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Vocal 1 Maŕıa José Cáceres Universidad de Granada
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Introduction

The goal of this work is a contribution to the numerical simulation of kinetic
models in electronic engineering and plasma physics [32, 84]. The MOSFET
is an example of electronic device. It is a transistor, the building block for
all the commonly used electronic objects, from CD players to laptop com-
puters. Its particular interest is due to the effort being made to reduce it
to nanoscale. During the last fifty years electronic components have been
made smaller and smaller, which allows better performances for processors
and saving of energy.
Electronic devices are physical solid state devices; they have a fixed elec-
tronic lattice, in which impurities are injected in order to modify electronic
properties. A standard semiconductor is made of Silicon, which is a tetrava-
lent atom and might be doped by injecting Phosphoros (P ) or Arsenic (As)
to obtain a negative doping (there is an excess of free electrons), or by inject-
ing Boron (B), which is electron-deficient (it possesses a vacant p-orbital),
to obtain a positive doping: a sort of excess of positive charges is produced,
which is in fact an excess of electron holes. To give an idea of the dimensions
of the doping phenomenon, in 1 cm3 of Silicon there are order 1024 atoms;
a low doping means injecting 1013 atoms per cm3, while a high doping 1020

atoms per cm3. The doping of semiconductors is essential in order to create
a potential barrier high enough to induce an electron current.

Another physical object on which we shall focus our attention are plas-
mas, i.e. ionized gases: the electrons of the most external orbits are sepa-
rated from the atom, which happens to gases when warmed up to 106 − 108

Celsius degrees (that is why plasma is considered the fourth state of matter).
Positive, negative and neutral charges dissociate, like 99% of the matter.
Plasmas are a central point in the research in fusion energy.

Transport of charged particles and collisions are the main aspects which
we need to describe when simulating electronic devices and plasmas. Basi-
cally two categories of models can be used:

• microscopic: we expect to have a precise and detailed physical de-
scription of the phenomena, even if more numerically costly; at ki-
netic level the motion is described by a probabilistic magnitude (the
dynamical description being unrealizable because of the huge number
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of particles involved) defined in the phase space (x, v), (x, p) or (x, k):
the choice of the problem may make more suitable the use of the veloc-
ity v instead of the impulsion p or the wave vector k. The probability
distribution function (pdf) is called f(t, x, v), where f(t, x, v)dxdv rep-
resents the number of particles in volume dxdv around point (x, v) at
time t;

• macroscopic: starting from the kinetic model, hydrodynamics limits
[9, 15, 55] or fluid limits give on one side Euler and Navier-Stokes
models and on the other side Spherical Harmonic Expansion [16, 39],
Energy Transport [2] or Drift-Diffusion [3] models. Refer to [101] for
more detail.

For the scope of this work we are interested in transient-state microscopic
models, therefore the Vlasov operator is the main tool describing the mo-
tion of carriers under the effects of a positional force field F (t, x) and the
free motion. Collisions are taken into account by the Boltzmann operator:
sometimes we shall neglect them, sometimes we shall just use a linear BGK,
sometimes we shall take into account acoustic phonon scattering and optical
phonon scattering (phonons are pseudo-particles describing the vibration of
the lattice).

The force field F (t, x) can be of very different natures. Usually it has
the contribution of the self-consistent electrostatic field given by the Poisson
equation. In the nanoMOSFET model, the Poisson equation is replaced by
the Schrödinger-Poisson equation, in order to take into account the discrete
energy levels of the confined dimensions. In plasmas simulations magnetic
events cannot be neglected, so that we have to use Lorentz force (computed
solving Maxwell equations) instead of just the electrostatic force.

Numerical schemes solving the transport problems have to deal with the
filamentation problem: in the phase space strong gradients and oscillations
appear, which is a physical phenomenon, essential in the evolution of Vlasov-
based models, but it must be numerically treated in a proper way not to
add spurious oscillations, i.e. numerical non-physical phenomena. In any
numerical scheme, interpolations are required at some point; many are the
possible choices but some of them do not properly deal with the physics of
the model. In the first part of this thesis we develop Pointwise Essentially
Non Oscillatory (PWENO) interpolation methods for direct reconstruction,
and involve them in the solvers for transport problems. Moreover, we explore
the possibilities of splitting algorithms between the dimensions of the phase
space (dimensional splitting) and between transport and collisions in the
collisional problems.

More precisely, for the time discretization of the models, two techniques
are used: either we use the third order TVD (Total Variation Diminish-
ing) Runge-Kutta algorithm in [28], or we split linear operators (like in the
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Figure 1: The direct Semi Lagrangian reconstruction, based on following
backward the characteristics.

Boltzmann Transport Equation) by means of Strang splittings, a scheme in-
troduced in 1976 by Cheng and Knorr [35] based on a previous 1968 article
of Strang [98]. For example, for solving the BTE

∂f

∂t
+ a(v) · ∇xf + F (x) · ∇vf = Q[f ]

we can split it into two blocks

transport:
∂f

∂t
+ a(v) · ∇xf + F (x) · ∇vf = 0

collisions:
∂f

∂t
= Q[f ],

solve them in separate steps and then recombine them: first perform a ∆t
2 -

time step in transport, then a ∆t-time step in collisions and then a ∆t
2 -time

step in transport; this gives a second order scheme in time. Details are given
in section 1.2.
Runge-Kutta schemes have the drawback of being time consuming (their
explicit character constraints the time step to the CFL condition) and may
be more difficult to implement, while in splitting schemes, being the blocks
solved for separate, easier problems are solved. In principle, no constraints
other than the physical consistency appear on the time stepping, which
permits solving the problems in less time steps.

In section 1.3 two methods for the transport step are proposed: the
direct Semi Lagrangian reconstruction in Figure 1 and the Flux Balance
Method [42] in Figure 2. They must be completed by some interpolation
technique, for which we use PWENO methods, which are the object of an
accurate description in Section 1.1.

In Chapter 2 time splitting schemes (in Section 1.2) with Semi La-
grangian methods (in Section 1.3) for the advection parts and PWENO
methods (in Section 1.1) for the reconstruction are tested and then applied
to some 1D models: a Vlasov system with given potential with either a
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x x
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FLUX BALANCE METHOD means evualuating
the flux at time t       from a balance ofn+1

fluxes at previous time t   : n

The averages along the red segments
are the same, because we have followed

Figure 2: The Flux Balance Method, based on following backward the char-
acteristics, but mass conservation is imposed.

linear BGK or a Fokker-Planck operator for collisions

∂f

∂t
+ v

∂f

∂x
− x

∂f

∂v
= Q[f ]

Q[f ] =

{
1
τ [ρ(x)M(v) − f ]
1
τ

∂
∂v

[
vf + Θ∂f

∂v

] ,

a collisionless Vlasov-Poisson, where the force field is self-consisiently com-
puted through the Poisson equation (which can be solved for instance like
in Section 1.6)

∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0

∂2Φ

∂x2
= 1 −

∫
fdv,

which leads to the Landau damping if we set as initial condition a small
perturbation on the equilibrium f0(x, v) = M(v)

[
1 + ǫ cos

(
x
2

)]
, or to the

two-stream instability, a typical vortex structure:

f0(x, v) = Z
2

7
√

2π

(
1 + 5v2

) [
1 + α

(
cos(2kx) + cos(3kx)

1.2
+ cos(kx)

)]
e−

v2

2 .

By these two tests we see how PWENO schemes are able to control spurious
oscillations.
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A semiconductor model is then studied in which the force field is self-
consistently computed through the Poisson equation and the collisions are a
correction of the linear BGK, the relaxation time being position-dependent

τ(t, x) =
m

e

2µ0

1 +
√

1 + 4((µ0/v0)E(t, x))2
.

The main contribution of this part of the memory is the development of this
non-linear interpolation procedure PWENO and its coupling with splitting
techniques for solving kinetic equations. We also discuss the conservation of
magnitudes like Lp-norms, total energy and entropy.

In Chapter 3, we apply the previously developed schemes to the simula-
tion of an electronic device in which the single energy-band is given in the
parabolic approximation, the electrostatic field is self-consistently computed
via Poisson equation and collisions are taken into account with acoustic
and optical phonons, in the linear approximation. The transport/collision
equation is solved through recursive splitting schemes in rescaled cartesian
coordinates, so that we reduce to the solution of 1D advection steps and
collisions; as for the advection, the mass-preserving FBM scheme [42] has
been chosen. The collision operator in the low-density approximation is

Q[f ](t, x, k) =

∫

R3

[
S(k′, k)f(t, x, k′) − S(k, k′)f(t, x, k)

]
dk′

with

S(k, k′) = K
[
(nq + 1)δ(ε(k′) − ε(k) + ~ω) + nqδ(ε(k

′) − ε(k) − ~ω)
]

+ K0δ(ε(k
′) − ε(k)),

where the reader can refer to Chapter 3 for the meaning and value of the
physical constants. The solution of this operator requires performing inte-
grations on an interval [−√

γ,
√

γ] of the pdf f(k1, u) following a semicircle
in the (k1, u)-space, where u = ‖(k2, k3)‖:

∫ √
γ

−√
γ
f

(
k1,

√
γ − (k1)2

)
dk1.

Several interpolations are needed to compute the integral, which would not
be the case in energy-adapted variables, the semicircle representing a level
of the band-energy ε(k) and the integration reducing to a single evaluation,
so that just one interpolation may be needed. In our case several strategies
have been tried, but without much improvement with respect to a plain
along-the-line linear interpolation; refer to Section 1.4.1 for details.

In Chapter 5 we afford the numerical simulation of a 2D MOSFET (3D
if we assume y-invariance) at a nanoscopic scale. The Silicon Debye length,
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essentially the distance over which significant charge separation occurs, is
given, at lattice temperature TL = 300K, by

λD =

√
εSiε0kBTL

e2ND
≈ 4088

√
1

ND
.

For the highly doped regions (N+ = 1020cm−3), the Debye length is about
λD = 0.4nm, while for the lowly doped regions (N+ = 1015cm−3), the Debye
length is about λD = 130nm. The device object of our study is 20nm long in
the x-direction, in which we inject the carriers, and 8 nm in the z-direction,
in which the confinement takes place, thanks to a built-in potential barrier
of 3eV between the Si-layer and the SiO2-layer. While along the transport
dimension a classical description of the motion is satisfactory, the confined
dimension is very short and energy levels become quantized: from now on,
they are indexed by letter p, from lower energies, therefore more occupied,
to higher energies, therefore less occupied. A quantum description in the
confined dimension is more appropriate, therefore we assume the carriers
behave like waves, their state being described by the 1D stationary-state
Schrödinger equation (1D because the x-position only acts as a parameter):

− d

dz

[
1

m∗

dχp

dz

]
− q (V + Vc) χp = ǫpχp.

Along the x-dimension carriers behave like particles, driven by the free mo-
tion, the self-consistent force field and having collisions with the phonons
(but for the scope of this work we shall just use a linear BGK); the mi-
croscopic description of their motion is given by the Boltzmann Transport
Equation:

∂fp

∂t
+

1

~
∇kǫ

kin
p · ∇xfp −

1

~
∇xǫpot

p · ∇kfp = Qp[fp],

where the band kinetic energy is taken in its parabolic approximation:

ǫkin
p (k) =

~
2|k|2

2m∗kBTL
,

therefore it does not depend on the band. The force field is computed
through the Poisson equation:

−divx,z [εR(x, z)∇x,zV ] = − q

ε0
[N [V ] − ND] .

The Schrödinger and the Poisson equation cannot be decoupled, because
we need the potential to compute the Schrödinger eigenproperties {ǫp, χp}p,
which are needed to compute the density

N [V ] =
∑

p

ρp|χp[V ]|2.
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The Schrödinger-Poisson problem is solved through a Newton iteration, in
order to try a different strategy with respect to [101] where a Gummel
iteration is used. Newton schemes have proven robustness and fast conver-
gence, both in 1D and 2D. They require several times the solution of the 1D
Schrödinger equation, which is discretized via standard finite differences and
then diagonalized by means of a LAPACK routine called DSTEQR. They
also need the solution of a ”generalized” Poisson problem, i.e. a Poisson
equation with non-local effects taken into account by an integral term. This
fact makes the matrix full and not just tridiagonal.

As for the transport problem, several strategies have been tried: inte-
grating either the original variable fp or a slotboom variable gp defined by

fp(t, x, k) = gp(t, x, k)e−ǫp(t,x)−|k|2

by means of time splitting schemes [35] or Runge-Kutta schemes [28] based
on Finite Differences. We have obtained the best results by integrating the
original pdf fp by Runge-Kutta-3. Any of these schemes is time consuming,
because of two main reasons: Poisson has to be solved very often (10−4ps)
not to introduce oscillations due to its own overcorrections, and the drain-
source potential should be applied gently not to initialize Newton schemes
too far from the equilibrium.

Chapter 4 is slightly different from the other ones, it does not follow the
line of direct application to some specific model. We are interested in inter-
mediate approximations between the kinetic equation, which is microscopic
therefore deeply detailed

ε
∂fε

∂t
+ v

∂fε

∂x
=

1

ε
Q[fε], (1)

where we choose as collision operator a linear BGK

Q[fε] =

∫

V
fεdµ(v) − fε,

and the heat equation

∂ρ

∂t
− ∂2ρ

∂x2
= 0,

(the easiest macroscopic equation) this one being the formal limit of (1)
as ε → 0. We develop numerical schemes, based on splitting techniques,
which are asymptotic-preserving as parameter ε tends to zero without need
of resolving its smallness at meshes level. For the moment equations several
closures have been proposed: we numerically show that the first order closure
improves the zero-th order closure in the ε → 0 limit.

One of the main contribution of this chapter is the scheme solving the
kinetic equation (1). As speeds of propagation are order 1

ε , a direct Semi-
Lagrangian scheme or a Finite Differences scheme for Runge-Kutta dis-
cretization would become unbearably time consuming, either in order to
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give a satisfactory precision or due the CFL constraint. In this work, we
develop an asymptotic-preserving scheme based on the idea of decomposing
fε into the sum of its mean value

ρε =

∫

V
fεdµ(v)

and fluctuations around this mean value, following the idea of a Hilbert
expansion:

fε = ρε + εgε.

After plugging the decomposition into the kinetic equation and suppress-
ing the non-leading terms in ε, we proceed by splitting schemes separating
relaxations and advection:

Step 1.1 Relax gε

gn+1/2
ε = e−

∆t

ε2 gn
ε − (1 − e−

∆t

ε2 )v
∂ρn

ε

∂x
.

Step 1.2 Relax fε

fn+1/2
ε = e−

∆t

ε2 fn
ε + (1 − e−

∆t

ε2 )ρn
ε .

Step 1.3 In this first step the mean value does not change:

ρn+1/2
ε = ρn

ε .

Step 2.1 Solve for a ∆t-time step

∂fε

∂t
+ v

∂g

∂x
= 0.

Step 2.2 Update the mean value

ρn+1
ε =

∫

V
fεdµ(v).

Step 2.3 In this last step gε remains unchanged:

gn+1
ε = gn+1/2

ε .

Similar ideas are used to propose asymptotic-preserving schemes for the
moment closure equations; refer to Chapter 4 for further details.

The organization of this thesis is as follows: in Chapter 1 the main pro-
posed numerical techniques are described, Chapter 2 is devoted to the appli-
cation of PWENO to the splitting schemes, Chapter 3 adapts these strate-
gies to the semiconductor Boltzmann-Poisson problem, Chapter 4 introduces
asymptotic-preserving schemes for diffusion approximations by splitting al-
gorithms, and finally Chapter 5 deals with the quantum-kinetic coupled
problem for solving charged particle transport in nanoMOSFETs.
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Chapter 1

Numerical instruments

In this chapter we develop most of the numerical techniques introduced and
applied in this memory.

1.1 Pointwise Weighted Essentially Non Oscilla-

tory interpolations

We describe the Pointwise Weighted Essentially Non Oscillatory (PWENO)
interpolation: it is based on a direct reconstruction on the grid points and its
goal is to avoid the introduction of spurious oscillations due to the Lagrange
interpolation in presence of high gradients.

1.1.1 Introduction

We have an interval [xL, xR], a division into a grid of N points

xL = x0 < x1 < ... < xN−1 = xR

and the values of a function f in these points:

{fi = f(xi)}i=0,...,N−1.

Our goal is to reconstruct the function in the whole interval in a “non-
oscillatory” way near the points where the function has high gradients or
discontinuities.

In the numerical solution of conservation laws, hyperbolic and transport
equations, the sharp shape of the solutions (shocks in conservation laws)
and the total variation of the function have to be controlled.

1.1.2 Description of the method

We have an interval [xL, xR] divided into a grid of N points

xL = x0 < x1 < x2 < ... < xN−1 = xR

1
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Figure 1: Comparison between an oscillating and a non-oscillating interpo-
lation method.

{fi = f(xi)}i=0,...,N−1.

We choose a stencil of ntot points

S = {xfirst, ..., xlast} = {xfirst, ..., xfirst+ntot−1}

and nlp substencils

Sr = {xlast−lpo+1−r, ..., xlast−r} = {xi−r, ..., xlast−r}

for r = 0, ..., nlp− 1, where lpo := ntot−nlp + 1 and i := last− lpo + 1 (see
Figure 2).

4 5 6 7 8 9 10... ...

S

S

S

S

S0

1

2

3

1110987654

s

ntot
(in this example ntot = 9−5+1 = 5)
= number of total points

S
S

S

0

1
2

nlp = number of substencils
taken into account

lpo = number of points
per substencil

i = index of the first point
on the first substencil

Figure 2: Left: the main stencil S with the substencils Sr. Right: the
meaning of parameters nlp, lpo, ntot and i.
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Figure 3: This figure shows how PWENO works with ntot = 6 and lpo = 4:
it takes the (three, in this case) reconstructions given by the (three) Lagrange
polynomials and then it will make an average between them.

The reconstructed value at points x will be a convex combination of the
values given by the Lagrange polynomials in the stencils Sr:

nlp−1∑

r=0

ωr(x)pr(x)

with pr the Lagrange polynomials of degree lpo− 1 interpolating the stencil
Sr

pr(x) = plpo
r (x) =

lpo−1∑

j=0

fi−r+jcr,j(x) (1.1)

where

cr,j(x) =

lpo−1∏

l=0,l 6=j

x − xi−r+l

xi−r+j − xi−r+l
.

ωr(x) are weights which give more or less relevance to the stencils where
the pr(x) are more or less “regular”. Both the words “non-oscillatory” and
“regular” will be rigorously defined in the next section.

The meaning of the parameters

1. cardinality of the main stencil S (ntot).

2. number of Lagrange polynomials (nlp).
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3. Lagrange polynomial order (lpo), i.e. the number of points each poly-
nomial interpolates.

1.1.3 The weights ωr(x)

WENO interpolation is given by

nlp−1∑

r=0

ωr(x)pr(x)

where pr(x) is defined in (1.1).
We need now to define the coefficients ωr. First of all we need a mea-

surement of the regularity of the Lagrange polynomials near x.

The smoothness indicators βr

We shall call smoothness of the polynomial pr(x) a measure of its derivatives
in the interval:

E = [EL, ER] =





[
xfirst+[ntot

2 ]− 1
2
, xfirst+[ntot

2 ]+ 1
2

]
if ntot is odd

[
xfirst+[ntot

2 ]−1, xfirst+[ntot
2 ]

]
if ntot is even

(1.2)

where the dependencies of EL and ER will be omitted and [x] means the
integer part of x. Using the notation

i∗ = first +

[
ntot

2

]

we can also write

[EL, ER] =





[
xi∗− 1

2
, xi∗+ 1

2

]
if ntot is odd

[xi∗−1, xi∗ ] if ntot is even

If the derivatives are large, the smoothness indicator is wanted to be large,
and viceversa. The following measurement is proposed by Jiang and Shu in
[64, page 207]:

βr =

lpo−1∑

l=1

∫ ER

EL

∆x2l−1
(
Dlpr

)2
dx

This is a weighted sum of L2-norms of the derivatives, which we can see also
as a weighted Sobolev norm of Dpr in the interval [EL, ER]

βr =

lpo−1∑

l=1

∆x2l−1
∥∥∥Dlpr

∥∥∥
2

L2(EL,ER)
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The weights ∆x2l−1 are needed to make the terms of the sum independent
of ∆x, i.e., to make them all be of the same order. This will be clarified
below. Other measurements would be possible, but we shall omit discussing
this point.

Protoweights ω̃r(x)

Once we have computed the smoothness indicators, we define the ω̃r(x) as

ω̃r(x) =
dr(x)

(ǫ + βr)p
(1.3)

where dr(x) are some weights we need to optimize the order of the method
(we shall discuss it later), and ǫ is a constant to avoid the denominator to
be zero (in the code ǫ = 10−6 is used). The choice of 1 ≤ p < ∞ has no
influence on the order of the method. In all the tests we have set p = 2.
If we chose a greater p we would decide to give less weight to the stencils
where the reconstruction is more irregular, and viceversa.

Weights ωr(x)

To get the weights ωr(x) we just have to normalize the ω̃r(x) given by (1.3).

ωr(x) =
ω̃r(x)

∑nlp−1
j=0 ω̃j(x)

. (1.4)

Still we have to find weights dr(x) to get the highest order method.

The weights dr(x)

In order to get a high order method (if the function is smooth enough), we
need coefficients dr(x) such that:

p(x) =

nlp−1∑

r=0

dr(x)pr(x) (1.5)

where p(x) is the ntot − 1-degree Lagrange polynomial interpolating the
whole stencil S

p(x) =
ntot−1∑

j=0

ffirst+j

ntot−1∏

l=0,j 6=j

x − xfirst+j

xfirst+j − xfirst+l
. (1.6)

Lagrange interpolation gives a ntot-order method; by mean of these coef-
ficients we want PWENO-ntot,lpo interpolation to approach a ntot-order
method non oscillatory for homogeneously regular functions, i.e., whenever
all the weights βr have the same order of magnitude.
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Proposition 1.1.1 (Existence and uniqueness of the weights dr(x)). Let
I = [xL, xR] ⊂ R be an interval, and let

xL = x0 < x1 < ... < xN−1 = xR

be the grid. If x is not a point of the grid, then the weights dr(x) defined by
(1.5) are unique.

Proof. The ntot-order Lagrange interpolation is exact on P
ntot−1, i.e.,

f ∈ P
ntot−1 → p[f ](x) = f(x)

where p[f ] is the Lagrange polynomial which interpolates f in ntot points.
If B = {bi}ntot−1

i=0 is a basis of P
ntot−1, f(x) =

∑ntot−1
i=0 fibi(x) and cr,j(x) are

given by (1.1.2),

p [f ] (x) = p
[∑

fibi

]
(x) =

∑

j

∑

i

fibi(xj)cr,j(x) (1.7)

=
∑

i

fi

∑

j

bi(xj)cr,j(x) =
∑

i

fip [bi] (x), (1.8)

so we only need to impose condition (1.5) on the elements of a basis. Take
as a basis of P

ntot−1

B={b0, b1, ..., bntot−1}=

{
1,

m∏

l=0

(x − xfirst+l), m∈{0, ..., ntot − 2}
}

.

For deg ≤ lpo−1, condition (1.5) gives bdeg(x) =
∑nlp−1

r=0 dr(x)bdeg(x) which
means

nlp−1∑

r=0

dr(x) = 1.

For lpo ≤ deg ≤ ntot − 1, condition (1.5) gives

bdeg(x) =

nlp−1∑

r=0

dr(x)pr,deg(x)

where pr,deg(x) is the Lagrange polynomial interpolating polynomial bdeg(x)
at points {xi−r, ..., xi−r+lpo−1}, i.e.,

pr,deg(x) =

lpo−1∑

j=0

bdeg(xi−r+j)cr,j(x).

We get the following linear system

L =




1 1 ... 1 1
p0,lpo(x) p1,lpo(x) ... pnlp−1,lpo(x) blpo(x)
p0,lpo+1(x) p1,lpo+1(x) ... pnlp−1,lpo+1(x) blpo+1(x)
...

...
...

...
...

p0,ntot−1(x) p1,ntot−1(x) ... pnlp−1,ntot−1(x) bntot−1




.
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Note that bdeg(xi−r+j) = 0 for i − r + j ≤ deg − 1, which implies that the
matrix has the following appearance

L =




1 1 1 ... 1 1
p0,lpo(x) p1,lpo(x) ... pnlp−2,lpo(x) 0 blpo(x)
p0,lpo+1(x) p1,lpo+1(x) ... 0 0 blpo+1(x)
...

...
...

...
...

p0,ntot−1(x) 0 0 ... 0 bntot−1(x)




.

Call L = (L1|L2). The computation of the determinant of L1 is straightfor-
ward

det(L1) =

nlp−2∏

s=0

ps,(ntot−1)−s(x) 6= 0

which is non-zero because none of the terms can be zero. Since

ps,(ntot−1)−s(x) =

lpo−1∑

j=0

b(ntot−1)−s(xi−s+j)cs,j(x)

and b(ntot−1)−s(xi−s+j) = 0, for j = 0, ..., lpo − 2, then

ps,(ntot−1)−s(x) = b(ntot−1)−s(xi−s+lpo−1)cs,lpo−1(x) 6= 0

because b(ntot−1)−s(xi−s+lpo−1) 6= 0; if not, we should get a contradiction:
a non-zero polynomial of degree (ntot − 1) − s would have ntot − 1 zeros.
cs,lpo−1(x) 6= 0 because x does not belong to the points of the grid. In this
way, the existence and uniqueness of the dr(x) has been proven.

Remark. If x is a grid point, the uniqueness would not be needed, because
in fact any linear combination of the Lagrange polynomials interpolating
that point would be suitable.

Code implementation of the weights dr(x)

Imposing the definition of Lagrange polynomials (1.1) in (1.5), we get

ntot−1∑

j=0

fi−r∗+jc
ntot
r∗,j (x) =

nlp−1∑

r=0

dr(x)

lpo−1∑

j=0

fi−r+jc
nlp
r,j (x)

where r∗ is defined in Figure 4. As the dr(x) do not depend on the values
of f , we have to impose for every 0 ≤ s ≤ ntot− 1 the coefficients of fi−r∗+s

to be equal:

cntot
r∗,s(x) =

∑

r,j s.t. −r+j=s

dr(x)ck
r,j(x).
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S

S0

i

r* = i−first =

r* is the difference between the first point of the substencil S   and the 
first point of the main stencil S

0

first   (= ord−lpo =)
          = 4

Figure 4: The parameter r∗

So, the linear system to be solved is represented by the following ntot ×
(nlp + 1)ntot matrix:

(ls)i,j =





clpo
j,i+j−(nlp−1)(x) if nlp − 1 ≤ i + j ≤ lpo − 1 + nlp − 1

0 else
,

with the known terms
(ls)i,nlp = cntot

r∗,i .

Take now its submatrix LS ∈ Mnlp×nlp+1:

(LS)i,j =





clpo
j,i+j−(nlp−1)(x) if nlp − 1 ≤ i + j ≤ lpo − 1 + nlp − 1

0 else
.

Here we have nlp conditions for nlp unknowns, and the linear system is
represented by an upper triangular matrix, which can be solved directly by
a recursive procedure starting from the first line (i = 0).

A way for calculating explicitly the weights dr(x) as polynomials

We are able to get an explicit formula for the polynomials dr(x) by an
iterative method. Assume the interpolation points are {x0, x1, ..., xn}. Sup-
pose we have two polynomials: p(x) interpolates a function f at the points
x0, x1, ..., xn−1, and q(x) interpolates at the points x1, x2, ..., xn. A simple
exactness argument (Aitken-Neville method, see [1, page 56]) allows to check
that the polynomial interpolating f at the points x0, x1, ..., xn is given by

r(x) =
p(x)(x − xn) − q(x)(x − x0)

x0 − xn
.
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Figure 5: Explicit construction of the polynomials d̃r(x) by recursion.

An explicit recursion procedure based on the previous formula gives us the
explicit value of d̃r(x). In the case of three points (n = 2) we get:





d̃0(x) = (x−xi−1)(x−xi−2)
(xi−1−xi+2)(xi−2−xi+2)

d̃1(x) = −
[

(x−xi+2)(x−xi−2)
(xi−1−xi+2)(xi−2−xi+2) + (x−xi−2)(x−xi+2)

(xi−2−xi+1)(xi−2−xi+2)

]

d̃2(x) = (x−xi+1)(x−xi+2)
(xi−2−xi+1)(xi−2−xi+2)

Proposition 1.1.2 (Uniqueness of the weights dr(x)). Let I = [xL, xR] ⊂ R

be an interval, and let

xL = x0 < x1 < ... < xN−1 = xR

be the grid. The weights dr(x), recursively constructed as polynomials like
in Figure 5, are unique in P

ntot−lpo.

Proof. Polynomials d̃r(x) are explicitly constructed by the recursive
method shown in Figure 5, so they exist (no denominator can be zero because
i 6= j ⇒ xi 6= xj), are unique and their degree is (ntot − 1) − (lpo − 1) =
ntot − lpo. Moreover, ∀x ∈ R \ {xi}i=0,...,N−1,

d̃r(x) = dr(x)
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for construction (they must verify the same property), then the weights
dr(x), constructed as polynomials in P

ntot−lpo, are unique ∀x ∈ R.

The choice of dr(x)

Proposition 1.1.3. If the weights dr(x) satisfty

nlp−1∑

r=0

dr(x) = 1 (1.9)

and

ωr(x) − dr(x) = O(∆xn),

then PWENO-ntot,lpo gives a (lpo + n)-order reconstruction.

The proof is developed in the following section.

The choice we have made for the weights dr(x) satisfy property 1.9, but
it was also meant to approach the best order and the best accuracy. On
one hand, if f is a homogeneous regular function (which means that all
the βr are of the same order), by this choice the ωr(x) approach the dr(x),
i.e. pPWENO(x) approaches p(x) (defined in (1.6)). Even if PWENO is not
ntot-order, we force it to behave like Lagrange, which is of highest order, in
case of regular functions.

On the other hand, if the function is not regular, then the weights ωr(x)
are very different from the weights dr(x), like it had to be, because we want
PWENO to behave differently from Lagrange near high-gradients.

1.1.4 The order of the method

First of all we recall a standard result about the error committed by La-
grange interpolation (see [68, page 291]):

Proposition 1.1.4. Let I = [xL, xR] ⊂ R be an interval. If f ∈ Cn+1[xL, xR]
and p ∈ P

n is the polynomial interpolating f in n + 1 different points
{x0, x1, ..., xn} in [xL, xR]. Then, ∀x ∈ [xL, xR] there is a ξx ∈]xL, xR[
such that

f(x) − p(x) =
1

(n + 1)!
f (n+1)(ξx)

n∏

i=0

(x − xi).

In the case of a regular grid this means that

p(x) = f(x) + O(∆xn+1).

We shall now introduce a simple lemma.
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Lemma 1.1.1. If
βr = A(1 + O(∆xn)) (1.10)

where A is a non-zero quantity independent of r, then

ωr(x) − dr(x) = O(∆xn).

