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Matemàtiques per la Universitat Autònoma
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Introduction

Differential equations appear in many areas of applied mathematics and physics.

For a 2–dimensional system the existence of a first integral determines completely

its phase portrait. Of course, the more easiest planar integrable systems are the

Hamiltonian ones. The planar integrable systems which are not Hamiltonian can

be in general very difficult to detect. Many different methods have been used

for studying the existence of first integrals for non–Hamiltonian systems based

on: Noether symmetries [7], the Darboux theory of integrability [22], the Lie

symmetries [43, 9], the Painlevé analysis [2], the use of Lax pairs [34], the direct

method [28, 29], the linear compatibility analysis method [49], the Carlemann

embedding procedure [8, 1], the quasimonomial formalism [3], etc. In this work we

are interested in the integrability of the planar polynomial differential systems. For

such systems there are several notions of integrability, as the previous mentioned,

which are not equivalent.

The algebraic theory of integrability is a classical one, which is related with

the first part of the Hilbert’s 16th problem. This kind of integrability is usually

called Darboux integrability, and it provides a link between the integrability of

polynomial systems and the number of invariant algebraic curves they have (see

Darboux [22] and Poincaré [44]).

Jouanolou [31] extended the planar Darboux theory of integrability to polyno-

mial systems in Rn or Cn, for extension to other fields see [51]. In [4], [15], [17], [21]

and [35], the authors developed the Darboux theory of integrability essentially in

R2 or C2 considering not only the invariant algebraic curves but also the exponen-

tial factors, the independent singular points and the multiplicity of the invariant

algebraic curves.
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We define a planar polynomial differential system of degree m of the form

ẋ = P (x, y), ẏ = Q(x, y) with x, y ∈ C and t ∈ C or R. Here we want to

study the so called Darboux integrability for these planar polynomial systems. A

polynomial system is Darboux integrable if it has a first integral or a an integrating

factor given by a Darboux function. In 1878 Darboux [22] showed that planar

polynomial differential systems having an adequate number of invariant algebraic

curves have a first integral which can be constructed using such curves.

The Darboux theory of integrability has been improved since its beginning.

In Chapter 1 we present a survey on the Darboux theory of integrability for the

planar polynomial differential systems. In particular, Darboux showed that for a

planar polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) of degree m with

divergence div(P,Q) which has at least p invariant algebraic curves fi = 0 with

cofactors Ki for i = 1, . . . , p , satisfying the relation

p∑
i=1

λiKi + ρ div(P,Q) = 0, (1)

for some λi ∈ C not all zero and ρ ∈ {0, 1}, there exists a first integral (if ρ = 0)

or an integrating factor (if ρ = 1), which can be constructed using the invariant

algebraic curves. Moreover, he showed that relation (1) always occurs with ρ = 0

if p ≥ [m(m + 1)/2] + 1, and with ρ = 0, 1 if p ≥ m(m + 1)/2.

Now we know that if the number of the invariant algebraic curves is at least

p = [m(m + 1)/2] + 2, then there is a rational first integral, which means that all

orbits of the system are contained on algebraic curves, for more details see Section

1.3.

We also present the recent extensions of the Darboux theory of integrability

which additionally to the concept of the invariant algebraic curve, incorporate the

notions of the exponential factors, independent singular points, the multiplicity of

the invariant algebraic curves and the invariants, see Theorem 1.7 or [31, 48, 51,

15, 17, 18, 19, 21, 6, 47] . In particular, if the polynomial differential system has

additionally to the p invariant algebraic curves with cofactors Ki, q exponential

factors with cofactors Lj, and it satisfies

p∑
i=1

λiKi +

q∑
j=1

µjLj + ρ div(P,Q) + s = 0, (2)
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with λi, µj ∈ C not all zero, ρ ∈ {0, 1} and s ∈ C then for s = 0 we obtain a

first integral (if ρ = 0) or an integrating factor (if ρ = 1), otherwise we have an

invariant (i.e. a first integral depending on the time). Moreover, the relation (2)

always holds with ρ = s = 0 if p + q ≥ m(m + 1)/2 + 1, and with ρ = 0, 1 and

s = 0 if p + q ≥ m(m + 1)/2. For s 6= 0 the relation (2) is satisfied with ρ = 0 if

p + q ≥ m(m + 1)/2, and with ρ = 0, 1 if p + q ≥ m(m + 1)/2 − 1. We remark

that the first integral describes completely the phase portrait, and an invariant

provides information about the asymptotic behavior of the orbits.

In this work we introduce the concept of generalized invariant when ρ = 1 and

s 6= 0 and we present the integrability condition (2), in Section 1.3.

Since the existence of invariant algebraic curves is the key point for the ap-

plication of the Darboux theory of integrability we also consider the following

reciprocal question to the Darboux theory of integrability:

Question 1: Given a set of algebraic curves which are the planar polynomial

differential systems having these curves invariant by the flow?

We deal with this question in Chapter 2. Firstly, in Theorems 2.1, 2.2, 2.3 and

finally in Theorem 2.4 we present a complete answer in a generic case. We note that

Theorem 2.4 was announced by Christopher. However, the proof of this theorem

was never published. Independently, ŻoÃla̧dek also stated this theorem. However,

he never published his complete proof which is based in analytical arguments. Here

we present a complete algebraic proof of Theorem 2.4. Additionally, we prove that

the generic conditions of the theorem are necessary (see Theorem 2.6). We note

that in Theorem 2.4 it appears a strong relation between the degrees of the curve

and the degrees of the system. This relation is due to the generic nature of the

curves. In particular, when the total degree of the generic curves is the degree of

the system increased by one, then the vector field has a very simple form and it has

always a Darboux first integral. Hence, this relation between the degrees and the

nature of the curves guarantee the Darboux integrability. This result is not true

if the curves are not generic and this is proved in Section 2.3. We note that these

results have been obtained in collaboration with Christopher, Llibre and Zhang,

see [20].

Secondly, in the case where the curves are not generic and their cofactors are
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known we present Propositions 2.28 and 2.29 inspired in previous results due to

Erugguin [24] and Sadovskaia [46].

Finally, a more general answer to this question is given by Theorem 2.34 due to

Walcher [50]. Walcher provides the complete expression of the vector fields which

have an arbitrary invariant algebraic curve. Of course, in this theorem there is

no statement about the bounds of the degrees of the polynomials in contrast with

Theorem 2.4. This is due to the fact that the generic conditions are not imposed

in Theorem 2.34.

Question 2: Given a Darboux first integral which are the planar polynomial

differential systems having such a first integral?

In Chapter 3 we present a complete answer to this question through Theorem

3.1.

Additionally, in Corollary 3.2 we show the relation between the total degree of

the curves and the degree of the polynomials which appears in the exponential with

the degree of the system. In Theorem 3.5 we state that a polynomial system has

a Darboux first integral formed by generic curves if and only if the total degree of

the curves is the degree of the system increased by one. We note that this theorem

improves the conditions for the existence of a first integral in the Darboux theory

of integrability using information about the degree and the nature of the invariant

algebraic curves. As far as we know, this is the first time that information about

the degree of the invariant algebraic curves, instead of the number of these curves,

is used for studying the integrability of a polynomial vector field.

In Corollary 3.4 we improve a previous result due to Prelle and Singer [45].

This result will be published in [36].

Prelle and Singer [45], using methods of differential algebra, showed that if a

polynomial vector field has an elementary first integral, then it can be computed

using Darboux theory of integrability. Singer [48] proved that if a polynomial

vector field has a Liouvillian first integral, then it has integrating factors given by

Darboux functions. Some related results can be found in [10].

Question 3: Given a Darboux integrating factor which are the planar polynomial

differential systems having such a Darboux integrating factor?
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We study this question in Chapters 4 and 5.

First, in Theorem 4.1 we provide a connection between the degrees of the

invariant algebraic curves and the number of them in order to decide about the

type of Darboux integrability of the polynomial differential system. This result

improves statement (e) of the Darboux Theorem 1.7.

Second, in Theorem 4.2 we present a general family of polynomial differential

systems having a Darboux function as an integrating factor. Although, it is a large

family of systems, it is not the most general one. We believe that further conditions

should be imposed in order to obtain the complete family of such systems.

Third, we characterize polynomial differential systems having a generic Dar-

boux integrating factor, i.e. an integrating factor formed by generic curves.

In Theorem 4.3 we characterize all polynomial systems with an integrating

factor formed by one irreducible generic curve f = 0, i.e. we characterize all

polynomial systems having an integrating factor of the form fλ with λ ∈ C. We

know that such systems in general have a Liouvillian first integral. From Theorem

4.3 and its proof we have that depending on the values of λ it appears an additional

invariant algebraic curve or an exponential factor. Moreover, for such systems we

can always obtain a Darboux first integral. We note that the additional invariant

algebraic curve may not be generic with f = 0. An interesting point of this theorem

is the relation between the degrees of the curves and the degrees of the polynomials

which appear in the exponential factors with the degree of the system. Hence, we

have that the sum of all these degrees is the degree of the system increased by one,

the curves in general are not generic. Moreover, such systems have a Darboux first

integral. This is due to the existence of a generic integrating factor.

Walcher in Theorem 5.1 characterize all polynomial differential systems with

an integrating factor of the form f−1 where f is a curve without singular points.

In Corollary 5.2 we present an easier expression of such vector fields. Additionally,

in Theorem 5.3 imposing the generic conditions for the reducible factors of f we

obtain an expression of the vector field similar to the one presented in Theorem

5.1. Moreover, in Theorems 5.1 and 5.3 we point out the different use of the generic

conditions.
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In Theorem 5.3 we characterize polynomial differential systems having a generic

integrating factor. Similar to Theorem 4.3 it appears an additional invariant al-

gebraic curve which may not be generic with the other curves. Additionally, the

total degree of the curves is the degree of the system increasing by one. In general,

a polynomial system having a Darboux integrating factor it has always a Liouvil-

lian first integral and does not always have a Darboux first integral, (see Example

4.11). However, under the assumptions of Theorem 5.3 not only we can guarantee

the existence of a Darboux first integral but also we provide an algorithm in order

to construct it. We note that there are some values of the parameters which are

not covered by Theorem 5.3.

Rudolf Winkel in [52] conjectured: For a given algebraic curve f = 0 of degree

m > 4 there is in general no polynomial vector field of degree less than 2m − 1

leaving invariant f = 0 and having exactly the ovals of f = 0 as limit cycles.

In the appendix we show that this conjecture is not true.
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Chapter 1

The Darboux theory of

integrability

1.1 Introduction

In 1878 Darboux [22] showed how can be constructed the first integrals of planar

polynomial differential systems possessing sufficient invariant algebraic curves. In

particular, he proved that if a planar polynomial differential system of degree m

has at least [m(m+1)/2]+1 invariant algebraic curves, then it has a first integral,

which has an easy expression in function of the invariant algebraic curves. The

version of the Darboux theory of integrability that we summarize in Theorem

1.7, improves Darboux’s original exposition because we also take into account the

exponential factors, the independent singular points, the rational first integrals,

and the invariants.

Good extensions of the Darboux theory of integrability to polynomial systems

in Cn are due to Jouanolou [31] and Weil [51]. In [15], [17], [18], [19], [21] and

[47] the authors developed the Darboux theory of integrability essentially in C2

considering not only the invariant algebraic curves but also the exponential fac-

tors, the independent singular points and the multiplicity of the invariant algebraic

curves. Recently, in [40] the Darboux theory of integrability is extended to reg-

ular algebraic hypersurfaces (see also [38]). Moreover, Singer in [48] proved that

11



12 The Darboux theory of integrability

Darboux theory of integrability allows to compute the Liouvillian first integrals

of polynomial differential systems. In [6] were introduced the Darboux invariants,

here we introduce the generalized Darboux invariants, see Section 1.3.

The Darboux theory of integrability works for complex polynomial ordinary

differential equations (and of course in particular for the real ones). We consider

the polynomial (differential) system in C2 defined by

dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y), (1.1)

where P and Q are polynomials in the variables x and y. The independent variable

t can be real or complex, this is not relevant in the Darboux theory of integrability.

If A is a polynomial, we denote by δA the the degree of the polynomial A. The

degree m of the polynomial system is defined by m = max{δP, δQ} and we write

δX = m.

Associated to the polynomial differential system (1.1) in C2 there is the poly-

nomial vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
, (1.2)

in C2. Sometimes, the polynomial vector field X will be denoted simply by (P, Q).

In Section 1.2 we present the basic notions that we will use in this work. The

Darboux Theory of integrability is summarized in Theorem 1.7 and is presented

in Section 1.3. We note that the version of Theorem 1.7 that we provide here is

original on the statements about the Darboux invariants and on the generalized

Darboux invariants.

1.2 Basic notions

Algebraic curves is the starting point of the Darboux theory of integrability.

An algebraic curve f(x, y) = 0 in C2 with f ∈ C[x, y] is an invariant algebraic

curve of a polynomial system (1.1) if

ḟ = Xf =
∂f

∂x
P +

∂f

∂y
Q = Kf, (1.3)
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for some polynomial K ∈ C[x, y] called the cofactor of the invariant algebraic

curve f = 0. We note that since the polynomial vector field has degree m, then

any cofactor has at most degree m− 1.

We observe that for the points of the curve f = 0 the right hand side of (1.3)

is zero. This means that the gradient (∂f/∂x, ∂f/∂x) is orthogonal to the vector

field (P, Q) at these points. Therefore the vector field (P, Q) is tangent to the

curve f = 0. Hence, the curve f = 0 is formed by trajectories of the vector field

(P,Q). This explains why the algebraic curve f = 0 is invariant under the flow of

the vector field (P,Q).

The following result show that we can reduce the study of the invariant alge-

braic curves, to study the irreducible invariant algebraic curves in C[x, y], (for a

proof see [13]).

Proposition 1.1. Suppose that f ∈ C[x, y] and let f = fn1
1 · · · fnr

r be the fac-

torization of f in irreducible factors over C[x, y]. Then for a polynomial system

(1.1), f = 0 is an invariant algebraic curve with cofactor Kf if and only if fi = 0

is an invariant algebraic curve for each i = 1, . . . , r with cofactor Kfi
. Moreover,

Kf = n1Kf1 + · · ·+ nrKfr .

For a given system (1.1) of degree m the calculation of the invariant algebraic

curves is a very hard problem (maybe we could also say that in some cases is

an unrealistic problem) because in general we don’t have any evidence about the

degree of a curve. Hence, for a system of a fixed degree m does not always exist

a bound for the degree of the invariant curves. However, imposing additionally

conditions either for the structure of the system or for the nature of the curves we

can have an evidence of a such a bound.

The following Proposition suggest a bound of the degree of the invariant curve.

Proposition 1.2. Let f ∈ C[x, y] irreducible satisfying the generic condition (i).

If the curve f = 0 is invariant of the vector field (1.1) of degree m then δf ≤ m+1.

Proof: see Corollary 4 of [13] or Proposition 10 of [14].

A first integral of system (1.1) on an open subset U of C2 is a nonconstant

analytic function H : U → C which is constant on every solution curve (x(t), y(t))
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of (1.1) on U . This means that H (x(t), y(t)) = c with c ∈ C for every time t for

which the solution (x(t), y(t)) is defined on U . If we denote by

X = P
∂

∂x
+ Q

∂

∂y

the vector field associated to system (1.1), then H is a first integral in U if and

only if XH ≡ 0 on U . We say that polynomial system (1.1) is integrable on U if

there is a first integral on U .

An analytic function R : U → C which is not identically zero on U is called

an integrating factor of system (1.1) on U if satisfies

XR = −div(X)R,

in the domain of definition of R. As usual the divergence of the vector field X is

defined by

div(X) = div(P, Q) =
∂P

∂x
+

∂Q

∂y
.

Suppose that U is simply connected, then the first integral associated to the inte-

grating factor R is given by

H(x, y) =

∫
R(x, y)P (x, y)dy + f(x), (1.4)

satisfying the condition
∂H

∂x
= −RQ. (1.5)

From the definition of integrating factor R, we have that X(R) = −div(P,Q)R.

This implies that R = 0 is an invariant curve (in general non–algebraic) of X with

cofactor the polynomial −div(P,Q). In addition, the existence of two different

integrating factors yields directly to a first integral as we note in the following

proposition.

Proposition 1.3. If polynomial system (1.1) has two integrating factors R1 and

R2 on the open subset U of C2, then on the open set U \ {R2 = 0} the function

R1/R2 is a first integral.

Another notion strictly connected with the one of the integrating factor is the

notion of the inverse integrating factor.
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Let R : U → C an integrating factor of system (1.1) and W = U \ {R = 0}.
We define V = 1/R : W → C as an inverse integrating factor of system (1.1). The

inverse integrating factor V satisfies the linear partial differential equation

X(V ) = div(P,Q)V. (1.6)

From the definition of the inverse integrating factor V , we have that V = 0 is

an invariant curve (in general non–algebraic) of X with cofactor the polynomial

div(P,Q).

The inverse integrating factor of a polynomial system (1.1) contains a lot of

useful information. On one hand using relation (1.4) yields into the expression

of a first integral in a simple connected open set and on the other hand, the set

{V = 0} contains all the limit cycles which are in W , see [27]. Moreover, in [10],

it has been proved the local existence and the uniqueness of an analytic inverse

integrating factor under adequate assumptions. From [10] and [11], it follows, in

general, that it is more easy to look for an expression of the inverse integrating

factor than one of the integrating factor or of the first integral.

Another useful notion in the Darboux theory of integrability is the notion of

an exponential factor and is due to Christoper, [17].

Let h, g ∈ C[x, y] be relatively prime in the ring C[x, y]. The function exp (g/h)

is called an exponential factor of the polynomial system (1.1) if for some polynomial

K ∈ C[x, y] of degree at most m− 1 it satisfies the equation

X
(
exp

(g

h

))
= K exp

(g

h

)
. (1.7)

We say that K is the cofactor of the exponential factor exp (g/h).

Proposition 1.4. If exp (g/h) is an exponential factor with cofactor K for a

polynomial system (1.1) and if h is not a constant, then h = 0 is an invariant

algebraic curve with cofactor Kh, and g satisfies the equation Xg = gKh + hK.

We should note that exponential factors of the form exp(g/h) (respectively

exp(g)) appear when the invariant algebraic curve h = 0 (respectively the invariant

straight line at infinity when we projectivize the vector field X) has geometric

multiplicity larger than 1, for more details see [21].
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Real polynomial systems are very special because whenever they have a com-

plex invariant algebraic curve or a complex exponential factor they also have as

invariant the conjugate ones as we note in the following propositions (for a proof

see [19]).

Proposition 1.5. For a real polynomial system (1.1), f = 0 is a complex invariant

algebraic curve with cofactor K if and only if f̄ = 0 is a complex invariant algebraic

curve with cofactor K̄. Here conjugation of polynomials denotes conjugation of the

coefficients of the polynomials.

Proposition 1.6. For a real polynomial system (1.1) the complex function exp (g/h)

is an exponential factor with cofactor K if and only if the complex function exp
(
ḡ/h̄

)

is an exponential factor with cofactor K̄.

Hence, for real polynomial systems the Darboux integrability maybe forced by

the existence of complex invariant algebraic curves or complex exponential factors.

An invariant of a real polynomial system (1.1) in the open subset U of C2 is a

non–constant analytic function I in the variables x, y and t such that I(x(t), y(t), t)

is constant on all solution curves (x(t), y(t)) of system (1.1) contained in U .

For a polynomial differential system the existence of a first integral H(x, y)

implies that drawing the curves H(x, y) =constant we can describe completely the

phase portrait of such a system. While the existence of an invariant will provide

information about the α– or the ω–limit of the orbits of the system, where the

time t is real.

The existence of singular points improve the original version of Darboux The-

orem 1.7, see [15]. We denote by Cm−1[x, y] the space of all complex polynomi-

als of degree m − 1 and and we note that dimCCm−1[x, y] = m(m + 1)/2. Let

K(x, y) =
m−1∑

i+j=0

aijx
iyj ∈ Cm−1[x, y]. We consider the isomorphism

K −→ (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1),

i.e. we identify the linear vector space Cm−1[x, y] with Cm(m+1)/2.

We say that r singular points (xk, yk) ∈ C2, for k = 1, . . . , r, of a real polyno-

mial system (1.1), are independent with respect to Cm−1[x, y] if the intersection of
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the r hyperplanes

m−1∑
i+j=0

aijx
i
ky

j
k = 0, k = 1, . . . , r,

in Cm(m+1)/2, is a linear subspace of dimension [m(m + 1)/2]− r.

We note that Bezout Theorem [25] guarantee that the maximum number of

complex isolated singular points of a polynomial system (1.1) is m2, and the max-

imum number of complex independent isolated singular points of the system is

m(m + 1)/2 < m2 for m ≥ 2.

A singular point (x0, y0) of a polynomial system (1.1) is weak if div(P,Q)(x0, y0) =

0.

1.3 The method of Darboux

The presentation of the Darboux theory of integrability can be summarized in

Theorem 1.7 and as far as we know is the most new version. This version is

partially original on his statements about the Darboux invariants and original on

the generalized Darboux invariants. The other statements are well known and we

will not prove them, for a proof see, for instance, [19]. In Theorem 4.1 we obtain

further improvements of Theorem 1.7 but for a better presentation of this result

we prefer to present it in chapter 4.

The following theorem it will be mentioned as Darboux theorem.

Theorem 1.7. Suppose that a polynomial system (1.1) of degree m admits p ir-

reducible invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p; q

exponential factors Fj = exp(gj/hj) with cofactors Lj for j = 1, . . . , q; and r in-

dependent singular points (xk, yk) ∈ C2 such that fi(xk, yk) 6= 0 for i = 1, . . . , p

and k = 1, . . . r. Of course, every hj factorizes in product of the factors f1, · · · fq,

except if it is equal to 1. Let V be a C1 solution of equation (1.6) defined in an

open subset W of C2 (i.e. V is an inverse integrating factor). Then the following

statements hold.
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(a) There exist λi, µi ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
i=1

µjLj = 0, (Dfi)

if and only if the (multi–valued) function

H(x, y) = fλ1
1 . . . fλp

p F µ1

1 . . . F µq
q , (1.8)

is a first integral of system (1.1). Moreover, for real systems the function

(1.8) is real.

(b) If p + q + r = [m(m + 1)/2] + 1, then there exist λi, µj ∈ C not all zero

satisfying condition (Dfi).

(c) If p+q+r ≥ [m(m+1)/2]+2, then system (1.1) has a rational first integral,

and consequently all orbits of the system are contained in invariant algebraic

curves.

(d) There exist λi, µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj + div(P,Q) = 0, (Dif ),

if and only if the function (1.8) is an integrating factor of system (1.1).

Moreover, for real systems the function (1.8) is real.

(e) If p + q + r = m(m + 1)/2 and the r independent singular points are weak,

then there exist λi, µj ∈ C not all zero satisfying at least one of the conditions

(Dfi) or (Dif ).

(f) There exist λi, µi ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj + s = 0, (Din)

with s ∈ C \ {0}, if and only if the (multi–valued) function

I(x, y, t) = fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q exp(st) (1.9)

is an invariant of system (1.1). Moreover, for real systems this function is

real.
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(g) There exist λi, µi ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj + div(P, Q) + s = 0, (Dgin)

with s ∈ C \ {0}, if and only if the (multi–valued) function

G(x, y, t) = V fλ1
1 · · · fλp

p F µ1

1 · · ·F µq
q exp(st), (1.10)

is an invariant of system (1.1). Moreover, for real systems this function is

real.

(h) If p+ q = [m(m+1)/2]− 1, then there exist λi, µi ∈ C not all zero satisfying

at least one of the conditions (Dfi), (Dif ), (Din) or (Dgin).

Proof: For a proof of statements (a)–(e) see [19]. Here we will prove statements

(f) and (h). Statement (g) can be proved in a similar way.

Clearly the function I(x, y, t) is an invariant of system (1.1) if and only if

X(I) = 0. Then, from the equalities

X
(
fλ1

1 · · · fλp
p F µ1

1 · · ·F µq
q exp(st)

)
=

X
(
fλ1

1 · · · fλp
p F µ1

1 · · ·F µq
q exp(st)

) (
p∑

i=1

λi
Xfi

fi

+

q∑
j=1

µj
XFj

Fj

+ s

)
=

(
fλ1

1 · · · fλp
p F µ1

1 · · ·F µq
q exp(st)

) (
p∑

i=1

λiKi +

q∑
j=1

µjLj + s

)
,

the first part of statement (f) follows.

Supose now that X is a real vector field. If among the invariant algebraic

curves of X a complex conjugate pair f = 0 and f = 0 occurs, then the invariant

(1.9) has a real factor of the form fλf̄ λ̄, which is the multi–valued real function

[
(Re f)2 + (Im f)2]Reλ

exp

(
−2 Im λ arctan

(
Im f

Re f

))
, (1.11)

if Im λ Im f 6= 0. We note that if in (Dfi) the coefficient of a cofactor K or L is λ,

then the coefficient of the cofactor K̄ or L̄ is λ̄, because conjugating such equality

K goes over to K̄ and L to L̄.
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If among the exponential factors of X a complex conjugate pair F = exp(h/g)

and F = exp(h/g) occurs, the invariant (1.9) has a real factor of the form

(
exp

(
h

g

))µ (
exp

(
h

g

))µ

= exp

(
2 Re

(
µ

h

g

))
. (1.12)

In short, the function (1.9) is real, and the proof of statement (f) is completed.

Let K be the divergence of system (1.1). All polynomials Ki, Lj, K belong

to the vector space Cm−1[x, y] of dimension m(m + 1)/2. The number s 6= 0 is

identified with the corresponding polynomial of degree 0 of Cm−1[x, y]. Therefore,

we have p + q + 2 polynomials Ki, Lj, K and s in Cm−1[x, y]. Since from the

assumptions p + q + 2 = m(m + 1)/2− 1, either K is a linear combination of the

polynomials Ki,Lj and s, or a linear combination of those polynomials is zero. In

the first case if s does not appear in the linear combination, then we obtain the

equality (Dif ), and if s appears, then we obtain the equality (Dgin) perhaps with a

constant times s instead of s. In the second case if s does not appear in the linear

combination, then we obtain the equality (Dfi), and if s appears, then we obtain

the equality (Din) perhaps with a constant times s instead of s. Hence, statement

(h) is proved.

The functions (1.9) and (1.10) are called Darboux invariants and generalized

Darboux invariants, respectively.

A function of the form

fλ1
1 · · · fλp

p exp

(
g1

h1

)µ1

· · · exp

(
gq

hq

)µq

, (1.13)

is called a Darboux function. If system (1.1) has a first integral or an integrating

factor of the form (1.13) where fi = 0 and exp (gi/hi) are invariant algebraic curve

and exponential factors of system (1.1) respectively and λi, µj ∈ C, then system

(1.1) is called Darboux integrable.

From Proposition 1.4 we have that the irreducible factors of the polynomials

hj are some fi’s and we can write

(
exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq

= exp

(
µ1g1

h1

+ · · ·+ µqgq

hq

)
= exp

(
g

fn1
1 · · · fnp

p

)
,
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where µ1, · · · , µq ∈ C, n1, · · · , np ∈ N
⋃{0} and the polynomial g of C[x, y] is

coprime with fi if ni 6= 0. We denote by l = max

{
r∑

i=1

niδfi, δg

}
.

Hence, a Darboux function can be written into the form

R(x, y) = fλ1
1 · · · fλp

p exp

(
g

fn1
1 · · · fnp

p

)
, (1.14)

where f1, · · · , fp are irreducible polynomials in C[x, y], λ1, · · · , λp ∈ C, n1, · · · , np ∈
N

⋃{0} (i.e. the ni are non–negative integers) and the polynomial g of C[x, y] is

coprime with fi if ni 6= 0.

The associated first integral to a Darboux integrating factor is called a Liou-

villian first integral.

We observe that the relation

p∑
i=1

λiKi +

q∑
j=1

µjLj + ρ div(P, Q) + s = 0, (D)

with λi, µj ∈ C and ρ, s ∈ C, contains all the information about the Darboux

theory of integrability for polynomial differential systems in C2. Thus,

(1) If s = ρ = 0 we obtain condition (Dfi), and we have a Darboux first integral.

(2) If s = 0 and ρ 6= 0 then condition (Dif ) holds, and there exists a Darboux

integrating factor and a Liouvillian first integral.

(3) If s 6= 0 and ρ = 0 we obtain relation (Din), and we have a Darboux invariant.

(4) If s 6= 0 and ρ 6= 0 we have the relation (Dgin), and there exists a generalized

Darboux invariant.
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Chapter 2

On polynomial systems having

invariant algebraic curves

2.1 Introduction

The concept of the invariant algebraic curves is the key point in the Darboux

theory of integrability. For a given system Darboux note that the existence of the

invariant algebraic curves provides an important information about the behavior

of the system. In that chapter we deal with the following question: Find the

polynomial systems having a given set of invariant algebraic curves?

We say that the algebraic curves f1 = 0, · · · , fp = 0 are generic if satisfy the

following generic conditions:

(i) There are no points at which fi and its first derivatives are all vanish.

(ii) The highest order terms of fi have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at

this point.

(iv) There are no more than two curves fi = 0 meeting at any point in the finite

plane.

23
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(v) There are no two curves having a common factor in the highest order terms.

First we characterize all the polynomial vector fields having one invariant

generic curve.

Theorem 2.1. Assume that the vector field X = (P, Q) of degree m has an invari-

ant algebraic curve C = 0 of degree c, and that C satisfies the generic condition

(i).

(a) If (Cx, Cy) = 1, then X has the following normal form:

ẋ = AC −DCy, ẏ = BC + DCx, (2.1)

where A,B and D are suitable polynomials.

(b) If C satisfies the generic condition (ii), then X has the normal form (2.1)

with a, b ≤ m − c and d ≤ m − c + 1. Moreover, if the highest order term

Cc of C does not have the factors x and y, then a ≤ p − c, b ≤ q − c and

d ≤ min{p, q} − c + 1.

We note that the first statement of Theorem 2.1 is referring to polynomial

systems having one curve C = 0 invariant such that (Cx, Cy) = 1. If the curve C =

0 satisfies the generic condition (i), then such systems are given by the expression

(2.1). If additionally the algebraic curve satisfies the generic condition (ii), then we

can provide bounds about the degrees of the polynomials that appears in systems

(2.1). We also note that statement (a) of Theorem 2.1 is very similar to the one of

Theorem 2.34(b) due to Walcher presented in Section 2.5. What actually happens

is that in Theorem 2.34(b) do not appear explicitly the condition (Cx, Cy) = 1.

However, in that expression of the vector field is used the Hamiltonian removing

the common factors and is denoted as (Cx, Cy)
∗. Hence, both Theorems 2.1(a)

and 2.34(b) use exactly the same conditions and they state the same expression

for the vector field.

Now we consider polynomial differential systems having two invariant algebraic

curves satisfying the generic conditions (i) and (iii). In Theorem 2.2(a) we present

the expression (2.2) for such systems. If in addition the curves satisfy the generic

conditions (ii) and (v) then we can obtain bounds for the degree of the polynomials

that appear in system (2.2).
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Theorem 2.2. Assume that C = 0 and D = 0 are different irreducible invariant

algebraic curves of the vector field X = (P, Q) of degree m, and that they satisfy

the generic conditions (i) and (iii).

