
UNIVERSITAT AUTÒNOMA DE BARCELONA
FACULTAT DE CIÈNCIES

Tesi Doctoral

Open, Reusable, and Configurable

Multi Agent Systems:

A Knowledge Modelling Approach

Mario Gómez Mart́ınez

Director: Enric Plaza i Cervera

Bellaterra, Maig 2004

Consell Superior d’Investigacions Cient́ıfiques
Institut d’Investigació en Intel·ligència Artificial

UNIVERSITAT AUTÒNOMA DE BARCELONA
FACULTAT DE CIÈNCIES

Tesi Doctoral

Open, Reusable, and Configurable

Multi Agent Systems:

A Knowledge Modelling Approach

Bellaterra, Maig 2004

Memoria presentada per Mario Gómez Mart́ınez per optar al
t́ıtol de Doctor en Informàtica per la Universitat Autònoma de
Barcelona sota la direcció del Dr. Enric Plaza i Cervera. El tre-
ball presentat en aquesta memòria ha estat realitzat a l’Institut
d’Investigació en Intel·ligència Artificial (IIIA), del Consell Supe-
rior d’Investigacions Cient́ıfiques (CSIC).

A mis padres

Qué ligereza encierra una gota de lluvia
Qué delicado el roce del mundo
Cualquier cosa acontecida en cualquier lugar y tiempo
escrita está en el agua de Babel.

Wislawa Szymborska
(El Agua)1

En el jerogĺıfico hab́ıa un ave, pero no se pod́ıa saber si
volaba o estaba clavada por un eje de luz en el cielo vaćıo.
Durante centenares de años léı inútilmente la escritura.
Hacia el fin de mis d́ıas, cuando ya nadie pod́ıa creer
que nada hubiese sido descifrado, comprend́ı que el ave a
su vez me léıa sin saber si en el roto jerogĺıfico la figura
volaba o estaba clavada por un eje de luz en el cielo vaćıo.

Jose Angel Valente
(De la luminosa opacidad de los signos)

Lloras?... Entre los álamos de oro,
lejos, la sombra del amor te aguarda.

Antonio Machado.
(LXXX)

1“Traducció d’Ana Maŕıa Moix i Jerzy Wojciech Slawomirski”

iv

Contents

Resumen xv

Abstract xvii

1 Introduction 1
1.1 Motivation and context . 1
1.2 Contributions . 7
1.3 Structure . 10

2 Background and related work 13
2.1 Introduction . 13
2.2 Knowledge Modelling Frameworks 14

2.2.1 Generic Tasks . 15
2.2.2 Role-Limiting Methods 16
2.2.3 Components of Expertise 17
2.2.4 KADS and CommonKADS 18
2.2.5 UPML . 19
2.2.6 Recent issues in knowledge modelling and reuse 20
2.2.7 Conclusions . 24

2.3 Software reuse . 25
2.3.1 Software libraries . 25
2.3.2 Component-Based Software Development 26
2.3.3 Semantic-based reuse: ontologies 27
2.3.4 Conclusions . 28

2.4 Multi Agent Systems . 28
2.4.1 Cooperative Multi-Agent Systems 29
2.4.2 Team Formation . 35
2.4.3 Interoperation in open environments 37
2.4.4 Social approaches . 43
2.4.5 Agent-Oriented Methodologies 44
2.4.6 Conclusions . 48

2.5 Semantic Web services . 50
2.5.1 Semantic Web Services Frameworks 51
2.5.2 Composition and interoperation of Web services 52

v

2.5.3 Conclusions . 53

3 Overview of the ORCAS framework 55

4 The Knowledge Modelling Framework 65
4.1 Introduction . 65
4.2 The Abstract Architecture . 66

4.2.1 Components . 69
4.2.2 Matching relations . 80

4.3 The Object Language . 87
4.3.1 The Language of Feature Terms 88
4.3.2 Subsumption . 89
4.3.3 Matching by subsumption 91

4.4 Knowledge Configuration . 93
4.4.1 Notation and basic definitions 93
4.4.2 The Problem Specification process 95
4.4.3 Overview of the Knowledge Configuration process 99
4.4.4 Strategies for the Knowledge Configuration process 101
4.4.5 Searching the Configuration Space 103

4.5 Case-based Knowledge Configuration 108
4.6 Configuration as reuse . 110

5 The Operational Framework 115
5.1 Introduction . 115
5.2 The Cooperative Problem-Solving process 116
5.3 Team model . 122

5.3.1 Team-roles and team-components 124
5.4 The ORCAS Agent Capability Description Language 128

5.4.1 Electronic Institutions . 132
5.4.2 Communication . 134
5.4.3 Operational description 147

5.5 Team Formation . 153
5.5.1 Task allocation . 154
5.5.2 Team selection . 156
5.5.3 Team instruction . 160

5.6 The Teamwork process . 162
5.7 Extensions of the Operational Framework 166

5.7.1 Interleaving Teamwork, Knowledge Configuration and
Team Formation . 167

5.7.2 Operational scenarios: dimensions and some prototypical
scenarios . 169

5.8 Conclusions . 173

vi

6 The Institutional Framework 175
6.1 Introduction . 175
6.2 Overview of the ORCAS e-Institution 176
6.3 Dialogic Framework . 178
6.4 Performative structure . 182
6.5 Communication scenes . 184

6.5.1 Registering scene . 184
6.5.2 Brokering scene . 184
6.5.3 Team Formation scene . 187
6.5.4 Teamwork scene . 191

7 Application: The Web Information Mediator 195
7.1 Introduction . 195
7.2 The WIM approach to information search 198

7.2.1 Adaptation of queries . 199
7.2.2 Aggregation of results . 201

7.3 WIM architecture . 202
7.4 The Information Search and Aggregation Ontology 204

7.4.1 Items . 205
7.4.2 Queries, Filters and Terms 207
7.4.3 Sources . 209
7.4.4 Query-models . 210
7.4.5 Item-info . 210

7.5 The WIM library . 211
7.5.1 Information Search task 212
7.5.2 Elaborate-query task . 215
7.5.3 Select-sources task . 218
7.5.4 Customize-query task . 218
7.5.5 Retrieve task . 220
7.5.6 Aggregate task . 221
7.5.7 Elaborate-item-infos task 222
7.5.8 Aggregate-item-infos task 224

7.6 WIM domain knowledge . 225
7.6.1 Evidence-Based Medicine 226
7.6.2 The MeSH thesaurus . 226
7.6.3 Medical sources . 229

7.7 Exemplification of the WIM library 231
7.7.1 Query Elaboration using EBM 231
7.7.2 Basic Query Customization 232
7.7.3 Aggregation . 236

7.8 Experimental results . 237
7.9 Example of the Cooperative Problem Solving process in WIM . . 239

7.9.1 Registering capabilities 240
7.9.2 Problem specification . 241
7.9.3 Knowledge Configuration 245
7.9.4 Team-formation . 247

vii

7.9.5 Teamwork . 250
7.10 Other experiments . 254

7.10.1 Inter-library application 254
7.11 Conclusions . 257

8 Conclusions and future work 259
8.1 Introduction . 259
8.2 Discussion . 261

8.2.1 On Agent Capability Description Languages 262
8.2.2 On MAS Coordination and Cooperation 263
8.2.3 On Semantic Web Services 264
8.2.4 On the design of agent teams 265

8.3 Future work . 265

A Specification of the Knowledge Modelling Ontology 269

B Formalization of the Query Weighting Metasearch Approach 273

C Specification of the ORCAS e-Institution 277

D Specification of the ISA-Ontology 281

E Specification of the ISA-Library 285

F ORCAS Services 301
F.1 Interaction protocols for the ORCAS services 302
F.2 Data structures and XML format 304
F.3 ORCAS services in the WIM application 306
F.4 FIPA examples . 307

F.4.1 Brokering . 307
F.4.2 Team formation . 308
F.4.3 Problem-Solving . 308
F.4.4 Cooperative Problem-Solving 309

F.5 The Personal Assistant . 311

G Glossary of abbreviations 315

viii

List of Figures

1.1 Roadmap timeline for agent technologies 3
1.2 The three layers of the ORCAS framework 10
1.3 Thesis structure . 12

2.1 Cooperation typology . 30

3.1 The two layers MAS configuration model. 56
3.2 Overview of the ORCAS Cooperative Problem Solving process . . 58
3.3 The three layers of the ORCAS framework 62
3.4 Cognitive map for the main topics involved in ORCAS 63

4.1 Components in the Abstract Architecture 69
4.2 Hierarchy of sorts in the The Knowledge Modelling Ontology . . 70
4.3 The Knowledge-Component sort 71
4.4 Sorts Pragmatics and Pragmatics-descriptor 71
4.5 The Task sort . 73
4.6 The Signature sort, where the Signature-element sort is to be

defined by the Object Langauge 73
4.7 The Competence sort . 73
4.8 The Capability sort . 74
4.9 The Assumptions sort . 76
4.10 The Skill sort . 76
4.11 The Task-Decomposer sort . 77
4.12 The Domain-Model sort . 79
4.13 The Ontology sort . 80
4.14 Hierarchy of sorts in the ISA-Ontology (from the WIM application,

Chapter 7) . 81
4.15 Matching relations in the Abstract Architecture 82
4.16 Representation of feature terms as labelled graphs 90
4.17 Problem Specification process . 96
4.18 Features used to specify problem requirements 98
4.19 User Interface used to specify problem requirements. 99
4.20 User Interface where the user defines the domain-models to be

used during the Knowledge Configuration process. 100
4.21 Main activities of the Knowledge Configuration process 101

ix

4.22 Example of a task-configuration 102
4.23 Interface that shows a partial task-configuration 104
4.24 Features characterizing a state 105
4.25 Relation between similarities in the problem space and the solu-

tion space . 110
4.26 Library, application and configurable application 113

5.1 The ORCAS model of the Cooperative Problem-Solving process . 121
5.2 Model of a team as a hierarchical team-roles structure 124
5.3 From tasks to team-roles and team-components 126
5.4 Main elements of the ORCAS ACDL concerning capabilities . . . 131
5.5 The Communication and Communication-scenes sorts 135
5.6 Basic Teamwork concepts . 138
5.7 Example of team-role relations and role-policy for Teamwork . . 139
5.8 Basic roles and role relationships 140
5.9 Dialogic frameworks in the ORCAS ACDL 140
5.10 Specification of a sealed-bid auction protocol 143
5.11 Request-Inform protocol described by a scene 144
5.12 Variations and alternatives to the Request-Inform protocol . . . 146
5.13 Solicit-Response protocol described by a scene 146
5.14 Graphical elements used to specify a performative structure . . . 150
5.15 Performative structure of an agora 151
5.16 Task-decomposer operational description 153
5.17 Task allocation . 155
5.18 Example of Team-configuration 157
5.19 Choosing communication scenes during the team selection process 158
5.20 Representing control-flow in a performative structure 159
5.21 Team-role example for a skill . 161
5.22 Team-role example for a task-decomposer 162
5.23 Teamwork model for a task-decomposer 163
5.24 Teamwork model for a team . 164
5.25 Extended model of the Cooperative Problem Solving process . . 167
5.26 Propose-Critique-Modify Search 168
5.27 Service description according to DAML-S 172

6.1 The ORCAS e-Institution as a mediation service between re-
questers and providers of capabilities 176

6.2 ORCAS e-Institution: main agent roles and activities where they
are involved . 177

6.3 ORCAS e-institution roles . 180
6.4 ORCAS e-institution dialogical framework 181
6.5 Performative structure of the ORCAS e-institution 183
6.6 Specification of the Registering scene 185
6.7 Broker Ontology . 186
6.8 Specification of the Brokering scene 188
6.9 Team Formation scene . 190

x

7.1 Meta-search and aggregation . 199
7.2 Domain and source query elaboration 200
7.3 WIM architecture and interoperation 203
7.4 Overview of the ISA Ontology . 205
7.5 Sort definitions of Item, Scored-item and Bibliographic-item 206
7.6 Sort definitions of Query, Filter, Term, and Query-model 207
7.7 Sort definition of Category . 208
7.8 Sort definitions of Source, Attribute-weighting, and Attribute-

translation . 209
7.9 Sort definition of Item-info . 210
7.10 Hierarchy of components in the WIM library 211
7.11 Overview of the capability Metasearch-with-source-selection 214
7.12 Categories on Evidence-based Medicine 227
7.13 Bibliographic-data ontology . 230
7.14 Overview of the ORCAS e-Institution 240
7.15 Screenshot of the Registering scene 241
7.16 Example of the Librarian internal state 242
7.17 Consultation example . 242
7.18 Consultation example . 243
7.19 Screenshot of a Brokering scene 246
7.20 Example of the K-Broker internal state 247
7.21 Task-configuration with a task in delayed configuration mode . . 248
7.22 Screenshot of a Team Formation scene 248
7.23 Example of the T-Broker internal state 249
7.24 Example of a PSA internal state 251
7.25 Screenshot of the Teamwork scene 252
7.26 Example of the K-Broker internal state for a delayed task 252
7.27 Team broker internal state . 253
7.28 Interlibrary application . 255
7.29 Interlibrary application . 256
7.30 Interlibrary application . 257

F.1 FIPA Message Sequence Charts for the ORCAS services 303
F.2 Web interface to WIM . 311
F.3 Managing Interests and goals . 312
F.4 Goal editing . 313
F.5 Scheduling . 314

xi

Agradecimientos

La realización de esta tesis ha sido posible gracias al soporte brindado por el
Consejo Superior de Investigaciones Cient́ıficas. La mayor parte del trabajo se ha
desarrollado bajo la cobertura del proyecto europeo IBROW (IST-1999-190005),
y parcialmente bajo el proyecto español SMASH (TIC96-10ajo 38-C04).

Sin el apoyo y el est́ımulo constante de Enric, mi director de tesis, ésta no se
hubiera hecho realidad. Sus recomendaciones y sugerencias transcendieron la la-
bor académica formal y contribuyeron a mi formación integral como investigador
en aspectos tales como el respeto frente al trabajo de los otros y la asertividad
a la hora de presentar las contribuciones propias.

Esta tesis se ha nutrido de todo eso y mucho más; agradezco a toda la
gente del IIIA su compañerismo, su buena disposición a ayudar, y su impagable
buen humor, tanto al personal investigador como al personal administrativo y de
servicios. Estoy convencido de que la personalidad de las personas es inseparable
del ambiente, y viceversa; en ese sentido puedo decir con total sinceridad que el
IIIA es un lugar que puede sacar lo mejor de cada uno.

Especial mención merecen los que han colaborado más de cerca en este parto
elefantino: Josep Llúıs, por su inestimable ayuda con los aspectos más técnicos,
sin su implementación de NOOS y su estupenda plataforma para desarrollo de
agentes basada en instituciones electrónicas, esta tesis no seŕıa lo que es; a Marc
y a todo el equipo de instituciones electrónicas, sin duda otra de las columnas
vertebrales de este trabajo; a Santi, autor de la herramienta de visualización
Agent World; y a Chema, compañero de casi todo durante estos últimos años, y
autor de buena parte del código utilizado en WIM.

Este es el momento de agradecer las historias de pegasos de mi padre, y el
regazo de mi madre, más de 11680 d́ıas madre, a ellos va dedicada esta tesis.
Llegada también la hora de agradecer a mis hermanos su incondicional amistad,
es una gran suerte tenerlos como hermanos.

Y por último, infinitas gracias a la persona que me acompañó en este tramo
de mi vida, convirtiendo el temido calvario de la tesis en un luminoso paseo.

xiii

Resumen

Aunque los Sistemas Multiagente se suponen abiertos, la mayor parte de la
investigación realizada se ha centrado en sistemas cerrados, diseñados por un
solo equipo de desarrollo, sobre un entorno homogéneo, y un único dominio.

Esta tesis pretende avanzar hacia la consecución de Sistemas Multiagente
abiertos. Nuestros esfuerzos se han centrado en desarrollar un marco de trabajo
para Sistemas Multiagente que permita maximizar la reutilización de agentes en
diferentes dominios, y soporte la formación de equipos bajo demanda, satisfa-
ciendo los requerimientos de cada problema particular.

Por un lado, este trabajo investiga el uso de Métodos de Solución de Proble-
mas para describir las capacidades de los agentes con el objetivo de mejorar su
reutilización. Hemos tenido que adaptar el modelo para trabajar con aspectos
espećıficos de los agentes, como el lenguaje de comunicación y los protocolos de
interacción.

Por otro lado, esta tesis propone un nuevo modelo para el Proceso de Solución
de Problemas Cooperativo, el cual introduce una fase de configuración previa a
la formación de un equipo. El proceso de configuración se encarga de diseñar
el equipo en términos de las tareas a resolver, las capacidades a utilizar, y el
conocimiento del dominio disponible.

El marco de trabajo desarrollado ha sido puesto a prueba mediante la imple-
mentación de una infraestructura para agentes. Esta infraestructura proporciona
un nivel de mediación social para los proveedores y clientes del sistema de res-
olución de problemas, sin imponer una arquitectura particular para los agentes
participantes, ni un modelo mental o lógico para explicar la cooperación.

Las contribuciones de este trabajo adoptan la forma de un marco de trabajo
multinivel, y son presentadas desde los conceptos más abstractos a los más con-
cretos, para terminar con la implementación de una aplicación particular basada
en agentes de información cooperativos.

xv

Abstract

Although Multi Agent Systems are supposed to be open systems, most of the ini-
tial research has focused on closed systems, which are designed by one developer
team for one homogeneous environment, and one single domain.

This thesis aims to advance some steps towards the realization of the open
Multi Agent Systems vision. Our work has been materialized into a framework
for developing Multi Agent Systems that maximize the reuse of agent capabilities
across multiple application domains, and support the automatic, on-demand
configuration of agent teams according to stated problem requirements.

On the one hand, this work explores the feasibility of the Problem Solving
Methods approach to describe agent capabilities in a way that maximizes their
reuse. However, since Problem Solving Methods are not designed for agents,
we have had to adapt them to deal with agent specific concepts concerning the
agent communication languages and interaction protocols.

One the other hand, this thesis proposes a new model of the Cooperative
Problem Solving process that introduces a Knowledge Configuration stage pre-
vious to the Team Formation stage. The Knowledge Configuration process per-
forms a bottom-up design of a team in term of the tasks to be solved, the
capabilities required, and the domain knowledge available.

The statements made herein are endorsed by the implementation of an agent
infrastructure that has been tested in practice. This infrastructure has been
developed according to the electronic institutions formalism to specifying open
agent societies. This infrastructure provides a social mediation layer for both
requesters and providers of capabilities, without imposing neither an agent ar-
chitecture, nor an attitudinal theory of cooperation.

The contributions of our work are presented as a multilayered framework,
going from the more abstract aspects, to the more concrete, implementation de-
pendent aspects, concluding with the implementation of the agent infrastructure
and a particular application example for cooperative information agents.

xvii

Chapter 1

Introduction

The main goal of this thesis is to provide a framework for open Multi-Agent
Systems that maximizes the reuse of agent capabilities through multiple appli-
cation domains, and supports the automatic, on-demand configuration of agent
teams according to stated problem requirements.

We have devoted considerable effort to the applicability of our proposals,
which resulted in the implementation of an infrastructure to develop Multi Agent
Systems according to the principles and requirements stated by our framework.

During the rest of this Chapter the main goal of this thesis is analyzed and
boiled down to the several issues and problems it encompasses. First, we situate
our work in the field of Multi-Agent Systems, focusing on the open problems
and challenges that motivated us; second, the main contributions of this thesis
are summarized; and third, the structure of the thesis is presented as a guide for
readers.

1.1 Motivation and context

Distributed Artificial Intelligence has historically been divided in two main
areas: Distributed Problem Solving (DPS) and Multi-Agent Systems (MAS)
[Bond and Gasser, 1988a]. In the DPS approach problems are divided and dis-
tributed among a number of nodes that cooperate in solving the different parts
of the problem; but the overall problem solving strategy is an integral part of
the system. In contrast, MAS research is concerned with the behavior of a
collection of possibly pre-existing autonomous agents aiming at solving a given
problem [Jennings et al., 1998]. MAS have been defined as loosely coupled net-
works of problem-solving entities working together to find answers to problems
that are beyond the individual capabilities or knowledge of the isolated entities
[Durfee and Lesser, 1989]. The MAS approach advocates decomposing problems
in terms of autonomous agents that can engage in flexible, high level interactions,
and this way of decomposing a problem aids the process of engineering complex
systems [Jennings, 2000]. Some characteristics of MAS are the following:

1

2 Chapter 1. Introduction

• each agent has incomplete information or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• there is no global system control;

• data is decentralized; and

• computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability
to provide robustness and efficiency, the ability to allow inter-operation of exist-
ing legacy systems, and the ability to solve problems in which data, expertise, or
control is distributed. Agents are defined as sophisticated computer programs
that act autonomously on behalf of their users, across open and distributed
environments, to solve a growing number of complex problems.

Considering the former definitions, MAS are supposed to be open systems in
that agents can enter / leave at any time. Nonetheless, most of the initial work
devoted to MAS research has focused on closed systems [Klein, 2000], typically
designed by one team for one homogeneous environment, with participating
agents sharing common high-level goals in a single domain. The communications
languages and interaction protocols are typically in-house protocols, and are
defined by the design team prior to any agent interactions. Systems are scalable
under controlled conditions and design approaches tend to be ad hoc, inspired
by the agent paradigm rather than using any specific methodologies.

It is often suggested the need for real open systems that were capable of
dynamically adapting themselves to changing environments. Some examples
are electronic markets, communities and distributed search engines. All in all,
in open MAS the participants (both human and software agents) are unknown
beforehand, can change over time and can be developed by different parties.
Open systems are opposite to closed or proprietary systems, i.e. open systems
can be supplied by hardware components from multiple vendors, and whose
software can be operated from different platforms.