Proof of lemma 1.1.1. By straighforward calculations,

1

βr
p =

1

Dp
+ O(∆xn)

and

ω̃r =
dr

βr
p = dr

[
1

Dp
+ O(∆xn)

]
=

1

Dp
dr + O(∆xn)

with ∑

j

ω̃j =
1

Dp
dr + O(∆xn).

Finally,

ωr =
ω̃r∑
j ω̃j

=
1

Dp dr + O(∆xn)
1

Dp + O(∆xn)
= dr + O(∆xn).

Proof of proposition 1.1.3

Since

pW (x) − f(x) = pW (x) − pL(x) + pL(x) − f(x) =

=
∑

ωr(x)pr(x) −
∑

dr(x)pr(x) +
∑

dr(x)pr(x) − f(x)

=
∑

ωr(x)pr(x) −
∑

dr(x)pr(x) + O(∆xntot),

we already know that the method cannot be more than ntot-order, and we
need to calculate

I =

nlp−1∑

r=0

ωr(x)pr(x) −
nlp−1∑

r=0

dr(x)pr(x)

to check which is the order. By simple manipulations

I =

nlp−1∑

r=0

ωr(x)pr(x) −
nlp−1∑

r=0

dr(x)pr(x)

=

nlp−1∑

r=0

[ωr(x) − dr(x)] pr(x)

=

nlp−1∑

r=0

[ωr(x) − dr(x)] [pr(x) − f(x)] .
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Due to (1.9), we get

I =

nlp−1∑

r=0

[ωr(x) − dr(x)] [pr(x) − f(x)]

=

nlp−1∑

r=0

[ωr(x) − dr(x)] O(∆xlpo)

and because of proposition 1.1.4 and lemma 1.10, we finally deduce

I =

nlp−1∑

r=0

[ωr(x) − dr(x)] O(∆xlpo)

=

nlp−1∑

r=0

O(∆xn)O(∆xlpo).

Manipulation on the βr

Our problem is now translated to the Taylor expansion of the smoothness
indicators βr. Once we have been able to compute n in (1.10), then the
method will be order lpo + n. The weights can be expressed as

βr =

lpo−1∑

l=1

∫

E
∆x2l−1

[
Dlpr(x)

]2
dx

=
∑

l

∆x2l−1

∫

E


Dl

nlp−1∑

j=0

clpo
r,j (x)fi−r+j




2

dx

=
∑

l

∆x2l−1

∫

E




∑

j

fi−r+jD
lcr,j(x)




2

dx

=
∑

l

∆x2l−1

∫

E

lpo−1∑

j,k=0

fi−r+jfi−r+kD
lcr,j(x)Dlcr,k(x)dx

=
∑

l

∆x2l−1
∑

j,k

fi−r+jfi−r+k

∫

E
Dlcr,j(x)Dlcr,k(x)dx

=
∑

j,k

fi−r+jfi−r+k

lpo−1∑

l=1

∫

E
∆x2l−1Dlcr,j(x)Dlcr,k(x)dx

=
∑

j,k

fi−r+jfi−r+kK
r
j,k



1.1. PWENO INTERPOLATIONS 13

where Kr is a symmetric matrix defined as

Kr
j,k =

lpo−1∑

l=1

∫

E
∆x2l−1Dlcr,jD

lcr,kdx.

We can now expand f(x) around the point xi:

f(x) =
∑

n

1

n!
f (n)(xi)(x − xi)

n

so that

fi−r+j =
∑

n

1

n!
f (n)(xi)(∆x(i − r + j − i))n (1.11)

=
∑

n

1

n!
f (n)(xi)(j − r)n∆xn. (1.12)

Therefore,

βr =
∑

j,k

Kr
j,k

∑

n,m

1

n!m!
f (n)(xi)f

(m)(xi)(j − r)n(k − r)m∆xn+mK

=
∑

n,m

∆xn+mf (n)(xi)f
(m)(xi)

1

n!m!

∑

j,k

Kr
j,k(j − r)n(k − r)m

=
∑

n,m

∆xn+mf (n)f (m)Dr
n,m

where Dr is a symmetric matrix defined as

Dr
n,m =

1

n!m!

lpo−1∑

j,k=0

Kr
j,k(j − r)n(k − r)m.

Numerical computation of Dr for method WENO-6,4 are given in (1.13)-
(1.15) in the appendix of this chapter. These computations show that

∀0 ≤ r ≤ 2, Dr
1,1 = 1,Dr

2,2 =
4

3

and therefore, if f ′ 6= 0 then

βr = (f ′(xi)∆x)2(1 + O(∆x))

(where A = (f ′(xi)∆x)2, n = 1 in (1.10)), and if f ′(xi) = 0 then

βr =
4

3
(f

′′

(xi)∆x2)2(1 + O(∆x))
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(A = 4
3(f

′′

(xi)∆x2)2, n = 1 in (1.10)), i.e. that the method is lpo + 1 =
4 + 1 = 5 order.
As for WENO-5,3, we see from (1.16)-(1.18) that if f ′(xi) 6= 0 then

βr = (f ′(xi)∆x)2(1 + O(∆x2))

(where A = (f ′(xi)∆x)2, n = 2 in (1.10)). This implies that WENO-5,3 is
lpo + 2 = 3 + 2 = 5 order.

Numerical example

Take u0(x) = exp(x) in [−1; 1], reconstruct the value at x = 0 (if the number
of points is even it will never belong to the grid) by PWENO-6,4 method
and compute the difference | exp(0) − num.val.|:




points L∞ − error L∞ − order
20 6.88 × 10−9

40 8.95 × 10−11 6.263432
80 1.28 × 10−12 6.119669
160 1.93 × 10−14 6.059640
320 2.22 × 10−16 6.442943




While at least 5 was expected, we see that we get 6, due to the homogeneous
regularity of the function.

Results for matrix D

For WENO-6,4 (the values are given in absolute values):

D0 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.159 0.402 0.312 0.167
0.000 0.166 0.625 1.383 1.543 1.154 0.657 0.305
0.000 0.041 0.159 1.543 2.472 2.101 1.272 0.610
0.000 0.008 0.402 1.154 2.101 1.847 1.134 0.548
0.000 0.001 0.312 0.657 1.272 1.134 0.700 0.339
0.000 0.000 0.166 0.305 0.610 0.548 0.339 0.165




, (1.13)

D1 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.381 0.139 0.048 0.013
0.000 0.166 0.625 1.383 0.729 0.340 0.114 0.033
0.000 0.041 0.381 0.729 0.393 0.181 0.061 0.018
0.000 0.008 0.139 0.340 0.181 0.084 0.028 0.008
0.000 0.001 0.048 0.114 0.061 0.028 0.009 0.002
0.000 0.000 0.013 0.033 0.018 0.008 0.002 0.000




, (1.14)
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D2 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.159 0.139 0.041 0.013
0.000 0.166 0.625 1.383 0.625 0.340 0.111 0.033
0.000 0.041 0.159 0.625 0.300 0.157 0.052 0.015
0.000 0.008 0.139 0.340 0.157 0.084 0.027 0.008
0.000 0.001 0.041 0.111 0.052 0.027 0.009 0.002
0.000 0.000 0.013 0.033 0.015 0.008 0.002 0.000




. (1.15)

For WENO-5,3:

D0 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.333 0.250 0.116 0.041 0.012
0.000 0.000 1.083 1.083 0.631 0.270 0.093 0.027
0.000 0.333 1.083 1.194 0.715 0.309 0.107 0.031
0.000 0.250 0.631 0.715 0.431 0.187 0.064 0.018
0.000 0.116 0.270 0.309 0.187 0.081 0.028 0.008
0.000 0.041 0.093 0.107 0.064 0.028 0.009 0.002
0.000 0.012 0.027 0.031 0.018 0.008 0.002 0.000




, (1.16)

D1 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.166 0.000 0.008 0.000 0.000
0.000 0.000 1.083 0.000 0.090 0.000 0.003 0.000
0.000 0.166 0.000 0.027 0.000 0.001 0.000 0.000
0.000 0.000 0.090 0.000 0.007 0.000 0.000 0.000
0.000 0.008 0.000 0.001 0.000 0.000 0.000 0.000
0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000




, (1.17)

D2 =




0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.333 0.250 0.116 0.041 0.012
0.000 0.000 1.083 1.083 0.631 0.270 0.093 0.027
0.000 0.333 1.083 1.194 0.715 0.309 0.107 0.031
0.000 0.250 0.631 0.715 0.431 0.187 0.064 0.018
0.000 0.116 0.270 0.309 0.187 0.081 0.028 0.008
0.000 0.041 0.093 0.107 0.064 0.028 0.009 0.002
0.000 0.012 0.027 0.031 0.018 0.008 0.002 0.000




. (1.18)

1.1.5 Explicit coefficients for some PWENO interpolations

Here, we give the explicit polynomials pr(x) and weights βr (in the case of
regular grids) for the most used PWENO interpolations, in order to optimize
the codes.
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PWENO-4,3




d0(x) = x−xi−1

3∆x

d1(x) = −x−xi−2

3∆x

β0 = 13
12fi+2fi+2 − 13

3 fi+1fi+2 + 13
12fifi+2

+16
3 fi+1fi+1 − 19

3 fifi+1 + 25
12fifi

β1 = 13
12fi−1fi−1 + 16

3 fi−1fi+1 − 13
3 fi−1fi

+25
12fi+1fi+1 − 19

3 fifi+1 + 16
3 fifi

PWENO-5,3




d0(x) = (x−xi−1)(x−xi−2)
12∆x2

d1(x) = − (x−xi+2)(x−xi−2)
6∆x2

d2(x) = (x−xi+1)(x−xi+2)
12∆x2

β0 = 10
3 f2

i + 25
3 f2

i+1 + 4
3f2

i+2

−31
3 fifi+1 + 11

3 fifi+2 − 19
3 fi+1fi+2

β1 = 4
3f2

i−1 + 13
3 f2

i + 4
3f2

i+1

−13
3 fi−1fi + 5

3fi−1fi+1 − 13
3 fifi+1

β2 = 4
3f2

i−2 + 25
3 f2

i−1 + 10
3 f2

i

−19
3 fi−2fi−1 + 11

3 fi−2fi − 31
3 fi−1fi

PWENO-6,4




d0(x) = (x−xi−1)(x−xi−2)
20∆x2

d1(x) = − (x−xi+3)(x−xi−2)
10∆x2

d2(x) = (x−xi+2)(x−xi+3)
20∆x2

β0 = 248
15 f2

i+2 − 2309
60 fi+1fi+2 + 439

30 fifi+2 − 553
60 fi+2fi+3 + 721

30 f2
i+1

−1193
60 fifi+1 + 103

10 fi+1fi+3 + 407
90 f2

i − 683
180fifi+3 + 61

45f2
i+3

β1 = 61
45f2

i+2 + 61
45f2

i−1 + 179
30 fi−1fi+1 − 141

20 fi−1fi − 293
180fi−1fi+2

−141
20 fi+1fi+2 + 179

30 fifi+2 + 331
30 f2

i+1 − 1259
60 fifi+1 + 331

30 f2
i

β2 = 248
15 f2

i−1 + 439
30 fi−1fi+2 − 2309

60 fi−1fi + 407
90 f2

i+1 − 1193
60 fifi+1

+721
30 f2

i + 103
10 fi−2fi − 553

60 fi−2fi−1 + 61
45f2

i−2 − 683
180fi−2fi+1
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FDWENO-5,3

Here, we also summarize for completeness and comparison the weights and
formulas for the case of Finite-Differences WENO methods developed by
[64].

f̂±
j+ 1

2

= ω±
0 p±0 + ω±

1 p±1 + ω±
2 p±2 .

β+
0 =

13

12
[fj−2 − 2fj−1 + fj ]

2 +
1

4
[fj−2 − 4fj−1 + 3fj ]

2

β+
1 =

13

12
[fj−1 − 2fj + fj+1]

2 +
1

4
[fj−1 − fj+1]

2

β+
2 =

13

12
[fj − 2fj+1 + fj+2]

2 +
1

4
[3fj − 4fj+1 + fj+2]

2

d+
0 =

1

10
, d+

1 =
6

10
, d+

2 =
3

10

p+
0 =

1

3
fj−2 −

7

6
fj−1 +

11

6
fj

p+
1 = −1

6
fj−1 +

5

6
fj +

1

3
fj+1

p+
2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2.

β−
0 =

13

12
[fj+3 − 2fj+2 + fj+1]

2 +
1

4
[fj+3 − 4fj+2 + 3fj+1]

2

β−
1 =

13

12
[fj+2 − 2fj+1 + fj ]

2 +
1

4
[fj+2 − fj ]

2

β−
2 =

13

12
[fj+1 − 2fj + fj−1]

2 +
1

4
[3fj+1 − 4fj + fj−1]

2

d−0 =
3

10
, d−1 =

6

10
, d−2 =

1

10

q−0 =
1

3
fj+3 −

7

6
fj+2 +

11

6
fj+1

q−1 = −1

6
fj+2 +

5

6
fj+1 +

1

3
fj

q−2 =
1

3
fj+1 +

5

6
fj −

1

6
fj−1.

1.2 Strang’s time splitting

Take the equation
∂Ψ

∂t
= LΨ

where L is a linear operator generator of a C0-semigroup. Its formal solution
is

Ψ(t) = exp(tL)Ψ(0).
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We split the operator L into two parts:

L = L1 + L2

and we take them as the infinitesimal generators of the C0-semigroups

Fi(t) = exp (tLi) .

Note that L1 + L2 is also the infinitesimal generator of a C0-semigroup be-
cause of Trotter’s product theorem. Strang’s splitting consists in taking

F(∆t) = F1

(
∆t

2

)
F2 (∆t)F1

(
∆t

2

)
.

This can be proven to be a second order scheme in the sense that

F (∆t) = exp (∆tL) + O
(
∆t3

)
.

Consider now two cases of Strang’s splittings, the two we are going to use.

1.2.1 Strang’s time splitting between Vlasov and Boltzmann

Given equation
∂f

∂t
+ v · ∇xf + F · ∇vf = Q[f ]

where the force field F (t, x) and the Boltzmann operator Q[f ] are known, we
advance a step in time by advancing separately in Vlasov and in Boltzmann
parts, i.e., given

f(tn, xi, vj)

we proceed in this way:

1. Perform a ∆t
2 time step in Vlasov part, i.e., solving

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

to get

f∗(tn, xi, vj).

2. Perform a ∆t time step in Boltzmann part, i.e., solving

∂f

∂t
= Q[f ]

to get

f∗∗(tn, xi, vj).
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Boltzmann

x−dim advection

advection

∆ t
2

∆ t

∆ t
2

∆ t
2

∆ t

∆ t
2

operator

 Transport term

k1−dim

Figure 6: Time splitting schemes.

3. Perform a ∆t
2 time step in Vlasov part, i.e., solving

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

to get
f(tn+1, xi, vj).

like in Figure 6.
Remark. In our previous notation, we split the operator

L = −v · ∇x − F · ∇v + Q

into {
L1 = −v · ∇x − F · ∇v

L2 = Q
.

1.2.2 Strang’s splitting between x and v

Our purpose is now to solve

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

given the force field F (t, x). The procedure (which was originally introduced
by Cheng and Knorr [35]) is to split the Vlasov equation into either phases
x and v, in this way: given f (tn, x, v),

1. Consider v fixed, and take the free transport equation

∂f

∂t
+ v

∂f

∂x
= 0

and perform a ∆t
2 time step in the x-direction to get

f∗ (tn, x, v) = f

(
tn, x − v

∆t

2
, v

)

by one of the advection algorithms previously described.
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2. Compute the force field F (f∗ (tn, x, v)).

3. Consider x fixed, and take equation

∂f∗

∂t
+ F

∂f∗

∂v
= 0

and perform a ∆t time step in the v-direction to obtain

f∗∗ (tn, x, v) = f∗ (tn, x, v − F∆t) .

4. Consider v fixed, and take the free transport equation

∂f∗∗

∂t
+ v

∂f∗∗

∂x
= 0

and perform a ∆t
2 time step in the x-direction to obtain

f
(
tn+1, x, v

)
= f∗∗

(
tn, x − v

∆t

2
, v

)
.

This scheme is second order in time.

Remark. In our former terms, we split the operator

L = −v · ∇x − F · ∇v

into {
L1 = −v · ∇x

L2 = −F · ∇v

.

1.3 Semi-lagrangian solvers for the linear advec-

tion

When solving a transport step, the fundamental block which we need to
solve is the linear advection





∂f

∂t
+ a

∂f

∂x
= 0

f(t0, x) = f0(x)

,

where a ∈ R. Given f(tn, x) we want to compute f(tn+1, x) = f(tn +∆t, x).

Three instruments will be explained, each of them presenting advantages
and disadvantages with respect to the other ones.
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1.3.1 Introduction

Before developing the solvers for the linear advection, a mathematical intro-
duction is needed about the transport equation.

The transport (or advection) equation is:





∂f

∂t
+ a(t, x) · ∇xf = 0, (t, x) ∈ [0, T ] × R

N

f(0, x) = f0(x)

where a : [0, T ] × R
N −→ R

N .

We want to give results about existence and uniqueness of the solutions
for such an equation. In order to do this, first of all we need to introduce
the definition of characteristics.

Proposition 1.3.1 (Uniqueness of characteristic X ). If

a ∈ C1([0, T ] × R
N ), (1.19)

for all T > 0, and there exists k > 0 such that

|a(t, x)| ≤ k(1 + |x|), ∀(t, x) ∈ R≥0 × R
N , (1.20)

then there exists a unique solution,

X (s; t, x) ∈ C1([0, T ] × [0, T ] × R
N ),

for all T > 0, of the Cauchy problem





dX
dt

= a(t,X (t; s, x))

X (s; s, x) = x

The proof can be found in any standard analysis book for ODE’s systems
and in this particular case in [14].

Going back to problem (1.3.1) the following theorem can be stated:

Theorem 1.3.1 (Existence and uniqueness of strong solutions). Given the
advection field a(t, x) satisfying (1.19) and (1.20), and the initial data f0 ∈
C1(RN ), then there exists a unique solution of the Cauchy problem (1.3.1),
given by

f(t, x) = f(s,X (s; t, x)).

so, in particular,

f(t, x) = f0(X (0; t, x)).
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x x

xx
X(t;0,x)

x
time=0

time=t
x

X(0;t,x)

The values of f(t,x) are conserved along the
characteristics courves, in one direction
and in the other one.

Figure 7: This is why this equation is called transport equation: the values
of f(t, x) are transported along the characteristics.

Proof. By hypotheses (1.19) and (1.20) Proposition 1.3.1 applies, so
characteristics X (s; t, x) exist globally and are unique. We define

f(t, x) = f0(X (0; t, x)).

This f(t, x) is a solution because of the semigroup property of X (s), and
uniqueness comes from proving that if f(t, x) is a solution, then f(t, x) is
constant over characteristics, that is,

d

ds
f(s,X (s; t, x)) = 0

and thus, it must be of the form we have written (see [14] for details).

Linear advection

The computation of characteristics in case a(t, x) is a real constant is straigh-
forward: 




dX
ds

= a

X (t) = x

gives
X (s; t, x) = x + a(s − t)

so that the solution of the initial value problem




∂f

∂t
+ a

∂f

∂x
= 0

f(t0, x) = f0(x)

is
f(t, x) = f0(x − a(t − t0))

This is the only result that we need to implement in all the routines concern-
ing advection: the different reconstructions of f0 will give different proper-
ties, like mass conservation or total variation control.
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Mass conservation

It is trivial to remark that linear advection is mass-conservative:

∫

R

f(t, x)dx =

∫

R

f0(x − at)dx =

∫

R

f0(x)dx = M

That is why we would like numerical methods to preserve this property.

1.3.2 Direct semi-lagrangian method

This method is based on straightforwardly following backwards the charac-
teristics.

Knowing f(tn, xi), we want to compute f(tn+1, xi). Following the char-
acteristics, we know that

f(tn+1, xi) = f(tn, xi − a∆t)

which means that we have to reconstruct the values of f(tn, ·) (of which
we do not dispose), by some interpolation method. Of course, the choice
of which reconstruction influences the properties of the solution; Lagrange
interpolation, for instance, may induce spurious oscillations but have very
low computational cost.

This method is very easy to implement, but it has an important disad-
vantage: it is not conservative.

The α parameter

The parameter

α = a
∆t

∆x

describes how close to the grid points we are interpolating: from f(tn+1, xi) =
f(tn, xi − a∆t),

xi − a∆t = xi − α∆x

which means that the nearer is α to an integer number, the better is hoped
the interpolation to be.

1.3.3 The Flux Balance Method

FBM (Flux Balance Method) is used in [42] to construct a conservative
method. We already know that

f(t + ∆t, x) = f(t, x − a∆t).
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Now, let us integrate over an interval [b1, b2], to get
∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ − a∆t)dξ

=

∫ b2−a∆t

b1−a∆t
f(t, ξ)dξ

=

∫ b1

b1−a∆t
f(t, ξ)dξ +

∫ b2

b1

f(t, ξ)dξ −
∫ b2

b2−a∆t
f(t, ξ)dξ.

If we use as notation

Φ(t, x) =

∫ x

x−a∆t
f(t, ξ)dξ,

we get
∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ)dξ + Φ(t, b1) − Φ(t, b2),

and dividing by ∆ = b2 − b1

∫ b2
b1

f(t + ∆t, ξ)dξ

∆
=

∫ b2
b1

f(t, ξ)dξ

∆
+

Φ(t, b1) − Φ(t, b2)

∆
,

which means

f̄(b1,b2)(t + ∆t) = f̄(b1,b2)(t) +
Φ(t, b1) − Φ(t, b2)

∆
.

This is the local description of mass conservation.
Call F (t, ·) the primitive of f(t, ·), the numerical method we get is the fol-
lowing:

fn+1
i = fn

i +
Φn(xi− 1

2
) − Φn(xi+ 1

2
)

∆x
,

where

Φn(xi− 1
2
) =

∫ x
i− 1

2

x
i− 1

2
−a∆t

f(tn, ξ)dξ = F (xi− 1
2
) − F (xi− 1

2
− a∆t).

Now we need some method to reconstruct what we do not have: either
directly Φn(xi− 1

2
) or F (i− 1

2
−a∆t) (if we can compute F (xi− 1

2
)).

Reconstruction of F (t, ·)

We can compute F (t, xi+ 1
2
) by putting F (t, xi+ 1

2
) =

∑i
j=0 f(t, xi)∆x and

reconstruct the values F (t, xi− 1
2
−a∆t) and F (t, xi+ 1

2
−a∆t) by using some

interpolation method.
The problems we could find by using this method is that the positivity

is not guaranteed and the oscillations could be uncontrolled, especially by
using Lagrange interpolation.
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1.3.4 PFC-3 method

In order to assure the positivity and the control of the oscillations in the
reconstruction, this method has been introduced in [42, page 70-72]. It is
a third order method, and the flux Φi+ 1

2
is directly computed: if the wind

propagation velocity is positive, let j be the index of the cell which contains
xi+ 1

2
− a∆t, let αi = xj+ 1

2
− (xi+ 1

2
− a∆t), compute slope correctors ǫ+i and

ǫ−i , then

Φi+ 1
2

= ∆x
i∑

k=j+1

fk + αi

[
fj +

ǫ+i
6

(
1 − αi

∆x

) (
2 − αi

∆x

)
(fj+1 − fj)

+
ǫ−i
6

(
1 − αi

∆x

(
1 +

αi

∆x

)
(fj − fj−1

)]
.

Otherwise, if the wind propagation velocity is negative, let αi = xj− 1
2
−

(xi+ 1
2
− a∆t), then

Φi+ 1
2

= ∆x

j−1∑

k=i+1

fk + αi

[
fj −

ǫ+i
6

(
1 − αi

∆x

) (
1 +

αi

∆x

)
(fj+1 − fj)

− ǫ−i
6

(2 +
αi

∆x
(1 +

αi

∆x
)(fj − fj−1)

]
.

Correctors ǫ+i and ǫ−i are defined

ǫ+i =





min
(
1; 2 fi

fi+1−fi

)
fi+1 > fi

min
(
1;−2 f∞−fi

fi+1−fi

)
fi+1 < fi

ǫ−i =





min
(
1; 2 f∞−fi

fi−fi−1

)
fi > fi−1

min
(
1;−2 fi

fi−fi−1

)
fi < fi−1

where f∞ = supN−1
i=0 fi.

1.4 Collisions

In this section the two fundamental steps for solving the collision steps are
developed; basically we mean to integrate a two variable function

f : R
2 → R

(x, y) 7→ f(x, y)

either on a semicircle, following the undergoing segment
∫ R

−R
f(x,

√
R2 − x2)dx,
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or on a circle, in the Riemann way:

∫ 2π

0
f [R cos(x), R sin(x)] dx.

1.4.1 Integration on a segment following a semicircle

Numerical Scheme: Collision Step.- In order to solve the collision step,
we need to compute some integrals along semicircles of radius γ0(k), γ+(k)
and γ−(k) in the (k1, k23)-space. Figure 8 explains two different ways in
which we can perform it. We may first use a direct linear interpolation
between the closest points in the cartesian grid as specified in Figure 8
left. The integration rule to compute the final approximation of (3.12) is
coherently chosen in terms of accuracy as the trapezoidal rule.

On the other hand, we can choose a WENO-4,3 interpolation along the
k1 = (k1)j line where the point lies as in Figure 8 right. This interpola-
tion is performed on the stencil ((k1)j , (k23)l−1), ..., ((k1)j , (k23)l+2). If not
enough points are available (i.e. l = 0 or l ≥ Nk23 − 2), we use Lagrange-3
on the proper stencil. Coherently with a degree-2 polynomial interpolation,
as integration rule for (3.12), we choose Simpson’s rule. A similar inter-
polation procedure was used in [93] to cope with analogous problems in a
computational fluid dynamics problem.

k1 k1

k23
k23

m+1

m+2

m

m−1

lfifi−1 fi+1 fi+2

SS

S

S

0

0

1

1

U

L R

D

l

m

m+1

fi fi+1

Figure 8: The integration on the interval [−√
γ,

√
γ]. Left: the needed values

are obtained through a linear interpolation on the two closest points lying
either on the k23 = 0 line (for the first and last point) or on the k1 = l
line (for the other points). Right: the needed values are obtained through
PWENO-4,3 interpolation on the closest points lying either on the k23 = 0
line (for the first and last point) or on the k1 = l line (for the other points).

1.4.2 Riemann integration along a circle

We want to compute the integrals of f (k1, k2) along the circles of radius
γp,p′ in the (k1, k2)-space.
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(x   ,y   )1 1

(x   ,y   )0 0

k

k2

1

x

x

Φρ
ρδ

Figure 9: The computation of the angle Φ starting from two points on the
circle.

The idea is the exploitation of a along-the-line interpolation each time
we cross either a k1 = (k1)l-line or a k2 = (k2)m-line.

The angle between two points, like in Figure 1.4.2, is expressed by

Φ = 2arcsin

[√
(x1 − x0)2 + (y1 − y0)2

2ρ

]
.

The algorithm

We write down the algorithm we are going to perform for the integration of
fp(x, k1, k2) along a circle of radius ρ in the (k1, k2)-plane.

Step -1. check that the radius ρ is positive!

Step 0(i). if

ρ ≥ (k1)Nk1
−1

return 0.

Step 0(ii). if (look at Figure 1.4.2)

ρ <
∆k1

2

we may face four different cases:

Step 0(ii)a. Nk1 is odd, Nk2 is odd: in this case we have

fp(0, 0) = f
p,i,

»

Nk1
2

–

,

»

Nk2
2

–,

then ∫ 2π

0
f (ρ cos(Φ), ρ sin(Φ)) dΦ ≈ 2πρfp(0, 0).
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k1

k2

k1

k2

minit

from (k   )            to (k   )     and then back to (k   )           .

l

Suppose we have arrived until here.

This will be called the
"first index" This will be called the 

"last index"

−ρ ρ

This is the lowest line which intersects
the circle between the vertical lines

1 1first first+1(k   )            and (k   )           .

1 1first+1 last 1 first+1

start get back

end

We perform an iteration following the vertical lines,

ll−1

We count how many horizontal lines cross
the circle between the vertical lines 

1 1l l−1(k    )       and (k   )      and perform the
                                     interpolation at these                                   
                                     points (in this example two points).

0 2π

x x

x
x

x

x

x

Value of f at the first point.

Value of f at the second point.

Radial angle between the first
and the second point.

Radial angle between the
second and the third point.

Value of f at the third point

...
Φ Φ ΦΦ 1 2 3 4

STEP 7

STEP 1
STEP 2

STEP 3−6 STEP 3−6

STEP 3−6

Figure 10: Resumé of the algorithm for the interpolation of f along a circle
of radius ρ.
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Step 0(ii)b. Nk1 is even, Nk2 is odd: in this case we have

fp(0, 0) = linear interp. between f
p,i,

Nk1
2

−1,

»

Nk2
2

– and f
p,i,

Nk1
2

,

»

Nk2
2

–

then ∫ 2π

0
f (ρ cos(Φ), ρ sin(Φ)) dΦ ≈ 2πρfp(0, 0).

Step 0(ii)c. Nk1 is odd, Nk2 is even: in this case we have

fp(0, 0) = linear interp. between f
p,i,

»

Nk1
2

–

,
Nk2

2
−1

and f
p,i,

»

Nk1
2

–

,
Nk2

2

then ∫ 2π

0
f (ρ cos(Φ), ρ sin(Φ)) dΦ ≈ 2πρfp(0, 0).

Step 0(ii)d. Nk1 is even, Nk2 is even: in this case we evaluate

fp(0, 0)

=

f
p,i,

Nk1
2

−1,
Nk2

2
−1

+ f
p,i,

Nk1
2

−1,
Nk2

2

+ f
p,i,

Nk1
2

,
Nk2

2
−1

+ f
p,i,

Nk1
2

,
Nk2

2

4

then ∫ 2π

0
f (ρ cos(Φ), ρ sin(Φ)) dΦ ≈ 2πρfp(0, 0).

Step 1. compute the first and the last index, called lfirst and llast

Step 2. we have to look for the first index m such that the line k2 = (k2)m in-
tersects the circle between the lines k1 = (k1)lfirst

and k1 = (k1)lfirst+1,
i.e.

minit = min
{

m such that (k1)lfirst
<

√
ρ2 − (k2)2m < (k1)lfirst+1

}
.

Now, initialize

l = lfirst + 1, m = minit.

Step 3. perform the iteration:

for(; l ≤ llast; l = l + 1)

Step 3(i). compute M(l) ∈ {0, ..., Nk2 − 1}, the index such that the line k1 =
(k1)l intersects the circle between the lines k2 = (k2)M(l) and k2 =
(k2)M(l)+1; remark: there are two solutions for M(l), because, for
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First case

Second case

Third case

Fourth case

1

We compute the function at
point 1 and multiply by the 
diameter.

x

x

x

1

2

1 2

1 2

34

We compute the value in the center by
a linear interpolation between points
1 and 2; then multiply by the diamater.

We compute the value in the center
by a linear interpolation between
points 1 and 2; then, multiply by the
diameter.

We evaluate function f in the
center by its mean between 
points 1, 2, 3 and 4; then, multiply
by the diameter.

