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Summary

This thesis has had two aims: the practical aim of writing out explicit generalisations of the

constructions of Atiyah, Donnelly, Patodi, and Singer [APS75I, APS75II, APS76, ADS84]

for formal sums of operators on manifolds, and the more philosophical aim of re-opening

the investigations of Hirzebruch and Zagier [Hir66, HZ74] on some important interactions of

algebraic topology with number theory and algebraic geometry. We have needed also ingredi-

ents from differential geometry and from analysis, and our investigations led to consideration

of ideas of Segal on conformal field theory [Seg88].

In particular our definitions lead to a new invariant ηE(q) of framed manifolds N4k−1,

which arises on considering the formal operator given by twisting the classical signature

operator by a certain graded bundle considered by Witten [Wit87] as representing the tangent

bundle of the free loop space on a manifold. In this way we obtain an invariant, taking power

series in the formal variable q as values, whose constant term is the spectral eta invariant

of [ADS84]. The result that this eta invariant coincides with the signature defect (i.e., the

difference ϕL(M,N) − sign(M,N) between the relative L-genus and the signature, for a

closed manifold M4k with ∂M = N), generalises to our new invariant to give

ηE(q) = ϕE(M,N) − signS
1

(M,N).

Here signS
1

is the S1-equivariant signature on the loop space and ϕE is the (normalised)

elliptic genus of [LS88, Och87]; hence the power series ηE can also be regarded as a modular

function, at least modulo the integers. As an illustrative example we note that there are

framings of the spheres S4k−1 = ∂D4k for which ηE is easily expressed in terms of an Eisenstein

series G∗2k.
We consider eta invariants arising not only from twisted signature operators, but also

from the corresponding Dirac operators. Moreover we define equivariant versions of these

invariants, associated to representations of the fundamental group G = π1N of the manifold.

Atiyah–Patodi–Singer give an alternative, more algebraic definition of their equivariant eta

invariant in [APS75II], in terms of the K-theory of N and the classifying space BG. We

also generalise this to give a definition in terms of elliptic cohomology of our modular eta

invariant, inspired by the philosophy that K-theory for loop spaces is elliptic cohomology.

We give examples of this construction for lens spaces and, at least in the case that G is finite

of odd order, show that it takes values in the equivariant elliptic cohomology ring introduced

by Devoto [Dev96b].
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Introduction

Atiyah: Why is the Â-genus an integer for spin manifolds?

Singer: You know the answer better than I —why do you ask?

Atiyah: There must be a deeper reason.

In March 1962, Singer suggested a deeper reason: the Â-genus is an integer

because it is the index of a Dirac operator. . .

The Index Theorem for Manifolds with Boundary

In this thesis we develop some of the Atiyah–Patodi–Singer constructions for manifolds with

boundary in the context of elliptic genera. At least formally, they will provide a version of the

index theorem for the space of free smooth loops on manifolds with boundary. We consider

mainly the case of twisted signature operators corresponding to level 2 elliptic genera, and

we compute and interpret these in the especially relevant cases of some framed disks and

lens spaces. More general results are possible, which will be developed later.

What can elliptic cohomology tell us for manifolds with boundary? We can expect it

to generalise classical results for manifolds with boundary to their free smooth loop spaces,

following the philosophy that elliptic cohomology may be considered as a sort of K-theory of

loop spaces. In this classical case one uses the Chern character to link K-theory to ordinary

cohomology; between elliptic cohomology and K-theory we have the Miller character also.

Using these tools, we can extend the Atiyah–Patodi–Singer constructions to formal operators

on loop spaces on manifolds with boundary.

Recall that the Atiyah–Singer theorem for manifolds without boundary expresses the

index of an elliptic operator in terms of characteristic numbers. More precisely, if we consider

an elliptic operator D+
E on a manifold without boundary X, which may be assumed to be

given by the classical signature operator D+ twisted by some bundle E, then the index

is given by

ind
(
D+
E

)
= {ch2 (E) · L (X)} [X] , (1)

where L (X) is the Hirzebruch characteristic class on the tangent bundle TX and ch2 (E) is

the Chern character of E up to a power of 2.

1



For manifolds with boundary, the seminal work of Atiyah–Patodi–Singer [APS75] showed

that an extra summand, the eta invariant, must be added for formula (1) to hold. The

formula obtained becomes

ind
(
D+
E

)
+ dim kerD+

E |Y= {ch2 (E) · L (X)} [X] − ηD+
E |Y (0)

at least in those cases when we consider a compact oriented Riemannian manifold X of

dimension 4k with boundary Y and assume that near Y it is isometric to a product. Here

ηD+
E |Y is the holomorphic continuation of the eta function

η (s) =
∑
λ

sign (λ)

|λ|s , Re (s) � 0,

where the sum is over the non-zero eigenvalues of the operator.

Modular Eta Invariants

In this thesis we define and calculate these invariants for formal operators on loop spaces

on manifolds with boundary, and interpret them as modular invariants. In particular, we

consider the formal operator corresponding to the signature for a bundle E,

RqE =

∞⊗
j=1

SqjE ⊗
∞⊗
j=1

ΛqjE,

where SqjE and ΛqjE are the formal power series versions of the symmetric and exterior

products. Then the index theorem applied to this formal operator will give a formal power

series instead of a numerical index. If X is a manifold without boundary and E its complex-

ified tangent bundle, we write ξq = RqE and the index formula becomes

ind
(
D+
ξq

)
= Φε (X) [X] .

The characteristic class Φε (X) is precisely determined by the elliptic genus

ϕε : ΩSO∗ −→ E��∗ ∼= �[1
2
][δ, ε][∆−1],

whose exponential series is given by the elliptic function sε (τ, x) = (℘ (τ, x) − ℘ (τ, πi))−
1
2 .

For any class [X] ∈ ΩSO∗ in the oriented cobordism ring corresponding to a manifold of dimen-

sion 4k, ϕε ([X]) is a modular form of weight 2k for the congruence subgroup Γ0 (2) < SL2�.

Once we normalise it by dividing out by the factor ε (τ)
k
2 it becomes a modular function

for the congruence subgroup Γ0 (2) which coincides with the formal index of the graded

operator D+
ξq

,

ind
(
D+
ξq

)
=
∞∑
r=0

ind
(
D+
r

)
qr = Φε (X) [X] =

ϕε(X)

ε (τ)
k
2

,
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with each of the coefficients in its q-expansion corresponding to the index of a twisted

signature operator of finite rank over X.

If now X has boundary Y , what can we say about the formal sum

ηD+
ξq
|Y (0) =

∞∑
r=0

ηD+
r |Y (0)qr (2)

of eta invariants corresponding to the summands of these formal operators? We will show

they also give a class of modular invariants; these are the modular invariants of the title of

this thesis. Term by term application of the Atiyah–Patodi–Singer theorem, combined with

suitable relative versions of elliptic genera, will ensure that the series (2) is well defined, and

converges. In particular, we obtain

ind
(
D+
ξq

)
+ dim kerD+

ξq
|Y = Φε (X, Y,∇) [X, Y ] − ηD+

ξq
|Y (0) ,

using the definitions for graded dimensions as defined for instance in [FLM88]. The relative

characteristic classes introduce rational coefficients and we see, modulo the integers, that

ηD+
ξq
|Y (0) is always congruent to a modular function of level 2 with rational coefficients.

Furthermore, if the left-hand side vanishes, then ηD+
ξq
|Y (0) will be a modular function of

level 2 with rational coefficients. In terms of the elliptic genus, we have shown that

ind
(
D+
ξq

)
+ dim kerD+

ξq
|Y =

ϕε (X, Y,∇)

ε (τ)
k
2

− ηD+
ξq
|Y (0) .

Observe that the connection on which the characteristic forms are based appears now

explicitly in the expressions. Unlike the case of manifolds without boundary, on a manifold

with boundary it is possible to have defined two elliptic operators with the same principal

symbol (and hence the same K-theoretic class in the description by Atiyah and Singer),

but different indices. In particular, we will generically obtain different invariants whenever

we consider operators defined using different connections. Even restricting ourselves to the

case of metric-compatible connections for a fixed Riemannian structure on the manifold, the

result obtained will depend on the torsion tensor considered.

This allows more analytical invariants to be obtained than in the case of manifolds without

boundary, corresponding to operators sharing the same principal symbol but not their total

symbol. We will concentrate on the formal operators on loop spaces which extend the

signature-based operator considered by Atiyah, Donnelly and Singer in [ADS83]. The usual

signature operator on differential forms on a Riemannian manifold is determined by the

composite d∇
0

= ∧ ◦ ∇0 of the Levi-Cività connection ∇0 and the exterior product ∧;

this operator d∇
0

agrees with the usual exterior derivative. If instead of the Riemannian

connection we use any other metric connection ∇T with torsion tensor T , we obtain an

operator d∇
T

= ∧ ◦ ∇T which shares with d∇
0

the principal symbol, but which will not have

the same index in general for manifolds with boundary. In fact, the operator considered by

[ADS83] is a particular case of d∇
T
: if one considers a manifold X with framed boundary

3



(Y, f), the framing determines a flat connection on Y , extending to a connection ∇f on X

compatible with the metric but not necessarily flat. Then, since we fixed the curvature, we

know from Riemannian geometry that it will have some non-vanishing torsion tensor T , such

that ∇f = ∇T , and d∇
f

= d∇
T
.

Using a formal loop version of [ADS83] for this operator, we show that the resulting eta

invariants are the reduction modulo �[1
2
] of modular functions of level 2. We compute these

invariants explicitly for the case of the framed disks
(
D4k, S4k−1, π

)
whose stable tangent

bundles generate relative KO-theory coefficients up to the prime 2. These manifolds are

especially interesting for algebraic topology, since they generate the relative oriented cobor-

dism groups ΩSO, fr
∗ [1

2
] and ΩU, fr

∗ of oriented and unitary manifolds with respect to framings

of their boundaries. Moreover, using the exact sequences

0 → ΩU
2n → ΩU, fr

2n → Ωfr
2n−1 → 0,

the framed disks were used by Conner and Floyd in [CF66] to determine the image of the

Adams e-invariant by relating the e-invariant to a relative Todd genus

0 → ΩU
2n → ΩU, fr

2n → Ωfr
2n−1 → 0

↓ TdU ↓ TdU, fr ↓ e

0 → � → � → �/� → 0.

The odd part of the image of e is given by the modified Bernoulli numbers, well known to

topologists, which arise as the values of the invariant on the framed disks considered above.

On the other hand, it was proved in the seventies by Atiyah–Patodi–Singer in their original

work [APS75II] that these e-invariants are in fact reduced eta invariants for Dirac operators

on framed manifolds.

Now the elliptic genus that we use is generated by Eisenstein series G∗2k (τ) whose

q-expansions have constant term
(
1 − 22k−1

)
B2k/4k. Noting that the twisted signature

vanishes, we show that the formal loop space signature of these disks has corresponding eta

invariant 4G∗2k(τ)/ε (τ)k, whose q-expansion is indeed the Adams e-invariant in its oriented

version [see Sto68, p. 215]. This result can be seen as a particular case of a more general

statement for Hirzebruch genera determined by formal operators.

Although it is not in the scope of the present thesis, in later work we would like to make

more explicit how L-series, Jacobi forms, Rademacher sums, modular forms of half-integral

weight, and more general Eisenstein series come into the picture. This is an old wish and,

indeed, from Atiyah’s work and commentaries in Hirzebruch’s Collected Papers, one sees

that it arose at the very origin of the subject. It was Hirzebruch who first spotted what

he called the Signaturdefekt on manifolds with cusps and who gave the hint of the rôle of

number theoretic L-series in this area.
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Equivariant Elliptic Cohomology

As in the original work [APS75], an important part of our research takes place in the equivari-

ant world. We use the equivariant elliptic cohomology developed by Devoto to construct our

invariants, in the same spirit as they arose from equivariant K-theory in the classical case.

We will summarise our result by the test case of lens spaces L4k−1
p obtained as the

quotient of (4k − 1)-dimensional spheres by a cyclic group G = Cp of odd order. We

then have two families of invariants from the classical signature operator: the first gives us

invariants ηA
ξq(S4k−1), g

for the formal twisted signature operator on LS4k−1 associated to each

g ∈ G, and the second gives invariants ηA
ξq(L4k−1

p )
, α for a formal twisted signature operator

on LL4k−1
p associated to a representation α of G. These two families are related via a finite

Fourier transform formula, which classically gives the well-known expressions for the lens

spaces Y = L4k−1
p (q1, . . . , q2k) = S4k−1/Cp,

ηε,α (0, Y ) =
1

p

p−1∑
r=1

2k∏
j=1

cot

(
πqjr

p

)
χα
(
ζrp
)

(compare [APS75II, p. 412], [Don78, Thm. 3.3]). The number-theoretic significance of such

expressions was known already to Rademacher. Our generalisation gives an expression for

the modular eta invariant in terms of the Teilwerte ϕ (τ, 2πiqjr/p) of the chosen elliptic

functions,

ηε,α (0, Y ) =
1

p

p−1∑
r=1

2k∏
j=1

ϕ (τ, 2πiqjr/p)

ε (τ)
1
2

χα
(
ζrp
)
.

The ϕ (τ, 2πiqjr/p) are modular for the subgroup Γ = Γ1 (p) ∩ Γ0 (2) of SL2 (�), and we

see that ηε,α (0, Y ) and ηε,g

(
0, Ỹ

)
are modular functions for this Γ. We hope to investigate

general “elliptic Rademacher expansions” in later work.

We also introduce algebraic elliptic eta invariants based on elements of Devoto’s equivari-

ant cohomology ring E��∗G [Dev96, Dev98]. The definition of these invariants again parallels

that of Atiyah–Patodi–Singer for K-theory, and requires some technical results concerning

elliptic cohomology with coefficients in �/�[1
2
], which is developed in a section of its own.

To describe our algebraic construction of eta invariants, consider a spin manifold Y of di-

mension 4k − 1, which we may suppose bounds. The invariants in [APS75] associate to a

representation of π1(Y ) an invariant in K∗ (pt;�/�). We extend this construction, in the

natural way, by giving invariants in the appropriate version of elliptic cohomology.

Next, we use the result of [HKR00, Dev96b] that for a finite group G of odd order there

is a completion map cG which is an isomorphism,

E��∗ (BG) ⊗ �
[

1
|G|

] cG∼= (E��∗G)
∧
IG
,

for IG the kernel of the augmentation map

ε : E��∗G → E��∗{e} ⊗ �
[

1
|G|

]
.
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We apply this to replace E��∗G by E��
[

1
|G|

]∗
BG and use the connecting map of the short

exact sequence of coefficient groups

0 → �[1
2
] → � → �/�[1

2
] → 0

to establish an isomorphism

E��
[

1
|G|

] even

(BG) ∼= E�� odd

�/�[
1
2
]
(BG) .

We will use this isomorphism to get invariants on manifolds as follows. Consider a

(4k − 1)-dimensional manifold Y with spin structure, which we may assume bounds a man-

ifold X, whose fundamental group π1(Y ) = G is finite of odd order. For the corresponding

classifying map f : Y → BG its pullback f ∗ : E�� odd
�/�[ 1

2
]
(BG) → E�� odd

�/�[ 1
2
]
(Y ) gives classes in

the elliptic cohomology of the manifold itself. Using the appropriate suitable Gysin map,

any such class will give us an element in E�� odd
�/�[ 1

2
]
(pt). This is where our invariants live, and

so we have extended the [APS75] definition to the framework of elliptic cohomology.

We can develop this construction for the test case of lens spaces, explicitly compute the

invariants, and verify that they correspond to the ones given above for equivariant formal

signature operators for loop spaces.

A key point in the construction is the mod �[1
2
] reduction of the invariants. Since

�/�,� /�[1
2
] or � p/�p are not even rings, it does not immediately make sense to consider

“modular forms with coefficients mod �”, or “p-adic modular forms with coefficients mod

�p”. Nevertheless, at this point, the work of Katz [Kat75] and its applications by Baker,

Clarke, Laures and others is relevant, as well as the description by Hopkins. After defining

elliptic cohomology with rational coefficients modulo some ring of localised integers, we can

split the coefficient group �/�, at least for the case of finite-dimensional manifolds (and in

particular for the point) as the direct sum of coefficient rings of the form E��∗ ⊗ �/(p∞�),

p an odd prime, so that any ring of the form E��∗⊗�/(pk�) will be in the coefficients. More-

over, our aim is to see how this amounts to considering together all the congruences between

modular forms —in our case for Γ0 (2)— modulo pk, which hold for every k, for p a fixed odd

prime. This puts us in the setting of the Katz divided congruence rings and p-adic modular

forms. We will only outline these results, and describe briefly how it is a particular case of

a more general construction related to the generalised character constructions of [HKR00].

Representations of Segal Annuli

Finally we consider our constructions and their invariants in the light of conformal field

theory proposed in the widely circulated preprint of Graeme Segal [Seg88]. To fill in all the

details is beyond the scope of this thesis, but we will recall some particular constructions

which play a natural rôle in our theory. We introduce the Segal category ASpin (G) of G-Segal

annuli with spin structure and consider their representation theory; in particular we study

6



the functoriality, Mackey and Green properties of the functor which associates to each G the

set of representations of the corresponding ASpin (G). Identification of these representations

and their graded characters allows us to define an equivariant version of the result relating

the Segal annuli A and the space (0, 1)×Diff+(S1)×Diff+(S1)/S1. The Lie algebra Vect (S1)

of fields over S1 and its extension, the Virasoro algebra, now enter the picture. Our intention

is then to define certain natural representations ρΘg of an equivariant generalisation VirG, Spin

of the Virasoro algebra, from whose graded characters we recover our elliptic invariants of

the previous chapters.

There is a clear relation of these representations with the elliptic objects of Baker and

Thomas [BT89] (also motivated by Devoto’s work) which parallels the classical relation

between representation theory, equivariant bundle and K-theory, and the cohomology of the

classifying spaces of finite groups.
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Chapter 1

Essential tools from differential

geometry and Clifford theory

The goal of this chapter is to set up the frame where we are going to work, to fix notation,

and to recall the classical results —mainly from differential geometry, geometrical analysis,

and algebraic topology— which are going to be used. In particular, we will need to use

the properties of connections with torsion, bundles graded by formal variables, and spinor

bundles on spheres.

1.1 Essential tools from differential geometry

In this section we set up the notation for the tools from differential geometry that we will

need. We will work mainly with smooth manifolds with boundary, equipped with a fixed

Riemannian metric. We consider affine linear connections on bundles naturally obtained

from the tangent bundle of these manifolds, usually compatible with the metric, but not

necessarily the Levi-Cività connection, since we allow torsion. We give the definitions for

the operators from Riemannian geometry adapted to the case of non-vanishing torsion, and

we make explicit some expansions in terms of coordinates and moving frames very usual

in the Levi-Cività case, but less known in the presence of non-zero torsion. Then we will

introduce Tamanoi’s generalised differential forms and we will identify the metric and the

torsion. We will identify the essential generalised differential parallel forms.