(a) If (Cx, Cy) = 1 and (Dx, Dy) = 1, then X has the normal form

ẋ = ACD − ECyD − FCDy, ẏ = BCD + ECxD + FCDx, (2.2)

(b) If C and D satisfy conditions (ii) and (v), then X has the normal form (2.2)

with a, b ≤ m− c− d and e, f ≤ m− c− d + 1.

The next theorem founds the expressions of the polynomial vector fields having

some invariant algebraic curves. Similar to Theorems 2.1 and 2.2 we need the

generic conditions (i) and (iii). A possible third line needs the condition (iv) in

order to obtain an expression of the vector field. We note that the bounds for the

degrees of the polynomials appearing in expression (2.3) are due to the generic

conditions (ii) and (v).

Theorem 2.3. Let Ci = 0 for i = 1, · · · , p be different irreducible invariant alge-

braic curves of the vector field X = (P,Q) with δCi = ci. Assume that Ci satisfy

the generic conditions (i), (iii) and (iv). Then

(a) If (Cix, Ciy) = 1 for i = 1, · · · , p, then the vector field X = (P, Q) has the

normal form

ẋ =

(
B −

p∑
i=1

AiCiy

Ci

)
p∏

i=1

Ci, ẏ =

(
D +

p∑
i=1

AiCix

Ci

)
p∏

i=1

Ci, (2.3)

where B, D and Ai are suitable polynomials.

(b) If Ci satisfy the generic conditions (ii) and (v), then X has the normal form

(2.3) with b, d ≤ m−
p∑

i=1

ci and ai ≤ m−
p∑

i=1

ci + 1.

Theorem 2.4 was stated by Christopher and use strongly the generic nature of

the curves. He does not only affirms that the only vector fields having degree less

than the total degree of the invariant algebraic curves minus one is the zero vector
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field, but also provides the simplest form of such systems. Christopher stated this

theorem in several papers without proof like [17] and [33], and it was used in other

papers as [4] and [37]. The proof of Theorem 2.4 that we present here circulated

as the preprint [16] but was never published. ŻoÃla̧dek in [53] (see also Theorem 3

of [54]) stated a similar result to Theorem 2.4, but as far as we know the paper

[53] has not been published. In any case ŻoÃla̧dek’s approach to Theorem 2.4 is

analytic, while the approach that we present here is completely algebraic [20].

Theorem 2.4. Let fi = 0 for i = 1, · · · , p, be irreducible invariant algebraic curves

in C2, and set r =
p∑

i=1

δfi. We assume that all fi satisfy the generic conditions

(i)–(v). Then any polynomial vector field X = (P,Q) of degree m tangent to all

fi = 0 satisfies one of the following statements.

(a) If r < m + 1 then

X = Y

(
p∏

i=1

fi

)
+

p∑
i=1

hi




p∏

j = 1

j 6= i

fj




Xfi
, (2.4)

where Xfi
= (−fiy, fix) is a Hamiltonian vector field, the hi are polynomials

of degree no more than m− r + 1, and the Y is a polynomial vector field of

degree no more than m− r.

(b) If r = m + 1 then

X =

p∑
i=1

αi




p∏

j = 1

j 6= i

fj




Xfi
, (2.5)

with αi ∈ C.

(c) If r > m + 1 then X = 0.

Theorems 2.1, 2.2 and 2.3 and 2.4 will be proved in Section 2.2.

Statement (b) of Theorem 2.4 yields to a corollary due to Christopher and

Kooij [33]. They showed that system (2.5) has the integrating factor (f1 · · · fp)
−1,

and consequently the system is Darboux integrable.
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Proposition 2.5. Under the assumptions of Theorem 2.4(b) a polynomial system

(2.5) has an integrating factor of the form (f1 · · · fp)
−1 and a first integral of the

form fλ1
1 · · · fλp

p .

The following result shows that the generic conditions are necessary in order

that the statements of Theorem 2.4 hold [20].

Theorem 2.6. If one of the conditions (i)–(v) of Theorem 2.4 is not satisfied,

then the statements of Theorem 2.4 do not hold.

We prove Theorem 2.6 in Section 2.2.

From Theorem 2.4(b) and from Proposition 2.5 we have that the vector field

X satisfying the generic conditions (i)–(v) and r = m + 1 is Darboux integrable.

In Section 2.3 we provide two examples of polynomial systems satisfying all

assumptions of Theorem 2.4 with r = m + 1 except either (ii) or (iii) and which

are not Darboux integrable. Until now there are very few proofs of polynomial

systems which are not Darboux integrable, see for instance Jouanolou [31] and

Moulin Ollagnier et al [42].

Theorem 2.7. There are values of the parameters a and b for which system

ẋ = y(ax− by + b) + x2 + y2 − 1,

ẏ = bx(y − 1) + a(y2 − 1),
(2.6)

is not Darboux integrable.

In Section 2.4 we deal with systems having some arbitrary invariant algebraic

curves when their cofactors are known, see Propositions 2.28 and 2.29. These

results are inspired in previous results due to Erugguin [24] and Sadovskaia [46].

In general, if the curves are arbitrary, we cannot guarantee any relation be-

tween the degree of the system and the degree of the curves. Additionally, due to

Proposition 2.6 the form of the polynomial systems is not controlled by Theorem

2.4.

We dedicate the last section of this chapter to the presentation of a result

due to Walcher [50]. Thus, Theorem 2.34 provides the complete expression of the
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vector fields which have an arbitrary invariant algebraic curve. Of course, in this

theorem there is no statement about the bounds of the degrees of the polynomials

since the generic conditions are not imposed.

2.2 Proofs of Theorems

In what follows if we have a polynomial A we will denote its degree by a. If we

do not say anything we denote by Cc the homogeneous part of degree c for the

polynomial C.

Also we should use intensively the Hilbert’s Nullstellensatz property (see for in-

stance, [25]):

Set A,Bi ∈ C[x, y] for i = 1, · · · , r. If A vanishes in C2 whenever the poly-

nomials Bi vanish simultaneously, then there exist polynomials Mi ∈ C[x, y] and

a nonnegative integer n such that An =
r∑

i=1

MiBi. In particular, if all Bi have no

common zero, then there exist polynomial Mi such that
r∑

i=1

MiBi = 1.

In order to proof Theorem 2.1(b) we should use the following Lemma.

Lemma 2.8. If Cc has no repeated factors, then (Cx, Cy) = 1.

Proof: Suppose that (Cx, Cy) 6= 1. Then there exists a polynomial A nonconstant

such that A|Cx and A|Cy. Here A|Cx means that the polynomial A divides the

polynomial Cx. Therefore, Aa|(Cc)x and Aa|(Cc)y. By the Euler theorem for ho-

mogeneous polynomials we have that x(Cc)x + y(Cc)y = cCc. So Aa|Cc. Since Aa,

(Cc)x, (Cc)y and Cc are homogeneous polynomials of C[x, y] and Aa divides (Cc)x,

(Cc)y and Cc , the linear factors of Aa having multiplicity m, must be linear factors

of Cc having multiplicity m + 1. This last statement follows easily identifying the

linear factors of the homogeneous polynomial Cc(x, y) in two variables with the

roots of the polynomial Cc(1, z) in the variable z. Hence, Aa is a repeated factor

of Cc. It is in contradiction with the assumption.

Proof of Theorem 2.1: (a) Since there are no points at which C, Cx and Cy

vanish simultaneously, from Hilbert’s Nullstellensatz we obtain that there exist
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polynomials E, F and G such that

ECx + FCy + GC = 1. (2.7)

As C satisfies equation (1.2), we get from (1.2) and (2.7) that

K = (KE + GP )Cx + (KF + GQ)Cy.

Substituting K into (1.2), we get

[P − (KE + GP )C]Cx = −[Q− (KF + GQ)C]Cy.

Since (Cx, Cy) = 1, there exists a polynomial D such that

P − (KE + GP )C = −DCy, Q− (KF + GQ)C = DCx.

This proves that X takes the form (2.1) with A = KE + GP and B = KF + GQ.

(b) From (a) and Lemma 2.8 we get that the vector field X has the normal form

(2.1). Without loss of generality we can assume that p ≤ q.

We first consider the case that Cc has neither factor x nor y. So we have

(Cc, (Cc)x) = 1 and (Cc, (Cc)y) = 1, where (Cc)x denotes the derivative of Cc with

respect to x. In (2.1) we assume that a > p− c, otherwise the statement follows.

Then d = a + 1. Moreover, from the highest order terms of (2.1) we get

AaCc = Da+1Cc−1
y ,

where Cc−1
y denotes the homogeneous part with degree c−1 of Cy. Since (Cc, Cc−1

y ) =

1, there exists a polynomial F such that

Aa = FCc−1
y , Da+1 = FCc.

In (2.1) we replace A by A−FCy and D by D−FC, so the degrees of polynomials

under consideration reduce by one. We continue this process and do the same for

ẏ until we reach a system of the form

ẋ = AC −DCy, ẏ = BC + ECx, (2.8)

with a ≤ p − c, d ≤ p − c + 1, b ≤ q − c and e ≤ q − c + 1. Since C = 0 is an

invariant algebraic curve of (2.8), from (1.2) we get

C(ACx + BCy) + CxCy(E −D) = KC.
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This implies that there exists a polynomial R such that E −D = RC, because C

with Cx and Cy are coprime.

If e ≥ d, then r = e − c. We write BC + ECx = (B + RCx)C + DCx and

denote B + RCx again by B, then system (2.8) has the form (2.1) where A,B and

D have the required degrees.

If e < d, then r = d − c. We write AC − DCy = (A + RCy)C − ECy and

denote A + RCy again by A, then system (2.8) has the form (2.1) where A,B and

E instead of D have the required degrees. This proves the second part of (b).

Now we prove the first part of (b). We note that even though Cc has no

repeated factor, Cc with Cc−1
x or Cc−1

y may have a common factor in x or y (for

example C3 = x(x2 + y2), C3 = y(x2 + y2) or C4 = xy(x2 + y2)). In order to avoid

this difficulty we rotate the initial system slightly such that Cc has no factors in x

and y. Then, applying the above method to the new system we get that the new

system has a normal form (2.1) with the degrees of A,B and D as those of the

second part of (b).

We claim that under affine changes system (2.1) preserves its form and the

upper bound of the polynomials, i.e. a, b ≤ m − c and d ≤ m − c + 1. Indeed,

using the affine change of variables u = a1x + b1y + c1 and v = a2x + b2y + c2 with

a1b2 − a2b1 6= 0, system (2.1) becomes

u̇ = (a1A+ b1B)C − (a1b2− a2b1)DCv, v̇ = (a2A+ b2B)C +(a1b2− a2b1)DCu.

Hence, the claim follows. This completes the proof of (b), and consequently we

have the proof of the theorem.

Proof of Theorem 2.2: Since (C,D) = 1, the curves C and D have finitely many

intersection points. By assumption (i) at each of such points there is at least one

non–zero first derivative of both C and D. In a similar way to the proof of the

claim inside the proof of Theorem 2.1, we can prove that under an affine change of

the variables, system (2.2) preserves its form and the bound for the degrees of A,

B, E and F . So, we rotate the initial system slightly such that all first derivatives

of C and D are not equal to zero at the intersection points.

From the Hilbert’s Nullstellensatz, there exist polynomials Mi, Ni and Ri,
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i = 1, 2 such that

M1C + N1D + R1Dy = 1, M2C + N2D + R2Cy = 1. (2.9)

By Theorem 2.1 we get that

P = A1C − E1Cy = G1D − F1Dy, (2.10)

for some polynomials A1, E1, G1 and F1. Moreover, using the first equation of

(2.9) we have F1 = SC+TD+UCy for some polynomials S, T and U . Substituting

F1 into (2.10) we obtain that

(A1 + SDy) C + (−G1 + TDy) D + (−E1 + UDy) Cy = 0. (2.11)

Using the second equation of (2.9) and (2.11) to eliminate Cy we get

−E1 + UDy = V C + WD, (2.12)

for some polynomials V and W . Substituting (2.12) into (2.11), we have

(A1 + SDy + V Cy) C = (G1 − TDy −WCy) D.

Since (C,D) = 1, there exists a polynomial K such that

A1 + SDy + V Cy = KD, G1 − TDy −WCy = KC. (2.13)

Substituting E1 of (2.12) and A1 of (2.13) into (2.10), then we have

P = KCD − SCDy + WCyD − UCyDy. (2.14)

Similarly, we can prove that there exist some polynomials K ′, S ′, W ′ and U ′ such

that

Q = K ′CD + S ′CDx −W ′CxD + U ′CxDx. (2.15)

Since C is an invariant algebraic curve of X = (P, Q), we have that PCx +

QCy = KCC for some polynomial KC . Using (2.14) and (2.15) we get

KCC = C [D (KCx + K ′Cy)− SCxDy + S ′CyDx]

+CxCy [D(W −W ′)− UDy + U ′Dx] .
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As C, Cx and Cy are coprime, there exists a polynomial Z such that

D(W −W ′)− UDy + U ′Dx = ZC. (2.16)

Substituting the expression DW − UDy into (2.14), we get

P = KCD − SCDy + W ′CyD − U ′CyDx + ZCCy. (2.17)

Since D = 0 is an invariant algebraic curve of X, we have PDx +QDy = KDD

for some polynomial KD. Using (2.15) and (2.17) we get

KDD = D [C (KDx + K ′Dy) + W ′ (CyDx − CxDy)]

+Dx [CDy(−S + S ′) + U ′ (CxDy − CyDx) + ZCCy] .

As D and Dx are coprime, there exists a polynomial M such that

CDy(−S + S ′) + U ′ (CxDy − CyDx) + ZCCy = MD. (2.18)

The curves C and D are transversal implies that C, D and CxDy −CyDx have no

common zeros. From Hilbert’s Nullstellensatz, there exist some polynomials M3,

N3 and R3 such that

M3C + N3D + R3 (CxDy − CyDx) = 1. (2.19)

Eliminating the term CxDy − CyDx from (2.18) and (2.19), we obtain that U ′ =

IC + JD for some polynomials I and J . Hence, equation (2.18) becomes

C [I (CxDy − CyDx) + Dy(−S + S ′) + ZCy]

+D [J (CxDy − CyDx)−M ] = 0.

Since (C, D) = 1, there exists a polynomial G such that

M = J (CxDy − CyDx) + GC,

I (CxDy − CyDx) + Dy(−S + S ′) + ZCy = GD.

Substituting ZCy − SDy and U ′ into (2.17) we obtain that

P = (K + G)CD − (ICx + S ′) CDy + (W ′ − JDx) DCy.
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This means that P can be expressed in the form (2.14) with U = 0.

Working in a similar way, we can express Q in the form (2.15) with U ′ = 0.

Thus, (2.16) is reduced to D(W −W ′) = ZC. Hence, we have W = W ′ + HC for

some polynomial H. Consequently, Z = HD. Therefore, from (2.18) we obtain

that CDy(−S +S ′) = D(M −HCCy). Since (C, D) = 1 and (D, Dy) = 1, we have

S = S ′ + LD for some polynomial L. Substituting W and S into (2.14) we obtain

that P and Q have the form (2.2). This proves statement (a).

As in the proof of Theorem 2.1 we can prove that under suitable affine change

of variables the form of system (2.2) and the bound of the degrees of the polyno-

mials A, B, E and F are invariant. So, without loss of generality we can assume

that the highest order terms of C and D are neither divisible by x nor y.

By the assumptions, the conditions of statement (a) hold, so we get that X

has the form (2.2). If the bounds of the degrees of A, B, E and F are not satisfied,

we have by (2.2) that

AaCcDd − EeCc−1
y Dd − F fCcDd−1

y = 0,

BbCcDd + EeCc−1
x Dd + F fCcDd−1

x = 0.
(2.20)

We remark that if one of the numbers a+c+d, e+c−1+d and f +c+d−1 is less

than the other two, then its corresponding term in the first equation of (2.20) is

equal to zero. The same remark is applied to the second equation of (2.20). From

the hypotheses it follows that Cc and Cc−1
y are coprime, and also Dd and Dd−1

y ,

and Cc and Dd, respectively. Hence, from these last two equations we obtain that

there exist polynomials K and L such that Ee = KCc, F f = LDd, and

Aa = KCc−1
y + LDd−1

y , Bb = −KCc−1
x − LDd−1

x .

We rewrite equation (2.2) as

ẋ = (A−KCy − LDy) CD − (E −KC)CyD − (F − LD)CDy,

ẏ = (B + KCx + LDx) CD + (E −KC)CxD + (F − LD)CDx.

Thus, we reduce the degrees of A, B, E and F in (2.2) by one. We can continue

this process until the bounds are reached. This completes the proof of statement

(b).
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Proof of Theorem 2.3: We use induction to prove this Theorem. By Theorems 2.1

and 2.2 we assume that for any l with 2 ≤ l < p we have

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci, Q =
l∑

i=1

(
Di +

AiCix

Ci

) l∏
i=1

Ci,

where
l∑

i=1

Bi = B and
l∑

i=1

Di = D. Since Cl+1 = 0 is an invariant algebraic curve,

from Theorem 2.1 we get that there exist some polynomials E, G and H such that

P =
l∑

i=1

(
Bi − AiCiy

Ci

) l∏
i=1

Ci = ECl+1 −GCl+1,y,

Q =
l∑

i=1

(
Di +

AiCix

Ci

) l∏
i=1

Ci = HCl+1 + GCl+1,x.

(2.21)

Now we consider the curves

Kj =
l∏

i = 1

i 6= j

Ci = 0, j = 1, · · · , l.

From the assumptions we obtain that there is no points at which all the curves

Ki = 0 and Cl+1 = 0 intersect. Otherwise, at least three of the curves Ci = 0 for

i = 1, · · · , l + 1 intersect at some point. Hence, there exist polynomials U and Vi

for i = 1, · · · , l such that

UCl+1 +
l∑

i=1

ViKi = 1. (2.22)

Using this equality, we can rearrange (2.21) as

(E −GUCl+1,y) Cl+1 =
l∑

i=1

(BiCi − AiCiy + GViCl+1,y) Ki,

(H + GUCl+1,x) Cl+1 =
l∑

i=1

(DiCi + AiCix −GViCl+1,x) Ki.

(2.23)

Using (2.22) and (2.23) to eliminate Cl+1 we obtain that

E −GUCl+1,y =
l∑

i=1

IiKi, H + GUCl+1,x =
l∑

i=1

JiKi,
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for some polynomials Ii and Ji. Substituting these last equalities into (2.23), we

have
l∑

i=1

(BiCi − AiCiy + GViCl+1,y − IiCl+1) Ki = 0,

l∑
i=1

(DiCi + AiCix −GViCl+1,x − JiCl+1) Ki = 0.

(2.24)

It is easy to check that the expression multiplying Ki in the two summations of

(2.24) are divisible by Ci. Hence, there exist polynomials Li and Fi for i = 1, · · · , l

such that
BiCi − AiCiy + GViCl+1,y − IiCl+1 = LiCi,

DiCi + AiCix −GViCl+1,x − JiCl+1 = FiCi.
(2.25)

So, from (2.24) we get that
l∑

i=1

Li = 0 and
l∑

i=1

Fi = 0. This implies that (2.21) can

be rewritten as

P =
l∑

i=1

((Bi − Li)Ci − AiCiy) Ki, Q =
l∑

i=1

((Ci − Fi)Ci + AiCix) Ki. (2.26)

Moreover, we write (2.25) in the form

(Bi − Li)Ci − AiCiy = IiCl+1 −GViCl+1,y = Pi,

(Di − Fi)Ci + AiCix = JiCl+1 + GViCl+1,x = Qi.
(2.27)

It is easy to see that Ci and Cl+1 are invariant algebraic curves of the system

ẋ = Pi, ẏ = Qi. So, from statement (a) of theorem 2.2 we can obtain that

Pi = (Bi − Li)Ci − AiCiy = XiCiCl+1 − YiCiyCl+1 −NiCiCl+1,y,

Qi = (Di − Fi)Ci + AiCix = ZiCiCl+1 + YiCixCl+1 + NiCiCl+1,x.

Substituting these last two equations into (2.26), we obtain that X takes the form

(2.3) with the l + 1 invariant algebraic curves C1, · · · , Cl+1. From induction we

have finished the proof of statement (a).

The proof of statement (b) is almost identical with those of Theorem 2.2(b),

so we shall omit it here. Hence, this ends the proof of the Theorem.

Proof of Theorem 2.4: From Theorem 2.3 it follows statement (a) of Theorem 2.4.
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By checking the degrees of polynomials Ai, B and D in statement (b) of

Theorem 2.3 we obtain statement (b) of Theorem 2.4.

From statement (a) of Theorem 2.3, we can rearrange the initial system such

that it has the form (2.3). But from statement (b) of Theorem 2.3 we must have

B = 0, D = 0 and Ai = 0. This proves statement (c) of Theorem 2.4.

Proof of Theorem 2.6: The proof is formed by the following examples. First, we

consider the case r < m + 1. That is, the sum of degrees of the given invariant

algebraic curves is less than the degree of the system plus one.

Example 2.9.

The algebraic curve f = y3 + x3 − x2 = 0 satisfies all conditions of Theorem

2.4 excepting (i). The cubic system

ẋ = 2x− 2x3 − 3xy2 + y3, ẏ =
4

3
y + x2 − 3x2y − 3y3, (2.28)

has f = 0 as an invariant algebraic curve. We claim that system (2.28) does dot

have the form (2.4). Otherwise, it can be written in the form

ẋ = A(y3 + x3 − x2) + D(−3y2),

ẏ = B(y3 + x3 − x2) + D(3x2 − 2x),

where A, B and D are polynomials. It is in contradiction with (2.28), because in

the first equation of (2.28) there is a linear term.

Example 2.10.

The algebraic curve f = y − x2 = 0 satisfies all conditions of Theorem 2.4

excepting (ii). The polynomial system of degree m with m ≥ 2:

ẋ = D(y) + xE(y) + A(x, y)(y − x2), ẏ = 2xD(y) + 2yE(y) + B(x, y)(y − x2),

(2.29)

has f = 0 as an invariant algebraic curve, where δD, δE = m − 1, and δA, δB ≤
m− 2. We can write system (2.29) in the form (2.4), i.e.

ẋ = A(x, y)(y − x2) + D(y) + xE(y),

ẏ = (B(x, y) + 2E(y))(y − x2) + 2x(D(y) + xE(y)).

But then δ(B(x, y) + 2E(y)) = m− 1 > m− δC.
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Example 2.11.

The algebraic curves f1 = x2 + y2 − 1 = 0 and f2 = y − 1 = 0 satisfy all

conditions of Theorem 2.4 excepting (iii). The cubic system

ẋ = −1− y + x2 + xy + y2 + x2y + y3 = P, ẏ = (y + x2 + y2)(y− 1) = Q, (2.30)

has f1 = 0 and f2 = 0 as invariant algebraic curves. We claim that system (2.30)

cannot be written in the form (2.4). Otherwise, Q can be written as

Q = B(x2 + y2 − 1)(y − 1) + D2x(y − 1),

where B and D are polynomials. However, there not exist polynomials B and D

such that

B(x2 + y2 − 1) + 2xD = y + x2 + y2. (2.31)

Because if the equality holds, then B must contain the monomial −y. Let ayt be

the monomial of B with the highest degree t ≥ 1 and without the variable x. Then

the left hand side of (2.31) contains the monomial ayt+2. It is in contradiction with

the right hand side of (2.31).

Example 2.12.

The algebraic curves f1 = x = 0, f2 = y = 0 and f3 = x + y = 0 satisfy all

conditions of Theorem 2.4 excepting (iv). The cubic system

ẋ = (1 + x + y + x2 + xy)x = P, ẏ = (1 + x2 + 2xy + y2)y = Q, (2.32)

has these three curves as invariant algebraic curves. We claim that system (2.32)

cannot be written in the form (2.4). Otherwise, the polynomial Q can be written

as

Q = Bxy(x + y) + Dy(x + y) + Exy,

where B, D and E are polynomials. But it is in contradiction with (2.32).

Example 2.13.

The algebraic curves f1 = xy + 1 = 0 and f2 = y = 0 satisfy all conditions of

Theorem 2.4 excepting (v). The cubic system

ẋ = 1 + x + y − x2 + x3 + 2xy2 = P, ẏ = (x + y − x2 + xy − y2)y = Q, (2.33)
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has f1 = 0 and f2 = 0 as invariant algebraic curves. If we write this system in the

form (2.4), then we have

Q = B(xy + 1)y + Dy2,

where B and D are polynomials. Comparing it with (2.33), we get that B cannot

be a constant. So, δB > 0 = m− r, which is in contradiction with statement (a)

of Theorem 2.4.

Next, we consider the case r = m + 1. That is, the sum of the degrees of the

given invariant algebraic curves is equal to the degree of the system plus one.

Example 2.14.

The curve f = x2+x3+y3 = 0 satisfies all conditions of Theorem 2.4 excepting

(i). The quadratic systems with f = 0 as an invariant algebraic curve can be

written as

ẋ =
3

2
ax +

3

2
ax2 − by2, ẏ =

2

3
bx + ay + bx2 +

3

2
axy,

where a and b are arbitrary complex numbers. Obviously, if a 6= 0 this system

cannot have the form (2.5).

Example 2.15.

The curve f = y − x3 = 0 satisfies all conditions of Theorem 2.4 excepting

(ii). It is an invariant algebraic curve of the system

ẋ = 1 + x− x2 + xy, ẏ = 3y + 3x2 − 3xy + 3y2.

This system cannot be written in the form (2.5).

Example 2.16.

The curves f1 = x2 + y2 − 1 = 0 and f2 = y − 1 = 0 satisfy all conditions of

Theorem 2.4 excepting (iii). Moreover, f1 = 0 and f2 = 0 are invariant algebraic

curves of system (2.6). However, system (2.6) does not have the form (2.5) if a 6= 0.
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Example 2.17.

The curves f1 = x + iy = 0, f2 = x − iy = 0 and f3 = x = 0 satisfy all

conditions of Theorem 2.4 excepting (iv). The quadratic system

ẋ = −b(x2 + y2) + x + y(ax + by), ẏ = k(x2 + y2) + y − x(ax + by),

has f1 = 0, f2 = 0 and f3 = 0 as invariant algebraic curves, but this system cannot

take the form (2.5).

Example 2.18.

The curves f1 = xy − 1 = 0 and f2 = x = 0 satisfy all conditions of Theorem

2.4 excepting (v). They are invariant algebraic curves of the system

ẋ = (1− 2x + y)x, ẏ = 1− y + xy − y2.

Obviously, this system does not have the form (2.5).

Last we give the counterexamples for the case r > m + 1. That is, the sum of

the degrees of the invariant algebraic curves is larger than the degree of the system

plus one.

Example 2.19.

The algebraic curve f = x4 +x3 + y4 = 0 satisfy all conditions of Theorem 2.4

excepting (i). The quadratic systems having f = 0 as an invariant algebraic curve

are

ẋ = ax + ax2, ẏ =
3

4
ay + axy.

So, statement (c) of Theorem 2.4 is not satisfied.

Example 2.20.

The algebraic curve f = y − x4 = 0 satisfy all conditions of Theorem 2.4

excepting (ii). The quadratic systems having f = 0 as an invariant algebraic curve

are

ẋ = ax + bx2 + cxy, ẏ = 4ay + 4bxy + 4cy2.

They are not zero unless a = b = c = 0.



40 On polynomial systems having invariant algebraic curves

Example 2.21.

The algebraic curves f1 = x2 + y2 − 1 = 0, f2 = y − 1 = 0 and f3 =

4x + 3y + 5 = 0 satisfy all conditions of Theorem 2.4 excepting (iii). However, the

quadratic system ẋ = y(2x− y + 1) + x2 + y2− 1, ẏ = x(y− 1) + 2y2− 2 has these

three curves as invariant algebraic curves.

Example 2.22.

The algebraic curves f1 = x = 0, f2 = y = 0 and f3 = x + y = 0 satisfy all

conditions of Theorem 2.4 excepting (iv). The linear systems having these three

curves as invariant algebraic curves are ẋ = ax, ẏ = ay. They are not zero unless

a = 0.

Example 2.23.

The algebraic curves f1 = xy−1, f2 = y and f3 = y+1 satisfy all conditions of

Theorem 2.4 excepting (v). The quadratic system with f1, f2 and f3 as invariant

algebraic curves are

ẋ = a− bx− (a + b)xy, ẏ = by(y + 1).

They are not zero unless a = b = 0.

From these fifteen examples it follows the proof of Theorem 2.6.

2.3 On the non-existence of Darboux first inte-

grals

We note that all quadratic systems having an ellipse and a straight line tangent

into the ellipse can be written into the form (2.6). System (2.6) has the invariant

circle f1 = x2 + y2− 1 = 0 with cofactor K1 = 2(x+ ay) and the invariant straight

line f2 = y − 1 = 0 with cofactor K2 = bx + ay + a. We also note that f1 and f2

are tangent at the point (0, 1).
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Proof of Theorem 2.7: The proof is separated into three parts. The first part shows

that there exists a set Ω1 of values of the parameters a and b such that system

(2.6) has only the given two invariant algebraic curves. The second part give a

proof that there exists a set Ω2 of values of a and b such that systems (2.6) have

no exponential factors. Moreover, Ω1 ∩Ω2 6= ∅. The last step contributes to prove

that system (2.6) is not Darboux integrable for a, b ∈ Ω1 ∩ Ω2.

We should use the following result (for a proof, see [17]).

Lemma 2.24. Assume that system ẋ = P, ẏ = Q with degree m has an invariant

algebraic curve C of degree n. Let Cn, Pm and Qm be the homogeneous parts of C

with degree n, P and Q with degree m. Then the irreducible factor of Cn divides

yPm − xQm.

The first part is formed by the following proposition, which is related to the

existence of invariant algebraic curves of system (2.6).

Proposition 2.25. For each b 6= 1 ± 1
p with p ∈ N there exists a numerable set

Υ such that if a ∈ R\(Υ ∪ {0}), then system (2.6) has no irreducible invariant

algebraic curves different from f1 = 0 and f2 = 0.

Proof: Assume that C =
n∑

i=0

Ci(x, y) = 0 be an invariant algebraic curve of system

(2.6) with cofactor K = K1 + K0, where Ci and Ki are homogeneous polynomials

of degree i. From the definition of invariant algebraic curve, i.e. (1.2) we have

[
x2 + axy + (1− b)y2 + by − 1

] n∑
i=1

Cix

+
[
bxy + ay2 − bx− a

] n∑
i=1

Ciy = (K1 + K0)
n∑

i=0

Ci.

Equating the terms with the same degree we obtain

L[Cn−i] = K1Cn−i + K0Cn−i+1 − byCn−i+1,x + bxCn−i+1,y

+Cn−i+2,x + aCn−i+2,y, i = 0, 1, · · · , n + 2, (2.34)

where Ci = 0 for i < 0 and i > n, and L is the partial differential operator

L =
[
x2 + axy + (1− b)y2

] ∂

∂x
+

[
bxy + ay2

] ∂

∂y
.
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For system (2.6) we have yP2 − xQ2 = (1 − b)y(x2 + y2). So, from Lemma

2.24 we can assume that

Cn = (x2 + y2)lym, n = 2l + m.

Substituting Cn into (2.34) with i = 0 and doing some computations we get

K1 = (2l + mb)x + a(2l + m)y.