Figure 11: The particular case when the radius is very small.
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symmetry reasons, there will be two pairs of horizontal lines containing
the point (

(k1)l,
√

ρ2 − (k1)2l

)
,

one pair in the positive half-plane, and one in the negative half-plane.
We shall denote by M(l) the upper index, and by M̄(l) the lower index.

Step 3(ii). compute the difference

∆m = M(l) − m + 1

Step 3(iii). if ∆m > 0

3(iii)a

for(;m ≤ M(l); m = m + 1)

perform interpolation to get the value at point





(√
ρ2 − (k2)2m, (k2)m

)
if (k1)l > 0(

−
√

ρ2 − (k2)2m, (k2)m

)
if (k1)l ≤ 0

Step 3(iv). else if ∆m < 0

Step 3(iv)a.

for(m = m − 1; m > M(l); m = m − 1)

perform interpolation to get the value at point





(√
ρ2 − (k2)2m, (k2)m

)
if (k1)l > 0(

−
√

ρ2 − (k2)2m, (k2)m

)
if (k1)l ≤ 0

Step 3(iv)b. set

m = m + 1

Step 3(v). perform interpolation to reconstruct the value at point

(
(k1)l,

√
ρ2 − (k1)2l

)

Step 4. set

l = llast

Step 5. set

m = M(l)
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Step 6. perform the iteration (like before)

for(; l ≥ lfirst + 1; l = l − 1)

Step 6(i). compute the index M̄(l)

Step 6(ii). compute

∆m = M̄(l) − m + 1.

Step 6(iii). If ∆m > 0 then

Step 6(iii)a.

for(;m ≤ M(l); m = m + 1)

perform interpolation to get the value at point





(√
ρ2 − (k2)2m, (k2)m

)
if (k1)l ≥ 0(

−
√

ρ2 − (k2)2m, (k2)m

)
if (k1)l < 0

Step 6(iv). else if ∆m < 0

Step 6(iv)a.

for(m = m − 1; m > M(l); m = m − 1)

perform interpolation to get the value at point

(√
ρ2 − (k2)2m, (k2)m

)

Step 6(iv)b.

m = m + 1

Step 6(v). interpolate to reconstruct the value at point





(√
ρ2 − (k2)2m, (k2)m

)
if (k1)l ≥ 0(

−
√

ρ2 − (k2)2m, (k2)m

)
if (k1)l < 0

Step 7. perform Riemann integration and return the computed value.
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1.5 1D stationary-state Schrödinger solver

In this section, we solve the eigenvalue problem to the Schrödinger equation:
given potential V (z), find {ǫp, χp} such that the following problems have
solutions

− ~
2

2me

d

dz

[
1

m∗

dχp

dz

]
− q (V + Vc) χp = ǫpχp

with {χp}p ⊆ H1
o (0, lz) orthonormal basis

where ~ is the reduced Planck constant, me is the electron mass, m∗(z) is
the effective electron mass (in pure number units, i.e. its ratio with respect
to the electron mass), Vc is a fixed external potential (where ”c” stands for
”confining”): in the concrete case of the MOSFET described in Chapter
5, Vc is a built-in potential drop between the Si-layer and the SiO2-layer
which confines the carriers inside the Si-layer; ǫp[V ](x) are noted ǫpot

p (t, x)
and are referred to as band-potential energies; χp[V ] are noted χp(t, x, z)
and give information on how the free electrons are distributed along the
z-dimension: band densities are a mixed quantum-classical state, where the
classical part is given by the occupation numbers ρp(x) and the quantum
part by Schrödinger eigenfunctions χp(x, z)

Np(x, z) = ρp(x)|χp(x, z)|2.

1.5.1 1D Schrödinger equation discretization via Finite Dif-

ferences

We propose a solver based on discretization via Finite Differences and the
use of a LAPACK routine called DSTEQR. Finite differences for the two
z-derivatives have to be taken in alternate direction in order to rescue the
classical three-point discretization for the Laplacian.

We solve the Schrödinger equation in the interval z ∈ [0, lz], given a
potential V : [0, lz] −→ R:

−CS,1

2

d

dz

[
1

m(z)

dχp

dz

]
+ CS,2V χp = ǫpχp

χp ∈ H1
o (0, lz), 〈χp, χq〉 =

∫ lz

0
χpχqdz = δp,q, (1.21)

where we have included the confining potential into potential V , and we have
grouped all the physical constants (~, me, q) into one constant per term:
when solving the concrete case of the MOSFET in Chapter 5, equations are
reduced to adimensionalized units, so dimensionless parameters appear, and
we have followed the same notations.
Meshing the z-dimension with a uniform grid

{zj = j∆z}j=0,...,Nz−1, ∆z =
lz

Nz − 1
,
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and discretizing the z-derivatives by alternate finite differences, (1.21) be-
comes

−CS,1

2

1
mj

χp
j+1 −

(
1

mj
+ 1

mj−1

)
χp

j + 1
mj−1

χp
j−1

∆z2
+ CS,2V χp = ǫpχp.

Thanks to the boundary conditions, which fix the bottom point and the
top point, our system is (Nz − 2) × (Nz − 2).

If we let (for (r, s) ∈ {0, ..., NZ − 1} × {0, ..., NZ − 1}))

(M1)r,s = − CS,1

2∆z2

[
1

mr
δr,s+1 −

(
1

mr
+

1

mr+1

)
δr,s +

1

ms
δr+1,s

]

M2 = CS
2




V1

V2

. . .

VNz−2




the matrix we want to diagonalise is

M = M1 + M2,

i.e. we have to compute a certain number of eigenvalues ǫp of M , the lowest
ones (physically representing the most occupied energy bands) and their
relative eigenvectors (χp

j )j .
The discretized system reads

M




χP
1

χP
2

...
χP

Nz−3

χP
Nz−2




= ǫp




χp
1

χp
2

...
χp

Nz−3

χp
Nz−2




. (1.22)

1.6 “Generalized” 1D Poisson equations

We call “generalized” Poisson problem the following system

− d

dz

[
ε(z)

dV

dz
(z)

]
+ C

∫
A(z, ζ)V (ζ)dζ = B(z), (1.23)

plus Dirichlet, Neumann or Robin boundary conditions: for z ∈ {0, lz}




V (z) = V̄ (z) Dirichlet

dV
dn = g Neumann

dV
dn + α(z)(V (z) − V̄ (z)) = g Robin

.
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Such kind of system appears in the modelling of the MOSFET in Chapter
5 when we have to compute the border potential respecting the electrical
neutrality. Here we have already grouped all the physical constant, because
in the concrete case in which we shall use this scheme, equations are reduced
to adimensionalized units. Here, ε(z) is the relative dielectric permittivity
along the z-slice, C is a constant which has contributions from many phys-
ical constants, A(z, ζ) is a kernel which includes the Gâteaux-derivative of
the density N [V ] which does not explicitly appear in these equations being
included in term B.

1.6.1 Discretization

We propose a solver based on discretization via alternate Finite Differences
for the two z-derivatives (in order to rescue the classical centered three-
points scheme for the Laplacian), and trapezoid rule for the integration. The
resulting matrix is solved by means of a LAPACK routine called DGESV.

1.6.2 Discretized system

z-dimension is supposed to be uniformly meshes. System (1.23) is therefore
discretized:

− εj

∆z2
Vj+1 +

εj + εj−1

∆z2
Vj −

εj−1

∆z2
Vj−1

+C∆z

[
N−2∑

l=1

Aj,lVl +
1

2
Aj,0V0 +

1

2
Aj,N−1VN−1

]

= Bj , for j = 1, ..., N − 2 (1.24)

completed by boundary conditions for j = 0




V0 = V̄0 Dirichlet
V0 − V1 = ∆zg0 Neumann
(∆zα0 + 1)V0 − V1 = α0∆zV̄0 + ∆zg0 Robin

(1.25)

and j = N − 1




VN−1 = V̄N−1 Dirichlet
VN−1 − VN−2 = ∆zgN−1 Neumann
(1 + αN−1∆z)VN−1 − VN−2 = αN−1∆zV̄N−1 + ∆zglz Robin

(1.26)

The integration is performed through standard trapezoids rule
[∫

A(z, ζ)V (ζ)dζ

]

j

≈ ∆z

[
1

2
Aj,0Vi,0 +

Nz−2∑

l=1

Aj,lVl +
1

2
Aj,Nz−1VNz−1

]
. (1.27)
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Putting (1.24)-(1.27) together, we obtain a Nz × Nz system with extra-
diagonal terms due to the presence of (1.27) which introduces non-local
effects. The system can be solved by any suitable linear system solver: here
we have chosen a LAPACK routine called DGESV, which has proven to be
fast and robust. Other possible choices would be for instance Gauss-Siegel
iteration or Successive OverRelaxation method.

1.7 “Generalized” 2D Poisson equations

We give now the method for solving the 2D “generalized” Poisson system

−divx,z [ε(x, z)∇x,zV (x, z)] + C
∫

A(x, z, ζ)V (x, ζ)dζ = B(x, z).

Dirichlet, Neumann or Robin boundary conditions

Such systems are solved many times per time step during the numerical
simulation of the MOSFET described in Chapter 5: potential is computed
through a Newton method, and the evaluation of the self-consistent electro-
static field via the solution of a ”generalized” Poisson equation is required
at each iteration. ε(x, z) is the relative dielectric permittivity of the mate-
rial (in the concrete case of the MOSFET, the Si and SiO2 permittivity),
C is a parameter which has the contribution of many physical constants
(and rescalings), the system being reduced to adimensionalized units. B
usually has the classical contribution of the total electron density plus an
extra term coming from the non-local effects due to the presence of the
Gâteaux-derivative of the density N [V ].

1.7.1 Discretization

We propose a solver based on discretization via Finite Differences of the
derivatives and trapezoid rule for the integration. The resulting matrix is
then solved via a LAPACK routine called DGESV. Meshes are assumed
regular.

The “Laplacian”

First of all we remark that the derivatives of the divergence and the deriva-
tives of the gradient must be in alternate directions, because in the case of
ǫ = 1 we want to recover the standard centered three-points discretization
of the Laplacian.

We choose to go forward as for the gradient and backwards as for the
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divergence:

(∇V )i,j =

[(
∂V

∂x

)

i,j

,

(
∂V

∂z

)

i,j

]
=

(
Vi+1,j − Vi,j

∆x
,
Vi,j+1 − Vi,j

∆z

)

div[(F 1, F 2)]i,j =
F 1

i,j − F 1
i−1,j

∆x
+

F 2
i,j − F 2

i,j−1

∆z
.

So, once we put everything together

[divx,z (ε(x, z)∇x,zV (x, z))]i,j

≈ εi−1,j

∆x2
Vi−1,j +

εi,j−1

∆z2
Vi,j−1 −

(
εi,j + εi−1,j

∆x2
+

εi,j + εi,j−1

∆z2

)
Vi,j

+
εi,j

∆z2
Vi,j+1 +

εi,j

∆x2
Vi+1,j (1.28)

The integral

The integration is performed through standard trapezoids rule
[∫

A(x, z, ζ)V (x, ζ)dζ

]

i,j

≈ ∆z

[
1

2
Ai,j,0Vi,0 +

Nz−2∑

l=1

Ai,j,lVi,l +
1

2
Ai,j,Nz−1Vi,Nz−1

]
. (1.29)

Boundary conditions

If Dirichlet condition is set, we impose

Vi,j = V̄i,j .

If Neumann condition is set

∂V

∂n
= g(x, z),

we discretize the normal derivative by finite differences, either forward or
backward:

(x, 0) (Lx, z) (x, lz) (0, z)
∂V
∂n = −∂V

∂z
∂V
∂n = ∂V

∂x
∂V
∂n = ∂V

∂z
∂V
∂n = −∂V

∂x
∂V
∂n ≈ Vi,0−Vi,1

∆z
∂V
∆n ≈ VNx−1,j−VNx−2,j

∆x
∂V
∆n ≈ Vi,Nz−1−Vi,Nz−2

∆z
∂V
∆n ≈ V0,j−V1,j

∆x

therefore
∂V

∂n
= g(x, z)

≈

(x, 0) (Lx, z)
Vi,0−Vi,1

∆z = gi,0
VNx−1,j−VNx−2,j

∆x = gNx−1,j
1

∆z Vi,0 − 1
∆z Vi,1 = gi,0

1
∆xVNx−1,j − 1

∆xVNx−2,j = gNx−1,j

(x, lz) (0, z)
Vi,Nz−1−Vi,Nz−2

∆z = gi,Nz−1
V0,j−V1,j

∆x = g0,j
1

∆z Vi,Nz−1 − 1
∆z Vi,Nz−2 = gi,Nz−1

1
∆xV0,j − 1

∆xV1,j = g0,j
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If Robin condition

∂V

∂n
+ α(x, z)(V − V̄ ) = 0

is set, we discretize it the following way:

(x, 0) (Lx, z) (x, lz) (0, z)
∂V
∂n = −∂V

∂z
∂V
∂n = ∂V

∂x
∂V
∂n = ∂V

∂z
∂V
∂n = −∂V

∂x
∂V
∂n ≈ Vi,0−Vi,1

∆z
∂V
∆n ≈ VNx−1,j−VNx−2,j

∆x
∂V
∆n ≈ Vi,Nz−1−Vi,Nz−2

∆z
∂V
∆n ≈ V0,j−V1,j

∆x

therefore

∂V

∂n
+ α(x, z)(V − V̄ ) = g(x, z)

≈

(x, 0)
Vi,0−Vi,1

∆z + αi,0(Vi,0 − V̄i,0) = gi,0
1

∆z Vi,0 − 1
∆z Vi,1 + αi,0Vi,0 − αi,0V̄i,0 = gi,0(

1
∆z + αi,0

)
Vi,0 − 1

∆z Vi,1 = αi,0V̄i,0 + gi,0

(Lx, z)
VNx−1,j−VNx−2,j

∆x + αNx−1,j(VNx−1,j − V̄Nx−1,j) = gNx−1,j
1

∆xVNx−1,j − 1
∆xVNx−2,j + αNx−1,jVNx−1,j − αNx−1,j V̄Nx−1,j = gNx−1,j(

1
∆x + αNx−1,j

)
VNx−1,j − 1

∆xVNx−2,j = αNx−1,j V̄Nx−1,j + gNx−1,j

(x, lz)
Vi,Nz−1−Vi,Nz−2

∆z + αi,Nz−1(Vi,Nz−1 − V̄i,Nz−1) = gi,Nz−1
1

∆z Vi,Nz−1 − 1
∆z Vi,Nz−2 + αi,Nz−1Vi,Nz−1 − αi,Nz−1V̄i,Nz−1 = gi,Nz−1(

1
∆z + αi,Nz−1

)
Vi,Nz−1 − 1

∆z Vi,Nz−2 = αi,Nz−1V̄i,Nz−1 + gi,Nz−1

(0, z)
V0,j−V1,j

∆x + α0,j(V0,j − V̄0,j) = g0,j
1

∆xV0,j − 1
∆xV1,j + α0,jV0,j − α0,j V̄0,j = g0,j(

1
∆x + α0,j

)
V0,j − 1

∆xV1,j = α0,j V̄0,j + g0,j

Still we have to decide what to do with the four corner points

(0, 0), (Lx, 0), (Lx, lz), (0, lz).

For instance we could make them be the mean between the two nearest
boundary points:

V(0,0) =
V(1,0) + V(0,1)

2

V(Nx−1,0) =
V(Nx−2,0) + V(Nx−1,1)

2

V(Nx−1,Nz−1) =
V(Nx−2,Nz−1) + V(Nx−1,Nz−2)

2

V(0,Nz−1) =
V(1,Nz−1) + V(0,Nz−2)

2
.
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Remark

In order to improve the numerical results, in the code we have multiplied the
discretization of the boundary conditions by constants βi,j : analytically it is
completely uninfluent, but numerically it has improved the results, because
it makes all the terms of the same magnitude.

1.7.2 Solution

Putting together (1.28), (1.29), the boundary conditions and the corner
points condition, the resulting system is (Nx×Nz)

2 and has non-local terms
due to the presence of (1.29). The solution could be performed through
any linear system solver; we have chosen to use a LAPACK routine called
DGESV which has proven to be fast and robust. Other possible choices
would be, for instance, the Gauss-Siegel method and the SOR method.

1.8 The parameterized eigenvalue problem

When simulating the MOSFET described in Chapter 5, we need to solve
some Schrödinger-Poisson problems for the computation of the electrostatic
field and the eigenproperties. In order to do that, we have chosen to use
a Newton iteration, so that we need to compute the Gâteaux (directional)
derivative of the density N [V ]. Its formulation requires the derivatives,
with respect to the potential V of the Schrödinger eigenproperties εp[V ]
and χp[V ]. That is why we compute the derivatives of the eigenvalues and
eigenvectors in the case of an eigenvalue matrix problem and then apply
these results to the case of the Schrödinger eigenvalue problem.

1.8.1 The matrix eigenvalue problem

Consider the parameterized eigenvalue problem

M(t)ek(t) = λk(t)ek(t), 〈ek, ek′〉 = δk,k′ . (1.30)

There exist results of regularity on the eigenvalues and the eigenfunctions
starting from the regularity of the (Hermitian = real symmetric) matrix
M(t).

Some manipulations to obtain what we need. Differentiate with respect
to parameter t,

M ′(t)ek(t) + M(t)e′k(t) = λ′
k(t)ek(t) + λk(t)e

′
k(t). (1.31)

As the diagonalization form an orthonormal basis,

〈ek(t), ek(t)〉 = 1, 〈ek(t), e
′
k(t)〉 = 0, (1.32)
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which means that e′k(t) has the following form (it has any component but
the k-th):

e′k(t) =
∑

k′ 6=k

αk,k′ek′(t). (1.33)

Take equation (1.31) and consider its scalar product by ek(t) (we omit the
time dependence):

〈M ′ek, ek〉 + 〈Me′k, ek〉 = λ′
k〈ek, ek〉 + λk〈e′k, ek〉

〈M ′ek, ek〉 + 〈e′k, Mek〉 = λ′
k + 0

〈M ′ek, ek〉 + λk〈e′k, ek〉 = λ′
k

〈M ′ek, ek〉 = λ′
k.

Take now equation (1.31) and consider its scalar product by ek′(t) (with
k′ 6= k):

〈M ′ek, ek′〉 + 〈Me′k, ek′〉 = λ′
k〈ek, ek′〉 + λk〈e′k, ek′〉

〈M ′ek, ek′〉 + 〈
∑

p 6=k

αk,pep, Mek′〉 = 0 + λk〈
∑

p 6=k

αk,pep, ek′〉

〈M ′ek, ek′〉 + λk′〈
∑

p 6=k

αk,pep, ek′〉 = λkαk,k′

〈M ′ek, ek′〉 + λk′αk,k′ = λkαk,k′

〈M ′ek, ek′〉 = (λk − λk′)αk,k′

〈M ′ek, ek′〉
λk − λk′

= αk,k′ .

The most important relations we have obtained are

λ′
k(t) = 〈M ′(t)ek(t), ek(t)〉 (1.34)

e′k(t) =
∑

k′ 6=k

〈M ′ek, ek′〉
λk − λk′

ek′(t). (1.35)

1.8.2 The Schrödinger eigenvalue problem

Our goal is now to adapt the same results as (1.34) and (1.35) for the case
of the Schrd̈inger eigenvalue problem

−CS,1

2

d

dz

[
1

m

dχp[V ]

dz

]
+ CS,2(V + Vc)χp[V ] = ǫp[V ]χp[V ]

{χp[V ]}p ⊆ H1
o (0, lz) orthonormal basis.

In order to achieve this, we have to perform the following replacements
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inside problem (1.30):

t → V

M(t) → Schrödinger operator

S[V ](·) = −CS,1

2

d

dz

[
1

m

d·
dz

]
+ CS,2(V + Vc) ·

λk → ǫk

ek → χk

〈f, g〉 →
∫

fgdz

d·
dt

→ d · (V, U) = Gâteaux-der. with respect to V in direction U .

The t-derivative of the matrix M(t) in (1.30) transforms into

dS(V, U) = lim
t→0

S[V + tU ] − S[V ]

t
= CS,2U,

the derivative of the eigenvalues (1.34) becomes

dǫp(V, U) =

∫
dS(V, U)χp[V ]χp[V ]dz = CS,2

∫
U |χp[V ]|2dz,

the αp,p′ parameters in (1.35) become

αp,p′ =

∫
dS(V, U)χp[V ]χp′ [V ]dz

ǫp[V ] − ǫp′ [V ]
= CS,2

∫
Uχp[V ]χp′ [V ]dz

ǫp[V ] − ǫp′ [V ]

so that the derivative of the eigenvectors (1.33) reads

dχp(U, V )

=
∑

p′ 6=p

αp,p′χp′ [V ]

= CS,2
∑

p′ 6=p

1

ǫp[V ] − ǫp′ [V ]

∫
U(ζ)χp[V ](ζ)χp′ [V ](ζ)dζχp′ [V ](z).

Resumé

We have obtained the following relations:

dǫp(V, U) = CS,2

∫
U(x, ζ)|χp[V ](x, ζ)|2dζ

dχp(V, U) = CS,2
∑

p′ 6=p

∫
U(x, ζ)χp[V ](x, ζ)χp′ [V ](x, ζ)dζ

ǫp[V ](x) − ǫp′ [V ](x)
χp′ [V ](x, z).
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1.9 Newton schemes for the Schrödinger-Poisson

problem

In this section the instruments for solving the Schrödinger-Poisson system
are developed. We refer again to Chapter 5 for the notation, meaning and
discussion of this model and adimensional quantities in our application to
nanodevices. We develop the scheme with physical units and then adimen-
sionalize in order to have the correct rescaling (we cannot reverse these two
steps: dimensionless parameters would be incorrect).

Our goal is now the solution of the 1D or 2D Poisson problem under the
1D Schrödinger eigenvalue problem (which is always 1D because x just acts
as a parameter)

− ~
2

2me

d

dz

[
1

m

dχp[V ]

dz

]
− q(V + Vc)χp[V ] = ǫp[V ]χp[V ] (1.36)

−div (εR∇V ) = − q

ε0
(N [V ] − ND) (1.37)

plus boundary conditions.

From (1.37) we define the Poisson functional

P [V ] = −div (εR∇V ) +
q

ε0
(N [V ] − ND) , (1.38)

which has to be minimized under the constraint of the Schrödinger equation
(1.36) for the computation of the eigenproperties.

The Newton scheme for the minimization of (1.38) is

dP (V old, V new − V old) = −P [V old], (1.39)

where dP (V, U) means Gâteaux-differentiation at point V in direction U ,
which in our case is

dP (V, U) = −div (εR∇U) +
q

ε0
dN(V, U)

= −div (εR∇U) +
q

ε0

∫
A[V ](z, ζ)U(ζ)dζ (1.40)

because the Gâteaux-derivative of the density can always be written in this
form thanks to the formulae given in Section 1.8.

Plugging (1.40) into (1.39), after simplifying and separating the old and
new terms, we obtain

−div (εR∇V new) +
q

ε0

∫
A[V old](z, ζ)V new(ζ)dζ (1.41)

= − q

ε0

(
N [V old] − ND

)
+

q

ε0

∫
A[V old](z, ζ)V old(ζ)dζ.
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Adimensionalization of the scheme

Rescaling the Newton scheme (1.41) by the parameters proper of the MOS-
FET device, which can be found in Table 5.6, we obtain the adimensionalized
Newton scheme

− div (εR∇V new)

+ CNew,1

∫
A[V old](x, z, ζ)V new(x, ζ)dζ = B[V old](x, z)

plus boundary conditions for V ,

where we have set

CNew,1 =
qρ∗χ∗(l∗)3

ε0

CP =
qN∗(l∗)2

ε0V ∗

B[V old](x, z) = −CP
(
N [V old] − ND

)

+CNew,1

∫
A[V old](x, z, ζ)V old(x, ζ)dζ.

This is a ”generalized” Poisson problem which can be solved by the schemes
developed either in Section 1.6 or in Section 1.7.

The iteration

We summarize here the iteration for solving the Schrödinger-Poisson prob-
lem:

Step 0 Choose an initialization, i.e. a potential V old.

Step 1 Perform the following loop:

Step 1.1 Diagonalize Schrödinger by the scheme exposed in Section 1.5 to
obtain its eigenvalues and eigenfunctions

{
ǫp[V

old], χp[V
old]

}
p

Step 1.2 Compute N [V old] (from its definition, depending on the problem
which is being solved) and A[V old](z, ζ) by means of the formulae
given in Section 1.8.

Step 1.3 Compute

B[V old] = −CP
[
N [V old] − ND

]

+ CNew,1

∫
A[V old](z, ζ)V old(ζ)dζ.
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Step 1.4 Solve the ”generalized” Poisson problem

− div [εR∇V new]

+ CNew,1

∫
A[V old](z, ζ)V new(ζ)dζ = B[V old]

by the schemes developed either in Section 1.6 or in Section 1.7.

Step 1.5 Check convergence: if

‖V old − V new‖some norm < λtolerance

(for instance, choose the L∞ norm and λ = 10−6) then exit the
loop and set V = V new, else set V old = V new and go back to
Step 1.1.



Chapter 2

Non oscillatory interpolation

methods applied to

Vlasov-based models

This chapter corresponds to a work [26] in collaboration with J.A. Car-
rillo whose reference is: ”Non oscillatory interpolation methods applied to
Vlasov-based models”, SIAM Journal of Scientific Computing 29, 1179-1206,
2007.

2.1 Introduction

The Vlasov’s equation

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf = 0

is the basic kinetic model for the description of the motion of charged parti-
cles, in electronic devices and plasmas, under the effect of a force field F (t, x).
Here, f(t, x, v) represents the particle number density in phase space (x, v)
at time t > 0. In order to compute the force field

F = −∇xΦ

it is coupled with the Poisson’s equation

ǫ0∆xΦ = e [ρ[f ] − C] = e

[∫
fdv − C

]

for the computation of the electric potential Φ(t, x) due to both the self-
consistent electric potential and an external density C(x), like the doping
profile in semiconductors or a background ion density in plasmas. More-
over, when collisional effects have to be taken into account, a Boltzmann’s

45
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operator appears as the right-hand side of the Vlasov’s equation

∂f

∂t
+ v · ∇xf +

F

m
· ∇vf = Q[f ].

One of the main problems while simulating Vlasov-like systems is the
presence of violent gradients in the distribution function, which, if not prop-
erly controlled by the numerical method, may drive to a false physical de-
scription of the phenomena due to a massive formation of spurious oscil-
lations. Several approaches in order to solve Vlasov-based equations have
been proposed in the literature, we refer to [45] for a good review and com-
parison of different Eulerian solvers. These oscillations appear naturally due
to the energy conservation of the system and its Hamiltonian character, be-
ing the phenomena of the Landau damping an example of this behaviour
[103, 45, 42]. When collisions are considered, oscillations are damped, but
the control of spurious oscillations continues to be important since high
gradients on the moments of the solution (density, mean velocity and tem-
perature) are typical in the simulations, see [30, 28, 29] for instance in the
semiconductor case.

One of the approaches to attack the numerical simulation of these models
is based on a classical time splitting method, whose theoretical bases were
given by Strang [98] and whose application for scientific computing by Cheng
and Knorr [35]. Time splitting algorithms are used to subdivide a problem
into simpler tasks being in our case the transport and the collision steps. In
device and plasma simulations, the transport (Vlasov) step in (x, v) or (x, p)-
phase space can be reduced by dimensional splitting to performing advection
steps in either dimension, see [63] for fully relativistic models in which this
cannot be done. Semi-Lagrangian methods were firstly introduced for me-
teorology problems [12] and for turbulence study [6]. The application to
the Vlasov’s equation was started by Sonnendrücker, Roche, Bertrand and
Ghizzo in [97]. This method is based on following backwards the character-
istics, and makes use of some interpolation method: Lagrange polynomials,
spline [97], Hermite and ENO [95]; see [45] for an overview. Flux balance
methods were proposed in [42] being the Positive Flux Conservative method
(PFC-3) a particular case. This method preserves mass and positivity of the
solution apart from controlling the total variation of the solution although
it is only third-order accurate. This method has been modified in [38] in
order to conserve the total energy too. Several improvements concerning
unstructured and adaptive grids and different interpolation techniques have
recently been devoloped in [61, 13].

Another successful approach in the case of collisional semiconductor and
plasma models is based on the method of lines with high-order non oscilla-
tory finite differences reconstructions of the derivatives of the distribution
function f(t, x, v) in phase space [64, 94] while performing a TVD (total-
variation-diminishing) third order explicit Runge-Kutta method for the time
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discretization. In this case, spurious oscillations are controlled by ENO [95]
(Essentially Non Oscillatory) or WENO [64, 94] (Weighted Essentially Non
Oscillatory) reconstructions of the fluxes and thus of the derivatives.

We propose in this paper a Semi Lagrangian (SL) and a Flux Balance
Method (FBM) for Vlasov’s systems based on a Weighted Essentially Non
Oscillatory interpolations for the computation of point values (PWENO), see
[93]. We will review this numerical technique for point values reconstruction
in Section 2.

In Section 3, the Semi Lagrangian (SL) and the Flux Balance Method
(FBM) are described. Both methods are based on integrating backwards in
the characteristics, the second one being mass-conservative and the first one
being better as for the control of the total variation. The main advantage
with respect to previous semi-Lagrangian methods is the oscillation con-
trol while keeping a high-order approximation of the solution. Compared
to WENO finite-differences methods, our approach avoids the restrictive
CFL condition on the time stepping [72]. The proposed numerical method
allows the time step ∆t to be larger and constant, and the method re-
quires much less steps (of an equivalent computational cost) than WENO
finite-differences. Finally, these numerical techniques could be extended for
multi-domain or multi-grid computations as done in [93].

In Section 4, we show the numerical simulations of four problems:

1. A 1D Vlasov-Boltzmann equation with given confining potential and
a linear relaxation operator. Its asymptotic behavior was described in
[27, 62].

2. A 1D non linear Landau damping [42], where we can observe the fila-
mentation of the phase space during the first phase (strong oscillations
in the (x, v)-space) and check whether the method is able not to add
noise.

3. A 1D symmetric two stream instability, where we want to observe
an vortex appearing after initial time, rotate and form a typical hole
structure.

4. A Silicon n+ − n − n+-structured semiconductor [33, 30], where colli-
sions are modelled through a linear Boltzmann operator: we compare
results given by time splitting methods and finite differences methods.

The simulation results demonstrate overall the main features of this numer-
ical approach: no CFL condition, good control of numerical oscillations and
high accuracy on the approximations.
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Figure 1: Time splitting schemes

2.2 Time splittings and linear advection

For integrating both the Vlasov-Boltzmann coupling

∂f

∂t
+ v · ∇xf + F · ∇vf︸ ︷︷ ︸

Vlasov

= Q[f ]︸︷︷︸
Boltzmann

and the Vlasov’s equation

∂f

∂t
+ v · ∇xf︸ ︷︷ ︸

adv. in x

+ F · ∇vf︸ ︷︷ ︸
adv. in v

= 0

we use Strang’s splitting schemes shown in Figure 1, in our simulations all
reduces to solving the one-dimensional linear advection equation

{
∂f
∂t + v ∂f

∂x = 0

f(t = 0, x) = f0(x)

whose solution is the translation with velocity v of the initial function

f(t, x) = f0(x − vt)

and is obviously mass-conservative.
Two methods are proposed: the Semi Lagrangian (SL) and the Flux

Balance Method (FBM), the second one being mass-conservative and the
first one being better as for the control of oscillations.

