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Obesity is an epidemic and still growing health problem around the world and 

represents the major challenge to chronic disease prevention. Demographic, 

economic and epidemiological changes have driven to unacceptable rates of obesity 

among adults and children. The accompanying non-alcoholic fatty liver disease 

(NAFLD) has become the most common cause of chronic liver disease and it is 

associated with high morbidity and mortality.  

NAFLD encompasses a wide spectrum of histological findings ranging from simple 

steatosis to non-alcoholic steatohepatitis (NASH) and advanced fibrosis, which could 

progress to cirrhosis, hepatocellular carcinoma and liver failure. Given the extremely 

high prevalence of NAFLD, the significant number of individuals which are 

asymptomatic until their liver begins to fail and the association between NAFLD and 

an increase of all-cause mortality, there is a great need for the development of non-

invasive diagnostic methods which could reduce liver biopsy and overcome its 

drawbacks. 

Current laboratory tests are insufficient and unreliable for the determination of 

NAFLD presence. Moreover, non-invasive imaging techniques to diagnose NAFLD are 

expensive and not suitable for morbidly obese patients. For this reason we aimed to 

discover a rapid and non-invasive method that could improve clinical care. 

Accordingly, Study 1, published in International Journal of Obesity, describes a non-

targeted metabolomics approach on the plasma from morbidly obese patients 

undergoing bariatric surgery to gain a comprehensive measure of metabolite levels. 

Furthermore, on the basis of these findings, we developed a method for the accurate 

quantification of plasma a-ketoglutarate to explore its potential as a novel 

biomarker for the detection of NAFLD. This study elucidated that plasma a-

ketoglutarate is superior to common liver function tests in obese patients as a 

surrogate biomarker of fatty liver disease. Thereby, the measurement of this 

biomarker may potentiate the search for therapeutic approaches, may decrease the 

need for liver biopsy and may be useful in the assessment of disease progression. 

Excessive energy intake is a part of the current human lifestyle. This energy surplus 

alters metabolic homeostasis and leads to a state of low-grade chronic inflammation 
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which has an important role in the pathogenesis of obesity and NAFLD. Accordingly, 

the immune system and metabolism are closely interconnected and an energy 

excess management could compromise this relationship. For this reason, we 

reasoned that searching for an adequate animal model might allow us to better 

understand disease pathogenesis.  

Chemokines are promising candidates for the design of such a model. Chemokines, 

especially Chemokine (C-C Motif) Ligand 2 (CCL2), not only governed the migration of 

immune cells during inflammation but also have a variety of additional functions that 

are involved in the correct functioning of metabolism. Moreover, they are 

overexpressed in non-communicable disease such as obesity and NAFLD so they 

could become a biomarker. Therefore, we hypothesised that challenging an animal 

model that systematically overexpresses CCL2 combined with diets rich in fat and 

cholesterol could help to assess the role of chronic inflammation in response to 

excessive energy. In Study 2, published in Mediators of Inflammation, we present 

the results obtained from the generated targeted CCL2 transgenic mice which 

overexpress CCL2 in all tissues. These data corroborated that CCL2 modifies lipid and 

glucose metabolism, contributes to hepatic steatosis and promotes changes in 

macrophage function and plasticity, mitochondrial biogenesis and autophagy. Thus, 

this study contributed to the knowledge about the relationship between 

inflammation and metabolism and suggested a number of mechanistic questions for 

further studies.  

On the bases of these findings, and in order to determine if the deleterious 

metabolic effects caused by a continuous and ubiquitous expression of CCL2 

combined with energy surplus could be counteract by the absence of its receptor 

(CCR2), we created a novel animal model, a double genetically modified mouse, CCL2 

overexpressor and CCR2 knockout mice. Accordingly, in Study 3 we present the 

preliminary results obtained from these mice which suggest that all metabolic 

disturbances observed in transgenic mice which overexpress CCL2 could be reverted 

by the inhibition of CCL2/CCR2 axis biological function. All this information could be 

really important to establish CCR2 modulators as a new class of therapeutic agents 

to the management of metabolic diseases. 
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1. Obesity: the epidemic of the twenty-first century 

 

Obesity is one of the most common diseases worldwide and has become the 

greatest public health challenge. The World Health Organization (WHO) has 

considered obesity as the “epidemic of the twenty-first century”.  

It is typically defined as the state of having excess body weight. However, this simple 

definition misrepresents an etiologically complex phenotype mainly associated with 

excess adiposity which can manifest metabolically and not just in terms of body size 

[1, 2]. 

Globally, the worldwide prevalence of obesity has considerably increased since the 

early 1980s. According to the WHO, in 2014 more than 1.9 billion of adult population 

was overweight and, of these, over 600 million had obesity (39% and 13% of total 

population, respectively) [3]. In European Union member states approximately 35% 

of all adults are overweight and approximately 17% are classified as obese. In 

addition, most available trend data suggest that, unfortunately, obesity rates are 

continuing to rise [4]. 

There is also an alarming increase in globally prevalence rates of overweight and 

obesity among children and adolescent population. Severe obesity in childhood is 

unfortunately not uncommon. In 2013, 42 million children under the age of 5 were 

overweight or obese [3].  

In Europe, around 1 in 3 children aged 6-9 years old were overweight or obese in 

2010. This is a worrying increase in regard to the experts estimates on 2008, when 

they were talking about 1 in 4 (estimates based on data from the WHO’s Childhood 

Obesity Surveillance Initiative, COSI) [5-7].  

Although overweight and obesity are considered a high-income country problem, 

their prevalence is increasing in lower and middle-income countries, particularly in 

urban surroundings. In these developing countries with emerging economies, the 

rate of this health problem is more than 30% higher than in developed countries [3].  
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1.1 Classification 

 

The most commonly used method in major guidelines for classifying an individual as 

overweight or obese is based on body mass index (BMI), defined as the body weight 

in kilograms divided by height in meters squared.  

In 1997, the WHO standardized the definition of normal weight, overweight and 

obesity and most studies have adopted these definitions [8]. Moreover, the WHO 

distinguishes several BMI categories based on increasing health risks (Table 1) [9]. 

Given this definition, in adults, overweight is defined by a BMI ≥25.0 kg/m
2
, and a 

BMI ≥30.0 kg/m
2 

is categorized as obesity [10-12].  

Table 1. Classification of obesity based on increasing health risk. Adapted from WHO guides [9]. 

 

Weight category BMI (kg/m
2
) Associated health risks 

Underweight <18.5 Low (but risk of other clinical problems) 

Normal weight 18.5-24.9 Average 

Overweight ≥25.0 Increased 

Obese ≥30.0  

Obese class I 30.0-34.9 Moderately increased 

Obese class II 35.0-39.9 Severely increased 

Obese class III ≥40.0 Very severely increased 

 

1.2 Obesity-inducing factors 

 

Obesity arises as the result of an imbalance in energy homeostasis, when caloric 

intake exceeds energy expenditure during an extended period of time and leading to 

excess body weight.  

The increasing prevalence of obesity is influenced by a complex interaction between 

genetic, metabolic, behavioral and environmental factors and also seems to be 

related to a countless social and economic changes inherent to modern society [13-

16]. All of these factors create an obesogenic environment. This term has been 

coined to express the sum of influences, opportunities, or conditions of life that 

produce and support overweight and obesity through several intersecting 

mechanisms [17, 18].  

These obesogenic shifts linked with the globalization and modernization include 

growing availability of abundant, cheap, energy-dense, highly palatable foods and 
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sugar-sweetened beverages. Gathering all of these factors together with improved 

food distribution and highly pervasive and persuasive marketing create a “push 

effect” that drives over-consumption of calories. Moreover, in the past decades, 

environmental changes have reduced physical activity via our service-based 

economy and labor-saving devices which have had a cumulative impact in decreasing 

daily energy expenditure. At the same time, energy expended in leisure-time 

physical activities has decreased because people spend more time doing sedentary 

activities rather than participating in activities that require greater amounts of 

energy expenditure. In addition, the frequent disruption of sleep and circadian 

rhythms and a variety of other cultural and economic factors also predispose to 

weight gain. Finally, hereditary factors such as genetics, family history and 

racial/ethnic differences also lead to the development of obesity [19-23]. 

The relative contribution of each of these factors has been studied extensively. The 

majority of studies conclude that behavioral and environmental factors, such as 

sedentary lifestyles combined with excess energy intake, are primarily responsible 

for the dramatic increase in obesity since population-wide genetic alterations do not 

occur in this relative short period of time in which obesity reached epidemic 

proportions [1, 11]. A summary of major risk factors and determinants of obesity is 

shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Major risk factors of obesity. Apart from hereditary factors, both socioeconomic and 

behavioral factors are modifiable. In addition, behavioral factors are the key in the prevention of 

obesity. 
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To sum up, body weight regulation is and should be viewed as a complex interaction 

between environmental, socioeconomic and genetic factors. However personal 

behaviors in response to these conditions continue to play a dominant role in 

preventing obesity. Importantly, apart from genetics, every risk factor discussed 

below could be modified. 

1.3 Costs of obesity 

Comorbidities 

Obesity is considered one of the key risk factors for other chronic diseases together 

with smoking, high blood pressure and high blood cholesterol [24].  

The increasing prevalence of obesity and overweight is associated with the incidence 

of several comorbidities including type-2 diabetes mellitus (T2DM), dyslipidemia, 

hypertension, metabolic syndrome, non-alcoholic fatty liver disease (NAFLD) and 

cardiovascular disease, nowadays the leading cause of death [24, 25]. Furthermore, 

many studies have examined the link between obesity and cancer and have reported 

that obesity is associated with multiple types of cancer including colorectal, liver, 

esophageal, pancreatic, breast, endometrial, cervical, ovarian, brain, renal, kidney, 

prostate, lymphoma and multiple myeloma [26, 27]. Finally, there is also a 

relationship between obesity and asthma, sleep apnea syndrome, infertility related 

to hormonal disturbances and many of psychiatric disorders, obese individuals suffer 

from social stigmatization, discrimination, and low self-steem [16].  

Although obesity is associated with several metabolic disturbances, all obese 

humans are not equal and approximately 20% of patients with severe obesity have 

normal metabolic profile. The authors called these obese individuals “metabolically 

healthy” obese. However, most obese patients are “metabolically unhealthy”. The 

reasons of these two phenotypes are unknown. Differences in glucose tolerance, 

inflammatory response, adipose tissue distribution, adipokine secretion pattern and 

age may be an explanation to this phenomenon. Thus, obesity could be considered 

as a heterogeneous disorder with variable risk profile [28, 29]. 
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Mortality 

It is well known that obesity is associated with an increased risk of death. Recent 

estimates show that around 2.8 million deaths per year in the European Union result 

from overweight and obesity-related causes [30]. However, the relationship 

between body mass index and longevity remains an area of interest and controversy.  

Numerous studies have demonstrated a ‘U-shaped’ association between BMI and 

risk of death (Figure 2), in other words, lower and upper BMI categories 

(underweight or BMI ≤18 kg/m
2
 and morbidly obesity or BMI ≥40 kg/m

2
) are 

associated with higher mortality than in middle categories. The main point of 

controversy concerns the increased risk of mortality at the low end of the BMI 

continuum. It is inconsistent with the generally relation between BMI and indicators 

of morbidity. Moreover, it stands in contrast to the fairly consistent observation that 

weight loss reduces risks factors for a variety of illnesses. In response to this 

counterintuitive finding, several authors suggested that the elevated risk of mortality 

at lowest BMI categories is an artifact. The two confounding variables most 

frequently cited are smoking and pre-existing “occult” disease which might 

contribute to weight loss and thus increased mortality in underweight people [31-

34].   

Figure 2. Schematic illustration of the association between mortality and BMI. UW, underweight; 

BMI, Body Mass Index. 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Introduction 

 

30 

 

The association between overweight or grade I obesity and obesity-induced 

comorbidities is not clear. Numerous studies have shown an unexpected and 

paradoxical inverse relationship with better prognosis in this patient group than in 

normal-weight group, the so-called “obesity paradox” [35-39]. They revealed that all-

cause mortality among overweight or grade I obesity subjects is significantly lower or 

not higher, compared with normal-weight subjects in general population. For this 

reason, the debate on the “obesity paradox” in different comorbidities such as 

coronary heart disease, heart failure, hypertension, peripheral artery disease, stroke, 

thromboembolism, kidney and pulmonary disease among others is still open [40-56]. 

Conversely, there are numerous meta-analyses that have shown the opposite, an 

increased mortality in obese adults compared with normal weight range [57], so this 

scientific debate is not yet closed. 

Nevertheless, the discussion over the existence of the obesity paradox cannot lead 

to an underestimation of obesity as a crucial risk factor for the development of 

cardiovascular and metabolic diseases that requires comprehensive prevention and 

management strategies. Thereby, it should be emphasized that the obesity paradox 

cannot be the argument against professional treatment of overweight or grade I 

obesity in subjects diagnosed with cardiovascular diseases or other associated 

comorbidities. However, in each case, the decision should be made individually with 

the assessment of potential benefits, including the effect of weight loss on related 

comorbidities and on quality of life [58]. 

1.4 Obesity management 

The global increasing prevalence of obesity and its metabolic complications and 

consequently its health costs emphasize the global need for improved strategies in 

obesity prevention and treatment. 

There is a growing demand that governments and international bodies such as 

United Nations and the WHO take action to reduce the burden of obesity and 

consequently all of its comorbidities.  

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Obesity: the epidemic of the twenty-first century 

  

31 

 

Lifestyle 
interventions 

Pharmacotherapy Bariatric surgery 

As many other chronic diseases, optimal management for obesity consist of different 

intervention steps, starting with the least invasive and progressing to more invasive 

approaches as show in Figure 3 [59]. 

 

 

 

 

 

Figure 3.Three-stepped intensifications of care approaches to weight management. 

 

Lifestyle interventions 

As obesity is the major contributor to many metabolic disorders, there is good 

reason to consider weight loss as a primary therapy. Accordingly, obesity preventive 

and therapeutic interventions are focused on the modification of risk factors 

promoting healthy eating, reducing caloric density, glycemic index and overall calorie 

intake, increasing aerobic and resistance exercise, promoting stress-reduction 

techniques and increasing the quality of nightly sleep. These approaches are lifestyle 

interventions, which are the first step and should be the basis of all obesity 

preventive and therapeutic strategies. Moreover, they are the most accessible and 

economical option because of their non-invasive nature and their weight-

independent benefits [60-63]. Lifestyle interventions can be divided in three broad 

categories: behavioral, community and environmental interventions [64]. 

§ Behavioral interventions have formed the cornerstone of obesity prevention 

and especially of its treatment. They are focused on current behavior-related 

aspects with a particular focus on increasing energy expenditure and 

reducing energy intake to achieve weight loss. These interventions could be 

self-directed but when they prove inadequate, professional guidance can be 

particularly helpful providing ongoing assessment and feedback about 

progress and identifying the most prominent stressors that are likely to 

contribute to obesity and helping to mitigate them. 
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§ Community interventions are implemented in neighborhoods, schools, 

communal sites, social care facilities and cultural centers. They combine 

behavioral measures and local environmental changes to address the supply 

and demand for food and/or physical activity. Some examples of this type of 

interventions are: comprehensive community-based life-style programs 

(health education, seminars, community events, worksite programs), the 

creation of a local environment that emphasized and supported a physical 

active lifestyle, school based interventions, changes in travel behavior (to and 

from school/worksite) and after-school physical activity sessions among 

others. 

§ Environmental interventions modify a target population’s environment and 

are often outside the healthcare sector. They have the potential to reach 

large number of individuals simultaneously and may have a more lasting 

effect on the behavior changes as they become incorporated into structures, 

systems, policies and sociocultural norms: taxes on unhealthy food and 

beverages, front-of-pack traffic light nutrition labeling, regulation of 

advertising of junk food and beverages to children and the implementation of 

educational mass media campaigns to increase health information and 

knowledge. 

The response to this type of interventions is highly variable, some patients exhibit a 

substantial and durable weight loss, but many others are unable to achieve long-

term weight maintenance. Accordingly, adjunctive, alternative and more intensive 

approaches are required. 

Pharmacotherapy is the second-line approach recommended when lifestyle 

interventions are ineffective in yielding significant weight loss. This type of treatment 

is approved in patients with a BMI ≥30 kg/m
2
 or BMI ≥27 kg/m

2
 with obesity related 

comorbidities [59]. 
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Pharmacotherapy 

There are two groups of approved drugs that can be used: 1) medications approved 

from obesity management per se (appetite suppressants or satiety enhancers and 

gastrointestinal blockers and 2) medications that affect body weight for obese 

patients who have metabolic complications and are receiving them for chronic 

disease management (i.e. T2DM) [59, 65, 66]. Medications of these two groups 

approved by U.S Food and Drug Administration (FDA) are listed in Table 2 and in 

Table 3, respectively.  

History of drug treatment of obesity has experienced the rise and fall of several 

therapeutic agents which despite showing promising efficacy in body weight 

reduction and touted as “magic pills” for addressing the obesity epidemic, had to be 

withdrawn from the market due to serious adverse effects [67]. In 1930s, 

amphetamines were first introduced as anorectics. However, amphetamine was 

addictive and had euphoric side effects. By modifying the structure of 

amphetamines, the anorectic effect of the parental compound was maintained while 

the stimulatory properties and potential for addition were reduced. With this 

strategy, in 1960 four noradrenergic agents (phentermine, benzphetamine, 

diethylpropion, phendimetrazine) were approved as adjuncts in the management of 

obesity. Phentermine remains the most often prescribed drug for short-term use (up 

to 12 weeks) for weight loss in the United States [59, 68]. 

Among the currently approved anti-obesity drugs, orlistat was accepted by FDA in 

1999 as the first lipase inhibitor for obesity management. In the past, it was the 

unique drug available for long-term treatment of obesity, and nowadays, it remains 

as the only approved obesity therapy in Europe [67-69]. Subsequently, after a long 

gap of more than ten years, two new therapies, lorcaserin and 

phentermine/topiramate, were approved in 2012. In 2014, FDA finally approved the 

combination of bupropion/naltrexone. All of these new pharmacological treatments 

provide additional options for the management of obesity [59, 67, 69, 70]. 
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Table 2. Weight loss medications approved by U.S. FDA for treatment of obesity. 

 

  

Family and generic name Action 

Short-term use 

Noradrenergic agents  

§ Phentermine 

§ Benzphetamine 

§ Diethylpropion 

§ Phendimetrazine 

 

 

Enhance satiety by inhibiting the reuptake of 

noradrenalin in the synapse and consequently, 

an increase of hypothalamic noraderenaline 

levels.  

Long-term use 

Gastrointestinal lipase inhibitor 

§ Orlistat 

 

Reduces body weight by binding and inhibiting 

lipases produced by pancreas and stomach 

reducing the absorption of ingested dietary fat 

(approximately 30%). 

 

Serotonin-2C receptor activation 

§ Lorcaserin 

 

Stimulates proopiomelanocortin (POMC) 

producing neurons in the hypothalamus 

resulting in generation of a-melanocortin 

stimulating hormone, which acts on 

melanocortin receptors to decrease food 

intake and enhances satiety. 

 

Combined therapy 

§ Phentermine-Topiramate 

extended release (ER) 

 

 

Phentermine reduces appetite trough 

increasing noradrenaline in the hypothalamus. 

However, topiramate effects on reducing the 

appetite are not thoroughly understood. It is 

thought that it has some effects on g-

aminobutyric acid (GABA) receptors. 

§ Bupropion/Naltrexone Bupropion reduces food intake by acting on 

adrenergic and dopaminergic receptors in the 

hypothalamus. Naltrexone is an opioid 

receptor antagonist which inhibits food intake. 
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Moreover, given the relative dearth of effective anti-obesity agents and the lack of 

prospects for new drug development, obesity researchers and clinicians are 

increasingly turning to a drug repositioning strategy in order to expand therapeutic 

options. For this reason, in obesity management nowadays there is an increasing 

utilization of medicaments traditionally used for the treatment of obesity-related 

comorbidities if they also produce weight loss (Table 3) [66, 71]. For example, 

metformin is an antihyperglycaemic agent approved for the treatment of type 2 

diabetes in adults and children aged ≥10 years. There are a lot of clinical trials which 

demonstrated that metformin therapy reduced both energy intake and body weight 

[72-76]. 

Table 3. Other medications studied off-label for obesity prevention or treatment.  

Family and generic name Indication Action 

Biguanide 

§ Metformin 

Glucagon-like peptide-1 

§ Exenatide 

§ Liraglutide 

Treatment of type 2 

diabetes 

Enhances insulin sensitivity. 

Produces small sustained 

weight loss of about 2%. 

Reduce fasting and post-

pandrial glucose levels, slow 

gastric emptying and decrease 

food intake by 19%. 

Antidepressant drug 

§ Bupropion 

Anticonvulsant drug 

§ Topiramate 

 

 

 

Treatment of 

neurobehavioral disorders 

Reduces food intake by acting 

on adrenergic and dopaminergic 

receptors in the hypothalamus. 

Induces appetite suppression 

and satiety via GABA receptors 

mediated inhibitory activity. 

 

To sum up, the ideal anti-obesity agent would selectively reduce body fat stores by 

ameliorating the regulatory or metabolic disturbances involved in the pathogenesis 

of obesity. Furthermore it should exhibit only minor, if any, side effects, be 

preferentially administered orally for long-term use and be widely accessible [66]. 

Care, consideration and close monitoring are essential when prescribing these 

medications but it is obvious that the progression of pharmacotherapy for obesity 

treatment gives us a chance to manage weight problems more effectively. 
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Bariatric surgery 

Bariatric surgery is the third-line approach recommended when the multiple 

attempts at weight loss through lifestyle interventions and/or pharmacotherapy are 

not successful. Currently, bariatric surgery is reserved for patients with severe or 

complex obesity (BMI ≥40 kg/m
2 

or BMI ≥35 kg/m
2 

in the presence of at least one 

obesity-related comorbidity). This treatment approach seems to be the most 

effective treatment in this population; in terms of amount of weight loss achieved 

and weight maintenance, as well as ameliorating obesity-related comorbidities [77-

80]. Although the short-term results of surgery are easily apparent in copious 

amounts of literature, long-term data about the benefits of bariatric surgery are also 

emerging. The Swedish Obese Subjects study has shown that, compared with 

conventional treatment in contemporaneously matched obese controls, bariatric 

surgery is also associated with a long-term reduction in all-cause mortality [78, 81]. 

There are four types of bariatric surgery which are usually performed 

laparoscopically: adjustable gastric band (AGB), sleeve gastrectomy (SG), Roux-en-Y 

gastric bypass (RYGB) and biliopancreatic diversion with duodenal switch (BPD-DS) 

(Figure 4). Classically, bariatric surgery has been described as 1) restrictive, which 

aimed to reducing food intake by limiting gastric volume, or 2) restrictive with some 

malabsorption, which reduces stomach size and creates a physiological condition of 

malabsortption. The first group includes AGB and SG and the second includes RYGB 

and BPD [82-84].  

All surgeries have advantages and disadvantages, but all procedures are safe and 

effective. Choice of procedure depends on many factors including local expertise and 

experience in the different bariatric surgery procedures and their aftercare, and the 

complexity and reversibility of the procedure. The following describes each of these 

surgical procedures: 
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§ Adjustable gastric band (AGB): an adjustable band is placed around the 

fundus of the stomach. The restriction of the band is adjusted with fluid via a 

port, connected to the tubing and placed subcutaneously on the anterior 

abdominal wall. This causes early satiety once the pouch is full, and the 

amount of food is restricted until ingested food-stuff has passed through the 

band (Figure 4A).  

§ Sleeve gastrectomy (SG): the stomach is reduced to about 15% of its original 

size due to the stomach is removing leaving a thin tube of lesser curve 

(banana shape) (Figure 4B). This procedure is not reversible. 

§ Roux-en-Y gastric baypass (RYGB): with this technique stomach is divided to 

create a small pouch. The smaller stomach is joined directly to a loop of 

jejunum around one meter distal to the duodenal-jejunal flexure, bypassing 

the rest of the stomach and the upper portion of the small intestine 

(duodenum). The redundant stomach and jejunum are then re-anastomosed 

to the jejunum at a variable distance downstream where digestive juices join 

food (Figure 4C). In normal digestion, food passes through the stomach and 

enters the small intestine where most of the nutrients and calories are 

absorbed. Thus, with this surgery, food is not absorbed and the amount of 

food is restricted by limited size of gastric pouch. 

§ Biliopancreatic diversion with duodenal switch (BPD-DS): it involves a gastric 

restriction by a sleeve gastrectomy and malabsorption results from the small 

intestinal bypass. The duodenum is transected and anastomosed to an 

alimentary limb of ileum. The biliopancreatic limb, which consists of the distal 

duodenum, jejunum, and proximal ileum, contains the biliopancreatic 

secretions and is attached to the alimentary limb (Figure 4D). The BPD-DS has 

a malabsorptive component more important than RYGB surgery. 
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Figure 4. Graphical representation of the most common types of bariatric surgery. A Adjustable 

gastric band. B Sleeve gastrectomy. C Roux-en-Y gastric bypass and D Biliopancreatic diversion with 

duodenal switch (BPD-DS). Adapted from Piche et al. [82].  

To conclude, bariatric surgery has increased in popularity because of its higher ability 

to induce long-term weight loss than medical and pharmacological strategies in 

magnitude and durability. Moreover, bariatric surgery is safe and beneficial in 

severely obese patients as it induces long-term metabolic benefits. Because of the 

low risk of surgery and the unequivocal sustained benefits of surgical-induced weight 

loss, it is likely that bariatric surgery will continue to evolve and to have an 

expanding role in the prevention of obesity and its related comorbidities [85].
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2. NAFLD: the hepatic manifestation of metabolic syndrome 
 

The rapidly increasing prevalence of obesity in both children and adults has also lead 

to the rise in NAFLD, recognized worldwide as the most common cause of chronic 

liver disease [86, 87]. Furthermore, it is thought that NAFLD is set to replace viral 

hepatitis as the primary cause of end-stage liver disease and liver transplantation 

over the next decade [88]. 

NAFLD is defined by the presence of a significant amount of lipid accumulation in the 

liver parenchyma (at least in 5% of hepatocytes), also known as hepatic steatosis, in 

the absence of excess alcohol consumption. These hepatic fatty deposits result in a 

wide spectrum of liver damage ranging from simple steatosis with no symptoms to 

non-alcoholic steatohepatitis or NASH (the presence of fat in liver parenchyma with 

inflammation, hepatocyte ballooning and lobular inflammation) through to fibrosis 

and cirrhosis which can result in hepatocellular carcinoma and liver failure (Figure 5) 

[89, 90].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.Disease spectrum of NAFLD. A Schematic representation of NAFLD progression B Histological 

sections of normal liver, steatosis, NASH, and cirrhosis. Adapted from Cohen et al. [90]. 
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Original histopathologic descriptions of NAFLD date back from 1958 when the 

disease was characterized by Westwater and Fainer in a group of obese patients 

[91]. In 1980, Ludwig et al. described 20 patients who lacked a history of significant 

alcohol consumption but in whom liver histology mimics alcoholic liver disease [92]. 

They first coin the term of “non-alcoholic steatohepatitis” for this condition. After 

much debate, the entity of NASH became accepted [93].  

2.1 Epidemiology 

The worldwide incidence rate of NAFLD is unknown. This disease is usually clinically 

silent and there is a wide variation in the criteria and diagnostic methods used, 

consequently its impact has most likely been underestimated [87, 94, 95]. The 

prevalence of NAFLD in normal weight individuals without any metabolic risk factors 

is around 16%, rising to 43-60% in patients with diabetes, to 91% in obese patients 

undergoing bariatric surgery and up to 90% in patients with hyperlipidemia [89, 96]. 

NAFLD is associated with insulin resistance and other metabolic risk factors such as 

diabetes mellitus, central abdominal obesity, dyslipidemia and cardiovascular 

disease. The prevalence of NAFLD also increases with the age and is influenced by 

genetics. In addition, gender, ethnicity, race and chronic infections seem to be other 

risk factors of this liver disease [86, 87, 97]. Moreover, NAFLD is associated with the 

increase of all-cause mortality, contributed by liver related deaths as well as non-

liver related causes [89, 98]. 

2.2 Pathogenesis and natural history 

The liver is a metabolic organ that performs important biochemical functions 

necessary for metabolic homeostasis and it is one of the principal regulators of 

glucose and lipid metabolism. Insult to any of these processes can lead to liver 

disease. In the case of NAFLD, numerous disorders can be found in liver’s capacity to 

process lipids and it has been linked to multifactorial alterations in genetics, diet, 

adipose tissue, hormone regulation, the immune system and gut microbiota [96, 99].  
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The amount of lipids present in hepatocytes represents a complex interaction 

between: 1) hepatic fatty acid uptake of plasma free fatty acids (FFA) released from 

lipolysis in adipose tissue and from the hydrolysis of circulating triglycerides, 2) de 

novo lipogenesis, 3) fatty acid oxidation and 4) fatty acid exportation within very low 

density lipoproteins (VLDL) [96, 99]. Figure 6 shows a schematic representation of 

the sources and fates of liver fat. Accordingly, in NAFLD the accumulation of fat is the 

result of increased uptake of fatty acids and of de novo lipogenesis and impaired 

fatty acid elimination through oxidation or secretion of triglycerides into VLDL [100, 

101].  

Figure 6. Sources and fates of intrahepatic lipid content. FFA: free fatty acids. VLDL: very low density 

lipoproteins. Adapted from Tiniakos et al. [102]. 

In obesity, caloric balance is positive. Initially, some of the excess energy is stored in 

matured adipocytes which increase in size (hypertrophy). Subsequently, 

adipogenesis, the differentiation of preadipocytes into new adipocytes, is triggered. 

However, the capacity to store energy in adipose tissue is limited. For this reason, if 

chronic positive caloric balance persists, adipogenesis may be overwhelmed [103, 

104]. Thus, reduced capacity for adipogenesis, coupled with increased energy 

storage demand in obesity may account for the switch from hyperplastic (the 
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increase of adipocyte number) to hypertrophic adipocytes which have negative 

implications [105-108].  

Adipocyte hypertrophy entails deregulated adipokine secretion (the balance of pro- 

and anti-inflammatory adipokines is shifted to a pro-inflammatory state), free fatty 

acid secretion, hypoxia, cell death and macrophage infiltration [105, 109-111]. 

Adipose tissue macrophages can be classified in two groups based on their surface 

marker expression and/or their chemokine secretion profile. On the one hand, there 

are “classically activated” macrophages or M1, which promote inflammation and, on 

the other hand, “alternatively activated” macrophages or M2 with anti-inflammatory 

functions. Accordingly, as obesity progresses, the number of macrophages in adipose 

tissue increase and it is accompanied by macrophage polarization from the M2 to 

the M1 phenotype. Consequently, there is an increased expression of pro-

inflammatory adipokines such as tumor necrosis factor-a (TNF-a), interleukin 6 (IL-

6), interleukin-b (IL-b), Chemokine (C-C Motif) Ligand 2 (CCL2) which mediates 

macrophage phagocytic and inflammatory responses (Figure 7) [112, 113].  

Figure 7. Adipose tissue expansion and its resultant inflammation and metabolic dysfunction. 

Weight gain leads to adipose tissue expansion and the infiltration of pro-inflammatory immune cells, 

M1 macrophages and CD8
+ 

T cell. Consequently, adipocytes produce inflammatory cytokines and 

secrete free fatty acids (FFA) antagonizing local insulin signaling in adipocytes an also in distant organs 

such as muscle and liver leading to systemic insulin resistance. Adapted from Ouchi et al. [111]. 
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This imbalance in the expression of these pro-inflammatory adipokines leads to 

various metabolic abnormalities including low-grade inflammation, deregulation of 

fatty acid metabolism and storage and finally, insulin resistance. This failure of 

insulin sensitivity can occur locally and/or in distant organs such as muscle and liver 

(Figure 7) [103, 105, 114, 115]. 

Adipokines induce insulin resistance and low-grade inflammation through the 

activation of stress-related protein kinases, e.g c-Jun NH2 terminal kinase 1 (JNK-1) 

and inhibitor kappa kinase b (IKKb). JNK-1 phosphorylates insulin receptor substrate-

1 protein (IRS-1) inactivating insulin signaling and, IKKb activation leads to the 

translocation of the nuclear factor kb (NF-kb) into the nucleus, resulting in an 

enhanced synthesis of inflammatory cytokines [116].  

In skeletal muscle insulin predominantly induces glucose uptake by stimulating the 

translocation of glucose transporter type 4 (GLUT4) to the plasma membrane and in 

the liver, insulin inhibits gluconeogenesis. Furthermore, in adipose tissue insulin is a 

key regulator of circulating FFA, it decreases lipolysis and thereby reduces FFA efflux 

from adipocytes [117]. Accordingly, in the absent of competent insulin response in 

adipose tissue, excess lipolysis ensues leading to an increased release of free fatty 

acids in the circulation that could be taken by the liver. FFA lipotoxicity involves the 

suppression of insulin receptor activation and inflammation through the impairment 

of the phosphorylation of IRS-1. Moreover, this excessive lipid storage may directly 

contribute to organelle failure including mitochondrial dysfunction, and endoplasmic 

reticulum stress [109, 118]. 

Energy metabolism within the liver is tightly regulated. Two transcription factors, 

sterol regulatory element-binding protein 1 (SREBP-1) and carbohydrate-responsive 

element-binding protein (ChREBP) are intimately involved in hepatic glucose and 

lipid metabolism [118]. Dysfunction of the insulin receptor causes hyperglycemia and 

hyperinsulinemia. On the one hand, hyperinsulinemia leads to increase SREBP-1c 

expression resulting in increased de novo lipogenesis and decreased fatty acid 

oxidation. In the other hand, hyperglycemia induces ChREBP and leads to further 

increase in de novo lipogenesis. Decreased hepatic lipid transport may also occur via 
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altered synthesis of apolipoprotein B, leading to decreased VLDL production [114-

116, 118, 119].  

Although insulin resistance is considered the key factor in developing hepatic 

steatosis further research is needed to determine the cause and effect relationship 

between both, in other words, if NAFLD is a cause or a consequence of insulin 

resistance. In fact, excessive intrahepatic triglycerides content could be both a cause 

and a manifestation of insulin resistance, resulting from a sequence of events 

initiated by adipose tissue insulin resistance and propagated to other tissues [120, 

121]. 

Increased intrahepatic fatty acid content provides a source of inflammation and 

oxidative stress, which may be responsible for the progression from NAFLD to NASH 

and predisposing to the risk for further severe progression. Mitochondria are the 

main cellular source of reactive oxygen species, which may trigger steatohepatitis 

and fibrosis by three different mechanisms: 1) lipid peroxidation and mitochondrial 

dysfunction, 2) the release of inflammatory cytokine and 3) the consequent lobular 

inflammation, hepatocyte necrosis, apoptosis and cell dropout. The final result is a 

necroinflammatory hepatitis that can lead to fibrosis, cirrhosis, hepatocellular 

carcinoma and liver failure [86, 89]. 

2.3 NAFLD and mitochondrial dysfunction 

Mitochondria have a critical role in the regulation of global metabolic homeostasis. 

These organelles supply the cell with ATP through oxidative phosphorylation, 

synthesize key molecules and control calcium homeostasis, among other useful 

processes. However, mitochondria are also a source of free radicals. Thereby, it is 

not surprising that mitochondrial health is tightly regulated and mitochondrial 

dysfunction or damage can greatly perturb metabolic homeostasis impacting 

metabolic diseases [122].  