Set Cn−1 =
n−1∑
i=0

cn−1−ix
n−1−iyi. Substituting Cn−1, Cn and K1 into (2.34) with

i = 1 and doing some calculations, we obtain

n−1∑
i=0

(m− 1− i + ib−mb)cn−1−ix
2l+m−iyi −

n−1∑
i=0

acn−1−ix
2l+m−1−iyi+1

+
n−1∑
i=0

(2l + m− 1− i)(1− b)cn−1−ix
2l+m−2−iyi+2

= K0(x
2 + y2)lym + mbx(x2 + y2)lym−1

=
l∑

i=0

K0

(
l

i

)
x2l−2iym+2i +

l∑
i=0

mb

(
l

i

)
x2l+1−2iym+2i−1.

This equation can be written as
n∑

i=0

[(m− 1− i + ib−mb)cn−1−i − acn−i

+(2l + m + 1− i)(1− b)cn+1−i]x
2l+m−iyi

=
l∑

i=0

K0

(
l

i

)
x2l−2iym+2i +

l∑
i=0

mb

(
l

i

)
x2l+1−2iym+2i−1,

where ci = 0 for i < 0 and i > n−1. Equating the coefficients of xiyj in the above

equation, we get

[m− i− 1 + (i−m)b]c2l+m−1−i − ac2l+m−i

+(2l + m + 1− i)(1− b)c2l+m+1−i = 0, i = 0, 1 · · · ,m− 2, (2.35)

[(2i− 1)b− 2i]c2l−2i − ac2l+1−2i,

−(2l + 2− 2i)(b− 1)c2l+2−2i = mb

(
l

i

)
, i = 0, 1, · · · , l, (2.36)

[2i(b− 1)− 1]c2l−2i−1 − ac2l−2i

−(2l + 1− 2i)(b− 1)c2l+1−2i = K0

(
l

i

)
, i = 0, 1, · · · , l. (2.37)
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From the assumptions and (2.35) we can prove easily that c2l+j = 0 for j =

1, · · · ,m− 1. Equations (2.36) and (2.37) can be written as

c2l−2i = 1
2i(b− 1)− b

[
ac2l+1−2i + (2l + 2− 2i)(b− 1)c2l+2−2i + mb

(
l

i

)]
,

c2l−2i−1 =
1

2i(b− 1)− 1

[
ac2l−2i + (2l + 1− 2i)(b− 1)c2l+1−2i + K0

(
l

i

)]
,

(2.38)

with i = 0, 1, · · · , l. It is easy to check that

c2l = −m, c2l−1 = am−K0.

From (2.38) with i = 1 we get that

c2l−2 =
a

b− 2
(am−K0)−ml = B1(a, b, l)(am−K0)−m

(
l

1

)
,

c2l−3 =

[
a2

(2b− 3)(b− 2)
+ l − b− 1

2b− 3

]
(am−K0) = B2(a, b, l)(am−K0).

In what follows we use the induction to find the coefficients c2l−i for i = 4, · · · , 2l.

Assume that for i = h we have

c2l−2h = B2h−1(a, b, l)(am−K0)−m

(
l

h

)
, c2l−1−2h = B2h(a, b, l)(am−K0),

where Bj−1(a, b, l) for j = 2h, 2h + 1, are polynomials in a where coefficients are

function of b and l and the highest order terms of the form

aj−1/

j∏
i=2

[(i− 1)b− i]. (2.39)

Then from (2.38) with i = h + 1 we get

c2l−2h−2 =
1

2(h + 1)(b− 1)− b
{aB2h(a, b, l)(am−K0)

+(2l − 2h)(b− 1)

[
B2h−1(a, b, l)(am−K0)−m

(
l

h

)]
+ mb

(
l

h + 1

)}

= B2h+1(a, b, l)(am−K0)−m

(
l

h + 1

)
,

c2l−2h−3 =
1

2(h + 1)(b− 1)− 1

{
a

[
B2h+1(a, b, l)(am−K0)−m

(
l

h + 1

)]

+(2l − 2h− 1)(b− 1)B2h(a, b, l)(am−K0) + K0

(
l

h + 1

)}

= B2h+2(a, b, l)(am−K0).
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where

B2h+1 =
1

2(h + 1)(b− 1)− b
[aB2h + (2l − 2h)(b− 1)B2h−1],

B2h+2 =
1

2(h + 1)(b− 1)− 1

[
aB2h+1 −

(
l

h + 1

)
+ (2l − 2h− 1)(b− 1)B2h

]
,

are polynomials in a of degree 2h+1 and 2h+2 respectively, in which the highest

order terms are the form (2.39) for j = 2h+2 and j = 2h+3, respectively. Hence,

from (2.38) and using induction we obtain that for h = 0, 1, · · · , 2l

c2l−h = Bh−1(a, b, l)(am−K0) +
(−1)h+1 − 1

2
m

(
l

h/2

)
.

Moreover, from the first equation of (2.38) with i = l, i.e. ac0 +(b− 1)c1 +K0 = 0

we get

a[B2l−1(am−K0)−m] + (b− 1)B2l−2(am−K0) = K0.

This means that

[aB2l−1 + (b− 1)B2l−2 − 1](am−K0) = 0.

Since aB2l−1 +(b− 1)B2l−2− 1 is a polynomial of degree 2l in the variable a, it has

at most 2l real roots, denoted by Sl the set of the roots. Then, for a ∈ R\Sl we

must have K0 = am.

Obviously, Υ = ∪∞l=1Sl is a numerable set. Moreover, for each a ∈ R\Υ and

l ∈ N we have K0 = am. So, if C is an invariant algebraic curve of the above

form, it has the cofactor K = K1 + K0 = (2l + mb)x + a(2l + m)y + am =

2(x + ay)l + (bx + ay + a)m.

Moreover, we can check that C∗ = (x2 + y2 − 1)l(y − 1)m = 0 is an invariant

algebraic curve with cofactor K. If D = C − C∗ 6= 0, then D = 0 is also an

invariant algebraic curve with the cofactor K. But D has degree d ≤ 2l + m− 2.

Again using Lemma 2.24 we can assume that the highest order homogeneous term

of D is of the form Dd = (x2 + y2)l′ym′
with d = 2l′ + m′. Then, from the above

proof we should have the linear part of K is K1 = (2l′ + m′b)x + a(2l′ + m′)y. It

is in contradiction with the last paragraph. Hence, we must have C = C∗. This

proves that for b 6= 1 ± 1
p

with p ∈ N and a ∈ R\(Υ ∪ {0}) system (2.6) has only
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the irreducible invariant algebraic curves x2 + y2 = 1 and y = 1. This proves the

proposition.

Now we should prove that for some values of parameters system (2.6) has no

exponential factors.

Proposition 2.26. For each b 6∈ Q there exists a numerable set Υ∗ ⊃ Υ such that

if a ∈ R\(Υ∗ ∪ {0}), then system (2.6) has no exponential factors.

Proof: From Proposition 2.25 system (2.6) has only the invariant algebraic curves

f1 = x2 + y2− 1 = 0 and f2 = y− 1 = 0. If system (2.6) has an exponential factor,

we can assume that it has the form F = exp

(
G

f l1
1 f l2

2

)
with a cofactor L, where

l1 and l2 are non–negative integers. Since the invariant algebraic curve f l1
1 f l2

2 = 0

has the cofactor K = l1K1 + l2K2 = 2l1(x + ay) + l2(bx + ay + a), from (??) we

get that G satisfies the following equation

[x2 + axy + (1− b)y2 + by − 1]Gx + (bxy + ay2 − bx− a)Gy

= [2l1(x + ay) + l2(bx + ay + a)]G + L(x2 + y2 − 1)l1(y − 1)l2 . (2.40)

Set δG = n. Since δL ≤ 1, we can assume that L = L1 + L0, where Li are

homogeneous polynomials of degree i.

Case 1: n + 1 < 2l1 + l2. By equating the homogeneous terms of highest degree in

(2.40) we obtain first that L1 = 0, and after that L0 = 0, and so L = 0. Thus G

is an invariant algebraic curve. Moreover, from the assumption of this proposition

we obtain that G = cf l1
1 f l2

2 , where c is a constant. Then, F = constant, and it

cannot be an exponential factor.

Case 2: n + 1 = 2l1 + l2. Then we have L1 = 0. Set G =
n∑

i=0

Gi(x, y) with Gi

homogeneous polynomials of degree i and Gn =
n∑

i=0

aix
n−iyi, where ai are constants.

Then, equating the terms of (2.40) with degree n + 1 we get that

[
x2 + axy + (1− b)y2

] n∑
i=0

(n− i)aix
n−i−1yi +

(
bxy + ay2

) n∑
i=0

iaix
n−iyi−1

= [2l1(x + ay) + l2(bx + ay)]
n∑

i=0

aix
n−iyi + L0

(
x2 + y2

)l1 yl2 .
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Using the relation n + 1 = 2l1 + l2 we can write this last equation as

2l1+l2+1∑
i=0

{[(b− 1)(i− l2)− 1]ai + aai−1 + (1− b)(2l1 + l2 + 1− i)ai−2}x2l1+l2−iyi

= L0

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2 ,

where ai = 0 for i < 0 and i > n. The last equation is equivalent to

[(b− 1)(i− l2)− 1]ai + aai−1 + (1− b)(2l1 + l2 + 1− i)ai−2 = 0, (2.41)

i = 0, 1, · · · , l2 − 1
2l1+1∑
j=0

[(b− 1)j − 1]aj+l2 + aaj+l2−1 − (1− b)(2l1 + 1− j)aj+l2−2}x2l1−jyj+l2

= L0

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2 . (2.42)

Since b 6= 1 ± 1
k

for k ∈ N, from (2.41) we get that ai = 0 for i = 0, 1, · · · , l2 − 1.

From (2.42) we obtain that for i = 0, 1, · · · , l1

[(b− 1)(2i + 1)− 1] a2i+1+l2 + aa2i+l2 − (1− b)(2l1 − 2i)a2i+l2−1 = 0,

[(b− 1)2i− 1] a2i+l2 + aa2i+l2−1 − (1− b)(2l1 + 1− 2i)a2i+l2−2 = L0

(
l1

i

)
.

(2.43)

Solving (2.43) for i = 0, 1, · · · , l1 − 1 and its second equation with i = l1 we get

that

al2+h = Bh(a)L0, k = 0, 1, · · · , 2l1,

where Bh(a) is a polynomial of degree h in a whose coefficients are rational func-

tions in b and l1. The highest order term of Bh(a) in a is −1/
h∏

j=0

[(1− b)j + 1]. So

the first equation of (2.43) with i = l1 is aB2l1L0 = 0. Since the coefficient of L0

is a polynomial of degree m + 1, there exists at most m + 1 values of a such that

it is equal to zero. We denote by γl1 the set of such a. Hence, if a 6∈ γl1 we must

have L0 = 0. This means that L = 0. So, system (2.6) has no exponential factors

for a 6∈ γl1 .
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Case 3: n = 2l1 + l2. Let L1 = L10x + L01y. Using the notations for G and Gn

introduced in the study of Case 2, equating the terms of (2.40) with degree n + 1

and doing some computations we get that

n+2∑
i=0

[(b− 1)(i− l2)]ai + (1− b)(n + 2− i)ai−2]x
n+1−iyi

= L10

l1∑
i=0

(
l1

i

)
x2l1−2i+1y2i+l2 + L01

l1∑
i=0

(
l1

i

)
x2l1−2iy2i+l2+1,

where ai = 0 for i < 0 and i > n. These equations are equivalent to

(i− l2)ai − (n + 2− i)ai−2 = 0, i = 0, 1, · · · , l2 − 1,

(b− 1)2ja2j+l2 + (1− b)(2l1 + 2− 2j)a2j+l2−2 = L10

(
l1

j

)
, (2.44)

(b− 1)(2j + 1)a2j+l2+1 + (1− b)(2l1 + 1− 2j)a2j+l2−1 = L01

(
l1

j

)
,

where j = 0, 1, · · · , l1.

From the first equation of (2.44) we obtain that ai = 0 for i = 0, 1, · · · , l2− 1.

Hence, the first equation of (2.44) with j = 0 induces to L10 = 0. Thus, we have

a2j+l2 =
2l1 + 2− 2j

2j
a2j+l2−2, j = 1, · · · l1.

i.e. al2+2j =

(
l1

j

)
al2 , j = 1, · · · l1. From the second equation of (2.44) with

j = 0, 1, · · · , l1 − 1 and using induction, we can prove that

a2j+1+l2 =
µj

b− 1
L01, j = 0, 1, · · · , l1 − 1,

with µj > 0. Now the second equation of (2.44) with j = l1 can be written as

(1 + µl1)L01 = 0. This implies that L01 = 0. Moreover, we have a2j+1+l2 = 0 for

j = 0, 1, · · · , l1 − 1.

From the above calculations we get that L = L0 and

Gn =
n∑

i=0

aix
n−iyi = al2(x

2 + y2)l1yl2 .
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Since al2 6= 0, without loss of generality we assume that al2 = 1.

Equating the terms of (2.40) with degree n we get that

[x2 + axy + (1− b)y2]Gn−1,x + (bxy + ay2)Gn−1,y =

[2l1(x + ay) + l2(bx + ay)]Gn−1 − byGnx + bxGny + l2aGn + L0(x
2 + y2)l1yl2 .

Let Gn−1 =
n−1∑
i=0

bix
n−1−iyi. Substituting Gn−1 into the above equation and doing

some computations, we can obtain that

n∑
i=0

{[l2 − 1− i + b(i− l2)]bi − abi−1 + (1− b)(n + 1− i)bi−2}xn−iyi

= bl2

l1∑
i=0

(
l1

i

)
x2l1+1−2iyl2+2i−1 + (l2a + L0)

l1∑
i=0

(
l1

i

)
x2l1−2iyl2+2i,

where bi = 0 for i < 0 and i > n− 1. From this equation we obtain that

[l2 − 1− j + b(j − l2)]bj − abj−1 + (1− b)(n + 1− j)bj−2 = 0,

j = 0, 1, · · · , l2 − 2,

[−2i + b(2i− 1)]b2i+l2−1 − ab2i+l2−2 + (1− b)(2l1 + 2− 2i)b2i+l2−3

= bl2

(
l1

i

)
, (2.45)

[−2i− 1 + 2bi]b2i+l2 − ab2i+l2−1 + (1− b)(2l1 + 1− 2i)b2i+l2−2

= (l2a + L0)

(
l1

i

)
,

with i = 0, 1, · · · , l1.

From the first equation of (2.45) we can prove that bj = 0 for j = 0, 1, · · · , l2−
2. From (2.45) with i = 0, 1, · · · , l1 − 1 and its first equation with i = l1, working

in a similar way to the proof of Proposition 2.25 we can prove that

bl2+2i−1 = B̃2i−1(a)L0 − l2

(
l1

i

)
, bl2+2i = B̃2i(a)L0, i = 0, 1, · · · , l1,

where B̃k(a) is a polynomial of degree k in a whose coefficients are rational func-

tions in b and l1. Using the last equation of (2.45) with i = l1 we get

[aB̃2l1−1 + (b− 1)B̃2l1−2 + 1]L0 = 0.
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For every given b and l1 there exist at most 2l1 values of a for which aB̃2l1−1 +(b−
1)B̃2l1−2 + 1 is equal to zero. We denote by γ̃l1 the set of such a. Then if a 6∈ γ̃l1 ,

we have L0 = 0. So for every b satisfying the assumption of the proposition, if

a 6∈ ∪γ̃l1 system (2.6) has no exponential factors.

Case 4: n > 2l1 + l2. Using the notations of Case 2 for G and Gn, from (2.40) we

get that

[x2 + axy + (1− b)y2]Gnx + (bxy + ay2)Gny = [2l1(x + ay) + l2(bx + ay)]Gn.

Working in similar way to the previous case we can prove that the coefficients ai

in Gn satisfy the following equations

[n− i− 2l1 + b(i− l2)]ai + a(n− 2l1 − l2)ai−1 + (1− b)(n + 2− i)ai−2 = 0,

with i = 0, 1, · · · , n + 1. Since b 6∈ Q, from these equations we obtain that ai = 0.

So, Gn = 0. This implies that system (2.6) has no exponential factors.

Summing up these four cases the proof of the proposition follows.

In this last step we prove that for each b 6∈ Q, if a ∈ R\(Υ∗ ∪ {0}) system

(2.6) is not Darboux integrable.

Suppose that the assumptions of Proposition 2.26 are satisfied. Then, by

Propositions 2.25 and 2.26 we get that system (2.6) has only the invariant algebraic

curves x2 + y2 = 1 with cofactor K1 = 2(x + ay) and y = 1 with cofactor K2 =

bx + ay + a, and has no exponential factors. We can check easily that under these

assumptions do not exist λ1, λ2 ∈ C not all zero such that λ1K1 + λ2K2 = 0 or

λ1K1+λ2K2 = −div(P, Q) = −(2+b)x−3ay, where P = y(ax−by+b)+x2+y2−1

and Q = bx(y − 1) + a(y2 − 1). Hence, from the Darboux theory of integrability

(see for instance [15] or [13]) it follows that system (2.6) is not Darboux integrable.

We have finished the proof of Theorem 2.7.

As a corollary of Theorem 2.7 is the following result which shows that there

are polynomial systems with an invariant algebraic curve whose highest order term

have repeated factors such that they are not Darboux integrable.

Corollary 2.27. There exist values of the parameters a and b for which system

ẋ = (1− b)(x2 + 2y − 1)− (ax− b)(y − 1) = P (x, y),

ẏ = −(bx + 2ay − a)(y − 1) = Q(x, y),
(2.46)
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is not Darboux integrable.

Proof of corollary 2.27: System (2.46) has the invariant algebraic curves f1 =

x2 + 2y − 1 = 0 with cofactor K1 = 2[(1− b)x− ay + a] and f2 = y − 1 = 0 with

cofactor K2 = −(bx + 2ay − a). We note that the highest order term of f1 has a

repeated factor x.

Since y − 1 = 0 is invariant by system (2.46), after the change of variables

x =
x

y − 1
, y =

y

y − 1
, t =

τ

y − 1
,

system (2.46) becomes into the form of system (2.6), i.e.

dx
dτ

= y(ax− by + b) + x2 + y2 − 1 = P (x, y),
dy
dτ

= bx(y − 1) + a(y2 − 1) = Q(x, y).
(2.47)

Let C(x, y) be a polynomial of degree n, and set C(x, y) = (y − 1)nC
(

x
y−1

, y
y−1

)
.

We claim that if C(x, y) = 0 is an invariant algebraic curve of system (2.46) with

cofactor K(x, y) and C 6≡ constant, then C(x, y) = 0 is an invariant algebraic

curve of system (2.47) with cofactor

K = (y − 1)K

(
x

y − 1
,

y

y − 1

)
+ n

Q

y − 1
.

Indeed, straightforward calculations show that

P Cx + Q Cy = (y − 1)n

[
P (y − 1)−Qx

(y − 1)2
Cx − Q

(y − 1)2
Cy + n

Q

y − 1
C

]

= (y − 1)n

[
(y − 1)PCx + (y − 1)QCy + n

Q

y − 1
C

]

= (y − 1)n+1KC + n(y − 1)n Q

y − 1
C = K C.

This proves the claim.

Now we claim that if F (x, y) = exp

(
G(x, y)
H(x, y)

)
is an exponential factor of

system (2.46) with cofactor L(x, y), then

F (x, y) = exp

(
G

(
x

y − 1
,

y

y − 1

)
/H

(
x

y − 1
,

y

y − 1

))
,
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is an exponential factor of system (2.47) with cofactor L(x, y) = (y−1)L
(

x
y − 1 ,

y
y − 1

)
.

In fact, we have

P F x + Q F y = exp

(
G

H

)
H−2

[(
P (y − 1)−Qx

(y − 1)2
Gx − Q

(y − 1)2
Gy

)
H

−
(

P (y − 1)−Qx

(y − 1)2
Hx − Q

(y − 1)2
Hy

)
G

]

= (y − 1) exp

(
G

H

)
H−2 [(PGx + QGy) H − (PHx + QHy) G]

= (y − 1) (PFx + QFy)

= (y − 1)LF = (y − 1)L

(
x

y − 1
,

y

y − 1

)
F .

This proves the claim.

From these two claims and the proof of Theorem 2.7 we obtain that there

exist values of a and b for which systems (2.46) and (2.6) have only two irreducible

invariant algebraic curves and no exponential factors. Hence, for such values of

a 6= 0 and b system (2.46) is not Darboux integrable. Otherwise, system (2.6)

would have a Darboux integral, in contradiction with Theorem 2.7. Hence, the

proof of Corollary 2.27 is completed.

2.4 Polynomial systems with arbitrary set of in-

variant algebraic curves

In this section we are interesting to construct a polynomial vector field having an

arbitrary set of invariant algebraic curves when their cofactors are known. First

we consider the case of two algebraic curves.

Proposition 2.28. Let f1, f2 ∈ C[x, y] be two irreducible polynomials such that

J12 = f1xf2y − f1yf2x 6= 0. Let ẋ = P (x, y), ẏ = Q(x, y) be a polynomial differ-

ential system having f1 = 0 and f2 = 0 as invariant with cofactors K1 and K2
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respectively, then we have

P (x, y) =
1

J12

(K1f1f2y −K2f2f1y),

Q(x, y) =
1

J12

(−Kf1f1f2x + Kf2f2f1x).

(2.48)

Proof: Suppose that ẋ = P (x, y), ẏ = Q(x, y) is a polynomial system having f1 = 0

and f2 = 0 as invariant algebraic curves with cofactors K1 and K2 respectively, we

have
Pf1x + Qf1y = K1f1,

Pf2x + Qf2y = K2f2.
(2.49)

Multiplying the first equation of (2.49) by f2y and the second one of (2.49) by f1y

and abstracting both relations we get

P (f1xf2y − f1yf2x) = K1f1f2y −K2f2f1y.

In a similar way, we get

Q(f1yf2x − f1xf2y) = K1f1f2x −K2f2f1x.

Hence, we have

PJ12 = K1f1f2y −K2f2f1y,

−QJ12 = K1f1f2x −K2f2f1x,

and so we get system (2.48).

We note that we are interested into construct all polynomial systems of degree

m having f1 = 0 and f2 = 0 as invariant algebraic curves then, since K1 and K2

are cofactors, their degrees must be at most m− 1.

Proposition 2.29. Let f1, f2 ∈ C[x, y] such that J12 ∈ C \ {0}. Then, all polyno-

mial systems ẋ = P, ẏ = Q having invariant the curves f1 = 0 and f2 = 0 can be

written into the form

ẋ = µ1f1f2y − µ2f2f1y,

ẏ = −µ1f1f2x + µ2f2f1x,
(2.50)

where µ1, µ2 are arbitrary polynomials.
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Proof: The proof follows directly from the arguments of the proof of Proposition

2.28 and setting µ1 = K1/J12 and µ2 = K2/J12 we get system (2.50).

We note that straight lines always satisfy the conditions of Proposition 2.29.

The expression of system (2.50) is not actually a new one. It appears in [46]

however, there do not appear the condition that the curves should satisfy condition

J12 ∈ C \ {0}. Here, we present an example which proves that in general the form

of system (2.50) does not hold in the case where the curves do not satisfy this

condition.

Example 2.30.

We consider the system

ẋ = −1− y + x2 + xy + y2 + x2y + y3,

ẏ = (x2 + y2 + y)(y − 1),
(2.51)

which has the two invariant curves f1 = x2 + y2 − 1 and f2 = y− 1 with cofactors

K1 = 2x + 2xy + 2y2 and K2 = y + x2 + y2. We note that J12 = f1xf2y − f1yf2x =

2x 6= 0. We observe that system (2.51) is of the form (2.48). However, since

Kf1/J12 6∈ C[x, y] and Kf2/J12 6∈ C[x, y] system (2.51) cannot be written into the

form (2.50). So, Proposition 3.2 of [46] is not true.

If in addition polynomial system ẋ = P, ẏ = Q has a third invariant curve

with cofactor K3 then an interesting property holds.

Proposition 2.31. System (2.48) admits an additional irreducible invariant al-

gebraic curve f3 = 0 with f3 ∈ C[x, y] with cofactor K3 if and only if
∣∣∣∣∣∣∣

f1x f1y K1f1

f2x f2y K2f2

f3x f2y K3f3

∣∣∣∣∣∣∣
= 0, (2.52)

or equivalently,

K1f1J23 −K2f2J13 + K3f3J12 = 0. (2.53)

Proof: Working in a similar way as in proof of Proposition 2.28 we get that

PJ12 = −K2f2f1y + K1f1f2y,

PJ13 = −K3f3f1y + K1f1f3y,

PJ23 = −K3f3f2y + K2f2f3y.
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So, we have

PJ12f3x + PJ23f1x − PJ13f2x

= −K2f2f1yf3x + K1f1f2yf3x −K3f3f2yf1x + K2f2f3yf1x + K3f3f1yf2x −K1f1f3yf2x

= K2f2(f1xf3y − f1yf3x)−K1f1(f2xf3y − f2yf3x)−K3f3(f1xf2y − f1yf2x)

= K2f2J13 −K1f1J23 −K3f3J12,

and therefore we get

J12(Pf3x + K3f3)− J13(Pf2x + K2f2) + J23(Pf1x + K1f1) = 0,

or ∣∣∣∣∣∣∣

f1x f1y Pf1x + K1f1

f2x f2y Pf2x + K2f2

f3x f2y Pf3x + K3f3

∣∣∣∣∣∣∣
= 0,

and equivalently we get the relation (2.52).

Eruguin, in the paper [24], found the forms of differential systems having the

invariant curves ω1(x, y) = 0 and ω2(x, y) = 0 where ω1, ω2 are Cr functions. We

denote with

J =
∂ω1

∂x

∂ω2

∂y
− ∂ω1

∂y

∂ω2

∂x

the Jacobian of these two functions. Hence, according to his paper, all differential

systems having the invariant curves ω1(x, y) = 0 and ω2(x, y) = 0 and J 6= 0 can

be written into the form

ẋ =
1

J

(
∂ω2

∂y
F1(ω1, x, y)− ∂ω1

∂y
F2(ω2, x, y)

)
,

ẏ = − 1

J

(
∂ω2

∂x
F1(ω1, x, y) +

∂ω1

∂x
F2(ω2, x, y)

)
,

(2.54)

where F1, F2 are functions such that

F1(ω1, x, y)
∣∣
ω1=0

≡ 0,

F1(ω2, x, y)
∣∣
ω2=0

≡ 0.

We note that for polynomial differential systems with irreducible invariant alge-

braic curves, Eruguin’s result coincides with Proposition 2.28. This is due to the

fact that the polynomial F1 vanishes whenever vanishes polynomial ω1. Then, from
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Hilbert’s Nullstellansatz relation we have that there is M1 ∈ C[x, y] and a positive

integer n such that F n
1 = M1ω1. Since ω1 is an irreducible algebraic curve it must

divides the polynomial F1. Hence, there is a polynomial K1 ∈ C[x, y] such that

F1 = K1ω1. By similar arguments we get that F2 = K2ω2 for some K2 ∈ C[x, y].

However, we should note that according Eruguin’s result, for polynomial differ-

ential systems, the polynomials F1 and F2 are of arbitrary degree, and therefore

the polynomials K1 and K2 should be polynomials of arbitrary degree. So, for

polynomial systems, Proposition 2.28 can be obtained from Eruguin’s results.

Lemma 2.32. Let F, P, Q ∈ C[x, y], P and Q are coprime, and D = gcd(Fx, Fy).

Suppose X = (P, Q) has F as a first integral. Then there exits a polynomial

G ∈ C[x, y] such that

X = G

(
−Fy

D
,
Fx

D

)
. (2.55)

Proof: Since X(F ) = 0 we have that PFx + QFy = 0 which yields to

P
Fx

D
+ Q

Fy

D
= 0. (2.56)

Since P and Q are coprime and Fx/D and Fy/D are also coprime, from (2.56) we

get that (Fx/D)/Q and (Fy/D)/P . Therefore there exists a polynomial G ∈ C[x, y]

such that P = −GFy/D, and from (2.56) we have that Q = HFx/D. This

completes the proof.

The next proposition is essentially due to A. Gasull.

Proposition 2.33. Let fj ∈ C[x, y] for j = 1, . . . , q, and let F =
q∏

j=1

fj. Suppose

that F = 0 is an invariant algebraic curve for the polynomial vector fields Xi with

cofactor Ki for i = 1, 2, and that K2 6= 0. If D = gcd(Fx, Fy), then

X1 =
1

K2

(
K1X2 −G

(
−Fy

D
,
Fx

D

))
, (2.57)

where G is any polynomial which allows that X1 be a polynomial vector field.

Proof: Let Xi = (Pi, Qi) for i = 1, 2. Since F = 0 is an invariant algebraic curve

of the vector field X1 we have that X1(F ) = P1Fx + Q1Fy = K1F . Then

K2X1(F )−K1X2(F ) = K2K1F −K1K2F = 0.
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Let D̃ = gcd(K2P1−K1P2, K2Q1−K1Q2) and X̃ = (K2X1−K1X2)/D̃. Since X̃

satisfy the assumptions of Lemma 2.32 we get that

X̃ = G1

(
−Fy

D
,
Fx

D

)
,

for some polynomial G1. Therefore

X1 =
1

K2

(
K1X2 + D̃G1

(
−Fy

D
,
Fx

D

))
,

and taking G = D̃G1 the proposition follows.

We remark that Proposition 2.33 can be used to find all polynomials vector

fields X1 having the invariant algebraic curves fi = 0 for i = 1, . . . , q, because

X2 can be obtained from Lemma 2.32. We also note that the construction of the

vector field X1 is for an arbitrary given set of algebraic invariant curves. Hence,

it can be applied whenever the conditions of Theorem 2.4 are not satisfied. In

any case, Proposition 2.33 is difficult to apply because in general it is not easy to

determine the polynomial G in such a way that X becomes a polynomial.

2.5 On a Theorem of Walcher

Until now we show that in order to define completely the polynomial vector fields

having some invariant algebraic curves we need to impose some conditions. In par-

ticular, the condition that we definitely need in order to construct the polynomial

vector field, even if we consider just one invariant algebraic curve, is the generic

condition (i). Hence, in order to determine a polynomial vector field having an

invariant algebraic curve invariant we asked that this curve has no multiple points.

In this section we present Theorem 2.34 due to Walcher [50] and not only

covers the case where one curve satisfies the generic condition (i) but also revels the

complete structure of the vector fields when this condition does not hold. He based

his proof in some results of the classical commutative algebra. In this theorem we

denote by < fx, fy > the ideal generating by fx and fy and by < fx, fy >:< f >

the quotient ideal.
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Theorem 2.34. (a) The dimension d of

(< fx, fy >:< f >) / < fx, fy >

is finite.

(b) The curve f satisfies the generic condition (i) if and only if d = 0. In that

case the polynomial vector field X has f = 0 invariant if and only if

X = hf + ρXf
∗, (2.58)

with an arbitrary vector field h and an arbitrary polynomial ρ. The vector

field Xf
∗ corresponds to the irreducible of the Hamiltonian Xf = (−fy, fx),

i.e. Xf
∗ is Xf having its components divided by their common divisors.

(c) In case that d ≥ 1, let µ1, · · ·µd ∈ C[x, y] such that

µ1+ < fx, fy >, · · · , µd+ < fx, fy >

form a basis of the above vector space, and let Xi be the vector fields having

f = 0 invariant with cofactors µi (1 ≤ i ≤ d). Then the vector field X has

f = 0 invariant if and only if

X = hf + ρXf
∗ +

d∑
i=1

αiXi, (2.59)

with α1, · · · , αd ∈ C, and ρ, h, Xf
∗ as above.