2.2.1 Semi-Lagrangian method

This method is based in directly following backwards the characteristics of
the system, i.e. knowing

fn
i = f(tn, xi)
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we perform the step in time this way:

fn+1
i = f(tn+1, xi) = f(tn, xi − v∆t) ≃ pn(xi − v∆t),

where pn is any chosen interpolation from point values of f(tn, ·). Here, we
will choose PWENO as interpolation method. This method is not mass-
conservative.

2.2.2 Flux Balance Method

FBM (Flux Balance Method) is used in [42] to construct a conservative
method. We already know that

f(t + ∆t, x) = f(t, x − v∆t).

Now, let us integrate over an interval [b1, b2], to get

∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ − v∆t)dξ =

∫ b2−v∆t

b1−v∆t
f(t, ξ)dξ

=

∫ b1

b1−v∆t
f(t, ξ)dξ +

∫ b2

b1

f(t, ξ)dξ −
∫ b2

b2−v∆t
f(t, ξ)dξ.

If we use as notation

Ψ(t, x) =

∫ x

x−v∆t
f(t, ξ)dξ,

we get

∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ)dξ + Ψ(t, b1) − Ψ(t, b2),

and dividing by ∆ = b2 − b1

∫ b2
b1

f(t + ∆t, ξ)dξ

∆
=

∫ b2
b1

f(t, ξ)dξ

∆
+

Ψ(t, b1) − Ψ(t, b2)

∆
,

which means

f̄(b1,b2)(t + ∆t) = f̄(b1,b2)(t) +
Ψ(t, b1) − Ψ(t, b2)

∆
,

i.e., the local description of mass conservation. By denoting by F (t, ·) the
primitive of f(t, ·), the numerical method we get applying the previous ar-
gument on the interval [xi− 1

2
, xi+ 1

2
] is the following:

fn+1
i = fn

i +
Ψn(xi− 1

2
) − Ψn(xi+ 1

2
)

∆x
,
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where we have approximated the mean value of the function over the interval
by its value at the center and

Ψn(xi− 1
2
) =

∫ x
i− 1

2

x
i− 1

2
−v∆t

f(tn, ξ)dξ = F (xi− 1
2
) − F (xi− 1

2
− v∆t).

Finally, F (xi− 1
2
− v∆t) will be approximated by a chosen interpolation

from the known point values of F at xi+ 1
2
. Here, we will choose PWENO

as interpolation method.

2.2.3 Total variation control

The Discrete Total Variation (DTV) is defined as

N−2∑

i=0

‖fn
i − fn

i+1‖.

The exact solution of the linear advection equation obviously conserves the
total variation. If the numerical method is able to respect this property,
then it is not adding spurious oscillations due to the interpolation to the
shape of the function. Take as initial datum

fstep(x) =

{
0 if x < 0
1 if x ≥ 0

for the linear advection equation with periodic boundary conditions on
x ∈ [−1, 1]. As we see in Figure 2, Lagrange interpolation has the worst
behaviour both in SL and in FBM, while PWENO interpolation has a very
good conservation of the DTV in SL method. In FBM PWENO behaves a
little bit worse, but in exchange this second method conserves the mass.

2.2.4 Disphasement errors

We want to focus now the attention on how important is the choice of the
substencils, and thus, of the parameters ntot and lpo in the PWENO-ntot,lpo
interpolation. In Figure 3, we see that WENO-6,4 is more accurate than
WENO-5,3 both in semi-lagrangian method and in flux balance methods.
This difference is due to the fact that in WENO-5,3 not all the substencils
“feel” that there is a jump point. Suppose we are interpolating close to xi,
and suppose the jump point is situated between xi and xi+1. If there is a
substencil which does not contain the irregularity, WENO method will give
weights 0 to all of them but this one. This means that the jump runs with
wrong speed ∆x

∆t with an error after time T with respect to the real speed of
∆x
∆t [α − 1]× T with α = v ∆t

∆x . Then, it is essential to use a WENO method
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Figure 2: The evolution of Discrete Total Variation against time for the step
as initial function.
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Figure 3: The evolution of L1-norm error against the time for N = 100,
x ∈ [−π, π], ∆t = 0.1, tmax = 30, f0(x) = fstep(x).
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such that every substencil contains any discontinuity which may appear, like
WENO-6,4. In general, it must be

lpo ≥
[
ntot + 1

2

]
+ 1.

2.3 Numerical simulations

We expose and compare results concerning the simulation of four models:

• A 1D Vlasov system with a linear Boltzmann operator and a given
confining potential.

• A non collisional coupled Vlasov-Poisson system, by which we study
the non linear Landau damping.

• A non collisional coupled Vlasov-Poisson system, by which we study
the symmetric two stream instability problem.

• A collisional Vlasov-Poisson system, by which a silicon n+ − n − n+-
structured semiconductor is simulated.

2.3.1 Vlasov-Boltzmann with confining potential

We solve the 1D Vlasov-Boltzmann equation with a confining potential
Φ0(x) and the simplest linear collision operator:





∂f

∂t
+ v

∂f

∂x
− ∂Φ0

∂x

∂f

∂v
=

1

τ
[ρM1 − f ]

f(0, x) = f0(x).

From [27] we know that the solution tends to a global equilibrium given by

fs = M

(∫

R

exp (−Φ0(x)) dx

)−1

exp (−Φ0(x)) M1(v)

in L1 norm, whenever the external potential verifies the confinement condi-
tions:




•Φ0 ≥ 0, Φ0 ∈ C∞(R),
• exp(−Φ0(x)) ∈ L1(R),
•Φ0 is a bounded perturbation of a uniformly convex potential on R:

Φ0 = Φuc
0 + Φbp

0 such that

there exists λ1 > 0 such that ∂2

∂2x
Φuc

0 (x) ≥ λ1, ∀x ∈ R,
and

there exists a and b such that 0 < a ≤ Φbp
0 (x) ≤ b < ∞, ∀x ∈ R.
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Figure 4: 1D Vlasov with confining potential. Test performed with

400 × 400 points, ∆t = 0.1, SL method with PWENO-6,4, f
(1)
0 (x) =

Z1 sin2
(

x2

2

)
e−

x2+v2

2 , τ = 3.5.

The decay rate was proved to be ”almost exponential” (see [27]), i.e.,

‖f − fs‖2
L1 ≤ H[f ; fs] ≤ C(ǫ, f0)t

− 1
ǫ , (2.1)

for all ǫ > 0. Global and local relative entropies are measures of how far is
f from the global equilibrium fs and the local equilibrium ρ(t, x)M1.





H[f ; fs] =

∫

R

∫

R

|f − fs|2
fs

dvdx

H̃[f ; ρM1]=

∫

R

∫

R

|f − ρM1|2
fs

dvdx.

(2.2)

Global and local relative entropies satisfy the ODE inequalities system (see
[27]): 




− d

dt
H[f ; fs] ≥ KH̃[f ; ρMθ0 ]

d2

dt2
H̃[f ; ρMθ0 ] ≥ K ′H[f ; fs] − C(f, ǫ)H̃[f ; ρMθ0 ].

(2.3)

We show numerical results in the particular case of Φ0(x) = x2

2 . In
this case, the Vlasov part gives a rotation of the initial function f0(x, v)
while the collision part thermalizes the velocity distribution towards M1(v).
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Figure 5: 1D Vlasov with confining potential. Test performed with

400 × 400 points, ∆t = 0.1, SL method with PWENO-6,4, f
(2)
0 (x) =

Z2 sin2
(

x2

2

)
sin2

(
v2

2

)
e−

x2+v2

2 , τ = 3.5.
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Figure 6: 1D Vlasov with confining potential. Test performed with

400 × 400 points, ∆t = 0.1, SL method with PWENO-6,4, f
(3)
0 (x) =

Z3

[
1 + 0.05 sin2

(
x2

2

)]
e−

x2+v2

2 , τ = 3.5.
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Figure 7: 1D Vlasov with confining potential. From this comparison, it is
quite clear that the oscillation rate is the same for both initial functions,
even if the behaviour is different.

Moreover, an analysis of the spectrum of operator

f 7−→ −v
∂f

∂x
+ x

∂f

∂v
+

1

τ
[ρM1 − f ]

has recently been done in [62] showing the existence of an spectral gap in a
suitable L2-weighted space and thus, of the exponential convergence in that
space and as a consequence in L1 towards fs.

Both the previous ODEs inequalities (2.3) and the spectral analysis sug-
gest the appearance of oscillations in the trend of solutions towards global
equilibrium. The ODEs inequalities (2.3) shows that the trend of conver-
gence towards local equilibria is compensated by the transport term that
should push the solution out of the local equilibria manifold whenever the
solution approaches a local equilibrium which is not the global one. This
fact suggests an oscillation both in the local and global relative entropy. On
the other hand, assuming the first non-zero eigenvalues in the spectrum are
given by a pair of conjugate eigenvalues λ1 and λ2 then, we expect oscilla-
tions of the L2-weighted norm with a slope decay given by ℜ(λi) < 0 and
oscillation frequency given by the absolute value of ℑ(λi). We refer to [62]
for details.

In the upper left graphs of Figures 4 and 5 we see, for two different
initial functions normalized to have unit mass, that the L1-convergence of
f towards fs is led by the decay of H[f ; fs], like in (2.1). The convergence
is clearly exponential as the results of [62] prove for the L1-norm.

In the lower left graphs we see that L∞-convergence is also expected to
be exponential, although this result has not been proven yet. In the upper
right graphs we see that the oscillations of global and relative entropies
correspond, due to the couplings (2.3). In the lower right graphs we observe
that the mass seems pretty well conserved.

We shall now perform tests with different domain lengths and different
initial functions: the oscillation rate and the decay slope should not change,
because we are not using periodic conditions. In fact, we are solving the



56 CHAPTER 2. TS WENO SCHEMES FOR 1D-VLASOV

Cauchy problem by neglecting the distribution function f outside a suitable
domain chosen in such a way that the values of f near the border are almost
negligible.

In Figure 7 we compare the decay of global and relative entropies for two
different initial functions. Even if the amplitude of the oscillation is different,
it seems evident that the oscillation rate and the decay slope correspond.

The system seems to “hesitate” between states where it is close to a
local equilibrium ρM1 and the convergence to the global equilibrium fs.
In [43] similar oscillations have been reported in the case of the full non-
linear Boltzmann equation for rarefied gases in a box with periodic boundary
conditions. A numerical approximation of the slope γ and the frequency ω
of the decaying oscillations towards global equilibrium gives:




f0(x) L ω γ

f
(1)
0 (x) 4π 3.15 −0.298368

f
(1)
0 (x) 6π 3.15 −0.298872

f
(2)
0 (x) 4π 3.125 −0.304400

f
(2)
0 (x) 6π 3.125 −0.304858




.

A refinement study has been perfomed to check that the oscillation frequency
and the decay slope do not depend on the dimensions of the domain, nor on
the initial datum we choose: they are determined by the system itself.

2.3.2 1D Vlasov-Fokker Planck with confining potential

We solve the 1D Vlasov equation with a confining potential Φ0(x) = x2

2 and
a Fokker Planck operator as collision operator:





∂f

∂t
+ v

∂f

∂x
− x

∂f

∂v
=

1

τ

∂

∂v

[
vf + Θ

∂f

∂v

]

f(0, x) = f0(x).

(2.4)

We show in Figures 8 and 9 that the solution tends, as well as for the case
with a relaxation time operator, to a global equilibrium given by

fs = M

(∫

R

exp

(
−x2

2

)
dx

)−1

exp

(
−x2

2

)
MΘ(v)

in L1 norm. Global and local relative entropies are defined in (2.2) and
are measures of how far is f from the global equilibrium fs and the local
equilibrium ρMΘ.

Equation (2.4) becomes, after an obvious manipulation,

∂f

∂t
+ v

∂f

∂x
− ∂f

∂v

[
−

(
x +

v

τ

)
f
]

=
Θ

τ

∂2f

∂v2
.
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In this case the v-advection velocity is not constant: the term
[
−

(
x + v

τ

)
f
]

depends on v. Therefore, in order to follow backwards the characteristics,
we need to solve the ODE

dv

dt
= −v

τ
− x,

which gives

v(tn+2/4) = v(tn+1/4) exp(−∆t/τ) + τx [1 − exp(−∆t/τ)] .

(with ∆t = tn+2/4 − tn+1/4) i.e., solving with respect to v(tn+1/4),

v(tn+1/4) = v(tn+2/4) exp(∆t/τ) − τx [exp(∆t/τ) − 1] .

So, the solution to the v-advection is given by

f(tn+2/4, x, v) = f(tn+1/4, x, ve∆t/τ − τx
(
e∆t/τ − 1

)
J(x, v)

where J(t, x, v) = exp(t/τ) is the Jacobian of the change from to v(tn+2/4)
to v(tn+1/4).

As for the “collision step”

∂f

∂t
=

Θ

τ

∂2f

∂v2
.

it is solved through a plane Euler step, the second derivative being approx-
imated by a standard finite difference.

2.3.3 1D non linear Landau damping

The (normalized) model is:





∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0

∂2Φ

∂x2
= 1 −

∫

R

fdv

f0(x, v) = f0(x, v) =
1√
2π

e−
v2

2

[
1 + 0.5 cos

(x

2

)]
.

Landau theory has been developed in order to study the propagation of
small amplitude waves in a uniform plasma (with no magnetic field and
no collisions). It conjectures an interchange of energy between the electric
field (potential energy) and resonant particles (kinetic energy) driven by the
wave, which produces an oscillating evolution of the electric energy

∫ L

0
|E(t, x)|2dx.
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Figure 8: 1D Vlasov Fokker Planck. Test performed with 64 × 64 points,

∆t = 0.01, SL method with PWENO-6,4, f
(2)
0 (x) = Z1 sin2

(
x2

2

)
e−

x2+v2

2 ,

τ = 1, Θ = 1.
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Figure 9: 1D Vlasov Fokker Planck. Test performed with 64 ×
64 points, ∆t = 0.01, SL method with PWENO-6,4, f

(2)
0 (x) =

Z2 sin2
(

x2

2

)
sin2

(
v2

2

)
e−

x2+v2

2 , τ = 1, Θ = 1.
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Its decay is expected to be exponential in the first phase of the evolution,
then it should start oscillating around some equilibrium value.

The numerical method must properly take into account two aspects: the
filamentation of the phase space and the conservation properties.

The better results are given by FBM-PWENO-5,3: this method is able
to describe the filamentation of the phase space, it controls the strong oscil-
lations (part of the physical phenomenon), which, after some time, should
start to disappear. It has a good conservation of the total energy (oscilla-
tions about 0.03%, 0.015% for Lagrange and 0.05% for PFC-3, like we see in
Figure 10). As for FBM-Lagrange-5 and FBM-PFC-3, both give physically
non reliable results, the first one because of a violent, spurious growth of the
oscillations, and the second one because of a violent repression of them, as
we can see in Figure 11. From Figure 12 we can see that the reconstruction
given by PFC-3 is, in effect, less definite than the other ones, due to the
low order. Lagrange reconstruction is more irregular, due to the parasite
oscillations.

2.3.4 Two stream instability

The (normalized) model is:




∂f

∂t
+ v

∂f

∂x
− ∂Φ

∂x

∂f

∂v
= 0

∂2Φ

∂x2
= 1 −

∫

R

fdv

f0(x, v) = Z
2

7
√

2π

(
1 + 5v2

) [
1 + α

(
cos(2kx) + cos(3kx)

1.2
+ cos(kx)

)]
e−

v2

2

with α = 0.01, k = 0.5 and Z a normalizing factor to impose periodicity
boundary conditions on the electric field. This test has been studied in
[45]; there, Filbet and Sonnendrücker compare several methods for a coarse
points grid and observe which ones have good conservation properties and
which ones are able to follow thin details of the distribution function: among
their cases, a semi-Lagrangian method with a cubic spline interpolation has
given the most reliable results.

Our simulations show that even if both WENO-5,3 and WENO-6,4 are
fifth order, there may be a substancial difference in their reconstructions,
due to the problem the first method has in following shock-like situations,
which is the case of this test. Dispersion errors become too important, in
the phase space violent oscillations are produced (look at the level curves in
Figure 13) which destabilize the simulation (the variation of the L2-norm is
about 400%, as we can remark from Figure 14). As for PFC-3 method, it
has good conservation properties (Figure 14), but, compared with WENO-
6,4, observing the level curves in Figure 13 it is evident that it is lower order
and the reconstruction is less detailed.
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Figure 10: 1D non linear Landau damping. Evolution of the discrete electric
energy, the L2-norm and the total energy. Test performed with 256 × 256
points, ∆t = 0.125 for WENO, ∆t = 0.01 for PFC-3, x ∈ [0, 4π], v ∈ [−6, 6].
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Figure 11: 1D non linear Landau damping. Evolution of the x-integrated
distribution function, for several methods. Test performed with 256 × 256
points, ∆t = 0.125 for WENO, ∆t = 0.01 for PFC-3, x ∈ [0, 4π], v ∈ [−6, 6].
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We have not shown level curves about semi-Lagrangian simulations, but
a little remark is worth: SL-WENO-5,3 is unstable too, even if it behaves
better than FBM-WENO-5,3. SL-WENO-6,4 as well as FBM-WENO-6,4
gives a fairly detailed reconstruction (in fact they are almost indistinguish-
able); the L2-norm and the total energy are a bit worse conserved, but in
any case acceptable.

2.3.5 Semiconductor

The model is




∂f

∂t
+ v

∂f

∂x
− e

m
E

∂f

∂v
=

1

τ
[MΘ0ρ[f ] − f ]

ǫSi
∂2Φ

∂x2
= −e [ρ[f ] − C] , E = −∂Φ

∂x

f0(x, v) = MΘ0(v)C(x)

τ(t, x) =
m

e

2µ0

1 +
√

1 + 4((µ0/v0)E(t, x))2
,

which describes the electron transport in a n+ −n−n+ diode where the in-
teraction with the semiconductor crystal is taken into account by an effective
relaxation-time operator. The lattice temperature is set T0 = 300K, and is
related to the thermal energy of the lattice by Θ0 = kB

m T0. The relaxation
time depends nonlinearly on the electric field producing a saturation on the
drift speed, see [30, 33] for more details. We consider a diode of channel
length L = 0.4µm and doping profile:

C(x) =





5 × 105 1
µm3 0 ≤ x ≤ 0.1

2 × 103 1
µm3 0.1 < x < 0.5

5 × 105 1
µm3 0.5 ≤ x ≤ 0.6.

We apply a fixed potential drop at the drain, Φ(t, 0) = 0 V, and Φ(t, L) =
Vbias V.

In Figure 15, density, mean velocity, electric field, potential, energy and
the distribution function in v at a point near the end of the channel at
the stationary state are plotted. We are comparing the results of our time
splitting method based on FBM-WENO-6,4 with time step ∆t = 0.01 and
Finite Differences WENO5 coupled with third order Runge-Kutta for time
discretization [30, 33]. Results of both simulations are almost indistinguish-
able.

In the following table, we compare the results given by Finite Differences
WENO5 method and by FBM-WENO-6,4 for several time steps. One of the
main advantages of SL or FBM-WENO schemes is that they do not have
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an a priori restriction on the time step as the CFL condition for Finite
Differences WENO5. Results given up to ∆t = 0.16 are acceptable in mean
L∞ relative difference. Therefore, our scheme is much less costly from the
computational point of view, since 62 time-steps corresponding to ∆t = 0.16
of FBM-WENO-6,4 are enough to give equivalent results to 9000 time-steps
corresponding to ∆t ≃ 0.0007 of WENO5 method with comparable cost for
each time-step between the methods.

time step mean L∞

relative difference

0.01 0.040116%
0.10 0.061354%
0.16 0.094815%
0.17 1.128900%
0.20 3.309995%

2.4 Appendix

We summarize the physical constants used for the simulation:

constant physical meaning magnitude

m effective electron mass 0.26 × 0.9109(10−30Kg)
e elementary electric charge 0.1602(10−18C)

kb Boltzmann’s constant 0.138046 × 10−4(10−18 J
K )

ǫSi Silicon dielectric permittivity 11.7 × 8.85418(10−18 F
µm)

µ0 bulk mobility 0.1323
v0 saturation velocity 0.13.
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Figure 14: Two stream instability. Evolution of the L2-norm and the total
energy. Simulation performed with 256×256 points, ∆t = 0.125 for WENO
methods, ∆t = 0.01 for PFC-3. x ∈ [0, 4π], v ∈ [−5, 5].
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Figure 15: 1D n+ − n − n+ Silicon semiconductor. Evolution of sev-
eral macroscopic magnitudes, for explicit Runge Kutta-3 WENO-5 Finite
Differences method (CFL is set 0.6), WENO-6,4 Flux Balance method
(∆t = 0.01), and an IMEX-LRR(3,2,2) FD method (CFL set 0.6). Grids
are set 150 × 150 points.
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Chapter 3

A semi-lagrangian

deterministic solver for the

semiconductor

Boltzmann-Poisson system

This chapter corresponds to a work [25] in collaboration with J.A. Car-
rillo and A. Majorana whose reference is: ”A Semi-lagrangian deterministic
solver for the semiconductor Boltzmann-Poisson system”, Commun. Com-
put. Phys. 2, 1027-1054, 2007.

3.1 Introduction

The semi-classical Boltzmann transport equation (BTE) is a mesoscopic
description of the transport/collision of charged particles in an electronic
device and is given by

∂f

∂t
+

1

~
∇kε · ∇xf − q

~
E · ∇kf = Q[f ] (3.1)

where f(t, x, k) measures the probability density of finding an electron at
time t in position x with wave vector k. The parameter ~ is the Planck
constant divided by 2π and q is the positive elementary charge.

The band structure of the semiconductor crystal is described by the
energy-band function which can be approximated by a parabolic function
given by

ε(k) =
1

2

~
2

m∗ |k|
2, (3.2)

where m∗ is the effective electron mass. In a first step, we shall consider the
most important scattering mechanisms in Si: acoustic phonon scattering,

69
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in its elastic approximation, and optical phonon scattering with a single
frequency ω. Therefore, the structure of the collision operator [90, 100] is

Q[f ](t, x, k) =

∫

R3

[
S(k′, k)f(t, x, k′) − S(k, k′)f(t, x, k)

]
dk′

=

∫

R3

S(k′, k)f(t, x, k′) dk′ − f(t, x, k)

∫

R3

S(k, k′) dk′

= Q+[f ] −Q−[f ] (3.3)

with

S(k, k′) = K
[
(nq + 1)δ(ε(k′) − ε(k) + ~ω) + nqδ(ε(k

′) − ε(k) − ~ω)
]

+ K0δ(ε(k
′) − ε(k)) (3.4)

where nq is the occupation number of phonons

nq =
1

exp
(

~ω
kBTL

)
− 1

, (3.5)

kB is the Boltzmann constant and TL the lattice temperature. The kernel
K0 is

K0 =
kBTLE2

ac

4π2~ul
2ρ0

(3.6)

where Eac is the deformation potential, ul is the sound velocity and ρ0 is
the crystal density. The kernel K is

K =
Dtk

2

8π2~ρ0ω
, (3.7)

where ω is the frequency and Dtk is the optical coupling constant.
The self-consistent electrostatic field is computed through Poisson’s equa-

tion
∆Φ =

q

ǫ
[ρ(t, x) − ND(x)] (3.8)

where ρ is the electron density

ρ(t, x) =

∫

R3

f(t, x, k) dk, (3.9)

ǫ is the Silicon dielectric permittivity (ǫ = ǫrǫ0 with ǫ0 the vacuum dielectric
permittivity and ǫr the Silicon relative dielectric permittivity), ND(x) rep-
resents the doping profile, which takes into account the injected impurities
in the semiconductor lattice. The solution of the Poisson’s equation Φ(t, x)
gives the electrostatic potential, so that the electrostatic field is given by

E(t, x) = −∇xΦ(t, x). (3.10)
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Further information about semiconductor modelling and related mathemat-
ical issues can be found in [84].

This system has been traditionally solved by means of Direct Simula-
tion Monte Carlo (DSMC) methods due to the easy incorporation of new
physical effects by means of adding suitable scattering operators and its
efficiency in two and three-dimensional devices [100]. Nevertheless, direct
deterministic numerical methods have been recently proposed in the litera-
ture [91, 83, 28, 92, 29, 48] improving and complementing some features of
the DSMC methods: noise-free results, detailed information of the distribu-
tion functions, transient description, different materials [22, 50, 51]... We
refer to [28, 29, 8, 50, 49] for a complete discussion of these issues and to [21]
for a review of the state of the art in the deterministic numerical simulation
of the Boltzmann-Poisson system.

In this work, we propose a new deterministic numerical scheme for this
system. In contrast with the approach in [83, 28], we work in the original
coordinates (t, x, k) by using a splitting strategy decoupling transport from
collision. For the transport part, we apply a semi-lagrangian numerical
method based on a nonlinear local essentially non-oscillatory interpolation
method recently developed in [26] for transport-like kinetic equations. The
main objective of this choice is to avoid the potentially restrictive CFL
condition emanating from the use of finite-differences WENO methods in
energy and angular variables in [28, 29] but keeping a good control of possible
oscillations during the transport steps.

The collisional step is performed by interpolation from computed values
on a cartesian grid to obtain the missing values of the distribution function
on the surfaces of equal energy needed for the evaluation of the collision op-
erator Q(f). Different interpolation procedures have been tested from the
simplest and less accurate direct linear interpolation to the most advanced
nonlinear local essentially non-oscillatory interpolation method in [26] as
above. Conservation of mass in the collision steps is inforced by redefin-
ing the loss operator as in [22]. The different choices for interpolation in
the collision step and the splitting of the operators will be discussed and
compared.

This new deterministic scheme is developed in Section 2 while Section 3
is devoted to show its performance to compute steady and transient states
of 1d devices and comparisons to the numerical scheme introduced in [28].
The main advantage of this scheme being the smaller number of time steps
needed and the much better definition of the distribution function in phase
space. Moreover, more realistic collision operator for Si takes into account
the different equivalent valleys in the conduction band of Si leading to several
optical-phonon scattering operators with different frequencies ~ω and optical
coupling constants Dtk, see for instance [82] and the references therein.
Finally, we will show a comparison of our results in this case to multi-
group WENO results as in [49]. This numerical scheme is based on the
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use of the cell average method for treating the dependence of the electron
distribution function on the three-dimensional wave vector and a fifth-order
WENO solver for dealing with the physical space variables.

3.2 Pointwise WENO time splitting scheme for

the BP equation

Let us first reduce the BP system to dimensionless cartesian coordinates.
We assume that the doping profile, the potential and thus the force field are
only x-dependent in space and thus, our device spans over the x-direction.
Let us use the following adimensionalization of the BP system:

adim. parameter 400 nm device 50 nm device

k̃ = k∗k k∗ =
√

2m∗kbTL

~
4.65974 × 108m−1 4.65974 × 108m−1

x̃ = l∗x l∗ = device length 1 µm 250 nm

t̃ = t∗t t∗ = typical time 1 ps = 10−12s 1 ps = 10−12s

Ṽ (x̃) = V ∗V (x) V ∗ = typical Vbias 1V 1V

Ẽ(x̃) = E∗E(x) E∗ = 1
10

V ∗

l∗ 100000V m−1 400000V m−1

ε̃(k̃) = ε∗ε(k) ǫ∗ = ~
2k∗2

2m∗
4.14195e − 21 4.14195e − 21

ρ̃(x̃) = ρ∗ρ(x) ρ∗ =
(

2m∗kBTL

~

)3/2

1.01178 × 1026 1.01178 × 1026

j̃(x̃) = j∗j(x) j∗ = 1
l∗2t∗

1024 1.6 × 1025

ũ(x̃) = u∗u(x) u∗ = l∗

t∗ 106 250000

W̃ (x̃) = W ∗W (x) W ∗ = (l∗/t∗)
2

1012 6.25 × 1010

.

where tildes are written over dimensional magnitudes. Numerical values for
all the parameters and the constants involved in the computations, as well
as a resumé of all the dimensionless equations, can be found in the appendix.
The BP equation transforms into

∂f

∂t
+ cx

∂ε

∂k1

∂f

∂x
− ckEx

∂f

∂k1
= Q[f ] (3.11)

where the dimensionless parameters are

cx =
t∗ε∗

~k∗l∗
, ck =

qt∗E∗

~k∗ .

The electrostatic field is self-consistently computed by the rescaled Poisson’s
equation

∂2Φ

∂x2
= cp [ρ(t, x) − ND(x)] , cp =

qρ∗l∗2

ǫΦ∗ ,

coupled with appropriate boundary values (Φ(0) = 0, Φ(L) = Vbias).
The advantage of conserving the cartesian structure is that, thanks to the

time splitting techniques [98, 35], we can apply the semi-lagrangian based
Flux Balance Method [46, 26] to solve each transport step, which would be
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more involved in the energy-band adapted coordinates [28], the energy flux
resulting to be energy-dependent. On the other hand, we have to deal with
a more complicated computation of the collisional part: instead of being a
simple evaluation, like in [28] we shall need to reconstruct the values of the
probability density f along a circle in the k-dimension.

In order to integrate the collisional part, we use that f only depends on
k1 and k23 = ‖(k2, k3)‖ =

√
k2

2 + k2
3, i.e. f(k1, k2, k3) = f(k1, k23) due to

symmetry considerations for this one-dimensional device. Using a change to
polar coordinates in the (k2, k3)-plane, after straightforward computations,
we obtain for the gain and the loss part of the collision operator Q(f) the
following expressions:

Q+[f ] = c0 π

∫ √
γ0(k)

−
√

γ0(k)
f

(
k′

1,

√
γ0(k) − k′2

1

)
dk′

1

+ c+π

∫ √
γ+(k)

−
√

γ+(k)
f

(
k′

1,

√
γ+(k) − k′2

1

)
dk′

1

+ χ{γ−(k)>0}c−π

∫ √
γ−(k)

−
√

γ−(k)
f

(
k′

1,

√
γ−(k) − k′2

1

)
dk′

1 (3.12)

with γ0(k) = ε(k), γ+(k) = ε(k) +
hω

ε∗
, γ−(k) = ε(k) − ~ω

ε∗
, and

Q−[f ] = c02π
√

γ0(k)f(k)+χ{γ−(k)>0}c+2π
√

γ−(k)f(k)+c−2π
√

γ+(k)f(k),

with the dimensionless parameters

c0 =
K0t

∗k∗3

ε∗
, c+ =

Kt∗(nq + 1)k∗3

ε∗
, c− =

Kt∗nqk
∗3

ε∗
.

In the next subsections, we shall explain in detail both the transport
and the collision steps in this method. Let us finally comment that Poisson
equation is solved through a standard centered finite differences leading to
solving a linear system with a tridiagonal matrix.