Cells can manage nutrient supply increasing mitochondrial content. Moreover, 

mitochondria exhibit the ability to adapt to changing metabolic conditions and are 

able to increase fatty acid oxidation in an attempt to counteract fat accumulation. 
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However, persistent nutrient surplus can overwhelmed the mitochondrial system 

and cause its dysfunction. Energy excess overloads and hyperpolarizes mitochondria, 

leading to the accumulation of incompletely oxidized lipid products from the citric 

acid cycle (CAC), also known as tricarboxylic acid cycle (TCA) or Krebs cycle, causing 

fat accumulation and excessive production of reactive oxygen species (ROS) and, 

consequently, oxidative stress. These intermediates also activate stress cascade 

which disrupt the insulin signaling pathway leading to insulin resistance. In addition, 

excessive ROS production causes mutations to the mitochondrial genomic content, 

affecting the respiration system, mitochondrial dynamics, decreasing mitophagy 

leading to aberrant mitochondria and, ultimately cell death (Figure 8) [123].  

Figure 8. Mitochondrial dysfunction. Nutrient surplus promotes the accumulation of lipid metabolite 

intermediates that overload and hyperpolarize mitochondria. Then ROS build-up causing oxidative 

stress, disrupting insulin signaling pathway and impairing mitochondria biogenesis. Adapted from 

Riera et al. [123]. 

Mitochondrial architecture is tightly regulated by the dynamic, antagonistic and 

balanced opposing processes of fusion and fission. Mitochondrial fusion 

counterbalances functional defects and allows genetic compensation while 

mitochondrial fission allows the segregation of damaged mitochondria and their 

recycling through mitophagy, an autophagic process that selectively degrades 
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damaged mitochondria, ensuring mitochondrial turnover and cellular viability. 

Finally, insulin resistance also contributes to the development of an endless vicious 

cycle by impairing CAC, respiratory system and mitochondrial biogenesis inducing 

lipid accumulation in glucose-consuming tissues such as skeletal muscle and liver 

[122-127].  

Thereby, we can conclude that mitochondria play a fundamental role in the 

development and progression of NAFLD. An increased lipid accumulation cause 

severe mitochondrial damage leading to the impairment of mitochondrial activity. 

These events initiate the first steps of NAFLD and, if they persist, hepatocyte 

recuperation could be compromised. Therefore, a careful and intensive investigation 

of molecular mechanism involving mitochondria metabolism and their role in 

NAFLD/NASH may contribute to the development of novel therapeutic strategies for 

the protection of these organelles and consequently, for the treatment of NAFLD. 

A large number of transcription factors and co-regulators are involved in the 

regulation of cellular and mitochondrial metabolism. Therefore, molecular targets 

that can improve mitochondrial function have emerged over the past decade. One of 

the most characterized co-regulator of mitochondrial biogenesis and energy 

metabolism is the transcriptional peroxisome proliferator-activated receptor co-

activator a (PGC1a) [123, 128]. A decrease of the expression of PGC1a has been 

implicated in skeletal muscle insulin resistance in humans and in animal models [129, 

130]. In contrast, increasing PGC1a content preserves oxidative phosphorylation and 

inhibits insulin resistance and fat accumulation. PGC1α also minimizes the build-up 

of ROS through the transcriptional regulation of numerous ROS-detoxifying enzymes 

[131, 132]. AMP-activated protein kinase (AMPK) is another key factor. AMPK, one of 

the key energy sensors of the cell, activates PGC1α in conditions of low cellular 

energy, inhibiting anabolic processes and activating catabolic pathway producing 

energy such as fatty acid oxidation and respiration. AMPK orchestrates a complex 

catabolic response to increase mitochondrial biogenesis, enhances antioxidant 

defense and improve fatty-acid oxidation [133, 134]. For this reason, the 

development of strategies to directly manipulate AMPK to improve mitochondrial 

function is increasing and the use of metformin is an example [135, 136]. 
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2.4 NAFLD management 

Diagnosis 

NAFLD is usually an asymptomatic disease and, consequently, it is often diagnosed 

accidentally following a routine blood tests or an imaging study done for other 

reasons. Clinicians should consider a diagnosis of NAFLD in patients with abnormal 

liver panel tests and the presence of one or more metabolic risk factors (increased 

BMI, elevated blood pressure, insulin resistance, etc.). It is important to exclude 

other common causes of liver injury such as alcohol or drug consumption, viral 

hepatitis, hemochromatosis as well as other coexisting etiologies for chronic liver 

disease [101].  

While serum aspartate transaminase (AST) and alanine transaminase (ALT) levels 

may be abnormal in the presence of hepatic steatosis they are often not, even using 

more stringent cut-offs for the upper limit of normality. Consequently, they are 

considered as poor marker for the diagnosis of NAFLD due to their low specificity, 

sensitivity and prognostic value (50–80% of patients with hepatic steatosis have 

normal transaminase levels) [137-140]. For these reasons, other diagnostic methods 

are needed to confirm the suspected diagnosis of fatty liver. 

Currently, liver biopsy still represents the gold standard for the diagnosis of NAFLD. 

However some physicians and patients are reluctant to carry out this invasive 

method. In addition to the sampling error, diagnosis is dependent on the subjectivity 

and experience of the pathologist and its cost and morbidity contribute to the search 

for additional modalities for diagnosis and staging of disease. In the last decade, 

many non-invasive methods have been developed to reduce the need for liver 

biopsy and to overcome its drawbacks [141-143].  

The imaging technologies are of wide interest as a possible non-invasive method for 

evaluating and diagnosing liver steatosis and NASH. Ultrasonography still represents 

the most common method employed for qualitative assessment of hepatic steatosis. 

It is non-invasive, widely available, cheap and fast. However, it has several 

limitations: it is subjective, shows poor sensitivity for the detection of mild steatosis, 

cannot distinguish NASH from simple steatosis and cirrhosis can only be diagnosed in 
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advances cases. Computed tomography (CT) and magnetic resonance spectroscopy 

(MRS) seem to be more sensitive techniques for the quantification of liver steatosis. 

However CT can only assess moderate steatosis or more, cannot detect early 

cirrhosis or the degree of fibrosis and there is the drawback of radiation exposure. 

Moreover, MRS is still less widely available and much more expensive [144-147]. 

Finally, transient elastography (TE) (Fibroscan®) is another non-invasive imaging tool 

developed in the last decade. It is an accurate and reproducible test of liver fibrosis 

and possibly hepatic steatosis and has been validated in a wide spectrum of liver 

diseases. However one of the limitations of these procedures is its high cost and 

that, nowadays, is not widely available [148-150]. 

A growing number of potential biomarkers have been proposed for the diagnosis of 

NAFLD. Markers of the mechanisms that lead to liver injury and disease progression 

in NAFLD are potential targets. 

Serum cytokeratin-18 (CK18), a major intermediate filament protein in hepatocytes 

related with hepatocyte apoptosis, is one of the most widely investigated 

biomarkers and has shown as the most promise in the diagnosis of NASH [151-153]. 

However, nowadays, this test is not routinely available in many centers and there is 

no established cut-off values [154-156].  Further biomarkers have been evaluated for 

the diagnosis of fatty liver and NASH including various cytokines (TNF-a, IL-6 and the 

chemokines CCL2 and RANTES), acute phase proteins as, for example, C-reactive 

proteins (CRP), and oxidative stress markers [157, 158]. However, only few have 

been independently validated. Hence, more extensive studies are needed to prove 

their overall clinical utility.  

 

Finally, the emergent field of metabolomics is increasingly being applied towards the 

identification of biomarkers for disease diagnosis, prognosis and risk prediction. 

Metabolomics involves the quantification of a large number of low molecular weight 

compounds in plasma and tissue samples. Recent developments in high throughput 

analysis and robust statistical analysis have allowed investigators to detect changes 

in cellular and tissue metabolism related with some diseases such as Parkinson’s and 

type 2 diabetes mellitus and more recently, NAFLD [159-166].  
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Treatment 

Interventions for the treatment of NAFLD target excess body weight and the main 

causes of the pathophysiology of fatty liver: insulin resistance, inflammation and 

oxidative stress among others. 

Obesity is one of the most important risk factor of NAFLD. Accordingly, weight loss is 

the cornerstone in the management of steatosis and NASH in most cases. Weight 

loss can be achieved through healthy habits, in terms of food intake and physical 

activity. For this reason they are the first-line approach to the prevention and 

treatment of NAFLD. It has been demonstrated that lifestyle modifications leading to 

weight reduction and/or increased physical activity consistently reduces fat 

accumulation in the liver [167, 168]. However, these habits are rarely maintained in 

a long-term. Therefore, there are some weight loss medications that can be used in 

some patients in conjunction of lifestyle modifications (Table 2). Some pilot studies 

demonstrated that orlistat, an enteric lipase inhibitor which reduces dietary fat 

absorption, improves liver histology reducing fatty acid infiltration, inflammation and 

fibrosis in obese patients with NAFLD or NASH [169-171]. However, very few studies 

have specially tested drug-induced weight loss in NAFLD context; further studies are 

needed to elucidate its clinical utility. In contrast, the evaluation of potential benefits 

of bariatric surgery for NAFLD among patients with severe obesity is the goal of 

many studies.  

Bariatric surgery has an increasing role in the management of patients with obesity 

and metabolic syndrome and recently, appears to be a promising therapeutic 

approach for NAFLD. Patients experience a high, fast and sustained weight loss. In 

addition, some studies have shown that surgery-induced weight loss is also 

associated with improved hepatic histology including reduced steatosis, 

steatohepatitis and fibrosis by ameliorating some factors that contribute to the 

pathogenesis of NAFLD (improvement of insulin sensitivity and inflammation) [172-

175]. However, the role of bariatric surgery as a primary treatment for NAFLD has to 

be systematically studied. 
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Successful weight loss after lifestyle modifications, anti-obesity medication or as 

result of bariatric surgery has been demonstrated to improve both metabolic 

parameters and liver histology. The beneficial effects are probably mediated by an 

enhanced of adipose tissue function, an improvement of insulin sensitivity and a 

decrease of inflammation and oxidation. All together could modify the course of 

NAFLD [176-181]. 

Another treatment approach in patients with NAFLD is the liver-directed 

pharmacotherapy. As insulin resistance plays an important role in the 

pathophysiology of NAFLD, therapies targeting obesity and insulin resistance were 

widely studied. Thereby, insulin sensitizing agents, such as metformin and 

thiazolidinediones (TDZs) became the most promising drugs in NAFLD management 

[182, 183].  

Metformin is a biguanide widely used for the treatment of type 2 diabetes which 

action is mediated by the activation of AMPK, a key regulator of lipid and glucose 

metabolism. TDZs enhance insulin sensitivity activating peroxisome proliferator-

activated receptor g (PPARg). PPARg is highly expressed in adipose tissue where it 

controls adipocyte differentiation. Its activation plays an important role in increasing 

insulin sensitivity as well as in promoting FFA uptake into adipocytes reducing its 

delivery to the liver or other organs. Thereby, metformin and TDZs have been 

successfully tested and some studies have demonstrated their beneficial effects on 

liver function and liver histology [135, 184-187]. 

Increased oxidative stress and the consequent depletion of antioxidant molecules 

within the hepatocytes are regarded as the initiators of the progression from simple 

hepatic steatosis to NASH [188]. For this reason, an antioxidant supplementation 

could be a potential treatment for NASH. As an example, some studies have showed 

that vitamin E inhibits peroxidation, suppresses inflammatory cytokines, counteracts 

the lower levels of antioxidants enzymes and consequently, ameliorates liver 

steatosis and the progression of the disease [189, 190]. 
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Hypertriglyceridemia is a main component of metabolic syndrome and is strongly 

associated with NAFLD. Different lipid-lowing agents such as fibrates and statins 

(PPARs agonists) have been tested for the treatment of NAFLD, given that 

PPARs regulate transcriptional genes responsible for fatty acid oxidation, and 

showed beneficial effects [191, 192].  

Finally, given the emerging importance of inflammation in fatty liver, cytokines and 

their regulatory molecules can be another therapeutic target in near future. Anti-

TNFa agents have beneficial effects in animal models of NASH and some pilot 

studies in patients reported a significant reduction in liver enzymes levels associated 

with improved steatosis, lobular inflammation and fibrosis stage [193, 194]. In this 

way, our studies have found that the continuous administration of polyphenols in 

animals model reduce weight gain, liver steatosis and insulin resistance probably by 

the combination of anti-inflammatory and anti-oxidant effects provided by these 

bioactive compounds [195-198]. 

Despite considerable research on pharmacotherapy for the treatment of NAFLD its 

efficacy and safety remains inconclusive, and nowadays there are no licensed single 

pharmacological agent. However, there are many late phase clinical trials in 

progress, so the situation will probably change in a near future. Moreover, further 

advances in the understanding of the pathogenesis of NAFLD will also help in the 

developing of reliable therapeutic strategies for this increasingly liver injury. 

Finally, patients with end-stage of NAFLD (with decompensated cirrhosis or 

hepatocellular carcinoma) are candidates for liver transplantation which definitely is 

the only possible treatment [199].  
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3. Inflammation and metabolism: the role of Chemokine (C-C 

motif) Ligand 2 (CCL2) 

Historically, immunity and energy metabolism have been considered to be distinct 

capabilities to the maintenance of homeostasis, supported by different cell-types 

and differentially regulated. However, during the last decades, a wealth of evidence 

has come out demonstrating that immunity and metabolism are closely 

interconnected [200-202].  

The huge search for the discovery of the unifying mechanism responsible of the 

pathogenesis of obesity and its comorbidities has revealed a strong relationship 

between nutrient excess and derangements in immune system. Consequently, the 

classical view of inflammation, described as the principal coordinated response of 

the body to harmful stimuli (infection, tissue stress, injury, etc.) by many complex 

signals in distinct cells and organs [189], needs to be expanded to fully explain the 

inflammatory processes induced by adverse metabolic conditions and the 

accompanying deleterious effects.  

Although the often short-term response of inflammation is a crucial defense 

mechanism, its long-term consequences, mainly caused by a continuous nutritional 

surplus, are not beneficial and leads to the development of metabolic diseases. All 

this resulted in a new concept known as “metainflammation” (metabolically 

triggered inflammation) to describe the low-grade chronic inflammation related to 

metabolic disorders [200, 203]. Consequently, the historical and simple point of view 

of obesity as lipid storage disease has been replaced by the concept that it is an 

inflammatory disease.  

The first discovery of inflammation in obesity was carried out by Dr. Hotamisligil who 

observed increased levels of TNF-a in adipose tissue of obese mice compared with 

lean controls [204-206]. This discovery was then followed by many studies describing 

these inflammatory differences in obese and lean animals as well as in humans. 

Thus, it has been demonstrated that chemokines and their receptors play an 

important role in the pathogenesis of all metabolic disorders which make them and 

their receptors attractive as therapeutic targets. 
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3.1 Chemokine and chemokine receptor family 

 

Chemokines or chemotactic cytokines are a group of small secreted proteins 

consisting of 60 to 100 amino acids of about 8-14 kDa, with a highly variable 

sequence homology (from <20% to 90%) and represent the largest family of 

cytokines. They direct the migration of leukocytes throughout the body under 

physiological and pathological conditions [207-210]. 

Chemokines were first identified in 1977. Since then, approximately 50 chemokines 

and 20 chemokines receptors have been identified [210, 211].  

Chemokines are divided into four families based on the arrangement of the two 

conserved cysteine residues located in the N-terminal region (Figure 9). The two 

largest families are the CXC or a family in which one amino acid separates the first 

two cysteines, and CC or b family, where these two cysteines residues are adjacent. 

The other families are the (X)C or g family, having only one of the first two cysteines, 

and finally, CX3C or d family , which is currently represented by a single member 

named fractalkine (CX3CL1), which has three amino acids between the two cysteines 

residues as well as a transmembrane mucin-like domain [210-212]. 

 

Figure 9. Classification of chemokines based on the position of the two highly conserved cysteines 

residues in N-terminus. Adapted from Rostene et al. [212]. 
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The biological effects of chemokines are mediated by seven-transmembrane-domain 

receptors that represent a subset of the G-protein-coupled receptor superfamily 

(Figure 10). The conventional signaling pathway attributed to chemokines receptors 

involves the mobilization of calcium from intracellular stores and the subsequently 

downstream cascades trigger conformational changes on leukocyte integrins that 

promote cell adhesion and extravasation. More specifically, for its activity the 

bg subunits are released and activate phosphoinositide-specific phospholipase C 

(PLC) isoenzymes leading to the formation of inositol-1,4,5-triphosphate (IP3) and 

increasing the intracellular calcium concentration. The signals mediated by 

chemokine receptors are short and transient [207, 208, 213].  

 

Figure 10. Chemokine receptor. They are found on the surface of certain cells and have a seven-

transmembrane domain coupled to G-protein for signal transduction within the cell. From Camps et 

al. [213]. 

 

Besides these typical chemokine receptors, there are atypical chemokine receptors 

(Duffy antigen receptor for chemokines or DARC, D6, CCX-CKR) which bind their 

ligand with high affinity and specificity but they do not transduce the intracellular 

signal which leads to chemotactic and other cell responses after chemokine binding. 

In some cases, the ligand is transported across the cytoplasm and released on the 

other side of the cell while in other cases the chemokine is internalized and 

degraded. Figure 11 contains the known human chemokines and their receptors 

[207, 208, 213, 214]. 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Inflammation and metabolism: the role of CCL2 

  

55 

 

 

Figure 11. The chemokine superfamily consists of a large number of ligands and receptors. In red CC 

family, in green CXC family and in blue a minority of receptors which have only one ligand. Finally, 

atypical receptors and its possible ligands are represented in black. From Lazennec et al. [215]. 
 

The binding between ligands and their receptors seems to be promiscuous. Thus, a 

single chemokine can bind to several receptors and a single receptor may traduce 

signal for several chemokines. This idea could suggest the redundancy of these 

molecules in pathophysiology and it became a controversial issue. However, many 

studies suggest that each chemokine and receptor may have a special position on 

the orchestrated biological response and cannot be fully replaced by another ligand. 

In fact, various chemokines can induce different an even opposite biological effects 

although acting at the same receptor [209, 213].  

Chemokines are also grouped into two main subfamilies; homeostatic and 

inflammatory chemokines based in the expression pattern and function. 

Homeostatic chemokines are generally constitutively expressed and are involved in 
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the recruitment of immune cells under normal conditions, for example, they direct 

the trafficking of lymphocytes to lymphoid tissues. On the other hand, inflammatory 

cytokines are upregulated by pro-inflammatory stimuli such as infection or trauma 

and participate in innate and adaptive immune response; they control the 

recruitment of leukocytes during inflammation and tissue injury. These 

classifications are not mutually exclusive, in other words, some inflammatory 

chemokines can have homeostatic functions and inversely, some homeostatic 

chemokines could be upregulated during pathogenic inflammation [207, 209, 210, 

213, 216].  

Once chemokine secretion is induced, the migration of cells expressing the 

appropriate chemokine receptors takes place by a chemokine gradient which allows 

cells to move in the direction of high local concentration of chemokines. 

In addition to their major biological function, the regulation of cell trafficking, 

subsequent research has elucidated their involvement in other functions of the 

inflammatory processes such as fibrosis, tissue remodeling and angiogenesis, 

development, hematopoiesis, and homing [210, 211]. 

Finally, beside to their roles in the immune system, accumulating evidence suggests 

that, chemokines and their receptors play an important role in the pathophysiology 

of several diseases. Perturbations of chemokines and/or their receptors expression 

or function can lead to the persistence of an inflammatory reaction creating a key 

pathogenic event for the establishment of chronic inflammation which is the 

hallmark of many diseases such arthritis, asthma, HIV infection as well as obesity, 

NAFLD, insulin resistance, atherosclerosis and cancer [216-218]. 

For this reason, chemokines and their receptors have become an important target 

for searching novel biomarkers and specific therapeutic approaches. In this way, 

CCL2 and its receptor (CCR2), the most well studied chemokine-chemokine receptor 

systems, are potential targets for the treatment of various diseases. 
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3.2 Chemokine (C-C motif) Ligand 2 (CCL2) 

Chemokine (C-C motif) ligand 2 (CCL2), also known as monocyte chemoattractant 

protein-1 (MCP-1), is the first discovered and the most extensively studied human CC 

chemokine [219]. 

CCL2 was discovered in 1989 at the International Cancer Institute in Maryland (USA), 

identified from the conditioned media of human myelomonocytic cell line THP-1 

based on its in vitro monocyte chemotactic activity [220, 221]. 

Structure 

This protein is a member of the CC or b chemokine family and is typically secreted in 

two predominant forms with molecular weight of 9 and 13 kDa. These two isoforms 

are the result of a differential O-glycosylation with the disaccharide galactose-b-D-N-

acetylgalactosamine, present only in 13kDa isoform. Even this differential 

glycosilation, they have the same capacity to induce monocyte migration [219, 222]. 

In addition, this protein seems to be identical to the murine JE gene product (mouse 

CCL2) [221, 222]. 

Regulation 

CCL2 is encoded by CCl2 gene which is located in chromosome 17 (17q11.2). It is 

expressed, either constitutive or after inflammatory stimuli, by different cell types 

including epithelial, endothelial, smooth muscle cells, fibroblasts and astrocyte but 

the major source of this protein are monocytes and macrophages and, more 

recently, adipocytes have been recognized as another important source of CCL2 

[219, 221-223]. In addition, it has been demonstrated that CCL2 protein and mRNA 

are expressed in the majority of tissues, so there is a systemic production and, at the 

same time, the possibility to respond in situ to inflammatory stimuli [224, 225]. 

Its expression is regulated at transcriptional level by a variety of stimulatory 

mediators such as TNF-a, interferon gamma (INF-g), platelet-derived growth factor 

(PDGF), interleukins IL-1 and IL-4, bacterial lipopolysaccharide and reactive oxygen 

species [219, 222]. The pro-inflammatory NF-kb transcription factor is the key 
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mediator in the transcription of CCL2 due to the promoter region of CCl2 gene 

contains two NF-kb binding sites in the distal part [226-228]. 

Biological function 

CCL2 is a potent chemoattractant which regulates the migration and infiltration of 

monocyte cells to sites of injury and inflammation. It is also important for T cell and 

natural killer cells differentiation [229]. Moreover, CCL2 participates in the first steps 

of inflammation process, for example, in adhesion (upregulating the expression of 

integrin on monocyte cell surface) and extravasation of monocytes through vascular 

endothelium to foci of active inflammation [219].  

As mentioned before, this protein exerts its function through binding to CCR2, an 

heptahelical G-protein-coupled receptor embedded on the lipid bilayer of cells 

targeted for activation and migration. This receptor, once activated, trigger a signal 

transduction cascade that, as described previously, results in IP3 formation, 

intracellular calcium release and protein kinase C (PKC) activation which finally, 

through NF-kb transcription factor and Rho family proteins, regulates cell motion 

and mobility (Figure 12) [219, 230]. 

CCR2 is the receptor for all monocyte chemoattractant proteins: MCP-1, MCP-2 

(CCL8), MCP-3 (CCL7), MCP-4 (CCL13) and MCP-5 (CCL12) [231]. It is expressed 

abundantly in monocytes, basophils, dendritic cells, natural killer cells and activated 

T lymphocytes. In addition, it could appear in two different forms (CCR2A I CCR2B) as 

a result of an alternatively splicing which only differ in carboxy-terminal region. The 

change in the sequence alters the location of the protein in the cell and CCR2B, the 

predominant isoform is mainly localized to the plasma membrane whereas the 

transcript variant A encodes the cytoplasmic isoform [232-235]. 
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Figure 12. CCL2/CCR2 signaling pathway. DAG, diacylglycerol, IP3, inositol triphosphate; PIP2, 

phosphatidylinositol-biphosphate, PLC, phospholipase C. Adapted from Melgarejo et al. [219]. 

 

3.3 CCL2/CCR2 and disease 

 

Recent studies have elucidated the role of chemokines and their receptors in several 

pathological processes. Chemokine receptor activation implicates the regulation of 

pleiotropic signaling pathways influencing a wide number of molecular and cellular 

processes. Hence, an inappropriate inflammatory response leads to numerous 

human diseases [230, 236].  

The involvement of chemokines in disease has mainly been demonstrated using 

genetically modified mice, antibody or inhibitor-mediated neutralization and 

obviously, with epidemiological studies in humans [234]. 

CCL2 and its receptor CCR2 have been related to the pathogenesis of different 

diseases including vascular permeability and attraction of immune cells during 

metastasis, a number of different neurological disorders, autoimmune diseases and 

metabolic diseases such as obesity, insulin resistance, atherosclerosis and NAFLD 

becoming an interesting and highly studied target for novel therapeutic strategies 

[237].  
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CCL2/CCR2 in obesity  

As mentioned before, obesity is associated with a chronic low-grade inflammation 

which implicates adipocyte dysfunction and endocrine activity of adipose tissue. In 

obesity, adipose tissue is characterized by macrophage infiltration and the release of 

multiple inflammatory mediators which lead to metabolic disturbance such as insulin 

resistance and ectopic lipid accumulation [113, 200, 238].  

Evidence that CCL2 is related to obesity is provided by the observation of higher 

CCL2 plasma levels in obese patients than in lean controls [239, 240]. Similarly, high 

levels of circulating CCL2 also have been found in obese mice compared with wild-

type littermates [241-243]. Furthermore, the different depots of adipose tissue, such 

as subcutaneous and visceral, show increased gene expression of CCL2 in obesity, 

both in animal models and in obese patients [244-246]. In contrast, weight loss 

decreases macrophage infiltration in adipose tissue and also the circulating CCL2 

levels demonstrating that beneficial effects of weight loss are mediated by 

ameliorating the inflammatory status of adipose tissue [240, 247]. Similarly, different 

studies with CCL2 or CCR2 deficient mice, or with the use of CCR2 inhibitors in obese 

mice, have demonstrated that CCL2/CCR2 deficiency attenuates the development of 

obesity, adipose tissue macrophage infiltration, inflammation, and systemic insulin 

resistance [248-250]. Hence, CCL2 induces macrophage recruitment and adipose 

tissue inflammation as well as insulin resistance. Accordingly, the inhibition of this 

inflammatory pathway ameliorates metabolic disturbances [251, 252].  

An increase in adipose tissue mass (in number and size of adipocytes) is the main 

feature of obesity. It has been demonstrated that CCL2 contributes to adipocyte 

differentiation and induces adipogenesis by the induction of a zinc-finger protein, 

MCP-1-induced protein (MCPIP) and the following signaling pathway which involves 

ROS, endoplasmic reticulum stress and autophagy. Moreover, CCL2 also contributes 

to the expansion and remodeling of adipose tissue [253-255]. 
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CCL2/CCR2 in NAFLD 

The adipose tissue inflammation caused by CCL2 macrophage recruitment and the 

subsequent insulin resistance results in increased lipolysis. The impaired lipid 

buffering leads to the exposure to an increased efflux of FFA of non-adipose tissues 

such as the liver. This metabolic stress can lead to an imbalance between FFA supply 

and hepatic FFA disposal pathways, causing lipid accumulation within hepatocytes 

[256]. 

Several studies have demonstrated that both, CCL2 circulating levels and gene 

expression are higher in patients with NAFLD [250, 257-259]. Moreover, serum CCL2 

levels in NAFLD patients are positively correlated with the severity of liver damage, 

in other words, increasing levels from healthy control to simple steatosis reaching 

the highest concentration in patients with NASH [260-262]. 

The generation of oxidative stress-related molecules is responsible for the 

progression from simple steatosis to NASH. Some studies have demonstrated that 

ROS and some products of lipid peroxidation such as 4-hydroxynonenal and 

malondialdehyde are significantly lower when CCl2 is deleted. Moreover, the lack of 

CCL2 is associated with a reduced expression of several gens implicated in 

fibrogenesis [263-265]. 

Finally, CCL2/CCR2 deficiency or their pharmacological inhibition in the presence of 

chronic liver damage attenuates the development of NAFLD [266, 267]. 

Taken together, all these data indicate that CCL2 plays an important role in the 

pathogenesis of NAFLD [218, 256]. 
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4. Autophagy: the cellular housekeeper 

The literal translation of autophagy emanates from the Greek roots “auto” (self) and 

“phagy” (eating) “self-eating” and broadly refers to an intracellular catabolic 

pathway that targets cytosolic components to lysosomes to be degraded. This 

process responds to stresses with the ultimate purpose of self-preservation. The 

autophagic process is suited uniquely to the timely identification of surplus, 

unnecessary or dysfunctional proteins and organelles for the maintenance of cellular 

homeostasis and supplying substrates for energy generation [268, 269]. 

The term autophagy was first introduced in 1963 by De Duve et al. Over the past few 

years, the study of this field has witnessed a dramatic growth. This is attributed 

partly to the discovery of the key components of its cellular machinery through 

studies conducted in yeast and Drosophila, but more important, from studies in 

mammalian cells and tissues [269].  

Three primary types of autophagy have been identified: macroautophagy, chaperon-

mediated autophagy (CMA) and microautophagy, depending on its physiological 

function and the mode of cargo delivery to the lysosome (Figure 13).  

 

 

 

 

 

 

 
 

Figure 13. The three types of autophagy. In macroautophagy, an autophagosome is formed and it is 

fused with lysosomes to degrade the cellular constituents or pathogens. Microautophagy involves the 

uptake of cellular components within an invagination of the lysosomal membrane for enzymatic 

degradation. Finally, in chaperone-mediated autophagy, cytosolic proteins containing a pentapeptide 

motif bind to the chaperone Hsc70. This complex binds to the LAMP-2A receptor on the lysosome for 

internalization and degradation. From Oh et al. [270]. 
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As a briefly mention, CMA involves selective translocation of the cytosolic proteins 

which are marked by a pentapeptide motif with a consensus sequence similar to 

KFERQ across the lysosomal membrane. Cytosolic chaperones aid in the target 

recognition and unfolding, and a multimer comprising the lysosomal protein LAMP-

2a (lysosomal-associated membrane protein-2a) subunits is thought to be rate-

limiting for target translocation into lysosomes [271, 272]. On the other hand, in 

microautophagy, a poorly understood phenomenon in mammalian cells, the 

cytosolic contents are engulfed by direct invagination of the lysosomal membranes 

into tubulovesicular structures [273, 274]. However, macroautophagy is considered 

to play the most important role in pathophysiology and has been well studied in 

recent years. For this reason, the term autophagy is usually referred to 

macroautophagy and this thesis is focused on it. 

Macroautophagy is the major regulated catabolic mechanism that eukaryotic cells 

use to degrade proteins and organelles. This form of autophagy involves the 

sequestration of portions of the cytoplasm within a vesicle (autophagosome) which 

fuses to the lysosome (autolysosome) in which the captured material (cargo), 

together with the inner membrane, is degraded. The autophagosome lacks the acidic 

environment and the enzymes required for terminal digestion of the engulfed 

contents; thus, the fusion of the autophagosome with the lysosome supplies the 

acidic environment as well as a battery of hydrolases [275, 276]. 

Autophagosome formation is a complex and highly regulated process that requires 

more than 30 autophagy-related genes (Atg) and the resultant proteins. These 

proteins form functional complexes and can be grouped according to their functions 

in the key stages of this pathway. The main steps are: induction or initiation, 

nucleation, membrane elongation and enclosure and, finally, the fusion with 

lysosomes. As a summary, initiation is controlled by the ULK complex, followed by 

activation of the PI3-kinase complex leading to nucleation of the phagophore, the 

initial de novo formation of a double-membrane that encloses a portion of 

cytoplasm. The origin of the membranes involved in the formation of 

autophagosomes could be the endoplasmic reticulum, mitochondria, and golgi 

apparatus. However, it is still not clear which is the major contributor [275-278].  
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Membrane elongation is governed by two ubiquitin-like conjugation systems. The 

first is the conjugation of Atg12 to Atg5 mediated by two ligases, Atg7 and Atg10. 

Atg5 also associates with Atg16 to form the Atg12-Atg5-Atg16 complex. The second 

involves the cleavage of LC3/Atg8 by Atg4 leading to the soluble form LC3-I 

(microtubule-associated protein light chain 3-I), which is then conjugated to 

phosphatidylethanolamine (PE), via the participation of Atg7 and Atg3. This lipid 

conjugation forms the autophagic double-membrane associated LC3-II protein 

allowing the closure of the autophagic vacuole. Accordingly, LC3-II, is used as a 

marker of autophagosomes due to its important role in the autophagic process. 

Finally, autophagosomes fuse with lysosomes, where the breakdown of the 

autophagic cargo takes place [275-278]. Figure 14 illustrates the molecular 

mechanism underlying autophagy. 

Figure 14. The macroautophagy pathway. Following inhibition of MTOR, the ULK complex is activated 

and initiates autophagosome formation. The class III PI3 kinase complex also regulates the 

autophagosome nucleation step. To expand the autophagosome membrane, two ubiquitin-like 

conjugation systems are required for conjugation of LC3 and Atg12 to phosphatidylethanolamine (PE) 

on the autophagosome membrane and Atg5, respectively. The complete autophagosome fuses with 

the lysosome to form the autolysosome, and cargo molecules engulfed by autophagosomes are 

degraded by lysosomal hydrolases and recycled back to the cytoplasm.  
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Regulation of macroautophagy occurs via mechanistic target of rapamycin (MTOR), a 

nutrient and energy-sensing kinase. A cell with a stable energy source has active 

MTOR signaling through its phosphorylation, leading to inhibition of autophagy 

interacting with autophagy effectors (ULK1, FIP200). Conversely, a nutrient-depleted 

cell has decreased or inhibited MTOR activity, thus autophagy is activated. 

Moreover, an additional level of cross-talk between MTOR and autophagy is 

provided by AMPK, the main sensor of intracellular energy. When cells become 

energy-deprived, AMPK efficiently turns-off the MTOR pathway and also positively 

regulates ULK complex to induce autophagy (Figure 14) [279-284].  

Insufficient or dysfunctional autophagy accumulates abnormal or dysfunctional 

material. Thus, in agreement to this context, a number of diseases are associated 

with impaired autophagy such as neurodegenerative diseases, cancer, aging, 

inflammation, obesity and liver diseases [285-287]. For this reason, an improved 

understanding of autophagic process should provide substantial information for new 

therapeutic manipulations of this endogenous process.  

MTOR, as a master regulator of cellular metabolism, has become an appealing 

pharmacologic target to manipulate autophagy. As implied in its name, rapamycin is 

the most available MTOR inhibitor that has been tested for clinical practice. 

Rapamycin induces autophagy and has demonstrated beneficial effects in cancer and 

some neurodegenerative diseases [288-290].  

Moreover, as mentioned before, the activation of AMPK inhibits MTOR and 

consequently, enhances autophagy. Hence the administration of AMPK activators 

such as metformin stimulates autophagic process and could be considered as 

another possible therapeutic target [291, 292].  

Further evaluations are needed to determine the effectiveness of MTOR inhibitors 

for inducing autophagy with minimal side effects to provide potential candidates for 

developing novel therapeutics for the management of human diseases. 
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4.1 Autophagy and NAFLD 

Autophagy in the liver has been well studied. The features and functions of the liver 

make this organ very dependent on autophagy. Accordingly, impairment of 

autophagy has profound deleterious effects on liver function [293-295].  

The autophagic engulfment of organelles such as mitochondria (mitophagy) or 

discrete molecules such as lipids (lipophagy) serves as integral machinery of 

hepatocellular homeostasis [296].  