According to the predictions of the European Network of Excellence for Agent
Based Computing, fully open MAS spanning multiple application domains and
involving heterogeneous participants will not be achieved in a foreseeable future,
and not before year 2009 [Luck et al., 2003]. This cautious prediction obeys to
some challenges yet to be undertaken, including the following:

• provide effective agreed standards to allow open agent systems;

• provide semantic infrastructure for open agent communities;

• develop reasoning capabilities for agents in open environments;

• develop agent ability to understand user requirements;

• develop agent ability to adapt to changes in the environment;

• ensure agent confidence an trust in agents

1.1. Motivation and context 3

Figure 1.1: Roadmap timeline for agent technologies

Figure 1.1 (adapted from [Luck et al., 2003]) shows a roadmap timeline sug-
gesting how agent technology will progress over time if R & D is aimed at the
main challenges identified.

Although we are not going to solve all these problems entirely, we hope to
provide tentative solutions to some of them and to bring about some insights
that could drive future work on these issues. We are not going to exhaustively
describe these problems here, since they are described in Chapter 2; we are
rather going to sketch them so as to let the reader become acquainted with the
motivations for this work.

Nowadays, MAS are increasingly being designed to cross corporate bound-
aries, so that the participating agents have fewer goals in common, although
their interactions are still concerning a common domain. The languages and
protocols used in these systems are being agreed and standardized; however,
despite this raising diversity, all participating agents are designed by the same
team designing the system and share common domain knowledge.

In order to overcome the limitations of current agent infrastructures for open
MAS, researchers must tackle with several problems:

• the connection problem, or how to put providers and requesters (services
and customers) in contact;

• the interoperability problem, or how to achieve a meaningful interaction
among heterogeneous agents at the syntactic, semantic and pragmatic lev-
els;

4 Chapter 1. Introduction

• the coalition problem, or how to form and coordinate agent teams to solve
problems in a cooperative way;

• the reuse problem, or how to use the same agent capabilities across several
application domains;

• the accountability problem, or how to predict or explain the behavior of
MAS according to the requirements of the problem.

The MAS community builds intelligent agents capable of reasoning about
how to cooperate to solve complex problems. This area uses knowledge in-
tensively: for adding meaning (using ontologies), enabling service discovery and
composition (using annotations and reasoning for matchmaking), and coordinat-
ing processes (using negotiation strategies). In closed environments knowledge
is usually homogeneous and static. In open environments such as the Internet,
knowledge is pervasive, distributed, heterogeneous, and dynamic in nature.

Nowadays the Web is shifting the nature of software development to a dis-
tributed plug-and-play process. This change requires a new way of managing and
integrating software based on a software integration architectural pattern called
middleware. Middleware is connectivity software; it consists of enabling services
that allow multiple processes running on one or more machines to interact across
a network. It follows that a middleware layer is required to provide a common set
of programming interfaces that developers can use to create distributed systems.

Intelligent middleware aims to achieve the highest degree of interoperability,
where systems can identify and react to the semantics of data. For this reason,
many research communities are focusing their attention to semantic interoper-
ability, for example: MAS, Semantic Web Services, Cooperative Information
Systems and Component Based Software Development.

In open MAS the middleware layer is usually provided by middle agents
[Decker et al., 1997b] that mediate between requesters and providers of capa-
bilities, e.g. matchmakers [Decker et al., 1996], facilitators [Erickson, 1996a,
Genesereth and Ketchpel, 1997] and brokers[Nodine et al., 1999]). Typically,
the function of a middle agent is to pair requesters with providers that are
suitable for them, and this process is called matchmaking. To enable match-
making, both providers and requesters share a common language to describe
the requests (tasks or goals) and the advertisements (capabilities or services) in
order to compare them. This language is called an Agent Capability Description
Language (ACDL).

Matchmaking is the process of verifying whether a capability specification
matches the specification of a request (e.g. a task to be solved): two specifi-
cations match if their specifications verify some matching relation, where the
matching relation is defined according to some criteria (e.g. a capability being
able to solve a task). Semantic matchtmaking, which is based on the use of
shared ontologies to annotate agent capabilities [Guarino, 1997a], improves the
matchmaking process and facilitates interoperation.

Semantic matchmaking allows to verify whether a capability can solve a
new type of problem (a task), but the reuse of existing capabilities over new

1.1. Motivation and context 5

application domains is difficult because capabilities are usually associated to a
specific application domain.

The notion of an Agent Capability Description Language (ACDL) has been
introduced recently [Sycara et al., 1999a] as a key element to enable MAS in-
teroperation in open environments. An ACDL is a shared language that al-
lows heterogeneous agents to coordinate effectively across distributed networks.
Sometimes, capabilities are referred as “services” and, consequently, an ACDL
can alternatively be called an Agent Service Description Language (ASDL).

In the literature, an ACDL is defined as a language to describe both agent
advertisements and requests, and is primarily used by middle agents (e.g. brokers
and matchmakers) to pair service-requests with service-providing agents that
meet the requirements of the request [Sycara et al., 1999b, Sycara et al., 1999a].

Some desirable features for such a language are expressiveness, efficiency and
ease of use:

• Expressiveness: the language should be expressive enough to represent
not only data and knowledge, but also the meaning of a capability. Agent
capabilities should be described at an abstract rather than implementation
dependent level.

• Efficiency : inferences on descriptions written in this language should
be supported. Automatic reasoning and comparison on the descriptions
should be both feasible and efficient.

• Ease of use: descriptions should not only be easy to read and understand,
but also easy to write. The language should support the use of ontologies
for annotate agent capabilities with shared semantic information.

However, in addition to capability discovery, an ACDL should bring support
to other activities involved in MAS interoperation. On the one hand, once a
capability is discovered, it should be enacted automatically; agents should be
able to interpret the description of a capability to understand what input is
necessary to execute a capability, what information will be returned, and which
are the effects or postconditions that will hold after applying the capability. In
addition, an agent must know the communication protocol, the communication
language and the data format required by the provider of the capability in order
to successfully communicate with it.

On the other hand, in order to achieve more complex tasks, capabilities may
be combined or aggregated to achieve complex goals that existing capabilities
cannot achieve in isolation. This process may require a combination of match-
making, capability selection among alternative candidates, and verification of
whether the aggregated functionality satisfies the specification of a high-level
goal.

Our approach to these activities is tightly related with the idea of reuse: how
to reuse a capability for different tasks, across several application domains, and
in cooperation with other capabilities provided by different, probably heteroge-
neous agents. The idea of reuse is being addressed by the Software Engineering
and the Knowledge Engineering communities.

6 Chapter 1. Introduction

The reuse of complete software developments and the process used to create
them has the potential to significantly ease the process of software engineering
by providing a source of verified software artifacts [Wegner, 1984]. It is sug-
gested than reuse of software artifacts can be achieved through the utilization of
software libraries [Atkinson, 1997]. Essentially a software library is a repository
of information which can be used to construct software systems. The main goal
of software libraries reuse is to enable previous development experiences to guide
subsequent software development. To this end, MAS designers must be provided
with libraries of:

• generic organisation models (e.g., hierarchical organisations, flat organisa-
tions);

• generic agent models (e.g., purely reactive agent models, deliberative BDI
models);

• generic task models (e.g., diagnostic tasks, information filtering tasks,
transactions);

• communication languages and patterns for agent societies;

• ontology patterns for agent requirements, agent models and organisation
models;

• interaction protocol patterns between agents with special roles;

• reusable organisation structures; and

• reusable knowledge bases.

From the compositional approach, building a software system is essentially a
design problem [Biggerstaff and Perlis, 1989]. The Component-Based Software
development (CBSD) approach focuses on building large software systems by in-
tegrating previously-existing software components. By enhancing the flexibility
and maintainability of systems, the ultimate goal is to reduce software develop-
ment costs, assemble systems rapidly, and reduce the maintenance burden associ-
ated with the support and upgrade of large systems [Brown and Wallnau, 1996].

Constructing an application involves the use of prefabricated pieces, per-
haps developed at different times, by different people and possibly with different
purposes, therefore integrability of heterogeneous components is a key when con-
sidering whether to acquire, reuse, or build new components. Reusable software
components can be deployed independently and are subject to composition by
third parties [Szyperski, 1996]. There is, however, a major problem with soft-
ware composition, the so called Bottom Up Design Problem [Mili et al., 1995],
defined as:

given a set of requirements, find a set of components within a software
library whose combined behavior satisfies the requirements.

1.2. Contributions 7

The fundamental difficulty when considering this problem is how to decom-
pose the requirements in such a way as to yield component specifications. A
reverse approach is to search the space of all possible component compositions
until one satisfying the requirements is found [Hall, 1993, Zhang, 2000]. Thus,
composition of components can be regarded as composition of their specifications
[Butler and Duke, 1998].

Concerning Knowledge Engineering, we are interested in Knowledge Mod-
elling Frameworks that has proposed several methodologies, architectures
and languages for analyzing, describing and developing knowledge systems
[Steels, 1990, McDermott, 1988, Schreiber et al., 1994a, Fensel et al., 1999].
The goal of a Knowledge Modelling Framework (KMF) is to provide a conceptual
model of a system which describes the required knowledge and inferences at an
implementation independent way. This approach is intended to support the en-
gineer in the knowledge acquisition phase [Van de Velde, 1993] and to facilitate
reuse [Fensel, 1997a].

However, KMFs and reusable software libraries have rarely been applied in
the field of MAS to deal with the reuse and interoperation problems arising in
open environments. This thesis explores the utility of a KMF to support the
automated design and coordination of agent teams according to stated problem
requirements; in other words, we translate the Bottom Up Design Problem prob-
lem to the MAS field: given a set of requirements, find a set of agent capabilities
whose combined competence and knowledge satisfy the requirements.

1.2 Contributions

The main outcome of our efforts to overcome the problems concerning interop-
erability and reuse in open MAS is a multi-layered framework for MAS devel-
opment and deployment that integrates Knowledge Modelling and Cooperative
Multi-Agent Systems together. This framework is called ORCAS, which stands
for Open, Reusable and Configurable multi-Agent Systems.

The ORCAS framework explores the use of a KMF for describing and com-
posing agent capabilities with the aim of maximizing capability reuse and sup-
porting the automatic, on-demand configuration of agent teams according to
stated problem requirements. The ORCAS KMF is being used as an ACDL sup-
porting semantic matchmaking and allowing capability descriptions in a domain
independent manner, in order to maximize capability reuse.

The Knowledge Modelling Framework of ORCAS has been complemented
with an Operational Framework, which describes a mapping from concepts in
the Knowledge-Modelling Framework to concepts from Multi-Agent Systems and
Cooperative Problem Solving. Specifically, the Operational Framework describes
how a composition of capabilities represented at the knowledge-level can be op-
erationalized by a customized team of problem solving agents. In order to do
that, the Operational Framework extends the KMF to describe also the commu-
nication and the coordination mechanisms required by agents to cooperate. Our
approach to describe such aspects of a capability is based on the macro-level

8 Chapter 1. Introduction

(societal) aspects of agent societies, which is focused on the communication and
the observable behavior of agents, rather than adopting a micro-level (internal)
view on individual agents. The reason to focus on the macro-level is to avoid im-
posing a specific agent architecture, thus facilitating the design and development
of agents to third parties, a basic requirement of open MAS.

The ORCAS Operational Framework proposes a new model of the Coopera-
tive Problem Solving process that is based on a knowledge-level [Newell, 1982]
description of agent capabilities, using the ORCAS KMF. This model includes a
Knowledge Configuration process that takes a specification of problem require-
ments as input and searches a composition of capabilities and knowledge satisfy-
ing those requirements. The result of the Knowledge Configuration process is a
task-configuration, a knowledge-level design of an abstract agent team, in terms
of the tasks to be solved, the capabilities to be applied, and the knowledge to
be used by those capabilities.

An agent willing to start a cooperative activity requires an initial plan
to know which are the capabilities required in order to select suitable agents
for that plan. In larger systems, team selection may involve an exponen-
tial number of possible team combinations, and a blow-out in the number
of interactions required to select the members of a team. There are two
approaches to overcome these problems: one approach, that still relies on
some kind of global plan is that of guiding the team formation with prob-
lem requirements [Tidhar et al., 1996]; another approach is to use distributed
tasks allocation methods to make the team selection computationally tractable
[Shehory and Kraus, 1998, Sandholm, 1993]; furthermore, a mixture of both ap-
proaches is also feasible [Clement and Durfee, 1999].

In this thesis we adopt the approach based on guiding the team formation
process with the problem requirements, but the notion of a initial plan is here
replaced by the notion of a task-configuration. A task-configuration reduces the
complexity of the team formation process by constraining the composition of
the team to a certain design that satisfies the requirements of the problem. In
spite of its combinatorial nature, the complexity of the team selection process
is mitigated, though partially transferred from the team formation process to
the Knowledge Configuration process. Therefore, in order to further reduce the
complexity of the Knowledge Configuration and the team formation activities,
we propose Case-Based Reasoning to heuristically guide the search process over
the space of possible configurations.

Finally, we have implemented and agent infrastructure according to the
ORCAS model of the CPS process. This agent infrastructure has being
implemented using the electronic institutions formalism [Esteva et al., 2001,
Esteva et al., 2002b], which is based on a computational metaphor of human
institutions from a macro-level point of view.

Human institutions are places where people meet to achieve some goals fol-
lowing specific procedures, e.g. auction houses, parliaments, stock exchange
markets, etc. Intuitively, the notion of electronic institutions refers to a sort
of virtual place where agents interact according to explicit conventions. The

1.2. Contributions 9

institution is the responsible for defining the rules of the game, to enforce them
and impose the penalties in case of violation.

An electronic institution, or e-Institution, is a “virtual place” designed to
support and facilitate certain goals to the human and software agents concurring
to that place. Since these goals are achieved by means of the interaction of
agents, an e-institution provides the social mediation layer required to achieve a
successful interaction: interaction protocols, shared ontologies, communication
languages and social behavior rules. The interaction is not only regulated by
the institution, furthermore it is mediated by institutional agents that offer an
added value to participating agents.

The ORCAS e-Institution brings an added value to both requesters and
providers: on the one hand, requesters are freed of finding adequate providers
and provides a single interface to the multiple and heterogenous providers; on
the other hand, the institution provides an advertisement service to capabil-
ity providers, provides a mediation service for the team formation process, and
facilitates coordination during the teamwork activity, allowing agents to solve
complex problems that cannot be achieved by an agent alone.

However, in addition to implement an agent infrastructure using the elec-
tronic institutions formalism, we are interested on using the concepts proposed
by the e-Institutions approach to describe the communication and the opera-
tional description of agent capabilities without imposing neither a specific agent
architecture, nor an attitudinal theory of cooperation.

The goal of partitioning the ORCAS framework in layers is to bring devel-
opers an extra flexibility in adapting this framework to their own requirements,
preferences and needs. We claim that a clear separation of layers will support
a flexible utilization and extension of the framework to fit different needs, and
to build different infrastructures. Therefore, we divide the ORCAS framework
in three complementary frameworks:

1. The Knowledge Modelling Framework (KMF) proposes a conceptual and
architectural description of problem-solving systems from a knowledge-
level view, abstracting the specification of components from implementa-
tion details. In addition, a Knowledge Configuration model is presented
as the process of finding configurations of components that fulfill stated
problem requirements.

2. The Operational Framework deals with the link between the characteri-
zation of components and its implementation, that in our framework is
realized by Multi-Agent Systems. This framework comprehends an exten-
sion of the KMF to become a full-fledged Agent Capability Description
Language, together with a new model of the Cooperative Problem Solving
process based on the KMF.

3. The Institutional Framework describes an implemented infrastructure for
developing and deploying Multi-Agent Systems configurable on-demand,
according to the the two layered —knowledge and operational— config-
uration framework. This infrastructure is designed and implemented ac-

10 Chapter 1. Introduction

cording to an institutional model of open agent societies. The result is
multi-agent platform that supports flexible, extensible and configurable
Multi-Agent Systems.

Institutional
Framework

Operational
 Framework

Knowledge
Modelling Framework

Figure 1.2: The three layers of the ORCAS framework

Figure 1.2 shows the three layers as a pyramid made of three blocks. The
block at the bottom corresponds to the more abstract layer, while upper blocks
corresponds to increasingly implementation dependent layers. Therefore, devel-
opers and system engineers can decide to use only a portion of the framework,
starting from the bottom, and modifying or changing the other frameworks ac-
cording to its preferences and needs.

1.3 Structure

This thesis consist of 7 chapters, including this one, and several appendixes
providing technical information. The thesis is organized as follows (Figure 1.3):

Chapter 2 reviews some research relevant to our thesis and discusses some of
their contributions that put the basis for our work, together with its limi-
tations and the open issues we are dealing with. Since our work integrates
two fields together -knowledge modelling and multi-agent systems-, this
chapter have to address very different issues.

Chapter 3 draws the structure of ORCAS framework to give the reader an
overall view of it, and remarks the outstanding elements of each layer so
as to disclose the logic underpinning that structure.

Chapter 4 proposes a knowledge modelling framework for Multi-Agent Sys-
tems. This framework describes a conceptual and architectural charac-
terization of problem-solving systems from a knowledge-level perspective,

1.3. Structure 11

abstracting the specification from any implementation details. Moreover,
this chapter describes a Knowledge Configuration process that is able to
find a configuration of components (tasks, capabilities and domain-models)
fulfilling stated problem requirements.

Chapter 5 describes a framework to operationalize a knowledge-level config-
uration by forming and instructing a team of agents with the required
capabilities and domain knowledge. This chapter also describes a model
of teamwork for team mates in order to coordinate during the problem
solving process in order to fulfill the stated problems requirements.

Chapter 6 introduces the institutional framework, an implemented infrastruc-
ture for system development that is based on the two layered approach
to multi-agent configuration together with an institutional approach to
open agent societies, in support of flexible, customizable and extensible
Cooperative Multi-Agent Systems.

Chapter 7 shows an implemented application as a case study of the ORCAS
framework, the Web Information Mediator (WIM). WIM is an application
to look for medical bibliography in Internet that relies on a library of tasks
and agent capabilities for information search and aggregation, linked to a
medical application domain.

Chapter 8 presents some conclusions and draws up those open issues that are
believed to deceive future work.

12 Chapter 1. Introduction

Chapter 1

Introduction

Chapter 2

Background &

related work

Chapter 3

overview

Chapter 4

Knowledge Modelling

Framework

Chapter 5

Operational

Framework

Chapter 6

Institutional

Framework

Chapter 7

Applications

Chapter 8

Conclusions

Figure 1.3: Thesis structure

Chapter 2

Background and related
work

2.1 Introduction

Our work explores the potential of a Knowledge Modelling Framework for de-
scribing Multi-Agent Systems at the knowledge level, with the goal enabling the
Cooperative Problem Solving process to be r adapted on-demand to the require-
ments of the problem at hand. Therefore, our review of related has to deal with
two main research areas: Knowledge Modelling (§2.2) and Multi-Agent Systems
§2.4.

This background is completed with a section on Software Reuse (§2.3), and
another section on Semantic Web Services (§2.5). On the one hand, the reason
to include a section about software reuse is that we aim to maximize the reuse
of agent capabilities across multiple domains. On the other hand, the reason to
include a section devoted to Semantic Web Services (§2.5) is the shared interest
of that field and Multi-Agent Systems on interoperation in open environments
like the Internet. A more detailed organization of the chapter is sketched below:

• The chapter begins with a review of some Knowledge Modelling Frame-
works in §2.2, focusing on those frameworks related with the Task-Method-
Domain modelling paradigm: Generic Tasks (§2.2.1), Role-limiting Meth-
ods (§2.2.2), Components of Expertise (§2.2.3), KADS/CommonKADS
(§2.2.4), UPML(§2.2.5) and current issues in knowledge modelling(§2.2.6).
This section concludes with a subsection about reuse of problem solving
methods (§2.2.6), and more specifically, it is mainly about the role of on-
tologies in component reuse.

• Section §2.3 is about those aspects of reuse that are more relevant to our
work, and more specifically, those research lines assuming a compositional
approach to software development, either explicitly or implicitly. Section
§2.3.1 review the field of software libraries, which is similar to the idea

13

14 Chapter 2. Background and related work

of libraries of problem solving methods in knowledge-engineering; Section
§2.3.2 is about Component-Based Software Development (CBSD), which
share some concepts with abstract architectures for knowledge-engineering;
and finally, Section §2.3.3 deals with the requirements for a semantic-based
reuse and the solutions.

• Section §2.4 addresses the wide field of Multi-Agent Systems. Although
some dimensions and alternative views of Multi-Agent Systems will be pre-
sented, we favor an external, societal view of Multi-Agent Systems, thus
avoiding topics such as agent architectures and agent theories. First, we
review Cooperative Multi-Agent Systems (§2.4.1), including subsections
on collaboration (§2.4.1), coordination (§2.4.1) and Cooperative Problem
Solving (§2.4.1). The section continues with Team Formation (§6.5.3), a
key activity of the Cooperative Problem-Solving process. Team Formation
can be achieved by either a centralized task allocation (§2.4.2) and dis-
tributed task allocation (§2.4.2) approaches. Another section that is espe-
cially relevant for this thesis deals with agent interoperation in open envi-
ronments (§2.4.3), including agent communication (§2.4.3), middle agents
(§2.4.3), and matchmaking (§2.4.3). Section §2.4.3 ends with a review
of infrastructures for developing and deploying Multi-Agent Systems in
open environments (§2.4.3). Next section introduces social modelling ap-
proaches to Multi-Agent Systems (§2.4.4), and finally, the section on MAS
concludes concludes with a review of agent-oriented methodologies (§2.4.5).

