZz is nonsingular, the solution to (1.9) in matrix form can be written as

 β̂0

β̂1

 =
(
Z>z KzZz

)−1
Z>z KzY, where Zz =


1 (Z11 − z)>
...

...

1 (ZNT − z)>

 (1.10)

is a NT×(1+q) matrix, Kz = diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) a NT×NT diagonal

matrix and Y = (Y11, · · · , YNT )> a NT × 1 vector.

Then, the local linear least-squares (LLLS) estimator of m(z) is

m̂LLLS(z;h) = e>1

(
Z>z KzZz

)−1
Z>z KzY, (1.11)

where e1 is a (1 + q) selection matrix having 1 in the first entry and all other entries 0.
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Under some smoothness conditions on the regression function, some moment conditions

on the errors; i.e., E|vit|2+δ <∞, and assuming h→ 0 as N →∞ such that Nh→∞, it

is straightforward to extend the results in Ruckstuhl et al. (2000, Theorem 1, pp. 53) to

the multivariate case. Thus, as N tends to infinity and T is fixed the conditional bias of

these pooled estimators can be written as

biasNM (m̂NW (z;h)) =
h2

2T
µ2(K)

[
tr (Hm(z)) + 2Dm(z)Df (z)f(z)−1

]
(1.12)

and

biasLLLS (m̂LLLS(z;h)) =
h2

2T
µ2(K)tr (Hm(z)) , (1.13)

respectively, where Hm(z) denotes the q×q Hessian matrix of m(z) and Df (z) is the 1×q

first-order derivative vector of the density function f(z).

Also, the asymptotic distribution of these estimators is

√
Nhq (m̂NW (z;h)−m(z))

d−−−→ N

(
0,

(σ2
v + σ2

µ)R(K)

Tf(z)

)
(1.14)

and
√
Nhq (m̂LLLS(z;h)−m(z))

d−−−→ N

(
0,

(σ2
v + σ2

µ)R(K)

Tf(z)

)
, (1.15)

where, let Z = (Z11, · · · , ZNT ) be the observed covariates vector, we denote σ2
µ = V ar(µi|Z)

and σ2
v = V ar(vit|Z).

Based on these results, we can realize that although the asymptotic variance of both

estimators is equal, the asymptotic bias is not. In particular, the bias of the local linear

least-squares estimator only depends on the curvature of m(·) at z in a particular direction,

measured through Hm(z), while the bias term of the Nadaraya-Watson estimator emerges

mainly from both the curvature of m(·) and the term Dm(z)Df (z)f(z)−1. Also, as it is

well-known, the local linear estimator is the best among all linear smoothers and has better

performance near the boundary of the support of the density function; see Fan (1993) for

more details. Therefore, the local linear least-squares estimator is usually preferred to

the Nadaraya-Watson. The form of the asymptotic variance is also of great interest. As

it can be observed, its structure is the same that under a pure i.i.d. setting without no

correlation. This phenomenon is already pointed out in Ruckstuhl et al. (2000).
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With the aim of obtaining estimators asymptotically more efficient than the previous

ones, if it is possible, it would be necessary to incorporate the covariance structure of the

regression model (1.1) in the form of the estimators. To this end, two different approaches

have been proposed in the literature.

On one hand, in Henderson and Ullah (2005) an alternative class of estimators is proposed.

The estimators are the result of the minimization of the following weighted criterion func-

tion (
Y − β>Zz

)>
Wz

(
Y − β>Zz

)
(1.16)

with respect to β, where β̂ and Zz are defined as in (1.10). Let Wz be a weighting

matrix based on the kernel function that contains the information of the error structure,

in Henderson and Ullah (2005) the following local linear weighted least-squares (LLWLS)

estimator of m(z) is proposed,

m̂LLWLS(z;h) = β̂0 = e>1

(
Z>z WzZz

)−1
Z>z WzY. (1.17)

In this way, the first-step of this procedure must be the proposal of a specific form for

Wz. In particular, in Lin and Carroll (2000) two types of weighting matrices are used,

Wz = K
1/2
z Ω−1K

1/2
z and Wz = Ω−1Kz, whereas in Ullah and Roy (1998) it is developed

an estimation procedure with Wz = Ω−1/2KzΩ
−1/2. In addition, and as the reader can

see in (1.4), if Ω is a diagonal matrix these different specifications of Wz are the same.

On the other hand, in Ruckstuhl et al. (2000) it is proposed to multiply both sides of (1.1)

by the square-root of Ω−1 obtaining

Y ∗ = m(Z) + Ω1/2ε, (1.18)

where Y ∗ = Ω−1/2Y + (I − Ω−1/2)m(Z) is the transformed variable and Ω−1/2ε is a term

that satisfies the independence condition because it has an identity variance-covariance

matrix. Note that Y ∗ = (Y ∗11, · · · , Y ∗NT )>, m(Z) = (m(Z11), · · · ,m(ZNT ))> and ε =

(ε11, · · · , εNT )> are NT × 1 vectors. Therefore, by minimizing the criterion function

related to (1.18) the resulting local linear least-squares estimator is

m̂(z) = e>1

(
Z>z KzZz

)−1
Z>z KzY

∗, (1.19)
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where Zz and Kz are defined as in the expression (1.10).

Note that the estimator defined in either (1.17) or (1.19) is an unfeasible estimator because

Ω depends on some unknown terms, i.e., σ2
v and σ2

µ. In this line, and based on the spectral

decomposition of Ω, in Henderson and Ullah (2005) it is proposed a local linear feasible

weighted least-squares estimator where they suggest to replace the unknown covariance

components by their consistent estimators.

Let ε̂it = Yit − m̂(Zit) be the local linear least-squares residuals related to (1.17), in

Henderson and Ullah (2005) it is proposed to estimate the unknown terms of the variance-

covariance matrix (1.4) such as

σ̂2
1 =

T

N

N∑
i=1

ε̂
2
i· and σ̂2

v =
1

N(T − 1)

N∑
i=1

T∑
t=1

(ε̂it − ε̂i·)2, (1.20)

where εi· = T−1
∑T

t=1 εit.

Plugging these consistent estimators in (1.4) they obtain Ω̂. If we denote by Ŵz any of the

expression of Wz, where Ω is replaced by Ω̂, the feasible local linear weighted least-squares

(FLLWLS) estimator is

m̂FLWLS(z;h) = e>1

(
Z>z ŴzZz

)−1
Z>z ŴzY. (1.21)

On the other hand, in Ruckstuhl et al. (2000) a two-step procedure is presented. In

the first-step, a local linear least-squares estimator of the unknown functions of (1.18) is

obtained and the residual term that enables us to obtain Ω̂ is computed. In the second-

step, they use this result to calculate Ŷ ∗ = Ω̂−1/2Y + (I − Ω̂−1/2)m̂(Z) and they propose

to regress Ŷ ∗ against Z through a local polynomial regression obtaining the following local

linear two-step least-squares (LL2SLS) estimator

m̂LL2SLS(z) = e>1

(
Z>z KzZz

)−1
Z>z KzŶ

∗. (1.22)

Finally, based on this latter transformation in Martins-Filho and Yao (2009) a two-step

procedure is also proposed to provide a local linear estimator in a regression model where

the error term has a non-spherical covariance structure and the regressors are dependent

and heterogeneously distributed.
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In Henderson and Ullah (2005) it is shown that under some standard regularity conditions,

for N large and T fixed, the asymptotic bias and variance rate of m̂LLWLS(z;h) are

Op(h
2) and Op

(
(NThq)−1

)
, respectively. Furthermore, in a Monte Carlo experiment

conducted in Henderson and Ullah (2012) it can be seen that the estimator for Ω proposed

in Henderson and Ullah (2005) performs better than the corresponding for the local linear

least-squares (LLLS) estimator in Ullah and Roy (1998) or Lin and Carroll (2000). They

also point out that the local linear two-step least-squares (LL2SLS) estimator exhibits a

better performance in terms of mean squared error than any other type of these estimators.

1.2.2 Fixed effects

As we have just seen, the random effects approach includes µi in the random error term

under the assumption that there is no correlation between µi and Zit. However, if µi is

allowed to be arbitrarily correlated with Zit in the model, an estimation procedure with a

one-way error component clearly provides biased estimators of the parameters (functions)

of interest because E(µi|Zit = z) 6= 0.

For nonparametric panel data model with fixed effects the main focus is

Yit = m (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.23)

where Zit is a q × 1 vector of explanatory variables, m(·) is an unknown function for the

researcher, vit is i.i.d (0, σ2
v) and µi is i.i.d (0, σ2

µ).

As in the parametric case, different estimation methods are developed to estimate non-

parametric panel data models with fixed effects of the form of (1.23); see Hsiao (2003),

Wooldridge (2003) or Baltagi (2013), for example. As we appreciate hereinafter, they may

be classified into two broad approaches. On one hand, there is a first type of nonparametric

estimators that use differencing transformations to remove the unobserved heterogeneity

from the structural model. Thus, the unknown function of the transformed model can be

estimated consistently through any nonparametric approach. On the other hand, a sec-

ond type of estimators is based on the spirit of the least-squares dummy variable (LSDV)

approach to propose estimators of the parameters of interest, i.e., m(·). In the following,

the most recent literature on the nonparametric framework based on both approaches is

26



Chapter 1. Nonparametric and semi-parametric panel data models: recent developments

reviewed. Later, we focus on the corresponding estimators for different specifications of

these nonparametric models, i.e., allowing for additive structures of the smooth function

or the presence of dynamic nonparametric covariates.

Differencing estimators

In this part, we focus on the proposals in Mundra (2005) and Lee and Mukherjee (2008)

to show how standard differencing transformations enable us to propose estimators for

the first-derivative function solving the statistical dependence problem between µi and

Zit. Later, we analyze the iterative nonparametric kernel estimator based on a profile

likelihood approach developed in Henderson et al. (2008) to estimate the smooth function.

As in the fully parametric case, there are several transformations that enable us to remove

the heterogeneity of unknown form. Among the most popular transformations we find

out the so-called first differences and differences from the mean. First differences trans-

formation may be understood as the subtract from time t of (1.23) that of time t − 1,

i.e.,

Yit − Yi(t−1) = m(Zit)−m(Zi(t−1)) + vit − vi(t−1), i = 1, · · · , N ; t = 2, · · · , T (1.24)

or that of time 1, i.e.,

Yit − Yi1 = m(Zit)−m(Zi1) + vit − vi1, i = 1, · · · , N ; t = 2, · · · , T. (1.25)

On its part, differences from the mean implies subtracting from time t the within-group

mean, i.e.,

Yit −
1

T

T∑
s=1

Yis = m(Zit)−
1

T

T∑
s=1

m(Zis) + vit −
1

T

T∑
s=1

vis, (1.26)

for i = 1, · · · , N and t = 1, · · · , T .

As the reader may appreciate, the right hand side of either (1.24), (1.25) or (1.26) are linear

combinations of m(Zit) for different periods t. When estimating the unknown function

m(·) it is necessary to take into account that we have an additive function for each t whose

elements share the same functional form. Therefore, direct nonparametric estimation of

this function is not as straightforward as it is noted in Su and Ullah (2011).
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Assumingm(·) is smooth enough, in Ullah and Roy (1998) it is proposed to use either a first

differences or a mean deviation transformation after linearly approximate the unknown

function m(·) around z. They expected that the resulting first-difference and fixed effects

estimators of the marginal effects of m(·) (i.e., the partial derivatives of m(z) with respect

to z) satisfy the standard properties of the local linear regression approach. However, this

statement is not true as it is proved in Lee and Mukherjee (2008) because this technique

provides estimators with a bias term that does not disappear even in large samples.

To analyze this problem in detail, we consider the univariate problem (q = 1) of the

first differences regression model (1.24). Then, approximate m(·) by means of a Taylor

expansion implies to obtain

∆Yit = ∆Zitm
′(z) + ∆vit(z), (1.27)

where m′(z) = ∂m(z)/∂z. Let m′′(z) = ∂2m(z)/∂z2 be the Hessian matrix of m(z), the

error term of this transformed regression is

∆vit(z) = ∆vit +
1

2
m′′(ξ)

(
(Zit − z)2 − (Zi(t−1) − z)2

)
,

for some ξ ∈ IR between Zit and z.

On the contrary, the transformed regression of the mean deviation (i.e., within-group)

expression is

Yit −
1

T

T∑
s=1

Yis =

(
Zit −

1

T

T∑
s=1

Zis

)
m′(z) +

(
vit(z)−

1

T

T∑
s=1

vis(z)

)
, (1.28)

where the corresponding error term is of the form

vit(z)−
1

T

T∑
s=1

vis(z) =

(
vit −

1

T

T∑
s=1

vis

)
+

1

2
m′′(ξ)

(
(Zit − z)2 − 1

T

T∑
s=1

(Zis − z)2

)
.

For the transformed regression models (1.27) and (1.28), in Lee and Mukherjee (2008) the

following local linear estimators of the first-order derivatives are proposed,

m̂′D(z;h) =

∑N
i=1

∑T
t=2Kh(Zit − z)∆Zit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)∆Z2

it

(1.29)

and

m̂′W (z;h) =

∑N
i=1

∑T
t=1Kh(Zit − z)Z̈itŸit∑N

i=1

∑T
t=1Kh(Zit − z)Z̈2

it

, (1.30)
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where we denote Ÿit = Yit− (T −1)−1
∑T

s=1,s 6=t Yis, and Z̈it and v̈it are defined in a similar

way. For the sake of simplicity, in Lee and Mukherjee (2008) the leave-one-out average is

used in (1.28) instead of the within-group mean when analyzing the asymptotic properties

of these estimators.

Let Z = (Z11, · · · , ZNT ) be the vector of observed covariates, under some standard smooth-

ing conditions in Lee and Mukherjee (2008, Theorem 1, pp. 5) the following asymptotic

properties of these two local linear estimators are shown when N,T →∞

E[m̂′D(z;h)−m(z)|Z] =
m′′(z)µ3(z)

2µ2(z)
+Op(h

2) (1.31)

and

E[m̂′W (z;h)−m(z)|Z] =
m′′(z)[(µ1(z)µ2(z) + µ3(z))

2
(
µ2

1(z) + µ2(z)
) +Op(h

2), (1.32)

where µj(z) = E(Zit − z)j <∞, for j = 1, 2, 3.

By analyzing these results we can highlight that it is proved that these two local linear es-

timators are inconsistent for any sample size because in both specifications, when N →∞

and h → 0, the bias that does not go away. In particular, as it can be seen in (1.29)

and (1.30), this non-degenerated bias is due to the fact that the transformed regression

equations are localized around Zit, without taking into account all other values. Conse-

quently, since the distance between Zis and z cannot be controlled by a fixed bandwidth

parameter h, the residual terms of the Taylor approximation do not vanish. Therefore, it

is not possible to assume that ∆vit(z) and ∆vit are close enough and we can conclude that

the local linear regression approach provides inconsistent estimators by the correlation

between the transformed error terms ∆vit(z) and the transformed regressors ∆Zit. The

same can be said for v̈it(z) and Z̈it.

To our knowledge, there are two type of strategies to overcome this problem. On one hand,

in Mundra (2005) a direct procedure is developed based on the use of a higher-dimensional

kernel weight. On the other hand, in Lee and Mukherjee (2008) is proposed the estimation

of a local within transformation that uses a locally weighted average to remove the fixed

effects. In the following, we detail the main peculiarities of both techniques.

As we have stated previously, one way of overcoming this problem of non-negligible asymp-

totic bias is to use a higher-dimensional kernel weight. As it is suggested in Mundra (2005),
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the bias associated to (1.29) may be removed by considering a local approximation around

the pair (Zit, Zi(t−1)) obtaining the following first-difference local linear estimator

m̂′FLL(z;h) =

∑N
i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1))∆Zit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z)∆Z2

it

. (1.33)

However, note that despite providing the asymptotic distribution of this estimator, Mundra

(2005) does not pay special attention to the behavior of the transformed regression errors,

and further research of their asymptotic properties may be necessary.

On the other hand, in Lee and Mukherjee (2008) it is followed a differencing strategy that

uses the locally weighted average of Zit, for a given z, to remove the unobserved individual

heterogeneity and propose consistent estimators that take into account all the values of

the regressors involved in the estimation. They denote

Z̃i· =
T∑

s=1,s 6=t
Wis(z)Zis, (1.34)

where Wis(z) is the local weight of the form

Wis(z) =
Kh(Zis − z)∑T

r=1,r 6=tKh(Zir − z)
. (1.35)

Also, Ỹi·(z) and ṽi·(z) are defined in a similar way as the locally weighted averages of Yit

and vit(z), respectively.

Note that
∑T

s=1,s 6=tWis(z)µi = µi because it holds Wis(z) ≥ 0 and
∑T

s=1,s 6=tWis(z) = 1

for any z. Therefore, if we subtract such local averages from (1.23) and denote Y ∗is =

Yis − (T − 1)−1
∑T

s=1,s 6=t Yis and Z∗is = Zis − (T − 1)−1
∑T

s=1,s 6=t Zis, the functions of

interest are estimated from the following locally weighted average problem

N∑
i=1

T∑
s=1,s 6=t

(Y ∗is − Z∗isβ)2Kh(Zis − z). (1.36)

Denote by β̂ the minimizer of (1.36), the above exposition suggests as estimator for m′(·),

m̂′LWA(z;h) = β̂ =

∑N
i=1

∑T
s=1,s 6=tKh(Zis − z)Z∗isY ∗is∑N

i=1

∑T
s=1,s 6=tKh(Zis − z)Z∗2is

. (1.37)

30



Chapter 1. Nonparametric and semi-parametric panel data models: recent developments

Under some standard regularity conditions, in Lee and Mukherjee (2008, Theorem 2, pp.

7) it is shown that this local weighted linear estimator m̂′LWA(z;h) has the following

asymptotic properties when N,T →∞,

E
[
m̂′LWA(z;h)−m(z)|Z

]
=

h2

2

(
m′′(z)f ′(z)

f(z)

)(
κ4 − κ2

2

κ2

)
+ op(h

2) (1.38)

and

V ar
(
m̂′LWA(z;h)−m(z)|Z

)
=

1

NTh3

(
σ2
v

f(z)

)(
ϕ2

κ2
2

)
+ op

(
1

NTh3

)
, (1.39)

where κj =
∫
zjK(z)dz, for j = 2, 4, and ϕ2 =

∫
z2K2(z)dz.

Looking at these results, we can emphasize that the asymptotic bias and conditional

variance is of the same order as the standard results of the local polynomial regression.

Furthermore, since h→ 0 and they assume NTh3 →∞ when N,T →∞, both conditional

bias and variance-covariance matrix are asymptotically negligible.

As the reader may appreciate, these procedures are very appealing as they provide con-

sistent estimators of the local marginal effect of the smooth function in a framework of

differencing models. However, they are unable to identify the function m(·). In this con-

text, in Henderson et al. (2008) an iterative nonparametric kernel estimator is developed

based on a profile likelihood approach to estimate m(·), when N is large and T is fixed.

Let us consider the following differencing model to estimate

Yit − Yi1 = m(Zit)−m(Zi1) + vit − vi1, i = 1, · · · , N ; t = 2, · · · , T, (1.40)

so the likelihood function L(·) suggested for the individual i in Henderson et al. (2008) is

Li(·) = ϕ(Yi,mi) = −1

2

(
Ÿi −mi +mi1ı

)>
Σ−1

(
Ÿi −mi +mi1ı

)
, (1.41)

where mi = m(Zit), mi1 = m(Zi1) and Ÿi = (Ÿi2, · · · , ŸiT ), for Ÿit = Yit − Yi1.

The variance-covariance matrix of v̈it = vit − vi1, Σ, and its inverse, Σ−1, are respectively

equal to

Σ = σ2
v

(
IT−1 + ıT−1ı

>
T−1

)
; Σ−1 = σ−2

v

(
IT−1 − ıT−1ı

>
T−1/T

)
, (1.42)

where we denote by m̂[`−1](z) the current estimator.
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In Henderson et al. (2008) it is proposed to estimate m̂[`](z) by computing α̂0(z), where

(α̂0 α̂1) solve the following equation

N∑
i=1

T∑
t=1

Kh(Zit − z)Git(z;h)

×Li,tm
(
Yi, m̂[`−1](Zi1), · · · , α̂0 + ((Zit − z)/h)>α̂1, · · · , m̂[`−1](ZiT )

)
= 0, (1.43)

where Git(z;h) =
[
1 ((Zit − z)/h)>

]>
. Note that α̂1(z) provides the next step derivative

estimator of m(z).

As it is well-known in the nonparametric literature, because the model to estimate exhibits

an additive structure with two functions that share the same functional form, an initial

estimator of m(·) can be obtained by the standard backfitting method, originally proposed

in Hastie and Tibshirani (1990). However, it is true that in order to impose the additive

structure for estimates the series method can be more suitable. In this way, in Henderson

et al. (2008) it is recommended to use an iterative method that only implies a least-squares

estimation procedure, turning to a series method to obtain an initial estimator of m(·).

Similarly to other nonparametric estimators developed for differencing models, the itera-

tive estimator proposed in Henderson et al. (2008) has the advantage of removing com-

pletely the unobserved individual heterogeneity. However, the rate of convergence of the

proposed estimators is relatively slow since the asymptotic variance is Op
(
(N |H|)−1

)
.

Profile least-squares estimators

When we want to estimate directly nonparametric fixed effects models such as (1.23)

we must control by both observed and unobserved covariates. In this way, we need an

estimation procedure that provides consistent estimators for the structural parameters

of the explanatory variables, m(·), in the presence of “incidental” parameters, i.e., µi.

Therefore, following the idea of the least-squares dummy variable approach a profile least-

squares method may be proposed, where a dummy variable is used to represent each

cross-sectional observation.

In this subsection, we first analyze the profile least-squares estimators proposed in Sun

et al. (2009), Su and Ullah (2011), Gao and Li (2013) and Lin et al. (2014) under different
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identification conditions. Later, we focus on alternative feasible forms for the local linear

approach following Li et al. (2013).

If we rewrite the model (1.23) in a matrix form we obtain

Y = m(Z) +D0µ0 + v, (1.44)

where Y = (Y11, · · · , YNT )>, m(Z) = (m(Z11), · · · ,m(ZNT ))> and v = (v11, · · · , vNT )>

vectors of NT ×1 dimension. Let µ0 = (µ1, · · · , µN )> be a vector of N ×1 dimension and

D0 = (IN ⊗ ıT ) a NT ×N dummy matrix.

For any given value of µ0 we estimate the unknown m(z), let z be an interior point of the

neighborhood of Z, by minimizing the standard optimization problem, i.e.,

(Y − ıNTm(z)−D0µ0)>Kh(z) (Y − ıNTm(z)−D0µ0) , (1.45)

where Kh(z) = diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) is a NT ×NT diagonal matrix and

Kh(Zit − z) = h−1K ((Zit − z)/h).

Taking the first-order condition of the objective function in (1.45) with respect to m(z)

and rearranging terms we obtain

m̂(z;h) =
(
ı>NTKh(z)ıNT

)−1
ı>NTKh(z)(Y −D0µ0). (1.46)

However, since µ0 is not directly observable this local constant estimator is unfeasible. In

order to solve it, the profile least-squares approach suggests to profile out µ0 by choosing

it such as

µ̂0 =
(
D>0 Kh(z)D0

)−1
D>0 Kh(z) (Y − ıNTm(z)) . (1.47)

Later, the unobserved individual effects can be removed multiplying the true model by(
D>0 Kh(z)D0

)−1
D>0 Kh(z) so the remaining quantities of interest may be estimated using

the following minimization problem

(Y − ıNTm(z))>W0(z) (Y − ıNTm(z)) , (1.48)
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where the weighting matrix now has the form W0 = M0(z)Kh(z)M0(z), for M0(z) =

INT − D0

(
D>0 Kh(z)D0

)−1
D>0 Kh(z), in such way that M0(z)D0 = 0. Then, taking the

first-order condition with respect to m(z) the local constant estimator is

m̂LCLS(z;h) =
(
ı>NTW0(z)ıNT

)−1
ı>NTW0(z)Y. (1.49)

Since the local weighting matrix W0(z) is designed to remove any time invariant term

in (1.23), i.e., W0(z)ıNT ≡ 0, ı>NTW0(z)ıNT is a non-invertible matrix so this method is

not feasible. In order to overcome this situation, it is necessary to use another matrix

with removes the unobserved cross-sectional term either complete or asymptotically and

that also enables us to select only those values of Zit close to z. In this sense, in Lin

et al. (2014) it is proposed to replace D0 by another matrix D that enables D>Kh(z)D

to be a nonsingular matrix, following Sun et al. (2009). Therefore, in Lin et al. (2014) it

is suggested a new weighting matrix Wh(z) that removes asymptotically the unobserved

fixed effects and satisfies(
ı>NTWh(z)ıNT

)−1
ı>NTWh(z)D0µ0 = N−1

N∑
i=1

∑
i

µi = Op(N
−1/2), as N →∞.

Thus, let µ = (µ2, · · · , µN )> be a (N−1)×1 vector and denote by D a NT×(N−1) matrix

of the form D = (−ıN−1IN−1)> ⊗ ıT , in Su and Ullah (2006a), Sun et al. (2009), and Lin

et al. (2014) it is proposed to replace D0µ0 by Dµ̂ = (µ̂1, µ̃
>)> with µ̂1 = −

∑N
i=2 µ̂i and

µ̃ = (µ̂2, · · · , µ̂N )> =
(
D>Kh(z)D

)−1
D>Kh(z)Y,

obtaining the following local constant estimator of m(z)

m̂LCS(z;h) =
(
ı>NTKh(z)ıNT

)−1
ı>NTKh(z)Wh(z)Y, (1.50)

where Wh(z) = INT − D
(
D>Kh(z)D

)−1
D>Kh(z) is a NT × NT matrix such that

Wh(z)D ≡ 0.

By extending this problem to the local linear regression technique, we can replace D0 by D

in the corresponding expression of the local linear estimator associated to (1.47) obtaining

µ̂PLLLS =
(
D>Kh(z)D

)−1
D>Kh(z)(Y − Zzβ), (1.51)
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where Zz and β are defined as in (1.10).

Then, if we multiply the model (1.23) by
(
D>Kh(z)D

)−1
D>Kh(z) the quantities of in-

terest can be estimated by minimizing the following concentrated weighted least-squares

regression problem

(Y − Zzβ)>Wh(z) (Y − Zzβ) , (1.52)

where now the weighting matrix has the form W = M(z)>Kh(z)M(z), for M(z) = INT −

D
(
D>Kh(z)D

)−1
D>Kh(z), in such way that M(z)D ≡ 0.

Let β̂ = (β̂>0 β̂>1 )> be a (1 + q) vector of minimizers of (1.52), we can propose the

following profile local weighted linear estimator

β̂PLLLS =
(
Z>z Wh(z)Zz

)−1
Z>z Wh(z)Y. (1.53)

Furthermore, a consistent estimator of the unobserved fixed effects can be obtained by

replacing β by β̂ in (1.51) but, to our knowledge, no empirical work has been developed

based on it.

Note that although this new weighting matrix provides feasible estimators, it fails to re-

move the fixed effects asymptotically. In particular, in Lin et al. (2014, Theorem 2.1) we

can see that under some standard smoothing conditions the profile estimator of a local

constant approximation has a compound bias term when N → ∞ and T → ∞: one of

the terms is related to the nonparametric approximation of the smooth function, while

the other comes from the existence of unobserved cross-sectional heterogeneity. To over-

come it, a standard solution can be the estimation of the nonparametric regression under

further strong identification conditions about the unobserved individual heterogeneity. In

particular, Mammen et al. (2009) or Su and Ullah (2011) impose
∑N

i=1 µi = 0, while Gao

and Li (2013) develop a profile least-squares method under the condition E (µi) = 0. As it

is proved in Sun et al. (2009) for partially linear models, this stronger identification condi-

tion allows us to obtain standard asymptotic properties in the nonparametric framework

and, simultaneously, to override the individual effects.

Alternatively, in Li et al. (2013) a profile least-squares procedure it is developed in which

is not necessary to pay special attention to the invertibility problem remarked in Lin et al.
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(2014) or Gao and Li (2013). Again, assuming
∑N

i=1 µi = 0 a profile local linear least-

squares method for the nonparametric components of the regression function is proposed.

But, unlike the previous methods, in Li et al. (2013) it is assumed that µ is known and a

least-squares procedure for the nonparametric components in β is proposed. In this way,

the quantities of interest can be estimated by minimizing the resulting criterion function

of a local linear fitting with respect to β obtaining as estimator

β̂ =
(
Z>z Kh(z)Zz

)−1
Z>z Kh(z)(Y −Dµ). (1.54)

As previously, this estimator is not feasible but we can multiply the true model by

e>1
(
Z>z Kh(z)Zz

)−1
Z>z Kh(z) and choose the µ that minimizes the following criterion func-

tion

(Y ∗ −D∗µ)> (Y ∗ −D∗µ) , (1.55)

where we denote by

D∗ =

(
INT − e>1

(
Z>z Kh(z)Zz

)−1
Z>z Kh(z)

)
D,

and

Y ∗ =
(
INT − e>1 (Z>z Kh(z)Zz)

−1Z>z Kh(z)
)
Y.

In this way, the minimizer of (1.55) is of the form

µ̂PLLLS =
(
D∗>D∗

)−1
D∗>Y ∗ (1.56)

and replacing µ by µ̂ in (1.54) the profile local weighted linear least-squares estimator is

β̂PLLLS =
(
Z>z Kh(z)Zz

)−1
Z>z Kh(z)(Y −Dµ̂). (1.57)

Finally, under standard smoothing conditions in Li et al. (2013, Theorem 1, pp. 231) it is

shown the following asymptotic normality of (1.57) as N →∞ and T is fixed,

√
Nh (m̂PLLLS(z;h)−m(z)− b(z)) d−−−→ N

(
0,
σ2R(K)

f(z)2

)
, (1.58)
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where m′′(z) = ∂2m(z)/∂z2 is the Hessian matrix of m(z) and

b(z) =
h2

2
µ2(K)m′′(z),

σ2(z) =
T∑
t=1

σ2
t (z)ft(z) =

T∑
t=1

V ar
(
v2
it|Zit = z

)
ft(z).

As we detail in later sections, these asymptotic properties are similar to the result obtained

in Su and Ullah (2006b) for partially linear panel data models with fixed effects.

Additive models

Sometimes there are situations in which nonparametric panel data models of moderate

dimension are not suitable, and another modeling is necessary. For example, when we

want to perform an economic analysis of the production functions, nonparametric additive

models may be more interesting; see Sperlich et al. (2002) for a cross-sectional analysis of

this type of models.

At this point, we may be tempted to extend directly the estimation techniques analyzed

previously to nonparametric additive models. However, the panel data framework makes

this task much more difficult; see Hjellvik and Tjøstheim (1999) or Wooldridge (2005)

for more details. In this situation, in Mammen et al. (2009) it is considered the con-

sistent estimation of nonparametric additive panel data models under different forms of

the unobserved heterogeneity. They state the main asymptotic properties of the resulting

nonparametric estimators when only unobserved temporal heterogeneity is allowed, but

we analyze a panel data regression model where both unobserved temporal and individual

effects are present, i.e.,

Yit =

p∑
j=1

mj(Zjit) + ηt + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.59)

where mj(·) are the unknown functions that the research has to estimate, while ηt and µi)

represent the fixed effects.

As it is standard in nonparametric additive models, a possible solution to the estimation

of mj(·) is the use of the marginal integration or the backfitting technique. Because the
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marginal integration approach works well for low-dimensional covariates models, in Mam-

men et al. (2009) it is proposed an alternative backfitting procedure based on the smoothed

backfitting approach developed in Mammen et al. (1999). For the correct performance of

the local constant smooth backfitting estimators, (m̂1, · · · , m̂p), in Mammen et al. (2009)

it is proposed to use only those covariates that fall into the interval [0, 1]p, ignoring the

rest of explanatory variables for estimates.

In this way, the kernel function has to integrate to one over the interval [0, 1], i.e.,

Kh(u, v) =


K[h−1(u−v)]∫ 1

0 K[h−1(ω−v)]dω
if u, v ∈ [0, 1]

0 else,

so we can highlight that when the dimension of the covariates q is large, this criterion

function causes the loss of a relatively large portion of the observations. In order to

minimize this effect, in Mammen et al. (2009) it is suggested to use an arbitrarily large

but fixed compact set, whereas the use of data set that depends on the sample size and

converge to the whole space can be asymptotically more suitable.

In this situation, the quantities of interest of (1.59) can be estimated using a smoothed

least-squares criterion of the form

N∑
i=1

T∑
t=1

∫ Yit − q∑
j=1

m̂j(zj)− η̂t − µ̂i

2

Kh(1)(z1, Z1it) · · ·Kh(q)(zq, Zqit)dz1 · · · dzp,

(1.60)

under the following constraints ∫
m̂j(zj)f̂j(zj)dzj = 0, (1.61)

N∑
i=1

Niµi = 0. (1.62)

Denote by (m̂1, · · · , m̂p) the minimizers of the criterion function (1.60), the estimators of

the arguments of interest can be written as
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m̂j(zj) = m̃j(zj)−
T∑
t=1

Nt

NT
η̂t
f̂ tj (zj)

f̂j(zj)
−

N∑
i=1

Ni

NT
µ̂i
f̂ ij(zj)

f̂j(zj)

−
∑
` 6=j

∫
m̂`(z`)

f̂j`(zj , z`)

f̂j(zj)
dzj , (1.63)

η̂t = ñt −
q∑
j=1

∫
m̂j(zj)f̂

t
j (zj)dzj , t = 1, · · · , T (1.64)

µ̂i = µ̃i −
q∑
j=1

∫
m̂j(zj)f̂

i
j(zj)dzj , i = 1, · · · , N (1.65)

where (m̃j , η̃j , µ̃i) are the following marginal estimators

m̃j(zj) =
1

NT

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Kh(zj , Zjit)Yit/f̂j(zj), (1.66)

η̃t =
1

Nt

N∑
i=1

1(Zit ∈ [0, 1]q)Yit, (1.67)

µ̃i =
1

Ni

T∑
t=1

1(Zit ∈ [0, 1]q)Yit, (1.68)

and the functions (f̂jk, f̂
t
j , f̂

i
j) are the estimators of the kernel density of the form

f̂jk(zj , zk) =
1

NT

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Kh(j)(Zjit − zj)Kh(k)
(Zkit − zk), (1.69)

f̂ tj (zj) =
1

Nt

N∑
i=1

1(Zit ∈ [0, 1]q)Kh(j)(Zjit − zj), (1.70)

f̂ ij(zj) =
1

Ni

T∑
t=1

1(Zit ∈ [0, 1]q)Kh(j)(Zjit − zj). (1.71)

As the reader can see in (1.63)-(1.65), to obtain m̂j(·) is necessary to use an iterative

procedure since m̃j(zj) has to be estimated previously. In particular, what it is proposed

in Mammen et al. (2009) is to plug-in the current values of m̂` (` 6= j), η̂t and µ̂i into

the right-hand side of (1.63), and later apply (1.64) and (1.65) for updates of η̂t and µ̂i,

respectively. Thereafter, this strategy is again done by using the actual values of m̂j(·) on

the right-hand side of (1.63).
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In this way, plugging (1.64) and (1.65) into the right-hand side of (1.63) the resulting

estimator of the local constant backfitting smoothing can be written as

m̂(z) = m∗(z) +

∫
Ĥ(z; y)m̂(y)f̂(y)dy, (1.72)

where

m∗j (zj) =
1

NT

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Kh(zj , Zjit)(Yit − Y ·t − Y i· + Y ),

Y ·t =
1

Nt

N∑
i=1

1(Zit ∈ [0, 1]q)Yit,

Y i· =
1

Ni

T∑
t=1

1(Zit ∈ [0, 1]q)Yit,

Y =
1

NT

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Yit.

Also, Ĥ(z, y) is a q × q matrix whose off-diagonal entries (` 6= j) are

Ĥj` =
f̂j`(zj , y`)

f̂j(zj)
+

T∑
t=1

N tf̂ tj (y`)f̂
t
j (zj)

NTf̂j(zj)
+

N∑
i=1

N if̂ i`(y`)f̂
i
j(zj)

NTf̂j(zj)
(1.73)

and whose diagonal elements are

Ĥjj(z, y) =

T∑
t=1

N tf̂ t`(y`)f̂
t
j (zj)

NTf̂j(zj)
+

N∑
i=1

N if̂ i`(y`)f̂
i
j(zj)

NTf̂j(zj)
. (1.74)

By analyzing the asymptotic properties of m̂j(·), Mammen et al. (2009) confirm that the

smooth backfitting local constant estimator exhibits one of the main annoying features of

the standard backfitting estimators, that is, m̂j(·) has a complex bias expression because

it depends on the form of other regression functions, m`(·) for ` 6= j. Note that this result

complicates greatly the statistical inference based on it.

With the aim of overcoming this problem, these authors propose a smoothing process

using a local linear approximation of the unknown function rather than a local constant.

Let m̂1, · · · , m̂p, m̂
′
1, · · · , m̂′p, µ̂1, · · · , µ̂N and η̂1, · · · , η̂T be local linear estimators defined

as the minimizers of

N∑
i=1

T∑
t=1

∫ Yit − p∑
j=1

m̂j(zj)−
Zjit − zj
h(j)

m̂′j(zj)− η̂t − µ̂i

2

Kh(1)(z1, Z1it) · · ·Kh(p)(zp, Zpit)

×dz1 · · · dzp, (1.75)
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where now, instead of using (1.61) as identification restriction, they propose the following∫
m̂j(zj)f̂j(zj)dzj +

∫
m̂j(zj)f̂

′
j(zj)dzj = 0, (1.76)

where f̂j is the estimator of the kernel density previously defined and

f̂ ′j(zj) =
1

NT

N∑
i=1

T∑
t=1

1(Zit ∈ [0, 1]q)Kh(j)(Zjit − zj)(Zit − zj).

Finally, in Mammen et al. (2009) the main asymptotic properties of the local linear back-

fitting estimator are obtained. They show that this asymptotic bias is very close to the

standard one of the local linear estimator when only temporary fixed effects are included

in the model of interest.

1.2.3 Endogeneity (dynamic models)

Until this moment, we have focused on several estimation strategies that allow us to obtain

consistent estimators for nonparametric panel data models, but ignoring the situation in

which the right-hand side of the regression presents lagged dependent variables.

When our aim is the estimation of a dynamic panel data model as the considered in Su

and Lu (2013), the following model is analyzed

Yit = m(Yi(t−1), Xit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.77)

where Xit is a q × 1 vector of explanatory variables, Yi(t−1) a scalar lagged dependent

variable, µi the cross-sectional heterogeneity and vit the error term.

Using a first difference transformation to remove the fixed effects, they obtain

∆Yit = m(Yi(t−1), Zit)−m(Yi(t−2), Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T,

(1.78)

where we may appreciate some particularities that must be taken into account in order to

develop a suitable estimation procedure. On one hand, the error term ∆vit has the form of

moving average process of order 1 (MA(1)) so, in general, it is correlated with the regressor

Yi(t−1). Because of this endogeneity problem, conventional kernel estimation based on
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marginal integration or backfitting procedures does not provide consistent estimators for

the smooth estimation. On the other hand, since both additive components share the

same functional form and it is assumed E(∆vit|Yi(t−2), Zi(t−1)) = 0, to estimate m(·, ·) is

necessary to solve a Friedholm integral equation of second type.

In this context, to obtain consistent estimators that address both problems, in Su and

Lu (2013) an iterative estimator based on a local polynomial regression is developed. Let

us denote by Ui(t−2) = (Yi(t−2) Z>i(t−1))
> and assuming Ui(t−2) has a positive density

on ϕ, where ϕ denotes a compact set on IRq+1. They obtain the following conditional

moment condition by the law of iterated expectations, since ∆vit is (conditionally) mean-

independent of Ui(t−2),

E
[
∆Yit −m(Yi(t−1), Zit) +m(Yi(t−2), Zi(t−1))|Ui(t−2)

]
= 0 (1.79)

and rearranging terms

m(u) = −E
[
∆Yit|Ui(t−2) = u

]
+ E

[
m(Ui(t−1))|Ui(t−2) = u

]
= rt|t−2(u) +

∫
m(u)ft−1|t−2(u|u)du, for t = 3, · · · , T, (1.80)

where rt|t−2(u) = E
[
∆Yit|Ui(t−2) = u

]
, ft−1|t−2(·|·) is the conditional density function of

Ui(t−1) given Ui(t−2) and u is the mean value of u.

By simplicity, let us denote by ρt−2 = P (Ui(t−2) ∈ ϕ) and ρ =
∑T

t=3 ρt−2, so if we multiply

both sides of (1.80) by ρt−2/ρ and use the fact that
∑T

t=3 ρt−2/ρ = 1 we obtain

m(u) = r(u) +

∫
m(u)f(u|u)du. (1.81)

Under certain regularity conditions, Su and Lu (2013) rewrite (1.81) as

m = r + Am, (1.82)

where A is a bounded linear operator defined such as Am(u) =
∫
m(u)f(u|u)du.

Therefore, from (1.82) we may intuitively conclude that the estimator of the parameter

of interest m(·) can be defined as a solution to the Fredholm integral equation of the

second kind in an infinite dimensional Hilbert space. However, since both r and Am(u)
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are not directly observable, the resulting estimator of (1.82) is unfeasible and an iterative

procedure is needed. In this situation, in Su and Lu (2013) it is proposed a plug-in

estimator for m̂(·) as a solution of the following equation

m̂ = r̂ + Âm̂, (1.83)

where r̂ and Â are nonparametric estimators obtained from a local polynomial regression of

pth order. In particular, r(u) can be estimated using the following weighted least-squares

problem

N∑
i=1

T∑
t=3

−∆Yit −
∑

0≤|j|≤p

β>j ((Ui(t−2) − u)/h)j

2

Kh(Ui(t−2) − u)1(Ui(t−2) ∈ ϕ), (1.84)

where β̂ = (β̂>0 , · · · , β̂>q )> is a (1 + q)-vector that minimizes (1.84) and h = (h0, · · · , hq)>

is a bandwidth sequence.

Analogously, Âm(u) is defined as the resulting estimator of Am(u) when −∆Yit is replaced

by m(Ui(t−1)) in the problem to minimize (1.84). However, in order to obtain a feasible

estimator of A we need to obtain an estimator for the function m(·). In this case, in Su

and Lu (2013) it is proposed to resort to the method of sieves and, after obtaining m̂(u),

they replace it in the final regression to estimate. See Chen (2007) for an intensive revision

of the method of sieves.

Let h! =
∏d
`=0 h

2
` and ||h||2 =

∑d
`=0 h

2
` . Under certain standard smoothness conditions,

and some assumptions on the behavior of bandwidths, i.e., as N → ∞, T is fixed and

||h|| → 0, Nh!/logN → ∞ and N ||h||4h! → c ∈ [0,∞], in Su and Lu (2013, Theorem

2.2, pp. 117) it is also established the asymptotic normality of the plug-in estimator. In

particular, for the simplest case (q = 1) they show

√
NTh!

(
m̂(u;h)−m(u)− (I − A)−1B(u)

) d−−−→ N (0, υ(u)) , (1.85)

where A is a Hilbert-Schmidt operator such that

B(u) =
1

2

q∑
`=0

h2
`µ2(K)

∂2m(u)

∂u2
`

,

υ(u) =
σ2(u)

f(u)
Rq+1(K),

σ2(u) =
T∑
t=3

ρt−2

ρ
σ2
t−2(u)ft−2(u),
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and they denote σ2
t−2(u) = E(v2

it|Ui(t−2) = u) + E(v2
i(t−1)|Ui(t−2) = u).

According to this results, we can conclude the following: The asymptotic variance of

this iterative estimator has a similar structure to that presented by a conventional local

polynomial estimator of the unknown functions of nonparametric models such as ∆Yit =

m(Ui(t−1)) −m(Ui(t−2)) + ∆vit, when m(Ui(t−2)) is observed; The asymptotic bias shows

significant variations with reference to the standard results. Specifically, this iterative

estimator present an additional operator, (I −A)−1, which reflects the cumulative bias of

the iterative process.

1.3 Partially linear models

As we have already realized, nonparametric panel data models are much more robust to

specification errors than their parametric counterparts. Unfortunately, the most important

price to be paid for the use of nonparametric techniques is the curse of dimensionality. One

possible way to overcome this problem is to introduce some parametric components to the

econometric model. These are the so-called semi-parametric models. After the seminal

contribution in Robinson (1988), partially linear models have been quite frequently used in

the econometric literature becoming the most popular semi-parametric modeling approach.

In what follows we analyze the statistical properties of partial linear models estimators

under alternative assumptions. Mainly, random effects, fixed effects and endogenous co-

variates.

1.3.1 Random effects

In partially linear panel data models where the error term follows a one-way error com-

ponent structure, the response variable follows

Yit = X>it β +m(Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T, (1.86)

where Xit and Zit are vectors of exogenous variables of d × 1 and q × 1 dimension, re-

spectively, β is a d × 1 vector of unknown parameters and m(·) is an unknown smooth

function.
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We consider the standard panel data framework where N is large and T is finite, and the

composed error term εit in the regression (1.86) exhibits a structure of the form

εit = µi + vit,

where µi is i.i.d.(0, σ2
µ) and vit is i.i.d.(0, σ2

v). Again, as in the fully nonparametric panel

data models with random effects, we may define V as a T × T matrix of the same form

as in (1.3). Also, since the observations are independent along individuals, the variance-

covariance matrix of the composed error term Ω has the standard form as in (1.4).

Following the proposal in Robinson (1988); in Li and Stengos (1996) and Li and Ullah

(1998) it is considered the estimation of a semi-parametric partially linear panel data

model as the one established in equation (1.86). In order to estimate consistently the

parameters of interest, in the previous references it is proposed to take the conditional

expectation with respect to Z in the model of interest. Then, if we subtract it from (1.86),

it is obtained

Yit − E(Yit|Zit) = (Xit − E(Xit|Zit))> β + εit. (1.87)

Let us denote by β̂ the ordinary least-squares (OLS) estimator of β from (1.87). In matrix

notation it can be written as

β̂OLS =
(
X̃X̃>

)−1
X̃>Ỹ = β +

(
X̃X̃>

)−1
X̃>ε, (1.88)

where X̃ is a NT ×d matrix whose typical row element is X̃it = Xit−E(Xit|Zit), whereas

Ỹ is a NT × 1 vector whose typical row element is of the form Ỹit = Yit − E(Yit|Zit).

However, since E(Xit|Zit) and E(Yit|Zit) are some unknown terms, (1.88) is an unfeasible

estimator. To overcome this problem and to obtain
√
N -consistent estimators, a possible

solution is to resort to nonparametric estimation techniques to provide the estimators of

these conditional expectations. Specifically, in all previous references it is proposed to use

a kernel estimation method to estimate these unknown conditional expectations. Thus,

E(Yit|Zit) and the density function f(Zit) may be estimated through

Ŷit = Ê(Yit|Zit) =
1

NThq

N∑
j=1

T∑
s=1

YjsKh(Zit − Zjs)/f̂it, (1.89)

f̂it = f̂(Zit) =
1

NThq

N∑
j=1

T∑
s=1

Kh(Zit − Zjs), (1.90)
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where Kh(Zit − Zjs) = K((Zit − Zjs)/h) is the kernel function and h the bandwidth

parameter. Note that X̂it = Ê(Xit|Zit) is defined in a similar way.

By substituting the unknown terms in (1.87) by their nonparametric estimators and sub-

tracting the resulting expression from (1.86) we obtain

Yit − Ŷit = (Xit − X̂it)
>β + εit, i = 1, · · · , N ; t = 1, · · · , T. (1.91)

At this point, we must highlight that the resulting estimators of this previous equation

may be subject to the random denominator problem when f̂it is too small. As a solution

to this problem, these authors propose to multiply both sides of (1.91) by the density

estimator f̂it following Powell et al. (1989), obtaining

Yitf̂it − Ŷitf̂it = (Xitf̂it − X̂itf̂it)
>β + εitf̂it. (1.92)

Thus, the ordinary least-squares (OLS) estimator of β now can be written as

β̃OLS =
(

(X − X̂)>(X − X̂)Î
)−1 (

(X − X̂)Î
)>

(Y − Ŷ ), (1.93)

where (X−X̂)Î is a matrix of NT×d dimension with a typical row element (Xit−X̂it)
>Iit,

Iit = I(f̂it ≥ b) for I(·) being the usual indicator function and b = bn(> 0) is a trimming

parameter.

Under standard regularity conditions, in Li and Stengos (1996, Theorem 1, pp. 392) and

Li and Ullah (1998, Proposition 1, page 151) it is shown the following convergence in

distribution of this ordinary least-squares estimator,

√
N
(
β̃OLS − β

)
d−−−→ N

(
0,Φ−1ΣΦ−1

)
, (1.94)

where Φ = 1
T

∑T
t=1E(X̃1tX̃

>
1tf

2
1t) and Σ = 1

T 2

∑T
t=1

∑T
s=1E(v1tv1sX̃1tX̃

>
1sf

2
1tf

2
1s).

Looking at these properties, it is proved that this procedure allows to obtain a consis-

tent semi-parametric estimator in this context of random effects, where β̃OLS has the

same asymptotic efficiency as the unfeasible estimator β̂OLS . However, since this estima-

tor ignores the information contained in the error term more efficient estimators can be

obtained.
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With the aim of using the structure of the variance-covariance matrix Ω, in Li and Ullah

(1998) a feasible generalized least-squares (GLS) semi-parametric estimator for the coeffi-

cient of the linear component of (1.86) is proposed. Therefore, to compute Ω̂ they propose

to estimate (1.92) obtaining the residuals, ε̂it = (Yit − Ŷit) − (Xit − X̂it)
>β̃OLS , so the

unknown parameters of Ω may be estimated as

σ̂2
ε = σ̂2 − σ̂2

µ and σ̂2
1 = T σ̂2

µ + σ̂2
ε ,

where σ̂2 = 1
NT

∑N
i=1

∑T
t=1 ε̂

2
itf̂it and σ̂2

µ = 1
NT (T−1)

∑N
i=1

∑T
t=1 ε̂itε̂isf̂itf̂is, whereas f̂it and

f̂is are defined as in (1.90).

Replacing the unknown terms by these estimators in (1.86), the feasible generalized least-

squares semi-parametric (FGLS) estimator of β is

β̂FGLS =
(

(X − X̂)>Ω̂−1(X − X̂)Î
)−1 (

(X − X̂)Î
)>

Ω̂−1(Y − Ŷ ), (1.95)

whose convergence in distribution, under some standard regularity conditions, is

√
NT

(
β̂FGLS − β

)
d−−−→ N

(
0,Σ−1

)
, (1.96)

where Σ = T−1E[X̃>1 Ω−1X̃1], for X̃1 being a T × q dimensional matrix with X̃1t =

X1t − E(X1t|Z1t) as a typical row element, while Ω−1 is the inverse matrix of (1.4).

By comparing the asymptotic properties of the ordinary least-squares semi-parametric

estimator and the feasible generalized least-squares semi-parametric estimator, in Li and

Ullah (1998) it is shown that β̂FGLS is asymptotically more efficient than β̃OLS when the

error term has a one-way error component structure.

As we have just shown, the estimation strategy developed in Robinson (1988) can be easily

generalized to several contexts within the framework of partially linear panel data models.