We note that Theorem 2.34(b) is the same as Theorem 2.1(a) because in the

expression (2.58) is used the irreducible vector Xf
∗. Walcher in statement (c) of

Theorem 2.34 proved that there is a finite number of terms which contribute to the

expression of the vector field having the invariant algebraic curve f = 0 when this

does not satisfy the generic condition (i). More precisely, if the invariant algebraic

curve has multiple points, then the complete expression of the vector field having

such curve as invariant algebraic curve is given by system (2.59).

We note that in Theorem 2.34 does not appear bounds of the degrees of the

polynomials in the expressions (2.58) and (2.59). As we proved in Theorem 2.6

extra conditions are necessary in order to obtain these bounds.
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We also note that the expressions of the vector fields (2.58) and (2.59) corre-

spond to the existence of just one invariant algebraic curve, but this curve can be

reducible. The presence of a second curve, especially when there are some tangen-

cies complicates the expression of the vector fields. Theorem (2.2)(a) avoids this

complication because it uses the generic conditions (i) and (iii).



Chapter 3

Polynomial systems and Darboux

first integrals

3.1 Introduction

The Darboux theory of integrability allows to determine when a polynomial dif-

ferential system in C2 has a first integral of the kind fλ1
1 · · · fλp

p exp(g/h) where fi,

g and h are polynomials in C[x, y], and λi ∈ C for i = 1, . . . , p. In this chapter we

solve the inverse problem, i.e. we characterize the polynomial vector fields in C2

having the following function

H(x, y) = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) (3.1)

as a Darboux first integral.

In the degree P/Q is defined as δ(P/Q) = max{δP, δQ}.

Theorem 3.1. Let H(x, y) = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) be a Darboux func-

tion with f1, · · · , fp irreducible polynomials in C[x, y], λ1, · · · , λp ∈ C, n1, · · · , np ∈
N

⋃{0} and the polynomial g of C[x, y] is coprime with fi if ni 6= 0. We denote by

l the degree of the rational function g/(fn1
1 · · · fnp

p ). Then, H is a first integral for

the polynomial vector field X = (P, Q) of degree m with P and Q coprimes if and

only if

59
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(a) l +

p∑
i=1

δfi = m + 1 and

X =

(
p∏

l=1

fnl
l

)
p∑

i=1

λi




p∏

j = 1

j 6= i

fj




Xfi
−g

p∑
i=1

ni




p∏

j = 1

j 6= i

fj




Xfi
+

(
p∏

j=1

fj

)
Xg,

(3.2)

where Xfi
is the Hamiltonian vector field (−fiy, fix).

Moreover, the vector field given by (3.2) has the integrating factor

R1 = (f1 · · · fpf
n1
1 · · · fnp

p )−1.

(b) l +
p∑

i=1

δfi > m + 1 and X is as in (3.2) dividing its components by their

greatest common divisor A. Moreover, AR1 is a rational integrating factor

of X.

In Section 3.2, we will prove Theorem 3.1.

We note that the second part of statement (a) of Theorem 3.1 is in some sense

the equivalent to Proposition 2.5 for our inverse problem.

In Remark 3.6 we shall show that the second part of statement (a) cannot be

extended to the integrating factors of the form (3.1) with g 6= 0. In Section 3.3 we

provide examples of all statements of Theorem 3.1.

Corollary 3.2. Under the assumptions of Theorem 3.1 if (3.1) is a first integral

for the polynomial vector field X = (P, Q) of degree m with P and Q coprimes,

then l +
p∑

i=1

δfi ≥ m + 1.

Corollary 3.2 follows directly from Theorem 3.1. Note that Corollary 3.2 says

that the degree of a polynomial vector field having the first integral (3.1) is not

independent of the degrees of the polynomials appearing in (3.1).

As far as we know, Theorem 3.1 and consequently Corollary 3.2 uses by first

time information about the degree of the invariant algebraic curves for studying the



3.1 Introduction 61

integrability of a polynomial vector field, because until now the Darboux theory of

integrability only used the number of the invariant algebraic curves of a polynomial

vector field for studying its integrability through, either a first integral, or an

integrating factor, see Theorem 1.7 (Darboux Theorem).

Prelle and Singer in [45] proved the following result.

Theorem 3.3. If a polynomial vector field X has a first integral of the form

H(x, y) = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) where f1, · · · , fp are irreducible polyno-

mials in C[x, y], λ1, · · · ,λp ∈ C, n1, · · · , np ∈ N ∪ {0} and the polynomial g of

C[x, y] is coprime with fi if ni 6= 0, then the vector field has an integrating factor

of the form (
A(x, y)

B(x, y)

) 1
N

with A,B ∈ C[x, y] and N an integer.

The following corollary not only reproduce the result of Prelle and Singer,

Theorem 3.3, but also improve it as follows.

Corollary 3.4. We assume that the polynomial vector field X has a first integral of

the form H(x, y) = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) where f1, · · · , fp are irreducible

polynomials in C[x, y], λ1, · · · , λp ∈ C, n1, · · · , np ∈ N ∪ {0} and the polynomial g

of C[x, y] is coprime with fi if ni 6= 0. We denote by l = δ(g/(fn1
1 · · · fnp

p )).

(a) If l +
p∑

i=1

δfi = m + 1, then the inverse of the polynomial f1 · · · fpf
n1
1 · · · fnp

p

is an integrating factor.

(b) Otherwise, a function of the form A(x, y)/(f1 · · · fpf
n1
1 · · · fnp

p ) with A ∈
C[x, y] is an integrating factor.

The results of Corollary 3.4 are strongly related with Proposition 3.2 and

Corollary 3.3 of Walcher [50].

Theorem 3.5. Let X = (P,Q) be a polynomial vector field with P and Q coprime

having f1 = 0, · · · , fp = 0 as irreducible invariant algebraic curves satisfying the
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generic conditions (i)–(v). Then, X has the first integral fλ1
1 · · · fλp

p with λi ∈ C
if and only if

p∑
i=1

δfi = m + 1. Moreover,

X =

p∑
i=1

λi




p∏

j = 1

j 6= i

fj




Xfi
. (3.3)

This theorem improves the conditions for the existence of a first integral in

the Darboux theory of integrability using information about the degree and the

nature of the invariant algebraic curves, specifically it improves statement (e) of

Theorem 1.7. As far as we know, this is the first time that information about the

degree of the invariant algebraic curves, instead of the number of these curves, is

used for studying the integrability of a polynomial vector field.

Reader could find examples of the previous theorems in Section 3.3.

3.2 Darboux first integrals

We note that if the polynomials P and Q are not coprime, let A(x, y) ∈ C[x, y]

be the greatest common divisor of P and Q. Then, the change in the independent

variable t given by ds = A(x, y)dt transforms the polynomial vector field (1.2)

into the polynomial vector field (P/A,Q/A) with P/A and Q/A coprime. Since

if (P/A,Q/A) has a first integral, we also have a first integral for (P,Q), in what

follows we shall work with polynomial vector fields (P,Q) with P and Q coprime.

Proof of Theorem 3.1: By a direct calculation we prove that system (3.2) in state-

ments (a) and (b) of Theorem 3.1 has (3.1) as a first integral. So, the “only if”

part of Theorem 3.1 is proved. Now, we shall prove the “if” part.

We assume that H = fλ1
1 · · · fλp

p F with F = exp
(
g/

(
fn1

1 · · · fnp
p

))
is a first
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integral of the polynomial vector field X = (P,Q) of degree m. So, we have

0 = PHx + QHy

= PF




p∑
i=1

λif
λi−1
i fix

p∏

j = 1

j 6= i

f
λj

j + gx




p∏

r = 1

f−nr
r







p∏

j = 1

f
λj

j




− g




p∑
i=1

nif
ni−1
i fix

p∏

j = 1

j 6= i

f
nj

j




(
p∏

r=1

f−2nr
r

) 
 p∏

j = 1

f
λj

j







+QF




p∑
i=1

λif
λi−1
i fiy

p∏

j = 1

j 6= i

f
λj

j + gy




p∏

r = 1

f−nr
r







p∏

j = 1

f
λj

j




− g




p∑
i=1

nif
ni−1
i fiy

p∏

j = 1

j 6= i

f
nj

j




(
p∏

r=1

f−2nr
r

) 


p∏

j = 1

f
λj

j







=




P




p∑
i=1

λifix

p∏

j = 1

j 6= i

fj + gx




p∏

r = 1

f−nr
r







p∏

j = 1

fj




− g

p∑
i=1

nifix




p∏

r = 1

f−nr
r







p∏

j = 1

j 6= i

fj
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+Q




p∑
i=1

λifiy

p∏

j = 1

j 6= i

fj + gy




p∏

r = 1

f−nr
r







p∏

j = 1

fj




− g

p∑
i=1

nifiy




p∏

r = 1

f−nr
r







p∏

j = 1

j 6= i

fj










F

p∏

j = 1

f
λj−1
j .

Since the last expression is equal to zero, we can cancel the non–zero product

F
p∏

j=1

f
λj−1
j and we can replace it with the non–zero product

p∏
r=1

fnr
r . So we get

0 = PG1 + QG2, (3.4)

with

G1 =




p∑
i=1

λifix

p∏

j = 1

j 6= i

fj




p∏
r=1

fnr
r + gx

p∏

j = 1

fj − g

p∑
i=1

nifix

p∏

j = 1

j 6= i

fj,

G2 =




p∑
i=1

λifiy

p∏

j = 1

j 6= i

fj




p∏

r = 1

fnr
r + gy

p∏

j = 1

fj − g

p∑
i=1

nifiy

p∏

j = 1

j 6= i

fj.

We remark that, since P and Q are coprime, from PHx + QHy = 0 it follows

that Hx and Hy cannot be zero. Consequently, G1 and G2 are not zero.

Since P and Q are coprime, from (3.4) we have that P must divide the

polynomial G2, and Q must divide the polynomial G1, which is impossible if

δGi < m = max{δP, δQ} for i = 1, 2. Due to the fact that δGi = l − 1 +
p∑

i=1

δfi,

we get that l +
p∑

i=1

δfi ≥ m + 1.
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Since P and Q are coprime, if
p∑

i=1

δfi + l = m + 1 we have that there is a

constant λ ∈ C \ {0} such that P = −λG2 and Q = λG1. Doing the change of

time t → (1/λ)t the first part of statement (a) is proved. Now we shall show the

second part of statement (a).

The algebraic curve fk = 0 is invariant for the vector field (3.2) with cofactor

Kk =




p∏

l = 1

fnl
l




p∑

i = 1

λi(fixfky − fiyfkx)




p∏

j = 1

j 6= i, k

fj




+ (gxfky − gyfkx)




p∏

j = 1

j 6= k

fj




+g

p∑

i = 1

ni(fiyfkx − fixfky)




p∏

j = 1

j 6= i, k

fj




.

The vector field (3.2) has divergence

div X = −




p∏

l = 1

fnl
l




x

p∑

i = 1

λi




p∏

j = 1

j 6= i

fj




fiy +




p∏

l = 1

fnl
l




y

p∑

i = 1

λi




p∏

j = 1

j 6= i

fj




fix+




p∏

l = 1

fnl
l




p∑

i = 1

λi







p∏

j = 1

j 6= i

fj




y

fix −




p∏

j = 1

j 6= i

fj




x

fiy




+

gx

p∑

i = 1

ni




p∏

j = 1

j 6= i

fj




fiy − gy

p∑

i = 1

ni




p∏

j = 1

j 6= i

fj




fix+
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g

p∑

i = 1

ni







p∏

j = 1

j 6= i

fj




x

fiy −




p∏

j = 1

j 6= i

fj




y

fix




+




p∏

j = 1

fj




y

gx −




p∏

j = 1

fj




x

gy,

or equivalently,

div X =

p∑

i, k = 1

nkλi(fkyfix − fkxfiy)




p∏

j = 1

j 6= i

fj







p∏

l = 1

l 6= k

fnl
l




fnk−1
k +




p∏

l = 1

fnl
l




p∑

j, k = 1

λi (fjyfix − fjxfiy)




p∏

k = 1

k 6= i, j

fk




+

p∑

i = 1

ni(gxfiy − gyfix)




p∏

j = 1

j 6= i

fj




+

g

p∑

i = 1

ni

p∑

j = 1

j 6= i

(fjxfiy − fjyfix)




p∏

k = 1

k 6= i, j

fk




+

p∑

i = 1

(gxfiy − gyfix)




p∏

j = 1

j 6= i

fj




,
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and it is easy to check that

p∑

r = 1

Kr +

p∑

r = 1

nrKr = div X.

Therefore, by Theorem 1.7(b), R1 =
(
f1 · · · fpf

n1
1 · · · fnp

p

)−1
is an integrating factor

of the vector field (3.2).

Suppose that l +
p∑

i=1

δfi > m + 1. Since P and Q are coprime, from (3.4)

we have that there is a polynomial A such that G1 = AQ and G2 = −AP . So,

dividing G1 and G2 by A we obtain the polynomial vector field (P,Q) of degree

m. This completes the proof of statement (b), and consequently of Theorem 3.1.

Remark 3.6.

We shall show that the second part of statement (a) of Theorem 3.1 cannot be

extended to integrating factors of the form (3.1) with g 6= 0. The system

ẋ = x(x + y + 1),

ẏ = y(x + y),
(3.5)

has the two invariant algebraic curves f1 = x = 0 and f2 = y = 0, and the

exponential factor F = exp (−(1 + x)/y) with cofactors K1 = x+y+1, K2 = x+y

and L = 1, respectively. Since −K1 +K2 +L = 0, by Theorem 1.7(a) system (3.5)

has the first integral H = f−1
1 f2F . Doing simple computations we observe that

system (3.5) can be written into the form (3.2) with λ1 = −1, λ2 = 1, n1 = 0 and

n2 = 1. We also note that the polynomials P and Q are coprime.

Since the divergence of system (3.5) is div = 1 + 3x + 3y and we have that

K1 + K2 6= div and K1 + K2 + L 6= div, by Theorem 1.7(d) there is no integrating

factors of the form (f1f2)
−1 or (f1f2 exp F )−1. So, although system (3.5) can be

written into the form (3.2), the second part of statements (a) of Theorem 3.1

cannot be extended to integrating factors of the form (3.1) with g 6= 0. However,

since K1 + 2K2 = div, this system has the integrating factor R1 = f−1
1 f−2

2 .

Proof of Theorem 3.5: Assume that the assumptions of Theorem 3.5 hold. Sup-

pose that
p∑

i=1

δfi = m+1. Then, by Theorem 2.4(b) it follows that the polynomial
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vector field satisfying the assumptions of Theorem 3.5 is of the form (3.3), and by

Proposition 2.5 it has the first integral fλ1
1 · · · fλp

p .

Now we shall prove the converse statement. Suppose that the polynomial vec-

tor field satisfying the assumptions of Theorem 3.5 has the first integral fλ1
1 · · · fλp

p .

So, for this first integral l = 0, using the notation of Theorem 3.1. Then, by Corol-

lary 3.2 we have that
p∑

i=1

δfi ≥ m+1. Since all the invariant algebraic curves fi = 0

are generic, by Theorem 2.4, it follows that
p∑

i=1

δfi ≤ m+1. Hence,
p∑

i=1

δfi = m+1,

and the proof of the theorem is completed.

3.3 The examples

First, we provide three examples of a first integral satisfying statement (a) of

Theorem 1.14.

Example 3.7.

The Darboux function H = y−3 exp(3x3/y) is of the form (3.1) with f1 = y,

λ1 = −3, n1 = 1 and g = 3x3. Then, the l defined in Theorem 3.1 satisfies l = 3.

Therefore, since l +
p∑

i=1

δfi = 4, and the polynomial vector field given by (3.2) is

X = 3(y + x3, 3x2y) with m = 3, it follows that H and X satisfy statement (a) of

Theorem 3.1.

Example 3.8.

The Darboux function H = (x2 + y2) exp(2y) is of the form (3.1) with f1 =

x + iy, f2 = x − iy, λ1 = λ2 = 1, n1 = n2 = 0 and g = 2y. Then, the l = 1.

Therefore, since l +
p∑

i=1

δfi = 3, and the polynomial vector field given by (3.2) is

X = 2(−y − x2 − y2, x) with m = 2, we have that H and X satisfy statement

(a) of Theorem 1.14, because X has the first integral H and the integrating factor

1/(x2 + y2).
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The next first integral and its corresponding polynomial vector field provide

examples satisfying Theorem 3.1(a) and Theorem 3.5.

Example 3.9.

The Darboux function H = xy(x− 1 + y/3) is of the form (3.1) with f1 = x,

f2 = y, f3 = x − 1 + y/3, λ1 = λ2 = λ3 = 1, n1 = n2 = n3 = 0 and g = 0. Then,

the l = 0. Therefore, since l +
p∑

i=1

δfi = 3, and the polynomial vector field given by

(3.2) is X = (x(1− x− 2y/3), y(−1 + 2x + y/3)) with m = 2, we get that H and

X satisfy statement (a) of Theorem 3.1, because X has the first integral H and

the integrating factor 1/H. Additionally, this is an example satisfying Theorem

3.5.

Now we shall provide two examples satisfying statement (b) of Theorem 3.1.

Example 3.10.

The Darboux function H = y−4(x3 + x4 + y4) is of the form (3.1) with f1 = y,

f2 = x3 + x4 + y4, λ1 = −4, λ2 = 1, n1 = n2 = 0 and g = 0. Then, the l = 0.

Therefore, l+
p∑

i=1

δfi = 5, and the polynomial vector field given by (3.2) is (P,Q) =

(4x3(1+x), x2(3+4x)y) with P and Q non–coprime. So, X = (4x(1+x), y(3+4x))

with m = 2 is the polynomial vector field satisfying statement (b) of Theorem 3.1.

Example 3.11.

The Darboux function H = (x + 1)−2(y − x2) exp(−1/(x + 1)) is of the form

(3.1) with f1 = x + 1, f2 = y − x2, λ1 = −2, λ2 = 1, n1 = 1, n2 = 0 and g = −1.

Then, l = 1. Therefore, l +
p∑

i=1

δfi = 4, and the polynomial vector field given by

(3.2) is X = (−(x + 1)2,−2x − y − 3x2 − 2xy) with m = 2 satisfying statement

(b) of Theorem 3.1.
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Chapter 4

Polynomial systems and Darboux

integrating factors

4.1 Introduction

In this chapter we study the following inverse problem of the Darboux theory

of integrability, what are the polynomial vector fields in C2 having the Darboux

function

R(x, y) = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) (4.1)

as a Darboux integrating factor?

The main results of this chapter are given in Theorems 4.1, 4.2 and 4.3. We

organize them as follows.

The first theorem provides a connection between the degree of the invariant

algebraic curves and the number of them in order to decide about the kind of the

Darboux integrability and so improves statement (e) of Darboux Theorem 1.7.

Theorem 4.1. Suppose that a polynomial vector field X = (P,Q) of degree m,

with P and Q coprime, admits p irreducible invariant algebraic curves fi = 0 with

cofactors Ki for i = 1, . . . , p; q exponential factors exp(gj/hj) with cofactors Lj for

j = 1, . . . , q; and r independent singular points (xk, yk) such that fi(xk, yk) 6= 0 for

i = 1, . . . , p and for k = 1, . . . , r. Then, the irreducible factors of the polynomials

71
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hj are some fi’s and we can write

(
exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq

= exp

(
µ1g1

h1

+ · · ·+ µqgq

hq

)
= exp

(
g

fn1
1 · · · fnp

p

)
,

where µ1, · · · , µq ∈ C, n1, · · · , np ∈ N
⋃{0} and the polynomial g of C[x, y] is

coprime with fi if ni 6= 0. We denote by l = max

{
p∑

i=1

niδfi, δg

}
.

If p+ q + r = m(m+1)/2, l +

p∑
i=1

δfi < m+1, and the r independent singular

points are weak, then the (multi–valued) function

fλ1
1 · · · fλp

p

(
exp

(
g1

h1

))µ1

· · ·
(

exp

(
gq

hq

))µq

(4.2)

for convenient λi, µj ∈ C not all zero is an integrating factor of X.

The proof of Theorem 4.1 is given in Section 4.2.

We are interested in studying the polynomial differential systems which have

a given Darboux function (4.1) as an integrating factor.

Theorem 4.2. We consider the Darboux function R(x, y) = fµ1

1 · · · fµp
p exp(g/(fn1

1 · · · fnp
p ))

with f1, · · · , fp irreducible polynomials in C[x, y], µ1, · · · , µp ∈ C, n1, · · · , np ∈
N

⋃{0} and the polynomial g of C[x, y] is coprime with the f ′is for ni 6= 0. Let

X = (P,Q) be the vector field (3.2) with λi = µi +ni +1. Consider the polynomial

vector field

Y = (Y0 − YC)

(
p∏

l=1

fnl
l

)(
p∏

j=1

fj

)
− CX, (4.3)

where Y0 = (A,B), A, B, C are arbitrary polynomials satisfying (AH)x +(BH)y =

0 where H = fλ1
1 · · · fλp

p exp(g/(fn1
1 · · · fnp

p )) is a first integral of X and YC =

(−Cy, Cx). Then, the polynomial vector field Y has R as an integrating factor.

In Section 4.3 we prove Theorem 4.3 which is actually the main theorem of

this chapter. With Theorem 4.3 we provide all polynomial systems having an

integrating factor forming by one generic curve. In the proof of Theorem 4.3 we

also provide an algorithm where we construct step by step such systems.
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In general, a polynomial system having a Darboux integrating factor does not

always have a Darboux first integral as we observe in Exemple 4.11, but always it

has a Liouvillian first integral (see [48]). With Theorem 4.3 and in its proof we can

guarantee the existence of additional curves or exponential factors which show the

existence of a Darboux first integral. In the next theorem, we characterize all the

polynomial vector fields having an integrating factor of the form fλ with f = 0 a

generic curve and λ ∈ C. We denote [·] the integer part function.

Theorem 4.3. Let f = 0 be an irreducible algebraic curve of degree k in C2 and

let m be an integer such that m ≥ k − 1. We denote by n = [(m + 1)/k]. We

assume that f satisfies the following generic conditions.

(i) There are no points at which f and its first derivatives are all vanish.

(ii) The highest order terms of f have no repeated factors.

Then, any differential polynomial system ẋ = P, ẏ = Q of degree m having the

integrating factor fλ with λ ∈ C can be written as follows.

(a) If (m + 1)/(n + 1) ≤ k < (m + 1)/n and λ 6∈ {−1,−2, · · · ,−n}, then we

have

ẋ = − 1

λ + 1
fFy − Ffy, ẏ =

1

λ + 1
fFx + Ffx, (4.4)

where

F = D1 +
n+1∑
i=2

λ + 1

(λ + 2)(λ + 3) · · · (λ + i)
Dif

i−1,

and the Di, for i = 1, · · · , n, is a convenient polynomial given in Lemma 4.9,

Dn+1 = αn ∈ C if k = (m+1)/n, otherwise Dn+1 = 0. Moreover, δF + δf =

m + 1 and system (4.4) has the Darboux first integral H(x, y) = F
1

λ+1 f .

(b) If (m + 1)/(n + 1) ≤ k < (m + 1)/n and λ ∈ {−1,−2, · · · ,−n}, then we

have

ẋ = −βf−λ−1fy − (λ + 1)gfy − fgy,

ẏ = βf−λ−1fx + (λ + 1)gfx + fgx,
(4.5)
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where

g/f−λ−1 =
−λ−1∑
i=1

(−1)−λ−i D−λ−i

i(i + 1) · · · (−λ− 1)f i
+ (−1)−λ G−λ + F−λ+1f

(−λ− 1)!
,

D−λ−i, G−λ and F−λ+1 are convenient polynomials given in Lemma 4.10 and

β ∈ C. Moreover, δ(g/f−λ−1)+δf = m+1 and system (4.5) has the Darboux

first integral H = fβ exp
(

g
f−λ−1

)
.

By Proposition 1.2 a polynomial differential system of degree m having an

invariant algebraic curve f = 0 of degree k satisfying the assumptions (i) and (ii)

of Theorem 4.3 satisfies that m + 1 ≥ k. So, the condition m ≥ k − 1 of the

statement of Theorem 4.3 is not restrictive.

Note that Theorem 4.3 says that any polynomial system having a Darboux

integrating factor formed by one generic curve always has a Darboux first integral.

In Section 4.4 we present the examples 4.14 and 4.15 of Theorem 4.3.

We note that system (4.4) is a particular case of system (3.2) when g = 0

and ni = 0 for all i = 1, · · · , p. System (4.5) appears when some of the invariant

algebraic curves (perhaps also the line at infinity) have multiplicity larger than 1,

see for more details [21].

We observe in Theorem 4.2 that the family of the vectors fields Y having a

Darboux integrating factor is a very general family depending on the arbitrary

polynomials A, B, C, but in Theorem 4.2 we cannot determine all the polynomial

vector fields having as integrating factor the given Darboux function as we did in

Theorem 4.3 for the particular integrating factors of the form fλ with λ ∈ C.

By Theorem 4.3 we note that when a polynomial system has a Darboux inte-

grating factor given by a generic curve, then it appears either an additionally in-

variant algebraic curve, or an exponential factor in such a way that δF+δf = m+1,

or δ(g/f−λ−1) + δf = m + 1, respectively. Here, we have used the notations of

Theorem 4.3.

In Section 4.4 the reader could find various examples of the previous theorems.
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4.2 An integrating factor formed by arbitrary

curves

Proof of Theorem 4.1: Assume that the assumptions of Theorem 4.1 hold. By

Theorem 1.7(e) the function (4.2) is either a first integral, or an integrating factor

of X. But, from Corollary 3.2 the function (4.2) cannot be a first integral of X

because l +
p∑

i=1

δfi < m + 1. Hence, the proof is completed.

We note that for Y0 = (0, 0) the vector field (4.3) coincides with the vector

field (3.2) having additionally C = 0 as an invariant algebraic curve.

Now we present a way to choose the polynomials A,B and C which appears

in the statement of Theorem 4.2.

The polynomials A and B of Theorem 4.2 are arbitrary polynomials satisfying

the condition (AH)x + (BH)y = 0, or equivalently the vector field (A,B) has

H(x, y) = fµ1+n1+1
1 · · · fµp+np+1

p exp(g/(fn1
1 · · · fnp

p ))

as an integrating factor. Hence, in order to construct the vector field Y defined in

(4.3) which has R(x, y) = fµ1

1 · · · fµp
p exp(g/(fn1

1 · · · fnp
p )) as an integrating factor,

first we need to guarantee the existence of such a vector field (A, B). Consider

H2(x, y) = fµ1+2n1+2
1 · · · fµp+2np+2

p exp(g/(fn1
1 · · · fnp

p ))

and take (A, B) the vector field defined in (3.2) having the first integral H2. Ad-

ditionally, the arbitrary polynomial C can be chosen trying that the vector field

Y has an appropriate degree. In Section 5 we present Example 4.13 of how to

construct such a vector field (4.3).

Proof of Theorem 4.2: In order to prove that R = fµ1

1 · · · fµp
p F with F = exp

(
g/

(
fn1

1 · · · fnp
s

))

is a Darboux integrating factor of the polynomial vector field Y defined in (4.3)

we must prove that Y R + Rdiv(Y ) = 0. We have that

Y R = (ARx + BRy + CyRx − CxRy)




p∏

i = 1

fi







p∏

l = 1

fnl
l


− CXR.
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Let R1 be the integrating factor of X given in Theorem 3.1. We note that R = HR1

is another integrating factor of the vector field X given by (3.2). Therefore, the

last relation can be written into the form

Y R = (ARx+BRy +CyRx−CxRy)




p∏

i = 1

fi







p∏

l = 1

fnl
l


+CR div(X). (4.6)

Since (AH)x + (BH)y = 0 and since H = R/R1 we have that

ARx + BRy + (Ax + By)R− R

R1

(AR1x + BR1y) = 0. (4.7)

Now we calculate

div(Y ) = (Ax + By)




p∏

i = 1

fi







p∏

l = 1

fnl
l




+


A




p∏

i = 1

fi




x

+ B




p∏

i = 1

fi




y







p∏

l = 1

fnl
l




+


A




p∏

l = 1

fnl
l




x

+ B




p∏

l = 1

fnl
l




y







p∏

i = 1

fi




+


Cy




p∏

i = 1

fi




x

− Cx




p∏

i = 1

fi




y







p∏

l = 1

fnl
l




+


Cy




p∏

l = 1

fnl
l




x

− Cx




p∏

l = 1

fnl
l




y







p∏

i = 1

fi




− (CxP + CyQ)− C div(X).

Consequently, we have
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div(Y ) = (Ax + By)




p∏

i = 1

fi







p∏

l = 1

fnl
l




− 1

R1

(AR1x + BR1y)




p∏

l = 1

fnl
l







p∏

i = 1

fi




−
p∑

i = 1

(ni + 1)(Cxfiy − Cyfix)




p∏

j = 1

j 6= i

fj







s∏

l = 1

fnl
l




+

p∑

i = 1

(µi + ni + 1)(Cxfiy − Cyfix)




p∏

j = 1

j 6= i

fj







p∏

l = 1

fnl
l




− g

p∑

i = 1

ni(Cxfiy − Cyfix)




p∏

j = 1

j 6= i

fj




+ (Cxgy − Cygx)




p∏

i = 1

fi


− C div(X).

We have

div(Y ) = (Ax + By)




p∏

i = 1

fi







p∏

l = 1

fnl
l




− 1

R1

(AR1x + BR1y)




p∏

l = 1

fnl
l







p∏

i = 1

fi




+

p∑

i = 1

µi(Cxfiy − Cyfix)




p∏

j = 1

j 6= i

fj







p∏

l = 1

fnl
l
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− g

p∑

i = 1

ni(Cxfiy − Cyfix)




p∏

j = 1

j 6= i

fj




+ (Cxgy − Cygx)




p∏

i = 1

fi


− C div(X).

Finally, multiply the above expression by R we get that

R div(Y ) = (Ax + By)




p∏

l = 1

fnl
l







p∏

i = 1

fi


 R

− R

R1

(AR1x + BR1y)




p∏

l = 1

fnl
l







p∏

i = 1

fi




+ (CxRy − CyRx)




p∏

l = 1

fnl
l







p∏

i = 1

fi


− C Rdiv(X).

Now, using the previous expression for R div(Y ), the expressions (4.6) and (4.7),

we obtain that Y R + R div(Y ) = 0. Hence, the proof is completed.

4.3 Darboux integrating factors formed by one

generic curve

In order to prove Theorem 4.3 we shall need the following results.

Lemma 4.4. Let A,B be polynomials in C[x, y] with max{δA, δB} = n and such

that Ax+By = 0. Then, there exist a unique F̃ ∈ C[x, y] with δF̃ = n+1 such that

F̃ has no constant term, and A = −F̃y and B = F̃x. Of course, for an arbitrary

constant a ∈ C, F = F̃ + a are all the solutions of Ax + By = 0.
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Proof: Let A ∈ C[x, y] with δA ≤ n. Then, we write A as follows

A = A0(x) + A1(x)y + A2(x)y2 + · · ·+ An−1(x)yn−1 + Any
n,

where Ai(x) ∈ C[x] for i = 1, · · · , n− 1 and An ∈ C. We define the polynomial F

as

F = −
∫

Ady = −A0(x)y − A1(x)
y2

2
− · · · − An−1(x)

yn

n
− An

yn+1

n + 1
+ g(x),

for some polynomial g. Then,

Fx = −A0xy − A1x
y2

2
− · · · − An−1,x

yn

n
+ gx,

Since By = −A1x = −A0x − A1xy − A2xy
2 − · · · − An−1,xy

n−1 we have that

B = −
∫

A1xdy = −A0xy − A1x
y2

2
− A2x

y3

3
− · · · − An−1,x

yn

n
+ h(x),

for some h ∈ C[x] with δh ≤ n. Now choosing g =
∫

h(x)dx we have that g ∈ C[x]

with δg ≤ n + 1, and so omitting the constant term of F we obtain the unique

polynomial F̃ . Therefore, the proof of the lemma has been completed.