• The last section of this chapter is about Semantic Web Services (§2.5), and
is mainly concerned with proposed frameworks (§2.5.1) and relevant work
on composition and interoperation of Web services (§2.5.2).

At the end of the chapter we review the open issues and describe the type
of problems that we expect to contribute to. In addition, the main differences
between our approach and related work are discussed.

2.2 Knowledge Modelling Frameworks

There is much consensus that the process of building a knowledge system can
be seen as a modelling activity. Building a knowledge system means building
a computer interpretable model with the aim of making problem-solving capa-
bilities comparable to a domain expert, but it is not intended to simulate the
cognitive processes involved in human problem-solving.

In the early eighties the development of an expert system has been seen basi-
cally as a transfer process of human knowledge into an implemented knowledge
base. This approach relies on the assumption than the knowledge is available
there (in the expert) ready to be collected. Typically, this knowledge is ac-
quired through interviewing experts, and the knowledge is implemented in some
kind of production rules executed by some interpreter. But due to the limi-
tation of one single knowledge representation formalism, and to the fact that

2.2. Knowledge Modelling Frameworks 15

expert knowledge is often difficult to acquire (i.e. tacit knowledge) it was re-
alized that the transfer approach adopted by first generation expert systems is
only feasible for small prototypical systems, but it failed to produce large, re-
liable and maintainable knowledge bases. Therefore, with the introduction of
the knowledge level [Newell, 1982] in the development of knowledge system, the
knowledge acquisition phase is no longer seen as a transfer of knowledge, but as
a model construction process [Clancey, 1989] with the following characteristics
[Studer et al., 1998]:

• a model is an approximation of the reality, thus it is never ended;

• modelling is a cyclic process, so new observations can lead to a refinement,
modification or completion of the already-made model; in the other side,
the model may guide the further acquisition of knowledge; and

• modelling depends on subjective interpretations of the knowledge engineer,
therefore this process is typically faulty.

Knowledge Modelling Frameworks propose methodologies, architectures and
languages for analyzing, describing and developing knowledge systems. While
different frameworks may differ on specific details, all of them are based on the
idea of building a conceptual model of a system, which describes knowledge
and inferences at a domain independent level. These frameworks have been
influenced by the notion of the knowledge level [Newell, 1982], which proposes
to describe a system by focusing on the knowledge they contain rather than
the implementation structures of the knowledge (the symbol level). In addition,
the knowledge level proposes to view a system as an agent with three classes of
components: goals, actions and bodies of knowledge; and introduces a principle
of rationality in the agent behavior: actions are selected to attain goals. Next,
we will review the most prominent frameworks for knowledge engineering as a
modelling activity at the knowledge level, namely: Generic Tasks, Role-Limiting
Methods, Components of Expertise, KADS and CommonKADS.

2.2.1 Generic Tasks

In the early eighties, the study of existing knowledge system for design and di-
agnosis evolved into the notion of a Generic Task (GT) [Chandrasekaran, 1986].
This approach proposes a task-oriented methodology for analyzing and building
knowledge-systems. The main intuition underlying this proposal is that there are
some recurring patterns in problem-solving activity (e.g. hierarchical classifica-
tion, abduction assembly and hypothesis matching) that can be reused. Generic
tasks are thus viewed as building-blocks that can be combined to build more
complex problem-solving tasks (e.g. diagnosis) [Chandrasekaran, 1987]. This
approach suggests that the representation of knowledge should closely follow its
use strong interaction problem hypothesis [Bylander and Chandrasekaran, 1988],
and that there are different organizations of knowledge suitable for different types
of problem-solving: “Representing knowledge for the purpose of solving some

16 Chapter 2. Background and related work

problem is strongly affected by the nature of the problem and by the inference
strategy to be applied to the knowledge”. A GT is characterized by:

• a generic description of its input and output;

• a fixed schema of knowledge types specifying the structure of the knowl-
edge; and

• a fixed problem-solving method/strategy specifying the inference steps and
the sequence in which these steps have to be carried out.

Since a GT fixes the type of knowledge required to solve a task, it provides
a vocabulary that can be used to guide the knowledge acquisition process. A
Task Specific Architecture (TSA) is an executable shell for a GT that provides
a task-specific inference engine and a knowledge-base representation language.
Therefore, a particular problem-solver is developed by instantiating a TSA with
domain specific terms. However, this approach has the disadvantage of conflat-
ing the notion of task and problem-solving method. To overcome this limitation
the notion of a Task-Structure was proposed [Chandrasekaran et al., 1992]: it
makes a clear distinction between a task, which is used to refer to a type of
problem, and a method, which is a particular way to accomplish a task. A
task structure includes a set of alternative methods suitable for solving a task.
A task can be decomposed into subtasks, thus a task structure is a hierarchi-
cal decomposition of tasks into subtasks, and the methods suitable for each
task. The decomposition structure is refined to a level in which subtasks can
be solved “directly” using available knowledge. From this point of view tasks
refer to types of problems, while methods are specific ways of solving tasks
[Chandrasekaran and Johnson, 1993].

2.2.2 Role-Limiting Methods

This approach [McDermott, 1988] focuses on the characterization of reusable
Problem-Solving Methods. A Role-Limiting Method (RLM) is a method that de-
clares the roles knowledge can play in that method. From this approach, whereas
domain knowledge should not be acquired and represented with independence
of the method, it is still explicitly and separately represented. An advantage of
this approach is that method roles prescribe what knowledge should be acquired,
therefore the expert only have to instantiating the generic roles with available
knowledge. Furthermore, the problem-solving method facilitate explanations
beyond a simple recall of inference steps as was usual in first generation expert
systems. However, some limitations have been presented to this approach: first,
knowledge-acquisition is completely driven by the RLM [Steels, 1990] and thus
it is difficult to reuse domain-models for new RLMs; and second, RLMs have a
fixed structure that is not well suited to deal with tasks that should be solved
by a combination of several methods [Studer et al., 1998]. In order to overcome
the inflexibility of RLMs, the concept of configurable RLMs has been proposed.

2.2. Knowledge Modelling Frameworks 17

Configurable Role-Limiting Methods exploits the idea of a complex PSM be-
ing decomposed into subtasks, where each subtask may be solved by different
methods [Poek and Gappa, 1993].

Role-limiting methods lead to a streamlined methodology for doing knowl-
edge acquisition which have resulted in several tools that have been successfully
applied in a variety of real-world applications.

2.2.3 Components of Expertise

Components of Expertise [Steels, 1990] is an attempt to synthesize the idea of
Role-Limiting Methods and the task-structure analysis of the GT approach. In
addition, this approach presents a componential framework that is expected to
overcome some of the problems detected in previous work by imposing more
modularity on the different components of expertise and emphasizing pragmatic
constrains. The componential framework considers three classes of components
to describe and build a problem solver: tasks, models and Problem-Solving Meth-
ods.

From a conceptual point of view, a task is characterized in terms of the type
of problem to be solved (e.g. diagnosis, interpretation, design, planning, and so
on). This characterization is based on properties of the input, output, and na-
ture of the operations that map the input to the output. Usually, there is a main
task that describes the application problem, but tasks can be decomposed into
subtasks with input/output relations between them, resulting in a task structure
[Chandrasekaran et al., 1992]. However, the pragmatic view focuses on task con-
strains that result from the environment or from the epistemological limitations
of humans (models are limited in their accuracy and scope of prediction).

The componential framework addresses the question of knowledge modelling
having in mind the separation of deep and surface knowledge [Steels, 1988]. From
the perspective of deep expert systems, problem solving is viewed as a modelling
activity in which some models of the world are constructed in order to solve a
problem using that models. Case models are about the particular problem solv-
ing situation, which is determined by the task and methods at hand. However,
domain-models are valid for a variety of cases. Domain-models describe domain
specific knowledge that is used by Problem-Solving Methods to construct case
models. There are two further subtypes of domain-models: Expansion models
can be used to expand a case model by inference or data gathering; and mapping
models are used to construct or modify a case model based on a mapping from
elements of other models. Models can be constructed from different perspectives
(for example, there are functional models, causal models, behavioral models and
structural models) and represented in heterogeneous forms, like rules, hierarchies
or networks.

Problem-Solving Methods (PSM) are responsible for applying domain knowl-
edge to solve a task. A problem-solving method might decompose a task into
subtasks or directly solve a subtask. In either case they can consult domain-
models, create or change intermediary knowledge structures, perform actions to
gather more data or expand a case model by adding or changing facts.

18 Chapter 2. Background and related work

2.2.4 KADS and CommonKADS

KADS [Schreiber et al., 1993, Wielinga et al., 1993] is methodology for the anal-
ysis and design of knowledge system, which was further developed to Com-
monKADS [Schreiber et al., 1994a]. A basic characteristic of KADS is the con-
struction of a collection of models, where each model captures specific aspects
of the knowledge system to be developed as well as of its environment. In
CommonKADS the Organization Model, the Task Model, the Agent Model, the
Communication Model, the Expertise Model and the Design Model are distin-
guished:

• The Organizational Model describes the organizational structure in which
the knowledge system will be introduced.

• The Task Model provides a hierarchical description of the tasks which
are performed in the organizational unit, and the agents assigned to the
different tasks.

• The Agent Model specifies the capabilities of each agent involved in the
execution of tasks. In general an agent can be a human or some kind of
software system.

• The Communication Model specifies the interactions between the different
agents, including the type of information exchanged.

• The Design Model describes the system architecture, the representation
and the computational mechanisms to realize a problem-solver according
to the requirement of the target system captured at the Expertise Model
and the Communication Model.

• The Expertise Model describes the knowledge required by agents to solve
tasks, approaching knowledge modelling from three different perspectives:
static, functional and dynamic. Accordingly, three layers for the expertise
model are distinguished: domain layer, inference layer and task layer.

– At the domain layer the domain specific knowledge required to solve
tasks is modelled. Domain knowledge is conceptualized through
domain-models. A domain-model provides a partial view on a part
of the domain knowledge, which statements are conceptualized by a
particular ontology. The main goal of structuring the domain layer is
facilitate its reuse for solving different tasks.

– At the inference layer the reasoning process of a knowledge sys-
tem is specified following the Role-Limiting Methods approach
[McDermott, 1988]. Problem-Solving Methods are described by prim-
itive reasoning steps called inference actions as well as the roles played
by domain knowledge. Dependencies between inference actions and
roles are specified by an inference structure, which specifies how the

2.2. Knowledge Modelling Frameworks 19

knowledge roles are used and produced by inference actions. Further-
more, the notion of roles provides a domain independent view of the
domain

– The task layer provides a description of tasks in terms of input and
output roles, and specifies the goals characterizing it. In addition,
the task layer describes a decomposition of the task into subtasks, as
well as the control flow over subtasks.

Both semi-formal and formal languages have been proposed to de-
scribe the Expertise Model: CML (Conceptual Modelling Language)
[Schreiber et al., 1994b], which is a semi-formal language with a graphical
notation, oriented towards the human understanding; and (ML)2, which is
a formal specification language based on first order predicate logic, meta-
logic and dynamic logic.

The clear separation between the domain knowledge and the reasoning pro-
cess at the inference and task layers enables two kind of reuse: on the one hand, a
domain-model may be reused by different methods; on the other hand, a method
may be reused in a different domain [Studer et al., 1998] by defining a new view
on the domain. This approach weakens the strong interaction problem hypothesis
[Bylander and Chandrasekaran, 1988], which is thus redefined as the relative in-
teraction hypothesis [Schreiber et al., 1994a]: whereas some kind of dependency
exists between the structure of the knowledge and the type of the task, it can
be minimized by explicitly stating the dependencies between reasoning methods
and domain knowledge [van Heijst, 1995]. Task and PSM ontologies may be
defined as two viewpoints on an underlying domain ontology.

Since one of the goals of the CommonKADS approach is to facilitate reuse,
a library of reusable and configurable components has been defined that can
be used to build up an Expertise Model [Valente et al., 1994], including compo-
nents to solve the following type of (generic) tasks: modelling, design, planning,
assignment, prediction, monitoring, assessment and diagnosis [Breuker, 1994].

2.2.5 UPML

The Unified Problem-solving Method Development Language (UPML)
[Fensel et al., 1999] is a framework for developing knowledge-intensive reasoning
systems based on libraries of generic problem-solving components. UPML is
a description language that integrates work on knowledge modelling, inter-
operability standards and ontologies. Rather than providing the object level
description language, UPML provides an architectural framework that specifies
the components, the connectors and a configuration of how the components
should be connected (architectural constraints) to build a system. Moreover,
design guidelines define a process model for building complex knowledge systems
out of elementary components [Fensel and Motta, 2001].

The UPML architecture for describing a knowledge system consists of six
different elements: tasks, domain-models, PSMs, ontologies, bridges, and refin-
ers: tasks define the type of problems, PSMs specify the reasoning process, and

20 Chapter 2. Background and related work

domain-models characterize the domain knowledge used by PSMs. Each of these
elements is described independently to enable the reuse of task descriptions in
different domains, the reuse of PSMs for different tasks and domain, and the
reuse of domain knowledge for different tasks and PSMs. Ontologies provide
the terminology used in tasks, PSMs and domain definitions. Again, this sep-
aration enables knowledge sharing and reuse. For example, different tasks or
PSMs can share parts of the same vocabulary and definitions. A fifth element
of a specification of a knowledge system are adapters, which are necessary to
adjust the other (reusable) parts to each other and to the specific application
problem. UPML provides two types of adapters: bridges and refiners. Bridges
explicitly model the relationships between two distinguished parts of an archi-
tecture, e.g. between domain and task or between task and PSM. Refiners can
be used to express the stepwise adaptation of elements of a specification, e.g.
a task is refined into another more specialized task, or a PSM is refined into
a more specialized PSM [Fensel, 1997b]. Again, separating generic and specific
parts of the reasoning process maximizes reusability.

A very important role within the UPML framework is borne by ontologies.
An ontology provides an explicit specification of a conceptualization, which can
be shared by multiple reasoning components communicating during a Teamwork
process. In UPML, ontologies are used to define the terminology and its proper-
ties used to define tasks, PSMs, and domain-models. UPML does not commit to
a specific language style for defining a signature and its corresponding axioms.
However, two styles of specifying signature and axioms are studied and has been
proposed as suited formalisms: logic with sorts and a frame-based representation
using concepts and attributes.

UPML systems are made by adapting and integrating components in a way
constrained by the abstract architecture. The overall configuration process is
guided by tasks that provide generic descriptions of problem classes. After se-
lecting, combining and refining tasks they are connected with PSMs suitable for
those tasks, and both tasks and PSMS are filled in with domain knowledge for
the given domain.

2.2.6 Recent issues in knowledge modelling and reuse

The work on Problem-Solving Methods started in the eighties, when a num-
ber of researchers recognized common patterns in the reasoning processes of
various knowledge systems and described them at a higher level of abstrac-
tion, decoupling them from the application domain. These conceptual models
of the reasoning process make it easier to understand and maintain knowledge-
based systems, and can be used to improve explanation facilities and reuse.
The knowledge modelling community has carried out a large body of work
on formalizing problem solving methods, on building libraries and on charac-
terizing methods in terms of their assumptions and competencies. Research
in this area is concerned with developing new PSMs, methodologies for PSM
reuse, libraries of reusable PSMs, tools to support PSM development, and lan-
guages for representing PSMs. Recent developments of the knowledge mod-

2.2. Knowledge Modelling Frameworks 21

elling community are undertaking the possibilities of Internet as a medium
[Benjamins, 1997, Benjamins et al., 1999, Monica Crubezy and Musen, 2001].

A recent approach that is being addressed from both the software engineer-
ing and the knowledge engineering communities is that of software architectures
[Shaw and Garlan, 1996, Garland and Perry, 1995]. The goal of software archi-
tectures is learning from system developing experience in order to provide the
abstract recurring patterns for improving further system development. As such,
software architectures contribution is mainly methodological in providing a way
to specify systems. A software architecture has the following elements: (i) com-
ponents, (ii) connectors, and (iii) a configuration of how the components should
be connected [Garland and Perry, 1995]. Software architectures are designed to
build applications by matching the specification of abstract components with the
specification of components in a library or repository. Work on software archi-
tectures establishes an abstract level to describe the functionality and the struc-
ture of software artifacts, thus they are suited to describe the essence of large
and complex software systems. Such architectures specify classes of application
problems instead of focusing on the small and generic components from which a
system is built up. The work on formalizing software architectures in terms of as-
sumptions over the functionality of its components [Penix and Alexander, 1997,
Penix, 1998, Penix and Alexander, 1999] shows strong similarities to recent
work on PSMS, which define the competence in terms of assumptions over
the domain knowledge [Benjamins et al., 1996c, Fensel and Straatman, 1996,
Fensel and Benjamins, 1998a, Musen, 1998]. PSMs require specific types of do-
main knowledge and introduce specific restrictions on the tasks that can be
solved by them. These requirements and restrictions are assumptions that play
a key role in reusing Problem-Solving Methods, in acquiring domain knowledge,
and in defining the problems that can be tackled by a knowledge-based system.

A complementary line of research is the work on ontologies to characterize
consensual, formal and declarative knowledge models [Gruber, 1993a]. While
Problem-Solving Methods describe the reasoning process of a knowledge-based
system, ontologies provide the means to describe the domain knowledge that is
used by these methods [Musen, 1998]. The availability of reusable methods and
reusable domain knowledge reduces the development process of knowledge-based
systems to a “plug-and-play” process [Walther et al., 1992].

Libraries of Problem-Solving Methods

Today, there exist several repositories or libraries of PSMs at different locations,
with different scope, including the following: diagnosis [Benjamins, 1993], plan-
ning [Benjamins et al., 1996b], assessment [Valente and Lockenhoff, 1993], and
design [Chandrasekaran, 1990].

All these libraries aim at facilitating the knowledge engineering process, yet
they differ in various dimensions such as generality, formality, granularity and
size. The type of a library is determined by its characterization in terms of these
dimensions. Each type has a specific role in For example, the more general PSMs
(i.e. task neutral) in a library are, the more reusable they are, because they do

22 Chapter 2. Background and related work

not make any commitment to particular tasks. However, at the same time, very
general PSMs will require a considerable refinement and adaptation effort. This
phenomenon is known as the reusability-usability trade-off [Klinker et al., 1991].

Another issue concerning component libraries studies the way component
specifications are organized and retrieved. There are several alternatives for
organizing a library, and each of them has consequences for indexing PSMs
and for their selection. Several researchers propose to organize libraries fol-
lowing a task-method decomposition structure [Chandrasekaran et al., 1992,
Puerta et al., 1992, Steels, 1993, Shadbolt et al., 1993, Terpstra et al., 1993].
According to this organization structure, a task can be realized by several PSMs,
each consisting of primitive or composite subtask that can again be realized by
alternative methods. Guidelines for library design according to this principle
have been discussed [Orsvarn, 1996], pointing out that PSMs are indexed ac-
cording to two factors: the competence of the PSMs, and the assumptions under
which they can be correctly applied. Selection of PSMs from such libraries should
consider first the competence of the PSMs (selecting those whose competencies
match the task at hand), and then the assumptions of PSMs (selecting those
whose assumptions are satisfied).

Brokering of Problem Solving Methods

Problem-Solving Methods for knowledge systems establish the behavior of such
systems by defining the roles in which domain knowledge is used and the or-
dering of inferences. Developers can compose PSMs that accomplish complex
application tasks from primitive, reusable methods. The key steps in this devel-
opment approach are task analysis, method selection from a library, and method
configuration [Eriksson et al., 1995]. From the knowledge modelling community,
this approach is described as a configuration process with the following activities:
PSM selection according to their competence to solve a given task, verification of
domain requirements, combining PSMs together, and mapping them to domain
knowledge. This approach to software development is intended to support the
engineer in the knowledge acquisition phase [Van de Velde, 1993] and to facili-
tate reuse [Fensel, 1997a]. The question of reuse has received a lot of attention
last years from the knowledge modelling community [Benjamins et al., 1996a,
Motta, 1999, Fensel and Motta, 2001]. Nowadays, the World-Wide Web is
changing the nature of software development to a distributive plug-and-play
process, which requires a new kind of managing software: intelligent software
brokers. For selecting PSMs from a library, a broker needs to reason about
characteristics of PSMs like their competence and their assumptions. A recent
project, IBROW, [Benjamins et al., 1998, Benjamins et al., 1999], aims to pro-
vide an intelligent brokering service on the Web. One problem that appears
while brokering components is the need to annotate components with semantic
information (meta-data). From the knowledge-modelling approach, meta-data is
provided by the three classes of components: PSMs, tasks and domain-models.

The IBROW approach to brokering libraries of problem-solving compo-
nents is that of configuring a knowledge-based system by selecting, adapt-

2.2. Knowledge Modelling Frameworks 23

ing and integrating components retrieved from distributed libraries available
on the Web [Monica Crubezy and Musen, 2001]. Essentially, the broker is
a mediator between customers and providers of Problem-Solving Methods
[Benjamins, 1997, Fensel and Benjamins, 1998b]. A customer is someone that
has a complex problem but can provide domain knowledge that describes it
and that supports problem-solving. The providers are developers of Problem-
Solving Methods to be stored in libraries accessible through the Internet. PSMs
are annotated with meta-data to support their selection process and invocation.
The core of an intelligent broker for Problem-Solving Methods consists of an
ontologist that supports the selection process of Problem-Solving Methods for a
given application. Basically, such a broker has to provide support in building or
reusing a domain ontology and in relating this ontology to an ontology that de-
scribes generic classes of application problems. This problem-type ontology has
to be linked with PSM-specific ontologies that allow the selection of a method.