However, it is true that the presence of heteroskedastic errors in the model of interest

makes more difficult the use of this procedure. In this context, in You et al. (2010) it is

considered an alternative method to obtain consistent nonparametric estimators that take

into account a one-way error component structure and allow for unequal error variances,

i.e., heteroskedasticity.
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More precisely, in You et al. (2010) it is considered a one-way error component structure

with heteroskedasticity of the following form

εit = µi + σ(Zit)vit, i = 1, · · · , N ; t = 1, · · · , T, (1.97)

where σ2
v = 1 is assumed without loss of generality and the variance-covariance matrix of

the error term is written as

Ω = E(εε>) = σ2
µIN ⊗ (ıT ı

>
T ) + diag

(
σ2(Z11), · · · , σ2(ZNT )

)
. (1.98)

In order to obtain
√
N -consistent and asymptotically efficient estimators of the parameters

of interest, in You et al. (2010) it is proposed a two-step estimator. In the first-step,

standard estimators for β and m(·) are obtained as in Li and Ullah (1998). However,

the difference with respect to their proposal is that, in order to compute both E(Yit|Zit)

and E(Xit|Zit) a local linear regression is used. In a second-step, the authors suggest to

include information about the error component structure to obtain efficiency gains. In

fact, they develop a generalized semi-parametric least-squares estimator that turns out

to be unfeasible. Finally, they propose consistent estimators for the variance parameters,

i.e., σ2
µ and σ2(z), using the residuals from the first-step estimators.

We start by giving the expressions for the estimators of β and m(·) with the local linear

regression estimation procedure. In order to do so, let us rewrite the model (1.86) as

Yit −X>it β = m(Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T, (1.99)

so we can obtain an estimator of the quantities of interest by solving the following local

linear regression problem

N∑
i=1

T∑
t=1

(
(Yit −X>it β)− γ0 − γ1(Zit − z)

)2
Kh(Zit − z). (1.100)

Denote by γ̂0 and γ̂1 the minimizers of (1.100), they suggest as estimators of m(z) and

Dm(z) = ∂m(z)/∂z, m̂(z;h) = γ̂0 and D̂m(z;h) = γ̂1, respectively,

γ̂0 = (1, 0)
(
D>WD

)−1
D>W (Y −Xβ) = S(Y −Xβ) (1.101)

and

γ̂1 = (0, 1)
(
D>WD

)−1
D>W (Y −Xβ), (1.102)
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where S = (1, 0)
(
D>WD

)−1
D>W , W = diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) is aNT×

NT matrix, X = (X11, · · · , XNT )> is a NT × d matrix and D is a NT × (1 + q) matrix

such that

D =


1 (Z11 − z)>
...

...

1 (ZNT − z)>

 .
However, because β is an unknown parameter we can replace m(Zit) by m̂(Zit;h) = γ̂0 in

(1.99), so the regression to estimate is of the form

Ŷit = X̂>it β + ε∗it, i = 1, · · · , N ; t = 1, · · · , T, (1.103)

where (Ŷ11, · · · , ŶNT )> = (I−S)Y , (X̂11, · · · , X̂NT )> = (I−S)X, (ε∗11, · · · , ε∗NT )> = (I−

S)ε+(I−S)m(Z), I is a NT ×NT identity matrix and m(Z) = (m(Z11), · · · ,m(ZNT ))>.

We denote by β̂LSS the least-squares semi-parametric estimator of (1.103) of the form

β̂LSS =
(
X>(I − S)>(I − S)X

)−1
(X(I − S))> (I − S)Y, (1.104)

whereas the local linear estimator of m(·) is written as

m̂LSS(z;h) = (1, 0)
(
D>WD

)−1
D>W (Y −Xβ̂). (1.105)

Note that these estimators are consistent but they fail to incorporate information from

the structure of the variance-covariance matrix. Thus, in a second-step a feasible weighted

least-squares semi-parametric estimator for both components is proposed to incorporate

this information. In this way, what it is suggested in You et al. (2010) is to estimate both

the variance of the error term and the error structure and, later, use this information to

provide the efficient semi-parametric estimator.

Based on β̂LLS and m̂LLS(·), the estimated residuals are

ε̂it = Yit −X>it β̂LLS − m̂LLS(Zit), (1.106)

and because E(εitεis) = σ2
µ, when t 6= s, and E(ε2it) = σ2

µ + σ2(Zit), consistent estimators

of σ2
µ and σ2(·) can be written as

σ̂2
µ =

1

NT (T − 1)

N∑
i=1

T∑
t=1

T∑
t6=s

ε̂itε̂is and σ̂2(z) =

N∑
i=1

T∑
t=1

ωit(z)ε̂it − σ̂2
µ, (1.107)
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respectively, where ωit(z) are some weighting functions of the local linear estimator that

follow

ωit(z) =
(Nh)−1K((Zit − z)/h) (Ak2(z)− (Zit − z)Ak1(z))

Ak0(z)Ak2(z)−A2
k1(z)

,

being Aks(z) = 1
Nh

∑N
i=1

∑T
t=1K

(
Zit−z
h

)
(Zit − z)λ, for λ = 0, 1, 2.

Consequently, the estimator of Ω−1 is given by Ω̂−1 = blockdiag(Σ̂−1
1 , · · · , Σ̂−1

N ), where

Σ̂−1
i = diag

(
σ̂−2(Zi1), · · · , σ̂−2(ZiT )

)
−

(
σ̂−2
µ +

T∑
t=1

σ̂−2(Zit)

)−1 (
σ̂−2(Z11), · · · , σ̂−2(ZiT )

)> (
σ̂−2(Z11), · · · , σ̂−2(ZiT )

)
.

By replacing Ω by Ω̂, the feasible weighted least-squares semi-parametric estimator (WSLSE)

is

β̂WLSS =
(
X>(I − S)>Ω̂−1(I − S)X

)−1
(X(I − S))> Ω̂−1(I − S)Y, (1.108)

whereas the feasible estimator of the nonparametric component is

m̂WLSS(z;h) = (1, 0)
(
D>WD

)−1
D>W (Y −Xβ̂WLSS). (1.109)

Finally, under certain regularity conditions of these heteroskedastic models and comparing

the behavior of both estimators in large samples, in You et al. (2010) it is emphasized that

β̂WLLS is asymptotically more efficient than the usual semi-parametric estimator β̂LLS

because the error component structure is considered.

1.3.2 Fixed effects

In partially linear models with fixed effects, the response variable is generated through the

following statistical model

Yit = X>it β +m(Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.110)

where Xit and Zit are vectors of exogenous variables of p× 1 and q× 1 dimension, respec-

tively, β is a p × 1 vector of unknown parameters, m(·) is an unknown smooth function,

µi the cross-sectional heterogeneity and vit the idiosyncratic disturbances.
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In this subsection, we are interested in the review of the recent literature on consistent

estimation of the unknown parameters in (1.110) in the presence of unobserved individual

heterogeneity that is correlated with the covariates. As in fully nonparametric panel data

models with fixed effects, there are many proposals to consistently estimate this type of

models. On one side, the so-called profile least-squares method and, in the other side, the

differencing methods. In Su and Ullah (2006b) and Zhang et al. (2011) some alternative

profile methods are proposed. Furthermore, recently in Ai et al. (2013) an estimator for

the additive version of the semi-parametric regression model (1.110) is developed. This

estimator ameliorates the dimensionality problem related to the nonparametric covariates.

Within the differencing approach, in Baltagi and Li (2002) and Qian and Wang (2012) it

is proposed to remove the fixed effects from the regression and to estimate the unknown

smooth function using a series method and a marginal integration technique, respectively.

Profile least-squares estimators

On one hand, under the fixed effects approach and treating the unobserved effects as

dummy variables to estimate, in Su and Ullah (2006b) it is followed the idea of the least-

squares dummy variable estimator to develop a profile likelihood estimator for both para-

metric and nonparametric terms of the regression model (1.110).

Let Y = (Y11, · · · , YNT )> and X = (X11, · · · , XNT )> be vectors of NT × 1 dimension,

µ = (µ2, · · · , µN )> a vector of (N − 1)× 1 dimension and D = (IN ⊗ ıT )d a NT × (N − 1)

dimensional matrix, where d = (−ıN−1IN−1)> is a N × (N − 1) matrix, the standard

locally weighted linear regression to estimate the quantities of interest in (1.110) can be

written in matrix form as(
Y −Dµ−X>β − Z̃γ

)>
WH(z)

(
Y −Dµ−X>β − Z̃γ

)
, (1.111)

where let K be a kernel function of the form KH(z) = |H|−1K(H−1z), |H| is the de-

terminant of a matrix of bandwidth sequences, i.e., H = diag(h1, · · · , hq), WH(z) =

diag (KH(Z11 − z), · · · ,KH(ZNT − z)) is a NT × NT matrix and Z̃ is a NT × (1 + q)
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matrix of the form

Z̃ =


1

(
H−1(Z11 − z)

)>
...

...

1
(
H−1(ZNT − z)

)>
 .

The above exposition suggests as estimators for m(z) and Dm(z) = ∂m(z)/∂z, m̂(z;H) =

γ̂0 and D̂m(z;H) = γ̂1, respectively,

γ̂0 = m̂(z;H) = s(z)(Y −Dµ−Xβ), (1.112)

where s(z) = e>1 S(z) for S(z) =
(
Z̃>WH(z)Z̃

)−1
Z̃>WH(z), and e = (1, 0, · · · , 0)> is a

(1 + q)× 1 selection matrix.

However, since µ and β are unknown parameters, they also need to be estimated. In order

to do so, let us denote by m(Z) = (m(Z11), · · · ,m(ZNT ))> a NT × 1 vector and replace

(1.112) in the following optimization problem

(Y −Dµ−Xβ −m(Z))> (Y −Dµ−Xβ −m(Z)) . (1.113)

Hence, we can write the minimizers of (1.113) as

β̂PL =
(
X∗>M∗X∗

)−1
X∗>M∗Y ∗, (1.114)

and

µ̂PL =
(
D∗>D∗

)−1
D∗>(Y ∗ −X∗β̂), (1.115)

where X∗ = (INT − S)X, M∗ = INT − D∗
(
D∗>D∗

)−1
D∗, D∗ = (INT − S)D, and

Y ∗ = (INT − S)Y , let Si = (s(Zi1), · · · , s(ZiT )) be a T × T smoothing matrix. Note that

since in Su and Ullah (2006a) it is introduced the identification condition
∑N

i=1 µi = 0,

then µ̂1 = −
∑N

i=2 µ̂i.

In this way, using (1.114) and (1.115) the profile likelihood estimator of the nonparametric

term of m(z) may be written as

m̂PL(z;H) = s(z)
(
Y −Dµ̂PL −Xβ̂PL

)
. (1.116)

Under some standard smoothness conditions, some moment conditions on the error, i.e.,

E|vit|2+δ <∞, for some δ > 0, and some assumptions on the behavior of the bandwidth,
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in Su and Ullah (2006b, Theorem 3.1, pp. 78) it is shown that as N →∞ and T is fixed,

‖H‖ → 0 and N |H|2 →∞ the asymptotic normality of this estimator is

√
N
(
β̂FPL − β

)
d−−−→ N

(
0,Φ−1ΩΦ−1

)
, (1.117)

where Φ is a positive definite matrix of the form Φ =
∑

tE

(
X̃it

(
X̃it − T−1

∑T
s=1 X̃is

)>)
and Ω =

∑T
s=1

∑T
t=1E

(
X̃it

(
X̃is − T−1

∑T
`=1 X̃i`

)>
vitvis

)
, for X̃it = Xit − E(Xit|Zit).

Furthermore, for the estimator of the nonparametric component in Su and Ullah (2006b,

Theorem 3.2, pp. 78) it is shown

√
N |H|

γ̂PL(z;H)− γPL −Q−1

 f(z)
2 tr(µ2(K)Hm′′(z)H)

0


d−−−→ N

(
0, Q−1ΓQ−1

)
, (1.118)

where m′′(z) is the second-order derivative matrix of m(·) at z,

Q = f(z)

 1 0>

0 µ2(K)

 and Γ = σ2(z)

 ∫
K(u)2du 0>

0
∫
uu>K(u)du

 ,

and we denote f(z) =
∑T

t=1 ft(z) and σ2(z) =
∑T

t=1E
(

(vit − T−1
∑T

s=1 vis)|Zit = z
)
ft(z).

However, note that despite the great advantages offered by these new procedures, the

dimensionality problem characteristic of the nonparametric models is unsolved. In order

to avoid the slower rates of convergence of these nonparametric estimators related to the

course of dimensionality, a possible solution is to analyze an additive alternative expression

of the regression model (1.110). Thus, the panel data partially linear model with fixed

effects to estimate is

Yit = X>it β +m1(Z1it) + · · ·+mq(Zqit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.119)

where now m(·) = (m1(·), · · · ,mq(·)) is a vector of unknown functions to estimate and the

remaining components are defined as in (1.110).

In this context, in Ai et al. (2013) it is proposed to combine the polynomial spline series

approximation with the profile least-squares procedure to obtain a semi-parametric least-

squares dummy variables (SLSDV) estimator for the parametric component, and a series
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estimator of the nonparametric term. Under very weak conditions, these authors show that

the semi-parametric least-squares dummy variables estimator is asymptotically normal

and the series estimator achieves the optimal rate of convergence of the nonparametric

regression. Later, with the aim of obtaining estimators that exhibit the oracle efficiency

property, they develop a two-step local polynomial procedure based on a series method that

enables us to impose the additive structure of the m(·) function. Since the nonparametric

smoothing spline technique is beyond the scope of this study, we refer to Ai et al. (2013)

for a detailed analysis of the proposed procedure and the study of the main asymptotic

properties of the resulting estimators.

Differencing estimators

Another way to estimate consistently both the parameters and unknown functions of

interest in (1.110) is to take first differences in this model. By doing so we obtain

∆Yit = ∆X>it β +m(Zit, Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T, (1.120)

where m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)).

In order to estimate directly the parameters of interest, in Li and Stengos (1996) it is

proposed to take conditional expectations on all nonparametric covariates with the aim of

removing the unknown smooth function. However, as it is noted in Baltagi and Li (2002),

in such situations this technique presents some drawbacks. On one hand, taking condi-

tional expectations on (Zit, Zi(t−1)) implies having to deal with the curse of dimensionality

problem. In other words, in this case you have to regress ∆Yit − E(∆Yit|Zit, Zi(t−1)) on

∆Xit − E(∆Xit|Zit, Zi(t−1)) by the kernel method, so this estimator has to be defined on

IR2q rather than IRq. On the other hand, although these authors suggest how to estimate

m(Zit, Zi(t−1)), they ignore the additive structure in (1.120) and they do not provide a

nonparametric estimator for m(Zit).

If m(·) is an unknown function twice differentiable in the interior of its support A, being

A a compact subset or IRq, and E[m′′(z)] = E[∂2m(z)/∂z2] < ∞, the unknown function

m(Zit, Zi(t−1)) = m(Zit) −m(Zi(t−1)) belongs to the class of additive functions M (m ∈

M). Then, with the aim of taking into account the restriction that both additive functions
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share the same functional form, we distinguish two different approaches. On one hand, in

Baltagi and Li (2002) an estimation method based on the series approach is developed.

On the other hand, in Qian and Wang (2012) it is proposed an alternative method based

on marginal integration techniques.

In particular, in Baltagi and Li (2002) the function m(z) is approximated through the

series ρL(z) of L × 1 dimension, where L = L(N), provided the approximation function

ρL(z) meets the following features

i) ρL(z) ∈M,

ii) as far as L increases, there is a linear combination of ρL(z) that can approximate any

m ∈M arbitrarily well in mean square error.

In this way, ρL(z) approximates m(z) and ρL(Zit, Zi(t−1)) = ρL(Zit)− ρL(Zi(t−1)) approx-

imates m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)), where

ρL(Zit, Zi(t−1)) =


ρ1(Zit)− ρ1(Zi(t−1))

ρ2(Zit)− ρ2(Zi(t−1))
...

ρL(Zit)− ρL(Zi(t−1))

 . (1.121)

For any scalar or vector function W (z), EM(W (z)) is denoted as an element that belongs

to M and it is the closest function to W (z) among all the functions in M; see Baltagi

and Li (2002) for further details. We denote by P = (ρL11, · · · , ρLNT ) a NT × L matrix,

where ρLit = ρL(Zit, Zi(t−1)). For the sake of simplicity, let us define θ(z) = E(X|Z = z)

and m(z) = EM(θ(z)).

Thus, let ∆Y be a NT × 1 vector with a typical element ∆Yit, and ∆X and ∆v vectors

of NT × 1 dimension defined in a similar way, the expression (1.120) may be written in

matrix form as

∆Y = ∆Xβ +M + ∆v. (1.122)

By multiplying both sides of (1.122) by P = P
(
P>P

)−1
P> and subtracting the resulting

expression from (1.122), they obtain

∆Y −∆Ỹ = (∆X −∆X̃)β + (M − M̃) + (∆v −∆ṽ), (1.123)

55



Chapter 1. Nonparametric and semi-parametric panel data models: recent developments

where we denote ∆Ỹ = P∆Y = Pγ∆Y , for γ∆Y =
(
P>P

)−1
P>∆Y . Note that M̃ , ∆X̃,

and ∆ṽ are defined in a similar way.

Thus, the least-squares estimator for β is defined such that

β̂ =
(

(X − X̃)>(X − X̃)
)−1

(X − X̃)>(Y − Ỹ ), (1.124)

whereas for the smooth function m(z) they propose m̂(z) = ρL(z)>γ̂ as the nonparametric

estimator, where

γ̂ =
(
P>P

)−1
P>(Y −Xβ̂). (1.125)

Under standard conditions of a series approach, in Baltagi and Li (2002, Theorem 2.1, pp.

108) it is established the following asymptotic normality of β̂ as N →∞ and T is fixed,

√
N
(
β̂ − β

)
d−−−→ N

(
0,Φ−1ΩΦ−1

)
, (1.126)

where, for ξit = Xit −W (Zit) and W (Zit) = EM(θ(Zit)), Φ is a positive definite matrix

of the form Φ = T−1
∑T

t=1E(ξitξ
>
it ) and Ω = T−1

∑T
t=1E

(
σ2

∆v(Xit, Zit)ξitξ
>
it

)
, being

σ2
∆v(Xit, Zit) = E

(
∆v2

it|Xit = x, Zit = z
)
.

Furthermore, in order to show the consistency result of the nonparametric estimate, in

Baltagi and Li (2002, Theorem 2.2, pp. 108) it is obtained

i) supz∈IRq |m̂(z;H) −m(z)| = Op(ζ0(L))(
√
L/(
√
L + L−δ), where ζ0(L) is a sequence of

constant that satisfies supz∈IRq ‖PL(z)‖ < ζ0(L), let δ > 0 be certain constant.

ii) N−1(m̂(z;H)−m(z))2 = Op(L/N − L−2δ).

iii)
∫

(m̂(z;H)−m(z))2dF (z) = Op(L/N +L−2δ), where F (·) is the cumulative distribu-

tion function of z.

In this way, it is proved that this new procedure provides estimators of the smooth function

at the standard nonparametric rate. For the proofs of these results we refer to the appendix

in Baltagi and Li (2002).

On the other hand, in Qian and Wang (2012) a non-iterative method based on the marginal

integration technique is proposed to provide an estimator of the unknown function m(Zit)
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that takes into account for the additive structure of m(Zit, Zi(t−1)) = m(Zit)−m(Zi(t−1)).

Thus, using first differences in (1.110) to avoid the statistical dependence problem between

µi and the regressors of the model they obtain

∆Yit = ∆X>it β +m(Zit)−m(Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T, (1.127)

and taking as benchmark the proposal in Li and Stengos (1996), in Qian and Wang (2012)

it is proposed to estimate the lineal component β following a weighted density regression

model that enables us to avoid the random denominator problem usual in the estimation

of nonparametric kernel regression, i.e.,

fit,i(t−1)

(
∆Yit − E(∆Yit|Zit, Zi(t−1))

)
= fit,i(t−1)

(
∆Xit − E(∆Xit|Zit, Zi(t−1))

)>
β

+ fit,i(t−1)∆vit, (1.128)

where fit,i(t−1) = f(Zit, Zi(t−1)) is the joint density function. Note that due to the regres-

sion in first differences and because we take conditional expectations over all nonparametric

covariates, the resulting estimator has to be defined on IR2q rather than IRq.

Assuming that there exist an instrumental variable vector, Wit ∈ IRd, and replacing the un-

known parameters in (1.118) by their consistent estimators, i.e., ∆Ŷit, ∆X̂it and f̂it,i(t−1),

respectively, they obtain

f̂it,i(t−1)(∆Yit −∆Ŷit) = f̂it,i(t−1)(∆Xit −∆X̂it)
>β + f̂it,i(t−1)∆vit, (1.129)

where denoting by f̂it,i(t−1) = f̂(Zit, Zi(t−1)) and ∆Ŷit = Ê(∆Yit|Zit, Zi(t−1)), these esti-

mators have the form

f̂it,i(t−1) =
1

NT

∑
js

Kh(Zit − Zjs)Kh(Zi(t−1) − Zj(s−1))

and

∆Ŷit =
1

NT

∑
js

∆YjsKh(Zit − Zjs)Kh(Zi(t−1) − Zj(s−1))/f̂it,i(t−1),

being Kh(u) = K(u/h) the kernel function and h the bandwidth parameter. We define

∆X̂it = Ê(∆Xit|Zit, Zi(t−1)) in a similar way.
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In this way, the instrumental variable (IV) estimator proposed by these authors is

β̃IV =
(

(∆W −∆Ŵ )>(∆X −∆X̂)
)−1 (

(∆W −∆Ŵ )Î
)>

(∆Y −∆Ŷ ), (1.130)

where, let I be the indicator function previously defined, (∆W −∆Ŵ )Î and (∆X−∆X̂)Î

are N(T − 1)× d matrices whose typical row element are (∆Wit−∆Ŵit)
>Îit and (∆Xit−

∆X̂it)
>Îit, respectively.

By adapting the assumptions in Li and Stengos (1996); in Qian and Wang (2012) it is

imposed that f(Zit, Zi(t−1)) is a bound density function and at least first-order partially

differentiable, with a remainder term that is Lipschitz-continuous. In this situation, in

Qian and Wang (2012, Theorem 1, pp. 485) and under fairly standard nonparametric

assumptions it is shown the following asymptotic distribution of the IV estimator for the

linear component,

√
N
(
β̃IV − β

)
d−−−→ N

(
0,Ψ−1ΓΨ−1

)
, (1.131)

where, for ∆W̃it = ∆Wit −E(∆Wit|Zit, Zi(t−1)) and ∆X̃it = ∆Xit −E(∆Xit|Zit, Zi(t−1)),

Γ = T−2
∑T

t=2

∑T
s=2E

(
∆v1t∆v1s∆W̃1t∆W̃

>
1sf

2
1tf

2
1s

)
and Ψ is a nonsingular matrix of the

form Ψ = T−1
∑T

t=2E
(

∆W̃it∆X̃
>
it f

2
it

)
.

Furthermore, in Qian and Wang (2012) it is presented a new estimator of the nonparamet-

ric component, m(z). This type of results cannot be found in other related papers such

as Li and Stengos (1996) and Baltagi and Li (2002). They are only concerned about the

parametric component. Let us denote by ∆Y ∗it = ∆Yit −∆X>it β̂, so the regression model

(1.127) can be written as

∆Y ∗it = m(Zit, Zi(t−1)) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T. (1.132)

However, by the fact that m(Zit, Zi(t−1)) is an additive function the estimation task of

m(·) is greatly complicated. In this context, in Henderson et al. (2008) it is developed

an iterative backfitting procedure to obtain m̂(·) based on a first-order condition of the

maximum likelihood criterion, whereas in Lee and Mukherjee (2008) it is proposed to make

a Taylor approximation of the smooth function. Nevertheless, this latter approximation

removes m(·) from the differencing model so they can only provide an estimator for the

first-order derivative function.
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In view of these results, in Qian and Wang (2012) a non-iterative method based on the

marginal integration technique is proposed. Specifically, they present a two-step proce-

dure in which they first use conventional multivariate nonparametric techniques, such as

the Nadaraya-Watson estimator or the local linear regression. Later, the function m(·),

evaluated in z1, is obtained through the marginal integration of the previous estimator.

Therefore, using the local linear regression procedure to estimate m(Zit, Zi(t−1)), in Qian

and Wang (2012) it is proposed to solve the following locally weighted linear least-squares

problem for α,

N∑
i=1

T∑
t=2

(
∆Y ∗it − α− (Zit − z1)>β0 − (Zi(t−1) − z2)>β1

)2
KH(Zit − z1)KH(Zi(t−1) − z2),

(1.133)

where z1 and z2 are points in the interior of the support of f(·).

This latter expression suggests that let α̂ be a minimizer of (1.133), the estimator for

m(Zit, Zi(t−1)) is

m̂(z1, z2;H) = α̂ = e>1

(
Z̃>WZ̃

)−1
Z̃>W∆Y ∗, (1.134)

where W and Z̃ is a N(T − 1)×N(T − 1) and N(T − 1)× (1 + 2q) matrix, respectively,

of the following form

W = diag
(
KH(Z12 − z1)KH(Z11 − z2), · · · ,KH(ZNT − z1)KH(ZN(T−1) − z2)

)
and

Z̃ =


1 (Z12 − z1)> (Z11 − z2)>

...
...

...

1 (ZNT − z1)> (ZN(T−1) − z2)>

 .

If our interest is the estimation of the partial derivatives for the unknown functions, i.e.

Dm1(z) = ∂m(z1, z2)/∂z1 and Dm2(z) = ∂m(z1, z2)/∂z2, it is enough to minimize (1.133)

for β0 and β1. Thus, we could propose as estimators for β0 and β1, vec(D̂m1(z1;H)) = β̂0

and vec(D̂m2(z2;H)) = β̂1, respectively. However, since the objective of these authors is to

provide an estimator of the unknown function m(Zit) they propose to integrate marginally
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the estimated function m̂(z1, z2), i.e.,

m̂(z1;H) =

∫
m̂(z1, z2)q(z2)dz2, (1.135)

where q(·) is a predetermined density function.

With the aim of avoiding strict usual identification restrictions of the marginal integra-

tion technique (i.e.,
∫
m(z1)q(z1)dz1 = 0 proposed in Hengartner and Sperlich (2005)) or

numerical integration methods such as Simpson’s or Trapezoidal rules, in Qian and Wang

(2012) an alternative strategy is developed. In particular, they propose to generate i.i.d.

samples of the q(·) distribution such as Z∗k , for k = 1, · · · , NT , and compute

m̂MC(z1;H) =
1

N(T − 1)

N∑
k=1

Tm̂(z1, Z
∗
k). (1.136)

As Qian and Wang (2012) emphasize, if NT is large enough m̂MC(·) approximates con-

siderably well to m̂(·) and we choose q(·) to be the density function of Zit, we can use the

sample version of (1.134) rather than (1.135), i.e.,

m̂S(z1;H) =
1

NT

N∑
i=1

T∑
t=1

m̂(z1, Zit). (1.137)

Under standard conditions of the marginal integration technique, these authors show that

the nonparametric estimator (1.137) behaves asymptotically equal to (1.135) when q(·)

is the density function of Zit, bounded and twice differentiable and when it satisfies∫
m(z1)q(z1) = 0. Therefore, they obtain

N2/(4+q) (m̂S(z1;H)−m(z1))
d−−−→ N (B(z1), V (z1)) , (1.138)

where

B(z1) =
1

2
µ2(K)

(
tr(HHm(z1))−

∫
tr(HHf (z2))q(z2)dz2

)
,

V (z1) =
σ2Rq(K)

T |H|1/2

(∫
q2(z2)

f2(z1, z2)
q(z2)dz2

)
,

let Hm(z1) be the Hessian matrix of m(·) and σ2 = T−1
∑T

t=2 σ
2
t .

By analyzing in detail these asymptotic results, in Qian and Wang (2012) it is emphasized

that if Zit is i.i.d. across t as well as i, the asymptotic variance takes the conventional
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form σ2Rq(K)

T |H|1/2 f(z1)−1 when q(·) = f(·). In addition, when Zit is accurately predictable

by Zi(t−1), the conditional density function f(z1|z2) is close to zero except in a small

neighborhood of z2, and this method may fail. Finally, note that if m̂(z1, z2) is estimated

using the Nadaraya-Watson kernel smoothing the asymptotic variance remains without

changes, but the asymptotic bias is different.

1.4 Varying coefficient models

In many scientific areas such as economics, finance, politics and so on, nonparametric

and semi-parametric panel data models are unable to detect some features hidden in the

data set. In this context, varying coefficient models that allow for some coefficients to

change smoothly with some covariates appear as a solution. In what follows, we analyze

the estimation results of varying coefficient models under random and fixed effects, and

the presence of endogenous explanatory variables.

1.4.1 Random effects

In this case, the response variable is generated through the following statistical model

Yit = U>it β +X>itm(Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T, (1.139)

where Uit, Xit and Zit are exogenous variables of p × 1, d × 1 and q × 1 dimension,

respectively, β is an unknown parameter and m(·) is a smooth function to estimate. Also,

the composed error term εit follows a one-way error component structure so it has the

form

εit = µi + vit,

where µi and vit are i.i.d. random variables with zero mean and finite variances, σ2
µ and

σ2
v , respectively. In addition, we assume µi and vit are independent.

As previously, we define V as a T × T matrix of the same form as in (1.3). Also, since

the observations are independent along individuals, the variance-covariance matrix of the
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composed error term Ω has the standard form as in (1.4), and the inverse term of this

variance-covariance matrix may be written as

Ω−1 = IN ⊗
[
(Tσ2

µ + σ2
v)
−1ıT ı

>
T /T + σ−2

v (IT − ıT ı>T /T )
]
. (1.140)

As the reader may see in (1.139), this specification has the particularity that encompasses

the features of other statistical models of interest. Specifically, if Xit = 1 the expression

(1.139) becomes into the partially linear model previously analyzed in Section 1.2.1, while

if m(Zit) is a constant parameter we obtain the conventional linear panel data model.

In order to provide consistent estimators of the unknown terms of (1.139), in Zhou et al.

(2010) it is shown that it is possible to follow a similar procedure as the proposed in You

et al. (2010) to estimate partially linear panel data models with heteroskedastic errors

taking into account the information contained in Ω.

To this end, in Zhou et al. (2010) a profile least-squares approach is used to estimate both

the parametric component β and the nonparametric term m(·). Thus, for any given β,

they propose to estimate the parameter of interest solving the following weighted local

linear least-squares problem

N∑
i=1

T∑
t=1

(
(Yit −X>it β)−X>it γ0 − (Xit ⊗ (Zit − z))>γ1

)2
Kh(Zit − z), (1.141)

where h is the bandwidth parameter.

Denote by γ̂0 and γ̂1 the minimizers of (1.141), they suggest as estimators for m(z) and

Dm(z) = ∂m(z)/∂z, m̂(z;h) = γ̂0 and vec(D̂m(z;h)) = γ̂1, respectively,

γ̂0 = (1, 0)
(
D>WD

)−1
D>W (Y −Xβ) = S(Y −Xβ), (1.142)

and

γ̂1 = (0, 1)
(
D>WD

)−1
D>W (Y −Xβ), (1.143)

where Y = (Y11, · · · , YNT )> is a NT × 1 vector, X = (X11, · · · , XNT )> and W =

diag (Kh(Z11 − z), · · · ,Kh(ZNT − z)) aNT×q andNT×NT matrix, respectively, whereas
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D is a NT × d(1 + q) matrix of the form

D =


X>11, X>11 ⊗ (Z11 − z)>

...
...

X>NT , X>NT ⊗ (ZNT − z)>

 .

Because (1.142) and (1.143) are unfeasible estimators, in Zhou et al. (2010) it is proposed

to substitute γ̂0 into (1.139) as an estimator for m(z) obtaining

Ŷit = X̂>it β + ε∗it, i = 1, · · · , N ; t = 1, · · · , T, (1.144)

where ε∗it are the residual errors, Ŷ = (Ŷ11, · · · , ŶNT ) = (I −S)Y , X̂ = (X̂11, · · · , X̂NT ) =

(I−S)X and ε∗ = (ε∗11, · · · , ε∗NT )> = (I−S)ε, let ε = (ε11, · · · , εNT )> be a NT × 1 vector

and I a NT ×NT identity matrix.

Also, let 0q be a q × 1 vector of zeros, S is a matrix of the form

S =


(
X>11 0>q

) (
D>11W11D11

)−1
D>11W11

...(
X>NT 0>q

) (
D>NTWNTDNT

)−1
D>NTWNT

 .

In this way, applying the least-squares method to (1.144) we obtain the following profile

least-squares (PLS) estimator for β

β̂PLS =
(
X̂>X̂

)−1
X̂>Ŷ , (1.145)

whereas the local linear estimator (PLL) for m(·) is

γ̂0PLL = m̂PLL(z;h) = (1, 0)
(
D>WD

)−1
D>W (Y −Xβ̂PLS). (1.146)

Despite the consistency of β̂PLS and m̂PLS(z;h), they do not take into account the within-

group correlation of the error term, so in Zhou et al. (2010) it is proposed to use the

one-way error structure to obtain asymptotically efficient estimators. In order to do so,

these authors develop a similar procedure as in You et al. (2010) using the residuals of the

previous fitting to estimate the structure of the error. Thus, computing the residuals as

ε̂it =
1

NT (T − 1)

N∑
i=1

T∑
t=1

Yit − U>it β̂PLS −X>it m̂PLS(Zit), (1.147)
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they propose to estimate E(εitεis) = σ2
µ, when t 6= s, and E(ε2it) = σ2

µ + σ2
v as

σ̂2
µ =

1

NT (T − 1)

N∑
i=1

T∑
t=1

∑
s 6=t

ε̂itε̂is and σ̂2
v =

1

NT

N∑
i=1

T∑
t=1

ε̂2it − σ̂2
µ.

According to (1.139), we can replace the unknown terms in (1.140) by their consistent

estimators obtaining the consistent estimator for Ω−1, i.e.,

Ω̂−1 = IN ⊗
[
(T σ̂2

µ + σ̂2
v)
−1ıT ı

>
T /T + σ̂−2

v (IT − ıT ı>T /T )
]

(1.148)

and using this information to estimate the unknown parameters in (1.139), in Zhou et al.

(2010) the following weighted profile least-squares (WPLS) estimator for the parametric

term is proposed

β̂WPLS =
(
X̂>ω Ω̂−1X̂ω

)−1
X̂>ω Ω̂−1Ŷω, (1.149)

where Ŷω = (INT − Sω)Y and X̂ω = (INT − Sω)X, being

Sω =


(
X>11 0>q

) (
D>11W11Ω̂−1D11

)−1
D>11W11Ω̂−1

...(
X>NT 0>q

) (
D>NTWNT Ω̂−1DNT

)−1
D>NTWNT Ω̂−1

 .

Furthermore, the estimator for the nonparametric term has the form

m̂WPLS(z;h) = (Iq×1, 0q×q)
(
D>W Ω̂−1D

)−1
D>W Ω̂−1(Y −Xβ̂WPLS) (1.150)

and, under some standard regularity conditions, in Zhou et al. (2010, Theorem 5.1, pp.

254) the following asymptotic distribution is obtained when N →∞

√
N
(
β̂WPLS − β

)
d−−−→ N

(
0,Σ−1

)
, (1.151)

where, Σ = E(U>1 V U1)−E(U>1 V X1)
(
E(X>1 V X1)

)−1
E(X>1 V U1), for Ui = (Ui1, · · · , UiT )>

and Xi = (Xi1, · · · , XiT )>, while in Zhou et al. (2010, Theorem 5.2, pp. 255) it is shown

that as N tends to infinity

√
NTh

(
m̂WPLS(z;h)−m(z)− h

2

µ2
2 − µ1µ3

µ2 − µ2
1

m′′(z)

)
d−−−→ N (0,Σ), (1.152)
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where now we denote Σ = ((cv0 + 2cc1v1 + c1v2))
(
E(X>1 V X1)

)−1
, c = µ2/(µ2 − µ2

1) and

c1 = −µ1/(µ2 − µ2
1), for µj =

∫∞
−∞ u

jK(u)du and vj =
∫∞
−∞ u

jK2(u)du, being f(z) the

density function.

By comparing the asymptotic results of these estimators, in Zhou et al. (2010) it is

highlighted that β̂WPLS and m̂WPLS(·) are asymptotically more efficient than β̂PLS and

m̂PLS(·), respectively, in the sense that they have a lower asymptotic variance-covariance

matrix.

1.4.2 Fixed effects

Now, we extend our analysis to the following varying coefficient panel data models with

fixed effects,

Yit = X>itm(Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (1.153)

where Xit and Zit are d× 1 and q× 1 vector of exogenous variables, respectively, m(·) is a

vector that contains d smooth functions, µi the unobserved cross-sectional heterogeneity

and vit the idiosyncratic disturbance. Also, it is allowed that µi is correlated with Xit

and/or Zit, with an unknown correlation structure.

As it is usual in this literature, to avoid the statistical dependence problem between µi

and some/all the regressors we may apply the first differences transformation to (1.153)

obtaining

Yit − Yi(t−1) = X>itm(Zit)−X>i(t−1)m(Zi(t−1)) + vit − vi(t−1), (1.154)

for i = 1, · · · , N and t = 2, · · · , T , or using a mean deviation transformation that gives us

Yit −
1

T

T∑
s=1

Yis = X>itm(Zit)−
1

T

T∑
s=1

X>ism(Zis) + vit −
1

T

T∑
s=1

vis, (1.155)

for i = 1, · · · , N and t = 1, · · · , T .

The methodological simplicity of these transformations and their good asymptotic results

in standard situations make them very interesting tools when the unknown functions are

estimated through conventional methods of nonparametric local smoothing. However, the
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use of these nonparametric techniques for differencing varying coefficient is much more

complex than we might expect at first glance; see Su and Ullah (2011). The reason is

that, if we denote ∆Yit = Yit − Yi(t−1) and Ÿit = Yit − T−1
∑T

s=1 Yis, for each individual i,

E(∆Yit|Xit, Xi(t−1), Zit, Zi(t−1)) and E(Ÿit|Xit, Xis, Zit, Zis) provide linear combinations

of X>itm(Zit) for different periods t. Thus, to obtain an estimator of m(·) is necessary

to estimate an additive model whose unknown functions share the same functional form.

To our knowledge, there is no nonparametric procedure that allows us to estimate m(·)

directly. The only available option is the use of iterative techniques such as the backfitting

algorithm or the marginal integration method. Nevertheless, note that this latter case

presents some awkward features as its high computational cost. In particular, to obtain

an estimator of this type we must compute O(NT 3|H|1/2) operations, i.e., we have to

perform NT 2 regressions and each one requires O(NT |H|1/2) operations.

In this context and with the aim of minimizing the high computational cost and the

laborious asymptotic analysis associated to these iterative estimators, in Sun et al. (2009)

it is proposed a non-iterative estimator based on a local linear regression approach. As

we have stated in previous sections, due to the existence of the fixed effects, the unknown

parameters in (1.153) cannot be estimated directly.

Let Y = (Y11, · · · , YNT )> and V = (v11, · · · , vNT )> are NT × 1 vectors, and B(X,m(Z))

a NT × 1 vector that stacks all X>itm(Zit), the model (1.153) can be written in matrix

form such as

Y = B(X,m(Z)) +Dµ+ V, (1.156)

where µ = (µ2, · · · , µN )> is a (N−1)×1 vector and D = (−ıN−1IN−1)⊗ıT a NT×(N−1)

matrix.

As it is standard in this kind of literature, the parameters of interest can be estimated by

minimizing the following criterion function

(Y −B(X,m(Z))−Dµ)>KH(z) (Y −B(X,m(Z))−Dµ) , (1.157)

where KH(z) = diag (KH(Z11 − z), · · · ,KH(ZNT − z)) is a NT ×NT diagonal matrix.
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Denote by µ̂ the minimizer of (1.157), it may be written as

µ̂(z;H) =
(
D>KH(z)D

)−1
D>KH(z)(Y −B(X,m(Z))), (1.158)

but this estimator is unfeasible since it depends on some unknown terms such as m(Z).

In order to overcome it, in Sun et al. (2009) it is proposed to combine a least-squared

method with a local linear regression approach of (1.156) to remove the fixed effects using

kernel-based weights. Therefore, they propose to minimize the following weighted criterion

function (
Y − Z̃vec (β(z))

)>
WH(z)

(
Y − Z̃vec (β(z))

)
, (1.159)

where the weighting matrix now has the form WH(z) = M(z)>KH(z)M(z), for M(z) =

INT −D
(
D>KH(z)D

)−1
D>KH(z) in such way that M(z)Dµ ≡ 0NT×1 for all z, and Z̃

is a NT × d(1 + q) matrix of the form

Z̃ =


X>11 X>11 ⊗ (Z11 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .

Also, we define βr = (mr(z) (Hm′r(z))
>)> as a (1+q)×1 column vector for r = 1, · · · , d,

and β(z) = (β1(z), · · · , βp(z))> as a d × (1 + q) parameter matrix. Therefore, the first

column of β(z) is m(z). For the sake of simplicity, they stack the matrix β(z) into a

d(1 + q)× 1 column vector and denote it by vec(β̂).

Then, the above expression (1.159) suggests as nonparametric estimators

vec(β̂(z;H)) =
(
Z̃>WH(z)Z̃

)−1
Z̃>WH(z)Y. (1.160)

Furthermore, under some standard smoothness conditions on the regression, some moment

conditions on the errors; i.e., E|vit|2+δ, and as N → ∞, ‖H‖ → 0 in such way that

N |H| → ∞, in Sun et al. (2009, Theorem 3.2) it is shown the following asymptotic

distribution of this estimator,

√
N |H|

(
m̂PLS(z;H)−m(z)− 1

2
Ψ(z)−1Λ(z)

)
d−−−→ N (0,Σ(z)) , (1.161)
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where

Λ(z) = |H|−1
T∑
t=1

E
(

(1−$it)λitXitX
>
it rH(Z̃it, z)

)
,

Σ(z) = σ2
v lim
N→∞

Ψ(z)−1Γ(z)Ψ(z)−1,

and λit = KH(Zit − z) and $ = λit/
∑T

t=1 λit ∈ (0, 1). Also, let rH(·) be the second-order

term of the Taylor expansion of m(·), Ψ(z) is a nonsingular matrix of the form Ψ(z) =

|H|−1
∑T

t=1E
(
(1−$it)λitXitX

>
it

)
and Γ(z) = |H|−1

∑T
t=1E

(
(1−$it)

2λ2
itXitX

>
it

)
.

Thus, it is demonstrated that via a one-step procedure that eliminates the fixed effects

through kernel-based weights we can obtain a nonparametric estimate of the unknown

function that is asymptotically normally distributed.

1.4.3 Endogeneity

In this subsection, we consider a panel data varying coefficient model of the form

Yit = X>itm(Zit) + εit, i = 1, · · · , N ; t = 1, · · · , T, (1.162)

where Xit is a d × 1 vector whose first element is X1it = 1, m(·) is an unspecific smooth

function and Zit is a q × 1 vector. Also, some or all components of Xit may be correlated

with the disturbance εit and we assume E(εit|Zit) = 0 and E(εit|Xit) 6= 0. Note that if

Xit and Zit are exogenous variables, we would be in the static varying coefficient model

analyzed in Zhou et al. (2010) for panel data models or in Das (2005), Cai et al. (2006)

and Cai and Xiong (2012) in the cross-sectional setup.

As the reader can observe, when E(εit|Xit) 6= 0 we obtain E(Y |Zit, Xit) 6= X>itm(Zit) in

(1.162), so it is not possible to estimate consistently the coefficient functions by projecting

Yit on X>itm(Zit). To overcome this situation, in Cai and Li (2008) it is established that

by adapting the proposal in Cai et al. (2006) it is possible to obtain a feasible estimator

for m(·) via a two-step nonparametric procedure.

Assuming there is a q × 1 vector of instrumental variables Wit whose first component is

W1it = 1 in such way that E(εit|Wit) = 0, the orthogonality condition is E(εit|Zit,Wit) = 0.
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By multiplying both sides of (1.162) by Π(Zit,Wit) = E(Xit|Zit,Wit) they obtain

E (Π(Zit,Wit)Yit|Zit = z) = E
(

Π(Zit,Wit)X
>
it |Zit = z

)
m(z) (1.163)

and by the law of iterated expectations we can write

E (Π(Zit,Wit)Yit|Zit = z) = E
(

Π(Zit,Wit)Π(Zit,Wit)
>|Zit = z

)
m(z). (1.164)

Under the assumption that E
(
Π(Zit,Wit)Π(Zit,Wit)

>|Zit = z
)

is positive definite, we

obtain

m(z) =
(
E
(

Π(Zit,Wit)Π(Zit,Wit)
>|Zit = z

))−1
E (Π(Zit,Wit)Yit|Zit = z) . (1.165)

Note that the condition E
(
Π(Zit,Wit)Π(Zit,Wit)

>|Zit = ·
)

is positive definite guarantees

that m(·) is identified but, since Π(Zit,Wit) is an unknown term in Cai and Li (2008) it is

proposed a two-step procedure in order to obtain nonparametric estimators for m(·). In

the first-step, they suggest to estimate E(Xit|Zit,Wit) through conventional multivariate

nonparametric techniques, and in the second-step, to estimate another conditional mean

function of Π̂(Zit,Wit)Yit conditional on Zit = z, where Π̂(Zit,Wit) is the nonparametric

estimator obtained at the first-step.

Nevertheless, note that in a framework where N →∞ and T is fixed, this two-step proce-

dure greatly complicates the analysis of the main asymptotic properties of this estimator.

For this reason, in Cai and Li (2008) it is developed an alternative estimator based on a

nonparametric generalized method of moments (NPGMM) that requires only one step.

To avoid the endogeneity problem, in Cai and Li (2008) it is proposed to replace the

endogenous covariate Xit by an instrumental variable Wit. However, it is true that we

know the relationship between Xit and Zit (i.e., the functional coefficient that we want to

estimate) but we do not know how Wit relates to Zit. In this case, the usual orthogonality

condition to provide nonparametric estimators, i.e., E(εit|Zit,Wit) = 0, cannot be used

and a generalization of this condition for a vector function Q(·) is needed.

In this way, assuming the model is identified for any p× 1 function vector as Q(Zit,Wit)

it is possible to obtain the conditional moment restrictions from the condition

0 = E (Q(Zit,Wit)εit|Zit,Wit) = E
(
Q(Zit,Wit)(Yit −X>itm(Zit))|Zit,Wit

)
. (1.166)
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In this context, in Cai and Li (2008) it is proposed to combine the restrictions contained in

(1.166) with the conventional local linear regression approach to provide a nonparametric

generalized method of moments for the functional coefficients. Assuming m(·) is a twice

continuous differentiable function, we obtain the following locally weighted orthogonality

conditions

N∑
i=1

T∑
t=1

Q(Zit,Wit)(Yit − X̃>itα)Kh(Zit − z) = 0, (1.167)

where X̃it =
(
X>it X>it ⊗ (Zit − z)>

)>
and α =

(
α>0 α>1

)>
are vectors of d(1 + q) × 1

dimension. Motivated by this local linear fitting, Q(Zit,Wit) can be chosen such as

Q(Zit,Wit) =
(
W>it W>it ⊗ (Zit − z)>/h

)>
and to ensure that we obtain an unique so-

lution in (1.167), they also impose that the dimension of this Q(·) function must meet

p ≥ d(1 + q).

Then, we denote by S a d(1 + q)× p matrix of the form

S =
1

NT

N∑
i=1

T∑
t=1

Q(Zit,Wit)Z̃
>
itKh(Zit − z) (1.168)

and by multiplying (1.167) by S we obtain that it is possible to obtain consistent estimates

for the quantities of interest using the following conditional moment restrictions

N∑
i=1

T∑
t=1

S>itQ(Zit,Wit)(Yit − X̃>itα)Kh(Zit − z) = 0. (1.169)

Let α̂ be the minimizer of (1.169), the solution to this problem in matrix form is

α̂NPGMM =
(
S>S

)−1
S>Υ, (1.170)

where Υ = 1
NT

∑N
i=1

∑T
t=1Q(Zit,Wit)Kh(Zit−z)Yit. In this way, α̂ provides the nonpara-

metric generalized method of moments (NPGMM) estimator both for the function m(z)

and its first-order derivatives, Dm(z).

Finally, establishing some regularity and the strong mixing conditions, in Cai and Li (2008,

Theorem 2, pp. 1331) it is shown the following asymptotic normality result in a context

where N →∞ and T is fixed,

√
NThq

H (α̂NPGMM − α)− h2

2

 b(z)

0

+ op(h
2)

 d−−−→ N
(
0, f−1(z)Σ

)
, (1.171)
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where H = diag(Id, hIdq) is a diagonal d(1 + q) × d(1 + q) matrix, let I be an identity

matrix, and

b(z) = (tr(Hm(z)µ2(K)))d×1 ,

Σ = diag
(
R(K)Ωm Ωm ⊗ (µ−1

2 (K)µ2(K2)µ−1
2 (K))

)
,

Ωm =
(

Ω>Ω
)−1

Ω>Ω1Ω
(

Ω>Ω
)−1

,

for Ω = E
[
WitX

>
it |Zit = z

]
and Ω1 = E [Witεit|Zit = z].

Furthermore, in Tran and Tsiomas (2010) a two-step procedure based on the local gener-

alized method of moments (LGMM) is proposed, for which they use the general weighting

matrix instead of the identity matrix. In addition, they show that the resulting estimator

is asymptotically more efficient than the nonparametric generalized method of moments

in Cai and Li (2008). Recently, in Cai et al. (2013) it is considered a new type of dy-

namic partially linear models with varying coefficient where linearity in some regressors

and non-linearity in others is allowed.

Finally, note that given the complexity of providing consistent estimators for the parame-

ters of interest of varying coefficient panel data models with fixed effects and endogenous

variables as well as the difficulty of the analysis of the main asymptotic properties, to our

knowledge no research has been made to estimate this type of models.
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Chapter 2

Direct semi-parametric estimation

of fixed effects panel data varying

coefficient models

2.1 Introduction

This chapter is concerned with the estimation of varying coefficient panel data models.

This type of specification consists of a linear regression model where regression coefficients

are assumed to be varying, depending on some exogenous continuous variables proposed by

economic theory. For example, in the so-called problem of returns to education, when es-

timating elasticity of wages to changes in education, it has been pointed out that marginal

returns to education might vary with the level of working experience; see Schultz (2003).

Therefore, conditionally on a level of education, the elasticity is going to change according

with the level of working experience.

Within this context, the issue of potential misspecification of the functional form of the

varying coefficients has motivated the use of nonparametric estimation techniques in em-

pirical studies. In most cases, the estimation of the functional form of the coefficients has

been performed through standard techniques, such as spline smoothers, series estimators,

or local polynomial regression estimators; see Su and Ullah (2011). Although, in most
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cases, a direct application of the previous techniques renders correct inference results, it

is true that not much attention has been paid to the asymptotic behavior of these es-

timators under non-standard settings. Unfortunately, some of these settings are rather

relevant in empirical analysis of panel data models. One clear example is the presence,

in the econometric model, of some unobserved explanatory variables that, although not

varying along time, can be statistically correlated with other explanatory variables in the

model (fixed effects). The presence of a heterogeneity of unknown form that is correlated

with some explanatory variables is not an easy problem to solve. In fact, under this type

of heterogeneity any estimation technique suffers from the so-called incidental parameters

problem; see, e.g., Neyman and Scott (1948).

In order to obtain a consistent estimator of the parameters of interest, one possible solution

is to transform the model in order to remove the heterogeneity of unknown form. To be

more precise, consider a linear panel data model where the heterogeneity µi is arbitrarily

correlated with the covariates Xit and/or Zit, of dimension d and a, respectively,

Yit = X>itm (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T. (2.1)

Furthermore, the function m (z) is unknown and needs to be estimated, and the vit are

random errors. It is clear that any attempt to estimate m(·) directly through standard

nonparametric estimation techniques will render inconsistent estimators of the underlying

curve. The reason for this is that E (µi|Xit = x, Zit = z) 6= 0. A standard solution to this

problem is to remove µi from (2.1) by taking a transformation, and then estimating the un-

known curve through the use of a nonparametric smoother. There exist several approaches

to remove these effects. The simplest approach is probably to take first differences, i.e.,

∆Yit = X>itm (Zit)−X>i(t−1)m
(
Zi(t−1)

)
+ ∆vit, i = 2, · · · , N ; t = 2, · · · , T. (2.2)

The direct nonparametric estimation of m (·) has, until now, been considered as rather

cumbersome; see Su and Ullah (2011). The reason for this is that, for each i, the condi-

tional expectation E
(

∆Yit|Zit, Zi(t−1), Xit, Xi(t−1)

)
in (2.2) contains a linear combination

of X>itm (Zit) for different t. This can be considered as an additive function with the same

functional form at a different times.
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In some special cases, a consistent estimation of the quantities of interest has been provided

in the literature. For the unrestricted model X>itm (Zit) ≡ m (Xit, Zit), (2.2) becomes a

fully nonparametric additive model

∆Yit = m (Xit, Zit)−m
(
Xi(t−1), Zi(t−1)

)
+ ∆vit, i = 2, · · · , N ; t = 2, · · · , T.