1.1.1 Differential geometry

We briefly review a number of important concepts and definitions of differential and Rie-

mannian geometry, several of which will be needed in greater generality in later sections of

this thesis.
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Manifolds, connections, tensor fields and forms

Let Mn be an n-dimensional smooth manifold. If π : E → M is a vector bundle over M ,

we write Γ(M,E) or just ΓE for the space of global smooth sections s of E. If we take the

tangent bundle E = TM or cotangent bundle E = T ∗M = TM∗, given in each coordinate

neighbourhood (U, x) by

〈
∂

∂x1
, . . . ,

∂

∂xn

〉
or 〈dx1, . . . , dxn〉, then ΓE is the space of vector

fields or of 1-forms on M respectively.

The space of vector fields acts on the space C∞(M) = C∞(M,�) of smooth scalar

functions on M ,

C∞(M) ⊗ ΓTM → C∞(M)

f ⊗X → X(f).

If X is given in local coordinates by
∑
ai
∂

∂xi
then X(f) is defined by

∑
ai
∂f

∂xi
. Vector fields

may be identified with endomorphisms X of C∞(M) which satisfy the Leibniz rule,

X(f · g) = X(f) · g + f ·X(g).

The space of vector fields forms a Lie algebra with bracket

[X, Y ](f) = X(Y (f)) − Y (X(f)).

A connection on a vector bundle E → M is a linear map

∇ : ΓE → Γ(TM∗ ⊗ E)

satisfying a Leibniz rule

∇(fs) = f∇s+ df ⊗ s

where the total derivative df is the 1-form defined by (df)(X) = X(f) or, in local coordinates,

by
∑ ∂f

∂xi
dxi. Since elements of ΓTM∗ may be evaluated at X ∈ ΓTM , one has covariant

derivatives of sections of E along vector fields:

ΓE ⊗ ΓTM → ΓE

s⊗X → ∇Xs,

satisfying ∇X(fs) = f∇Xs+X(f)s and ∇fXs = f∇Xs.

If the vector bundle E is equipped with a metric g(−,−) = 〈−,−〉, then a connection ∇
on E is compatible with the metric if for all sections s, t ∈ ΓE and vector fields X one has

X〈s, t〉 = 〈∇Xs, t〉 + 〈s,∇Xt〉.

A connection on M is a connection on the tangent bundle TM .
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We denote by SkE, ΛkE and E⊗k the symmetric, exterior and tensor product bundles of

a vector bundle E. A (k, �)-tensor field is a section of (TM∗)⊗k ⊗ TM⊗�, and a differential

k-form is a section of ΛkTM∗. Given a connection ∇ on M , the covariant derivatives

∇X : ΓTM → ΓTM on vector fields Y may be extended to act on 1-forms ω and (inductively)

on arbitrary (k, �)-tensor fields via the following dual and tensor product formulas

X(ω(Y )) = (∇Xω)(Y ) + ω(∇XY ),

∇X(P ⊗Q) = ∇XP ⊗Q + P ⊗ ∇XQ.

Allowing X to vary, one has for any (k, �)-tensor field P a (k + 1, �)-tensor ∇P defined by

(∇P )(Y ⊗X ⊗ ϕ) = (∇XP )(Y ⊗ ϕ)

= X(P (Y ⊗ ϕ)) −
k∑
i=1

P (Y1 ⊗ · · · ⊗ ∇XYi ⊗ · · · ⊗ Yk ⊗ ϕ)

+

�∑
j=1

P (Y ⊗ ϕ1 ⊗ · · · ⊗ ∇Xϕj ⊗ · · · ⊗ ϕ�),

for Y = Y1 ⊗ · · · ⊗ Yk ∈ ΓTM⊗k and ϕ = ϕ1 ⊗ · · · ⊗ ϕ� ∈ Γ(TM∗)⊗�.

Examples 1.1

1. The condition for the connection to be compatible with a metric may be expressed

as ∇g = 0.

2. For a “(0, 0)-tensor” f ∈ C∞(M) we have (∇f)(X) = ∇Xf = X(f), and ∇f coincides

with the total derivative df .

3. For a p-form ϕ we have a (p + 1, 0)-tensor ∇ϕ. Antisymmetrising this tensor gives a

(p+ 1)-form (∧ ◦ ∇)ϕ which satisfies

(∧ ◦ ∇)ϕ(X0, . . . , Xp) =
1

p+ 1

(∑
i

(−1)iXi(ϕ(X0, . . . , X̂i, . . . , Xp)) +

+
∑
i<j

(−1)i+jϕ(∇Xi
Xj − ∇Xj

Xi, X0, . . . , X̂i, . . . , X̂j, . . . , Xp)

)
.

Definition 1.2 A natural vector bundle over a manifold M is a vector bundle which may

be constructed from the tangent bundle TM by taking direct sums, tensor products, duals,

and symmetric and exterior products.
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Any connection on M extends as above to a connection on any natural bundle over M . Since

all the bundles considered in this thesis will be natural bundles, we will often forget the word

“natural”.

We write ΩkM = ΓΛkTM∗ for the space of k-forms and, more generally, we write

Ωk(M ;E) = Γ(ΛkTM∗ ⊗ E). The space

Ω∗M =
⊕

ΩkM

of all forms on M is a graded-commutative algebra with respect to ∧, with ΩkM = 0 for

k > n. The pairing between vector fields and 1-forms extends to interior multiplication maps

i(X) : Ωk+1M → ΩkM for X ∈ ΓTM , defined inductively by

i(X)(ω1 ∧ · · · ∧ ωk) = ω1(X)ω2 ∧ · · · ∧ ωk − ω1 ∧ i(X)(ω2 ∧ · · · ∧ ωk).

The exterior derivative d : Ω∗M → Ω∗+1M is the unique linear map extending the total

derivative C∞(M) → ΓTM∗, f → df , and satisfying d(fϕ) = (df) ∧ ϕ. If dϕ = 0, then ϕ

is a closed form. The covariant exterior derivative d∇∗ : Ω∗(M ;E) → Ω∗+1(M ;E) associated

to a connection ∇ : ΓE → Γ(TM∗⊗E) is the unique linear map extending ∇ and satisfying

d∇p (ϕ⊗ s) = dϕ⊗ s+ (−1)pϕ ∧ d∇s.

C∞(M) ��d
Ω1M ��d

Ω2M �� · · · �� ΩkM ��d
Ωk+1M �� · · ·

ΓE ��∇
Ω1(M ;E) ��d∇

Ω2(M ;E) �� · · · �� Ωk(M ;E) ��d∇
Ωk+1(M ;E) �� · · ·

The exterior derivative satisfies d2 = 0 and the cohomology of the complex (Ω∗M, d) is

the de Rham cohomology of M , which is isomorphic to the real singular cohomology of M .

The map d∇ ◦∇ : ΓE → Ω2(M ;E) is not always zero; when it is, the connection ∇ is termed

flat. The curvature tensor R of the connection may be defined by 2R = d∇◦∇ or, evaluating

on a pair of vector fields X, Y ∈ ΓTM , by

RX,Y (s) = ∇X(∇Y s) − ∇Y (∇Xs) − ∇[X,Y ]s.

Riemannian manifolds, metrics and torsion

Consider now the special case of the tangent bundle E = TM , although our remarks will all

carry over to any natural bundle E. The curvature tensor for a connection

∇ : ΓTM → Γ(TM∗ ⊗ TM)

on M may be regarded as a (3, 1)-tensor on M . It satisfies the Bianchi identities

{RX,Y Z − T (T (X, Y ), Z) − (∇XT )(Y, Z)} = 0

{(∇XR)Y,Z +RT (X,Y ),Z} = 0
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where the notation {P (X, Y, Z)} = P (X, Y, Z)+P (Z,X, Y )+P (Y, Z,X) refers to the cyclic

sum of a (3,−)-tensor, and T is the torsion tensor associated to the connection ∇ on M ,

i.e., the (2, 1)-tensor defined by

T (X, Y ) = ∇XY − ∇YX − [X, Y ].

If T = 0 then the connection is termed torsion-free (or symmetric), and the Bianchi identities

become {RX,Y Z} = {(∇XR)Y,Z} = 0. From Example 1.1.3 one sees also that ∧◦∇ coincides

with d : ΩpM → Ωp+1 if ∇ is torsion-free.

If the tangent bundle of M is equipped with a metric 〈 , 〉 then (M, 〈 , 〉) is termed a

Riemannian manifold.

Proposition 1.3 On a Riemannian manifold there is a unique connection which is both

compatible with the metric and torsion-free, termed the Levi-Cività or canonical Riemannian

connection.

In this case the corresponding (Riemannian) curvature tensor is completely determined by

the sectional curvature,

K(X ∧ Y ) = 〈RX,Y Y,X〉 / (|X|2|Y |2 − 〈X, Y 〉2).

In fact any connection ∇ on M which is compatible with the Riemannian metric is

determined by its torsion tensor T . Explicitly, one finds that

2 〈∇XY, Z〉 = X〈Y, Z〉 + Y 〈Z,X〉 − Z〈X, Y 〉 − 〈X, [Y, Z]〉 + 〈Y, [Z,X]〉
+ 〈Z, [X, Y ]〉 − 〈X, T (Y, Z)〉 + 〈Y, T (Z,X)〉 + 〈Z, T (X, Y )〉. (1.1)

Definition 1.4 We will denote by ∇g,T the connection on M that is uniquely determined

by (1.1), which has torsion given by the antisymmetric tensor T and is compatible with a

metric g = 〈 , 〉.
Taking T = 0 in equation (1.1) gives an expression for the Levi-Cività connection ∇ = ∇g,0

on M , and also for the exterior derivative, since d = ∧ ◦ ∇ in the torsion-free case.

Oriented manifolds, the Hodge star and coderivatives

A (connected) n-dimensional Riemannian manifold M is orientable if the double cover Or

of M , with fibres given by the orthonormal frames in TM modulo the action of SOn, is just

the trivial double cover M ∪M . In the language of algebraic topology, M is orientable if the

first Stiefel–Whitney class w1 ∈ H1(X;�2) vanishes, where w1 may be thought of as classi-

fying the double cover Or via the isomorphism H1(X;�2) ∼= Hom(π1X,�2). An orientation

on M is then a choice of one sheet of the double cover.

Alternatively, an orientation on M is a nowhere-vanishing global n-form Φ ∈ ΓΛTM∗.
Two such orientations Φ1,Φ2 are equivalent if Φ1 = fΦ2 for some everywhere-positive func-

tion f ∈ C∞(M), or opposite if f is everywhere negative. The volume form of a manifold
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with orientation Φ is given by the normalisation

dv =
Φ

|Φ|√n!
.

The Hodge star operator for an oriented Riemannian manifold is the linear isomorphism

∗ : ΩqM −→ Ωn−qM

ω1 ∧ · · · ∧ ωq → ωq+1 ∧ · · · ∧ ωn,

where (ω1, . . . , ωn) is any (positive) orthonormal coframe of 1-forms, so that in particular

dv = ω1 ∧ · · · ∧ ωn = ∗1.

For q-forms ϕ, ψ one has

ϕ ∧ ∗ψ = 〈ϕ, ψ〉dv, ∗(∗ϕ) = (−1)q(n−q)ϕ.

If M is compact, one defines the inner product and L2-norm on ΩqM by

(ϕ, ψ) =

∫
M

〈ϕ, ψ〉dv, ‖ϕ‖2 = (ϕ, ϕ).

The exterior coderivative δ : ΩqM → Ωq−1M is then the adjoint of d under the L2-norm,∫
M

〈φ, δϕ〉dv =

∫
M

〈dφ, ϕ〉dv.

A differential form ϕ is called harmonic if ∆ϕ = 0, where ∆ is the Laplace operator

∆: ΩqM → ΩqM ,

∆ = (d+ δ)2 = dδ + δd.

Since (∆ϕ, ϕ) = ‖dϕ‖2 + ‖δϕ‖2, we see that ϕ is harmonic if and only if both dϕ and

δϕ vanish. Let ϕ be any closed q-form. Then Hodge’s theorem on critical points of the

L2-norm implies that there exists a unique (q − 1)-form φ such that δ(ϕ+ dφ) = 0 (in fact,

minimising ‖ϕ+ dφ‖2), and so ϕ+ dφ is the unique harmonic form in the cohomology class

of ϕ. The de Rham cohomology groups of a compact oriented Riemann manifold M are

therefore isomorphic to the spaces of harmonic forms on M .

Proposition 1.5 The exterior coderivative δ on forms on an oriented, compact Riemannian

manifold without boundary can be expressed in terms of d and the Hodge star,

δ = (−1)(q−1)(n−q+1)+q ∗d∗ : Ωq(M) −→ Ωq−1(M).

Proof: Integration over M of the form

d(φ ∧ ∗ϕ) = dφ ∧ ∗ϕ+ (−1)q−1φ ∧ d∗ϕ
and application of Stokes’ formula shows that we can take ∗δϕ = (−1)qd∗ϕ. �

In particular the Hodge star of a harmonic form is again harmonic and induces isomorphisms

∗ : Hq(M) ∼= Hn−q(M).
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1.1.2 Parallelisations

This is essential for framed manifolds and connections on them. A parallelisation of a

smooth n-dimensional manifold M is a section of the bundle LM of n-frames on the tangent

bundle TM .

As we next make precise, every parallelisation determines a metric and a connection that

is compatible with the metric (since the size of vectors is unaltered by parallel transport).

This connection need not be symmetric. For our exposition we follow an approach by Dodson.

Theorem 1.6 Suppose that an n-dimensional manifold M is parallelisable by a section

p: M −→ LM

x −→ (pi)x .

Then p determines a connection ∇p in LM such that

∇p
pi

(pj) = 0 for all i, j = 1, . . . , n.

If h : M → GL (n;�), x → [
hij
]
x
, is a smooth map, then qi = hki pk defines another paralleli-

sation, and ∇p = ∇q if and only if h is constant on each connected component of M .

Proof: By hypothesis, the Christoffel symbols for ∇p with respect to the frame (pi)x all

vanish, since

∇p
pi

(pj) = Γkij pk.

Locally, the splitting of TuLM for u =
(
x,
(
bijpi

)
x

)
∈ LM is given as TuLM = Hu ⊕Gu by(

x,
(
bijpi

)
x
, X,B

)
=
(
x,
(
bijpi

)
x
, X, 0

)
⊕
(
x,
(
bijpi

)
x
, 0, B

)
. We choose

Hp(x) = Dxp (TxM)

and for any u ∈ LM , with u = Rh (p (x)),

Hu = Dp(x)Rh

(
Hp(x)

)
.

By the existence of p, we know that

LM = M × GL (n;�)

and the connection ∇p makes the horizontal subspaces look horizontal in this product bun-

dle by

LM → M ×G(
x,
(
bijpi

)
x

)
−→

(
x,
(
δij
)
x

)
.
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That is, we locate the identity in G at the frame determined by the parallelisation at each

point.

The given q is another parallelisation and

∇p
pi

(qj) = ∇p
pi

(
hkjpk

)
= pi

(
hkj
)
pk + hjk∇p

pi
pk,

and ∇p
pi

(qj) = 0 if and only if hkj is constant on each connected component of M . �

Corollary 1.7 The connection ∇p need not be symmetric.

Corollary 1.8 The geodesics of ∇p are the integral curves of constant linear combinations

like X : M → TM , x → aipi.

Example: a nontrivial parallelisation of the plane

A nontrivial parallelisation of the two-plane �2 is given by

p: �2 −→ L�2

(x, y) −→ (ex∂1, e
x∂2) ,

with ∂1 =
∂

∂x
and ∂2 =

∂

∂y
giving the standard frame of T(x,y)�2 via the identity chart on �2 .

This p is a parallelisation and it determines a connection ∇p by the conditions, since ex is

never zero, and hence, by linearity of ∇p
vw in v,

∇p
∂i

(ex∂j) = 0 for i, j = 1, 2,

which expands to

ex∂j + exΓp.∂,k
1,j ∂k = 0 for i = 1,

exΓ∂,k2,j ∂k = 0 for i = 2.

It follows that [
Γp,∂,1
i,j

]
=

[ −1 0

0 0

]
,
[
Γp,∂,2
i,j

]
=

[
0 −1

0 0

]
,

and obviously ∇p fails to be symmetric because

Γ2
12 �= Γ2

21.

Moreover, p determines a Riemannian structure gp which, in standard coordinates (i.e.,

the ∂-basis), gives [
gp,∂
i,j

]
=

[
e−2x 0

0 e−2x

]
.
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The Ricci Lemma may be used to see that ∇p is compatible with gp. It amounts to check

the compatibility equation

u (gp (v, w)) = gp (∇p
uv, w) + gp (v,∇p

uw)

for all tangent vector fields u, v, w. In the component form u = ∂i, v = ∂j , w = ∂k, the

left-hand side is [
∂1g

p,∂
i,j

]
=

[ −2e−2x 0

0 −2e−2x

]
[
∂2g

p,∂
i,j

]
=

[
0 0

0 0

]
,

while the right-hand side is

gp
(
Γp,∂,m
ki ∂m, ∂j

)
+ gp

(
∂i,Γ

p,∂,m
kj ∂m

)
= gp,∂

m,jΓ
p,∂,m
ki + gp,∂

m,iΓ
p,∂,m
kj

= e−2xΓp,∂,j
ki + e−2xΓp,∂,i

kj

and since [
Γp,∂,j

1,i

]
=

[ −1 0

0 −1

]
,
[
Γp,∂,j

2,i

]
=

[
0 0

0 0

]
,[

Γp,∂,i
1,j

]
=

[ −1 0

0 −1

]
,
[
Γp,∂,i

2,j

]
=

[
0 0

0 0

]
,

we see then that ∇p is indeed compatible with gp. However, since it is not symmetric, it is

not the Levi-Cività connection of any metric tensor field. In fact, the Levi-Cività connection

∇gp determined by the parallelisation metric gp can be found by solving the equation of the

Ricci Lemma. In coordinates, one has that its components Γ
gp
,∂,k

i,j satisfy

∇gp

∂i
∂j = Γ

gp
,∂,k

i,j ∂k, by definition, and

gp,∂
k,mΓg

p,∂,k
ij =

1

2

(
∂ig

p,∂
j,m + ∂jg

p,∂
i,m − ∂mg

p,∂
i,j

)
, by the Ricci Lemma,

so that [
Γg

p,∂,1
i,j

]
=

[ −1 0

0 1

]
,
[
Γg

p,∂,2
i,j

]
=

[
0 −1

−1 0

]
,

with compatibility [
Γg

p,∂,j
1,i

]
=

[ −1 0

0 −1

]
,
[
Γg

p,∂,i
2,j

]
=

[
0 −1

1 0

]
,[

Γg
p,∂,i

1,j

]
=

[ −1 0

0 −1

]
,
[
Γg

p,∂,i
2,j

]
=

[
0 1

−1 0

]
,

so that, for k = 1, 2,

∂kg
p,∂
i,j = e−2x

(
Γg

p,∂,j
k,i + Γg

p,∂,i
k,j

)
.
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Jet bundles and stable jet bundles

Let (M, g) be a Riemannian manifold of dimension m, and identify TM and T ∗M through g.

For a vector bundle E over M , define the jet bundle

J (E) = E ⊕ (E ⊗ TM)

and the iterated jet bundles

J i (E) = J
(
J i−1 (E)

)
.