Lipophagy, the delivery of cellular lipid droplets to the lysosomes, helps to modulate 

the lipid stores more efficiently to respond to energy demand and to protect cells 

from lipid-mediated damage [297-299]. Therefore, a decrease of autophagy in the 

liver leads to lipid accumulation and subsequent development of NAFLD [300].  

Several studies in cultured hepatocytes with impaired autophagy, generated by 

pharmacologic inhibition or by using RNA interference against Atg5 or Atg7, have 

revealed that inhibition of autophagy leads to higher accumulation of triglycerides 

respect to controls. These results were also obtained in hepatocyte-specific Atg7-

deficient mice [301].  

Moreover, high-fat diet fed mice exhibit an impairment of hepatic autophagy as 

demonstrated by decreased mobilization of lipid into the autophagic compartment. 

Lipid accumulation altered the membrane structure, and a resultant decrease in the 

efficiency of fusion between autophagosomes and lysosomes may explain this 

inhibitory effect. Moreover, the ability of excessive cellular lipid accumulation to 

impair autophagy provides another mechanism for the progression of simple 

steatosis to NASH and its complications [301, 302]. 

Studies conducted in humans also revealed the relationship between autophagy and 

NAFLD. A recent report demonstrated that autophagy was decreased in obese 

patients with steatosis and NASH [303].  

It has been demonstrated that an activation of liver autophagy constitutes a 

promising therapeutic approach against steatosis and hepatic complications. 
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Accordingly, it has been reported that hepatic overexpression of Atg7 in high-fat diet 

fed mice or obese mice improved the condition of the fatty liver and insulin 

resistance [304]. Moreover, enhancers of autophagy such as rapamycin have been 

tested in obese mice and they ameliorated the presence of steatosis and insulin 

resistance [305].  

For this reason, therapeutic efforts to decrease hepatic lipid stores by raising 

autophagic function could prevent the initiation of liver injury or the development of 

NASH complications, such as hepatocellular carcinoma. 

4.2 Autophagy and inflammation  

Growing evidence suggests that autophagy not only regulates cellular homeostasis 

but also plays an important role in protection against pathogens. In this line, 

autophagy has been linked with innate and adaptive immune response in host 

defense by regulation of cytokine production [306-308]. 

Furthermore, autophagy is implicated in cellular development and differentiation 

including adipogenesis, a key feature of obesity. It has been shown that inhibition of 

autophagy reduces accumulation of triglycerides within adipocytes, increases 

transcription factors involved in adipocyte differentiation and also increases 

mitochondrial function [299, 309-311].  

In contrast, other data report that autophagy modulates adipose tissue inflammation 

controlling the production of cytokines. Some studies reveal that the inhibition of 

autophagy is related with the gene expression and the secretion of pro-inflammatory 

cytokines in both animals and murine adipose tissue. Accordingly, autophagy may 

act as a protective mechanism to limit chronic low-grade inflammation of adipose 

tissue related with obesity [311, 312].  

For this reason it is required further exploration to elucidate if autophagy could be a 

potential regulatory mechanism that links inflammation and metabolic disorders. 

Understanding the mechanisms and pathways involved in autophagy could lead to 

future therapeutic strategies against inflammation and related conditions such as 

obesity, insulin resistance, atherosclerosis and liver disease.  
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5. Animal models in scientific research 

  

Animal research plays a crucial role to better understand the pathophysiology of 

several human diseases and, consequently, contributes to the development of 

effective medical treatments. 

Research animals provide scientists with complex living systems consisting of cells, 

tissues and organs. The most important features are their striking similarity to 

humans in anatomy, physiology and genetics. Over 95% of the mouse genome is 

similar to our own, and they are vulnerable of the same health problems, making its 

use particularly applicable to human diseases [313].  

Practically, mice are a cost-effective and efficient tool to speed research and the 

development of drug therapies. Mice are small, have a short generation time and an 

accelerated lifespan, keeping the costs, space, and time required to perform 

research manageable [313]. 

In addition, our ability to directly manipulate its genome provides an incredible 

powerful tool to model specific diseases. Depending on the target in question, there 

are a number of models that can be applied. Perhaps, this is the most important 

advantage to using mouse for biomedical research [314]. Genes can be injected 

directly into the fertilized egg of mouse creating what is known as a transgenic 

animal. This approach allows us to create a new animal model which overexpresses 

CCL2, the chemokine in which we have focused all our efforts and which is involved 

in many pathological processes.  

In the same way, scientists developed techniques that allowed them to target genes 

within mouse genome (so-called knockouts). These knockout mice are a resource to 

understand the genetic basis of different metabolic diseases such as obesity, 

atherosclerosis and fatty liver among others.  

Thus, with these kind of animal studies scientist will expand their ability to model 

human diseases more accurately, as well as directly test their theories and novel 

therapeutic approaches. 
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Hypothesis 

 

Excessive energy intake alters metabolic homeostasis and leads to a state of low-

grade inflammation which has an important role in the development of non-

communicable diseases such as obesity and NAFLD. These metabolic disturbances 

might be detected in plasma revealing new biomarkers. Moreover, the assessment 

of the role of chronic inflammation in animal models fed an energy surplus could 

suggest novel therapeutic strategies for the management of these prevalent 

diseases. 

 

 

 

Aims 

 

ü To better understand the pathogenesis of NAFLD in obesity. 

 

ü To identify a non-invasive metabolite biomarker of NAFLD. 

 

ü To determine the effects of a continuous and ubiquitous overexpression of 

CCL2 combined with excessive energy intake. 

 

ü To evaluate the absence of CCR2 receptor in this genetic and environmental 

background for the development of novel therapeutic strategies. 
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STUDY 1 
 

Mapping of the circulating metabolome 

reveals α-ketoglutarate as a predictor of 

morbid obesity-associated non-alcoholic fatty 

liver disease 

Int J Obes (Lond) 2015; 39(2):279-87 
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Abstract 

Background: Obesity severely affects human health, and the accompanying non-

alcoholic fatty liver disease (NAFLD) is associated with high morbidity and mortality. 

Rapid and non-invasive methods to detect this condition may substantially improve 

clinical care. 

Methods: We used liquid and gas chromatography–quadruple time-of-flight–mass 

spectrometry (LC/GC-QTOF-MS) analysis in a non-targeted metabolomics approach 

on the plasma from morbidly obese patients undergoing bariatric surgery to gain a 

comprehensive measure of metabolite levels. On the basis of these findings, we 

developed a method (GC-QTOF-MS) for the accurate quantification of plasma α-

ketoglutarate to explore its potential as a novel biomarker for the detection of 

NAFLD. 

Results: Plasma biochemical differences were observed between patients with and 

without NAFLD indicating that the accumulation of lipids in hepatocytes decreased 

β-oxidation energy production, reduced liver function and altered glucose 

metabolism. The results obtained from the plasma analysis suggest 

pathophysiological insights that link lipid and glucose disturbances with α-

ketoglutarate. Plasma α-ketoglutarate levels are significantly increased in obese 

patients compared with lean controls. Among obese patients, the measurement of 

this metabolite differentiates between those with or without NAFLD. Data from the 

liver were consistent with data from plasma. Clinical utility was assessed, and the 

results revealed that plasma α-ketoglutarate is a fair-to-good biomarker in patients 

(n=230). Other common laboratory liver tests used in routine application did not 

favourably compare. 

Conclusion: Plasma α-ketoglutarate is superior to common liver function tests in 

obese patients as a surrogate biomarker of NAFLD. The measurement of this 

biomarker may potentiate the search for a therapeutic approach, may decrease the 

need for liver biopsy and may be useful in the assessment of disease progression.
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Introduction 

Obesity severely affects human health. The number of adults with morbid obesity 

(that is, a body mass index (BMI) 40 kg/m
2
) is increasing, and the prevalence of 

obesity (>30% in some countries) is unacceptably high. Moreover, the incidence of 

obesity is increasing among children, and obesity-associated premature mortality 

rivals that of smoking [1–4]. Morbidly obese patients undergoing bariatric surgery 

share a common metabolic background and similar environmental factors. We 

assume that possible genetic differences among these particular obese patients are 

likely negligible. Non-alcoholic fatty liver disease (NAFLD) is no longer a benign 

condition and is now considered an important co-morbidity in these patients [5–7]. 

The prognosis is pessimistic because of the risk of progressive liver disease (for 

example, non-alcoholic steatohepatitis, fibrosis, cirrhosis, liver failure and 

hepatocarcinoma) [8]. There is a great need for NAFLD biomarker discovery because 

it is often difficult to determine when a liver biopsy is appropriate. A significant 

number of individuals are asymptomatic until their liver begins to fail, at which point 

conventional treatments are useless. 

Current laboratory tests are insufficient and unreliable for the determination of 

NAFLD presence. Previous estimates using common liver function tests in the 

plasma, such as the determination of alanine aminotransferase levels, suggest that 

the prevalence of NAFLD should be nearly 100% in obese patients [9]. Evaluation by 

proton magnetic resonance spectroscopy is expensive and is currently being refined 

[10], and patients of this size did not typically fit into the apparatus. However, the 

use of liver biopsy revealed in our patients that a significant portion did not display 

fatty infiltration of hepatocytes. In this study, we aimed to better understand NAFLD 

pathogenesis in obesity and to identify a non-invasive metabolite biomarker.  

We hypothesised that the excess in energy intake alters anabolic and catabolic 

functions, especially in the liver, which may be detected in a plasma metabolomic 

profile. We used non-targeted metabolomics to compare obese patients without 

steatosis with their affected counterparts to identify differences between these 

groups. We expected numerous and low differences among the measured 
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metabolites, which may explain the lack of previous metabolomics-based testing for 

these diseases [11]. However, post hoc analysis and further quantification resulted in 

the qualification and verification of the plasma α-ketoglutarate concentration as a 

good indicator of NAFLD in obese patients. 

Material and methods 

Participants 

Our local ethics committee approved the study protocol, and written informed 

consent was obtained from the participants (EPINOLS/12-03-29/3proj6). Patients 

fulfilling the criteria established for morbid obesity (BMI 40 kg/m
2
), for which 

bariatric surgery was indicated after numerous failed attempts to lose weight using 

non-surgical means, were recruited from the outpatient clinic between 2006 and 

2012. We first conducted a non-targeted metabolomic analysis in a limited group of 

patients with or without steatosis (n=15 in each group). Steatohepatitis, fibrosis and 

hepatocyte injury in these patients were histologically ruled out. These samples were 

sent to Metabolon Inc. (Durham, NC, USA) for analyses. No differences in the quality 

of life were observed between the groups, and the selected patients did not 

consume alcohol or any prescribed medication that could alter liver function, 

including vitamin supplements. The results of these non-targeted preliminary 

analyses prompted us to qualify and verify plasma α-ketoglutarate as a candidate 

biomarker to identify NAFLD in obese patients. For this purpose, we recruited 230 

patients in which the only inclusion criterion was application for bariatric surgery, 

thus including a wide variety of conditions likely to be encountered in clinical 

practise. Blood was obtained immediately before surgery and after clinical nutrition 

evaluation. Portions of the liver were obtained during the surgical procedure after 

patient consultation to minimise risks and to limit the variability based on location of 

biopsy [12]. Bio-banked samples (n=54) from a group of age- and sex-matched lean, 

healthy controls (BMI <24 kg/m
2
) [13] were used to assess differences in plasma α-

ketoglutarate levels between lean and obese patients. Dietary advice and 

standardised overnight fasting were implemented to ensure uniformity and 

consistency. Plasma aliquots were anticoagulated with EDTA and were frozen at 

−80°C within 2 h after collection. 
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Clinical data and analytic measurements 

Relevant data were extracted from clinical records or were obtained using 

standardised guidelines and routine laboratory methods [14]. The BMI was 

calculated as the weight in kilograms divided by the height in metres squared. 

Histological alterations in the liver biopsies were evaluated in sections stained with 

haematoxylin and eosin. The degree of steatosis was evaluated using image analysis 

software and was expressed as percentages (AnalySIS image software system, Soft 

Imaging System, Munster, Germany). Patients were considered free of steatosis 

when values were 5%. Patients with steatosis were arbitrarily classified as mild: 6-

30%; moderate: 31–60%; and severe: >61% [8, 15]. Portions of the liver biopsies 

were also used to measure α-ketoglutarate in tissues from patients with or without 

steatosis (n=6 in each group). The shape and size of mitochondria were determined 

in portions of the liver using standard transmission electronic microscopy (n=3 in 

each group). 

Non-targeted metabolomic platform 

Specimens. Samples outsourced to Metabolon’s laboratory were extracted upon 

arrival. The instrument and overall process variability was 4% and 9%, respectively. 

Chromatography. Chromatographic conditions have been previously described [16]. 

In brief, the liquid chromatography–mass spectrometry (LC–MS, LC–MS
2
) platform 

was based on a Waters ACQUITY UPLC (Waters Technologies, Milford, MA, USA) and 

a Thermo-Finnigan (San Jose, CA, USA) LTQ mass spectrometer, which consisted of 

an electrospray ionisation source and a linear ion-trap mass analyser. The MS 

analysis alternated between MS and data-dependent MS
2 

scans using dynamic 

exclusion. The samples for gas chromatography/mass spectrometry (MS) analysis 

were derivatised and analysed on a Thermo-Finnigan Trace DSQ fast-scanning single-

quadrupole mass spectrometer using electron impact ionisation. Metabolites were 

identified using a reference library of ~2800 standard chemical entries that included 

retention times, mass (m/z) and MS or MS
2
 spectra. 
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Quantitative measurement of plasma α-ketoglutarate using gas 

chromatography–quadrupole time-of-flight mass spectrometry analysis 

Sample pre-treatment. This method was developed in our laboratory. A surrogate 

standard was added to maximise technical precision during the injection and 

recovery during the extraction procedure. We used deuterated succinic acid (Isotec 

Stable Isotopes, Miamisburg, OH, USA) rather than deuterated α-ketoglutarate, 

which readily exchanges deuterium [17]. A solution of deuterated succinic acid (25μl, 

2 mg/l) was added to aliquots of plasma that were thawed on ice at 4 °C (50 μl), 

deproteinised with 400 μl of methanol, mixed using a vortex (2 min) and centrifuged 

(15000 g, 15 min, 4 °C). The supernatant was dried and stored at −80 °C. Samples 

were derivatised using 30 μl of methoxyamine hydrochloride in pyridine (30 mg/ml) 

and incubated 1.5 h at 37 °C with agitation. Then, 30 μl of N-methyl-N-(trimethylsilyl) 

trifluoroacetamide (Sigma-Aldrich, Steinheim, Germany) was added with shaking and 

further incubated in darkness for 1 h before analysis. We found this derivatisation 

step to be a reproducible and robust method, independent of the matrix and 

without appreciable losses in yield that minimised the loss of α-ketoacids to 

decarboxylation [18]. A calibration curve of α-ketoglutaric acid (Fluka, St Gallen, 

Switzerland) was prepared (0–82.5 μM) immediately before each assay. 

Chromatographic analysis. Samples (1 μl) were automatically injected onto a 7890A 

gas chromatograph coupled to a 7200 quadrupole time-of-flight mass spectrometer 

(Agilent Technologies, Santa Clara, USA) equipped with a J&W Scientific (Folsom, CA, 

USA) HP5-MS column (19091S-433). Helium was used as a carrier gas at a flow rate 

of 1.5 ml min
−1

 in constant-flow mode. The oven programme was set at an initial 

temperature of 70 °C that was increased to 190 °C at a rate of 12 °C/min followed by 

an increase to 325 °C at a rate of 20 °C/min and a final hold at 325 °C for 3.25 min. 

Ionisation was performed using electronic impact with an electron energy of 70 eV 

and an emission intensity of 35 μA. Raw data were processed using MassHunter 

B.05.00 (Agilent Technologies). Plasma α-ketoglutaric acid was quantified using a 

target ion and was identified using qualifier ions and the retention time. The 

molecular weight of the derivatised molecule, retention time, quantifier and qualifier 

ions, relative abundance, recovery, accuracy, precision and additional pertinent 
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results are provided in Supplementary Figure S1. The limit of detection was 

0.001μM. Instrumental reproducibility was 2.2%. Standard curves for the analysis 

were reproducible and displayed R2 values of 0.99, which indicated linearity over 

the measured concentration range; we did not detect carryover. 

Statistical analysis 

Significantly altered metabolites, which were corrected for multiple testing, were 

defined using a P-value <0.05 and a predesigned false discovery rate [19]. We 

performed Welch’s t-tests and/or Wilcoxon’s rank sum tests for pairwise 

comparisons. A repeated measurement analysis of variance was used in some 

instances. We used multivariate statistics to improve the refining and distilling of 

complex raw data and for pattern recognition. Random Forests is a supervised 

classification technique based on an ensemble of decision trees [20]. This method 

provides an unbiased estimate of how well one can predict sample classes in a new 

data set (prediction accuracy) and a selection of variables that make the largest 

contributions to the classification. We also used linear discriminant analysis as a 

classical method of classification and principal component analysis as an 

unsupervised data analysis, which measures the innate variation in data sets. 

Ingenuity pathway analysis, which is a web-based functional analysis, was used to 

explore biomolecular interaction networks to identify the signalling and metabolic 

pathways and to compare the affected pathways. Fisher’s exact test was used to 

calculate a P-value to determine the probability of the association between the 

metabolites and the canonical pathway. The network score was based on the 

hypergeometric distribution and was calculated using the right-tailed Fisher’s exact 

test. Logistic regression analysis and receiver operator characteristic curves 

described and assessed the binary classification [11, 21]. The employed statistical 

software included the program ‘R’ (http://cran.r-project.org) and the SPSS 18.0 

package (IBM, Madrid, Spain). 
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Results 

Plasma metabolites and obesity-related liver steatosis  

Raw data. The baseline characteristics of the selected patients, raw data and an 

exhaustive list of the measured metabolites in untargeted metabolomic analyses are 

shown in Supplementary Tables S1 and S2. Most patients were female (73%) and 

BMI values ranged between 43.1 and 52.1 kg/m
2
. Patients with steatosis showed 

significantly higher plasma cholesterol and triglyceride concentrations than those 

without steatosis. Common liver function tests revealed higher values in patients 

with steatosis, but significance was only reached for γ-glutamyl transpeptidase 

(Supplementary Table S1). We identified 316 metabolites of which 38 were 

significantly different between groups. Finally, 19 metabolites with the highest 

statistical difference were chosen using more stringent conditions for further 

consideration (Supplementary Figure S2). The relative abundance of perturbations 

in amino acids and lipid metabolism are shown in Figure 1a.  

Figure 1. (a) Heat map of the relative plasma concentration of selected metabolites that may 

distinguish obese patients with or without steatosis (green, lower; red, greater). (b) Random 

(decision) Forest analysis was used as implemented in the R package software as a framework to 

create a large number of particular models built around the presence or absence of steatosis. 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Results 

 

84 

 

Interpretation. The citric acid cycle is the most important metabolic pathway for the 

energy supply and connects most metabolic pathways. The following alterations 

support the idea of defective liver function: 1) the levels of all three branched-chain 

amino acids (leucine, isoleucine and valine) were significantly increased in patients 

with steatosis; and 2) the levels of branched-chain keto acids (3-methyl-2-

oxobutyrate, 3-methyl-2-oxovalerate and 4-methyl-2-oxopentanoate) were slightly 

elevated in the plasma from patients with steatosis.  

Steatosis may also sequester fatty acids from β-oxidation in liver cells using an 

alternative energy source, as shown by significant decreased levels of 3-

hydroxybutyrate and a significant increase in the concentration of plasma α-

ketoglutarate and succinylcarnitine in patients with steatosis. The mechanisms of 

lipolysis and gluconeogenesis appear to be affected (Supplementary Figure S3). 

Glucose metabolism is also altered in patients with steatosis. The significant 

decrease in the concentration of plasma 1,5-anhydroglucitol in these patients 

probably indicates long-term higher hyperglycaemia. In addition, hyperglycaemia-

induced oxidative stress is likely in patients with steatosis, as indicated by the 

increased plasma levels of bradykinin and des-Arg9-bradykinin. The plasma level of 

the dicarboxylic acid 2-hydroxybutyrate (α–hydroxybutyrate), which is an early 

marker for impaired glucose regulation, was also significantly increased.  

Plasma glycocholate and taurocholate concentrations were higher in patients with 

steatosis, which indicates that the damaged livers were not functioning properly in 

the uptake of these compounds. The excretion of steroids is also limited in liver 

steatosis because these compounds are not effectively sulphated, which was 

indicated by significantly lower plasma levels of sulphated steroids (that is, 4-

androsten-3β, 17-β-diol disulphate 1, 4-androsten-3β, 17-β-diol disulphate 2, 5α-

androstan-3β, 17β-diol disulphate, 5α-pregnan-3β, 20α-diol disulphate, pregnen-diol 

disulphate, pregnen steroid monosulphate, andro steroid monosulphate 2 and 21-

hydroxypregnenolone disulphate). 
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Pattern recognition 

Random Forest analysis resulted in a predictive accuracy of >80% to distinguish 

patients with or without steatosis and revealed plasma α-ketoglutarate as the 

primary differentiator in a ranked list of metabolites in order of their importance in 

the classification scheme (Figure 1b). The application of linear discriminant analysis 

and principal component analysis yielded similar results for group clustering and 

pattern recognition (Figure 2), and logistic regression and receiver operator 

characteristic analyses produced a list of possible biomarkers.  

Figure 2. Model plots constructed using principal component analysis (a and b) and linear 

discrimination analysis (e and f). Logistic regression analysis and receiver operator characteristic 

curves indicated the presence of a pattern for the selection of candidate biomarkers and group 

clustering. As shown in the calculations (c, d, g and h), plasma α-ketoglutarate was the most qualified 

for this purpose. 
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Metabolite interaction networks  

We uploaded the metabolite lists (with kyoto encyclopedia of genes and genomes 

IDs) onto an ingenuity pathway analysis server to identify the biological pathways 

and functions of the biomolecules of interest. The top-associated network functions 

were limited to scores of >24.  

Figure 3. Interaction and regulatory networks associated with steatosis in morbidly obese patients as 

identified using the ingenuity pathway analysis. Plots are depicted for the top-associated network 

functions (score >24, a and b) and top canonical pathway (c). 

We highlighted networks that were similar and that shared identical functions, that 

is, lipid metabolism, amino-acid metabolism, molecular transport and small molecule 

biochemistry. Only tRNA charging (P=0.0007) and isoleucine degradation (P=0.0009) 

were significantly different among the top canonical pathways. Interactions and 

regulatory networks are depicted in Figure 3, which integrates most of the altered 
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metabolites based on their biochemical relationships in obese patients with 

steatosis.  

These plots indicate that L-glutamic acid upregulates α-ketoglutarate (2-oxoglutaric 

acid) and suggest a role of branched-chain amino-acid transaminase. Predicted 

disturbances, which probably result in α-ketoglutarate accumulation in the plasma, 

are depicted in Supplementary Figure S4.  

These results indicate a role for mitochondrial dysfunction. Our preliminary findings 

also indicate that in patients without steatosis the mean diameter of the 

mitochondria was slightly lower, the matrix was more electron dense and the crests 

were more visible compared with patients with steatosis. More importantly, toroidal 

mitochondria were abundant and only observed in non-steatotic patients and there 

was a significantly higher accumulation of autophagosomes in patients with 

steatosis. It is therefore plausible that the detection of perturbations in the citric acid 

cycle (CAC) may facilitate the evaluation of mitochondrial functions in physiology 

and disease [22].  

Plasma α-ketoglutarate as a biomarker 

The obtained results identified and qualified plasma α-ketoglutarate as a diagnostic 

biomarker [23]. We calculated, with 95% confidence, that the true area under the 

curve of the reported receiver operator characteristic curve for plasma α-

ketoglutarate ranged from 0.90 to 0.96 with a specificity of 0.93 at a fixed sensitivity 

of 0.8 (Figure 2). However, these results were calculated using a low number of 

carefully selected patients. To decrease uncertainty or margin of error in the 

relevance of these measurements, we extended the analysis to a broad range of 

morbidly obese patients (Table 1) in which the degree of steatosis was widely 

distributed. 
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Notably, steatosis was predominantly mild, and the other liver alterations were 

primarily benign (Supplementary Figure S5). Approximately 25% of our patients 

were insulin sensitive, but this condition was unrelated to the presence of NAFLD. 

Plasma α-ketoglutarate was slightly but significantly associated with homoeostasis 

model assessment values (ρ=0.25, P=0.01).  

We calculated that at least 115 cases would be required to determine whether 

plasma α-ketoglutarate outperforms other commonly used biomarkers using an 

inferential approach [24]. These minimum requirements were increased to 230 cases 

to ensure validity in a target group in which positive and negative outcomes are not 

equally distributed and in which the addition of fibrosis and/or inflammation may 

complicate the interpretation.  

A significant association between circulating triglycerides and steatosis was observed 

in these patients (ρ=0.42, P<0.001; see also Table 1), which is similar to the 

association observed with plasma α-ketoglutarate levels (ρ=0.49, P<0.001). Lean 

controls exhibited significantly (P<0.001) lower (1.1 μM (0.82–1.37)) plasma α-

ketoglutarate levels than obese patients (7.5 μM (5.5–10.8) without overlap (median 

(interquartile range)). The values were also significantly higher in obese patients with 

steatosis than in those without steatosis, indicating the potential to discriminate 

between the different stages in the progression of these conditions (Figure 4). These 

differences were also observed in liver tissue; in samples without steatosis, α-

ketoglutarate concentration was significantly (P=0.017) lower (22.1 μM per 100mg 

dry weight (11.3–31.3)) than in those with steatosis (57.8 μM per 100 mg dry weight 

(32.8–63.1)).  

Among the measured variables, only the plasma α-ketoglutarate concentration 

exhibited significant agreement with the degree of steatosis, which may differentiate 

between mild, moderate and severe steatosis. Although comparisons were 

significant, data are not shown for severe steatosis because the number of patients 

was considered too low to yield relevance. The area under the curve of the receiver 

operator characteristic curves exhibited a fair-to-good clinical utility (Figure 4).  
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Other common laboratory liver function tests failed to discriminate between 

patients with or without NAFLD. Interestingly, the clinically considered ‘gold 

standard’, alanine aminotransferase, exhibited the worst performance. In contrast, 

γ-glutamyl transpeptidase performed relatively well (Supplementary Figures S6 and 

S7).  

Figure 4. The mean plasma α-ketoglutarate concentration was significantly lower in lean controls and 

patients without steatosis (a) and displayed significant agreement with the degree of steatosis (b and 

c). The area under the curve of the receiver operator characteristic curves were significant, and 

clinical utility was approximately fair to good; for this purpose, the number of patients with severe 

steatosis was considered too low to yield relevance (d). 

We subsequently constructed multivariate models that combined the values of the 

available biomarkers, but the performance was lower than plasma α- ketoglutarate 

alone. Conversely, the addition of plasma α-ketoglutarate to any of these models 

improved the performance (Figure 5). The optimal clinically useful threshold (that is, 

the plasma concentration) rather than the mathematically optimal threshold is 

difficult to assign.  

The choice is highly dependent on the intended use. Ideally, all patients with 

steatosis should be correctly classified, but this may come at the cost that some 

patients may be incorrectly classified as free of steatosis. For example, 8 or 4 μM 

(which represent two mathematically possible candidates) yield a similar positive 

predictive value (>80%), but 8 μM provides high specificity (>85%) and 4 μM 

provides high sensitivity (>97%).  
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Figure 5. Multimetabolite biomarker models should provide more information than a single 

biochemical measurement, as assessed using receiver operator characteristic curves. However, 

predictive scores from multivariate models that combined several variables were not superior to 

plasma α–ketoglutarate alone, as exemplified by the combination with plasma γ-glutamyl 

transpeptidase (GGT), which displayed the best performance of commonly used laboratory 

biomarkers. 

 

Discussion 

There is currently no clinically useful plasma surrogate for the assessment of hepatic 

steatosis in obesity. Multivariate metabolomics analyses provide meaningful 

information owing to the simultaneous global assessment of hundreds of 

endogenous metabolites in a biological sample. To perform studies in this context, it 

is important to ensure the maintenance of pre-analytical aspects. Similar nutritional 

status and similar food intake are necessary because dietary factors have an 

important role as a causative factor of NAFLD [25–27]. As we predicted, 

inflammation does not appear to be a prominent factor, [28, 29] but neither obesity 

nor NAFLD are simple, monogenic disorders. Therefore, we chose clinically 

controlled bariatric patients who exhibited a similarly high BMI.  
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The accumulation of lipids in hepatocytes induced a relative energy deficit, reduced 

liver function and disturbed insulin resistance, which is apparently accompanied by 

an acquired and reversible mitochondrial dysfunction [30]. Our data also partially 

support the importance of a newly described mechanism (lipophagy) that links 

lipolysis and regulation of intracellular lipid stores [31]. Notably, the deficit in 

sulphonation that we have observed in NAFLD patients may be clinically relevant. 

This is because phase II drug-metabolising enzymes maintain cellular homoeostasis 

via the metabolism of several endogenous molecules that may facilitate metabolic 

disorders and may result in the improper management of xenobiotics and 

endobiotics [32, 33]. Therefore, the search for NAFLD diagnostics in obesity should 

focus on mechanisms of energy homoeostasis, mitochondrial biogenesis, fatty acid 

oxidation and glucose metabolism, which may require new strategies [34]. The 

results obtained from the plasma analysis are consistent with those obtained in the 

livers of different animal models and human studies, which demonstrate that 

steatosis is the cause or consequence of disturbances in hepatic lipid and glucose 

metabolism that decreases the ability to obtain energy [8, 25, 35, 36]. The metabolic 

imbalance caused by obesity and NAFLD affects mitochondrial metabolism and 

metabolic pathways, which are important for recycling α-ketoglutarate into and out 

of the mitochondrion and allow for the continuous production of intracellular 

messengers [37]. Finally, it has been recently described in a model of mitochondrial 

dysfunction (PINK1 deficiency) that increased expression of α-ketoglutarate is the 

most prominent and early effect, probably representing a compensatory mechanism 

[38]. Monitoring mitochondrial function via the quantitative evaluation of 

mitochondrial metabolite abundances may be an important new avenue of research 

in obesity-associated NAFLD. This is mainly because CAC metabolites have a central 

role in catabolic and anabolic functions (that is, it is amphibolic in nature). As in 

other non-communicable diseases, it is most likely adequate to adopt the view that 

steatosis is governed by a pivotal regulatory role of metabolic reprogramming in cell 

fate decisions [39, 40].  
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Plasma α-ketoglutarate levels may distinguish lean controls from obese patients with 

a “predictive accuracy” of 100% and predict obese patients with or without NAFLD 

better than commonly used biomarkers. This result supports the potential clinical 

utility of plasma α-ketoglutarate levels. However, additional validation in other 

patients from an identical target population is required. Preliminary results in 

ongoing validation studies suggest that this novel biomarker deserves further 

evaluation and development and that this biomarker should be added to clinical 

practise. In addition, pilot studies indicate the usefulness of performing serial 

measurements in the same patient, which do not require high specificity or 

sensitivity, to monitor disease progression and/or the response to treatment. The 

major limitation of our results is the confinement to morbid obesity. We believe this 

is a blood test that provides a solution for a major unmet clinical need but 

implementation of a new biomarker is difficult and requires validation. Regardless of 

the attractiveness of plasma α-ketoglutarate as a biomarker, the high costs of 

validation hamper the introduction of new biomarkers and therefore commercial 

considerations may ultimately determine the clinical use [41]. However, commonly 

used laboratory tests do not appropriately guide clinical decisions. Imaging studies 

are also not possible for patients of this size, and patients do not readily accept more 

invasive studies. 

We also confirmed the potential of metabolomics to influence patient care. 

Metabolomics is designed to delineate biological processes, and the selection of 

metabolites for development as clinical biomarkers should be performed a priori 

rather than post hoc. Our results indicate that this approach is not necessarily true if 

compound quantification follows metabolomics, which is a strategy that is currently 

feasible and is not time consuming. This study successfully utilised a metabolomics 

approach to provide new insights into the consequences of NAFLD in obese patients 

and supports the possible translational relevance of plasma α-ketoglutarate as a 

biomarker of a condition that carries an enormous burden of disease. 
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Abstract 

Excessive energy management leads to low-grade, chronic inflammation, which is a 

significant factor predicting non-communicable diseases. In turn, inflammation, 

oxidation, and metabolism are associated with the course of these diseases; 

mitochondrial dysfunction seems to be at the crossroads of mutual relationships. 

The migration of immune cells during inflammation is governed by the interaction 

between chemokines and chemokine receptors. Chemokines, especially C-C-

chemokine ligand 2 (CCL2), have a variety of additional functions that are involved in 

the maintenance of normal metabolism. It is our hypothesis that a ubiquitous and 

continuous secretion of CCL2 may represent an animal model of low-grade chronic 

inflammation that, in the presence of an energy surplus, could help to ascertain the 

afore-mentioned relationships and/or to search for specific therapeutic approaches. 

Here, we present preliminary data on a mouse model created by using targeted gene 

knock-in technology to integrate an additional copy of the CCl2 gene in the 

Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in 

embryonic stem cells. Short- term dietary manipulations were assessed and the 

findings include metabolic disturbances, premature death, and the manipulation of 

macrophage plasticity and autophagy. These results raise a number of mechanistic 

questions for future study. 

Introduction 

Excessive energy intake is a part of the current human lifestyle that leads to a state 

of chronic systemic low-grade inflammation, which is thought to play a role in the 

development of atherosclerosis, cancer, and other non-communicable diseases. At 

the same time, it is also plausible that the long- term consequences of prolonged 

inflammation exacerbate the deleterious effects of continuous nutrient surplus [1–

3]. The immune system and metabolism are closely interconnected [4, 5]. During 

inflammation, the whole body is under metabolic stress, and energy excess 

management could compromise the relationships among metabolism, oxidation, and 

inflammation. We reasoned that searching for an adequate animal model [6] might 

allow us to better understand disease pathogenesis.  
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Chemokines are promising candidates for the design of such a model. Some of the 

functions of chemokines are associated with the migration of immune cells, and 

chemokines are important for the correct functioning of metabolism. In humans, C-C 

chemokine ligand 2 (CCL2; formerly referred as MCP-1 or monocyte chemoattractant 

protein-1) could be a marker of inflammation; it is overexpressed in non-

communicable diseases and is involved in a variety of metabolic functions [7]. 

Actually, CCL2 modifies lipid and glucose metabolism and contributes to insulin 

resistance and hepatic steatosis [8–11]. Of note, circulating chemokines cause and 

maintain metabolic disturbances that may be reversed by anti-inflammatory drugs, 

and the role of chemokines is likely a causal and predisposing factor [12, 13]. Rather 

than local overexpression [14–17], it is now recognized that CCL2 protein and mRNA 

are expressed in the vast majority of tissues, suggesting both a systemic production 

and the ability to respond in situ to inflammatory stimuli [18, 19].  

Therefore, we hypothesized that challenging an animal model that systemically 

overexpresses CCL2 with diets rich in fat and cholesterol could help to assess the role 

of chronic inflammation in response to excessive energy intake. We then proceeded 

to integrate a copy of the Ccl2 gene in the Gt(ROSA)26Sor (commonly referred to as 

ROSA26) locus of the mouse genome via homologous recombination in embryonic 

stem cells (ES) to generate targeted transgenic mice [20-22] that overexpress CCL2 in 

all tissues. Preliminary data are promising and suggest a number of mechanistic 

questions for future study. 

Material and methods 

Animal Handling 

All procedures and experimental protocols were examined and approved by the 

Ethics Review Committee for Animal Experimentation of the Universitat Rovira i 

Virgili. Basic protocols for tissue collection, diets, allocation concealment and 

metabolic assessment of the mice have been already described in detail [6, 18, 23]. 