In this case, in Henderson et al. (2008) it is proposed an iterative procedure based in a

profile likelihood approach, whereas in Mammen et al. (2009) it is considered the consistent

estimation of nonparametric additive panel data models with both time and individual

effects via a smoothed backfitting algorithm. Furthermore, for X>itm (Zit) ≡ g (Zit) +

X̃>it β0, where Xit = (1, X̃>it )
> and m (Zit) = (g (Zit) , β0)> for some real valued g(·) and

a vector β0, the regression function in (2.2) becomes a semi-parametric partially additive

model

∆Yit = β>0 ∆X̃it + g (Zit)− g
(
Zi(t−1)

)
+ ∆vit, i = 2, · · · , N ; t = 2, · · · , T.

Qian and Wang (2012) consider the marginal integration estimator of the nonparamet-

ric additive component resulting from the first differencing step, i.e., G
(
Zit, Zi(t−1)

)
=

g (Zit)− g
(
Zi(t−1)

)
.

The estimation procedure that we introduce in this chapter mainly generalizes the pre-

vious results to a rather general varying coefficient model as the one specified in (2.1)

in a framework where N → ∞ but T remains fixed. It is based in applying a local ap-

proximation to the additive function X>itm (Zit)−X>i(t−1)m
(
Zi(t−1)

)
. The same idea was

proposed in a completely different context in Yang (2002). Because the estimator is based

in local approximation properties, we investigate the behavior of the bias remainder term

under fairly general conditions. This term, which is negligible in standard local linear

regression techniques (see Fan and Gijbels (1995b)), requires much more attention when

dealing with first difference estimators. In fact, as it has been already pointed out in

Lee and Mukherjee (2008), the direct application of local linear regression techniques to

first differencing transformations in panel data models renders to biased estimators and

the bias does not degenerate, even with large samples. Using a higher-dimensional kernel

weight, our estimation technique overcomes the problem of non-vanishing bias, although,
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as expected, the variance term becomes larger. The same phenomenon also appears in

Henderson et al. (2008), where their final estimator already shows an even larger variance.

In order to obtain the standard rates of convergence for this type of problems (i.e., to reduce

the variance holding the bias constant), we propose to use the developments introduced

in Fan and Zhang (1999). Their core idea was that the variance can be reduced by further

smoothing, but bias cannot be reduced by any kind of smoothing. We apply these ideas

to our problem by using a one-step backfitting algorithm. Because it has the form of an

additive model, we also show that our estimator is oracle efficient; that is, the variance-

covariance matrix of any of the components of our estimator is the same asymptotically

as if we would know the other component. Finally, we also propose a data-driven method

to select the bandwidth parameter.

As already pointed out previously, to remove the heterogeneous effects, other transforma-

tions are available in the literature. To our knowledge, for model (2.1), an estimation of

m(·) has been proposed in Sun et al. (2009), through the use of the so-called least-squares

dummy variable approach. They estimate m(·) using the following alternative specification

Yit = X>itm (Zit) +
n∑
j=1

µidij + vit, i = 1, · · · , N ; t = 1, · · · , T, (2.3)

where dij = 1 if i = j and 0 otherwise. Based on this model, they propose a least-

squares method combined with a local linear regression approach that produces a consis-

tent estimator of the unknown smoothing coefficient curves. Compared to our method,

their estimator exhibits a larger bias. In fact, their bias presents two terms. The first

term results from the local approximation of m(·) and it is also present in our estimator.

The second term results from the unknown fixed effects and it is zero only in the case that

they add the additional (strong) restriction that
∑

i µi = 0. This type of restrictions is

also used in Mammen et al. (2009).

The rest of the chapter is organized as follows. In Section 2.2, we set up the model and the

estimation procedure. In Section 2.3, we study its asymptotic properties and we propose a

transformation procedure which provides an estimator that is oracle efficient and achieves

optimal rates of convergence. Section 2.4, we show how to estimate the bandwidth matrix

empirically and, in Section 2.5, we present some simulation results. Finally, we conclude

in Section 2.6. The proofs of the main results are collected in the Appendix 1.
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2.2 Statistical model and estimation procedure

To illustrate our technique, we start with the univariate case and then we present our

results for the multivariate case. Then, we consider (2.2) with d = q = 1. In this case,

for any z ∈ A, where A is a compact subsect in a non-empty interior of IR, we have the

following Taylor expansion

Xitm (Zit)−Xit−1m (Zit−1) ≈ m (z) ∆Xit +m′ (z)
(
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

))
+

1

2
m′′ (z)

(
Xit (Zit − z)2 −Xi(t−1)

(
Zi(t−1) − z

)2)
+ · · ·+ 1

p!
m(p) (z)

(
Xit (Zit − z)p −Xi(t−1)

(
Zi(t−1) − z

)p)
≡

p∑
λ=0

βλ

(
Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1) − z

)λ)
.

This suggests that we estimate m (z), m′ (z), · · · , m(p) (z) by regressing ∆Yit on the terms

Xit (Zit − z)λ−Xit−1 (Zit−1 − z)λ, λ = 0, 1, · · · , with kernel weights. Then, the quantities

of interest can be estimated using a local linear regression estimator,

N∑
i=1

T∑
t=2

(
∆Yit − α∆Xit − δ

[
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

)])2
Kh (Zit − z)Kh

(
Zi(t−1) − z

)
,

(2.4)

see Fan and Gijbels (1995b), Ruppert and Wand (1994), or Zhan-Qian (1996). Here, K

is a bivariate kernel such that K(u, v) = K(u)K(v), where for each u, v,∫
K(u)du = 1 and Kh(u) =

1

h
K (u/h) ,

and h is a bandwidth.

We denote by β̂0 and β̂1 the minimizers of (2.4). The above exposition suggest as es-

timators for α = m(·) and δ = m′(·), m̂h(z) = β̂0 and m̂′h(z) = β̂1, respectively. In

particular, for the case of a local constant approximation (p = 0; i.e., Nadaraya-Watson

kernel regression estimator), the estimator for m(z) has the following closed form:

β̂0 =

∑N
i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z)∆Xit∆Yit∑N

i=1

∑T
t=2Kh(Zit − z)Kh(Zi(t−1) − z) (∆Xit)

2
. (2.5)

77



Chapter 2. Direct semi-parametric estimation of fixed effects panel data varying
coefficient models

In the local linear regression case (p = 1), we have β̂0

β̂1

 =

(∑
it

Kh(Zit − z)Kh(Zi(t−1) − z)Z̃itZ̃>it

)−1∑
it

Kh(Zit−z)Kh(Zi(t−1)−z)Z̃it∆Yit,

(2.6)

where Z̃it is a 2× 1 vector such that

Z̃>it =
(
∆Xit Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

))
. (2.7)

Note that in (2.4) we propose a bivariate kernel that also contains Zi(t−1), instead of con-

sidering only Zit. The reason for this is that, if we consider only a kernel around Zit,

the transformed regression equation (2.2) would be originally localized around Zit without

considering all other values. Consequently, the distance between Zis (for s 6= t) and z can-

not be controlled by the fixed bandwidth parameter and thus the transformed remainder

terms cannot be negligible. The consequence of all this would be a non-degenerated bias in

this type of local linear estimator, which is removed by considering a local approximation

around the pair
(
Zit, Zi(t−1)

)
. In Theorem 2.1, we show that the local linear estimator

with the bivariate kernel shows the same rate as standard local linear smothers estimators

(i.e., with a bias of order O(h2)). Unfortunately, the well-known trade-off between bias

and variance term appears and, although the introduction of this bivariate kernel drops

the bias out, it enlarges the variance term, which becomes of order O(1/NTh2). This is

also emphasized in Theorem 2.1. Of course, this affects the achievable rate of convergence

for this type of problems, which slows down at the rate
√
NTh.

In order to recover the desirable rate of
√
NTh, we propose a transformation that is

basically a one-step backfitting algorithm. Let us denote by ∆Y b
it the following expression

∆Y b
it = ∆Yit +m(Zi(t−1))Xi(t−1), i = 1, · · · , N ; t = 2, · · · , T. (2.8)

By substituting (2.2) into (2.8), we obtain

∆Y b
it = m(Zit)Xit + ∆vit, i = 1, · · · , N ; t = 2, · · · , T. (2.9)

As it can be realized from (2.9), the estimation of m (·) is now a one-dimensional problem,

and therefore we can use again a local linear least-squares estimation procedure with

78



Chapter 2. Direct semi-parametric estimation of fixed effects panel data varying
coefficient models

univariate kernel weights. However, there is still a problem that needs to be solved. In

(2.8), the term m(Zi(t−1)) is unknown. So, we replace it by the initial local linear regression

estimator, i.e., ∆Ỹ b
it = ∆Yit + m̂h

(
Zi(t−1)

)
Xi(t−1), having the following regression model

∆Ỹ b
it = m(Zit)Xit + vbit, i = 1, · · · , N ; t = 2, · · · , T, (2.10)

where

vbit =
(
m̂h

(
Zi(t−1)

)
−m

(
Zi(t−1)

))
Xi(t−1) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T.

By doing so, we can estimate m (·) using the following weighted local linear regression

N∑
i=1

T∑
t=2

(
∆Ỹ b

it − δ0Xit − δ1Xit (Zit − z)
)2
K
h̃

(Zit − z) . (2.11)

Let α̃0 and α̃1 be the minimizers of (2.11). Then, as before, we propose as estimators for

m(·) and m′(·), m̃
h̃
(z) = γ̃0 and m̃′

h̃
(z) = γ̃1, respectively.

Now, once our estimation procedure has been fully explained for the univariate case, we

proceed to extend our results for the multivariate case, that is, for d 6= q 6= 1 in (2.1). In

this case, the quantities of interest can be estimated using a multivariate locally weighted

linear regression,

N∑
i=1

T∑
t=2

(
∆Yit − Z̃>it β

)2
KH (Zit − z)KH

(
Zi(t−1) − z

)
, (2.12)

where we denote by

Z̃>it =
(

∆X>it X>it ⊗ (Zit − z)> −X>i(t−1) ⊗ (Zi(t−1) − z)>
)

a 1× d(1 + q) vector. Now, K is a q-variate kernel such that∫
K(u)du = 1 and KH(u) =

1

|H|1/2
K
(
H−1/2u

)
,

where H is a q × q symmetric positive definite bandwidth matrix.

Finally, we denote by β̂ = (β̂>0 β̂>1 )> a d(1 + q)-vector that minimizes (2.12). Again, the

above exposition suggests as estimators for m(z) and Dm(z) = ∂m(z)/∂z, m̂(z;H) = β̂0
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and vec(D̂m(z;H)) = β̂1, respectively. Here, Dm(z) is a d× q matrix of partial derivatives

of the d-function m(z) with respect to the elements of the q × 1 vector z.

It is easy to verify that the solution to the minimization problem in (2.12) can be written

in matrix form as  β̂0

β̂1

 =
(
Z̃>WZ̃

)−1
Z̃>W∆Y, (2.13)

where

W = diag
(
KH(Z12 − z)KH(Z11 − z), ...,KH(ZNT − z)KH(ZN(T−1) − z)

)
,

∆Y = (∆Y12, ...,∆YNT )>,

and

Z̃ =


∆X>12 X>12 ⊗ (Z12 − z)> −X>11 ⊗ (Z11 − z)>

...
...

∆X>NT X>NT ⊗ (ZNT − z)> −X>N(T−1) ⊗ (ZN(T−1) − z)>

 .

The local weighted linear least-squares estimator of m(z) is then defined as

m̂(z;H) = e>1

(
Z̃>WZ̃

)−1
Z̃>W∆Y, (2.14)

where e1 = (Id
...0dq×d) is a d(1 + q)× d selection matrix, Id is a d× d identity matrix and

0dq×d a dq×d matrix of zeros. Note that the dimensions of W and Z̃ are N(T−1)×N(T−1)

and N(T − 1)× d(1 + q), respectively.

Finally, there are several reasons to choose local linear least-squares estimators against

other candidates. First, the form in (2.14) suggests that this estimator is found by fitting

a plane to the data using weighted least-squares. The weights are chosen according to

the kernel and the bandwidth matrix H. As has already been discussed in Ruppert and

Wand (1994), if a Gaussian kernel with (possibly) compact support is chosen, then the

weight given to Zit is the value of the Gaussian density with mean Zit − z, which has

an ellipsoidal contour of the form (Zit − z)>H−1 (Zit − z) = c, for c > 0. Clearly, the

further from z that Zit is, the less weight it receives. However, H controls both the size and

orientation of the ellipsoids at a given density level and therefore it also controls the amount
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and direction of the weights. Often, instead of taking a matrix H, we adopt a simpler

form H = diag(h2
1, · · · , h2

q). If we have a diagonal bandwidth matrix, this means that

the ellipsoids have their axes in the same direction as the coordinate axes, whereas for a

general H matrix they will correspond to the eigenvectors of H. Depending on the shape of

m(·), there are situations where having a full bandwidth matrix is advantageous. Another

important advantage of local linear least-squares kernel estimators is that the asymptotic

bias and variance expressions are particularly appealing and appear to be superior to those

of the Nadaraya-Watson or other nonparametric estimators. In particular, in Fan (1993) it

is shown that the local linear least-squares estimator has an important asymptotic minimax

property. Furthermore, unlike the Nadaraya-Watson or other nonparametric estimators,

the bias and variance of (2.14) near the boundary of the density of Z are of the same

order of magnitude as in the interior. That is a very interesting property because, in

applications, the boundary region might comprise a large proportion of the data.

2.3 Asymptotic properties and the oracle efficient estimator

In this section, we investigate some preliminary asymptotic properties of our estimator.

In order to do so, we need the following assumptions.

Assumption 2.1 Let (Yit, Xit, Zit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identi-

cally distributed (i.i.d.) IRd+q+1-random variables in the subscript i for each fixed t and

strictly stationary over t for fixed i. They are a sample following (2.1). Furthermore, let

fZ1t (·), fZ1t,Z1(t−1)
(·, ·), fZ1t,Z1(t−1),Z1(t−2)

(·, ·, ·) be the probability density functions of Z1t,(
Z1t, Z1(t−1)

)
and

(
Z1t, Z1(t−1), Z1(t−2)

)
, respectively. All density functions are continu-

ously differentiable in all their arguments and they are bounded from above and below in

any point of their support.

Assumption 2.2 The random errors vit are independent and identically distributed, with

zero mean and homoscedastic variance, σ2
v < ∞. They are also independent of Xit and

Zit for all i and t. Furthermore, E |vit|2+δ <∞, for some δ > 0.
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Assumption 2.3 µi can be arbitrarily correlated with both Xit and Zit with unknown

correlation structure.

Assumption 2.4 Let ‖A‖ =
√
tr (A>A), then E

[
‖XitX

>
it ‖2

∣∣Zit = z1, Zi(t−1) = z2

]
is

bounded and uniformly continuous in its support. Furthermore, let

Xit =
(
X>it X>i(t−1)

)>
and ∆Xit =

(
∆X>it ∆X>i(t−1)

)>
.

The matrix functions E
[
XitX>it |Zit = z1, Zi(t−1) = z2

]
, E
[
∆Xit∆X>it |Zit = z1, Zi(t−1) = z2

]
,

E
[
XitX>it |Zit = z1, Zi(t−1) = z2, Zi(t−3) = z3

]
, and E

[
Xit∆X>it |Zit = z1, Zi(t−1) = z2, Zi(t−2)

= z3] are bounded and uniformly continuous in their support.

Assumption 2.5 The function E
[
∆Xit∆X

>
it

∣∣Zit = z1, Zi(t−1) = z2

]
is positive definite

for any interior point of (z1, z2) in the support of fZit,Zi(t−1)
(z1, z2).

Assumption 2.6 The following functions E
[
|Xit∆vit|2+δ|Zit = z1, Zi(t−1) = z2

]
,

E
[
|Xi(t−1)∆vit|2+δ|Zit = z1, Zi(t−1) = z2

]
, and E

[
|∆Xit∆vit|2+δ|Zit = z1, Zi(t−1) = z2

]
are

bounded and uniformly continuous in any point of their support, for some δ > 0.

Assumption 2.7 Let z be an interior point in the support of fZ1t. All second-order

derivatives of m1 (·) ,m2 (·) , · · · ,md (·) are bounded and uniformly continuous.

Assumption 2.8 The Kernel functions K are compactly supported, bounded kernel such

that
∫
uu>K(u)du = µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and R(K) 6= 0

are scalars and I is the q × q identity matrix. In addition, all odd-order moments of K

vanish, that is
∫
uι11 · · ·u

ιq
q K(u)du = 0, for all nonnegative integers ι1, · · · , ιq such that

their sum is odd.

Assumption 2.9 The bandwidth matrix H is symmetric and strictly definite positive.

Furthermore, each entry of the matrix tends to zero as N tends to infinity in such a way

that N |H| → ∞.

As can be seen, all assumptions are rather standard in the nonparametric regression anal-

ysis of panel data models. Assumption 2.1 establishes standard features about the sample
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and data-generating process. The individuals are independent and, for a fixed individual,

we allow for correlation over time. Also, other possible time-series structures might be

considered, such as strong mixing conditions (see Cai and Li (2008)) or non-stationary

time-series data (see Cai et al. (2009)). Mixing conditions are usually taken into account

to make the covariances of the estimator tend to zero at a faster rate. In our case, this

is not necessary because our asymptotic analysis is performed for fixed T . However, we

believe that non-stationary processes are beyond the scope of this chapter. Note also that

marginal densities are assumed to be bounded from above and below. This assumption

can be relaxed at the price of increasing the mathematical complexity of the proofs.

Assumption 2.1 is also standard for first-difference estimators; see Wooldridge (2003)

for the fully parametric case. Furthermore, independence between the vit errors and

the Xit and/or Zit covariates is assumed without loss of generality. We could relax this

assumption by assuming some dependence based on second-order moments. For example,

heteroskedasticity of unknown form can be allowed and, in fact, under more complex

structures in the variance-covariance matrix, a transformation of the estimator proposed

in You et al. (2010) can be developed in our setting. This type of assumption also rules out

the existence of endogenous explanatory variables and imposes strict exogeneity conditions.

If this were the case, then an instrumental variable approach, such as the one proposed in

Cai and Li (2008) or Cai and Xiong (2012), would be needed. Assumption 2.3 imposes the

so-called fixed effects. Note that this assumption is much weaker than the one introduced in

Sun et al. (2009) so that their least-squares dummy variable approach can work. Basically,

they impose a smooth relationship between heterogeneity and explanatory variables, and

in order to avoid an additional bias term, they need
∑

i µi = 0.

Assumptions 2.4 and 2.5 are some smoothness conditions on moment functionals. As-

sumption 2.6 is the equivalent to a standard rank condition for identification of this type

of models. Assumptions 2.7-2.9 are standard in local linear regression estimators; see

Ruppert and Wand (1994). Finally, all our results hold straightforwardly for the random

coefficient setting.

Let X = (X11, · · · , XNT ) and Z = (Z11, · · · , ZNT ) be the observed covariates sample

vectors. Under these assumptions, we now establish some results on the conditional mean

and the conditional variance of the local linear least-squares estimator.

83



Chapter 2. Direct semi-parametric estimation of fixed effects panel data varying
coefficient models

Theorem 2.1 Let Assumptions 2.1-2.9 hold. Then, for T fixed and N →∞,

E [m̂(z;H)|X,Z]−m(z)

=
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>W (Sm1 (z)− Sm2 (z))

=
1

2
B−1

∆X∆X(z, z)(µ2 (Ku)B∆XX(z, z)− µ2 (Kv)B∆XX−1(z, z))

×diagd(tr(Hmr (z)H))id + op(tr(H)),

where for r = 1, · · · , d, Hmr(z) is the Hessian matrix of the rth component of m(·), while

for ` = 1, 2 the ith element of Sm` is

(
Xi(t+1−`) ⊗

(
Zi(t+1−`) − z

))>Hm(z)
(
Zi(t+1−`) − z

)
.

Furthermore, if µ2 (Ku) = µ2 (Kv) the bias term becomes

E [m̂(z;H)|X,Z]−m(z) =
1

2
µ2 (Ku) diagd(tr(Hmr (z)H))id + op(tr(H)).

The variance is

V ar (m̂(z;H)|X,Z) =
2σ2

vR (Ku)R (Kv)

NT |H|
B−1

∆X∆X (z, z) (1 + op(1)),

where

B∆XX (z, z) = E
[
∆XitX

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) ,

B∆XX−1 (z, z) = E
[
∆XitX

>
i(t−1)|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) ,

B∆X∆X (z, z) = E
[
∆Xit∆X

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) ,

diagd (tr(Hmr (z)H)) stands for a diagonal matrix of elements tr(Hmr (z)H), for r =

1, · · · , d, and id is a d× 1 unit vector.

To illustrate the asymptotic behavior of our estimator, we give a result for the case when

d = q = 1 and H = h2I. In this case, the above result can be written as follows.
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Corollary 2.1 Let Assumptions 2.1-2.8 hold. Then, if h→ 0 in such a way that Nh2 →

∞ as N tends to infinity and T is fixed,

E [m̂(z;H)|X,Z]−m(z) =
1

2
c(z, z)m

′′
(z)h2 + op

(
h2
)
,

where

c(z, z)

=
µ2 (Ku)E

[
∆XitXit|Zit = z, Zi(t−1) = z

]
− µ2 (Kv)E

[
∆XitXi(t−1)

∣∣Zit = z, Zi(t−1) = z
]

E
[(
Xit −Xi(t−1)

)2 |Zit = z, Zi(t−1) = z
] .

Furthermore, if µ2 (Ku) = µ2 (Kv), then the bias term has the following expression

E [m̂(z;H)|X,Z]−m(z) =
1

2
m
′′

(z)h2 + op
(
h2
)
.

The variance is

V ar (m̂(z;H)|X,Z)

=
2σ2

vR (Ku)R (Kv)

NTh2fZit,Zi(t−1)
(z, z)E

[(
Xit −Xi(t−1)

)2 |Zit = z, Zi(t−1) = z
](1 + op(1)).

Note that, in the standard case, µ2 (Ku) = µ2 (Kv) and thus we obtain a good result for

the bias. In fact, the resulting asymptotic bias has the same expression as in the standard

local linear estimator.

As has already been pointed out in other works, the leading terms in both bias and variance

do not depend on the sample, and therefore we can consider such terms as playing the

role of the unconditional bias and variance. Furthermore, we believe that the conditions

established on H are sufficient to show that the other terms are op(1) and therefore it is

possible to show the following result for the asymptotic distribution of m̂(z;H).

Theorem 2.2 Let Assumptions 2.1-2.9 hold. Then, for T fixed and N →∞,√
NT |H| (m̂ (z;H)−m (z))

d−−−→ N (b(z), υ(z)) ,

where

b(z) =
1

2
µ2 (Ku) diagd

(
tr
(
Hmr (z)H

√
NT |H|

))
ıd,

υ(z) = 2σ2
vR (Ku)R (Kv)B−1

∆X∆X (z, z) .
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Note that the rate at which our estimator converges is NT |H|. Under the conditions es-

tablished in the propositions, our estimator is both consistent and asymptotically normal.

However, its rate of convergence is suboptimal because the lower rate of convergence for

this type of estimators is NT |H|1/2. As we have already indicated in Section 2.2, in order

to achieve optimality we propose to reduce the dimensionality of the problem by redefining

∆Yit as in (2.10). Now for the multivariate case,

∆Ỹ b
it = X>itm (Zit) + vbit, i = 1, · · · , N ; t = 2, · · · , T,

where

vbit = X>i(t−1)

(
m̂(Zi(t−1);H)−m

(
Zi(t−1)

))
+ ∆vit. (2.15)

In expression (2.15), m̂(Zi(t−1);H) is the first-step local linear estimator obtained in (2.14).

Now, we propose to estimate m (Zit) using a multivariate locally weighted linear regression,

N∑
i=1

T∑
t=2

(
∆Ỹ b

it −
(
X>it γ0 +X>it ⊗ (Zit − z)>γ1

))2
K
H̃

(Zit − z), (2.16)

where H̃ is a q × q symmetric positive-definite bandwidth matrix.

If we define Z̃b>it =
(
X>it X>it ⊗ (Zit − z)>

)
as a 1×d(1 + q) vector, (2.16) can be written

as
N∑
i=1

T∑
t=2

(
∆Y b

it − Z̃b>it β
)2
K
H̃

(Zit − z), (2.17)

where we denote by γ̃ = (γ̃>0 γ̃>1 )> the d(1 + q) vector that minimizes (2.17).

Following the same reasoning as before, we can write

m̃(z; H̃) = γ̃0 = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b∆Ỹ b, (2.18)

where ∆Ỹ b = (∆Ỹ b
12, · · · ,∆Ỹ b

NT )>, W b = diag (KH(Z12 − z), · · · ,KH(ZNT − z)) and

Z̃b =


X>12 X>12 ⊗ (Z12 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

.

In order to show the asymptotic properties of this estimator, we need to assume the

following about the bandwidth H̃ and its relationship with H.
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Assumption 2.10 The bandwidth matrix H̃ is symmetric and strictly definite positive.

Furthermore, each entry of the matrix tends to zero as N tends to infinity in such a way

that N |H̃| → ∞.

Assumption 2.11 The bandwidth matrices H and H̃ must fulfill that as N tends to

infinity, N |H| |H̃|/ log (N)→∞ and tr (H) /tr(H̃)→ 0.

In general, for the kernel function and conditional moments and densities, we need both

the smoothness and boundedness conditions already given in Assumptions 2.1-2.8. These

are required to use uniform convergence results such as the ones established by Masry

(1996). It is then possible to show the following result.

Theorem 2.3 Let Assumptions 2.1-2.8 and 2.10-2.11 hold. Then, for T fixed an N →∞,

E
[
m̃(z; H̃)|X,Z

]
−m(z) =

1

2
µ2 (Ku) diagd

(
tr(Hmr (z) H̃)

)
ıd + op(tr(H̃))

and

V ar (m̃(z;H)|X,Z) =
2σ2

vR (Ku)

NT |H̃|1/2
B−1
XX (z) (1 + op(1)),

where diagd

(
tr(Hmr (z) H̃)

)
stands for a diagonal matrix of elements tr(Hmr (z) H̃), for

r = 1, · · · , d, and id is a d× 1 unit vector.

Finally, focusing on the relevant terms of bias and variance of Theorems 2.1 and 2.2 and

following Ruppert and Wand (1994), it can be highlighted that each entry of Hm(z) is a

measure of the curvature of m (·) at z in a particular direction. Thus, we can intuitively

conclude that the bias is increased when there is a higher curvature and more smoothing

is well described by this leading bias term. Meanwhile, in terms of the variance, we can

conclude that it will be penalized by a higher conditional variance of Y given Z = z and

sparser data near z.

2.4 Bandwidth selection

As it is clear from previous sections, the bandwidth matrix H plays a crucial role in the

estimation of the unknown quantity m (·). In fact, as we have learned from the asymptotic
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expressions, when choosing H there exist a trade-off between the bias and the variance

of our estimator. Consider the simplest case, H = h2I. If we choose h very small, then

according to Corollary 2.1 the bias of our estimator will be reduced (it is of the order of

h2) but at the price of enlarging the variance (the order of this term is 1/NTh2). This

trade-off should be solved by choosing a bandwidth matrix H that minimizes the mean

square error (MSE), which is the sum of the squared bias and variance. There are many

different measures of discrepancy between the estimator m̂ (·;H) and the function m (·;H).

A comprehensive discussion of these measures has been given in Härdle (1990, Chapter 5).

For the sake of simplicity, and taking into account the data-generating process in (2.1),

we propose the following measure of discrepancy,

MSE (H) = E
[
X> (m̂(Z;H)−m(Z))

]2
.

In this MSE, the expectation is taken over Z1, · · · , Zq;X1 · · · , Xd and m̂(Z;H) is the esti-

mator defined in (2.14). Therefore, for our problem, we can define the optimal bandwidth

matrix Hopt as the solution to the following minimization problem,

Hopt = arg min
H

MSE (H) = arg min
H

E
[
X> (m̂(Z;H)−m(Z))

]2
.

If Z1, · · · , Zq; X1, · · · , Xd are random variables that are independent of the observed sam-

ple D = (X11, Z11, · · · , XNT , ZNT )T , but they share the same distribution with (X11, Z11),

it is straightforward to show that

MSE (H) = E
[
b> (Z) Ω(Z)b (Z) + tr(Ω (Z)V (Z))

]
, (2.19)

where

b(Z) = E [m̂(Z;H)|D, Z]−m(Z),

V (Z) = Var (m̂(Z;H)|D, Z) , and

Ω(Z) = E
[
XX>|Z

]
.

As can be realized from the expression above, we have now formalized the idea of choosing

a bandwidth matrix H that minimizes the MSE (i.e., the sum of the squared bias and

variance). Note that the way we have defined the measure of discrepancy determines, in
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our case, the choice of a global bandwidth. That is, we choose a bandwidth that remains

constant with the location point. Of course, another possibility would be to choose a

bandwidth that varies locally according to this location point (i.e., H(z)). In this case,

the local MSE criteria would be

MSE(z;H) = E
[
X>(m̂(z;H)−m(z))

]2
,

where now the expectation is taken over X. Müller and Stadtmüller (1987) have discussed

the issue of local variable bandwidth for convolution-type regression estimators. Further-

more, Fan and Gijbels (1992) have proposed a variable bandwidth for the estimation of

local polynomial regression. In our case, we propose to choose a global bandwidth. The

reason is twofold. First, all components in our model have been assumed to have the same

degree of smoothness. Second, the use of local bandwidths, except for the case where the

curve presents a rather complicated structure, increases the computational burden without

much improvement in the final results. This is probably because of the local adaptation

property that already exhibits local linear regression smoothers.

Unfortunately, the selection of Hopt does not solve all problems in bandwidth selection. In

fact, as it can be realized, the MSE depends on some unknown quantities and, therefore our

optimal bandwidth matrix cannot be estimated from data. There are several alternative

solutions to approximate the unknown quantities in the MSE. One alternative is to replace

in (2.19) both bias and variance terms by their respective first-order asymptotic expressions

that were obtained in Theorem 2.1. This is the so-called ‘plug-in’ method; for details, see

Ruppert et al. (1995)). Another possibility is, as suggested in Fan and Gijbels (1995a), to

replace directly in (2.19) bias and variance by their exact expressions. That is

E [m̂(Z;H)|D, Z]−m(Z) = (E[m̂(z;H)|X,Z]−m(z)) |z=Z (2.20)

Var (m̂(Z;H)|D, Z) = Var (m̂(z;H)|X,Z)|z=Z , (2.21)

where clearly, according to Theorem 2.1

E [m̂(z;H)|X,Z]−m(z) = e>1

(
Z̃>WZ̃

)−1
Z̃>Wτ (2.22)

Var (m̂(z;H)|X,Z) = e>1

(
Z̃>WZ̃

)−1
Z̃>WVWZ̃

(
Z̃>WZ̃

)−1
e1. (2.23)
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Note that τ is a N(T − 1) vector such that, for i = 1, · · · , N , t = 2, · · · , T ,

τit = X>itm(Zit)−X>i(t−1)m(Zi(t−1))

−(X>itDm(z)(Zit − z)−X>i(t−1)Dm(z)(Zi(t−1) − z)),

and V is a N(T − 1)×N(T − 1) matrix that contains the Vij ’s matrices

Vij = E(∆vi∆v
>
j |X,Z) =


2σ2

v , for i = j, t = s,

−σ2
v , for i = j, |t = s| < 2,

0, for i = j, |t = s| ≥ 2.

(2.24)

In order to estimate both bias and variance, we need to calculate τ and V. Note that for τ ,

developing a fifth-order Taylor expansion of both m(Zit) and m(Zi(t−1)) around z, a local

linear polynomial regression of order five would guarantee that the proposed bandwidth

selection procedure will be
√
N -consistent for the local linear fit; see Hall et al. (1991) for

details. However, for the sake of simplicity, a local cubic polynomial regression would be

close to a
√
N -consistent selection rule and it will lead to a reduction in the computational

effort. In this case (for d = q = 1), the vector τ̂ will contain the (estimated) expressions

for the second and third-order derivatives of the local cubic polynomial regression of the

terms ∆Yit on to Xit(Zit − z)λ −Xit−1(Zit−1 − z)λ, λ = 0, 1, · · · , 3.

However, in order to estimate V, note that, because of Assumption 2.2, the estimation of

V is tantamount to the estimation of σ2
υ. To estimate this last quantity, note that under

the homoscedastic assumption, we can consistently estimate this by

σ̂2
υ =

1

2N(T − 1)

N∑
i=1

T∑
t=2

(
∆Yit −∆X>it m̂

−i(Zit;H) + ∆X>i(t−1)m̂
−i(Zi(t−1);H)

)2
. (2.25)

Note that both τ̂ and σ̂2
υ depend on a bandwidth matrix H that needs to be determined

from the data. A suitable pilot bandwidth matrix H∗, which can be used for these com-

putations, can be obtained using the global residual squares criterion (RSC) procedure

proposed in Fan and Gijbels (1995a). Furthermore, we denote by m̂−i(Zit;H) the leave-

one-out estimator of m(Zit). That is, when estimating m(Zit) using (2.14), we use all data

except those that belong to the ith subject.
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Once we have estimated τ and σ2
υ, we can now provide an estimator for b (H), V (H), and

Ω (H). Mainly,

b̂(Zit) = E
[
m̂−i(Zit;H)|X,Z

]
−m(Zit) = e>1

(
Z̃>WZ̃

)−1
Z̃>Wτ̂,

V̂ (Zit) = Var
[
m̂−i(Zit;H)|X,Z

]
= e>1

(
Z̃>WZ̃

)−1
Z̃>W V̂WZ̃

(
Z̃>WZ̃

)−1
e1,

Ω̂(Zit) =

∑
j 6=i,tXjtX

>
jtKH(Zjt − Zit)KH(Zj(t−1) − Zi(t−1))∑

j 6=i,tKH(Zjt − Zit)KH(Zj(t−1) − Zi(t−1))
.

The corresponding estimator of the MSE(H), according with (2.19) will be

M̂SE(H) =
1

N(T − 1)

∑
it

(
b̂> (Zit) Ω̂ (Zit) b̂ (Zit) + tr

(
Ω̂ (Zit) V̂ (Zit)

))
. (2.26)

Then, we define the estimator of Hopt, Ĥopt, as the solution to the following problem,

Ĥopt = arg min
H

M̂SE (H) .

Although we do not provide theoretical properties of this bandwidth, in Zhang and Lee

(2000) they have been studied in detail for the local MSE case, and we believe it is

straightforward to analyze them for the global MSE case that we present here. Finally, we

propose to use the same procedure to estimate the bandwidth matrix H when estimating

the oracle efficient estimator.

2.5 Monte Carlo experiment

In this section, we report some Monte Carlo simulation results to examine whether the

proposed estimators perform reasonably well in finite samples when µi are fixed effects.

We consider the following varying coefficient nonparametric models,

Yit = µi +X>ditm(Zqit) + vit, i = 1, · · · , N ; t = 1, · · · , T ; d, q = 1, 2

where Xdit and Zqit are scalars random variables, vit is an i.i.d.N(0,1) random variable.

The observations follow a data generating process where Zqit = wqit + wqi(t−1) (wqit an

i.i.d. uniformly distributed [0,Π/2] random variable) and Xdit = 0.5Xdi(t−1) + ξit (ξit is

i.i.d.N(0,1)).
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We consider three different cases of study,

(q = 1 d = 1) : Yit = X1itm1 (Z1it) + µ1i + vit,

(q = 2 d = 1) : Yit = X1itm1 (Z1it, Z2it) + µ2i + vit,

(q = 1 d = 2) : Yit = X1itm1 (Z1it) +X2itm2 (Z2it) + µ1i + vit,

where the chosen functionals form are m1 (Z1it) = sin (Z1it ∗Π), m2 (Z1it) = exp
(
−Z2

1it

)
,

and m1 (Z1it, Z2it) = sin
(

1
2 (Z1it + Z2it) ∗Π

)
. We experiment with two specifications for

the fixed effects:

(a) µ1i depends on Z1it, where the dependence is imposed by generating µ1i = c0Z1i. +ui

for i = 2, · · · , N and Z1i. = T−1
∑

t Z1it;

(b) µ2i depends on Z1it, Z2it through the generating process µ2i = c0Zi. + ui for i =

2, · · · , N and Zi. = 1
2

(
Z1i. + Z2i.

)
.

In both cases ui is an i.i.d.N (0, 1) random variable and c0 = 0.5 controls de correlation

between the unobservable individual heterogeneity and some of the regressors of the model.

In the experiment, we use 1000 Monte Carlo replications Q. The number of period T

is fixed at three, while the number of cross-sections N is varied to be 50, 100 and 200.

In addition, the Gaussian kernel has been used and, as in Henderson et al. (2008), the

bandwidth is chosen as Ĥ = ĥI, and ĥ = σ̂z(N(T − 1))−1/5, where σ̂z is the sample

standard deviation of {Zqit}N,Ti=1,t=2.

We report estimation results for both proposed estimators and we use the MSE as a

measure of their estimation accuracy. Thus, denoting the ϕth replication by the subscript

ϕ,

MSE (m̂l(z;H)) =
1

Q

Q∑
ϕ=1

E

( d∑
r=1

(m̂ϕr(z;H)−mϕr(z))Xit,ϕr

)2


which can be approximated by the averaged mean squared error (AMSE)

AMSE (m̂(z;H)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=2

(
d∑
r=1

(m̂ϕr(z;H)−mϕr(z))Xit,ϕr

)2

.

The simulations results are summarized in Tables 2.1-2.3, respectively.
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Table 2.1. First-differences estimators. AMSE for d = 1 and q = 1

Local polynomial Backfitting

estimator estimator

N = 50 1.37439 1.27563

T=3 N = 100 1.28384 1.18554

N = 150 1.23225 1.17689

Table 2.2. First-differences estimators. AMSE for d = 1 and q = 2

Local polynomial Backfitting

estimator estimator

N = 50 5.76503 1.63356

T=3 N = 100 3.25944 1.18840

N = 150 3.05025 0.99526

Table 2.3. First-differences estimators. AMSE for d = 2 and q = 1

Local polynomial Backfitting

estimator estimator

N = 50 2.08248 1.72158

T=3 N = 100 1.75573 1.49022

N = 150 1.54960 1.37529

Furthermore, we carried out a simulation study to analyze the behavior in finite samples of

the multivariate locally estimator with kernels weights, m̂(z;H), and the oracle estimator,

m̃(z; H̃), as proposed in Sections 2.2 and 2.3. Looking at Tables 2.1-2.3 we can highlight

the following.

On one hand, because the proposed estimators are based on a first-difference transforma-

tion, the bias and the variance of both estimators do not depend on the values of the fixed

effects, so their estimation accuracy are the same for different values of c0.

On the other hand, from Tables 2.1-2.3, we can see that both estimators show a good per-

formance. For all T , as N increases the AMSEs of both estimators are lower, as expected.
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This is because of the asymptotic properties of the estimators described previously. In ad-

dition, these results also allow us to test the hypothesis that the oracle estimator generates

an improvement in the rate of convergence. Specifically, for the univariate case (Tables 2.1

and 2.3), we appreciate that the achievement of both estimators are quite similar while,

on the contrary, in the multivariate case (Table 2.2), the rate of convergence of the oracle

estimator is faster than the multivariate locally estimator, as expected. In addition, as

we can see in Table 2.2, the results of the local polynomial estimator reflect the curse of

dimensionality property, given that as the dimensionality of Zit increases, the AMSE is

greater. Thus, the backfitting estimator has an efficiency gain over the local polynomial

estimator, as we suspect.

2.6 Conclusions

In this chapter, we introduce a new technique that estimates the varying coefficient mod-

els of unknown form in a panel data framework where individual effects are arbitrarily

correlated with the explanatory variables in an unknown way. The resulting estimator is

robust to misspecification in the functional form of the varying parameters, and we have

shown that it is consistent and asymptotically normal. Furthermore, we have shown that

it achieves the optimal rate of convergence for this type of problems and it exhibits the so-

called oracle efficiency property. Because the estimation procedure depends on the choice

of a bandwidth matrix, we also provide a method to compute this matrix empirically. The

Monte Carlo results indicate the good performance of the estimator in finite samples.
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Chapter 3

Nonparametric estimation of fixed

effects panel data varying

coefficient models

3.1 Introduction

Nonparametric estimation of panel data varying coefficient models under fixed effects has

been traditionally undertaken through the use of differencing techniques; see Su and Ullah

(2011). The main reason is that, direct estimation of varying coefficients through smooth-

ing techniques rends asymptotically biased estimators. This is due to the correlation that

exists between the heterogeneity term and the explanatory variables. The differencing

approach removes the heterogeneity effect and therefore, it enables us to estimate the

function of interest without bias. However, it turns out that the model in differences

appears as an additive function with the same functional form at different times. This

is why, the proposals to estimate this type of models are closely related to estimation

techniques originally designed for additive models. After taking differences with respect

to the first observation in time, in Henderson et al. (2008) it is developed an iterative pro-

cedure based on a profile likelihood approach. In Mammen et al. (2009) it is proposed a

smooth backfitting algorithm, although the specification of the model is slightly different.

Recently, in Su and Lu (2013) the unknown function is estimated as a solution of a second
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order Friedholm integral equation. In their approach they take first differences and they

allow for lagged endogenous regressors as explanatory variables. However, these proce-

dures are not very appealing since they are computationally intensive. In view of these

results, in Chapter 2 it is presented a direct estimation strategy that is based on a local

linear regression for a first-differences model. Afterwards, it is proposed to combine this

strategy with a one-step backfitting algorithm. The resulting two-step estimator achieves

an optimal rate of convergence and it is shown to be oracle efficient. Unfortunately, due

to the first differences, the asymptotic properties of the estimator depend on some strong

assumptions on the error term. For example, as in the fully parametric setting it is as-

sumed that the error term exhibits a random walk structure; see Wooldridge (2003) for

more details. This is an important drawback because in many situations it is natural to

assume either i.i.d. or stationary errors.

In this chapter, we present an estimation procedure that uses the deviation from the mean

transformation. The advantage of this transformation against others is that, as in the

fully parametric setting, we obtain standard asymptotic properties of the nonparametric

estimators under i.i.d. assumptions on the idiosyncratic error terms. The estimator is

based on applying a local approximation on the T additive functions that result from

the deviation to the mean transformation, where T is the number of time observations

per individual. Note that all asymptotic properties are obtained as N , the number of

individuals tends to infinity and keeping T fixed. The use of standard local approximation

techniques in this context rends a non-negligible bias in the estimation of the additive

components. This is because these techniques approximate the unknown function around

a fixed value without considering the sum of the distances between this fixed term and

the other values of the sample. In order to cope with this problem, we have to consider

a local approximation around the whole vector of time observations for each individual.

Unfortunately, the well-known trade-off between bias and variance term appears and,

although the introduction of a kernel function of T dimension drops the bias out, it

enlarges the variance. Using the same idea as in Chapter 2, we propose to use a one-

step backfitting algorithm. The idea, as already pointed out in Fan and Zhang (1999),

is that additional smoothing cannot reduce the bias but it can diminish the variance.

Therefore, the additional smoothing that is introduced by the backfitting enables us to
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achieve optimal nonparametric rates of convergence for the estimators of the unknown

functions of interest. Furthermore, we also show that the resulting estimators are oracle

efficient.

The rest of the chapter is organized as follows. In Section 3.2 we set up the model and the

estimation procedure. In Section 3.3 we generalize the direct local linear estimator to the

multivariate case and we study its asymptotic properties. In Section 3.4 we show how to

apply the backfitting algorithm and we obtain the asymptotic properties for this two-step

estimator. In Section 3.5 we perform a Monte Carlo simulation to analyze the behavior

in small sample sizes of both estimators. Finally, Section 3.6 concludes the chapter. The

proofs of the main results are collected in the Appendix 2.

3.2 Statistical model and estimation procedure

To illustrate the estimation procedure proposed in this chapter we first focus on the uni-

variate regression model and later we extend the results to the multivariate case. Consider

the linear panel data model, where the dimensions of X and Z are respectively d = 1 and

q = 1,

Yit = Xitm (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T. (3.1)

Let Y i· = T−1
∑T

s=1 Yis and vi· = T−1
∑T

s=1 vis. Taking differences from the mean in (3.1)

we obtain

Yit − Y i· = Xitm (Zit)−
1

T

T∑
s=1

Xism (Zis) + vit − vi·, i = 1, · · · , N ; t = 1, · · · , T.

(3.2)

In this case, for any z ∈ A, where A is a compact subset in a non-empty interior of IR one

has the following Taylor expansion

Xitm (Zit) −
1

T

T∑
s=1

Xism (Zis) ≈

(
Xit −

1

T

T∑
s=1

Xis

)
m(z) +

[
Xit (Zit − z) − 1

T

T∑
s=1

Xis (Zis − z)

]
m′(z)

+
1

2

[
Xit (Zit − z)2 − 1

T

T∑
s=1

Xis (Zis − z)2

]
m′′(z) + · · · +

1

p!

[
Xit (Zit − z)p − 1

T

T∑
s=1

Xis (Zis − z)p
]
m(p)(z)

≡
p∑

λ=0

βλ

[
Xit (Zit − z)λ − 1

T

T∑
s=1

Xis (Zis − z)λ
]
. (3.3)
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This suggests that we estimate m(z), m′(z), · · · ,m(p)(z) by regressing Yit − Y i· on the

terms Xit (Zit − z)λ− 1
T

∑T
s=1Xis (Zis − z)λ, for λ = 1, · · · , p, with kernel weights. Then,

the quantities of interest can be estimated using a locally weighted linear regression,

N∑
i=1

T∑
t=1

(
Ÿit − β0

(
Xit −

1

T

T∑
s=1

Xis

)
− β1

[
Xit (Zit − z)−

1

T

∑
is

Xis (Zis − z)

])2

×Kh (Zi1 − z, · · · , ZiT − z) ; (3.4)

see Fan and Gijbels (1995b), Ruppert and Wand (1994) or Zhan-Qian (1996). h is a band-

width and K is the product of univariate kernels such as K (u1, u2, · · · , uT ) =
∏T
`=1K(u`),

for u` being the `th component of u. Also, for each one it holds∫
K(u)du = 1 and Kh(u) =

1

h
K (u/h) .

Let β̂0 and β̂1 be the minimizers of (3.4). The above exposition suggests as estimators for

m(z) and m′(z), m̂h(z) = β̂0 and m̂′h(z) = β̂1, respectively. Furthermore, let us denote by

Ÿit = Yit − Y i·, Ẍit = Xit −Xi·, β = (β0 β1)> and

Z̃>it =

(
Ẍit Xit (Zit − z)− T−1

T∑
s=1

Xis (Zis − z)

)
.

Then, the criterion function (3.4) can be rewritten as

N∑
i=1

T∑
t=1

(
Ÿit − Z̃>it β

)2
T∏
`=1

Kh (Zi` − z) , (3.5)

and β̂0 and β̂1 have the following expression β̂0

β̂1

 =

(∑
it

∏
`

Kh (Zi` − z) Z̃itZ̃>it

)−1∑
it

∏
`

Kh (Zi` − z) Z̃itŸit. (3.6)

Note that in (3.4) or (3.5) it would have been usual to introduce a kernel function

around Zit. By doing so, the distance between z and any of the terms of the sample

Zi1, · · · , Zi(t−1), Zi(t+1), · · · , ZiT cannot be controlled by a fixed bandwidth and thus the
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transformed reminder terms cannot be negligible. The consequence of all that is a non-

negligible asymptotic bias. Here, we propose to introduce a multivariate kernel function

around the vector of values Zi1, · · · , ZiT . This modified version of a local linear regres-

sion, as it will be shown later, solves the problem of the bias but it considerably enlarges

the variance. More precisely, under rather standard conditions in the next section we

show that, asymptotically, the bias term is of order O
(
h2
)

but the variance is of order

O
(
1/NThT

)
. As the reader may notice, this bound for the variance is rather large. In

order to reduce the variance term but keeping the bias of the same order we propose to

add to both terms in (3.2) the average term 1
T

∑
sXism (Zis) and denote by

Ÿ ∗it = Ÿit +
1

T

T∑
s=1

Xism (Zis) . (3.7)

Therefore, combining (3.2) and (3.7) we obtain

Ÿ ∗it = Xitm (Zit) + v̈it, i = 1, · · · , N ; t = 1, · · · , T, (3.8)

where v̈it = vit − 1
T

∑
t vit. Note that equation (3.8) already shows a low dimensional

problem where m (·) could be estimated by a standard nonparametric regression method.

Unfortunately, the functions m (Zi1) , · · · ,m (ZiT ) are not observed and the standard lo-

cally weighted least-squares procedure would generate unfeasible estimators. To overcome

this situation, we propose to replace in (3.7) the m (Zis) by their corresponding estima-

tors, m̂h (Zis), in (3.6). Let Ÿ b
it = Ÿit + T−1

∑T
s=1Xism̂h (Zis) be, the regression problem

becomes

Ÿ b
it = Xitm (Zit) + v̈bit, i = 1, · · · , N ; t = 1, · · · , T, (3.9)

where the composed error term is of the form

v̈bit =
1

T

T∑
s=1

Xis (m̂h (Zis)−m (Zis)) + v̈it.

The quantities of interest can be obtained by minimizing the following criterion function

N∑
i=1

T∑
t=1

(
Ÿ b
it − γ0Xit − γ1Xit (Zit − z)

)2
K
h̃

(Zit − z) , (3.10)
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where h̃ is the bandwidth of this stage. We denote by γ̃0 and γ̃1 the minimizers of (3.10).

As previously, we propose as estimators for m(·) and m′(·), m̃
h̃
(z) = γ̃0 and m̃′

h̃
(z) = γ̃1,

respectively, γ̃0

γ̃1

 =

(∑
it

K
h̃

(Zit − z) Z̃bitZ̃b>it

)−1∑
it

K
h̃

(Zit − z) Z̃bitŸ b
it, (3.11)

where Z̃b>it = (Xit Xit (Zit − z)) is a 2× 1-dimensional vector.

3.3 Local linear estimator: asymptotic properties

In this section we extend the above results for the case (d 6= q 6= 1). Furthermore, we give

the asymptotic expressions for the bias and the variance and we calculate the asymptotic

distribution of the local linear regression estimator. Let us consider the multivariate

version of (3.5),

N∑
i=1

T∑
t=1

(
Ÿit − Z̃>it β

)2
T∏
`=1

KH (Zi` − z) , (3.12)

where in this case β =
(
β>0 β>1

)>
is a d (1 + q) × 1 vector and we denote by Z̃>it a

1× d (1 + q) dimensional vector of the form

Z̃>it =

(
Ẍ>it X>it ⊗ (Zit − z)> − T−1

T∑
s=1

X>is ⊗ (Zis − z)>
)
.

Let H be a q × q symmetric positive definite bandwidth matrix, K is the product of

q-variate kernels such that for each u it holds∫
K(u)du = 1 and KH(u) =

1

|H|1/2
K
(
H−1/2u

)
.