3.2.1 Numerical scheme

Equation (3.11) is solved through a time splitting scheme dividing the sys-
tem into the solution of transport steps and collision steps being the time
stepping fixed. The computational domain is discretized into a tensor prod-
uct mesh, and a uniform mesh is taken in each direction:

xi = i∆x, i = 0, ..., Nx − 1, ∆x = 1
Nx−1

(k1)j = −ε−1(αN̄) + j∆k1, j = 0, ..., Nk1 − 1, ∆k1 = 2ε−1(αN̄)
Nk1

−1

(k23)k = k∆k23, k = 0, ..., Nk23 − 1, ∆k23 = ε−1(αN̄)
Nk23

−1

tn = n∆t,
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where α is the dimensionless energy α = ~ω/kBTL. Here, N̄ is an integer
number chosen as a maximal bound for the adimensionalized energy-band
function

ε(k) = (k1)
2 + (k2)

2 + (k3)
2 = (k1)

2 + (k23)
2 = ε[k1, k23].

More precisely, at the value N̄α

ε
[
(k1)Nk1

−1, 0
]

= N̄α, ε
[
0, (k23)Nk23

−1

]
= N̄α,

a magnitude which is related to the resolution in the (k1, k23)-space.

Boltzmann

x−dim advection

advection

∆ t
2

∆ t

∆ t
2

∆ t
2

∆ t

∆ t
2

operator

 Transport term

k1−dim

Figure 1: Time splitting scheme, see Appendix subsection 4.2 for a fully
detailed splitting scheme.

The approximation denoted by fn
i,j,k to the point values of the solution

f [tn, xi, (k1)j , (k23)k] are obtained through the second order time splitting
scheme [35] subdividing the BP system (3.11):

• Step 1.- Solve
∂f

∂t
+ cx

∂ε

∂k1

∂f

∂x
− ckEx

∂f

∂k1
= 0 for a ∆t

2 -time step;

• Step 2.- Solve
∂f

∂t
= Q[f ] for a ∆t-time step;

• Step 3.- Solve
∂f

∂t
+ cx

∂ε

∂k1

∂f

∂x
− ckEx

∂f

∂k1
= 0 for a ∆t

2 -time step.

The same procedure is used for solving the two transport steps

∂f

∂t
+ cx

∂ε

∂k1

∂f

∂x
− ckEx

∂f

∂k1
= 0

by dimensional splitting. Therefore, we have subdivided the problem into
the solution of the x-transport, the k-transport and the collision:

∂f

∂t
+

x-transport︷ ︸︸ ︷
cx

∂ε

∂k1

∂f

∂x
−

k-transport︷ ︸︸ ︷
ckEx

∂f

∂k1︸ ︷︷ ︸
transport

= Q[f ]︸︷︷︸
collisions
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as sketched in Figure 1 and fully specified in the Appendix, subsection 4.2.

Remark. Time Splittings In principle, the above time splitting proce-
dure (TS) may seem unnecessary complicated due to the splitting of three
different operators. Actually, the use of a direct first-order splitting, as
reminded to the reader in subsection 4.3, would seem appropriate for sim-
plicity. In section 4 we will compare the results for both splitting algorithms,
and we will show that results given by the above splitting procedure improve
the ones given by the first-order splitting.

Numerical Scheme: Transport Step.- Each transport block is solved
by the Flux Balance Method [46, 26]: when solving the x-transport, k1 and
k23 act as parameters, as well as x and k23 when solving the k1-transport.
This method is based on the semi-lagrangian approach of following the char-
acteristics backwards; the improvement is that we force the mass conserva-
tion, unlike the direct method, which gives no guarantee about this point.
The solution of the x-transport gives

f∗∗
i,j,k = f∗

i,j,k +
1

∆x

{[
F (xi−1/2) − F (xi−1/2 − cx∇kε∆t)

]

−
[
F (xi+1/2) − F (xi+1/2 − cx∇kε∆t)

]}

F (x) =

∫ x

0
f∗ [ξ, (k1)j , (k23)k] dξ

and, as for the solution of the k1-transport,

f∗∗
i,j,k = f∗

i,j,k +
1

∆k1

{[
F ((k1)j−1/2) − F ((k1)j−1/2 + ckE∆t)

]

−
[
F ((k1)i+1/2) − F ((k1)i+1/2 + ckE∆t)

]}

F (k1) =

∫ k1

0
f∗ [xi, ξ, (k23)k] dξ.

More details about the FBM method can be found in [46, 26]. In order to
compute the fluxes, for instance,

F (xi+1/2) − F (xi+1/2 − cx∇kε)

we reconstruct the values F (xi+1/2 − cx∇kε), given the known values of the
primitive at the grid points F (xi+1/2), by the fifth order Pointwise WENO-
6,4 interpolation summarized in next subsection.

Numerical Scheme: Collision Step.- In order to solve the collision
step, we need to compute some integrals along semicircles of radius γ0(k),
γ+(k) and γ−(k) in the (k1, k23)-space. Section 1.4.1 explains the way we
perform it.

We can now explain the implemented boundary conditions:
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• at x = 0 and x = L we use the following inflow/outflow condition:

fn
−i,j,k =





fn
0,j,k k1 < 0

ND(0)
ρ(0) fn

0,j,k k1 ≥ 0

and

fn
Nx−1+i,j,k =





fn
Nx−1,j,k k1 > 0

ND(L)
ρ(L) fn

Nx−1,j,k k1 ≤ 0

in order to have the ghost points we need for the PWENO interpolation
and to preserve the correct values of the distribution function at the
drain and the source of the diode;

• at k1 = −ε−1(αN̄) and k1 = ε−1(αN̄) a Neumann type boundary
condition in used:

fn
i,−j,k = fn

i,0,k and fn
i,Nk1

−1+j,k = fn
i,Nk1

−1,k.

While in the transport steps the mass conservation is guaranteed by the
Flux Balance Method being conservative, during the collision steps we nu-
merically impose the mass conservation by redefining the collision operator
by

Q[f ] = Q+[f ] −
∫

R3 Q+[f ]dk∫
R3 Q−[f ]dk

Q−[f ].

3.3 Numerical Experiments

3.3.1 Steady-state results for the diodes

We consider two test examples: Si n+ − n − n+ diodes of total length of
1µm and 0.25µm, with 400nm and 50nm channels located in the middle
of the device respectively. For the 400nm device and the 50nm device the
dimensional doping is, respectively,

ND =

{
5 × 1017 cm−3 n+-zone
2 × 1015 cm−3 n-zone

and

{
5 × 1018 cm−3 n+-zone
1 × 1015 cm−3 n-zone

.

The results provided by the W5FD method [28] and our PW5TS are com-
pared as for the macroscopic magnitudes (density, electrostatic potential,
electrostatic field, mean velocity, energy and current), as we can see in Fig-
ures 2, 3, 4, 5, 6, 7 and 8. In the W5FD scheme the kinetic variable ω denotes
the dimensionless electron energy and µ the cosine of the angle between the
wave vector k and the x-axis.

The comparisons are set in such a way that we can infer how the choice
of the different parameters of our scheme affects the results compared to
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the W5FD results chosen as benchmarks. Five issues have been considered:
order of the time splitting procedure, the energy cut-off N̄ , the type of
interpolation chosen for computing the collision operator, the resolution in
k and the time step ∆t. Detailed comparisons of these parameters are shown
for the 400 nm diode, whereas certain comparisons are drawn for the 50 nm
diode.

One advantage of the proposed method is that we have no restriction for
the time stepping, thus in both cases we can reach the equilibrium (5 ps for
the 400 nm diode, 2 ps for the 50 nm diode) by largely less time-steps than
in [28], where several thousands were needed. We have empirically searched
for the largest time steppings by which no instabilities appear; for the 400
nm diode it seems to be around ∆t = 0.07 ps (so by just about 70 steps we
reach the equilibrium), for the 50 nm diode around ∆t = 0.04 ps. As for
the Finite Differences scheme, the adaptive time stepping situates between
10−3 and 10−4 ps.

The choice of shorter time steppings and better resolution in k due to
finer grids or larger cut-off energy N̄ improves the quality of the results, see
Figures 4, 5, 6, 7 and 8; of course, the counterpart is that it increases the
computational cost. The loss of reliability is evident when we increase the
time stepping of the code if we look at the current and the mean velocity in
Figure 4, where the oscillations are amplified, even if the density, the electric
potential and the electric field remain very close. Thus, unfortunately the
improvement in the time stepping does not always translate into a shorter
computational time, a better resolution in the k-dimension with larger grids
and better adapted cut-off energy N̄ being needed in order to obtain reliable
results.

All the above results have been obtained by using the direct linear inter-
polation for the collisional step and the time splitting procedure in subsec-
tion 2.1. Let us comment on this choice: we have tested and compared the
direct linear interpolation and the PWENO-4,3 interpolations as discussed
in subsection 2.1 together with the first-order splitting and the TS splitting
procedure in subsection 2.1. In Figures 2 and 3 results are compared in
terms of the current and the mean velocity at equilibrium. We first observe
that first-order splitting results are in general worse than the results with
time splitting procedure in subsection 2.1 and appendix 4.2. On the other
hand, we observe that improving the accuracy of the interpolation proce-
dure in the collision step from linear to PWENO-4,3 does not result in a
marked gain of accuracy for these quantities. Even if results are not shown
here, a simple two dimensional linear, in each variable not jointly, interpo-
lation in each quadrangle of the cartesian grid has been performed. Again,
this improvement in the interpolation accuracy does not yield a significant
gain in the accuracy of the macroscopic quantities. This collisional step will
need further improvements or alternative methods as spectral approaches
[44] before being able to cope with two dimensional devices in comparison
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to the efficiency of W5FD [29].

On the other hand, having a finer grid in the k-dimension, moreover in
cartesian coordinates, permits a better resolution of the distribution func-
tion, as we can observe in Figure 9 and 10: like in [28], the pdf outside the
channel is close to a Maxwellian distribution. Inside the channel it looks
like a shifted Maxwellian in the large diode, while in the small one it as-
sumes a very asymmetric shape. Moreover, in this small diode we observe
the formation of a narrow ballistic pick. A good resolution of this narrow
pick involves a very fine grid in k-space and a much larger computational
cost. Its underresolution is the cause of the difference and oscillations in
mean velocity and current between the W5FD method [28] and our PW5TS
observed in Figure 8. Therefore a energy-based variables solver as the one
in [28] gives better results in this case.

Finally, let us point out that previous results have been obtained looking
at the stabilization in time of the macroscopic quantities. For instance, in
the 400-nm diode case, runs have been performed till 5ps for which the
density is stabilized up to 10−6. A stabilization of the other macroscopic
quantities: current, mean velocity and energy needs longer runs till 10ps
approx. Typical problems in reaching numerical steady states occur for
splitting in time numerical strategies. In our case, the main issue is that the
results stabilize numerically to states in which the current is not constant
as it should be for the stationary case. We can observe this problem in the
current comparison of Figures 6 and 8. An improvement in the numerical
approximation of the collisional step will certainly help to fix this problem.

3.3.2 Steady-state results in multifrequency phonons

With the method we have implemented it is easy to change the solver of the
collision operator. Usually, phonons do not have a single frequency; in [28]
this simplification was set in order to directly compute the collision operator
without needing to perform interpolations. In this method, we just have to
add as many interpolations as the frequencies are. In [82] they took into
account six frequencies, for a diode of total length 600 nm, with a channel
of 400 nm. The collision operator transforms into

S(k, k′) =

6∑

i=1

Ki

[
(nqi + 1)δ(ε(k′) − ε(k) + ~ωi) + nqiδ(ε(k

′) − ε(k) − ~ωi)
]

+ K0δ(ε(k
′) − ε(k)) (3.13)

where nqi are the occupation numbers of phonons

nqi =
1

exp
(

~ωi

kBTL

)
− 1

, (3.14)
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and the kernels Ki are

Ki =
ZfDtk

2
i

8π2~ρ0ωi
(3.15)

where ~ωi and Dtki are the energy and the deformation potentials of the
corresponding phonon type.

Results are shown in Figure 11 and Figure 12. The following doping
profile is set

ND =

{
5 × 1017 cm−3 n+-zone
2 × 1015 cm−3 n-zone

and the quantities related to the phonon frequencies are set

freq. Zf ~ω (meV ) DtK(108eV/cm)

1 1 12 0.5

2 1 18.5 0.8

3 4 19 0.3

4 4 47.4 2

5 1 61.2 11

6 4 59 2

where Zf is the number of equivalent valleys.
In this case, the use of the numerical scheme in [28] becomes much more

involved leading to very fine grids in energy variables and interpolations like
in our case. Moreover, we show in Figures 11 the comparison of our results to
the ones obtained with the a simple application of the MultiGroup-WENO
solver which are quite satisfactory. In [49] this technique was applied in
case of a single phonon frequency; here, we consider multifrequency phonons.
This requires only some simple modifications of the collision operator. Since
the MultiGroup scheme is based on the cell average with respect to the wave
vector, the presence of many delta distributions in the collsion operator does
not pose new difficulties. Also in this case our method allows for a good
resolution of the pdf’s in k-space as shown in Figure 12.

3.4 Appendix

3.4.1 Adimensionalization Summary

The BP system reads




∂f

∂t
+ cx∇xε · ∇xf − ckE · ∇kf = Q[f ]

f0(x, k) = cinitND(x)M(k).

where the energy-band function becomes ε(k) = cε|k|2, and the Maxwellian

M(k) =

(
π

CM

)−3/2

e−CMk2
.
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The electrostatic field is self-consistently computed through the Poisson’s
equation

∆xΦ = cp [ρ(t, x) − ND(x)] , E = −ce∇xΦ

where the density is given by

ρ(t, x) = cd

∫

R3

f(t, x, k)dk.

The gain and loss parts of the collision operator are

Q+[f ] =

∫

R3

f(t, x, k)

[
c0δ(ε(k) − ε(k′)) + c+δ

(
ε(k) − ε(k′) +

~ω

ε∗

)

+ c−δ

(
ε(k) − ε(k′) − ~ω

ε∗

)]
dk′

and

Q−[f ] = f(t, x, k)

∫

R3

[
c0δ(ε(k) − ε(k′)) + c+δ

(
ε(k) − ε(k′) − ~ω

ε∗

)

+ c−δ

(
ε(k′) − ε(k) +

~ω

ε∗

)]
dk′

The current is the first momentum in the k1 direction,

j(x) = cj

∫

R3

k1f(k)dk,

the mean velocity is

u(x) = cu
j(x)

ρ(x)
,

and the energy is

W (x) = cW
1

ρ(x)

∫

R3

ε(k)f(k)dk.
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The dimensionless parameters are derived from physical constants, the prob-
lem data and the adimensionalization parameters:

parameter 400 nm diode 50 nm diode

cε = ~
2k∗2

2m∗ε∗
1 1

cx = t∗ε∗

~k∗l∗ 0.0842885 0.337154

ck = qt∗E∗

~k∗
0.326042 1.30417

cd = k∗3

ρ∗
1 1

cp = qρ∗l∗2

ǫV ∗
156480 9780.02

ce = V ∗

l∗E∗
10 10

cinit = 1
cd

1 1

CM = ~
2k∗2

2m∗kBTL
1 1

c0 = K0t∗k∗3

ε∗
0.265376 0.265376

c+ =
Kt∗(nq+1)k∗3

ε∗
0.507132 0.507132

c− =
Kt∗nqk∗3

ε∗
0.0443372 0.0443372

cj = ~k∗4

m∗j∗
1.70562 × 107 1.06601 × 106

cu = j∗

u∗ρ∗
9.88362 × 10−9 6.32552 × 10−7

cW = k∗3ε∗

ρ∗W∗
4.14195 × 10−33 6.62712 × 10−32

Physical constants involved in the solution of the BP problem are:

name meaning value

~ Dirac’s constant 6.626068×10−34

2π

= 1.05456 × 10−34 m2Kg
s

q elementary charge 1.60217646
m∗ effective electron mass = 0.32 × 9.10938188 × 10−31Kg

= 0.32 × electron mass = 2.915 × 10−31Kg

kB Boltzmann’s constant 1.3806503 × 10−23 m2Kg
s2K

ul sound velocity 9040m
s

ρ0 Si crystal density 2330Kg
m3

ǫ0 vacuum dielectric permittivity 8.85419 × 10−12 F
m

ǫr Si relative permittivity 11.7

ǫ Si dielectric permittivity 1.0359402 × 10−10 F
m

F Farad F = s4A2

m2Kg = C
V

Finally, the problem data are:





ω = frequency = 0.063eV
~

Dtk = optical coupling frequency = 11.4 × 1010 eV
m

K0 = kBTLEac
2

4π2hu2

l
ρ0

= 1.08638 × 10−35

Eac = deformation potential = 9 eV

K = Dtk
2

8π2ρ0ω = 1.89456 × 10−35

TL = lattice temperature = 300K
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3.4.2 Time Splitting Scheme

Combining all the time splittings, we get the following scheme: given the dis-
tribution function fn = f(t = tn), we update f up to fn+1 by the following
successive steps:

1. perform a ∆t
2 step for transport

∂fn

∂t
+ cx∇xε · ∇xfn − cE · ∇kf

n = 0 :

1.1 perform a ∆t
4 step for x-transport

∂fn

∂t
+ cx∇xε · ∇xfn = 0;

fn+1/7 =
x-transport k-transport collision

∆t/4 0 0

1.2 perform a ∆t
2 step for k-transport

∂fn+1/7

∂t
− cE · ∇kf

n+1/7 = 0;

fn+2/7 =
x-transport k-transport collision

∆t/4 ∆t/2 0

1.3 perform a ∆t
4 step for x-transport

∂fn+2/7

∂t
+ cx∇xε · ∇xfn+2/7 = 0

fn+3/7 =
x-transport k-transport collision

∆t/2 ∆t/2 0

2. perform a ∆t step for collisions

∂fn+3/7

∂t
= Q[fn+3/7]

fn+4/7 =
x-transport k-transport collision

∆t/2 ∆t/2 ∆t

3. perform a ∆t
2 step for transport

∂fn+4/7

∂t
+ cx∇xε · ∇xfn+4/7 − cE · ∇kf

n+4/7 = 0 :
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3.1 perform a ∆t
4 step for x-transport

∂fn+4/7

∂t
+ cx∇xε · ∇xfn+4/7 = 0;

fn+5/7 =
x-transport k-transport collision
3
4∆t ∆t/2 ∆t

3.2 perform a ∆t
2 step for k-transport

∂fn+5/7

∂t
− cE · ∇kf

n+5/7 = 0;

fn+6/7 =
x-transport k-transport collision
3
4∆t ∆t ∆t

3.3 perform a ∆t
4 step for x-transport

∂fn+6/7

∂t
+ cx∇xε · ∇xfn+6/7 = 0

fn+1 =
x-transport k-transport collision

∆t ∆t ∆t

3.4.3 First order time Splitting Scheme

The first order time splitting scheme reads:

• Step 1.- Solve
∂f

∂t
+ cx

∂ε

∂k1

∂f

∂x
− ckEx

∂f

∂k1
= 0 for a ∆t-time step;

• Step 2.- Solve
∂f

∂t
= Q[f ] for a ∆t-time step,

combined with a splitting of the same order for the solution of the transport
part.

The scheme we obtain is:

1. perform a ∆t step for transport

∂fn

∂t
+ cx∇xε · ∇xfn − cE · ∇kf

n = 0 :

1.1 perform a ∆t step for x-transport

∂fn

∂t
+ cx∇xε · ∇xfn = 0;

fn+1/3 =
x-transport k-transport collision

∆t 0 0
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1.2 perform a ∆t step for k-transport

∂fn+1/3

∂t
− cE · ∇kf

n+1/3 = 0;

fn+2/3 =
x-transport k-transport collision

∆t ∆t 0

2. perform a ∆t step for collisions

∂fn+2/3

∂t
= Q[fn+2/3]

fn+1 =
x-transport k-transport collision

∆t ∆t ∆t
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Figure 2: Comparison between some macroscopic quantities of the 400 nm
diode at equilibrium (5 ps) given by splitting schemes of order 1 and 2.
Top left: density in cm−3; top right: energy in eV ; center left: potential
in V ; center right: mean velocity in cm s−1; bottom left: electric field in
103V m−1; bottom right: current in cm−2s−1. Grids are set 150×40×16 for
(x, ω, µ) for the W5FD method, 150 × 71 × 71 for (x, k1, k23 = ‖(k2, k3)‖),
N̄ = 11, ∆t = 0.01 ps, linear interpolation for collisions, for the PW5TS
method.
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Figure 3: Comparison between some macroscopic quantities of the 400 nm
diode at equilibrium (5 ps) given by different integrations of the collisions,
wither by linear interpolation or by PWENO-4,3 interpolation. Top left:
density in cm−3; top right: energy in eV ; center left: potential in V ; center
right: mean velocity in cm s−1; bottom left: electric field in 103V m−1;
bottom right: current in cm−2s−1. Grids are set 150 × 40 × 16 for (x, ω, µ)
for the W5FD method, 150 × 71 × 71 for (x, k1, k23 = ‖(k2, k3)‖), N̄ = 11,
∆t = 0.01 ps, 2nd order TS, for the PW5TS method.
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Figure 4: Comparison between some macroscopic quantities of the 400 nm
diode at equilibrium (5 ps) given by different time steppings. Top left:
density in cm−3; top right: energy in eV ; center left: potential in V ; center
right: mean velocity in cm s−1; bottom left: electric field in 103V m−1;
bottom right: current in cm−2s−1. Grids are set 150 × 40 × 16 for (x, ω, µ)
for the W5FD method, 150 × 71 × 71 for (x, k1, k23 = ‖(k2, k3)‖), N̄ = 11,
linear interpolation for collisions, 2nd order TS, for the PW5TS method.
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Figure 5: Comparison between some macroscopic quantities of the 400 nm
diode at equilibrium (5 ps) given by different N̄ . Top left: density in cm−3;
top right: energy in eV ; center left: potential in V ; center right: mean
velocity in cm s−1; bottom left: electric field in 103V m−1; bottom right:
current in cm−2s−1. Grids are set 150× 40× 16 for (x, ω, µ) for the W5FD
method, 150 × 64 × 64 for (x, k1, k23 = ‖(k2, k3)‖) (when N̄ = 10), ∆t =
0.01 ps, linear interpolation for collisions, 2nd order TS, for the PW5TS
method.
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Figure 6: Comparison between some macroscopic quantities of the 400 nm
diode at equilibrium (5 ps) given by different resolutions of the (k1, k23)-grid.
Top left: density in cm−3; top right: energy in eV ; center left: potential
in V ; center right: mean velocity in cm s−1; bottom left: electric field in
103V m−1; bottom right: current in cm−2s−1. Grids are set 150×40×16 for
(x, ω, µ) for the W5FD method, N̄ = 11, ∆t = 0.01 ps, linear interpolation
for collisions, 2nd order TS, for the PW5TS method.
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Figure 7: Comparison between some macroscopic quantities of the 50 nm
diode at equilibrium (2 ps) given by different N̄ . Top left: density in cm−3;
center left: potential in V ; top right: energy in eV ; center right: mean
velocity in cm s−1; bottom left: electric field in 103V m−1; bottom right:
current in cm−2s−1. Grids are set 150× 144× 16 for (x, ω, µ) for the W5FD
method, 150 × 32 × 32 for (x, k1, k23 = ‖(k2, k3)‖) (when N̄ = 18), ∆t =
0.01 ps, linear interpolation for the collisions, 2nd order TS, for the PW5TS
method.
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Figure 8: Comparison between some macroscopic quantities of the 50 nm
diode at equilibrium (2 ps) given by different resolutions of the (k1, k23)-grid.
The grid is set 150 × 144 × 16 for (x, ω, µ) for the W5FD method. N̄ = 20,
∆t = 0.01 ps, linear interpolation for the collisions, 2nd order TS, for the
PW5TS method.
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Figure 9: Distribution function of the 400 nm diode at time 5 ps given by
the PW5TS method at different points of the device, for a 150 × 71 × 71
grid, N̄ = 11, ∆t = 0.01 ps, 2nd order TS, linear interpolation for collisions.
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Figure 10: Distribution function of the 50 nm diode at time 2 ps given by
the PW5TS method at different points of the device, for a 150 × 129 × 129
grid, N̄ = 36, ∆t = 0.01 ps, 2nd order TS, linear interpolation for collisions.
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Figure 11: Macroscopic magnitudes given by the PW5TS method and a
reference result obtained through a Multi-Group WENO scheme. For the
PW5TS simulation The k-resolution is set N̄ = 27, the time stepping is set
∆t = 0.01 ps, 2nd order TS, linear interpolation for collisions.
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Figure 12: Snapshots given by the PW5TS method at different points of the
multifrequency device, at time 5 ps. The grid is set 120 × 64 × 64, N̄ = 27,
∆t = 0.01 ps, 2nd order TS, linear interpolation for collisions.



Chapter 4

Numerical Schemes of

Diffusion Asymptotics and

Moment Closures for Kinetic

Equations

This article corresponds to a work [23] in collaboration with J.A. Carrillo,
P. Lafitte and Th. Goudon whose reference is: ”Numerical schemes for Dif-
fusion Asymptotics and Moment Closures for Kinetic Equations”, accepted
for publication in Journal of Scientific Computing.

4.1 Introduction

We are interested in numerical simulations of “intermediate” models for
kinetic equations in diffusion regimes. Such questions arise in many appli-
cation fields where we adopt a statistical description of a large set of “parti-
cles”: neutron transport in nuclear engineering, radiative transfer, rarefied
gas dynamics... The unknown is the particle distribution function that gives
the number of particles being at time t and position x in a certain physical
state described by the variable v. In most of the applications, v is nothing
but the translational velocity, or the direction of flight of the particles and,
assuming that v belongs to a certain measured set (V, dµ), the quantities
of interest are essentially averages over v of the unknown. The evolution of
the particles obeys the following equation

ε∂tfε + v∂xfε =
1

ε
Q(fε). (4.1)

In the right hand side, the operator Q is intended to describe the interactions
that particles are subject to; the dimensionless parameter ε > 0 is related
to the mean free path, that is the average distance travelled by the particles

95
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without being subject to any interaction. As ε → 0 the unknown fε relaxes
to an equilibrium the dependence of which with respect to v is fixed and
the dynamics is described by the evolution of only macroscopic quantities.
As we shall see below, it turns out that under some suitable assumptions
on the collision operator Q, the limit equation reduces to a mere diffusion
equation. However, for applications, one is interested in preserving more
information concerning the microscopic setting that motivates the deriva-
tion of reduced ε−dependent models. Then, it is legitimate to address the
following two-fold question: Is the reduced model consistent to the diffusion
approximation? How accurate is the obtained approximation and in which
sense is it better than the solution of the limit diffusion equation?

In this paper we investigate numerically these questions, restricting to
the simplest situation. Namely, we only deal with the one-dimensional
framework (x ∈ R, v ∈ V ⊂ R) and the collision operator is a mere re-
laxation operator

Q(f) =

∫

V
f dµ(v) − f. (4.2)

Throughout the paper (V, dµ) is required to satisfy





∫

V
dµ(v) = 1,

for any odd integrable function h : V → R,

∫

V
h(v) dµ(v) = 0,

∫

V
v2 dµ(v) = d is positive.

(4.3)

Typical examples are therefore:

• V = (−1, +1) endowed with the normalized Lebesgue measure,

• V = {v1, . . . , vM} where the vi’s are well-chosen points in (−1, +1),
endowed with the discrete velocity measure, dµ(v) = 1

M

∑M
i=1 δ(v =

vi),

• V = R endowed with the Gaussian measure dµ(v) = (2π)−1/2 e−v2/2 dv.

Under these hypotheses, as we shall recall below, the behavior of fε for small
ε’s is given by the heat equation

∂tρ − d∂2
xxρ = 0. (4.4)

Looking at such a simple situation makes a direct computation of the solu-
tion fε affordable, including for small values of ε. Therefore we have data at
hand to compare with the solutions of reduced models. However, evaluating
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fε when ε is small has a high numerical cost. Thus, it does not make sense
to extend it to several dimensions for our purposes. Nevertheless, we can
take advantage of our understanding of the limit process to design a numer-
ical method that is well-suited to the asymptotic regime. The scheme we
analyze is based on a splitting strategy with a convective-like step involv-
ing O(1) speeds and an explicitly solvable ODE step containing stiff sources.
Hence, the scheme, which is naturally asymptotic preserving, is amenable to
a fully explicit treatment, free of any ε−dependent restriction, and provides
accurate results for a quite cheap numerical cost. Another viewpoint con-
sists in using reduced macroscopic models which are intended to reproduce
the main features of the original equation (4.1). Usually these models are
derived either by using some truncated Chapman-Enskog expansion or by
imposing a closure to the system that is satisfied by some moments of fε. A
crucial requirement that is usually addressed to the model is to satisfy the
so-called limited-flux property. In what follows a particular attention will be
paid to the model the derivation of which relies on the Entropy Minimiza-
tion Principle. In itself the numerical simulation of the reduced models is an
issue, due to the presence of stiff terms and large speeds of propagation, that
depend on ε. Nevertheless, we introduce original specific schemes for these
models using relaxation techniques that we treat following the numerical
philosophy evoked above, and interpreting the relaxing system as a discrete
kinetic equation. This approach allows to compute efficiently the solutions
of the macroscopic models.

The paper is organized as follows, postponing references to the exist-
ing literature to the following Sections. In Section 4.2, we recall some basic
facts on the diffusion asymptotics and we present the reduced models we are
interested in. In Section 4.3, we detail the derivation of the asymptotically-
induced scheme for (4.1)-(4.2). We discuss the splitting strategy as well as
the numerical boundary conditions which are designed to satisfy the mass
conservation. Section 4.4 is devoted to adapting the method to the macro-
scopic models. This relies on the interpretation of the models through a re-
laxation limit. We end with the discussion of the numerical results in Section
4.5, with in particular simulations of the traditional Su-Olson benchmark.

4.2 A Brief Overview on Diffusion Asymptotics

and Moment Closures

4.2.1 Diffusion Limit

We check readily that Assumption (4.3) has the following remarkable con-
sequences.

Lemma 4.2.1 (Dissipation Properties of the Collision Operator). Assume
(4.3). Then the operator defined by (4.2) satisfies
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i) Q is a bounded operator on Lp(V ), 1 ≤ p ≤ ∞ spaces;

ii) Q is conservative which means that for any f ∈ L1(V, dµ),

∫

V
Q(f) dµ(v) = 0.

iii) Q satisfies the dissipation property

−
∫

V
Q(f)f dµ(v) =

∫

V

∣∣f − 〈f〉
∣∣2 dµ(v) ≥ 0,

for any f ∈ L2(V, dµ), where the bracket is a shortcut notation for the
average over V ;

iv) The elements of the kernel of Q are independent of the microscopic
variable v: Ker(Q) = Span(11);

v) The following Fredholm alternative holds: for any h ∈ L2(V ) satisfying
〈h〉 = 0, there exists a unique f ∈ L2(V ) such that Q(f) = h and
〈f〉 = 0.

The Fredholm alternative follows from a direct application of the Lax-
Milgram theorem applied to the variational formula

∫
V Q(f)g dµ(v) =

∫
V hg dµ(v)

on the closed subspace {f ∈ L2(V ), 〈f〉 = 0}.