Ontology-based reuse

The knowledge modelling community has focused on ontologies
[John H. Gennari and Musen, 1998, Studer et al., 1996] as a way to share
consensual conceptualizations that are required to facilitate reuse. Ontologies
are defined as “shared agreements about shared conceptualizations”. Shared
conceptualizations include conceptual frameworks for modelling domain knowl-
edge; content-specific protocols for communicating among interoperating agents;
and agreements about the representation of particular domain theories. In the
knowledge sharing context, ontologies are specified in the form of definitions of
representational vocabulary [Guarino, 1997b].

Although the definition of what ontologies are is still a debated issue
[Guarino, 1997b], this term has achieve a considerably attention by the AI com-
munity, and in particular, it has been declared as a key issue in maximizing
reuse [Fensel et al., 1997, Fensel, 1997a, Fensel and Benjamins, 1998b]. From
that viewpoint, the main goal of an ontology is to facilitate knowledge shar-
ing [Chandrasekaran et al., 1998]. In addition to enable reasoning about com-
ponents in order to compare, retrieve, reuse or adapt them, ontologies play a
central role in connecting software components by allowing the comparison of
components using different vocabularies. The comparison of components de-
scribed with different ontologies or different concepts of the same ontology is
allowed by the annexion of ontology mappings.

Ontology mappings are declarative specifications of matching relations be-
tween ontologies, which consist of explicit specifications of the transformations
required to match elements of one ontology to elements in another ontology.
An example of a mapping is a renaming, but mapping can include any kind
of syntactic or semantic transformation: numerical mapping, lexical mapping,
regular expression mapping and others. In our framework the core components
(tasks, capabilities and domain-models) are described with explicit, independent
ontologies [Fensel et al., 1997]. In the context of modern componential frame-
works for knowledge systems development, ontology mappings are required to

24 Chapter 2. Background and related work

match problem requirements to tasks, Problem-Solving Methods to tasks, and
domain-models to Problem-Solving Methods.

The importance of ontologies has even originated what has been called on-
tology engineering [Guarino, 1997b]. A remarkable outcome of this approach
is that of reusing also the ontology-based connectors or mappings; not surpris-
ingly, reuse of mappings is also improved by specifying a mapping ontology
[Park et al., 1998].

2.2.7 Conclusions

Although there are some differences between the different frameworks presented
above, a first conclusion of the review on Knowledge Modelling is that there
exist much consensus about the use of three classes of components to model
knowledge-based systems from a knowledge level approach [Fensel et al., 1999,
McDermott, 1988, Chandrasekaran, 1986, Steels, 1990, Schreiber et al., 1994a].
This paradigm proposes three types of components: there are tasks describing
problem types, Problem-Solving Methods (PSM) describing the reasoning steps
required to solve a class of problems in a domain-independent way, and domain-
models describing the properties of domain knowledge. We use the term Task-
Method-Domain (TMD) frameworks to refer to this architectural pattern found
in modern Knowledge Modelling Frameworks.

We are interested in TMD frameworks as a key to maximize reuse
[Benjamins et al., 1996a, Motta, 1999, Fensel and Motta, 2001] and specifi-
cally, we are mainly interested in its application to the dynamic, on-demand
configuration of Cooperative Multi-Agent Systems. Modern approaches from
the knowledge engineering community are explicitly addressing reuse as an
activity of selecting, configuring and assembling knowledge components from
distributed libraries [Gennari and Tu, 1994, Eriksson et al., 1995, Fensel, 1997a,
Fensel and Benjamins, 1998b, Benjamins et al., 1999]. TMD approaches envis-
age an scenario in which developers can compose Problem-Solving Methods that
accomplish complex application tasks from primitive, reusable methods. This
way of developing a knowledge-system is described as a configuration process
(§2.2.6) and is intended to support the engineer in the knowledge acquisition
phase [Van de Velde, 1993] and to facilitate reuse [Fensel, 1997a]. However, con-
figuring such a system to build a completely new application is far away of becom-
ing an automated process and is rather described as a semi-automated process
[Gaspari et al., 1998, Gaspari et al., 1999, Benjamins et al., 1999, Penix, 1998].
Semi-automatic configuration can be used to support and assist knowledge
engineers in the configuration and adaptation of knowledge-based systems
[Eriksson et al., 1995, Tu et al., 1995, Studer et al., 1996, Fensel, 1997a,
Fink, 1998, Penix and Alexander, 1997, Monica Crubezy and Musen, 2001],
Such an approach to configuring a KBS has not been used to configure teams
of problem solving-agents. The reason is probably the consideration of Team
Formation as a runtime activity, whilst configuration in Knowledge Modelling
Framework is considered as a knowledge engineering activity taking place on
design time.

2.3. Software reuse 25

This thesis shows how a TMD modelling framework can be used to guide
the Team Formation process on runtime by fully automating the configuration
of the team in terms of the competence required by a team to solve a prob-
lem. An automated configuration process is required to allow agent teams to be
designed on-demand, according to the requirements of the specific problem at
hand. Moreover, in addition to automating the configuration process, our thesis
imposes that the problem specification should be done by the end-user, and not
by a knowledge or software engineer.

Another keystone of TMD frameworks is the use of ontologies as ex-
plicit, declarative specifications of the conceptualizations used to character-
ize components. The use of ontologies to annotate components maximizes
its reuse because enables the semantic comparison of components [Fink, 1998,
Gaspari et al., 1999, Fensel and Benjamins, 1998b, Gaspari et al., 1998]. Con-
sequently, we are including explicit ontologies to describe agent capabilities in a
way that facilitates their reuse and configuration in the context of cooperative
Multi Agent Systems.

2.3 Software reuse

The reuse of complete software developments and the processes used to create
them have the potential to significantly ease the process of software engineering
by providing a source of verified software artifacts [Wegner, 1984]. It is sug-
gested than reuse of software artifacts can be achieved through the utilization
of software libraries [Atkinson, 1997].

2.3.1 Software libraries

Essentially, a software library is a repository of information which can be used
to construct software systems. The main goal of software libraries reuse is to
enable previous development experiences to guide subsequent software develop-
ment. Reuse have been partitioned in compositional and generative reuse. In
particular, we are interested in compositional-approaches to software develop-
ment [Biggerstaff and Perlis, 1989], which are characterized by the idea of se-
lecting and composing existing components in order to achieve a desired system
behavior.

An important aspect of compositional reuse is about the relationship be-
tween components in a software library. The are two major relationships: one
relationship is the one between the client and supplier [Atkinson, 1997], where
the definition of a component by a client refers to the existence of a component in
the library as provided by its supplier; and the second relationship is that of in-
heritance, which allows the definition of one component to include the definitions
of another. In general, there may be many relationships between two software
components that can be used for retrieval from a software library: one com-
ponent may be a subtype [Liskov and Wing, 1993] of another, be behaviorally

26 Chapter 2. Background and related work

compatible [Smith, 1994] with another, or be substitutable [Duke et al., 1991]
with another.

According to [Mili et al., 1995], there is an open problem of software compo-
sition called the The Bottom Up Design Problem, defined as:

given a set of requirements, a set of components within a software
library whose combined behavior satisfies the requirements.

The fundamental difficulty when considering this problem is how to decompose
the requirements in such a way as to yield component specifications. A reverse
approach is to search the space of all possible component compositions until
one satisfying the requirements is found [Hall, 1993, Zhang, 2000]. Thus, com-
position of components can be regarded as composition of their specifications
[Butler and Duke, 1998].

Although the use of a software library by a software engineer requires to know
the processes of how to retrieve, insert and adapt components of the library,
the issue of how to retrieve components is probably the central one, since the
purpose of software libraries is to provide access to reusable verified components
[Atkinson, 1997]. Component retrieval is defined as the process of locating the
components that can be used in the construction of a particular application.
From that view, retrieval is a process of obtaining a component in a library,
S ∈ L satisfying a given query Q. A query Q imposes some requirements that
should be compared with the specification of existing components L to check
wether a particular retrieval criteria holds. There have been three classes of
proposed solutions to this problem: faceted (classification), signature-matching
(structural) and behavioral (functional) retrieval. These retrieval techniques can
use many different indices as representations of components:

• External Indices seek to find relevant components based upon con-
trolled vocabularies external to the component; including facets
[Prieto-Daz, 1987], frames [Rosario and Ibrahim, 1994], lexical affinity
[Maarek et al., 1991] and feature-based techniques [Börstler, 1995]

• Static Indices include type signature matching [Zaremski and Wing, 1995]
and specification matching techniques [Rollins and Wing, 1991,
Fischer et al., 1995, Zaremski and Wing, 1997], which seek to find
relevant components based upon elements of the structure of components.

• Dynamic Indices seek to find relevant components by comparing input
and output spaces of components, which are used by behavioral techniques
[Hall, 1993, Mili et al., 1997]

2.3.2 Component-Based Software Development

Following the idea of reuse for component-based systems, Component-based soft-
ware development (CBSD) focuses on building large software systems by inte-
grating previously-existing software components. By enhancing the flexibility

2.3. Software reuse 27

and maintainability of systems, the ultimate goal is to reduce software develop-
ment costs, assemble systems rapidly, and reduce the maintenance burden associ-
ated with the support and upgrade of large systems [Brown and Wallnau, 1996].

CBSD shifts the development emphasis from programming software to com-
posing software systems [Clements, 1996], thus the notion of building a system
by writing code is replaced by the notion of assembling and integrating existing
software components. From the CBSD approach, constructing an application
involves the use of prefabricated pieces, perhaps developed at different times,
by different people and possibly with different purposes; therefore integrability
of heterogeneous components is a key consideration when deciding whether to
acquire, reuse, or build new components. In other words, software components
can be deployed independently and are subject to composition by third parties
[Szyperski, 1996].

Component capabilities and usages are specified by interfaces. From a com-
positional approach, an interface can be defined as a service abstraction, which
defines the operations that the service supports independently from any particu-
lar implementation [Iribarne et al., 2002]. Interfaces can be defined using many
different notations and representation languages. Usually component interfaces
are described in three levels: signature level, semantic level and protocol level.
Current approaches at the signature level use Interface Description Languages
such as the ones defined by CORBA, COM and CCM. At the protocol level
there are many interaction protocol description languages like those based in
finite-state-machines [Yellin and Strom, 1997], Petri-Nets [Bastide et al., 1999],
temporal logic [Han, 1999] or π-calculus [Canal et al., 2001]. At the semantic
level the operational semantics of components are described using formal nota-
tions ranging from the Larch [Garland et al., 1993] family of languages based on
pre-conditions and post-conditions to algebraic equations [Goguen et al., 1996]
or refinement calculus [Mikhajlova, 1999].

2.3.3 Semantic-based reuse: ontologies

The informality of feature-based classification schemes for reuse is an impediment
to formally verify the reusability of a software component. However, the use of
formal specifications to verify reusability has associated a high reasoning cost,
which jeopardizes the scalability of reusable software libraries. A way to increase
the efficiency of formal specifications is to shift the overhead of formal reasoning
from the retrieval to the classification phase of reuse [Penix et al., 1995]. This
is done by using a classification scheme to reduce the number of specification
matching proofs (usually some kind of implication) that are required to verify
reusability. Components can be classified using semantic features that are de-
rived from their formal specification. Retrieval can then be accomplished based
on the stored feature sets, which allow an efficient verification of reusability
relations [Penix and Alexander, 1999].

Following the philosophy underlying the external indices approach to soft-
ware reuse and the semantic enrichment of component descriptions, it seems

28 Chapter 2. Background and related work

natural to introduce ontologies as shared vocabularies to describe reusable com-
ponents.

We agree with [Guarino, 1997b] about the potential role of explicit ontologies
to support reuse, since ontologies can be used to enable semantic matching be-
tween components [Guarino, 1997a, Paolucci et al., 2002]. Therefore, semantic
matching between an application specification and the components in a library
can be used to verify a reusability relation. A key concept of ontology based
reuse is that of mapping. Ontology mappings are declarative specifications of
matching relations, which consist of explicit specifications of the transformations
required to match elements of one ontology to elements in the other ontology.
An example of a mapping is a renaming, but a mapping can include any kind
of syntactic or semantic transformation, including numerical mappings, lexical
mappings, regular expression mappings and others classes of mappings. An in-
teresting property of ontology mappings are that mapping patterns themselves
can become reusable components [Park et al., 1998].

2.3.4 Conclusions

An open issue of software reuse that is addressed within this thesis is the kind
of language to be used for specifying components. Recent approaches remark
the need for semantic information to describe software components, and there is
an increasing consensus about the class of properties to describe a component;
however, there are many differences among the object languages proposed to
specify these properties, from simple keywords, to First-Order Logic. Since
time is an important factor to take into account when considering the on-the-fly
configuration of MAS, our goal is to achieve a trade-off between the expressive
power of the object language and the computational efficiency of the inference
mechanism (see §4.3.1).

2.4 Multi Agent Systems

Distributed Artificial Intelligence has historically been divided in two main areas
[Bond and Gasser, 1988a]: Distributed Problem Solving (DPS) and Multi-Agent
Systems (MAS). In the DPS approach, a problem is divided and distributed
among a number of nodes which cooperate in solving the different parts of the
problem. In the DPS model, the overall problem solving strategy is an in-
tegral part of the system. In contrast, MAS research is concerned with the
behavior of a collection of possibly pre-existing autonomous agents aiming at
solving a given problem [Jennings et al., 1998]. From that view, a MAS is a
loosely coupled network of problem-solving entities that work together to find
answers to problems that are beyond the individual capabilities or knowledge of
the isolated entities [Durfee and Lesser, 1989]. More recently the term “Multi-
Agent System” has come to a more general meaning, and it is now used to refer
to all types of systems composed of multiple (semi-) autonomous components
[Jennings et al., 1998]. The MAS approach advocates decomposing problems in

2.4. Multi Agent Systems 29

terms of autonomous agents that can engage in flexible, high level interactions,
and this way of decomposing a problem aids the process of engineering complex
systems [Jennings, 2000]. The characteristics of MAS are:

• each agent has incomplete information or capabilities for solving the prob-
lem, thus each agent has a limited viewpoint;

• there is no global system control;

• data is decentralized, and

• computation is asynchronous.

Some reasons for the increasing interest in MAS research include: the ability
to provide robustness and efficiency; the ability to allow inter-operation of exist-
ing legacy systems; and the ability to solve problems in which data, expertise,
or control is distributed.

There are two main perspectives when approaching Multi Agent Systems: a
macro or social level, focused on external, observable behavior, and a micro, or
agent-oriented level, focused on the internal architecture of individual agents. We
are more interested on the macro phenomena, rather than the micro phenomena;
therefore, we are going to focus on the coordination and cooperation mechanisms
of open agent societies, without paying much attention to neither agent theories
nor agent architectures.

2.4.1 Cooperative Multi-Agent Systems

Cooperation is often presented as one of the key concepts which differentiates
Multi-Agent Systems from other related disciplines such as distributed comput-
ing, object oriented systems, and expert systems [Doran et al., 1997]. However,
the idea of cooperation in agent-based systems is yet unclear and sometimes
inconsistent. There are many open questions like for example:

• What is cooperation? How does it relate to concepts like communication,
coordination and negotiation?

• What sorts of cooperation are likely to be found in multi-agent systems?
Which factors will affect cooperation strategies, and how?

• Is it meaningful to talk about reactive cooperation? Is cooperation a men-
talistic, a behavioral notion or a mixture of the two?

• What are the key mechanisms and structures giving rise to cooperation?

The range of answers to these questions are many and varied, probably due
to the different approaches adopted when addressing the cooperation issue; thus
a typology of cooperation approaches seems necessary to help understand coop-
eration without offering a single definition of cooperation (Figure 2.1).

30 Chapter 2. Background and related work

Multi –Agent Systems

Independent Cooperative

Discrete Emergent
Cooperation

Communicative Non communicative

Deliberative Negotiating

Figure 2.1: Cooperation typology

A Multi-Agent System is independent [Franklin and Graesser, 1996] if each
agent pursues its own agenda independently of the others. A Multi-Agent Sys-
tem is discrete if it is independent and the agendas of the agents bear no relation
to one another, thus there is no cooperation involved. However, cooperation is
possible though agents have no intention of doing so, what can occur when co-
operation is an emergent behavior resulting from the interaction of individuals
(stigmergy is a good example [Beckers et al., 1994] of such a class of cooper-
ation). On the other hand, there are systems in which the agendas (plans)
of the agents include some way of cooperating with other agents. In non-
communicative cooperation agents can coordinate by observing the behavior
of the others [Franklin,]. In communicative systems agents can achieve coordi-
nation through the intentional sending and receiving of signals, which usually
follow a speech acts style of communication. Deliberative agents jointly plan
their actions so as to cooperate with each other. Negotiating agents are also
deliberative, but the agents are basically competing, thus there is basically a
different degree of self-interestingness.

There is an alternative viewpoint on cooperation that regards it as a property
of the actions of the agents [Doran and Palmer, 1995]: cooperation occurs when
agents have a (possibly implicit) goal in common (which no agent could achieve
in isolation) and their actions tend to achieve that; or agents perform actions
which enable or achieve not only their own goals but also the goals of other
agents. This approach focuses on actions and goals, irrespective of how they
arise. Therefore, from this view agents do not require to deliberate and goals
may be implicit.

In contrast to the former approaches to cooperation that do not require
intention, there is a more restrictive view on cooperation as a motivated activity.
From that viewpoint, cooperation is defined as acting with others for a common
purpose and a common benefit where the purpose should be motivated by an
intention to act together [Norman, 1994]. That intention is usually referred as
a commitment to joint activity [Bratman, 1992, Jennings, 1993]. This class of

2.4. Multi Agent Systems 31

cooperation relying on motivational attitudes is sometimes called collaboration
[Wilsker, 1996, Grosz and Kraus, 1996] to differentiate it from other classes of
cooperation.

Collaborative agents

Most early work in DAI dealt with a group of agents pursuing common goals
[Lesser et al., 1989, Lesser, 1991, Durfee, 1988, Cammarata et al., 1983]. Agent
interactions are guided by cooperation strategies meant to improve their col-
lective performance, therefore early work on distributed planning took the ap-
proach of complete planning before action. These systems have to recognize,
avoid or resolve dependencies or interactions between subproblems. For instance,
[Georgeff, 1983] proposes a synchronizer agent to recognize and resolve such in-
teractions.

Agents embedded in dynamic environments that are continuously sensing
their environment and performing actions to change it are called situated agents
[Rao et al., 1992]. These agents are resource-bounded [Bratman, 1988], they
must reason and act under possibly stringent constrains on time and informa-
tion. According to [Bratman, 1990], the intentions of the agent play a crucial
role in such cases. Intentions can be seen as constrains on the deliberating and
planning processes, hence reducing the reasoning effort. Systems based on men-
tal attitudes like intentions are commonly called Belief-Desire-Intention (BDI)
architectures [Bratman, 1988, Rao and Georgeff, 1991, Rao and Georgeff, 1995].

We review below three of the most influential contributions to the field,
namely: Joint Intentions, SharedPlans and Planned Team Activity.

The Joint Intentions model [Cohen and Levesque, 1990, Levesque, 1990,
Cohen and Levesque, 1991] represents one of the first attempts to establish a
formal theory of multi-agent collaboration. This theory is a formal model of
what motivates agent communication about teamwork. The basic premise rests
in the idea of intention as the commitments to act in a certain mental state
[Levesque, 1990]. A commitment represents a goal that persists over time. From
this view, a team is composed of agents that jointly commit to the achievement
of a team goal, called a joint persistent goal (JPG) [Cohen and Levesque, 1990].
An important conclusion of this theory is that by virtue of its joint commit-
ments, an agent in a team has the responsibility to communicate private be-
liefs if it believes that the JPG is either achieved, unachievable or irrelevant
[Cohen and Levesque, 1991]. Hence, the need of some form of communication
is implicit in this model. Team goals are formed by an individual agent nomi-
nating a task as a proposed team goal, and communicating that intention until
consensus is formed.

The SharedPlans [Grosz and Kraus, 1996, Grosz et al., 1999] model of col-
laboration emphasizes the need for a common high-level team model that al-
lows agents to understand all requirements for plans to achieve a team goal
[Grosz and Sidner, 1990], even if the individuals do not know the specific details
of the collaborative plan or how to met the requirements The SharedPlans the-
ory of collaboration is based on a rich view of plans. Rather than associating a

32 Chapter 2. Background and related work

plan for some goal with a group of actions that can achieve it, a plan is instead a
structure describing relationships between intentions (commitments) and infor-
mation needs. Having a SharedPlan implies a joint mental state to do a group
action: (1) mutual beliefs of a (partial) recipe; (2) individual intentions that
the joint action will be carried over; (3) individual intentions that collaborators
succeed in performing the constituent subactions; and (4) individual or collab-
orative plans for subplans. As a way of describing motivational attitudes, four
different intention operators are introduced [Grosz and Kraus, 1993]: intention-
to, intention-that, potential-intention to and potential intention-that. The first
two are intentions that can be adopted by an agent, while potential intentions
represent and agent’s mental state when it is considering adopting and inten-
tion, but it is yet considering another possible courses of action. An intention-to
perform some action represents an individual commitment on the part of an
agent to perform that action, while an intention-that instead represents a com-
mitment to certain states or conditions holding. Intentions-to serve a number of
functions: (a) they constrain deliberations (an agent will seek ways to accom-
plish an intended action); (b) they represent commitments to action (an agent
will not normally adopt new intentions that conflict with existing ones); and (c)
agents monitor the success or failure of attempts to achieve an intention (failures
can engender replanning). In contrast to an intention-to, an intention-that does
not directly connote an action; rather, it implies that an agent will behave in a
manner consistent with a collaborative effort, and can engender helpful behav-
ior and also spawn monitoring actions. Communication requirements may arise
from intentions-that, as opposed from being mandatory in the Joint Intentions
model. If an agent has an intention-that about some group action to succeed
then it will adopt a potential intention to perform any action it believes will help
the group action to succeed. Therefore if an agent believes communicating some
event or belief will aid in successfully prosecuting the group action, then it will
be communicated.