Let us denote by β̂ the minimizer of (3.12) and assuming Z̃>WZ̃ is nonsingular, the

solution of (3.12) can be written as β̂0

β̂1

 =
(
Z̃>WZ̃

)−1
Z̃>WŸ , (3.13)
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where Ÿ = (Ÿ11, · · · , ŸNT ) is a NT × 1 vector while

W = blockdiag

(
KH(Zi1 − z)

T∏
`=2

KH(Zi` − z), · · · ,KH(ZiT − z)
T−1∏
`=1

KH(Zi` − z)

)

and

Z̃ =


Ẍ>11 X>11 ⊗ (Z11 − z)> − T−1

∑T
s=1X

>
1s ⊗ (Z1s − z)>

...
...

Ẍ>NT X>NT ⊗ (ZNT − z)> − T−1
∑T

s=1X
>
Ns ⊗ (ZNs − z)>


are NT ×NT and NT × d (1 + q) dimensional matrix, respectively.

Then, (3.12) and (3.13) suggest as estimators form(z) andDm(z) = ∂m(z)/∂z, m̂ (z;H) =

β̂0 and vec(D̂m (z;H)) = β̂1, respectively. In particular, the local weighted linear least-

squares estimator of m(z) is defined as

m̂ (z;H) = β̂0 = e>1

(
Z̃>WZ̃

)−1
Z̃>WŸ , (3.14)

where e1 = (Id
...0dq×d) is a d (1 + q)× d selection matrix, Id is a d× d identity matrix and

0dq×d a dq × d matrix of zeros.

Once the estimator in its closed form is defined, let us consider the assumptions required

to obtain its asymptotic properties. Consider the data generating process defined in (3.1).

Furthermore, we assume

Assumption 3.1 Let (Yit, Xit, Zit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identically

distributed IR1+d+q-random variables in the subscript i for each fixed t and strictly sta-

tionary over t for fixed i.

Assumption 3.2 The random errors vit are independent and identically distributed, with

zero mean and homoscedastic variance, σ2
v < ∞. They are also independent of Xit and

Zit for all i and t. In addition, E |vit|2+δ, for some δ > 0.

Assumption 3.3 The unobserved cross-sectional effect, µi, can be arbitrarily correlated

with both Xit and/or Zit with an unknown correlation structure.
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Assumption 3.1 is standard in panel data analysis. We could consider other settings of

time-dependence such as strong mixing conditions (as in Cai and Li (2008)) or nonstation-

ary time series (as in Cai et al. (2009)). However, since in this chapter we investigate the

asymptotic properties of the estimators as N tends to infinity and T is fixed it is enough to

assume stationarity. Assumption 3.2 is also standard for the conventional transformation

in deviation from the mean; see Wooldridge (2003) or Hsiao (2003) for the fully parametric

case. It also rules out the presence of lagged endogenous variables. Independence between

the idiosyncratic error term and the covariates Xit and/or Zit is assumed without loss of

generality although it can be relaxed assuming some dependence in higher order moments.

Finally, Assumption 3.3 imposes the so-called fixed effects.

Let X = (X11, · · · , XNT ) and Z = (Z11, · · · , ZNT ) the observed covariates sample vectors,

we also need to impose the following additional assumptions about moments and densities,

Assumption 3.4 Let fZ1t (·) be the probability density function of Z1t, for t = 1, · · · , T .

All density functions are continuously differentiable in all their arguments and they are

bounded from above and below in any point of their support.

Assumption 3.5 The function E
[
ẌitẌ

>
it |Zi1 = z1, · · · , ZiT = zT

]
is definite positive for

any interior point of (z1, z2, · · · , zT ) in the support of fZi1,··· ,ZiT (z1, z2, · · · , zT ).

Assumption 3.6 Let ‖A‖ =
√
tr (A>A), then E

[
‖XitX

>
it ‖2|Zi1 = z1, · · · , ZiT = zT

]
is

bounded and uniformly continuous in its support. Furthermore, the matrix functions

E
[
XitX

>
is |Zi1 = z1, · · · , ZiT = zT

]
and E

[
ẌitX

>
is |Zi1 = z1, · · · , ZiT = zT

]
, for t = s and

t 6= s, are bounded and uniformly continuous in their support.

Assumption 3.7 Let z an interior point in the support of fZ1t. All second-order deriva-

tives of m1(·),m2(·), · · · ,md(·) are bounded and uniformly continuous.

Assumption 3.8 The q-variate Kernel functions K are compactly supported, bounded

kernel such that
∫
uu>K(u)du = µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) 6= 0 and

R(K) 6= 0 are scalars and I is the q×q identity matrix. In addition, all odd-order moments
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of K vanish, that is
∫
uı11 · · ·u

ıq
q K(u)du = 0, for all nonnegative integers ı1, · · · , ıq such

that their sum is odd.

Assumption 3.9 The bandwidth matrix H is symmetric and strictly definite positive.

Furthermore, each entry of the matrix tends to zero as N → ∞ in such a way that

N |H| → ∞.

Assumption 3.10 For some δ > 0, the functions E
[
|Xitvit|2+δ |Zi1 = z1, · · · , ZiT = zT

]
,

E
[
|Xisvit|2+δ|Zi1 = z1, · · · , ZiT = zT

]
, and E

[
|Ẍitvit|2+δ|Zi1 = z1, · · · , ZiT = zT

]
are

bounded and uniformly continuous in any point of their support.

This second set of assumptions is more directly related to nonparametric statistics lit-

erature. They are basically smoothness and boundedness conditions. Assumption 3.4

imposes smoothness conditions in the probability density function of Z1t, for t = 1, · · · , T .

Furthermore, Assumptions 3.5-3.6 are smoothness conditions on moment functionals.

Assumptions 3.7-3.9 are standard in the literature of local linear regression where, in

particular, Assumption 3.9 contains a standard bandwidth condition for smoothing tech-

niques. Finally, Assumption 3.10 is required to show that the Lyapunov conditions hold

for the Central Limit Theorem.

Under these assumptions we obtain the following asymptotic expressions for the condi-

tional bias and conditional variance-covariance matrix of the local weighted linear least-

squares estimator,

Theorem 3.1 Assume conditions 3.1-3.3 and 3.4-3.9 hold, then as N → ∞ and T is

fixed we obtain

E [m̂ (z;H) |X,Z]−m(z)

=
1

2
B−1
ẌtẌt

(z, · · · , z)

(
µ2(Kuτ )BẌtXt (z, · · · , z)− 1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z)

)
×diagd(tr(Hmr(z)H))ıd + op (tr(H))

and

V ar (m̂ (z;H) |X,Z) =
σ2
v

∏T
`=1R (Ku`)

NT |H|T/2
B−1
ẌtẌt

(z, · · · , z) (1 + op(1)) ,
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where τ is any index between 1 and T ,

BẌtXt (z, · · · , z) = E
[
ẌitX

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

BẌtXs (z, · · · , z) = E
[
ẌitX

>
is |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

BẌtẌt (z, · · · , z) = E
[
ẌitẌ

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

diagd (tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr(z)H), for r =

1, · · · , d, where Hmr(z) is the Hessian matrix of the rth component of m(·). Finally,

we denote by ıd is a d× 1 unit vector.

The proof of this result is done in the Appendix 2.

This theorem shows that m̂ (z;H) is, conditionally on the sample, a consistent estimator

of m(z). Furthermore, as it was already remarked in the previous section, although the

bias shows the standard order of magnitude for such problems, the variance shows an

asymptotic expression that is larger than the expected in this type of problems. In order

to achieve an optimal rate of convergence, the variance term must be of order 1/NT |H|1/2

whereas our result shows a bound of order 1/NT |H|T/2. Just to clarify the asymptotic

behavior of the estimator we show its properties for the univariate case, d = q = 1 and

H = h2I,

Corollary 3.1 Assume conditions 3.1-3.9 hold, then if h→ 0 in such a way that Nh2 →

∞ as N tends to infinity and T is fixed we obtain

E [m̂ (z;H) |X,Z]−m(z) =
1

2
c (z, z)m′′(z)h2 + op

(
h2
)
,

where

c (z, z)

=
µ2 (Kuτ )E

[
ẌitXit|Zi1 = z, · · · , ZiT = z

]
− T−1

∑T
s=1 µ2 (Kus)E

[
ẌitXis|Zi1 = z, · · · , ZiT = z

]
E
[
Ẍ2
it|Zi1 = z, · · · , ZiT = z

] .

Furthermore, if µ2 (Ku1) = · · · = µ2 (KuT ) = µ2 (Kuτ ) = µ2 (K) then the bias term has

the following expression

E [m̂ (z;H) |X,Z]−m(z) =
1

2
µ2(K)m′′(z)h2 + op

(
h2
)
,
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whereas if R (Ku1) = · · · = R (KuT ) = R (K) the variance-covariance matrix is

V ar (m̂ (z;H) |X,Z)

=
σ2
vR (K)T

NTh2fZi1,··· ,ZiT (z, · · · , z)E
[
Ẍ2
it|Zi1 = z, · · · , ZiT = z

] (1 + op(1)) .

As a tool to construct asymptotic confidence bands we give also a result that provides the

asymptotic distribution of the estimator.

Theorem 3.2 Assume conditions 3.1-3.3 and 3.4-3.10 hold, then as N → ∞ and T is

fixed we obtain √
NT |H|T/2 (m̂ (z;H)−m (z))

d−−−→ N (b(z), υ(z)) ,

where

b(z) =
1

2
µ2(Ku)diagd

(
tr

(
Hmr(z)H

√
NT |H|T/2

))
ıd,

v(z) = σ2
vR (K)T B−1

ẌtẌt
(z, · · · , z).

The proof of this result is shown in the Appendix 2.

We can compare the results obtained here with those obtained in Chapter 2 for the first

differences case. As expected, for both estimators the bias term presents the same linear

dependence in the trace of the bandwidth matrix H. However, the variance term differs

from one to the other estimator. In the first differences case, see Theorem 2.1 of Chapter 2,

up to a constant, the variance term exhibits a dependence from the bandwidth matrix H of

order 1/NT |H| whereas in our case it is of order 1/NT |H|T/2. That is, the ratio between

the first differences and the deviances from the mean estimators is of order |H|(T−2)/2.

For T = 2, the estimators show the same rate of convergence. This is clearly expected.

For T > 2, the first-differences estimator under the conditions established above shows

a faster rate of convergence for the variance terms as far as the diagonal elements of the

bandwidth matrix H tend to zero. This was also expected because the dimensionality of

the kernel used in the local linear regression procedure is different in both cases.

Now we show the asymptotic optimality of the first-step backfitting algorithm that is

obtained in Section 3.2.
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3.4 The backfitting estimator

In the regression model expressed in differences from the mean, by using of a local linear

regression approach with a high dimensional kernel weight we can consistently estimate the

function of interest but at the price of achieving a slow rate of convergence. However, as it

is noted in Section 3.2, we can solve this problem turning to an alternative procedure that

allows us to cancel asymptotically all additive terms of the function of interest expected

in the model.

Considering the multivariate version of (3.9) and let

Ÿ b
it = X>itm (Zit) + v̈bit, i = 1, · · · , N ; t = 1, · · · , T, (3.15)

where

v̈bit =
1

T

T∑
s=1

X>is (m̂ (Zis)−m (Zis)) + v̈it.

The quantities of interest in (3.15) can be estimated by minimizing the following locally

weighted linear regression

N∑
i=1

T∑
t=1

(
Ÿit − Z̃b>it γ

)2
K
H̃

(Zit − z) , (3.16)

where H̃ is a q × q symmetric positive definite bandwidth matrix, γ = (γ>0 γ>1 )> is a

d (1 + q)× 1 vector and Z̃b>it = (X>it X>it ⊗
(
Zit − z)>

)
is a 1× (1 + q) vector.

Furthermore, let γ̃ = (γ̃>0 γ̃>1 )> be the minimizer of (3.16). As estimators for m(z) and

Dm(z) = ∂m(z)/∂z, we suggest m̃(z, H̃) = γ̃0 and vec(D̃m(z; H̃)) = γ̃1, respectively, i.e.,

m̃(z; H̃) = γ̃0 = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bŸ b, (3.17)

where Ÿ b = (Ÿ b
11, · · · , Ÿ b

NT ) is a NT × 1 vector and W b and Z̃b are NT × NT and

NT × d (1 + q) dimensional matrix, respectively, of the form

W b = diag
(
K
H̃

(Z11 − z) , · · · ,KH̃
(ZNT − z)

)
and

Z̃b =


X>11 X>11 ⊗ (Z11 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .
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We now study the asymptotic behavior of the so-called backfitting estimator. At this stage

we need the results shown in Theorem 3.1 to hold uniformly in z. In order to do so, we

can rely on the well-known results in Masry (1996). In fact, some of the conditions already

enounced in Section 3.3 are sufficient to show the uniform rates for m̂(z;H). However,

we need some additional assumptions that relate the bandwidths of both m̂ (z;H) and

m̃(z; H̃).

Assumption 3.11 The bandwidth matrix H̃ is symmetric and strictly definite positive.

Furthermore, each entry of the matrix tends to zero as N tends to infinity in such a way

that N |H̃| → ∞.

Assumption 3.12 The bandwidth matrices H and H̃ must fulfill that, as N tends to

infinity, N |H| |H̃|/log(N)→∞, and tr (H) /tr(H̃)→ 0.

Then, under these assumptions we obtain the following asymptotic expressions for the

conditional bias and conditional variance-covariance matrix of m̃(z; H̃).

Theorem 3.3 Assume conditions 3.1-3.3, 3.4-3.8 and 3.11-3.12 hold, then as N → ∞

and T remains to be fixed we obtain

E
[
m̃(z; H̃)|X,Z

]
−m(z) =

1

2
µ2 (Ku) diagd

(
tr(Hmr(z)H̃)

)
ıd + op(tr(H̃))

and

V ar
(
m̃(z; H̃)|X,Z

)
=

σ2
vR(K)

NT |H̃|1/2
B−1
XtXt

(z)BẌtẌt(z)B
−1
XtXt

(z) (1 + op(1)) ,

where diagd

(
tr(Hmr(z)H̃)

)
stands for a diagonal matrix of elements tr(Hmr(z)H̃), for

r = 1, · · · , d and ıd is a d× 1 unit vector.

The proof of this result is done in the Appendix 2.

On one hand, we realize that the bias term is influenced by the amount of smoothing,

H, as well as the curvature of m(z) at z in a particular direction, measured through each

entry of Hm(z). In this way, we can guess that this estimator exhibits a higher conditional

107



Chapter 3. Nonparametric estimation of fixed effects panel data varying coefficient
models

bias when there is a higher curvature and more smoothing. On the other hand, from

the standpoint of the conditional variance we can see that it is a bit different from the

corresponding for the standard case. In particular, it will be increased when the smoothing

is lower and sparse data near z but now also depends on the time-demeaned covariates

BẌtẌt(z). Regardless, it is proved that the estimation procedure developed in this chapter

provides a nonparametric estimator in which the variance-covariance matrix of all its

components is asymptotically the same as if we would know the rest of components of the

mean deviation transformed expression, the so-called oracle efficiency property.

3.5 Monte Carlo simulations

In this section, Monte Carlo simulations are carried out in order to verify our theoretical

results. Furthermore, we analyze the small sample size behavior of our estimator under

the statistical setting analyzed in the previous sections.

As it is well-known, the mean squared error (MSE) is a suitable measure of the estimation

accuracy of the proposed estimators. Thus, let us denote by ϕ as the ϕth replication and

Q as the number of replications,

MSE (m̂ (z;H)) =
1

Q

Q∑
ϕ=1

E

( d∑
r=1

(m̂ϕr (z;H)−mϕr(z)) ∆Xit,ϕr

)2
 ,

which can be approximated by the averaged mean squared error (AMSE) such as

AMSE (m̂ (z;H)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=1

(
d∑
r=1

(m̂ϕr (z;H)−mϕr(z)) ∆Xit,ϕr

)2

.

Observations are generated from the following varying coefficient panel data model of

unknown form

Yit = X>ditm (Zqit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T ; d, q = 1, 2,

where Xdit and Zqit are random variables generated such that Xdit = 0.5Xdi(t−1) + ξit and

Zqit = wqit+wqi(t−1), where wqit is an i.i.d. uniformly distributed [0,Π/2] random variable

and ξit an i.i.d.N (0, 1). Furthermore, vit is an i.i.d.N (0, 1) random variable and m (·) is

a pre-specified function to be estimated.
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With the aim of verifying the theoretical results in Sections 3.3 and 3.4 we consider three

different cases

(1) Yit = X1itm1 (Z1it) + µ1i + vit,

(2) Yit = X1itm1 (Z1it, Z2it) + µ2i + vit,

(3) Yit = X1itm1 (Z1it) +X2itm2 (Z2it) + µ1i + vit,

where the chosen functionals form are m1 (Z1it) = sin (Z1it ∗Π), m2 (Z2it) = exp
(
−Z2

2it

)
,

and m1 (Z1it, Z2it) = sin
(

1
2 (Z1it + Z2it) ∗Π

)
.

In addition, we experiment with two specifications for the individual heterogeneity

a. µ1i depends on Z1it, where the dependence is imposed by generating µ1i = c0Z1i.+ui

for i = 2, · · · , N and Z1i. = T−1
∑T

t=1 Z1it,

b. µ2i depends on Z1it, Z2it through µ2i = c0Zi. + ui for i = 2, · · · , N and Zi. =

1
2

(
Z1i. + Z2i.

)
,

where in both cases ui is an i.i.d.N (0, 1) random variable and c0 = 0.5 controls the

correlation between the fixed effects and some of the regressors of the model.

In the experiment we use 1000 Monte Carlo replications. The number of time obser-

vations T is set up to three, while the number of cross-sections N is either 50, 100 or

200. The Gaussian kernel has been used and the bandwidth is chosen as Ĥ = ĥI, and

ĥ = σ̂z (NT )−1/5, where σ̂z is the sample standard deviation of {Zqit}N,Ti=1,t=1.

The simulations results that we report in the following tables are based on the AMSE.

Table 3.1. Fixed effects estimators. AMSE for d = 1 and q = 1

Local polynomial Backfitting

estimator estimator

N = 50 0.40494 0.16476

T=3 N = 100 0.21256 0.10741

N = 150 0.14272 0.07520
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Table 3.2. Fixed effects estimators. AMSE for d = 1 and q = 2

Local polynomial Backfitting

estimator estimator

N = 50 2.46715 0.76366

T=3 N = 100 2.28708 0.50700

N = 150 1.82741 0.38136

Table 3.3. Fixed effects estimators. AMSE for d = 2 and q = 1

Local polynomial Backfitting

estimator estimator

N = 50 0.84175 0.34369

T=3 N = 100 0.54485 0.21006

N = 150 0.33999 0.135574

The results from the simulation show some expected outcomes. Mainly, if we analyze

the behavior of the first-step estimator, we realize that the AMSE increases when the

dimensionality of Z goes from one to two, as expected. This does not happen if we let

the dimension of X become larger. This is the course of dimensionality. Furthermore, the

rate of decay, as N tends to infinity, is also much slower when q = 2 (Table 3.2) than when

q = 1, Tables 3.1 and 3.3. However, for this first-step estimator, some unexpected results

in small sample sizes occur. According to the theoretical results, the rate of convergence of

the first-step estimator should not depend on the dimension of the X covariates. However,

if we compare Table 3.1 against Table 3.3 we do not conclude the same. There seem to

be an effect in the rate of convergence of the AMSE, although this effect is much weaker

than in the case q > 1.

With respect to the backfitting estimator, the results fully confirm the theoretical findings.

As we can see, in all cases the AMSE of the backfitting algorithm is smaller than the

correspondent AMSE for the first-step estimator. Furthermore, the rate at which the

backfitting estimator decays is faster than in the first step estimator.
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3.6 Conclusions

In this chapter, we consider the estimation of a panel data model where the heterogeneity

term is arbitrarily correlated with the covariates and the coefficients are unknown functions

of some explanatory variables. The estimator is based in a deviation from the mean

transformation of the regression model and then a local linear regression is applied to

estimate the unknown varying coefficient functions. It turns out that the standard use of

this technique rends a non-negligible asymptotic bias. In order to avoid it, we introduce

a high dimensional kernel weight in the estimation procedure. As a consequence, the

resulting estimator shows a bias that asymptotically tends to zero at usual nonparametric

rates. However, the variance is enlarged, and therefore the estimator shows a very slow

rate of convergence. In order to achieve the optimal rate, we propose a one-step backfitting

algorithm. The resulting two-step estimator is shown to be asymptotically normal and its

rate of convergence is optimal within its class of smoothness functions. Furthermore, the

estimator is oracle efficient. Finally, we show some Monte Carlo results that confirm the

theoretical findings.
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Chapter 4

Differencing techniques in

nonparametric panel data varying

coefficient models with fixed

effects: a Monte Carlo analysis

4.1 Introduction

In the previous chapters some new techniques for the estimation of semi-parametric varying

coefficient panel data models with fixed effects have been proposed. These new techniques

fall within the class of the so-called differencing estimators and enable us to obtain con-

sistent estimators of the unknown objective functions. Under fairly general conditions,

we have previously shown the asymptotic properties of the proposed estimators, first-

differences and fixed effects. In a fully parametric context, it is well-known that under

strict exogeneity assumptions the behavior of the differencing estimators depends on the

stochastic structure of the random error term; see Wooldridge (2003). In order to prove

whether this statement holds for nonparametric estimators, in this chapter a comparative

analysis on the behavior of these nonparametric estimators in finite samples is performed.

As we have already stated, a panel data varying coefficient model where some regression
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coefficients are allowed to be varying depending on some exogenous continuous variables

is of the form

Yit = X>itm (Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (4.1)

where Xit and Zit are d × 1 and q × 1 vector of covariates, respectively, m(Z) is a d × 1

vector of smooth functions to estimate, µi the unobserved individual heterogeneity and

vit the random disturbances.

In order to avoid the statistical dependence problem between µi and Xit/Zit, in Chapters

2 and 3 we propose to remove the unobserved cross-sectional heterogeneity through dif-

ferencing transformations. The most popular are first differences and differences from the

mean. In the first case, the model to analyze is

Yit − Yi(t−1) = X>itm (Zit)−X>i(t−1)m
(
Zi(t−1)

)
+ vit − vi(t−1), i = 1, · · · , N ; t = 2, · · · , T,

(4.2)

whereas the deviation from the mean transformation of the regression model implies

Yit −
1

T

T∑
s=1

Yis = X>itm (Zit)−
1

T

T∑
s=1

X>ism (Zis) + vit −
1

T

T∑
s=1

vis, i = 1, · · · , N ; t = 1, · · · , T.

(4.3)

However, as it is emphasized in Su and Ullah (2011), direct application of nonparametric

regression techniques to estimate the unknown function of interest in either (4.2) or (4.3)

is a cumbersome task since it is necessary to consider m(·) as an additive function whose

elements share the same functional form. To overcome this situation, in Chapters 2 and

3 we propose direct strategies that provide consistent estimators of m(·), either in first

differences or differences from the mean regression equation. In particular, their core idea

is to approximate locally the additive function of either X>itm(Zit)−X>i(t−1)m(Zi(t−1)) or

X>itm(Zit)− T−1
∑T

s=1X
>
ism(Zis) and its derivatives through a Taylor series expansion.

Nevertheless, although these new estimation strategies enable us to solve the non-negligible

asymptotic bias resulting from the direct application of standard nonparametric regres-

sion techniques to panel data models in differences, they exhibit the standard dilemma

of the nonparametric estimates. In other words, any attempt to hold back the bias is

offset by an increase of the variance term and therefore the resulting estimators achieve
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a suboptimal rate of convergence. Because the proposed first-differences and fixed effects

estimator present this feature, in Chapters 2 and 3 we propose to ameliorate the variance

term exploding the additive structure of the regression model by combining the previous

procedure with a one-step backfitting algorithm. In this way, and as it is emphasized in

Fan and Zhang (1999), an additional smoothing can reduce the variance without affecting

the asymptotic order of the bias so the resulting estimators achieve the optimal rate of

convergence of this type of problems, i.e., NT |H|1/2.

Since these two backfitting estimators are asymptotically equivalent, up to some different

constants, it is interesting to analyze their behavior in small sample sizes. In a fully

parametric context, and under strict exogeneity assumptions, the stochastic structure of

vit’s is the determinant of the performance of the estimator. However, in the nonparametric

setting, apart from the previous issues other factors such as dimension of q and sizes of T ,

and more importantly N , are of great interest. In particular, in this chapter we would be

interested in learning whether, for different values of q and N , the fixed effects estimator

is more efficient than the first-differences estimator when vit’s are serially correlated. Or

whether, the opposite holds when the errors follow a random walk. The last results are

rather standard in fully parametric settings. However, we would like to know whether this

behavior, in terms of the empirical AMSE, is affected by the curse of dimensionality as

in nonparametric frameworks. Finally, as the sample size increases one might expect that

both estimators become equal in terms of the asymptotic rates of convergence.

The rest of the chapter is organized as follows. In Section 4.2, we review the local linear

estimation procedures for both differencing estimators that we propose in the previous

chapters. We also analyze their main asymptotic properties. In Section 4.3, we review

the one-step backfitting algorithm of both estimators that allow them to achieve asymp-

totically optimal rates. In Section 4.4, we compare the estimators considered via a Monte

Carlo simulation. Finally, we conclude in Section 4.5.

4.2 Local linear estimation procedure

In this section, we compare both local linear regression procedures proposed in Chapters 2

and 3. To illustrate these estimation procedures, we first focus on the univariate regression
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model and later we extend the results to the multivariate case.

Consider the first differences transformation in (4.2) with d = q = 1, for any z ∈ A,

where A is a compact subsect in a nonempty interior of IR, one has the following Taylor

expansion

Xitm (Zit)−Xi(t−1)m
(
Zi(t−1)

)
≈ m(z)∆Xit +m′(z)

[
Xit (Zit − z)−Xi(t−1)m

(
Zi(t−1)

)]
+

1

2

[
Xit (Zit − z)2 −Xi(t−1)

(
Zi(t−1) − z

)2]
+ · · ·+ 1

p!
m(p)(z)

[
Xit (Zit − z)p −Xi(t−1)

(
Zi(t−1) − z

)p]
≡

p∑
λ=0

βFλ

[
Xit (Zit − z)λ −Xi(t−1)

(
Zi(t−1) − z

)λ]
. (4.4)

Similarly, for the deviation from the mean regression in (4.3), one has the following

Xitm (Zit) −
1

T

T∑
s=1

Xism (Zis) ≈

(
Xit −

1

T

T∑
s=1

Xis

)
m(z) +

[
Xit (Zit − z) − 1

T

T∑
s=1

Xism (Zis)

]
m′(z)

+
1

2

[
Xit (Zit − z)2 − 1

T

T∑
s=1

Xis (Zis − z)2

]
m′′(z) + · · · +

1

p!

[
Xit (Zit − z)p − 1

T

T∑
s=1

Xis (Zis − z)p
]
m(p)(z)

≡
p∑

λ=0

βWλ

[
Xit (Zit − z)λ − 1

T

T∑
s=1

Xis (Zis − z)λ
]
. (4.5)

Both expressions (4.4) and (4.5) suggest that we estimate m(z),m′(z), · · · ,m(p)(z) by

regressing, respectively, ∆Yit on the terms Xit (Zit − z)λ−Xi(t−1)

(
Zi(t−1) − z

)λ
and Ÿi =

Yit− 1
T

∑T
s=1 Yis on Xit (Zit − z)λ− 1

T

∑T
s=1Xis (Zis − z)λ, for λ = 1, · · · , p, with different

kernel weights. Thus, the quantities of interest in both cases can be estimated using locally

weighted linear regression; see Fan and Gijbels (1995b).

For (4.4), that means to solve

N∑
i=1

T∑
t=1

(
∆Yit − βF0∆Xit − βF1

[
Xit (Zit − z)−Xi(t−1)

(
Zi(t−1) − z

)])2
×Kh (Zit − z)Kh

(
Zi(t−1) − z

)
, (4.6)

whereas for (4.5) we have

N∑
i=1

T∑
t=1

(
Ÿit − βw0

(
Xit −

1

T

T∑
s=1

Xis

)
− βw1

[
Xit (Zit − z)−

1

T

T∑
s=1

Xis (Zis − z)

])2

×Kh (Zi1 − z, · · · , ZiT − z) , (4.7)
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where h is a bandwidth and K is an univariate kernel such that∫
K(u)du = 1 and Kh(u) =

1

h
K (u/h) .

Let us denote by β̂F0 and β̂F1 the minimizers of (4.6), and β̂w0 and β̂w1 the corresponding

of (4.7). The above exposition suggests as estimators for m(·) and m′(·), m̂h(z) = β̂F0 and

m̂′h(z) = β̂F1 , respectively. Meanwhile, the estimators for the deviation from the mean

regression are m̂h(z) = β̂w0 and m̂′h(z) = β̂w1 , respectively.

Note that with the aim of avoiding the non-negligible asymptotic bias, in (4.6) we pro-

pose a bivariate kernel that enables us to consider a local approximation around the pair

(Zit, Zi(t−1)), not only around Zit as it is usual. Consequently, the distance between Zis

(for s 6= t) and z is considered for estimates so that the transformed remainder terms are

negligible. The same can be said for (4.7). Although there, the non-degenerated bias must

be removed by considering a local approximation around the T × 1 vector (Zi1, · · · , ZiT ).

Note that the difference in the local approximation makes a substantial difference in terms

of the asymptotic variance in both estimators. In fact, in Theorems 2.2 and 3.2 it is shown

that under similar conditions the order of the bias for the univariate case will be the same,

O(h2), but the variance is for T > 1 rather different. For the first-differences estimator the

variance is of order O(1/NTh2), whereas for the other estimator is of order O(1/NThT ).

For d 6= q 6= 1, the estimators have the following form. Denote by β̂F = (β̂>F0
β̂>F1

) a

d(1 + q)-vector that minimizes (4.6) in the multivariate case, that is

N∑
i=1

T∑
t=1

(
∆Yit −∆X>it βF0 −

[
Xit ⊗ (Zit − z)−Xi(t−1) ⊗

(
Zi(t−1) − z

)]>
βF1

)2

×KH (Zit − z)KH

(
Zi(t−1) − z

)
, (4.8)

where H is a q × q symmetric positive definite bandwidth matrix and K is a q-variate

kernel.

Let D(z) = vec(Dm(z)) be a dq × q vector and Dm(z) = ∂m(z)/∂z a d × q partial

derivative matrix of the dth component of m(z) with respect to the elements of the q × 1

vector z. Denote by Hm(z) = ∂m(z)/∂z∂z> a dq × d matrix of the Hessian matrix of the
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dth component of m(z). We suggest as estimators for m(z) and Dm(z), m̂F (z;H) = β̂F0

and vec(D̂Fm(z)(z;H)) = β̂F1 , respectively. Assuming that Z̃>FWF Z̃F is nonsingular, the

minimization problem (4.8) has the following solution in matrix form β̂F0

β̂F1

 =
(
Z̃>FWF Z̃F

)−1
Z̃>FWF∆Y, (4.9)

where ∆Y = (∆Y12, · · · ,∆YNT )> is a N(T − 1) vector while WF and Z̃F are N(T − 1)×

N(T − 1) and N(T − 1)× d(1 + q) matrix, respectively, of the form

WF = diag
(
KH (Z12 − z)KH (Z11 − z) , · · · ,KH (ZNT − z)KH

(
ZN(T−1) − z

))
and

Z̃F =


∆X>12 X>12 ⊗ (Z12 − z)> −X>11 ⊗ (Z11 − z)>

...
...

∆X>NT X>NT ⊗ (ZNT − z)> −X>N(T−1) ⊗
(
ZN(T−1) − z

)>
 .

Then, the local weighted linear least-squares estimator for m(z) is defined as

m̂F (z;H) = e>1

(
Z̃>FWF Z̃F

)−1
Z̃>FWF∆Y, (4.10)

where e1 = (Id
...0dq×d) is a d(1 + q)× d selection matrix, Id is a d× d identity matrix and

0dq×d a dq × d matrix of zeros.

We focus now on the estimators of a semi-parametric panel data varying coefficient models

in deviation from the mean. Let β̂w = (β̂>w0
β̂>w1

)> be a d(1 + q)- vector that minimizes

the expression (4.5) in the multivariate case, i.e.,

N∑
i=1

T∑
t=1

Ÿit −(Xit −
1

T

T∑
s=1

Xis

)>
βw0 −

[
Xit ⊗ (Zit − z)−

1

T

T∑
s=1

Xis ⊗ (Zis − z)

]>
βw1

2

×
T∏
`=1

KH (Zi` − z) , (4.11)

where nowK is the product of univariate kernels such thatK (u1, u2, · · · , uT ) =
∏T
`=1K (u`)

and u` is the `th component of u. We suggest as estimators for m(z) and Dm(z),

m̂w(z;H) = β̂w0 and vec(D̂wm(z;H)) = β̂w1 , respectively.
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Assuming Z̃>wWwZ̃w is nonsingular, the matrix form of the solution of the minimization

problem (4.11) can be written as β̂w0

β̂w1

 =
(
Z̃>wWwZ̃w

)−1
Z̃>wWwŸ , (4.12)

where Ÿ = (Ÿ11, · · · , ŸNT )> is a NT × 1vector while Ww and Z̃w is a NT × NT and

NT × d(1 + q) matrix, respectively, such that

Ww = blockdiag

(
KH (Zi1 − z)

T∏
`=2

KH (Zi` − z) , · · · ,KH (ZiT − z)
T−1∏
`=1

KH (Zi` − z)

)

and

Z̃w =


Ẍ>11 X>11 ⊗ (Z11 − z)> − T−1

∑T
s=1X

>
1s ⊗ (Z1s − z)>

...
...

Ẍ>NT X>NT ⊗ (ZNT − z)> − T−1
∑T

s=1X
>
Ns ⊗ (ZNs − z)>

 .

The local weighted linear least-squares estimator for m(z) of a regression in deviation from

the mean is then defined as

m̂w (z;H) = e>1

(
Z̃>wWwZ̃w

)−1
Z̃>wWwŸ . (4.13)

Note that for the sake of simplicity we use the same bandwidth matrix for these two

estimators. As it is well-known in the nonparametric literature, the optimal bandwidth

matrix H can be obtained using several standard procedures such as, for example, the

residual squares criterion proposed in Fan and Gijbels (1995a). Then, for empirical ap-

plications we must not forget that although the resulting bandwidths are very close, they

are different.

Once obtained the nonparametric estimators for both a first-differences model and a re-

gression in deviation from the mean, the next step is to establish the behavior of the two

estimators in large samples. Under some standard assumptions collected in the previous

chapters, their asymptotic distributions are derived in the next theorems. Assumption

2.1, or 3.1, characterizes the data-generating process for a panel data model. Assumption

2.2, or 3.2, is a standard strict exogeneity condition and 2.3, or 3.3, imposes the so-called
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fixed effects. In addition, for conditional moments, densities and kernel functions we need

some smoothness and boundedness conditions that are collected in Assumptions 2.4-2.5,

2.7-2.9, and 3.4-3.9. Finally, Assumptions 2.6 and 3.10 are required to show that the

Lyapunov condition holds.

Let X = (X11, · · · , XNT ) and Z = (Z11, · · · , ZNT ) be the observed covariates vectors. We

denote by Hmr(z) the Hessian matrix of the rth component of m(·), for r = 1, · · · , d,

whereas diagd

(
tr
(
Hmr(z)H

√
NT |H|

))
stands for a diagonal matrix of elements of

tr
(
Hmr(z)H

√
NT |H|

)
and ıd a d×1 unit vector. Furthermore, R(K) =

∫
K2(u)du, and

fZit,Zi(t−1)
(z, z) is the probability density function of the random variable

(
Zit, Zi(t−1)

)
. We

denote by fZi1,··· ,ZiT (z, · · · , z) the probability density functions of (Zi1, · · · , ZiT ) evaluated

at point z.

In this context, in Chapter 2 it is shown the following result for the locally weighted

least-squares first-differences estimator (4.9),

Theorem 2.2 Assume conditions 2.1-2.9 hold. Then,

√
NT |H| (m̂F (z;H)−m (z))

d−−−→ N (bF (z), υF (z)) ,

as N tends to infinity and T is fixed, where

bF (z) =
1

2
µ2 (K) diagd

(
tr
(
Hmr(z)H

√
NT |H|

))
ıd,

υF (z) = 2σ2
vR

2 (K)B−1
∆X∆X (z, z)

and

B∆X∆X (z, z) = E
[
∆Xit∆X

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z).

On the other hand, for the locally weighted least-squares fixed effects estimator (4.12), in

Chapter 3 we obtain the following asymptotic properties

120



Chapter 4. Differencing techniques in nonparametric panel data varying coefficient
models with fixed effects: a Monte Carlo analysis

Theorem 3.2 Assume conditions 3.1-3.10 hold, then as N → ∞ and T remains to be

fixed we obtain√
NT |H|T/2 (m̂w (z;H)−m (z))

d−−−→ N (bw(z), υw(z)) ,

where

bw(z) =
1

2
µ2(K)diagd

(
tr

(
Hmr(z)H

√
NT |H|T/2

))
ıd,

υw(z) = σ2
vR

T (K)B−1
ẌẌ

(z, · · · , z)

and

BẌẌ (z, · · · , z) = E
[
ẌitẌ

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) .

As we have already pointed out in Theorems 2.2 and 3.2, the use of a higher dimensional

kernel weight enables us to solve the problem of non-negligible asymptotic bias. It pro-

vides local linear estimators with a bias term of the same order as the standard results,

Op(tr(H)). However, as it is usual in the nonparametric techniques any attempt to reduce

the bias is offset by an enlargement of the variance term. Thus, these two estimators

are consistent but exhibit a suboptimal rate of convergence. Note that the standard rate

of this type of problems is NT |H|1/2. The first-differences estimator exhibits a rate of

order NT |H| and the estimator based in differences from the mean shows a rate of order

NT |H|T/2.

4.3 One-step backfitting procedure

In this section we analyze alternative procedures to provide nonparametric estimators that

exhibit the optimal rate of convergence of such problems. Firstly, we focus on the first

differences transformation. Later, we present the corresponding estimator for a regression

in deviation from the mean. We conclude with a comparison between the asymptotic

properties of the resulting estimators.

As it is noted in Fan and Zhang (1999), the variance can be reduced by further smoothing

but the bias cannot be reduced by any kind of smoothing. Thus, in order to achieve opti-

mality we propose to combine previous estimators with a one-step backfitting algorithm.
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In this way, this estimation strategy allows us to exploit the additive structure of the

model in order to cancel asymptotically one of the two additive terms of the model.

Let m̂F (z;H) be the first-step local weighted linear least-squares first-differences estimator

(4.8) and define the variable ∆Y b
it such that

∆Y b
it = ∆Yit +X>it m̂

(
Zi(t−1);H

)
, (4.14)

and replace (4.2) in this previous equation obtaining

∆Y b
it = X>itm (Zit) + ∆vbit, i = 1, · · · , N ; t = 2, · · · , T, (4.15)

where the composed error term has the form

∆vbit = XT
it

(
m̂
(
Zi(t−1);H

)
−m

(
Zi(t−1)

))
+ ∆vit.

By the same reasoning as before, the quantities of interest of (4.15) can be estimated as a

solution for γF to the following locally weighted linear regression

N∑
i=1

T∑
t=2

(
∆Y b

it −XT
itγF0 −X>it ⊗ (Zit − z)> γF1

)2
K
H̃

(Zit − z) , (4.16)

where H̃ is a q × q symmetric positive definite bandwidth matrix of this step. We denote

by γ̃F = (γ̃>F0
γ̃>F1

)> a d(1 + q)-vector that minimizes the expression (4.16).

Assuming Z̃b>F W b
F Z̃

b
F is a nonsingular matrix, we suggest as estimators for m(z) and

Dm(z), m̃F (z; H̃) = γ̃F0 and vec(D̃Fm(z; H̃)) = γ̃F1 , respectively,

m̃F (z; H̃) = γ̃F0 = e>1

(
Z̃b>F W b

F Z̃
b
F

)−1
Z̃b>F W b

F∆Y b, (4.17)

where ∆Y b =
(
∆Y b

12, · · · ,∆Y b
NT

)>
, W b

F = diag
(
K
H̃

(Zit − z) , · · · ,KH̃
(ZNT − z)

)
and

Z̃b =


X>12 X>12 ⊗ (Z12 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .

On the other hand, and following a similar procedure as before, we propose a backfitting

estimator for a mean deviation regression such as (4.3). Let m̂w (z;H) be the first-step
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fixed effects estimator proposed in (4.11), they define Ÿ b
it = Ÿit−T−1

∑T
s=1X

>
ism̂w (Zis;H)

and replace Ÿit by (4.3) obtaining

Ÿ b
it = X>itm (Zit) + v̈bit, i = 1, · · · , N ; t = 1, · · · , T, (4.18)

where the error term is

v̈bit =
1

T

T∑
s=1

X>is (m̂w (Zis;H)−m (Zis)) + v̈it.

Denote by γ̃w = (γ̃>w0
γ̃>w1

)> the d(1 + q)-vector that minimizes the following problem

N∑
i=1

T∑
t=1

(
Ÿ b
it −X>it γw0 −X>it ⊗ (Zit − z)> γw1

)2
K
H̃

(Zit − z) , (4.19)

we propose as estimator for m(z) and Dm(z), m̃w(z; H̃) = γ̃w0 and vec(D̃wm(z; H̃)) = γ̃w1 ,

respectively, of the form

m̃w(z; H̃) = γ̃w1 = e>1

(
Z̃b>w W b

wZ̃
b
w

)−1
Z̃b>w W b

wŸ
b, (4.20)

where Ÿ b = (Ÿ b
11, · · · , Ÿ b

NT )>, W b
w = diag

(
K
H̃

(Z11 − z) , · · · ,KH̃
(ZNT − z)

)
and

Z̃bw =


X>11 X>11 ⊗ (Z11 − z)>

...
...

X>NT X>NT ⊗ (ZNT − z)>

 .

In order to show the asymptotic efficiency of these two backfitting estimators, we need

the sampling scheme conditions established in Assumptions 2.1-2.3, or 3.1-3.3, and the

smoothness and boundedness conditions already considered in Assumptions 2.4-2.8 and

3.4-3.8. Furthermore, as they are obtained via a one-step backfitting algorithm we need

to ensure that both bias and variance rates of the first-step estimates, m̂F (z;H) and

m̂w(z;H), are uniform. Therefore, following Masry (1996) we impose some assumptions

about the bandwidth H̃ and its relationship with H. This is already considered in As-

sumptions 2.10-2.11 and 3.11-3.12.

Let diagd

(
tr(Hmr (z) H̃)

)
be the diagonal matrix of elements tr(Hmr (z) H̃) and id a d×1

unit vector, in Chapter 2 obtain the following asymptotic expressions for the backfitting

first-differences estimator (4.17),
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Theorem 2.3 Assume conditions 2.1-2.8 and 2.10-2.11 holds, then, as N tends to infinity

and T is fixed we obtain

E
(
m̃F (z; H̃)|X,Z

)
−m(z) =

1

2
µ2 (K) diagd

(
tr(Hmr (z) H̃)

)
ıd + op(tr(H̃))

and

V ar
(
m̃F (z; H̃)|X,Z

)
=

2σ2
vR (K)

NT |H̃|1/2
B−1
XX (z) (1 + op(1)) ,

where

BXX (z) = E
[
XitX

>
it |Zit = z

]
fZit(z).

Under similar conditions, in Chapter 3 it is proved the following asymptotic results for

the backfitting fixed effects estimator (4.17):

Theorem 3.3 Assume conditions 3.1-3.3, 3.4-3.9 and 3.11-3.12 hold, then as N → ∞

and T remains to be fixed we obtain

E
(
m̃w(z; H̃)|X,Z

)
−m(z) =

1

2
µ2(K)diagd

(
tr(Hmr(z)H̃)

)
ıd + op(tr(H̃))

and

V ar
(
m̃w(z; H̃)|X,Z

)
=

σ2
vR(K)

NT |H̃|1/2
B−1
XX(z)BẌẌ(z)BXX(z)−1 (1 + op(1)) ,

where

BXX (z) = E
[
XitX

>
it |Zit = z

]
fZit(z),

BẌẌ (z) = E
[
ẌitẌ

>
it |Zit = z

]
fZit(z).

With the aim of itemizing the asymptotic behavior of these two backfitting estimators,

m̃F (z; H̃) and m̃w(z; H̃), we analyze in detail the bias and variance-covariance matrix of

Theorems 2.3 and 3.3. On one hand, in both cases the conditional bias is very close to the

standard one of the local polynomial regression estimates. Thus, as each entry of Hmr(z)

is a measure of the curvature of m(·) at z in a particular direction, we can intuitively

conclude that these estimators show a higher conditional bias as far as the unknown

function exhibits a higher curvature and more smoothness. On the other hand, regarding

to the conditional variance we observe that both estimators achieve the optimal rate of
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convergence, but they show different constants. Thus, while the first-differences estimator

exhibits a variance-covariance matrix which increases when the smoothness becomes lower

or the data becomes sparse near z, the conditional variance of the fixed effects estimator

is also influenced by the time-demeaned covariates BẌẌ(z).

In this way, it is shown that direct estimation techniques allow obtaining estimators with

different rates of convergence that depend on the type of differencing transformation.

Meanwhile, one-step backfitting procedures provide estimators that achieve the optimal

rate of convergence for both transformations. In this situation, the rate of convergence

should not be used as an efficiency criterion between both backfitting estimators and, in

order to analyze efficiency, it is necessary to study their finite sample behavior.

4.4 Monte Carlo experiment

In this section, we conduct an extensive Monte Carlo simulation experiment with the

aim of comparing the small sample behavior of both first-differences and fixed effects

(time-demeaned) nonparametric estimators introduced in Sections 4.2 and 4.3. In a fully

parametric context, it is well-known that, under strict exogeneity assumptions the per-

formance of both estimators is going to depend on the stochastic structure of the vit’s

random errors. Therefore, a first idea for our simulation would be to check whether this

behavior is also fulfilled in the nonparametric case. In order to do so, we will consider a

model like (4.1) with three different types of idiosyncratic errors: random walk structure,

i.i.d. errors and an AR(1) process with correlation parameter equal to 0.5.

However, in the nonparametric setting, apart from the previous issues other factors such as

dimension of q and sizes of T and N , are of great interest. In particular, we are interested

in learning whether, for different values of q, N and T , the results obtained for different

types of idiosyncratic errors still hold. That is, we want to investigate the average mean

square error (AMSE) behavior of our estimators when facing the course of dimensionality

problem under different specifications of the error term. Furthermore, as T becomes

larger the performance of our estimators is another issue of great interest in this context.

In particular, as it appears in Theorems 2.2 and 3.2, the asymptotic bound for the variance

term of the first-differences estimator is 1/NT |H|, whereas the corresponding term for the
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fixed effects estimator is 1/NT |H|T/2. Therefore, one might expect a different behavior

between both estimators as T increases. On the opposite, for the one-step backfitting

estimators proposed in Section 4.3 the performance of both estimators should be affected

in the same direction by T because the asymptotic bounds for the variance are now the

same, i.e., 1/NT |H|1/2. Finally, it is also of interest to check whether the performance of

the one-step backfitting estimators is, as expected, better than the corresponding for the

local linear regression estimators in small sample sizes.

In this context, we first investigate the properties in finite samples of the two local linear

regression estimators proposed in Section 4.2 and make a comparison between them. Sec-

ondly, a similar comparative analysis is made for the one-step backfitting estimators that

we present in Section 4.3.

Observations are generated from the following varying coefficient panel data model

Yit = X>ditm (Zqit) + µqi + vit, i = 1, · · · , N ; t = 1, · · · , T, d, q = 1, 2, (4.21)

where Xdit and Zqit are random variables generated such that Xdit = 0.5ζdit + 0.5ξdit (ζ1it

and ζ2it are i.i.d. N(0, 1)), Zqit = ωqit + ωqi(t−1) (ω1it and ω2it are i.i.d. N(0, 1)) and we

consider three different cases of study:

(q = 1 d = 1) : Yit = X1itm (Z1it) + µ1i + vit,

(q = 2 d = 1) : Yit = X1itm (Z1it, Z2it) + µ2i + vit,

(q = 1 d = 2) : Yit = X1itm (Z1it) +X2itm (Z1it) + µ1i + v1it,

where the chosen functional forms are m1 (Z1it) = sin (Z1it ∗Π), m2 (Z1it) = exp
(
−Z2

1it

)
,

m1 (Z1it, Z2it) = sin
(

1
2 (Z1it + Z2it) ∗Π

)
.

By treating the cross-sectional heterogeneity as the fixed effect, we allow that the indi-

vidual effects can be correlated with one or more of the covariates. In particular, the

dependence between µqi and Zqit is imposed by generating µqi = c0Zi· + ui and Zi· =

(Tκ)−1
∑κ

q=1

∑T
t=1 Zqit, where ui is an i.i.d. N(0, 1) random variable and i = 2, · · · , N .

The correlation between the fixed effects and some of the explanatory variables of the

model is controlled by c0 = 0.5. Also, let εit be an i.i.d. N(0, 1) and vit a scalar random

variable, for each model we work with the following three different specification of the

error term:
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a) vit = εit;

b) vit follows a random walk, such as vit = 1 + vi(t−1) + εit;

c) vit is generated as stationary AR(1) process of the form vit = ρvi(t−1) + εit.

In each experiment we use 1000 Monte Carlo replications Q. The number of period T

is varied to be 3 and 5, whereas the number of cross-sections N takes the values 50, 100

and 150. For the calculations we use a Gaussian kernel and the bandwidth is chosen as

Ĥ = ĥI, and ĥ = σ̂z(NT )−1/5, where σ̂z is the sample standard deviation of {Zqit}N,Ti=1,t=1.

In order to state the performance of the first-differences and fixed effects estimator, we

use the mean square error (MSE) as a measure of their estimation accuracy. Thus, we

denote by the ϕth replication by the subscript ϕ,

MSE(m̂(z; Ĥ)) =
1

Q

Q∑
ϕ=1

E

( d∑
r=1

(m̂ϕr(z; Ĥ)−m`r(z))Xit,ϕr

)2
 ,

which can be approximated by the averaged mean squared error (AMSE),

AMSE(m̂(z; Ĥ)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=1

(
d∑
r=1

(m̂ϕr(z; Ĥ)−mϕr(z))Xit,ϕr

)2

.

4.4.1 Local linear estimator: simulation results

With the aim of analyzing the finite sample behavior of the two local linear regression

estimators, m̂F (z;H) and m̂w(z;H), proposed in Section 4.2, the following tables summa-

rize the results of the simulation. Specifically, Tables 4.1-4.3 contain the AMSE obtained

for each of the three varying coefficient specifications proposed in the simulation when the

error term is i.i.d. Hence, in Table 4.2 we show the impact of the course of dimensionality

(q = 2, d = 1), and Table 4.3 shows the possible impact of a larger dimension in the

number of linear explanatory variables (q = 1, d = 2). In each table, we present results

for T = 3, 5 and N = 50, 100, 150. Note that our asymptotic results hold as N becomes

larger whereas T is kept fixed. With the same structure, Tables 4.4-4.6 summarize the

results when the error term follows a random walk, whereas Tables 4.7-4.9 present the

results when the idiosyncratic error term is generated as an AR(1) stationary process.
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In Tables 4.1-4.3, according to our developments and standard results in fully parametric

settings, the fixed effects estimator should perform better than the first-differences one.