Strains were backcrossed >10 generations to C57BL/6J mice and maintained 

homozygously. Littermates without mutations were used as controls (WT). We also 

provide data from knockouts (KO) of CCL2 (conveniently backcrossed), which were 
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purchased from the Jackson Laboratory (Sacramento, CA). Dietary experiments 

began at 10 weeks of age, when all strains display similar phenotypes. To avoid 

possible effects of immature adipocyte modelling, most results were obtained in 

different groups after 6 or 14 weeks of treatment (16 and 24 weeks old, resp.). To 

explore dietary effects, mice from each group were fed either chow (Teklad rodent 

diet; Harlan, Barcelona, Spain) or a high-fat diet (FuttermittelfürMaüse; SSniff spezial 

diäten, Soest, Deutschland) and caged indefinitely under supervision. The breeding 

of all experimental populations was performed in our own facilities, and the 

progenies were maintained under close surveillance. The animals were not kept 

under germ-free conditions.  

Targeted Transgenic (TG) Mice  

The transgenic model was generated via a gene targeted inducible knock-in (KI), that 

is, a line with a duplicated gene, approach using standard methods and proprietary 

technology from Ozgene (Bentley, WA, Australia). The mRNA sequence 

corresponding to the mouse Ccl2 gene (NM_011333 and ENSMUSG00000035385) is 

located on chromosome 11. The gene has 3 exons spread over approximately 3 Kb. 

The gene fragment was obtained from C57BL/6 genomic DNA (PCR primers 

AGCAAGATGATCCCAATGAGTAGGC and GAGGTGGTTGTGGAAAAGGTAGTGG) to be 

inserted by gene targeting into the ROSA26 locus. Upstream regulatory elements are 

important in the transcriptional regulation of Ccl2 gene. Human ubiquitin promoter 

(Ubic) was chosen for the transgene to produce a high-level of expression. A loxP-

flanked STOP cassette prevents the transcription of the gene following the UbiC 

promoter (See Figure 1 and Supplementary Materials S1 and S2 available online at 

http://dx.doi.org/10.1155/2013/953841). The STOP cassette can be removed using 

Cre recombinase. PGK-Neo-SD-IS, a selection cassette, is inserted downstream of the 

Ccl2 gene to enrich homologous recombination events. The ROSA26 locus is 

conserved between mice and humans. The location is autosomal (chromosome 6) 

and is actively transcribed in most tissues (Figure 1). Moreover, epigenetic 

inactivation is unlikely [21, 24–26].  
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The combination of gene targeting and ES cell technology exploiting homologous 

recombination provides advantages over other techniques [27–31] (Supplementary 

Material S3). Mice are available upon request.  

 

Figure 1. A STOP sequence flanked by loxP sites was inserted between the Ubiquitin promoter and 

the mouse Ccl2 gene (a). The sequences of both the STOP cassette (bold) and the loxP sites 

(underlined) are shown later (b). The wild-type allele for Ccl2 gene is located in the region 11 C-E1 of 

chromosome 11 and the transgenic vector (bottom) is inserted in the ROSA26 locus of chromosome 6 

(c). The procedure is designed to avoid chromosomal instabilities. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Ubiquitous transgenic overexpression of CCL2 

  

105 

 

Immunopathology Studies and Assessment of Liver Steatosis 

Portions of organs and tissues were either frozen in nitrogen or fixed in 4% 

phosphate-buffered formalin for 24 h at room temperature, washed twice with 

water, stored in 70% ethanol at 4 ºC, and embedded in paraffin for histological 

analyses. Primary and secondary antibodies were obtained from Santa Cruz 

Biotechnology (Heidelberg, Germany) and Serotec (Oxford, UK) [18, 32]. Detection 

was performed with the ABC peroxidase system (Vector, Burlingame, CA) using DAB 

(Dako, Glostrup, Denmark) as the substrate. To assess specificity, primary antibodies 

were omitted in the controls. Liver steatosis was assessed as previously described 

[6]. 

Laboratory Measurements  

We measured murine CCL2 in plasma, serum, and tissues by ELISA (Peprotech, 

London, UK), according to the instructions of the manufacturer. Recombinant human 

CCL2 antigen was used as the calibrator for assay standardisation, and we found 

weak cross-reactivity with other chemokines, especially CCL7. The intraassay 

coefficients of variation were <3.2%, and the interassay of variation was <9.1%. 

Other biochemical measurements were performed in automated analysers using 

commercially available reagents as described [6, 33]. Selected tissues were 

homogenised using the Precellys 24 system (Izasa, Barcelona, Spain) with prefilled 

bead tubes in the buffer of choice. Fractions of the homogenised liver were 

immunoblotted as described [34], using antibodies and reagents from Santa Cruz 

Biotechnology (Heidelberg, Germany). 

Transmission Electron Microscopy 

Small pieces of the liver were immediately fixed in a 2% glutaraldehyde solution in 

0.1 M cacodylate buffer, pH 7.4. Samples were then post-fixed in 1% osmium 

tetroxide (OsO4) for 2 h and dehydrated in sequential steps of acetone prior to 

impregnation in increasing concentrations of the resin in acetone over a 24 h period. 

Semithin sections (500nm) were stained with 1% toluidine blue. Ultrathin sections 

(70 nm) were subsequently cut using a diamond knife, double-stained with uranyl 
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acetate and lead citrate, and examined using a transmission electron microscope 

(Hitachi, Tokyo, Japan).  

Characterisation of Mouse Bone Marrow-Derived Macrophages  

The methods were performed as previously described [35]. Bone marrow cells were 

isolated by removing leg bones from WT and TG mice (aged 10 weeks) and were 

cultured for 24 hours. Floating cells were removed, and the remaining attached cells 

were analysed. Cells were further cultured in DMEM supplemented with 10% 

inactivated foetal calf serum, 50 mM beta-mercaptoethanol, and 1000 U/mL murine 

granulocyte-macrophage colony-stimulating factor (GM-CSF) or 25 ng/mL human 

macrophage colony- stimulating factor (M-CSF) (ImmunoTools, Friesoythe, Germany) 

to provide polarised activation of cells into M1 and M2 as a simplified descriptor of 

their functional plasticity. To assess the effect of activation, macrophages were 

treated with 100 ng/mL E. coli 055:B5 lipopolysaccharide (LPS) for 24 hours and were 

compared with the respective untreated controls. After this treatment, supernatants 

from M1 (GM-CSF) and M2 (M-CSF) macrophages were tested for the presence of 

CCL2, tumour necrosis factor-a (TNFa), and interleukin 10 (IL-10) using ELISA 

(BioLegend, Inc., Madrid, Spain). Total RNA was extracted using the RNeasy kit 

(Qiagen, Barcelona, Spain) and was retrotranscribed using the Reverse Transcription 

System kit (Applied Biosystems; Invitrogen, Barcelona, Spain). Oligonucleotides for 

selected genes were designed according to the Roche so ware for quantitative real-

time PCR (Universal Probe Roche library), which was performed using a LightCycler 

480 (Roche Diagnostics, Barcelona, Spain). The assays were performed in triplicate, 

and the results normalised according to the expression level of TATA-binding protein 

mRNA. C-C chemokine receptor type 2 (CCR2 or CD192), TNFa, inhibin beta A 

(INHBA), inducible nitric oxide synthase (iNOS), C-C chemokine receptor type 7 

(CCR7), and Egl nine homolog 3 (EGLN3) were chosen as M1 markers. Arginase 

(ARG), EMR1/F4/80, insulin growth factor-1 (IGF1), IL-10, the mannose receptor 

CD206, and growth arrest-specific 6 (GAS6) were chosen as M2 markers. 
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Statistical Analyses  

The normality of the distributions was assessed using the Kolmogorov-Smirnov 

method. Variables were compared using Mann-Whitney tests or Kruskal-Wallis one-

way analysis adjusted for multiple testing. Unless otherwise indicated, the values in 

the figures represent the mean and SEM obtained in groups of 8 mice. The c
2
 test 

was used to compare categorical variables. For all measurements, we used either 

SPSS (SSPS Inc., Chicago, IL) or GraphPad Prism software 

(http://www.graphpad.com/scientic-soware/prism/).  

Results 

Targeted Transgenic Mice Do Not Display Physical Abnormalities 

The resulting mice for the targeted mutation are viable, fertile, and normal in size 

and weight. The animals do not display apparent behavioural or reproductive 

defects. The transgene insertion of a single copy occurs at a defined site, which 

allows for easy genotyping (Figure 2) and eliminates possible instabilities, 

independent segregation during breeding, and unpredictable positions in the 

chromosomes. An additional advantage of this strategy is the Cre/lox recombination 

system that facilitates tissue-specific overexpression. The Ubic is conditioned by an 

Lox-Stop-Lox (LSL) element that is activated by Cre-mediated excision using the 

appropriate, tissue-specific Cre strain.  

Transgenic Mice Overexpress CCL2 in Selected Tissues, and Circulating 

Protein Is Increased with respect to Controls 

Consistently, transgenic mice displayed more CCL2 protein in all tissues examined 

with respect to WT animals. The differences increased with age, and there were 

minor relative differences among tissues (Figure 3). We confirm that CCL2 was 

immunologically detected in all selected tissues of the transgenic mice. The CCL2 

mRNA expression in the transgenic mice was also higher in different types of cells 

with respect to WT mice. The amount of CCL2 was higher after the designed period 

of exposure to a diet with a high fat content. Of note, the serum and plasma CCL2 

were also higher in transgenic mice than in WT mice, which is most likely caused by 

CCL2 secretion by multiple tissues. In accordance with previous observations, the 
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plasma concentrations differed from the serum concentration. The differences are 

likely caused by coagulation and handling, but the differences were not statistically 

significant in transgenic mice. Notably, CCL2 was also detected in KO mice, but with 

less intensity. This is most likely due to quantitatively minor cross reactivity, as 

described in the methods.  

Figure 2. Simplified strategy for genotyping that includes the sequence of each primer (a), the 

reaction proposed for each primer (b), and the expected PCR products for each strain (c). The method 

is designed for the concomitant use of all primers and a representative gel is shown in (d). 

Dietary Factors Influence Body Weight and Adipocyte Size  

When mice were fed a regular chow diet, we did not observe significant differences 

in body weight increase among groups. The cumulative food intake was identical for 

the three strains examined. In contrast, when fed a high fat diet, both transgenic 

animals and WT animals developed obesity. Of note, the C57BL/6J male mouse is a 

commonly used model of diet-induced obesity [36]. The effect of CCL2 

overexpression was apparent immediately after the ingestion of the high calorie 

diet, and the weight increased more rapidly than in WT mice. The absence of CCL2, 

however, protected the KO mice from excessive weight gain. The lack of significant 

differences in the food intake excluded any effect of CCL2 on appetite (Figure 4). 
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Overexpression of CCL2 also increased the size of the adipocytes. Data are presented 

for epididymal adipose tissue (Figure 5), but the effect was similar in other adipose 

tissues. The adipocyte size was significantly higher in CCL2 transgenic animals 

compared with WT and KO animals fed with both diets, but the difference was 

higher when mice were fed a diet with a high caloric content. When different types 

of adipose tissue were weighed, we found that the mice fed a chow diet showed no 

significant differences between the strains, with the possible exception of inguinal 

tissue. Conversely, the addition of fat to the diet resulted in a significant increase in 

the weight of white adipose tissue from other depots in mice with CCL2 

overexpression. Notably, there was no effect on the weight of brown adipose tissue 

(Figure 6 and Supplementary Material S4). However, these differences among 

groups in adipose tissues weight disappeared when mice were fed with a high fat 

diet for 14 weeks. These results are probably indicating an already reported effect of 

adipose tissue remodelling on the consequences of high-fat dietary intake [37] 

(Supplementary Material S5). 

Figure 3. Overexpression of CCL2 with respect to wild type and knockout was observed in all selected 

tissues (extracts) in the transgenic mice as measured by ELISA. Differences were also observed in 

plasma and serum and there was cross-reactivity with similar chemokines that could explain the 

detection of CCL2 in KO mice (a). CCL2 was also detected by immunochemistry in different types of 

cells (b). 
*
P<0.005; Micrographs in the left column are representative for liver, pancreas, and kidney. 

Those in the right column were for brain, intestine, and stomach. 
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Figure 4. The effect of high-fat diet in body weight increase was evident in transgenic and wild-type 

mice ((a), (b)), but the different increase was immediate after dietary manipulation in transgenic. This 

effect was negligible in knockout mice (c). The combination of these effects with high-fat diet (d) 

shows similar results to facilitate comparison. These findings are not due to differences in the 

cumulative food intake ((e), (f)) indicating that CCL2 probably has no effect on appetite. 
*
P<0.05. 
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Figure 5. The size of the adipocytes was significantly higher in transgenic mice than in wild-type and 

knockout mice and the effect was observed with both dietary interventions regardless of the duration 

of the dietary treatment (6 or 14 weeks) (a) but it was more intense when mice were fed a high-fat 

diet. For clarity, values are indicated only for adipocytes in epididymal white adipose tissue. 

Representative micrographs are shown for transgenic, wild-type, and knockout animals ((b), (c) and 

(d), resp.) when fed a chow diet and for the corresponding animals fed a high-fat diet ((e), (f), (g)) at 

16 and 24 weeks’ old. 
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Figure 6. The effect of CCL2 expression in the weight of adipose tissue ((a)–(d)) of animals fed either 

chow (left column) or high-fat diet (right column). Of note, differences among strains were more 

evident during energy surplus and no change was observed in brown adipose tissue. 
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Diet-Induced Disturbances in Glucose and Lipid Metabolism  

Glucose tolerance tests (a proxy for insulin resistance) were unaffected in strains fed 

the chow diet during the experimental period of 6 weeks. However, WT littermates, 

KO, and transgenic mice displayed abnormal values when fed a high-fat diet, con 

firming the effect of diet in the pathogenesis of insulin resistance and suggesting 

that this short-term intervention is not adequate to investigate a possible 

disturbances. Moreover, there were no differences among the strains in the plasma 

glucose levels after 6 hours of fasting, and after 3 hours in the fasting state, we 

found that the plasma glucose baseline concentrations were significantly higher in 

CCL2 overexpressing mice with respect to CCL2 deficient animals. This effect was 

more evident in the transgenic mice (Supplementary Material S6) but differences in 

plasma glucose disappeared after 14 weeks of dietary treatment suggesting 

immature adipose tissue remodelling [38]. When these tests were performed in 

animals fed a high-fat diet for a longer experimental period of 14 weeks in which 

adipose tissue is already well modelled, the lack of differences in insulin tolerance 

was maintained, probably indicating that the effect of CCL2 overexpression in the 

pathogenesis of insulin resistance is negligible. However, results in the absence of 

CCL2 indicate that this chemokine may modify glucose metabolism and therefore we 

cannot discard the effects under a more intense metabolic stress [9]. Variations in 

plasma cholesterol and triglycerides concentrations were minimal among the strains 

at 16 weeks old. A high-fat diet significantly increased the amount of circulating 

cholesterol, an effect that was higher in CCL2 overexpressing mice. Conversely, there 

were unexpected and most likely not representative, changes in the plasma 

triglycerides concentration of these mice as a consequence of dietary manipulations 

(data not shown). 

The Influence of CCL2 and Dietary Manipulations in the Liver 

When fed the chow diet, mice did not display significant differences among strains in 

the appearance of their liver tissue. The steatosis scores did not detect significant 

differences among strains, although some minor variations were detected (Figure 7) 

that did not correlate with the hepatic lipid content (data not shown). When mice 

were fed a high-fat diet, we found a certain amount of lipid accumulation in WT 
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mice, but this lipid accumulation was significantly more evident in transgenic mice. 

Conversely, there was no accumulation of lipids in KO mice (Figure 7). Therefore, the 

effect of CCL2 under these conditions is directly related to the amount of tissue CCL2 

disposal; the absence of CCL2 prevents liver steatosis, and overexpression of CCL2 

predisposes the liver to steatosis. We also found that the expression of fatty acid 

synthase in the liver increased significantly in all strains when fed a high-fat diet, but 

there were no significant differences in the comparisons between transgenic and KO 

mice. We also explored the activating phosphorylation of AMP-activated protein 

kinase (AMPK), and values did not change as a result of high-fat diet in transgenic 

mice and were significantly higher in KO mice compared with transgenic mice 

(Supplementary Material S7). When the livers were examined for the presence of 

F4/80 antigen, a widely accepted marker of macrophages, we found that both 

dietary fat and overexpression of CCL2 modify the size, number and morphology of 

liver macrophages (Figure 8 and Supplementary Material S8). Of note, F4/80 stained 

cells were more frequent in KO mice, a finding that merits further study because 

these results could represent a change in function and could be responsible for the 

differential effects of CCL2 in liver steatosis. We then explored the influence of both 

CCL2 and diet in mitochondrial biogenesis. Based on the appearance of the matrix, 

the mitochondria are healthier in mice fed a chow diet than in those fed a high-fat 

diet. The matrix was also consistently less electron-dense in transgenic mice. We also 

found altered fusion dynamics. In transgenic mice fed a chow diet, the process was 

unbalanced towards mitochondrial fusion, but the dietary manipulation significantly 

elicited a shift towards fission. The changes were similar in WT mice, but the effect 

of diet was quantitatively less evident than in transgenic mice. In KO mice, however, 

there were more mitochondria per cell, and fusion and fission were correctly 

balanced and apparently not altered by differences in diet. These findings strongly 

support further mechanistic studies, which may link the expression of CCL2 with 

mitochondrial biogenesis, inflammation, and energy management. According to our 

results, these putative mechanisms are related to the autophagic response, which 

was clearly enhanced in transgenic mice. Conversely, most liver cells in WT and KO 

displayed no evidence of autophagy (Figure 9). 
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Figure 7. We found no significant differences among strains in the appearance of liver tissue when 

mice were fed a chow diet (left column (a), (c), (e); transgenic, wild-type, and knockout mice resp.). 

Representative micrographs show in the right column that a high fat diet produces steatosis in 

transgenic mice (b), dispersed lipid droplets in the liver of wild type mice (d), and no change in 

knockout mice (f). 
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Figure 8. Dietary fat (right column) and CCL2 expression modify the size, number, and morphology of 

liver macrophages with respect to those fed a chow diet (left column) as assessed with F4/80 staining. 

Values for stained area and length of macrophages ((a)–(d)) are illustrated with representative 

microphotographs from transgenic ((e), (f)), WT ((g), (h)) and KO mice ((i), (j)).  
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Figure 9. The appearance of mitochondria was affected by the dietary manipulation and the 

expression of CCL2 as shown in representative microphotographs (a) and these changes were 

accompanied by a significant effect in fusion-fission balance (b). The number of autophagosomes per 

cell was counted and was significantly higher in transgenic mice. Further, these were rare in both WT 

and KO and independent of diet (c). The heterogeneous nature of autophagic elements is illustrated 

in (d) (photographs obtained in transgenic mice). 

Transgenic Mice at Overexpress CCL2 Die Prematurely When Fed High-

Fat Diet 

The transgenic mice fed a high-fat diet died prematurely between 10 and 14 months. 

The mice progressively decreased activity, reduced food intake and the appearance 

of frailty became evident. There was also a casualty in the transgenic mice fed chow 

diet, but it was sudden, unexpected, and without a prior decrease in weight or 

activity. Among the casualties, one was also observed in the WT group fed a high-fat 

diet (Supplementary Material S9). A full autopsy was performed, and the cause of 

death was uncertain. There was neither cancer nor arteriosclerosis in these animals, 

but there were some cutaneous, superficial, and localised lesions in the skin 
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accompanied with local loss of hair. There was also no evidence of sepsis. The only 

remarkable findings were limited to the spleen and the liver. The size and weight of 

the spleen was consistently higher in the transgenic mice fed high-fat diet. The 

presence of splenomegaly in these transgenic mice was consistent with the presence 

of giant cells that were identified as megakaryocytes (Factor VIII positive staining) 

and other proliferative signs. The weight of the liver was also higher in the transgenic 

mice, which is most likely due to the higher presence of steatosis. In the liver, there 

were signs of regenerative cells and increased apoptosis. Ongoing studies with 

higher sample sizes and the inclusion of females have been designed to further 

ascertain this point. 

Bone Marrow Macrophages of Transgenic Mice: Expression of Selected 

Cytokines and mRNA 

The CCL2 mRNA expression in the bone marrow macrophages was higher in 

transgenic than in WT mice, irrespective of stimulation with either GM-CSF (M1, pro-

inflammatory) or M-CSF (M2, phagocytic). The mRNA expression of the selected M2 

markers was similar, with either low or undetectable expression in the GM-CSF 

macrophages without differences between transgenic and WT mice. The expression 

of the selected M1 markers was practically identical in the GM-CSF macrophages 

from TG and WT mice, with the notable exception of CCR7. Surprisingly, the 

expression of this chemokine receptor was significantly lower in TG mice, indicating 

lower pro-inflammatory activity. The expression of the M1 markers in M-CSF 

macrophages showed a unique and significant decrease in CCR2 mRNA expression; 

however, some M2 markers, including CD206, GAS6, and IGF1, were also 

underexpressed. IL-10 expression also decreased, but the differences were not 

statistically significant. The results suggest that CCL2 overexpression may alter 

macrophage polarisation. Consequently, the secretion of selected cytokines was 

examined in macrophages that were treated with LPS and were compared with the 

relevant controls. The CCL2 secretion was higher in TG mice with both treatments 

compared with the WT mice and was 2–4 fold higher (2–4-fold change) in M-CSF 

macrophages. The IL-10 secretion was clearly detectable only in LPS-treated animals. 

The concentration in the supernatant was higher in TG than in WT mice, and the 
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differences were statistically significant in GM-CSF macrophages. Finally, TNFa 

secretion was ostensibly higher in LPS-treated animals and significantly higher in TG 

mice with respect to the relevant controls (Figures 10 and 11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Relative mRNA expression in transgenic mice with respect to WT mice of selected markers 

for M1 and M2 macrophages in cells treated in vitro with either GC-MSF or M-CSF. Acronyms used 

were C-C chemokine receptor type 2 (CCR2), TNFa, Inhibin, beta A (INHBA), inducible nitric oxide 

synthase (iNOS), C-C chemokine receptor type 7 (CCR7), Egl nine homolog 3 (EGLN3), Arginase (ARG), 

EGF module-containing mucin-like hormone receptor EMR1 (F4/80), insulin growth factor-1 (IGF1), IL-

10, the mannose receptor CD206, and Growth arrest-specific 6 (GAS6).   
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Figure 11. The relative CCL2 mRNA expression (a) and the secretion in supernatants of selected 

cytokines in bone marrow-derived macrophages of transgenic and WT cells treated in vitro with 

either GC-MSF (b) or M-CSF (c). 
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Discussion 

The transgenic mice developed in this study systemically overexpress CCL2. These 

animals were created to assess the combined effect of the recruitment of circulating 

monocytes in all tissues and the response to the stimuli of high dietary fat and 

energy ingestion. The hypothesis was that the continuous overexpression of this 

chemokine could promote or worsen common pathological conditions, and as 

animal model could be useful for assessing the pathogenic mechanisms and 

therapeutic approaches [39].  

Fertility, growth, and physical appearance were identical to the controls. CCL2 

overexpression did not result in abnormalities in the mice that were fed a regular 

chow diet. However, adding fat to the diet during a short period of time caused 

differences in body weight, adipocyte size, disturbances in glucose and lipid 

metabolism, premature death, and liver alterations that included a higher 

predisposition to fatty liver disease and significant changes in mitochondrial 

biogenesis and autophagy. Additionally, we explored bone marrow macrophages 

under different in vitro conditions, and we found that CCL2 overexpression affects 

functional plasticity.  

In previous studies, CCL2 has been considered a chemokine secreted by adipose 

tissue (adipokine), but systemic CCL2 overexpression regulates white adipose tissue 

(WAT) mass and size without apparent effects in brown adipose tissue (BAT). WAT 

serves primarily as lipid storage, and BAT is used for heat generation. The balance 

between the two adipose tissues affects the whole-body energy homeostasis, and 

the development and severity of obesity [40]. A higher production of CCL2 is not only 

a consequence of obesity but is most likely an exacerbating factor of diet-induced 

alterations. The roles of CCL2 in the aetiology of obesity and diabetes, the regulatory 

mechanisms, and the effect of therapies that inhibit CCL2 production have been 

recently reviewed [4, 41]. We have also found differences between fat cells in 

different adipose tissue depots and the heterogeneity of adipocytes within the same 

depots. Further examination of this issue is necessary because a different pattern of 

gene expression could explain the differential development of various types of 
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adipose tissue [42, 43]. Moreover, this is closely associated with the pattern of fat 

distribution, the extent of obesity, and consequently the impact of different fat 

depots on the severity of metabolic complications [44, 45].  

The size and number of hepatic macrophages significantly differs between transgenic 

and KO mice when detected with antibodies directed against F4/80. Curiously, this is 

an extracellular antigen of unknown function that belongs to a subgroup of the G-

protein-coupled receptors [46]. The changes in macrophages morphology could 

represent concomitant changes in function and whether the macrophages are 

resident or recruited. This is further substantiated by the fact that these transgenic 

mice were prone to develop fatty liver disease and the KO mice were protected. The 

role of increased CCL2 is not yet understood, but the recruitment of macrophages 

seems to be important in different animal models. In KO mice there is an increased 

expression of peroxisome proliferator-activated receptors accompanied by the 

induction of fatty acid metabolism-related genes and the inhibition of pro-

inflammatory cytokine production [47–49]. We confirmed that the effect of fat in the 

pathogenesis of fatty liver disease [49, 50] is influenced by the amount of available 

CCL2 and that the linkage between chemokines and hepatic lipid metabolism is 

plausible.  

The characterisation of bone marrow-derived cells in the transgenic mice indicates 

that CCL2 overexpression affects the transition in the secretory function of 

macrophages (or the M1-M2 paradigm as a simplified descriptor of functional 

plasticity). This is illustrated by differences in GM-CSF and M-CSF, which are 

cytokines that differentiate macrophages in vitro with distinct morphology and 

inflammatory function [51, 52]. The modulation of the phenotypic and functional 

differences in macrophage polarisation by CCL2 overexpression denotes a shift 

towards lower pro-inflammatory activity [53]. CCL2 decreased the expression of 

CCR7 in M1 and decreased the expression of CCR2, IGF1, CD206, IL-10, and GAS6 in 

M2. In cells under LPS treatment, however, CCL2 overexpression increased the 

secretion of IL-10 and TNFa with respect to WT controls. These changes could 

represent a quantitatively determinant factor in the development of macrophage-

induced metabolic alterations. It should be highlighted that a high percentage of 
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total body resident macrophages are present in the liver and that adipose tissue is a 

major site for the accumulation of recruited macrophages [54, 55].  

Notably, CCL2 is involved, directly and/or through the induced metabolic alterations, 

in mitochondrial biogenesis and autophagy. We add CCL2 to the growing list of 

nonessential regulators of mechanisms that divide and fuse mitochondria [56]. The 

balance between rejuvenation and elimination of damaged mitochondria via 

autophagy is affected by both the presence of CCL2 overexpression and the 

increased availability of energy. The antagonistic and balanced activities of the fusion 

and fission machineries are constantly providing responses to inflammation to tightly 

regulate homeostasis of the organism [57, 58]. This is expected because 

mitochondrial diseases are associated with metabolic alterations. Apparently, there 

is a shift towards fusion in CCL2 overexpression to maximise ATP synthesis. 

Contrarily, morphological findings in CCL2 deficient mice, which are independent of 

high-fat diet, suggest a perfect balance [59, 60]. A certain unbalance is expected in 

inflammatory conditions and other energy-dependent disturbances via 

mitochondrial dysfunction [61, 62]. This is important because mitochondria and the 

access to energy (calorie restriction or increased dietary fat) play a pivotal role 

mediated by the mechanistic target of Rapamycin (MTOR) in deciding whether liver 

cells live or die [63]. 

In transgenic mice, autophagy was increased with respect to WT and KO mice, which 

is particularly important because autophagy affects immune responses as a result of 

degradative, biogenetic, and secretory activities that respond to various inputs via 

MTOR [64, 65]. Autophagy might control the infection of certain pathogens but also 

prevents excessive inflammatory reactions in the host [66]. As shown in autophagy-

deficient macrophages, autophagy removes a number of pro-inflammatory stimuli 

[67–69]. Therefore, increased liver autophagy during CCL2 overexpression could be 

interpreted as an e ort from the host to avoid the deleterious action of continuous 

inflammation. Links between autophagy and inflammation have also been found in 

immune functions affecting several diseases, opening a new dimension in the 

understanding of the multifactorial basis of non-communicable diseases. For 

example, increasing macrophage autophagy protects patients with advanced 
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atherosclerosis [70]. It has also been reported that CCL2 controls the extent of 

autophagy in human prostate cancer [71], and autophagy is pivotal for the survival 

and differentiation of monocytes [72].  

Finally, CCL2 overexpression resulted in premature death when combined with a 

high-energy intake. These findings require more extensive examination, and the 

cause of death remains obscure. Mice progressively lost interest in the environment, 

reduced activity, and their intake of food decreased. No chronic disease was evident, 

and there were no signs of sepsis or major infection. It is tempting to consider the 

possibility of premature aging, and future investigations will include the 

characterisation of a senescence-associated secretory phenotype, particularly in pro-

inflammatory cytokine enrichment [73] and the pro-inflammatory phenotype that 

accompanies aging [74, 75]. 

Conclusions, perspectives, and limitations  

This animal model raises a number of questions about the prevalent diseases 

responsible for limiting the quality of modern life. Additionally, this model provides a 

link between inflammation and metabolism and suggests targets for the 

management of diseases in which there is a clear CCL2 over- expression. Specifically, 

this model can help to uncover the role of CCL2 in mitochondrial dysfunction, 

autophagy, and functionality of macrophages and aging in combination with 

excessive energy intake. Information gained could be useful for designing new 

mechanism-based therapeutic strategies. None of the described effects appear in 

mice that are fed a regular diet, and this fact highlights the importance of calorie 

restriction for health. Therefore, the nutrient-sensing MTOR pathway seems to be 

crucial for the management of non-communicable diseases. Consequently, drugs 

modulating MTOR are obvious candidates for assessment. For example, experiments 

on cancer, aging, and viral infections strongly suggest that this is the case for 

metformin [76-78]. This anti-diabetic drug activates AMPK and inhibits MTOR with 

potent anti-inflammatory actions. The usefulness of rapamycin, an MTOR inhibitor, 

and similar drugs in cancer prevention has been assayed [79]. Aspirin decreases 

inflammation, inhibits the MTOR pathway, decreases cancer incidence, and may 

reduce the burden of atherosclerosis [13, 80]. Lastly, although studies are scarce, 
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angiotensin-II-blockers and beta-blockers, widely used in hypertensive patients, can 

also prevent the activation of the MTOR pathway and the incidence of chronic 

diseases [81]. The potential indications for these drugs are mostly related to chronic 

diseases in which inflammation plays a crucial role. This animal model could be used 

to further select candidates and suggests a number of mechanistic questions for 

future study. Particularly, we consider this model as a valuable contribution to our 

evolving comprehension of the interphase between autophagy and inflammation. 

However, we acknowledge that care must be taken in analysing the results of studies 

performed in animal models and that further research e ort is necessary to fully 

characterize our observations. To name a few, possible effects of sex should be 

studied and metabolic alterations should be confirmed with the use of metabolic 

cages and more specific methods to detect significant differences. Particularly, CCL2 

may have a higher influence if there is a relative contribution from different type of 

cells, particularly from immune cells [72]. 
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STUDY 3 
 

CCL2 and metabolic response: the role of the 

inhibition of CCL2/CCR2 axis 

Preliminary results 
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Background and aims 

There is a strong relationship between metabolism and immune system. Low-grade 

chronic inflammation is a consequence of a compromised management of excessive 

energy intake and represents a significant factor in the development of prevalent 

metabolic diseases such as obesity and NAFLD. Chemokines and its receptors are 

important factors for the interconnection between nutrient excess and derangements 

in immune system. These molecules play a crucial role in the inflammatory process 

through the recruitment of macrophages to metabolically compromised tissues and, 

consequently participate in the course of disease such as obesity, insulin resistance, in 

which inflammation is a key factor of its pathogenesis. For this reason, nowadays, 

chemokines and chemokines receptors have become attractive therapeutic targets. 

Accordingly, the aim of this study was to determine if the metabolic effects of a 

continuous and ubiquitous expression and secretion of CCL2 combined with energy 

surplus can be counteract by the absence of CCR2 (CCL2 receptor). 

Material and Methods 

Animal experimental models 

We carried out this study using the CCL2 transgenic model previously described, and 

designed by our group using standard methods and proprietary technology from 

Ozgene (Bentley, WA, Australia). We also provide data from a novel animal model, a 

double genetically modified mouse, CCL2 overexpressor and CCR2 knockout mice. 

This strain was obtained by inbreeding CCL2 transgenic and CCR2 knockout mice. 

Finally, as controls, we used CCL2 knockout mouse conveniently backcrossed and 

purchased from Jackson Laboratory (Sacramento, CA, USA). They were housed under 

standard conditions and given a regular chow diet and water ad libitum until 

experiments began. To explore dietary effects, at 10 weeks of age, littermates for 

each model were equally and randomly assigned to two dietary groups (n=8); one fed 

with the regular chow diet (Teklad rodent diet; Harlan, Barcelona, Spain) and the 

other fed with a high-fat diet (FuttermittelfurMaüse; SSniff spezial diaten, Soest, 

Deutschland).  
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Sample collection  

Blood was also obtained at the moment of sacrifice and collected into tubes 

containing EDTA. The relevant tissues were removed, flash-frozen and stored at 80°C 

until further analysis. 

Histology 

Microscopic examination was performed on the liver and epididymal adipose tissue. 

Tissues were removed, fixed for 24h in 4% phosphate-buffered formalin at room 

temperature, processed and embedded in paraffin for histological analyses. The area 

of adipocytes was quantified using AnaliSYS software (Soft Imaging System, Munster. 

Germany). The corresponding fractions of the liver were sectioned and stained with 

hematoxylin and eosin and steatosis was evaluated by estimating the percentage of 

area covered by fat droplets. Finally, sections of liver were used to detect F4/80 (rat 

anti-mouse macrophages/monocytes; Serotec, Oxford, UK). Images were acquired, 

and results were analysed with AnaliSYS software.  

Western Blot analysis 

Liver samples were weighted and homogenized in 5 ml/g of lysis buffer (20 mM Tris–

HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% CHAPS, 1 mM Pefabloc and 1% 

phosphatase inhibitor cocktail no. 2, all from Sigma–Aldrich Inc., Steinheim, Germany) 

using the Precellys 24 system (Bertin Technologies, France). Protein concentration 

was determined by 2D Quant kit (GE Healthcare, Piscataway, NJ, USA). After SDS-

PAGE, gels were transferred to nitrocellulose membranes using the iBlot transfer 

system (Invitrogen, Barcelona, Spain). Detection antibodies were rabbit anti-AMPK 

(2532, Cell Signaling Tech., Danvers, MA, USA) and rabbit anti-pAMPK (2531, Cell 

Signaling Tech.) The secondary antibody was goat anti-rabbit-HRP (Dako, Glostrup, 

Denmark). Chemiluminescent detection was performed using the ECL Advance 

Western Blotting Detection kit (Amersham, GE Healthcare, Barcelona, Spain), and 

membranes were analysed in Chemidoc system (Bio-Rad, Madrid, Spain). 