Likewise, define the stable jet bundle

(J (E))s = 1 ⊕ J (E) = 1 ⊕ E ⊕ (E ⊗ TM)

and the iterated stable jet bundles(
J i (E)

)s
= 1 ⊕ J i (E) = 1 ⊕ J

(
J i−1 (E)

)
.

Remark that

(J (E))s = 1 ⊕ E ⊕ (E ⊗ TM)

∼= 1 ⊕ (E ⊗ 1) ⊕ (E ⊗ TM)

∼= 1 ⊕ E ⊗ (1 ⊕ TM)

∼= 1 ⊕ E ⊗ T sM,

where T sM is the stable tangent bundle of M . In that formalism,

(J (E))s = 1 ⊕ (E ⊗ T sM)(
J2 (E)

)s
= 1 ⊕ (J (E) ⊗ T sM) = 1 ⊕ (E ⊗ T sM⊗2

)(
J3 (E)

)s
= 1 ⊕ (J2 (E) ⊗ T sM

)
= 1 ⊕ (E ⊗ T sM⊗3

)
· · ·(

J i (E)
)s

= 1 ⊕ (J i−1 (E) ⊗ T sM
)

= 1 ⊕ (E ⊗ T sM⊗i
)
,

and in particular

J i (M) = J i (TM) = 1 ⊕
(
TM ⊗ (1 ⊕ TM)⊗i

)
.

A vector bundle E is said to be flat if it admits a connection whose curvature vanishes

identically. Vector bundles can admit inequivalent flat structures. A manifold M is said to

be flat if TM is flat, and M is called i-th order flat if J i (M) admits a flat structure. We

denote by α (M) the smallest integer i for which J i (M) admits a flat structure; otherwise,

α (M) = ∞. If J i (M) admits a flat structure for some i, then the rational Pontrjagin classes

of M are zero in positive degrees and TM is rationally trivial. For n > 1, J i (� Pn) is never

flat, so that, if n > 1, α (� Pn) = ∞.

For the sphere Sn, one has J (Sn) = J1 (Sn) = T (Sn) ⊗ (1 ⊕ T (Sn)).
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1.1.3 On connections

We will consider a linear connection on a bundle ξ over a compact smooth manifold M with

boundary, as a map

∇ : Γ (M, ξ) → Γ (M,T ∗M ⊗ ξ) .

A linear connection ∇ on a manifold provides a covariant way to differentiate tensor fields.

It provides a type-preserving derivation on the algebra of tensor fields that commutes with

contractions. Given an arbitrary local basis of vector fields {Xa}, the most general linear

connection is specified locally by a set of n2 1-forms ωab where n is the dimension of the

manifold,

∇
Xa
Xb = ωcb(Xa)Xc.

Generally, we will be given a metric on the manifold and we will restrict ourselves to metric-

compatible connections. However, we do not ask our connection to be torsion-free. In partic-

ular, we will deal mainly with connections on bundles constructed from the tangent bundle

of the manifold.

So, for our connections, the following will hold in general, for fields X, Y, Z:

X(g(Y, Z)) = S(X, Y, Z) + g(∇
X
Y, Z) + g(Y,∇

X
Z),

but

T (X, Y ) = ∇
X
Y − ∇

Y
X − [X, Y ] �= 0

in general. That amounts to the connection be determined uniquely by

2g(Z,∇
X
Y ) = X(g(Y, Z)) + Y (g(Z,X)) − Z(g(X, Y ))

− g(X, [Y, Z]) − g(Y, [X,Z]) − g(Z, [Y,X])

− g(X, T (Y, Z)) − g(Y, T (X,Z)) − g(Z, T (Y,X)).

The general curvature operator RX,Y defined in terms of ∇ by

RX,Y Z = ∇
X

∇
Y
Z − ∇

Y
∇

X
Z − ∇

[X,Y ]
Z

is also a type-preserving tensor derivation on the algebra of tensor fields. The general (3, 1)

curvature tensor R of ∇ is defined by

R(X, Y, Z, β) = β(R
X,Y
Z),

where β is an arbitrary 1-form. This tensor gives rise to a set of local curvature 2-forms Ra
b:

Ra
b(X, Y ) =

1

2
R(X, Y,Xb, e

a),

where {ec} is any local basis of 1-forms dual to {Xc}. In terms of the contraction operator

iX with respect to X, one has iXb
ea ≡ ib e

a = ea(Xb) = δab. In terms of the connection

forms, Ra
b = dωab + ωac ∧ ωcb. It is customary as well to use Ω for the matrix of 2-forms

Ωa
b = 1

2
Ra

b.
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Determination of the connection from the relevant tensor fields

Such a connection can be fixed by specifying a (2, 0) symmetric metric tensor g, a (2, 1)

antisymmetric tensor T and a (3, 0) tensor S, symmetric in its last two arguments. If we

require that T be the torsion of ∇ and S be the gradient of g, then it is straightforward to

determine the connection in terms of these tensors. Indeed, since ∇ is defined to commute

with contractions and reduce to differentiation on scalars, it follows from the relation

X(g(Y, Z)) = S(X, Y, Z) + g(∇
X
Y, Z) + g(Y,∇

X
Z)

that

2g(Z,∇
X
Y ) = X(g(Y, Z)) + Y (g(Z,X)) − Z(g(X, Y ))

− g(X, [Y, Z]) − g(Y, [X,Z]) − g(Z, [Y,X])

− g(X,T(Y, Z)) − g(Y,T(X,Z)) − g(Z,T(Y,X))

− S(X, Y, Z) − S(Y, Z,X) + S(Z,X, Y ),

where X, Y, Z are any vector fields.

1.1.4 Invariance theory for metric connections with torsion

Now we want to see that the invariants calculated by generalising [APS75II] are of the same

kind as the ones defined in [ADS83]. What has to be done is to prove that the classes of the

pullback bundles in the former agree with the ones given by the connections in the latter.

For doing so, one needs to know about invariant polynomials in characteristic classes for

connections involving torsion. According to [ADS83], this is done in very much the same

way as in [ABS64], with some modifications based on calculations in [Don78, Section 1]. We

will begin by recalling these.

Consider a Riemannian manifold (M, g) with a connection ∇ on its tangent bundle which

preserves the metric g. Then, relatively to a geodesic coordinate system, the components

of the metric tensor have a formal Taylor series whose coefficients may be expressed in

terms of the components of the curvature and the torsion of the connection and its covariant

derivatives. Donnelly holds this to be well known, but presents in [Don78] a proof along the

lines of [ABS64], but taking into account that the connection need not have torsion zero.

Let (x) be the geodesic coordinate system and let ei be the orthonormal frame obtained

from
∂

∂xi
at p by parallel transport along radial geodesics through p. The dual frame to ei

is therefore a frame of 1-forms θi well defined near p. The connection forms relative to ei

will be denoted by ωij and the radial field xi
∂

∂xi
by �r. The structure equations are then

dθi = ωij ∧ θj + T ij,kdx
j ∧ dxk

dωij = ωik ∧ ωkj +Ri
j,k,ldx

k ∧ dxl
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with T ij,k, R
i
j,k,l the components of the torsion and curvature tensors. With i�r the contraction

with respect to the field �r, one obtains formulae:

i�r
(
θi
)

= xi

i�r
(
ωij
)

= 0

gijdx
i ⊗ dxj = θα ⊗ θα

and introducing the change of basis functions

θi = aijdx
j

since

gij = aαi a
α
j

it is enough to determine the a’s in terms of the curvature and the torsion. To avoid confusion,

we will denote by L�r the Lie derivative associated to field �r. Applying L�r to θi,

L�r θ
i = i�r dθ

i + dxi

i�r
(
ωij ∧ θj

)
+ i�r

(
T ij,kdx

j ∧ dxk
)

+ dxi

so that

L�r θ
i = −ωijxj + 2T ij,kx

jdxj ∧ dxk + dxi.

Write â, R̂, etc, for the formal Taylor series relative to x about p of the function indicated,

and â [n], R̂ [n] for the corresponding terms of homogeneity n in this expansion. Then, by

Euler’s formula, L�r preserves homogeneity and multiplies â [n] by n. Hence,(
n2 + n

)
âij [n] = −2xjxkR̂i

j,k,l [n − 2] + (2n + 2) T̂ ij,k [n − 1] xj ;

compare with the conclusion in [ABS64].

1.2 Essential tools from Clifford theory

In this section we review the definitions and properties from Clifford algebras that we will

need later. We recall the definitions of Clifford algebras and Clifford modules and their

construction and classification.

1.2.1 Clifford algebra and spinor bundles

Clifford algebras

Definition 1.9 Let k = � or � , and let V be a finite-dimensional k-vector space with

non-degenerate inner product 〈 , 〉 and corresponding quadratic form q(v) = 〈v, v〉. Then
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the Clifford algebra C�(V, q) is the k-algebra with unit defined as the quotient of the tensor

algebra

C�(V, q) =
∞⊕
j=0

V ⊗j
/

(v ⊗ v + q(v))

for v ∈ V ⊗1, q(v) ∈ k = V ⊗0. The multiplicative structure in C�(V, q) induced by the tensor

product is termed Clifford multiplication.

The Clifford algebra is universal amongst k-algebras A equipped with a linear map f : V → A
satisfying (fv)2 = −q(v) · 1,

V ��

��
∀f

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� C�(V, q)

��

∃! �f
A

.

The linear map α(v) = −v, for example, extends to a unique algebra homomorphism

α : C�(V, q) → C�(V, q)

which satisfies α2 = Id and induces a decomposition into (−1)j eigenspaces, j = 0, 1,

C�(V, q) = C�0(V, q) ⊕ C�1(V, q),

in which C�0(V, q) is in fact a subalgebra. A Clifford algebra also has a filtration

k = F 0 ⊂ V = F 1 ⊂ F 2 ⊂ F 3 ⊂ · · · ⊂ C�(V, q)

induced by the filtration on the tensor algebra. The associated graded algebra G∗ =
⊕

j≥0G
j

is defined by Gj = F j/F j−1. There is a canonical linear isomorphism

Λ∗V
∼=−→ C�(V, q)

which induces an algebra isomorphism on the associated graded algebra.

Definition 1.10 The groups Pin(V, q) and Spin(V, q) are both multiplicative subgroups of

C�(V, q) generated by unit vectors v ∈ V ,

Pin(V, q) = {v1 · · · vr; r ≥ 0, q(vj) = ±1 ∀j}
Spin(V, q) = {v1 · · · vr; r even, q(vj) = ±1 ∀j} = Pin(V, q) ∩ C�0(V, q).

These groups act on C�(V, q) via the adjoint and twisted adjoint representations

Adϕ(x) = ϕ · x · ϕ−1, Ãdϕ(x) = α(ϕ) · x · ϕ−1.
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Restricting the action to x ∈ V , the twisted adjoint representation induces surjective homo-

morphisms

Pin(V, q) −→→ O(V, q), Spin(V, q) −→→ SO(V, q),

to the orthogonal and special orthogonal groups with respect to the form q.

Consider now the special case of real or complex n-space V = kn with the canonical

inner product, and write C�n = C�(�n), � �n = C�(� n). The volume elements ω, ω� of

these algebras are defined in terms of the canonical basis by

ω = e1 · · · en, ω� = i�(n+1)/2� e1 · · · en.

Theorem 1.11 For all n ≥ 0 there is an isomorphism C�0n+1
∼= C�n and ‘periodicity’

isomorphisms

C�n+8
∼= C�n ⊗M16(�), � �n+2

∼= � �n ⊗� M2(� ).

The linear isomorphism C�n ∼= Λ∗� identifies the Clifford multiplication of v ∈ �n and

ϕ ∈ C�n in terms of the wedge v ∧ − : Λp� → Λp+1� and contraction v∗ : Λp� → Λp−1�,

v∗ ∈ (�n)∗,

v · ϕ = v ∧ ϕ− v∗(ϕ).

The twisted adjoint action of Spinn = Spin(�n) on x ∈ �n gives a non-trivial double cover

Spinn −→ SOn.

which is the universal cover if n ≥ 3.

Clifford modules

A representation of a Clifford algebra C�(V, q) is an algebra homomorphism

ρ : C�(V, q) → EndkM.

The vector space M is termed a Clifford module and the action of ϕ ∈ C�(V, q) is called

Clifford multiplication. Two representations are equivalent if there is a linear isomorphism

between the modules which commutes with the Clifford multiplication.

Let �n, �
�
n be the Grothendieck groups of irreducible C�n-modules and � �n -modules,

respectively; this is just the free abelian group generated by the irreducible representa-

tions. An arbitrary representation is decomposable as a direct sum of irreducibles and so

corresponds to an element of the Grothendieck group with positive coefficients. From the

periodicity isomorphisms of Theorem 1.11 it follows that

�n+8
∼= �n, ��

n+2
∼= ��

n .
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Proposition 1.12 Up to equivalence there is just one irreducible representation Wn of Cln
for n �≡ 3 (mod 4). For n ≡ 3 (mod 4) there are two irreducible Cln-modules W±

n given by

the splitting

Wn+1 = W+
n ⊕W−

n , W±
n = (1 ± ω)(Wn+1)

of the irreducible representation of C�n+1 into non-equivalent irreducible representations of

C�0n+1
∼= C�n. In the complex case there is a unique irreducible representation of � ln for n

even which splits into two non-equivalent representations for n odd.

Restricting an irreducible representation of C�n to Spinn ⊂ C�0 defines the real spinor

representation

∆n : Spinn −→ End�(Sn),

which is irreducible except for the case n = 4k when it splits into two non-equivalent irre-

ducibles,

∆4k = ∆+
4k ⊕ ∆−4k, S±4k = (1 ± ω)(S4k).

Analogously one defines the complex spinor representation

∆�
n : Spin�n −→ End� (S�n ),

which is irreducible for n odd and for n = 2m splits as

∆�
2m = ∆�

2m

+ ⊕ ∆�
2m

−
, S�2m

±
= (1 ± ω)(S�4k).

Definition 1.13 A C�n-module W is �2-graded if it splits as W = W 0 ⊕W 1 with

C�in ·W j ⊆ W i+j mod 2 for i, j ∈ {0, 1}.

A �2-graded module W is completely determined by the module W 0 over C�0n
∼= C�n−1

and we may identify �2-graded representations of C�n with ungraded representations of

C�n−1. The advantage of graded representations is that one can tensor �2-graded modules

V over C�m and W over C�n to obtain a �2-graded module V ⊗̂W over C�m+n
∼= C�m⊗̂C�n,

where

(V ⊗̂W )j = V 0 ⊗W j ⊕ V 1 ⊗W 1−j for j ∈ {0, 1}

with the Clifford multiplication (ϕ⊗ ψ)(v ⊗ w) = (−1)deg(ψ) deg(v)ϕv ⊗ ψw.

The Grothendieck groups �̂∗ of �2-graded representations are given the structure of

a graded ring with this tensor product, and similarly for the Grothendieck groups �̂�
∗ of

complex �2-graded representations.
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Clifford and spinor bundles

The Clifford algebra and module constructions above can be extended from vector spaces

with a quadratic form q to vector bundles E over a Riemannian manifold (M, g), where the

fibres of E have an inner product induced from g.

Recall that E is orientable if the first Stiefel–Whitney class w1(E) vanishes. If

wE : H0(On;�2) → H1(M ;�2)

is the connecting map defined by the fibration

On → PO(E) → M

of orthonormal frames in E, we can write w1(E) = wE(g1) where g1 generates H0(On;�2).

If w2(E) = 0 then the orientations correspond to elements of

H0(M,�2) ∼= ker(H0(PO(E);�2) → H0(On;�2)).

Given an orientation we can consider the bundle PSO(E) of positively oriented orthonormal

frames. Orientability is used to define Clifford algebras in this context.

Definition 1.14 The Clifford bundle of an oriented vector bundle E is given by

C�(E) = PSO(E) ×SOn C�n,

the bundle associated to the canonical action of SOn on C�(�n). Alternatively, it is a quotient

of the tensor product bundle

C�(E) =
∞⊕
j=0

E⊗j
/

(v ⊗ v + q(v)) .

There is a unique involution α of C�(E) extending v → −v on E and an eigenbundle

decomposition

C�(E) = C�0(E) ⊕ C�1(E).

Furthermore, one has a vector bundle isometry

Λ∗E
∼=−→ C�(E)

which identifies ΛevenE and ΛoddE with C�0(E) and C�1(E) respectively.

Definition 1.15 A spin structure on E is a double cover

PSpin(E) → PSO(E)

whose restriction to the fibre SOn of π : PSO(E) → X is non-trivial.
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The obstruction to the existence of a spin structure is the second Stiefel–Whitney class

w2(E). If

wE : H1(SOn;�2) → H2(M ;�2)

is now the connecting map defined by the fibration

SOn → PSO(E) → M

then w2(E) = wE(g2) where g2 generates H1(SOn;�2). If w2(E) vanishes then spin structures

correspond to elements of

H1(M,�2) ∼= ker(H1(PSO(E);�2) → H1(SOn;�2)).

Definition 1.16 A spin manifold is an oriented Riemannian manifold whose tangent bundle

admits a spin structure. The spin cobordism group ΩSpin
n is the abelian group generated by

compact connected n-dimensional spin manifolds modulo the relations [N1] + [N2] = 0 if

there is a spin and orientation preserving diffeomorphism N1 �N2 → δM for some compact

connected spin (n+ 1)-manifold M .

Spin structures are necessary to extend Clifford modules to vector bundles.

Definition 1.17 A real or complex spinor bundle of an oriented vector bundle E with spin

structure PSpin(E) → PSO(E) is an induced bundle

SW (E) = PSpin(E) ×Spinn
W,

where W is a C�n- or � �n -module. If W is �2-graded, then so is the spinor bundle.

The action of the Clifford algebra on W induces an action of bundles

C�(E) ⊕ SW (E) −→ SW (E).

Two spinor bundles are equivalent if they are equivalent as bundles of C�(E)-modules and

irreducible if the C�(Ex)-module at each fibre is irreducible. If E is a bundle over a connected

n-manifold, it follows from Proposition 1.12 that there is a unique irreducible spinor bundle

Sn(E), or S�n (E), unless n + 1 is divisible by 4, or by 2 in the complex case.

The irreducible spinor bundles S4k(E) and S�2m decompose as a direct sum of irreducible

C�0(E)-modules S±(E) or S±� (E), where

S±(E) = (1 ± ω)(S4k(E)) = PSpin(E) ×∆±
4k
S±4k,

S±� (E) = (1 ± ω� )(S�2m(E)) = PSpin(E) ×
∆�

2m
± S�2m

±
.

These correspond to the two irreducible �2-graded spinor bundles in these dimensions.
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Chapter 2

Some tools from algebraic topology

In this chapter we review some essentials from the theory of characteristic classes, cobordism

theory, and elliptic cohomology. In the first section we recall the definition of Hirzebruch

genera of elliptic type for manifolds with geometric structure. This is a broad (and fasci-

nating) field and we are by no means exhaustive in our presentation. We also recall the

definition of Devoto’s equivariant elliptic cohomology and its modularity properties.

We also discuss some approaches to ‘relative’ versions of the classical theory of characteris-

tic classes and multiplicative sequences, relating them to constructions in relative cobordism

and K-theory. Some aspects of the Pontrjagin–Thom construction for framed bordism, col-

lapse maps on disks and relative characteristic classes are reviewed for the benefit of the

forthcoming exposition.