A quick look to these tables confirms in general our theoretical findings. Furthermore,

as expected, as N increases all AMSEs tend to zero and the rates between them are not

equal. However, we point out that, the fixed effects estimator is much sensitive to T than

the other estimator. As we can realize in all tables, as T increases the relative performance

of the fixed effects estimator becomes worse. In Table 4.1 for example, the relative AMSE

defined as AMSE
(
m̂F (z; Ĥ)

)
/AMSE

(
m̂w(z; Ĥ)

)
, for N = 150, goes from 4.46, for

T = 3, to 3.33, for T = 5. This effect can be explained in terms of the asymptotic bounds

of both estimators. Moreover, as it was expected from these bounds, when q = 2, in Table

4.2, we realize that the relative performance of the fixed effects estimator is even worse

when T increases. Keeping N = 150, the relative performance falls from 1.69, for T = 3,

to 0.99, for T = 5. Finally, the results shown in Table 4.3 indicate that the dimension d

of the vector of covariates X does not affect the asymptotic behavior of the estimators.

Table 4.1. AMSE for d = 1 and q = 1 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.50140 0.26676 1.87959

T=3 N = 100 0.45282 0.16728 2.70696

N = 150 0.43055 0.09647 4.46304

N = 50 0.43100 0.23248 1.85392

T=5 N = 100 0.41523 0.16562 2.50712

N = 150 0.41112 0.12333 3.33349

In Tables 4.4-4.6, we show the simulation results for the random walk case. Within this

data-generating process, the first-differences estimator should show its better performance.

This is true, if we compare the AMSE of the first-differences estimator in Tables 4.1, 4.2 and

4.3 against their counterparts in Tables 4.4, 4.5 and 4.6. In all cases, the AMSE is smaller

when the idiosyncratic errors are generated as a random walk. However, if we compare

results in Table 4.2 against Table 4.5, we point out that the course of dimensionality affects
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Table 4.2. AMSE for d = 1 and q = 2 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.87609 0.71333 1.22817

T=3 N = 100 0.74099 0.50743 1.46028

N = 150 0.67584 0.40031 1.68829

N = 50 0.58338 0.85925 0.67894

T=5 N = 100 0.53208 0.64803 0.82107

N = 150 0.49571 0.49681 0.99785

Table 4.3. AMSE for d = 2 and q = 1 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.67624 0.40464 1.66232

T=3 N = 100 0.55552 0.26768 2.07531

N = 150 0.50958 0.17777 2.86651

N = 50 0.52788 0.53855 0.98019

T=5 N = 100 0.48977 0.41464 1.18119

N = 150 0.47359 0.27039 1.75151

negatively the performance of the first-differences estimator. On the contrary, the fixed

effects estimator, as expected from our results, worsens its performance compared against

the i.i.d. setting. It is also seriously affected by the course of dimensionality, as the first-

differences estimator. If we compare the relative performance between the estimators, in

Table 4.4, the relative AMSE for N = 150 goes from 3.23, for T = 3, to 3.38 for T = 5.

In Table 4.5, this relative AMSE goes from 1.19, for T = 3, to 0.95, for T = 5. That is,

in relative terms, the fixed effect estimator still performs better than the first-differences

one, except if T becomes larger. This was already remarked in the previous setting but

now this effect is much stronger. As in previous cases, the behavior of the fixed effects

estimator is much more sensitive to changes in T than the other estimator. That is why,

for large T , in the random walk setting the first-differences estimator shows a smaller
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AMSE.

Table 4.4. AMSE for d = 1 and q = 1 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.48321 0.34697 1.39266

T=3 N = 100 0.44879 0.21847 2.05424

N = 150 0.42673 0.13221 3.22767

N = 50 0.41596 0.21696 1.91722

T=5 N = 100 0.40375 0.16199 2.49244

N = 150 0.40429 0.11942 3.38545

Table 4.5. AMSE for d = 1 and q = 2 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.80752 0.94763 0.85215

T=3 N = 100 0.72200 0.70594 1.02275

N = 150 0.65203 0.54788 1.19009

N = 50 0.50191 0.91147 0.55066

T=5 N = 100 0.47401 0.61333 0.77285

N = 150 0.44549 0.46605 95588

In Tables 4.7-4.9 there are shown the AMSEs when the idiosyncratic errors are generated

according to an AR(1) stationary structure. First, although in most cases, the fixed effects

estimator performs better than the other one, its performance compared against the other

settings is worse. This is very clear in the case of q = 2, (see Table 4.8). Again, we

discover that the fixed effects estimator is much more sensitive to the size of T than the

first-differences estimator. Moreover, the results in terms of AMSE of the first-differences

estimator are better than the ones obtained in the random walk setting. This is somehow

unexpected. As a summary, the results of this estimator are much more stable across

different specifications of the error term. The same cannot be said about the fixed effects

estimator. In fact, it performs quite well with q = 1 and under i.i.d. or an AR(1) stationary
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Table 4.6. AMSE for d = 2 and q = 1 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.63756 0.59151 1.07785

T=3 N = 100 0.54387 0.43507 1.25007

N = 150 0.50232 0.27174 1.84880

N = 50 0.49219 0.52216 0.94260

T=5 N = 100 0.45677 0.38412 1.18913

N = 150 0.45309 0.02615 17.3266

process, but it shows a much worse performance when the errors are generated following

a random walk process. As we have already pointed out before, when T grows, the finite

sample performance of these estimators worsens considerably.

Table 4.7. AMSE for d = 1 and q = 1 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.45359 0.17422 2.60354

T=3 N = 100 0.42577 0.11878 3.58452

N = 150 0.41777 0.07595 5.50059

N = 50 0.42027 0.55042 0.76354

T=5 N = 100 0.41011 0.44902 0.91334

N = 150 0.40609 0.49980 1.35453

We finish this section by highlighting that as N increases, that is, asymptotically, the

AMSE tends to converge for each estimator under different specifications of the error term.

For small values of T , the AMSE of the first-differences estimator tends to dominate in

terms of the AMSE of the fixed effects one. This can be also observed by looking at the

relative AMSE values.
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Table 4.8. AMSE for d = 1 and q = 2 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.67023 0.60541 1.00796

T=3 N = 100 0.60011 0.42938 1.39762

N = 150 0.55613 0.34268 1.62288

N = 50 0.56328 2.15283 0.26165

T=5 N = 100 0.50476 1.63113 0.30945

N = 150 0.47522 1.29458 0.36708

Table 4.9. AMSE for d = 2 and q = 1 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.58076 0.39258 1.47934

T=3 N = 100 0.51289 0.22028 2.32835

N = 150 0.48115 0.13734 3.50335

N = 50 0.51009 1.83876 0.27741

T=5 N = 100 0.47487 1.23014 0.38603

N = 150 0.45814 0.88428 0.51809

4.4.2 Backfitting estimator: simulation results

In this section, we show in Tables 4.10-4.18 the analogue results for the one-step backfitting

estimators. In Tables 4.10-4.12 we compute the AMSE of the simulations for the first-

differences and the fixed effects estimator under the i.i.d. setting. In Tables 4.13-4.15 we

show the AMSE for the random walk setting and finally in Tables 4.16-4.18 we show all

relevant values for the AR(1) stationary process. The bandwidth in the second-step is

taken according to Silverman’s rule of thumb.

In all error settings, the performance of the one-step backfitting is better than its cor-
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Table 4.10. AMSE for d = 1 and q = 1 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.51583 0.08973 5.74869

T=3 N = 100 0.46329 0.05449 8.50229

N = 150 0.44410 0.03447 12.8837

N = 50 0.44147 0.05277 8.36593

T=5 N = 100 0.42812 0.03485 12.2846

N = 150 0.42790 0.02314 18.4918

Table 4.11. AMSE for d = 1 and q = 2 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.52639 0.25755 2.04384

T=3 N = 100 0.40277 0.17059 2.36104

N = 150 0.34501 0.12348 2.79405

N = 50 0.64658 0.16027 4.22150

T=5 N = 100 0.53277 0.11141 4.78207

N = 150 0.46933 0.07968 5.89018

Table 4.12. AMSE for d = 2 and q = 1 when vit is N.I.D.(0, 1)

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.68699 14619 4.84854

T=3 N = 100 0.56451 0.08886 6.35280

N = 150 0.51538 0.05336 9.65854

N = 50 0.52992 0.08711 6.08334

T=5 N = 100 0.49683 0.05554 8.94544

N = 150 0.48044 0.03471 13.8415
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Table 4.13. AMSE for d = 1 and q = 1 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.52637 0.11840 4.44569

T=3 N = 100 0.46566 0.07394 6.29781

N = 150 0.44353 0.04497 9.86279

N = 50 0.43097 0.05039 8.55269

T=5 N = 100 0.42111 0.03325 12.6649

N = 150 0.42257 0.02254 18.7475

Table 4.14. AMSE for d = 1 and q = 2 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.51851 0.34453 1.50498

T=3 N = 100 0.39859 0.23508 1.68411

N = 150 0.34249 0.16189 2.11557

N = 50 0.57119 0.15036 3.79882

T=5 N = 100 0.47637 0.10662 4.46792

N = 150 0.43928 0.07663 5.73248

Table 4.15. AMSE for d = 2 and q = 1 when vit follows a random walk

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.69001 0.20968 3.29078

T=3 N = 100 0.56407 0.12945 4.35743

N = 150 0.51588 0.07691 6.70758

N = 50 0.50400 0.08082 6.23608

T=5 N = 100 0.46947 0.03380 13.8896

N = 150 0.46781 0.03380 13.8405
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Table 4.16. AMSE for d = 1 and q = 1 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.47537 0.07127 6.66999

T=3 N = 100 0.44203 0.04663 9.47952

N = 150 0.43503 0.03056 14.2353

N = 50 0.44391 0.11273 3.98572

T=5 N = 100 0.43182 0.07360 5.86712

N = 150 0.42899 0.04329 9.90968

Table 4.17. AMSE for d = 1 and q = 2 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.44274 0.21529 2.05648

T=3 N = 100 0.36115 0.14795 2.44103

N = 150 0.32366 0.10671 3.03308

N = 50 0.67840 0.364000 1.86374

T=5 N = 100 0.52601 0.24939 2.10919

N = 150 0.46826 0.17092 2.73964

Table 4.18. AMSE for d = 2 and q = 1 when vit is AR(1) with ρ = 0.5

First-Differences Fixed Effects AMSE(m̂F (z; Ĥ))

estimator estimator AMSE(m̂w(z; Ĥ))

N = 50 0.60729 0.13773 4.40928

T=3 N = 100 0.52407 0.04489 11.6745

N = 150 0.49471 0.04489 11.0205

N = 50 0.53384 0.23783 2.24463

T=5 N = 100 0.49343 0.14064 3.50846

N = 150 0.48116 0.08747 5.50086
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respondent local linear regression estimators. However, the improvement is much bigger

in the fixed effects case. As we expected also, the course of dimensionality is overrid-

den. This is of course the main reason why we have applied this second stage estimation

procedure. Furthermore, the rate at which the AMSE tends to zero for both estimators

seems to be faster, according to the predictions of the asymptotic results. However, for

small sample sizes, although both estimators do have the same rates of convergence the

constants are different. This is considered in simulations under different scenarios of the

error terms. Hence, under i.i.d. and an AR(1) stationary process the first-step backfitting

algorithm of the fixed effect estimator performs better than the first-differences one. This

can be realized by analyzing the relative AMSE. On the contrary, under the random walk

specification, the performance is better in the opposite sense.

4.5 Conclusions

Recently, some new techniques have been proposed for the estimation of semi-parametric

fixed effects varying coefficient panel data models. These new techniques fall within the

class of the so-called differencing estimators. In particular, we consider first-differences

and fixed effects local linear regression estimators. Analyzing their asymptotic properties

it turns out that, keeping the same order of magnitude for the bias term, these estimators

exhibit different asymptotic bounds for the variance. In both cases, the consequences are

suboptimal nonparametric rates of convergence. In order to solve this problem, exploiting

the additive structure of this model, a one-step backfitting algorithm is proposed. Under

fairly general conditions, it turns out that the resulting estimators show optimal rates of

convergence and exhibit the oracle efficiency property. Since both estimators are asymp-

totically equivalent, it is of interest to analyze their behavior in small sample sizes. In a

fully parametric context, it is well-known that, under strict exogeneity assumptions the

performance of both first-differences and fixed effects estimators is going to depend on

the stochastic structure of the idiosyncratic random errors. However, in the nonparamet-

ric setting, apart from the previous issues other factors such as dimensionality or sample

size are of great interest. In particular, we would be interested in learning about their

relative average mean squared error (AMSE) under different scenarios. The simulation
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results basically confirm the theoretical findings for both local linear regression and one-

step backfitting estimators. However, we have found out that fixed effects estimators are

rather sensitive to the size of number of time observations.
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Chapter 5

Precautionary savings over the life

cycle: a two-step locally constant

least-squares estimator

5.1 Introduction

Household save primarily for two reasons, to finance expenses after retirement (life-cycle

motive) and to protect consumption against unexpected shocks (precautionary motive).

In this situation, this article focuses on the estimation of a stochastic model of household’s

precautionary savings motivated by the life-cycle hypothesis model (LCH henceforth) of

Modigliani and Brumberg (1954). Following the predictions of human capital theory,

incomes rise in the early stages of working life by the effect of experience, while later

they are reduced by the action of obsolescence and depreciation. Thus, the LCH model

indicates that there is a hump-shaped age-saving profile since individuals tend to save from

the middle of his life until retirement, and dissave in younger and older ages to maintain

a constant level of utility in all periods. In this context, unforeseen adverse conditions

and prudent behavior of the households make precautionary savings in a protection tool,

finding a different behavior related to both the age of the individual and their risk aversion.

Uncertainty about the household’s out-of-pocket medical expenses is a relevant issue for
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preventive savings as it is noted in Palumbo (1999). Thus, in the past two decades, there

is a plethora of empirical studies that have sought to improve our understanding about

optimal household consumption and its behavior under various sources of uncertainty; see

Starr-McCluer (1996), Gruber (1997), Egen and Gruber (2001), Gertler and Gruber (2002)

or Gourinchas and Parker (2002), among others. Nevertheless, many of these empirical

studies have been criticized with regard to its lack of robustness against different types of

misspecification.

The different sources of misspecification that they usually ignore can be grouped in three

major weaknesses. First, the effect of the individual preferences is a relevant aspect when

we try to model the household behavior but, unfortunately, most of these previous models

omit this issue that appears in econometric models in the form of unobserved heterogene-

ity. Second, the decision of how much to spend in health-care products depends on some

social and demographic features of the household. Considering this variable as exogenous

may lead to inconsistent estimators. Finally, these models are usually based on a log-

linearized Euler equation that is captured in the form of a fully parametric model and

where precautionary savings are contained in the error term. However, such equations

can be misleading because they are rather poor approximations of the marginal utility

smoothing and they prevent the use of the age of the people as a key factor in their con-

sumption decisions. Therefore, the resulting estimators may be suffering from an omitted

variable bias and, as it is noted in Attanasio et al. (1999), we might be incorrectly assigning

a significant portion of the hump-shape consumption over the life-cycle to demographic

changes in the household, or if we analyze a model with little heterogeneity in preferences

we could be assigning too much of the variation of this shape to precautionary savings.

In this way, it is shown how some restrictions concerning to structural relationships in

savings go far beyond what is traditionally assumed by parametric models and we need to

turn to more flexible procedures such as nonparametric and semi-parametric models; see

Chou et al. (2004), Maynard and Qiu (2009), Gao et al. (2012) or Kuan and Chen (2013).

However, although these studies can relax the assumptions related to the specification of

the model, they do not face individual heterogeneity correlated with some covariates and

endogenous variables are not allowed.

In this situation, the aim of this chapter is to contribute to the literature on precautionary
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savings, extending a semi-parametric method as the one developed in Chou et al. (2004) to

the analysis of panel data models that address the main weaknesses of these latter studies.

Specifically, what we propose is to estimate a LCH model that allows us to determine

the behavior of the households under the following peculiarities: (i) unobserved individual

heterogeneity correlated with some of the covariates; (ii) some of the functions that relate

endogenous and explanatory variables are unknown in the Euler equation and need to be

estimated; and (iii) health-care spending determined endogenously.

Starting from a nonparametric panel data varying coefficient regression model with fixed

effects, we propose to estimate the unknown functions of interest through a very simple

estimator based on a differencing technique. Furthermore, to cope with the endogeneity

issue we perform the estimation procedure using the predicted values of the (possibly)

endogenous variables that are generated from the nonparametric estimation of the instru-

mental variable (IV henceforth) reduced form equation. We establish that the resulting

nonparametric two-stage estimator is consistent and asymptotically normal.

As we have stated in previous chapters, direct nonparametric estimation of differencing

panel data models with fixed effects has been considered as rather cumbersome in the

literature; see Su and Ullah (2011). To our knowledge, among differencing nonparametric

estimators, in Henderson et al. (2008) it is proposed to solve this problem using profile

likelihood techniques whereas in Su and Lu (2013) the estimator comes out as the solution

of a second order Friedholm integral equation. Unfortunately, all these estimators are

asymptotically biased in the presence of endogeneity. On the contrary, some IV methods

have been proposed in the context of nonparametric panel data varying coefficient models

with random effects. In particular, in Cai and Li (2008) it is proposed to estimate the non-

parametric functions using the so-called nonparametric generalized method of moments,

when endogeneity is allowed. However, note that this procedure do not control for hetero-

geneity that is correlated with some explanatory variables, so it renders to asymptotically

biased estimators when fixed effects are present.

To our knowledge, this is the first technique that enables us to estimate directly the

impact of different types of uncertainty on the behavior of households in a context of

stochastic dynamic models of precautionary savings with endogenous variables and fixed

effects without resorting to restrictive assumptions about functional forms, such as it is
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common with the well-known log-linearized version of the Euler equation. Furthermore,

in contrast with some papers mentioned above, the asymptotic analysis that we perform

in this chapter is based on the standard panel data framework, where the number of

observations in time is fixed and the number of individuals grows with sample size.

Also, in order to show the feasibility and possible gains of this new procedure, we give a

solution for the optimal consumption decision problem using a data set from the consumer

expenditure continuous survey (ECPF henceforth) elaborated by the Spanish bureau of

statistics (INE henceforth) for the period 1985(I)-1996(IV). Thus, the empirical application

discussed in this chapter allows health-care expenditures to have a different impact on

household behavior depending on the age-group they belong to, a topic of great relevance

to political considerations for their important implications on the individuals welfare.

The structure of this chapter is as follows. Section 5.2 lays out the econometric model and

the estimation procedure. In Section 5.3 we study its asymptotic properties and state how

to calculate the confidence intervals. In Section 5.4 we illustrate an application with real

data to investigate the finite sample performance of our proposed estimation procedure

and present some simulation results. Finally, Section 5.5 concludes the chapter. The

proofs of the main results are collected in the Appendix 3.

5.2 Conceptual framework

Along with liquidity constraints and habits in consumer preferences, uncertainty about

possible economic hardships and household risk aversion are key determinants of house-

hold’s consumption/saving decisions; see Friedman (1957). According to Eurostat data,

health-care expenditures of U.S. households represent a 16.4% of their total consumption

in 1986 and a 17% in 1996, while in Spain these expenses are about a 3.4% of the total in

1986 and 5.9% in 1996. The significant impact of health-care expenditures on household

wealth, jointly with their persistent and increasing behavior with the age of the individ-

uals, make them a significant part of this uncertainty and precautionary savings appears

as an instrument of protection against potential income downturns or unforeseen out-of-

pocket medical expenses in the latter stages of life, see Chou et al. (2003). In this context,

the aim of this section is to analyze the relationship between the marginal propensity to
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consume and the age of the main household breadwinner by incorporating uncertainty in

the LCH model.

To this end, we solve the basic problem of the consumer i at the time t in the presence

of different types of uncertainty, following for example Blanchard and Fisher (1989) and

Deaton (1992), but relaxing some assumptions about functional forms and, at the same

time, allowing the presence of some endogenous variables. Thus, the system of equations

that we consider is

Y = α(Z) +W>m1(Z) + U>m2(Z) + µ+ v,

W = g(X) + ζ + ξ,
(5.1)

where v and ξ are idiosyncratic error terms that are correlated between them. The in-

dividual preferences, denoted by µ and ζ, are unobserved and correlated with some/all

covariates of the system while both precautionary savings Y and health-care expenditures

W are endogenously determined. As we explain in the following, we assume Y is function

of the age of the main household breadwinner Z, health-care expenditures W and some

other explanatory variables of the households U , whereas W depends on a set of household

demographic features X.

To understand the stochastic life-cycle model that we consider in this chapter, expression

(5.1), it is assumed that individuals live T periods and they work during the first ones,

T − 1. In addition, in each work period t they receive a stochastic income Iit and incur in

an out-of-pocket health-care expenditure Mit. If Mit were known, households would decide

how to spend their income between consumption Cit and financial wealth Ait, maximizing

an additively time-separable utility that has a positive third-order derivative (U ′′′(·) > 0).

Note that this is the necessary condition for precautionary saving because, when the

marginal utility function is convex, increases in the level of uncertainty about future

consumption will cause a reduction in current consumption and an increase in savings; see

Blanchard and Fisher (1989) for further details. According to Caballero (1990), we use a

negative exponential utility function by assuming that the degree of absolute risk aversion

and absolute prudence are both constant and equal to α, so household i maximize the
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following problem at the moment 0,

max
Cit

E0

[
N∑
i=1

T−1∑
t=0

(
− 1

α

)
exp(−αCit)

]
, (5.2)

subject to

Ai(t+1) = Ait + Iit −Mit − Cit,

Mit = Mi(t−1) + εit ; εit ∼ N
(
0, σ2

)
,

(5.3)

where health-care expenditures are modeled as a random walk. For the sake of simplicity,

we assume there do not exist liquidity constraints so both the discount and the interest

rate are both equal to zero.

If we take first-order conditions in (5.2) and use the fact that E[exp(Cit)] = exp[E(C) +

σ2/2], when Cit is normally distributed with mean E(C) and variance σ2, the expected

consumption is

Ci(t+1) = Cit +
ασ2

2
+ εi(t+1), (5.4)

and combining this result with the inter-temporal budget restriction (5.3) we obtain the

optimal level of consumption, i.e.

Cit =
1

T − t
Ait + (Iit −Mit)−

α(T − t− 1)σ2

4
, (5.5)

where (Iit − Mit − Cit) is the precautionary savings and α(T − t − 1)σ2/4 reflects the

uncertainty effect. Note that here we do not enter in the debate about the importance of

the retirement versus the bequests reasons. Thus, the measure of retirement that we use

implicitly includes both.

Analyzing in detail the optimal consumption expression (5.5), we see that increases in

uncertainty about future medical expenses (σ2) or the degree of absolute prudence (α),

together with a broad horizon of life (T − t− 1), causes that agents behave as buffer-stock

agents. Thus, Cit falls while (Iit −Mit − Cit) increases in order to have resources against

potential adversities. On the contrary, adult households with high levels of accumulated

wealth Ait have a high consumption, because their already reduced temporal horizon of

life. On the other hand, focusing on the behavior of the expected consumption (5.4) we can
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see the uncertainty effect on the slope of the consumption path. Since this expression has

a constant positive slope that depends on both α and σ2, we can state that a higher level

of σ2 or α causes a steeper path consumption. Also, if there were no risk about unfore-

seen medical expenses (σ2 = 0), consumption patterns change completely and household

incentives to save seem to be more related to fears of potential income downturns.

As a result, these peculiarities together with the fact that the optimal choice problem of the

consumer, (5.2) and (5.3), state that the optimal current consumption depends on the life-

time resources as well as on the expected rate of income growth and health-care resources

so it is feasible to assume that the household behavior may vary with the age of the home;

see Hubbard et al. (1994), Carroll (1997) or Deaton (1992). Thus, we can conclude that

the cautious behavior of the households varies with a non-uniform function of the age

of the house while both types of uncertainty, σ2 and α, are age-dependent parameters.

Therefore, the effect of different types of uncertainty on the household behavior can be

analyzed through an extension of the proposal in Chou et al. (2004); i.e., the estimation

of the equation (5.1) where Y represents the household savings (i.e., income I minus

consumption C), Z is the age of the main household breadwinner, W the health-care

expenditure and U the financial wealth measured, for example, via his permanent income.

Remember that because household consumption decisions depend on a vector of their

demographic features, such as the age of the main household breadwinner Z, the number of

children, and so on, W is considered as an endogenous variable. Therefore, (5.1) states that

household’s savings are characterized by the risk aversion of the family, α(·), uncertainty

about future health-care expenses, m1(·), and uncertainty about income downturns, m2(·).

Note that the additive specification of precautionary savings specified in (5.1), but without

considering the presence of endogenous variables, is well-known in the literature on the

precautionary behavior of households. Many have been the empirical studies that have

tried to examine the relationship between household precautionary savings and different

sources of uncertainty, but without achieving conclusive results. On one hand, in Starr-

McCluer (1996) and Egen and Gruber (2001) it is found that a reduction in the level of

uncertainty, for example through unemployment insurance or public health programs, has

a negative impact on savings. On the other hand, in Gruber (1997) and Gertler and Gruber

(2002) it is established that these types of programs smooth the individual consumption.
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Recently, in Chou et al. (2004) it is shown that public health programs have a negative

effect on household savings, whereas in Kuan and Chen (2013) it is emphasized that these

kind of programs impact more heavily on those households with higher incomes. On its

part, in Gourinchas and Parker (2002) it is confirmed the patterns established by the LCH

model and they find that, early in life, U.S. households behave as buffers-stock agents and

accumulate wealth to unexpected income downturns, whereas around the age forty these

savings are mainly for retirement and legacy. Also, in Cagetti (2003) it is determined

the role of precautionary savings to explain the behavior of household wealth. It is found

that this effect is particularly relevant at the beginning of household’s life, whereas close to

retirement savings are more related to the aim of the households of maintaining a constant

level of utility in all periods of life.

However, as we state previously, despite the interesting results of these studies they ignore

some sources of misspecification problems that can override their conclusions, such as the

endogeneity issue of the household’s consumption decisions or the unobserved individual

heterogeneity. In this way, the method that we propose in this chapter attempts to over-

come such problems and enables us to estimate the impact of both types of uncertainty on

household’s precautionary savings; i.e., household risk aversion and unforeseen health-care

expenses.

5.3 Econometric model and estimation procedure

Once the economic model is formulated, we proceed to develop the estimation procedure

for an extended version of (5.1). For this, we introduce the following sampling scheme for

the data set that is standard in nonparametric panel data regression analysis.

Assumption 5.1 Let (Yit, Uit,Wit, Zit, Xit)i=1,··· ,N ;t=1,··· ,T be a set of independent and

identically distributed IR1+a+(M−1)+q+b-random variables in the subscript i for each fixed

t and strictly stationary over t for fixed i.
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Generalizing (5.1) to a multivariate panel data model and taking into account the endo-

geneity problem, the semi-parametric system to estimate is

Yit = α(Zit) +W>itm1(Zit) + U>itm2(Zit) + µi + vit,

Wit = g(Xit) + ζi + ξit,
i = 1, · · · , N ; t = 1, · · · , T,

(5.6)

where E(vit|Z,U) = 0, E(ξit|X) = 0 and E(vit|ξit) 6= 0.

Let Z = (Z11, · · · , ZNT ), X = (X11, · · · , XNT ), U = (U11, · · · , UNT ), W = (W11, · · · ,WNT ),

Y = (Y11, · · · , YNT ) be NT × 1 vectors, we assume E (µi|Z,W,U) 6= 0 and E (ζi|X) 6= 0.

Note that the conditional mean restrictions, E(vit|Z,U) = 0 and E(ξit|X) = 0, are stan-

dardized versions of the usual orthogonality condition of linear models. Also, Z is a subset

of X.

As we state previously, the statistical dependence between µi and ζi and some/all covari-

ates of the system will rend inconsistent direct estimators of the functions of interest. To

avoid this situation, we take the standard solution of removing the fixed effects by the

first difference transformation; i.e.,

∆Yit = α(Zit, Zi(t−1)) +
(
W>itm1(Zit)−W>i(t−1)m1(Zi(t−1))

)
+

(
U>itm2(Zit)− U>i(t−1)m2(Zi(t−1))

)
+ ∆vit,

∆Wit = g(Xit, Xi(t−1)) + ∆ξit,

(5.7)

for i = 1, · · · , N and t = 2, · · · , T , where α(·) : IR2q → IR and g(·) : IR2b → IR are additive

functions, α(Zit, Zi(t−1)) = α(Zit) − α(Zi(t−1)) and g(Xit, Xi(t−1)) = g(Xit) − g(Xi(t−1)),

respectively. The coefficient functions α(·), m(·) and g(·) are unknown for the researcher

and need to be estimated.

To illustrate our estimation technique, let us consider the simplest case with q = (M−1) =

a = b = 1. Following the Taylor expansion in (5.7), for any z1 ∈ A, being A a compact

subset in a nonempty interior of IR,

α(Zit, Zi(t−1)) ≈ α′(z1)∆Zit +
1

2
α′′(z1)

(
(Zit − z1)2 − (Zi(t−1) − z1)2

)
+ · · ·+ 1

p!
α(p)(z1)

(
(Zit − z1)p − (Zi(t−1) − z1)p

)
,
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Witm1(Zit)−Wit−1m1(Zi(t−1)) ≈ m1(z1)∆Wit

+ m′1(z1)
(
Wit(Zit − z1)−Wi(t−1)(Zi(t−1) − z1)

)
+

1

2
m′′1(z1)

(
Wit(Zit − z1)2 −Wi(t−1)(Zi(t−1) − z1)2

)
+ · · ·+ 1

p!
m

(p)
1 (z1)

(
Wit(Zit − z1)p −Wi(t−1)(Zi(t−1) − z1)p

)
,

and similarly for Uitm2(Zit)− Ui(t−1)m2(Zi(t−1)).

These approximations suggest that we can estimate α′(z1),· · · ,α(p)(z1), m1(z1),m′1(z1),· · · ,

m
(p)
1 (z1) and m2(z1), m′2(z1),· · · ,m(p)

2 (z1) by regressing ∆Yit on the terms (Zit − z1)λ+1 −

(Zi(t−1)−z1)λ+1, Wit(Zit−z1)λ−Wi(t−1)(Zi(t−1)−z1)λ and Uit(Zit−z1)λ−Ui(t−1)(Zi(t−1)−

z1)λ, for λ = 0, 1, · · · , p with kernel weights. Clearly, m1(·) and m2(·) are identified

functions but α(·) is not. This is due to the structure of the differencing procedure and

this leads us to treat these components separately.

In order to estimate these smooth functions m(·), we propose as estimators β1 = m1(z1)

and β2 = m2(z1) that are obtained minimizing the following locally weighted linear re-

gression,

N∑
i=1

T∑
t=2

(
∆Y1it −∆W>it β1 −∆U>it β2

)2
KH2 (Zit − z1)KH2

(
Zi(t−1) − z1

)
. (5.8)

The resulting estimator is the so-called local constant regression estimator, also known as

the Nadaraya-Watson estimator; see Nadaraya (1964), Watson (1964) or Fan and Gijbels

(1995b). However, note that this new estimator exhibits the peculiarity that the kernel

weights relate to both Zit and Zi(t−1). If we considered kernels only around Zit the

remainder term in the Taylor’s approximation would not be negligible, since the distance

between Zis (s 6= t) and z1 does not vanish asymptotically, and therefore the asymptotic

bias would also be non-negligible. This problem was already pointed out in Lee and

Mukherjee (2008) and solved in Chapter 2 in another context.

Unfortunately, although the resulting estimator of (5.8) is robust to fixed effects, is still

biased due to endogeneity. In order to overcome this situation, the IV equation for (5.7)

suggests to obtain a consistent nonparametric estimator of g(Xit, Xi(t−1)) and then replace

E(∆Wit|Xit, Xi(t−1)) = g(Xit, Xi(t−1)) by ĝ(Xit, Xi(t−1)) in the expression (5.8). Note that
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ĝ(Xit, Xi(t−1)) = ĝit,i(t−1) can be any standard nonparametric estimator such as the local

linear regression estimator.

Once the substitution is done and denote by ∆Ŵit = (ĝ>it,i(t−1) ∆U>it )> a d × 1 vector,

where d = (M − 1) + a, the estimators of the unknown functions m(·) that minimize the

corresponding criterion function of (5.8) are grouped into the following vector,

m̂ĝ(z1;H2) =

 m̂1ĝ(z1;H2)

m̂2ĝ(z1;H2)

 =

(
N∑
i=1

T∑
t=2

KH2(Zit − z1)KH2(Zi(t−1) − z1)∆Ŵit∆Ŵ
>
it

)−1

×
N∑
i=1

T∑
t=2

KH2(Zit − z1)KH2(Zi(t−1) − z1)∆Ŵit∆Yit, (5.9)

where H2 is the q × q symmetric positive-definite bandwidth matrix of this second stage

and K is a q-variable such that

KH(u) =
1

|H|1/2
K
(
H−1/2u

)
.

The intuition behind this transformation is the following. When E (∆vit|W) 6= 0, we

cannot estimate consistently the unknown functions of the structural equation (5.7) by

projecting ∆Yit over

α(Zit, Zi(t−1)) +
(
W>itm1(Zit)−W>i(t−1)m1(Zi(t−1))

)
+
(
U>itm2(Zit)− U>i(t−1)m2(Zi(t−1))

)
in the L2(Z,W,U) projection space. Then, a standard solution is to use a (M − 1) × 1

vector of IV; i.e., E(∆Wit|Xit, Xi(t−1)) = git,i(t−1), and multiply both sides of (5.1) by

git,i(t−1).

Taking conditional expectations over (Zit, Zi(t−1)), evaluated both in z1, and rearranging

terms we obtain

m(z1) = E
[
∆W̃itg

>
it,i(t−1)|Zit = z1, Zi(t−1) = z1

]−1
E
[
git,i(t−1)∆Yit|Zit = z1, Zi(t−1) = z1

]
,

(5.10)

where we denote by ∆W̃it = (g>it,i(t−1) ∆U>it )> and m(z1) = (m1(z1)> m2(z1)>) d × 1

vectors and we assume that the matrix functions E
[
∆Uitg

>
it,i(t−1)|Zit = z1, Zi(t−1) = z1

]
and E

[
git,i(t−1)g

>
it,i(t−1)|Zit = z1, Zi(t−1) = z1

]
are definite positive.
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As the reader can appreciate, this invertibility condition is a generalization of the well-

known rank condition of parametric models with endogenous covariates that guarantees

that m(·) is identified. In this way, it is easy to see why we propose the estimator in

(5.10). Since the vector functions g(Xit, Xi(t−1)) is unknown to the researcher it has

to be replaced by a consistent estimator; i.e., ĝit,i(t−1). Doing that and replacing the

population moments by their corresponding sample moments we obtain directly (5.10),

that is the same estimator that we would obtain if we substitute in (5.8) the endogenous

variable ∆Wit by ĝit,i(t−1) and minimize the resulting criterion function with respect to

β = (m1(z1)> m2(z1)>)>. Note that these are the standard equivalence results between

the optimal IV estimators and the so-called two-stage least-squares estimators in the fully

linear parametric context that nicely appear again in this semi-parametric framework.

Once the estimators of the functional coefficients are proposed, let us now turn to the

estimation of α(z1). In order to do so, we define

∆Ỹit = ∆Yit −∆Ŵ>it m̂ĝ(Zit, Zi(t−1)),

where m̂ĝ(Zit, Zi(t−1)) is the two-stage local constant regression estimator defined in (5.9).

By the equation (5.7) we obtain

∆Ỹit = α(Zit)− α(Zi(t−1)) + ∆ṽit, i = 1, · · · , N ; t = 2, · · · , T, (5.11)

where

∆ṽit = ∆vit −∆Ŵ>it
(
m̂ĝ(Zit, Zi(t−1))−m(Zit, Zi(t−1))

)
.

In this situation, we propose to estimate α(·) using marginal integration techniques such

as the developed in Hastie and Tibshirani (1990), Linton and Nielsen (1995) and Newey

(1994).

We consider α(Zit, Zi(t−1)) = α(Zit) − α(Zi(t−1)), so for any z1, z2 ∈ A we can estimate

α(·) by multivariate kernel smoothing methods obtaining

α̂(z1, z2;H3) =

∑N
i=1

∑T
t=2KH3(Zit − z1)KH3(Zi(t−1) − z2)∆Ỹit∑N

i=1

∑T
t=2KH3(Zit − z1)KH3(Zi(t−1) − z2)

. (5.12)
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Finally, once obtained α̂(z1, z2;H3), we obtain α̂ (z11;H3) by the marginal integration of

(5.12), i.e.,

α̂(z1;H3) =

∫
IR
α̂(z1, z2;H3)q(z2)dz2. (5.13)

If NT is large enough and q(·) is chosen as the density function of Zit, we can use the

sample version of (5.13) and then we can propose

α̂(z1;H3) =
1

NT

N∑
i=1

T∑
t=1

α̂(z1, Zit;H3). (5.14)

Note that this technique has been already considered in the context of panel data models

in Qian and Wang (2012).

5.3.1 Asymptotic properties

In this section, we investigate some asymptotic properties of the estimators proposed in

the previous section. For this, we need the following assumptions.

Assumption 5.2 Let fX1t (·) and fZ1t (·) be the probability density function of Xit and

Zit, respectively, all density functions are uniformly continuous in all their arguments and

are bounded from above and below in any point of their support.

Assumption 5.3 The random errors, vit and ξit, are independent and identically dis-

tributed, with zero mean and homoscedastic variances, σ2
v <∞ and E(ξitξ

>
it ) = σ2

ξI(M−1) <

∞. In addition, E (∆vit∆ξit) = σvξı(M−1) <∞ is a (M − 1)× 1 covariates vector of the

error terms of the M equations of the system. They are also independent of X,Z,W,U

for all i and t, but E(vit|W) 6= 0. Furthermore, E|vit|2+δ < ∞ and E|ξit|2+δ < ∞, for

some δ > 0.

Assumption 5.4 Let z be an interior point in the support of fZ1t. All second-order

derivatives of α(·) and m1(·), · · · ,md−1(·) are bounded and uniformly continuous and sat-

isfy the Lipschitz condition. Furthermore, let (x1, x2) be interior points in the support of

fX1t, all second-order derivatives of g1(·, ·), · · · , gM−1(·, ·) are continuous.
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Assumption 5.5 The bandwidth matrices H1 and H2 are symmetric and strictly definite

positive. Also, let h1 and h2 be each entry of the matrices H1 and H2, respectively, h1 →

0 and h2 → 0. As N → ∞, N |H1| → ∞, N |H2| → ∞ and N |H1|/log(N) → ∞.

Furthermore, H1 = op(H2).

Assumption 5.6 let ‖A‖ =
√
tr (A>A), then E

[
‖W̃itW̃

>
it ‖2|Zit = z1, Zi(t−1) = z1

]
is

bounded and uniformly continuous in its support. Furthermore, let

Xit =
(
W̃>it W̃>i(t−1)

)>
and ∆Xit =

(
∆W̃>it ∆W̃>i(t−1)

)>
.

Also, the matrix functions E
[
XitX>it |z1, z2

]
, E
[
∆Xit∆X>it |z1, z2

]
, E
[
XitX>it |z1, z2, z3

]
and

E
[
∆Xit∆X>it |z1, z2, z3

]
are bounded and uniformly continuous in their support.

Assumption 5.7 The Kernel function K is a Gaussian kernel product based on univari-

ate kernels, symmetric around zero and compactly supported. Also, the kernel is bounded

such that
∫
uu>K(u)du = µ2(K)I and

∫
K2(u)du = R(K), where µ2(K) and R(K) are

scalars and I the identity matrix. In addition, all odd-order moments of K vanish, that is∫
uι11 · · ·u

ιq
q K(u)du = 0, for all nonnegative integers ι1, · · · , ιq such that their sum is odd.

Assumption 5.8 The moment function E
[
∆W̃it∆W̃

>
it |Zit = z1, Zi(t−1) = z2

]
is definite

positive in any interior point (z1, z2) in the support of fZit,Zi(t−1)
(z1, z2).

Assumption 5.9 E
[
|Yit|2+δ|Xit, Xi(t−1)

]
<∞ and E

[
|Wit|2+δ|Xit, Xi(t−1)

]2+δ
<∞, for

some δ > 0.

Assumption 5.10 For some δ > 0, E
[
|∆W̃it∆W̃

>
it ∆vit∆ξit|1+δ/2|Zit = z, Zi(t−1) = z

]
,

E
[
|∆W̃it∆vit|2+δ|Zit = z1, Zi(t−1) = z2

]
, and E

[
|∆W̃it∆ξ

>
it |2+δ|Zit = z1, Zi(t−1) = z2

]
are

bounded and uniformly continuous in any point of their support.

For the estimation of the fully nonlinear part of the third stage of the procedure, we need

to impose further strong assumptions about the density functions than the usual Lipschitz

continuity. Thus, Assumption 5.2 states that density functions are bounded from above

and below and at least first-order partially differentiable with a Lipschitz-continuous re-

mainder. In addition, it holds for fX1t,X1(t−1)
(·, ·), fX1t,X1(t−1),X1(t−2)

(·, ·, ·), fZ1t,Z1(t−1)
(·, ·)
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or fZ1t,Z1(t−1),Z1(t−2)
(·, ·, ·), being the probability density functions of

(
Xit, Xi(t−1)

)
, (Zit,

Zi(t−1)

)
,
(
Xit, Xi(t−1), Xi(t−2)

)
, and

(
Zit, Zi(t−1), Zi(t−2)

)
, respectively. Assumption 5.3

combines standard conditions for simultaneous equation systems allowing for correlation

along time and between the error terms of the different equations of the system.

Assumptions 5.4-5.7 are standard in the literature of local linear regression estimates, for

which the Nadaraya-Watson estimator is the local constant approximation; see Ruppert

and Wand (1994). Assumption 5.5 contains a standard bandwidth condition for smoothing

techniques. With H1 = op(H2) we impose that the bandwidth of the first-stage H1 should

be chosen as small as possible and, above all, much smaller than H2. Thus, the fitted

model of the first-stage is undersmoothing and the corresponding bias can be ignored

as we wish; see Cai (2002a,b) for further details. Furthermore, by the smoothness and

boundedness conditions established in Assumptions 5.2 and 5.4-5.8 for the kernel function

and conditional moments and densities, we may use uniform convergence results as the

ones established in Masry (1996, Theorem 6).

Assumption 5.8 is a generalization of the usual rank condition for the identification of

simultaneous equation systems in the parametric context. Assumption 5.9 states the

conditions to obtain consistent estimators in the presence of IV, as it is done in Cai and

Li (2008), Cai et al. (2006) or Cai and Xiong (2012), while Assumption 5.10 is required

to show that the Lyapunov condition holds.

Under these assumptions, we can establish the asymptotic normality of our estimator for

the standard case in which µ2(Ku) = µ2(Kv). The proofs are relegated to the Appendix

3.

Theorem 5.1 Under Assumptions 5.1 and 5.2-5.10, as N tends to infinity and T is fixed√
NT |H2|

(
m̂ĝ(z1;H2)−m(z1)

) d−−−→ N (b(z1), υ(z1)) ,

where

b(z1) = µ2(K)
[
diagd

(
Df (z1)H2

√
NT |H2|Dmr(z1)

)
ıdf
−1
Zit,Zi(t−1)

(z1, z1)

+
1

2
diagd

(
tr
(
Hmr(z1)H2

√
NT |H2|

))
ıd

]
,

υ(z1) = 2R(Ku)R(Kv)
(
σ2
v + σ2

ξm(z1)>m(z1) + σvξm(z1)>ı(M−1)

)
B−1

∆W̃∆W̃
(z1, z1) ,
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and, for r = 1, · · · , d, Dmr(z1) is the first-order derivative vector of the rth component of

m(·), Hmr(z1) its Hessian matrix, Df (z1) the first order derivative vector of the density

function and

B
∆W̃∆W̃

(z1, z1) = E
[
∆W̃it∆W̃

>
it |Zit = z1, Zi(t−1) = z1

]
fZit,Zi(t−1)

(z1, z1).

Furthermore, diagd (tr(Hmr(z1)H2)) and diagd (Df (z1)H2Dmr(z1)) stand for a diagonal

matrix of elements of tr(Hmr(z1)H2) and Df (z1)H2Dmr(z1), respectively, being ıd a d× 1

unitary vector.

From this result, we can appreciate that whereas the bias term of this new estimator

is exactly the same as the Nadaraya-Watson estimator without endogenous regressors;

see Pagan and Ullah (1999), it exhibits some differences with respect to the asymptotic

variance. In particular, the asymptotic bias emerges mainly from the first and second

derivatives of the function m(·) due to the approximation errors of the smooth functions

m(·), while the asymptotic variance exhibits two additional terms besides the usual: one

related to the behavior of the measurement error of the reduced forms of the system and

another one with the correlation between the error terms of all equations of the system.

However, note that the additional covariance terms do not appear in other IV estimators;

see Newey (1994) and Cai et al. (2006) for more details. Thus, it is proved that the

proposed estimators are consistent and asymptotically normal with a convergence rate

that depends on the sample size and the second stage bandwidth H2 but not the first

stage bandwidth H1, because the condition H1 = op(H2) is verified.

Just to illustrate the asymptotic behavior of the proposed estimators, we give a result for

the univariate case when M = 2, a = q = 1 and H2 = h2I. In this particular case, the

previous result can be written as

Corollary 5.1 Assume conditions 5.1 and 5.2-5.10 hold, then if h → 0 in such a way

that Nh2 →∞ and N tends to infinity and T is fixed, we obtain

√
NTh2

(
m̂ĝ(z1;h)−m(z1)

) d−−−→ N (bh(z1), vh(z1)) ,
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where

bh(z1) = h2µ2(K)

(
f ′Zit,Zi(t−1)

(z1)

fZit,Zi(t−1)
(z1, z1)

Dm(z1) +
1

2
Hm(z1)ıd

)
√
NTh2,

vh(z1) = 2R(Ku)R(Kv)
(
σ2
v + σ2

ξm(z1)>m(z1) + σvξm(z1)>ı(M−1)

)
B−1

∆W̃∆W̃
(z1, z1) .

Note that the asymptotic bias remains to be the same as of the standard Nadaraya-Watson

estimator and again, even in the simplest case, and the variance term is still what makes

the difference between the estimator that solves the endogeneity problem and which not.

Furthermore, there are some empirical analysis in which all regressors are correlated with

the error term in an unknown way. If this is the case, (a = 0) and the Theorem 5.1 can

be written as follows.

Corollary 5.2 Let Assumptions 5.1 and 5.2-5.10, as N tends to infinity and T is fixed

√
NT |H2|

(
m̂1ĝ(z1;H2)−m1(z1)

) d−−−→ N (b1(z1), υ1(z1)) .

where

b1(z1) = µ2(K)
[
diag(M−1)

(
Df (z1)H2

√
NT |H2|Dm1r(z1)

)
ı(M−1)f

−1
Zit,Zi(t−1)

(z1, z1)

+
1

2
diag(M−1)

(
tr
(
Hm1r(z1)H2

√
NT |H2|

))
ı(M−1)

]
,

υ1(z1) = 2R(Ku)R(Kv)
(
σ2
v + σ2

ξm1(z1)>m1(z1) + σvξm1(z1)>ı(M−1)

)
B−1
gg (z1, z1) ,

where Hm1r(z1) is the Hessian matrix of m1(·) and

Bgg(z1, z1) = E
[
git,i(t−1)g

>
it,i(t−1)|Zit = z1, Zi(t−1) = z1

]
fZit,Zi(t−1)

(z1, z1).

On the other hand, to obtain the asymptotic behavior of the marginal integration estimator

we need the following additional assumptions.

Assumption 5.11 q(·) is a positive weighting function defined on the compact support of

fZit, twice continuously differentiable and holds∫
q(u)du = 1 ;

∫
f(u)q(u)du = 0.
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Assumption 5.12 The bandwidth matrix H3 is symmetric and strictly definite positive.

Also, let h3 be each entry of the matrix H3, h3 → 0 and as N →∞, N |H3| → ∞.

Assumption 5.11 is a standard condition in this literature to identify fZit up to a mul-

tiplicative constant. However, if we do not impose
∫
f(u)q(u)du = 0, fZit can also be

identified up to an additive constant. Then, for the standard case that µ2(Ku) = µ2(Kv)

we obtain,

Corollary 5.3 Under Assumptions 5.1, 5.2-5.5, 5.7 and 5.11-5.12, as N tends to infinity

and T is fixed

bias [α̂(z1;H3)] = µ2(K)

[
1

2
tr(Hα(z11)H3)− 1

2

∫
tr(Hα(z2)H3)qZi(t−1)

(z2)dz2

+ Dα(z1)H3Df (z1)

∫
qZi(t−1)

(z2)

fZit,Zi(t−1)
(z1, z2)

dz2

−
∫
Dα(z2)H3Df (z2)

qZi(t−1)
(z2)

fZit,Zi(t−1)
(z1, z2)

dz2

]
+ op (tr(H3)) +Op

(
1√

NTH3

)
,

V ar (α̂(z1;H3)) =
2σ2

vR(Ku)R(Kv)

NT |H3|

∫ q2
Zi(t−1)

(z2)

fZit,Zi(t−1)
(z1, z2)

dz2(1 + op(1)).

The proof of this result is straightforward following the proof of Qian and Wang (2012,

Theorem 2, pp. 489-492)

5.3.2 Confidence Intervals

In order to obtain (1 − α)-confidence intervals for the empirical application, we propose

to follow the wild bootstrap technique of Härdle et al. (2004). Thus, with this method we

pretend to obtain the following statistic

Smj = supz |m̂j(z1;H2)−mj(z1;H2)| σ̂v(z1;H2)−1, j = 1, · · · , d,

where σ̂2
v is the estimated variance of m̂j(z1;H2). To obtain this statistic, it is necessary

to determine the distribution of Smj via the calculus of

S∗mj = supz
∣∣m̂∗j (z1;H2)− E

[
m̂∗j (z1;H2)

]∣∣ se (m̂∗j (z1;H2)
)−1

,
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where E[·] is the expectation over the bootstrap samples estimators, se(·) the correspond-

ing standard deviation, and ∗ indicates that we are referring to the bootstrap samples. As

it is emphasized in Härdle et al. (2004), to determine the distribution of S we can use the

estimated variance of the estimators in question, σ̂2
v(z), or the estimated variance of the

estimators of the bootstrap samples, σ̂∗2v (z). However, since the bootstrap theory suggests

that the second option provides a greater higher order adequacy to bootstrap, we chose

the latter one.

To determine the distribution of the statistic S it is necessary to obtain the bootstrap

sample, for which we have to calculate the bootstrap residuals as

∆ξ̂∗it = ∆ξ̂itεi

(
N(T − 1)

N(T − 1)− 1

)1/2

and ∆v̂∗it = ρ̂∆ξ̂∗it,

where ∆ξ̂it are the residuals of the original estimation and ρ̂ the linear correlation coeffi-

cient of the error terms of the different equations of the system.

Let εi be a random error term between individuals that follows a Rademacher distribution

and satisfies E(εi) = 0, E(ε2i ) = 1 and P [εi = 1] = P [εi = −1] = 1/2, the bootstrap

samples are generated such as

∆Y ∗it = α̂(Zit, Zi(t−1)) + ∆W ∗>it m̂1ĝ(Zit, Zi(t−1)) + ∆U>it m̂2ĝ(Zit, Zi(t−1)) + ∆v̂∗it,

where ∆W ∗it is the vector of bootstrap dependent variables of the M − 1 equations of the

system that are obtained using the nonparametric estimators ĝ(Xit, Xi(t−1)) and ∆ξ∗it.

Therefore, in order to obtain uniform confidence bands we use[
m̂j(z1;H2)− s∗mj ŝe(m̂

∗
j (z1;H2)), m̂j(z1;H2) + s∗mj ŝe(m̂

∗
j (z1;H2))

]
,

for each point z1, where s∗mj is the (1− δ)-quantile of S∗(·) and δ ∈ (0, 1). This procedure

is similar for the estimator α̂(·).

5.4 Empirical application

Although the theory of precautionary savings states that uncertainty has a negative impact

on household consumption and positive on their savings; see Carroll and Samwick (1997),
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several empirical studies attempt to establish this relationship but without achieving con-

clusive results. However, because the optimal consumption choice depends on both the

life-time resources and the expected rate of income growth and household’s health-care

spending, there is some consensus in considering that household’s consumption/saving

decisions vary systematically with the age of the house.