Lemma 4.5. Let A,B, C, f ∈ C[x, y] such that δA, δB ≤ m−k, δC ≤ m−2k+1,

δf = k, and max{δ(A + fCy), δ(B − fCx)} = m − k. Suppose that Ax + By =

fyCx − fxCy. Then there exists F ∈ C[x, y] with δF = m − k + 1 such that

A = −Cyf − Fy and B = Cxf + Fx.

Proof: We have

0 = Ax + fxCy + By − fyCx = (A + fCy)x + (B − fCx)y.

From Lemma 4.4 there is F ∈ C[x, y] with δF = m− k + 1 such that

A + fCy = −Fy, B − fCx = Fx,

and this completes the proof.
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Lemma 4.6. Let A1, B1 and D1 be polynomials. Consider the polynomial differ-

ential system of degree m

ẋ = A1f −D1fy, ẏ = B1f + D1fx, (1a)

with δA1, δB1 ≤ m − k, δD1 ≤ m + 1 − k and δf = k. If system (1a) has fλ for

some λ ∈ C as an integrating factor, then the system

ẋ = (λ + 1)A1 + D1y, ẏ = (λ + 1)B1 −D1x, (1b)

of degree at most m − k has f = 0 as an invariant algebraic curve and let L1 =

A1x + B1y. Then,

(a) system (1b) has the Darboux integrating factor fλ+1 if L1 6= 0 and λ 6= −1,

(b) system (1b) is Hamiltonian if L1 = 0 or λ = −1.

Proof: System (1a) has divergence equal to div1 = (A1 + D1y)fx + (B1−D1x)fy +

(A1x + B1y)f . We note that the algebraic curve f = 0 is invariant for system (1a)

with cofactor K = A1fx + B1fy. Since fλ is an integrating factor for system (1a),

we have that (see Theorem ??(d)) λK + div1 = 0, or equivalently

((λ + 1)A1 + D1y) fx + ((λ + 1)B1 −D1x) fy + (A1x + B1y)f = 0. (4.8)

System (1b) has divergence div2 = (λ + 1)(A1x + B1y). We note that due to

relation (4.8) the algebraic curve f = 0 is also invariant for system (1b) with

cofactor L1 = −(A1x + B1y).

(a) We assume that L1 6= 0 and λ 6= −1. Then we have that (λ + 1)L1 = −div2.

Hence, system (1b) has fλ+1 as an integrating factor.

(b) We now assume that L1 = 0. System (1b) has f as a first integral. Since

A1x + B1y = 0 from Lemma 4.4 there is G ∈ C[x, y] such that A1 = Gy and

B1 = −Gx. So, system (1b) becomes

ẋ = (λ + 1)Gy + D1y = ((λ + 1)G + D1)y,

ẏ = −(λ + 1)Gx −D1x = −((λ + 1)G + D1)x,
(4.9)

therefore, it is a Hamiltonian system.
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If λ = −1 we have that system (1b) is a Hamiltonian system with Hamiltonian

H = D1.

Proof of Theorem 4.3: Since f = 0 is an algebraic curve which satisfies all condi-

tions of Theorem 2.4, all the non–zero polynomial vector fields of degree m having

f = 0 as invariant algebraic curve can be written into the form (2.4) if k < m + 1,

or (2.5) if k = m + 1.

The proof of Theorem 4.3 is organized as follows: Firstly, for simplicity we

present with all the details the proof of the theorem in the first five cases. Secondly,

in Lemma 4.9 we present the proof of statement (a) of Theorem 4.3. Lastly, in

Lemma 4.10 we present the proof of statement (b) of Theorem 4.3.

Case 1: k = m + 1. Then, since all polynomial vector fields having f = 0 as

invariant algebraic curve can be written into the form (2.5), the corresponding

system can be written into the form (4.4) where F ≡constant. Hence, Theorem

4.3 is proved in this case.

From now on we suppose that k < m + 1 and that the vector field is of the

form (2.4), or equivalently of the form (1a).

By Lemma 4.6, f = 0 is an invariant algebraic curve of system (1b) of degree

at most m − k. Therefore from Proposition 1.2 we have that k ≤ m − k + 1 or

equivalently 2k ≤ m + 1. We distinguish the following cases.

Case 2: (m + 1)/2 < k < m + 1. Then, from Theorem 2.4(c), we have that the

vector field (1b) is identically zero. So, since we are in the assumptions of Lemma

4.6, from (4.8), we get that

(λ + 1)A1 + D1y = 0, (λ + 1)B1 −D1x = 0, A1x + B1y = 0.

If λ 6= −1, we can write

A1 = − 1

λ + 1
D1y, B1 =

1

λ + 1
D1x, (4.10)
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and δD1 = m + 1 − k. Substituting A1, B1 in system (1a) we get system (4.4)

for F = D1. We note that F = D1 = 0 is also an invariant algebraic curve

and δf + δF = m + 1 and therefore system (1a) has the Darboux first integral

H = F
1

λ+1 f .

Subcase λ = −1 then, from (4.10), D1y = 0 and D1x = 0 so D1 = δ1 with δ1 ∈ C.

Since A1x + B1y = 0 from Lemma 4.4, there is G ∈ C[x, y] with δG = m − k + 1

such that A1 = −Gy and B1 = Gx. Hence, system (1a) can be written as

ẋ = −Gyf − δ1fy, ẏ = Gxf + δ1fx. (4.11)

We note that the algebraic curve f = 0 is invariant for system (4.11) with cofactor

K = −(fxGy − fyGx). Additionally, system (4.11) has the invariant exponential

factor exp(G) with cofactor L = δ1(fxGy − fyGx) = −δ1K. Hence, system (4.11)

has the first integral H = f δ1 exp (G). Taking g/f 0 = G and β = δ1 system (4.11)

it is of the normal form (4.5). So, Theorem 4.3 is proved in this case.

Case 3: k = (m + 1)/2. Note that this case only occurs if m is odd. Then, from

Theorem 2.4(b) we have that for system (1b) of degree m−k holds (m−k)+1 = k

and so system (1b) should be of the form

(λ + 1)A1 + D1y = −αfy, (λ + 1)B1 −D1x = αfx, (4.12)

for some α ∈ C.

If λ 6= −1 we obtain that

A1 =
−αfy −D1y

λ + 1
, B1 =

αfx + D1x

λ + 1
.

Substituting A1 and B1 into system (1a) we get

ẋ = − 1

λ + 1
(αfyf + D1yf)−D1fy, ẏ =

1

λ + 1
(αfxf + D1xf) + D1fx.

(4.13)

We note that system (4.13) for λ 6∈ {−1,−2} has a second invariant algebraic

F = D1 + α
λ+2

f = 0 with cofactor K2 = fxD1y − fyD1x. We also note for system
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(4.13) that the invariant curve f = 0 has cofactor K1 = − 1
λ+1

(fxD1y − fyD1x) =

− 1
(λ+1)

K2. Hence, system (4.13) has a Darboux first integral of the form H =

F
1

λ+1 f . Obviously, system (4.13) can be written into the normal form (4.4).

Subcase λ = −1. Then we have that

D1y = −αfy, D1x = −αfx,

and so D1 = −αf − δ1 with δ1 ∈ C. Then, from (4.8) we get that A1x + B1y = 0

and therefore, from Lemma 4.4, there is G ∈ C[x, y] with δG = m − k + 1 such

that A1 = Gy and B1 = −Gx.

Substituting D1, A1 and B1 into system (1a) we have that

ẋ = δ1fy + (G + αf)yf, ẏ = −δ1fx − (G + αf)xf. (4.14)

The invariant curve f = 0 in system (4.14) has cofactor K = fxGy − fyGx.

Additionally, system (4.14) has the invariant exponential factor exp(G + αf) with

cofactor L = δ1(fyGx − fxGy) = −δ1K, and therefore it has the first integral of

the form H = f δ1 exp(G + αf). For g/f 0 = −(G + α) and β = −δ1 system (4.14)

is of the normal form (4.5).

Subcase λ = −2. Then system (1a) becomes

ẋ = αfyf + D1yf −D1fy, ẏ = −αfxf −D1xf + D1fx. (4.15)

System (4.15) has the exponential factor exp(D/f) with cofactor L1 = α(fyD1x−
fxD1y) = −αK where K is the cofactor of the invariant algebraic curve f = 0. So,

system (4.15) has the first integral H = f−α exp(D1/f). System (4.15) is of the

normal form (4.5) taking g/f = −D1/f and β = −α.

Case 4: (m+1)/3 < k < (m+1)/2. We have that system (1a) has the integrating

factor fλ. Then, from Lemma 4.6(a) we have that the polynomial system (1b) has

the integrating factor fλ+1. Additionally, from Theorem 2.4(a) the system (1b) of

degree m − k having f = 0 as invariant algebraic curve can be written into the

form

ẋ = A2f −D2fy, ẏ = B2f + D2fx, (2a)
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where A2, B2 are polynomials with δA2, δB2 ≤ m − 2k and D2 is a polynomial

such that δD2 ≤ m− 2k + 1. We note that system (2a) has fλ+1 as an integrating

factor. So, applying Lemma 4.6 to system (2a) we obtain system

ẋ = (λ + 2)A2 + D2y, ẏ = (λ + 2)B2 −D2x, (2b)

of degree at most m − 2k which has f = 0 as invariant algebraic curve and an

integrating factor of the form fλ+2. From Proposition 1.2 we have that k ≤ m −
2k + 1 and so k ≤ (m + 1)/3 which is in contradiction with Case 4. So, system

(2b) is identically zero, and therefore A2 = −D2y/(λ + 2) and B2 = D2x/(λ + 2).

Since (m + 1)/3 < k < (m + 1)/2 is equivalent to ((m − k) + 1)/2 < k <

(m− k) + 1, then for system (2a), working in a similar way as in Case 2, we have

that for λ 6= −2 there is a polynomial F2 = D2 of degree m − 2k + 1 such that

system (2a) and consequently system (1b) can be written as

ẋ = − 1

λ + 2
fF2y − F2fy, ẏ =

1

λ + 2
fF2x + F2fx,

and has the Darboux first integral H2 = F
1

λ+2

2 f. Since system (1b) is equal to

system (2a) we get

(λ + 1)A1 + D1y = − 1

λ + 2
fF2y − F2fy,

(λ + 1)B1 −D1x =
1

λ + 2
fF2x + F2fx.

(4.16)

So for λ 6∈ {−1,−2} we have

A1 = − 1

λ + 1

(
D1y +

1

λ + 2
fF2y + F2fy

)
, B1 =

1

λ + 1

(
D1x +

1

λ + 2
fF2x + F2fx

)
,

Substituting A1 and B1 into system (1a) which is of degree m we obtain that

ẋ = − 1

λ + 1

(
D1y +

1

λ + 2
fF2y + F2fy

)
f −D1fy,

ẏ =
1

λ + 1

(
D1x +

1

λ + 2
fF2x + F2fx

)
f + D1fx.

(4.17)

We note that system (4.17) has the invariant algebraic curve of degree at most

m+1−k F = D1+ 1
λ+2

F2f with cofactor K2 = fxD1y−fyD1x+ 1
λ+2

(fxF2y−fyF2x).
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The invariant algebraic curve f = 0 has cofactor K1 = − 1
λ+1

K2. Hence, system

(4.17) has the normal form (4.4) because it can be written as

ẋ = − 1

λ + 1

(
D1 +

1

λ + 2
F2f

)

y

f −
(

D1 +
1

λ + 2
F2f

)
fy,

ẏ =
1

λ + 1

(
D1 +

1

λ + 2
F2f

)

x

f +

(
D1 +

1

λ + 2
F2f

)
fx.

If A1x + B1y = 0 then from Lemma 4.6(b) system (1b) is a Hamiltonian system

of the form (4.9) and has f as a first integral. Therefore, from Theorem 3.1(b)

system (1b) can be written as

ẋ = ((λ + 1)G + D1)y = −D2fy,

ẏ = −((λ + 1)G + D1)x = D2fx,

for some D2 ∈ C[x, y] with δD2 = m− 2k + 1. Additionally, we have that D2xfy −
D2yfx = 0 which means that system ẋ = −D2y, ẏ = D2x has f as a first integral.

From Proposition 1.2 we have that k ≤ m− 2k + 1 or equivalently k ≤ (m + 1)/3

which is in contradiction with Case 4. So, it must be D2 = δ2 ∈ C and therefore

Gy = −(δ2f +D1)y/(λ+1) and Gx = (δ2f +D1)x/(λ+1). Hence, system (1a) can

be rewritten into the form

ẋ = Gyf −D1fy = −δ2ffy − 1

λ + 1
D1yf −D1fy,

ẏ = −Gxf + D1fy = δ2ffx +
1

λ + 1
D1xf + D1fx,

and setting F = D1 + 1
λ+2

δ2f system (1a) is of the normal form form (4.4) and

has the Darboux first integral H = fF
1

λ1+1 .

Remark 4.7. We note that if L1 = 0 then system (1b) is a Hamiltonian system

and in this case system (2a) is of the form

ẋ = A2f −D2fy, ẏ = B2f + D2fx,

with A2 = B2 = 0 and D2 = δ2 ∈ C and we can take F2 = δ2 and so for λ 6= −2 the

system has the Darboux first integral H2 = F
1

λ+2

2 f . System (1a) has the additionally

invariant algebraic curve F = D1 + 1
λ+2

F2f with δF + δf = m + 1, and it is of
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the normal form (4.4). Hence, using the information about the degrees the case

L1 = 0 is included in the study whenever we apply Lemma 4.6(a). From now on,

we will omit to study this case.

Subcase λ = −1. We assume also that L1 6= 0. Then A2 = −D2y and B2 = D2x,

and so relation A2x + B2y = 0 holds and system (2b) is Hamiltonian. System (2a)

can be written

ẋ = −D2yf −D2fy, ẏ = D2xf + D2fx,

and has the invariant algebraic curve F2 = D2 = 0 and the Darboux first integral

H2 = D2f. Since system (1b) is identically equal to system (2a) we get that

D1y = A2f −D2fy = −F2yf − F2fy,

−D1x = B2f + D2fx = F2xf + F2fx.

So, D1 = −D2f − δ1 for some δ1 ∈ C. From relation (4.8), we get that A1x +B1y =

fxF2y − fyF2x, and from Lemma 4.5, we have that there is G ∈ C[x, y] with

δG ≤ m− k + 1 such that A1 = F2yf + Gy and B1 = −F2xf −Gx. So, system (1a)

can be written into the form

ẋ = δ1fy + (F2f + G)yf, ẏ = −δ1fx − (F2f + G)xf,

and we note that it has the Darboux first integral H = f δ1 exp (F2f + G). Ob-

viously, system (1a) takes the normal form (4.5) for g/f 0 = −(F2f + G) and

β = −δ1.

Remark 4.8. We note that if L1 = 0 the proof is the same taking F2 ∈ C. From

now on we will omit to study the case L1 = 0.

Subcase λ = −2. Then, since system (2b) is identically zero, we get D2y = 0, D2x =

0, and therefore D2(x, y) = δ2 with δ2 ∈ C. Also we have that A2x + B2y = 0, and

so, by Lemma 4.4, there is G2 ∈ C[x, y] such that A2 = −G2y and B2 = G2x.

Hence, system (2a) becomes

ẋ = −G2yf − δ2fy, ẏ = G2xf + δ2fx, (4.18)
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and has the exponential factor exp(G2) and the first integral H2 = f δ2 exp (G2).

Since system (1b) is identically equal to system (2a) and consequently to system

(4.18), we obtain

A1 = G2yf + δ2fy + D1y, B1 = −G2xf − δ2fx −D1x,

and hence system (1a) takes the form

ẋ = (δ2fy + G2yf)f + D1yf −D1fy, ẏ = −(δ2fx + G2xf)−D1xf + D1fx,

and has the two invariant exponential factors exp(G2) and exp(D1/f), and the

Darboux first integral H = f δ2 exp(D1/f) exp(G2). Obviously, the last system is

in the normal form (4.5) for β = −δ2 and g/fn1 = −(D1 + G2f)/f .

Case 5: k = (m + 1)/3. Then k = (m− 2k) + 1. Note that this case occurs when

m + 1 is a multiple of 3. System (1b) of degree m − k has f = 0 as invariant

algebraic curve. From Theorem 2.4(a) it can be written into the form (2a). Since

system (1b) and consequently system (2a) has fλ+1 as an integrating factor, from

Lemma 4.6, we obtain that system

ẋ = (λ + 2)A2 + D2y, ẏ = (λ + 2)B2 −D2x, (2b)

of degree m−2k = k−1 has f = 0 as invariant algebraic curve and the integrating

factor fλ+2. From Theorem 2.4(b), all systems of degree m − 2k have f = 0 as

invariant algebraic curve are of the form

ẋ = −α2fy, ẏ = α2fx,

for some α2 ∈ C. Hence, we have that

(λ + 2)A2 + D2y = −α2fy, (λ + 2)B2 −D2x = α2fx,

and so

A2 = − 1

λ + 2
(D2y + αf2), B2 =

1

λ + 2
(D2x + αf2).

Substituting A2 and B2 into system (2a) we get

ẋ = − 1

λ + 2
(D2y + α2fy)f −D2fy, ẏ =

1

λ + 2
(D2x + α2fx)f −D2fx.

(4.19)
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Applying the same arguments as in Case 3 to system (4.19) of degree m−2k = k−1,

and consequently to system (2b) we have that for λ 6∈ {−2,−3} there is an invariant

algebraic curve F2 = D2 +
α

λ + 3
f, of degree at most m− 2k + 1 such that system

(4.19) is of the normal form (4.4) because it can be written as

ẋ = − 1

λ + 2
F2yf − F2fy, ẏ =

1

λ + 2
F2xf + F2fx,

and so it has the first integral H2 = F
1

λ+2

2 f and δF2 = m− 2k + 1.

Similar to Case 3 we have that system (1a) of degree m for λ 6∈ {−1,−2,−3}
has

F = D1 +
1

λ + 2
F2f = D1 +

1

λ + 2

(
D2 +

α

λ + 3

)
f = 0

as invariant algebraic curve and δf + δF = m+1 and takes the normal form (4.4).

Subcase λ = −1. Then A2 = −α2fy − D2y and B2 = α2fx + D2x, so relation

A2x + B2y = 0 holds. System (2a) becomes

ẋ = − (
α2

2
f + D2

)
y
f − (

α2

2
f + D2

)
fy,

ẏ =
(

α2

2
f + D2

)
x
f +

(
α2

2
f + D2

)
fx,

and has the invariant algebraic curve F2 = α2

2
f +D2 and the Darboux first integral

H2 = F2f. Since system (1b) is equal to system (2a) we have

D1y = −F2yf − F2fy, −D1x = F2xf + F2fx,

and so D1 = −F2f − δ1 for some δ1 ∈ C. From relation (4.8), we have that

A1x+B1y = fxF2y−fyF2x. Then, from Lemma 4.5, we have that there is G ∈ C[x, y]

with δG ≤ m−k +1 such that A1 = F2yf +Gy and B1 = −F2xf −Gx. So, system

(1a) can be written as

ẋ = δ1fy + (F2f + G)yf,

ẏ = −δ1fx − (F2f + G)xf,

and has the Darboux first integral H = f δ1 exp (F2f + G), and therefore it is of

the normal form (4.5) taking g/f 0 = −(F2f + G) and β = −δ1.

Subcase λ = −2. Then from system (2b) we obtain

D2y = −α2fy, D2x = α2fx,
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and so there is δ2 ∈ C a such that D2 = −α2f−δ2. Since we have that A2x+B2y = 0

applying Lemma 4.4 there is G2 ∈ C[x, y] such that A2 = G2y and B2 = −G2x.

Hence, system (2a) becomes

ẋ = δ2fy + (G2y + α2fy)f = δ2fy + R2yf,

ẏ = −δ2fx − (G2x + α2fx)f = −δ2fx −R2xf,

and has the invariant exponential factor exp (R2) = exp(G2 + α2f), and the Dar-

boux first integral H2 = f δ2 exp (R2).

Since system (1b) is equal to with system (2a) we have that

A1 = −δ2fy −R2yf + D1y, B1 = δ2fx + R2xf −D1x,

and so system (1a) becomes

ẋ = −(δ2fy + R2yf)f + D1yf −D1fy,

ẏ = (δ2fx + R2xf)f −D1xf + D1fx,

and has the two invariant exponential factors exp(R2) and exp(D1/f), and the

Darboux first integral H = f δ2 exp(R2) exp(−D1/f). Consequently, system (1a)

can be written into the normal form (4.5) taking g/fn1 = (R2f − D1)/f and

β = δ2.

Subcase λ = −3. Then

A2 = α2fy + D2y, B2 = −α2fx −D2x,

and so system (2a) becomes

ẋ = α2ffy + D2yf −D2fy, ẏ = −α2ffx −D2xf + D2fx,

and has the invariant exponential factor exp(D2/f), and the Darboux first integral

H2 = fα2 exp(D2/f). Since system (2a) is equal to system (1b), we have that

−2A1 + D1y = (α2fy + D2y)f −D2fy, −2B1 −D1x = (−α2fx −D2x)f + D2fx,

and therefore

2A1 = −(α2fy + D2y)f + D2fy + D1y, 2B1 = (α2fx + D2x)f −D2fx −D1x.
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So, system (1a) can be written into the form

ẋ =
1

2
(−α2ffy −D2yf + D2fy + D1y)f −D1fy,

ẏ =
1

2
(α2ffx + D2xf −D2fx −D1x)f + D1fx,

and has the two invariant exponential factors exp(D1/f
2) and exp(D2/2f). Addi-

tionally, system (1a) has the Darboux first integral

H = f
α2
2 exp

(−D1

f 2

)
exp

(
D2

2f

)
.

For g/f 2 = (−2D1 + D2f
2)/(2f 2) and β = α2/2 system (1a) has the normal form

(4.5).

Now, we present some notation.

We denote by (na) a system of degree m− (n− 1)k of the form

ẋ = Anf −Dnfy, ẏ = Bnf + Dnfx,

with δAn, δBn ≤ m−nk, δf = k and δDn ≤ m−nk + 1 having f = 0 as invariant

curve and an integrating factor of the form fλ+n−1. This system according to

Lemma 4.6 generates a system (nb) of degree m− nk of the form

ẋ = (λ + n)An + Dny, ẏ = (λ + n)Bn −Dnx,

and has f = 0 as invariant algebraic curve and the integrating factor fλ+n.

We consider the two sequences of systems (la) and (lb) having f = 0 as
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invariant algebraic curve and an integrating factor forming by f,

ẋ = A1f −D1fy,

ẏ = B1f + D1fx,
(1a)

ẋ = (λ + 1)A1 + D1y,

ẏ = (λ + 1)B1 −D1x,
(1b)

ẋ = A2f −D2fy,

ẏ = B2f + D2fx,
(2a)

ẋ = (λ + 2)A2 + D2y,

ẏ = (λ + 2)B2 −D2x,
(2b)

· · · · · · · · ·

ẋ = An−1f −Dn−1fy,

ẏ = Bn−1f + Dn−1fx,
(n− 1, a)

ẋ = (λ + n− 1)An−1 + Dn−1,y,

ẏ = (λ + n− 1)Bn−1 −Dn−1,x,
(n− 1, b)

ẋ = Anf −Dnfy,

ẏ = Bnf + Dnfx,
(na)

ẋ = (λ + n)An + D1y,

ẏ = (λ + n)Bn −D1x,
(nb)

where δAi, δBi ≤ m− ik and δDi ≤ m− ik + 1.

Lemma 4.9. We assume that the conditions of Theorem 4.3 hold and that (m + 1)/(n + 1) ≤
k < (m + 1)/n and λ 6∈ {−1,−2, · · · ,−n}. Then, system (1a) takes the normal

form (4.4).

Proof: For simplicity in the proof we distinguish the following cases.

Case A: (m + 1)/(n + 1) < k < (m + 1)/n. Since f = 0 is an invariant algebraic

curve for system (nb) of degree m − nk, then from Proposition 1.2 we have that

k ≤ (m− nk) + 1 which is in contradiction with the assumptions. Hence, system

(nb) must be identically zero. So, for λ 6= −n we have

An = − 1

λ + n
Dny, Bn =

1

λ + n
Dnx,

and therefore system (na) becomes

ẋ = − 1

λ + n
Dnyf −Dnfy, ẏ =

1

λ + n
Dnxf + Dnfx,

and has the invariant algebraic curve Fn = Dn = 0 with δFn = m − nk + 1, and

takes the normal form (4.4). So system (na) has the first integral Hn = F
1

λ+n
n f.
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We note that system (n− 1, b) is equal to system (na), so we have

(λ + n− 1)An−1 + Dn−1,y = − 1

λ + n
Fnyf − Fnfy,

(λ + n− 1)Bn−1 −Dn−1,x =
1

λ + n
Fnxf + Fnfyx,

and for λ 6= −(n− 1), we get

An−1 = − 1

λ + n− 1

(
Dn−1,y +

1

λ + n
Fnyf + Dn−1fy

)
,

Bn−1 =
1

λ + n− 1

(
Dn−1,x +

1

λ + n
Fnxf + Dn−1fx

)
.

Substituting An−1 and Bn−1 into system (n-1,a) we obtain

ẋ = − 1

λ + n− 1

(
Dn−1,y +

1

λ + n
Fnyf + Dn−1fy

)
f −Dn−1fy,

ẏ =
1

λ + n− 1

(
Dn−1,x +

1

λ + n
Fnxf + Dn−1fx

)
f + Dn−1fx.

(4.20)

System (4.20) of degree m− (n− 2)k has the invariant algebraic curve

Fn−1 = Dn−1 +
1

λ + n
Fnf,

and δFn−1 ≤ m + (n − 1)k + 1. Moreover, for λ 6∈ {−(n − 1),−n} system (4.20)

can be written into the normal form (4.4)

ẋ = − 1

λ + n− 1
Fn−1,yf − Fn−1fy, ẏ =

1

λ + n− 1
Fn−1,xf + Fn−1fx,

and has the Darboux first integral Hn−1 = F
1

λ+n−1

n−1 f with δFn−1 = m−(n−2)k+1.

Working in a similar way we have that system (n − 2, a) can be written into

the normal form (4.4) and has the first integral Hn−2 = F
1

λ+n−2

n−2 f with Fn−2 =

Dn−2 + 1
λ+n−1

Fn−1f as an additional invariant algebraic curve and λ 6∈ {−(n −
2),−(n− 1),−n}.

Additionally, every term of the sequence of the vector fields (la) has the addi-

tional algebraic curve Fl = Dl+
1

λ+l+1
Fl+1f for l = 1, · · · , n and λ 6∈ {−1, · · · ,−n}.
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Moreover, it has the Darboux first integral Hl = F
1

λ+l

l f. So, the first term of this

sequence (1a) of degree m has the invariant algebraic curve

F = D1 +
1

λ + 2
F2f

= D1 +
1

λ + 2

(
D2 +

1

λ + 3
F3f

)
f

= D1 +
1

λ + 2

(
D2 +

1

λ + 3

(
D3 +

1

λ + 4
F4f

)
f

)
f

· · ·
= D1 +

1

λ + 2
D2f +

1

(λ + 2)(λ + 3)
D3f

2 + · · ·+ 1

(λ + 2)(λ + 3) · · · (λ + n)
Dnfn−1

= D1 +
n∑

i=2

λ + 1

(λ + 2)(λ + 3) · · · (λ + i)
Dif

i−1.

Additionally, for λ 6∈ {−1, · · · ,−n} system (1a) is into the normal form (4.4) and

has the Darboux first integral H = F
1

λ+1 f. So, Theorem 4.3 is proved in this case.

Case B: k = (m + 1)/(n + 1). Equivalently we have that k = (m − nk) + 1. In

this case, system (nb) of degree m− nk is of the form 2.4(b). Hence, we have

(λ + n)An + Dny = −αnfy, (λ + n)Bn −Dnx = αnfx,

for some αn ∈ C. Since, λ 6= −n we can obtain An and Bn, and so system (na)

can be written into the form

ẋ = − 1

λ + n
(Dny + αnfy)f −Dnfy, ẏ =

1

λ + n
(Dnx + αnfx)f + Dnfx,

(4.21)

and has the invariant curve Fn = Dn + αn

λ+n+1
f of degree at most m− nk + 1. We

note that system (4.21) can be written into the normal form (4.4)

ẋ = − 1

λ + n
Fnyf − Ffy, ẏ =

1

λ + n
Fnxf + Ffx,

and has the first integral Hn = F
1

λ+n
n f with δFn = m− nk + 1.
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In a similar way we have that system (n−1, a) can be written into the normal

form (4.4) and has the Darboux first integral Hn−1 = F
1

λ+n−1

n−1 f with Fn−1 = Dn−1+
1

λ+n
Fnf as an additional invariant algebraic curve. Furthermore, every term of the

sequence of the vector fields (Xl) has the complementary algebraic curve Fl =

Dl + 1
λ+l+1

Fl+1f for l = 1, · · · , n − 1 and λ 6∈ {−1, · · · ,−n}. We note that

for λ 6∈ {−1, · · · ,−n,−(n + 1)} the last term (na) of the sequence (la) has the

algebraic curve Fn = Dn + αn

λ+n+1
f . Moreover, every term (la) has the Darboux

first integral Hl = F
1

l+1

l f. So, the last term of this sequence (1a) of degree m has

the invariant algebraic curve

F = D1 +
1

λ + 2
F2f

= D1 +
1

λ + 2

(
D2 +

1

λ + 3
F3f

)
f

= D1 +
1

λ + 2

(
D2 +

1

λ + 3

(
D3 +

1

λ + 4
F4f

)
f

)
f

· · ·
= D1 +

1

λ + 2
D2f +

1

(λ + 2)(λ + 3)
D3f

2 + · · ·+ 1

(λ + 2)(λ + 3) · · · (λ + n)
Dnfn−1

+
1

(λ + 2)(λ + 3) · · · (λ + n + 1)
αnfn

= D1 +
n+1∑
i=2

λ + 1

(λ + 2)(λ + 3) · · · (λ + i)
Dif

i−1,

with Dn+1 = αn ∈ C. Additionally, for λ 6∈ {−1, · · · ,−(n + 1)} it is of the normal

form (4.4) and it has the Darboux first integral H = F
1

λ+1 f . So we prove case B.

With cases A and B we complete the proof of Theorem 4.3(a).

Lemma 4.10. We assume that the conditions of Theorem 4.3 hold and that

(m + 1)/(n + 1) ≤ k < (m + 1)/n and λ ∈ {−1,−2, · · · ,−n}. Then system (1a)

takes the normal form (4.5).