2.1 Elliptic genera and cohomology theories

We begin by recalling the definitions of Hirzebruch genera and elliptic genera for various

cobordism rings of smooth manifolds with boundary and equipped with a fixed geometric

structure. We will concentrate on SO-structures, but the presentation can be easily adapted

to other geometric structures such as Spin, Spinc, U, SU or String. We will also concentrate

on the case of the classical level two elliptic genus, which is related to the signature operator.

We next recall the G-equivariant elliptic genus introduced by Devoto [Dev98], for G a

finite group of odd order, and the algebraic descriptions of the coefficient and cohomology

rings for the associated generalised cohomology theories, which will be relevant later for one

of our generalisations of the Atiyah–Patodi–Singer construction.

To avoid too much digression in this section we have omitted many interesting aspects of

the theory presented. These include a discussion of important genera of more general elliptic

type, such as the Witten genus, a Spinc elliptic Todd genus, and generalised Eisenstein

genera. Tamanoi’s description [Tam99] of elliptic genera in terms of vertex operator algebras

is also interesting for its relation to the Segal category and Virasoro bundles. In later work

we will also consider elliptic genera modulo n, for n an odd integer, since as was already seen

by [Dev96a] they give rise to invariants for �/n-manifolds in the sense of Sullivan, closely
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related to the invariants we consider. It will then be necessary to consider also the divided

congruence rings of [Kat75] and modular forms modulo prime ideals of [Lau99].

2.1.1 Classical elliptic genera and level 2 elliptic cohomology

Definition 2.1 A genus, in the sense of [Hir66], is a ring homomorphism from the oriented

bordism ring to a commutative � -algebra with unit,

φ : ΩSO
∗ → R.

In [Tho54], Thom showed that modulo torsion the bordism ring is generated by the

cobordism classes of the even-dimensional complex projective spaces. More explicitly, the

map [� P2k ] → x4k defines an isomorphism of graded rings

ΩSO
∗ ⊗ �[1

2
] ∼= �[1

2
][x4, x8, x12, . . . ].

A genus φ is uniquely determined by its values on these generators, and hence by the following

formal power series, termed the logarithm of the genus:

g(x) = x+
∑
k≥1

φ(�P2k )
x2k+1

2k + 1
.

Alternatively, a genus may be specified by

• a total Hirzebruch class P ∈ ∏i≥0H
i(BSO;R), or by

• a characteristic series

P (u) = 1 +
∑
k≥1

rku
2k

in
∏

i≥0H
i(� P∞ ;R) = R[[u]], u ∈ H2(� P∞).

These descriptions determine the genus by the formulas

φ(X) = P(TX)[X]

g−1(u) = u/P (u);

see [Gal96, HBJ92] for further details.

Definition 2.2 [Och87] An elliptic genus is a genus φ : ΩSO
∗ → R whose logarithm satisfies

g(x) =

∫ x

0

(1 − 2δt2 + εt4)−
1
2dt

for some δ, ε ∈ R.
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Two classical examples of elliptic genera are:

1. The genus φ : ΩSO
∗ → � defined by taking δ = −1

8
, ε = 0 and

g(x) =

∫ x

0

(1 − 1
4
t2)−

1
2dt = 2 sinh−1(x/2)

is the Â-genus. It has characteristic series P (u) =
u/2

sinh(u/2)
.

2. The genus φ : ΩSO
∗ → � defined by taking δ = ε = 1 and

g(x) =

∫ x

0

(1 − 2t2 + t4)−
1
2dt = tanh−1(x)

is the signature or L-genus. It has characteristic series P (u) =
u

tanh(u)
.

A universal elliptic genus is a genus Φ: ΩSO
∗ → � [δ, ε] where δ, ε are two algebraically

independent indeterminates; it is the unique ring homomorphism satisfying the formal power

series identity

(1 − 2δ x2 + ε x4)−
1
2 =

∑
n≥0

Φ(� P2n) x2n. (2.1)

The corresponding logarithm may be expressed as

g(x) =
∑
k≥0

Pn(δ/
√
ε)

x2k+1

2k + 1

in terms of the Legendre polynomials Pn(z).

By Quillen’s theorem [Qui69] the image ΦΩSO
∗ is generated by the coefficients of the

corresponding formal group law

F (x, y) = g−1(g(x) + g(y)) =
x
√

1 − 2δy2 + εy4 + y
√

1 − 2δx2 + εx4

1 − ε x2y2

where the second equality is Euler’s addition formula for the elliptic integral. Examining the

coefficients of the corresponding power series in x and y one concludes

Proposition 2.3 [LRS95] The universal elliptic genus defines a map

Φ: ΩSO
∗ → �[1

2
][δ, ε].
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2.1.2 Modularity

Let Γ0(2) be the subgroup of SL2(�) consisting of the matrices
(
a
c
b
d

)
with c even, and let

�+ = {τ ∈ � ; im(τ) > 0 } be the upper half plane on which Γ0(2) and SL2(�) act by Möbius

transformations: (
a

c

b

d

)
(τ) =

aτ + b

cτ + d
.

The group Γ0(2) has fundamental domain {τ : |Re(τ) − 1
2
| ≤ 1

2
, |τ − 1

2
| ≥ 1

2
} and cusps

τ = i∞ and τ = 0.

Definition 2.4 A modular function of weight k ≥ 0 for Γ0(2) is a meromorphic function

ϑ : �+ → � such that

1. ϑ
(
aτ+b
cτ+d

)
= (cτ + d)kϑ(τ) for all

(
a
c
b
d

) ∈ Γ0(2), τ ∈ �+,

2. ϑ is meromorphic at both cusps; that is, the functions ϑ(τ) and ϑ′(τ) = τ−kϑ(−1/τ)

may be written

ϑ(τ) =
∑
r≥K

ar q
r, ϑ′(τ) =

∑
r≥K

br q
r/2, q = e2πiτ ,

for some K ∈ �. These are termed the q-expansions of ϑ at the cusps τ = i∞, 0.

A modular form is a modular function which is holomorphic on �+ and at τ = i∞, 0.

Since −(1
0

0
1

) ∈ Γ0(2), the first property says the weight is always even. Since
(

1
0

1
1

)
,
(

1
2

0
1

) ∈
Γ0(2) we have ϑ(τ + 1) = ϑ(τ) and ϑ′(τ + 2) = ϑ′(τ) and so the q-expansions make sense.

Landweber and Stong [LS88] and Zagier [Zag88] have shown that the universal elliptic

genus may be regarded as taking modular forms as values:

Proposition 2.5 There is a universal elliptic genus Φ: ΩSO
∗ → � [[q]] whose values on bor-

dism classes [X4k] are the q-expansions at τ = i∞ of modular forms of weight 2k on Γ0(2),

with the values of δ and ε given by

δ = −1

8
− 3

∑
n≥1

( ∑
d odd, d|n

d

)
qn, ε =

∑
n≥1

( ∑
n
d

odd, d|n
d3

)
qn, with q = e2πiτ .

The corresponding characteristic series may be expressed as

P (u) = exp

(∑
k≥1

2 G̃2k(τ) u
2k

(2k)!

)
=

u/2

sinh(u/2)

∏
n≥1

(
(1 − qn)2

(1 − qneu)(1 − qne−u)

)(−1)n

where G̃2k are related to the classical Eisenstein modular forms G2k by

G̃2k(τ) = −G2k(τ) + 2G2k(2τ).
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Later in this thesis it will sometimes be convenient to identify modular forms for Γ0(2) with

their q-expansions at the other cusp. The corresponding characteristic series P ′ is then given

by P ′(τ, u) = P (−1
2τ
, u
τ
), or explicity:

P ′(u) = exp

(∑
k≥1

4G∗2k(τ) u
2k

(2k)!

)
=

u/2

tanh(u/2)

∏
n≥1

(1 + qneu)(1 + qne−u)
(1 − qneu)(1 − qne−u)

· a(q) .

Here G∗2k(τ) = G2k(τ) − 22k−1G2k(2τ) and the normalising factor a(q), necessary so that

P ′(0) = 1, may be written in terms of the Dedekind η-function as

a(q) = η(q)4η(q2)−2, where η(q) = q1/24
∏
n≥1

(1 − qn).

The q-expansions of the parameters δ, ε at this cusp are

δ =
1

4
+ 6

∑
n≥1

( ∑
d odd, d|n

d

)
qn, ε =

a(q)4

16
=

1

16
+
∑
n≥1

(∑
d|n

(−1)dd3

)
qn.

With motivation from physics, and assuming that the manifold X has a spin structure,

Witten [Wit88] has shown that P ′ may be considered as giving an expression for the S1-

equivariant index of the Dirac–Ramond operator on an infinite-dimensional manifold of free

smooth loops on X. This ‘explains’ why modular forms arising as genera of spin manifolds

always have q-expansions with integer coefficients.

The elements δ, ε are algebraically independent modular forms of weight 2 and 4 respec-

tively and in fact generate the ring of modular forms for Γ0(2). In [LRS95] it is shown

that the image �[1
2
][δ, ε] of Φ is precisely the subring of modular forms whose q-expansion

coefficients at τ = i∞ lie in �[1
2
]. It is also shown that on inverting the discriminant

∆ = ε(δ2 − ε)2

of the Jacobi quartic y2 = 1 − 2δx2 + εx4, the ring �[1
2
][δ, ε][∆−1] coincides with the mod-

ular functions with q-expansion coefficients in �[1
2
] which are holomorphic on �+ but not

necessarily at the cusps.

2.1.3 Elliptic cohomology theories and the Miller character

For every element ω of positive degree in �[1
2
][δ, ε] there is a functor defined on CW-complexes

by

(E��ω)∗(X) = MSO∗(X) ⊗ΩSO∗ �[1
2
][δ, ε, ω−1].

As proved in [LRS95] and [Fra92], this functor satisfies the axioms of a generalised homology

theory, since after inverting ω the Landweber Exact Functor Theorem applies. The dual
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cohomology theory, defined using the Spanier–Whitehead duality operator, may be expressed

when X is a finite CW-complex as

(E��ω)∗(X) = MSO∗(X) ⊗Ω∗
SO
�[1

2
][δ, ε, ω−1].

For the usual choice of ω = ∆ = ε(δ2 − ε)2 we write simply E��∗(X).

The Miller character, defined in [Mil89], is a natural transformation of multiplicative

cohomology theories of the form

λ : E��∗ → KO∗[1
2
][[q]].

The importance of the Miller character is that the composite

E��∗ λ−→ KO∗[1
2
][[q]]

c−→ K∗[1
2
][[q]]

ch−→ H∗� [[q]] (2.2)

defined via the complexification c from KO- to K-theory and the Chern character from

K-theory to ordinary cohomology, is closely related to the elliptic genus.

In the case X = pt, the Miller character on the coefficient rings is just the graded ring

homomorphism

�[1
2
][δ, ε][∆−1]

λ∗−→ �[1
2
][v2][[q]]

ϑ(τ) → v2k ϑ̃(q)

which sends a modular function ϑ(τ) of weight 4k to its q-expansion at the cusp τ = i∞; in

particular the images of δ and ε are the formal power series given in described in Proposi-

tion 2.5. Here v2 = y is the usual generator for KO[1
2
]-theory, in degree 4.

For X = � P∞ we have the complex orientation class xE ∈ E��2(� P1), with

E��∗(� P∞) ∼= E��∗[[xE ]],

and the Miller character is determined by its value tKE (x
E) on xE ,

tKE (xε) = xK
∏
n≥1

(
1 − qnv2(xK)2

(1 − qn)2

)(−1)n

.

On applying the Chern character to the complexification we obtain

ch
(
tKE (xε)

)
=
(
e

x
2 − e

−x
2

)∏
n≥1

(
1 − qnv2 (ex + e−x − 2)

(1 − qn)2

)(−1)n

which is just the class x/P (x) where P is the characteristic series for the elliptic genus given

in Proposition 2.5.

In fact this series corresponds to the q-expansion of the Jacobi elliptic sine sE

ch
(
tKE (xε)

)
= sE (τ, x) = (℘ (τ, x) − eε (τ))−

1
2

32



which is known to be a Jacobi meromorphic form of weight −1 and index 0. From the

general theory of Hirzebruch genera [Hir66], computation of the universal elliptic genus of

any projective space � P2k involves only taking derivatives and evaluation, and in general we

may identify the modular forms obtained with Jacobi forms of index 0:

E��∗ (� P∞) ∼= E��∗ [[xε]] ↪→ J mer
∗,0

(
Γ0(2);�[1

2
]
)
.

In terms of theta functions we may also write

sE(τ, x)−1 = ε
1
4

ϑ( 1
2
,0)
(
τ, x

2πi

)
ϑ( 1

2
, 1
2)
(
τ, x

2πi

) ;
see [Dev96b, EZ85] for more details.

2.1.4 Equivariant elliptic cohomology

In [Dev98], Devoto showed that for any finite group G of odd order one may define a sta-

ble G-equivariant cohomology theory on finite G-CW-complexes, termed equivariant elliptic

cohomology, by

E��∗G(X) = MSO∗G(X) ⊗MSO∗
G

E��∗G (2.3)

where MSO∗G is �-graded oriented equivariant cobordism theory [CW89]. The graded ring

E��∗G = E��∗G(pt) is related to the moduli space of G-coverings of Jacobi quartics, and comes

equipped with a universal twisted elliptic genus

ΦG : MSO∗G −→ E��∗G. (2.4)

This is the G-equivariant version of the definition of ordinary elliptic cohomology by

E��∗G(X) = MSO∗(X) ⊗MSO∗ E��∗

where the coefficient ring E��∗ ∼= �[1
2
][δ, ε][∆−1] is the graded ring of modular functions which

are holomorphic away from the cusps and have q-expansion coefficients in �[1
2
], as above. If

X has a free G-action, then E��∗GX will be isomorphic to E��∗(X/G) ⊗ �
[

1
|G|

]
.

For the equivariant case, Devoto makes an appropriate generalisation of the notion of

“modular form”. Let TG = { (x, y) ∈ G2 ; [x, y] = 1 } be the set of pairs of commuting

elements of G. Then the usual action of Γ0(2) on �+ as usual and the conjugation action

of G on TG are are combined to give actions ρk of Γ0(2) × G on the ring of functions

ϑ : TG× �+ → � ,

ρk(A, g)ϑ : ((x, y), τ) −→ (cτ + d)−k ϑ
(

( gxdy−cg−1, gx−byag−1),
aτ + b

cτ + d

)
(2.5)

for k ∈ �, A =
(
a
c
b
d

) ∈ Γ0(2), g ∈ G and ((x, y), τ) ∈ TG× �+.

We write ζj for the primitive jth root of unity e2πi/j ∈ � .
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Definition 2.6 The graded ring E��∗G =
⊕ E��−2k

G is the ring of functions ϑ : TG×�+ → �
satisfying the following conditions, for some k ∈ �:

1. ρk(A, g)ϑ = ϑ for all (A, g) ∈ Γ0(2) ×G,

2. for each (x, y) ∈ TG the function ϑ((x, y), τ) is holomorphic, and is meromorphic at

the cusps; that is, the functions ϑ((x, y), τ) and ϑ′((x, y), τ) = τ−kϑ((x, y),− 1
τ
) have

q-expansions

ϑ((x, y), τ) =
∑
r≥K

ar q
r/|x|, ϑ′((x, y), τ) =

∑
r≥K

br q
r/|x|, q = e2πiτ , (2.6)

for some K ∈ �,

3. the coefficients ar(x, y), br(x, y) lie in �
[

1
2
, 1
|G| , ζ|xy|

]
and satisfy

σn(ar(x, y)) = ar(x, y
n), σn(br(x, y)) = br(x, y

n) (2.7)

for σn a ring automorphism of �
[

1
2
, 1
|G| , ζm

]
given by σn(ζm) = ζm

n for any n coprime

to m, where m is the order of the centraliser CG(x).

The third condition says that for each x ∈ G the coefficient functions ar(x,−), br(x,−) :

CG(x) → � are elements of R(CG(x)) ⊗ �[1
2
], where R(CG(x)) is the character ring of the

centraliser.

In Devoto’s papers [Dev96a, Dev96b, Dev98], the identification of coefficient rings E��∗G
as modular forms ones is extensively developed. We will give a partial account only without

introducing the formalism of schemes, but instead by applying the following result by Eichler

and Zagier [EZ85].

Theorem 2.7 Let φ be a Jacobi form on Γ of weight k and index m and λ, µ rational

numbers. Then, the function

f (τ) = e2πiλ
2τφ (τ, λτ + µ)

is a modular form of weight k and on some subgroup Γ′ of finite index depending only on Γ

and on λ, µ. In particular, for λ = µ = 0, f (τ) is a modular form for Γ.

According to the description in the proof of this theorem, the group Γ′ can be written

explicitly as

Γ′ =
{(

a b

c d

)
∈ Γ : (a− 1)λ+ cµ, bλ+ (d− 1)µ,m(cµ2 + (d− a)λµ− bλ2) ∈ �

}
and hence this group contains Γ∩Γ

(
N2

(N,m)

)
if N (λ, µ) ∈ �2. We are interested in particular

in generalised Jacobi forms and functions coming from the Weierstrass ℘ function, for which

one obtains the Teilwerte [Ogg69]

f (ω1, ω2, N, a1, a2) = ℘
(
a1
ω1

N
+ a2

ω2

N
,ω1, ω2

)
,

which is a modular form of weight 2 and level N , for a given lattice (ω1, ω2) and integers N ,

(a1, a2) �= (0, 0).
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2.2 Relative cobordism theories and classes

In this section we review some fundamental constructions from cobordism theory and the

related differential topology. We recall the notions of cobordism categories and (B, f)-

constructions, and we describe their ‘relative’ versions, especially for the case of relative

cobordism of oriented (or almost complex manifolds) with framed boundary.

We discuss the Pontrjagin–Thom construction and Kervaire’s account of relative Chern

classes. The corresponding relative multiplicative sequences turn out to be just reduced mul-

tiplicative sequences, leading to relative characteristic numbers following Stong’s definition.

2.2.1 Relative characteristic classes

We recall Kervaire’s account of relative characteristic classes in ordinary cohomology [Ker57]

and summarise their properties.

Definition 2.8 Let

B =
(
EU(n), p, BU(n),U(n)

)
be the classifying bundle for U(n). Suppose that a cross section θr over a closed subset A of

BU(n) is given in the associated bundle

Br =
(
EU(n), p, BU(n),U(n),Wn, n−r

)
with fibre Wn, n−r, the complex Stiefel manifold of n − r complex vectors in � n . Then, for

j ≥ r, the relative Chern classes

cRj (Br) ∈ H2(j+1)
(
BU(n), A;�

)
corresponding to the cross section θr will be defined by the properties:

1. For the natural homomorphism a∗ : H∗
(
BU(n), A;�

) → H∗
(
BU(n);�

)
induced by the

inclusion a :
(
BU(n), 0

) → (
BU(n), A

)
one has

a∗
(
cRj+1 (Br)

)
= cj+1 (Br)

the usual (i.e., absolute) Chern classes.