In this context and with the aim of showing the feasibility and possible gains of the pro-

posed method, in the following we consider a simulated example and analyze a stochastic

model of precautionary saving based on the LCH model of Modigliani and Brumberg

(1954). Thus, using a random sample of Spanish households, we establish to what ex-

tend the precautionary behavior of the households affects to their consumption/saving

decisions, without imposing restrictive assumptions on the functional forms or unobserved

individual heterogeneity, something that to our knowledge is completely new.

5.4.1 Data sample and empirical application

The microdata used in this analysis are obtained from the ECPF elaborated by the INE

for the period 1985(I)-1996(IV). The ECPF is a rotating quarterly survey of representative

samples of the Spanish population and each household is interviewed for eight consecutive

quarters.. The survey contains not only information about demographic characteristics,

economic status and industrial sector of employment for each household, but also about

the detailed categories of income and consumption expenditure. Total disposable house-

holds income includes earnings of self-employment and employment in public or private

sectors, investment income and property, regular transfers (i.e., pensions, unemployment

insurance and other regular transfers) and other cash income (extraordinary and non-

broken down). Total households expenditures include durable, non-durable and other

miscellaneous expenditures.

Traditionally, and based on Hall and Mishkin (1982), the household precautionary behavior

to unexpected changes in income has been measured by spending changes in non-durable

goods. However, recently authors like Aaronson et al. (2012) show that durable goods

react to these shocks much more than non-durable. Therefore, in order to determine

the household behavior to this type of adversity is often convenient to work with two
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different savings variables; see Attanasio et al. (1999) or Chou et al. (2004), among others.

Specifically, the first saving variable excludes consumption in durable goods from the

calculation; i.e., furniture and household equipment and paid or imputed rent of the house,

whereas the second one takes into account such expenses. In this way, each definition is

the result of reducing household’s disposable income by the corresponding expenditure

variable.

The number of observations initially available in the ECPF is 148, 679, but in order to work

with a balanced panel as complete as possible we only consider information from those

households that answer to the eight quarters and provide information about their incomes

and expenses. For reasons of sample size and to avoid having to specify an inheritance

function, households whose head is aged under 26 or over 65 years old are excluded. As

we can see in Table 5.1, in this sample there is a large proportion of households with

negative savings; i.e., 60.36% of the entire sample, so we have to take care when we define

the saving variables. In Table 5.1 we summarize the distributions of the households with

negative savings.

Table 5.1. Distribution of households with negative savings

Population Total Negative %

Group Obs Obs total

Total 30,000 18,107 60.36%

26-35 age 5,314 3,153 10.51%

36-45 age 7,494 4,787 15.96%

46-55 age 7,764 4,744 15.81%

56-65 age 9,428 5,423 18,08%

Notes: This saving variable is defined as the difference between total household disposable income and

total expenditures. % total is the proportion of observations with negative saving in the entire sample.

Obs = observations

In order to calculate the saving variables, in Chou et al. (2004) it is proposed to follow

the usual choice of taking S = ln(I−C) as dependent variable, where I is the income and

C the consumption. However, this expression excludes those households with negative
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savings and the omission of a such considerable proportion of the random sample causes

a serious sample selection problem that can invalidates our conclusions. To overcome

this problem, following Deaton and Paxson (1994) we use an approximate saving rate as

dependent variable; i.e. S = ln(I) − ln(C). In this way, this technique enables us to

take into account the information of the entire sample, including those households with

negative savings.

Since data are large enough, we focus our attention to a sample restricted to married

couples with one or two children that own a unique property. In addition, to remove

income and expense outliers we eliminate the 2.5% in the upper and lower tail of the

income distribution of the households of the sample, whereas for the expenses in non-

durable the 1% of the upper and lower tail is removed. Thus, we work with a final sample

of 1, 856 observations; i.e., 232 families. The distribution of both household’s disposable

income and household’s expenditures of the working sample is collected in Table 5.2.

Table 5.2. Distribution of household’s disposable income and expenditures by age-group

Total household disposable income Total household disposable income

26-35 36-45 46-55 56-65 26-35 36-45 46-55 56-65

Mean 1,165,321 4,781.7 1,133,457 1,070,904 1,687,246 1,653,106 1,623,759 1,606,457

Std 468,277.1 2,530.2 448,960.6 517,507.8 842,219.2 839,472.8 714,451.7 825,215.2

Obs 586 503 353 414 586 503 353 414

Notes: Both revenues and expenses are measured in constant 1985 pesetas. Std = Standard deviation.

Analyzing the figures in Table 5.2, we can note that, in average, total expenditures are

higher in the younger group and as the household age increases they become smaller. On

its part, the figures of total disposable income do not exhibit a clear trend and it might

be necessary to consider other features of the household in order to obtain a better under-

standing of its evolution by groups of age. More precisely, we propose to use educational

level of the household as a feature to explain total disposable income.

In Table 5.3, we collect the distribution of household’s income and expenditures by edu-

cational level.
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Table 5.3. Distribution of household’s disposable income and expenditures by educational

level

Total household disposable income Total household disposable income

Low education High education Low education High education

Mean 1,078,119 1,188,709 1,622,239 1,663,152

Std 481,438.6 471,254.8 784,840.8 832,175.1

Obs 1,128 592 1,128 592

Note: As household with high education we consider those with at least a high-school diploma, whereas

household with low educational level are those whose head is illiterate, have no education or first degree

studies.

Analyzing the figures in Table 5.3, we can see that, as expected, both revenue and expen-

diture from the group with a high level of education are bigger. Therefore, in the next

subsection we first estimate the model specified in Section 5.3 without considering the

education level. Next, we reestimate the model considering different education levels and,

in this way, we can analyze the heterogeneity between these populations groups.

5.4.2 Empirical results

As we state in Section 5.2, based on the LCH model and avoiding restrictive assump-

tions about functional forms and unobserved cross-sectional heterogeneity, the system of

equations that we estimate is

Yit = α(Zit) +Witm1(Zit) + Uitm2(Zit) + µi + vit,

Wit = g(Xit) + ζi + ξit,
i = 1, · · · , N ; t = 1, · · · , T,

(5.15)

where i index the household, t the time, Zit is the age of the household head, Wit is the

health-care expenditures (log), Yit the savings, Uit the permanent income (log), and Xit

is a vector that contains the age of the main breadwinner of the house and the number of

children under 14 years old.

Note that household’s permanent income is not directly observable. In order to approxi-

mate this variable we follow the proposal in Chou et al. (2004). Thus, assuming that the
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interest rate equals the productivity rate of growth and 65 years old is the maximum age

at which people works, the permanent earnings at age τ0 are the fitted values that results

from the estimation of the following fixed effects model

Yit(τ0) = X>it β + (65− τ0 + 1)−1
65∑
τ=τ0

f(τit) + µ̃i + ṽit, i = 1, · · · , N ; t = 1, · · · , T,

where f(τ) is the estimated quadratic function of age, Yit the household income, Xit a

vector of demographic characteristics, µ̃i is the unobserved fixed effects, and ṽit is the

random error term.

Before to show the estimation results, we make a brief discussion about the choice of dif-

ferent bandwidths. As it is well-known, there are many standard procedures for optimal

bandwidth selection, such as plug-in, cross-validation criteria, and so on. For methodolog-

ical simplicity, the bandwidth of the second-step estimation procedure is chosen using the

rule-of-thumb; i.e., Ĥ2 = ĥ2I = σ̂zn
−1/5, where σ̂z is the sample standard deviation of Z.

The same is done to compute Ĥ3. For the selection of Ĥ1 note that in order to accomplish

with the conditions establish in Theorem 5.1 we should choose a Ĥ1 that clearly under-

smooth the optimal; i.e., Ĥ1 = ĥ1I = σ̂xn
−1/3, where σ̂x is the sample standard deviation

of X.

Estimation results are shown in Figures 5.1-5.4. The estimated curves are plotted against

the age variable jointly with 95% pointwise confidence intervals. Figure 5.1 shows results

for the entire working sample, without considering educational levels. On the other side,

in Figures 5.2 and 5.3 we show the estimation results distinguishing between sample of

those who have higher educational level (Figure 5.2) and those who have low education

level (Figure 5.3). Finally, in Figure 5.4 we show the estimation results when endogeneity

is taking into account.

Figures 5.1-5.4 have the same structure. They are divided into three panels, A, B and C.

Panels A show the precautionary savings elasticity to changes in households risk aversion;

i.e., α̂(·). Panels B exhibit the corresponding elasticity to changes in health-care expendi-

tures, i.e., m̂1(·), whereas Panels C show the precautionary savings elasticity to changes in

household income; m̂2(·). Specifically, Panel A-1 shows the estimated curves when durable

goods are not taken into account. Panel A-2 focuses on the second definition of savings,
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while Panel A-3 makes a comparison between both results. Note that this structure is

maintained for Panels B and C.

Figure 5.1. Household’s savings over the life-cycle

Note: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while

dotted line is the 95% pointwise confidence interval.

Focusing on the results in Figure 5.1, we can note that when we control for household risk

aversion (Panels A) there is a positive relationship between the savings rate of households

and their age. This is especially stronger after age 47, presumably for retirement or

inheritance reasons. Meanwhile, when we control for income uncertainty (Panels C) we
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find that younger households (26−46) behave as buffer-stock agents and close to retirement

they begin to accumulate wealth, corroborating in this way the results in Gourinchas and

Parker (2002) and Cagetti (2003). When we control for uncertainty about health-care

expenditures (Panels B) we see that younger households (26 − 31) exhibit a declining

savings rate, followed by a constant path till the age of 56, where the hump-shaped is

inverted.

If we combine these results with the delay in the wealth accumulation process of the

Spanish households (note that in the U.S. it begins around 40 age while in Spain at 55

age) we realize the negative impact that public health programs have on precautionary

savings, confirming the results in Chou et al. (2004). Finally, comparing the behavior of

the elasticity for the different savings results, we can note that consumption of durable

goods reacts much more to unexpected changes in either income or potential health-care

payout, whereas consumption in non-durable goods is more sensitive to household risk

aversion. This holds especially for households over 50 years old.

Now, we turn to analyze the impact of the different types of uncertainty on the household

precautionary behavior when facing different educational level (high or low). Controlling

for household risk aversion in Figures 5.2 and 5.3 we find out that there is a positive

relationship between the saving rate of the households and their age for both samples. As

we can see in Figures 5.2 and 5.3, when we control for household preferences we observe

that less educated agents are risk averse tending to save during the early stages of work

(26 − 38). Afterwards, they increase their consumption. On the contrary, households

with more education show a smaller degree of risk aversion. Furthermore, these household

show a rather steady savings path along time. This change dramatically at the age of

48, where savings rate increase exponentially, may be due to retirement or legacy reasons.

This result extends the findings that appear in Cagetti (2003), where he points out that

households with less education exhibit a lower risk aversion degree.

Focusing on the precautionary savings elasticity to changes in unexpected health-care

expenses in Figures 5.2 and 5.3 we obtain a savings rate with a similar path until the age

of 50. Thereafter, households with a high educational level show a more cautious behavior

regarding to unforeseen health-care expenditures. Finally, analyzing this elasticity to

unexpected income changes we appreciate a completely different behavior between these
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Figure 5.2. Household’s savings over the life-cycle by education level: low education

Note: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while

dotted line is the 95% pointwise confidence interval.

populations. While households with low education exhibit a declining savings rate until

age 50, when we observe the hump-shaped established by the LCH model, households

with a higher educational level behave as buffer-stock agents until age 39, maintaining

a constant saving rate in adulthood and later a hump-shaped from the 55 to the age of

retirement.

Finally, in order to evaluate the empirical relevance of the endogeneity problem we compare
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Figure 5.3. Household’s savings over the life-cycle by education level: high education

Note: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while

dotted line is the 95% pointwise confidence interval.

the results in Figure 5.1, that is, where the endogeneity of the health-care expenditures

has been treated as IV, against the results obtained when the endogeneity problem is

omitted; see Figure 5.4. We note that the empirical results are rather similar for the case

of exogenous variables, but there is a significant difference when we analyze the estimates

related to the potentially endogenous variables. By correcting by endogeneity through the

use of IV we observe that younger households do not accumulate assets, whereas when
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endogeneity is not taken into account younger households behave as buffer-stock agents.

Figure 5.4. Household’s savings over the life-cycle with endogeneity

Notes: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while

dotted line is the 95% pointwise confidence interval.

In summary, these results confirm what is obtained in other papers of this literature. All

these results indicate that an extension of the standard life cycle model that takes into

account households’ preventive motif linked to uncertainty of both labor market and life

expectancy is very appealing. In addition, combining the particularities of this model

jointly with the estimation strategy proposed in this chapter enables us to determine
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household’s consumption/savings decisions without having to resort to further strong as-

sumptions about functional forms or densities.

5.4.3 Monte Carlo experiment

In this part, we use the simulated data to examine the performance of the proposed

estimator in finite samples under different semi-parametric specifications of the model

discussed in Section 5.2. In this way, in order to corroborate the consistency of the

empirical results obtained in Section 5.4.2 we use the mean squared error (MSE) as a

measure of the estimation accuracy of the proposed estimators.

Let ϕ be the ϕth replication and Q the number of replications, the MSE of the two-

step weighted locally constant least-squares estimators (5.9) may be approximated by

the averaged mean squared error (AMSE), so for the two-step weighted locally constant

least-squares estimator we have

AMSE(m̂(z1;H2)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=2

(
d∑
r=1

(m̂ϕr(z1;H2)−mϕr(z1;H2)) ∆Ŵit,ϕr

)2

,

while the corresponding AMSE for the marginal integration estimator is

AMSE(α̂(z1;H3)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=2

(α̂ϕ(z1;H3)− αϕ(z1;H3))2 .

Observations are generated from the following semi-parametric panel data regression sys-

tem:

Yit = α(Zit) +Witm1(Zit) + Uitm2(Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T, (5.16)

where Wit is an endogenous variable constructed as Wit = g(Xit) + ζi + ξit. Also, Zit, Uit

and Xit are random variables generated such that Zit = ωit+ωi(t−1) (ωit is an i.i.d. uniform

distributed (0,Π/2) random variable), Uit = 0.25Ui(t−1) +ψ1it, and Xit = 0.5Xi(t−1) +ψ2it

(ψ1it and ψ2it are i.i.d. N (0, 1)).

The error distributions of vit and ξit are generated as

vit = 0.65vi(t−1) + ϑit and ξit = εit + ρvit,
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where εit = 0.5εi(t−1) + ϑ∗it (ϑit and ϑ∗it are i.i.d. N (0, 1) random variables). Clearly, vit is

independent of Zit and Uit so that E(vit|Z,U) = 0 and E(vit) = 0. However, E(vit|W) 6= 0

because vit and ξit are correlated through the parameter ρ = 0.5, that is responsible for

this correlation.

In addition, to allow the presence of cross-sectional heterogeneity in the form of fixed effects

we assume that the individual effects are correlated with the nonparametric covariates. In

particular, the dependence between these terms is imposed by generating µi = 0.5Zi·+ ui

and ζi = 0.5Xi· + ui, where ui is an i.i.d. N (0, 1) random variable. For i = 2, · · · , N ,

Zi· = T−1
∑T

t=1 Zit and Xi· = T−1
∑T

t=1Xit.

In the experiment, we consider two different cases of study. First, we analyze (5.16) where

the varying coefficients can be related to both endogenous and exogenous covariates. Later,

we focus on a specification in which the nonparametric elements are the only exogenous

regressors; i.e.,

Yit = α(Zit) +Witm1(Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T. (5.17)

In this context, to verify the asymptotic theory of Section 5.3, the number of period T

is fixed at 3, while the number of cross-sections N is varied between 50, 75 and 100. We

use 500 Monte Carlo replications Q and a Gaussian kernel. Following the assumptions

necessary to obtain estimators with a suitable asymptotic behavior, we propose to obtain

the bandwidth matrix of H2 and H3 by the rule-of-thumb, whereas H1 is chosen to be

undersmoothing. Thus, Ĥ1 = ĥ1I = σ̂x(NT )−1/3, Ĥ2 = ĥ2I = σ̂z(NT )−1/5 and Ĥ3 =

ĥ3I = σ̂z(NT )−1/5, where σ̂x and σ̂z are the sample standard deviation of Xit and Zit,

respectively.

In the following tables, we report the simulations results through the estimated bias,

standard deviation (Std), and AMSE for the two estimators of both specifications. The

latter is computed as it is previously set, whereas the bias is obtained via

Bias (m̂(z1;H2)) =
1

Q

Q∑
ϕ=1

1

NT

N∑
i=1

T∑
t=2

(
d∑
r=1

(E(m̂ϕr(z1;H2))−mϕr(z1)) ∆Ŵit,ϕr

)
,

and the standard variance such that

sd (m̂(z1;H2)) =
1

Q

Q∑
ϕ=1

(
1

NT

N∑
i=1

T∑
t=2

(
(m̂ϕr(z1;H2)− E(m̂ϕr(z1;H2))) ∆Ŵit,ϕr

)2
)1/2
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Table 5.4. Simulation results. AMSE for M = 2 and a = 0

Two-step locally constant Marginal integration

least-squares estimator estimator

Bias Std AMSE Bias Std AMSE

N = 50 0.01138 0.51785 0.63383 -0.82138 0.42625 0.91673

T=3 N = 75 0.00118 0.47344 0.45622 -0.80465 0.42282 0.87155

N = 100 0.00739 0.44615 0.41289 -0.80889 0.40361 0.85723

Table 5.5. Simulation results. AMSE for M = 2 and a = 1

Two-step locally constant Marginal integration

least-squares estimator estimator

Bias Std AMSE Bias Std AMSE

N = 50 1.65751 0.83162 2.41698 0.55222 0.46183 0.95029

T=3 N = 75 1.57539 0.84969 1.99571 0.54179 0.44837 0.91023

N = 100 1.57340 0.71259 1.99565 0.53444 0.43619 0.89058

As we can see in Tables 5.4 and 5.5, the simulations provide the expected results. For

all T , as the sample size increases the bias estimated of the two-stage weighted locally

constant least-squares estimator, m̂(z1;H2), for both a = 0 (Table 5.4) and a = 1 (Table

5.5) shrinks from 0.01138 to 0.00739 and from 1.65751 to 1.57340, respectively. Meanwhile,

the values of the standard deviations show a similar pattern going from 0.51785 to 0.44615

when a = 0 and from 0.83162 to 0.71259 when a = 1. In turn, this asymptotic behavior

is also holds for the integration marginal estimator. Thus, when the sample size increase

we see that the bias estimator of α̂(z1;H3) decreases from −0.82138 to −0.80888 in the

first specification and from 0.58222 to 0.53444 in the second one, whereas the standard

deviations pass from 0.42625 to 0.40361 and from 0.46183 to 0.43619, respectively.

Finally, focus on the behavior of AMSE (Tables 5.4 and 5.5) we can highlight how, main-

taining T fixed, the AMSEs decrease as N increases. In this way, all these results enable

us to state that the estimators proposed in this chapter are consistent corroborating the

results of their theoretical properties established in the previous sections. Therefore, the
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consistency of the previous empirical results is proved.

5.5 Conclusions

This chapter considers the nonparametric estimation of a structural model of optimal

life-cycle savings, controlling for both uncertainty about health-care expenditures and

household risk aversion. The main attraction of this estimator is that, compared to those

already proposed in the literature, it allows to deal simultaneously with different problems

such as unobserved cross-sectional heterogeneity, varying parameters of unknown form in

the Euler equation and endogenous covariates. The estimator of the function of interest

turns out to have the simple form of a two-step weighted locally constant least-squares

estimator. Additionally, some marginal integration technique is needed to compute a sub-

set of the functionals of interest. In the chapter, we establish the asymptotic properties of

these estimators. To illustrate the feasibility and possible gains of this method, the chapter

concludes with an application about household’s precautionary savings over the life-cycle.

From this empirical application, we obtain the following conclusions: Households accu-

mulate wealth at least in two periods in life. In younger stages, household’s savings are

devoted to guard against uncertainty about potential income downturn, whereas when

households become older their savings are intended for retirement and bequests. Further-

more, public health programs have a negative impact on precautionary savings. Finally,

by comparing educational levels we obtain that households with low education levels are

more risk averse than those with higher levels.

171





Conclusiones

Resultados

La disponibilidad de datos de panel ha permitido aumentar considerablemente la com-

plejidad de los modelos econométricos. Sin embargo, en muchas áreas cient́ıficas como

la economı́a, medicina, etc., la estimación de modelos de datos de panel no paramétricos

o semi-paramétricos puede llevarnos a resultados infrasuavizados si ignoramos posibles

relaciones no lineales entre las variables explicativas o si no se permite que ciertos coe-

ficientes de la regresión vaŕıen en función de ciertas covariables propuestas por la teoŕıa

económica, ver por ejemplo Card (2001) o Kottaridi and Stengos (2010). En este sen-

tido, los modelos de coeficientes variables de datos de panel que nos permiten explotar

posibles caracteŕısticas dinámicas ocultas en el conjunto de datos han sido objeto de una

investigación intensiva en los últimos años, tanto desde el punto de vista teórico como

metodológico.

En este contexto, esta tesis doctoral persigue un doble objetivo. Por un lado, desarrollar

nuevas técnicas de estimación que nos permitan obtener estimadores consistentes para las

funciones de interés suaves de un modelo de coeficientes variables de datos de panel en el

cual la heterogeneidad individual no observable está correlacionada con ciertas variables

explicativas. Por otro lado, demostrar las posibles ganancias emṕıricas proporcionadas

por las estrategias de estimación propuestas en los distintos caṕıtulos de este trabajo.

Resaltar que aunque en este caso nosotros nos centramos en un caso emṕırico concreto, el

comportamiento de los ahorros preventivos de los hogares a lo largo del ciclo vital, estas

estrategias de estimación pueden ser fácilmente aplicadas a estudios emṕıricos de diversa

naturaleza.
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En esta sección, y a modo de conclusión, recogemos los principales objetivos perseguidos

en cada uno de los caṕıtulos que conforman esta tesis doctoral aśı como los principales

resultados obtenidos.

En el Caṕıtulo 1, se realiza una revisión intensiva sobre la literatura econométrica de

modelos de datos de panel semi-paramétricos y totalmente no paramétricos. Primero,

analizamos los modelos de datos de panel totalmente no paramétricos tanto con efectos fijos

como aleatorios. Posteriormente, se repasan los modelos parcialmente lineales bajo tres

especificaciones distintas: efectos fijos y aleatorios, y presencia de covariables endógenas.

Concluimos con una revisión de los modelos de coeficientes variables. Para cada una de

estas áreas se discuten las caracteŕısticas del modelo a estimar aśı como la metodoloǵıa

propuesta. Además, también se analizan las principales propiedades asintóticas de los

estimadores resultantes.

En el Caṕıtulo 2, se desarrolla una estrategia de estimación que nos permite estimar las

funciones de interés de un modelo de coeficientes aleatorios en un contexto de datos de

panel en el que se asume que la heterogeneidad individual no observable está correlacionada

con algunas/todas las covariables del modelo de regresión. Para evitar el problema de

dependencia estad́ıstica entre la heterogeneidad no observada de sección cruzada y las

covariables, se recurre a la trasformación en primeras diferencias. Sin embargo, dado que

esta transformación nos proporciona un modelo de regresión que puede ser considerado

como una función aditiva con la misma forma funcional pero evaluada en distintos peŕıo-

dos de tiempo, seguimos la propuesta de Yang (2002). De este modo, presentamos un

estimador basado en una aproximación local lineal y en el uso de una ponderación de

kernel de mayor dimensión.

Como se señala en Lee and Mukherjee (2008), la aplicación directa de técnicas de apro-

ximación lineal a este tipo de modelos de datos de panel en diferencias nos conduce a

estimadores que exhiben un sesgo que no desaparece incluso en muestras grandes. Sin

embargo, el uso de ponderaciones de kernel de mayor orden nos permiten resolver este

problema. Además de la habitual distancia entre el término fijo alrededor del cual se rea-

liza la aproximación y un valor de la muestra, esta técnica nos permite considerar también

la suma de estas distancias respecto a los distintos valores de la muestra. Desafortunada-

mente, analizando las principales propiedades asintóticas de este estimador comprobamos
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que el problema del sesgo efectivamente desaparece, pero al coste de generar un incremento

del término de la varianza. Por lo tanto, este estimador alcanza una tasa de convergen-

cia no paramétrica más lenta. Con el objeto de alcanzar optimalidad, en este caṕıtulo

proponemos reducir el problema de la dimensionalidad recurriendo a un suavizado adi-

cional a través de un algoritmo de backfitting de una etapa. Analizando las propiedades

asintóticas de este estimador queda demostrado que un suavizado adicional nos propociona

estimadores que alcanzan la tasa óptima de convergencia y que exhiben la propiedad de

eficiencia oráculo, como se señala en Fan and Zhang (1999). Asimismo, y dado el papel

fundamental que juega la matriz de anchos de banda a la hora de alcanzar el equilibrio

entre sesgo y varianza, proporcionamos un método que nos permite calcular esta matriz

de manera emṕırica. Finalmente, a través de un experimento de Monte Carlo corrobo-

ramos el buen comportamiento de este estimador en muestras finitas. En concreto, para

T fijo, a medida que aumenta el tamaño muestral el valor del AMSE es menor, tal y como

esperábamos a la vista de sus propiedades asintóticas.

En el Caṕıtulo 3, nuestro objetivo se centra en la obtención de estimadores que exhiban

las propiedades asintóticas estándar de los estimadores no paramétricos bajo el supuesto

de que los términos de error idiosincráticos son i.i.d. Para ello, recurrimos a una trans-

formación en desviaciones respecto de la media para eliminar la dependencia estad́ıstica

existente entre la heterogeneidad individual y las covariables en un modelo de coeficientes

variables de datos de panel. De nuevo, para evitar el problema del sesgo asintótico no

insignificante proponemos un estimador de regresión local lineal con una ponderación de

kernels de dimensión T. Dado que el estimador resultante alcanza subóptimas tasas de

convergencia no paramétricas, proponemos combinar este procedimiento con un algoritmo

de backfitting de una etapa que nos permite cancelar asintóticamente todos los términos

aditivos del modelo de regresión en diferencias. Posteriormente, demostramos que este

estimador de dos etapas es asintóticamente normal y alcanza una tasa de convegencia

óptima dentro de este tipo de funciones suaves. Además exhibe la propiedad de eficiencia

oráculo. Finalmente, a través de un estudio de Monte Carlo confirmamos los resultados

teóricos y el buen comportamiento de los estimadores en muestras finitas.

Una vez presentados los estimadores en diferencias propuestos (primeras diferencias y

efectos fijos), en el Caṕıtulo 4 se realiza un estudio comparativo sobre el comportamiento
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de ambos estimadores. Analizando las propiedades asintóticas de los dos estimadores de

regresión local lineal se aprecia que, aunque ambos mantienen el mismo orden de mag-

nitud del término de sesgo, presentan ĺımites asintóticos distintos para cada término de

varianza. De este modo, ambos estimadores alcanzan tasas subóptimas de convergencia

no paramétricas. Por su parte, para los dos estimadores de backfitting de una etapa se

demuestra que, bajo condiciones bastante generales, en ambos casos se alcanza la opti-

malidad y se exhibe la propiedad de eficiencia oráculo. Dado que los dos estimadores

de backfitting son asintóticamente equivalentes, el análisis sobre su comportamiento en

tamaños muestrales pequeños es muy interesante.

En un contexto totalmente paramétrico, se ha demostrado que bajo supuestos de exo-

geneidad estricta la elección entre los estimadores en diferencias depende de la estructura

estocástica de los términos de error idiosincráticos. Sin embargo, en el análisis asintótico

de los estimadores no paramétricos obtenemos que además de la estructura estocástica e-

xisten otros factores como la dimensionalidad de las covariables y el tamaño muestral que

son de gran interés. En concreto, para analizar el comportamiento de estos estimadores en

muestras finitas nos centramos en la evolución del promedio de su error cuadrático medio

(AMSE) bajo distintos escenarios del término de error.

A la vista de los resultados obtenidos de la simulación, podemos destacar que el AMSE de

los dos estimadores de regresión local lineal tienden a converger bajo distintas especifica-

ciones del término de error. Además, para valores pequeños de T, el AMSE del estimador

en primeras diferencias tiende a dominar en términos del AMSE del estimador de efectos

fijos. Aśı, el estimador de efectos fijos es preferido, tal y como esperábamos. Por su parte,

cuando T aumenta el comportamiento de los dos estimadores empeora considerablemente,

tal y como establecen los ĺımites asintóticos de sus términos de varianza. Por otro lado,

en cuanto a los dos estimadores de backfitting se obtiene que para los distintos tipos de

error considerados el estimador de dos etapas presenta un mejor comportamiento que el

estimador de regresión local lineal dado que nos permite evitar el problema de la dimen-

sionalidad. Asimismo, bajo estructuras i.i.d. del término de error o procesos estacionarios

AR(1) se aprecia que el estimador de backfitting de una etapa de efectos fijos presenta un

mejor comportamiento que el de primeras diferencias. Cuando el término de error sigue

un paseo aleatorio el comportamiento del estimador es mejor en el sentido contrario. Aśı,
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en śıntesis podemos afirmar que los resultados de la simulación confirman las propiedades

teóricas establecidas previamente, tanto para los estimadores de regresión local lineal como

para los de backfitting de una etapa. Asimismo, encontramos que los estimadores de efec-

tos fijos son bastante sensibles al tamaño del número de observaciones temporales por

individuo.

Finalmente, en el Caṕıtulo 5 y con el objetivo de demostrar la viabilidad emṕırica que

reportan estos nuevos procedimientos para el análisis emṕırico, se considera la estimación

no paramétrica de un modelo estructural sobre los ahorros preventivos de los hogares

españoles, para el peŕıodo 1985−1996, motivado por el modelo del ciclo vital de Modigliani

and Brumberg (1954). A partir de esta especificación, estimamos un modelo en el cual

los ahorros de los hogares se relacionan tanto con la incertidumbre sobre futuros gastos

médicos imprevistos como con la aversión al riesgo de los hogares. Con el objetivo de

contribuir a la literatura sobre los ahorros preventivos, en este caṕıtulo tratamos de hacer

frente a los errores de especificación más habituales en este tipo de estudios. Para ello,

extendemos el modelo semi-paramétrico desarrollado en Chou et al. (2004) al análisis de

modelos de datos de panel. Aśı, lo que nos proponemos es estimar un modelo del ciclo

vital que nos permita determinar el comportamiento de los hogares bajo las siguientes

particularidades: (i) heterogeneidad de sección cruzada no observable correlacionada con

las variables explicativas; (ii) existencia de funciones desconocidas en la ecuación de Euler

que relacionan variables endógenas y exógenas y que deben ser estimadas; y (iii) gasto en

productos sanitarios determinado de manera endógena.

Partiendo entonces de un modelo de regresión de coeficientes variables de datos de panel

con efectos fijos, el estimador que proponemos resuelve el problema de endogeneidad uti-

lizando los valores predichos de las variables endógenas generados en la estimación no

paramétrica de la ecuación en forma reducida. De este modo, el estimador resultante tiene

la forma de un estimador simple de mı́nimos cuadrados de dos etapas localmente ponde-

rado. Asimismo, para la estimación de un subconjunto de funciones de interés suaves cier-

tas técnicas de integración marginal son necesarias. Para determinar el comportamiento

de estos estimadores obtenemos sus principales propiedades asintóticas. Finalmente, el

caṕıtulo concluye con un experimento de Monte Carlo que corrobora el buen compor-

tamiento del estimador propuesto en muestras finitas y con una aplicación emṕırica sobre
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los ahorros preventivos de los hogares españoles durante el periodo 1985 − 1996. A la

vista de los resultados obtenidos para esta aplicación emṕırica podemos concluir que los

hogares acumulan riqueza al menos en dos peŕıodos de su vida. Por un lado, los hogares

más jóvenes ahorran para protegerse contra posibles adversidades económicas imprevistas.

Por otro lado, los hogares más adultos ahorran principalmente por motivos de jubilación

o de legado, corroborando lo establecido de manera teórica por el modelo del ciclo vital

de Modigliani and Brumberg (1954). Además, la reducción de la incertidumbre a través

de programas sanitarios públicos tiene un impacto negativo sobre los ahorros. Asimismo,

comparando el comportamiento de los hogares por nivel educativo obtenemos que los

hogares con menor niveles educativo son más aversos al riesgo.

Futuras ĺıneas de investigación

A lo largo del presente trabajo, y dadas las diversas ventajas que los modelos de datos

de panel de coeficientes variables de forma desconocida ofrecen para estudios emṕıricos de

diversa tipoloǵıa, ciertas ĺıneas futuras de investigación han ido surgiendo. A este respecto,

y tal y como se demuestra en Card (2001), a la hora de analizar el rendimiento educativo

de los individuos es necesario permitir que ciertas variables explicativas evolucionen con

otras variables con el fin de obtener resultados consistentes. De este modo, un primer

ejercicio puede consistir en la extensión del modelo de regresión analizado en Card (2001)

a un modelo de datos de panel que puede ser estimado recurriendo a los procedimientos

desarrollados en esta tesis doctoral.

Otra ĺınea de investigación relevante es la elaboración de una serie de test no paramétricos.

Por un lado, en los distintos caṕıtulos de esta tesis doctoral ha quedado demostrado que

los modelos de coeficientes variables son de gran utilidad dado que nos permiten explotar

las posibles caracteŕısticas del conjunto de datos, sin tener que recurrir a supuestos tan

restrictivos sobre la especificación del modelo como los modelos totalmente paramétricos.

Sin embargo, también hemos demostrado que esta flexibilidad tiene un coste añadido que es

la obtención de estimadores no paramétricos con unas tasas de convergencia más lentas.

Con el objetivo de poder contrastar de manera emṕırica la correcta especificación del

modelo a analizar, resulta conveniente desarrollar un test de especificación que contraste
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la modelización paramétrica versus la semi-paramétrica. Para ello, siguiendo la idea de

Henderson et al. (2008), un test basado en la técnica de bootstrap puede ser interesante.

Asimismo, sabemos que cuando la heterogeneidad individual no observable está correla-

cionada con las covariables sólo los estimadores en primeras diferencias proporcionan re-

sultados consistentes, mientras que cuando los efectos individuales son independientes de

los regresores tanto los estimadores en diferencias como los de efectos aleatorios son consis-

tentes. Sin embargo, dado que trabajar con modelos de coeficientes variables en diferencias

es una tarea laboriosa resulta interesante poder contrastar con qué tipo de efectos indi-

viduales estamos trabajando. De este modo, un test no paramétrico de efectos fijos versus

efectos aleatorios que siga el estilo del bien conocido test de Hausman puede ser de gran

utilidad.

Finalmente, en el Caṕıtulo 5 se ha demostrado cómo las técnicas de estimación de regresión

local lineal pueden ser fácilmente extensibles al contexto de modelos de coeficientes fun-

cionales con variables endógenas. Sin embargo, en economı́a y otras ciencias sociales es

común encontrarnos con situaciones en las cuales la covariable no paramétrica se determina

de manera endógena; por ejemplo, en el problema estándar de elección del consumidor.

En esta situación uno podŕıa asumir que existe un vector de variables instrumentales que

nos permite resolver este problema de endogeneidad. Sin embargo, en los modelos no

paramétricos y semi-paramétricos esto no es tan sencillo dado que podemos incurrir en el

problema de la inversa mal planteada.
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Results

The availability of panel data has enriched greatly the complexity of econometric models.

However, in many scientific areas such as economics, medicine, and others, the estimation

of nonparametric and semi-parametric panel data models can lead to undersmoothing

results when we ignore possible non-linear relationship between explanatory variables or

some regression coefficients vary depending on certain covariates proposed by economic

theory; see Card (2001) or Kottaridi and Stengos (2010), for example. Thus, varying

coefficient panel data models that allow us to explode possible features hidden in the data

set have been object of an intensive research in the last years, both from a theoretical and

methodological point of view.

In this context, the objective of this doctoral dissertation is twofold. On one hand, to de-

velop new estimation techniques that enable to obtain consistent estimators of the smooth

functions of interest of a varying coefficient panel data model where the unobserved in-

dividual heterogeneity is correlated with some explanatory variables. On the other hand,

to show the potential gains for empirical analysis provided by the proposed estimation

strategies in the different chapters of the doctoral thesis. Note that although in this case

we focus in a particular empirical problem, i.e., the behavior of household’s precautionary

savings over the life-cycle, these procedures can be easily applied to empirical studies of

various kinds.

In this section, and as conclusion, we summarize the main objectives pursued in each of

the chapters of this dissertation and the main results obtained.



Conclusions

In Chapter 1, an intensive review of the econometric literature on semi-parametric and

fully nonparametric panel data models is performed. First, fully nonparametric panel

data model with both random and fixed effects are analyzed. Second, we survey partially

linear models under three different specifications: fixed and random effects, and presence

of endogenous covariates. We conclude with a review of panel data varying coefficient

models. For each of these areas, we discuss both the basic model to estimate and the

proposed methodology. We also analyze the main asymptotic properties of the resulting

estimators.

In Chapter 2, we develop a new estimation strategy that enables us to estimate the func-

tions of interest of a varying coefficient panel data model where it is assumed that the

unobserved individual heterogeneity is correlated with some/all the covariates of the re-

gression model. In order to avoid the statistical dependence problem between the unob-

served cross-sectional heterogeneity and the covariates, we use the first differences trans-

formation. However, since this transformation provides a regression model that can be

considered as an additive function with the same functional form but evaluated in different

periods we follow the proposal in Yang (2002). Thus, we present an estimator based on a

local linear approximation and on the use of a higher-dimensional kernel weight.

As it is noted in Lee and Mukherjee (2008), direct application of linear approximation

techniques to such differencing panel data models leads us to estimators that exhibit

a bias that does not disappear even in large samples. However, the use of a higher-

dimensional kernel weight enables to overcome this problem. Besides the usual distance

between the fixed term around which the approximation is performed and a value of the

sample, this technique also allows us to consider the sum of these distances with respect to

the different values of the sample. Unfortunately, when we analyze the main asymptotic

properties of this estimator we obtain that the bias problem actually disappear, but at

the cost of generating an increase in the variance term. Therefore, this estimator achieves

slower nonparametric rates of convergence. With the aim of achieving optimality, in this

chapter we propose to ameliorate the dimensionality problem resorting to an additional

smoothing through a one-step backfitting algorithm. Analyzing the asymptotic properties

of this estimator it is shown that an additional smoothing provides estimators that achieve

the optimal rate of convergence of this type of problems and exhibit the oracle efficiency
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property, as it is noted in Fan and Zhang (1999). Furthermore, because of the relevant

role of the bandwidth matrix in the trade-off bias and variance, we provide a method that

allows us to compute this matrix empirically. Finally, through a Monte Carlo experiment

we corroborate the good performance of this estimator in finite samples. In particular, for

T fixed, as far as the sample size increase the value of the AMSE is lower, as we expected

from its asymptotic properties.

In Chapter 3, the main goal that we pursue is to provide estimators that exhibit the

standard asymptotic properties of the nonparametric estimators under the assumption

of the idiosyncratic error terms are i.i.d. To do it, we use a deviation from the mean

transformation with the aim of removing the statistical dependence problem between the

fixed effects and the explanatory variables of a varying coefficient panel data model. Again,

to avoid the non-negligible asymptotic bias we propose a local linear regression estimator

with a kernels function of dimension T . Since the resulting estimator achieves suboptimal

rates of convergence, we propose to combine this procedure with a one-step backfitting

algorithm that allows us to cancel asymptotically all the additive terms of the regression

model in differences. Later, we show that this two-step estimator is asymptotically normal

and achieves the optimal rate of convergence of this type of smooth functions. Also, it

exhibits the oracle efficiency property. Finally, a Monte Carlo experiment enables us

to confirm the theoretical findings and the good performance of the estimator in finite

samples.

Once presented the differencing estimators that we propose in this doctoral dissertation

(first-differences and fixed effects), in Chapter 4 we perform a comparative analysis about

the behavior of both estimators. Analyzing the asymptotic properties of the two local

linear regression estimators we can see that, although both maintain the same order of

magnitude of the bias term, they show different asymptotic limits for the variance term.

In this way, both estimators achieve suboptimal rates of convergence. On the contrary, for

the two one-step backfitting estimators it is shown that, under fairly general conditions,

both achieve optimality and are oracle efficient. Since both backfitting estimators are

asymptotically equivalent, the analysis of their behavior in small sample sizes is very

interesting.

In a fully parametric context, it is shown that under assumptions of strict exogeneity the
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choice between differencing estimators depends on the stochastic structure of the idiosyn-

cratic error terms. However, in the asymptotic analysis of the nonparametric estimators

we observe that apart from the stochastic structure, there exist other factors such as the

dimensionality of the covariates and the sample size are of great interest. Specifically, to

analyze the performance of these estimators in small sample sizes we focus on the evolu-

tion of the average mean square error (AMSE) under fairly different scenarios of the error

term.

In view of the simulation results obtained, we can highlight that the AMSE of the two local

linear regression estimators tends to converge under different specifications of the error

term. Also, for small values of T , the AMSE of the first-differences estimator tends to

dominate in terms of the AMSE of the fixed effects estimator. In this way, the fixed effects

estimator is preferred, as we expected. On the contrary, when T increase the behavior of

the two estimators worsens considerably, as the asymptotic limits of their variance terms

set. On the other hand, regarding to the backfitting estimators is obtained that for the

various types of errors considered, the two-step estimator has a better performance than

the local linear regression estimator since it allows us to avoid the dimensionality problem.

In addition, under i.i.d. structures of the error terms or AR(1) stationary process we see

that the one-step backfitting fixed effects estimator has a better performance than the first-

differences. When the error term follows a random walk the behavior of the estimator is

better in the opposite sense. Thus, in short, we can say that the simulation results confirm

the theoretical findings established previously for both local linear regression and one-step

backfitting estimators. Also, we find that fixed effects estimators are quite sensitive to the

size of the number of time observations per individual.

Finally, in Chapter 5 and with the aim of showing the empirical feasibility that these new

procedures report for empirical analysis, we consider the nonparametric estimation of a

structural model on Spanish household’s precautionary savings, for the period 1985−1996,

motivated by the life-cycle hypothesis model of Modigliani and Brumberg (1954). Starting

from this specification, we estimate a model where household’s savings are related to both

uncertainty about future healthcare expenses and household risk aversion. In order to

contribute to the literature on precautionary savings, in this chapter we try to address the

most common misspecification problems in such studies. To this end, we extend the semi-
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parametric model developed in Chou et al. (2004) to the analysis of panel data models.

In this way, what we propose is to estimate a life-cycle hypothesis model that enables

to state the household behavior under the following peculiarities: (i) unobserved cross-

sectional heterogeneity correlated with the explanatory variables; (ii) unknown functions

in the Euler equation that relates endogenous and exogenous covariates and that have to

be estimated; and (iii) expense in healthcare products determined endogenously.

Starting from a varying coefficient panel data regression model with fixed effects, the

estimator that we propose solve the endogeneity problem using the predicted values of

the endogenous covariates generated in the nonparametric estimation of the reduced form

equation. In this way, the resulting estimator has the simple form of a two-step weighted

locally constant least-squares estimator. Also, certain marginal integration techniques are

necessary to estimate a subset of the functionals of interest. To determine the behavior of

both estimators we obtain their main asymptotic properties. Finally, the chapter conclude

with a Monte Carlo experiment that corroborate the good performance of the proposed

estimator in finite sample and an empirical application on Spanish household’s precau-

tionary savings for the period 1985 − 1996. In view of the results, we obtain that from

this empirical application we can conclude that households accumulate wealth at least in

two periods of their life. On one hand, younger households save to guard to uncertainty

about potential income downturn. On the other hand, older households save primarily for

retirement or legacy reasons, corroborating what is established in the life-cycle hypoth-

esis model of Modigliani and Brumberg (1954). In addition, the uncertainty reduction

through public health programs has a negative impact on the savings. Finally, comparing

the behavior of both estimators by educational level we obtain that households with low

education levels are more risk averse than those with higher levels.

Future research

Throughout this work, and given the different gains offered by the varying coefficient

panel data models of unknown form for several empirical studies, some future lines of

research have arisen. In this regard, as it is shown in Card (2001), when we analyze the

returns of educational is necessary to allow certain explanatory variables to evolve with
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other variables to obtain consistent results. In this way, a first study can consist on the

extension of the regression model used in Card (2001) to a panel data model that can be

estimate using the procedures developed in this doctoral dissertation.

Another line of relevant research is the development of some nonparametric tests. On

one hand, in the chapters of this dissertation it has been shown that varying coefficient

models are very useful because they allow us to exploit existing features in the data set,

without resorting to assumptions so restrictive on model specification as fully parametric

models. However, we have also shown that this flexibility has an added cost because it

provides nonparametric estimators with slower rates of convergence. With the aim of

testing empirically the correct specification of the model to analyze, it is desirable to

develop a specification test that check parametric versus semi-parametric modeling. For

this, following the idea of Henderson et al. (2008) a test based on the bootstrap technique

can be very interesting.

We also know that when the unobserved individual heterogeneity is correlated with the

covariates only first-differences estimators provide consistent results, whereas when indi-

vidual effects are independent of the regressors both differencing estimators and random

effects are consistent. However, working with varying coefficient models in differences is a

cumbersome task so it is interesting to test which type of individual effects we are working

with. In this way, a nonparametric test of fixed effects versus random effects that follows

the style of the well-known Hausman test can be useful.

Finally, in Chapter 5 we have shown that local linear regression estimation techniques

can be easily extended to the context of functionals coefficient models with endogenous

variables. However, in economics and other social sciences it is very common to deal

with situations in which the nonparametric covariate is determined endogenously; i.e., in

the standard consumer selection problem. In this situation, we can assume that there

is a vector of instrumental variables that enables us to solve this endogeneity problem.

However, in nonparametric and semi-parametric models this is not so easy since we can

incur in the ill-posed inverse problem.
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Appendix 1

Proof of Theorem 2.1

Taking Assumption A.2 conditional expectations in (2.14) and noting that

E [vit|X,Z] = 0, i = 1, · · · , N ; t = 2, · · · , T,

then

E [m̂(z;H)|X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>WM (A1.1)

where M =
(
X>12m(Z12)−X>11m(Z11), ..., X>NTm(ZNT )−X>N(T−1)m(ZN(T−1))

)>
.

Taylor’s Theorem implies that

M = Z̃

 m(z)

vec(Dm(z))

+
1

2
Qm(z) +R(z), (A1.2)

where

Qm(z) = Sm1(z)− Sm2(z), (A1.3)

Sm1(z) =
(
S>m1,12(z), · · · , S>m1,NT (z)

)>
,

Sm2(z) =
(
S>m2,11(z), · · · , S>m2,N(T−1)(z)

)>
and

Sm1,it(z) =
(

(Xit ⊗ (Zit − z))>Hm(z)(Zit − z)
)
,

Sm2,i(t−1)(z) =
(

(Xi(t−1) ⊗ (Zi(t−1) − z))>Hm(z)(Zi(t−1) − z)
)
.
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We denote by

Hm(z) =


Hm1(z)

Hm2(z)
...

Hmd(z)

 ,

a dq × q matrix such that Hmd(z) is the Hessian matrix of the dth component of m (·).

The remainder term can be written as

R(z) = R1(z)−R2(z), (A1.4)

R1(z) =
(
R>1,12(z), ..., R>1,NT (z)

)>
,

R2(z) =
(
R>2,11(z), ..., R>2,N(T−1)(z)

)>
and

R1,it(z) =
(

(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)
)
,

R2,i(t−1)(z) =
(

(Xi(t−1) ⊗ (Zi(t−1) − z))>R
(
Zi(t−1); z

))
.

We denote by

R(Zit; z) =


R1(Zit; z)

R2(Zit; z)
...

Rd(Zit; z)

 ,R(Zi(t−1); z) =


R1(Zi(t−1); z)

R2(Zi(t−1); z)
...

Rd(Zi(t−1); z)

 ,

and

Rd(Zit; z) =

∫ 1

0

(
∂2md

∂z∂z>
(z + ω(Zit − z))−

∂2md

∂z∂z>
(z)

)
(1− ω)dω,

Rd(Zi(t−1); z) =

∫ 1

0

(
∂2md

∂z∂z>
(z + ω(Zi(t−1) − z))−

∂2md

∂z∂z>
(z)

)
(1− ω)dω. (A1.5)
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First, we analyze the bias term. In order to do this, we substitute (A1.2) into (A1.1) and

noting that vec(Dm(z)) in (A1.2) vanishes because

e>1 (Z̃>WZ̃)−1Z̃>WZ̃

 m(z)

vec(Dm(z))

 = e>1

 m(z)

vec(Dm(z))

 = m(z), (A1.6)

then,

E [m̂(z;H)|X,Z]−m(z) =
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>WQm(z)

+ e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z). (A1.7)

We first analyze the asymptotic behavior of 1
2e
>
1

(
Z̃>WZ̃

)−1
Z̃>WQm(z). Later in the

appendix, we do the same with the second term. For the sake of simplicity, let us denote

Kit =
1

|H|1/2
K
(
H−1/2(Zit − z)

)
,

now, we define the symmetric block matrix

(NT )−1Z̃>WZ̃ =

 A11
NT A12

NT

A21
NT A22

NT

 (A1.8)

where,

A11
NT = (NT )−1

∑
it

∆Xit∆X
>
itKitKi(t−1),

A12
NT = (NT )−1

∑
it

∆Xit

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)>
KitKi(t−1),

A21
NT = (NT )−1

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
∆X>itKitKi(t−1),

A22
NT = (NT )−1

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
×
(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)>
KitKi(t−1).

We show that as N tends to infinity

A11
NT = B∆X∆X(z, z) + op(1). (A1.9)

where,

B∆X∆X(z, z) = E
[
∆Xit∆X

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z).
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In order to do so, note that under the stationarity assumption and using iterated expec-

tations

E
(
A11
NT

)
=

∫ ∫
E
[
∆Xit∆X

>
it |Zit = z +H1/2u, Zi(t−1) = z +H1/2v

]
×fZit,Zi(t−1)

(
Zit = z +H1/2u, Zi(t−1) = z +H1/2v

)
K(u)K(v)dudv.

Furthermore, under Assumptions 2.1 and 2.4 and a Taylor expansion, as N tends to

infinity, (A1.9) holds. All what we need to close the proof is to show that Var
(
A11
NT

)
→ 0,

as the sample size tends to infinity. Note that under Assumption 2.1,

Var
(
A11
NT

)
=

1

NT
Var

(
∆Xit∆X

>
itKitKi(t−1)

)
+

1

NT 2

∑
t=3

(T − t)Cov
(

∆Xi2∆X>i2Ki2Ki1,∆Xit∆X
>
itKitKi(t−1)

)
.

Under Assumptions 2.4-2.6

Var
(

∆Xit∆X
>
itKitKi(t−1)

)
≤ C

NT |H|
.

and

Cov
(

∆Xi2∆X>i2Ki2Ki1,∆Xit∆X
>
itKitKi(t−1)

)
≤ C ′

N |H|
.

Then, if both NT |H| and N |H| tend to infinity the variance tends to zero and (A1.9)

holds.

Similarly, we can show that

A12
NT = DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1(z, z) (Id ⊗ µ2 (Kv)H) + op(H).

(A1.10)

Here, DB∆XX(Z1, Z2) and DB∆XX−1(Z1, Z2) are d × dq gradient matrices. We define

DB∆XX(Z1, Z2) as

DB∆XX(Z1, Z2) =


∂b∆XX11 (Z1,Z2)

∂Z>1
· · · ∂b∆XX1d (Z1,Z2)

∂Z>1
...

. . .
...