As ε tends to 0, the number of interactions or “collisions” events per time
unit increases. Accordingly, we can expect for small ε’s that fε resembles
an element of the kernel of the operator Q:

fε(t, x, v) ≃ ρ(t, x),

and it remains to describe the evolution of the macroscopic quantity ρ. The
asymptotics can be readily understood by inserting the following Hilbert
expansion

fε = F0 + εF1 + ε2F2 + . . .

into (4.1). Identifying terms arising with the same power of ε, we obtain

• At the leading order Q(F0) = 0 that confirms F0 = ρ(t, x),

• Next, we have Q(F1) = v∂xF0. Then, we appeal to the second condi-
tion in (4.3) (applied with h(v) = v) which allows to make use of the
Fredholm alternative. Accordingly, for the simple operator (4.2), we
get F1(t, x, v) = −v∂xρ(t, x).



4.2. OVERVIEW 99

• Then, we obtain a closed equation for ρ by integrating over v the
relation: Q(F2) = ∂tF0 + v∂xF1. We obtain

∂tρ + ∂x

(∫

V
(−v2∂xρ) dµ(v)

)
= 0

that is the diffusion equation (4.4) for ρ.

Remark 4.2.1 (Time Scaling). The time scaling in (4.1) is motivated by the
fact, embodied into (4.3), that the equilibrium functions, i.e. the elements
of Ker(Q), have a vanishing flux: considering only the penalization of the
collision term, we would be led to the uninspiring equation ∂tρ = 0.

The convergence of fε, solution of (4.1), to ρ, solution of (4.4), has been
widely investigated under various and general assumptions, including non
linear situations motivated by physical applications; we refer among others
to [10, 11, 40, 59, 15, 80, 60]. Under suitable regularity assumptions, we
can make the Hilbert expansion approach rigorous, estimate the remainder
and justify the convergence with a rate. We refer to [11] for the following
statement, which is part of the folklore in kinetic theory.

Theorem 4.2.1 (Asymptotic Convergence Rate). Assume that (4.3) hold.
Let ρ > 0 be a constant. Let f0 : R × V → R such that f0 − ρ ∈ L2(R × V ).

i) Then, as ε goes to 0, fε and ρε converge to ρ strongly in L2
loc(R

+×R),
and ρε converges to ρ in C([0, T ];L2(R)−weak), where ρ is the solution
to the heat equation (4.4) with initial datum ρ|t=0 =

∫
V f0(x, v) dµ(v).

ii) If the initial datum is close to a smooth enough macroscopic state,
say e.g. ‖f0 − ρ0‖L2(R×V ) ≤ ε, with (ρ0 − ρ) ∈ H3(R), then, for any
0 < T < ∞, there exists CT > 0 such that one has

‖fε − ρ‖L2((0,T )×R×V ) ≤ CT ε. (4.5)

4.2.2 Approximate Models

We are interested in intermediate models, which are intended to be in be-
tween the full kinetic equation (4.1) and the heat equation (4.4). Such
models are expected to provide “better” approximations of fε for moderate
values of ε, that are small, but possibly not so small. We also expect that
such a model retains more information from the microscopic modelling and
we address the question of “how close” to the original unknown fε the ap-
proximate solution is. Finally, from a practical viewpoint, one should expect
that the solution of the intermediate model can be computed with a reduced
computational cost. Of course, the solution ρ of (4.4) already provides an
approximation of order O(ε) in L2 norm, but it has the drawback of loos-
ing completely any microscopic feature since it does not depend on v. It
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could also be tempting to use as an approximation the Hilbert expansion
truncated at first order, the so-called P1 approximation

fε(t, x, v) ≃ ρ(t, x) − ε v ∂xρ(t, x)

with ρ still the solution of (4.4). However, such an approximation is not
non negative for any t, x, v. Furthermore, the heat equation propagates
information at infinite speed while in (4.1) characteristic speeds are of order
O(1/ε), at least if the set of velocities is bounded. Actually, the finite speed
of propagation and preservation of non-negativeness are related; indeed,
since fε ≥ 0, we have the following relation between the macroscopic current
and density

∣∣∣
∫

V

v

ε
fε dµ(v)

∣∣∣ ≤
∫

V

|v|
ε

fε dµ(v) ≤
‖v‖L∞(V )

ε

∫

V
fε dµ(v).

Therefore, we can require that a suitable approximation fulfills this so called
“limited flux condition”, which is thus guaranteed for free if the approxima-
tion is non negative.

To obtain intermediate models, a general strategy consists in writing a
system of equations defined by the evolution of moments of fε. The system
is not closed since the convection term makes the (k +1)-th moment appear
in the evolution equation of the kth moment. Thus, we impose a relation
between the higher moment involved in the system and the previous ones.
We expect that this closure provides a suitable approximation of the evolu-
tion of the kinetic density. For (4.1), it is enough to consider the evolution
of the zeroth and first order moments. Let us set




ρε

Jε

Pε


 =

∫

V




1
v/ε
v2


 fε dµ(v).

We get the mass conservation

∂tρε + ∂xJε = 0, (4.6)

completed by
ε2∂tJε + ∂xPε = −Jε. (4.7)

According to [36], we are interested in two possible closure strategies:

(C1) Either we define an approximation, formally close to the P1 formula,
but which preserves non negativity. By using this approximation into
the conservation law (4.6), we obtain a possibly nonlinear equation,
that, in some sense, interpolates between transport and diffusion.

(C2) Or we close the moment system (4.6)-(4.7), so that we obtain a hy-
perbolic system that restores the finite speeds of propagation.
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We refer to [36] and the references therein for further detail. Let us introduce
the following notation

F(β) =

∫

V
eβv dµ(v), G(β) =

F
′

F
(β)

and

ψ(u) =
F”

F

(
G

(−1)(u)
)
.

The zeroth order closure (C1) is based on the modified Hilbert expansion

fε = exp(a0 + εa1 + ε2a2 + . . . )

Truncating at first order, we get the approximation

f̃ε(t, x, v) =
̺(t, x)

Z(t, x)
exp

(
− εv

∂x̺

̺
(t, x)

)
,

with Z(t, x) to normalize the density to ̺(t, x). Plugging this expression
into the moment equation, ̺ satisfies

∂t̺ − ∂x

(̺

ε
G

(
ε
∂x̺

̺

))
= 0. (4.8)

The first order closure (C2) follows from a Entropy Minimization Prin-
ciple. This idea is due to Levermore [73, 74, 77, 75, 76], but it also appears
in various physical applications [34, 47]. It works as follows. For given ̺, J ,
let

f̃ = argmin
{∫

V
f ln(f) dµ(v),

∫

V
(1, v/ε)f dµ(v) = (̺, J)

}
.

We obtain
f̃(v) = eλ0+λ1v/ε

where the Lagrange multipliers λ0,1 are defined by the constraints

̺ =

∫

V
eλ0+λ1v/ε dµ(v) = eλ0F(λ1/ε)

J =

∫

V

v

ε
eλ0+λ1v/ε dµ(v) =

ρ

ε
G(λ1/ε).

Then, we use f̃ to define the second moment that closes the system (4.6)-
(4.7). Namely, we set

P =

∫

V
v2f̃(v) dµ(v) = ̺

F”

F
(λ1/ε) = ̺ψ(εJ/̺),

and we are thus led to the system
{

∂t̺ + ∂xJ = 0,

ε2∂tJ + ∂x

(
̺ψ(εJ/̺)

)
= −J.

(4.9)
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The microscopic approximation is defined by

f̃ε(t, x, v) = ̺(t, x)
exp

[
v G

(−1)
(
εJ/̺(t, x)

)]

F ◦ G(−1)
(
εJ/̺(t, x)

) . (4.10)

Of course, Equations (4.8) and (4.9) highly depend on the considered mea-
sure dµ through the functions F, G and ψ:

• For the Lebesgue measure, we have F(β) = sinh(β)/β, G(β) = coth(β)−
1/β.

• For the discrete 2-velocity measure, we have F(β) = cosh(β). The first
order closure (4.9) is in this case completely equivalent to the original
kinetic model and there is no approximation at all.

• For the Gaussian measure, we have ψ(u) = 1 + u2. The zeroth order
closure actually leads to the heat equation, and the first order closure
gives the isothermal Euler system.

In [36], the well-posedness of (4.8) and (4.9) is justified, at least for small
and smooth initial data, but, hopefully, with an ε−free smallness condition.
(We also refer to [37] for preliminary discussions on weak solutions.) Fur-
thermore it is shown that ‖fε − f̃ε‖L2 is of order O(ε). This estimate is a
bit disappointing since it is not better than those evaluating the distance to
the solution of the heat equation. Our aim in this paper is to investigate nu-
merically (4.1)-(4.2) and its approximation (4.8) or (4.9)-(4.10), compared
to the heat equation and the P1 approximation. It is indeed interesting to
check numerically whether we can expect sharper estimates or not. It is also
important in view of applications to discuss how the quality of the approx-
imation is degraded as ε increases and to know if one of the approximation
strategies has some decisive advantages. Let us mention that there exist
a huge variety of possible closure methods, based either on mathematical
arguments or physical grounds, and we mention among others [77, 31].

4.3 Asymptotic Preserving Explicit Kinetic Scheme

On the numerical viewpoint, the computation of (4.1)-(4.2) is also a chal-
lenging question due to the presence of large, say O(1/ε), speeds of prop-
agation and stiff terms. An attempt to solve (4.1)-(4.2) by integrating the
equation along the characteristics following a splitting strategy between col-
lisions and transport through lines x+ tv/ε fails for small ε. Since in general
the characteristics do not end at a point of the discrete mesh, this approach
needs to be completed by a suitable interpolation procedure. It gives rise
to semi-lagrangian numerical methods that have been used successfully for
Vlasov’s like equations [45, 46]. Proceeding naively, such a procedure can
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produce unacceptable numerical diffusion. One can repair this drawback by
using interpolation procedures based on the WENO approach. We refer to
[96, 94] for the basis of the WENO method, and to [26] for a description of
the adaptation to design an accurate interpolation method. Of course, for
small ε’s these computations become unbearably time consuming with large
meshes and small time step due to the large velocities that are involved.

Asymptotic schemes working in the stiffness regime have to be developed.
We propose an alternative approach using a splitting scheme inspired by the
Hilbert expansion that treats the stiffness of (4.1). The method is well fitted
and much less costly than the previous approach to the diffusion regime
while remaining fully explicit. This numerical method, which improves the
scheme already proposed in [53], is a fully explicit variation of the methods
introduced in [69, 70], and it has successfully been used in other contexts
[53, 24, 58]. It is also relevant to compare our method to those of [65, 66],
based on odd/even flux decomposition or, concerning relaxation problems,
those of [81] for methods based on central schemes. Here, the scheme is
based on the expansion

fε = ρε + εgε, ρε(t, x) =

∫

V
fε dµ(v),

where the dissipation properties of the operator Q imply that the “fluctua-
tions” gε are indeed bounded in L2(R+ × R × V ). We rewrite (4.1) as

∂tfε + v∂xgε =
1

ε2
(ρε − fε) −

v

ε
∂xρε,

which motivates the following two step splitting scheme:

Given a uniform subdivision of step ∆t of [0,∞) and knowing fn, which is
expected to approximate fε(n∆t, x, v), n ∈ N

Step 1.- Solve on the time interval [n∆t, (n + 1)∆t) the stiff ODE

∂tf =
1

ε2
(ρ − f) − 1

ε
v∂xρ. (4.11)

Since the average over V of the right hand side vanishes, the macro-
scopic density is not modified during this time step, that is,

ρn+1/2 =

∫

V
fn+1/2 dµ(v) = ρn.

Moreover, (4.11) also defines the evolution of the fluctuation

∂tg = − 1

ε2
g − 1

ε2
v∂xρ. (4.12)
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Step 2.- Solve on the time interval [n∆t, (n + 1)∆t):

∂tf + v∂xg = 0 and ∂tg = 0, (4.13)

with initial data f0 = fn+1/2 and g0 = gn+1/2 This defines, fn+1 and

ρn+1 =

∫

V
fn+1 dµ(v).

We emphasize that the index ε has been dropped for notational con-
venience. Note that, in the second step, the convective term involves a
characteristic speed of order O(1) only and that we will not force any up-
date on g as gn+1/2 = (fn+1/2 − ρn+1/2)/ε. This update might make the
relation between f and g consistent at the end of the second step but it
leads to undesirable numerical divisions by the small parameter ε; but, for
well-prepared initial data, this consistency can be imposed at the beginning.
Similar arguments were already given in [69, 70] to avoid this update of the
fluctuations g.

Figure 1: L2
t,x,v-error of the distribution function f with respect to the

solution of the heat equation with a symmetric initial data as in Section 4.5
with a mesh of 100x100 with respect to ε.

Before proceeding further with the analysis of this kinetic method, we
show in Figure 1 a comparison between the results of the three discussed
kinetic methods: a semi-lagrangian PWENO6,4-interpolation scheme [26]
(SL-WENO), the asymptotic preserving method without update of g pro-
posed above and the asymptotic preserving method with update of g. In all
cases, we show the L2

t,x,v-error between the kinetic results and the solutions
of the heat equation, its ε → 0 asymptotic limit, in a log-plot depending on
ε. The results show that the kinetic scheme proposed in this paper works
perfectly in the ε → 0 regime while both the updated scheme and the SL-
WENO scheme do not describe well the asymptotic limit. It is important
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to point out that all the schemes are computed with the parabolic CFL
condition corresponding to the limiting heat equation. We also note that
for larger values of ε the difference between the SL-WENO method and the
asymptotic preserving scheme becomes small which shows the ability of the
proposed scheme to capture the behavior of the kinetic equation, for mod-
erately small value of the mean free path as well, with a considerable gain
of CPU time. It is also worthy to emphasize that the results are given for a
fixed mesh 100x100, so that as ε → 0, the SL-WENO method cannot work,
the velocities being of order O(1/ε). In order to get accurate results compa-
rable to those obtained with the asymptotic-induced scheme, the SL-WENO
method would require larger and larger meshes in velocity and smaller and
smaller time steps as ε → 0. This leads to an unbearable computational
cost for such a simple equation.

We can simplify the first step by keeping only the leading contribution in
ε and, by explicitly solving Equations (4.11) and (4.12) that define fn+1/2,
ρn+1/2 and gn+1/2, leading to

gn+1/2 = e−∆t/ε2
gn − (1 − e−∆t/ε2

)v∂xρn (4.14)

and
fn+1/2 = e−∆t/ε2

fn + (1 − e−∆t/ε2
)ρn, (4.15)

keeping in mind that ρn+1/2 = ρn =
∫
V fn dµ(v). The final semi-discrete

scheme is summarized as:

Step 1.- Compute




gn+1/2 = e−∆t/ε2
gn − (1 − e−∆t/ε2

)v∂xρn,

fn+1/2 = e−∆t/ε2
fn + (1 − e−∆t/ε2

)ρn.
(4.16)

Remember that ρn+1/2 = ρn.

Step 2.- Solve for time ∆t the convection equation:

∂tf + v∂xg = 0

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2.

Remark 4.3.1 (Asymptotic Preserving). It is worthwhile mentioning that
the scheme is “asymptotic preserving”: using (4.15) and (4.14) for the com-
pletely relaxed model, i.e., ε = 0, yields

fn+1/2 = ρn+1/2, gn+1/2 = −v∂xρn = −v∂xρn+1/2,

which coincides with the first order term in the Hilbert expansion. Thus, the
first step becomes

∂tf − v2∂2
xxρ = 0

Integrating over the mesh of velocities leads to the expected heat equation,
up to a suitable v-mesh definition in order to guarantee

∫
V v2 dv = d.
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Remark 4.3.2 (Spatial Derivatives Discretization). One has to take care
of the treatment of the space derivative: if one uses the same upwind dis-
cretization for evaluating both −v∂xρ in the first step and −v∂xg in the
second one, it leads to an unstable scheme for the heat equation. The usual
3−point scheme is obtained by choosing opposite upwind discretization in
the successive time steps. Accordingly, for ε = 0, the stability of the scheme
is guaranteed by the CFL condition d∆t/(∆x)2 ≤ 1/2.

Remark 4.3.3 (Stability). The stability condition for the scheme used with
ε > 0 is less clear, even if a CFL condition close to the parabolic one can be
reasonably expected. We refer to [71] for a discussion on a semi-implicit ver-
sion of the proposed scheme. This difficulty has motivated the development
of implicit methods, as in [56, 57].

Remark 4.3.4 (Current and Distribution Computation). Due precisely to
the separation between fluctuations and relaxation towards the homogeneous
density we impose in the scheme and taking into account the comments above
regarding asymptotic preservation, we need to compute and reconstruct J
and f to compare to other methods. In fact, since currents appear due to
fluctuations, it is intuitive to reconstruct it as

Jn+1 =

∫

V
v gn+1 dµ(v).

Due to the Hilbert expansion approach, we will consider the reconstructed
distribution given by ρn+1 + εgn+1.

Let us restrict from now on to the case of the normalized Lebesgue
measure dµ(v) on the velocity space [−1, 1]. The space interval [Xmin, Xmax]
is uniformly discretized in Nx − 1 intervals with points xi = i∆x from
i = 0, . . . , Nx − 1 and the velocity interval [−1, 1] is discretized analogously
in Nv − 1 intervals with points vj = −1 + j∆v from j = 0, . . . , Nv − 1. For
further purposes, it is convenient to introduce the sets

V+ =
{
j ∈ {0, Nv − 2} such that vj > 0

}
,

V− = {j ∈ {0, Nv − 2} such that vj < 0}.
Let us specify our discrete scheme to the case of simple upwind dis-

cretization Dj of the spatial differential operator −vj∂x with D̄j being its
alternate direction: for a given sequence (ϕi)i∈N, we set

[
Djϕ

]
i
=

{
−vj(ϕi − ϕi−1) if vj ∈ V+,
−vj(ϕi+1 − ϕi) if vj ∈ V−,

[
D̄jϕ

]
i
=

{
−vj(ϕi+1 − ϕi) if vj ∈ V+,
−vj(ϕi − ϕi−1) if vj ∈ V−.

(4.17)
More advanced non-centered non linear distinct numerical fluxes for −vj∂x,
such as flux limiting ones, may be chosen. Similarly, we could use a non
uniform time mesh. However, this might complicate boundary conditions
below to preserve mass and it will certainly change the relaxed asymptotic
scheme. The fully discrete scheme summarizes as
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Step 1.- Compute





g
n+1/2
i,j = e−∆t/ε2

gn
i,j + (1 − e−∆t/ε2

)D̄jρ
n
i

f
n+1/2
i,j = e−∆t/ε2

fn
i,j + (1 − e−∆t/ε2

)ρn
i

, (4.18)

with

ρ
n+1/2
i = ρn

i =
∆v

2

Nv−2∑

j=0

fn
i,j

since a left rectangular rule has been chosen.

Step 2.- Solve for time ∆t the convection-like equation:

fn+1
i,j = f

n+1/2
i,j + ∆tDjg

n+1/2
i,j (4.19)

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2.

Remark 4.3.5 (Maximum Principle). We point out again that the scheme
is specifically designed for the small ε regime, and there is no guarantee about
the accuracy of the results when ε becomes large. In particular difficulties
might arise with the maximum principle. Indeed, in Step 1, given a non
negative fn, (4.18) returns a non negative fn+1/2, but this property is not
naturally preserved in Step 2, see (4.19).

Finally, we need to impose boundary conditions on the advection step
ensuring the total mass conservation. With this aim, we need

Nx−2∑

i=1

Nv−2∑

j=0

Djg
n+1/2
i,j = 0

which is equivalent, by summing the telescopic series appearing due to the
definition of the upwinding operators, to

∑

vj∈V+

vj(g
n+1/2
Nx−2,j − g

n+1/2
0,j ) +

∑

vj∈V−

vj(g
n+1/2
Nx−1,j − g

n+1/2
1,j ) = 0

where V+ = {j ∈ {0, . . . , Nv − 2} such that vj > 0} and V+ = {j ∈
{0, . . . , Nv − 2} such that vj < 0}. From this, we will impose as bound-
ary conditions for the fluctuations:

g
n+1/2
0,k =

−1

vk #[V+]

∑

vj∈V−

vjg
n+1/2
1,j

for k ∈ V+ and

g
n+1/2
Nx−1,k =

−1

vk #[V−]

∑

vj∈V+

vjg
n+1/2
Nx−2,j
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for k ∈ V−, where #[B] is the cardinal of the set B. Let us remark that
the previous boundary condition in the complete relaxed scheme, ε → 0,
coincides with the Neumann boundary condition for the density, i.e.,

ρn
0 = ρn

1 and ρn
Nx−1 = ρn

Nx−2.

The scheme described above gives a simple way to compute the solu-
tion of (4.1)-(4.2), and the associated macroscopic density, that has to be
compared, both in terms of accuracy and computational cost, to the direct
evaluation, see Fig. 1, and computation of the solution of the heat equation
(4.4) and the different approximations by the closure strategies.

The method adapts easily to more complicated models: gas dynamics
[69, 70, 65, 66], radiative transfer [53, 58], fluid-particles flows [24]. It can
be also incorporated in a domain decomposition method to deal with space
varying mean free path, in the spirit of [54, 102].

4.4 Numerical Schemes for Closure Approxima-

tions

Next, the idea to treat the hyperbolic system (4.9) or the conservation equa-
tion (4.8) is two-fold:

1. We introduce additional unknowns and parameters and the equations
are seen as the relaxation limit of an extended system, in the spirit of
general methods described in [85],

2. The relaxation system is interpreted itself as a kinetic equation with
a discrete set of velocities to which we apply the splitting algorithm
described above.

4.4.1 Relaxation Method for the First-Order Closure

We will at first focus on developing a numerical scheme for the first order
closure (4.9). The nonlinear system (4.9) can be seen as the limit, as α tends
to 0, of

∂tρ + ∂xJ = 0, (4.20)

ε2∂tJ + ∂xz = −J, (4.21)

∂tz + ε2λ2∂xJ =
1

α

(
ρψ(εJ/ρ) − z

)
. (4.22)

Let us define u := εJ/ρ. Recall that u should be small of order O(ε), see
[36]. This system involves an additional unknown z(t, x) and the parameters
λ (convection speed) and α (relaxation parameter). Actually we relax on the
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quantity ε2J so that we consider the velocity in (4.22) rescaled by ε (that
fits dimensional considerations). The advantage in considering (4.20)-(4.22)
is that now we have to deal with simple convection equations, the convection
part being linear, and all nonlinearities only appear in the (zeroth order)
source terms. This idea is reminiscent to the introduction of kinetic schemes
in [17, 52, 89, 79, 78], and relaxation methods for conservation laws [67]. We
refer to [7, 88] for further details and references. This approach can be used
also to treat degenerate diffusion equations [85].

Let us find the constraints on the additional velocities ±λ that should be
large enough to propagate enough information to reconstruct the behavior
of (4.9). It is important to check whether the condition becomes more
constrained as ε tends to 0. To this end, let us perform the Chapman-
Enskog reasoning; we expand (4.22) with respect to α considering ε to be
small. We have

z = ρψ(u) − α(∂tz + ε2λ2∂xJ) = ρψ(u) − α(∂t(ρψ(u)) + ε2λ2∂xJ) + O(α2),
(4.23)

by (4.22)-(4.21). Thus, (4.21) can be recast as

ε2∂tJ + ∂x

(
ρψ(u)

)
+ J = αε2λ2∂2

xxJ + α∂2
xt

(
ρψ(u)

)
+ O(α2).

Let us compute the leading contribution in the last term; by using (4.20)
and (4.21), we get

∂t

(
ρψ(u)

)
= −ψ(u)∂xJ + ρψ′(u)∂tu.

But

∂t(ρψ(u)) = (uψ′(u) − ψ(u))∂xJ − ψ′(u)

ε
(J + ∂xz).

Now, considering that formally J + ∂xz is of order O(ε) at least, that ψ is
an even function and using the approximation ψ(u) = ψ(0) + O(ε2), with
ψ(0) > 0, we get

∂t

(
ρψ(u)

)
+ ψ(0)∂xJ = O(ε),

so that

ε2∂tJ + ∂x

(
ρψ(u)

)
+ J = α∂x((ε2λ2 − ψ(0))∂xJ) + O(α2, ε).

Consequently, as soon as ε|λ| >
√

ψ(0), the parabolicity is ensured. It is
certainly natural to find that the speeds tend to infinity as ε tends to 0 since
we want to approximate the heat equation. Now, we need to diagonalize
System (4.20)-(4.22). Since the quantity ελ remains bounded from below,
we denote it by µ. We define

f0 = µ2ρ − z, (4.24)

f± =
1

2
(z ± εµJ). (4.25)
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Of course, we have

z = f+ + f− and J =
f+ − f−

εµ
and ρ =

f0 + f+ + f−
µ2

.

Noting that

J = ±2f± − z

εµ
,

the new system we are interested in is

∂tf0 = − 1

α
(ρψ(u) − z), (4.26)

∂tf± ± µ

ε
∂xf± = −f±

ε2
+

z

2ε2
+

1

2α
(ρψ(u) − z). (4.27)

The system shares some structures with the kinetic equation analyzed in the
previous section. This similarity will be used to design a new scheme that
will be expressed only in terms of the macroscopic quantities ρ and J . Since
we have two small parameters, we can use a double splitting method, i.e.,
by splitting with respect to ε inside the splitting with respect to α, that is:

Step 1.- Solve

∂tf0 = 0, (4.28)

∂tf± ± µ

ε
∂xf± = −f±

ε2
+

z

2ε2
. (4.29)

This system is again stiff as ε tends to 0. Let us solve it with the splitting
method described in Section 4.3: we introduce the intermediate variables

g± :=
2f± − z

2ε
= ±µJ

2

and rewrite (4.29) as

∂tf± ± µ∂xg± = −g±
ε

∓ µ

2ε
∂xz. (4.30)

Solve

Step 1.1.- ∂tf± = −f±
ε2

+
z

2ε2
∓ µ

2ε
∂xz,

∂tg± = −g±
ε2

∓ µ

2ε2
∂xz,

where the initial condition for the ODEs are the values computed in the
previous step and solve

Step 1.2.- ∂tf± ± µ∂xg± = 0,

∂tg± = 0,
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where the initial conditions are, for f±, the ones obtained by Step 1.1. For
g±, we update them in terms of the flux g±(0) = ±µJ/2 = ±(f+ − f−)/2ε.
Note that here the update is necessary since the goal of the scheme is actually
to compute the macroscopic flux and the microscopic quantities f±, f0 and
g± are only auxiliary devices.

Note that, during Step 1.1, ∂tz = 0. Let us now specify our fully discrete
kinetic scheme. As in the previous section, let us choose D± an upwind
discretization of the spatial differential operator ∓µ∂x and D̄± its alternate
direction version, see (4.17). The fully discrete kinetic scheme in this step
reads as

Step 1.1.-(Micro)

g
n+1/4
± = e−∆t/ε2

gn
± + (1 − e−∆t/ε2

)
1

2
D̄±(fn

+ + fn
−),

f
n+1/4
± = e−∆t/ε2

fn
± + (1 − e−∆t/ε2

)

(
fn
+ + fn

− + εD̄±(fn
+ + fn

−)

2

)
,

f
n+1/4
0 = fn

0 .

At the microscopic level, after Step 1.1, g
n+1/4
+ 6= −g

n+1/4
− .

Step 1.2.-(Micro)

g
n+1/2
± = ±f

n+1/4
+ − f

n+1/4
−

2ε
,

f
n+1/2
± = f

n+1/4
± + ∆tD±(g

n+1/4
± ),

f
n+1/2
0 = f

n+1/4
0 ,

(ρψ)n+1/2 =
1

µ2
(f

n+1/2
+ + f

n+1/2
− + f

n+1/2
0 )

×ψ

(
µ(f

n+1/2
+ − f

n+1/2
− )

f
n+1/2
+ + f

n+1/2
− + f

n+1/2
0

)

Note that, after Step 1.2, we have g
n+1/2
+ = −g

n+1/2
− , as it is the case in the

continuous setting. That is the reason why the macroscopic quantities can
only be expressed at the end of Step 1 as a whole, and not at the end of
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Step 1.1. The macroscopic scheme summarizes in this step as:

Step 1.-(Macro)

zn+1/2 = zn +
ε(1 − e−∆t/ε2

)

2

(
D̄+(zn) + D̄−(zn)

)

+∆t

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

Jn+1/2 = e−∆t/ε2
Jn +

1 − e−∆t/ε2

2µ

(
D̄+(zn) − D̄−(zn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

ρn+1/2 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

))
.

Let us remark that the second term in zn+1/2 is of order ε and thus, it will
be omitted in the computations below. Now, we can write the relaxation
step with respect to the parameter α:

Step 2.- Solve the ODE

∂tf0 = − 1

α
(ρψ(u) − z), (4.31)

∂tf± =
1

2α
(ρψ(u) − z), (4.32)

that is, since ∂tJ = 0 and z = 2f± ∓ εµJ by virtue of (4.25),

∂tf0 = − 1

α
(ρψ(u) − z), (4.33)

∂tf± = − 1

α
f± +

1

2α
(ρψ(u) ± εµJ), (4.34)

with as initial conditions the values computed from Step 1. In this last step,
we also note that ∂tρ = 0, see (4.24) and (4.25), and that, consequently, u
is constant. The fully discrete kinetic scheme summarizes in this step as

Step 2.-(Micro)

fn+1
± = e−∆t/αf

n+1/2
± +

1

2
(1 − e−∆t/α)((ρψ)n+1/2 + 2εg

n+1/2
± ),

fn+1
0 = fn

0 + (1 − e−∆t/α)
(
fn
+ + fn

− − (ρψ)n+1/2
)
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In this last step, we do not update g, since ∂tJ = 0. Denoting by ψn+1/2 the
quantity ψ(εJn+1/2/ρn+1/2), we deduce the following macroscopic scheme
for the second step:

Step 2.-(Macro)

zn+1 = e−∆t/αzn+1/2 + (1 − e−∆t/α)ρn+1/2ψn+1/2,

Jn+1 = Jn+1/2,

ρn+1 = ρn+1/2.

Remark 4.4.1 (Splitting Order). We choose a semi-linear relaxation method
to have to deal only with transport-like equations, that is, move the non-
linearities to the right-hand side, as source terms. So it is natural to take
this precise order of splitting, since α must be the first one to tend to 0, so
that we can keep a non-zero ε, even if it is small.

Remark 4.4.2 (Initial Conditions). In order to prevent an initial layer from
appearing [86] in the α−splitting, we need to prescribe well-prepared initial
conditions taking into account both splittings as:

ρ(0, x) = ρ0(x),

J(0, x) = J0(x),

z(0, x) = ρ0(x)ψ(εJ0(x)/ρ0(x)) =: z0(x),

corresponding to the choice of the equilibrium state for the (hyperbolic) α-
splitting, as in the classical relaxation approach.

Remark 4.4.3 (Boundary Conditions). We consider, for a computation
domain [Xmin, Xmax], Neumann conditions for ρ and z,

ρn
0 = ρn

1 ρn
Nx−1 = ρn

Nx−2 and zn
0 = zn

1 zn
Nx−1 = zn

Nx−2.

and

Jn
0 = −Jn

1 Jn
Nx−1 = −Jn

Nx−2.