The two former models have implicitly assumed that when agents estab-
lish either a Joint Commitment or a SharedPlan, they do so immediately and
completely [Wilsker, 1996]; without any allowance for an intermediate mental
attitude, like an expression of interest. Unlike the two previous theories, in the
Planned Team Activity approach [Kinny et al., 1992, Sonenberg et al., 1994] is
that plans to achieve some goal are supplied in advance, not generated by the
agents, and that agents have complete knowledge of the full plans prior to joining
a team. Therefore, agent behavior is bound and predictable, making this model
advantageous in dynamic and real-time environments. On the other hand, team-
work is more brittle, since plans may fail within unpredictable environments. In
addition, there is a greater responsibility on the agent designed, since the suc-
cess of teamwork is tightly dependent on how well the plans are specified. The
semantics of team’s beliefs, goals and intentions are different from those in Joint
Intentions. Specifically, the joint intentions of a team are expressed in terms
of the joint intentions of its members, which reduce to single agent attitudes
rather than by modal operators expressing shared attitudes. A team has a joint

2.4. Multi Agent Systems 33

intention towards a plan if: (1) every member has the joint intention towards
the plan; (2) every member believes that the joint intention is held by the team;
and (3) every member believes that all the members executing their respective
individual plans results in the team executing the plan. This definition is simi-
lar to that of SharedPlans but without the intention that collaborators succeed.
The process of Team Formation begins with an agent wishing to achieve some
goal, but realizing that it is unable to do so by himself. The agent communicates
with other potential participants by announcing the joint goal, joint plan and
the individual roles to be assumed by each participant. An agent is capable of
adopting a joint goal, a joint plan and a role within a plan if and only if: (a)
has the necessary skills; (b) does not already believe the formula that needs to
be adopted as a joint goal; (c) the preconditions of the plan are already believed
by the team; (d) the joint goal is compatible with the current goals of the agent;
and (e) the joint plan and role plan are compatible with the current intentions
of the team member. Two strategies for Team Formation are considered by this
proposal [Kinny et al., 1992]: (1) commit-and-cancel, and (2) agree-and-execute.
In the commit-and-cancel strategy the team leader sends a request to each par-
ticipant to “commit” to the joint goal, joint plan and role. If all the participants
reply with a “committed” message within the permitted time the team has been
formed; else the team leader sends a “cancel” message to them each agent com-
mitted and any team activity is abandoned. In the agree-and-execute strategy
the team leader sends an “agree” to all participants, and if all reply affirma-
tively, sends an explicit request to all of them to execute the plan. Only at that
point are the joint goal, joint plan and roles adopted by participants. Unlike the
former strategy, no explicit message needs to be sent when an agent does not
agree to participate, as the other agents have made no commitment yet. If a
member is unable to achieve its goals within the team it has the responsibility
to make other team members aware of its failure.

Another direction in multi-agent planning research is oriented towards mod-
elling teamwork explicitly. This is particularly helpful in dynamic environments
where team members may fail or where they may encounter new opportunities.
For instance [Singh, 1994] proposes a family of logics for representing intentions,
beliefs, knowledge, know-how, and communication in a branching-time frame-
work. Whereas other theories are based exclusively on mental concepts, this
approach combines mental and social concepts and proposes a formal theory of
intentions for teams that considers the structure of teams explicitly, in terms
of their members’ commitments and coordination requirements [Singh, 1998].
Furthermore, this approach distinguishes between exodeictic (outward) and en-
dodeictic (inward) intentions, which considers team structure. A team structure
is defined by the constraints on the interactions —at the commitment and coor-
dination levels— of its members.

Other works on collaboration based in multi-agent planning can be found
for example in the Social Plans proposal [Rao et al., 1992] and in the Shared
Planning and Activity Representation (SPAR) effort [Tate, 1998].

34 Chapter 2. Background and related work

Coordination frameworks

Partial Global Planning (PGP) is a flexible approach to coordination that
does not assume any particular distribution of sub-problems, expertise or
other resources, but instead allows nodes to coordinate themselves dynamically
[Durfee, 1988]. Cooperating agents adjust its own local planning so that the
common planning goals are met, and communicate its plan to others to improve
predictability and network coherence. The PGP approach to distributed coordi-
nation improved the coordination of agents in a network by scheduling the timely
generation of partial results, avoiding redundant activities, shifting tasks to idle
nodes, and indicating compatibility between goals. Identifying and generalizing
the types of coordination relationships that were used by the basic PGP al-
gorithm has lead to the Generalized PGP (GPGP) [Decker and Lesser, 1992].
Generalized Partial Global Planning(GPGP) is a coordination algorithm de-
scribed in a modular, domain independent way, which can be tuned for par-
ticular intra-task environment behaviors(primarily the creation and refinement
of local scheduling constraints). GPGP extends (as well as generalizes) the PGP
algorithm along two lines: handling real-time deadlines and improving the dis-
tributed search among schedulers. GPGP can be seen as an extendable family
of coordination mechanisms that form a basic set of mechanisms for teams of
cooperative autonomous agents [Decker and Lesser, 1995]. This approach pro-
vides a set of modular coordination mechanisms; a general specification of these
mechanisms involving the detection and response to certain abstract coordina-
tion relationships (not tied to a particular domain); and a more clear separation
of the coordination mechanisms from an agent’s local scheduler that allows each
to better do the job for which it was designed.

TAEMS [Decker, 1996] was designed as a modelling language for describing
the task structures of agents, supporting the GPGP approach to coordinated
agent behavior. The acronym stands for Task Analysis, Environmental Mod-
elling and Simulation. A TAEMS task structure is essentially an annotated
task decomposition tree (actually a graph). The highest level nodes in the tree,
called task groups, represent goals that an agent may try to achieve. Below a
task group there will be a sequence of tasks and methods which describe how
that task group may be performed. Tasks represent sub-goals, which can be
further decomposed in the same manner. Methods, on the other hand, are ter-
minal, and represent the primitive actions an agent can perform. Annotations
on a task describe how its subtasks may be combined to satisfy it. Another
form of annotation, called an interrelationship, describes how the execution of a
method, or achievement of a goal, will affect other nodes in the structure. The
TAEMS framework is designed to handle issues of real-time (e.g. scheduling to
deadlines) and meta-control (e.g. to avoid the need of detailed planning at all
possible node interactions). Much of what is represented in TAEMS structures
is also quantitatively described, including expected execution characteristics, re-
source usage and specific ways to derive the quality of a task from the qualities of
the combined subtasks. These quantitative aspects allow the agent to compare
and contrast possible plans, predict their effects, and reason about the need for

2.4. Multi Agent Systems 35

coordination with other agents.
TEAMCORE [Tambe, 1997, Pynadath et al., 1999, Tambe et al., 2000] is an

agent architecture that integrates many of the basic principles of the joint in-
tentions theory and the Shared Plans approach. This is a perspective based on
an explicit, domain independent model of teamwork that has include learning
[Tambe et al., 1999] as the most remarkable issue.

The Cooperative Problem-Solving process

A general framework for the Cooperative Problem-Solving process has been de-
scribed in [Wooldridge and Jennings, 1999], with four stages: recognition (an
agent identifies the potential for cooperation), Team Formation, plan formation
(collective attempts to construct an agreed plan) and execution. The authors
adopts an internal (endodeictic) perspective, the approach is to characterize the
mental states of the agents that leads them to solicit and take part in coopera-
tive action. The model is formalized by expressing it as a theory in a quantified
multi-modal logic . Starts from the following desiderata: agents are autonomous,
cooperation can fail, communication is essential, communicative acts are charac-
terized by their effects, agents initiate social processes, are mutually supportive
and are reactive.

The view on Multi-Agent Systems as decoupled networks of autonomous
entities is usually associated to a distributed model of expertise, regarded as a
collection of specialized agents with complementary skills. Thus team selection
is defined as the process of selecting a group of agents that have complimentary
skills to achieve a given goal [Tidhar et al., 1996].

2.4.2 Team Formation

Team Formation is defined as the process of selecting a group of agents
that have complimentary skills to achieve a given goal [Tidhar et al., 1996].
Most approaches to team selection view the process of achieving team
goals as means-end analysis [Bratman et al., 1991, Rao, 1994] with two steps:
first, selecting a group of agents that will attempt to achieve a goal
[Levesque, 1990, Cohen and Levesque, 1991, Wooldridge and Jennings, 1994,
Rao and Georgeff, 1995]; and second, selecting a combination of actions that
agents must perform to achieve the goal [Grosz and Kraus, 1996, Tambe, 1997,
Wooldridge and Jennings, 1999]. This combination of actions is typically de-
scribed as a sequence of actions or a plan, like in in the Social Plans ap-
proach [Rao et al., 1992], the Planned Team Activity model [Kinny et al., 1992,
Sonenberg et al., 1994], and the SPAR proposal (Shared Planning and Activity
Representation) [Tate, 1998].

There are several approaches and variations over this basic schema.
One of the more extended approach is to use plans as “recipes”
[Georgeff and Lansky, 1987, Bratman et al., 1991, Sonenberg et al., 1994,
Tidhar et al., 1996]. Since plans are provided by the user at compile time

36 Chapter 2. Background and related work

the process of planning in the classical sense is unnecessary and can lead to
significantly better performance.

Centralized Task allocation

One of the first methods for selecting agents for cooperative action was the
contract-net protocol [Smith, 1940]. Given a task to perform, an agent deter-
mines whether the task can be decomposed into subtasks and announce these
tasks to other agents by sending a “call for proposals”. Bidders can reply with
a bid to perform a task, indicating how well (price, quality, time, etc.) can
they perform it and, finally, the contractor collects the bids and awards the
task to the best bidder. This protocol enables dynamic task allocation, allows
agents to bid for multiple tasks at a time, and provides natural load balancing
[Jennings et al., 1998]. This protocol has however some limitations, like the ab-
sence of conflict detection and resolution, the impossibility for agents to refuse
bids, or the absence of pre-emption in task execution [Jennings et al., 1998].
Some extensions of the protocol have been proposed to rectify some of its short-
comings [Sandholm, 1993]. The contract net protocol has been so extensively
used, modified and extended by researchers in the field of multi-agent coor-
dination [Sandholm, 1993, Dignum et al., 2001], that it has been included in
the standardization effort carried out by the Foundation for Intelligent Physical
Agents (FIPA) [FIPA, 2002]. However, the suitability of the Contract Net pro-
tocol for open MAS is under analysis, as it seems to be very dependent on the
value of the deadline used when waiting for bids, and in the number of agents
[Juhasz and Paul, 2002]. Such unguided team selection involves an exponential
number of possible team combinations, and a blow-out in the number of inter-
actions required to select the members of a team. Some attempts to overcome
these problems that still rely on some kind of global plan employ problem re-
quirements to guide the team selection and reduce the number of possible teams
[Tidhar et al., 1996].

Distributed Task Allocation

Anytime algorithms with low ratio bounds have been proposed based
on distributed coalition formation algorithms [Shehory et al., 1997,
Shehory and Kraus, 1998]. A coalition is defined as “a group of agents
who have decided to cooperate in order to achieve a common goal”. Given a
set of tasks and agents, these algorithms search a combination of coalitions
(overlapping or not) to solve each task, taking into account the agents limited
resources.

Distributed task allocation methods are appropriate for DPS and cooper-
ative MAS [Sycara et al., 1996], since agents cooperate to increase the overall
outcome of the system. Non super-additive environments (in a super-additive
environment any combination of two groups of agents into a new group is benefi-
cial) consider also task dependencies (task precedence and competing resources).
Other examples of distributed planning propose methods for coordinating plans

2.4. Multi Agent Systems 37

at abstract levels [Clement and Durfee, 1999] by using information about how
abstract plans can be refined in order to identify and avoid potential conflicts.

In the Team Formation by dialog approach [Dignum et al., 2001] autonomous
agents are able to discuss the Team Formation, using structured dialogues, with
an emphasis on persuasion. Follows the four stages model of the Cooperative
Problem-Solving process drawn in [Wooldridge and Jennings, 1999]. This ap-
proach is based on the Dialogue theory [Walton and Krabbe, 1995], that pro-
poses to structure dialogues by rules, so dialogues are not completely free neither
completely fixed. The initial situation of negotiation is a conflict of interests,
together with a need for cooperation, where the main goal is to make a deal.
This theory adopts an internal view on agents based on a BDI model and an
architecture containing reasoning, planning, communication and social reason-
ing modules. The initiator agent makes a partial plan for the achievement of
a goal and looks for potential teams based on abilities (static), opportunities
(situational), and willingness.

2.4.3 Interoperation in open environments

One of the current factors fostering MAS development is the increasing popu-
larity of the Internet, which provides the basis for an open environment where
agents interact with each other to reach their individual or shared goals. To
successfully communicate in such an environment, agents need to overcome two
fundamental problems: first, they must be able to find each other (since agents
might appear or disappear at any time), and once they have done that, they
must be able to interact [Jennings et al., 1998].

Interaction is one of the most important features of an agent
[Nwana and Woolridge, 1996]. It is in the nature of agents to interact to share
information, knowledge and goals to achieve. Three key elements have been
outlined for a successful interaction:

• A common agent communication language and protocol

• A common format for the content of communication

• A shared ontology

Furthermore, in open environment there is a need of mechanisms for ad-
vertising, finding, using, combining, managing and updating agent services and
information [Decker et al., 1997b]. Next follow a very brief section on agent com-
munication topics and a review of middle agents as one way of implementing the
aforementioned requirements.

Agent Communication

Agents must share a communication language to be able to interoper-
ate. There are two main approaches to agent communication languages
[Genesereth and Ketchpel, 1997]: in the procedural approach communication

38 Chapter 2. Background and related work

is based on executable content, which can be accomplished by using pro-
gramming and scripting languages, e.g. Tcl [Ousterhout, 1990]. Since pro-
cedural languages are difficult to control, coordinate and merge, declarative
languages are preferred for the design of agent communication languages,
specially in open environments. Most declarative communication languages
[FIPA, 2003, Finin et al., 1994, Labrou and Finin, 1997] are based on the speech
acts theory [Searle, 1969]. For this approach, communication is modelled
through illocutionary acts called performatives (e.g. request, inform, agree),
which are conceptualized as actions intending to produce some effect on the re-
ceiver, like performing some task (request) or giving some information (query).
Although such performatives can characterize message types, efficient lan-
guages for expressing message content so as to allow a meaningful communi-
cation, have not been effectively demonstrated [Jennings et al., 1998]; thus the
problem of representing and sharing meaning through ontologies is still open
[Gruber, 1993b].

Middle agents

A common approach to overcome the interoperability problems agents face in
open environments is the introduction of a middleware layer between requesters
and providers of services and the use of a shared language and ontologies for
describing both the tasks to be solved and the capabilities available. Having
a mediation service is very useful since problem solving agents can advertise
their capabilities, and the requester may look for agents with the capabilities
more appropriate for the problem at hand. Usually, the mediation layer is real-
ized by middle agents [Decker et al., 1997b] specialized in reasoning about and
supporting the activities of other agents.

Many ideas about middle agents have precedents in the work on medi-
ators. The notion of mediators was initially proposed in the field of In-
formation Systems. A foundational paper is [Wiederhold, 1992], which in-
troduces mediators as a technique to handle large-scale information systems
in open and distributed environments. Thus, it is not strange that cur-
rent ideas on middle agents were initially applied in the field of Intelli-
gent Information Integration [Wiederhold, 1993] and Information Brokering
[Jeusfeld and Papazoglou, 1996, Martin et al., 1997] as a way to locate and com-
bine information coming from multiple and heterogeneous sources, e.g. rela-
tional and object-oriented databases. The notion of mediators is also studied as
a software pattern [Rising, 2000] and is used in multi-layer information archi-
tectures [Wiederhold and Genesereth, 1997]. Mediators and brokers have been
originally conceived as providing an added-value services for information-based
applications. A middle agent can be seen as a mediator between requesters and
providers of services, in which the information being mediated is constituted by
the description of available services. Some introductions to middle agents can
be found in [Decker et al., 1996] and [Decker et al., 1997b], and a taxonomy of
middle agents appears in [Wong and Sycara, 2000]. Below follows a brief review
of approaches to middle agents, though there is not clear differentiation between

2.4. Multi Agent Systems 39

the different types considered.

• Facilitators are agents to which other agents surrender their au-
tonomy in exchange of the facilitator’s services [Erickson, 1996a,
Genesereth and Ketchpel, 1997]. Facilitators can coordinate agents’ ac-
tivities and can satisfy requests on behalf of their subordinated agents.

• Mediators are agents that exploit encoded knowledge to create ser-
vices for a higher level of applications [Wiederhold, 1992]. For a de-
tailed account of the differences between mediators and facilitators see
[Wiederhold and Genesereth, 1997].

• Matchmakers and yellow pages assist service requesters to find service
providers based on advertised capabilities. Services found that matches
a given request are communicated to the requester, thus it must choose
and contact the selected provider directly. [Decker et al., 1996].

• Brokers are agents that receive requests and are able to contacting with
appropriate providers on behave of the requester. Thus, tasks are del-
egated to brokers that locate and communicate with suitable by them-
selves, freeing the requester of knowing the details required to communi-
cate with a specific provider. The difference between brokers and match-
makers is that the matchmaker only introduces matching agents to each
other, whereas a broker handles all the communication with the capability
providers [Decker et al., 1996].

• Blackboards are repository agents that receive and hold requests for other
agents to process [Nii, 1989].

Preliminary experiments [Decker et al., 1997b] shows that each type of mid-
dle agent have its own performance characteristics and is best suited for a cer-
tain type of environment. For example, while brokered architectures ar more
vulnerable to failures, they are also able to cope more quickly with a rapidly
fluctuating agent work-force. A general problem with the existing systems is
that they do not overcome the gap between push and pull access to informa-
tion [Haustein and Ludecke, 2000], since they commit to only one access model.
There is, however, a considerable interest in combining both ways of accessing
information. By caching data from a “push” source, a combination of a mediator
and a broker could solve the access mismatch problem, providing both access
modes.

Matchmaking and Agent Capability Description Languages

Typically, the function of middle agents is to match service-requests with ser-
vice providers, where services are provided by agents. To enable matchmaking,
both providers and requesters should share a common language to describe both
service-requests and agent capabilities, which is called an Agent Capability De-
scription Language (ACDL) [Sycara et al., 2001] (called also an Agent Service

40 Chapter 2. Background and related work

Description Language, due to the quite usual view on agent capabilities as “ser-
vices” provided to clients).

Matchmaking is the process of finding an appropriate provider of capabilities
(or services) for a requester [Sycara et al., 1999a, Sycara et al., 1999b]. Some
ACDLs supporting matchmaking are reviewed below, namely: the Logical De-
duction Language (LDL++), the Interagent Communication Language (ICL),
the Language for Advertisement and Request for Knowledge Sharing (LARKS),
and the DARPA Agent Markup Language (DAML-S).

• LDL++ is a logical deduction language similar to Prolog that is used by
brokers in the Infosleuth [Nodine et al., 1999] distributed agent architec-
ture. LDL++ supports inferences about whether an expression of require-
ments matches a set of advertised capabilities.

• ICL is the interface, communication, and task coordination language
shared by OAA agents, regardless of what platform they run or on
what computer language they are programmed in [Martin et al., 1999,
Cheyer and Martin, 2001]. OAA agents employ ICL to perform queries,
execute actions, exchange information, and manipulate data in the agent
community. ICL includes a layer of conversational protocols (such as
KQML or FIPA), and a content layer. The content layer has been de-
signed as an extension of PROLOG, to take advantage of unification and
other features of PROLOG. Every agent participating in an OAA-based
system defines and publishes its capabilities expressed in ICL. These dec-
larations are used by a facilitator to communicate with the agent and also
for delegating service requests to the agent.

• LARKS [Sycara et al., 2002] (Language for Advertisement and Request
for Knowledge Sharing) is a language used by matchmaking agents to
pair service-requesting agents with service-providing agents that meet
the requesting agents [Sycara et al., 1999a], and is used by agents in the
RETSINA [Sycara et al., 2001] agent infrastructure. When a service-
providing agent registers a description of its capabilities with a middle
agent, it is stored as an “advertisement” and added to the middle agent’s
database. Therefore, when an agent inputs a request for services, the mid-
dle agent searches its database of advertisements for a service-providing
agent that can fill such a request. Requests are filled when the provider’s
advertisement is sufficiently similar to the description of the requested
service. LARKS is capable of supporting inferences. It also incorpo-
rates application domain knowledge in agent advertisements and requests.
Domain-specific knowledge is specified as local ontologies in the concept
language ITL.

• ATLAS (Agent Transaction language for Advertising Services) is a DAML-
based agent advertising language that will enable agents and devices to lo-
cate each other and interoperate [Paolucci et al., 2002]. ATLAS is based in
DAML-S, an ontology to annotate Web Services with semantic information

2.4. Multi Agent Systems 41

[The DAML-S Consortium, 2001]. The DAML-S ontology uses concepts
that are similar to the purpose and the requirements of an Agent Capabil-
ity Description Language. Therefore, we find very similar elements in both
ACDLs and Semantic Web Services description languages. Specifically, the
view of the DAML-S consortium is that DAML-S descriptions are used by
agents in support of the automated discovery, interoperation, composition,
execution and monitoring of services. A matchmaker for DAML-S match-
making has been proposed that utilizes two separate filters: one compares
Functional Attributes to determine the applicability of advertisements, and
the other compares Services Functionalities. Subsumption is the inference
operation used to determine if two specifications match.