∂b∆XXd1 (Z1,Z2)

∂Z>1
· · · ∂b∆XX

dd′ (Z1,Z2)

∂Z>1

 ,

and

b∆XXdd′ (Z1, Z2) = E
[
∆XditXd′it|Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .
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The DB∆XX−1(Z1, Z2) gradient matrix is

DB∆XX−1(Z1, Z2) =


∂b

∆XX−1
11 (Z1,Z2)

∂Z>1
· · · ∂b

∆XX−1
1d (Z1,Z2)

∂Z>1
...

. . .
...

∂b
∆XX−1
d1 (Z1,Z2)

∂Z>1
· · · ∂b

∆XX−1
dd (Z1,Z2)

∂Z>1

 ,

and

b
∆XX−1

dd′ (Z1, Z2) = E
[
∆XditXd′i(t−1)|Zit = Z1, Zi(t−1) = Z2

]
fZit,Zi(t−1)

(Z1, Z2) .

Finally,

A22
NT = BXX(z, z)⊗ µ2(Ku)H + BX−1X−1(z, z)⊗ µ2(Kv)H + op(H), (A1.11)

where

BXX(z, z) = E
[
XitX

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) ,

BX−1X−1(z, z) = E
[
Xi(t−1)X

>
i(t−1)|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) .

Using the results shown in (A1.9), (A1.10) and (A1.11), we obtain

NT
(
Z̃>WZ̃

)−1
=

 C11 C12

C21 C22

 , (A1.12)

where

C11 = B−1
∆X∆X(z, z) + op(1),

C12 = −B−1
∆X∆X(z, z)

(
DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

(z, z) (Id ⊗ µ2 (Kv)H)
)

×
((
BXX(z, z)⊗ µ2 (Ku)H + BX−1X−1(z, z)⊗ µ2 (Kv)H

))−1
+ op(1),

C21 =
((
BXX(z, z)⊗ µ2 (Ku)H + BX−1X−1(z, z)⊗ µ2 (Kv)H

))−1

×
(
DB∆XX(z, z) (Id ⊗ µ2 (Ku)H)−DB∆XX−1

(z, z) (Id ⊗ µ2 (Kv)H)
)> B−1

∆X∆X(z, z)

+op(1),

C22 =
((
BXX(z, z)⊗ µ2(Ku)H + BX−1X−1

(z, z)⊗ µ2(Kv)H
))−1

+ op
(
H−1

)
.
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Also, it is straightforward to show that the terms in

(NT )−1Z̃>WSm1(z)

=


(NT )−1

∑
it ∆Xit (Xit ⊗ (Zit − z))>Hm(z)(Zit − z)KitKi(t−1)

(NT )−1
∑

it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
(Xit ⊗ (Zit − z))>Hm(z)

×(Zit − z)KitKi(t−1)

 ,

are asymptotically equal to

(NT )−1
∑
it

∆Xit (Xit ⊗ (Zit − z))>Hm(z)(Zit − z)KitKi(t−1)

= µ2 (Ku)E
[
∆XitX

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z) diagd (tr(Hmr(z)H)) id

+ op (tr(H)) , (A1.13)

where diagd (tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr(z)H), for

r = 1, · · · , d, and id is a d× 1 unit vector, and

(NT )−1
∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
(Xit ⊗ (Zit − z))>Hm(z)

×(Zit − z)KitKi(t−1)

=

∫
BXX(z, z)⊗ (H1/2u)(H1/2u)>Hm(z)(H1/2u)K(u)K(v)dudv

−
∫
BX−1X(z, z)⊗ (H1/2v)(H1/2u)>Hm(z)(H1/2u)K(u)K(v)dudv + op(H

3/2)

= Op(H
3/2). (A1.14)

Finally, the terms in

(NT )−1Z̃>WSm2(z) =
(NT )−1

∑
it ∆Xit

(
Xi(t−1) ⊗ (Zi(t−1) − z)

)>Hm(z)(Zi(t−1) − z)KitKi(t−1)

(NT )−1
∑

it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

) (
Xi(t−1) ⊗ (Zi(t−1) − z)

)>Hm(z)

×(Zi(t−1) − z)KitKi(t−1)


are of order

(NT )−1
∑
it

∆Xit

(
Xi(t−1) ⊗ (Zi(t−1) − z)

)>Hm(z)(Zi(t−1) − z)KitKi(t−1)

= µ2 (Kv)E
[
∆XitX

>
i(t−1)|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z)diagd (tr(Hmr(z)H)) id

+ op (tr(H)) , (A1.15)
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and

(NT )−1
∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

) (
Xi(t−1) ⊗ (Zi(t−1) − z)

)>Hm(z)

×(Zi(t−1) − z)KitKi(t−1)

=

∫
BXX−1(z, z)⊗ (H1/2u)(H1/2v)>Hm(z)(H1/2v)K(u)K(v)dudv

−
∫
BX−1X−1(z, z)⊗ (H1/2v)(H1/2v)>Hm(z)(H1/2v)K(u)K(v)dudv + op(H

3/2)

= Op(H
3/2). (A1.16)

The second term for the bias expression is e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z). We already know

what is the asymptotic expression for
(
Z̃>WZ̃

)−1
, so now we proceed to analyze the

asymptotic behavior of Z̃>WR(z). According to (A1.4) and (A1.5), note that

(NT )−1Z̃>WR(z) =

 E1(z)

E2(z)

 ,

where

E1(z) =
1

NT

∑
it

∆Xit

×
(

(Xit ⊗ (Zit − z))>R(Zit; z)(Zit − z)− (Xi(t−1) ⊗ (Zi(t−1) − z))>R(Zi(t−1); z)(Zi(t−1) − z)
)

×KitKi(t−1) (A1.17)

and

E2(z) =
1

NT

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
×
(

(Xit ⊗ (Zit − z))>R(Zit; z)(Zit − z)− (Xi(t−1) ⊗ (Zi(t−1) − z))>R(Zi(t−1); z)(Zi(t−1) − z)
)

×KitKi(t−1). (A1.18)

Note that

E1(z) = E11(z) + E12(z), (A1.19)

where

E11(z) =
1

NT

∑
it

KitKi(t−1)∆Xit (A1.20)

×
(

(Xit ⊗ (Zit − z))>R(Zit; z)(Zit − z)− (Xi(t−1) ⊗ (Zi(t−1) − z))>R(Zit; z)(Zi(t−1) − z)
)
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and

E12(z) =
1

NT

∑
it

KitKi(t−1)∆Xit (A1.21)

×
(

(Xi(t−1) ⊗ (Zi(t−1) − z))>(R(Zit; z)−R(Zi(t−1); z))(Zi(t−1) − z)
)
.

Now, we show that, as N tends to infinity,

E[E1(z)] = op (tr(H)) . (A1.22)

In order to prove this, note that

E[E11(z)]

=

∫ ∫
K(u)K(v)

(
B∆XX(z +H1/2u, z +H1/2v)⊗ (H1/2u)>

)
R(z +H1/2u; z)(H1/2u)dudv

−
∫ ∫

K(u)K(v)
(
B∆XX−1(z +H1/2u, z +H1/2v)⊗ (H1/2v)>

)
R(z +H1/2u; z)(H1/2v)dudv.

By (A1.5) and Assumption 2.7,

|Rd(z +H1/2u; z)| ≤
∫ 1

0
ς(ω‖H1/2u‖)(1− ω)dω,∀d,

where ς(η) is the modulus of continuity of (∂2md/∂zi∂zj)(z). Hence, by boundedness of

f , B∆XX and B∆XX−1

|E[E11(z)]| ≤ C1

∫ ∫ ∫ 1

0
|(H1/2u)>||ς(ω‖H1/2u‖)||H1/2u|K(u)K(v)dωdudv

+ C2

∫ ∫ ∫ 1

0
|(H1/2v)>||ς(ω‖H1/2u‖)||H1/2v|K(u)K(v)dωdudv.

Also, E[E11(z)] = op (tr(H)) follows by dominated convergence.

Similarly,

E[E12(z)] =

∫ ∫
K(u)K(v)

(
B∆XX−1(z +H1/2u, z +H1/2v)⊗ (H1/2v)>

)
×
(
R(z +H1/2u; z)−R(z +H1/2v; z)

)
(H1/2v)dudv.

Therefore,

|E[E12(z)]| ≤ C3

∫ ∫ ∫ 1

0
|(H1/2v)>||ς(ω‖H1/2u‖)||H1/2v|K(u)K(v)dωdudv

+ C4

∫ ∫ ∫ 1

0
|(H1/2v)>||ς(ω‖H1/2v‖)||H1/2v|K(u)K(v)dωdudv.
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Then, proceeding as in the proof of the previous result, we also find that E[E12(z] =

op (tr(H)).

Now, for E2(z), note that

E2(z) = E21(z) + E22(z), (A1.23)

where

E21(z) =
1

NT

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
(A1.24)

×
(

(Xit ⊗ (Zit − z))>R(Zit; z)(Zit − z)− (Xi(t−1) ⊗ (Zi(t−1) − z))>R(Zit; z)(Zi(t−1) − z)
)
.

and

E22(z) =
1

NT

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
(A1.25)

×
(

(Xi(t−1) ⊗ (Zi(t−1) − z))>(R(Zit; z)−R(Zi(t−1); z))(Zi(t−1) − z)
)
.

Following the same lines as for the proof of (A1.22), it is easy to show that

E[E2(z)] = op(H
3/2). (A1.26)

Substituting (A1.12), (A1.13), (A1.15) and (A1.22) into (A1.7), the asymptotic bias can

be written as

E [m̂(z;H)|X,Z]−m(z)

=
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>W (Sm1(z)− Sm2(z))

=
1

2
B−1

∆X∆X(z, z)
(
µ2(Ku)B∆XX(z, z)− µ2(Kv)B∆XX−1(z, z)

)
diagd (tr(Hmr(z)H)) id

+ op(tr(H)).

To obtain an asymptotic expression for the variance, let us first define the (N(T −1)×1)-

vector ∆v = (∆v1, · · · ,∆vN )> where ∆vi = (∆vi2, · · · ,∆viT )> and let E
(
∆v∆v>|X,Z

)
=

V be a N(T − 1)×N(T − 1) matrix that contains the Vij ’s matrices

Vij = E(∆vi∆v
>
j |X,Z) =


2σ2

v , for i = j, t = s

−σ2
v , for i = j, |t = s| < 2.

0, for i = j, |t = s| ≥ 2.

(A1.27)
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Then, taking into account that

m̂(z;H)− E [m̂(z;H)|X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>W∆v, (A1.28)

the variance of m̂(z;H) can be written as

V ar (m̂(z;H)|X,Z) = e>1

(
Z̃>WZ̃

)−1
Z̃>WVW>Z̃

(
Z̃>WZ̃

)−1
e1. (A1.29)

Based on Assumption 2.2 and by the fact that the vit are i.i.d., then the upper left entry

of (1/NT )Z̃>WVW>Z̃ is

2σ2
v

NT

∑
it

∆Xit∆X
>
itK

2
itK

2
i(t−1) −

σ2
v

NT

∑
i

T∑
t=3

∆Xit∆X
>
i(t−1)KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

∆Xit∆X
>
i(t−2)KitKi(t−1)Ki(t−2)Ki(t−3)

=
2σ2

vR(Ku)R(Kv)

|H|
B∆X∆X(z, z)(1 + op(1)), (A1.30)

because

σ2
v

NT

∑
i

T∑
t=3

∆Xit∆X
>
i(t−1)KitK

2
i(t−1)Ki(t−2) =

σ2
vR(Kv)

|H|1/2
B∆X∆X−1(z, z, z)(1 + op(1)),

(A1.31)

and

σ2
v

NT

∑
i

T∑
t=4

∆Xit∆X
>
i(t−2)KitKi(t−1)Ki(t−2)Ki(t−3) = σ2

vR(Kv)B∆X∆X−2(z, z, z, z)(1+op(1)).

(A1.32)

The upper right block is

2σ2
v

NT

∑
it

∆Xit

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)>
K2
itK

2
i(t−1)

− σ2
v

NT

∑
i

T∑
t=3

∆Xit

(
Xi(t−1) ⊗ (Zi(t−1) − z)−Xi(t−2) ⊗ (Zi(t−2) − z)

)>
KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

∆Xit

(
Xi(t−2) ⊗ (Zi(t−2) − z)−Xi(t−3) ⊗ (Zi(t−3) − z)

)>
KitKi(t−1)Ki(t−2)Ki(t−3)

= I1 − I2 − I3. (A1.33)
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I1 =
σ2
v

|H|

∫ (
B∆XX(z +H1/2u, z +H1/2v)⊗ (H1/2u)>

− B∆XX−1(z +H1/2u, z +H1/2v)⊗ (H1/2v)>
)
K2(u)K2(v)dudv(1 + op(1))

= Op(|H|), (A1.34)

I2 =
σ2
v

|H|1/2

∫ (
B∆XX−1(z +H1/2u, z +H1/2v, z +H1/2w)⊗ (H1/2v)>

− B∆XX−2(z +H1/2u, z +H1/2v, z +H1/2w)⊗ (H1/2w)>
)
K(u)K2(v)K(w)

×dudvdw(1 + op(1))

= Op(|H|1/2), (A1.35)

and

I3 = σ2
v

∫ (
B∆XX−2(z +H1/2u, z +H1/2v, z +H1/2w, z +H1/2s)⊗ (H1/2w)>

− B∆XX−3(z +H1/2u, z +H1/2v, z +H1/2w, z +H1/2s)⊗ (H1/2s)>
)

×K(u)K(v)K(w)K(s)dudvdwds(1 + op(1))

= Op(1). (A1.36)

Note that we denote,

B∆XX(z, z)

fZit,Zi(t−1)
(z, z)

= E
[
∆XitX

>
it |Zit = z, Zi(t−1) = z

]
,

B∆XX−1(z, z)

fZit,Zi(t−1)
(z, z)

= E
[
∆XitX

>
i(t−1)|Zit = z, Zi(t−1) = z

]
,

B∆XX−1(z, z, z)

fZit,Zi(t−1),Zi(t−2)
(z, z, z)

= E
[
∆XitX

>
i(t−1)|Zit = z, Zi(t−1) = z, Zi(t−2) = z

]
,

B∆XX−2(z, z, z)

fZit,Zi(t−1),Zi(t−2)
(z, z, z)

= E
[
∆XitX

>
i(t−2)|Zit = z, Zi(t−1) = z, Zi(t−2) = z

]
B∆XX−2(z, z, z, z)

fZit,Zi(t−1),Zi(t−2),Zi(t−3)
(z, z, z, z)

= E
[
∆XitX

>
i(t−2)|Zit = z, Zi(t−1) = z, Zi(t−2) = z, Zi(t−3) = z

]
B∆XX−3(z, z, z, z)

fZit,Zi(t−1),Zi(t−2),Zi(t−3),Zi(t−4)
(z, z, z, z)

= E
[
∆XitX

>
i(t−3)|Zit = z, Zi(t−1) = z, Zi(t−2) = z, Zi(t−3) = z, Zi(t−4) = z

]
.
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Finally, the lower-right block is

2σ2
v

NT

∑
it

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
×
(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)>
K2
itK

2
i(t−1)

− σ2
v

NT

∑
i

T∑
t=3

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
×
(
Xi(t−1) ⊗ (Zi(t−1) − z)−Xi(t−2) ⊗ (Zi(t−2) − z)

)>
KitK

2
i(t−1)Ki(t−2)

− σ2
v

NT

∑
i

T∑
t=4

(
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

)
×
(
Xi(t−2) ⊗ (Zi(t−2) − z)−Xi(t−3) ⊗ (Zi(t−3) − z)

)>
KitKi(t−1)Ki(t−2)Ki(t−3)

= I1 − I2 − I3, (A1.37)

where

I1 =
2σ2

vµ2(K2)R(Kv)

|H|
BXX(z, z)⊗H +

2σ2
vµ2(K2)R(Ku)

|H|
BX−1X−1(z, z)⊗H

+op(|H|−1H),

I2 =
σ2
vµ2(K2)

|H|1/2
BX−1X−1(z, z, z)⊗H + op(|H|−1/2H),

I3 = op(H).

So now, substituting (A1.12), (A1.30), (A1.33) and (A1.37) into (A1.29) we obtain

V ar (m̂(z;H)|X,Z) =
2σ2

vR(Ku)R(Kv)

NT |H|
B−1

∆X∆X(z, z)(1 + op(1)).

Proof of Theorem 2.2

Let

m̂(z;H)−m(z) = (m̂(z;H)− E[m̂(z;H)|X,Z]) + (E[m̂(z;H)|X,Z]−m(z))

≡ I1 + I2.

Now, we show that√
NT |H|I1

d−−−→ N
(
0, 2σ2

vR(Ku)R(Kv)B−1
∆X∆X(z, z)

)
, (A1.38)

as N tends to infinity.
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In order to show this, let

m̂(z;H)− E [m̂(z;H)|X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>W∆v, (A1.39)

where ∆v = [∆v11, · · · ,∆vNT ]>. We are going to show the asymptotic normality of

1√
NT

Z̃>W∆v. (A1.40)

Because (A1.40) is a multivariate vector, we define a unit vector d ∈ IRd(1+q) in such a

way that
1√
NT

d>Z̃>W∆v =
1√
NT

∑
i

∑
t

λit, (A1.41)

where

λit = |H|1/2d>Z̃itKitKi(t−1)∆vit, i = 1, · · · , N ; t = 2, . . . , T

and

Z̃it =


∆Xit

Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

 . (A1.42)

By Theorem 2.1 and conditions thereof, we find that

Var(λit) = 2σ2
vd
>


R(Ku)R(Kv)B∆X∆X(z, z) 0

0 µ2(K2)R(Kv)BXX(z, z)⊗H + µ2(K2)

×R(Ku)BX−1X−1(z, z)⊗H


×d(1 + op(1)) (A1.43)

and ∑
t

|Cov(λi1, λit)| = op(1).

Now we define λ∗n,i = T−1/2
∑T

t=1 λit. For fixed T , the
{
λ∗n,i

}
are independent random

variables. Therefore, to show (A1.37), it suffices to check the Liapunov condition. Using

the Minkowski inequality,

E|λ∗n,i|2+δ ≤ CT
2+δ

2 E|λit|2+δ.
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Because of (A1.41), we split λit into two components, λ1it and λ2it, we analyze them

separately:

E|λ1it|2+δ

≤ |H|
2+δ

2 E|d>∆XitKitKi(t−1)∆vit|2+δ

= |H|
2+δ

2 E
[
E
[
|d>∆Xit∆vit|2+δ|Zit, Zi(t−1)

]
K2+δ
it K2+δ

i(t−1)

]
= |H|−δ/2

∫
E
[
|d>∆Xit∆vit|2+δ|Zit = z +H1/2u, Zi(t−1) = z +H1/2v

]
×fZit,Zi(t−1)

(
z +H1/2u, z +H1/2v

)
K2+δ(u)K2+δ(v)dudv

= |H|−δ/2E
[
|d>∆Xit∆vit|2+δ|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z)

∫
K2+δ(u)K2+δ(v)dudv

+op(|H|−δ/2)

and

E|λ2it|2+δ

≤ |H|
2+δ

2 E|d>(Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z))KitKi(t−1)∆vit|2+δ

≤ |H|
2+δ

2 E
[
|d>Xit ⊗ (Zit − z)KitKi(t−1)∆vit|

]2+δ

+|H|
2+δ

2 E
[
|d>Xi(t−1) ⊗ (Zi(t−1) − z)KitKi(t−1)∆vit|

]2+δ

= |H|
2+δ

2 E
[
E
[
|d>Xit∆vit|2+δ|Zit, Zi(t−1)

]
⊗ |Zit − z|2+δK2+δ

it K2+δ
i(t−1)

]
+ |H|

2+δ
2 E

[
E
[
|d>Xi(t−1)∆vit|2+δ|Zit, Zi(t−1)

]
⊗ |Zi(t−1) − z|2+δK2+δ

it K2+δ
i(t−1)

]
= |H|E

[
|d>Xit∆vit|2+δ|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z)⊗
∫
|u|2+δK2+δ(u)K2+δ(v)dudv

+|H|E
[
|d>Xi(t−1)∆vit|2+δ|Zit, Zi(t−1)

]
fZit,Zi(t−1)

(z, z)⊗
∫
|v|2+δK2+δ(u)K2+δ(v)dudv

+op(|H|).

Therefore, (NT )−
2+δ

2
∑N

i=1E|λ∗n,i|2+δ ≤ C(N |H|)−δ/2. This, indeed, tends to zero when

N |H| → ∞ and therefore the Lyapunov condition holds and (A1.37) follows. We have

already defined D in (A1.43). Finally, using (A1.12) and applying the Cramer-Wold device,

the proof is done.

Using the bias expression computed in Theorem 2.1, we can then write

E [m̂ (z;H) |X,Z]−m(z)

=
1

2
µ2(Ku)diagd (tr(Hmr(z)H)) id +Op(H

3/2) + op(tr(H)). (A1.44)
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Note that, by the law of iterated expectations,

E [m̂(z;H)] =

∫
E [m̂(z;H)|X11, · · · , XNT , Z11, · · · , ZNT ] dF (X11, · · · , XNT , Z11, · · · , ZNT ) .

The leading term in (A1.44) does not depend on the sample, and then the proof is closed.

Proof of Theorem 2.3

The proof of this result follows the same lines as in the proof of Theorem 2.1. Let

m̃(z; H̃) = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b∆Ỹ b. (A1.45)

Then proceeding as before in the proof of Theorem 2.1 we obtain

E
[
m̃(z; H̃)|X,Z

]
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b

(
M (1) +M (2)

)
, (A1.46)

where

M (1) =
(

(X>12m(Z12))>, · · · , (X>NTm(ZNT ))>
)>

,

M (2) =

((
X>11(E[m̂(Z11;H)|X,Z]−m(Z11))

)>
,

· · · ,
(
X>N(T−1)(E[m̂(ZN(T−1);H)|X,Z]−m(ZN(T−1)))

)>)>

are N(T − 1)× 1 vectors. We can approximate M (1) through a Taylor’s expansion, i.e.,

M (1) = Z̃b

 m(z)

vec(Dm(z))

+
1

2
Qbm(z) +Rb(z),

where,

Qbm(z) =
(
Sb>m,12(z), · · · , Sb>m,NT (z)

)>
,

and

Sbm,it(z) = (Xit ⊗ (Zit − z))>Hm(z)(Zit − z).
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Using Assumption 2.1 we obtain

e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bRb(z) = op(tr(H̃)),

and therefore,

E
[
m̃(z; H̃)|X,Z

]
−m(z) = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b

(
1

2
Qbm(z) +M (2)

)
+ op(tr(H̃)).

(A1.47)

To obtain an asymptotic expression for the bias we first calculate

1

NT
Z̃b>W bZ̃b = (NT )−1

∑
itXitX

>
itKit (NT )−1

∑
itXit (Xit ⊗ (Zit − z))>Kit

(NT )−1
∑

it (Xit ⊗ (Zit − z))X>itKit (NT )−1
∑

it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Kit

 .

Using standard properties of kernel density estimators, under Assumptions 2.1 to 2.9 and

as N tends to infinity,

(NT )−1
∑
it

XitX
>
itKit = BXX(z) + op(1),

(NT )−1
∑
it

Xit (Xit ⊗ (Zit − z))>Kit = DBXX (z) (Id ⊗ µ2(Ku)H̃) + op(H̃),

(NT )−1
∑
it

(Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Kit = BXX(z)⊗ µ2(Ku)H̃ + op(H̃).

Note that BXX(z) and DBXX(z) are defined as in the proof of Theorem 2.1 but the

moment functions now are taken conditionally only to Zit = z.

Using the previous results,

NT
(
Z̃b>W bZ̃b

)−1
=

 C(1)
11 C(1)

12

C(1)
21 C(1)

22

 , (A1.48)

where

C(1)
11 = B−1

XX(z) + op(1),

C(1)
12 = −B−1

XX(z)
(
DBXX(z)

) (
B−1
XX(z)⊗ Iq

)
+ op(1),

C(1)
22 = (BXX(z)⊗ µ2(Ku)H̃)−1 + op(H̃

−1).
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Furthermore, the terms in

(NT )−1Z̃b>W bQbm(z)

=


(NT )−1

∑
itXit (Xit ⊗ (Zit − z))>Hm(z)(Zit − z)Kit

(NT )−1
∑

it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Hm(z)(Zit − z)Kit

 (A1.49)

are of order

µ2(Ku)E
[
XitX

>
it |Zit = z

]
fZit(z)diagd

(
tr(H̃mr(z))

)
id + op(tr(H̃))

and Op(H̃
3/2), respectively. In order to evaluate the asymptotic bias of the last term, we

have to calculate

(NT )−1Z̃b>W bM (2) (A1.50)

=


(NT )−1

∑
itXitX

>
i(t−1)

(
E
[
m̂(Zi(t−1))|X,Z

]
−m(Zi(t−1))

)
Kit

(NT )−1
∑

it (Xit ⊗ (Zit − z))X>i(t−1)

(
E
[
m̂(Zi(t−1))|X,Z

]
−m(Zi(t−1))

)
Kit

 .

It is straightforward to show that

(NT )−1
∑
it

XitX
>
i(t−1)

(
E
[
m̂(Zi(t−1))|X,Z

]
−m(Zi(t−1))

)
Kit = op(tr(H̃)),

as N tends to infinity, and

(NT )−1
∑
it

(Xit ⊗ (Zit − z))X>i(t−1)

(
E
[
m̂(Zi(t−1))|X,Z

]
−m(Zi(t−1))

)
Kit

= op(tr(H)tr(H̃)),

as N tends to infinity. Under Assumptions 2.1-2.9, the bias is op(tr(H)), and the rate is

uniform in z; see Masry (1996) for details.

Now we substitute the asymptotic expressions for (A1.48), (A1.49) and (A1.50) into

(A1.47) and apply tr(H) → 0 tr(H̃) → 0 in such way that N |H| → ∞, N |H̃| → ∞.

Thus, we have shown that the asymptotic bias in m̃(z; H̃) is of the same order as it was

in the first step.
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For the variance term, recall that

m̃b(z; H̃)− E
[
m̃(z; H̃)|X,Z

]
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b∆v

+ e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̂,

where v̂ = (v̂1, · · · , v̂N )> is a (N(T − 1)× 1)-vector, such that

v̂i =
(

(X>i0r(Zi0;H))>, · · · , (X>i(T−1)r(Zi(T−1);H))>
)>

,

i = 1, · · · , N , and

r(Zi(t−1);H) = m̂(Zi(t−1);H)− E
[
m̂(Zi(t−1);H)|X,Z

]
,

for i = 1, · · · , N and t = 2, · · · , T .

Then, the variance of m̃b(z; H̃) takes the form

Var
(
m̃b(z;H)|X,Z

)
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bVW b>Z̃b

(
Z̃b>W bZ̃b

)−1
e1

+e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

[
v̂v̂>|X,Z

]
W b>Z̃b

(
Z̃b>W bZ̃b

)−1
e1

+2e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

[
v̂∆v>|X,Z

]
W b>Z̃b

(
Z̃b>W bZ̃b

)−1
e1.

≡ I1 + I2 + I3.

Following exactly the same lines as in the proof of the variance term in Theorem 2.1, as

N tends to infinity, we obtain

I1 =
2σ2

vR(Ku)

NT |H̃|1/2
B−1
XX(z)(1 + op(1)). (A1.51)

In order to calculate the asymptotic order of I2, we just need to calculate

1

NT
Z̃b>W bE

[
v̂v̂>|X,Z

]
W b>Z̃b. (A1.52)

The upper-left entry is

(NT )−1
∑
i

∑
ts

XitX
>
i(t−1)E

[
r(Zi(t−1);H)r(Zi(s−1);H)>|X,Z

]
Xi(s−1)X

>
isKitKis.

(A1.53)
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Applying the Cauchy-Schwarz inequality for covariance matrices, then (A1.53) is bounded

by

(NT )−1
∑
i

∑
ts

XitX
>
i(t−1)vec1/2

(
diag

(
E
[
r
(
Zi(t−1);H

)
r
(
Zi(t−1);H

)> |X,Z]))
×vec1/2

(
diag

(
E
[
r
(
Zi(s−1);H

)
r
(
Zi(s−1);H

)> |X,Z]))>Xi(s−1)X
>
isKitKis.

Now, note that under the conditions of Theorem 2.1

vec
(

diag
(
E
[
r(z;H)r(z;H)>|X,Z

]))
= Op

(
logNT

NT |H|

)
,

uniformly in z, and therefore (A1.53) is of order

Op

(
logNT

NT |H||H̃|1/2

)
.

Following the same lines, it is easy to show that the upper-right entry of (A1.52) is

(NT )−1
∑
i

∑
ts

XitX
>
i(t−1)E

[
r(Zi(t−1);H)r(Zi(s−1);H)>|X,Z

]
Xi(s−1) (Xis ⊗ (Zis − z))>

×KitKis

= op

(
logNT

NT |H||H̃|1/2

)
,

and, finally, the lower-right entry of (A1.52) is

(NT )−1
∑
i

∑
ts

(Xit ⊗ (Zit − z))X>i(t−1)E
[
r(Zi(t−1);H)r(Zi(s−1);H)>|X,Z

]
×Xi(s−1) (Xis ⊗ (Zis − z))>KitKis = Op

(
logNT

NT |H||H̃|1/2

)
.

Now, combining results in (A1.48) and (A1.52), we show that

I2 = op

(
logNT

NT |H||H̃|1/2

)
.

Finally, a standard Cauchy-Schwarz inequality is enough to show that

I3 = op

(
logNT

NT |H||H̃|

)
,

and then the proof of the result is closed.
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Appendix 2

Proof of Theorem 3.1

We first focus on the analysis of the conditional bias of the local weighted linear least-

squares estimator, m̂ (z;H), and later on the behavior of its conditional variance-covariance

matrix. We follow the standard proofs scheme as in Appendix 1.

Let X = (X11, · · · , XNT ) and Z = (Z11, · · · , ZNT ) be the observed covariates vectors. By

the particularities of the idiosyncratic error term collected in the Assumption 3.2 we know

E (vit|X,Z) = 0, so the conditional expectation on (3.14) provides

E [m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>WM, (A2.1)

where

M =
[
X>11m (Z11)− T−1

∑T
s=1X

>
1sm (Z1s) , · · · , X>NTm (ZNT )− T−1

∑T
s=1X

>
Nsm (ZNs)

]>
.

Approximating M using the multivariate Taylor’s theorem we obtain

M = Z̃

 m(z)

vec(Dm(z))

+
1

2
Qm(z) +R(z), (A2.2)

where

Qm(z) = Sm(z)− Sm(z), (A2.3)

Sm(z) =
[
S>m11

(z), · · · , S>mNT (z)
]>
,

Sm(z) =
[
S
>
m11

(z), · · · , S>mNT (z)
]>
.

The corresponding entries of these vectors are

Smit(z) =
[
(Xit ⊗ (Zit − z))>Hm(z) (Zit − z)

]
,

Smit(z) =

[
1

T

T∑
s=1

(Xis ⊗ (Zis − z))>Hm(z) (Zis − z)

]
,
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where we denote by

Hm(z) =


Hm1(z)

Hm2(z)
...

Hmd(z)


a dq × d matrix such that Hmd(z) is the Hessian matrix of the dth component of m(·).

On the other hand, the remainder term of the Taylor approximation can be written as

R(z) = Rm(z)−Rm(z), (A2.4)

where

Rm(z) =
[
R>m11

(z), · · · , R>mNT (z)
]>
,

Rm(z) =
[
R
>
m11

(z), · · · , R>mNT (z)
]>
,

and the corresponding entry of each vector are

Rmit(z) =
[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)

]
,

Rmit(z) =

[
1

T

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
.

We denote by

R(Zit; z) =


R1(Zit; z)

R2(Zit; z)
...

Rd(Zit; z)

 ,R(Zis; z) =


R1(Zis; z)

R2(Zis; z)
...

Rd(Zis; z)

 ,

and

Rd (Zit; z) =

∫ 1

0

[
∂2md

∂z∂z>
(z + ω (Zit − z))−

∂2md

∂z∂z>
(z)

]
(1− ω) dω, (A2.5)

Rd (Zis; z) =

∫ 1

0

[
∂2md

∂z∂z>
(z + ω (Zis − z))−

∂2md

∂z∂z>
(z)

]
(1− ω) dω, (A2.6)

where ω is a weight function.
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If we replace (A2.2) in (A2.1) we obtain the conditional bias expression consisting in the

following two additive terms

E [m̂ (z;H) |X,Z]−m(z) =
1

2
e>1

(
Z̃>WZ̃

)−1
Z̃>WQm(z)

+ e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z), (A2.7)

where we can appreciate that the vec(Dm(z)) term of (A2.2) vanishes by the effect of e1.

As this bias expression has two additive terms, to obtain the conditional bias of this

estimator we must analyze both terms of (A2.7) separately. Focus first on the analysis

of e>1

(
Z̃>WZ̃

)−1
Z̃>WQm(z), we show that this is the leading term of the expression of

bias and which actually sets the order of this estimator. Later, we study the behavior of

e>1

(
Z̃>WZ̃

)−1
Z̃>WR(z) and explain why this term is asymptotically negligible. For the

sake of simplicity let us denote

Ki` =
1

|H|1/2
K
(
H−1/2 (Zi` − z)

)
for ` = 1, · · · ,T.

The inverse term of (A2.7) can be rewritten as the following symmetric block matrix

(NT )−1Z̃>WZ̃ =

 A11
NT A12

NT

A21
NT A22

NT

 (A2.8)

where,

A11
NT = (NT )−1

∑
it

ẌitẌ
>
it

∏
`

Ki`

A12
NT = (NT )−1

∑
it

Ẍit

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>∏
`

Ki`,

A21
NT = (NT )−1

∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
Ẍ>it

∏
`

Ki`,

A22
NT = (NT )−1

∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)>∏
`

Ki`.
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Analyzing each of these terms, we first show that as N tends to infinity

A11
NT = BẌtẌt (z, · · · , z) + op(1), (A2.9)

where

BẌtẌt (z, · · · , z) = E
[
ẌitẌ

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) .

With the aim of showing this result, under the stationarity assumption and by the law of

iterated expectations we obtain

E
(
A11
NT

)
=

∫
E
[
ẌitẌ

>
it |Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

]
×fZi1,··· ,ZiT

(
Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

) T∏
`=1

K (u`) du`

and by the Taylor expansion of the unknown functions and Assumptions 3.1 and 3.4 the

expression (A2.9) holds. However, note that to conclude this proof is necessary to turn to

a law of large numbers. Therefore, we have to show that V ar
(
A11
NT

)
→ 0, as N tends to

infinity. Under the Assumption 3.1,

V ar
(
A11
NT

)
=

1

NT
V ar

(
ẌitẌ

>
it

T∏
`=1

Ki`

)

+
1

NT 2

T∑
t=3

(T − t)Cov

(
Ẍi2Ẍ

>
i2

T∏
`=2

Ki`, ẌitẌ
>
it

T∏
`=3

Ki`

)
.

Then, under Assumptions 3.4 and 3.6 we can show that the first element is

V ar

(
ẌitẌ

>
it

T∏
`=1

Ki`

)
≤ C

NT |H|

while the second one is

Cov

(
Ẍi2Ẍ

>
i2

T∏
`=2

Ki`, ẌitẌ
>
it

T∏
`=3

Ki`

)
≤ C ′

N |H|
.

Then, if both NT |H| and N |H| tends to infinity the variance term tends to zero and

(A2.9) follows.
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Following a similar procedure we obtain

A12
NT = DBẌtXt(z, · · · , z) (Id ⊗ µ2(Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2(Kus)H)

+ op(H). (A2.10)

This is because using the same reasoning,

E
(
A12
NT

)
=

∫
E
(
ẌitX

>
it |Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
fZi1,··· ,ZiT (z, · · · , z)⊗ (H1/2uτ )>

×
T∏
`=1

K (u`) du`

− 1

T

T∑
t=1

T∑
s=1

∫
E
(
ẌitX

>
is

∣∣∣Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
fZi1,··· ,ZiT (z, · · · , z)

⊗(H1/2us)
>

T∏
`=1

K (u`) du`

and as N tends to infinity, V ar
(
A12
NT

)
→ 0. Then, (A2.6) is shown.

Note that DBẌtXt(Z1, · · · , ZT ), for s = 1, · · · , T , is defined in a similar way as in Appendix

1. Thus, DBẌtXt(Z1, · · · , ZT ) is a d× dq gradient matrix of the form

DBẌtXt(Z1, · · · , ZT ) =


∂b
ẌtXt
11 (Z1,··· ,ZT )

∂Z>1
· · · ∂b

ẌtXt
1d (Z1,··· ,ZT )

∂Z>1
...

. . .
...

∂b
ẌtXt
d1 (Z1,··· ,ZT )

∂Z>1
· · · ∂b

ẌtXt
dd′ (Z1,··· ,ZT )

∂Z>1

 ,

and

bẌtXtdd′ (Z1, · · · , ZT ) = E
[
ẌditXd′it|Zi1 = Z1, · · · , ZiT = ZT

]
fZi1,··· ,ZiT (Z1, · · · , ZT ) .

Finally, we obtain that as N tends to infinity

A22
NT = BXtXt (z, · · · , z)⊗ µ2 (Kuτ )H − 1

T

T∑
s=1

B (z, · · · , z)⊗ µ2 (Kus)H + op (H) ,

(A2.11)

where

B (z, · · · , z) = BXtXs (z, · · · , z) + BXsXt (z, · · · , z)− 1

T
BXsXs (z, · · · , z)
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and

BXtXs (z, · · · , z) = E
[
XitX

>
is |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) .

Then, using the results of (A2.9)-(A2.11) in (A2.8) we obtain

NT
(
Z̃>WZ̃

)−1
=

 C11 C12

C21 C22

 , (A2.12)

where

C11 = B−1
ẌtẌt

(z, · · · , z) + op(1),

C12 = −B−1
ẌtẌt

(z, · · · , z)

×

(
DBẌtXt (z, · · · , z) (Id ⊗ µ2 (Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2 (Kus)H)

)

×

(
BXtXt (z, · · · , z)⊗ µ2 (Kuτ )H − 1

T

T∑
s=1

B (z, · · · , z)⊗ µ2 (Kus)H

)−1

+ op(1),

C21 = −

(
BXtXt (z, · · · , z)⊗ µ2 (Kuτ )H − 1

T

T∑
s=1

B (z, · · · , z)⊗ µ2 (Kus)H

)−1

×

(
DBẌtXt (z, · · · , z) (Id ⊗ µ2 (Kuτ )H)− 1

T

T∑
s=1

DBẌtXs (z, · · · , z) (Id ⊗ µ2 (Kus)H)

)>
×B−1

ẌtẌt
(z, · · · , z) + op(1),

C22 =

(
BXtXt (z, · · · , z)⊗ µ2 (Kuτ )H − 1

T

T∑
s=1

B (z, · · · , z)⊗ µ2 (Kus)H

)−1

+ op
(
H−1

)
.

On the other hand, following the same technique we can show that

(NT )−1Z̃>WSm(z)

=


(NT )−1

∑
it Ẍit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)

∏
`Ki`

(NT )−1
∑

it(Xit ⊗ (Zit − z)− T−1
∑T

s=1Xis ⊗ (Zis − z)) (Xit ⊗ (Zit − z))>Hm(z)

× (Zit − z)
∏
`Ki`


are asymptotically equal to

(NT )−1
∑
it

Ẍit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)
∏
`

Ki`

= µ2 (Kuτ )BẌtXt (z, · · · , z) diagd(tr(Hmr(z)H))ıd + op (tr(H)) , (A2.13)
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where

BẌtXt (z, · · · , z) = E
[
ẌitX

>
it |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,

diagd (tr(Hmr(z)H)) stands for a diagonal matrix of elements tr(Hmr(z)H), for r =

1, · · · , d, and ıd is a d× 1 unit vector. In addition,

(NT )−1
∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xit ⊗ (Zit − z))>Hm(z)

× (Zit − z)
∏
`

Ki`

=

∫
BXtXt (z, · · · , z)⊗ (H1/2uτ )(H1/2uτ )>Hm(z)(H1/2uτ )

T∏
`=1

K (u`) du`

− 1

T

T∑
s=1

∫
BXsXt (z, · · · , z)⊗ (H1/2us)(H

1/2uτ )>Hm(z)(H1/2uτ )
T∏
`=1

K (u`) du`

= Op(H
3/2). (A2.14)

Furthermore, the terms of

(NT )−1Z̃>WSm(z)

=


(NT 2)−1

∑
its Ẍit (Xis ⊗ (Zis − z))>Hm(z) (Zis − z)

∏T
`=1Ki`

(NT 2)−1
∑

its

(
Xit ⊗ (Zit − z)− T−1

∑T
s=1Xis ⊗ (Zis − z)

)
(Xis ⊗ (Zis − z))>Hm(z)

× (Zis − z)
∏T
`=1Ki`


are of order

(
NT 2

)−1∑
its

Ẍit (Xis ⊗ (Zis − z))>Hm(z) (Zis − z)
T∏
`=1

Ki`

=
1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z) diagd(tr(Hmr(z)H))ıd + op (tr(H)) , (A2.15)

where

BẌtXs (z, · · · , z) = E
[
ẌitX

>
is |Zi1 = z, · · · , ZiT = z

]
fZi1,··· ,ZiT (z, · · · , z) ,
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and under the stationarity assumption, when N →∞ and T remains to be fixed we obtain

(
NT 2

)−1∑
its

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xis ⊗ (Zis − z))>Hm(z)

× (Zis − z)
T∏
`=1

Ki` (A2.16)

=

∫
BXtXs (z, · · · , z)⊗ (H1/2uτ )(H1/2us)

>Hm(z)(H1/2us)

T∏
`=1

K(u`)du`

− 1

T

T∑
t=1

T∑
s=1

BXsXs (z, · · · , z)⊗ (H1/2us)(H
1/2us)

>Hm(z)(H1/2us)
T∏
`=1

K(u`)du`

= Op(H
3/2). (A2.17)

Then, replacing (A2.13)-(A2.16) into (A2.3), we can conclude

Qm =


µ2(K)

(
BẌtXt (z, · · · , z)− 1

T

∑T
s=1 BẌtXs (z, · · · , z)

)
diagd(tr(Hmr(z)H))ıd

+op (tr(H))

Op
(
H3/2

)

 .

(A2.18)

Focus now on the residual term of (A2.7), we use the notation of the beginning of the

appendix in order to write

(NT )−1Z̃>WR(z) =

 ε1(z)

ε2(z)

 , (A2.19)

where

ε1(z) = (NT )−1
∑
it

Ẍit

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)−

1

T

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
×

∏
`

Ki` (A2.20)
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and

ε2(z) = (NT )−1
∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)− T−1

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
×

∏
`

Ki`. (A2.21)

Note that ε1(z) can be decomposed into the following two terms

ε1(z) = (NT )−1
∑
it

Ẍit

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)

− T−1
T∑
s=1

(Xis ⊗ (Zis − z))>R (Zit; z) (Zis − z)

]∏
`

Ki`

+
(
NT 2

)−1∑
its

Ẍit (Xis ⊗ (Zis − z))> (R (Zit; z)−R (Zis; z)) (Zis − z)
∏
`

Ki`

= ε11(z) + ε12(z). (A2.22)

We want to show that as N →∞,

E(ε1(z)) = op (tr(H)) (A2.23)

so, in order to do it, we have to analyze each term of ε1(z) separately. Starting from ε11(z)

and by the strict stationarity we have

E(ε11(z))

= BẌtXt(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2uτ )>R(z +H1/2uτ ; z)(H1/2uτ )
T∏
`=1

K (u`) du`

− 1

T

T∑
t=1

T∑
s=1

BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)
>R(z +H1/2uτ ; z)(H1/2us)

×
T∏
`=1

K (u`) du`.
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By definition (A2.5) and Assumption 3.7,∣∣∣Rd(z +H1/2uτ ; z)
∣∣∣ ≤ ∫ 1

0
ς(ω‖H1/2uτ‖) (1− ω) dω, ∀d,

where ς (η) is the modulus of continuity of ∂2mr
∂zi∂zj

(z). Hence, by boundedness of f and

BẌtXt , and Assumption 3.4, for all t we obtain

E |ε11(z)| ≤ C1

∫ ∫ 1

0
|(H1/2uτ )>||ς(ω‖H1/2uτ‖)||H1/2uτ |dω

∏
`

K(u`)du`

+
C2

T

∑
s

∫ ∫ 1

0
|(H1/2us)

>||ς(ω‖H1/2uτ‖)||H1/2us|dω
∏
`

K (u`) du`

and E(ε11(z)) = op (tr(H)) follows by dominated convergence.

Similarly, analyzing the second term of (A2.22) and by strict stationarity we have

E(ε12(z)) =
1

T

T∑
s=1

∫ (
BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)

>
)

×
(
R(z +H1/2uτ ; z)−R(z +H1/2us; z)

)
(H1/2us)

T∏
`=1

K (u`) du`,

where, as previously, we can show

|E(ε12(z))|

≤ C3

T

∑
s

∫ ∫ 1

0
|(H1/2us)

>||ς(ω‖H1/2uτ‖ − ω‖H1/2us‖)||H1/2us|
∏
`

K (u`) du`.

Then, proceeding as previously we have that by dominated convergence E(ε12(z)) =

op (tr(H)).

Once this result (A2.23) has been verified, our interest focuses on the second term of

(A2.22), ε2(z), with the aim of showing that as N →∞,

E(ε2(z)) = Op(H
3/2). (A2.24)

In order to prove this result, we follow the same lines as the proof of (A2.23) and ε2(z)

can be decomposed in two terms

ε2(z) = ε21(z) + ε22(z), (A2.25)
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where

ε21(z)

= (NT )−1
∑
it

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)− T−1

T∑
s=1

(Xis ⊗ (Zis − z))>R (Zis; z) (Zis − z)

]
×
∏
`

Ki` (A2.26)

and

ε22(z) =
(
NT 2

)−1∑
its

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
(Xis ⊗ (Zis − z))>

× (R (Zit; z)−R (Zis; z)) (Zis − z)
∏
`

Ki`. (A2.27)

Applying the same arguments as for the proof of (A2.23), it is straightforward to show

that

E(ε2(z)) = op(H
3/2). (A2.28)

Then, replacing (A2.23) and (A2.24) in (A2.19) we obtain

(NT )−1Z̃>WR(z) =

 op (tr(H))

Op(H
3/2)

 (A2.29)

and substituting (A2.12), (A2.18) and (A2.29) in (A2.7), the asymptotic bias can be

written as

E [m̂ (z;H) |X,Z]−m(z)

=
1

2
eT1

(
Z̃>WZ̃

)−1
Z̃>W (Sm(z)− Sm(z))

=
1

2
B−1
ẌtẌt

(z, · · · , z)

(
µ2(Kuτ )BẌtXt (z, · · · , z)− 1

T

T∑
s=1

µ2 (Kus)BẌtXs (z, · · · , z)

)
× diagd (tr(Hmr (z)H)) ıd + op (tr(H)) .

For the asymptotic expression of the variance term let us define the NT vector v =

(v1, · · · , vN )>, where vi = (vi1, · · · , viT )>. Furthermore, let E
(
vv>|X,Z

)
= V be a NT ×

NT matrix that contains the Vij ’s matrices. By Assumption 3.2 we obtain

Vij = E(viv
>
j |X,Z) = σ2

vIT . (A2.30)
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Denote by QT = IT − ıT
(
ı>T ıT

)−1
ı>T a T ×T symmetric and idempotent matrix with rank

T − 1, where IT is a T × T identity matrix and ıT a T × 1 unitary vector. Furthermore,

let Q = IN ⊗QT be an NT ×NT matrix. It is clear that, Z̃ = QZ̃b and v̈ = Qv.

Then, substituting the previous equalities into

m̂ (z;H)− E [m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>Wv̈, (A2.31)

we obtain

m̂ (z;H)− E [m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z>0 Q

>WQv. (A2.32)

Since Q is an idempotent matrix, the variance term of m̂ (z;H) can be written as

V ar (m̂ (z;H) |X,Z) = e>1

(
Z̃>WZ̃

)−1
Z̃>WVWZ̃

(
Z̃>WZ̃

)−1
e1. (A2.33)

As by Assumption 3.2 the vit’s are i.i.d. in the subscript i, the upper left entry of

(NT )−1Z̃>WVWZ̃ is

σ2
v

NT

N∑
i=1

T∑
t=1

ẌitẌ
>
it

T∏
`=1

K2
i`

=
σ2
v

∏T
`=1R (Ku`)

|H|T/2
BẌtẌt (z, · · · , z) (1 + op(1)) . (A2.34)

The upper right block is

σ2
v

NT

N∑
i=1

T∑
t=1

Ẍit

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)> T∏
`=1

K2
i`

=
σ2
v

|H|T/2

∫ (
BẌtXt(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2uτ )>

− 1

T

T∑
s=1

BẌtXs(z +H1/2u1, · · · , z +H1/2uT )⊗ (H1/2us)
>

)
T∏
`=1

K2 (u`) du` (1 + op(1))

= Op(|H|−T/2). (A2.35)
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Finally, the lower-right block is

σ2
v

NT

N∑
i=1

T∑
t=1

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)

×

(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)> T∏
`=1

K2
i`

=
σ2
vµ2

(
K2
uτ

)
|H|T/2

BXtXt (z, · · · , z)⊗H − σ2
v

T |H|T/2
T∑
s=1

µ2

(
K2
us

)
B (z, · · · , z)⊗H

+ Op(|H|−T/2H). (A2.36)

Then, substituting (A2.12), (A2.34), (A2.35) and (A2.36) into (A2.33) we obtain the

following conditional covariance matrix result,

V ar (m̂ (z;H) |X,Z) =
σ2
v

∏T
`=1R (Ku`)

NT |H|T/2
B−1
ẌtẌt

(z, · · · , z) (1 + op(1)).

Proof of Theorem 3.2

With the aim of obtaining the asymptotic distribution of the local weighted linear least

squares estimator m̂ (z;H) we follow a similar proof scheme as in Appendix 1. For this,

let us denote

m̂ (z;H)−m(z) = (m̂ (z;H)− E [m̂ (z;H) |X,Z]) + (E [m̂ (z;H) |X,Z]−m(z)) ≡ I1 + I2,

so in order to obtain the asymptotic distribution of this estimator we must to show that

as N →∞ it holds√
NT |H|T/2I1

d−−−→ N

(
0, σ2

v

T∏
`=1

R (Ku`)B
−1
ẌtẌt

(z, · · · , z)

)
(A2.37)

and

E [m̂ (z;H) |X,Z]−m(z) =
1

2
µ2 (Kuτ ) diagd (tr(Hmr(z)H)) ıd +Op(H

3/2) + op(tr(H)).

(A2.38)
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By Assumption 3.1 we state that the variables are i.i.d. in the subscript i but not in T ,

so the Lindeberg condition cannot be verified directly. Thus, in order to show (A2.37) it

suffices to check the Lyapunov condition. We have shown that

m̂ (z;H)− E [m̂ (z;H) |X,Z] = e>1

(
Z̃>WZ̃

)−1
Z̃>Wv. (A2.39)

The behavior of the inverse term has been analyzed previously, with the aim of proving

the result (A2.39) we must to focus on the asymptotic normality of

1√
NT

Z̃>Wv. (A2.40)

As (A2.40) is a multivariate vector, with the sake of simplicity we can define a unit vector

d ∈ IRd(1+q) in such a way that

1√
NT

dT Z̃>Wv =
1√
NT

∑
i

∑
t

λit, (A2.41)

where

λit = |H|T/4d>Z̃itWitvit, i = 1, · · · , N ; t = 1, · · · , T.