Proof: For simplicity we distinguish the following cases.
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Case A: k = (m+1)/(n+1). Since f = 0 is an invariant algebraic curve of system

(nb) of degree m− nk, and since in this case we have that k = (m− nk) + 1 then

from Theorem 2.4(b) system (nb) can be written into the form

(λ + n)An + Dny = −αnfy, (λ + n)Bn −Dnx = αnfx,

for some αn ∈ C.

Subcase λ = −n. Then we have that Dny = −αnfy and Dnx = −αnfx, and therefore

Dn = −αnf − δn for some δn ∈ C. Applying relation (4.8) to system (nb) we get

that Anx + Bny = 0 and, from Lemma 4.4, we have that there is Gn ∈ C[x, y]

with δGn ≤ m− nk + 1 such that An = −Gny and Bn = Gnx. Hence, system (na)

becomes

ẋ = −(Gny − αnfy)f + δnfy, ẏ = (Gnx − αnfx)f − δnfx,

and has the invariant exponential factor exp(Gn − αnf) with δ(Gn − αnf) =

m − nk + 1, and it has the Darboux first integral Hn = f−δn exp (Gn − αnf).

Additionally, system (na) takes the normal form (4.5) for β = −δn and g/f 0 =

Gn − αnf .

We note that system (n− 1, b) is equal to system (na) and so we have

−An−1 + Dn−1,y = −(Gn − αnf)yf + δnfy, −Bn−1 −Dn−1,x = (Gn − αnf)xf − δnfx.

Substituting An−1 and Bn−1 into system (n-1,a) we obtain

ẋ = (−δnfy + (Gn − αnf)yf)f + Dn−1,yf −Dn−1fy,

ẏ = −(−δnfx + (Gn − αnf)xf)f −Dn−1,xf + Dn−1fx.
(4.22)

System (4.22) of degree m−(n−2)k has the invariant exponential factors exp(−Gn+

αnf) and exp(−Dn−1/f) and the Darboux first integral Hn−1 = f δn exp(−Dn−1/f) exp(−Gn+

αnf). System (4.22) takes the normal form (4.5) for β = δn and g/f = (−Dn−1 −
Gnf + αnf

2)/f.

We note that system (n− 2, b) is equal to system (n-1,a), and so we have

−2An−2 + Dn−2,y = (−δnfy + (Gn − αnf)yf)f + Dn−1,yf −Dn−1fy,

−2Bn−2 −Dn−2,x = −(−δnfx + (Gn − αnf)xf)f −Dn−1,xf + Dn−1fx.
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Substituting An−2 and Bn−2 to system (n− 2, a) we get

ẋ =
1

2
(Dn−2,y − (−δnfy + (Gn − αn)yf)f −Dn−1,yf + Dn−1fy)−Dn−2fy,

ẏ =
1

2
(−Dn−2,x + (−δnfx + (Gn − αn)xf)f + Dn−1,xf −Dn−1fx) + Dn−2fx.

(4.23)

System (4.23) of degree m−(n−3)k has the invariant exponential factors exp((Gn−
αnf)/2), exp

(
Dn−1

2f

)
and exp

(
−Dn−2

2f2

)
and has the Darboux first integral

Hn−2 = f
−δn

2 exp

(−Dn−2

2f 2

)
exp

(
Dn−1

2f

)
exp

(
Gn − αnf

2

)
.

System (4.23) for β = δn/2 and g/f 2 = (Gnf 2 − αnf 3 + Dn−1f − Dn−2)/(2f
2)

takes the normal form (4.5).

Hence, for λ = −n we have the sequence of systems (la) and their first integrals

Hl:

(na) Hn = f−δn exp (Gn − αnf),

(n− 1, a) Hn−1 = f δn exp

(−Dn−1

f

)
exp(−Gn + αnf),

(n− 2, a) Hn−2 = f

−δn

2 exp

(−Dn−2

2f 2

)
exp

(
Dn−1

2f

)
exp

(
Gn − αnf

2

)
,

(n− 3, a) Hn−3 = f

δn

3 · 2 exp

(−Dn−3

3f 3

)
exp

(
Dn−2

3 · 2f 2

)
exp

(−Dn−1

3 · 2f
)

exp

(−Gn + αnf

3 · 2
)

,

(n− 4, a) Hn−4 = f

−δn

4 · 3 · 2 exp

(−Dn−4

4f 4

)
exp

(
Dn−3

4 · 3f 3

)
exp

( −Dn−2

4 · 3 · 2f 2

)

exp

(
Dn−1

4 · 3 · 2f
)

exp

(
Gn − αnf

4 · 3 · 2
)

,

· · · · · · · · ·
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(1a) H1 = f
(−1)n δn

(n− 1)! exp

( −D1

(n− 1)fn−1

)
exp

(
D2

(n− 1)(n− 2)fn−2

)

exp

( −D3

(n− 1)(n− 2)(n− 3)fn−3

)
· · · exp

(
(−1)n−3 Dn−3

(n− 1)(n− 2) · · · 3f 3

)

exp

(
(−1)n−2 Dn−2

(n− 1)!f 2

)
exp

(
(−1)n−1 Dn−1

(n− 1)!f

)

exp

(
(−1)n Gn − αnf

(n− 1)!

)
.

Hence, system (1a) for λ = −n has the Darboux first integral

H1 = f
(−1)n δn

(n− 1)!

(
n−1∏
j=1

exp

(
(−1)n−j Dn−j

j.(j + 1) · · · (n− 1)f j

))

exp

(
(−1)n Gn − αnf

(n− 1)!

)
,

or equivalently H1 = fβ exp (g/fn−1) where

g/fn−1 =
n−1∑
j=1

(−1)n−j Dn−j

j.(j + 1) · · · (n− 1)f j
+ (−1)n−1Gn − αnf

(n− 1)!
,

and β = (−1)n δn

(n−1)!
.

Subcase λ = −(n − 1). We have that An = −Dny − αnfy and Bn = Dnx + αnfx.

So, the vector field (na) of degree m− (n− 1)k becomes

ẋ = −(Dny + αnfy)f −Dnfy, ẏ = (Dnx + αnfx)f + Dnfx,

and has the invariant algebraic curve Fn = Dn + αnf = 0 and the first integral

Hn = Fnf.

The vector field (n− 1, b) is equal to the vector field (n, a). So, we have that

Dn−1,y = −Fnyf − Fnfy, Dn−1,x = −Fnxf − Fnfx,
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and therefore Dn−1 = −Fnf − δn−1 for some δn−1 ∈ C. Additionally, applying

relation (4.8) to the vector field (n− 1, a) we get that

Dn−1,yfx −Dn−1,xfy + (An−1,x + Bn−1,y)f = 0,

−Fn,yfxf − Fn,xfyf + (An−1,x + Bn−1,y)f = 0,

Fn,yfx −Dn,xfy + (An−1,x + Bn−1,y) = 0,

and, from Lemma 4.5, there is Gn−1 with δGn−1 ≤ m − (n − 1)k + 1 such that

An−1 = Fnyf + Gn−1,y and Bn−1 = −Fnxf − Gn−1,x. Hence, the vector field Xn−1

can be written into the form

ẋ = (Fn,yf + Gn−1,y)f + (Fnf + δn−1)fy,

ẏ = −(Fn,xf + Gn−1,y)f − (Fnf + δn−1)fx,

and it has the exponential factor exp(−Fn,yf +Gn−1) and the first integral Hn−1 =

f−δn−1 exp(−Gn−1 + Fn,yf).

Continuing in a similar way as in the previous cases we obtain that for λ =

−(n − 1) the sequence of systems (na) have the first integrals Hn given in the

following table

(na) Hn = Fnf, Fn = Dn + αnf,

(n− 1, a) Hn−1 = f−δn−1 exp (−(Gn−1 + Fnf)),

(n− 2, a) Hn−2 = fδn−1 exp

(
−Dn−2

f

)
exp (Gn−1 + Fnf),

(n− 3, a) Hn−3 = f
−δn−1

2 exp

(−Dn−3

2f 2

)
exp

(
Dn−2

2f

)
exp

(
−Gn−1 + Fnf

2

)
,

(n− 4, a) Hn−4 = f

δn−1

3 · 2 exp

(
−Dn−4

3f 3

)
exp

(
Dn−3

3 · 2f 2

)
exp

(
−Dn−2

3 · 2f
)

exp

(
Gn−1 + Fnf

3 · 2
)

,

· · · · · · · · ·
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(1a) H1 = f
(−1)n−1 δn−1

(n− 2)! exp

( −D1

(n− 2)fn−2

)
exp

(
D2

(n− 2)(n− 3)fn−3

)

exp

( −D3

(n− 2)(n− 3)(n− 4)fn−4

)
· · · exp

(
(−1)n−4 Dn−4

(n− 1)(n− 2) · · · 3f 3

)

exp

(
(−1)n−3 Dn−3

(n− 2)!f 2

)
exp

(
(−1)n−2 Dn−2

(n− 2)!f

)

exp

(
(−1)n−1Gn−1 + Fnf

(n− 2)!

)
.

We note that in systems (na), it appears the additional invariant algebraic

curve Fn = Dn + αnf = 0.

Hence for λ = −(n− 1) system (1a) has the Darboux first integral

H1 = f
(−1)n−1 δn−1

(n− 2)!

(
n−2∏
j=1

exp

(
(−1)n−j−1 Dn−j−1

j.(j + 1) · · · (n− 2)f j

))

exp

(
(−1)n−1Gn−1 + Fnf

(n− 2)!

)
,

or equivalently, H1 = fβ exp (g/fn−2) where

g/fn−2 =
n−2∑
j=1

(−1)n−j−1 Dn−j−1

j.(j + 1) · · · (n− 2)f j
+ (−1)n−1Gn−1 + Fnf

(n− 2)!
,

and β = (−1)n−1 δn−1

(n−2)!
.

Subcase λ = −(n− 2). We have that 2An = −Dny − αnfy and 2Bn = Dnx + αnfx.

So, the vector field (na) of degree m− (n− 1)k becomes

ẋ = −1

2
(Dny + αnfy)f −Dnfy, ẏ =

1

2
(Dnx + αnfx)f + Dnfx,

and has the invariant algebraic curve Fn = Dn + αnf = 0 and the first integral

Hn = F
1
2

n f.
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Working in a similar way as in the previous cases we get

(na) Hn = F
1
2

n f, Fn = Dn + αnf,

(n− 1, a) Hn−1 = Fn−1f, Fn−1 = Dn−1 +
1

2
Fnf,

(n− 2, a) Hn−2 = f−δn−2 exp (−(Gn−2 + Fn−1f)),

(n− 3, a) Hn−3 = fδn−2 exp

(
−Dn−3

f

)
exp (Gn−2 + Fn−1f),

(n− 4, a) Hn−4 = f
−δn−2

2 exp

(
−Dn−4

2f 2

)
exp

(
Dn−3

2f

)
exp

(
−Gn−2 + Fn−1f

2

)
,

(n− 5, a) Hn−5 = f

δn−2

3 · 2 exp

(
−Dn−5

3f 3

)
exp

(
Dn−4

3 · 2f 2

)
exp

(
−Dn−3

3 · 2f
)

exp

(
Gn−2 + Fn−1f

3 · 2
)

,

· · · · · · · · ·

(1a) H1 = f
(−1)n−2 δn−2

(n− 3)! exp

(
− D1

(n− 3)fn−3

)

exp

(
D2

(n− 3)(n− 2)fn−2

)
exp

( −D3

(n− 3)(n− 2)(n− 1)fn−1

)

· · · · · · · · · · · ·
exp

(
(−1)n−5 Dn−5

(n− 3)(n− 2) · · · 3f 3

)
exp

(
(−1)n−4 Dn−4

(n− 3)!f 2

)

exp

(
(−1)n−3 Dn−3

(n− 3)!f

)
exp

(
(−1)n−2Gn−2 + Fn−1f

(n− 3)!

)
.

We observe that systems (na) and (n − 1, a) have the invariant algebraic curves

Fn = Dn + αnf = 0 and Fn−1 = Dn−1 + 1
2
Fnf = 0, respectively.

System (1a) for λ = −(n− 2) has the Darboux first integral
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H1 = f
(−1)n−2 δn−2

(n− 3)!

(
n−3∏
j=1

exp

(
(−1)n−j−2 Dn−j−2

j.(j + 1) · · · (n− 3)f j

))

exp

(
(−1)n−2Gn−2 + Fn−1f

(n− 3)!

)
,

or equivalently, H1 = fβ exp (g/fn−3) where

g/fn−3 =
n−3∑
j=1

(−1)n−j−2 Dn−j−2

j.(j + 1) · · · (n− 3)f j
+ (−1)n−2Gn−2 + Fn−1f

(n− 3)!
,

and β = (−1)n−2 δn−2

(n−3)!
.

Subcase λ = −(n− j). We get

(na) Hn = F
1
j

n f, Fn = Dn + αnf,

(n− 1, a) Hn−1 = F
1

j−1

n−1f, Fn−1 = Dn−1 +
1

j
Fnf,

(n− 2, a) Hn−2 = F
1

j−2

n−2f, Fn−2 = Dn−2 +
1

j − 1
Fn−1f,

· · · · · · · · ·
(n− (j − 1), a) Hn−(j−1) = Fn−(j−1)f, Fn−(j−1) = Dn−(j−1) +

1

2
Fn−(j−2)f,

(n− j, a) Hn−j = f−δn−j exp
(−(Gn−j + Fn−(j−1))f

)
,

(n− (j + 1), a) Hn−(j+1) = fδn−j exp

(
−Dn−(j+1)

f

)
exp

(
Gn−j + Fn−(j−1)f

)
,
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(n− (j + 2), a) Hn−(j+2) = f
−δn−j

2 exp

(
−Dn−(j+2)

2f 2

)
exp

(
Dn−(j+1)

2f

)

exp

(−(Gn−j + Fn−(j−1)f)

2

)
,

· · · · · · · · ·

(1a) H1 = f
(−1)n−j δn−j

(n− j − 1)! exp

( −D1

(n− j − 1)fn−j−1

)

exp

(
D2

(n− j − 1)(n− j − 2)fn−j−2

)

exp

( −D3

(n− j − 1)(n− j − 2)(n− j − 3)fn−j−3

)

· · ·

exp

(
(−1)n−j−3 Dn−j−3

(n− j − 1)(n− j − 2) · · · 3f 3

)

exp

(
(−1)n−j−2 Dn−j−2

(n− j − 1)!f 2

)

exp

(
(−1)n−j−1 Dn−j−1

(n− j − 1)!f

)
exp

(
(−1)n−j Gn−j + Fn−(j−1)f

(n− j − 1)!

)
.

Therefore, system (1a) for λ = −(n− j) has the Darboux first integral

H1 = f
(−1)n−j δn−j

(n− j − 1)!

(
n−j−1∏

k=1

exp
(−1)n−j−kDn−j−k

k(k + 1) · · · (n− j − 1)fk

)

exp

(
(−1)n−j Gn−j + Fn−(j−1)f

(n− j − 1)!

)
,

or equivalently, H1 = fβ exp (g/fn−j−1), where

g/fn−j−1 =

n−j−1∑

k=1

(−1)n−j−k Dn−j−k

k(k + 1) · · · (n− j − 1)fk
+(−1)n−j Gn−j + Fn−(j−1)f

(n− j − 1)!
,

and β = (−1)n−j δn−j

(n−j−1)!
. So we proved case A.
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Case B: (m + 1)/(n + 1) < k < (m + 1)/n. Since f = 0 is an invariant algebraic

curve of system (nb) of degree m − nk, then from Proposition 1.2 we have that

k < (m− nk) + 1 which is in contradiction with this case. Therefore system (nb)

is identically equal to zero. The proof of this case follows directly of the proof

of Case A for αn = 0. So we complete the proof of Lemma 4.10, and this also

complete the proof of Theorem (4.3)(b).

4.4 The examples

In the following we provide an example of a system which is Darboux integrable

having a Darboux integrating factor. However, there is no Darboux first integral.

Example 4.11.

The system

ẋ = 1, ẏ = 2xy + y2, (4.24)

is Darboux integrable system because has the integrating factor R = y−2 exp(x2).

This result is not a new one, it appears in [12]. The authors proved that the only

invariant curve of system (4.24) is the y = 0 and system (4.24) cannot have a

Darboux first integral. Here, we prove the same using Theorem 3.1. We assume

that system (4.24) has a Darboux first integral and we should get a contradiction.

If system (4.24) has a Darboux first integral then this integral must be of the form

(4.1). Since there is only one invariant curve f = y = 0 the fist integral (4.1) must

be written as

H(x, y) = fλ exp

(
g

fn

)
, (4.25)

with λ ∈ R, n ∈ N∪ {0}, g ∈ C[x, y] and g is coprime with f. If system (4.24) has

the Darboux integral (4.25) then this system must be given by Theorem 3.1. We

have that system (4.24) is quadratic, so we have m = 2. Let l = max{δg, n} and

from Theorem 3.1 we have that l ≥ 2.

If l = 2, then system (4.24) is of the normal form (3.2). So it must be written

as

ẋ = −λyn + ng − ygy, ẏ = ygx. (4.26)
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Since systems (4.24) and (4.26) must be the same we get that 2x + y = gx(x, y)

or equivalently g(x, y) = x2 + xy + G(y). Additionally, we have that −λyn + ng −
ygy = 1 or equivalently −λyn + n(x2 + xy + G(y)) − (x + G′(y))y = 1 and so

−λyn + (n− 1)xy − yG′(y) + nG(y) + nx2 = 1. Therefore, we get that n must be

0 and 1 simultaneously which is a contradiction.

If l > 2 then from Theorem 3.1(c) system (4.24) is of the normal form (4.26)

dividing its components by their common divisor D(x, y), so

−λyn + ng − ygy = D(x, y), ygx = D(x, y)y(2x + y),

and therefore gx = (−λyn + ng − ygy)(2x + y). Let g(x, y) = g0(x) + yg1(x) +

· · · ykgk(x). Then

g′0(x) + yg′1(x) + · · ·+ ykg′k(x) =
(−λyn − y(g1(x) + 2yg2(x) + · · ·+ kyk−1gk(x))

+n(g0(x) + yg1(x) + · · · ykgk(x))
)
(2x + y),

(4.27)

and we get g′0(x) = 2ng0(x)x. Hence it must be g0 = C exp(nx2).

If n 6= 0 we get that C = 0. Therefore, g0(x) = 0 which means that the

polynomial g is not coprime with y. But this is a contradiction.

If n = 0 then g0 = C. Now, we use the same arguments for computing

gi(x) from (4.27) then and we get recursively that gi = 0 for all i = 1, · · · , k.

So, g(x) = C and this is a contradiction. Hence, system (4.24) cannot have a

Darbouxian integral. It has a Liouvilian first integral. We provide an example

satisfying Theorem 4.1.

Example 4.12.

The polynomial vector field X = (x(y + 1),−y(x + 1)) with m = 2 has the

invariant algebraic curve f1 = x with cofactor K1 = y + 1, the exponencial factor

exp(x+y +1) with cofactor L = x−y = −div, and the weak independent singular

point (−1,−1) which is not on f1 = 0. Therefore, l = 1, p = q = r = 1, and

consequently it satisfies p+q+r = m(m+1)/2 = 3 and l+

p∑
i=1

δfi = 2 < m+1 = 3,

and it has f 0
1 exp(x + y + 1) as integrating factor. Hence, X is an example of a

polynomial vector field satisfying Theorem 4.1. We note that, from Theorem
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1.7(a), there does not exist a first integral given by a Darboux function of the

form fλ1
1 exp(x + y + 1)µ1 .

Now we present an example of Theorem 4.2.

Example 4.13.

We are interested to construct a vector field Y given in Theorem 4.2 and defined by

(4.3) and and has the integrating factor R = (x2+y2−1)3(x−1)−1 exp (y/(x− 1)2) .

We have f1 = x− 1, f2 = x2 + y2 − 1, g = y, n1 = 2, n2 = 0, µ1 = −1 and µ2 = 3.

So, λ1 = µ1 + n1 + 1 = 2 and λ2 = µ2 + n2 + 1 = 4 and

H(x, y) = fλ1
1 fλ2

2 exp g/(fn1
1 fn2

2 ) = (x− 1)2(x2 + y2 − 1)4 exp
y

(x− 1)2
.

Let X = (xp, xq) be the vector field given by (3.2) which has H as a first integral.

Since n2 = 0 we have,

xp = fn1
1 (−λ1f2f1y − λ2f1f2y) + n1gf2f1y − f1f2gy,

xq = fn1
1 (λ1f2f1x + λ2f1f2x)− n1gf2f1x + f1f2gx,

or equivalently,

xp = −8yx3 + 24yx2 − 24yx + 8y − x3 − xy2 + x + x2 + y2 − 1,

xq = 10x4 + 2x2y2 + 24x2 − 28x3 − 4xy2 − 4x + 2y2 − 2yx2 − 2y3 + 2y − 2.

We now need to construct a vector field (A,B) such that (AH)x + (BH)y = 0.

Consider

H2(x, y) = fµ1+2n1+2
1 fµ2+2n2+2

2 exp
g

fn1
1 fn2

2

= (x− 1)5(x2 + y2 − 1)5 exp
y

(x− 1)2
,

and take (A,B) to be the vector field of the form (3.2). Hence, since n2 = 0 we

obtain

A = fn1
1 (−(µ1 + 2n1 + 2)f2f1y − (µ2 + 2)f1f2y) + n1gf2f1y − g1f2gy,

B = fn1
1 ((µ1 + 2n1 + 2)f2f1x + (µ2 + 2)f1f2x)− n1gf2f1x + g1f2gx,

or equivalently,

A = −10yx3 + 30yx2 − 30yx + 10y − x3 − xy2 + x + x2 + y2 − 1,

B = 15x4 + 5x2y2 + 30x2 − 40x3 − 10xy2 + 5y2 − 5− 2yx2 − 2y3 + 2y.
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Therefore, for these specific A and B the vector field Y = (yp, yq) having R(x, y)

as an integrating factor and defined by relation (4.3) is

yp = (A + Cy)f
n1
1 f1f2 − Cxp, yq = (B − Cx)f

n1
1 f1f2 − Cxq,

for an arbitrary polynomial C. For exemple take C = x3 − y + 1 and we get

yp = −1 + y − 132yx6 + 116yx5 + 24yx4 − 10yx8 − 10y3x6 + 60yx7 + 60y3x5

−150y3x4 + 200y3x3 − 150y3x2 + 59y3x + 10y2 − 7x2 + 6x− 141yx3

−35yx− 34xy2 − 4x3 + 37x2y2 + 12x4 − 9y3 + 4xy4 + 4x3y4 − 10x3y2

+8x5y2 − 9x4y2 − 3x6 − x8 − 6x5 + 4x7 − 6x2y4 − 2x6y2 − x4y4 − y4

+117yx2,

yq = −3− 2y + 6yx6 − 2yx7 − 4y3x5 + 12y3x4 − 6y3x3 − 6y3x2 + 8y3x + 10y2

−2y5x3 + 6y5x2 − 6y5x + 2y5 + 19x− 20yx3 + 28yx2 − 10yx− 36xy2

+29x2y2 + 198x4 + 25xy4 + 5x5y4 + 50x3y4 + 89x3y2 + 235x5y2 + 20x7y2

−237x4y2 − 103x6 − 85x8 − 100x5 + 167x7 + 15x9 − 50x2y4 − 110x6y2

−25x4y4 − 7y4 − 7x2 − 101x3 − 101x3.

Now we present two examples of Theorem 4.3.

Example 4.14.

Let R = (x2 + y2 − 1)
1
3 . We are interesting to construct all the polynomial vector

fields of degree m = 3 having the Darboux integrating factor R. We have that the

curve f = x2 + y2 − 1 satisfies all the conditions of Theorem 4.3. We have that

k = 2 and k = (m + 1)/2 so we are in Case 3 of Theorem 4.3. System (1a) is of

the form

ẋ = A1f −D1fy, ẏ = B1f + D1fx,

with δA1, δB1 ≤ 1 and δD1 ≤ 2. System (1b) of degree m− k = 1 is of the form

(λ + 1)A1 + D1y = −αfy, (λ + 1)B1 −D1x = αfx,

for some α ∈ C and λ = 1/3. Following the proof of Case 3 of Theorem 4.3 we get

that

A1 =
1

λ + 1
(−αfy −D1y), B1 =

1

λ + 1
(−αfx + D1x),
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or equivalently,

A1 = −3

2
αy − 3

4
D1y, B1 =

3

2
αx +

3

4
D1x.

Substituting A1 and B1 into system (1a) we get

ẋ =

(
−3

2
αy − 3

4
D1y

)
(x2 + y2 − 1)− 2yD1,

(1a′)

ẏ =

(
3

2
αx +

3

4
D1x

)
(x2 + y2 − 1) + 2xD1,

and these family describes all the polynomial systems having R = (x2 + y2 − 1)
1
3

as Darboux integrating factor. Additionally, due to the form of the system (1a′)

it appears the algebraic curve

F = D1 +
α

λ + 2
f = D1 +

3

7
α(x2 + y2 − 1),

and δf + δF = m + 1. Hence, system (1a′) can be written into the form

ẋ = −3

4

(
D1y +

6

7
αy

)
(x2 + y2 − 1)− 2

(
D1 +

3

7
α(x2 + y2 − 1)

)
y,

ẏ =
3

4

(
D1x +

6

7
αx

)
(x2 + y2 − 1) + 2

(
D1 +

3

7
α(x2 + y2 − 1)

)
x,

which is the form (4.4) and has the Darboux first integral

H(x, y) =

(
D1 +

3

7
α(x2 + y2 − 1)

) 3
4

(x2 + y2 − 1).

Now we present a particular system of degree 3 having the integrating factor

R = (x2 + y2 − 1)
1
3 .

The system

ẋ = −18yx2 − 14y3 + 14y − 3

4
x3 − 11

4
xy2 +

3

4
x,

ẏ = 21x3 + 17xy2 − 17x +
11

4
yx2 +

3

4
y3 − 3

4
y,

(4.28)
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has the algebraic curve f = x2 +y2−1 = 0 invariant and has the integrating factor

R = f
1
3 . System (4.28) can be written as

ẋ = (−12y − 3

4
x)(x2 + y2 − 1)− 2(3x2 + y2 + xy − 1)y,

ẏ = (15x +
3

4
y)(x2 + y2 − 1) + 2(3x2 + y2 + xy − 1)x,

where we detect that A1 = −12y− 3
4
x, B1 = 15x+ 3

4
y and D1 = 3x2 + y2 +xy− 1.

We observe that for λ = 1/3 and α = 7, we have that relations A1 = (−αfy −
D1y)/(λ + 1) and B1 = (αfx + D1x)/(λ + 1) hold, and the curve

F = D1 +
1

λ + 2
α(x2 + y2 − 1) = 6x2 + 4y2 + xy − 4

of degree δF = 2 is invariant for system (4.28). We observe that δf + δF = m+1.

System (4.28) can be rewritten into the form

ẋ = −3

4
(x2 + y2 − 1)(x + 8y)− 2(6x2 + 4y2 + xy − 4)y,

ẏ =
3

4
(x2 + y2 − 1)(12x + y) + 2(6x2 + 4y2 + xy − 4)x,

and obviously it is in the normal form (4.4) and has the Darboux first integral

H(x, y) = (6x2 + 4y2 + xy − 4)
3
4 (x2 + y2 − 1).

Example 4.15.

Let R = 1/(x4 + y4 − 1)2. We are interesting to construct all the polynomial

vector fields of degree m = 8 that are having the Darboux integrating factor

R = 1/(x4 + y4 − 1)2. We have that the curve f = x4 + y4 − 1 satisfies all the

conditions of Theorem 4.3. We have that k = 4 and (m + 1)/3 < k < (m + 1)/4

and so we are in Case 4 of Theorem 4.3 for λ = −2. System (2a) is of the form

ẋ = A2f −D2fy, ẏ = B2f + D2fx,

with δA2, δB2 = m − 2k = 0 so we can take A2 = a2 ∈ C and B2 = b2 ∈ C. We

also have that δD2 ≤ m− 2k + 1 = 1. Following the proof of Case 4 of Theorem

4.3 we get that D2 = δ2 for some δ2 ∈ C and we note that in this case relation
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A2x + B2y = 0 do hold. We define G2 = b2x− a2y + c2 with c2 ∈ C the polynomial

satisfying A2 = −G2y and B2 = G2x. System (2a) becomes

ẋ = −a2(x
2 + y2 − 1)− 4δ2y, ẏ = b2(x

2 + y2 − 1) + 4δ2x,

and has the invariant exponential factor exp (G2) = exp (b2x− a2y + c2), the in-

tegrating factor R2 = 1/(x4 + y4 − 1) and the Darboux first integral H2(x, y) =

(x4 + y4 − 1)δ2 exp (b2x− a2y + c2). System (1a) is of the form

ẋ = A1f −D1fy, ẏ = B1f + D1fx,

with δA1, δB1 ≤ 4 and δD1 ≤ 5. Following the proof of Case 4 of Theorem 4.3 we

get that

A1 = G2y + δ2fy + D1y, B1 = −G2x − δ2fx −D1x,

or equivalently,

A1 = −a2(x
4 + y4 − 1) + 4δ2y

3 + D1y, B1 = −b2(x
4 + y4 − 1)− 4δ2x

3 −D1x.

Hence, system (1a) becomes

ẋ = (−a2(x
4 + y4 − 1) + 4δ2y

3 + D1y(x
4 + y4 − 1)− 4y3D1,

(1a′)

ẏ = (−b2(x
4 + y4 − 1)− 4δ2x

3 −D1x(x
4 + y4 − 1) + 4x3D1,

and this family describes all the polynomial systems of degree m = 8 having the

Darboxian integrating factor R = 1/(x4 + y4 − 1)2. Additionally, system (1a′) has

the invariant exponential factors exp(−b2x+a2y−c2), exp(−D1(x, y)/(x4+y4−1))

and the Darboux first integral

H(x, y) = (x4 + y4 − 1)−δ2 exp(−b2x + a2y − c2) exp
−D1(x, y)

x4 + y4 − 1
.

We also note that δf+δ(−b2x+a2y−c2)+δ(−D1(x, y)/(x4 + y4 − 1)) = 9 = m+1.

Additionally, for

g

f
=

(−b2x + a2y − c2)(x
4 + y4 − 1)−D1(x, y)

x4 + y4 − 1
,

β = δ2 and n1 = 1 and doing a simple calculation we get that system (1a′) takes

the form (4.5).
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Now we present a particular system which has the Darboux integrating factor

R = 1/(x4 + y4 − 1).

The system

ẋ = 3x8 + x4y4 − 6x4 + 2y8 − y4 + 3− 4y3x4 − 4y7 − 4y3x5,

ẏ = −3x8 − 9x4y4 + 9x4 − 2y8 + 4y4 − 2 + 4x7 + 4x3y4 − 4x3y5,
(4.29)

has the integrating factor R = 1/(x4 + y4− 1)2. So, we have that f = x4 + y4− 1,

k = 4, λ = −2 and m = 8. We notice that (m + 1)/3 < k < (m + 1)/2 and

therefore we are in Case 4 of the proof of Theorem 4.3.