There are other proposals for ACDLs, based upon some extension of Petri
Nets, like Possibilistic Petri Nets [Jonathan Lee and Chiang, 2002], the object-
based extension called G-Net [Xu and Shatz, 2001] and the constraint-based
model of fitness-for-purpose [White and Sleeman, 1999], among others.

It is also interesting to review other research on capability descrip-
tions not specifically designed to describe agent capabilities, although they
can be adapted for that purpose, like skills modelling in human or-
ganizations [Stader and Macintosh, 1999], capability descriptions for PSMs
[Aitken et al., 1998], or process/action modelling techniques such as SPAR
[Tate, 1998] and ADL [Pednault, 1989]. See [Wickler and Tate, 1999] for a wide
survey on capability description for software agents.

Agent infrastructures for Cooperative Problem-Solving

There are several architectures and standards focused on open agent architec-
tures and mechanisms to achieve interoperability. These infrastructures are
based on some notion of mediation or middle agents: like yellow-pages in the
FIPA abstract architecture , matchmakers in Retsina, brokers in OAA and task-
planning agents in UMDL. However, there are some architectures oriented to-
wards industrial applications, e.g. GRATE and ARCHON.

• FIPA1 has produced a collection of specifications which aim is to become
an standard for the interoperability of heterogeneous software agents. The
standardization effort includes an Abstract Architecture dealing with the
abstract entities that are required to build agent services and an agent
environment. A FIPA platform contains a communication channel, an
Agent Name Server (ANS) that is used as a “white pages” service, and a
Directory Facilitator(DF), which acts as a “yellow pages” service.

• UMDL2 provides a distributed architecture [Birmingham et al., 1995] for
a digital library that can continually reconfigure itself as users, contents,
and services come and go. This has been achieved by the development

1FIPA stands for the Foundation for Intelligent Physical Agents
2University of Michigan Digital Library.

42 Chapter 2. Background and related work

of a multi-agent infrastructure with agents that buy and sell services
from each other by using commerce and communication services/protocols
[Vidal et al., 1998], that is called the Service Market Society (SMS). The
SMS allows for the decentralized configuration of an extensible set of users
and services [Durfee et al., 1998]. There are many types of agents in the
UMDL agent architecture: there are information agents specialized in com-
plementary knowledge areas; there are user interface agents that support
the user in specifying queries; and there are also task planning agents
[Vidal and Durfee, 1995] that are able to perform matchmaking between
queries and agent services. Services are described in Loom.

• RETSINA3 is an open multi-agent architecture that supports communi-
ties of heterogeneous agents [Sycara et al., 2001]. Distributed approach to
information and problem-solving tasks (search, gathering, filtering, fusion,
etc). The RETSINA system has been implemented on the premise that
agents in a system should form a community of peers that engage in peer to
peer interactions. Any coordination structure in the community of agents
should emerge from the relations between agents, rather than as a result of
the imposed constraints of the infrastructure itself. In accordance with this
premise, RETSINA does not employ centralized control within the MAS;
rather, it implements distributed infrastructure services that facilitate the
interactions between agents, as opposed to managing them.

• OAA4 [Cheyer and Martin, 2001] is a framework for building flexible, dy-
namic communities of distributed software agents. OAA enables a coop-
erative computing style wherein members of an agent community work
together to perform computation, retrieve information, and serve user in-
teraction tasks. Communication and cooperation between agents are bro-
kered by one or more facilitators, which are responsible for matching re-
quests, from users and agents, with descriptions of the capabilities of other
agents [Martin et al., 1999].

• DECAF (Distributed, Environment-Centered Agent Framework) is a
toolkit which allows a principled software engineering approach to building
Multi-Agent Systems. The toolkit provides a platform to design, develop,
and execute agents. DECAF provides the necessary architectural services
of a large-grained intelligent agent: communication, planning, schedul-
ing, execution monitoring, coordination, and eventually learning and self-
diagnosis . This is essentially, the internal “operating system” of a software
agent, to which application programmers have strictly limited access. The
control or programming of DECAF agents is provided via a GUI called the
Plan-Editor. In the Plan-Editor, executable actions are treated as basic
building blocks which can be chained together to achieve a more com-
plex goals in the style of a Hierarchical Task Network. This issue provides

3Reusable Environment for Task-Structured Intelligent Networked Agents.
4OAA stands for the Open Agent Architecture, developed at the SRI International’s Arti-

ficial Intelligence Center (AIC)

2.4. Multi Agent Systems 43

a software component-style programming interface with desirable proper-
ties such as component reuse (eventually, automated via the planner) and
some design-time error-checking. The chaining of activities can involve
traditional looping and if-then-else constructs. This part of DECAF is an
extension of the RETSINA and TAEMS task structure frameworks. Unlike
traditional software engineering, each action can also have attached to it a
performance profile which is then used and updated internally by DECAF
to provide real-time local scheduling services . The reuse of common agent
behaviors is thus increased, since the execution of agent behaviors does not
depend only on the specific construction of the task network but also on
the dynamic environment in which the agent is operating. Furthermore,
this model allows for a certain level of non-determinism in the use of the
agent action building-blocks.

GRATE [Jennings et al., 1992] is a general framework which enables to
construct MAS for the domain of industrial process control. Embodies
in-built knowledge related to cooperation, situation assessment and con-
trol. Designer can utilize this knowledge (reuse , configuration of preexist-
ing knowledge) and augment it with domain specific information, rather
than starting from scratch. More focused on agent architecture than MAS
architecture. The in-built knowledge is represented by generic rules en-
coding sequences of actions. ARCHON [Wittig et al., 1994] is an exten-
sion of GRATE [Jennings et al., 1992] with reactive mechanisms. Many of
GRATE’s generic rules encode sequences of actions resulting in common
patterns of rule firing, these patterns can be grouped into units of activ-
ity similar in nature to reactive planning systems (precompiled plans that
behaves like in an unplanned, reactive manner). The result is a hybrid
approach in which both general rules and reactive mechanisms are com-
bined. ARCHON concentrates upon loose coupling of semiautonomous
agents. There is no representation of an overall goal, but only goals of
the agents that together met the overall goals of the community. AR-
CHON has been applied to pre-existing computational systems, although
its concepts may well be used as enhancements to more conventional (e.g.
client/server) integration architectures.

2.4.4 Social approaches

There are some aspects of complex system development that become more dif-
ficult by adopting an agent-based approach [Jennings, 2000]. Since agents are
autonomous, the patterns and the effects of their interactions are uncertain, and
it is extremely difficult to predict the behavior of the overall system based on its
constituent components, because of the strong possibility of emergent behavior.
These problems can be circumvented by imposing rigid and preset organiza-
tional structures, but these restrictions also limit the power of the agent-based
approach. As an answer to these difficulties a social level view has been proposed
[Jennings and Campos, 1997] that takes the knowledge level [Newell, 1982] anal-

44 Chapter 2. Background and related work

ysis approach as a starting point. Whereas the knowledge level view stripped
away implementation and application specific details from problem solvers, the
social level view focuses on the organizational aspects of agent societies with
the primary goal of analyzing system behaviors abstracted from implementa-
tion details or specific interaction protocols [Jennings and Campos, 1997]. The
GAIA methodology [Wooldridge et al., 2000] follows this approach which allows
to describe agent-based systems as computational organizations that are defined
in terms of roles, interactions and obligations.

The Civil Agent Societies (CAS) [Dellarocas, 2000] is a framework for de-
veloping agent organizations which follows the metaphor of civil human soci-
eties based on social contracts, and is oriented towards marketplaces and B2B
e-commerce. The CAS approach uses the Contract Net interaction protocol,
social norms, notary services and exception handling services.

Another social approach to Multi-Agent Systems is described in
[Panzarasa and Jennings, 2001] that is based on a conception of cognition, both
at the individual and the collective level, and examined in relation to contem-
porary organization theory. Yet another organization-oriented model for agent
societies is found [Dignum et al., 2002].

Another view of open agent organizations is that of electronic institutions
as a metaphor of human institutions. A electronic institution is a virtual
place where agents meet and interact according to the communication poli-
cies and norms defined by the institution. Formalization of electronic insti-
tutions [Esteva et al., 2001] underpins the use of structured design techniques
and formal analysis, and facilitates development, composition and reuse. IS-
LANDER is a formal language with a graphical representation that allows to
define [Esteva et al., 2002a] and verify [Huguet et al., 2002] the specification of
an electronic institutions. Another advantage of such a formal language is that,
given the specification of an electronic institution, it is possible to generate skele-
tons for the development of agents for that institution [Vasconcelos et al., 2001].

2.4.5 Agent-Oriented Methodologies

Agent technology has received a great deal of attention in the last few years
and is also beginning to attract the industry. But in spite of the extensive
research and successful application of agent theories, languages and architec-
tures, there is little work for specifying techniques and methodologies to de-
velop agent-based applications. Furthermore, the usual approach to the devel-
opment of agent-oriented methodologies have been to adapt or extend an exist-
ing methodology to deal with the relevant aspects of agent-oriented program-
ming [Iglesias et al., 1998]. These extensions have been carried out mainly in
three areas: object-oriented methodologies, software engineering and knowledge-
engineering.

2.4. Multi Agent Systems 45

Extensions of Object-Oriented Methodologies

There are several reasons to use object-oriented methodologies as the basis for
an agent-oriented methodology: (1) there are many similarities between both
paradigms [Burmeister, 1996, Kinny and Georgeff, 1996], and specifically, there
is a close relationship between DAI and object-based concurrent programming
[Bond and Gasser, 1988b, Gasser and Briot, 1992, Yoav Shoham, 1993]; and (2)
there is a considerable experience is using object-oriented languages to imple-
ment agent-based systems.

Some examples of agent-oriented methodologies based on OOP are the follow-
ing: Agent-Oriented Analysis and Design [Burmeister, 1996], Agent Modelling
Technique for Systems of BDI agents [Kinny and Georgeff, 1996], Multi-Agent
Scenario-Based Method (MASB) [Moulin and Brassard, 1996] and Agent Ori-
ented Methodology for Enterprize Modelling [Kendall et al., 1995]

However, there are some aspect of agents not addressed by object oriented
methodologies [Burmeister, 1996, Yoav Shoham, 1993, Kendall et al., 1995]: (1)
the agent style of communication can be much more complex than the method
invocation style in OOP; (2) agents can be characterized by their mental state;
and (3) agents can include a social dimension not existing in OOP.

Extensions of Knowledge-Engineering Methodologies

Knowledge engineering methodologies can provide a good basis for MAS
modelling by exploiting a human inspired style of problem solving. Since
agents have cognitive features, the experience achieved in knowledge acquisi-
tion and knowledge modelling methodologies can be applied to agent devel-
opment. In addition, existing tools and libraries of Problem-Solving Methods
[Breuker and Van de Velde, 1994] can be reused.

CoMoMAS [Glaser, 1996] is an extension of CommonKADS
[Schreiber et al., 1994a] for MAS modelling. The following models are
defined:

• The Agent Model defines the agent architecture and the agent knowledge,
that is classified as social, cooperative, control, cognitive or reactive knowl-
edge.

• The Expertise Model defines the cognitive and reactive competencies of
agents, distinguishing between tasks, problem solving (PSM) and reactive
knowledge.

• The Task Model describes the task decomposition and details if a task is
solved by an user or an agent

• The Cooperation Model specifies the communication primitives and inter-
action protocols required to cooperate and resolve conflicts

• The System Model defines the organizational aspects of the agent society
together with the architectural aspects of agents

46 Chapter 2. Background and related work

• The Design Model collects the previous models and captures the non func-
tional requirements required to operationalize them.

MAS-CommonKADS [Iglesias et al., 1997] extends the models defined in
CommonKADS adding techniques from object-oriented methodologies (OOSE,
OMT) and from protocol engineering (MSC and SDL). This methodology starts
with an informal conceptualization phase used to obtain the user requirements
and a first description of the system from the user point of view. For this pur-
pose, use cases from OOSE are used, and its interactions are formalized with
Message Sequence Charts. Then, the different models described below are used
for analysis and design of the system, that are developed following a risk-driven
life cycle. For each model the methodology defines the constituents (entities to
be modelled) and the relationships between the constituents. A textual template
and a set of activities for building each model are provided according to a devel-
opment state (empty, identified, described or validated). MAS-CommonKADS
defines the following models:

• Agent model : describes the main characteristics of agents, including capa-
bilities, skills (sensors/effectors), services, goals, etc.

• Task model : describes the tasks (goals) carried out by agents and tasks
decomposition, using textual templates and diagrams.

• Expertise model : follows the KADS approach, that distinguishes domain,
task, inference and problem solving knowledge. The MAS-CommonKADS
methodlogy proposes a distinction between autonomous PSMs, that can
be carried out by the agent itself, and cooperative PSM, that decompose
a goal into subgoals that are carried out by the agent in cooperation with
other agents.

• Coordination model : describes the conversations between agents. A first
milestone is intended to identify the conversations and the interactions.
The second milestone is intended to improve conversation with more flexi-
ble protocols such as negotiation and identification of groups and coalitions.
The interactions are specified using MSC (Message Sequence Charts) and
SDL (Specification and Description Language).

• Organization model : describes the organization in which the MAS is going
to be introduced and the organization of the agent society. The agent
society is described using an extension of the object model of OMT, and
describes the agent hierarchy, the relationship between the agents and their
environment, and the agent society structure.

• Communication model : details the human-software agent interactions, and
the human factors for developing these user interfaces.

• Design model : collects the previous models and is subdivided into three
submodels: application design, architecture design, and platform design.
The application design is about the composition or decomposition of the

2.4. Multi Agent Systems 47

agents according to pragmatic criteria and selection of the most suitable
agent architecture for each agent. The architecture design deals with the
relevant aspects of the agent network: required network, knowledge and
telematic facilities. The platform design refers to the selection of the agent
development platform for each agent architecture.

Other approaches

Several formal approaches have tried to bridge the gap between formal theories
and implementations [d’Inverno et al., 1997]. Formal agent theories are specifi-
cations that allow the complete specification of agent systems. Though formal
methods are not easily scalable [Fisher et al., 1997], they are specially useful for
verifying and analyzing critical applications, prototypes and complex cooperat-
ing systems. Some examples include the use of Z [Luck et al., 1997], temporal
modal logics [Wooldridge, 1998], and DESIRE [Brazier et al., 1997]. DESIRE
(DEsign and Specification of Interacting REasoning components) proposes a
component-based approach to specify the following aspects: task decomposition,
information exchange, sequencing of subtasks, subtask delegation and knowledge
structures. It is well suited to specify the task, interaction and coordination of
complex tasks and reasoning capabilities in agent systems.

During the development of Multi-Agent Systems some developers have
adopted a software engineering approach that can be used as the basis for an
agent oriented methodology. Although in some cases they have not explicitly
defined an agent oriented methodology, they have given general guidance, and
in some other cases, they have proposed a methodology based on their personal
experience. Some examples are:

• In ARCHON [Wittig et al., 1994], the analysis combines a top-down ap-
proach, that identifies the system goals, the main tasks and their decom-
position, and a bottom-up approach, that allows the reuse of preexisting
systems, thus constraining the top-down approach. The design is subdi-
vided into agent community design (defines the agent granularity and the
role of each agent) and agent design (encodes the skills for each agent).

• MADE [O’Hare and Woolridge, 1992] is a development environment for
rapid prototyping of MAS. It proposes a methodology that extend the five
stages of knowledge acquisition proposed in [Buchanan et al., 1983]: Iden-
tification, Conceptualization, Decomposition (added for agent identifica-
tion), Formalization, Implementation and Testing (adding the integration
of the MAS).

• The AWIC [Müller, 1996] method proposes an iterative design. In ev-
ery cycle five models are developed: Agent model (tasks, sensors and
actuators, world knowledge and planning abilities), World model, Inter-
operability model (between the world and the agents), and Coordination
model (protocols and messages, study the suitability of joint plans or social
structuring).

48 Chapter 2. Background and related work

• The Decentralizing Refinement Method [Singh et al., 1993] proposes to
start with a centralized solution to the problem. Then a general PSM
is abstracted out. Next step is the identification of the assumptions made
on the agent’s knowledge and capabilities, and the relaxation of these as-
sumptions in order to obtain a more realistic version of the distributed
system. Finally, the system is formally specified. The method takes into
account the reuse of the PSMs by identifying connections among parts of
the problems and the agents that solve them.

2.4.6 Conclusions

Most research in the field of Cooperative Problem Solving (CPS)
falls within the context of the Cooperative Problem Solving process
[Wooldridge and Jennings, 1994], with four stages: recognition, Team Forma-
tion, planning and execution. In this framework the problem solving pro-
cess starts with an agent willing to solve a task and realizing the poten-
tial for cooperation, but the process of deciding the goals to achieve and
the way to achieve them is skipped, assuming that they are provided by
the user [Wooldridge and Jennings, 1999]. Moreover, task allocation among
cooperating agents is typically based on a preplan that decomposes a task
into subtasks [Shehory and Kraus, 1998], without specifying the algorithms to
build such a plan, neither the criteria to be taken into account, e.g. the
Planned Team Activity [Sonenberg et al., 1994] and the SharedPlans approach
[Grosz and Kraus, 1996]. Our work focuses on the feasibility and utility of a
componential approach to build such initial plans using the the knowledge-level
description of the Multi-Agent system (i.e. building a configuration of tasks,
capabilities and domain knowledge).

When addressing the problem of designing the behavior of a Multi-Agent Sys-
tem we agree with other researchers that users matter [Erickson, 1996b]: people
may need to understand what happened and why a system alters its responses,
have some control over the actions of the system, even though agents are au-
tonomous, or predict the overall system behavior. There is a need for methods
to guide the Team Formation process according to stated problem requirements
and user needs. Existing frameworks for developing cooperative MAS assume
that both team plans and individual plans are known beforehand, and the stage
called “planning” in fact is a re-planing stage, because agents refine the initial
plans until a agreed plan is decided.

We claim the need of a framework with two integrates the problem specifica-
tion within the CPS process; and second, provides a fully automated configura-
tion process (equivalent to build a plan) of a MAS on-demand. The idea of the
configuration process is to build a hierarchical TMD structure encompassing the
capabilities required for a Team to solve a particular problem, and this process is
driven by problem requirements in place of beforehand plans. We contribute to
this issue by introducing a Knowledge Configuration process as the initial stage
of the Cooperative Problem Solving process. Such a TMD configuration is an
extension of the idea of matchmaking to deal with the domain, which facilitates

2.4. Multi Agent Systems 49

the reuse of existing capabilities not only for new requirements, but also for new
application domains.

There is another MAS topic we have to have a closer look, matchmaking.
While existing frameworks support matchmaking between tasks and capabilities,
we are also considering matchmaking among capabilities and domain models in
order to enhances the reusability of agent capabilities across different applica-
tion domain. Moreover, the ORCAS Knowledge Configuration process fills the
gap between the matchmaking process, that pairs a specification to a capabil-
ity, and the global configuration of a team plan, which is required to solve the
“bottom-up design problem” (§2.2): given a set of requirements, find a set of
agent capabilities and domain knowledge within a MAS whose aggregated com-
petence satisfies the requirements. The fundamental difficulty when considering
this problem is how to decompose the requirements in such a way as to yield
component specifications (i.e. capabilities and domain-models). Our approach
to this problem is to search the space of all possible compositions of components
—configurations— until one satisfying the requirements is found. Moreover, our
work has extended the Knowledge Configuration process to apply Case-Based
Reasoning during the selection of components. The idea is that past experience
can be used to improve the search process by guiding the exploration of possible
configurations according to the similarity of the current problem to past config-
uration problems. The reader is referred to §4.4 for the general configuration
strategy and §4.5 for the case-based configuration approach

Concerning the topic on Agent Capability Description Languages (ACDL),
most approaches distinguish among tasks (or goals) and capabilities (or ser-
vices), but these components are tightly coupled to a particular application
domain. Our approach to improve the reuse of agent capabilities is using the
TDM approach for describing agent capabilities and tasks in a domain inde-
pendent manner, abstracted from the application domain. This decoupling of
capabilities and domain is enabled by allowing agent capabilities and domain
knowledge to be described independently, as proposed by TMD frameworks to
specify knowledge-systems. Capability descriptions are compared to domain-
models during the Knowledge Configuration process to verify that the domain
knowledge satisfies the capability assumptions, and this process is fully auto-
mated to enable the on-demand, on-the-fly configuration of the MAS.

In addition to the reuse issue, there are another aspects of MAS design that
can benefit from a Knowledge Modelling framework:

• Domain knowledge acquisition is facilitated by an abstract description or
model of the domain knowledge required for some application, that can be
used as a guide during the knowledge acquisition process.

• Problem specifications are also oriented by the abstract level description
of a system, which facilitates the task of posing appropriate problem re-
quirements to the user.

Moreover, there are some limitations of TMD frameworks to be applied in
MAS configuration. These methodologies conceive a knowledge system as a cen-

50 Chapter 2. Background and related work

tralized one, without considering neither the social dimension of agents, nor the
issue of autonomy. On the other hand, agents are autonomous entities that can
decide if accepting or refusing requested actions. Consequently, TMD frame-
works must be extended to allow some kind of distributed control and coordi-
nation rather than applying a centralized control schema. On the other hand,
usually agents interoperate through a conversational model, using speech-acts to
communicate the purpose of a message, and following structured interaction pro-
tocols. In consequence, and to sum up, our framework should deal with specific
agent properties, deserving special attention to the fact agents are autonomous
and communication is based on speech-acts and interaction protocols.

Concerning software libraries and MAS, the idea of reusable software libraries
is related to concepts from Multi-Agent Systems, like directory facilitator or
yellow pages services. In addition, selection of components in software reuse
is defined in terms matching, in a similar way to the matchmaking process as
performed by middle agents in open MAS. Our approach aims at integrating
research on software libraries and reuse together with recent work on open agent
architectures, more specifically, we propose the following ideas:

• that agent capabilities can be registered and managed as components in a
library (or a middle agent), and can be queried by other agents in order
to locate them;

• and knowledge modelling can be used to describe the components with
semantic information, abstracting them from implementation details in
order to maximize reuse.