Following Assumption 3.8, we have that R (K) =
∫
K2 (u) du =

(
2Π1/2

)−1
and R (Ku1) =

· · · = R (KuT ), so
∏T
`=1R (Ku`) = R (K)T holds. Combining these conditions with the

results of Theorem 3.1 we can write

V ar (λit) =

σ2
vd
>


R (K)T BẌtẌt (z, · · · , z) 0

0 µ2

(
K2
uτ

)
BXtXt (z, · · · , z)⊗H

− 1
T

∑T
s=1 µ2

(
K2
us

)
B (z, · · · , z)⊗H

 d (1 + op(1)) ,

(A2.42)

whereas

T∑
t=1

|Cov (λi1, λit)| = op(1). (A2.43)
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In order to check the Lyapunov condition let us denote λ∗n,i = T−1/2
∑T

t=1 λit as indepen-

dent random variables for T fixed and n = NT . Then, by the Minknowski inequality and

the matrix structure of Z̃it we obtain

E
∣∣λ∗n,i∣∣2+δ ≤ CT

(2+δ)
2 E |λit|2+δ = CT

(2+δ)
2 E |λ1it + λ2it|2+δ .

Analyzing each term separately we obtain

E |λ1it|2+δ

≤ E| |H|T/4 d>Ẍitvit

T∏
`=1

Ki`|2+δ = |H|T (2+δ)/4E

[
E
(
|d>Ẍitvit|2+δ|X,Z

) T∏
`=1

K2+δ
i`

]

=
1

|H|Tδ/4

∫
E
(
|d>Ẍitvit|2+δ|Zi1 = z +H1/2u1, · · · , ZiT = z +H1/2uT

)
×fZi1,··· ,ZiT (z +H1/2u1, · · · , z +H1/2uT )

T∏
`=1

K2+δ (u`) du`

= |H|−Tδ/4E
(
|d>Ẍitvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)

T∏
`=1

∫
K2+δ (u`) du`

+ op(|H|−Tδ/4),

whereas

E|λ2it|2+δ

≤ E

∣∣∣∣∣|H|T/4 d>
(
Xit ⊗ (Zit − z)− T−1

T∑
s=1

Xis ⊗ (Zis − z)

)
vit

T∏
`=1

Ki`

∣∣∣∣∣
2+δ

≤ |H|T (2+δ)/4E

[
E
(
|d>Ẍitvit|Zi1, · · · , ZiT

)
⊗ |Zit − z|2+δ

T∏
`=1

K2+δ
i`

]

+ |H|T (2+δ)/4 1

T

T∑
s=1

E

[
E
(
|d>Xisvit|Zi1, · · · , ZiT

)
⊗ |Zis − z|2+δ

T∏
`=1

K2+δ
i`

]
= |H|−Tδ/4E

(
|d>Ẍitvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)

⊗
∫
|H1/2u|2+δ

T∏
`=1

K2+δ (u`) du`

+ |H|−Tδ/4 1

T

T∑
s=1

E
(
|d>Ẍisvit|2+δ|Zi1 = z, · · · , ZiT = z

)
fZi1,··· ,ZiT (z, · · · , z)

⊗
∫
|H1/2us|2+δ

T∏
`=1

K2+δ (u`) du` + op(|H|1−(T−2)δ/4).

230



Appendix

In this way, we can write

(NT )−
2+δ

2

N∑
i=1

E
∣∣λ∗n,i∣∣2+δ ≤ C(N |H|T/2)−δ/2, (A2.44)

and given that when N |H| → ∞ this term tends to zero it is proved that the Lyapunov

condition holds. Then, using (A2.12), (A2.34), (A2.35), (A2.36) and the Crammer-Wold

device the proof of the result (A2.37) is done.

On the other hand, focus on the proof of (A2.38) we know that by the law of iterated

expectations

E [m̂ (z;H)] =

∫
E [m̂ (z;H) |X,Z] dF (X) .

Then, we can turn to the bias expression of the estimator collected in the Theorem 3.1

and the proof is closed.

Proof of Theorem 3.3

The proof of this theorem follows the pattern set by the Theorem 3.1. The estimator to

analyze is

m̃(z; H̃) = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bŸ b, (A2.45)

we can write

E
[
m̃(z; H̃)|X,Z

]
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W b

[
M (1) +M (2)

]
, (A2.46)

where

M (1) =

[(
X>11m (Z11)

)>
, · · · ,

(
X>NTm (ZNT )

)>]>
,

M (2) =

(T−1
T∑
s=1

X>1s (E [m̂ (Z1s;H) |X,Z]−m (Z1s))

)>
,

· · · ,

(
T−1

T∑
s=1

X>Ns (E [m̂ (ZNs;H) |X,Z]−m (ZNs))

)>> .
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Taylor Theorem implies that we can approximate M (1) as

M (1) = Z̃b

 m (z)

vec(Dm (z))

+
1

2
Qbm(z) +Rb(z). (A2.47)

Following a similar nomenclature as in Theorem 3.1,

Qbm(z) =
[
Sb>m11

, · · · , Sb>mNT
]>
,

Rb(z) =
[
Rb>m11

(z), · · · , Rb>mNT (z)
]>
,

where Rb(z) is the remainder term of this approximation. Then, the corresponding entries

of these vectors are

Sbmit =
[
(Xit ⊗ (Zit − z))>Hm(z) (Zit − z)

]
Rbit(z) =

[
(Xit ⊗ (Zit − z))>R (Zit; z) (Zit − z)

]
,

where R (Zit; z) has already been defined in (A2.5).

If we replace (A2.47) in (A2.46) the bias expression is then

E
[
m̃(z; H̃)|X,Z

]
−m(z)

=
1

2
e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bQbm(z) + e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bM (2)

+op(tr(H̃)), (A2.48)

given that following to Ruppert and Wand (1994) and the Assumption 3.1,

e>1

(
Z̃b>W bZ̃

)−1
Z̃b>W bRb(z) = Op(tr(H̃)).

As you can see in (A2.48), this bias expression is formed by two additive terms. The first

one refers to the approximation error of the estimates, whereas the second one reflects the

potential estimation error dragged from the first stage. Within this context, our aim is

to show that this second term converges in probability to zero, so it is the first element

which provides the asymptotic distribution of the backfitting estimator. For the sake of

simplicity let us denote

Kit =
1

|H̃|1/2
K
(
H̃−1/2 (Zit − z)

)
.
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Focus first in the behavior of the inverse term of (A2.48) we analyze

(NT )−1 Z̃b>W bZ̃b =
(NT )−1

∑
itXitX

>
itKit (NT )−1

∑
itXit (Xit ⊗ (Zit − z))>Kit

(NT )−1
∑

it (Xit ⊗ (Zit − z))X>itKit (NT )−1
∑

it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Kit


and as it is proved in the Appendix 1, using standard properties of kernel density estima-

tors, conditions 3.1 to 3.3 and 3.4 to 3.10, as N →∞ we obtain

NT
(
Z̃b>W bZ̃b

)−1
= (A2.49)


B−1
XtXt

(z) + op(1) −B−1
XtXt

(z) [DBXtXt(z)]
(
B−1
XtXt

(z)⊗ Iq
)

+ op(1)

−
(
B−1
XtXt

(z)⊗ Iq
)>

[DBXtXt (z)]
> B−1

XtXt
(z) + op(1)

(
BXtXt(z)⊗ µ2(K)H̃

)−1

+ op

(
H̃−1

)
 ,

where BXtXt(z) and DBXtXt(z) has been already defined in the proof of Theorem 3.1

conditioning only to Zit = z.

Furthermore,

(NT )−1Z̃b>W bQbm(z) = (A2.50)
(NT )−1

∑
itXit (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)Kit

(NT )−1
∑

it (Xit ⊗ (Zit − z)) (Xit ⊗ (Zit − z))>Hm(z) (Zit − z)Kit


are of order

µ2 (Ku)BXtXt (z) diagd

(
tr(Hmr(z)H̃)

)
ıd + op(tr(H̃))

and Op(H̃
3/2), respectively. Substituting these latter results and (A2.49) in the first term

of (A2.48) we obtain

1

2
e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bQbm(z)

=
1

2
µ2 (K)B−1

XtXt
(z)BXtXt (z) diagd

(
tr(Hmr(z)H̃)

)
ıd + op(tr(H̃)). (A2.51)
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Focus now on the behavior of the second term of (A2.48),

(NT )−1Z̃b>W bM (2) = (A2.52)
(
NT 2

)−1∑
itsXitX

>
is (E [m̂ (Zis)|X,Z]−m (Zis))Kit

(
NT 2

)−1∑
its (Xit ⊗ (Zit − z))X>is (E [m̂ (Zis)|X,Z]−m (Zis))Kit


and analyzing both terms separately we can show that as N tends to infinity

(
NT 2

)−1∑
its

XitX
>
is (E [m̂ (Zis)|X,Z]−m (Zis))Kit = op(tr(H̃))

and

(
NT 2

)−1∑
its

(Xit ⊗ (Zit − z))X>is (E (m̂ (Zis)|X,Z)−m (Zis))Kit = op(tr(H)tr(H̃)).

Under Assumptions 3.1 to 3.3, 3.10 and 3.12, this latter expression is op (tr(H)) and the

rate is uniform in z; see Masry (1996) for more details.

Replacing these results in the second term of (A2.48),

e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bM (2) = op(tr(H̃)). (A2.53)

Finally, substituting (A2.51) and (A2.53) in (A2.48) the proof of the conditional bias is

done. Also, it is proved that the asymptotic bias of m̃(z; H̃) is the same order as m̂(z;H),

given that tr(H)→ 0, tr(H̃)→ 0 in such a way that N |H| → ∞ and N |H̃| → ∞.

From the standpoint of the variance, let us denote v̂ = (v̂1, · · · , v̂N )> as a NT -dimensional

vector such that

v̂i =

(
T−1

T∑
s=1

(
X>isr(Zis;H)

)>
, · · · , T−1

T∑
s=1

(
X>isr(Zis;H)

)>)>
,

where

r (Zis;H) = m̂ (Zis;H)− E [m̂ (Zis;H)|X,Z] .
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As we know, the conditional variance-covariance matrix of the estimator has the following

form

V ar
(
m̃(z; H̃)|X,Z

)
= E

[(
m̃(z; H̃)− E[m̃(z; H̃)|X,Z]

)(
m̃(z; H̃)− E[m̃(z; H̃)|X,Z]

)>
|X,Z

]

where

m̃(z; H̃)− E[m̃(z; H̃)|X,Z] = e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̈ + e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̂.

Remember that v̈i = QT vi and it is straightforward to show that QT Z̃
b
i = Z̃i. Thus, the

previous equation can be rewritten as

m̃(z; H̃)− E[m̃(z; H̃)|X,Z] = e>1

(
Z̃b>W bZ̃b

)−1
Z̃>W bv + e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bv̂.

Taking into account that let E
(
vv>|X,Z

)
= V be a NT × NT matrix whose ijth have

the form of (A2.30), the variance term of m̃(z; H̃) has the form

V ar
(
m̃(z; H̃)|X,Z

)
= e>1

(
Z̃b>W bZ̃b

)−1
Z̃>W bVW bZ̃

(
Z̃b>W bZ̃b

)−1
e1

+ e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
v̂v̂>|X,Z

)
W bZ̃b

(
Z̃b>W bZ̃b

)−1
e1

+ 2e>1

(
Z̃b>W bZ̃b

)−1
Z̃b>W bE

(
v̂v̈>|X,Z

)
W bZ̃b

(
Z̃b>W bZ̃b

)−1
e1

= I1 + I2 + I3. (A2.54)

Then, with the aim of obtaining the asymptotic order of the variance of m̃(z; H̃) we have

to analyze each of these terms separately. Following the same procedure as in (A2.33) to

analyze the behavior of Z̃>W bVW bZ̃. Under Assumptions 3.1 to 3.3 and 3.4 to 3.10,

using the result (A2.49) and the Crammer-Wold device it is straightforward to show that

as N →∞

I1 =
σ2
vR (K)

NT |H̃|1/2
BXtXt(z)−1BẌtẌt (z)BXtXt(z)−1(1 + op(1)), (A2.55)

while

I2 = op

(
logNT

NT |H|T/2 |H̃|1/2

)
. (A2.56)
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In order to prove this latter result we have to analyze the behavior of the following ex-

pression

(NT )−1Z̃b>W bE
(
v̂v̂>|X,Z

)
W bZ̃b. (A2.57)

Thus, the upper left entry is

(NT 3)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isE

(
r (Zis;H) r (Zis′ ;H)> |X,Z

)
Xis′X

>
it′KitKit′ (A2.58)

and by the Cauchy-Schwarz inequality for variance-covariance matrices (A2.58) is bounded

by

(NT 3)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isvec

1/2
(
diag

(
E(r (Zis;H) r (Zis;H)> |X,Z)

))
× vec1/2

(
diag

(
E(r (Zis′ ;H) r (Zis′ ;H)> |X,Z)

))
Xis′X

>
it′KitKit′

= Op

(
logNT

NT |H|T/2

)
, (A2.59)

given that under the conditions of Theorem 3.1 and following Masry (1996),

vec
(
diag

(
E(r (z;H) r (z;H)> |X,Z)

))
= Op

(
logNT

NT |H|T/2

)
,

uniformly in z.

Following the same lines, the upper right entry of (A2.57) is

(NT 2)−1
∑
i

∑
tt′

∑
ss′

XitX
>
isE

(
r (Zis;H) r (Zis′ ;H)> |X,Z

)
(Xit′ ⊗ (Zit′ − z))>KitKit′

= op

(
logNT

NT |H|T/2|H̃|1/2

)
(A2.60)

and the lower right entry of (A2.57) is

(NT 2)−1
∑
i

∑
tt′

∑
ss′

(Xit ⊗ (Zit − z))X>isE
(
r (Zis;H) r (Zis′ ;H)> |X,Z

)
× (Xit′ ⊗ (Zit′ − z))>KitKit′

= op

(
logNT

NT |H|T/2|H̃|1/2

)
. (A2.61)
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Then, combining the results (A2.59)-(A2.61) with (A2.49) and by the Crammer-Wold

device the proof of (A2.56) is done. Finally, focus on I3 the Cauchy-Schwarz inequality is

enough to show that

I3 = op

(√
logNT

NT |H|T/2|H̃|1/2

)
(A2.62)

and the proof is done.
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Appendix 3

Proof of Theorem 5.1

In order to obtain the desired results of Theorem 5.1 we denote by

m̂g(z1;H2) =

(
T∑
i=1

T∑
t=2

KitKi(t−1)∆W̃it∆W̃
>
it

)−1 N∑
i=1

T∑
t=2

KitKi(t−1)∆W̃it∆Yit,

where

Kit =
1

|H2|1/2
K
(
H
−1/2
2 (Zit − z1)

)
; Ki(t−1) =

1

|H2|1/2
K
(
H
−1/2
2 (Zi(t−1) − z1)

)
.

Clearly, the two-step weighted locally constant least-squares estimator (5.9) can be written

as

m̂ĝ(z1;H2) =
(
m̂ĝ(z1;H2)− m̂g(z1;H2)

)
+ m̂g(z1;H2). (A3.1)

According to (A3.1), to prove Theorem 5.1 all that we need to show is that, under the

conditions established in Theorem 5.1, we obtain

√
NT |H2|

(
m̂ĝ(z1;H2)− m̂g(z1;H2)

)
= op(1), uniformly in z1

√
NT |H2| (m̂g(z1;H2)−m(z1))

d−−−→ N (b(z1), υ(z1)) ,

where

b(z1) = µ2(K)
(
diagd

(
Df (z1)H2

√
NT |H2|Dmr(z1)

)
ıdf
−1
Zit,Zi(t−1)

(z1, z1)

+
1

2
diagd

(
tr
(
Hmr(z1)H2

√
NT |H2|

))
ıd

)

and

υ(z1) = 2R(Ku)R(Kv)
(
σ2
v + σ2

ξm(z1)>m(z1) + σvξm(z1)>ı(M−1)

)
B−1

∆W̃∆W̃
(z1, z1)

as N tends to infinity and T is fixed. These results are proved in Lemmas 5.1 and 5.2.
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Lemma 5.1Under conditions of Theorem 5.1, as N →∞ and T is fixed,

√
NT |H2|

(
m̂ĝ(z1;H2)− m̂g(z1;H2)

)
= op (1) , uniformly in z1.

In order to prove the asymptotic distribution of m̂ĝ(·) we can write (A3.1) as

√
NT |H2|

(
m̂ĝ(z1;H2)−m(z1)

)
=

√
NT |H2|

(
m̂ĝ(z1;H2)− m̂g (z1;H2)

)
+

√
NT |H2| (m̂g(z1;H2)−m(z1)) (A3.2)

and need the following Lemma.

Lemma 5.2Under the conditions established in Theorem 5.1, as N →∞ and T is fixed,

√
NT |H2| (m̂g(z1;H2)−m(z1))

d−−−→ N (b(z1), v(z1)) .

Proof of Lemma 5.1.

Throughout this appendix we use the following notation

Ŝn = (NT )−1
∑

itKitKi(t−1)∆Ŵit∆Ŵ
>
it ; T̂n = (NT )−1

∑
itKitKi(t−1)∆Ŵit∆Yit.

Let us write the first element of (A3.1) as

m̂ĝ(z1;H2)− m̂g(z1;H2) = Ŝ−1
n T̂n − S−1

n Tn, (A3.3)

where n = NT and Sn and Tn are the corresponding expressions of Ŝn and T̂n, respectively,

with g(Zit, Zi(t−1)) instead of ĝ(Zit, Zi(t−1)). At this situation, we first show that as N

tends to infinity,

Ŝ−1
n = B−1

∆W̃∆W̃
(z1, z1) + op(‖H1/2

2 ‖), (A3.4)

where, remember that ∆W̃it = (g>it,i(t−1) ∆U>it )>, and

B
∆W̃∆W̃

(z1, z1) = E
[
∆W̃it∆W̃

>
it |Zit = z1, Zi(t−1) = z1

]
fZit,Zi(t−1)

(z1, z1).
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For this, let us denote

Ŝn = Sn + (2II1n + II2n) , (A3.5)

where as

Sn = (NT )−1
∑
it

KitKi(t−1)∆W̃it∆W̃
>
it ,

II1n = (NT )−1
∑
it

KitKi(t−1)∆W̃it(∆Ŵit −∆W̃it)
>,

II2n = (NT )−1
∑
it

KitKi(t−1)(∆Ŵit −∆W̃it)(∆Ŵit −∆W̃it)
>,

so we have to analyze each term separately to prove (A3.4). For this end, we follow the

usual Taylor expansion; i.e.,

f(z +H1/2v) = f(z) +D>f (z)H1/2v + op(‖H1/2‖), as ‖H‖ → 0.

Then, given that Zit, vit is i.i.d. across i and because the stationary assumption, when N

tends to infinity and by the law of iterated expectations it implies

E (Sn) =

∫ ∫
E
[
∆W̃it∆W̃

>
it |Zit = z1 +H

1/2
2 u, Zi(t−1) = z1 +H

1/2
2 v

]
×fZit,Zi(t−1)

(
Zit = z1 +H

1/2
2 u, Zi(t−1) = z1 +H

1/2
2 v

)
K(u)K(v)dudv.

Under Assumption 5.1,

V ar(Sn) = V ar
(
KitKi(t−1)∆W̃it∆W̃

>
it

)
+

1

T

T∑
t=3

(T − t)Cov
(
Ki2Ki1∆W̃i2∆W̃>i2 ,KitKi(t−1)∆W̃it∆W̃

>
it

)
,

where, under Assumptions 5.7-5.9, it holds

V ar
(
KitKi(t−1)∆W̃it∆W̃

>
it

)
= Op

(
1

NT |H2|

)

and

Cov
(
Ki2Ki1∆W̃i2∆W̃>i2 ,KitKi(t−1)∆W̃it∆W̃

>
it

)
= Op

(
1

N |H2|

)
.
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Then if both NT |H2| and N |H2| tends to infinity, this variance term tends to zero and it

is proved

Sn = B
∆W̃∆W̃

(z1, z1)(1 + op(1)). (A3.6)

Now, focus on the behavior II1n, by Assumptions 5.2 and 5.5-5.9 we obtain

II1n =


(NT )−1

∑
itKitKi(t−1)∆W̃it

(
ĝit,i(t−1) − git,i(t−1)

)>
(NT )−1

∑
itKitKi(t−1)∆W̃it (∆Uit −∆Uit)

>

 = op(1) (A3.7)

given that, using the uniform convergence results as the ones established in Masry (1996,

Theorem 6),

(NT )−1
∑
it

KitKi(t−1)∆W̃it

(
ĝit,i(t−1) − git,i(t−1)

)>
≤ (NT )−1

∑
it

|KitKi(t−1)∆W̃it| sup
{Zit,Zi(t−1)}

|ĝit,i(t−1) − git,i(t−1)|>

= op(1), (A3.8)

since it is straightforward to show (NT )−1
∑

it |KitKi(t−1)∆W̃it| = Op(1). Similarly, we

obtain II2n = op(1).

By (A3.5) we know Ŝn = Sn + (2II1n + II2n) and

Ŝ−1
n = S−1

n + S−1
n (2II1n + II2n)S−1

n + op(‖H1/2
2 ‖).

Replacing these previous results here we obtain

Ŝ−1
n = B−1

∆W̃∆W̃
(z1, z1) + op(‖H1/2

2 ‖) (A3.9)

so the result (A3.4) is proved.

On the other hand, replacing (A3.4) and (A3.6) in (A3.3) and by the Crammer-Wald

device we obtain

m̂ĝ(z1;H2)− m̂g(z1;H2) = B−1

∆W̃∆W̃
(z1, z1)(T̂n − Tn) + op(1). (A3.10)
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Focus now on the behavior of T̂n − Tn, we claim that following the same procedure as in

(A3.7) we obtain

T̂n − Tn = (NT )−1
∑
it

KitKi(t−1)(∆Ŵit −∆W̃it)∆Yit = op(1), (A3.11)

since by Assumption 5.9 and using the uniform convergence of ĝit,i(t−1) we obtain that

since (NT )−1
∑

it |KitKi(t−1)∆Yit| = Op(1),

(NT )−1
∑
it

KitKi(t−1)

(
ĝit,i(t−1) − git,i(t−1)

)
∆Yit

≤ (NT )−1
∑
it

|KitKi(t−1)∆Yit| sup
{Zit,Zi(t−1)}

|ĝit,i(t−1) − git,i(t−1)|

= op(1)

Then, as N |H2| → ∞ by (A3.10) and (A3.11) we obtain

m̂ĝ(z1;H2)− m̂g(z1;H2) = op

(
1√

NT |H2|

)
,

so the Lemma 5.1 is proved.

Proof of Lemma 5.2

The proof of this proposition is structured as follows. First, the asymptotic bias of the

estimator is analyzed. Later, we focus on the variance term and conclude the proof with

the asymptotic normality of the estimator, once confirmed that the Lyapunov condition

holds.

Since by the regularity conditions the Taylor’s remainder term is op (tr(H2)), the approx-

imation of the smooth functions of (5.7) by the Taylor theorem implies

∆Yit = ∆W̃>itm(z1) +Git + ∆vit + ∆ξ>itm2(z1) + op(1) (A3.12)

once replaced ∆Wit by g(Xit, Xi(t−1)) + ∆ξit in the resulting expression, where

Git =
(
W̃it ⊗ (Zit − z1)− W̃i(t−1) ⊗ (Zi(t−1) − z1)

)>
Dm(z1) + ∆Z>itDα(z1)

+
1

2

(
W̃>it ⊗ (Zit − z1)>Hm(z1)(Zit − z1)− W̃>i(t−1) ⊗ (Zi(t−1) − z1)>Hm(z1)(Zi(t−1) − z1)

)
+

1

2

(
(Zit − z1)>Hα(z1)(Zit − z1)− (Zi(t−1) − z1)>Hα(z1)(Zi(t−1) − z1)

)
,
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letDm(z1) be a (d−1)q×1 vector andDα(z1) a q×1 vector, forDm(z1) = vec(∂m(z1)/∂z>1 )

and Dα(z1) = vec(∂α(z1)/∂z>1 ) being the corresponding first-order derivatives vector of

m(·) and α(·), respectively. Also, Hm(z1) is a (d− 1)q× q matrix and Hα(z1) a q× q ma-

trix, for Hm(z1) = ∂2m(z1)/∂z1z
>
1 and Hα(z1) = ∂2α(z1)/∂z1z

>
1 being the corresponding

Hessian matrix of m(·) and α(·), respectively.

Combining (A3.12) with the second element of (A3.2), we can write m̂g(·) as

m̂g(z1;H2)−m(z1) = S−1
n (Un +Bn +Rn) (A3.13)

where, for the sake of simplicity, let us denote

Un = (NT )−1
∑
it

KitKi(t−1)∆W̃it∆vit,

Rn = (NT )−1
∑
it

KitKi(t−1)∆W̃it∆ξ
>
itm2(z1),

Bn = (NT )−1
∑
it

KitKi(t−1)∆W̃itGit.

Thus, to complete the proof of Theorem 5.1 it is enough to show√
NT |H2|(m̂g(z1;H2)−m(z1))−

√
NT |H2|S−1

n Bn =
√
NT |H2|S−1

n (Un +Rn) , (A3.14)

where we will demonstrate that S−1
n Bn contributes to the asymptotic bias and the two

terms of the right part of (A3.14) are asymptotically normal.

Focus first in the asymptotic behavior of the bias term, we can decompose Bn into four

different terms that we have to analyze separately. In particular, for the standard case

µ2(Ku) = µ2(Kv) we obtain

Bn = (NT )−1
∑
it

KitKi(t−1)∆W̃itGit = B(1)
n +B(2)

n +B(3)
n +B(4)

n , (A3.15)

where

B(1)
n = (NT )−1

∑
it

KitKi(t−1)∆W̃it

(
W̃it ⊗ (Zit − z1)− W̃i(t−1) ⊗ (Zi(t−1) − z1)

)>
Dm(z1),

B(2)
n = (NT )−1

∑
it

KitKi(t−1)∆W̃it∆Z
>
itDα(z1),

B(3)
n = (2NT )−1

∑
it

KitKi(t−1)∆W̃it

(
W̃>it ⊗ (Zit − z1)>Hm(z1)(Zit − z1)

− W̃>i(t−1) ⊗ (Zi(t−1) − z1)>Hm(z1)(Zi(t−1) − z1)
)
,
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and

B(4)
n = (2NT )−1

∑
it

KitKi(t−1)∆W̃it

(
(Zit − z1)>Hα(z1)(Zit − z1)

− (Zi(t−1) − z1)>Hα(z1)(Zi(t−1) − z1)
)
.

For stationary and using iterated expectations, we denote B
W̃

= E(W̃it|Xit, Xi(t−1)) and

B
W̃(−1)

= E(W̃i(t−1)|Xit, Xi(t−1)) obtaining

E(B(1)
n ) = E

[
KitKi(t−1)

(
E
(

∆W̃itE(W̃>it |Xit, Xi(t−1))|Zit, Zi(t−1)

)
⊗ (Zit − z1)>

− E
(

∆W̃itE(W̃>i(t−1)|Xit, Xi(t−1))|Zit, Zi(t−1)

)
⊗ (Zi(t−1) − z1)>

)]
=

∫ (
E
(

∆W̃itB>W̃ |Zit = z1, Zi(t−1) = z1

)
Df (z1)(H

1/2
2 u)

)
⊗ (H

1/2
2 u)>Dm(z1)K(u)K(v)dudv

−
∫ (

E
(

∆W̃itB>W̃(−1)
|Zit = z1, Zi(t−1) = z1

)
Df (z1)(H

1/2
2 v)

)
⊗ (H

1/2
2 v)>Dm(z1)K(u)K(v)dudv

= µ2(K)B
∆W̃∆W̃

(z1, z1)diagd (Df (z1)H2Dmr (z1)) ıdf
−1
Zit,Zi(t−1)

(z1, z1) + op(H2), (A3.16)

for r = 1, · · · , d and being ıd a d× 1 unitary vector.

Similarly, by the law of iterated expectations

E(B(2)
n ) = E

[
KitKi(t−1)E(∆W̃it|Zit, Zi(t−1))∆Z

>
itDα(z1)

]
=

∫
KitKi(t−1)E(∆W̃it|Zit, Zi(t−1))∆Z

>
itDα(z1)f

(
Zit, Zi(t−1)

)
dZitdZi(t−1)

= E(∆W̃it|Zit = z1, Zi(t−1) = z1) (µ2(Ku)− µ2(Kv))Df (z1)H2Dα(z1)

= op(1). (A3.17)

On its part, following a similar procedure as in (A3.16) it is straightforward to show

E(B(3)
n ) =

1

2
E
[
KitKi(t−1)

(
E
(

∆W̃itB>W̃ |Zit, Zi(t−1)

)
⊗ (Zit − z1)>Hm(z1)(Zit − z1)

− E

(
∆W̃itB>W̃(−1)

|Zit, Zi(t−1)

)
⊗ (Zi(t−1) − z1)>Hm(z1)(Zi(t−1) − z1)

)]
=

1

2
µ2(K)B

∆W̃∆W̃
(z1, z1)diagd (tr(Hmr(z1)H2)) ıd + op (tr(H2)) , (A3.18)

where diagd (tr(Hmr(z1)H2)) stands for a diagonal matrix of element tr(Hmr(z1)H2) while,

following the procedure of (A3.17) and (A3.18),
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E(B(4)
n ) =

1

2
E
[
KitKi(t−1)E(∆W̃it|Zit, Zi(t−1))

(
(Zit − z1)>Hα(z1)(Zit − z1)

− (Zi(t−1) − z1)>Hα(z1)(Zi(t−1) − z1)
)]

=
1

2
E
(

∆W̃it|Zit = z1, Zi(t−1) = z1

)
(µ2(Ku)− µ2(Kv))tr (Hα(z1)H2) + op (tr(H2)) .

(A3.19)

Furthermore, it is easy to prove that any component of the variance of Bn converges to

zero following a similar procedure as in the proof of Lemma 5.1 and assuming H2 → 0

and N |H2| → ∞. Then, replacing (A3.16)-(A3.19) in Bn, using (A3.8) and applying the

Crammer-Wald device we obtain that the bias term of this two-state least-squares constant

regression estimator (5.9) is

S−1
n Bn = µ2(K)B−1

∆W̃∆W̃
(z1, z1)B

∆W̃∆W̃
(z1, z1)

×
[
diagd (Df (z1)H2Dmr(z1)) ıdf

−1
Zit,Zi(t−1)

(z1, z1) +
1

2
diagd (tr (Hmr(z1)H2)) ıd

]
+ op (tr(H2)) , (A3.20)

so the first part of the proof is done.

On the other hand, to obtain the asymptotic variance of the right part of (A3.14) we

have to analyze the variance of Un and Rn as well as the covariance between both terms.

For this, let us denote by ∆v = (∆v1, · · · ,∆vN ) the N(T − 1) × 1-vector for ∆vi =

(∆vi2, · · · ,∆viT )T ,

E(∆vi∆v
>
i′ |Z) =


2σ2

v , for i = i′, t = t′

−σ2
v , for i = i′, |t− t′| < 2,

0, for i = i′, |t− t′| ≥ 2,

(A3.21)

Replacing in (A3.21) σ2
v by σ2

ξ , a similar definition we obtain for E(∆ξi∆ξ
>
i′ |Z).

We first analyze Un and take into account the fact that E(∆vit|Zit, Zi(t−1)) = 0. Thus, by

the law of iterated expectations and Assumptions 5.1, 5.2 and 5.4-5.9, we claim that

NT |H2|V ar(Un) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
E
(

∆W̃itE(∆vit∆vi′t′ |Xit, Xi(t−1), Xi′t′ , Xi′(t′−1))

× ∆W̃>i′t′ |Zit, Zi(t−1), Zit′ , Zi(t′−1)

)
KitKi(t−1)Ki′t′Ki′(t′−1)

]
= 2σ2

vR(Ku)R(Kv)B∆W̃∆W̃
(z1, z1)(1 + op(1)). (A3.22)
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To show this result, note that the covariance between different individuals are clearly zero

by the independence condition. Therefore, for i = i′ we consider two different cases: t = t′

and t 6= t′. For t = t′ and Assumptions 5.1, 5.2 and 5.4-5.9, by the standard kernel

methods we obtain

|H2|T−1
T∑
t=2

E
[
E
(

∆W̃itE(∆v2
it|Xit, Xi(t−1))∆W̃

>
it |Zit, Zi(t−1)

)
K2
itK

2
i(t−1)

]
= 2σ2

v |H2|E
[
E
(

∆W̃it∆W̃
>
it |Zit, Zi(t−1)

)
K2
itK

2
i(t−1)

]
= 2σ2

vR(Ku)R(Kv)B∆W̃∆W̃
(z1, z1)(1 + op(1)).

Meanwhile, for t 6= t′, and proceeding in the same way as in the preceding equation, if we

consider again the stationarity Assumption 5.1, we obtain

2|H2|T−1
T∑
t=3

(T − t)E
[
E
(

∆W̃i2E(∆vi2∆vit|Xi2, Xi1, Xit, Xi(t−1))∆W̃
>
it |Zi2, Zi1, Zit, Zi(t−1)

)
× Ki2Ki1KitKi(t−1)

]
= −2σv|H2|1/2R(Ku)B

∆W̃∆W̃
(z1, z1, z1)(1 + op(1)),

where

B
∆W̃∆W̃

(z1, z1, z1) = E
[
∆W̃i2∆W̃>i3 |Zi1 = z1, Zi2 = z1, Zi3 = z1

]
fZi1,Zi2,Zi3(z1, z1, z1).

Note that only those terms of the variance-covariance matrix in which |t − t′| < 2 holds

are nonzero. The remaining terms of this matrix are zero by the structure of the error

term in first differences established in (A3.21).

Second, we focus on the behavior of Rn and follow a similar procedure as in (A3.22),

NT |H2|V ar(Rn) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
∆W̃itm(z1)>E(∆ξit∆ξ

>
i′t′ |Xit, Xi(t−1), Xi′t′ , Xi′(t′−1))

× m(z1)∆W̃>i′t′KitKi(t−1)Ki′t′Ki′(t′−1)

]
= 2R(Ku)R(Kv)σ

2
ξm(z1)>m(z1)B

∆W̃∆W̃
(z1, z1)(1 + op(1)). (A3.23)

For the last term, we obtain

NT |H2|Cov(Un, Rn) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
∆W̃itm(z1)>E(∆vit∆ξi′t′ |Xit, Xi(t−1), Xi′t′ , Xi′(t′−1))

× ∆W̃>i′t′KitKi(t−1)Ki′t′Ki′(t′−1)

]
= R(Ku)R(Kv)σvξm(z1)>ı(M−1)B∆W̃∆W̃

(z1, z1)(1 + op(1)), (A3.24)
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following the same procedure as in (A3.22).

Applying the Crammer-Wald device and using (A3.8) and (A3.22)-(A3.24), as N |H2| → ∞

we obtain

NT |H2|V ar
(
S−1
n (Un +Rn)

)
= 2R(Ku)R(Kv)

(
σ2
v + σ2

ξm(z1)>m(z1) + σvξm(z1)>ı(M−1)

)
× B−1

∆W̃∆W̃
(z1, z1)(1 + op(1)). (A3.25)

Finally, once established the main asymptotic properties of the two-stage least-squares

local constant regression estimator (5.9), to prove Theorem 5.1 is necessary to show that

as N →∞,

√
NT |H2| (m̂g(z1;H2)−m(z1))

d−−−→ N
(
0, 2R(Ku)R(Kv)

(
σ2
v + σ2

ξm(z1)>m(z1) + σvξm(z1)>ı(M−1)

)
B

∆W̃∆W̃
(z1, z1)−1

)
.

(A3.26)

In order to show that, we check the Lyapunov condition. As the reader can appreciate,

the above assumptions state that the variables are i.i.d. in the subscript i but not in t,

so we have independent random variables heterogeneously distributed. To overcome this

situation, we may define λ∗n,i = T−1/2
∑

it λit, what means that λ∗n,i is an independent

random variable for T fixed. Therefore, in order to show (A3.26) it suffices to analyze the

asymptotic normality of the two-stage least-squares local constant regression estimator

(5.9),

1√
NT

∑
it

KitKi(t−1)∆W̃it(∆vit + ∆ξ>itm(z1)) =
1√
NT

∑
it

λit, (A3.27)

where

λit = KitKi(t−1)∆W̃it

(
∆vit + ∆ξ>itm(z1)

)
|H2|1/2, i = 1, · · · , N ; t = 2, · · · , T.

By Theorem 5.1 and previous proofs, we can state that as H2 → 0,

V ar(λit) = 2R(Ku)R(Kv)
(
σ2
v + σ2

ξm(z1)>m(z1)
)
B−1

∆W̃∆W̃
(z1, z1)(1 + op(1))

and

Cov(λi1, λit) = R(Ku)R(Kv)σvξm(z1)>ı(M−1)B−1

∆W̃∆W̃
(z1, z1)(1 + op(1)).
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By the Minkowski inequality we obtain

E|λ∗n,i|2+δ ≤ CT
2+δ

2 E|λit|2+δ,

so λit can be divided into two components; i.e., λ1it and λ2it. Analyzing separately each

of those terms, we obtain

E|λ1it|2+δ ≤ |H2|(2+δ)/2E|KitKi(t−1)∆W̃it∆vit|2+δ

= |H2|−δ/2
∫
E
(
|∆W̃it∆vit|2+δ|Zit = z1 +H

1/2
2 u, Zi(t−1) = z1 +H

1/2
2 v

)
×fZit,Zi(t−1)

(
z1 +H

1/2
2 u, z1 +H

1/2
2 v

)
K2+δ(u)K2+δ(v)dudv

= |H2|−δ/2E
(
|∆W̃it∆vit|2+δ|Zit = z1, Zi(t−1) = z1

)
fZit,Zi(t−1)

(z1, z1)

×
∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2).

Similarly,

E|λ2it|2+δ ≤ |H2|(2+δ)/2E|KitKi(t−1)∆W̃it∆ξ
>
itm(z1)|2+δ

= |H2|1+δ/2E
[
E
(
|∆W̃it∆ξ

>
it |2+δ|Zit, Zi(t−1)

)
m(z1)2+δK2+δ

it K2+δ
i(t−1)

]
= |H2|−δ/2E

(
|∆W̃it∆ξ

>
it |2+δ|Zit = z1, Zi(t−1) = z1

)
m(z1)2+δfZit,Zi(t−1)

(z1, z1)

×
∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2)

and

E|λ1itλ
>
2it|1+δ/2 ≤ |H2|(2+δ)/2E|K2

itK
2
i(t−1)∆W̃it∆vitm(z1)>∆ξit∆W̃

>
it |1+δ/2

= −|H2|1+δ/2E
[
E
(
|∆W̃it∆W̃

>
it ∆vit∆ξit|1+δ/2|Zit, Zi(t−1)

)
(m(z1)>)(1+δ/2)K2+δ

it K2+δ
i(t−1)

]
= −|H2|1+δ/2E

(
|∆W̃it∆W̃

>
it ∆vit∆ξit|1+δ/2|Zit = z1, Zi(t−1) = z1

)
(m(z1)>)(1+δ/2)

×fZit,Zi(t−1)
(z1, z1)

∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2).

Then, it is proved that

E|λn,i|2+δ = E|N−1/2
∑
i

λ∗n,i|2+δ ≤ COp((N |H2|)−δ/2)

and, as N tends to infinity, N |H2| → ∞. Since the Lyapunov condition holds, we resort

to the Lyapunov Central Limit Theorem to verify (A3.26) and Lemma 5.2 is proved.
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Finally, using the results of Lemmas 5.1 and 5.2 in (A3.13) we obtain

√
NT |H2|

(
m̂ĝ (z11;H2)−m(z11)

) d−−−→ N (b(z11;H2), v(z11;H2))

so the proof of Theorem 5.1 is done.
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Appendix 4

Finally, in this appendix we show the computational programs that we develop for esti-

mates. They are implemented in R, a well-known computing statistical program.

In the following, n is the sample size in differences and we denote by DY a N(T − 1)× 1

vector of dependent variables in first differences, whereas X and Z are N(T − 1)× d and

N(T − 1)× q matrices of covariates. Also, Xlag and Zlag contains the first lag of X and

Z, respectively. H is the bandwidth obtained by any standard nonparametric procedure

as the rule-of-thumb or the cross-validation technique. We also denote by mlocalFD the

corresponding m̂F (Z;H) estimator.

Algorithm 1 m̂F (z;H) estimator when q = 1 and d = 1

localFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztilde < − cbind( (X - Xlag), (X ∗ (Z - a) - Xlag ∗ (Zlag - a)))

e < − rbind (1, 0)

W < − diag( (1/H∧(2∗ q)) ∗ ( ( (1/sqrt(2∗ 3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 ))

∗ ( (1/sqrt(2∗ 3.14159))∗ exp ( -(1/2) ∗ ((Zlag - a) / H)∧2 )) ))

mlocalFD < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% DY

mod[[paste(”run”,i,sep=””)]] < − mlocalFD

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 2 m̂F (z;H) estimator when q = 2 and d = 1

localFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i, 1]

b < − Z[i, 2]

Ztilde < − cbind( (X - Xlag), (X ∗ (Z[,1] - a) - Xlag ∗ (Zlag[,1] - b)), (X ∗ (Z[,2] - a) -

Xlag ∗ (Zlag[,2] - b)))

e < − rbind (1, 0, 0)

W < − diag( (1/H∧(2∗q)) ∗ ( ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Z[,1] -

a)∧2 + (Z[,2] - b)∧2))∧2)) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Zlag[,1]

- a)∧2 + (Zlag[,2] - b)∧2))∧2)) ))

mlocalFD < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% DY

mod[[paste(”run”,i,sep=””)]] < − mlocalFD

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 3 m̂F (z;H) estimator when q = 1 and d = 2

localFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztilde < − cbind( (X - Xlag), (X ∗ (Z - a) - Xlag ∗ (Zlag - a)))

e < − matrix(c(1,0,0,0,0,1,0,0), nc=d)

W < − diag( (1/H∧(2∗q)) ∗ ( ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z1D - a) / H)∧2 ))

∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Zlag - a) / H)∧2 )) ))

mlocalFD < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% DY

mod[[paste(”run”,i,sep=””)]] < − mlocalFD

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 4 m̃F (z;H) estimator when q = 1 and d = 1

backFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztildeb < − cbind( X, (X ∗ (Z - a)) )

DYb < − DY + Xlag ∗ mlocalFD

e < − rbind( 1, 0)

Wb < − diag( (1/H∧q) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 ) ))

mbackFD < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% DYb

mod[[paste(”run”,i,sep=””)]] < − mbackFD

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 5 m̃F (z;H) estimator when q = 2 and d = 1

backFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i, 1]

b < − Z[i, 2]

Ztildeb < − cbind( X, (X ∗ (Z[,1] - a)), (X ∗ (Z[,2] - b)))

DYb < − DY + Xlag ∗ mlocalFD

e < − rbind( 1, 0, 0)

Wb < − diag( (1/H∧q) ∗ ((1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Zlag[,1] -

a)∧2 + (Z[,2] - b)∧2)∧2) )))

mbackFD < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% DYb

mod[[paste(”run”,i,sep=””)]] < − mbackFD

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 6 m̃F (z;H) estimator when q = 1 and d = 2

backFD < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztildeb < − cbind( X, (X ∗ (Z - a)) )

DYb < − DY + Xlag ∗ mlocalFD

e < − matrix(c(1,0,0,0,0,1,0,0), nc=d)

Wb < − diag( (1/H∧q) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 ) ))

mbackFD < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% DYb

mod[[paste(”run”,i,sep=””)]] < − mback

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Let n be the sample size in differences and denote by Y dot = Ÿ a NT × 1 vector of

time-demeaned dependent variable. X and Z are of dimension NT × d and NT × q, re-

spectively. Xlag and Zlag contains the first lag of X and Z, respectively, whereas Xlaglag

and Zlaglag are of dimension NT×d and NT×q that contains the second lag of X and Z,

respectively. H is the bandwidth matrix and T is the number of time observations for each

individual (in this case we assume T = 3). We denote by mlocalFE the corresponding

m̂w(z;H) estimator.

Algorithm 7 m̂w(z;H) estimator when q = 1, d = 1 and T = 3

localFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

XZ < − X ∗ (Z - a)

XZtilde < − as.vector(rep(tapply(XZ, id, mean), each=T))

Ztilde < − cbind( (X - Xtilde), (X ∗ (Z - a) - XZtilde))

e < − rbind (1, 0)

W < − diag( (1/H∧(T∗q)) ∗ ( ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 )) *

( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Zlag - a) / H)∧2 )) * ( (1/sqrt(2∗3.14159)) ∗ exp

( -(1/2) ∗ ((Zlaglag - a) / H)∧2 )) ))

mlocalFE < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% Ydot

mod[[paste(”run”,i,sep=””)]] < − mlocalFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 8 m̂w(z;H) estimator when q = 2, d = 1 and T = 3

localFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i, 1]

b < − Z[i, 2]

XZ1 < − X ∗ (Z[,1] - a)

XZ2 < − X ∗ (Z[,2] - b)

XZ1tilde < − as.vector(rep(tapply(XZ1, id, mean), each=T))

XZ2tilde < − as.vector(rep(tapply(XZ2, id, mean), each=T))

Ztilde < − cbind( (X - Xtilde), (X ∗ (Z[,1] - a) - XZ1tilde), (X ∗ (Z[,2] - b) - XZ2tilde))

e < − rbind (1, 0, 0)

W < − diag( (1/H∧(T∗q)) ∗ ( ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Z[,1] -

a)∧2 + (Z[,2] - b)∧2))∧2)) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Zlag[,1]

- a)∧2 + (Zlag[,2] - b)∧2))∧2)) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt(

(Zlaglag[,1] - a)∧2 + (Zlaglag[,2] - b)∧2))∧2)) ))

mlocalFE < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% Ydot

mod[[paste(”run”,i,sep=””)]] < − mlocalFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 9 m̂w(z;H) estimator when q = 1, d = 2 and T = 3

localFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

X1Z < − X[,1] ∗ (Z - a)

X2Z < − X[,2] ∗ (Z - a)

X1Ztilde < − as.vector(rep(tapply(X1Z, id, mean), each=T))

X2Ztilde < − as.vector(rep(tapply(X2Z, id, mean), each=T))

Ztilde < − cbind( (X - Xtilde), (X[,1] ∗ (Z - a) - X1Ztilde), (X[,2] ∗ (Z - a) - X2Ztilde))

e < − matrix(c(1,0,0,0,0,1,0,0), nc=d)

W < − diag( (1/H∧(T∗q)) ∗ ( ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 )) ∗

( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Zlag - a) / H)∧2 )) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp

( -(1/2) ∗ ((Zlaglag - a) / H)∧2 )) ))

mlocalFE < − t(e) % ∗% solve ( t(Ztilde) % ∗% W % ∗% Ztilde ) % ∗% t(Ztilde) % ∗%

W % ∗% Ydot

mod[[paste(”run”,i,sep=””)]] < − mlocalFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 10 m̃w(z;H) estimator when q = 1, d = 1 and T = 3

backFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztildeb < − cbind( X, (X ∗ (Z - a)) )

Xmlocal < − X∗ mlocalFE

Xmhattilde < − as.vector(rep(tapply(Xmlocal,id,mean),each=T))

Ydotb < − Ydot + Xmhattilde

e < − rbind( 1, 0)

Wb < − diag( (1/H∗q) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 ) ))

mbackFE < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% Ydotb

mod[[paste(”run”,i,sep=””)]] < − mbackFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 11 m̃w(z;H) estimator when q = 2, d = 1 and T = 3

backFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i, 1]

b < − Z[i, 2]

Ztildeb < − cbind( X, (X ∗ (Z[,1] - a)), (X ∗ (Z[,2] - b)) )

Xmlocal < − X∗ mlocalFE

Xmhattilde < − as.vector(rep(tapply(Xmlocal,id,mean),each=T))

Ydotb < − Ydot + Xmhattilde

e < − rbind( 1, 0, 0)

Wb < − diag( (1/H∧q) ∗ ( ((1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((1/H) ∗ sqrt( (Z[,1] -

a)∧2 + (Z[,2] - b)∧2))∧2) )))

mbackFE < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% Ydotb

mod[[paste(”run”,i,sep=””)]] < − mbackFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Algorithm 12 m̃w(z;H) estimator when q = 1, d = 2 and T = 3

backFE < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Ztildeb < − cbind( X, (X ∗ (Z - a)) )

X1mlocal < − X[,1] ∗ mlocalFE[,1]

X2mlocal < − X[,2] ∗ mlocalFE[,2]

X1mhattilde < − as.vector(rep(tapply(X1mlocal, id, mean), each=T))

X2mhattilde < − as.vector(rep(tapply(X2mlocal, id, mean), each=T))

Ydotb < − Ydot + X1mhattilde + X2mhattilde

e < − matrix(c(1,0,0,0,0,1,0,0), nc=d)

Wb < − diag( (1/H∧q) ∗ ( (1/sqrt(2∗3.14159)) ∗ exp ( -(1/2) ∗ ((Z - a) / H)∧2 ) ))

mbackFE < − t(e) %∗% solve(t(Ztildeb) %∗% Wb %∗% Ztildeb) %∗% t(Ztildeb) %∗%

Wb % ∗% Ydotb

mod[[paste(”run”,i,sep=””)]] < − mbackFE

}

results < − list()

for(i in 1:n) results [[ names(mod)[i] ]] < − mod[i]

data.frame(results)

}
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Let us denote by DWHAT = ĝit,i(t−1) the nonparametric estimator obtained previously

through standard techniques such as the Nadaraya-Watson estimator of the local linear

regression. Let n be the sample size in differences and ntot the full sample size, DU is a

N(t− 1)× a matrix whereas Z and Zlag are of dimension N(T − 1)× q. We also denote

by H2 the bandwidth that is obtained through standard nonparametric techniques and

that holds H1 = op(H2), where H1 is the bandwidth of the first-stage of the procedure.

Also, H3 is the bandwidth of the last stage of the procedure. Finally, ind denote the

number of individuals of the sample, whereas t1 is the number of temporal observations

per individual.

Algorithm 13 m̃ĝ(z1;H2) estimator when q = 1 and M1 = 1

Nad < − function(){

mod < − list()

for(i in 1:n){

a < − Z[i]

Xtilde < − cbind(DWHAT,DU)

W < − diag((1/H2∧(2∗q)) ∗ ( ((1/sqrt(2∗3.14159)) ∗ exp(-(1/2) ∗ ((Z - a)/H2)∧2)) ∗

((1/sqrt(2∗3.14159)) ∗ exp(-(1/2) ∗ ((Zlag - a)/H2)∧2)) ))

mnad < − solve(t(Xtilde) % ∗% W % ∗% Xtilde) % ∗% t(Xtilde) % ∗% DY

m1nad < − cbind(1,0) % ∗% mnad

m2nad < − cbind(0,1) % ∗% mnad

mod[[paste(”run”, i, sep=””)]] < − cbind(m1nad,m2nad)

}

results < − do.call(rbind,mod)

data.frame(results)

}
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Algorithm 14 α̃(z1;Hx) estimator when q = 1 and M1 = 1

alphamarg < − function(){

mod < − list()

for(j in 1:n){

alpha < − matrix(0, ntot, n)

for(i in 1:ntot){

I < − cbind(rep(1, n))

W < − diag((1/H3∧(2∗q)) ∗ ( ((1/sqrt(2∗3.14159)) ∗ exp(-(1/2) ∗ ((Z - Z[j])/H3)∧2)) ∗

((1/sqrt(2∗3.14159)) ∗ exp(-(1/2) ∗ ((Zlag - Z[i])/H3)∧2)) ))

alpha[i,] < − solve(t(I) % ∗% W % ∗% I) % ∗% t(I) % ∗% W

}

alphaNad < − (1/(ind∗t1)) ∗ apply(alpha, 2, sum)

mod[[paste(”run”, j, sep=””)]] < − cbind(alphaNad)

}

results < − do.call(rbind, mod)

data.frame(results)

}

DYHAT < − as.numeric(DY - DWHAT∗m1nad - DW2∗m2nad)

alphahat < − Salpha % ∗% DYHAT
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