2. For the homomorphism ρ∗j,n : H∗
(
BU(n), A;�

) → H∗
(
BU(j), θ

jA;�
)

induced by the

Borel map ρ (U(j),U(n)) one has

ρ∗j,n
(
cRj+1 (Br)

)
= 0.
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Consider the diagram

· · · Hj
(
BU(j);�

) → Hj (θjA;�)
δ→ Hj+1

(
BU(j), θ

jA;�
) a∗→ Hj+1

(
BU(j);�

) · · ·
↑α∗ ↑θ∗ ↑ρ∗j,n

↑α∗

· · · Hj
(
BU(n);�

) → Hj (A;�)
δ→ Hj+1

(
BU(n), A;�

) a∗→ Hj+1
(
BU(n);�

) · · ·
Then α∗ is an epimorphism in every dimension and a monomorphism in dimensions not

exceeding j. As a consequence it follows that if ρ∗j,nz = 0 and a∗z = 0 for some z ∈
H∗
(
BU(n), A;�

)
, then z = 0.

Kervaire goes on to prove the existence of cohomology classes with the required properties

as follows: given a cross section in A over Br, the restriction of cj+1 (Br) to A will be zero.

Let cj+1 (Br) = a∗x, then since 0 = α∗a∗x = α∗ρ∗j,nx we have ρ∗j,n (x) = δθ∗−1y for some

y ∈ Hj (A;�).

Thus, the two properties together define the relative Chern classes uniquely for the clas-

sifying U(n) bundle.

Now consider the more general case of a U(n) bundle over some compact finite dimensional

space X induced by some map g : X → BU(n) and let

Br = (Er, p,X,U(n),Wn,n−r)

be the associated bundle with fibre Wn, n−r, and consider a cross section

θr : A → Er

given over the closed subset A in X. We may assume that there exists an injective map

f : X → BU(n) homotopic to g, and denote the bundle induced by f (equivalent to that

induced by g) also by Br.

Let S be a closed subset in BU(n) containing f (A) and such there that exists a cross

section ψ : S → BU(r) in Br with the property ψ (a) = f (θ (a)) where f : Er → BU(r) is

the bundle map covering f . Let cRj+1 (Br) be the (j + 1)-dimensional relative Chern class

of the classifying bundle mod (S) obtained using the cross section ψ, j ≥ r. and define

the relative Chern class of dimension 2 (j + 1), defined for j ≥ r, mod (A) of the bundle

(E, π,X) corresponding to the cross section θr by

f ∗
(
cRj+1 (Br)

)
= cRj+1 (Er) .

Kervaire proves that f ∗
(
cRj+1 (Br)

)
depends only on the homotopy class of g and on θr. More

precisely, one has [Ker57, 11.4]

Lemma 2.9 Let (E, π,X) be a U(n)-bundle and (E ′, π′, X ′) the U(n)-bundle induced by

some map g : X ′ → X. We denote by cRj+1 (E), cRj+1 (E ′) the corresponding 2 (j + 1)-

dimensional relative Chern classes of those bundles, respectively, modulo closed sets A ⊂ X,

A′ ⊂ X ′ such that g (A′) ⊂ A and corresponding to cross sections θ, θ′, such that g (θ′ (a)) =

θ (g (a′)) in the associated bundles with fibre Wn, n−r, j ≥ r. Then, cRj+1 (E) = cRj+1 (E ′).
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Let B1 and B2 be two principal bundles with bundle groups U(n1) and U(n2) respectively,

over the same base space X and let θr1 , θr2 be cross sections over closed subsets A1, A2 of X

in the associated bundles Br1
1 and Br2

2 with fibres Wn1, n1−r1,Wn2, n2−r2 , respectively. Then

θr1 , θr2 determine a cross section θr, r = r1+r2, over A = A1 ∩A2 in the bundle Br1 with fibre

Wn, n−r, n = n1 +n2 associated to the Whitney sum B = B1 ⊕B2. Let cRj+1 (B1) , c
R
j+1 (B2) be

the relative Chern class of B1,B2, defined for j ≥ r1, r2, respectively, and let cRj+1 (B) be the

relative Chern class of B, defined for j ≥ r. For the relative Chern classes, Whitney duality

takes the form

cRj+1 (Br) = cRj+1 (B1) + · · · + cRj (B1) c1 (B2) + · · · + cRj+1 (B2)

where some absolute Chern classes occur. However, since each product contains at least one

relative class, it is itself a relative class.

2.2.2 Relative multiplicative sequences

Let K be a multiplicative sequence in the sense of [Hir66] in Chern classes of bundles. Denote

by
∼
K the corresponding reduced classes, defined as follows. For a bundle ξ,

K• (ξ) = 1+
∼
K• (ξ) .

Because of the multiplicativity of K, one has

K• (ξ1 ⊕ ξ2) = K• (ξ1) · K• (ξ2)

1+
∼
K• (ξ1 ⊕ ξ2) =

(
1+

∼
K• (ξ1)

)
·
(
1+

∼
K• (ξ2)

)
and hence

∼
K• (ξ1 ⊕ ξ2) =

∼
K• (ξ1)+

∼
K• (ξ2) +

∼
K• (ξ1)

∼
K• (ξ2) .

Now, if one considers relative characteristic classes in the sense of Kervaire as described

before, in the particular case of r = 0, then θ0 will determine further relative characteristic

classes given by

∼
K• (ξ1) = KR

• (ξ1) .

Hence

KR
• (ξ1 ⊕ ξ2) = KR

• (ξ1) + KR
• (ξ2) + KR

• (ξ1) KR
• (ξ2) .
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2.2.3 The relative cobordism description

We recall now some facts from cobordism theories. We refer the reader to [Sto68] or [CF66]

for further details.

A parallelism is a trivialisation of the tangent bundle. A framing means a trivialisation

of the stable normal bundle and up to homotopy this is equivalent to a trivialisation of the

stable tangent bundle.

If Nn is a differentiable manifold and τ its tangent bundle, the stable tangent bundle is

τs = τ ⊕ (2k − n) , 2k − n ≥ 2.

By Whitney’s theorem every manifold admits an embedding into some �N as a submanifold,

so that

τ ⊕ ν = τ�N

and it follows that the existence of framings for tangent and normal stable bundles are

equivalent.

Definition 2.10 A stable framing θ of Nn is a homotopy class of maps ϕ : Eτs → �2k
Mm

each of which maps every fibre of τs onto �2k linearly. Here �2k
Mm denotes the total space

of the trivial real 2k-dimensional vector bundle over Mm. It is independent of k as long as

2k − n ≥ 2.

A (normally) framed n-submanifold of an m-manifold M is a submanifold N with a given

framing f : νNM ∼= N × �m−n of the normal bundle.

Definition 2.11 Two framed n-submanifolds (Nj , fj) are bordant is there is a framed (n+1)-

submanifold (B, h) of [0, 1]×M with ∂B = {0}×N0 ∪{1}×N1, ∂h = f0 ∪f1. For m−n ≥ 2

the bordism classes [N, f ] of framed n-submanifolds of M form an abelian group Ωfr
nM .

In particular, one considers the special case M = Sm and we write

Ωfr
m,n = Ωfr

nS
m.

Freudenthal’s Theorem and the Pontrjagin–Thom construction tell us the following:

Theorem 2.12 There is a commutative diagram of group homomorphisms, in which the

vertical maps are all isomorphisms and the horizontal maps are isomorphisms for k ≥ n+2,

Ωfr
n+2,n

��

∼=

��
i2 Ωfr

n+3,n

��

∼=

��
i3 Ωfr

n+4,n

��

∼=

�� · · · �� Ωfr
n+k,n

��

∼=

��
ik
∼= Ωfr

n+k+1,n

��

∼=

�� · · ·

πn+2S
2 ��

s2
πn+3S

3 ��
s3

πn+4S
4 �� · · · �� πn+kS

k ��
sk

∼= πn+k+1S
k+1 �� · · ·
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There are therefore isomorphisms between the framed bordism groups Ωfr
n = lim

−→ k
Ωfr
n+k,n and

the stable homotopy groups of spheres,

Ωfr
n

∼= πs
n = lim

−→
k

πn+kS
k.

In this theorem the maps sk are given by suspension, and ik[N, f ] = [N, f × �] since for

N ⊂ Sm one can identify the normal bundle in Sm+1 as the normal bundle in Sm plus a copy

of the trivial line bundle. The vertical maps are the Pontrjagin–Thom construction, which

uses transversality arguments in differential topology; in general Ωfr
nM

n+k ∼= [Mn+k, Sk],

identifying framed n-submanifolds of Mn+k with the zero-sets of maps f : Mn+k → Sk which

are smooth on a neighbourhood of f−1(0) and have 0 as a regular value.

Definition 2.13 The J-homomorphism is the map

J : πn(O(k)) → Ωfr
n+k,n

∼= πn+kS
k

defined by twisting the normal framing of Sn in Sn+k by a representation of Sn in the

orthogonal group of the fibre. The stable J-homomorphism J : πn(O) → πs
n is given by

taking lim
−→k

.

Other bordism theories (G, f) are constructed by requiring further structure on the nor-

mal bundle of a smooth manifold. Let G be a sequence of topological groups Gn with

compatible maps Gn → O(n). For example, Gn = O(n), SO(n), Spin(n), U(n/2) will give

ordinary, oriented, spin and complex bordism theories respectively. The stable bordism group

ΩG
n (X) is the group of bordism classes of n-submanifolds of Sn+k with maps to X and stable

G-structures on the normal bundle. The Pontrjagin–Thom construction generalises to give

isomorphisms

ΩG
n (X) ∼= MGn(X)

where MG is the Thom spectrum of G, with MGn = D(EGn)/S(EGn) the Thom space of

the principal G-bundle EGn → BGn, and

MGn(X) = lim
−→
k

πn+k(X+ ∧MGk).

In the case of framed cobordism one takes Gn = 1 for all n, and MG is then the sphere

spectrum.

An important point for us to recall is how every stable framing θ of Nn defines a U-

structure. For given ϕ : Eτs → �2k
Mm , the natural operator J : �2k → �2k given by

J (x1, x2, . . . , x2k−1, x2k) = (−x2, x1, . . . ,−x2k, x2k−1)

pulls back to an operator

J : Eτs → Eτs

39



representing a U-structure θU on Nn. This leads to a homomorphism

r : Ωfr
n → ΩU

n

by

[Nn, θ]fr −→ [
Nn, θU

]
U
.

It is clear that, for n > 0, Ωfr
n finite and ΩU

n free abelian implies that r = 0. So, given a closed

stably framed manifold Nn with n > 0, then Nn is as well an U-manifold, and one such that

[Nn]U = 0. Hence, there exists a compact U-manifold Mn+1 with ∂Mn+1 = Nn. So, from

now on we are going to consider such pairs (Mn+1, Nn), or, more precisely, (Mn+1, Nn, π),

where π = ∂θ, from θU. Such a triple is a (U-fr)-manifold.

Consider τs the stable tangent bundle of (Mm, ∂Mm) , which is a bundle of k-dimensional

complex vector spaces and one with a trivialisation on its restriction to the boundary: we

are given an isomorphism

ϕ |∂Mm : E(τs|∂Mm ) → �2k
|∂Mm .

Recall the definitions for difference elements in K-theory by Atiyah (see [APS75II]

or [LM89]). The isomorphism ϕ |∂Mm determines a difference class

d (τs, k, ϕ) ∈ K (Mn, ∂Mn)

which is denoted as the stable tangent bundle of the (U-fr)-manifold Mn. Sometimes, how-

ever, we will denote this element as

τ = τ (M, ∂M) ∈ K (Mn, ∂Mn) .

For any (G, f)-theory, there is an exact couple

Ωfr
∗ → ΩG

∗
↖ ↙

ΩG, fr
∗

where ΩG, fr
∗ are the relative cobordism groups of manifolds with a G structure whose boundary

is given a framing. So, the construction can be performed for G = SO, Spin, Spinc etc, but

it turns out that the simplest statement comes out by using

Ωfr
∗ → ΩU

∗
↖ ↙

ΩU, fr
∗

because in that case for every n > 0, one obtains a short exact sequence

0 → ΩU
∗ → ΩU, fr

∗ → Ωfr
∗ → 0
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and elements in ΩU, fr
∗ are called cobordism classes of (U, fr).

If M is a (U-fr)-manifold as described above, then it has Chern classes, which we may

write as

ck (M) = ck (τ) ∈ H2k (Mn, ∂Mn)

as defined in [CF66, p. 93]. Then, we may define the Chern numbers of a compact (U-fr)-

manifold by

cI
(
M2n

)
= ci1 · · · ciχ

[
M2n

]
=〈

ci1 (M) · · · ciχ (M) , σ (M)
〉
,

where

σ (M) ∈ Hn (Mn, ∂Mn)

denotes the orientation class of Mn, Mn being compact. For convenience we remember the

definition for the Chern classes of a vector bundle.

The relative characteristic numbers so obtained may be seen to be consistent with what

is obtained using Kervaire’s description using the more general Stong’s definitions for quite

general theories as explained in [Sto68, p. 32].

Given fibration sequences

B
h→ B

f→ BO

one may think of

y ∈ H∗(B,B;A
˜
)

as a relative characteristic class, by means of the following procedure. Let M be a (B, f)-

manifold with
(
B, f ◦ h) a structure on its boundary ∂M . In that case, one has defined a

relative characteristic number

y [M, ∂M ] ∈ H∗(pt;A
˜
)

since the normal map gives (M, ∂M) → (
B,B

)
.

From the algebraic topology point of view, a very interesting feature of such numbers

is that they are relative cobordism invariants. To prove it, Stong uses the fact one may

suppose by additivity that there is a (B, f)-manifold W with ∂W = M ∪ (−U) joined along

∂M ∼= ∂U , with U a
(
B, f ◦ h)-manifold and so one obtains the sequence

(W, ∂W )
d−→ Σ (∂W/�)

Σj−→ Σ (∂W/U)
Σp←− Σ (M/∂M)

which gives out

p∗ [M, ∂M ] = j∗∂ [W, ∂W ]
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by the orientation assumption in the decomposition of ∂W and y (M, ∂M) = p∗q∗y (W,U)

where

(M, ∂M)
p→ (∂W,U)

q→ (W,U)

and

y [M, ∂M ] = 〈q∗y, j∗∂ [W, ∂W ]〉 = 〈δj∗q∗y, [W, ∂W ]〉 .

However, from the exact sequence of the triple (W, ∂W,U) the composition

H∗ (W,U)
q∗→ H∗ (∂W,U)

p∗→ H∗ (M, ∂M)

is zero, and hence

y [M, ∂M ] = 0.

Observe as well that taking B = �, this reduces to the closed case.

2.2.4 The case of the disk bundles

Suppose we are given Mn a compact smooth orientable manifold with boundary ∂Mn, with

a class x ∈ K (Mn, ∂Mn) such that the composition K (Mn, ∂Mn) → K̃ (Mn) → KO (Mn)

maps x into the class of the stable tangent bundle in KO (Mn). Then x can be used to give

to τs, the stable tangent bundle of (Mn, ∂Mn), the structure of a complex vector bundle

and one with a trivialisation on its restriction to the boundary. That amounts to give a

(U-fr)-manifold structure (not in a unique way!) such that τ (M, ∂M) = x ∈ K (Mn, ∂Mn).

This will give cHk (x) = cHk (M) with the definitions in [CF66].

All this may be applied to (D2n, S2n−1). In this case, there is a class x ∈ K (D2n, ∂S2n−1)

such that 〈
cHk (x) , σ

(
D2n

)〉
= (n− 1)!

This can be seen by considering ξ a complex vector bundle arising from the principal spin

bundle on S2n determined by any of the half spin irreducible representations of Spin (2n), so

that
〈
cHk (ξ) , σ (S2n)

〉
= (n− 1)! and then considering its pullback under the collapse map

c : D2n � D2n/S2n−1 ∼ S2n topologically and using the naturality of the Chern classes. We

are allowed to consider x = [c∗ (ξ)] as an element in K (D2n, ∂S2n−1) giving the class of τs,

since K̃O (Mn) = 0 in this case and hence the short exact sequence

K (Mn, ∂Mn) → K̃ (Mn) → K̃O (Mn)

is in fact

K (Mn, ∂Mn) → K̃ (Mn) → 0
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so any nontrivial element in it will be suitable to become a stable tangent bundle for the

disk. Anyway, we are allowed to take D2n as a (U-fr)-manifold with τ = x. Hence, cobordism

theory ensures the existence of a compact (U-fr)-manifold D2n with cHk [D2n] = (n − 1)! and

all the other Chern numbers are zero because of vanishing of all non-extreme-dimensional

cohomologies in D2n.

According to [Smi71, p. 241], the results from applying ∂∗ to such cells give us an element

in Ωfr
2n−1 = πs

2n−1 which is a generator for the image of

J� : π2n−1 (U) → πs
2n−1.

The usual generator σ ∈ K (S2n) (see for instance [LM89] or [ABS64]) corresponds to the

spin bundle before described and for it one has

cn (σ) = (n − 1)!ι2n ∈ H2n
(
S2n;�

)
where ι2n is the corresponding usual generator for cohomology. Use of the Chern character

tells us then that

ch (τ) = e2n ∈ H2n
(
D2n, S2n−1;�

)
.

Now, for µ ∈ K (D2n, S2n−1) the element corresponding to σ, one has

cn (σ) = (n − 1)!e2n ∈ H2n
(
D2n, S2n−1;�

)
and, since K̃O (D2n) = 0, we may choose µ as a stable tangent bundle for (D2n, S2n−1),

providing it with the required structure of a (U-fr)-manifold. TheK-theoretical characteristic

numbers as described in Stong are computed by [Smi71, p. 242]. For H ∈ K (S2) the

canonical line bundle, we have σ2 = H − 1.

As a consequence, an (SO-fr)-manifold structure on D4k exists such that the Newton

characteristic numbers are

sk
[
D4k

]
= (−1)k kpk

[
D4k

]
= (2k)!

Consider now
(
S4k−1, f

)
any framed sphere of dimension 4k − 1. The Pontrjagin and

Stiefel–Whitney classes of S4k−1 vanish, so there is a compact oriented disk manifold D4k

with ∂D4k = S4k−1, and a Riemannian one such that on a neighbourhood of the boundary the

metric on the disk is the product metric from the one induced on the sphere by considering

the given framing as orthonormal. Since S4k−1 is framed, the tangent bundle of D4k is pulled

back from a bundle on the quotient space D4k/S4k−1, which in this very special case happens

to be a smooth manifold itself, an S4k. This allows one to define the Pontrjagin classes of

D4k as relative classes pi ∈ H4i
(
D4k, S4k−1

)
and to see them as elements in the reduced

cohomology group H̃4i
(
S4k
)
.

In fact, there is as choice for
(
D4k, S4k−1, f0

)
such that D4k is the unit ball in � 2k ,

so an almost complex manifold with boundary M = S4k−1, and in fact the almost complex

43



structure is a product near the boundary, as may be seen recalling that the almost complex J0

considered on � 2k commutes with dilations and with the mapM×I → B via (m, t) −→ e−tm.