2.5 Semantic Web services

Semantic Web Services are defined as “self contained, self describing mod-
ular applications that can be published, located and accessed across the
Web” [Tidwell, 2000], and also as “loosely coupled, reusable software com-
ponents that semantically encapsulate discrete functionality and are dis-
tributed and programmatically accessible over standard internet protocols”
[McIlraith et al., 2001]). Today’s Web was designed primarily for human in-
terpretation, to be used as a repository of information. But nowadays the
Web is becoming also an open environment for distributed computing, where
new applications can be built by assembling information services on-demand
from a montage of networked legacy applications and information sources
[International Foundation on Cooperative Information Systems, 1994].

Web services technologies are beginning to emerge as a defacto standard for
integrating disparate applications and systems [Peltz, 2003]. Nevertheless, most
Web service interoperation is realized through APIs that incorporate hard code
to locate and extract content from HTML pages. These mechanisms are not
suited to deal with an open, changing environment like the Internet. In order
to implement reliable, large scale interoperation of Web services it is fundamen-
tal to make such services computer interpretable, which could be achieved by

2.5. Semantic Web services 51

creating a Semantic Web [Berners-Lee et al., 1999] of services whose properties,
capabilities, interfaces and effects are encoded in an unambiguous, machine un-
derstandable form. The realization of the Semantic Web is underway with the de-
velopment of new markup languages with well defined semantics and able to ma-
nipulate complex relations between entities [Stab et al., 2003]. Some examples
of such languages are OIL [Fensel et al., 2000], DAML+OIL [Horrocks, 2002]
and DAML-S [The DAML-S Consortium, 2001].

Semantically annotated Web services can support the automated discovery,
execution, composition and interoperation of services by computer programs or
agents [McIlraith et al., 2001]. The distributed control nature of agents make
them suited to become accessible through the Internet likewise services. From
that view, agent capabilities can be seen as services provided to users or other
agents through mediation services such as yellow pages; therefore, developing
agent-based applications by reusing existing agent capabilities in open environ-
ments like the Internet will face the same problems encountered in the research
on Semantic Web Services; and there is likewise a need for languages and in-
frastructures supporting the automated discovery, execution, composition and
interoperation of agent capabilities.

Agent description languages could be used for describing Web services and
viceversa with little adaptation effort. Markup of services exploits ontologies to
facilitate sharing, reuse, composition, mapping and markup [Fensel et al., 1997,
Fensel and Bussler, 2002]. Service description should include a functional view
to enable automatic service discovery, a pragmatic view, or some kind of oper-
ational metrics are also very desirable, e.g. QoS [Cardoso and Sheth, 2002],
but also a process model of the service designed to facilitate service com-
position. While there are a considerable level of consensus with respect to
the functional aspects of a service (inputs, outputs, preconditions or pre-
requisites and postconditions or effects), and few standardization proposals
(WSDL, DAML-S profile ontology), the panorama is quite different when talk-
ing about the process model. There are a lot of languages proposed for this
purpose, including WSFL, XLANG, WSCI, BPML, BPEL4WS and YAWL
[van der Aalst and ter Hofstede, 2002]. These languages are called Web Service
composition languages, workflow languages, process languages, and Web Service
orchestration languages.

An introduction to the Web Services approach can be found
in [Vaughan-Nichols, 2002] and recent trends and controversies in
[Stab et al., 2003].

2.5.1 Semantic Web Services Frameworks

For an overview of existing technologies and research directions on service de-
scription, advertising and discovery, the reader is referred to [Lemahieu, 2001].
A brief review of the most influencing proposals is provided below:

• The Web Service Modelling Framework (WSMF)
[Fensel and Bussler, 2002, Bussler et al., 2002] proposes a conceptual

52 Chapter 2. Background and related work

model for developing and describing services and their compositions.
WSMF is based on maximal decoupling and scalable mediation services.

• DAML-S [The DAML-S Consortium, 2001, Ankolekar et al., 2002] is a
DAML+OIL [Horrocks, 2002] ontology for describing the properties and
capabilities of Web Services. The purpose of the DAML-S ontology is to al-
low automatic reasoning about Web services in order to improve the discov-
ery, access, composition and interoperation of Web services. The approach
to do that is to enrich service markup with semantics. An example of se-
mantic matching for service discovery is described in [Paolucci et al., 2002].

• DLML [Euzenat, 2001] proposes to describe Web services using a Descrip-
tion Logics Markup Language (DLML) for ensuring interoperability among
semantically heterogeneous Web services. DL allows to formally define
transformations(mappings), proof of properties, and checking of compound
transformations.

• WSTL Web Service Transaction Language [Piresa et al., 2003]. Extends
WSDL for enabling the composition of Web services.

• Web Services Semantic Architecture is based upon a mix of standard Web
services technology (UDDI, WSFL and DAML-S) and the DAML-S ontol-
ogy.

2.5.2 Composition and interoperation of Web services

The most extended approach for composing Web services is the use of a work-
flow language. But there is a lack of consensus [Wil M. P. van der Aalst, 2002],
which results in a variety of languages to describe service composition from
a workflow approach , like WSFL, XLANG, WSCI, BPML and more recently
BPEL4WS (see for instance [Peltz, 2003] for a review of emerging technologies,
tools and standards). A particular approach is to use Petri Nets as the compu-
tational formalism of a workflow language, like WRL [van der Aalst et al., 2001]
and YAWL [van der Aalst and ter Hofstede, 2002]. A great challenge is to in-
tegrate heterogeneous services, which requires to address the interoperability
issue not only at the syntactic level, but also at the semantic level. For example,
[Cardoso and Sheth, 2002] describes an ontology-based approach for the discov-
ery and integration of heterogeneous Web services within workflow processes.
This approach takes into account both functional and operational requirements
(Quality of Services) and provides some algorithms to measure the degree of
integration.

Action-based planning [Wil M. P. van der Aalst, 2002] is an approach to ser-
vices composition that views Web Services as a collection of actions available
to build a plan. An example of this approach is demonstrated by ConGolog
[McIlraith et al., 2001, McIlraith and Son, 2001], a concurrent logic program-
ming language based on situation calculus. ConGolog can be used to program

2.5. Semantic Web services 53

agents which can perform simulation and execution of composite Web services
customized for the user.

Transactional approaches are inspired by a business perspective; for exam-
ple, in [Piresa et al., 2003] a multi-layered mediated architecture is presented
together with a language to compose Web services from a transactional view-
point.

To conclude, there is yet another approach that thinks of Web services
as behavioral extensions of agent capabilities. From this point of view, Web
services are located, invoked, composed and integrated by intelligent software
agents [Bryson et al., 2002, McIlraith and Son, 2001]. DAML-S is proposed as
a language for the semantic markup of Web services. Semantic markup of ser-
vices could enable to apply simulation, verification and automatic composition
of services, for instance using Petri Nets [Narayan and McIlraith, 2002]. An
agent-oriented architectural framework for Web services based on the notion of
a Flexible Agent Society (FAS) has been proposed [Narendra, 2003] based on
the Contractual Agent Society (CAS).

2.5.3 Conclusions

Semantic Web Services (SWS) is an emergent field. While there is a well defined
approach to describe Semantic Web Services and some generalized standards,
there is still much discussion on the operational description of services, and
there are many proposals of frameworks for the composition of complex services.
There are some notable similarities when comparing SWS frameworks and Agent
Capability Description Languages used in open MAS. There are, however, some
notable differences between both fields: While SWS are passive entities that are
executed by direct invocation, agent capabilities are provided by autonomous
agents that can decide autonomously whether to apply or not to apply a re-
quired capability, or the terms of commitment when accepting some request.
Consequently, ACDLs can benefit only partially of SWS research, specifically,
ACDLs and SWS languages share may common requirements, but differ on the
operational aspects of composition: while SWS are well suited for a centralized
control, autonomous agents are appropriate for a distributed control style.

SWS frameworks are designed to facilitate reuse and composition of services
to achieve more complex tasks within a concrete domain, but SWS are not ori-
ented towards domain-based reuse. Typically the knowledge used by a SWS is
encapsulated or hidden, thus it is not possible to reason about the domain knowl-
edge, neither to use a service for a new domain. Configuring a MAS on-demand
from reusable capabilities and knowledge, requires a language for describing and
reasoning about a MAS at an abstract level. But, although this level could be
provided by semantic languages and compositional frameworks based in either
SWS or TMD frameworks, there is required much work to integrate these ap-
proaches with cooperative MAS. Work on these complementary approaches is
the core of this thesis.

Chapter 3

Overview of the ORCAS
framework

This chapter provides an overall view of the ORCAS framework that
accounts for its multi-layered structure, and highlights the outstand-
ing points.

Now that we have reviewed the most relevant bibliography, it is time to
summarize which are the open problems we are dealing with and the kind of
solutions we propose; to get a view of the tree, in order to avoid getting lost
when accounting for the leaves.

The main goal of this thesis is to provide a framework for open Multi-Agent
Systems that maximizes the reuse of agent capabilities through multiple appli-
cation domains, and supports the automatic, on-demand configuration of agent
teams according to stated problem requirements.

There are some agent infrastructures relying on formal languages for de-
scribing both available capabilities and requests to solve problems using those
capabilities; these infrastructures are usually based on middle agents to han-
dle the interoperation issues. Middle agents — matchmakers and brokers—
are able to match requests to advertised capabilities in order to find appropri-
ate capability providers. However, no mechanism has been proposed to design
the competence of a team in such a way that global problem requirements are
satisfied. Therefore, automated design mechanisms supporting the on-demand,
configuration of agent teams are required beyond existing matchmaking algo-
rithms. Our proposal is to introduce a Knowledge Modelling Framework (KMF)
to describe agent capabilities at a domain independent level, and to apply a com-
positional approach to design Multi-Agent Systems on-demand. The ORCAS
KMF is based on the Task-Method-Domain paradigm, which distinguishes three
classes of components: Tasks, Problem-Solving Methods and domain-models. In
the ORCAS KMF we consider also three classes of components, namely agent
capabilities (corresponding to Problem-Solving Methods), application tasks and
domain-models.

55

56 Chapter 3. Overview of the ORCAS framework

The idea of the ORCAS KMF is to apply an abstract compositional architec-
ture to configure agent-based applications on-the-fly, by selecting and connecting
components that satisfy the requirements of each specific problem. To do so,
we have transferred the “bottom-up design problem” [Mili et al., 1995] from the
field of software reuse (§2.3) to the field of Multi-Agent Systems. As a result,
we have defined the problem of designing a team as follows:

given a set of requirements, find a set of agent capabilities and
domain-models whose combined competence satisfy the require-
ments.

The main difficulty when considering a ‘bottom-up design problem” is how
to decompose the requirements in such a way as to yield component specifica-
tions. We adopt here an abstract view that approaches this problem as a search
process, namely one that can be solved by a search process over the space of
all possible component compositions, until one satisfying the requirements is
found [Hall, 1993, Zhang, 2000]. Specifically, the composition of components is
regarded as a composition of their specifications [Butler and Duke, 1998], which
in our case are provided by the Knowledge Modelling Framework and consist of
tasks, capabilities and domain-models.

Our proposal to configure a MAS is the separation of two layers in the con-
figuration process: the knowledge and the operational layers. At the knowledge
layer a MAS is described and configured in terms of component specifications
and connections, at an abstract, implementation independent level. At the op-
erational layer a team of agents is formed and each agent receives instructions
on how to cooperate and coordinate in solving a problem according to this ab-
stract (knowledge-level) configuration. Figure 3.1 shows the two layers MAS
configuration model.

Knowledge
Configuration

Team
Formation

Problem
requirements

Task-configuration

team-configuration

Knowledge
layer

Operational
Layer

Figure 3.1: The two layers MAS configuration model.

(1) Configuration at the knowledge layer refers to the process of finding a
configuration of components (tasks, capabilities and domain-models) adequate
for the problem to be solved. We call this process Knowledge Configuration,
and the result of the process is a task-configuration: a hierarchical structure of
tasks, capabilities and domain-models satisfying the problem requirements. The
Knowledge Configuration process is intended to take a specification of problem

57

requirements as input and producing a configuration of components such that
the problem requirements are satisfied. The main goal of the Knowledge Config-
uration process is to determine which task decomposition, which competencies
and which domain knowledge is required by a team of agents to solve a given
problem.

(2) Configuration at the operational layer refers to the process of operational-
izing a configuration into an executable system; in other words, to form a team of
agents that is equipped with the capabilities and knowledge specified by a task-
configuration (it means that the team is customized for the problem at hand).
The operational configuration layer has the goal of ensuring that the multiple
components involved in a task-configuration can interoperate and cooperate to
solve a problem together.

There are some efforts on using a componential approach for
the compositional-specification and design of intelligent agents
[Decker et al., 1997a, Herlea et al., 1999, Splunter et al., 2003], and Multi-
Agent Systems [Brazier et al., 2002], but these frameworks are mostly oriented
to the development of agents, whereas our work is about forming and customiz-
ing agent teams on-demand, by composing components provided by already
existing agents. We take the view on Multi-Agent Systems as decoupled
networks of autonomous entities associated to a distributed model of expertise,
regarded as a collection of specialized agents with complementary skills.
According to this setting, a general framework for the Cooperative Problem
Solving (CPS) process has been described [Wooldridge and Jennings, 1999] as
having four stages: recognition (an agent identifies the potential for coopera-
tion), team formation (the process of selecting team members), plan formation
(collective attempts to construct an agreed plan) and execution (agents engage
in cooperative efforts to solve the problem according to the agreed plan).

The result of separating the configuration of a MAS in two layers is a new
model of Cooperative Problem Solving process that includes a Knowledge Con-
figuration process before the Team Formation process. Moreover, the planning
stage as presented in existing frameworks is removed from the ORCAS frame-
work, since planning is usually associated to a particular agent architecture and
is focused on internal agent processes, while our approach here is to take a macro-
view, focused on the external, observable phenomena of teamwork, rather than
imposing a particular agent model. In some aspects, the role played by the plan-
ning stage in the CPS process is substituted by the Knowledge Configuration
process, since a task-configuration is a kind of global plan that will be used as
a recipe to guide the team formation and to coordinate agents during the ex-
ecution stage, that we call the Teamwork process (notice that the CPS model
includes the Teamwork process within).

The ORCAS model of the Cooperative Problem Solving process compre-
hends four sub-processes, as showed in Figure 3.2, namely Problem Specification,
Knowledge Configuration, Team Formation and Teamwork. The result of the
Problem Specification process is a specification of a set of problem requirements
to be satisfied, and problem data to be used during the Teamwork process.

58 Chapter 3. Overview of the ORCAS framework

Task-
Configuration

Knowledge
Configuration

Team Formation Problem-Solving

Problem
Specification

MAS
Configuration

Problem
requirements

Team-roles

Problem
data

Figure 3.2: Overview of the ORCAS Cooperative Problem Solving process

The Knowledge Configuration uses the problem requirements to produce a task-
configuration, which is used to guide the Team Formation process. Next, during
the Teamwork process, the configured team resulting of the Team Formation
stage applies the capabilities and knowledge specified in the task-configuration
in order to solve the problem.

We claim that the separation between the knowledge (abstract) layer and
the operational (computational) layer helps to distinguish between the static
and dynamic aspects of agents to be taken into account during the configuration
of a MAS. The idea is to exploit the fact that the abstract specification of
agent capabilities remains stable over long periods of time, whereas there are
dynamic aspects of the system or its environment that change very quickly,
e.g. the agent workload or the network traffic. Therefore, it is useful to make
a task-configuration in terms of a stable, abstract description of capabilities,
and thereafter use the task-configuration to select the “best” candidate agents1

according to dynamic and context-based information. While other frameworks
and infrastructures focus on the task allocation stage carried on during Team
Formation, the Knowledge Configuration process is situated just before Team
Formation in the ORCAS Cooperative Problem-Solving model.

However, the CPS model should not be understood as a fixed sequence of
steps, it is rather a process model of CPS. Thus, although the Knowledge Con-
figuration is situated before Team Formation in the model, this does not imply
that the Knowledge Configuration process should be fully completed before Team
Formation begins. In fact, we have implemented strategies that interleave both
activities with Teamwork, enabling distributed configuration, lazy configuration
and dynamic reconfiguration on runtime (§5.7).

1The notion of agent goodness is specified as a criteria to be optimized, i.e. cost, speed,
reliability, etc. and the possible trade-offs among them.

59

An interesting issue addressed by our framework concerns Team Formation
in large systems: agent selection during Team Formation may involve an expo-
nential number of possible team combinations, and a blow-out in the number of
interactions required to select the members of a team. The performance of the
Knowledge Configuration process brings about a task-configuration that can be
used to guide the Team Formation process: only agents with capabilities selected
during the Knowledge Configuration process are candidates to join a team, thus
reducing the number of potential teams to be considered during the selection
of team members, and drastically decreasing the amount of interaction required
among agents. Throughout, the combinatorial problem is transferred (although
mitigated) from the Team Formation process to the Knowledge Configuration
process. Our proposal to further improve this issue is the use of Case-Based
Reasoning to constrain the search over the space of possible configurations. The
idea is to use past configuration problems (cases) to heuristically guide the search
process over the space of possible configurations, as explained in §4.5.

Lastly, our objective is to develop an open agent infrastructure backing the
on-demand configuration of Cooperative MAS according to stated problem re-
quirements, based on both the Knowledge Modelling and the Operational Frame-
work. Our purpose is to provide an open but trustworthy infrastructure where to
test the proposed frameworks. Specifically, we propose to introduce a social me-
diation layer where specialized agents provide the services required to perform
the different processes of the CPS model: Problem Specification, Knowledge
Configuration, Team Formation and Teamwork. Since we want to avoid im-
posing architectural constrains over individual agents, we adopt a macro-view
centered on the interaction protocols and communication language rather focus-
ing on any particular agent architecture. Therefore, we decided to use a social
oriented approach to build an open agent infrastructure, and more specifically,
we adopted the electronic institutions (§2.4.4) approach.

An electronic institution is an infrastructure providing the mediation ser-
vices required for agents to successfully interact in open environments under
controlled conditions. This means that the institution imposes some constrains
over the agents observable behavior. In other words, an electronic institution
provides the specification of the rules of encounter for a successful interaction.
The theoretical loss of autonomy that supposes joining an electronic institution
brings, however, the advantage of allowing external agents to be more informed
about other agents, since the overall system behavior becomes more predictable
by virtue of the institution. The ORCAS infrastructure has been designed and
implemented as an electronic institution, that we call the ORCAS e-Institution.
In the ORCAS e-Institution requesters and providers of capabilities join and in-
teract by using the services provided by institutional agents. Institutional agents
are middle agents offering services beyond the usual matchmaking service. In
particular, the ORCAS e-Institution includes agents that are able of: (1) keeping
a repository (a library) of components available in a MAS, including applica-
tion tasks, agent capabilities, and domain-models; (2) configuring the task to
be achieved by a team in order to solve a given problem, according to an ab-

60 Chapter 3. Overview of the ORCAS framework

stract specification of problem requirements; (3) forming and instructing agent
teams that are customized for each particular problem; and (4) coordinating
team members behavior during the Teamwork process.

The main outcome of this work is a two-layered framework for integrat-
ing Knowledge-Modelling and Cooperative Multi-Agent Systems together, called
ORCAS that stands for Open, Reusable and Configurable multi-Agent Systems.
The feasibility of the ORCAS framework has been demonstrated by implementing
the ORCAS e-Institution, an infrastructure for MAS development and deploy-
ment that supports the on-demand configuration of teams and the coordination
of agent behaviors during teamwork, according to the ORCAS two-layered frame-
work. The applicability of the framework has been tested by building WIM a
multi-agent application running upon the ORCAS e-Institution. WIM is a config-
urable MAS application to look for bibliographic references in a medical domain,
and is explained in Chapter 7. We show that the clear separation of layers will
support a flexible utilization and extension of the framework to fit different
needs, and to build other infrastructures different from the implemented ORCAS
e-Institution.

These are the two layers of the ORCAS framework, namely the Knowledge
Modelling Framework, and the Operational Framework:

1. The Knowledge Modelling Framework (KMF) (Chapter 4) is about the
conceptual description of a problem-solving system from a knowledge-level
view, abstracting the specification of components from implementation
details. Our approach is to describe agent capabilities abstracted from
implementation details in order to support the configuration of the MAS
independently of the programming language and the agent platform. The
configuration of a Multi-Agent System in terms of abstract (knowledge-
level) descriptions is automated to enable the MAS configuration to occur
on-demand, according to the requirements of the problem at hand. This
layer consists of an Abstract Architecture, and Object Language and a
Knowledge Configuration process:

• The Abstract Architecture defines the different components used to
model a MAS, which is based on the Task-Method-Domain-modelling
paradigm; the features proposed to describe each component; and the
functional relations that constrain the way components can be con-
nected to become a meaningful system. The elements of the Abstract
Architecture are explicitly declared as an ontology, called the Knowl-
edge Modelling Ontology.

• The Object Language is the language used to formally specify com-
ponent features, and the inference mechanism used to reason about
the specification of components (e.g. to determine if a capability is
suitable to solve a task).

• The Knowledge Configuration process is a search process aiming at
finding a configuration of components (tasks, capabilities and domain-
models) fulfilling the specification of the problem at hand. The result

61

of the Knowledge Configuration process is a hierarchical decomposi-
tion of the initial task into subtasks, capabilities bound to each task,
and domain models bound to capabilities requiring domain knowl-
edge. The result of the Knowledge Configuration process is called a
task-configuration.