Doing a simple calculation we get that system (4.29) can be rewritten into the

form (1a)

ẋ = (3x4 − 2y4 − 4y3 − 3)(x4 + y4 − 1)− 4(x5 − y5 + 1)y3,

ẏ = (−7x4 − 2y4 + 4x3 + 2)(x4 + y4 − 1) + 4(x5 − y5 + 1)x3,

from where we detect that A1 = 3x4 − 2y4 − 4y3 − 3, B1 = −7x4 − 2y4 + 4x3 + 2

and D1 = x5 − y5 + 1. According to the proof of Case 4 of Theorem 4.3 we have

that
A = G2yf + δ2fy + D1y = 3x4 − 2y4 − 4y3 − 3,

B = −G2xf − δ2fx −D1x = −7x4 − 2y4 + 4x3 + 2,

and so we get G2 = 2x + 3y + 1. Since A2 = −G2y = −3, B2 = G2x = 2 and

D2 = δ2 = −1 we have that system (2a) can be written into the form

A2f −D2fy = 4y3 − 3x4 − 3y4 + 3, B2f + D2fx = −4x3 + 2x4 + 2y4 − 2,

and has the integrating factor R2 = 1/(x4 + y4− 1) and the Darboux first integral

H2 = exp (2x + 3y + 1)/(x4 + y4 − 1).

According to the proof of Case 4 of Theorem 4.3 system (1a) can be rewritten

into the form

(δ2fy + G2yf)f + D1yf −D1fy = (3x4 + 3y4 − 3 + 4δ2y
3 + D1y)(x

4 + y4 − 1)− 4D1y3,

−(δ2fy + G2yf)f −D1yf + D1fy = (−2x4 − 2y4 + 2− 4δ2x
3 −D1x(x

4 + y4 − 1) + 4D1x
3,

and has the two invariant exponential factors exp(G2) = exp (−2x− 3y − 1),

exp(D1/f) = exp
(
−(x5−y5+1)

x4+y4−1

)
and the Darboux first integral

H(x, y) = (x4 + y4 − 1) exp (−2x− 3y − 1) exp
−(x5 − y5 + 1)

x4 + y4 − 1
.
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We note that the previous first integral could be calculated by relation (1.4)

H(x, y) =

∫
R(x, y)P (x, y)dy + f(x),

with the condition Hx = −RQ. However, sometimes it is not easy to get the

complete expression of that integral. Our method provides a simplest way, (it is

more algebraic) to calculate the first integrals whenever the conditions of Theorem

4.3 hold.
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Chapter 5

Polynomial systems and generic

Darboux integrating factors

5.1 Introduction

In this chapter we continue the study of the inverse problem analyzed in Chapter

4; i.e. given some kinds of Darboux function we characterize the polynomial vector

fields which have such a function as an integrating factor.

Walcher provides in [50] the following theorem.

Theorem 5.1. Let f = f1 · · · fp with fi ∈ C[x, y] irreducible, and assume that the

curve f = 0 has no singular points. Then X = (P, Q) has the integrating factor

R = f−1 if and only if

ẋ = −
p∑

i=1

αi
f

fi

fiy + h1f,

ẏ =

p∑
i=1

αi
f

fi

fix + h2f,

(5.1)

with αi ∈ C and h = (h1, h2) is a divergence free vector field.

In the next corollary we prove a simpler version of Theorem 5.1.

113
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Corollary 5.2. Let f = f1 · · · fp = 0 with fi ∈ C[x, y] irreducible, and assume

that the curve f = 0 has no singular points. Then X = (P, Q) has the integrating

factor R = f−1 if and only if

ẋ = −α

p∑
i=1

f

fi

fiy − Fyf,

ẏ = α

p∑
i=1

f

fi

fix + Fxf,

(5.2)

with α ∈ C and F ∈ C[x, y].

We give the proof of Corollary 5.2 in Section 5.2.

The following Theorem is slightly related with Theorem 5.1.

Theorem 5.3. We assume that the irreducible curves f1 = 0, · · · , fp = 0 satisfying

the generic conditions (i)-(v), i.e.

(i) There are no points at which fi and its first derivatives are all vanish.

(ii) The highest order terms of fi have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at

this point.

(iv) There are no more than two curves fi = 0 meeting at any point in the finite

plane.

(v) There are no two curves having a common factor in the highest order terms.

Then the polynomial vector field X = (P,Q) of degree m has the Darboux inte-

grating factor R = (f1 · · · fp)
−1 if and only if can be written into the following

form

ẋ = −
p∑

i=1

αi

(
p∏

j=1

fj

)
fiy − Fy

p∏
j=1

fj,

ẏ =

p∑
i=1

αi

(
p∏

j=1

fj

)
fix + Fx

p∏
j=1

fj,
(5.3)
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with αi ∈ C, F ∈ C[x, y] and δF ≤ m−
p∑

i=1

δfi.

The proof of Theorem 5.3 is given in Section 5.3. We point out that Theorems

5.1 and 5.3 they use different assumptions.

Theorem 5.3 demands that every curve f1 = 0, · · · , fp = 0 satisfy the generic

condition (i), i.e. it asks that any curve fi = 0 has no singular points. This is a

different assumption from the one which is used in Theorem 5.1 where is demanded

that the generic condition (i) holds for the product of the curves, i.e. asks that

the curve f = f1 · · · fp = 0 has no singular points. Hence, for example the curve

f = (x + y)(y + 1) could not be used in Theorem 5.1 (because the point (1,−1)

is singular for f = 0), but the curves f1 = x + y and f2 = y + 1 could be used

in Theorem 5.3. Hence due to this different use of the generic condition (i) in the

two theorems we remark that Theorems 5.1 and 5.3 are different.

In the following we want to characterize the polynomial vector fields in C2

having the following function

R(x, y) = fλ1
1 · · · fλp

p , (5.4)

as an integrating factor in the particular case where the curves f1, · · · , fp are

generic and λ1, · · · , λp ∈ C. In this case, the integrating factor (5.4) is called

generic Darboux integrating factor. We provide this result in the next theorem.

Theorem 5.4. We assume that the irreducible curves f1 = 0, · · · , fp = 0 satisfying

the generic conditions (i)–(v) and let k1 = δf1 and γ = δf2 + · · ·+ δfp. We denote

by n = [(m − γ + 1)/k1]. If (m − γ + 1)/n ≤ k1 < (m − γ + 1)/(n + 1) with

λ1 6∈ {−1,−2, · · · ,−n}, then the vector field X = (P,Q) of degree m has the

integrating factor of the form fλ1
1 · · · fλp

p if and only if

ẋ = − 1

λ1 + 1

(
p∏

i=1

fi

)
Fy −

p∑
i=2

λi + 1

λ1 + 1
Ff1

(
p∏

i=2

fi

)

y

− F

(
p∏

i=2

fi

)
f1y,

ẏ =
1

λ1 + 1

(
p∏

i=1

fi

)
Fx +

p∑
i=2

λi + 1

λ1 + 1
Ff1

(
p∏

i=2

fi

)

x

+ F

(
p∏

i=2

fi

)
f1x,

(5.5)



116 Polynomial systems and generic Darboux integrating factors

where

F = D1 +
n−1∑
i=1

1

(λ1 + 1) · · · (λ1 + i)
Di+1,1f1

i,

and the Di, for i = 1, · · · , n, are convenient polynomials given in Lemma 5.6.

Moreover, δF + δf = m + 1 and system (5.5) has the Darboux first integral

H(x, y) = fλ1+1
1 fλ2+1

2 · · · fλp+1
p F .

The proof of Theorem 5.4 is given in Section 5.4.

In Section 5.5 we comment Theorem 5.8 which is due to Walcher and we

compare it with our results.

5.2 Proof of Corollary 5.2

Since h = (h1, h2) is a divergence free vector field, we have that h1x + h1y = 0.

Then, from Lemma 4.4, we have that there is F1 ∈ C[x, y] such that h1 = −F1y

and h2 = F1x. So system (5.1) can be rewritten as

ẋ = −
p∑

i=1

αi
f

fi

fiy − F1yf,

ẏ =

p∑
i=1

αi
f

fi

fix + F1xf.

(5.6)

We should show that system (5.6) can be rewritten as (5.2). We note that

(
−

p∑
i=1

(αi − α)
fiy

fi

)

x

+

(
p∑

i=1

(αi − α)
fix

fi

)

y

= 0,

and so, from Lemma 4.4, there is F2 ∈ C[x, y] such that

−
p∑

i=1

(αi − α)
fiy

fi

= −F2y,

p∑
i=1

(αi − α)
fix

fi

= F2x.
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Therefore, we have that

−
p∑

i=1

αi
fiy

fi

= −α

p∑
i=1

fiy

fi

− F2y,

p∑
i=1

αi
fix

fi

= α

p∑
i=1

fix

fi

+ F2x.

Using the above relations, system (5.6) becomes

ẋ =

(
−α

p∑
i=1

f

fi

fiy − F2yf

)
− F1yf,

ẏ =

(
α

p∑
i=1

f

fi

fix + F2xf

)
+ F1xf,

or equivalently,

ẋ = −α

p∑
i=1

f

fi

fiy − (F1 + F2)yf,

ẏ = α

p∑
i=1

f

fi

fix + (F1 + F2)xf,

and taking F = F1 +F2 we have shown that system (5.1) can be written as system

(5.2) for some α ∈ C and F ∈ C[x, y].

5.3 Proof of Theorem 5.3

We assume that the irreducible algebraic curves f1 = 0 · · · , fp = 0 satisfies the

generic conditions (i)-(v). Hence, from Theorem 2.4 we have that the polynomial

vector field X = (P,Q) can be written into the form (2.4), or equivalently,

X = Y0

p∏

i = 1

fi +

p∑

i = 1

Di




p∏

j = 1

j 6= i

fj




Xfi
, (5.7)
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where Y0 = (A, B) and A,B,Di ∈ C[x, y]. We note that system (5.7) has divergence

div = (A1x + B1y)

p∏

i = 1

fi +

p∑

i = 1

(A1fix + B1fiy)

p∏

j = 1

j 6= i

fj

+

p∑

i = 1

j 6= i

Di(fixfjy − fiyfjx)

p∏

k = 1

k 6= i, j

fk +

p∑

i = 1

(fixDiy − fiyDix)

p∏

j = 1

j 6= i

fj,

and the algebraic curve fi = 0 is invariant of system (5.7) and has cofactor

Ki = (A1fix + B1fiy)
p∏

j = 1

j 6= i

fj +
p∑

j = 1

j 6= i

Dj(fjxfiy − fjyfix)
p∏

k = 1

k 6= i, j

fk.

Since system (5.7) has the integrating factor (f1 · · · fp)
−1 it must be

−
p∑

i=1

Ki = −div(P,Q),

or equivalently

0 = D1y




p∏

i = 2

fi


 f1x −D1x




p∏

i = 2

fi


 f1y

+




(A1x + B1y)

p∏

i = 2

fi +

p∑

i = 2

(fixDiy − fiyDix)

p∏

j = 2

j 6= i

fj




f1,

(5.8)

and so for i = 2, · · · , p we get that fi|(fixDiy − fiyDix) because fi is irreducible.

Hence, the polynomial system

ẋ = −Diy, ẏ = Dix,

(if it is not the zero one) has the first integral Di and the invariant curve fi = 0.

So, there are Ei ∈ C[x, y] and ci ∈ C such that Eifi = Di − ci for i = 2, · · · , p.
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Moreover, the system

ẋ = D1y

p∏

i = 2

fi, ẏ = −D1x

p∏

i = 2

fi, (5.9)

due to relation (5.8) has the algebraic curve f1 = 0 invariant and the first integral

D1. Additionally, system (5.9) has the Darboux integrating factors (f2 · · · fp)
−1

and (D1f2 · · · fp)
−1 . Since D1 is a first integral of system (5.9) and f1 = 0 is

an invariant curve of system (5.9) we have that there is E1 ∈ C[x, y] such that

E1f1 = D1 − c1.

Hence, relation (5.8) can be rewritten as

0 = E1y




p∏

i = 1

fi


 f1x − E1x




p∏

i = 1

fi


 f1y

+


(A1x + B1y)

p∏

i = 2

fi +

p∑

i = 2

(fixEiy − fiyEix)

p∏

j = 2

fj


 f1,

or equivalently

0 = (A1x + B1y)

p∏

i = 1

fi +

p∑

i = 1

(fixEiy − fiyEix)

p∏

j = 1

fj.

Simplifying the last relation we obtain

0 = A1x + B1y +

p∑

i = 1

(fixEiy − fiyEix),

or equivalently

A1 −

p∑

i = 1

Eifiy




x

+


B1 +

p∑

i = 1

Eifix




y

= 0.

From Lemma 4.4 there is F ∈ C[x, y] such that

A1 −
p∑

i = 1

Eifiy = −Fy, B1 +

p∑

i = 1

Eifix = Fx,



120 Polynomial systems and generic Darboux integrating factors

and so we can calculate the polynomials A1 and B1. Substituting A1 and D1, · · · , Dp

into the first equation of system (5.7) we get

ẋ =


−Fy +

p∑

i = 1

Eifiy




p∏

j = 1

fj−
p∑

i = 1

Eifiy

p∏

j = 1

fj−
p∑

i = 1

cifiy




p∏

j = 1

j 6= i

fj




,

or equivalently,

ẋ = −Fy




p∏

j = 1

fj


−

p∑

i = 1

cifiy




p∏

j = 1

j 6= i

fj




.

Working in a similar way, the second equation of system (5.7) becomes

ẏ = Fy




p∏

j = 1

fj


 +

p∑

i = 1

cifiy




p∏

j = 1

j 6= i

fj




.

Therefore, system (5.9) is of the form (5.3) and has the Darboux first integral

H = f c1
1 · · · f cp

p exp F.

5.4 Proof of Theorem 5.4

In the following we assume that the curves fi = 0 are generic for i = 1, · · · , p and

we denote by γ =
p∑

i = 2

δfi and let k1 = δf1 be the degree of the curve f1 = 0.

By Theorem 2.4 we have that k1 + γ ≤ m + 1. Then, if k1 + γ = m + 1, by

Theorem 2.4(b) it follows Theorem 5.4 for F = 1. Hence, from now on we assume

that k1 + γ < m + 1.

Since the curves fi = 0 for i = 1, · · · , p satisfy the conditions of Theorem

2.4(a) we have that any polynomial vector field Y having these curves as invariant
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algebraic curves takes the form

Y = Y01

p∏

i = 1

fi +

p∑

i = 1

Di




p∏

j = 1

j 6= i

fj




Xfi
, (1a)

where Y01 = (A1, B1) and A1, B1, Di ∈ C[x, y] with δA1, δB1 ≤ m − γ − k1 and

δDi ≤ m− γ − k1 + 1 for i = 1, · · · , p. From now on we denote by

L1 = −(A1x + B1y)

p∏

i = 2

fi −
p∑

i = 2

i 6= j

(λi + 1)Dj(fjxfiy − fjyfix)

p∏

k = 2

k 6= i, j

fk

−
p∑

i = 2

(λi + 1)(A1fix + B1fiy)

p∏

j = 2

j 6= i

fj −
p∑

i = 2

(fixDiy − fiyDix)

p∏

j = 2

j 6= i

fj.

Lemma 5.5. Suppose that p ≥ 2 and that fi are irreducible polynomials in C[x, y].

We associate to system (1a) of degree m having the generic curves f1 = 0, · · · , fp =

0 and the Darboux integrating factor fλ1
1 · · · fλp

p the system

Ỹ1 = ((λ1 + 1)Y01 − YD1)

p∏

i = 2

fi−D1

p∑

i = 2

(λi + 1)




p∏

j = 2

j 6= i

fj




Xfi

(1b)

+(λ1 + 1)

p∑

i = 2




p∏

j = 2

j 6= i

fj




DiXfi
,

of degree m−k1 which has f1 = 0, · · · , fp = 0 as invariant algebraic curves. Then,

only one of the following conditions holds.

(a) If L1 = 0 then system (1b) must be the zero vector field.

(b) If L1 6= 0 then system (1b) has the Darboux integrating factor fλ1+1
1 fλ2

2 · · · fλp
p .

In particular, if λ1 = −1, then system (1b) has the first integral H =

D1f
λ2+1
2 · · · fλp+1

p and the integrating factor R1 = (D1f2 · · · fp)
−1.
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Proof: The invariant algebraic curve fi = 0 of system (1a), has cofactor

Ki = (A1fix + B1fiy)
p∏

j = 1

j 6= i

fj +
p∑

j = 1

j 6= i

Dj(fjxfiy − fjyfix)
p∏

k = 1

k 6= i, j

fk,

for i = 1, · · · , p respectively; and δK1, · · · , δKp ≤ m− 1.

Since system (1a) has a Darboux integrating factor of the form fλ1
1 · · · fλp

p then,

from Theorem 1.7(d), it must satisfy the relation

p∑

i = 1

λiKi + div1 = 0, (5.10)

where

div1 = (A1x + B1y)

p∏

i = 1

fi +

p∑

i = 1

(A1fix + B1fiy)

p∏

j = 1

j 6= i

fj

+

p∑

i = 1

j 6= i

Di(fixfjy − fiyfjx)

p∏

k = 1

k 6= i, j

fk +

p∑

i = 1

(fixDiy − fiyDix)

p∏

j = 1

j 6= i

fj,

is the divergence of system (1a). Substituting K1, · · · , Kp and div1 in (5.10), we

get that

0 =




((λ1 + 1)A1 + D1y)

p∏

i = 2

fi + D1

p∑

i = 2

(λi + 1)




p∏

j = 2

j 6= i

fj




fiy

−(λ1 + 1)

p∑

i = 2

Di




p∏

j = 2

j 6= i

fj




fiy




f1x +


((λ1 + 1)B1 −D1x)

p∏

i = 2

fi



5.4 Proof of Theorem 5.4 123

−D1

p∑

i = 2

(λi + 1)




p∏

j = 2

j 6= i

fj




fix + (λ1 + 1)

p∑

i = 2

Di




p∏

j = 2

j 6= i

fj




fix




f1y

+




(A1x + B1y)

p∏

i = 2

fi +

p∑

i = 2

(λi + 1)Dj(fjxfiy − fjyfix)

p∏

k = 2

k 6= i, j

fk

+

p∑

i = 2

(λi + 1)(A1fix + B1fiy)

p∏

j = 2

j 6= i

fj +

p∑

i = 2

(fixDiy − fiyDix)

p∏

j = 2

j 6= i

fj




f1,

(5.11)

where we have taken Y01 = (A1, B1).

Hence, from relation (5.11), system (1b) of degree m−k1 has f1 = 0 as an invariant

algebraic curve with cofactor L1.

System (1b) has divergence equal to

div2 = (λ1 + 1)(A1x + B1y)

p∏

i = 2

fi + (λ1 + 1)

p∑

i = 2

(A1fix + B1fiy)

p∏

j = 2

j 6= i

fj

+

p∑

i = 2

λi(D1xfiy −D1yfix)

p∏

j = 2

j 6= i

fj

+ D1

∑

2 ≤ i < k ≤ p

(λi − λk)(fkxfiy − fkyfix)

p∏

j = 2

j 6= i, k

fj

− (λ1 + 1)

p∑

i = 2

(Dixfiy −Diyfix)

p∏

j = 2

j 6= i

fj

− (λ1 + 1)

p∑

i = 2

i 6= j

Dj(fixfjy − fiyfjx)

p∏

k = 2

k 6= i, j

fk.
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The algebraic curves fi = 0, for i = 2, · · · , p, are also invariant for system (1b)

and have cofactors

Li = (λ1 + 1)(A1fix + B1fiy)

p∏

j = 2

j 6= i

fj + (D1yfix −D1xfiy)

p∏

j = 2

j 6= i

fj

−(λ1 + 1)

p∑

j = 2

j 6= i

Dj(fixfjy − fiyfjx)

p∏

k = 2

k 6= i, j

fk

+D1

p∑

j = 2

j 6= i

(λj + 1)(fixfjy − fiyfjx)

p∏

k = 2

k 6= i, j

fk.

(a) If L1 = 0 then we have that f1 is a first integral for system (1b). Note that we

cannot guarantee that system (1b) has its two components coprime. The algebraic

curves f2 = 0, · · · fp = 0 are also invariant for system (1b). Hence, for i = 2, · · · , p

we have that {fi = 0} ⊆ {f1 − c = 0} for some c ∈ C. Therefore, from the

Hilbert’s Nullstellensatz relation we get that there exist a non negative integer N

and M ∈ C[x, y] such that (f1 − c)N = Mfi. Since fi are irreducible polynomials

we get that fi|(f1 − c) for all i = 2, · · · , p. So f1 − c = Aifi for some Ai ∈ C[x, y],

and this is a contradiction with the generic condition (v). Then, system (1b) must

be the zero vector field. So, statement (a) is proved.

(b) We now assume that L1 6= 0. Then, it is easy to check that relation

(λ1 + 1)L1 +

p∑

i = 2

λiLi + div2 = 0,

always holds. Hence, system (1b) has the Darboux integrating factor fλ1+1
1 fλ2

2 · · · fλp
p .

If λ1 = −1 then system (1b) is of the normal form (3.2) and has also the invariant

curve D1 = 0. Hence, due to Theorem 3.1(a) statement (b) follows directly.

Proof of Theorem 5.4: Let f1 = 0 be a generic curve of system (1b) of degree m−k1.

Since system (1b) has f2 = 0, · · · , fp = 0 as invariant algebraic curves, then from

Proposition 1.2, we have that k1 + γ ≤ m− k1 + 1 and so k1 ≤ (m + 1− γ)/2. We

distinguish the following cases.
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Case 1: (m− γ + 1)/2 < k1 < m− γ + 1. Then, system (1b) must be identically

equal to zero, i.e.

0 = ((λ1 + 1)A1 + D1y)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + 1)Di − (λi + 1)D1)




p∏

j = 2

j 6= i

fj




fiy.

(5.12)

Since fi is irreducible we get that

fi|[(λ1 + 1)Di − (λi + 1)D1].

Hence, there are E1i ∈ C[x, y] such that

(λ1 + 1)Di − (λi + 1)D1 = E1ifi, (5.13)

for all i = 2, · · · , p. Since λ1 6= −1 then from relation (5.12) we get that

A1 = − 1

λ1 + 1
D1y +

1

λ1 + 1




p∑

i = 2

E1ifiy


 ,

and so the first equation of system (1a) can be written into the following form

ẋ =
−1

λ1 + 1




p∏

i = 1

fi


 D1y −D1




p∏

i = 2

fi


 f1y −

p∑

i = 2

λi + 1

λ1 + 1
D1




p∏

j = 1

j 6= i

fj




fiy.

Working in a similar way with the second equation system (1a) becomes

Y =
1

λ1 + 1




p∏

i = 1

fi


 YD1 + D1




p∏

i = 2

fi


 Xf1 +

p∑

i = 2

λ1 + 1

λi + 1
D1




p∏

j = 1

j 6= i

fj




Xfi
.

System (1a) has the additional invariant algebraic curve F = D1 = 0 with δF =

m−γ−k1 +1 and it is in the normal form (5.5). Additionally, it has the Darboux

first integral H = f1f
λ2+1
λ1+1

2 · · · f
λp+1

λ1+1
p F

1
λ1+1 .
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Case 2: k1 = (m− γ + 1)/2. Since f1 = 0, · · · fp = 0 are invariant algebraic curves

for system (1b) from Proposition 1.2 we have that k1 + γ ≤ m − k1 + 1 and,

consequently in this case we get that k1 + γ = m − k1 + 1. Hence, by Theorem

2.4(b) there are αi ∈ C such that system (1b) can be written into the form

((λ1 + 1)Y01 − YD1)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + 1)Di − (λi + 1)D1)




p∏

j = 2

j 6= i

fj




Xfi

=

p∑

i = 1

αi




p∏

j = 1

j 6= i

fj




Xfi
,

(5.14)

and so because of his form (see also from Proposition 2.5) system (1b) has the

integrating factor R1 = (f1 · · · fp)
−1.

If L1 = 0 then applying Lemma 5.5(a) we get that system (1b) must be the

zero vector field and this can be studied by a similar way to Case 1.

If L1 6= 0 then from Lemma 5.5(b) we have that system (1b) has the integrat-

ing factor R2 = fλ1+1
1 fλ2

2 · · · fλp
p . Hence, it has the first integral H2 = R2/R1 =

fλ1+2
1 fλ2+1

2 · · · fp
λp+1. Therefore, without loss of generality we can take α1 = λ1 +2

and αi = λi + 1 for i = 2, · · · , p. Then, the first equation of system (1b) can be

rewritten as

((λ1 + 1)A1 + D1y)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + 1)Di − (λi + 1)D1)




p∏

j = 2

j 6= i

fj




fiy

= −(λ1 + 2)




p∏

j = 2

j 6= i

fj




f1y −
p∑

i = 2

(λi + 1)




p∏

j = 2

j 6= i

fj




f1y.

(5.15)
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Since fi is irreducible for every i = 1, · · · , p we get that

fi|[(λ1 + 1)Di − (λi + 1)D1 − (λi + 1)f1].

Hence, there are E1i ∈ C[x, y] such that

(λ1 + 1)Di − (λi + 1)D1 − (λi + 1)f1 = E1ifi, (5.16)

for all i = 2, · · · , p. Since λ1 6= −1 then from relation (5.15) we get that

A1 = − 1

λ1 + 1
D1y +

1

λ1 + 1

p∑

i = 2

E1ifiy − λ1 + 2

λ1 + 1
f1y,

and so the first equation of system (1a) can be written into the following form

ẋ =
−1

λ1 + 1




p∏

i = 1

fi


 D1y −D1




p∏

i = 2

fi


 f1y − λ1 + 2

λ1 + 1




p∏

i = 2

fi


 f1y

−
p∑

i = 2

λi + 1

λ1 + 1
D1




p∏

j = 1

j 6= i

fj




fiy −
p∑

i = 2

λi + 1

λ1 + 1




p∏

j = 1

j 6= i

fj




fiy.

Working in a similar way with the second equation system (1a) becomes

Y =
1

λ1 + 1




p∏

i = 1

fi


 YD1 + D1




p∏

i = 2

fi


 Xf1 +

λ1 + 2

λ1 + 1




p∏

i = 2

fi


 Xf1

+

p∑

i = 2

λi + 1

λ1 + 1
D1




p∏

j = 1

j 6= i

fj




Xfi
+

p∑

i = 2

λi + 1

λ1 + 1
D1




p∏

j = 1

j 6= i

fj




Xfi
.

We note that system (1a) has the additional invariant algebraic curve F = D1 +

f1 = 0 and δF = m − γ − k1 + 1. We also note that system (1a) can be

rewritten into the normal form (5.5) and it has the Darboux first integral H =

f1f
λ2+1
λ1+1

2 · · · f
λp+1

λ1+1
p F

1
λ1+1 .
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Case 3: (m− γ + 1)/3 < k1 < (m− γ + 1)/2. If L1 = 0 then, from Lemma 5.5(a)

we get that system (1b) is identically equal to zero so that case has been studied

in Case 1. Therefore we assume that L1 6= 0. Since system (1b) of degree m− k1

has the generic invariant curves fi = 0 for i = 1, · · · , p, by Theorem 2.4(a) it can

be written as

Y2 = Y02

p∏

i = 1

fi +

p∑

i = 1

D2i




p∏

j = 1

j 6= i

fj




Xfi
, (2a)

with Y02 = (A2, B2) where A2, B2, D2i ∈ C[x, y] with δA2, δB2 ≤ m − γ − 2k1

and δD2i ≤ m − γ − 2k1 + 1 for i = 1, · · · , p. From Lemma 5.5(b) we have that

system (1b) has the Darboux integrating factor fλ1+1
1 fλ2

2 · · · fλp
p , and so system

(2a) which is the same as system (1b) has that integrating factor. Then, applying

again Lemma 5.5(b) to system (2a) we can associate to system (2a) the system

Ỹ2 = ((λ1 + 2)Y02 − YD21)

p∏

i = 2

fi +

p∑

i = 2

((λ1 + 2)D2i − (λi + 1)D21)




p∏

j = 2

j 6= i

fj




Xfi
, (2b)

which has fi = 0, for i = 1, · · · , p, as invariant algebraic curves. We note that

system (2b) has degree m−2k1. From Proposition 1.2, we get that k1 ≤ m−2k1+1

and so k1 ≤ (m + 1)/3 which is in contradiction with Case 3. Hence, system (2b)

is identically zero. Therefore, we have that

0 = ((λ1 + 2)A2 + D21y)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + 2)D2i − (λi + 1)D21)




p∏

j = 2

j 6= i

fj




fiy.

Since λ1 6= −2 we get

A2 = − 1

λ1 + 2
D21y +

1

λ1 + 2

p∑
i = 2

((λ1 + 2)D2i − (λi + 1)D21)




p∏
j = 2

j 6= i

fj


 fiy

p∏
i = 2

fi

,
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and since the curves fi are irreducible we get that

fi| ((λ1 + 2)D2i − (λi + 1)D1) ,

for i = 2, · · · , p. Hence, there are E2i ∈ C[x, y] for i = 2, · · · , p such that

(λ1 + 2)D2i − (λi + 1)D21 = E2ifi. (5.17)

So, substituting A2 and using (5.17), system (2a) can be written as

Y2 =
1

λ1 + 2




p∏

i = 1

fi


 YD21 + D21




p∏

i = 2

fi


 Xf1 +

p∑

i = 2

λi + 1

λ1 + 2
D21




p∏

j = 1

j 6= i

fj




Xfi
,

and obviously has the invariant curve F2 = D21 and the Darboux first integral

H2 = f1f
λ2+1
λ1+2

2 · · · f
λp+1

λ1+2
p F

1
λ1+2

2 . Note that system (1b) is equal to the last system,

and so we get that

((λ1 + 1)A1 + D1y)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + 1)Di − (λi + 1)D1)




p∏

j = 2

j 6= i

fj




fiy

=
−1

λ1 + 2




p∏

i = 1

fi


 F2y − F2




p∏

i = 2

fi


 f1y −

p∑

i = 2

λi + 1

λ1 + 2
F2




p∏

j = 1

j 6= i

fj




fiy,

and since the curves fi are irreducible we have that

fi|
(

(λ1 + 1)Di − (λi + 1)D1 − λi + 1

λ1 + 2
F2f1

)
,

for i = 2, · · · , p. Hence, there are Ei ∈ C[x, y] such that

(λ1 + 1)Di − (λi + 1)D1 − λi + 1

λ1 + 2
F2f1 = Eifi, (5.18)

for i = 2, · · · , p. So, for λ1 6∈ {−1,−2} we have that

A1 =
1

λ1 + 1


−D1y − 1

λ1 + 2
f1F2y − F2f1y +

p∑

i = 2

Eifiy


 ,
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and consequently the first equation of system (1a) becomes

ẋ =
1

λ1 + 1


−D1y − 1

λ1 + 2
f1F2y − F2f1y +

p∑

i = 2

Eifiy,




p∏

i = 1

fi

−D1




p∏

i = 2

fi


 f1y −

p∑

i = 2

Di




p∏

j = 1

j 6= i

fj




fiy.

Using (5.18) we get

ẋ =
1

λ1 + 1


−D1y − 1

λ1 + 2
f1F2y − F2f1y +

p∑

i = 2

Eifiy




p∏

i = 1

fi

−D1




p∏

i = 2

fi


 f1y − 1

λ1 + 1

p∑

i = 2

(
Eifi + (λi + 1)D1 +

λi + 1

λ1 + 2
F2f1

)



p∏

j = 1

j 6= i

fj




fiy.

We note that the last system has the additional invariant algebraic curve

F = D1 +
1

λ1 + 2
F2f1,

and takes the normal form (5.5). So, Theorem 5.4 is proved in Case 3.