Densitometric quantification of the immunoblotted membranes was performed with 

Image Lab software (Version 2.0 build11, Bio-Rad Laboratories).  
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Statistical analysis 

Data were compared using Mann-Whitney tests. GraphPad Prism 5.03 software 

(GraphPad, San Diego, CA) was used to perform all statistical analyses. Unless 

otherwise indicated, values are expressed in mean ± SEM. A p-value <0.05 was 

considered statistically significant. 

Results 

Effects on body weight, food intake and on adipose tissue 

When mice were fed a regular chow diet we did not observe significant differences in 

body weight increase neither in cumulative food intake among groups. In contrast, 

when fed a high fat diet, CCL2 overexpression induced weight gain and the absence of 

CCR2 in transgenic mice as well as the lack of CCL2 in control mice protects them from 

the development of obesity. There were not any significant differences in food intake; 

hence differences can be attributed to the presence of CCL2 (Figure 1).  

 

 

Figure 1. Body weight gain and cumulative food intake in mice fed either chow diet or high-fat diet. 

*p<0.05 for differences between groups.  
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Overexpression of CCL2 increased the size of epididymal adipose tissue adipocytes, 

independently of the caloric content of the diet. The adipocyte size was higher in 

CCL2 transgenic mice compared with knockout mice. The differences are higher when 

mice were fed a high-fat diet (Figure 2). 

Moreover, at the moment of sacrifice, selected types of adipose tissue depots were 

weighed. When mice were fed the regular diet we did not observe significant 

difference between the strains. However, high caloric intake combined with CCL2 

overexpression resulted in a significant increase of all adipose tissue depots. Knockout 

mice fed a high-fat diet also showed higher adipose tissue weight compared to chow 

diet fed mice but this increase was significantly higher in transgenic animals (Figure 

3).  

The influence of CCR2 absence in dietary manipulations in the liver 

We found no significant differences among strains in the appearance of liver tissue 

when mice were fed a chow diet. However, when mice where fed a high-fat diet, the 

hepatic lipid content correlated with the expression of CCL2, in other words, we 

found significantly high amount of lipid accumulation in the liver of transgenic mice, 

conversely, the absence of CCR2 or CCL2 prevented liver steatosis (Figure 4). 

In addition, we also explored the activating phosphorylation of AMP-activated protein 

kinase (AMPK) (Figure 5). We did not find differences among strains when they were 

fed a regular diet. However, interestingly, the lack of CCR2 or CCL2 combined with a 

high-fat diet induced the activation of this protein. In transgenic mice, values did not 

change as a result of high-fat diet intake. 

Finally, when F4/80 immunostaining was assessed (Figure 6), the number of F4/80 

stained cells was higher in knockout mice than in the transgenic model in both dietary 

interventions. This could represent that the overexpression of CCL2 could affect 

macrophage function and could be related with the differences in the presence of 

liver steatosis. 
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Figure 2. Epidydimal adipose tissue adipocyte size. Representative micrographs are shown for 

transgenic and knockouts animals (A, B and C, respectively) when fed a chow diet (left column) or high-

fat diet (left column). Adipocyte area quantification (D) revealed that CCL2 overexpression increased 

adipocyte size independently of the administered diet. 
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Figure 3. Adipose tissue depots weight in animals fed either chow diet (left column) or high-fat diet 

(right column). Of note, differences among strains were significantly evident with an energy surplus. 
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Figure 4. Appearance of liver tissue. Representative micrographs are shown for transgenic and 

knockouts animals (A, B and C, respectively) when fed a chow diet (left column) or high-fat diet (left 

column). 
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Figure 5. Activation of AMPK in the liver. We did not observe any difference when mice fed chow diet 

(A, C). However, the absence of CCR2 or CCL2 combined with energy surplus activated AMPK by 

increasing pAMPK expression in the liver (B, D).  

 

 

Figure 6. Quantification of macrophage infiltration in the liver. The lack of CCR2 or CCL2 increases the 

number of liver macrophages in both dietary groups. 
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Obesity, described by the WHO as the “epidemic of the XXI”, has become the 

greatest worldwide public health concern [3]. The demographic, economic and 

epidemiological changes, resulting in unfavorable diets and in the decrease of 

physical activity, have driven to globally and alarming increase of its prevalence in 

both adults and children [19].  

The consequences of obesity are many and diverge from higher risk of premature 

death to numerous health disorders such as T2DM, cardiovascular disease, NAFLD, 

some types of cancer, and a number of psychiatric disorders [25, 39]. 

NAFLD is an important comorbidity of obesity and is recognized worldwide as the 

most common cause of chronic liver disease in adults and children and its incidence 

and prevalence are constantly increasing [96, 101]. Furthermore, NAFLD is not a 

simple disease; it includes a spectrum of hepatic abnormalities which extends from 

simple steatosis without inflammation to NASH, a pathological entity associated with 

an increased risk for developing more serious diseases such as cirrhosis, liver failure 

and hepatocellular carcinoma [99]. 

Traditionally, obesity has been associated with NAFLD prevalence. Many studies 

claim that NAFLD prevalence may be greater than 90% in the presence of morbid 

obesity (BMI above 40) [87, 315]. However, this relationship between liver steatosis 

and obesity is not an absolute one. Some studies have shown that, although less 

prevalent than in obese patients, both NAFLD and NASH could be observed in 

individuals with a BMI in a normal range [316, 317]. Moreover, in our morbidly obese 

cohort the degree of steatosis was widely distributed and notably, steatosis was 

predominantly mild. More interestingly, a significant number of patients with 

extreme obesity never developed NAFLD and other liver alterations such as portal 

and/or lobular inflammation and fibrosis were primarily benign. For this reason, we 

aimed to better understand the pathogenesis of NAFLD searching for metabolic 

differences between these two groups, morbidly obese patients with and without 

steatosis.  

The results showed that patients with steatosis presented alterations in the 

metabolism of carbohydrates and lipids and liver damage compared to the group of 
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individuals without steatosis. Accordingly, understanding the pathogenesis of NAFLD 

could be useful to identify biomarkers of disease progression and to clarify the 

effects and limitations of therapeutic regimes. Furthermore, new findings regarding 

the involvement of specific metabolic pathways could provide important potential 

targets for future therapeutic interventions. However, more studies are needed to 

achieve a reduction in morbidity and mortality from this disease. 

Given the risk of progressive liver disease in obese patients, the significant number 

of individuals which are asymptomatic until their liver begins to fail and also the 

association between NAFLD with an increase of all-cause mortality, an early 

prognosis and an accurate diagnosis and staging of the disease has become an 

important health challenge [88].  

Nowadays, although there are no clear recommendations whether liver biopsy is 

necessary to confirm the diagnosis of NAFLD, it still represents the gold standard to 

distinguish the different stages of fatty liver disease. However, it has several 

drawbacks because it is invasive, painful and a costly procedure associated with 

sampling error and variability. Moreover, the high prevalence of NAFLD in the 

general population make liver biopsy unsuitable as a diagnostic procedure, in other 

words, it is not practical to perform liver biopsy in all patients to screen for NAFLD or 

NASH. These shortcomings and limitations of liver biopsy highlight the great need to 

find a non-invasive method for the assessment of NAFLD [142]. 

Some data indicated that the use of some non-invasive imaging technologies such as 

proton magnetic resonance spectroscopy can be useful in the assessment of hepatic 

steatosis and could help to minimize the frequency of liver biopsy. However, the 

uses of these methods are limited by high costs, restricted availability, and morbidly 

obese patients usually did not fit into the apparatus [143, 145, 146].  

On the other hand, liver enzymes, including alanine aminotransferase (ALT), 

aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT), are well 

recognized as liver injury markers and these liver biochemistries are performed 

widely. However, in regard to NAFLD these laboratory data remain controversial 

[318-320]. As an example, serum ALT is generally used as the population-wide 
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screening test to diagnose NAFLD. In contrast, Chalasani et al. elucidated that this 

measure is not accurate as patients with NAFLD or even advanced NASH and 

cirrhosis can exhibit ALT levels within the normal ranges [154]. In our study, we also 

corroborated these results; ALT could not differentiate between the different grades 

of steatosis and exhibited the worst performance when it was tested to discriminate 

between patients with or without steatosis. Moreover, despite several years of 

research, there is no clear evidence in the literature that any sophisticated 

algorithms of available biomarker are good enough to avoid liver biopsy [321, 322]. 

For these reasons, a great effort is now being made toward the identification and 

validation of novel biomarkers to assess NAFLD and NASH. 

Metabolomics, the study of part or the entire set of small molecules in a biological 

sample, has emerged as a powerful tool for discovering novel biomarkers. One of the 

most important advantages of metabolomics technologies is that they can be used 

to identify a unique “metabolic signature” of disease through the detection of the 

changes in metabolite levels [160, 323].  

Metabolomics has already identified new biomarkers for prostate cancer [324], 

Parkinson’s disease [325] and type 2 diabetes mellitus among other important 

chronic diseases [326, 327]. Moreover, metabolomics technologies have recently 

provided some important insights into the pathogenesis of NAFLD [328-330]. 

However, these studies had some limitations such as a small sample size and not 

detailed models. 

 

Accordingly, to address the urgent need for identification of novel diagnostic 

biomarkers which could facilitate the diagnosis and the treatment of NAFLD, we 

performed a metabolomics analysis of the plasma comparing obese patients without 

steatosis with their affected counterparts to obtain a comprehensive view of 

changes in several metabolic pathways and to identify disease-related patterns and 

biochemical perturbations.  

Mechanisms responsible for fatty liver are still not fully elucidated but decreased 

capacity to oxidize fatty acids, increased delivery and transport of FFAs into the liver  
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and augmented hepatic fatty acid synthesis are likely to play a significant role in the 

pathogenesis of NAFLD and resulted in acquired mitochondrial dysfunction. 

Mitochondrion plays an important role in hepatocyte metabolism, being the primary 

site for the oxidation of fatty acids and oxidative phosphorylation. NAFLD affects 

mitochondrial metabolism and metabolic pathways which can lead to perturbations 

in citric acid cycle [122]. Our exploratory study showed that lean controls exhibited 

significantly lower a-ketoglutarate plasma levels than obese patients and also the 

values were significantly higher in patients with steatosis compared with those 

without this lipid accumulation. Thus, we proposed plasma a-ketoglutarate as a 

potential diagnostic biomarker with higher predicted accuracy than commonly used 

laboratory tests which resulted not appropriate for clinical decisions. Thereby, 

monitoring mitochondrial function by the quantification of mitochondrial metabolite 

levels provided new insights into NAFLD pathophysiology. 

The handling of fat and/or excessive energy intake not only leads to mitochondrial 

dysfunction but also encompasses the linkage of inflammation to the deleterious 

effects of the continuous excessive food consumption.  

During the last decades, a high number of studies have come out demonstrating that 

immunity and metabolism are closely interconnected owing to inflammation is a key 

factor of the pathogenesis of several metabolic disorders such as obesity, insulin 

resistance and NAFLD [200]. 

Chemokine and their receptors, key mediators of inflammatory and immune cell 

trafficking, are involved in the maintenance of metabolic homeostasis and, 

consequently, have made a name for themselves as pleiotropic molecules involved in 

a range of physiological as well as pathological processes [230]. The importance of 

chemokines and their receptors has been appreciated in the research from multi-

disciplinary backgrounds and the development of new therapeutic agents directed 

against chemokines or their receptors with proven effectiveness in the treatment of 

prevalent diseases [248, 331]. Thus, chemokines and their receptors are poised to 

make substantive impacts as both biomarkers and the basis for novel pharmaceutical 

strategies for human disease. 
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Accordingly, to better understand the pathogenesis of metabolic diseases and to 

propose novel therapeutic approaches, we created a novel animal model which 

overexpresses CCL2 in all tissues to assess the low-grade chronic inflammation in 

response to an excessive energy intake.  

Many studies have demonstrated the role of CCL2 in obesity, diabetes and fatty liver 

due to its influence in the regulation of energy metabolism [252, 267]. Moreover, it 

has been reported the involvement of inflammation in mitochondrial function and 

autophagy [237, 261]. 

Using this model we could corroborate that the overexpression of CCL2 combined 

with a high fat diet predisposes to obesity and causes differences in adipocyte size, 

disturbance in glucose and lipid metabolism, premature death and liver alterations 

such as fatty liver and changes in mitochondria biogenesis and autophagy. 

Moreover, this overexpression affects macrophages function and plasticity. Thus, 

these preliminary data contribute to the knowledge about the relationship between 

inflammation and metabolism and suggested some mechanistic questions for future 

studies as well as possible therapeutic targets such as AMPK and MTOR. These two 

proteins play an important role in energy homeostasis through several pathways and 

could be crucial in the management of prevalent metabolic disorders. 

As stated above, the modulation of the chemokine system arises as an attractive 

target for the treatment of inflammatory diseases. Moreover, studies with mice 

lacking specific chemokine ligand or receptor and/or pharmacological inhibitions of 

them have begun to provide new insights into the consequences of the management 

of diseases with an inflammatory background [231, 266].  

CCL2 or CCR2 deficient mice are less predisposed to develop obesity and its related 

comorbidities; they display an improvement of insulin sensitivity, glucose tolerance, 

adiponectin expression and an attenuated expression of pro-inflammatory markers 

in different tissues. Moreover, the lack of these proteins ameliorated the presence of 

hepatic steatosis although fed a high-fat diet [248, 249]. All these results have driven 

to the development of CCR2 antagonists. 
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Hence, in order to determine if the deleterious metabolic effects caused by a 

continuous and ubiquitous overexpression of CCL2 combined with energy surplus 

could be counteract by the absence of CCR2, we created another animal model. In 

that case mice overexpressed CCL2 but, at the same time, they were CCR2 deficient.  

This novel animal model showed less body weight gain, lower adipocyte size as well 

as less weight of adipose tissue depots. So, the absence of CCR2 prevented the 

development of obesity observed in the CCL2 overexpressor mice. Moreover, the 

absence of CCR2 also ameliorated hepatic steatosis probably by the activation of key 

proteins in energy metabolism such as AMPK and modulating macrophage function. 

So we could conclude that, as expected, all metabolic disturbances observed in the 

overexpressor model could be reverted by the inhibition of CCL2/CCR2 axis biologic 

function.  

All this information could be really important to establish CCR2 modulators as a new 

class of therapeutic agents for the management of prevalent metabolic disease such 

as obesity, diabetes, insulin resistance and NAFLD. Actually, some CCR2 antagonists 

such as INCB-3344, RS-504393, TEI-KO3134 among others, have been patented by 

many companies and many of them are in the last stages of clinical trials with 

promising results [332, 333].  
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ü The metabolic imbalance caused by obesity and NAFLD affects mitochondrial 

function and it can be detected in plasma metabolomics profile. Hence, 

monitoring mitochondrial function via the quantitative evaluation on 

mitochondrial metabolite abundances may be an important new avenue of 

research in obesity-related NAFLD. 

 

ü Plasma a-ketoglutarate as a surrogate biomarker of NAFLD is superior to common 

liver function tests in obese patients. Therefore, the measurement of this 

biomarker may potentiate the search for a therapeutic approach, may decrease 

the need for liver biopsy and may be useful in the assessment of disease 

progression.  

 

ü Overexpression of CCL2 in combination with excessive energy intake leads to a 

wide spectrum of metabolic disorders such as obesity, hepatic steatosis and 

mitochondrial dysfunction and also the manipulation of macrophage plasticity 

and autophagy.  

 

ü CCL2 or CCR2 inhibition could counteract these metabolic abnormalities 

becoming an interesting target for the design of new therapeutic strategies. 
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ORIGINAL ARTICLE

Mapping of the circulating metabolome reveals

α-ketoglutarate as a predictor of morbid obesity-associated

non-alcoholic fatty liver disease
E Rodríguez-Gallego1, M Guirro1, M Riera-Borrull1, A Hernández-Aguilera1, R Mariné-Casadó1, S Fernández-Arroyo1, R Beltrán-Debón1,

F Sabench2, M Hernández2, D del Castillo2, JA Menendez3, J Camps1, R Ras4, L Arola5,6 and J Joven1,6

BACKGROUND: Obesity severely affects human health, and the accompanying non-alcoholic fatty liver disease (NAFLD) is

associated with high morbidity and mortality. Rapid and non-invasive methods to detect this condition may substantially improve

clinical care.

METHODS: We used liquid and gas chromatography–quadruple time-of-flight–mass spectrometry (LC/GC-QTOF-MS) analysis

in a non-targeted metabolomics approach on the plasma from morbidly obese patients undergoing bariatric surgery to gain

a comprehensive measure of metabolite levels. On the basis of these findings, we developed a method (GC-QTOF-MS) for the

accurate quantification of plasma α-ketoglutarate to explore its potential as a novel biomarker for the detection of NAFLD.

RESULTS: Plasma biochemical differences were observed between patients with and without NAFLD indicating that the

accumulation of lipids in hepatocytes decreased β-oxidation energy production, reduced liver function and altered glucose

metabolism. The results obtained from the plasma analysis suggest pathophysiological insights that link lipid and glucose

disturbances with α-ketoglutarate. Plasma α-ketoglutarate levels are significantly increased in obese patients compared with

lean controls. Among obese patients, the measurement of this metabolite differentiates between those with or without NAFLD.

Data from the liver were consistent with data from plasma. Clinical utility was assessed, and the results revealed that plasma

α-ketoglutarate is a fair-to-good biomarker in patients (n= 230). Other common laboratory liver tests used in routine application

did not favourably compare.

CONCLUSION: Plasma α-ketoglutarate is superior to common liver function tests in obese patients as a surrogate biomarker

of NAFLD. The measurement of this biomarker may potentiate the search for a therapeutic approach, may decrease the need

for liver biopsy and may be useful in the assessment of disease progression.

International Journal of Obesity advance online publication, 22 April 2014; doi:10.1038/ijo.2014.53

Keywords: biomarker; citric acid cycle; energy; oxoglutaric acid; mitochondria; steatosis

INTRODUCTION

Obesity severely affects human health. The number of adults with
morbid obesity (that is, a body mass index (BMI)⩾ 40 kgm− 2) is
increasing, and the prevalence of obesity (>30% in some
countries) is unacceptably high. Moreover, the incidence of
obesity is increasing among children, and obesity-associated
premature mortality rivals that of smoking.1–4

Morbidly obese patients undergoing bariatric surgery share a
common metabolic background and similar environmental
factors. We assume that possible genetic differences among these
particular obese patients are likely negligible. Non-alcoholic fatty
liver disease (NAFLD) is no longer a benign condition and is now
considered an important co-morbidity in these patients.5–7 The
prognosis is pessimistic because of the risk of progressive liver
disease (for example, non-alcoholic steatohepatitis, fibrosis,
cirrhosis, liver failure and hepatocarcinoma).8 There is a great
need for NAFLD biomarker discovery because it is often difficult to
determine when a liver biopsy is appropriate. A significant number

of individuals are asymptomatic until their liver begins to fail, at
which point conventional treatments are useless.
Current laboratory tests are insufficient and unreliable for the

determination of NAFLD presence. Previous estimates using
common liver function tests in the plasma, such as the
determination of alanine aminotransferase levels, suggest that
the prevalence of NAFLD should be nearly 100% in obese
patients.9 Evaluation by proton magnetic resonance spectroscopy
is expensive and is currently being refined,10 and patients of this
size did not typically fit into the apparatus. However, the use of
liver biopsy revealed in our patients that a significant portion did
not display fatty infiltration of hepatocytes. In this study, we aimed
to better understand NAFLD pathogenesis in obesity and to
identify a non-invasive metabolite biomarker.
We hypothesised that the excess in energy intake alters

anabolic and catabolic functions, especially in the liver, which
may be detected in a plasma metabolomic profile. We used non-
targeted metabolomics to compare obese patients without
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steatosis with their affected counterparts to identify differences
between these groups. We expected numerous and low
differences among the measured metabolites, which may explain
the lack of previous metabolomics-based testing for these
diseases.11 However, post hoc analysis and further quantification
resulted in the qualification and verification of the plasma
α-ketoglutarate concentration as a good indicator of NAFLD in
obese patients.

MATERIALS AND METHODS

Participants

Our local ethics committee approved the study protocol, and written
informed consent was obtained from the participants (EPINOLS/12-03-
29/3proj6). Patients fulfilling the criteria established for morbid obesity
(BMI⩾ 40 kgm− 2), for which bariatric surgery was indicated after
numerous failed attempts to lose weight using non-surgical means, were
recruited from the outpatient clinic between 2006 and 2012. We first
conducted a non-targeted metabolomic analysis in a limited group of
patients with or without steatosis (n=15 in each group). Steatohepatitis,
fibrosis and hepatocyte injury in these patients were histologically ruled
out. These samples were sent to Metabolon Inc. (Durham, NC, USA) for
analyses. No differences in the quality of life were observed between the
groups, and the selected patients did not consume alcohol or any
prescribed medication that could alter liver function, including vitamin
supplements. The results of these non-targeted preliminary analyses
prompted us to qualify and verify plasma α-ketoglutarate as a candidate
biomarker to identify NAFLD in obese patients. For this purpose, we
recruited 230 patients in which the only inclusion criterion was application
for bariatric surgery, thus including a wide variety of conditions likely to be
encountered in clinical practise. Blood was obtained immediately before
surgery and after clinical nutrition evaluation. Portions of the liver were
obtained during the surgical procedure after patient consultation to
minimise risks and to limit the variability based on location of biopsy.12

Bio-banked samples (n=54) from a group of age- and sex-matched lean,
healthy controls (BMIo24 kgm− 2)13 were used to assess differences in
plasma α-ketoglutarate levels between lean and obese patients. Dietary
advice and standardised overnight fasting were implemented to ensure
uniformity and consistency. Plasma aliquots were anticoagulated with
EDTA and were frozen at − 80 °C within 2 h after collection.

Clinical data and analytic measurements

Relevant data were extracted from clinical records or were obtained using
standardised guidelines and routine laboratory methods.14 The BMI was
calculated as the weight in kilograms divided by the height in metres
squared. Histological alterations in the liver biopsies were evaluated in
sections stained with haematoxylin and eosin. The degree of steatosis was
evaluated using image analysis software and was expressed as percen-
tages (AnalySIS image software system, Soft Imaging System, Munster,
Germany). Patients were considered free of steatosis when values were
⩽ 5%. Patients with steatosis were arbitrarily classified as mild: 6–30%;
moderate: 31–60%; and severe: >61%.8,15 Portions of the liver biopsies
were also used to measure α-ketoglutarate in tissues from patients with or
without steatosis (n= 6 in each group). The shape and size of mitochondria
were determined in portions of the liver using standard transmission
electronic microscopy (n= 3 in each group).

Non-targeted metabolomic platform

Specimens. Samples outsourced to Metabolon’s laboratory were
extracted upon arrival. The instrument and overall process variability was
4% and 9%, respectively.

Chromatography. Chromatographic conditions have been previously
described.16 In brief, the liquid chromatography–mass spectrometry
(LC–MS, LC–MS2) platform was based on a Waters ACQUITY UPLC (Waters
Technologies, Milford, MA, USA) and a Thermo-Finnigan (San Jose, CA,
USA) LTQ mass spectrometer, which consisted of an electrospray ionisation
source and a linear ion-trap mass analyser. The MS analysis alternated
between MS and data-dependent MS2 scans using dynamic exclusion. The
samples for gas chromatography/mass spectrometry (MS) analysis were
derivatised and analysed on a Thermo-Finnigan Trace DSQ fast-scanning
single-quadrupole mass spectrometer using electron impact ionisation.

Metabolites were identified using a reference library of ~ 2800 standard
chemical entries that included retention times, mass (m/z) and MS or MS2

spectra.

Quantitative measurement of plasma α-ketoglutarate using gas
chromatography–quadrupole time-of-flight mass spectrometry
analysis

Sample pre-treatment. This method was developed in our laboratory.
A surrogate standard was added to maximise technical precision during
the injection and recovery during the extraction procedure. We used
deuterated succinic acid (Isotec Stable Isotopes, Miamisburg, OH, USA)
rather than deuterated α-ketoglutarate, which readily exchanges
deuterium.17 A solution of deuterated succinic acid (25 μl, 2 mg l− 1) was
added to aliquots of plasma that were thawed on ice at 4 °C (50 μl),
deproteinised with 400 μl of methanol, mixed using a vortex (2 min) and
centrifuged (15 000 g, 15 min, 4 °C). The supernatant was dried and stored
at − 80 °C. Samples were derivatised using 30 μl of methoxyamine
hydrochloride in pyridine (30 mg ml− 1) and incubated 1.5 h at 37 °C with
agitation. Then, 30 μl of N-methyl-N-(trimethylsilyl) trifluoroacetamide
(Sigma-Aldrich, Steinheim, Germany) was added with shaking and further
incubated in darkness for 1 h before analysis. We found this derivatisation
step to be a reproducible and robust method, independent of the matrix
and without appreciable losses in yield that minimised the loss of
α-ketoacids to decarboxylation.18 A calibration curve of α-ketoglutaric acid
(Fluka, St Gallen, Switzerland) was prepared (0–82.5 μM) immediately
before each assay.

Chromatographic analysis. Samples (1 μl) were automatically injected onto
a 7890A gas chromatograph coupled to a 7200 quadrupole time-of-flight
mass spectrometer (Agilent Technologies, Santa Clara, USA) equipped with a
J&W Scientific (Folsom, CA, USA) HP5-MS column (19091S-433). Helium was
used as a carrier gas at a flow rate of 1.5 ml min−1 in constant-flow mode.
The oven programme was set at an initial temperature of 70 °C that was
increased to 190 °C at a rate of 12 °C min−1 followed by an increase to 325 °
C at a rate of 20 °C min− 1 and a final hold at 325 °C for 3.25 min. Ionisation
was performed using electronic impact with an electron energy of 70 eV and
an emission intensity of 35 μA. Raw data were processed using MassHunter
B.05.00 (Agilent Technologies). Plasma α-ketoglutaric acid was quantified
using a target ion and was identified using qualifier ions and the retention
time. The molecular weight of the derivatised molecule, retention time,
quantifier and qualifier ions, relative abundance, recovery, accuracy,
precision and additional pertinent results are provided in Supplementary
Figure S1. The limit of detection was 0.001 μM. Instrumental reproducibility
was 2.2%. Standard curves for the analysis were reproducible and displayed
R2 values of ⩾ 0.99, which indicated linearity over the measured
concentration range; we did not detect carryover.

Statistical analysis

Significantly altered metabolites, which were corrected for multiple testing,
were defined using a P-value o0.05 and a predesigned false discovery
rate.19 We performed Welch’s t-tests and/or Wilcoxon’s rank sum tests for
pairwise comparisons. A repeated measurement analysis of variance was
used in some instances. We used multivariate statistics to improve the
refining and distilling of complex raw data and for pattern recognition.
Random Forests is a supervised classification technique based on an
ensemble of decision trees.20 This method provides an unbiased estimate
of how well one can predict sample classes in a new data set (prediction
accuracy) and a selection of variables that make the largest contributions
to the classification. We also used linear discriminant analysis as a classical
method of classification and principal component analysis as an
unsupervised data analysis, which measures the innate variation in data
sets. Ingenuity pathway analysis, which is a web-based functional analysis,
was used to explore biomolecular interaction networks to identify the
signalling and metabolic pathways and to compare the affected pathways.
Fisher’s exact test was used to calculate a P-value to determine the
probability of the association between the metabolites and the canonical
pathway. The network score was based on the hypergeometric distribution
and was calculated using the right-tailed Fisher’s exact test. Logistic
regression analysis and receiver operator characteristic curves described
and assessed the binary classification.11,21 The employed statistical
software included the program ‘R’ (http://cran.r-project.org) and the SPSS
18.0 package (IBM, Madrid, Spain).

α-Ketoglutarate and fatty liver disease

E Rodríguez-Gallego et al

2

International Journal of Obesity (2014) 1 – 9 © 2014 Macmillan Publishers Limited

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



RESULTS

Plasma metabolites and obesity-related liver steatosis

Raw data. The baseline characteristics of the selected patients,
raw data and an exhaustive list of the measured metabolites in
untargeted metabolomic analyses are shown in Supplementary
Tables S1 and S2. Most patients were female (73%) and BMI
values ranged between 43.1 and 52.1 kg m− 2. Patients with
steatosis showed significantly higher plasma cholesterol and
triglyceride concentrations than those without steatosis. Com-
mon liver function tests revealed higher values in patients with
steatosis, but significance was only reached for γ-glutamyl
transpeptidase (Supplementary Table S1). We identified 316
metabolites of which 38 were significantly different between
groups. Finally, 19 metabolites with the highest statistical
difference were chosen using more stringent conditions for
further consideration (Supplementary Figure S2). The relative
abundance of perturbations in amino acids and lipid metabolism
are shown in Figure 1a.

Interpretation. The citric acid cycle is the most important
metabolic pathway for the energy supply and connects most
metabolic pathways. The following alterations support the idea
of defective liver function: (1) the levels of all three branched-
chain amino acids (leucine, isoleucine and valine) were
significantly increased in patients with steatosis; and (2) the
levels of branched-chain keto acids (3-methyl-2-oxobutyrate,
3-methyl-2-oxovalerate and 4-methyl-2-oxopentanoate) were

slightly elevated in the plasma from patients with steatosis.
Steatosis may also sequester fatty acids from β-oxidation in liver
cells using an alternative energy source, as shown by significant
decreased levels of 3-hydroxybutyrate and a significant increase
in the concentration of plasma α-ketoglutarate and succinylcar-
nitine in patients with steatosis. The mechanisms of lipolysis and
gluconeogenesis appear to be affected (Supplementary Figure S3).
Glucose metabolism is also altered in patients with steatosis. The
significant decrease in the concentration of plasma 1,5-anhydro-
glucitol in these patients probably indicates long-term higher
hyperglycaemia. In addition, hyperglycaemia-induced oxidative
stress is likely in patients with steatosis, as indicated by the
increased plasma levels of bradykinin and des-Arg9-bradykinin.
The plasma level of the dicarboxylic acid 2-hydroxybutyrate
(α–hydroxybutyrate), which is an early marker for impaired
glucose regulation, was also significantly increased. Plasma
glycocholate and taurocholate concentrations were higher in
patients with steatosis, which indicates that the damaged
livers were not functioning properly in the uptake of these
compounds. The excretion of steroids is also limited in liver
steatosis because these compounds are not effectively
sulphated, which was indicated by significantly lower plasma
levels of sulphated steroids (that is, 4-androsten-3β, 17-β-diol
disulphate 1, 4-androsten-3β, 17-β-diol disulphate 2, 5α-andro-
stan-3β, 17β-diol disulphate, 5α-pregnan-3β, 20α-diol disulphate,
pregnen-diol disulphate, pregnen steroid monosulphate,
andro steroid monosulphate 2 and 21-hydroxypregnenolone
disulphate).

Figure 1. (a) Heat map of the relative plasma concentration of selected metabolites that may distinguish obese patients with or without
steatosis (green, lower; red, greater). (b) Random (decision) Forest analysis was used as implemented in the R package software as a
framework to create a large number of particular models built around the presence or absence of steatosis.
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Pattern recognition

Random Forest analysis resulted in a predictive accuracy of >80%
to distinguish patients with or without steatosis and revealed
plasma α-ketoglutarate as the primary differentiator in a ranked
list of metabolites in order of their importance in the classification
scheme (Figure 1b). The application of linear discriminant analysis
and principal component analysis yielded similar results for
group clustering and pattern recognition (Figure 2), and logistic
regression and receiver operator characteristic analyses produced
a list of possible biomarkers.

Metabolite interaction networks

We uploaded the metabolite lists (with kyoto encyclopedia of
genes and genomes IDs) onto an ingenuity pathway analysis

server to identify the biological pathways and functions of the
biomolecules of interest. The top-associated network functions
were limited to scores of >24. We highlighted networks that were
similar and that shared identical functions, that is, lipid
metabolism, amino-acid metabolism, molecular transport and
small molecule biochemistry. Only tRNA charging (P= 0.0007) and
isoleucine degradation (P= 0.0009) were significantly different
among the top canonical pathways. Interactions and regulatory
networks are depicted in Figure 3, which integrates most of the
altered metabolites based on their biochemical relationships in
obese patients with steatosis. These plots indicate that L-glutamic
acid upregulates α-ketoglutarate (2-oxoglutaric acid) and suggest
a role of branched-chain amino-acid transaminase. Predicted
disturbances, which probably result in α-ketoglutarate accumula-
tion in the plasma, are depicted in Supplementary Figure S4.

Figure 2. Model plots constructed using principal component analysis (a and b) and linear discrimination analysis (e and f). Logistic regression
analysis and receiver operator characteristic curves indicated the presence of a pattern for the selection of candidate biomarkers and group
clustering. As shown in the calculations (c, d, g and h), plasma α-ketoglutarate was the most qualified for this purpose.
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These results indicate a role for mitochondrial dysfunction. Our
preliminary findings also indicate that in patients without steatosis
the mean diameter of the mitochondria was slightly lower, the
matrix was more electron dense and the crests were more visible
compared with patients with steatosis. More importantly, toroidal
mitochondria were abundant and only observed in non-steatotic
patients and there was a significantly higher accumulation of
autophagosomes in patients with steatosis. It is therefore plausible
that the detection of perturbations in the citric acid cycle (CAC)
may facilitate the evaluation of mitochondrial functions in
physiology and disease.22

Plasma α-ketoglutarate as a biomarker

The obtained results identified and qualified plasma α-ketoglutarate
as a diagnostic biomarker.23 We calculated, with 95% confidence,
that the true area under the curve of the reported receiver operator

characteristic curve for plasma α-ketoglutarate ranged from 0.90 to
0.96 with a specificity of 0.93 at a fixed sensitivity of 0.8 (Figure 2).
However, these results were calculated using a low number of
carefully selected patients. To decrease uncertainty or margin of
error in the relevance of these measurements, we extended the
analysis to a broad range of morbidly obese patients (Table 1) in
which the degree of steatosis was widely distributed. Notably,
steatosis was predominantly mild, and the other liver alterations
were primarily benign (Supplementary Figure S5). Approximately
25% of our patients were insulin sensitive, but this condition was
unrelated to the presence of NAFLD. Plasma α-ketoglutarate was
slightly but significantly associated with homoeostasis model
assessment values (ρ= 0.25, P= 0.01). We calculated that at least
115 cases would be required to determine whether plasma
α-ketoglutarate outperforms other commonly used biomarkers
using an inferential approach.24 These minimum requirements were
increased to 230 cases to ensure validity in a target group in which

Figure 3. Interaction and regulatory networks associated with steatosis in morbidly obese patients as identified using the ingenuity pathway
analysis. Plots are depicted for the top-associated network functions (score >24, a and b) and top canonical pathway (c).
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positive and negative outcomes are not equally distributed and in
which the addition of fibrosis and/or inflammation may complicate
the interpretation. A significant association between circulating
triglycerides and steatosis was observed in these patients (ρ= 0.42,
Po0.001; see also Table 1), which is similar to the association
observed with plasma α-ketoglutarate levels (ρ= 0.49, Po0.001).
Lean controls exhibited significantly (Po0.001) lower (1.1 μM

(0.82–1.37)) plasma α-ketoglutarate levels than obese patients
(7.5 μM (5.5–10.8)) without overlap (median (interquartile range)).
The values were also significantly higher in obese patients with
steatosis than in those without steatosis, indicating the potential to
discriminate between the different stages in the progression of
these conditions (Figure 4). These differences were also observed in
liver tissue; in samples without steatosis, α-ketoglutarate concentra-
tion was significantly (P= 0.017) lower (22.1 μM per 100 mg dry
weight (11.3–31.3)) than in those with steatosis (57.8 μM per 100 mg
dry weight (32.8–63.1)). Among the measured variables, only the
plasma α-ketoglutarate concentration exhibited significant agree-
ment with the degree of steatosis, which may differentiate between
mild, moderate and severe steatosis. Although comparisons were
significant, data are not shown for severe steatosis because the
number of patients was considered too low to yield relevance. The
area under the curve of the receiver operator characteristic curves
exhibited a fair-to-good clinical utility (Figure 4). Other common
laboratory liver function tests failed to discriminate between patients
with or without NAFLD. Interestingly, the clinically considered ‘gold
standard’, alanine aminotransferase, exhibited the worst perfor-
mance. In contrast, γ-glutamyl transpeptidase performed relatively
well (Supplementary Figures S6 and S7). We subsequently
constructed multivariate models that combined the values of the
available biomarkers, but the performance was lower than plasma α-
ketoglutarate alone. Conversely, the addition of plasma α-ketoglu-
tarate to any of these models improved the performance (Figure 5).
The optimal clinically useful threshold (that is, the plasma
concentration) rather than the mathematically optimal threshold is
difficult to assign. The choice is highly dependent on the intended
use. Ideally, all patients with steatosis should be correctly classified,
but this may come at the cost that some patients may be incorrectly
classified as free of steatosis. For example, 8 or 4 μM (which represent

two mathematically possible candidates) yield a similar positive
predictive value (>80%), but 8 μM provides high specificity (>85%)
and 4 μM provides high sensitivity (>97%).