One knows as well that this complex manifold
(
� 2k , J0

)
is Kähler. Other related to non-

Kähler structure and Hopf manifolds. In fact, so considered the disks are Kähler manifolds

and hence have no torsion. This case is neither the one we want, but it is different from the

usual Riemannian structure.

One considers in S3 the standard parallelism π0, i.e., induced by considering S3 as the

unit quaternions in � . Then, one has a relative Pontrjagin number p1 (D4, π0) given on D4

by the parallelism π0 on its boundary S3. Atiyah–Patodi–Singer observe in [APS75II, p. 425]

that this is the same as the Pontrjagin number of the standard 4-dimensional bundle over S4

(underlying the quaternionic Hopf bundle) and is hence equal to −2 (sign may vary because

of chosen orientation); cf. [Sto68].

Namely, if λ� is the canonical quaternionic (also called symplectic in the old sense,

[CF66, p. 95]) line bundle over S4 ∼= � P1, with total space Eλ� and associated sphere

bundle S (λ� ) ∼= S7, with fibre S3, giving in this case the Hopf fibration. So, in that case

S3 ↪→ D4 ↪→ �4 ∼= � and the pullback bundle of λ� by the collapse map c : (D4, S3) � S4

c∗ (λ� ) over the disk has a non-vanishing section over S3 given by the parallelism. This is how

they correspond one to each other. Remark that this construction gives us τUD
4 = c∗ (λ� ),

a bundle over D4. The connection should be one agreeing with the one already given on

the boundary and which goes to the one for λ� (the instanton bundle) giving the right

classes. We know that classes for bundles on S4 are invariant in many ways. Any bundle

has a connection and the classes known can be seen and given by the curvature. The reason

why we care about all this is the use we will do in the next chapters of constructions in

the style of the one which follows: Let (W,X, f) be a Riemannian manifold with boundary,

oriented, so that [(W,X, f)] ∈ ΩSO, fr∗
[

1
2

]
. Then, as such a manifold, its tangent bundle τW

can be considered as the pullback of (the K-class of) some bundle ξW/X on the quotient

space W/X. Usually, this space will not be a manifold, but it is in very important cases:

namely, for [(W,X, f)] = [(Dn, Sn−1, π)], where Dn/Sn−1 ∼= Sn. Work of [Smi71] and others

shows that those disks essentially generate the groups ΩSO, fr∗
[

1
2

]
.

However, since unless the boundary of W be connected, W/X would not be a manifold

for sure and the collapsing map will fail to be smooth at least at the boundary points as soon

as it has more than a connected component. This may be not relevant from the point of view

of homotopy classes of bundles, but it will certainly be when considering the construction

from a differential-geometric point of view. The most illustrative example will certainly be

the collapse map from the disk to the sphere by collapse of the boundary as described for

instance in [Ker57, p. 33]. One defines the collapse map by

Dn
� Sn−1

(y1, . . . , yn) →
(
1 − 2y2, 2y1

√
1 − y2, . . . , 2yn

√
1 − y2

)
which is certainly continuous everywhere and sends all of ∂Dn = Sn−1 to the south pole

s = (−1, 0, . . . , 0). However, it fails clearly to be differentiable at those same points.

44



The obvious question arising at this moment is if it is possible to see Pontrjagin classes

as the ones considered for
(
D4k, S4k−1, f

)
as relative classes pi ∈ H4i

(
D4k, S4k−1

)
as coming

from the use of the Chern–Weil construction for some connection ∇. The answer is essentially

“yes” and the procedure is described for instance in [ADS83] and its offspring by Ogasa. The

idea is that the framing on the boundary determines a metric and a flat metric connection

with torsion on it, and a procedure to extend it to the whole manifold is given there under

some mild assumptions.

The case of quaternionic plane bundles

However, other bundles should be used to obtain a full description of our invariants. Consider

the disk bundle p : D (λ� ) ↓ S4, for λ� the canonical quaternionic line bundle over S4 ∼= � P1,

so that we know that D (λ� ) /S (λ� ) ∼= � P2. We consider D (λ� ) with stable tangent bundle

p∗ (λ� − 2) ∈ K (D (λ� )). Over � P2 there is a symplectic (in the sense of [Sto68]) Hopf line

bundle λ′� . One can see that

K̃
(
� P2

) ∼= K (D (λ� ) , S (λ� )) → K̃ (D (λ� ))

which maps λ′� − 2 −→ p∗ (λ� − 2). This is how one may consider D (λ� ) as a compact

(U-fr)-manifold with stable tangent bundle λ′� − 2 . Then,〈
c22 (D (λ� )) , S (D (λ� ))

〉
= 1

for an appropriate orientation, and all the other Chern numbers are 0. This bundle is going

to prove itself very significant in our context.

2.2.5 Relative genera on framed manifolds

We will now briefly describe relative genera on framed manifolds. This is a particular case of

a more general construction for relative cobordism groups. The foundational example may

be called the Todd relative genus considered by Conner, Floyd and Smith [CF66], [Smi71].

In that case, they prove that the usual Todd genus

ϕTd : ΩU
∗ → �

may be extended to a map

ϕTd, fr : ΩU, fr
∗ → �

is such a way that the following diagram of short exact sequences is commutative:

0 → ΩU
∗ → ΩU, fr

∗ → Ωfr
∗ → 0

↓ ϕTd ↓ ϕTd, fr ↓ eTd

0 → � → � → �/� → 0.
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In particular, for the disks
(
D4k, S4k−1, π

)
before described one has

Td4k =
(−1)k−1B4k

(2k − 1)!2k
c2k + decomposables

ϕTd, fr

(
D4k, S4k−1, π

)
= Td4k

[(
D4k, S4k−1, π

)]
= (−1)k−1 B2k

2k

(see [CF66], [Smi71, p. 252]) where they are used to describe the image of Adams e-invariant.

However, one cannot expect the map ϕTd, fr : ΩU, fr
∗ → � to be a ring homomorphism, because

⊕n=0 ΩU, fr
n is not a ring, since because of

0 = ΩU
1

∼=→ ΩU, fr
1 → Ωfr

0

∼=→ ΩU
0 → ΩU, fr

0

∼=→ Ωfr
−1

one does not have a unit in ΩU, fr
0 = {e}. However, the restriction of the abelian group homo-

morphism to the strictly positive dimensions ϕTd, fr : ΩU, fr
2n → � ensures that the operation

induced by connected sum on classes will be respected. Products become more complicated,

particularly because the Cartesian product of two manifolds with boundary is not a manifold

with boundary itself, but only what is called a manifold with corners.

The version of the same construction for the case of Hirzebruch’s L̂-genus will be

0 → ΩSO
∗ → ΩSO, fr

∗ → Ωfr
∗ → 0

↓ ϕ�L ↓ ϕ�L, fr ↓ e
�L

0 → � → � → �/�
[

1
2

] → 0.

Here ϕ�L sends the 2-torsion in ΩSO
∗ to 0 and it is not a diagram of exact sequences anymore.

However, the forgetful homomorphism

F∗ : Ωfr
∗ → ΩSO

∗

is zero for n > 0 and iso for n = 0. One has in this case

0 → ΩSO
1

= 0
→ ΩSO, fr

1

= 0
→ Ωfr

0

= �
→ ΩSO

0

= �
→ Ωfr

−1

= 0

and in fact the forgetful homomorphism factors through the complex theory. When one sees

it restricted to dimension 4 we may write

0 → ΩSO
4 → ΩSO, fr

4 → Ωfr
3 → 0

↓ ϕ�L ↓ ϕ�L, fr ↓ e
�L

0 → �
[

1
2

] → �
[

1
24

] → �
[

1
24

]
/�
[

1
2

] → 0.

When the ϕ�L-related elliptic genus ϕε is considered, the equivalent diagram is the fol-

lowing, where δ = ϕε (� P2) and one uses the fact that ϕε (V 4) = 16δ for V 4 the Kummer
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K3-surface, which is spin:

0 → ΩSO
4 → ΩSO, fr

4 → Ωfr
3 → 0

↓ ϕε ↓ ϕε, fr ↓ eε
0 → �

[
1
2

] 〈16δ〉 → �
〈−2

3
δ
〉 → �

〈−2
3
δ
〉
/�
[

1
2

] 〈16δ〉 → 0

where ϕε, fr (D4, S3, π) = −2
3
δ.

For dimension 8, one has respective diagrams

0 → ΩSO
8 → ΩSO, fr

8 → Ωfr
7 → 0

↓ ϕ�L ↓ ϕ�L, fr ↓ e
�L

0 → �
[

1
2

] → �
[

1
240

] → �
[

1
240

]
/�
[

1
2

] → 0

and

0 → ΩSO
8 → ΩSO,fr

8 → Ωfr
7 → 0

↓ ϕε ↓ ϕε,fr ↓ eε

0 → �
[
1
2

] 〈
δ2, ε

〉 → �
〈−8

15 δ2 + 12
5 ε, 4

15δ2 − 1
5ε
〉 → �

〈−8
15 δ2 + 12

5 ε, 4
15δ2 − 1

5ε
〉
/

�
[
1
2

] 〈
δ2, ε

〉 → 0

where ε = ϕε (� P2), −8
15
δ2 + 12

5
ε = ϕε,fr (D8, S7, π), and

4

15
δ2 − 1

5
ε = ϕε,fr ((D (λ� )) , S (D (λ� )) , π� ) .

A very suggestive interpretation in terms of modular forms and functions of half weight with

Nebentypus 1 for the modular subgroup Γ0 (4) is to be developed from this. For δ = 1
4
Hρ

and ε = 1
16
H2, given in terms of the Dedekind eta function, one has ρ = 1 − 32η (4τ)8

η (τ)8 and

H =
η (τ)8

η (2τ)4 . Moreover, one sees that

− 8

15
δ2 +

12

5
ε = −4G∗4 = ϕε, fr

(
D8, S7, π

)
4

15
δ2 − 1

5
ε = G4 = ϕε, fr ((D (λ� )) , S (D (λ� )) , π� )

for G4, G
∗
4 defined as in [Zag88]. Despite the problems which arise with products, the fact

that the product of a manifold with boundary by a manifold without boundary is a manifold

with boundary itself can be used to construct generators for the image of the relative elliptic

genus out of manifolds with boundary.
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Chapter 3

The Atiyah–Patodi–Singer theorem,

elliptic genera and eta invariants

3.1 Essential tools from geometric analysis:

Dirac operators and the index theorem

In this section we discuss the essential properties of elliptic operators on manifolds with

boundary. We concentrate on first-order elliptic operators, and especially on those of Dirac

type. We recall the definitions of generalised and compatible Dirac operators, and their ellip-

ticity properties. We will generalise the definition of the latter, defining torsion-compatible

Dirac operators, and establish self-adjointness properties and Green–Palais theorems for

them. We review the spectral properties of elliptic operators and examine some of the an-

alytical aspects of the construction of related operators on a manifold and its double, as in

Booß-Bavnbek–Wojciechowski [BBW93].

We briefly recall the classical formulation of the Atiyah–Singer index theorem for man-

ifolds without boundary and the expression of their integrands as characteristic classes for

the operators which interest us. We give explicit expressions for these classes in terms of the

curvature and the torsion of the connection involved.

3.1.1 First-order elliptic operators on manifolds

with boundary

Let M be a compact n-manifold with boundary N . A differential operator of order r between

real or complex vector bundles E, F over M is a linear map

D : ΓE → ΓF
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which can be expressed, with respect to local coordinates (U, (x1, . . . , xn)) and local trivial-

isations of E, F , by

D =
∑

α=(α1,...,αn)
α1+···+αn≤r

Aα(x1, . . . , xn)
∂α1

∂x1
· · · ∂αn

∂xn
.

Here the coefficients Aα are rank(F ) × rank(E) matrices of smooth real-valued or complex-

valued functions; invariance under change of local trivialisations and coordinates implies

that the collection of coefficients {irAα} with maximum degree α1 + · · · + αn = r define a

(nonzero) section

σ(D) ∈ Γ(SrTM ⊗ Hom(E,F )),

termed the principal symbol of the differential operator D.

Definition 3.1 A differential operator D : ΓE → ΓF of order r is elliptic if evaluation of

the principal symbol at any nonzero cotangent vector ξ ∈ T ∗xM gives a linear isomorphism

of the fibres,

σξ(D) : Ex
∼=−→ Fx.

An operator D : ΓE → ΓE is of Dirac type if its square has order 0 with symbol given

by the metric,

σξ(D
2) : v → |ξ|2v.

In particular, Dirac-type operators are elliptic.

If S is a C�(M)-module with a connection ∇S, then there is a Dirac-type operator

D∇ : Γ(S)
∇S−→ Γ(TM∗ ⊗ S)

�−→ Γ(TM ⊗ S)
c−→ Γ(S),

where c is left Clifford multiplication and the isomorphism � is given by the metric on TM .

In terms of a local orthonormal basis {ej} for TxM , we have

D∇ : s →
n∑
j=1

ej · ∇ej
s

and the principal symbol is given by σξ(D
∇) : v → c(ξ)v.

The module S and its connection ∇S are compatible with the connection ∇TM on M if

∇S is a module derivation extending ∇TM ,

∇S(c(v)s) = c(∇TMv)s+ c(v)∇Ss.

We do not assume, as they do in [BBW93], that the connection on M is the Levi-Cività

connection; it will be compatible with the Riemannian metric but it may have torsion.

An operator F between two Hilbert spaces is Fredholm if its kernel and cokernel are finite

dimensional and its image is a closed subspace. It follows that all eigenspaces of a Fredholm

operator are finite dimensional.
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Lemma 3.2 An elliptic operator P on a compact Riemannian manifold may be completed

to Fredholm operators Ps with respect to the Sobolev norms ‖ ‖s, for which

ker(P ) = ker(Ps), ker(P ∗) = ker(P ∗s ) = coker(Ps)

for all s.

Proof: See Theorem 5.2 in chapter III of [LM89]. �

For any elliptic operator P : ΓE → ΓF over a compact Riemannian manifold, the compo-

sition of P with its formal adjoint P ∗ gives self-adjoint elliptic operators P ∗P , PP ∗ on ΓE,

ΓF respectively, termed the associated Laplacians of P . Write Eλ, Fλ for the eigenspaces of

these Laplacians for each λ ∈ �.

Lemma 3.3 (Hodge) The eigenspaces Eλ, Fλ are finite dimensional and are zero except for

a discrete set of λ ≥ 0. For λ = 0 one has the Hodge formulae

E0 = kerP, F0 = cokerP,

and one has isomorphisms P : Eλ → Fλ for all λ > 0.

3.1.2 The Atiyah–Singer index theorem

The index of an elliptic operator P : ΓE → ΓF may be defined as

ind(P ) = dim ker(P ) − dim coker(P ).

In fact, it depends only on the homotopy class of the principal symbol σ(P ).

The pullback of the principal symbol along π : TM∗ → M is a map

σ(P ) : π∗E → π∗F

which, by the difference bundle construction of Atiyah–Bott–Shapiro [ABS64], defines a

class [σ(P )] ∈ K(DM,SM) in the K-theory of the Thom space of TM . Choosing a smooth

embedding j of M in some �N , we now define the topological index of P as the image of the

symbol class [σ(P )] under the composite map

K(DM,SM)
∼=−→ Kcpt(TM)

j!−→ Kcpt(T�
N )

∼=−→ K(S2N )
∼=−→ �.

Then the Atiyah–Singer index theorem says that the topological index coincides with the

analytic index ind(P ), and may also be expressed in terms of cohomology classes, as follows.

Theorem 3.4 Let M be a compact Riemannian manifold of dimension 4n and P : ΓE → ΓE

a Dirac-type operator on M with coefficients in a vector bundle E. Then

ind(P ) =

∫
M

ch(E) Â(M),

where Â is a polynomial on the Pontrjagin classes of M , and ch(E) is the Chern character

of the bundle E.

51



3.2 The Atiyah–Patodi–Singer theorem

In this chapter we state a version of the Atiyah–Patodi–Singer theorem for manifolds with

boundary and formal operators on infinite-dimensional natural bundles derived from the

tangent bundle.

The interest of this formal construction arises when one shows that the formal sums

involved not only converge but take values in suitable rings of modular forms from elliptic

cohomology, generalising the classical eta invariant.

We state first the classical Atiyah–Patodi–Singer theorem for manifolds with boundary,

under the assumption that the metric near the boundary is of product type. This extends the

theory for closed manifolds by the addition of a term —the eta invariant— whose definition

and properties we review.

Then we recall Gilkey’s modification of the Atiyah–Patodi–Singer formula to include

the case that the metric near the boundary is not of product type. A further integrand now

appears in the formula, which can be expressed in terms of transgression of the characteristic

class involved.

We apply these results for operators arising from elliptic genera on manifolds with bound-

ary, considering both the classical setting and Gilkey’s extension to more general boundary

metrics. We derive expressions for the integrands that arise when generalising from classical

operators to those of elliptic genera.

3.2.1 The classical APS theorem and the eta invariant

Hirzebruch’s signature theorem relates a cohomological invariant, the signature, which may

also be defined as the index of a Dirac-type operator, with an analytical invariant given by

an integral of certain differential forms.

Theorem 3.5 Let M be a 4k-dimensional compact oriented Riemannian manifold. Then

sign(M) = ind(A+) =

∫
M

Lk(p1, . . . , pk),

where

• sign(M) is the signature of the non-degenerate intersection form q(a) = (a∪ a)[M ] on

H2k(X;�), given by the difference between the number of positive and negative entries

in the diagonalisation of q,

• the signature operator A+ : Ω∗M+ → Ω∗M− is the restriction of A = d+δ = d+∗d∗ to

the ±1 eigenspaces of the involution given by Clifford multiplication by (−1)kω on Ω∗M ,

• the integrand is the Hirzebruch L-polynomial in differential j-forms pj, j = 1, . . . , k,

representing the Pontrjagin classes of M .
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Proof: The first equality is a straightforward example of Hodge theory. The index of

d+ δ counts the dimensions of harmonic forms in all degrees, but everything cancels except

in the middle dimension, leaving the difference in dimensions of the positive and negative

definite parts. The second equality is the cohomological formula from the Atiyah–Singer

index theorem. �

If M is a manifold with boundary ∂M = N , then Atiyah–Patodi–Singer show that an

extra term enters the equation, a new spectral invariant of N , given by a certain number-

theoretic function of the eigenvalues of the signature operator on the boundary.

Definition 3.6 Let A be any endomorphism with a discrete spectrum of eigenvalues λ ∈
Spec(A) and finite dimensional eigenspaces. Then the eta function associated to A is given by

ηA(s) =
∑
λ�=0

sign(λ)

|λ|s

where the sum is over the positive and negative eigenvalues, repeated according to their

multiplicities.

Alternatively, one can write

ηA(s) =
∑
λ>0

dim ker(A− λ)

λs
−
∑
λ<0

dim ker(A− λ)

(−λ)s
.

This function will be absolutely convergent for Re(s) sufficiently large. If it has an analytic

continuation such that the value at s = 0 is finite, we write η(A) = ηA(0), the eta invariant

of A.