These conditions guarantee the conservation of the total mass.

Let us now have a look at the limits as α tends to 0 :

Jn+1 = e−∆t/ε2
Jn +

1 − e−∆t/ε2

2µ

(
D̄+(ρnψn) − D̄−(ρnψn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

)]
,

ρn+1 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

))
.
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We thus obtain a pure transport-projection scheme [7]. Note that, since
∆te−∆t/ε2

= O(ε2) and

(
D+

(
D̄+(ρnψ(0))

2

)
− D−

(
D̄−(ρnψ(0))

2

))
= O(ε),

the scheme is still reasonable for small ε. The convergence in α of the
schemes has been checked numerically. In Figure 2, we show the L2

t,x-error in
densities of the macroscopic method for α > 0 with respect to the completely
relaxed method above α = 0 for a fixed valued of ε = 0.01.

Figure 2: L2
t,x-error of the densities ρ for the α > 0 method with respect to

the completely relaxed scheme α = 0 for ε = 0.01.

Remark 4.4.4 (Well-Balanced Scheme). Note that the obtained scheme is
well-balanced which means that the stationary states are preserved, if we
choose linear discretizations D: if we take some initial conditions ρ0 and J0

that satisfy

∂xJ0 = 0,

∂x(ρ0ψ(εJ0/ρ0)) = −J0,

so that, in particular, ∂2
xx(ρ0ψ(εJ0/ρ0) = 0, a direct induction implies that

the discrete solution (ρn, Jn)n is stationary, since D±(J0) = 0 = . . . =
D±(Jn) and D±(D̄±(ρ0ψ(εJ0/ρ0)) = 0 = . . . = D±(D̄±(ρnψ(εJn/ρn)), for
all n ∈ N; see (4.36).

In turn, the limit ε → 0 gives

ρn+1 = ρn +
∆t

µ2

(
D+

(
D̄+(ρnψ(0))

2

)
+ D−

(
D̄−(ρnψ(0))

2

))
.
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Let us detail the upwind case: since we have, for any sequence (vj)j∈Z

and for j ∈ Z,

D+(D̄+(v))j =
−µ

∆x

((−µ

∆x
(vk+1 − vk)k

)

j

−
(−µ

∆x
(vk+1 − vk)k

)

j−1

)
,

=
µ2

(∆x)2
(vj+1 − 2vj + vj−1), (4.35)

D−(D̄−(v))j = D+(D̄+(v))j , (4.36)

we get the standard classical 3-point finite difference scheme for the heat
equation with conduction ψ(0):

ρn+1 = ρn + ψ(0)
∆t

(∆x)2
(ρn

j+1 − 2ρn
j + ρn

j−1).

Remark 4.4.5 (Comparison to existing literature). We point out that the
strategy differs from the one used in [18, 20] where the adopted method, based
on well-balanced schemes as introduced in [56, 57], is implicit (see also [41]).
The main advantage in the latter is the control on the stability condition.
Note however that our method works under the parabolic CFL condition (this
has to be compared to the stability analysis in [66]). This could be seen as
too restrictive when the kinetic equation or the reduced model is coupled to
hydrodynamics, like in applications in radiative transfer [19, 20, 41, 53],
but, it is possible in such a context to appeal to a sub-cycling method where
several “parabolic” time steps are performed within a “hyperbolic” time step,
see [58].

Besides, the scope of this scheme differs from that of the method described
in [85] in the sense that we are interested in computations for a positive value
of the parameter ε, not only for the fully relaxed situation.

4.4.2 Relaxation Method for the Zeroth-Order Closure

Here, we use again analogous ideas to propose a relaxation numerical scheme
to solve the zeroth-order closure in (4.8). The nonlinear equation (4.8) can
be seen as the limit, as α tends to 0, of

∂tρ + ∂xJ = 0, (4.37)

∂tJ +
µ2

ε2
∂xρ = − 1

α

[
J +

ρ

ε
G

(
ε
∂xρ

ρ

)]
. (4.38)

Defining now

f± =
ρ

2
± εJ

2µ
, (4.39)
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we have

ρ = f+ + f− and J =
µ

ε
(f+ − f−).

The new system we are interested in is

∂tf± ± µ

ε
∂xf± =

1

α

[
ρ

2
− f± ∓ ρ

2µ
G

(
ε
∂xρ

ρ

)]
. (4.40)

The relaxation scheme follows the same ideas as above. We define the
fluctuations as

g± =
1

ε
f± − 1

2ε
ρ

and then, the equation rewrites as

∂tf± ± µ∂xg± =
1

α

[
ρ

2
− f± ∓ ρ

2µ
G

(
ε
∂xρ

ρ

)]
∓ µ

2ε
∂xρ.

The steps of the method are:

Step 1.- Solve the ODE

∂tf± =
1

α

[
ρ

2
− f± ∓ ρ

2µ
G

(
ε
∂xρ

ρ

)]
∓ µ

2ε
∂xρ. (4.41)

Step 2.- Solve the transport equation

∂tf± ± µ

ε
∂xf± = 0, (4.42)

∂tg± = 0. (4.43)

Here the initial value for the fluctuations for the second step are com-
puted from the values of the first step by:

g±(0) =
1

ε
f± − 1

2ε
ρ

The first step of the scheme results into the fully discrete scheme

f
n+1/2
± = e−∆t/αfn

± +
ρn

2
(1 − e−∆t/α)

[
1 ∓ 1

µ
G

(
∓ ε

µ

D̄±ρn

ρn

)]

+ α(1 − e−∆t/α)
1

2ε
D̄±ρn.

The completely relaxed scheme, α → 0 is

f
n+1/2
± =

ρn

2

[
1 +

1

µ
G

(
ε

µ

D̄±ρn

ρn

)]
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where the odd character of G was used. Taking into account the initialization
of the fluctuations above, we get

g
n+1/2
± =

ρn

2µε
G

(
ε

µ

D̄±ρn

ρn

)

where a term of order ∆x2 was neglected. Now, the values of the solutions
in the second step are

fn+1
± = f

n+1/2
± + ∆tD±g

n+1/2
±

respectively. The use of alternate approximations of the spatial derivatives
∓µ∂x is again needed since for all A ∈ R

lim
ε→0

ρ

ε
G

(
ε
A

ρ

)
=

1

3
A.

The complete relaxed scheme in terms of the macroscopic variable ρ reads
as

ρn+1 = ρn + ∆t

{
D+

[
ρn

2εµ
G

(
ε

µ

D̄+ρn

ρn

)]
+D−

[
ρn

2εµ
G

(
ε

µ

D̄−ρn

ρn

)]}
.

(4.44)

Due to the diffusive character of the approximation, a parabolic CFL condi-
tion for small ε-values, d∆t/(∆x)2 ≤ 1/2, has to be imposed. In this case,
following a Chapman-Enskog approach there is no restriction in principle
on the value of µ > 0 but being of order 1 with respect to ε. The boundary
conditions are standard discrete Neumann conditions for ρ.

4.5 Numerical Results

4.5.1 Comparisons between Closures

To start with, we compare the solution of the kinetic equation (4.1)-(4.2),
computed with the method described in Section 4.3, and the solutions of the
heat equation (4.4), the zeroth order closure (4.8), and the first order closure
(4.9); the two last models are evaluated by using the method described in
Section 4.4. Figure 3 shows the error in a log-log plot with respect to ε, for
the symmetric initial data

f0(x, v) =

{
2. for − 0.5 ≤ x ≤ 0.5 and − 0.5 ≤ v ≤ 0.5

1. otherwise

with mesh Nx = Nv = 100 and up to time 5. We used the completely
α−relaxed version (α = 0) of the schemes in Section 4.4.
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Figure 3: Top left: L2
t,x density error, top right: L2

t,x current error, bot-
tom: L2

t,x,v distribution function error between the kinetic result and the
corresponding approximations with respect to ε for the symmetric initial
data.

As expected the convergence rates are of order O(ε) for all models, con-
firming the results in [36]. Note however that the macroscopic density ρ is
better reproduced by the first order closure and the behavior of the current
J is even better captured by this model. For very small values of ε, the
density error becomes constant: it is actually dominated by the consistency
error, with an error of order O((∆x)2) (confirmed by changing the mesh
size). This is not surprising when thinking of the 3−point scheme and is
due to the splitting method.

Next, we consider a data which is not symmetric with respect to velocity.
Figure 4 shows the error in a log-log plot with respect to ε, for the initial
data

f0(x, v) =

{
2. for − 0.5 ≤ x ≤ 0.5 and − 0.75 ≤ v ≤ 0.25

1. otherwise

with mesh Nx = Nv = 100 and up to time 5. We still use the completely
relaxed framework α = 0 The previous conclusions are amplified and the
advantage of the first order closure appears more strongly, in agreement
with conclusions already given in [41].

This is confirmed again by looking at the time evolution of the density
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Figure 4: Top left: L2
t,x density error, top right: L2

t,x current error, bot-
tom: L2

t,x,v distribution function error between the kinetic result and the
corresponding approximations with respect to ε for the asymmetric initial
data.

and current computed by the different models. Figure 5 corresponds to the
evolution of the macroscopic density for the asymmetric initial data with a
mesh of Nx = Nv = 100 with ε = 0.1 and completely relaxed α = 0 and
up to time 5. In Figure 6 we show the corresponding evolution for the first
moment J . These results favor on the one hand the kinetic and the first
order simulation which remain very close, even in this situation where ε is
not particularly small, and on the other hand the zeroth order model which
behaves like the heat equation, far from the profiles obtained by the kinetic
computations.

4.5.2 The Su-Olson Test

This test is a standard benchmark for radiative transfer problems [87, 99,
19, 20, 18]. In such problems, the unknown f is the specific intensity of
radiations, which interact with the matter through energy exchanges, see
e.g. [19, 53]. Therefore, the complete models couples a kinetic equation
with the Euler system describing the evolution of the matter. In the Su-
Olson test, the coupling with hydrodynamics is replaced by a simple ODE
describing the evolution of the material temperature. More precisely, we
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Figure 5: Evolution of the density for the different methods with the asym-
metric initial data: top left: initial data, top right: 1.25 time units, bottom
left: 2.5 time units, bottom right: 3.75 time units.

have the kinetic equation

∂tfε +
v

ε
∂xfε =

1

ε2
Q(fε) + σa(Θ − ρ) + S (4.45)

coupled with

∂tΘ = σa(ρ − Θ) (4.46)

where Θ = T 4 with T > 0 the temperature of matter and S = S(t, x) a
given source. We propose to solve this stiff coupled problem (4.45)-(4.46)
with the same approach as in the previous Subsections. We shall also adapt
the scheme for replacing the kinetic equation by the zeroth or first order
closures.

We solve the temperature equation at the steps in which the density ρ
is constant to have an explicit formula for its solution. We start with the
kinetic scheme and we follow the same notation as in Subsection 2.1 skipping
some detail. The semi-discrete numerical scheme will summarize as follows:
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Figure 6: Evolution of the current for the different methods with the asym-
metric initial data: top left: initial data, top right: 1.25 time units, bottom
left: 2.5 time units, bottom right: 3.75 time units.

Step 1.- Compute





gn+1/2 = e−∆t/ε2
gn − (1 − e−∆t/ε2

)v∂xρn,

fn+1/2 = e−∆t/ε2
fn + (1 − e−∆t/ε2

)ρn,

Θn+1/2 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn

(4.47)

Remember that ρn+1/2 = ρn.

Step 2.- Solve on a time interval of length ∆t the convection equation:

∂tf + v∂xg = σa(Θ − ρ) + S

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2 and
Θn+1 = Θn+1/2. The right-hand side uses the final value provided by
Step 1.

Similar schemes have to be written for the zeroth and first order closures
of the Su-Olson test. We start with the first order closure in Subsection 2.2,
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keeping the notation used therein. The system to solve reads





∂t̺ + ∂xJ = σa(Θ − ρ) + S,

ε2∂tJ + ∂x

(
̺ψ(εJ/̺)

)
= −J

∂tΘ = σa(ρ − Θ).

(4.48)

The nonlinear system (4.48) can be seen as the limit, as α tends to 0, of





∂tρ + ∂xJ = σa(Θ − ρ) + S,

ε2∂tJ + ∂xz = −J,

∂tz + ε2λ2∂xJ =
1

α

(
ρψ(εJ/ρ) − z

)

∂tΘ = σa(ρ − Θ).

(4.49)

The kinetic scheme will be summarized as

Step 1.- Solve

∂tf0 = µ2 (σa(Θ − ρ) + S) ,

∂tf± ± µ

ε
∂xf± = −f±

ε2
+

z

2ε2
,

∂tΘ = σa(ρ − Θ),

that can be computed as

Step 1.1.- ∂tf0 = 0,

∂tf± = −f±
ε2

+
z

2ε2
∓ µ

2ε
∂xz,

∂tg± = −g±
ε2

∓ µ

2ε2
∂xz,

∂tΘ = σa(ρ − Θ),

where the initial condition for the ODEs are the values computed in the
previous step and

Step 1.2.- ∂tf0 = µ2 (σa(Θ − ρ) + S)

∂tf± ± µ∂xg± = 0,

∂tg± = 0,

∂tΘ = 0

where the initial conditions are, for f±, the ones obtained in Step 1.1. For
g±, we update them in terms of the flux g±(0) = ±µJ/2 = ±(f+ − f−)/2ε.
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Step 2.- Solve the ODE

∂tf0 = − 1

α
(ρψ(u) − z),

∂tf± =
1

2α
(ρψ(u) − z),

∂tΘ = 0.

This kinetic scheme in macroscopic variables is

zn+1/2 = zn +
ε(1 − e−∆t/ε2

)

2

(
D̄+(zn) + D̄−(zn)

)

+∆t

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

Jn+1/2 = e−∆t/ε2
Jn +

1 − e−∆t/ε2

2µ

(
D̄+(zn) − D̄−(zn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

Θn+1/2 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn,

ρn+1/2 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

))

+∆t
(
σa(Θ

n+1/2 − ρn) + Sn
)
.

while the second step will coincide with Step 2 of Subsection 2.2 together
with Θn+1 = Θn+1/2. From here, we can write the completely relaxed
scheme

Jn+1 = e−∆t/ε2
Jn +

1 − e−∆t/ε2

2µ

(
D̄+(ρnψn) − D̄−(ρnψn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

)]
,
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Θn+1 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn,

ρn+1 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

))

+∆t
(
σa(Θ

n+1 − ρn) + Sn
)
.

Concerning the zeroth order closure for the Su-Olson test, we have the
system 




∂t̺ − ∂x

(̺

ε
G

(
ε
∂x̺

̺

))
= σa(Θ − ρ) + S,

∂tΘ = σa(ρ − Θ),

(4.50)

that can be seen as the relaxation, when α tends to 0, of

∂tρ + ∂xJ = σa(Θ − ρ) + S,

∂tJ +
µ2

ε2
∂xρ = − 1

α

[
J +

ρ

ε
G

(
ε
∂xρ

ρ

)]
,

∂tΘ = σa(ρ − Θ).

Proceeding similarly to Subsection 2.4 and as above for the first order clo-
sure, we conclude the completely relaxed scheme for the density and tem-
perature is

Θn+1 =e−σa∆tΘn + σa(1 − e−σa∆t)ρn.

ρn+1 = ρn + ∆t

{
D+

[
ρn

2εµ
G

(
ε

µ

D̄+ρn

ρn

)]
+D−

[
ρn

2εµ
G

(
ε

µ

D̄−ρn

ρn

)]}

+ ∆t
(
σa(Θ

n+1 − ρn) + Sn
)
, (4.51)

For intermediate values of the parameter ε, it is worth comparing the
results obtained with the models described above to the simulations based
on the semi-lagrangian SL-WENO scheme already discussed in Section 4.3.
Indeed, remind that the asymptotic kinetic scheme was developed for the
asymptotic limit ε → 0. Similarly, the range of validity of the macroscopic
models is also restricted to small ε’s; furthermore, the theoretical results in
[36] prove the validity of these models for density values close to constant
and far from vacuum. Hence, it is worthy to compare its results to those of
the previous scheme particularly for moderate values of ε. The SL-WENO
scheme for the Su-Olson test summarizes as follows:

Step 1.- Relax f

∂tf =
1

ε2
Q(f) + σa(Θ − ρ) + S
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Step 2.- Compute advection and relax the temperature

∂tf +
v

ε
∂xf=0

∂tΘ = σa(ρ − Θ)

which gives the following numerical method:

Step 1.- Relax f

fn+1/2 = e−∆t/ε2
fn + (1 − e−∆t/ε2

)
[
ρn + ε2 (σa(Θ

n − ρn) + Sn)
]

Θn+1/2 = Θn

Step 2.- Compute advection by an interpolation method and relax
the temperature

fn+1(xi, vj) = fn
ε

(
xi − ∆t

vj

ε

)
,

Θn+1 = e−σa∆tΘn+1 + σa(1 − e−σa∆t)ρn+1.

For the simulations, the source term S(x) has been chosen as the char-
acteristic function of the interval [0, 1] inside the total interval [0, 30] with
ε = 0.01 and ε = 0.26 respectively. We refer to the results in [87, 99, 18, 20]
for comparison. The solutions of the macroscopic models are computed with
the complete relaxed methods α = 0 with mesh Nx = 256 and Nv = 256.
The traditional test considers as initial data the constant equilibrium value
10−10 for f0 = ρ0 = Θ0. The smallness of this value makes the simu-
lation particularly tough; hence, we also perform the computations with
f0 = ρ0 = Θ0 = 1. We make different runs, with ε varying from 0.026 to
0.26. The numerical results are displayed in Figures 7 to 12.

A first conclusion is that the SL-WENO code is highly sensitive to the
changes of ε, see Figure 7-(i) and(j), as already seen above, see Figure 1;
we believe that the results become relevant only for the largest values of ε
(ε = 0.26, ε = 1), see Figures 10, 11, 12. The result in the case ε = 0.26
is surprisingly close to the solution of the heat equation. This is a bit mis-
leading since in this regime there is no reason why the heat equation can
describe the dynamics of the kinetic equation well. Other tests with direct
finite-differences WENO schemes as the ones used in [30] may be interesting
to clarify this point, although not directly linked to the asymptotic discus-
sion in this paper, and thus it will be treated elsewhere.

We observe that the results given by the heat equation, the two closure
models and the kinetic scheme are almost undistinguishable from each other
up to final time 10, for small ε’s, see Figures 8, 9. Differences appear as ε
grows and correspond to the results in [18, 20]. There are discrepancies
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between the diffusion model, the other macroscopic models and the kinetic
equation, especially for earlier times. These discrepancies reduce as time
grows. It is also worth pointing out that, as in [18, 20] and contrarily to
[87, 99], the results are oscillation free for the first order closure, both for
the density ρ and the reduced flux εJ/ρ, which remains bounded by 1, as
expected.

The kinetic scheme is also sensitive to the variations of ε, particularly
for the almost vanishing initial data, see Figure 7-(g) and (h). We observe
that the results differ from the ones given by SL-WENO for ε = 0.26 and
almost vanishing initial data: the main errors appear in the regions of large
gradient of the density, see Figure 10. Clearly the kinetic scheme is not
well adapted for this regime for such a small initial data. However, the
performances are better considering a larger initial data, since in such a
case the slopes are less steep see Figures 11 and 12. Note that this test
also shows the limitation of the asymptotic-induced method since when ε
grows we are faced with difficulties related to the maximum principle, see
Remark 4.3.5. In particular, the scheme for the first order closure is not
positive in the sense of [20], the computed εJ/ρ can violate the limited flux
condition and we are in trouble to evaluate the flux (again, increasing the
initial data makes things easier). Finally, it is remarkable to observe that
the first order closure results are satisfactory in all regimes. This makes
this closure model really valuable. More figures are available on the URL
http://diffnum.gforge.inria.fr/SU-OLSON/.

4.6 Conclusion

We have proposed new numerical schemes based on splitting techniques
specifically adapted to diffusion regimes. The main idea behind this strat-
egy is the separation between the hydrodynamic quantities and the fluc-
tuations. Hence, the method we design is explicit, asymptotic preserving,
well balanced and mass preserving thanks to a suitable treatment of the
numerical boundary conditions. This approach applies equally well to the
original kinetic equation and to the macroscopic models coming from closure
approximations.

The numerical experiments demonstrate the abilities of the scheme to
give accurate quantitative estimates of the errors made by the approxima-
tions to the kinetic equation. The first order closure is shown to be the most
accurate approximation, among those we chose, for the kinetic equation in
the diffusive limit. This confirms that the choice of the closure by entropy
minimization principle is certainly appropriate for applications where the
kinetic equation is coupled with more complex systems.
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(a) 0th order model (b) 0th order model

(c) 1st order model (d) 1st order model

Figure 7: Su-Olson test: Comparison of the density ρ computed by the
different models as ε varies at time t = 1. From top to bottom: 0th order
model, 1st order model, heat equation, kinetic asymptotic-induced model,
SL-WENO scheme. Left column: results in log-log scale for the initial data
f0 = ρ0 = Θ0 = 10−10; Right column: results in semi-log scale initial data
f0 = ρ0 = Θ0 = 1.
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(e) Heat (f) Heat

(g) Kinetic (h) Kinetic

(i) SL-WENO (j) SL-WENO

Figure 7: Su-Olson test: Comparison of the density ρ computed by the
different models as ε varies at time t = 1 (continued).
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Figure 8: Su-Olson test: Left column: comparison of densities ρ; middle
column: comparison of temperatures Θ ; right column : comparison of
reduced fluxes εJ/ρ in log-log scales for the solutions after time 1, 3 and 10
time units respectively (from top to bottom) computed with the kinetic, the
heat equation, the first and the zeroth order closure methods for ε = 0.026.
The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 9: Su-Olson test: Left column: comparison of densities ρ; middle
column: comparison of temperatures Θ ; right column : comparison of
reduced fluxes εJ/ρ in log-log scales for the solutions after time 1, 3 and 10
time units respectively (from top to bottom) computed with the kinetic, the
heat equation, the first and the zeroth order closure methods for ε = 0.1.
The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 10: Su-Olson test: Left column: comparison of densities ρ; middle
column: comparison of temperatures Θ ; right column : comparison of
reduced fluxes εJ/ρ in log-log scales for the solutions after time 1, 3 and
10 time units respectively (from top to bottom) computed with the kinetic,
the heat equation, the first and the zeroth order closure methods for ε =
0.26.The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 11: Su-Olson test: Left column: comparison of densities ρ; middle
column: comparison of temperatures Θ ; right column : comparison of
reduced fluxes εJ/ρ in log-log scales for the solutions after time 1, 3 and 10
time units respectively (from top to bottom) of with the kinetic, the heat
equation, the first and the zeroth order closure methods for ε = 0.26. The
initial data is f0 = ρ0 = Θ0 = 1.
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Figure 12: Su-Olson test: Left column: comparison of densities ρ; middle
column: comparison of temperatures Θ ; right column : comparison of
reduced fluxes εJ/ρ in log-log scales for the solutions after time 1, 3 and
10 time units respectively (from top to bottom) computed with the kinetic,
the heat equation, the first and the zeroth order closure methods for ε = 1.
The initial data is f0 = ρ0 = Θ0 = 1.
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Chapter 5

A Semi-lagrangian

deterministic solver for a

hybrid quantum-classical

nanoMOSFET

This Chapter refers to a work with Naoufel Ben Abdallah from Toulouse and
José Antonio Carrillo from Barcelona. It is still in progress, and no paper
has been submitted yet, but the first results we have got are encouraging
for going on on this path.

5.1 Introduction

The deterministic simulation of double gate MOSFETs is an important sci-
entific computing problem in electrical engineering. The typical size of
current MOSFETs in nowadays research has decreased dramatically and
quantum effects can no longer be neglected. Very Large Scaled Integrated
(VLSI) chips are designed using these basic MOSFETs as bricks of circuits
with complicated topologies.

Here, we follow an extended approach in the electrical engineering com-
munity in this kind of devices consisting in a different description depending
on the dimension. A typical MOSFET geometry can be seen in Figure 1.
Usually, the transport in the longer dimension, x-space variable, is consid-
ered as classical while the confinement in the shorter dimension, z-space
variable, is quantum-mechanically modeled.

Therefore, the PDE models considered in each dimension are different,
see Figure 2. In the x-dimension, the electrons behave like particles, so a
classical description is satisfactory. In the z-dimension, as its length is com-
parable with the Abbye length, the energy levels become quantized and the

135
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N N N+

Silicon oxide

x−dimension

8nm Si Si Si+
SOURCE CHANNEL DRAIN

z−dimension

GATE

GATE

Silicon oxide

5nm 5nm10nm

1nm 1nm

1nm

1nm

Figure 1: A typical double gate MOSFET.

electrons behave like waves, so a quantum description via a wave-function is
adopted. Since electrons in different energy levels or bands have to be con-
sidered as independent populations, we have to use a structured population
model in energy-bands, i.e., an equation for each of these single energy-
band populations. We refer to [3, 4, 5, 101] for a detailed description of
these models and some properties of these models in case a drift-diffusion
approximation is chosen for the classical transport.

In this dimension the electrons
behave like particles, so a

Vlasov−Boltzmann equation
is appropriate.

In this dimension,
as it is very thin,
the electrons
behave like waves,
their energy levels
become quantized
and a quantum description via
Schroedinger equation is
appropriate.

DIMENSIONAL COUPLING

z−dimension (quantum)

x−dimension (classical)

classical kinetic description via 

Figure 2: The coupling strategy is dimensional. We shall describe the elec-
trons in the x-dimension as particles, and in the z-dimension as waves. The
different descriptions are coupled in Poisson’s equation through the total
density number.

The coupling comes through the computation of the self-consistent elec-
tric field which depends on the total number of electrons in each of the
energy bands. Also, the collision operator may couple the sub-bands, i.e.,
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describe the electron jumps between energy levels or bands.
Then, the problem mainly divides into two blocks. On one hand, the

solution of the Boltzmann Transport Equation (BTE) for each of the sub-
bands p gives the evolution of the distribution fp(t, x, k) in phase space
((x, k) = (x, k1, k2) ∈ [0, L] × R

2) of the p-electron population

∂fp

∂t
+

1

~
∇kǫ

kin
p · ∇xfp −

1

~
∇xǫpot

p · ∇kfp = Qp[fp] (5.1)

plus boundary conditions

where ~ is the reduced Planck constant. On the other hand, the solution of
the Schrödinger-Poisson (SP) system allows to compute the potential V (x, z)
the sub-band potential energies ǫpot

p (x), given the occupation numbers

ρp =

∫

R2

fpdk

from the equations

− d

dz

[
1

m∗(z)

dχp

dz

]
− q (V + Vc)χp = ǫpot

p χp (5.2)

{χp}p ⊆ H1
o , 〈χp, χq〉 =

∫
χpχqdz = δp,q

−divx,z [εR(x, z)∇x,zV ] = − q

ε0
[N − ND] (5.3)

plus boundary conditions,

Here, m∗(z) is the effective electron mass, q the positive elementary charge
and Vc the confining potential, i.e. the build-in potential drop near the SiO2

layer which confines the carriers along the z-dimension, ε0 is the vacuum
dielectric permittivity, εR the possibly spatial-dependent relative dielectric
permittivity, N the total density, which is a mixed quantum-classical state,
sum of the densities of all the subbands

N(t, x, z) =
∑

p

Np(t, x, z) =
∑

p

∫

R2

fp(t, x, k)dk|χp(t, x, z)|2,

and ND is the doping profile which takes into account the injected impurities
in the semiconductor lattice. The time t and the position x just act as
parameters in this second block and were omitted. Also, we follow shortcuts
H1

o for the Sobolev space H1
o (0, lz) and the integral symbol for the integral

on the interval z ∈ (0, lz).
The collisions are described in the low-density approximation

Qp[fp] =
∑

p′

∫

R2

αp,p′
[
Mp(k)fp′(k

′) − Mp′(k
′)fp(k)

]
dk′,
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where M(k) is the Maxwellian

M(k) =
~

2

2πm∗kBTL
exp

(
− ~

2|k|2
2m∗kBTL

)
.

For the scope of this work, we shall use a relaxation time operator

Qp[fp] =
1

τ
[M(k)ρp − fp(k)] ,

where the relaxation time τ is chosen from the relation with the mobility µ

τ =
µm∗

q
.

The band structure of the semiconductor crystal is described by the band
energy function ǫp(t, x, k), which has contribution of a kinetic part

ǫkin
p (k) =

~
2|k|2

2m∗kBTL

and a potential part which results from the solution of a Schrödinger equa-
tion along the z-dimension (5.2). We simplify in the following the notation
for the potential energy for the pth band in the rest: ǫpot

p ≡ ǫp. Then, the
velocities are

vp(k) =
1

~
∇kǫ

kin
p (k) =

~k

m∗
= v(k), (5.4)

and they do not depend on the subband; this is strictly related to the
parabolic band approximation. If we were using the Kane dispersion, then
the velocities would be band-dependent and the problem would become more
delicate to treat.

The total system (5.2)-(5.3) has to be completed by adding suitable
initial and boundary conditions for this problem.

Initial condition.

As initial condition, we impose a thermodynamical equilibrium for the sys-
tem when no drain-source voltage is applied, that is

feq
p (x, k) = M(k)ρeq(x).

In order to give the initial occupation numbers, we have to find the so-called
Fermi levels ǫeq

F . If we have the same configuration at the source and the
drain and no voltage is applied then the Fermi levels are constant in the
device. Initial occupation numbers are assumed to be given by Boltzmann
statistics

ρeq
p =

m∗kBTL

~2
e

ǫ
eq
F

−ǫ
eq
p

kBTL
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where the constraint of electrical neutrality
∫

N eq(x, z)dz =
∫

ND(x, z)dz
at contacts x = 0 and x = L has to be imposed, which provides the final
expression of the Fermi levels

ǫeq
F = (kBTL) log




~
2

m∗kBTL

∫ lz
0 NDdz

∑
q e

− ǫ
eq
q

kBTL


 . (5.5)

In order to compute the energy levels ǫeq
p we still need to compute the set

of solutions
(
V eq, {ǫp[V

eq], χp[V
eq]}p

)

of the Schrödinger-Poisson system (5.2)-(5.3) (at thermal equilibrium), where
the density reads

N eq(x, z) =

∫
ND(0, z)dz

∑
q e

ǫq [Vb](0)

kBTL

∑

p

e
ǫp[V eq ](x)

kBTL |χp[V
eq](x, z)|2

and Vb is the solution of the Schrödinger equation (5.2) coupled with a
1D Poisson problem at the contact for computing the potential and the
eigenproperties which respect the electrical neutrality

− d

dz

[
εR(0, z)

dVb

dz

]
= − q

ε0
[N [Vb] − ND(0, z)]

Homogeneous Neumann at z = 0 and z = lz

N [Vb] =

∫
ND(0, z)dz

∑
q e

− ǫq [Vb]

kBTL

∑

p

e
− ǫp[Vb]

kBTL |χp[Vb]|2.