DISCUSSION

There is currently no clinically useful plasma surrogate for the
assessment of hepatic steatosis in obesity. Multivariate metabolomics
analyses provide meaningful information owing to the simultaneous
global assessment of hundreds of endogenous metabolites in a
biological sample. To perform studies in this context, it is important
to ensure the maintenance of preanalytical aspects. Similar
nutritional status and similar food intake are necessary because
dietary factors have an important role as a causative factor of
NAFLD.25–27 As we predicted, inflammation does not appear to be a
prominent factor,28,29 but neither obesity nor NAFLD are simple,
monogenic disorders. Therefore, we chose clinically controlled
bariatric patients who exhibited a similarly high BMI.

The accumulation of lipids in hepatocytes induced a relative
energy deficit, reduced liver function and disturbed insulin
resistance, which is apparently accompanied by an acquired and
reversible mitochondrial dysfunction.30 Our data also partially
support the importance of a newly described mechanism
(lipophagy) that links lipolysis and regulation of intracellular lipid
stores.31 Notably, the deficit in sulphonation that we have
observed in NAFLD patients may be clinically relevant. This is
because phase II drug-metabolising enzymes maintain cellular
homoeostasis via the metabolism of several endogenous mole-
cules that may facilitate metabolic disorders and may result in the
improper management of xenobiotics and endobiotics.32,33 There-
fore, the search for NAFLD diagnostics in obesity should focus on
mechanisms of energy homoeostasis, mitochondrial biogenesis,
fatty acid oxidation and glucose metabolism, which may require
new strategies.34 The results obtained from the plasma analysis
are consistent with those obtained in the livers of different animal
models and human studies, which demonstrate that steatosis is
the cause or consequence of disturbances in hepatic lipid and
glucose metabolism that decreases the ability to obtain
energy.8,25,35,36 The metabolic imbalance caused by obesity and

Table 1. Selected clinical characteristics and laboratory variables in obese patients segregated by the degree of steatosis

Without steatosis (n= 76) Mild steatosis (n=86) Moderate steatosis (n= 52) Severe steatosis (n= 16)

Clinical characteristics
Male, n (%) 8 (10.5) 12 (13.9) 10 (19.2) 4(25.0)
BMI, kgm− 2 47.0 (44.1–51.0) 45.9 (43.2–49.5) 48.1 (44.1–51.1) 44.5 (42.9–47.8)

Laboratory variablesa

Total cholesterol, mmol l− 1 4.0 (3.4–4.9) 4.5 (3.9–5.4) 4.9 (4.2–5.5)b 4.2 (3.5–5.6)
HDL cholesterol, mmol l− 1 0.9 (0.7–1.1) 0.9 (0.7–1.0) 0.9 (0.8–3.4) 0.8 (0.5–1.1)
LDL cholesterol, mmol l− 1 2.4 (1.9–3.0) 2.7 (2.6–3.3) 3.0 (2.3–3.4) 2.6 (1.9–3.0)
Triglycerides, mmol l− 1 1.6 (1.2–1.9) 2.2 (1.6–2.7)c 2.0 (1.7–3.0)b 2.5 (1.6–3.0)
NEFAs, mEq l− 1 1.1 (1.0–1.4) 1.2 (1.0–1.5) 1.1 (0.8–1.6) 1.0 (0.9–1.7)
Glucose, mmol l− 1 7.1 (5.9–8.4) 7.4 (6.2–10.0) 7.9 (7.0–9.8)b 7.6 (6.7–13.4)
Insulin, pmol l− 1 74.6 (41.9–117.6) 79.3 (42.5–122.3) 82.7 (56.8–137.3) 91.5 (40.8–172.2)
HOMA-IR 3.3 (1.9–6.1) 3.9 (2.6–6.1) 3.9 (2.7–8.0) 3.61 (2.02–11.6)
AST, μKat l− 1 0.5 (0.3–0.8) 0.5 (0.4–0.7) 0.9 (0.6–1.1)b,d 1.1 (0.6–2.0)e,f

ALT, μKat l− 1 0.5 (0.4–0.6) 0.4 (0.4–0.7) 0.9 (0.5–1.2)b,d 0.6 (0.4–1.9)
GGT, μKat l− 1 0.2 (0.2–0.3) 0.3 (0.2–0.8) 0.4 (0.3–0.6)b 0.4 (0.3–0.8)e

LDH, μKat l− 1 2.5 (2.2–2.9) 2.7 (2.3–3.3) 3.2 (2.6–4.0)b,d 4.0 (2.8–6.7)e,f

Total bilirubin, mmol l− 1 7.0 (5.0–10.0) 8.0 (5.3–11.8) 8.5 (4.5–11.0) 9.5 (5.8–20.8)
Leptin, ngml− 1 68.5 (55.4–97.5) 73.7 (51.9–97.5) 83.2 (59.5–114.1) 87.8 (75.2–185.4)
Adiponectin, μgml− 1 3.6 (2.4–4.3) 2.6 (1.8–4.2) 2.4 (1.8–3.9) 2.2 (1.6–3.4)
CRP, mg l− 1 6.6 (5.0–10.9) 9.2 (6.7–13.2) 12.7 (8.1–18.5)b 11.4 (5.9–14.4)

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C-reactive protein; GGT, γ-glutamyl transpeptidase;

HOMA-IR, homoeostasis model assessment-estimated insulin resistance; LDH, lactate dehydrogenase; NEFAs, non-esterified fatty acids. Significant differences

(at least Po0.05) in comparisons. aValues are given as median (interquartile range). bWithout steatosis vs moderate steatosis. cWithout steatosis vs mild

steatosis. dMild steatosis vs moderate steatosis. eWithout steatosis vs severe steatosis. fMild steatosis vs severe steatosis.
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NAFLD affects mitochondrial metabolism and metabolic path-
ways, which are important for recycling α-ketoglutarate into and
out of the mitochondrion and allow for the continuous production
of intracellular messengers.37 Finally, it has been recently

described in a model of mitochondrial dysfunction (PINK1
deficiency) that increased expression of α-ketoglutarate is the
most prominent and early effect, probably representing a
compensatory mechanism.38

Monitoring mitochondrial function via the quantitative evaluation
of mitochondrial metabolite abundances may be an important new
avenue of research in obesity-associated NAFLD. This is mainly
because CAC metabolites have a central role in catabolic and
anabolic functions (that is, it is amphibolic in nature). As in other
non-communicable diseases, it is most likely adequate to adopt the
view that steatosis is governed by a pivotal regulatory role of
metabolic reprogramming in cell fate decisions.39,40

Plasma α-ketoglutarate levels may distinguish lean controls
from obese patients with a ‘predictive accuracy’ of 100% and
predict obese patients with or without NAFLD better than
commonly used biomarkers. This result supports the potential
clinical utility of plasma α-ketoglutarate levels. However, addi-
tional validation in other patients from an identical target
population is required. Preliminary results in ongoing validation
studies suggest that this novel biomarker deserves further
evaluation and development and that this biomarker should be
added to clinical practise. In addition, pilot studies indicate the
usefulness of performing serial measurements in the same patient,
which do not require high specificity or sensitivity, to monitor
disease progression and/or the response to treatment. The major
limitation of our results is the confinement to morbid obesity. We
believe this is a blood test that provides a solution for a major
unmet clinical need but implementation of a new biomarker is
difficult and requires validation. Regardless of the attractiveness of
plasma α-ketoglutarate as a biomarker, the high costs of validation
hamper the introduction of new biomarkers and therefore
commercial considerations may ultimately determine the clinical
use.41 However, commonly used laboratory tests do not appro-
priately guide clinical decisions. Imaging studies are also not
possible for patients of this size, and patients do not readily accept
more invasive studies.

Figure 4. The mean plasma α-ketoglutarate concentration was significantly lower in lean controls and patients without steatosis (a) and
displayed significant agreement with the degree of steatosis (b and c). The area under the curve of the receiver operator characteristic curves
were significant, and clinical utility was approximately fair to good; for this purpose, the number of patients with severe steatosis was
considered too low to yield relevance (d).

Figure 5. Multimetabolite biomarker models should provide more
information than a single biochemical measurement, as assessed using
receiver operator characteristic curves. However, predictive scores from
multivariate models that combined several variables were not superior
to plasma α–ketoglutarate alone, as exemplified by the combination
with plasma γ-glutamyl transpeptidase (GGT), which displayed the best
performance of commonly used laboratory biomarkers.
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We also confirmed the potential of metabolomics to influence
patient care. Metabolomics is designed to delineate biological
processes, and the selection of metabolites for development as
clinical biomarkers should be performed a priori rather than post
hoc. Our results indicate that this approach is not necessarily true
if compound quantification follows metabolomics, which is a
strategy that is currently feasible and is not time consuming. This
study successfully utilised a metabolomics approach to provide
new insights into the consequences of NAFLD in obese patients
and supports the possible translational relevance of plasma
α-ketoglutarate as a biomarker of a condition that carries an
enormous burden of disease.
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Table S1. Baseline clinical characteristics and laboratory variables of obese patients with 
or without liver steatosis used for the first nontargeted metabolomics approach.  
 

Values are given as median (interquartile range). ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BMI, body mass index; CRP, C-reactive protein; GGT, γ-glutamyl transpeptidase; LDH, 
lactate dehydrogenase; NEFAs, nonesterified fatty acids.  

  

 Without steatosis 
(n=15) 

With Steatosis 
(n=15) 

p-value 

    

Clinical characteristics    

Male, n (%) 4 (26.7) 4 (26.7) 1.000 

BMI, kg/m
2 

48.2 (44.6-52.1) 44.5 (43.1-46.2) 0.058 

Laboratory variables    

Total cholesterol, mmol/L 3.9 (3.4-4.9) 4.8 (4.3-5.8) 0.013 

HDL-cholesterol, mmol/L 0.9 (0.8-1.0) 0.9 (0.7-1.0) 0.624 

LDL-cholesterol, mmol/L 2.4 (1.7-2.9) 2.8 (2.6-3.4) 0.031 

Triglycerides, mmol/L 1.2 (1.0-1.6) 2.1 (1.6-2.7) 0.019 

NEFAs, mEq/L 1.2 (1.0-1.7) 1.1 (0.8-1.5) 0.296 

Glucose, mmol/L 7.0 (5.6-8.4) 9.2 (7.0-10.7) 0.077 

Insulin, pmol/L 80.2 (67.2-119.2) 58.3 (35.0-152.8) 0.694 

HOMA-IR 4.3 (2.8-7.1) 5.5 (1.8-9.6) 0.963 

Albumin, g/L 35.0 (32.1-38.3) 36.4 (32.4-40.6) 0.457 

AST, mKat/L 0.5 (0.3-0.8) 1.1 (0.6-1.1) 0.064 

ALT, mKat/L 0.5 (0.3-0.6) 0.8 (0.5-1.3) 0.057 

GGT, mKat/L 0.3 (0.2-0.5) 0.8 (0.3-1.1) 0.009 

LDH, mKat/L 2.5 (1.8-2.8) 3.3 (2.6-4.5) 0.064 

Total bilirubin, mmol/L 7.0 (6.0-7.8) 8.0 (6.0-10.8) 0.321 

Leptin, ng/mL 80.2 (53.2-111.3) 78.7 (52.6-90.4) 0.485 

Adiponectin, mg/mL  2.3 (1.6-3.3) 1.8 (1.5-4.1) 0.983 

CRP, mg/L 6.0 (5.0-10.3) 9.3 (5.0-18.3) 0.297 
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Figure S1. Relevant analytical data obtained during the chromatographic analysis of 

plasma a-ketoglutarate, which was quantified using a target ion and identified using 
qualifier ions and the retention time (A). Extracted ion chromatogram of both, 
deuterated succinic acid (as internal standard) and α-ketoglutaric acid (B). Subtracted 

accurate mass spectra of derivatized succinic and a-ketoglutaric acid are also provided 
(C, D). The values for the recovery, accuracy, and imprecision (E) were considered 
acceptable. 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



F
ig

u
re

 S
2
. 

A
m

o
n
g

 t
h
e
 s

e
le

c
te

d
 m

e
ta

b
o
lit

e
s
, 

1
4
 w

e
re

 o
v
e
re

x
p
re

s
s
e
d
 i

n
 t

h
e
 p

la
s
m

a
 

o
f 

o
b
e
s
e
 p

a
ti
e
n
ts

 w
it
h
 s

te
a
to

s
is

 a
n
d
 f

iv
e
 w

e
re

 o
v
e
re

x
p
re

s
s
e
d
 i

n
 p

a
ti
e
n
ts

 w
it
h
o
u
t 

s
te

a
to

s
is

. 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 
 
 
 
 
 
 
 
 
 

 
 
 
 

F
ig

u
re

 S
3
. M

o
rb

id
ly

 o
b
e

s
e
 p

a
tie

n
ts

 w
ith

 s
ig

n
ific

a
n
t n

o
n
a
lc

o
h
o
lic

 fa
tty

 liv
e

r d
is

e
a
s
e
 

e
x
h
ib

ite
d
 

in
c
re

a
s
e
d
 

(in
 

re
d
) 

p
la

s
m

a
 

le
v
e
ls

 
o
f 

b
ra

n
c
h
e
d

-c
h
a
in

 
a
m

in
o
 

a
c
id

s
 

a
n
d
 

d
o
w

n
s
tre

a
m

 
m

e
ta

b
o
lite

s
. 

V
a
lin

e
, 

le
u
c
in

e
, 

a
n
d
 

is
o
le

u
c
in

e
 

w
e
re

 
s
ig

n
ific

a
n
tly

 

in
c
re

a
s
e
d
, w

h
ic

h
 m

a
y
 re

p
re

s
e
n
t a

 p
o
s
s
ib

le
 e

n
e
rg

y
 s

u
p
p
le

m
e
n
t d

u
rin

g
 re

d
u
c
e
d
 b

-
o
x
id

a
tio

n
. 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 

 

Figure S4. Predicted disturbances that likely result in the accumulation of α-ketoglutarate in 

the plasma. (A) The isocitrate dehydrogenase (IDH) reaction is carefully regulated to avoid 

the depletion of isocitrate, and, therefore, an accumulation of a-ketoglutarate. The 2-

oxoglutarate or a-ketoglutaratedehydrogenase (ODGH) complex catalyzes the overall 

conversion of α-ketoglutarate to succinyl-CoA and CO2 during the citric acid cycle. 

Succinate-CoA ligase (SUCL) facilitates the flux of molecules into other metabolic pathways 

by controlling the interconversion between succinyl-CoA and succinate. This control is 

important because succinyl-CoA is a necessary intermediate for many biosynthetic 

reactions. The substrates of glutamate synthase (GLS) that are required to produce L-

glutamate are L-glutamine, a-ketoglutarate, NADPH, and H+. Glutathione synthetase (GSS) 

and glutamate-cysteine ligase are responsible for glutathione biosynthesis. Among the 

glutamate sources for glutathione synthesis (B), the transamination of a-ketoglutarate to 

glutamate via alanine aminotransferase is relevant in the presence of liver disease. In this 

reaction, the amino group from alanine is transferred to pyridoxal phosphate to form 

pyridoxamine phosphate and pyruvate. In turn, the pyridoxamine phosphate provides the 

amino group that results in the formation of glutamate from a-ketoglutarate. However, 

glutathione malfunction is unlikely because the circulating amount of associated metabolites 

was similar in both groups of patients (C). Accordingly, we found changes in mitochondrial 

shape and size (n=3), which indicates a higher degree of autophagy in livers with steatosis, 

and the exclusive and frequent appearance of toroidal mitochondria, i.e., the so-called 

“holes”, in patients without steatosis (D). 
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Figure S5. Histological examination of patient livers revealed significant differences among 
obese patients (A). The distribution of steatosis was represented as a percentage of 
patients with a given value of fatty infiltration. The amount of patients without steatosis was 
grouped in one point (≤5; B). The distribution of fibrosis and inflammation is shown in C. 

  

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 
 
  
Figure S6. The plasma concentrations of selected metabolites from routine laboratory 
measurements in the study population depict differences between patients with and without 
steatosis and differences in arbitrarily considered degrees of steatosis. 
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Excessive energymanagement leads to low-grade, chronic in7ammation, which is a signi^cant factor predicting noncommunicable
diseases. In turn, in7ammation, oxidation, and metabolism are associated with the course of these diseases; mitochondrial
dysfunction seems to be at the crossroads of mutual relationships.[emigration of immune cells during in7ammation is governed
by the interaction between chemokines and chemokine receptors. Chemokines, especially C-C-chemokine ligand 2 (CCL2), have a
variety of additional functions that are involved in themaintenance of normalmetabolism. It is our hypothesis that a ubiquitous and
continuous secretion of CCL2may represent an animal model of low-grade chronic in7ammation that, in the presence of an energy
surplus, could help to ascertain the afore-mentioned relationships and/or to search for speci^c therapeutic approaches. Here, we
present preliminary data on a mouse model created by using targeted gene knock-in technology to integrate an additional copy of
the CCl2 gene in the Gt(ROSA)26Sor locus of the mouse genome via homologous recombination in embryonic stem cells. Short-
term dietary manipulations were assessed and the ^ndings include metabolic disturbances, premature death, and the manipulation
of macrophage plasticity and autophagy. [ese results raise a number of mechanistic questions for future study.

1. Introduction

Excessive energy intake is a part of the current human
lifestyle that leads to a state of chronic systemic low-grade
in7ammation, which is thought to play a role in the develop-
ment of atherosclerosis, cancer, and other noncommunicable

diseases. At the same time, it is also plausible that the long-
term consequences of prolonged in7ammation exacerbate
the deleterious eUects of continuous nutrient surplus [1–3].

[e immune system and metabolism are closely inter-
connected [4, 5]. During in7ammation, the whole body is
undermetabolic stress, and energy excess management could
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2 Mediators of In7ammation

compromise the relationships among metabolism, oxidation,
and in7ammation. We reasoned that searching for an ade-
quate animal model [6] might allow us to better understand
disease pathogenesis.

Chemokines are promising candidates for the design
of such a model. Some of the functions of chemokines
are associated with the migration of immune cells, and
chemokines are important for the correct functioning of
metabolism. In humans, C-C chemokine ligand 2 (CCL2;
formerly referred as MCP-1 or monocyte chemoattractant
protein-1) could be a marker of in7ammation; it is overex-
pressed in noncommunicable diseases and is involved in a
variety of metabolic functions [7]. Actually, CCL2 modi^es
lipid and glucose metabolism and contributes to insulin
resistance and hepatic steatosis [8–11]. Of note, circulating
chemokines cause and maintain metabolic disturbances that
may be reversed by anti-in7ammatory drugs, and the role of
chemokines is likely a causal and predisposing factor [12, 13].
Rather than local overexpression [14–17], it is now recognised
that CCL2 protein and mRNA are expressed in the vast
majority of tissues, suggesting both a systemic production
and the ability to respond in situ to in7ammatory stimuli
[18, 19].

[erefore, we hypothesised that challenging an animal
model that systemically overexpresses CCL2 with diets rich
in fat and cholesterol could help to assess the role of chronic
in7ammation in response to excessive energy intake. We
then proceeded to integrate a copy of the Ccl2 gene in the
Gt(ROSA)26Sor (commonly referred to as ROSA26) locus of
themouse genome via homologous recombination in embry-
onic stem cells (ES) to generate targeted transgenic mice [20–
22] that overexpress CCL2 in all tissues. Preliminary data are
promising and suggest a number ofmechanistic questions for
future study.

2. Material and Methods

2.1. Animal Handling. All procedures and experimental pro-
tocols were examined and approved by the Ethics Review
Committee for Animal Experimentation of the Universitat
Rovira i Virgili. Basic protocols for tissue collection, diets,
allocation concealment andmetabolic assessment of themice
have been already described in detail [6, 18, 23]. Strains
were backcrossed >10 generations to C57BL/6J mice and
maintained homozygously. Littermates without mutations
were used as controls (WT). We also provide data from
knockouts (KO) of CCL2 (conveniently backcrossed), which
were purchased from the Jackson Laboratory (Sacramento,
CA). Dietary experiments began at 10 weeks of age, when all
strains display similar phenotypes. To avoid possible eUects of
immature adipocyte modelling, most results were obtained
in diUerent groups amer 6 or 14 weeks of treatment (16 and
24 weeksold, resp.). To explore dietary eUects, mice from
each group were fed either chow (Teklad rodent diet; Harlan,
Barcelona, Spain) or a high-fat diet (FuttermittelfürMaüse;
SSniU spezial diäten, Soest, Deutschland) and caged indef-
initely under supervision. [e breeding of all experimental
populations was performed in our own facilities, and the

progenies were maintained under close surveillance. [e
animals were not kept under germ-free conditions.

2.2. Targeted Transgenic (TG) Mice. [e transgenic model
was generated via a gene targeted inducible knock-in
(KI), that is, a line with a duplicated gene, approach
using standard methods and proprietary technology from
Ozgene (Bentley, WA, Australia). [e mRNA sequence
corresponding to the mouse Ccl2 gene (NM 011333 and
ENSMUSG00000035385) is located on chromosome 11. [e
gene has 3 exons spread over approximately 3 Kb. [e
gene fragment was obtained from C57BL/6 genomic DNA
(PCR primers AGCAAGATGATCCCAATGAGTAGGC and
GAGGTGGTTGTGGAAAAGGTAGTGG) to be inserted by
gene targeting into the ROSA26 locus. Upstream regulatory
elements are important in the transcriptional regulation of
Ccl2 gene. Human ubiquitin promoter (Ubic) was chosen
for the transgene to produce a high-level of expression.
A loxP-7anked STOP cassette prevents the transcription
of the gene following the UbiC promoter (See Figure 1
and Supplementary Materials S1 and S2 available online
at http://dx.doi.org/10.1155/2013/953841). [e STOP cassette
can be removed using Crerecombinase. PGK-Neo-SD-IS, a
selection cassette, is inserted downstream of the Ccl2 gene
to enrich homologous recombination events. [e ROSA26
locus is conserved between mice and humans. [e location
is autosomal (chromosome 6) and is actively transcribed in
most tissues (Figure 1). Moreover, epigenetic inactivation is
unlikely [21, 24–26].

[e combination of gene targeting and ES cell technology
exploiting homologous recombination provides advantages
over other techniques [27–31] (Supplementary Material S3).
Mice are available upon request.

2.3. Immunopathology Studies and Assessment of Liver Steato-
sis. Portions of organs and tissues were either frozen in
nitrogen or ^xed in 4% phosphate-buUered formalin for 24 h
at room temperature, washed twice with water, stored in 70%
ethanol at 4∘C, and embedded in paraqn for histological
analyses. Primary and secondary antibodies were obtained
from Santa Cruz Biotechnology (Heidelberg, Germany) and
Serotec (Oxford, UK) [18, 32]. Detection was performed with
the ABC peroxidase system (Vector, Burlingame, CA) using
DAB (Dako, Glostrup, Denmark) as the substrate. To assess
speci^city, primary antibodies were omitted in the controls.
Liver steatosis was assessed as previously described [6].

2.4. Laboratory Measurements. We measured murine CCL2
in plasma, serum, and tissues by ELISA (Peprotech, London,
UK), according to the instructions of the manufacturer.
Recombinant humanCCL2 antigenwas used as the calibrator
for assay standardisation, and we found weak cross-reactivity
with other chemokines, especially CCL7. [e intraassay
coeqcients of variation were <3.2%, and the interassay
of variation was <9.1%. Other biochemical measurements
were performed in automated analysers using commercially
available reagents as described [6, 33]. Selected tissues were
homogenised using the Precellys 24 system (Izasa, Barcelona,
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Figure 1: A STOP sequence 7anked by loxP sites was inserted between the Ubiquitin promoter and themouseCcl2 gene (a).[e sequences of
both the STOP cassette (bold) and the loxP sites (underlined) are shown later (b).[e wild-type allele for Ccl2 gene is located in the region 11
C-E1 of chromosome 11 and the transgenic vector (bottom) is inserted in the ROSA26 locus of chromosome 6 (c). [e procedure is designed
to avoid chromosomal instabilities.
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Spain) with pre^lled bead tubes in the buUer of choice.
Fractions of the homogenised liver were immunoblotted as
described [34], using antibodies and reagents from Santa
Cruz Biotechnology (Heidelberg, Germany).

2.5. Transmission Electron Microscopy. Small pieces of the
liver were immediately ^xed in a 2% glutaraldehyde solution
in 0.1M cacodylate buUer, pH 7.4. Samples were then post-
^xed in 1% osmium tetroxide (OsO4) for 2 h and dehydrated
in sequential steps of acetone prior to impregnation in
increasing concentrations of the resin in acetone over a 24 h
period. Semithin sections (500 nm) were stained with 1%
toluidine blue. Ultrathin sections (70 nm) were subsequently
cut using a diamond knife, double-stainedwith uranyl acetate
and lead citrate, and examined using a transmission electron
microscope (Hitachi, Tokyo, Japan).

2.6. Characterisation of Mouse Bone Marrow-Derived
Macrophages. [e methods were performed as previously
described [35]. Bone marrow cells were isolated by removing
leg bones from WT and TG mice (aged 10 weeks) and were
cultured for 24 hours. Floating cells were removed, and the
remaining attached cells were analysed. Cells were further
cultured inDMEM supplemented with 10% inactivated foetal
calf serum, 50 !M beta-mercaptoethanol, and 1000U/mL
murine granulocyte-macrophage colony-stimulating factor
(GM-CSF) or 25 ng/mL human macrophage colony-
stimulating factor (M-CSF) (ImmunoTools, Friesoythe,
Germany) to provide polarised activation of cells into
M1 and M2 as a simpli^ed descriptor of their functional
plasticity. To assess the eUect of activation, macrophages were
treated with 100 ng/mL E. coli 055:B5 lipopolysaccharide
(LPS) for 24 hours and were compared with the respective
untreated controls. Amer this treatment, supernatants from
M1 (GM-CSF) andM2 (M-CSF)macrophages were tested for
the presence of CCL2, tumour necrosis factor-" (TNF"), and
interleukin 10 (IL-10) using ELISA (BioLegend, Inc., Madrid,
Spain). Total RNA was extracted using the RNeasy kit
(Qiagen, Barcelona, Spain) and was retrotranscribed using
the Reverse Transcription System kit (Applied Biosystems;
Invitrogen, Barcelona, Spain). Oligonucleotides for selected
genes were designed according to the Roche somware for
quantitative real-time PCR (Universal Probe Roche library),
which was performed using a LightCycler 480 (Roche
Diagnostics, Barcelona, Spain). [e assays were performed
in triplicate, and the results normalised according to the
expression level of TATA-binding protein mRNA. C-C
chemokine receptor type 2 (CCR2 or CD192), TNF", inhibin
beta A (INHBA), inducible nitric oxide synthase (iNOS),
C-C chemokine receptor type 7 (CCR7), and Egl nine
homolog 3 (EGLN3) were chosen as M1 markers. Arginase
(ARG), EMR1/F4/80, insulin growth factor-1 (IGF1), IL-10,
the mannose receptor CD206, and growth arrest-speci^c 6
(GAS6) were chosen as M2 markers.

2.7. Statistical Analyses. [e normality of the distribu-
tions was assessed using the Kolmogorov-Smirnov method.
Variables were compared using Mann-Whitney tests or

Kruskal-Wallis one-way analysis adjusted for multiple test-
ing. Unless otherwise indicated, the values in the ^g-
ures represent the mean and SEM obtained in groups

of 8 mice. [e #2 test was used to compare categori-
cal variables. For all measurements, we used either SPSS
(SPSS Inc., Chicago, IL) or GraphPad Prism somware
(http://www.graphpad.com/scienti^c-somware/prism/).

3. Results

3.1. Targeted Transgenic Mice Do Not Display Physical Abnor-
malities. [e resulting mice for the targeted mutation are
viable, fertile, and normal in size and weight. [e animals do
not display apparent behavioural or reproductive defects.[e
transgene insertion of a single copy occurs at a de^ned site,
which allows for easy genotyping (Figure 2) and eliminates
possible instabilities, independent segregation during breed-
ing, and unpredictable positions in the chromosomes.

An additional advantage of this strategy is the Cre/lox
recombination system that facilitates tissue-speci^c overex-
pression. [e Ubic is conditioned by an Lox-Stop-Lox (LSL)
element that is activated by Cre-mediated excision using the
appropriate, tissue-speci^c Cre strain.

3.2. Transgenic Mice Overexpress CCL2 in Selected Tissues,
and Circulating Protein Is Increased with respect to Controls.
Consistently, transgenic mice displayed more CCL2 protein
in all tissues examined with respect to WT animals. [e
diUerences increased with age, and there were minor rela-
tive diUerences among tissues (Figure 3). We con^rm that
CCL2 was immunologically detected in all selected tissues
of the transgenic mice. [e CCL2 mRNA expression in the
transgenic mice was also higher in diUerent types of cells
with respect to WT mice. [e amount of CCL2 expression
was higher amer the designed period of exposure to a diet
with a high fat content. Of note, the serum and plasma
CCL2 were also higher in transgenic mice than in WT mice,
which is most likely caused by CCL2 secretion by multiple
tissues. In accordance with previous observations, the plasma
concentrations diUered from the serum concentration. [e
diUerences are likely caused by coagulation and handling, but
the diUerences were not statistically signi^cant in transgenic
mice. Notably, CCL2 was also detected in KO mice, but with
less intensity. [is is most likely due to quantitatively minor
cross reactivity, as described in the methods.

3.3. Dietary Factors Induence Body Weight and Adipocyte
Size. When mice were fed a regular chow diet, we did
not observe signi^cant diUerences in body weight increase
among groups. [e cumulative food intake was identical for
the three strains examined. In contrast, when fed a high fat
diet, both transgenic animals and WT animals developed
obesity. Of note, the C57BL/6J male mouse is a commonly
used model of diet-induced obesity [36]. [e eUect of CCL2
overexpression was apparent immediately amer the ingestion
of the high calorie diet, and the weight increased more
rapidly than in WT mice. [e absence of CCL2, however,
protected theKOmice from excessiveweight gain.[e lack of
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Figure 2: Simpli^ed strategy for genotyping that includes the sequence of each primer (a), the reaction proposed for each primer (b), and the
expected PCR products for each strain (c). [e method is designed for the concomitant use of all primers and a representative gel is shown
in (d).

signi^cant diUerences in the food intake excluded any eUect
of CCL2 on appetite (Figure 4).

Overexpression of CCL2 also increased the size of the
adipocytes. Data are presented for epididymal adipose tissue
(Figure 5), but the eUect was similar in other adipose tissues.
[e adipocyte size was signi^cantly higher in CCL2 trans-
genic animals compared with WT and KO animals fed with
both diets, but the diUerence was higher when mice were
fed a diet with a high caloric content. When diUerent types
of adipose tissue were weighed, we found that the mice fed
a chow diet showed no signi^cant diUerences between the
strains, with the possible exception of inguinal tissue. Con-
versely, the addition of fat to the diet resulted in a signi^cant
increase in the weight of white adipose tissue from other
depots inmice with CCL2 overexpression. Notably, there was
no eUect on the weight of brown adipose tissue (Figure 6
and Supplementary Material S4). However, these diUerences
among groups in adipose tissues weight disappeared when
mice were fed with a high fat diet for 14 weeks. [ese results
are probably indicating an already reported eUect of adipose
tissue remodelling on the consequences of high-fat dietary
intake [37] (Supplementary Material S5).

3.4. Diet-Induced Disturbances in Glucose and Lipid Metabo-
lism. Glucose tolerance tests (a proxy for insulin resistance)
were unaUected in strains fed the chow diet during the
experimental period of 6 weeks. However, WT littermates,
KO, and transgenic mice displayed abnormal values when

fed a high-fat diet, con^rming the eUect of diet in the patho-
genesis of insulin resistance and suggesting that this short-
term intervention is not adequate to investigate a possible
role, if any, of CCL2 in the generation of glucose and lipid
disturbances. Moreover, there were no diUerences among the
strains in the plasma glucose levels amer 6 hours of fasting,
and amer 3 hours in the fasting state, we found that the plasma
glucose baseline concentrations were signi^cantly higher in
CCL2 overexpressing mice with respect to CCL2 de^cient
animals. [is eUect was more evident in the transgenic
mice (Supplementary Material S6) but diUerences in plasma
glucose disappeared amer 14 weeks of dietary treatment
suggesting immature adipose tissue remodelling [38].

When these tests were performed in animals fed a high-
fat diet for a longer experimental period of 14 weeks in which
adipose tissue is already well modelled, the lack of diUerences
in insulin tolerance was maintained, probably indicating that
the eUect of CCL2 overexpression in the pathogenesis of
insulin resistance is negligible.

However, results in the absence of CCL2 indicate that this
chemokinemaymodify glucosemetabolism and therefore we
cannot discard the eUects under a more intense metabolic
stress [9]. Variations in plasma cholesterol and triglycerides
concentrations were minimal among the strains at 16 weeks
old. A high-fat diet signi^cantly increased the amount of
circulating cholesterol, an eUect that was higher in CCL2
overexpressing mice. Conversely, there were unexpected,
and most likely not representative, changes in the plasma
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Figure 3: Overexpression of CCL2 with respect to wild type and knockout was observed in all selected tissues (extracts) in the transgenic
mice as measured by ELISA. DiUerences were also observed in plasma and serum and there was cross-reactivity with similar chemokines that
could explain the detection of CCL2 in KOmice (a). CCL2 was also detected by immunochemistry in diUerent types of cells (b). ∗$ < 0.005;
Micrographs in the lem column are representative for liver, pancreas, and kidney. [ose in the right column were for brain, intestine, and
stomach.

triglycerides concentration of these mice as a consequence of
dietary manipulations (data not shown).