Theorem 3.7 Let M be a 4k-dimensional compact oriented Riemannian manifold with

boundary N , such that the inclusion N ⊂ M extends to an isometric inclusion in a neigh-

bourhood of the boundary, N × [0, ε] ↪→ M . Then

sign(M) = ind(A) + h =

∫
M

Lk(p1, . . . , pk) − η(B),

where A the is signature operator as before, and

• sign(M) is now the signature of the non-degenerate quadratic form q′, given by restrict-

ing the intersection form q to the image of H2k(M,N) in H2k(M),

• the differential forms pj represent relative Pontrjagin classes,

• η(B) = ηB(0) is the eta invariant of the self-adjoint operator Bev on the even forms

on N given by

Bevϕ2p = (−1)k+p−1(∗dϕ− d∗ϕ), ϕ ∈ Ω2p(N).

The eta function ηB(s) is holomorphic on the half-plane Re(s) > −1
2
.
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• h = dim kerB, the multiplicity of the zero eigenvalue of B.

This result was proved using, and was the motivation for, the following important theorem

of Atiyah–Patodi–Singer [APS75I, Theorem 3 · 10].

Theorem 3.8 Let M be a compact manifold with boundary N and D : ΓE → ΓF a first-

order differential operator on M . Assume that, in a neighbourhood N × I of the boundary,

D has the special form

D = σ

(
∂

∂u
+ A

)
,

where u is the inward normal coordinate, σ is a bundle isometry given by the symbol σdu(D),

and A is a self-adjoint elliptic operator on the boundary N (independent of u). Let Γ(E;P )

be the space of sections f of the bundle E → M satisfying the global boundary condition

P (f |N) = 0 (3.1)

where P is the spectral projection of A corresponding to eigenvalues ≥ 0. Then the restriction

D : Γ(E;P ) → ΓF

has a finite index given by

ind (D) =

∫
M

α0 (x) dx− 1

2
(h+ η (0)) ,

in which α0 is the constant term in the expansion as t → 0 of∑
e−tµ

′ ∣∣φ′µ (x)
∣∣2 −

∑
e−tµ

′′ ∣∣φ′′µ (x)
∣∣2 (3.2)

where µ′, φ′µ and µ′′, φ′′µ denote the eigenvalues and eigenfunctions of D∗D and DD∗ on the

double of M , and η(A) = ηA(0) is the eta invariant of the eta-series of the operator A on N

and h is the multiplicity of the eigenvalue λ = 0 of A. The series ηA(s) converges absolutely

for Re(s) large and extends to a meromorphic function with finite value at s = 0; it extends

to a holomorphic function for Re(s) > −1
2

if the expansion (3.2) has no negative powers of t.

3.2.2 Generalisations of Gilkey, Donnelly and Nicolaescu

There is a version of the Atiyah–Patodi–Singer theorem without the assumption on the

product metric, due to Gilkey.

Theorem 3.9 [Gil75, Theorem 3.1] For the signature of an m-dimensional manifold M ,

where m = 4k, the following holds:

sign (M) =

∫
M

Bs
m +

∫
∂M

Cs
m + η (∂M) .
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More precisely, there is an element TG (Lk) in Pb
m−1,m,m−1 such that for any metric on M ,

sign (M) =

∫
M

Lk +

∫
∂M

TG (Lk) + η (∂M) ,

with

TG (P ) =
1

2k

∫ 1

0

P (θ,Ωt, . . . ,Ωt) dt,

θ = ∇1 − ∇0, ∇t = t∇1 + (1 − t) ∇0,

Ωt = Ω∇t ,

so that TG (P ) is an invariantly defined (m − 1)-form with

d (TG (P )) = P (∇1) − P (∇0) .

Fix a Riemannian manifold (M, g), and let T be a tensor (1, 2) on (M, g); that is, a

skew symmetric linear map T : TM × TM → TM , T (Y,X) = −T (X, Y ), and let ∇g,T be

the only metric-compatible connection on M with torsion tensor T . Let dg,T be its skewed

covariant differential, i.e., given by the composition dg,T = ∧ ◦ ∇g,T = alt ◦ ∇g,T :

C∞ (M,ΛpT ∗M) → C∞ (M,T ∗M ⊗ ΛpT ∗M) → C∞
(
M,Λp+1T ∗M

)
.

For T = 0, dg,T = dg,0, the usual exterior derivative associated to the underlying smooth

manifold structure on M .

In general, d and dg,T have the same leading order symbol, but their complete symbols

differ. More precisely, on p-forms,

dg,T
p = dg,0

p + Ep,

where Ep is an endomorphism depending linearly upon the torsion tensor T of ∇g,T.

Consider on the relevant bundles or section spaces the induced metrics and define

δg,T =
(
dg,T

)∗
,

the adjoint of dg,T. Then, on p+ 1 forms, now,

δg,T
p = δg,0

p + E∗p ,

where δg,0
p and E∗p are the adjoints for dg,0

p and Ep respectively.

Remark 3.10 Miquel points out [Don86] that for a metric-compatible connection with non-

vanishing torsion T , it is possible that

δg,T
p �= ±∗dg,T∗

unlike the Levi-Cività case, in which,

δg,0
p = ±∗dg,0∗.
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For the validity of the classical characteristic class integrands for connections which are

compatible with the metric but have torsion, see Nicolaescu’s approach [Nic99], who refers to

Roe [Roe98, Chapter 11]. However, [Don78] says that, in the case he considers, the integrand

is certainly not the Todd form in general (p. 887) for a Dolbeault operator on a manifold

with boundary.

In manifolds without boundary, they integrate to the same value. There, in fact, thanks

to symbol theory and invariance of characteristic classes with respect to connections and

Stokes, we know that they give the same index.

Hence, since the trace appearing in the Atiyah–Patodi–Singer theorem is a trace on the

double of the manifold, if we know about traces of heat kernels on manifolds without bound-

ary expressed as characteristic forms, we may thereafter restrict them to forms (perhaps not

characteristic but only relatively characteristic in the sense of Kervaire) to obtain results for

the manifolds with boundary.

For the case of manifolds without boundary, all operators can be seen as twisted signature

or twisted Dirac operators.

As an interesting example, consider any compact Lie group, such as for instance the Lie

group as S3 ∼= SU(2). Lie groups are frameable by their Lie algebras and get from there

a natural flat connection with torsion. (E.g., think of any linear group as embedded as an

open set in a general matrix group seen as a flat Euclidean space). However, since this is

not necessarily the Levi-Cività connection (in fact, it would never be so if the Lie algebra

of the group is not trivial) then we can consider equally the other connection. Now, we get

on the Lie group —or, if we prefer, at any compact subspace of it— two metric-compatible

connections, one flat and the other torsion-free. Each connection will have associated a

covariant exterior derivative on differential forms on the Lie group given as the composition

of the connection with the exterior product, which is the same for both. Those operators are

known to share the same leading symbol and hence on manifolds without boundary they will

give the same K-theoretical class. But on manifolds with boundary, they will originate two

different classes both in K and H relative theories. The point is to identify the corresponding

differential forms that one has to integrate.

According to Nicolaescu [Nic99], the formula

ind (Dg ⊗ V ) =

∫
M

Â
(
TM,∇g,0

)
ch (V ) − 1

2
η(Dg⊗V )|∂M

holds in conditions more general than those considered for instance in [BBG89], namely,

ind
(
Dg,T ⊗ V

)
=

∫
M

Â
(
TM,∇g,T

)
ch (V ) − 1

2
η(Dg,T⊗V )|∂M

holds, whenever Dg,T is the Dirac operator associated to the Clifford bundle C�nM , but

considered not with the connection induced from the Levi-Cività ∇g,0 on TM , but with any

other one compatible with the metric, probably not torsion free, endowed with a torsion

tensor T . The quoted author says textually that “the proof for (1) in chapter eleven of
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Roe’s book, edition 88, extends verbatim to (2).” We will prove the truth of this statement,

beginning from [Roe98, p. 136].

We will begin by considering M a spin manifold of even dimension n. We know that

M has a canonical Clifford bundle S over it, whose fibre is the spin representation ρS , and

associated to S there is a Dirac operator D = c ◦ ∇g,0, which is a graded one. However, we

are not interested on this D only, which is what we called Dg,0. We want to consider further

operators

Dg,T = c ◦ ∇g,T .

Lemma 11.30 in [Roe98] (referring to the case of spin even-dimensional manifolds without

boundary) says that the signature operator is canonically isomorphic to the classical Dirac

operator with coefficients in the spin bundle S. Since, as left Clifford modules,

Λ∗ (T ∗M) ⊗ � ∼= C�n (T ∗M ⊗ � ) ∼= S ⊗ S,

and since the first order parts of both considered operators agree under this isomorphism,

their difference must be a zeroth order (tensorial) operator, which depends on the connection

coefficients in a linear way. For the classical versions considered by Roe, being the connection

on TM Riemannian, it is possible, once fixed any point x, to take normal coordinates centred

there, so that the components of the connection vanish there, and hence in the classical case

the difference must be zero.

3.2.3 Eta invariants of twisted Dirac operators

Let M be an oriented compact Riemannian manifold of dimension 2n, such that the Rieman-

nian metric coincides in a neighbourhood of the boundary N = ∂M with a product metric

on N × I. Suppose that M is a spin manifold. Then the Dirac operator of M is a first order

elliptic differential operator on the graded spinor bundles,

D+ : ΓS+ → ΓS− .

On the boundary, S± restrict to give the spinor bundle associated to N , and in a neighbour-

hood of the boundary one has

D+ = σ

(
∂

∂u
+ A

)
,

where σ is Clifford multiplication by the unit inward normal as usual, and DN is just the

Dirac operator on the (2n − 1)-manifold N . In [ABP73], Atiyah–Bott–Patodi show that

the integrand α0(x) dx in Theorem 3.8 can be expressed explicitly as an appropriate Pontr-

jagin form in this case and that the corresponding expansion (3.2) has no negative powers

of t, and one obtains a formula for the index of Dirac operator with the global boundary

condition (3.1).

Atiyah–Patodi–Singer themselves point out that the results of [ABP73, Section 6] also

apply to twisted Dirac operators:
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Theorem 3.11 Suppose E is a hermitian vector bundle on M with a unitary connection

such that near the boundary the metric and the connection are constant in the normal direc-

tion. Then the twisted Dirac operator on M ,

D+
E : Γ(S+ ⊗ E) → Γ(S− ⊗ E)

with the global boundary condition (3.1) has index

ind(D+
E) =

∫
M

ch(E) Â(p) − 1

2
(hE|N + ηE|N),

where Â(p) is the Hirzebruch Â-polynomial
n∏
i=1

xi/2

sinh(xi/2)
with the elementary symmetric

functions of the x2
i replaced by Pontrjagin forms on M , the form ch(E) denotes the Chern

character of the bundle, ηE|N(s) is the eta-function of the twisted Dirac operator on N and

hE|N is the dimension of its kernel. Moreover, η(s) is holomorphic for Re(s) > −1
2
.

Theorem 3.7 is a version of this, although M is not required to be spin and the factor

of 1
2

is present only implicitly, since the operator B on the even forms is only ‘half’ of the

restriction A|∂M of the signature operator.

We can generalise the previous theorem in a purely formal way to graded bundles or

q-bundles. Suppose that Er, r ≥ 0, is a sequence of vector bundles as above. We usually

write

Eq =
⊕
r≥0

Er q
r.

Here q is simply a formal variable. The formal bundle Eq may be of infinite rank, but each

Er will always be of finite rank. Then the Dirac operator on M may be twisted with Eq.

If we write D+
r for the twisted Dirac operator D+

Er
then we have

D+
q =

∑
r≥0

D+
r q

r : Γ(S+ ⊗Eq) → Γ(S− ⊗ Eq).

The index of D+
q is the formal power series

ind(D+
q ) =

∑
r≥0

ind(D+
r ) qr =

∑
r≥0

(
dim ker(D+

r ) − dim coker(D+
r )
)
qr.

The operators D+
r , D+

q restricted to the boundary of M give the twisted Dirac operators

Dr,N and

Dq,N =
∑
r

Dr,N q
r

on N . We consider the corresponding eta invariants, as follows.
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Definition 3.12 The eta function of a twisted Dirac operator Dq is the formal series

ηDq(s, q) =
∑
r≥0

ηDr(s) q
r.

If each eta function ηDr(s) has finite value at s = 0 then the eta invariant of Dq is the formal

power series

ηDq(q) =
∑
r≥0

η(Dr) q
r.

One considers similarly the formal power series

h(q) = dim ker(Dq) =
∑
r≥0

dim ker(Dr) q
r

and the formal Chern character

ch(Eq) =
∑
r≥0

ch(Er) q
r .

Corollary 3.13 The formal twisted Dirac operator D+
q with the global boundary condition

(3.1) has index

ind(D+
q ) =

∫
M

ch(Eq)(q) Â(p) − hDq,N
(q) + ηDq,N

(q)

2
,

Proof: Apply the previous theorem to each twisted Dirac operator D+
r and add up. �

3.2.4 Eta invariants of twisted signature operators

The signature operator A+ : Ω∗M+ → Ω∗M− may also be generalised to a twisted operator,

as follows. Let E be a hermitian vector bundle, with a compatible connection ∇E, over a

compact Riemannian manifold of dimension 2n. Consider the covariant exterior derivative

dE = d∇ on Ω∗(M ;E), the space of differential forms on M with coefficients in the bundle E.

As for the usual exterior coderivative, the adjoint δE = d∗E is given by

δE = ±∗dE∗,

where the Hodge star acts as the identity on the coefficients. It follows that the self-adjoint

operator AE = dE + δE splits as

A±E : Ω±(M ;E) → Ω∓(M ;E), Ω±(M ;E) = (1 ± inω)Ω(M ;E).

The operator A+
E is the twisted signature operator, and one has a generalised Hirzebruch

signature theorem:
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Theorem 3.14 Let sign(M ;E) be the signature of the quadratic form given by wedge product

on Hn(M ;E). Then

sign(M ;E) = ind(A+
E) = 2nch(E) L(M)[M ],

where L denotes the Hirzebruch characteristic class

n∏
i=1

xi/2

tanh(xi/2)
with the elementary sym-

metric functions of the x2
i replaced by Pontrjagin classes of M .

Proof: This is completely parallel to the usual Signature Theorem 3.5; see [ABP73, p. 313]

for more details. �

We can also take E to be a graded vector bundle Eq =
⊕

Erq
r as discussed above, and

we will then interpret the twisted signature theorem as giving equality of power series in the

formal variable q. The main example is given by the graded bundle LEq, defined as follows.

Let E be any vector bundle over M , and define

LEq =
∞⊗
j=1

SqjE ⊗
∞⊗
j=1

ΛqjE,

where we use the notation St, Λt for the formal power series versions of the symmetric and

exterior products S∗, Λ∗. Explicitly, we set

StE =

∞∑
�=0

S�(E) · t�, ΛtE =

∞∑
�=0

Λ�(E) · t�.

In the case of the complex tangent bundle E = T�M = TM ⊗ � , we sometimes write LM =

LT�Mq. This bundle is termed the free loop bundle on M and the corresponding twisted

signature is usually interpreted as the S1-equivariant signature of the free loop space LM ,

signS
1

(M) = sign(M ; LM) =
∑
r≥0

sign(M ; LTMr) q
r.

Corollary 3.15 The S1-equivariant signature is related to the universal elliptic genus by

signS
1

(M4k) εk/2 = ϕE��(M4k).

Proof: The Chern character of StE is just
∏n

i=1

∑
k≥0 t

kekxi =
∏n

i=1(1−texi)−1 and similarly

ch(LM) =

n∏
i=1

∞∏
j=1

(1 + qnexi)(1 + qne−xi)

(1 − qnexi)(1 − qne−xi)
.

The result follows from Theorem 3.14 on comparing with the characteristic class for the

universal elliptic genus; compare [HBJ92, Theorem I.5.6 and Section 6.1]. �
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The results of Atiyah–Patodi–Singer also imply a generalisation of Theorem 3.14. Sup-

pose that M has boundary N = ∂M , dimension 2n − 1, and that the metric on M is a

product metric in a neighbourhood N × I of the boundary. The restrictions to the neigh-

bourhood N×I of the bundles Λ±TM∗⊗E are isomorphic to p∗Λ∗TN∗⊗E, and the twisted

signature operator here takes the form

A+
E

∼=
(
∂

∂u
+BE

)
.

Here B = Bev ⊕Bod where Bev and Bod act on even and odd forms respectively. Analogously

to Theorem 3.7 the even part is given by Bev
E = ±in(∗dE − dE∗), a self-adjoint elliptic

operator, and we have

Theorem 3.16 The signature sign(M,N ;E) of the quadratic form given by cup product on

Hn(M,N ;E) satisfies

sign(M,N ;E) = ind(A+
E) + dim kerBev

E =

∫
M

2nch(E)L(M) − η(Bev
E ).

3.3 Elliptic invariants for framed manifolds

In this section we consider the version of the Atiyah–Patodi–Singer formula given by Atiyah,

Donnelly and Singer in [ADS83] for operators on framed manifolds. We summarise the

results of this paper that will be needed for our constructions later, and in particular recall

the general signature operator construction associated to a given metric connection with

torsion. We study the relation between the operators on a manifold and on its boundary

and give the integrands for the corresponding Atiyah–Patodi–Singer formula.

We apply the Atiyah–Donnelly–Singer construction to the case of the disks with the

framings of Conner and Floyd [CF66], both in a classical context and for formal loop space

operators. For classical operators, the Bernoulli numbers appear, and it is interesting that

in our generalisation one obtains Eisenstein forms. We discuss the results in the context of

relative cobordism and higher e-invariants, and relate the modularity of the invariants to the

string manifold genera considered, for example, by Mahowald. We also interpret our results

in terms of spectral flow on Hopf manifolds. Finally, we suggest some possible directions for

further work, related to the Eichler–Kohnen–Zagier correspondence [EZ85] between Jacobi

forms and half-integral weight modular forms.

3.3.1 Classical eta invariants of framed manifolds

Suppose (N, f) is a framed compact closed manifold of dimension 4k− 1. Then there exists

a compact oriented manifold M with N = ∂M whose tangent bundle TM → M is the

pullback of some bundle on the quotient space M/N . Thus we have relative Pontrjagin

classes pj ∈ H4j(M,N) and we can consider

L(p1, . . . , pk)[M,N ] − sign(M), (3.3)
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the difference between the Hirzebruch L-polynomial in the Pontrjagin classes, evaluated at

the fundamental class [M,N ] ∈ H4k(M,N), and the signature of M . In fact this expression

is independent of the choice of M and depends only on (N, f). We remark that it is the

framing of the boundary which enables us to replace the differential-geometric expression∫
M
L(p) of Theorem 3.7 with the cohomological expression L(p)[M,N ] here.

Alternatively, the framing f on N determines a Riemannian metric, a Hodge star and a

flat metric-compatible connection ∇f . Consider the skewed covariant differential df = ∧◦∇f

on the differential forms on N ,

df : ΓΛpT ∗N ∇−→ Γ(ΛpT ∗N ⊗ T ∗N)
∧−→ ΓΛp+1T ∗N, (3.4)

where the final map is antisymmetrisation or exterior multiplication. We remark that ∇f

will not in general be torsion-free; if it is, then df = d, the usual covariant differential.