Boundary conditions for the BTE

We need to properly set up border conditions for the incoming particles at
the contacts of the device since no flux boundary condition is imposed on the
rest of the boundary. The proceeding is almost the same as for setting the
initial condition, the only difference being that we look at the situation on
either sides of the device. We force the system to fulfill electrical neutrality
at contact by pushing the border carrier populations to stay close to feq

p ,
the equilibrium distribution: therefore we impose for entering particles

fn
p (x ∈ {0, L}, k) =

ρeq
p (x)

ρn
p (x)

fn
p (x, k)

so that we obtain
∫

R2

fn
p (x ∈ {0, L}, k)dk = ρeq

p (x),
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while the outgoing particles are determined by the system itself, so we simply
impose homogeneous Neumann boundary conditions.

The k1-dimension is taken large enough in order to make fn
p (x, k1, k2)

vanish at the borders, so that any boundary conditions would fit, because no
population can be found there. Therefore we impose homogeneous Neumann
conditions.

Refer to Figure 3 for an overview.

Boundary conditions for the Schrödinger-Poisson block

As for the diagonalization (5.2), we impose the wave function to be in
H1

o (0, lz).

We impose on the Poisson equation the typical Neumann boundary con-
ditions on the whole boundary of the device except at the gates, in which
Dirichlet boundary conditions are assumed, and at contacts, where the phys-
ically meaningful conditions are Dirichlet conditions

V (t, 0) = Vb(z)

V (t, L) = Vb(z) + VDS(t).

Here VDS(t) is the applied drain-source potential at time t: the potential
cannot be applied all of a sudden, because it would be physically meaningless
and it would produce numerical strong instabilities.

Ideally we want to have both Dirichlet (for the applied drain-source drop)
and Neumann (for the electrical neutrality) conditions at contacts, therefore
we impose Robin conditions, which mix either constraints:

dV

dn
+ α (V − Vb) = 0.

For α = 0 we have homogeneous Neumann, while for α → +∞ we recover
Dirichlet. By a proper choice of this parameter we achieve acceptable po-
tential drop and electrical neutrality. Conditions are resumed in Figure 3.

Remark 5.1.1 (The three valleys question). There are six possible config-
uration for the particles in the Si. This phenomenon is strictly related with
the quantum description of the Si atom. Consider the Block wave Ep(k) and
develop it in series

Ep(k) = Ep(0) + E′
p(0)k + E′′

p (0)
k2

2
+ ...

If we are developing near a minimum,

Ep(k) ≈ Ep(0) + E
′′

p (0)
k2

2
.
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k
1

xx=0 x=L

=
to the equilibrium density
force the density to stay close

= Homogeneous Neumann

=

=

=

Robin boundaries

homogeneous Neumann

Dirichlet

x

z

kmax

−kmax

Figure 3: Boundary conditions for the Boltzmann Transport Equation and
the Poisson-like equations.

The Hessian matrix E
′′

p (0) (also called “effective mass” in physics literature)
is symmetric, so in fact, three degrees of freedom are allowed. This is where
the six configurations (three multiplied by two for symmetry arguments) come
from. For each band, six configurations must be taken into account and
treated separately.

ρn
p =

6∑

q=1

∫

R2

fn
p,q(x, k)dk.

This is a further improvement in the modelling of Si-based devices, but for
the scope of this work we shall focus on the single-valley case.

5.2 Numerical schemes

Let us first reduce the complete system to dimensionless cartesian coordi-
nates. We assume invariance along the y-dimension, therefore the device
spans over the (x, z)-plane. We use the following adimensionalization:

adim. parameter value

x̃ = l∗x, z̃ = l∗z l∗ = Lx 20 × 10−9 m

k̃ = k∗k k∗ =
√

2m∗kBTL

~
5.824664 × 108

t̃ = t∗t t∗ = “typical time” 10−14 s

Ṽ = V ∗V V ∗ = typical Vbias 1 V

ǫ̃ = ǫ∗ǫ ǫ∗ = ~
2k∗2

2m∗

4.141951 × 10−21

ρ̃ = ρ∗ρ ρ∗ = k∗2 3.392672 × 1017

|χ̃|2 = χ∗|χ|2 χ∗ = 1
l∗ 2.000000 × 107

Ñ = N∗N N∗ = ρ∗χ∗ 6.785343 × 1024

. (5.6)
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The BTE reduces to

∂fp

∂t
+ 2CV k1

fp

∂x
− CV ǫpot

p

∂x

∂fp

∂k1
=

1

τ
[Mρp − fp] , (5.7)

where the dimensionless parameter is

CV =
t∗ǫ∗

~l∗k∗ ,

τ is now the dimensionless relaxation time τ = τ̃
t∗ and the adimensionalized

Maxwellian reads

M(k) =
1

π
e−|k|2 .

The Schrödinger-Poisson block reads now

−CS,1 d

dz

[
1

m∗(z)

dχp

dz

]
− CS,2 [V + Vc] χp = ǫpχp (5.8)

−divx,z [εR(x, z)∇x,zV ] = −CP [N − ND] , (5.9)

where the dimensionless parameters are

CS,1 =
~

2

ǫ∗l∗2m∗
, CS,2 =

qV ∗

ǫ∗
, CP =

eN∗l∗2

V ∗ε0
.

Numerical values for all the involved dimensionless parameters, derived
from the physical constants, the problem data and the rescaling are given
in the following table:

dimensionless constant value

CV = ǫ∗t∗

~k∗l∗ 1.348615 × 10−2

α = ~ω
kBTL

2.436946

CS,1 = ~2

ǫ∗l∗2m∗

2.358024 × 10−3

CS,2 = qV ∗

ǫ∗ 3.868169 × 101

CP = eN∗l∗2

V ∗ε0
1.534770 × 10−5

5.2.1 Discretization

The computational domain is discretized into a tensor product mesh, and a
uniform mesh is taken in each direction:

xi = i∆x

(k1)l = −ǫ−1
kin(αN̄) + l∆k1

(k2)m = −ǫ−1
kin(αN̄) + m∆k2,

where α is the dimensionless energy α = ~ω
kBTL

and ω is the phonon frequency.
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We essentially need two main building blocks for the numerical algo-
rithm: one for transport along the x-dimension and one for the computation
of the self-consistent potential and all the eigenproperties (band potential
energies, Schrödinger eigenfunctions and the electron density itself) through
the Schrödinger-Poisson equation, whose solver is the object of the next
section.

5.2.2 Newton schemes for the SP block

The Schrödinger-Poisson block (5.8)-(5.9) cannot be decoupled: the poten-
tial is needed for the computation on the energy levels (Schrödinger eigen-
values) and Schrödinger eigenfunctions, and the density (which is an eigen-
property itself, requiring the energy levels for its computation) is needed for
the self-consistent computation of the electric potential (through Poisson
equation).

In [101] the author implemented a Gummel iteration to deal with this
block; we have preferred the use of a Newton schemes, even if it requires the
evaluation of some Gâteaux derivatives which are not straightforward. We
try to minimize the following functional:

P [V ] = −div [εR∇V ] +
q

ε0
[N [V ] − ND] (5.10)

whose minimum is, in this case, a zero. The Newton iteration reads

−dP (V old, V new − V old) = −P [V old], (5.11)

where dP (V, U) denotes the Gâteaux derivative of functional P , at point V
in direction U .

We remind that the Gâteaux derivative has the following definition:
given F : X −→ Y , being X and Y Banach spaces (in fact, only locally con-
vex topological vector spaces is required), U ⊆ X an open set, the Gâteaux
derivative of F at point u ∈ U in direction ψ ∈ X is

dF (u, ψ) = lim
ε→0

F (u + εψ) − F (u)

ε
.

In order to be able to compute the Gâteaux derivative of the functional
(5.10), we have to know how to differentiate eigenvalues and eigenvectors in
the generalized eigenvalue problem, whose details were given in Chapter 1,
Section 1.8. We recall formulae (1.36) and (1.36):

dǫp(V, U) = −q〈Uχp[V ], χp[V ]〉

dχp(V, U) = −q
∑

p′

〈Uχp[V ], χp′ [V ]〉
ǫp[V ] − ǫp′ [V ]

,
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where 〈·, ·〉 just means integration. The Gâteaux derivative of (5.10) is
therefore calculated:

dP (V, U) = −div [εR∇U ] +
q

ε0
dN(V, U),

from which we can see that the central point is how the density is defined. All
the different Schrödinger-Poisson problems come from the various definitions
of the meaningful densities, whose derivative has, at any rate, form

dN(V, U) =

∫
A[V ](ζ)U(ζ)dζ,

where the kernel A[V ] may have one or more contribution, each one needing
to be positive definite.

Scheme (5.11) gives rise to a Poisson-like equation in which an extra
term appears:

−div [εR∇V new] +

∫
A[V ](ζ)V new(ζ)dζ

= − q

ε0

[
N [V old] − ND

]
+

∫
A[V ](ζ)V old(ζ)dζ.

Numerical solution. The divergence and gradient operators are ap-
proximated by alternate finite differences, in order to recover the classical
three-points centered scheme for the Laplacian, and the integrals are com-
puted through trapezoids approximation. Once the equation has been de-
scretized, it is solved by means of a Lapack routine called DGESV, which
has proven to be robust and fast. For more detail refer to Section 1.6 for
the 1D case and Section 1.7 for the 2D case.

Three are the problems which we need to solve by Newton schemes (each
one corresponding to a different definition of the density N and by conse-
quence of the kernel A[V ]). For each problem we have to choose different
boundary conditions.

Problem 1: boundary potential.

This is a 1D problem; we need to compute at x = 0 and x = L the
potential Vb and the density respecting the electrical neutrality condition∫ z=lz
z=0 N(x, ζ)dζ =

∫ z=lz
z=0 ND(x, ζ)dζ. The density is defined (written with

physical dimensions)

N [Vb] =

∫ z=lz
z=0 ND(0, ζ)dζ

∑
q e

− ǫq [Vb]

kBTL

∑

p

e
− ǫp[Vb]

kBTL |χp[Vb]|2,

and homogeneous Neumann boundary conditions are taken at z = 0 and
z = lz.
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Problem 2: thermodynamical equilibrium.

Once we have computed the boundary potential, we must compute the ther-
modynamical equilibrium for the system when no drain-source voltage is
applied:

N [Veq] =

∫ z=lz
z=0 ND(0, ζ)dζ

∑
q e

− ǫq [Vb]

kBTL

∑

p

e
− ǫp[Veq ]

kBTL |χp[Veq]|2,

where we impose Dirichlet conditions at gates, Dirichlet (Veq = Vb)) at
contacts (but if homogeneous Neumann or Robin were imposed there would
be no difference, as shown by numerical tests), and Homogeneous Neumann
elsewhere.

Problem 3: potential.

While making the code progress in time, we need to be able to update
the potential during all the transition states. Two versions are possible: an
explicit computation and a semi-implicit scheme, which shows less numerical
stability and much longer convergence times (even if it should push the
eigenproperties towards the equilibrium).

N [V ] =





∑

p

ρn+1
p |χp[V ]|2 explicit

∑

p

ρn+1
p e

ǫn
p

kBTL |χp[V ]|2e−
ǫp[V ]

kBTL semi-implicit
.

As for the boundary conditions, at contacts we would like to have both the
electrical neutrality (i.e. homogeneous Neumann conditions) and the correct
potential drop which we impose (i.e. Dirichlet conditions); we accomodate
it by the use of Robin conditions

dV

dn
+ α (V − Vb) = 0,

so that we can mix them: we do not achieve the desired potential drop but
the electrical neutrality is satisfied enough. By imposing Dirichlet condi-
tions, we loose too much of the electrical neutrality. To give an idea of how
these schemes work, we give the Gâteaux derivative of the potential relative
to this problem (in the explicit case):

dN(V, U) =
∑

p

ρp2dχp(V, U)χp[V ]

=

∫
A[V ](z, ζ)U(ζ)dζ
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once we have defined the kernel A[V ] as

A[V ](z, ζ) = −2q
∑

p,p′

ρp

ǫp[V ] − ǫp′ [V ]
χp[V ](ζ)χp′ [V ](ζ)χp[V ](z)χp′ [V ](z)dζ

= q
∑

p,p′

ρp′ − ρp

ǫp[V ] − ǫp′ [V ]
χp[V ](ζ)χp′ [V ](ζ)χp[V ](z)χp′ [V ](z)dζ.

The positive definiteness can be easily checked noticing that

ρp′ − ρp

ǫp[V ] − ǫp′ [V ]
≥ 0,

because the energies are taken in increasing order, which makes the occu-
pation factors be decreasing (physically it is obvious that the lowest energy
levels are the most occupied).

5.2.3 Numerical schemes for the direction of transport

We have several possibilities as for the integration of the BTE (5.7): first of
all we have the choice of integrating the original pdf fp(t, x, k) or defining a
slotboom variable gp(t, x, k) by

fp(t, x, k) = gp(t, x, k)e−ǫp(t,x)−|k|2 ,

and integrating this last one instead. As for the time discretization, it can be
achieved by a third order TVD (Total Variation Diminishing) Runge-Kutta
scheme [28], or by splitting techniques [35]. The advantage of integration the
slotboom variable is that if we are in an equilibrium state, then gp(t, x, k)
is constant and the equilibrium is numerically well preserved. The BTE in
the slotboom variable has one additional term:

∂gp

∂t
+ 2CV k1

gp

∂x
− CV ǫpot

p

∂x

∂gp

∂k1
− ∂ǫpot

p

∂t
gp =

1

τ

[
1

π

∫

R2

gp(k
′)e−|k′|2 − gp(k)

]
.

We resume now the available schemes for the solution of the transport.

WENO second order time splitting schemes in the original variable

The approximation denoted by fn
p,i,l,m to the point values of the solution

fp(t
n, xi, (k1)l, (k2)m) is made evolve in time through the second order time

splitting scheme subdividing the BTE (5.7):

• Step 1. Solve

∂fn
p

∂t
+ 2CV k1

fn
p

∂x
− CV

(
∂ǫpot

p

∂x

)n
∂fn

p

∂k1
= 0

for a ∆t
2 -time step; call f

n+1/3
p the solution.
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• Step 2. Solve

∂f
n+1/3
p

∂t
=

1

τ

[
Mρn+1/3

p − fn+1/3
p

]

for a ∆t-time step; call f
n+2/3
p (x, k) the solution.

• Step 3. Solve

∂f
n+2/3
p

∂t
+ 2CV k1

f
n+2/3
p

∂x
− CV

(
∂ǫpot

p

∂x

)n+2/3
∂f

n+2/3
p

∂k1
= 0

for a ∆t
2 -time step; its solution is the desired fn+1(x, k) pdf.

The same procedure is recursively adopted inside the transport part to sub-
divide this block into the solution of one-dimensional advection problems.
Refer to Section 1.2 for details about splitting schemes.

Numerical Scheme: 1D Advection Step.- Each transport block is
solved by the Flux Balance Method [46, 26]: when solving the x-transport,
k1 and k2 act as parameters, as well as x and k2 when solving the k1-
transport. This method is based on the semi-lagrangian approach of follow-
ing the characteristics backwards; the improvement is that we force the mass
conservation, unlike the direct method, which gives no guarantee about this
point. The solution of the x-transport gives

f∗∗
p,i,l,m = f∗

p,i,l,m +
1

∆x

{[
F (xi−1/2) − F (xi−1/2 − 2CV k1∆t)

]

−
[
F (xi+1/2) − F (xi+1/2 − 2CV k1∆t)

]}

F (x) =

∫ x

0
f∗

p [ξ, (k1)l, (k2)m] dξ

and, as for the solution of the k1-transport,

f∗∗
p,i,l,m = f∗

p,i,l,m

+
1

∆k1

{[
F ((k1)j−1/2) − F

(
(k1)j−1/2 + CV ∂ǫpot

p

∂x
(xi)∆t

)]

−
[
F ((k1)i+1/2) − F

(
(k1)i+1/2 + CV ∂ǫpot

p

∂x
(xi)∆t

)]}

F (k1) =

∫ k1

0
f∗

p [xi, ξ, (k2)m] dξ.

More details about the FBM method can be found in [46, 26]. In order to
compute the fluxes, for instance,

F (xi+1/2) − F (xi+1/2 − 2CV k1)
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we reconstruct the values F (xi+1/2 − 2CV k1), given the known values of the
primitive at the grid points F (xi+1/2), by the fifth order Pointwise WENO-
6,4 interpolation summarized in next subsection.

Solution via Finite Differences in the original variable.

The approximations to the point values of the solution fn
p,i,l,m are obtained

with a dimension-by-dimension (not dimension splitting, in this case) ap-
proximation to the spatial derivatives using fifth order WENO method in
[64]. The BTE (5.7) is rewritten (in conservation form)

∂fp

∂t
(t) = L(f, t) ≈ − ∂

∂x
(a1(k)fp) +

∂

∂k1
(a2(t, x)fk1) + Qp[fp] (5.12)

with

a1(k) = 2CV k1, a2(t, x) =
∂ǫpot

p

∂x
(t, x).

When approximating ∂
∂x(a1(k)fp), for instance, the other variables (k1, k2)

are fixed and the approximation is performed along the x-line:

∂

∂x

(
a1((k1)l, (k2)m)fn

p,i,l,m

)
≈ 1

∆x
(ĥi+1/2 − ĥi−1/2),

where the numerical flux ĥi+1/2 is obtained with the fifth order, once com-
puted the ”wind direction”, i.e. the sign of the coefficient a1((k1)l, (k2)m):
as this sign is independent of i, when l and m are fixed, the wind direction
is fixed. Suppose that a1((k1)l, (k2)m) > 0 (otherwise the procedure would
just be a mirror symmetry with respect to i + 1/2 when computing ĥi+1/2.
We denote

hi = a1((k1)l, (k2)m)fn
p (xi, (k1)l, (k2)m),

i = −Ngh, ..., Nx + Ngh − 1, (n, p, l, m) fixed,

where Ngh is the number of ghost points needed for imposing the boundary
conditions (with fifth order WENO for flux reconstruction, Ngh = 3). The
numerical flux is

ĥi+1/2 = ω0ĥ
(0)
i+1/2 + ω1ĥ

(1)
i+1/2 + ω2ĥ

(2)
i+1/2,

where ĥ
(k)
i+1/2 are the third order fluxes on three different stencils given by

ĥ
(0)
i+1/2 =

1

3
hi−2 −

7

6
hi−1 +

11

6 i

ĥ
(1)
i+1/2 = −1

6
hi−1 +

5

6
hi +

1

3 i+1

ĥ
(2)
i+1/2 =

1

3
hi +

5

6
hi+1 −

1

6 i+2
,
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the non-linear weights are given by

ωk =
ω̃k∑
k′ ω̃k′

, ω̃k =
γk

(ε + βk)2
,

the linear weights are

γ0 =
1

10
, γ1 =

3

5
, γ2 =

3

10
,

the smoothness indicators are

β0 =
13

12
(hi−2 − 2hi−1 + hi)

2 +
1

4
(hi−2 − 4hi−1 + 3hi)

2

β1 =
13

12
(hi−1 − 2hi + hi+1)

2 +
1

4
(hi−1 − hi+1)

2

β2 =
13

12
(hi − 2hi+1 + hi+2)

2 +
1

4
(3hi − 4hi+1 + hi+2)

2 ,

and ε = 10−6 is a numerical parameters which avoids the denominator to
become zero.

The approximation to
∂(a2fp)

∂k1
is performed in the same fashion. Again,

once (p, n, i, m) are fixed, the wind direction is fixed.

For the time discretization a third order TVD (Total variation Dimin-
ishing) RUnge-Kutta method [95]:

f (1)
p = fn + ∆tL(fn, tn)

f (2)
p =

3

4
fn +

1

4
f (1)

p +
1

4
∆tL(tn + ∆t, f (1) + ∆t)

fn+1
p =

1

3
fn +

2

3
f (2)

p +
2

3
∆tL

(
tn +

∆t

2
, f (2) + ∆t

)
,

where L(t, f) is defined at (5.12). The time stepping is restricted by the
CFL condition due to the explicit character of the time evolution solver (see
[94] for a discussion):

∆t ≤ CFL

(
∆x

max |a1|
+

∆k1

max |a2|

)
.

Integration in the slotboom variable. If we integration the BTE in
the slotboom variable we can use the previously defined schemes; as for the
Finite Differences Runge-Kutta scheme, the adaptation is straighforward.
The use of the time splitting scheme is a bit more tricky due to the presence

of the extra term
∂ǫpot

p

∂x . That is why a first order time splitting is more
suitable: it reduces to solving for a ∆t-time step every single part of the
kinetic equation.
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Boundary conditions

We have implemented the following boundary conditions:

• at x = 0 and x = L we use the following inflow/outflow condition:

fn
p,−i,l,m =





fn
p,0,l,m k1 < 0

ρeq
p (0)

ρn
p (0) fn

p,0,l,m k1 ≥ 0

and

fn
p,Nx−1+i,l,m =





fn
p,Nx−1,l,m k1 > 0

ρeq
p (L)

ρn
p (L) fn

p,Nx−1,l,m k1 ≤ 0

in order to have the ghost points we need for the PWENO interpolation
and to preserve the correct values of the distribution function at the
drain and the source of the MOSFET;

• at k1 = −ε−1
kin(αN̄) and k1 = ε−1

kin(αN̄) a Neumann type boundary
condition in used:

fn
p,i,−l,m = fn

p,i,0,m and fn
i,Nk1

−1+l,m = fn
i,Nk1

−1,m.

WENO schemes are the object of investigation in section 1.1.

5.3 Numerical experiments

We take into account the single-valley model, i.e. electrons are only al-
lowed to have one configuration, without distinguishing between longitudi-
nal effective mass and transverse effective mass. In [101] the author used
a Gummel iteration instead of a Newton iteration in order to solve the
Schrödinger-Poisson problems and a stationary-state Drift-Diffusion model
for the transport part. Our scheme is made for transient-state computation
at a microscopic level, so it cannot compete with a macroscopic steady-state
code in terms of times of calculation. We have chosen a very restrictive CFL
conditions for the Runge-Kutta discretization, and the potential is applied
very softly, due to the preconditional character of Newton schemes used for
computing the potential: for the sake of convergence they cannot be initial-
ized too far from the equilibrium, so we cannot impose a shock as potential.
In our tests, the potential V (x, z) increases linearly from 0V to the desired
drop in 1ps time.

In the tests which we show here, the CFL condition is set 0.01. It might
be improved, but extensive tests on the stability of the scheme with less
restrictive conditions have not been performed yet. Anyway, we expect we
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cannot make it much larger, because the time stepping should stay below
0.0001ps at any rate, even if the CFL condition does not constraint it that
much: the self-consistent electrostatic field needs be computed very often,
not to introduce instabilities (oscillations of the band-energies and potential
energy, in this case) due to growing overcorrections to the electrostatic field
computed at the previous stage.

In our test, we have used as effective Silicon mass

m∗ = 0.5mSi.

Other tests with other effective masses need to be performed, but for the
purpose of this work, i.e. setting the basis for a deeply detailed description
of the nanoMOSFET in Figure 1, it is already meaningful to observe that
the model is properly simulated in this test case.

Our tests have been performed with a structure of six subbands. The
more subband we introduce, the more detailed the description is. In [101]
the author used twelve subbands; anyway, over the third band the carrier
polulation is very low, almost uninfluent.

5.3.1 Border potential

In Figure 4 we show the border potential computed via the scheme in Sec-
tion 5.2.2. Results coincide with [101], where they have been obtained via
Gummel iteration. As a remark, Newton is initialized by a constant null
potential and its convergence is very fast, usually achieved in about four
steps.

5.3.2 Thermodynamical equilibrium

In Figures 5 and 6, we show the results of thermodynamical equilibrium
resulting from the solution of the SP-block discussed in problem 2 above
in section 5.2.2. In [101] the author obtained equivalent results by means
of a Gummel iteration. In our tests, Newton converges very fast, usually
no more than ten steps, depending on the meshing and on the number of
subbands taken into account.

5.3.3 Long-time behavior

We have used a 64×32×16×16-grid in the (x, z, k1, k2)-space with a Runge-
Kutta-3 solver for the original variable fp. The CFL condition is set 0.01,
a very restrictive value used in order to avoid oscillations due to Poisson
overcorrections for it has not been solved frequently enough. We take 1 ps
time to apply the potential, because at any step Newton iterations cannot
be initialized too far from the equilibrium. As for the potential at contacts,
we can use either Robin or Dirichlet conditions; in fact, no difference is os-
berved: this last one works properly too, the electrical neutrality already
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Figure 4: Border potential. The grid is 64 points along the z-dimension.
Top: the potential energy at contacts. Center: the free electron density
at contacts. Bottom: the Schrödinger eigenfunctions corresponding to the
three first energy levels.



5.3. NUMERICAL EXPERIMENTS 153

-0.02
 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16

 0
 5e-09

 1e-08
 1.5e-08

 2e-08  0
 1e-09

 2e-09
 3e-09

 4e-09
 5e-09

 6e-09
 7e-09

 8e-09
-0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

V [eV]

Potential at equilibrium

x [m]

z [m]

V [eV]

 0

 2e+25

 4e+25

 6e+25

 8e+25

 1e+26

 1.2e+26

 1.4e+26

Density [m**(-3)] at equilibrium

 0  5e-09  1e-08  1.5e-08  2e-08

x [m]

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

z 
[m

]

 0

 5e+16

 1e+17

 1.5e+17

 2e+17

 2.5e+17

 3e+17

 3.5e+17

 4e+17

 4.5e+17

 5e+17

 0  5e-09  1e-08  1.5e-08  2e-08

rh
o 

[m
**

(-
2)

]

x [m]

Occupations at equilibrium

1-st band
2-th band
3-th band

Figure 5: Thermodynamical equilibrium. The grid is 64 × 64 in the (x, z)-
dimensions. Top: the potential energy. Center: the free electron density.
Bottom: the occupation factor of the first three energy bands.
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Figure 6: Thermodynamical equilibrium. The grid is 64 × 64 in the (x, z)-
dimensions. Top: the Schrödinger eigenfunctions for the first three bands.
Center: the band densities of the free electrons. Bottom: the band potential
energies of the first three bands.
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being imposed in the transport equation for the entering particles.
We present results concerning the long-time behavior: we expect the macro-
scopic magnitudes to stabilize after the potential has been completely ap-
plied. In Figure 9 and 10 we plot the long-time behavior for a potential drop
of VDS = 0.2V , and in Figure 7 and 8 the long-time behavior for a potential
drop of VDS = 0.5V .

Results are satisfactory and close the reference results in [101]. Anyway,
this should be the beginning for some improvements needed for a more de-
tailed description of the MOSFET devices: first of all a complete scattering
operator, not just a relaxation time operator; then the three valleys case,
to distinguish between transversal and longitudinal effective masses; also
achieving a 3D geometry would be very useful.
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Figure 7: The single-valley case (the effective mass is set m∗ = 0.5) when
the drain-source potential is VDS = 0.5V , the mesh is 64 × 32 × 16 × 16 in
the (x, z, k1, k2)-space, Poisson boundary conditions are Robin (with α = 5),
the solver for the BTE is Runge-Kutta-3 (FDWENO-5,3 for interpolation)
with CFL = 0.01, the potential grows from 0 to VDS in 1ps-time. Top: the
potential energy. Center: the total free electrons density. Bottom: the band
potential energies.
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Figure 8: The single-valley case (the effective mass is set m∗ = 0.5) when
the drain-source potential is VDS = 0.5V , the mesh is 64×32×16×16 in the
(x, z, k1, k2)-space, Poisson boundary conditions are Robin (with α = 5), the
solver for the BTE is Runge-Kutta-3 (FDWENO-5,3 for interpolation) with
CFL = 0.01, the potential grows from 0 to VDS in 1ps-time. Top: the band
density and band first moment along the classical dimension. Center: The
occupation factors. Bottom: The drift velocity along the classical dimension.
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Figure 9: The single-valley case (the effective mass is set m∗ = 0.5) when
the drain-source potential is VDS = 0.2V , the mesh is 64 × 32 × 16 × 16 in
the (x, z, k1, k2)-space, Poisson boundary conditions are Robin (with α = 5),
the solver for the BTE is Runge-Kutta-3 (FDWENO-5,3 for interpolation)
with CFL = 0.01, the potential grows from 0 to VDS in 1ps-time. Top: the
potential energy. Center: the total free electrons density. Bottom: the band
potential energies.
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Figure 10: The single-valley case (the effective mass is set m∗ = 0.5) when
the drain-source potential is VDS = 0.2V , the mesh is 64×32×16×16 in the
(x, z, k1, k2)-space, Poisson boundary conditions are Robin (with α = 5), the
solver for the BTE is Runge-Kutta-3 (FDWENO-5,3 for interpolation) with
CFL = 0.01, the potential grows from 0 to VDS in 1ps-time. Top: the band
density and band first moment along the classical dimension. Center: The
occupation factors. Bottom: The drift velocity along the classical dimension.
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Appendix A

Appendix

A.1 Definition of Gâteaux-derivative

Let X and Y be two locally convex topological spaces (take for instance
Banach spaces), and let U ⊂ X be an open set, and

F : X −→ Y

The Gâteaux (directional) derivative of F at point u ∈ U in the direction ψ
is

dF (u, ψ) = lim
t→0

F (u + tψ) − F (u)

t
.

Remind that the Gâteaux derivative is unique (if it exists), that it is homo-
geneous, i.e.

u ∈ U, dF (u, ·) : X −→ Y

dF (u, αψ) = αdF (u, ψ)

but it is not always linear.

A.2 The Gauss-Siegel and the Successive OverRe-

laxation methods for solving the linear system

Suppose we have to solve the linear system

AX = b,

with
A ∈ M(R, N × N), X ∈ R

N , b ∈ R
N .

The Gauss-Siegel iteration starts from an initial guess, say

X(0) =
(
X

(0)
0 , X

(0)
1 , ..., X

(0)
N−1

)
.
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Then we update the i-th entry from the i-th row of the linear system A,
starting from the first row:

X
(1)
0 =

b0 −
∑

j 6=0 A0,jX
(0)
j

A0,0

X
(1)
1 =

b1 − A1,0X
(1)
0 − ∑

j≥20 A1,jX
(0)
j

A1,1

...

X
(1)
i =

bi −
∑

j<i Ai,jX
(1)
j −

∑
j>i Ai,jX

(0)
j

Ai,i

...

So, the iteration is: from guess

X(k) =
(
X

(k)
0 , X

(k)
1 , ..., X

(k)
N−1

)

perform

for i = 0, ..., N − 1 , X
(k+1)
i =

bi −
∑

j<i Ai,jX
(k+1)
j − ∑

j>i Ai,jX
(k)
j

Ai,i

until convergece is fulfilled, i.e.

‖X(k+1) − X(k)‖ < λtolerance,

for some tolerance (e.g. λtolerance = 10−6) and some appropriate norm (use
L2 or L∞ for instance).

The SOR method is a generalization of the Gauss-Siegel iteration. Given
a parameter 0 < ω < 2, the update transforms into

X
(k+1)
i = (1 − ω)X

(k)
i + ω

bi −
∑

j<i Ai,jX
(k+1)
j − ∑

j>i Ai,jX
(k)
j

Ai,i
.

For ω = 1 we recover the Gauss-Siegel iteration.
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