3.5. fe Induence of CCL2 and Dietary Manipulations in
the Liver. When fed the chow diet, mice did not display
signi^cant diUerences among strains in the appearance of
their liver tissue.[e steatosis scores did not detect signi^cant
diUerences among strains, although some minor variations
were detected (Figure 7) that did not correlate with the
hepatic lipid content (data not shown). When mice were
fed a high-fat diet, we found a certain amount of lipid
accumulation in WT mice, but this lipid accumulation was
signi^cantly more evident in transgenic mice. Conversely,
there was no accumulation of lipids in KO mice (Figure 7).
[erefore, the eUect of CCL2 under these conditions is
directly related to the amount of tissue CCL2 disposal; the
absence of CCL2 prevents liver steatosis, and overexpression
of CCL2 predisposes the liver to steatosis. We also found that
the expression of fatty acid synthase in the liver increased
signi^cantly in all strains when fed a high-fat diet, but there
were no signi^cant diUerences in the comparisons between
transgenic and KO mice. We also explored the activating

phosphorylation of AMP-activated protein kinase (AMPK),
and values did not change as a result of high-fat diet in
transgenic mice and were signi^cantly higher in KO mice
comparedwith transgenicmice (SupplementaryMaterial S7).

When the livers were examined for the presence of F4/80
antigen, a widely accepted marker of macrophages, we found
that both dietary fat and overexpression of CCL2 modify the
size, number andmorphology of liver macrophages (Figure 8
and Supplementary Material S8). Of note, F4/80 stained
cells were more frequent in KO mice, a ^nding that merits
further study because these results could represent a change
in function and could be responsible for the diUerential
eUects of CCL2 in liver steatosis. We then explored the
in7uence of both CCL2 and diet inmitochondrial biogenesis.
Based on the appearance of the matrix, the mitochondria
are healthier in mice fed a chow diet than in those fed a
high-fat diet. [e matrix was also consistently less electron-
dense in transgenic mice. We also found altered fusion
dynamics. In transgenicmice fed a chow diet, the process was
unbalanced towards mitochondrial fusion, but the dietary
manipulation signi^cantly elicited a shim towards ^ssion.[e
changes were similar in WT mice, but the eUect of diet was
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Figure 4:[e eUect of high-fat diet in body weight increase was evident in transgenic and wild-type mice ((a), (b)), but the diUerent increase
was immediate amer dietary manipulation in transgenic.[is eUect was negligible in knockout mice (c).[e combination of these eUects with
high-fat diet (d) shows similar results to facilitate comparison. [ese ^ndings are not due to diUerences in the cumulative food intake ((e),
(f)) indicating that CCL2 probably has no eUect on appetite. ∗$ < 0.05.

quantitatively less evident than in transgenic mice. In KO
mice, however, there were more mitochondria per cell, and
fusion and ^ssion were correctly balanced and apparently not
altered by diUerences in diet. [ese ^ndings strongly support
further mechanistic studies, which may link the expression
of CCL2 with mitochondrial biogenesis, in7ammation, and
energy management. According to our results, these putative
mechanisms are related to the autophagic response, which

was clearly enhanced in transgenic mice. Conversely, most
liver cells inWT and KO displayed no evidence of autophagy
(Figure 9).

3.6. Transgenic Mice fat Overexpress CCL2 Die Prematurely
When Fed High-Fat Diet. [e transgenic mice fed a high-
fat diet died prematurely between 10 and 14 months. [e
mice progressively decreased activity, reduced food intake
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Figure 5: [e size of the adipocytes was signi^cantly higher in transgenic mice than in wild-type and knockout mice and the eUect was
observed with both dietary interventions regardless of the duration of the dietary treatment (6 or 14 weeks) (a) but it was more intense
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micrographs are shown for transgenic, wild-type, and knockout animals ((b), (c) and (d), resp.)when fed a chowdiet and for the corresponding
animals fed a high-fat diet ((e), (f), (g)) at 16 and 24 weeks’ old.

and the appearance of frailty became evident. [ere was also
a casualty in the transgenic mice fed chow diet, but it was
sudden, unexpected, and without a prior decrease in weight
or activity. Among the casualties, one was also observed in
the WT group fed a high-fat diet (Supplementary Material
S9). A full autopsy was performed, and the cause of death
was uncertain. [ere was neither cancer nor arteriosclerosis
in these animals, but there were some cutaneous, super^cial,
and localised lesions in the skin accompanied with local
loss of hair. [ere was also no evidence of sepsis. [e only
remarkable ^ndings were limited to the spleen and the liver.
[e size and weight of the spleen was consistently higher
in the transgenic mice fed high-fat diet. [e presence of
splenomegaly in these transgenic mice was consistent with

the presence of giant cells that were identi^ed as megakary-
ocytes (Factor VIII positive staining) and other proliferative
signs.[eweight of the liver was also higher in the transgenic
mice, which is most likely due to the higher presence of
steatosis. In the liver, there were signs of regenerative cells
and increased apoptosis. Ongoing studies with higher sample
sizes and the inclusion of females have been designed to
further ascertain this point.

3.7. Bone Marrow Macrophages of Transgenic Mice: Expres-
sion of Selected Cytokines and mRNA. [e CCL2 mRNA
expression in the bone marrow macrophages was higher
in transgenic than in WT mice, irrespective of stimulation
with either GM-CSF (M1, pro-in7ammatory) or M-CSF
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(c), (e); transgenic, wild-type, and knockout mice resp.). Representative micrographs show in the right column that a high fat diet produces
steatosis in transgenic mice (b), dispersed lipid droplets in the liver of wild type mice (d), and no change in knockout mice (f).

(M2, phagocytic). [e mRNA expression of the selected
M2 markers was similar, with either low or undetectable
expression in the GM-CSF macrophages without diUerences
between transgenic and WT mice. [e expression of the
selected M1 markers was practically identical in the GM-CSF
macrophages fromTG andWTmice, with the notable excep-
tion of CCR7. Surprisingly, the expression of this chemokine
receptor was signi^cantly lower in TGmice, indicating lower
pro-in7ammatory activity. [e expression of the M1 markers
in M-CSF macrophages showed a unique and signi^cant

decrease in CCR2 mRNA expression; however, some M2
markers, including CD 206, GAS6, and IGF1, were also
underexpressed. IL-10 expression also decreased, but the dif-
ferences were not statistically signi^cant. [e results suggest
that CCL2 overexpression may alter macrophage polarisa-
tion. Consequently, the secretion of selected cytokines was
examined in macrophages that were treated with LPS and
were compared with the relevant controls. [e CCL2 secre-
tion was higher in TG mice with both treatments compared
with theWTmice and was 2–4 fold higher (2–4-fold change)
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Figure 9: [e appearance of mitochondria was aUected by the dietary manipulation and the expression of CCL2 as shown in
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of autophagosomes per cell was counted and was signi^cantly higher in transgenic mice. Further, these were rare in both WT and KO and
independent of diet (c). [e heterogeneous nature of autophagic elements is illustrated in (d) (photographs obtained in transgenic mice).

in M-CSF macrophages. [e IL-10 secretion was clearly
detectable only in LPS-treated animals. [e concentration
in the supernatant was higher in TG than in WT mice,
and the diUerences were statistically signi^cant in GM-CSF
macrophages. Finally, TNF" secretion was ostensibly higher
in LPS-treated animals and signi^cantly higher in TG mice
with respect to the relevant controls (Figures 10 and 11).

4. Discussion

[e transgenic mice developed in this study systemically
overexpress CCL2. [ese animals were created to assess the
combined eUect of the recruitment of circulating monocytes
in all tissues and the response to the stimuli of high dietary fat

and energy ingestion.[e hypothesis was that the continuous
overexpression of this chemokine could promote or worsen
common pathological conditions, and as animal model could
be useful for assessing the pathogenic mechanisms and
therapeutic approaches [39].

Fertility, growth, and physical appearance were identical
to the controls. CCL2 overexpression did not result in
abnormalities in the mice that were fed a regular chow diet.
However, adding fat to the diet during a short period of
time caused diUerences in body weight, adipocyte size, dis-
turbances in glucose and lipid metabolism, premature death,
and liver alterations that included a higher predisposition to
fatty liver disease and signi^cant changes in mitochondrial
biogenesis and autophagy. Additionally, we explored bone
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Figure 10: Relative mRNA expression in transgenic mice with respect to WT mice of selected markers for M1 and M2 macrophages in
cells treated in vitro with either GC-MSF or M-CSF. Acronyms used were C-C chemokine receptor type 2 (CCR2), TNF", Inhibin, beta A
(INHBA), inducible nitric oxide synthase (iNOS), C-C chemokine receptor type 7 (CCR7), Egl nine homolog 3 (EGLN3), Arginase (ARG),
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marrow macrophages under diUerent in vitro conditions,
and we found that CCL2 overexpression aUects functional
plasticity.

In previous studies, CCL2 has been considered a
chemokine secreted by adipose tissue (adipokine), but sys-
temic CCL2 overexpression regulates white adipose tissue
(WAT) mass and size without apparent eUects in brown adi-
pose tissue (BAT). WAT serves primarily as lipid storage, and
BAT is used for heat generation.[e balance between the two
adipose tissues aUects the whole-body energy homeostasis,
and the development and severity of obesity [40]. A higher
production of CCL2 is not only a consequence of obesity
but is most likely an exacerbating factor of diet-induced
alterations. [e roles of CCL2 in the aetiology of obesity
and diabetes, the regulatory mechanisms, and the eUect of
therapies that inhibit CCL2 production have been recently
reviewed [4, 41]. We have also found diUerences between fat
cells in diUerent adipose tissue depots and the heterogeneity
of adipocytes within the same depots. Further examination
of this issue is necessary because a diUerent pattern of gene
expression could explain the diUerential development of
various types of adipose tissue [42, 43]. Moreover, this is
closely associated with the pattern of fat distribution, the
extent of obesity, and consequently the impact of diUerent fat
depots on the severity of metabolic complications [44, 45].

[e size and number of hepaticmacrophages signi^cantly
diUers between transgenic and KO mice when detected
with antibodies directed against F4/80. Curiously, this is an
extracellular antigen of unknown function that belongs to
a subgroup of the G-protein-coupled receptors [46]. [e
changes in macrophages morphology could represent con-
comitant changes in function and whether the macrophages
are resident or recruited. [is is further substantiated by the
fact that these transgenic mice were prone to develop fatty
liver disease and the KO mice were protected. [e role of
increased CCL2 is not yet understood, but the recruitment
of macrophages seems to be important in diUerent animal
models. In KO mice there is an increased expression of
peroxisome proliferator-activated receptors accompanied by
the induction of fatty acid metabolism-related genes and the
inhibition of pro-in7ammatory cytokine production [47–49].
We con^rmed that the eUect of fat in the pathogenesis of fatty
liver disease [49, 50] is in7uenced by the amount of available
CCL2 and that the linkage between chemokines and hepatic
lipid metabolism is plausible.

[e characterisation of bone marrow-derived cells in the
transgenic mice indicates that CCL2 overexpression aUects
the transition in the secretory function of macrophages
(or the M1-M2 paradigm as a simpli^ed descriptor of the
functional plasticity). [is is illustrated by diUerences in
GM-CSF and M-CSF, which are cytokines that diUerentiate
macrophages in vitro with distinct morphology and in7am-
matory function [51, 52]. [e modulation of the phenotypic
and functional diUerences in macrophage polarisation by
CCL2 overexpression denotes a shim towards lower pro-
in7ammatory activity [53]. CCL2 decreased the expression
of CCR7 in M1 and decreased the expression of CCR2, IGF1,
CD206, IL-10, andGAS6 inM2. In cells under LPS treatment,
however, CCL2 overexpression increased the secretion of

IL-10 and TNF" with respect to WT controls. [ese changes
could represent a quantitatively determinant factor in the
development of macrophage-induced metabolic alterations.
It should be highlighted that a high percentage of total
body resident macrophages are present in the liver and that
adipose tissue is amajor site for the accumulation of recruited
macrophages [54, 55].

Notably, CCL2 is involved, directly and/or through the
induced metabolic alterations, in mitochondrial biogenesis
and autophagy.We addCCL2 to the growing list of nonessen-
tial regulators of mechanisms that divide and fuse mitochon-
dria [56]. [e balance between rejuvenation and elimination
of damaged mitochondria via autophagy is aUected by both
the presence of CCL2 overexpression and the increased
availability of energy.[e antagonistic and balanced activities
of the fusion and ^ssionmachineries are constantly providing
responses to in7ammation to tightly regulate homeostasis of
the organism [57, 58].[is is expected becausemitochondrial
diseases are associated with metabolic alterations. Appar-
ently, there is a shim towards fusion in CCL2 overexpres-
sion to maximise ATP synthesis. Contrarily, morphological
^ndings in CCL2 de^cient mice, which are independent of
high-fat diet, suggest a perfect balance [59, 60]. A certain
unbalance is expected in in7ammatory conditions and other
energy-dependent disturbances via mitochondrial dysfunc-
tion [61, 62]. [is is important because mitochondria and
the access to energy (calorie restriction or increased dietary
fat) play a pivotal role mediated by the mechanistic target of
Rapamycin (MTOR) in decidingwhether liver cells live or die
[63].

In transgenic mice, autophagy was increased with respect
to WT and KO mice, which is particularly important
because autophagy aUects immune responses as a result of
degradative, biogenetic, and secretory activities that respond
to various inputs via MTOR [64, 65]. Autophagy might
control the infection of certain pathogens but also prevents
excessive in7ammatory reactions in the host [66]. As shown
in autophagy-de^cient macrophages, autophagy removes
a number of proin7ammatory stimuli [67–69]. [erefore,
increased liver autophagy during CCL2 overexpression could
be interpreted as an eUort from the host to avoid the
deleterious action of continuous in7ammation.

Links between autophagy and in7ammation have also
been found in immune functions aUecting several diseases,
opening a new dimension in the understanding of the mul-
tifactorial basis of noncommunicable diseases. For example,
increasing macrophage autophagy protects patients with
advanced atherosclerosis [70]. It has also been reported that
CCL2 controls the extent of autophagy in human prostate
cancer [71], and autophagy is pivotal for the survival and
diUerentiation of monocytes [72].

Finally, CCL2 overexpression resulted in premature death
when combined with a high-energy intake. [ese ^ndings
require more extensive examination, and the cause of death
remains obscure. Mice progressively lost interest in the envi-
ronment, reduced activity, and their intake of food decreased.
No chronic disease was evident, and there were no signs
of sepsis or major infection. It is tempting to consider the
possibility of premature aging, and future investigations will
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include the characterisation of a senescence-associated secre-
tory phenotype, particularly in pro-in7ammatory cytokine
enrichment [73] and the pro-in7ammatory phenotype that
accompanies aging [74, 75].

5. Conclusions, Perspectives, and Limitations

[is animal model raises a number of questions about the
prevalent diseases responsible for limiting the quality of
modern life. Additionally, this model provides a link between
in7ammation and metabolism and suggests targets for the
management of diseases in which there is a clear CCL2 over-
expression. Speci^cally, this model can help to uncover the
role of CCL2 in mitochondrial dysfunction, autophagy, and
functionality of macrophages and aging in combination with
excessive energy intake. Information gained could be useful
for designing new mechanism-based therapeutic strategies.

None of the described eUects appear in mice that are
fed a regular diet, and this fact highlights the importance of
calorie restriction for health. [erefore, the nutrient-sensing
MTOR pathway seems to be crucial for the management
of noncommunicable diseases. Consequently, drugs mod-
ulating MTOR are obvious candidates for assessment. For
example, experiments on cancer, aging, and viral infections
strongly suggest that this is the case for metformin [76–
78]. [is antidiabetic drug activates AMPK and inhibits
MTORwith potent antiin7ammatory actions.[e usefulness
of rapamycin, an MTOR inhibitor, and similar drugs in
cancer prevention has been assayed [79]. Aspirin decreases
in7ammation, inhibits the MTOR pathway, decreases cancer
incidence, and may reduce the burden of atherosclerosis
[13, 80]. Lastly, although studies are scarce, angiotensin-
II-blockers and beta-blockers, widely used in hypertensive
patients, can also prevent the activation of the MTOR
pathway and the incidence of chronic diseases [81].

[e potential indications for these drugs are mostly
related to chronic diseases in which in7ammation plays a
crucial role.[is animalmodel could be used to further select
candidates and suggests a number of mechanistic questions
for future study. Particularly, we consider this model as a
valuable contribution to our evolving comprehension of the
interphase between autophagy and in7ammation. However,
we acknowledge that care must be taken in analysing the
results of studies performed in animal models and that
further research eUort is necessary to fully characterize our
observations. To name a few, possible eUects of sex should
be studied and metabolic alterations should be con^rmed
with the use of metabolic cages and more speci^c methods
to detect signi^cant diUerences. Particularly, CCL2 may have
a higher in7uence if there is a relative contribution from
diUerent type of cells, particularly from immune cells [72].
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[50] A. Rull, F. Rodŕıguez, G. Aragonès et al., “Hepatic monocyte
chemoattractant protein-1 is upregulated by dietary colesterol
and contributes to liver steatosis,” Cytokine, vol. 48, no. 3, pp.
273–279, 2009.

[51] G. Li, Y. Kim, and H. E. Broxmeyer, “Macrophage colony-
stimulating factor drives cord blood monocyte diUerentia-
tion into IL-10highIL-12absent dendritic cells with tolerogenic
potential,”fe Journal of Immunology, vol. 174, no. 8, pp. 4706–
4717, 2005.

[52] K. S. Akagawa, “Functional heterogeneity of colony-stimulating
factor-induced human monocyte-derived macrophages,” Inter-
national Journal of Hematology, vol. 76, no. 1, pp. 27–34, 2002.

[53] T. L. Denning, Y. Wang, S. R. Patel, I. R. Williams, and B.
Pulendran, “Lamina propria macrophages and dendritic cells
diUerentially induce regulatory and interleukin 17-producing T
cell responses,” Nature Immunology, vol. 8, no. 10, pp. 1086–
1094, 2007.

[54] M. Naito, G. Hasegawa, Y. Ebe, and T. Yamamoto, “DiUerentia-
tion and function of KupUer cells,”Medical ElectronMicroscopy,
vol. 37, no. 1, pp. 16–28, 2004.

[55] M. Aouadi, M. Tencerova, P. Vangala et al., “Gene silencing in
adipose tissue macrophages regulates whole-body metabolism
in obese mice,” Procedings of the National Academy of Sciences
of the United States of America, vol. 110, no. 20, pp. 8278–8283,
2013.

[56] S. Hoppins, L. Lackner, and J. Nunnari, “[e machines that
divide and fuse mitochondria,” Annual Review of Biochemistry,
vol. 76, pp. 751–780, 2007.

[57] B. Westermann, “Mitochondrial fusion and ^ssion in cell life
and death,” Nature Reviews Molecular Cell Biology, vol. 11, no.
12, pp. 872–884, 2010.

[58] D. C. Chan, “Mitochondrial fusion and ^ssion in mammals,”
Annual Review of Cell and Developmental Biology, vol. 22, pp.
79–99, 2006.

[59] A. E. Frazier, C. Kiu, D. Stojanovski, N. J. Hoogenraad, and
M. T. Ryan, “Mitochondrial morphology and distribution in
mammalian cells,”Biological Chemistry, vol. 387, no. 12, pp. 1551–
1558, 2006.

[60] B.Westermann, “Bioenergetic role of mitochondrial fusion and
^ssion,” Biochimica et Biophysica Acta, vol. 1817, no. 10, pp. 1833–
1838, 2012.

[61] D. C. Chan, “Mitochondria: dynamic organelles in disease,
aging, and development,” Cell, vol. 125, no. 7, pp. 1241–1252,
2006.

[62] G. Serviddio, F. Bellanti, G. Vendemiale, and E. Altomare,
“Mitochondrial dysfunction in nonalcoholic steatohepatitis,”
Expert Review of Gastroenterology and Hepatology, vol. 5, no.
2, pp. 233–244, 2011.

[63] A. RaUaello and R. Rizzuto, “Mitochondrial longevity path-
ways,” Biochimica et Biophysica Acta, vol. 1813, no. 1, pp. 260–
268, 2011.

[64] N. Mizushima, T. Yoshimori, and Y. Ohsumi, “[e role of atg
proteins in autophagosome formation,” Annual Review of Cell
and Developmental Biology, vol. 27, pp. 107–132, 2011.

[65] M. Narita, A. R. J. Young, S. Arakawa et al., “Spatial coupling of
mTORand autophagy augments secretory phenotypes,” Science,
vol. 332, no. 6032, pp. 966–970, 2011.

[66] E. F. Castillo, A. Dekonenko, J. Arko-Mensah et al., “Autophagy
protects against active tuberculosis by suppressing bacterial
burden and in7ammation,” Procedings of the National Academy
of Sciences of the United States of America, vol. 109, no. 46, pp.
E3168–E3176, 2012.

[67] J. Harris, M. Hartman, C. Roche et al., “Autophagy controls IL-
1% secretion by targetingPro-IL-1% for degradation,”feJournal
of Biological Chemistry, vol. 286, no. 11, pp. 9587–9597, 2011.

[68] K. Cadwell, J. Y. Liu, S. L. Brown et al., “A key role for autophagy
and the autophagy gene Atg16l1 in mouse and human intestinal
Paneth cells,” Nature, vol. 456, no. 7219, pp. 259–263, 2008.

[69] B. Levine, N. Mizushima, and H. W. Virgin, “Autophagy in
immunity and in7ammation,” Nature, vol. 469, no. 7330, pp.
323–335, 2011.

[70] X. Liao, J. C. Sluimer, Y. Wang et al., “Macrophage autophagy
plays a protective role in advanced atherosclerosis,” Cell
Metabolism, vol. 15, no. 4, pp. 545–553, 2012.

[71] H. Roca, Z. Varsos, and K. J. Pienta, “CCL2 protects prostate
cancer PC3 cells from autophagic death via phosphatidyli-
nositol 3-kinase/AKT-dependent survivin Up-regulation,” fe
Journal of Biological Chemistry, vol. 283, no. 36, pp. 25057–
25073, 2008.

[72] Y. Zhang, M. J. Morgan, K. Chen, S. Choksi, and Z. Liu,
“Induction of autophagy is essential for monocyte-macrophage
diUerentiation,” Blood, vol. 119, no. 12, pp. 2895–2905, 2012.

[73] F. Rodier and J. Campisi, “Four faces of cellular senescence,”
Journal of Cell Biology, vol. 192, no. 4, pp. 547–562, 2011.

[74] A. Trifunovic, A.Wredenberg, M. Falkenberg et al., “Premature
ageing in mice expressing defective mitochondrial DNA poly-
merase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004.

[75] A. Salminen, J. Ojala, K. Kaarniranta, andA. Kauppinen, “Mito-
chondrial dysfunction and oxidative stress activate in7amma-
somes: impact on the aging process and age-related diseases,”
Cellular and Molecular Life Sciences, vol. 69, no. 18, pp. 2999–
3013, 2012.

[76] J. Joven, J. Menéndez, L. Fernandez-Sender et al., “Metformin:
a cheap and well-tolerated drug that provides bene^ts for viral
infections,” HIV Medicine, vol. 14, no. 4, pp. 233–240, 2013.

[77] S. Del Barco, A. Vazquez-Martin, S. Cuf́ı et al., “Metformin:
multi-faceted protection against cancer,” Oncotarget, vol. 2, no.
12, pp. 896–917, 2011.

[78] J. A.Menendez, S. Cuf́ı, C. Oliveras-Ferraros, L. Vellon, J. Joven,
and A. Vazquez-Martin, “Gerosuppressant metformin: less is
more,” Aging, vol. 3, no. 4, pp. 348–362, 2011.

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



Mediators of In7ammation 19

[79] I. Mercier, J. Camacho, K. Titchen et al., “Caveolin-1 and
accelerated host aging in the breast tumor microenvironment:
chemopreventionwith rapamycin, anmTOR inhibitor and anti-
aging drug,” fe American Journal of Pathology, vol. 181, no. 1,
pp. 278–293, 2012.

[80] F. V. Din, A. Valanciute, V. P. Houde et al., “Aspirin inhibits
mTOR signaling, activates AMP-activated protein kinase, and
induces autophagy in colorectal cancer cells,” Gastroenterology,
vol. 142, no. 7, pp. 1504–1515, 2012.

[81] M. V. Blagosklonny, “Common drugs and treatment for cancer
and age-related diseases: revitalizing answers to NCI’s provoca-
tive questions,” Oncotarget, vol. 3, no. 12, pp. 1711–1724, 2012.

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 
Supplementary material S1, comparison between human and murine CCL2 

regions, corresponding to the manuscript: 
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A, displays a schematic view of human CCL2 gene region that includes its regulatory region 

and the most prominent elements identified. The Ccl2 gene transgenic vector includes the 

murine CCL2 gene and the comparative position of human ubiquitin promoter (B); sequence is 

provided in C. 
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Supplementary material S2, details of the sequence of other main elements used in 

the construction of the vector, corresponding to the manuscript: 

Ubiquitous transgenic overexpression of C-C 

chemokine ligand 2: a model to assess the combined 
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The sequence of main elements used in the construction of the vector is described according to 

the following, color-based legend. For clarity, flanking regions were also included. 

 
5’homology arm 465-3467 

MCS 3475-3495 

UbiC promoter 3500-4709 
loxP site 4724-4757 

STOP cassette 4768-6101 

loxP site 6102-6135 
genomic fragment of CCL2 gene (frag) 6150-9056 

         exon1 6468-6628 

         exon2 7374-7491 
         exon3 7817-8343 

SV40pA 9090-9318 

FRT site 9331-9378 
PGK promoter 9388-9906 

Neo CDS 9974-10777 

Splice donor (SD) 10799-11005 
Instability signal (IS) 11006-11059 

FRT site 11090-11137 

MCS 11209-11230 

3’homology arm 11231-14260 

        1 AAACCGTCTA TCAGGGCGAT GGCCCACTAC GTGAACCATC ACCCTAATCA AGTTTTTTGG 

       61 GGTCGAGGTG CCGTAAAGCA CTAAATCGGA ACCCTAAAGG GAGCCCCCGA TTTAGAGCTT 

      121 GACGGGGAAA GCCGGCGAAC GTGGCGAGAA AGGAAGGGAA GAAAGCGAAA GGAGCGGGCG 

      181 CTAGGGCGCT GGCAAGTGTA GCGGTCACGC TGCGCGTAAC CACCACACCC GCCGCGCTTA 

      241 ATGCGCCGCT ACAGGGCGCG TCCCATTCGC CATTCAGGCT GCGCAACTGT TGGGAAGGGC 

      301 GATCGGTGCG GGCCTCTTCG CTATTACGCC AGCTGGCGAA AGGGGGATGT GCTGCAAGGC 

      361 GATTAAGTTG GGTAACGCCA GGGTTTTCCC AGTCACGACG TTGTAAAACG ACGGCCAGTG 

      421 AATTGTAATA CGACTCACTA TAGGGCGAAT TGGGTACCGG CGCGCCTAGC GACCTAAACC 

      481 ATTATTAATA TCAAATTAAC CATCAAAACA CTTTCCTCTC AATATGCTGC ACACAAACCT 

      541 CCTCCTGGAA CCTCCTCCAT CTGGATCCTC CCCAATCAAA AGTATAGGTA TTTAACATAT 

      601 AAGCAAGGAA GTAATGTAAA CATGACCTTG GTCACAAATA TGTCATCTAA AAACAATTTA 

      661 GTCAAGGTAT GGAGGAAATT CGAGAACCTG AATCTTTTTA AGTATTTTGA GCACAGGAAC 

      721 AATTGGCAAA AGGAATCCAG GTATAGACAA AACCCAGAGC CCAGAGCTCT GGGCGAAAAA 

      781 TGAGTTGCTG GTGAAGACGT TACACAAGTA ACATGAGAAA GCAGAAAATG CAGGTCATCC 

      841 ACGCACCCCT GACCCAGGCC AGCAGGGCGG GCTGCAGCAT CAGTACACAG GAGAAAGATC 

      901 CTTATTCCTA AGAATGAGAA AGGCAAAGGC GCCCGATAGA ATAAATTAGC ATAGAAGGGG 

      961 CTTTCCCAGG AGTTAAAACT TTCCTTCTGA GCGATTACCT ACTAAAACCA GGGCTTTTGC 

     1021 CCACTACCAT TTACCTAGGA TCTTGGCTTG CACGGATTCA TAGGGGCATA TCCCTCCCCC 

     1081 TCTTCTTTAG AGTCGTTCTT AAAAGATCGC TCTCCACGCC CTAGGCAGGG AAAACGACAA 

     1141 AATCTGGCTC AATTCCAGGC TAGAACCCTA CAAATTCAAC AGGGATATCG CAAGGATACT 

     1201 GGGGCATACG CCACAGGGAG TCCAAGAATG TGAGGTGGGG GTGGCGAAGG TAATGTCTTT 

     1261 GGTGTGGGAA AAGCAGCAGC CATCTGAGAT AGGAACTGGA AAACCAGAGG AGAGGCGTTC 

     1321 AGGAAGATTA TGGAGGGGAG GACTGGGCCC CCACGAGCGA CCAGAGTTGT CACAAGGCCG 

     1381 CAAGAACAGG GGAGGTGGGG GGCTCAGGGA CAGAAAAAAA AGTATGTGTA TTTTGAGAGC 

     1441 AGGGTTGGGA GGCCTCTCCT GAAAAGGGTA TAAACGTGGA GTAGGCAATA CCCAGGCAAA 

     1501 AAGGGGAGAC CAGAGTAGGG GGAGGGGAAG AGTCCTGACC CAGGGAAGAC ATTAAAAAGG 

     1561 TAGTGGGGTC GACTAGATGA AGGAGAGCCT TTCTCTCTGG GCAAGAGCGG TGCAATGGTG 

     1621 TGTAAAGGTA GCTGAGAAGA CGAAAAGGGC AAGCATCTTC CTGCTACCAG GCTGGGGAGG 

     1681 CCCAGGCCCA CGACCCCGAG GAGAGGGAAC GCAGGGAGAC TGAGGTGACC CTTCTTTCCC 

     1741 CCGGGGCCCG GTCGTGTGGT TCGGTGTCTC TTTTCTGTTG GACCCTTACC TTGACCCAGG 

     1801 CGCTGCCGGG GCCTGGGCCC GGGCTGCGGC GCACGGCACT CCCGGGAGGC AGCGAGACTC 

     1861 GAGTTAGGCC CAACGCGGCG CCACGGCGTT TCCTGGCCGG GAATGGCCCG TACCCGTGAG 

     1921 GTGGGGGTGG GGGGCAGAAA AGGCGGAGCG AGCCCGAGGC GGGGAGGGGG AGGGCCAGGG 
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     1981 GCGGAGGGGG CCGGCACTAC TGTGTTGGCG GACTGGCGGG ACTAGGGCTG CGTGAGTCTC 