Case 4: k1 = (m − γ + 1)/3. Since f1 = 0, · · · , fp = 0 are invariant algebraic

curves for system (2b) from Proposition 1.2 we have that k1 + γ ≤ m − 2k1 + 1

and, consequently in this case we get that k1 + γ = m − 2k1 + 1. Hence, by

Theorem 2.4(b) there are αi ∈ C such that system (2b) can be written into the

form (2.5). Then arguing by a similar way to Case 2 we have that system (2a)

has the additional invariant algebraic curve F2 = D21 + f1 and has the Darboux

first integral H2 = f1f
λ2+1
λ1+2

2 · · · f
λp+1

λ1+2
p F

1
λ1+2

2 . Continuing by a similar way to Case

3 we have that system (1a) has the additional invariant algebraic curve F =

D1 + 1
λ1+2

F2f1 and takes the normal form (5.5).

Now, we present some notation.
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We consider a system of degree m− (l − 1)k1 of the form

Yla = Y0l

p∏

i = 1

fi +

p∑

i = 1

Dli




p∏

j = 1

j 6= i

fj




Xfi
, (la)

with δAl, δBl ≤ m+γ− lk1 and δDl ≤ m+γ− lk1 +1 having the integrating factor

fλ1+l−1
1 · · · fλp

p . According to Lemma 5.5 we associate to system (la) the system

Ylb = ((λ1 + l)Y0l − YDl1
)

p∏

i = 2

fi +

p∑

i = 2

((λ1 + l)Dli − (λi + 1)Dl1)




p∏

j = 2

j 6= i

fj




Xfi
, (lb)

of degree m− lk1 having the integrating factor fλ1+l
1 · · · fλp

p .

Lemma 5.6. We assume that the conditions of Theorem 5.4 hold and that (m−
γ + 1)/(n + 1) ≤ k1 < (m − γ + 1)/n. Then system (1a) takes the normal form

(5.5).

Proof: We consider the two sequences of systems (la) and (lb) having f = 0 as

invariant algebraic curve. System (1b)

can be rewritten as

Y2a = Y02

p∏

i = 1

fi +

p∑

i = 1

D2i




p∏

j = 1

j 6= i

fj




Xfi
, (2a)

and has the associated system (2b)

Y2b = ((λ1 + 2)Y02 − YD21)

p∏

i = 2

fi +

p∑

i = 2

((λ1 + 2)D2i − (λi + 1)D21)




p∏

j = 2

j 6= i

fj




Xfi
,

respectively. In a similar way, we get the system
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Yna = Y0n

p∏

i = 1

fi +

p∑

i = 1

Dni




p∏

j = 1

j 6= i

fj




Xfi
, (na)

and its associated system (nb)

Ynb = ((λ1 + n)Y0n − YDn1)

p∏

i = 2

fi +

p∑

i = 2

((λ1 + n)Dni − (λi + 1)Dn1)




p∏

j = 2

j 6= i

fj




Xfi
,

where δAi, δBi ≤ m + γ − ik1 and δDi ≤ m + γ − ik1 + 1. For simplicity, we

distinguish the following two cases:

Case A: (m − γ + 1)/(n + 1) < k1 < (m − γ + 1)/n. The generic curve f1 = 0 is

invariant for system (nb) of degree at most m−nk1. Hence, from Proposition 1.2,

we have that k1 ≤ m− nk1 + 1 and therefore k1 ≤ (m + 1)/(n + 1). Consequently,

system (nb) must be identically equal to zero. So, for λ1 6= −n we get that

An = − 1

λ1 + n
Dn1y +

1

λ1 + n

((λ1 + n)Dni − (λi + 1)Dn1)




p∏
j = 2

j 6= i

fj


 fiy

p∏
i = 2

fi

.

Since fi is irreducible we have that

fi| ((λ1 + n)Dni − (λi + 1)Dn1) ,

for i = 2, · · · , p. Therefore, there are Eni ∈ C[x, y] such that

(λ1 + n)Dni − (λi + 1)Dn1 = Enifi,

and so

An = − 1

λ1 + n
Dn1,y +

1

λ1 + n

p∑

i = 2

Enifiy.
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Substituting An into the first equation of system (na) we get

ẋ = − 1

λ1 + n




p∏

i = 1

fi


 Dn1,y +

1

λ1 + n

p∑

i = 2

Eni




p∏

i = 1

fi


 fiy

−
p∑

i = 1

Dni




p∏

j = 1

j 6= i

fj




fiy

= − 1

λ1 + n




p∏

i = 1

fi


 Dn1,y +

1

λ1 + n

p∑

i = 2

Eni




p∏

i = 1

fi


 fiy

−Dn1




p∏

i = 2

fi


 f1y −

p∑

i = 2

(
1

λ1 + n
Enifi +

λi + 1

λ1 + n
Dn1

)



p∏

j = 1

j 6= i

fj




fiy

= − 1

λ1 + n




p∏

i = 1

fi


 Dn1,y −

p∑

i = 2

λi + 1

λ1 + n
Dn1




p∏

j = 1

j 6= i

fj




fiy −Dn1




p∏

j = 2

j 6= i

fj




f1y.

Since, system (n− 1)b is equal to system (na), we have that

((λ1 + n− 1)An−1 + D(n−1)1,y)

p∏

i = 2

fi

−
p∑

i = 2

(
(λ1 + n− 1)D(n−1)i − (λi + 1)D(n−1)1

)




p∏

j = 2

j 6= i

fj




fiy

= − 1

λ1 + n




p∏

i = 1

fi


 Dn1,y −

p∑

i = 2

λi + 1

λ1 + n
Dn1




p∏

j = 1

j 6= i

fj




fiy −Dn1




p∏

j = 2

fj


 f1y,
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and therefore for λ1 6∈ {−n,−(n− 1)} we have that

An−1 =
1

λ1 + n− 1

(
−D(n−1)1y − 1

λ1 + 1
f1Dn1,y −Dn1f1y

)

+
1

λ1 + n− 1

p∑
i = 2

(
(λ1 + n− 1)D(n−1)i − (λi + 1)D(n−1)1 − λi+1

λ1+n
Dn1f1

)

p∏
i = 2

fi




p∏

j = 2

j 6= i

fj




fiy.

Since fi is irreducible, we have that

fi|
(

(λ1 + n− 1)D(n−1)i − (λi + 1)D(n−1)1 − λi + 1

λ1 + n
Dn1f1

)
,

and so there are E(n−1)i ∈ C[x, y] such that

(λ1 + n− 1)D(n−1)i − (λi + 1)D(n−1)1 − λi + 1

λ1 + n
Dn1f1 = E(n−1)ifi,

for i = 2, · · · , p. Hence, An−1 becomes

An−1 =
1

λ1 + n− 1


−D(n−1)1,y − 1

λ1 + n
f1Dn,1y −Dn1f1y +

p∑

i = 2

E(n−1)ifiy


 .

Substituting An−1 into system (n− 1, a) we have

ẋ = An−1

p∏

i = 1

fi −
p∑

i = 1

D(n−1)i




p∏

j = 1

j 6= i

fj




fiy

=
1

λ1 + n− 1

(
−D(n−1)1,y − 1

λ1 + n
f1Dn1,y −Dn1f1y

) p∏

i = 1

fi

+
1

λ1 + n− 1

p∑

i = 2

E(n−1)i




p∏

j = 1

fj


 fiy −

p∑

i = 1

D(n−1)i




p∏

j = 1

j 6= i

fj




fiy
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=
1

λ1 + n− 1

(
−D(n−1)1,y − 1

λ1 + n
f1Dn1,y −Dn1f1y

) p∏

i = 1

fi

+
1

λ1 + n− 1

p∑

i = 2

E(n−1)i




p∏

j = 1

fj


 fiy −D(n−1)1




p∏

j = 2

fj


 f1y

1

λ1 + n− 1

p∑

i = 2

(
−E(n−1)ifi − λi + 1

λ1 + n
Dn1f1 − (λi + 1)D(n−1)1

)



p∏

j = 1

j 6= i

fj




fiy

=
1

λ1 + n− 1

(
−D(n−1)1,y − 1

λ1 + n
f1Dn1,y −Dn1f1y

) p∏

i = 1

fi −D(n−1)1




p∏

j = 2

fj


 f1y

+
1

λ1 + n− 1

p∑

i = 2

(
− λi + 1

λ1 + n
Dn1f1 − (λi + 1)D(n−1)1

)



p∏

j = 1

j 6= i

fj




fiy

=
−1

λ1 + n− 1




p∑

i = 1

fi


 Fn−1,y − Fn−1




p∏

i = 2

fi


 f1y

− 1

λ1 + n− 1
Fn−1

p∑

i = 2

(λi + 1)




p∏

j = 1

j 6= i

fj




fiy,

and setting

Fn−1 = Dn−1 +
1

λ1 + n
Fnf1,

into the last system we get

ẋ =
1

λ1 + n− 1




p∑

i = 1

fi


 Fn−1,y +

1

λ1 + n− 1
Fn−1

p∑

i = 2

(λi + 1)




p∏

j = 1

j 6= i

fj




fiy

+Fn−1




p∏

i = 2

fi


 f1y.
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In a similar way the second equation of system (n− 1, a) can be written

ẏ =
1

λ1 + n− 1




p∑

i = 1

fi


 Fn−1,x + Fn−1




p∏

i = 2

fi


 f1x

+
1

λ1 + n− 1
Fn−1

p∑

i = 2

(λi + 1)




p∏

j = 1

j 6= i

fj




fix.

Hence, system (n − 1, a) of degree at most m − nk1 has the additional invariant

algebraic curve Fn−1 = 0 with δFn−1 = m−γ−nk1. Additionally, system (n−1, a)

is written into the normal form (5.5) and has the Darboux first integral

Hn−1 = f1f
λ2+1

λ1+n−1

2 · · · f
λp+1

λ1+n−1
p F

1
λ1+n−1 .

Working in a similar way we have that system (n−2, a) has the additional invariant

algebraic curve Fn−2 = Dn−2 + 1
λ1+n−1

Fn−1f1, and can be written into the normal

form (5.5) and has the Darboux first integral

Hn−2 = f1f
λ2+1

λ1+n−2

2 · · · f
λp+1

λ1+n−2
p F

1
λ1+n−2

n−2 .

Similarly, the sequence of systems (la) has the following invariant curves and Dar-

boux first integrals:

(n, a) Fn = Dn1, Hn = F
1

λ1+n
n

p∏

i = 2

f
λi+1

λ1+n

i f1

(n− 1, a) Fn−1 =

(
Dn−1,1 +

1

λ1 + n
Fnf1

)
, Hn−1 = F

1
λ1+n−1

n−1

p∏

i = 2

f
λi+1

λ1+n−1

i f1

(n− 2, a) Fn−2 =

(
Dn−2,1 +

1

λ1 + n− 1
Fn−1f1

)
, Hn−2 = F

1
λ1+n−2

n−2

p∏

i = 2

f
λi+1

λ1+n−2

i f1
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· · · · · · · · ·
(n− i, a) Fn−i =

(
Dn−i,1 +

1

λ1 + n− i
Fn−if1

)
, Hn−i = F

1
λ1+n−i

n−i

p∏

i = 2

f
λi+1

λ1+n−i

i f1

· · · · · · · · ·

(2a) F2 =

(
D21 +

1

λ + 2
F3f1

)
, H2 = F

1
λ1+2

2

p∏
i = 2

f
λi+1

λ1+2

i f1

(1a) F =

(
D1 +

1

λ1 + 1
F2f1

)
, H = F

1
λ1+1

p∏
i = 2

f
λi+1

λ1+1

i f1.

Hence system (1a) has the additional invariant algebraic curve F = 0 given by the

following expression

F = D1 +
1

λ1 + 1
F2f1 = D1 +

1

λ1 + 1

(
D21f1 +

1

λ1 + 2
F3f

2
1

)

= D1 +
1

λ1 + 1
D21f1 +

1

(λ1 + 1)(λ1 + 2)

(
D31 +

1

λ1 + 3
F4f1

)
f 2

1

= D1 +
1

λ1 + 1
D21f1 +

1

(λ1 + 1)(λ1 + 2)
D31f

2
1 +

1

(λ1 + 1)(λ1 + 2)(λ1 + 3)
F4f

3
1

= · · · · · · · · ·

= D1 +
n−1∑

i = 1

1

(λ1 + 1) · · · (λ1 + i)
Di+1,1f1

i,

with δF = m−γ−k1+1. Additionally, system (1a) can be written into the normal

form (5.5).

Case B: k1 = (m − γ + 1)/(n + 1). We note that f1 = 0, · · · , fp = 0 are generic

curves and for system (nb) holds that k1 + γ = m − nk1 + 1 then, by Theorem



138 Polynomial systems and generic Darboux integrating factors

2.4(b) there are αi ∈ C such that system (nb) can be written into the form

((λ1 + 1)Y0n − YDn1)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + n)Dni − (λi + 1)Dn1)




p∏

j = 2

j 6= i

fj




Xfi

=

p∑

i = 2

αi




p∏

j = 1

j 6= i

fj




Xfi
,

(5.19)

and so from Proposition 2.5 system (nb) has the integrating factor R1 = (f1 · · · fp)
−1.

If L1 = 0 then applying Lemma 5.5(a) we get that system (nb) must be the

zero vector field and this can be studied by a similar way to Case A.

If L1 6= 0 then from Lemma 5.5(b) we have that system (1b) has the inte-

grating factor R2 = fλ1+n
1 fλ2

2 · · · fλp
p . Hence, it has the first integral R2/R1 =

fλ1+n+1
1 fλ2+1

2 · · · fp
λp+1. Therefore, without loss of the generality we can take α1 =

λ1 +n+1 and αi = λi +1 for i = 2, · · · , p. Then, the first equation of system (nb)

can be rewritten as

((λ1 + n)An1 + Dn1,y)

p∏

i = 2

fi −
p∑

i = 2

((λ1 + n)Dni − (λi + 1)Dn1)




p∏

j = 2

j 6= i

fj




fiy

= −(λ1 + n + 1)




p∏

j = 2

j 6= i

fj




f1y −
p∑

i = 2

(λi + 1)




p∏

j = 2

j 6= i

fj




f1y.

(5.20)

Note that the curves fi = 0 are irreducible so we get that

fi|[(λ1 + n)Dni − (λi + 1)Dn1 − (λi + 1)f1].

Hence, there are Eni ∈ C[x, y] such that

(λ1 + n)Dni − (λi + 1)D1n − (λi + 1)f1 = Enifi, (5.21)
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for all i = 2, · · · , p. Since λ1 6= −n then from relation (5.20) we get that

An = − 1

λ1 + n
Dn1,y +

1

λ1 + n

p∑

i = 2

Enifiy − λ1 + n + 1

λ1 + 1
f1y,

and so the first equation of system (na) can be written into the following form

ẋ =
−1

λ1 + n




p∏

i = 1

fi


 Dn1,y −Dn1




p∏

i = 2

fi


 f1y − λ1 + n + 1

λ1 + n




p∏

i = 2

fi


 f1y

−
p∑

i = 2

λi + 1

λ1 + n
Dn1




p∏

j = 1

j 6= i

fj




fiy −
p∑

i = 2

λi + 1

λ1 + n




p∏

j = 1

j 6= i

fj




fiy.

Working in a similar way with the second equation system (1a) becomes

Y =
1

λ1 + n




p∏

i = 1

fi


 YDn1 + Dn1




p∏

i = 2

fi


 Xf1 +

λ1 + n + 1

λ1 + n




p∏

i = 2

fi


 Xf1

+

p∑

i = 2

λi + 1

λ1 + n
Dn1




p∏

j = 1

j 6= i

fj




Xfi
+

p∑

i = 2

λi + 1

λ1 + n
Dn1




p∏

j = 1

j 6= i

fj




Xfi
.

We note that system (na) has the additional invariant algebraic curve Fn = Dn1 +

f1 = 0 and δFn = m−γ−nk1 +1. We also note that system (na) has the Darboux

first integral H = f1f
λ2+1
λ1+1

2 · · · f
λp+1

λ1+1
p F

1
λ1+1 .

By a similar way to Case A we prove that system (1a) takes the normal form

(5.5).

Example 5.7.

We are interesting to construct all polynomial differential systems of degree

m = 7 having the Darboux integrating factor R = fλ1
1 fλ2

2 fλ3
3 where f1 = x3+y3−1,

f2 = x2 + xy + 1 and f3 = y + 1. We note that the curves f1 = 0, f2 = 0 and
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f3 = 0 satisfy the generic conditions (i)–(v) and so we are under the assumptions

of Theorem 3.1. We have k1 = δf1 = 3, γ = δf2 + δf3 = 2 + 1 = 3 and n =

[(m−γ +1)/k1] = [(7−3+1)/3] = 1. So we are in Case–1 of the proof of Theorem

5.4. System (1a) is of the form

ẋ = A1f1f2f3 −D1f2f3f1y −D2f1f3f2y −D3f1f2f3y,

ẏ = B1f1f2f3 + D1f2f3f1x + D2f1f3f2x + D3f1f2f3x,

with δA1, δB1 ≤ 1 and δD1, δD2, δD3 ≤ 2. Let D1 =
2∑

i,j=0

dijx
iyj be a polynomial

of degree 2. Since in this case system (1b) is the zero vector field we have that

relations (5.13) hold. Let E12(x, y) = E ∈ C and E13 = e1x + e2y + e0 ∈ C[x, y].

According to relations (5.13) we can calculate the polynomials D2 and D3. So, we

have

D2 =
(λ2 + 1)D1 + E12f2

λ1 + 1

=
(λ2 + 1)(d20x

2 + d11xy + d02y
2 + d10x + d01y + d0) + E(x2 + xy + 1)

λ1 + 1
,

D3 =
(λ3 + 1)D1 + E13f2

λ1 + 1

=
(λ3 + 1)(d20x

2 + d11xy + d02y
2 + d10x + d01y + d0)

λ1 + 1

+
e1x(y + 1) + e2y(y + 1) + e0(y + 1)

λ1 + 1
,

and therefore we can calculate the polynomials A1 and B1. We obtain

A1 = − 1

λ1 + 1
D1y +

1

λ1 + 1
(E12f2y + E13f3y)

= − 1

λ1 + 1
(d11x + 2d02y + d01 + E(x + e1x + e2y + e0),

B1 =
1

λ1 + 1
D1x − 1

λ1 + 1
(E12f2x + E13f3x)

=
1

λ1 + 1
(2d20x + d11y + d10 − E(2x + y)).

Substituting A1, B1, D1, D2 and D3 into system (1a) and doing a simple computa-
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tion we have that system (1a) can be written into the form

ẋ = −f2f3Ff1y − λ2 + 1

λ1 + 1
f1f3Ff2y − λ3 + 1

λ1 + 1
f1f2Ff3y − 1

λ1 + 1
f1f2f3Fy,

ẏ = f2f3Ff1x +
λ2 + 1

λ1 + 1
f1f3Ff2x +

λ3 + 1

λ1 + 1
f1f2Ff3x +

1

λ1 + 1
f1f2f3Fx,

where F = D1 is the additional invariant algebraic curve.

5.5 On a result due to Walcher

In [50] Walcher also proves the following theorem.

Theorem 5.8. Let f = f1 · · · fp with fi ∈ C[x, y] irreducible, and assume that

the curve f = 0 has no singular points. Additionally, we assume that (fx, fy) = 1.

Then X = (P, Q) admits the integrating factor R =
(
fλ1

1 · · · fλp
p

)−1

with λi positive

integers if and only if

ẋ = −
p∑

i=1

αif
λ1
1 · · · fλi−1

i · · · fλp
p fiy − fλ1

1 · · · fλp
p

(
F

fλ1−1
1 · · · fλp−1

p

)

y

,

ẏ =

p∑
i=1

αif
λ1
1 · · · fλi−1

i · · · fλp
p fix + fλ1

1 · · · fλp
p

(
F

fλ1−1
1 · · · fλp−1

p

)

x

,

(5.22)

with αi ∈ C and F ∈ C[x, y].

Under the assumptions of Theorem 5.8 polynomial systems having the Dar-

boux integrating factor R =
(
fλ1

1 · · · fλp
p

)−1

with λi positive integers are of the

form (5.22). So, from Theorem 3.1(a), they have the Darboux first integral

H = fα1
1 · · · fαp

p exp

(
F

f
λ1−1
1 ···fλp−1

p

)
with αi ∈ C and F ∈ C[x, y].

We note that part of the statement of Theorem 4.3(b) can be obtained from

Theorem 5.8 taking p = 1 and λ1 = −λ ∈ Z+ and g = F. Note that, in Theorem

4.3(b) and in its proof we present an algorithm in order to construct the polynomial

F , see also Example 4.15. Additionally, in Theorem 4.3(b) we also prove the

following relation between the degrees: δf + δ
(

F
f−λ1−1

)
= m + 1.
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Chapter 6

Appendix

A planar vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
(6.1)

is polynomial of degree n if P and Q are real polynomials in the variables x and

y, and the maximum degree of P and Q is n.

A periodic orbit of a vector field X in R2 is a limit cycle if it is isolated in the

set of all periodic orbits of X.

In 1900 Hilbert [30] in the second part of its 16–th problem proposed to find

an estimation of the uniform upper bound for the number of limit cycles of all

polynomial vector fields of a given degree, and also to study their distribution or

configuration in the plane. This has been one of the main problems in the qualita-

tive theory of planar differential equations in the XX century. The contributions

of Écalle [23] and Ilyashenko [41] proving that any polynomial vector field has

finitely many limit cycles have been the best results in this area. But until now

it is not proved the existence of an uniform upper bound. This problem remains

open even for the quadratic polynomial vector fields.

A limit cycle is algebraic of degree m if it is a contained in an irreducible

algebraic curve of degree m.

Hilbert also asked about the possible distributions of the limit cycles of poly-

nomial vector fields. Recently, it has been proved that any finite configuration
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of limit cycles is realizable by polynomial vector fields. More precisely, we say

that a configuration of limit cycles is a finite set of disjoint simple closed curves of

the plane pairwise disjoint. Two configurations of limit cycles are (topologically)

equivalent if there is a homeomorphism of R2 applying one configuration into the

other. We say that the vector field X realizes a given configuration of limit cycles

if the set of all limit cycles of X is equivalent to that configuration. Recently, in

[39] it is proved that any configuration of limit cycles is topologically realizable as

algebraic limit cycles by a polynomial vector field of a convenient degree.

In [52] Winkel did the following conjecture about the algebraic limit cycles of

polynomial vector fields.

Conjecture 6.1. For a given algebraic curve f = 0 of degree m > 4 there is

in general no polynomial vector field of degree less than 2m − 1 leaving invariant

f = 0 and having exactly the ovals of f = 0 as limit cycles.

We shall prove that this conjecture is not true.

Here we will work with the one–parameter family of irreducible algebraic

curves

f = f(x, y) =
1

4
+ x− x2 + px3 + xy + x2y2 = 0 , (6.2)

of degree m = 4 with 0 < p < 1/4. These curves have three connected components,

one is an oval and each of the other two is homeomorphic to a straight line, see

Figure 1. We note that the oval of f = 0 borns at the point (2,−1/4) when p = 1/4.

Then, when p decreases the oval increases its size and ends having infinite size at

the irreducible curve 1/4 + x− x2 + xy + x2y2 = 0 when p = 0.

We must mention that the curve f = 0 has no singular points, i.e. there is no

real solutions of the system f = 0, ∂f/∂x = 0 and ∂f/∂y = 0.

First we will prove that the oval of the curve (6.2) is the unique limit cycle of a

13–parameter family of polynomial vector fields of degree 5. Since 2m−1 = 7 > 5,

this provides a counterexample to Conjecture 6.1. Many other counterexamples

can be constructed changing the algebraic curve f = 0.

Our main result is the following one.
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Figure 6.1: Algebraic limit cycle of degree 4.

Theorem 6.2. Let a, b, c, d, e and p arbitrary real numbers. Then, the algebraic

curve f = 0 given by (6.2) is invariant by the 6–parameter family of polynomial

vector fields (6.1) of degree 5 given by

P = (be− cd) + [c + 4(be− cd)− 2a(d2 + e2)]x− by +

4[c + (a + c)d− be]x2 − 4[b + cd− (a + b)e]xy −
2[a + 2c + 2p(cd− be)]x3 + 4[b + c− a(d2 + e2)]x2y −
2(a + 2b)xy2 + 4cp x4 + 4(2ad− bp)x3y −
4(cd− 2ae− be)x2y2 − 4ax4y + 4cx3y2 − 4(a + b)x2y3,

Q = 2a(d2 + e2)− bd− ce + [b− 4((a + b + ad)d + (c + ae)e)]x +

[c + 2a(d2 − 2e + e2)]y − 4(−c + ad + bd− 2ae + ce)xy +

2[a + 2b + 2d(2a + b) + 2ce + 3ap(d2 + e2)]x2 + 2a(1− 2e)y2 −
4(a + b + 3adp + bdp + cep)x3 + 2(a + 2b− 2c− 6aep)x2y +

4(−a + c + ad2 + ae2)xy2 + 2ay3 +

2(3a + 2b)p x4 + 4cp x3y − 2(4ad + 2bd + 2ce− 3ap)x2y2 −
8aexy3 + 4(a + b)x3y2 + 4cx2y3 + 4axy4.



146 Appendix

Moreover, if ac 6= 0, 0 < p < 1/4 and the point (d, e) is in the interior of the

bounded region limited by the oval of f = 0, then the unique limit cycle of this

vector field is the algebraic one formed by the oval of f = 0.

We note that if we do an affine transformation of the polynomial differential

system ẋ = P (x, y), ẏ = Q(x, y), where P and Q are the ones given in the

statement of Theorem 6.2, and a rescaling of the independent variable, then the

polynomial vector fields of degree 5 associated to the new differential systems form

a 13–parameter family providing a counterexample to Conjecture 6.1.

In fact a weaker counterexample formed by an 8–parameter family of quadratic

polynomial vector fields follows from the next theorem proven in [5].

Theorem 6.3. The quadratic polynomial differential system

ẋ = 2(1 + 2x− 2px2 + 6xy) ,

ẏ = 8− 3p− 14px− 2pxy − 8y2 ,

with 0 < p < 1/4 possesses the irreducible invariant algebraic curve f = 0. More-

over, if 0 < p < 1/4, then the unique limit cycle of this system is the algebraic one

formed by the oval of f = 0.

The following result due to Giacomini, Llibre and Viano [27], will play a main

role in our proof of Theorem 6.2. Here, we provide an easier and direct proof,

which also appears in Llibre and Rodŕıguez [39].

Theorem 6.4. Let X be a C1 vector field defined in the open subset U of R2. Let

V : U → R be an inverse integrating factor of X. If γ is a limit cycle of X, then

γ is contained in Σ = {(x, y) ∈ U : V (x, y) = 0}.

Proof: Due to the existence of the inverse integrating factor V defined in U , we

have that the vector field X/V is Hamiltonian in U \ Σ. Since the flow of a

Hamiltonian vector field preserves the area and in a neighborhood of a limit cycle

a flow does not preserve the area, the theorem follows.

A straightforward computation shows that the algebraic curve f = 0 given by

(6.2) is invariant by the polynomial vector field X whose components P and Q are
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given in the statement of Theorem 6.2. In fact, the cofactor K of f = 0 is

K = 4[be− cd + (c− bd + 2cd− 2be− ce)x + (be− b− cd)y +

(b− 2c− 3cdp + 3bep)x2 + 2(b + c)xy − by2 +

3cpx3 − (2bd + 2ce + 3bp)x2y − 2(cd− be)xy2 +

2bx3y + 4cx2y2 − 2bxy3].

Now the key point in the proof of Theorem 6.2 is to show that the unique

limit cycle of X is the oval γ contained in f = 0 for 0 < p < 1/4 when ac 6= 0 and

(d, e) is a point contained in the interior of the bounded region limited by γ. In

order to prove that, first with another easy computation we check that

V = f · [(x− d)2 + (y − e)2],

and

H = 2a log f + 2b log[(x− d)2 + (y − e)2]− 4c arg[(x− d) + i(y − e)],

are the inverse integrating factor and its associated Hamiltonian for our polynomial

vector field X.

Since V is polynomial, V is defined in the whole R2. Therefore, by Theorem

6.4 and since V (x, y) = 0 if and only if (x, y) ∈ {f = 0} ∪ {(d, e)}, it follows that

if the vector field X has some limit cycle, this must be the oval γ of f = 0. Now,

we shall prove that this oval is a limit cycle. Hence, Theorem 6.2 will be proved.

We observe that P and Q can be written as

P = −2af2f3
∂f1

∂y
− 2(b + ic)f1f3

∂f2

∂y
− 2(b− ic)f1f2

∂f3

∂y
,

Q = 2af2f3
∂f1

∂x
+ 2(b + ic)f1f3

∂f2

∂x
+ 2(b− ic)f1f2

∂f3

∂x
,

(6.3)

where i =
√−1, f1 = f , f2 = x− d + i(y − e) and f3 = x− d− i(y − e).

Since f = 0 is an invariant algebraic curve of the vector field X, the oval

γ is formed by solutions of X. Now we shall prove that on the oval γ there

are no singular points of X and, therefore, γ will be a periodic orbit. Assume
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that (x0, y0) is a singular point of X contained on the oval γ; i.e., P (x0, y0) =

Q(x0, y0) = f(x0, y0) = 0. From (6.3) we have that

P (x0, y0) = −2af2(x0, y0)f3(x0, y0)
∂f

∂y
(x0, y0) = 0,

Q(x0, y0) = 2af2(x0, y0)f3(x0, y0)
∂f

∂x
(x0, y0) = 0.

Since a 6= 0 and f2(x0, y0)f3(x0, y0) = (x0 − d)2 + (y0 − e)2 6= 0, we obtain that
∂f

∂x
(x0, y0) = 0 and

∂f

∂y
(x0, y0) = 0. This is not possible, otherwise the point

(x0, y0) would be a singular point of the algebraic curve f = 0, and this curve has

no singular points when 0 < p < 1/4. Hence, the oval γ is a periodic orbit of

the vector field X. Now, we shall prove that γ will be a limit cycle, and this will

complete the proof of Theorem 6.2.

We define the first integral H of X as follows

H = eH = f 2a[(x− d)2 + (y − e)2]2be−4c arg[(x−d)+i(y−e)].

Then we note that the oval γ and the point (d, e) are in the level H(x, y) = 0,

and that they are the unique orbits of X in this level. Now suppose that γ is not

a limit cycle. Then, there is a periodic orbit γ′ = {(x(t), y(t)) : t ∈ R} different

from γ and sufficiently close to γ such that the bounded component B limited by

γ′ contains the point (d, e).

As γ′ is different from γ, there exists h 6= 0 such that

H(x(t), y(t)) = f 2a(x(t), y(t))[(x(t)− d)2 + (y(t)− e)2]2be−4cθ(t) = h,

where θ(t) = arg[(x(t)−d)+ i(y(t)− e)]. The function f 2a(x(t), y(t))[(x(t)−d)2 +

(y(t) − e)2]2b is bounded on γ′. Clearly, since the point (d, e) is in the bounded

region limited by γ′ the angle θ(t) tends to either +∞ or −∞, when t → +∞.

Since c 6= 0, this fact is in contradiction with equality H(x(t), y(t)) = h 6= 0.

Consequently, we have proved that γ is a limit cycle. In short, Theorem 6.2 is

proved.
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