Associated to df there is a self-adjoint elliptic operator

Bfϕ2p = (−1)k+p−1(∗dfϕ− df∗ϕ), ϕ ∈ Ω2p(N) (3.5)

on even forms.

Theorem 3.17 [ADS83, Theorem 4.3] The ‘signature defect’ (3.3) coincides with the eta

invariant of Bf ,

η(Bf) = L(p1, . . . , pk)[M,N ] − sign(M).

Proof: For the special case that the connection ∇f is torsion-free, this follows from The-

orem 3.7, with the integral over Pontrjagin forms replaced with evaluation of cohomology

classes. The general case is more complicated; details may be found in Sections 15–17

of [ADS83]. �

Similarly, for the twisted signature,

η(Bf
E|N) = 22kch(E)L(p1, . . . , pk)[M,N ] − sign(M ;E), (3.6)

and for the twisted Dirac operator,

(η(Df
E|N + dim ker(Df

E|N))/2 = ch(E)Â(p1, . . . , pk)[M,N ] − ind(DE). (3.7)

3.3.2 Modular eta invariants for framed manifolds

The above theorem relating the signature defect to the eta invariant can be stated also for

twisted signature operators. In particular we consider the free loop bundles

LM =
∑
r≥0

(LT�M)r q
r, LN =

∑
r≥0

(LT�N)r q
r
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which inherit flat connections from the tangent bundles and we can consider the formal

covariant exterior derivative dfLN
on Ω∗(N ; LN ) with

dfLN
=

∑
r≥0

dfLT�Nr
qr : Ωk(N ; LT�Nr) → Ωk+1(N ; LT�Nr).

Then we have operators Bf
LTNr

= ±(∗dfLT�Nr
− dfLT�Nr

∗) as before and a formal operator

Bf
LN

=
∑
Bf
LTNr

qr on the even forms on N with coefficients in the free loop bundle on the

loop space.

Definition 3.18 Let M be an oriented manifold of dimension 4k with framed boundary

(N, f) of dimension 4k− 1. Then the relative S1-equivariant signature of the free loop space

is given by the signature of the cup product in relative cohomology with coefficients in the

free loop bundle LM ,

signS
1

(M,N) = sign(M,N ; LM) =
∑
r≥0

sign(M,N ; LTMr) q
r ∈ �[[q]].

The elliptic eta invariant of the framed manifold (N, f) is the formal power series

ηE��(N, f) =
∑
r≥0

η(Bf
LTMr

) qr ∈ �[[q]]

given by the eta invariants for the twisted operators Bf
LTNr

on Ωev(N ; LTNr).

We then have an elliptic cohomology generalisation of the Signature Defect Theorem 3.17:

Theorem 3.19 The relative universal elliptic genus of a framed (4k − 1)-manifold satisfies

ηE��(N, f) = ϕE��(M,N) ε−k/2 − signS
1

(M,N).

Proof: Define the relative universal elliptic genus of (N, f), and apply (3.6) to each term in

the q-expansions (see [HBJ92, 6.1]). �

Corollary 3.20 The following relation holds in (�/�)[[q]]:

ηE��(N, f) ≡ ϕE��(M,N) ε−k/2 (mod �) .

Corollary 3.21 If the S1-signature vanishes, then

ηE��(N, f) = ϕE��(M,N) ε−k/2 .

If, in addition, k is even, then the elliptic eta invariant is a modular function of weight zero

for the congruence subgroup Γ0(2).
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Similar results hold for the Dirac operator on spin manifolds twisted by Sq =
∑
SrTM ,

corresponding to the Witten genus rather than the elliptic genus.

We give an example of Corollary 3.21 for the case that N is the sphere. The beauty of

this example is the relation between the elliptic eta invariant and the Eisenstein series used

in the definition of the universal elliptic genus.

Proposition 3.22 There is a framing f of the boundary S4k−1 of the disk D4k for which

the elliptic eta invariant is given by

ηE��(N, f) =
4G∗2k
εk/2

.

Proof: First note that the signature and relative signature of the disk D4k are zero, since it

has zero cohomology in dimension 2k. This is true for any twisted signature with coefficients

in a flat bundle and for the S1-signature of the free loop space. Thus we are in the situation

of Corollary 3.21 and we have

ηE��(N, f) =
ϕE��(D4k, S4k−1)

εk/2
.

Now recall [Smi71], [CF66] that a framing f may be chosen for the boundary such that

ci =

{
0 for 0 ≤ i < 2k ,

(2k − 1)! for i = 2k .

Since all but the highest Chern class vanish, the genus will be c2k ·a2k, where the characteristic

series has the form P (u) = exp
(∑−a2ku

2k/2k
)

(see [HBJ92, p. 20] for details). For the

universal elliptic genus, then, we have

ϕE��(D4k, S4k−1) = (2k − 1)! (−2k)
4G∗2k(τ)
(2k)!

= −4G∗2k,

as claimed. �

We will need to consider the reduction modulo Z of the above invariants, where Z is one

of the rings �, �[1
2
], or more generally �[ 1

n
] or �[ 1

2n
] for n odd. Recall the elliptic genus ϕε

takes as values homogeneous polynomials in � [δ, ε], where δ, ε have degree 2, 4 respectively,

and so the normalised elliptic genus ϕε(M
4k) = ϕε(M)/εk/2 is a polynomial in

ρ = δ/
√
ε = 1 + 32q + 256q2 + 1408q3 + 6144q4 + 22976q5 + · · ·

taking the q-expansion at the signature cusp i∞. In fact ρ ∈ 1 + 32�[q]; in terms of the

Dedekind eta function,

ρ− 1 = 32
η (4τ)8

η (τ)8 = 32q

( ∞∏
n=1

(
1 − q4n

1 − qn

))

= 32q

( ∞∏
n=1

(
1 + qn + q2n + q3n

))
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Thus the normalised elliptic genus will have a q-expansion with integral coefficients only if

as a polynomial in ρ it has coefficients in �[1
2
].

One can also express the normalised elliptic genus as a modular function of half-integral

weight for the congruence subgroup Γ(4, 1), generated by θ and F2. Considering

H = 4
√
ε = θ4 + 16F2

one has ρ = 1 + 32F2/H . Both H and F2 have q-series with integral coefficients, with

lowest-order terms 1 and q respectively.

We can also consider the differential operator D =
1

2πi

d

dτ
.

Proposition 3.23 The modular function of half-integral weight ρ(τ) satisfies

Dρ = θ4 (ρ− 1).

Thus Dϕε(M) = θ4(ρ− 1)dϕε(M)/dρ.

Proof: Since ρ (τ) = 1 − 32 η (4τ)8 /η (τ)8, and D (η (τ)) = −G2 (τ) η (τ), D (η (4τ)) =

−4G2 (4τ) η (4τ). On the other hand, we have θ4 (τ) = 8G2 (τ) − 32G2 (4τ), and the result

follows. �

3.3.3 Divided congruences and elliptic genera

Before introducing divided congruences we will recall a fact we proved in [Gal96]. There we

defined a Spinc-genus for which, as a consequence of the module structure of ΩSpinc

∗ ⊗� over

ΩSpin
∗ ⊗ � as seen in [Sto68], we have

φc(M)(q) =

[ m
2

]∑
j=0

φc,j(M)(q)

for [M ] ∈ ΩSpinc

2m in which φc,[ m
2

] = φW is just the Witten genus and each φc,j(M) is an

almost-modular form of weight 2[m
2
]. Thus the genus φc is an inhomogeneous sum of rational

modular forms
∑
fi where fi has weight i. Evaluating at the cusp we see the Â-genus as a

summand of the Todd genus:

Td(M) = φc(M)(0) = φc,0(M)(0) + · · · + φc,[ m
2

]−1(M)(0) + Â(M).

Suppose now that M is a manifold (such as CP2k with its canonical complex structure) with

a Spinc-structure but no Spin structure, so that Td(M) ∈ � but Â(M) is only rational, and

similarly for their q-series analogues φc(M)(q) and φW (M)(q) respectively. Then we will

have an inhomogeneous sum of rational modular forms φc(M)(q) whose q-series at the cusp

i∞ has integer coefficients. One says that φc(M)(q) is an element of the ring of divided

congruences for the quasimodular forms.
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In general, following Katz [Kat75] and using the notation of Laures [Lau99], we define

the ring of divided congruences associated to a congruence subgroup Γ as the ring of inho-

mogeneous rational modular forms
∑
fi where fi has is a form of weight i for γ, such that

for each integer k �= 0 the q-expansion of the sum
∑
k−ifi at any cusp has coefficients in

�Γ[ 1
k
], where �Γ = π(KΓ).

Theorem 3.24 (Clarke–Johnson) Let D denote the ring of non-homogeneous sums of ra-

tional modular forms for Γ0 (2) such that the q-series of the sum is in �[1
2
][[q]]. Then

KO0 (E��) ∼= D[∆−1]

where E�� = �[δ, ε][1
2
][∆−1].

Theorem 3.25 Let ϕ be any Hirzebruch genus of elliptic type for a ring of modular forms

fulfilling the hypotesis of the Katz theorem. Then the following facts hold:

1. The generators for the ring of divided congruences cn are determined by

∞∑
n=1

log

(
1

1 − cnyn

)
=

∞∑
m≥1

ϕ (� Pm)

m+ 1
ym+1 = gϕ (τ, y)

so that

ϕ (�Pn) =
∑
d|n

cn/dn · d.

2. Let Lϕ (x) = log (Qϕ (τ, x)), whose Taylor expansion in x is

log (Qϕ (τ, x)) =

∞∑
m≥1

ϕ
(
D4k, S4k−1, π

)
(2k)!

x2k

for
(
D4k, S4k−1, π

)
the framed disks defined above. Then ϕ

(
D4k, S4k−1, π

)
generate the

image of Ω
G(Eϕ)
∗ up to 2-torsion and writing Gϕ

2k1
= ϕ

(
D4k, S4k−1, π

)
for the Eisenstein

series determined by the genus ϕ we have

ϕE(� P2k ) =
∑
Pk

1

r1! · · · rt!
(Gϕ

2k1
)r1 · · · (Gϕ

2kt
)rt

kr11 · · · krtt (2k1 − 1)!r1 · · · (2kt − 1)!rt
(2k + 1)t

where the summation is over partitions k =
∑
rjkj, rj ≥ 1 and 0 < kj < kj+1.

Whenever we have an elliptic genus, determined by its logarithm gϕ (τ, y), we see that

the Katz divided congruences definitions may be written as

∞∏
n=1

(1 − cny
n)−1 =

∞∑
n=0

bny
n = exp(gϕ(τ, y)).
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Observe moreover that for any genus ϕE corresponding to a suitably oriented generalized

cohomology theory Eϕ by a class xEϕ we have

gϕ (τ, y) = gϕ
(
τ, xEϕ

)
= xH

where xH denotes the usual oriented cohomology oriented with genus given by the additive

formal group law. Then the expressions above become

∞∏
n=1

(
1 − cn

(
xEϕ

)n)−1
=
∞∑
n=0

bn(x
Eϕ)n = exp(gϕ(τ, x

Eϕ))

and, since the orientation for the multiplicative group law in K-theory is given under the

orientation provided by the Todd genus ϕTd, by

gϕTd
(τ, y) = gϕTd

(τ, xK) = xH = log

(
1

1 − xK

)
.

Now suppose we are using the elliptic cohomology theory considered by Devoto, with

Miller’s character, composed with complexification, so that

Θ
(
τ, xK

)
= xEϕ .

Then the image of the K-theoretical orientation class and the Katz series b are related via(
b−1
)( 1

1 − xK

)
= xEϕ = Θ

(
τ, xK

)
.

3.4 Equivariant elliptic invariants

We now examine the constructions of the previous section for operators on manifolds with a

(finite) group action. First we summarise the results of Donnelly [Don78] for the equivariant

Atiyah–Patodi–Singer formula for manifolds with group actions, and recall the definition of

the classical Atiyah–Singer invariants from [AB66, AS68I]. We generalise these results to

cover the case of Dirac operators associated to elliptic genera, acting on framed manifolds.

We compute the resulting invariants for the classical lens spaces and show that they

are precisely the level-two modular functions which generate the coefficient ring of Devoto’s

equivariant elliptic cohomology [Dev96b].

Let Y be an odd-dimensional spin manifold of dimension 4k − 1 with finite fundamental

group π1Y = G of odd order and let E → Y be a unitary flat bundle of dimension m

associated to a representation

α : G → U(m)

of G. We may denote E by Eα when we want to emphasise this relationship between the

bundle and the representation.
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We assume a Riemannian metric and connection are given on Y and that G acts by

orientation-preserving isometries, and we may consider

G ↪→ Isom+ (Y ) .

We give the bundle the usual flat connection. Suppose further that Y bounds some 4k-

dimensional manifold X and that E extends to a bundle W over X, which may not be

flat.

We will construct the R-class of the manifold X associated to the representation α,

Rq,α(TX) ∈ K∗∗(X)[[q]],

as follows. Recall the loop signature class Rq =
⊕

Rnq
n for the bundle W by

Rq(W ) =
⊕
n≥0

Rn(W )qn =
∞⊗
n=1

SqnW ⊗
∞⊗
n=1

ΛqnW.

We remark that all the bundles Rn(W ) inherit a flat connection. We shall write αn for the

unitary representation of π1Y which gives Rn(E). Let mn denote the dimension of Rn(E).

We also have a loop signature class for the tangent bundle,

Rq(TX) =
⊕
n≥0

Rn(TX)qn =
∞⊗
n=1

Sqn(TX ⊗ � ) ⊗
∞⊗
n=1

Λqn(TX ⊗ � ).

We shall define a formal power series of bundles by

Rq,α(TX) =
∑
n≥0

Rn,α(TX)qn = Rq(TX) ⊗ Rq(W ).

Each summand Rn,α(TX) can be written in the form

Rn,α(TX) =
∑
m

Rn,αn−m(TX)

=
∑
m

Rm(TX) ⊗Rn−m(W ).

Adding all of them up we get a (formal, virtual) bundle over X that we may denote by

Rq,α (TX). Let D
Rq,α(TX)
+ denote the signature operator on X twisted by the bundle Rq (TX)

with respect to the representation α. We shall define D
Rq(TX)
+,n as the Dirac operator twisted

by Rn (TX).

For every twisted signature operator Dξ
+ we may consider

Definition 3.26 The eta invariant for the operator Dξ
+ is

ηDξ
+

(s) =
∑

λ�=0, λ∈Spec(Dξ
+)

sign (λ)

|λ|s .
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Because of the classical theorem of Atiyah–Patodi–Singer we have that ηDξ
+

(0) will be

finite. The main result in [APS75] concerning those operators is that, for L the Hirzebruch

polynomials in the Pontrjagin classes of X (i.e., the ones of the tangent bundle with the

Levi-Cività connection associated to the metrics) in the (relative) characteristic classes of

the manifold X and the twisting bundle ξ, the following holds.

Theorem 3.27 [APS75]

ind
(
Dξ

+

)
= L (p1, . . . , pk) ch (Ψ2 (ξ)) [X, Y ] − ηBξ|Y (0) .

The APS theorem for the operator Dξ
+ twisted by the representation α then reads

ind
(
Dξα

+

)
= L (p1, . . . , pk) ch (Ψ2 (ξ ⊗Wα)) [X, Y ] − ηBξ|Y ⊗Eα (0) .

Our version of those will be

Definition 3.28 The elliptic (signature) eta invariant, ηεα (0), associated to the representa-

tion α of π1Y = G with associated flat bundle Eα is the formal power series in the variable q

(where q = e2πiτ , Im (τ) > 0) is given by the mod �
[

1
|G|

]
-reduction

ηεα (0) = ηBRq,α(TY ) (0) =
∑
n ∈�

η
B(Rq,α(TY ))n

(0) qn ∈ �/�
[

1
|G|

]
.

Remark 3.29 Formally, at least, we may consider DRq,α(TX). Then, adding formally the

equation given by the classical APS theorem for each n, one will have

D
Rq,α(TX)
+ =

∑
n ∈�

D
(Rq,α(TX))n
+ qn.

We will denote by D
Rq,α(TX)
+ this formal sum of operators, and abuse the usual notation for

operators by applying it to the objects obtained from it, e.g., index, etc. Let us denote by

Φε (p1, . . . , pk) the characteristic polynomial series in the Pontrjagin classes corresponding

with the version of the 2-level elliptic genus which agrees with the usual signature in its term

in q0. So we have

Proposition 3.30 As formal power series in q,

D
Rq(TX)
+ = Φε,k (p1, . . . , pk) [X, Y ] − ηBRq(TY ) (0) mod �

[
1
|G|

]
and

ind
(
D
Rq,α(TX)
+

)
= Φε,k (p1, . . . , pk) ch (Ψ2 (Wα)) [X, Y ] − ηBRq,α(TY ) (0) mod �

[
1
|G|

]
.

Taking into account the signature with coefficients in bundles, we may write

sign (X,Rq (TX)) = ϕε [X, Y ] (τ) − ηε (0; τ) mod �
[

1
|G|

]
,

where ϕε [X, Y ] (τ) denotes the relative elliptic genus. Similarly,

sign (X,Rq,α (TX)) = ϕε,α [X, Y ] (τ) − ηεα (0; τ) mod �
[

1
|G|

]
.
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Theorem 3.31 The elliptic eta invariant ηεα (0) is the power expansion of a �/�
[

1
|G|

]
-

modular form.

Suppose Y is a frameable manifold (i.e., it admits a trivialisation of its stable tangent

bundle τsY ). If one considers on the tangent bundle instead of the Levi-Cività connection

any connection extending the flat one given on τsY by the framing, one may consider the

same construction as for the operator consider above, but for the new operator defined by

the new connection. Observe that the new connection is going to have torsion. Those where

considered in [ADS83]. The expression in the L classes is then twisted by other ones taking

into account the torsion form. One get interesting eta invariants for those operators. They

can be constructed for all the disks and for the many lens spaces known to be frameable.

Consider the Dirac operator twisted by SqTM . Its index under the global APS boundary

condition is related to the Witten genus by

ϕW (∂M)η(τ)−4k − 1

2
(hW + ηW ).

Since the index and the kernel dimensions h are integers,

1

2
ηW ≡ 1

2
ϕWη

−4k

modulo �, where η is the Dedekind eta-function.

For example, on (D4k, S4k−1) we have the eta invariant given by

1

2
ηW (S4k−2) ≡ G2k(τ)η

−4k(τ)

modulo �.

Other relevant pairs of the form
(
D4k (ξ) , S4k−1 (ξ) , πt

)
admit a similar treatment. E.g.,

the generalisation of APS in the other direction yields a corresponding result for HPk bundles,

using the constructions of Stong and Conner–Floyd. For the bundle they term η,

φc
(
D4k (η)

)
= φW

(
D4k (η)

)
= G4 (τ) −DG2 (τ) =

1

6
G4 + 2G2

2.

Remember that φc (� P2) = φW (� P2) = −DG2 (τ) = −5
6
G4 + 2G2

2, so that

φc
(
D4k (η)

)− φc
(
� P2

)
= G4.

From what has been seen for relative multiplicative sequences on disks,

φc

((
D4
π

)2)
= 4G2

2, φc
(
D8
π

)
= 2G4, φc

(
� P2

(
D4
π

))
= 6G2

2.
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