     2041 TGAGCGCAGC GGGCGGCGGC CGCCCCTCCC CCGGCGGCGG CAGCGGCGGC AGCGGCGGCA 

     2101 GCTCACTCAG CCCGCTGCCC GAGCGGAAAC GCCACTGACC GCACGGGGAT TCCCAGTGCC 

     2161 GGCGCCAGGG GCACGCGGGA CACGCCCCCT CCCGCCGCGC CATTGGCCTC TCCGCCCACC 

     2221 GCCCCACACT TATTGGCCGG TGCGCCGCCA ATCAGCGGAG GCTGCCGGGG CCGCCTAAAG 

     2281 AAGAGGCTGT GCTTTGGGGC TCCGGCTCCT CAGAGAGCCT CGGCTAGGTA GGGGATCGGG 

     2341 ACTCTGGCGG GAGGGCGGCT TGGTGCGTTT GCGGGGATGG GCGGCCGCGG CAGGCCCTCC 

     2401 GAGCGTGGTG GAGCCGTTCT GTGAGACAGC CGGGTACGAG TCGTGACGCT GGAAGGGGCA 

     2461 AGCGGGTGGT GGGCAGGAAT GCGGTCCGCC CTGCAGCAAC CGGAGGGGGA GGGAGAAGGG 

     2521 AGCGGAAAAG TCTCCACCGG ACGCGGCCAT GGCTCGGGGG GGGGGGGGCA GCGGAGGAGC 

     2581 GCTTCCGGCC GACGTCTCGT CGCTGATTGG CTTCTTTTCC TCCCGCCGTG TGTGAAAACA 

     2641 CAAATGGCGT GTTTTGGTTG GCGTAAGGCG CCTGTCAGTT AACGGCAGCC GGAGTGCGCA 

     2701 GCCGCCGGCA GCCTCGCTCT GCCCACTGGG TGGGGCGGGA GGTAGGTGGG GTGAGGCGAG 

     2761 CTGGACGTGC GGGCGCGGTC GGCCTCTGGC GGGGCGGGGG AGGGGAGGGA GGGTCAGCGA 

     2821 AAGTAGCTCG CGCGCGAGCG GCCGCCCACC CTCCCCTTCC TCTGGGGGAG TCGTTTTACC 

     2881 CGCCGCCGGC CGGGCCTCGT CGTCTGATTG GCTCTCGGGG CCCAGAAAAC TGGCCCTTGC 

     2941 CATTGGCTCG TGTTCGTGCA AGTTGAGTCC ATCCGCCGGC CAGCGGGGGC GGCGAGGAGG 

     3001 CGCTCCCAGG TTCCGGCCCT CCCCTCGGCC CCGCGCCGCA GAGTCTGGCC GCGCGCCCCT 

     3061 GCGCAACGTG GCAGGAAGCG CGCGCTGGGG GCGGGGACGG GCAGTAGGGC TGAGCGGCTG 

     3121 CGGGGCGGGT GCAAGCACGT TTCCGACTTG AGTTGCCTCA AGAGGGGCGT GCTGAGCCAG 

     3181 ACCTCCATCG CGCACTCCGG GGAGTGGAGG GAAGGAGCGA GGGCTCAGTT GGGCTGTTTT 

     3241 GGAGGCAGGA AGCACTTGCT CTCCCAAAGT CGCTCTGAGT TGTTATCAGT AAGGGAGCTG 

     3301 CAGTGGAGTA GGCGGGGAGA AGGCCGCACC CTTCTCCGGA GGGGGGAGGG GAGTGTTGCA 

     3361 ATACCTTTCT GGGAGTTCTC TGCTGCCTCC TGGCTTCTGA GGACCGCCCT GGGCCTGGGA 

     3421 GAATCCCTTC CCCCTCTTCC CTCGTGATCT GCAACTCCAG TCTTTCTGGT ACCTCTAGAC 

3481ATATGTTAAT TAAATCGATG GCCTCCGCGC CGGGTTTTGG CGCCTCCCGC GGGCGCCCCC 

     3541 CTCCTCACGG CGAGCGCTGC CACGTCAGAC GAAGGGCGCA GCGAGCGTCC TGATCCTTCC 

     3601 GCCCGGACGC TCAGGACAGC GGCCCGCTGC TCATAAGACT CGGCCTTAGA ACCCCAGTAT 

     3661 CAGCAGAAGG ACATTTTAGG ACGGGACTTG GGTGACTCTA GGGCACTGGT TTTCTTTCCA 

     3721 GAGAGCGGAA CAGGCGAGGA AAAGTAGTCC CTTCTCGGCG ATTCTGCGGA GGGATCTCCG 

     3781 TGGGGCGGTG AACGCCGATG ATTATATAAG GACGCGCCGG GTGTGGCACA GCTAGTTCCG 

     3841 TCGCAGCCGG GATTTGGGTC GCGGTTCTTG TTTGTGGATC GCTGTGATCG TCACTTGGTG 

     3901 AGTAGCGGGC TGCTGGGCTG GCCGGGGCTT TCGTGGCCGC CGGGCCGCTC GGTGGGACGG 

     3961 AAGCGTGTGG AGAGACCGCC AAGGGCTGTA GTCTGGGTCC GCGAGCAAGG TTGCCCTGAA 

     4021 CTGGGGGTTG GGGGGAGCGC AGCAAAATGG CGGCTGTTCC CGAGTCTTGA ATGGAAGACG 

     4081 CTTGTGAGGC GGGCTGTGAG GTCGTTGAAA CAAGGTGGGG GGCATGGTGG GCGGCAAGAA 

     4141 CCCAAGGTCT TGAGGCCTTC GCTAATGCGG GAAAGCTCTT ATTCGGGTGA GATGGGCTGG 

     4201 GGCACCATCT GGGGACCCTG ACGTGAAGTT TGTCACTGAC TGGAGAACTC GGTTTGTCGT 

     4261 CTGTTGCGGG GGCGGCAGTT ATGGCGGTGC CGTTGGGCAG TGCACCCGTA CCTTTGGGAG 

     4321 CGCGCGCCCT CGTCGTGTCG TGACGTCACC CGTTCTGTTG GCTTATAATG CAGGGTGGGG 

     4381 CCACCTGCCG GTAGGTGTGC GGTAGGCTTT TCTCCGTCGC AGGACGCAGG GTTCGGGCCT 

     4441 AGGGTAGGCT CTCCTGAATC GACAGGCGCC GGACCTCTGG TGAGGGGAGG GATAAGTGAG 

     4501 GCGTCAGTTT CTTTGGTCGG TTTTATGTAC CTATCTTCTT AAGTAGCTGA AGCTCCGGTT 

     4561 TTGAACTATG CGCTCGGGGT TGGCGAGTGT GTTTTGTGAA GTTTTTTAGG CACCTTTTGA 

     4621 AATGTAATCA TTTGGGTCAA TATGTAATTT TCAGTGTTAG ACTAGTAAAT TGTCCGCTAA 

     4681 ATTCTGGCCG TTTTTGGCTT TTTTGTTAGA CGCCACCATG CATATAACTT CGTATAGCAT 

     4741 ACATTATACG AAGTTATGGC GCGCCGATCC TCGGGGACAC CAAATATGGC GATCTCGGCC 

     4801 TTTTCGTTTC TTGGAGCTGG GACATGTTTG CCATCGATCC ATCTACCACC AGAACGGCCG 

     4861 TTAGATCTGC TGCCACCGTT GTTTCCACCG AAGAAACCAC CGTTGCCGTA ACCACCACGA 

     4921 CGGTTGTTGC TAAAGAAGCT GCCACCGCCA CGGCCACCGT TGTAGCCGCC GTTGTTGTTA 

     4981 TTGTAGCTGC TACTGTTATT TCTGGCACTT CTTGGTTTTC CTCTTAAGTG AGGAGGAACA 

     5041 TAACCATTCT CGTTGTTGTC GTTGATGCTT AAATTTTGCA CTTGTTCGCT CAGTTCAGCC 

     5101 ATAATATGAA ATGCTTTTCT TGTTGTTCTT ACGGAATACC ACTTGCCACC TATCACCACA 

     5161 ACTAACTTTT TCCCGTTCCT CCATCTCTTT TATATTTTTT TTCTCGAGGG ATCTTTGTGA 

     5221 AGGAACCTTA CTTCTGTGGT GTGACATAAT TGGACAAACT ACCTACAGAG ATTTAAAGCT 

     5281 CTAAGGTAAA TATAAAATTT TTAAGTGTAT AATGTGTTAA ACTACTGATT CTAATTGTTT 

     5341 GTGTATTTTA GATTCCAACC TATGGAACTG ATGAATGGGA GCAGTGGTGG AATGCCTTTA 

     5401 ATGAGGAAAA CCTGTTTTGC TCAGAAGAAA TGCCATCTAG TGATGATGAG GCTACTGCTG 

     5461 ACTCTCAACA TTCTACTCCT CCAAAAAAGA AGAGAAAGGT AGAAGACCCC AAGGACTTTC 

     5521 CTTCAGAATT GCTAAGTTTT TTGAGTCATG CTGTGTTTAG TAATAGAACT CTTGCTTGCT 

     5581 TTGCTATTTA CACCACAAAG GAAAAAGCTG CACTGCTATA CAAGAAAATT ATGGAAAAAT 

     5641 ATTCTGTAAC CTTTATAAGT AGGCATAACA GTTATAATCA TAACATACTG TTTTTTCTTA 

     5701 CTCCACACAG GCATAGAGTG TCTGCTATTA ATAACTATGC TCAAAAATTG TGTACCTTTA 

     5761 GCTTTTTAAT TTGTAAAGGG GTTAATAAGG AATATTTGAT GTATAGTGCC TTGACTAGAG 

     5821 ATCATAATCA GCCATACCAC ATTTGTAGAG GTTTTACTTG CTTTAAAAAA CCTCCCACAC 

     5881 CTCCCCCTGA ACCTGAAACA TAAAATGAAT GCAATTGTTG TTGTTAACTT GTTTATTGCA 

     5941 GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT 

     6001 TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA TGTCTGGATC 

     6061 TGACATGGTA AGTAAGCTTG GGCTGCAGGT CGAGGGACCT AATAACTTCG TATAGCATAC 

     6121 ATTATACGAA GTTATGCGGC CGCGAATTCA AAGCAGAGCC ACTCCATTCA CACTTGTGGT 

     6181 CACAGTAGTA CAATTACTGC CAATTCTTCC CTCTTTCCCC CCCCCCCCCC CTACTCCCTG 

     6241 CGCAGCTTCA TTTGCTCCCA GGAGTGGCTA GAAAAATACC AAATTCCAAC CCACAGTTTC 

     6301 TCTCTTCCAC TTCCTGGAAA CACCCGAGGG CTCTGCACTT ACTCAGCGGA TTCAACTTCC 

     6361 ACTTTCCATC ACTTATCCAG GGTGATGCTA CTCCTTGGCA CCAAGCACCC TGCCTGACTC 

     6421 CACCCCCCTG GCTTACAATA AAAGGCTGCC TCAGAGCAGC CAGAAGTGCA GAGAGCCAGA 

     6481 CGGGAGGAAG GCCAGCCCAG CACCAGCACC AGCCAACTCT CACTGAAGCC AGCTCTCTCT 

     6541 TCCTCCACCA CCATGCAGGT CCCTGTCATG CTTCTGGGCC TGCTGTTCAC AGTTGCCGGC 

     6601 TGGAGCATCC ACGTGTTGGC TCAGCCAGGT GAGACCCCCC CAGCTCCCTT CCCAGCATAT 

     6661 CACCCCATTT TTGAATTGTC GTGGATTGTG ATAGCATAGT CTCACATGGT CAGGTACTTT 

     6721 TTTTTTTTTC TTTAACCAAG ATAAGGAGCA TAAAGAAGGA AGGACAAAGA GCCAACCCAA 

     6781 TTACAAGATT GCTTCTGGAA AGCAACTAGA ATTTTAATTG TTAGATCTAA ATTTGGAATC 

     6841 ACACCTTCAT ATAGTTCCTG TTCCAGTTAC TTCCCTCAGT ATTTGGGAAC CTGGGTGATC 

     6901 AAACAGAGGC TTGGGTTGGT GCCTTTTTCC AGATAGAGGA GAAAGGGGAA GAGATCCAAG 
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     6961 ATCCGAGCTG TGTTTCACCC AGCCCTGCTT CCAGAGATAG CAGCTTAGCG GAGGTGGTTG 

     7021 GGATCAGAGA TACTCATGAT TTGATTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTGC 

     7081 AGCCTACAGT AATGTACTCA GGTAATCTTC TCAGGTCATA GTAATTTGAC TTCTAACTCC 

     7141 CCCAAATGAC AGTCCCCAGA GTCACATAGT TTTAATGGCA TCCCTCTACC CAAGACTGTG 

     7201 AGCCTACTTT AAGCTGCAAA TAACTGAGTC TGTTGTCAAA GATCACATCC CAGATCTGAT 

     7261 GTATTGGCAT TTATATCCCA TCCTGCTGAA ACTGCCTTCT CCCCGTGGTC CTTCTCTTCT 

     7321 CTAAGGTCAG AAGCATCTTT CCTGTCCTAA TGTGCTTCTC TTTTACTCTC CAGATGCAGT 

     7381 TAACGCCCCA CTCACCTGCT GCTACTCATT CACCAGCAAG ATGATCCCAA TGAGTAGGCT 

     7441 GGAGAGCTAC AAGAGGATCA CCAGCAGCAG GTGTCCCAAA GAAGCTGTAG TGTGAGTTAC 

     7501 ATACCCCGGC CCTCCCTGGT CCAAAGGTTT TTCCTTAAGA ACAAGGGATG GTCCTCATAT 

     7561 ACTTATAGTC AGTCACACAC TCAGATCCAA TGGGGAAACC AAGGCCAAGA AGGCAAAGGC 

     7621 AGTTCTCAAC AGCATTGTCT CTATGGCTGC TGTTCAGGCC CTTTCTACTC CACAAGCTTA 

     7681 TCTTAGAAAA CCTGCAGGAG AAGCAGGTCA CTTTGAGTCC CCTTTTTCTA CCTGCCCTCC 

     7741 CCCGCTGAGC TCTACACAGC CCCTCCATGT ATACCAGACT GAACTTCATC TAACAGTGTC 

     7801 TTTTCTCTTC CCACAGTTTT GTCACCAAGC TCAAGAGAGA GGTCTGTGCT GACCCCAAGA 

     7861 AGGAATGGGT CCAGACATAC ATTAAAAACC TGGATCGGAA CCAAATGAGA TCAGAACCTA 

     7921 CAACTTTATT TAAAACTGCA TCTGCCCTAA GGTCTTCAGC ACCTTTGAAT GTGAAGTTGA 

     7981 CCCGTAAATC TGAAGCTAAT GCATCCACTA CCTTTTCCAC AACCACCTCA AGCACTTCTG 

     8041 TAGGAGTGAC CAGTGTGACA GTGAACTAGT GTGACTCGGA CTGTGATGCC TTAATTAATA 

     8101 TTAAACTTAT TTAACTTATT GATGTTATGG TATTCCCTTT CATGAATACT AAAATTTCTT 

     8161 AAATGCAAGG TGTGGATCCA TTTTTCCCTC TCTGTGAATC CAGATTCAAC ACTTTCAATG 

     8221 TATGAGAGAT GAATTTTGTA AAGATGAATG GGTAAACTTT GTGTTTGAGA TTCCAAGGTA 

     8281 TTGTTTAAAA TATTATTATG GATATTCCTT ATTATTAAAA GAAATATATT ATTTTTGTAC 

     8341 ACCAGTCTGA CTTTGAGTGT TTTCTTGAGG GAAACTGCAA AGCTGAGAGT ATATAAGCTT 

     8401 GGAGAGCAAC ACAGGTTGGG ACACATATTG TGGGGGAACA GGAGAGTGAA TGGCCCACTC 

     8461 TTTTGTATTG AATGGTCTTA TCTGAGTGTC ATAGACTCTT CAAGATGGGG CCCAGTCAGG 

     8521 GATGCTAGTA CCATTGTTTT GGTCCCTAGC ATTGCTTCTC AGATACATGC TCAACAAAAG 

     8581 CCCCAGTCCT TCCCAGTCAC ATGTCCTAGT TGCCCTTTAA CTGGGATACA TCACTTCCAT 

     8641 CTACAGCTCT GCAATTTATA ATTCTCTAAC TGCATAGGTA GTTCAGACAG TGGAGAACAG 

     8701 ACGGGAGACT TAACCATCTT CTATAGGAAG GTTATGGTAA TGCTTCCTAG AGAGAGGAAG 

     8761 ACATGAACTT ATCCTTGATA ATGGTTAGTT TTATAGGAAA AAAAACACAA AAGCATTAAG 

     8821 GAAAACTGGT AGGTGGGGGA AATTATCCAA AAATAGAAAT GAAAATGGTG TGTACATTAA 

     8881 ACGGGGAAGA GCGAGGGAAA CCATCCGATG GAGCTGCATG TATATCAAGA GATGGGGATT 

     8941 TTTCAAGAGG AAGCTCAATA CAGGGTTTGG AATAGGAAGG TGAGAACATG GTATTCCCTC 

     9001 GGACCTATAA TTTAAAGGAT AAGTTGAAAC TCTTCGGTCC AATAAAGAGG GAGGGAGAAT 

     9061 TCAGATCTGG TACCGATATC AAGCTTAACT GATCATAATC AGCCATACCA CATTTGTAGA 

     9121 GGTTTTACTT GCTTTAAAAA ACCTCCCACA CCTCCCCCTG AACCTGAAAC ATAAAATGAA 

     9181 TGCAATTGTT GTTGTTAACT TGTTTATTGC AGCTTATAAT GGTTACAAAT AAAGCAATAG 

     9241 CATCACAAAT TTCACAAATA AAGCATTTTT TTCACTGCAT TCTAGTTGTG GTTTGTCCAA 

     9301 ACTCATCAAT GTATCTTAAC GCTTAATTAA GAAGTTCCTA TTCCGAAGTT CCTATTCTCT 

     9361 AGTAAGTATA GGAACTTCTG GCGAATTAAT TCTACCGGGT AGGGGAGGCG CTTTTCCCAA 

     9421 GGCAGTCTGG AGCATGCGCT TTAGCAGCCC CGCTGGGCAC TTGGCGCTAC ACAAGTGGCC 

     9481 TCTGGCCTCG CACACATTCC ACATCCACCG GTAGGCGCCA ACCGGCTCCG TTCTTTGGTG 

     9541 GCCCCTTCGC GCCACCTTCT ACTCCTCCCC TAGTCAGGAA GTTCCCCCCC GCCCCGCAGC 

     9601 TCGCGTCGTG CAGGACGTGA CAAATGGAAG TAGCACGTCT CACTAGTCTC GTGCAGATGG 

     9661 ACAGCACCGC TGAGCAATGG AAGCGGGTAG GCCTTTGGGG CAGCGGCCAA TAGCAGCTTT 

     9721 GCTCCTTCGC TTTCTGGGCT CAGAGGCTGG GAAGGGGTGG GTCCGGGGGC GGGCTCAGGG 

     9781 GCGGGCTCAG GGGCGGGGCG GGCGCCCGAA GGTCCTCCGG AGGCCCGGCA TTCTGCACGC 

     9841 TTCAAAAGCG CACGTCTGCC GCGCTGTTCT CCTCTTCCTC ATCTCCGGGC CTTTCGACCT 

     9901 GCAGCCTGTT GACAATTAAT CATCGGCATA GTATATCGGC ATAGTATAAT ACGACAAGGT 

     9961 GAGGAACTAA ACCATGGGAT CGGCCATTGA ACAAGATGGA TTGCACGCAG GTTCTCCGGC 

    10021 CGCTTGGGTG GAGAGGCTAT TCGGCTATGA CTGGGCACAA CAGACAATCG GCTGCTCTGA 

    10081 TGCCGCCGTG TTCCGGCTGT CAGCGCAGGG GCGCCCGGTT CTTTTTGTCA AGACCGACCT 

    10141 GTCCGGTGCC CTGAATGAAC TGCAGGACGA GGCAGCGCGG CTATCGTGGC TGGCCACGAC 

    10201 GGGCGTTCCT TGCGCAGCTG TGCTCGACGT TGTCACTGAA GCGGGAAGGG ACTGGCTGCT 

    10261 ATTGGGCGAA GTGCCGGGGC AGGATCTCCT GTCATCTCAC CTTGCTCCTG CCGAGAAAGT 

    10321 ATCCATCATG GCTGATGCAA TGCGGCGGCT GCATACGCTT GATCCGGCTA CCTGCCCATT 

    10381 CGACCACCAA GCGAAACATC GCATCGAGCG AGCACGTACT CGGATGGAAG CCGGTCTTGT 

    10441 CGATCAGGAT GATCTGGACG AAGAGCATCA GGGGCTCGCG CCAGCCGAAC TGTTCGCCAG 

    10501 GCTCAAGGCG CGCATGCCCG ACGGCGATGA TCTCGTCGTG ACCCATGGCG ATGCCTGCTT 

    10561 GCCGAATATC ATGGTGGAAA ATGGCCGCTT TTCTGGATTC ATCGACTGTG GCCGGCTGGG 

    10621 TGTGGCGGAC CGCTATCAGG ACATAGCGTT GGCTACCCGT GATATTGCTG AAGAGCTTGG 

    10681 CGGCGAATGG GCTGACCGCT TCCTCGTGCT TTACGGTATC GCCGCTCCCG ATTCGCAGCG 

    10741 CATCGCCTTC TATCGCCTTC TTGACGAGTT CTTCTGAGGC CGGCCCCACG CGTCCACCTT 

    10801 TGTTGTTGGA TATGCCCTTG ACTATAATGA GTACTTCAGG GATTTGAATG TAAGTAATGC 

    10861 TTTTTTTTTT CTCGCTCTCA TTTTTCAAAA ACCCACATAA AAATTGAGGA AAGGGAAGAA 

    10921 TTGTTTTCTC CTTCCAGCAC CTCGTAATTT GACCCGACTG ATGGTTCCCA TTAGTCACAT 

    10981 AAAGCTGTAG TCAAGTACAG ACGTCAGTAA TATTTATATA TTTATATTTT TAAAATATTT 

    11041 ATTTATTTAT TTATTTAAGT TAATTAGTGA AGGGCGAGCT TGAGGATCTG AAGTTCCTAT 

    11101 TCCGAAGTTC CTATTCTCTA GTAAGTATAG GAACTTCGGA TCGTTGAAGA AGGAGGTGGG 

    11161 ATGCTTAATT AAGCTTGTCG ACTCTAGATT GCGGCCGCGG CGCGCCATCG ATGAATTCGA 

    11221TATCGGCCGGCCGAAGATGG GCGGGAGTCT TCTGGGCAGG CTTAAAGGCT AACCTGGTGT 

    11281 GTGGGCGTTG TCCTGCAGGG GAATTGAACA GGTGTAAAAT TGGAGGGACA AGACTTCCCA 

    11341 CAGATTTTCG GTTTTGTCGG GAAGTTTTTT AATAGGGGCA AATAAGGAAA ATGGGAGGAT 

    11401 AGGTAGTCAT CTGGGGTTTT ATGCAGCAAA ACTACAGGTT ATTATTGCTT GTGATCCGCC 

    11461 TCGGAGTATT TTCCATCGAG GTAGATTAAA GACATGCTCA CCCGAGTTTT ATACTCTCCT 

    11521 GCTTGAGATC CTTACTACAG TATGAAATTA CAGTGTCGCG AGTTAGACTA TGTAAGCAGA 

    11581 ATTTTAATCA TTTTTAAAGA GCCCAGTACT TCATATCCAT TTCTCCCGCT CCTTCTGCAG 

    11641 CCTTATCAAA AGGTATTTTA GAACACTCAT TTTAGCCCCA TTTTCATTTA TTATACTGGC 

    11701 TTATCCAACC CCTAGACAGA GCATTGGCAT TTTCCCTTTC CTGATCTTAG AAGTCTGATG 

    11761 ACTCATGAAA CCAGACAGAT TAGTTACATA CACCACAAAT CGAGGCTGTA GCTGGGGCCT 

    11821 CAACACTGCA GTTCTTTTAT AACTCCTTAG TACACTTTTT GTTGATCCTT TGCCTTGATC 

    11881 CTTAATTTTC AGTGTCTATC ACCTCTCCCG TCAGGTGGTG TTCCACATTT GGGCCTATTC 
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    11941 TCAGTCCAGG GAGTTTTACA ACAATAGATG TATTGAGAAT CCAACCTAAA GCTTAACTTT 

    12001 CCACTCCCAT GAATGCCTCT CTCCTTTTTC TCCATTTATA AACTGAGCTA TTAACCATTA 

    12061 ATGGTTTCCA GGTGGATGTC TCCTCCCCCA ATATTACCTG ATGTATCTTA CATATTGCCA 

    12121 GGCTGATATT TTAAGACATT AAAAGGTATA TTTCATTATT GAGCCACATG GTATTGATTA 

    12181 CTGCTTACTA AAATTTTGTC ATTGTACACA TCTGTAAAAG GTGGTTCCTT TTGGAATGCA 

    12241 AAGTTCAGGT GTTTGTTGTC TTTCCTGACC TAAGGTCTTG TGAGCTTGTA TTTTTTCTAT 

    12301 TTAAGCAGTG CTTTCTCTTG GACTGGCTTG ACTCATGGCA TTCTACACGT TATTGCTGGT 

    12361 CTAAATGTGA TTTTGCCAAG CTTCTTCAGG ACCTATAATT TTGCTTGACT TGTAGCCAAA 

    12421 CACAAGTAAA ATGATTAAGC AACAAATGTA TTTGTGAAGC TTGGTTTTTA GGTTGTTGTG 

    12481 TTGTGTGTGC TTGTGCTCTA TAATAATACT ATCCAGGGGC TGGAGAGGTG GCTCGGAGTT 

    12541 CAAGAGCACA GACTGCTCTT CCAGAAGTCC TGAGTTCAAT TCCCAGCAAC CACATGGTGG 

    12601 CTCACAACCA TCTGTAATGG GATCTGATGC CCTCTTCTGG TGTGTCTGAA GACCACAAGT 

    12661 GTATTCACAT TAAATAAATA AATCCTCCTT CTTCTTCTTT TTTTTTTTTT TAAAGAGAAT 

    12721 ACTGTCTCCA GTAGAATTTA CTGAAGTAAT GAAATACTTT GTGTTTGTTC CAATATGGTA 

    12781 GCCAATAATC AAATTACTCT TTAAGCACTG GAAATGTTAC CAAGGAACTA ATTTTTATTT 

    12841 GAAGTGTAAC TGTGGACAGA GGAGCCATAA CTGCAGACTT GTGGGATACA GAAGACCAAT 

    12901 GCAGACTTTA ATGTCTTTTC TCTTACACTA AGCAATAAAG AAATAAAAAT TGAACTTCTA 

    12961 GTATCCTATT TGTTTAAACT GCTAGCTTTA CTTAACTTTT GTGCTTCATC TATACAAAGC 

    13021 TGAAAGCTAA GTCTGCAGCC ATTACTAAAC ATGAAAGCAA GTAATGATAA TTTTGGATTT 

    13081 CAAAAATGTA GGGCCAGAGT TTAGCCAGCC AGTGGTGGTG CTTGCCTTTA TGCCTTTAAT 

    13141 CCCAGCACTC TGGAGGCAGA GACAGGCAGA TCTCTGAGTT TGAGCCCAGC CTGGTCTACA 

    13201 CATCAAGTTC TATCTAGGAT AGCCAGGAAT ACACACAGAA ACCCTGTTGG GGAGGGGGGC 

    13261 TCTGAGATTT CATAAAATTA TAATTGAAGC ATTCCCTAAT GAGCCACTAT GGATGTGGCT 

    13321 AAATCCGTCT ACCTTTCTGA TGAGATTTGG GTATTATTTT TTCTGTCTCT GCTGTTGGTT 

    13381 GGGTCTTTTG ACACTGTGGG CTTTCTTTAA AGCCTCCTTC CTGCCATGTG GTCTCTTGTT 

    13441 TGCTACTAAC TTCCCATGGC TTAAATGGCA TGGCTTTTTG CCTTCTAAGG GCAGCTGCTG 

    13501 AGATTTGCAG CCTGATTTCC AGGGTGGGGT TGGGAAATCT TTCAAACACT AAAATTGTCC 

    13561 TTTAATTTTT TTTTTAAAAA ATGGGTTATA TAATAAACCT CATAAAATAG TTATGAGGAG 

    13621 TGAGGTGGAC TAATATTAAA TGAGTCCCTC CCCTATAAAA GAGCTATTAA GGCTTTTTGT 

    13681 CTTATACTTA ACTTTTTTTT TAAATGTGGT ATCTTTAGAA CCAAGGGTCT TAGAGTTTTA 

    13741 GTATACAGAA ACTGTTGCAT CGCTTAATCA GATTTTCTAG TTTCAAATCC AGAGAATCCA 

    13801 AATTCTTCAC AGCCAAAGTC AAATTAAGAA TTTCTGACTT TTAATGTTAA TTTGCTTACT 

    13861 GTGAATATAA AAATGATAGC TTTTCCTGAG GCAGGGTCTC ACTATGTATC TCTGCCTGAT 

    13921 CTGCAACAAG ATATGTAGAC TAAAGTTCTG CCTGCTTTTG TCTCCTGAAT ACTAAGGTTA 

    13981 AAATGTAGTA ATACTTTTGG AACTTGCAGG TCAGATTCTT TTATAGGGGA CACACTAAGG 

    14041 GAGCTTGGGT GATAGTTGGT AAAATGTGTT TCAAGTGATG AAAACTTGAA TTATTATCAC 

    14101 CGCAACCTAC TTTTTAAAAA AAAAAGCCAG GCCTGTTAGA GCATGCTTAA GGGATCCCTA 

    14161 GGACTTGCTG AGCACACAAG AGTAGTTACT TGGCAGGCTC CTGGTGAGAG CATATTTCAA 

    14221 AAAACAAGGC AGACAACCAA GAAACTACAG TTAAGGCCGG CCGCGGTGGA GCTCCAGCTT 

    14281 TTGTTCCCTT TAGTGAGGGT TAATTTCGAG CTTGGCGTAA TCATGGTCAT AGCTGTTTCC 

    14341 TGTGTGAAAT TGTTATCCGC TCACAATTCC ACACAACATA CGAGCCGGAA GCATAAAGTG 

    14401 TAAAGCCTGG GGTGCCTAAT GAGTGAGCTA ACTCACATTA ATTGCGTTGC GCTCACTGCC 

    14461 CGCTTTCCAG TCGGGAAACC TGTCGTGCCA GCTGCATTAA TGAATCGGCC AACGCGCGGG 

    14521 GAGAGGCGGT TTGCGTATTG GGCGCTCTTC CGCTTCCTCG CTCACTGACT CGCTGCGCTC 

    14581 GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG GCGGTAATAC GGTTATCCAC 

    14641 AGAATCAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA GGCCAGCAAA AGGCCAGGAA 

    14701 CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT CCATAGGCTC CGCCCCCCTG ACGAGCATCA 

    14761 CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA GGACTATAAA GATACCAGGC 

    14821 GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG ACCCTGCCGC TTACCGGATA 

    14881 CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT CATAGCTCAC GCTGTAGGTA 

    14941 TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT GTGCACGAAC CCCCCGTTCA 

    15001 GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG TAAGACACGA 

    15061 CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC AGAGCGAGGT ATGTAGGCGG 

    15121 TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC ACTAGAAGGA CAGTATTTGG 

    15181 TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG 

    15241 CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC AAGCAGCAGA TTACGCGCAG 

    15301 AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG GGGTCTGACG CTCAGTGGAA 

    15361 CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA AAAAGGATCT TCACCTAGAT 

    15421 CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT ATATATGAGT AAACTTGGTC 

    15481 TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTTCGTTC 

    15541 ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC 

    15601 TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC 

    15661 AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TATCCGCCTC 

    15721 CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT AGTTCGCCAG TTAATAGTTT 

    15781 GCGCAACGTT GTTGCCATTG CTACAGGCAT CGTGGTGTCA CGCTCGTCGT TTGGTATGGC 

    15841 TTCATTCAGC TCCGGTTCCC AACGATCAAG GCGAGTTACA TGATCCCCCA TGTTGTGCAA 

    15901 AAAAGCGGTT AGCTCCTTCG GTCCTCCGAT CGTTGTCAGA AGTAAGTTGG CCGCAGTGTT 

    15961 ATCACTCATG GTTATGGCAG CACTGCATAA TTCTCTTACT GTCATGCCAT CCGTAAGATG 

    16021 CTTTTCTGTG ACTGGTGAGT ACTCAACCAA GTCATTCTGA GAATAGTGTA TGCGGCGACC 

    16081 GAGTTGCTCT TGCCCGGCGT CAATACGGGA TAATACCGCG CCACATAGCA GAACTTTAAA 

    16141 AGTGCTCATC ATTGGAAAAC GTTCTTCGGG GCGAAAACTC TCAAGGATCT TACCGCTGTT 

    16201 GAGATCCAGT TCGATGTAAC CCACTCGTGC ACCCAACTGA TCTTCAGCAT CTTTTACTTT 

    16261 CACCAGCGTT TCTGGGTGAG CAAAAACAGG AAGGCAAAAT GCCGCAAAAA AGGGAATAAG 

    16321 GGCGACACGG AAATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA 

    16381 TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT ATTTAGAAAA ATAAACAAAT 

    16441 AGGGGTTCCG CGCACATTTC CCCGAAAAGT GCCACCTAAA TTGTAAGCGT TAATATTTTG 

    16501 TTAAAATTCG CGTTAAATTT TTGTTAAATC AGCTCATTTT TTAACCAATA GGCCGAAATC 

    16561 GGCAAAATCC CTGTTTAAAC TCGCGACGCG TTATAAATCA AAAGAATAGA CCGAGATAGG 
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Supplementary material S3, details on the construct design, corresponding to the 
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The Knock-in Construct Design, from plasmid to electroporation 

 

1. Overview 

1.1 Vector backbone 

The following plasmid (named Ubi-Neo) was used for construction of the targeting vector. 

 

 

 

1.2 Construction fragments 

Named frag arm, contained the genomic fragment of the gene to be introduced (Ccl2).  

 

2. frag arm (Generation, Diagnostics and Sequencing) 

 

2.1 Production 

Using the following primers, the genomic fragment of Ccl2 gene was amplified by PCR. 

 

Template: C57BL/6 genomic DNA 

P_01 5’ AGAATTCAAAGCAGAGCCACTCCATTCACAC 

EcoRI  Homology 

 

P_02 5’ TGAATTCTCCCTCCCTCTTTATTGGACCGAAG 

EcoRI  Homology 

 

Product: 2921 bp 

Ubi-Neo 
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2.2 Cloning into pPCR 

a) Sequencing with PBadF01 or PBadR02 

The PCR product was cloned into pPCR and screened by sequencing to confirm clones with the 

correct insert. 

 

 

 

 

b) Full Sequencing 

Once end sequencing identified clones, a full sequence was completed using the following 

primers. 

 

 

2.3 Cloning into the targeting vector 

a) Restriction enzyme digest for cloning 

Both frag arm vector (containing Ccl2 gene) and the Ubi-Neo vector, were digested with EcoRI 

for cloning Ccl2 gene into Ubi-Neo vector (just where the Stuffer fragment was placed). 

The resulting vector was named Ubi-frag-Neo 

 

0  

 

 

 

b) Screen by Sequencing 

Clones containing the insert could be screened by end sequencing with P335_11 and PNeoR10 

primers: 

 

 

frag arm 

frag arm 

frag arm 

Ubi-Neo 

Ubi-frag-Neo 
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3. Cloning into the ROSA 26 vector 

 

3.1 Cloning into the targeting vector 

a) Restriction enzyme digest for cloning 

ClaI restriction enzyme was used for cloning the constructed fragment (Ubi-frag-Neo) into the 

ROSA26 vector (which contained homologous sequences to ROSA26). 

 

 

 

 

 

 

 

b) Screen by Sequencing 

Clones that contained the insert (the targeting vector), were screened by end sequencing with 

the following primers 

 

 

 

 

Ubi-frag-Neo 

ROSA26 vector 

UNIVERSITAT ROVIRA I VIRGILI 
INFLAMMATION AND ENERGY METABOLISM IN OBESITY: THE SEARCH FOR BIOMARKERS AND 
NOVEL THERAPEUTIC STRATEGIES. 
Esther Rodríguez Gallego 
Dipòsit Legal: T 1337-2015



 
4. Complete Targeting Vector 

 

4.1 Final sequencing 

To assess the targeting vector integrity, final sequencing was performed using the primers 

identified in the following graphic: 

 

 

 

4.2 Restriction enzyme digest for Quality Control 

Targeting vector was digested with several restriction enzymes as quality control strategy: 

 

 

 

 

4.3 Restriction enzyme digest for electroporation 

Finally, targeting vector was digested with AclI to obtain a suitable vector for electroporation into 

stem cells 
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Supplementary material S5, Weight of adipose tissues in the three strains after 14 

weeks of dietary tratment with either chow diet or high fat diet treatment, corresponding 
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Oral glucose tolerance tests displayed a significant effect of high fat, high-cholesterol diet on 

insulin resistance even with a short-term manipulation. However, differences among strains fed 

the same diet were negligible either in 16 an 24 weeks old (A, B). Plasma glucose was higher in 

CCL2 overexpressors than in other strains and the effect of diet was also more evident (C).  

These differences disappeared when the dietary tratement was for 14 weeks (D). * P<0.05 with 

respect to relevant pair. 
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Supplementary material S7, expression of fatty acid synthase and AMPK in the liver, 
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Representative immunoblottings in the liver of transgenic and KO mice fed chow diet 

(A,C,D) and high-fat diet (B,E, F) of FASN and activated AMPK and the respective 

calculations (C-F) . 
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Supplementary material S8  The effect of high fat diet and overexpression of CCL2 

in the size, number and morphology of liver macrophages after 14 weeks of dietary 

treatment, corresponding to the manuscript: 

 

Ubiquitous transgenic overexpression of C-C 

chemokine ligand 2: a model to assess the 

combined effect of high energy intake and 

continuous low-grade inflammation? 
 
Esther Rodríguez-Gallego, Marta Riera-Borrull, Anna Hernández-Aguilera, Roger 

Mariné-Casadó, Anna Rull, Raúl Beltrán-Debón, Fedra Luciano-Mateo, Javier A. 

Menéndez
1
, Alejandro Vazquez-Martin

1
, Juan J. Sirvent

2
, Vicente Martín-Paredero

3
, 

Angel L. Corbí
4
, Elena Sierra-Filardi

4
, Gerard Aragonès, Anabel García-Heredia, Jordi 

Camps, Carlos Alonso-Villaverde
5
, Jorge Joven* 

Dietary fat (right column) and CCL2 expression modify the size, number and morphology of 

liver macrophages with respect to those fed a chow diet (left column) as assessed with F4/80 

staining. Values for stained area and length of macrophages (A-D) are illustrated with 

representative microphotographs from transgenic (E,F), WT (G,H) and KO mice (I,J). 
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Supplementary material S9, Transgenic mice that overexpress CCL2 die 

prematurely when fed high-fat diet, corresponding to the manuscript: 

 

Ubiquitous transgenic overexpression of C-C 

chemokine ligand 2: a model to assess the 

combined effect of high energy intake and 

continuous low-grade inflammation? 
 
Esther Rodríguez-Gallego, Marta Riera-Borrull, Anna Hernández-Aguilera, Roger 

Mariné-Casadó, Anna Rull, Raúl Beltrán-Debón, Fedra Luciano-Mateo, Javier A. 

Menéndez
1
, Alejandro Vazquez-Martin

1
, Juan J. Sirvent

2
, Vicente Martín-Paredero

3
, 

Angel L. Corbí
4
, Elena Sierra-Filardi

4
, Gerard Aragonès, Anabel García-Heredia, Jordi 

Camps, Carlos Alonso-Villaverde
5
, Jorge Joven* 

Transgenic mice fed high-fat diet died prematurely after a progressive decrease in 

weight and activity (A,B). The size of the spleen in transgenic animals was higher than 

in controls and there were abundant megakariocytes (C, D). The livers were also higher 

in transgenic mice where steatosis and signs of regenerative tissue and apoptotic nuclei 

were numerous (E,F)  
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