2. The Operational Framework (Chapter 5) describes the link between the
characterization of the problem solving components and its implemen-
tation by Multi-Agent Systems. This framework describes how a task-
configuration at the knowledge-level can be operationalized into a team of
agents that is formed on-demand and is customized to satisfy the specific
requirements of each problem. This layer introduces a team model based
on the KMF, the ORCAS ACDL, the Team Formation process, and the
Teamwork process.

• The Team model describes the structure and the organization of teams
according to a task-configuration as obtained by the Knowledge Con-
figuration process. The team model establishes a mapping between
KMF concepts and concepts from teamwork and Multi-Agent Sys-
tems.

• The Agent Capability Description Language (ACDL) is a language
for describing and reasoning about agent capabilities in such a way
that enables the automatic location (by performing matchmaking),
invocation, composition, and monitoring of agent capabilities. The
ORCAS ACDL is defined as a refinement or extension of the Knowl-
edge Modelling Ontology. Specifically, the ORCAS ACDL introduces
an agent based formalism to describe the operational aspects of a
capability: the operational description and the communication.

• The Team Formation process deals with the selection of agents to join
a team, and the instruction of the selected team members to solve a
specified problem according to a task-configuration, as established by
the Knowledge Configuration process. During the Team Formation
process, the tasks required to solve a problem are allocated to suitable
agents through a bidding mechanism, and selected agents receive in-
structions on which roles to play and how to cooperate with the rest
of the team. The result is a collection of team roles and commit-
ments of each team-member to their assigned roles that allows the
team solving the overall problem.

• The Teamwork process addresses the interaction and the coordina-
tion required for teams to successfully solve a problem according to
requirements of a task-configuration. During the Teamwork process,
the members of a team suitable for the problem (as established by
the Team Formation process) engage in cooperative work until the
global problem is solved, a reconfiguration of the team is needed, or
it is impossible to solve the problem. Cooperation is basically a pro-
cess of delegating subtasks to other agents in a team and aggregating

62 Chapter 3. Overview of the ORCAS framework

or distributing the results of the different subtasks at appropriate
synchronization points.

Architecture Language Processes
Knowledge
Layer

Abstract
Architecture

Knowledge-Modelling
Ontology and
Object Language

Problem
Specification &
Knowledge Configuration

Operational
Layer

Team model ACDL (Communication
and Coordination)

Team Formation &
Teamwork

Table 3.1: Summary of the two-layered framework

Table 3 is summarizes the main elements addressed at each layer, attending
to three aspects: architectures, languages and processes. Furthermore, we can
consider the ORCAS e-Institution as a third layer referring to a particular im-
plementation of the former layers. We can then represent the two ORCAS layers
plus the ORCAS e-Institution as a pyramid, as illustrated in Figure 3.3. The
layer at the bottom addresses the more abstract issues, while upper layers cor-
respond to increasingly implementation dependent layers. Therefore, developers
and system engineers can decide to use only a portion of the framework, starting
from the bottom, and modifying or changing the other layers according to its
preferences and needs.

Institutional
Framework

Operational
 Framework

Knowledge
Modelling Framework

Communication &
Coordination Lang.

Infrastructure for
MAS deployment

Team model

Abstract architecture
Object Language

Middle (institutional)
agents

Abstract

Concret

Figure 3.3: The three layers of the ORCAS framework

The structure of the thesis follows this direction from the most abstract layer
to the more concrete, implementation dependent layers. Chapter 4 describes the
KMF; Chapter 5 deals with the Operational Framework; Chapter 6 describes the
implemented ORCAS e-Institution, and Chapter 7 demonstrates the feasibility
of the framework through examples of an implemented application (WIM).

63

Chapter 4

Knowledge Modelling

Framework

Chapter 5

Operational

Framework

Chapter 6

Institutional

Framework

2.2 Knowledge

Modelling 2.3 Software

Reuse

2.5 Semantic

Web Services

2.4 Multi-Agent

Systems

4.2 Abstract

Architecture

4.4 Knowledge

Configuration

2.4.1

Coordination &

Cooperation

2.3.1

Bottom-up

Design

2.3.3

Ontologies
2.4.3

Matchmaking
2.4.4

Electronic

Institutions

2.4.3

Middle agents

5.4 Agent

Capability Descr.

Language

5.1

Coop. Problem

Solving

6.2 ORCAS

e-Institution

Chapter 2

Background &

Related work

Figure 3.4: Cognitive map for the main topics involved in ORCAS

Figure 3.4 shows a map of the main topics addressed within the ORCAS
framework and the relation with the subjects reviewed in the related work (Chap-
ter 2).

Chapter 4

The Knowledge Modelling
Framework

This chapter describes a framework to specify agent capabilities at
the knowledge-level, which allows to reason about agent capabilities
in order to design the competence of agent teams according to the
requirements of the problem at hand.

4.1 Introduction

The Knowledge Modelling Framework (KMF) is a framework for describing and
configuring Multi-Agent Systems from an abstract, implementation independent
level.

The purpose of the KMF is twofold: On the one hand, the KMF is a concep-
tual tool to guide developers in the analysis and design of Multi-Agent Systems
in a way that maximizes reuse; on the other hand, the KMF provides the basis
of an Agent Capability Description Language supporting the automatic config-
uration of Multi-Agent Systems according to stated problem requirements.

The Knowledge Modelling Framework (KMF) proposes a conceptual descrip-
tion of cooperative Multi-Agent Systems at the knowledge level [Newell, 1982],
abstracting the specification of components from implementation details. This
framework is designed to maximize reuse and to support the formation and the
coordination of customized agent teams during the Cooperative Problem-Solving
process [Wooldridge and Jennings, 1999].

The KMF is the more abstract layer of the ORCAS framework for cooper-
ative MAS. This layer consists of three main elements, namely: the Abstract
Architecture, the Object Language, and the Knowledge Configuration process:

• The Abstract Architecture defines the types of components in the model,
the features required to describe each component, and the relations con-
straining the way in which components can be connected. The ORCAS

65

66 Chapter 4. The Knowledge Modelling Framework

Abstract Architecture is based on the Task-Method-Domain paradigm pre-
vailing in existing Knowledge Modelling frameworks, which distinguish be-
tween three classes of components: Tasks, Problem-Solving Methods and
Domain-models. In ORCAS there are tasks and domain models, while
PSMs are replaced by agent capabilities, playing the same role than a
PSM, but including agent specific features, like a description of a com-
munication protocol and other features required of an Agent Capability
Description Language. Nonetheless, in order to keep the KMF indepen-
dent of agent details, these agent-specific aspects of ORCAS components
remain unspecified here, and are described at the Operational Framework
(Chapter 5).

• The Object Language defines the representation language used to formally
specify component features. Many languages can be used as the Object
Language, as far as they provide a way of specifying component features as
signatures and formulae, and endorsing an inference mechanism enabling
automated reasoning processes over component specifications.

• The Knowledge Configuration process is a search process aiming at finding
a configuration of components (tasks, capabilities and domain-models) ful-
filling the specification of the problem at hand. The result of the Knowl-
edge Configuration process is a hierarchical decomposition of the initial
task into subtasks called a task-configuration.

This chapter is organized as follows: Section §4.2 describes the components
of the architecture and the relations between components that determines if
two components can be connected (matching relations); Section §4.3 justifies
the approach adopted here to the Object Language as a way to increase the
flexibility of the ORCAS KMF, and introduces a specific Object Language; next,
Section §4.4 describes the Knowledge Configuration process as a search process
over the space of possible configurations; the specific approach for the Knowledge
Configuration process using Case-Based Reasoning to guide the search process
is described in §4.5; and finally, we end the chapter with a brief discussion on
Knowledge Configuration reuse in §4.6.

4.2 The Abstract Architecture

The Abstract Architecture is a general modelling framework that is not specifi-
cally designed to describe Multi-Agent Systems, but to describe problem-solving
(knowledge-based) systems in general. It rather plays the role of a skeleton that
should be specialized or refined to deal with a concrete kind of software system,
like Cooperative Multi-Agent Systems (CooMAS).

The main goal of the Abstract Architecture is to provide a way of specifying
systems that maximizes the reuse of existing components and favors a compo-
sitional approach to software development. The Abstract Architecture specifies
which are the components used to build an application (the “building blocks”),

4.2. The Abstract Architecture 67

and the way in which these components should be connected (the componential
framework) in order to produce a valid application.

This architecture is intended to become a conceptual tool for the solution
of the “bottom-up design problem” [Mili et al., 1995] and its application to the
field of Multi-Agent Systems, stated as as one of main goals of this thesis (§1.1,
bibliographic references in §2.3.1):

given a set of requirements, find a set of agent capabilities and
domain-models whose combined competence satisfy the require-
ments.

Each component in the Abstract Architecture is characterized by some fea-
tures (i.e. inputs and outputs), but the particular language used to specify these
features is independent of the Abstract Architecture, and belongs to the Object
Language. The different components in the Abstract Architecture and the fea-
tures characterizing them have been conceptualized and represented explicitly
as an ontology, called the Knowledge Modelling Ontology (KMO). The KMO
is used for analyzing, designing and describing problem-solving systems at an
abstract, implementation independent level, thus it can be further refined to
deal with specific architectures, including non agent-based architectures. In ad-
dition, this architecture is designed to facilitate the integration of heterogeneous
systems whenever they share the same abstract architecture, i.e. using the same
KMO for describing the components at the abstract level.

The Abstract Architecture enables a compositional approach supporting the
on-the-fly configuration of Multi-Agent Systems at the knowledge level. A con-
figuration is constructed by reasoning about the knowledge-level description of
agent capabilities, tasks (goals) to achieve, and domain-models describing spe-
cific domain knowledge. From this approach, a system is described and config-
ured by reusing and composing existing components. In particular, our view of
components is based on the Task-Method-Domain (TMD) paradigm in Knowl-
edge Modelling. TMD models propose three classes of components to model a
knowledge system: tasks, Problem-Solving Methods(PSMs) and domain-models.

1. Tasks are used to characterize generic and reusable types of problems. This
characterization is based on properties of the input, output, and nature of
the operations that map the input to the output. Usually, there is a main
task that describes an application problem, but tasks can be decomposed
into subtasks with input/output relations between them, resulting in a
task structure [Chandrasekaran et al., 1992].

2. Problem-Solving Methods (PSMs) specify the reasoning part of a knowl-
edge system [Fensel et al., 1999]. PSMs are used to describe different ways
of solving a task. A problem-solving method may decompose a task into
subtasks or may apply a primitive inference step without further decom-
posing the task [Poek and Gappa, 1993]. PSMs can use domain knowledge
to apply a reasoning step, create or change intermediary knowledge struc-
tures, perform actions to gather more data, etc. [Steels, 1990]. Problem-
Solving Methods are described with independence of the domain knowledge

68 Chapter 4. The Knowledge Modelling Framework

in order to maximize reuse [McDermott, 1988]. Some examples of prob-
lem solving methods are hill climbing, cover and differentiate, propose and
revise, etc. [Breuker, 1994]

3. Domain-models describe domain specific knowledge that is used by
Problem-Solving Methods to perform inference steps [Fensel et al., 1999].
Models can be constructed from different perspectives (for example, there
are functional models, causal models, behavioral models and structural mod-
els) and represented in heterogeneous forms, like rules, hierarchies or net-
works [Steels, 1990].

4. Ontologies provide the terminology and its properties used to define tasks,
problem solving methods and domain definitions [Fensel et al., 1999]. An
ontology provides an explicit specification of a conceptualization, which
can be shared by multiple reasoning components communicating during a
problem solving process.

In our framework, tasks are used to describe the types of problems that
a Multi-Agent System is able to solve. On the other hand, problem solving
methods are used to specify the different capabilities agents are equipped with
to solve tasks, wether they solve some task directly by applying some domain
knowledge or by decomposing a task into subtasks and delegating them to other
agents. While tasks are just generic problem specifications abstracted from
any particular implementation, agent capabilities refer to concrete, implemented
methods to solve problems that are provided by specific agents. Finally, domain-
models are used to represent specific knowledge and information sources, whether
the knowledge is provided by a shared repository, hold by an agent, or provided
by an external information source.

The Abstract Architecture specifies the components and the way of connect-
ing components that is necessary for the knowledge-level configuration of Multi-
Agent Systems. Two kind of connections are included in our framework: on the
one hand, connections between tasks and capabilities; on the other hand, connec-
tions between domain-models and capabilities. Such connections are based on
the idea of matching and mapping. A matching relationship is a binary relation
between two components that is verified by comparing its specifications. The
verification of a matching relationship is often called matchmaking (e.g. match-
making can be used to determine if two components are substitutable). On the
other hand, a mapping function is an isomorphism between two specifications,
in other words, a mapping is an explicit specification of the transformations
required to match elements expressed in different terms —using different ontolo-
gies, with the same meaning (equivalent semantics).

In the ORCAS KMF the components —tasks, capabilities and
domain-models— are described with explicit, independent ontologies
[Fensel et al., 1997]. Because of this conceptual decoupling, ontology mappings
may be required to match capabilities to tasks, and domain-models to capabil-
ities when there is an ontology mismatch. Nevertheless, we will focus on the
matching relations, assuming that the necessary ontology mappings are already

4.2. The Abstract Architecture 69

built, or assuming that all the components share the same ontologies. This is a
reasonable assumption, since it is feasible and convenient to built the mappings
beforehand, previously to make a component available for its use.

4.2.1 Components

There are three types of knowledge components in the Abstract Architecture
(Figure 4.1), namely tasks, capabilities (playing the role of PSMs) and domain-
models. Furthermore, each of these components is described using concepts
defined at an explicit ontology, as indicated by the arrows in the figure. Herein
every component can be specified using its own ontology, which entails that
component specifications can be decoupled in order to maximize reuse (§4.2.1).

CapabilityTask

Domain
Model

Ontologies

Figure 4.1: Components in the Abstract Architecture

In addition to describe component features using ontologies, the concepts
used by the Knowledge Modelling Framework have been explicitly declared as
an ontology, the so called Knowledge Modelling Ontology (KMO). Since the
KMO is about components that are further specialized with specific component’s
ontologies, it can be seen a meta-ontology for describing software systems. Our
approach is to keep a clear separation between the Abstract Architecture and
the Object Language. Whilst the Abstract Architecture defines the components
of the architecture and the features characterizing each component, the Object
Language is used to describe component features in terms of signature elements
and formulae in the Object Language.

These concepts in the KMO are organized into a hierarchy of sorts (Figure

70 Chapter 4. The Knowledge Modelling Framework

Concept

Component

Task

Capability

Task decomposer

Problem solving skill

Domain model

Ontology

Pragmatics

Pragmatics-descriptor

Competence

Renaming

Communication

Task-capability match

Capability-domain match

Binary relation

Matching

Signature element

Formula

Operational description

Knowledge Modelling

Figure 4.2: Hierarchy of sorts in the The Knowledge Modelling Ontology

4.2). There are two main sorts, namely Component and Binary-Relation, from
which all the other sorts are specializations of. Most of these sorts have features
that describe them, which are described by primitive types (e.g. string) or by
other sorts in KMO (e.g. inputs and outputs are described with elements of the
sort Signature).

Although the Knowledge-Modelling Framework is not dependent of any par-
ticular Object Language, the Knowledge Modelling Ontology declares two con-
cepts that should be provided by the Object Language: signature-elements and
formulae. Theses concepts are defined by the sorts Signature-element and For-
mula in the KMO, which should be further refined to yield a precise, inter-
pretable meaning. In our search of a trade-off between expressive power and
computational efficiency we are using Feature Terms as the Object Language,
and subsumption as the inference mechanism (explained later, in §4.3.1).

All the components of the Abstract Architecture are subsorts of the sort
Knowledge-Component. The description of elements of the sort Knowledge-
Component contains a specification of pragmatics aspects of a component (e.g.
name, description, creator, publisher, evaluation, etc.); and a collection of on-
tologies providing the terminology (the “universe of discourse”) used to specify
other features of a component. Moreover, the pragmatics slot can be customized
by including new attributes (e.g. cost, performance measures, classification in-
dexes, reputation, etc.) to better fit the needs or preferences of the developer.

Figure 4.3 shows the features characterizing the sort Knowledge-Component.
The symbol is-a means subtype (subsort): S is-a S’ means that the sort S’ is a
subtype (subsort) of the sort S’. The symbol → indicates the sort used to specify

4.2. The Abstract Architecture 71

Knowledge-Component is-a Concept
pragmatics → set-of Pragmatics
ontologies → set-of Ontology

Figure 4.3: The Knowledge-Component sort

a feature: f → S means that the feature f is specified as an element of sort S
(an instance of S). The slot ontologies is defined as set of elements of the sort
Ontology, and the pragmatics slot is described with an element of the sort Prag-
matics. The sort Pragmatics, subsort of Concept (Figure 4.4) contains a number
of specific features (name, creator, subject, description, publisher, etc.) speci-
fied by a String, and application descriptors, defined as a set of elements of the
sort Pragmatics-descriptor, which are represented as attribute-value pairs (Fig-
ure 4.4). Thus, pragmatic-descriptors allow the definition and use of application
specific attributes, which should be represented as attribute-value pairs.

Pragmatics is-a Concept
name → String
creator → String
subject → String
description → String
publisher → String
other contributor → String
date → String
format → String
resource identifier → String
source → String
language → String
relation → String
rights management → String
las date of modification → String
when and where be used → String
evaluation → String
application descriptors → Pragmatics− descriptor

Pragmatics-descriptor is-a Concept
attribute → String
value → Any

Figure 4.4: Sorts Pragmatics and Pragmatics-descriptor

72 Chapter 4. The Knowledge Modelling Framework

Task

A task is a knowledge-level description of a type of problem to be solved. A
task can also be seen as a set of goals characterizing “what” is to be achieve
by solving some type of problem, in contrast to “how” that type of problem
can be solved, which is represented as a capability. Since it is possible to have
different ways of solving a problem, different capabilities might be able to solve
a particular task.

The sort Task (Figure 4.5) is defined as a subsort of the sort Knowledge-
Component. In addition to have a name, a description, pragmatics and ontolo-
gies, like any component, a task is described by a functional description, in terms
of inputs, outputs and competence.

• The inputs feature represent the data required to solve the kind of problems
represented by a task. This feature is specified by a set of elements of the
sort Signature (see Figure 4.6), which is specified by a name, represented
by a String; and a signature-element, of sort sort Signature-element). The
sort Signature-element is kept undefined in the KMO, since it is refined
by the sort Signature-element defined in the Object Language. The inputs
can be constrained by preconditions in the competence.

• The outputs represent the type of data that is expected as a solution to
the kind of problem a task represents. The outputs, like the inputs, are
specified by a set of elements of the sort Signature. The outputs can be
constrained by postconditions in the competence.

• The competence feature of a task expresses the relation between the input
and the output. Since it is unfeasible to specify an input-output relation
extensively (through an extensive list of input-output pairs), it is required
some form of formal representation. In particular, we adopt the approach
of specifying the competence as a set of preconditions and postconditions
(figure 4.7). Preconditions are conditions that have to hold prior to solve
a task, in order to enable it, while postconditions are the properties that
have to hold after solving the task (also referred in the literature as the
goals or the effects to bring about). Both preconditions and postconditions
are represented as a set of elements of the sort Formula, which is refined
by the sort Formula in the Object Language. By keeping the Formula and
Signature-element sorts undefined in the KMO, the Object Language could
vary without affecting the Abstract Architecture, neither the matching
relations at the object level (the two levels of the matching relations are
explained later, in §4.2.2).

Capability

A capability describes the reasoning steps required to solve a class of problems
(a task), that is to say, it describes the process applied by the capability to
the input in order to obtain the output of the problem, and the use of required

4.2. The Abstract Architecture 73

Task is-a Knowledge-Component
pragmatics → set-of Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence

Figure 4.5: The Task sort

Signature is-a Concept
name → String
signature-element → Signature-element

Figure 4.6: The Signature sort, where the Signature-element sort is to be defined
by the Object Langauge

Competence is-a Concept
preconditions → set-of Formula
postconditions → set-of Formula

Figure 4.7: The Competence sort

74 Chapter 4. The Knowledge Modelling Framework

knowledge to solve it. There are two types of capabilities, task-decomposers and
skills. Skills are used to describe primitive or atomic reasoning steps, that are
not further decomposed, while task decomposers are used to describe complex
reasoning processes that decompose a problem into more specialized subtasks.

As showed in Figure 4.8, the sort Capability is defined as a subsort of the
sort Knowledge-Component, and as such, it has two features for defining the
ontologies used by the capability and its pragmatics. In addition, a capability
includes a functional description that is specified as a collection of inputs, out-
puts and the competence, which is an intensional description of the capability
input/output relation. Another aspect of a capability is relative to the domain
knowledge it requires to operate: in order to be domain independent a capability
explicitly declares the type of knowledge it can operate with. The type of do-
main knowledge required by a capability is specified as a collection of signatures
in the knowledge-roles feature. Moreover, a capability includes a specification
of assumptions, which are properties that should be verified by a domain-model
providing some knowledge-role, in order to be sensibly used by the capability.
Furthermore, a capability includes another feature called communication, which
is used to describe the technical aspects required to invoke and interact with a
capability. Since the information provided by the communication slot depends
on implementation details it is explained later, within the Operational Frame-
work (Chapter 5).

Capability is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Assumptions
communication → Communication

Figure 4.8: The Capability sort

A more detailed description of the different features characterizing a capa-
bility (Figure 4.8) follows:

• The inputs feature represents the data required to apply the capability.
This feature is represented by a set of elements of the sort Signature,
which is defined by sort consisting of a name and a signature element. A
signature element is defined by an element of the sort Signature-element,
to be refined by a sort in the Object Language (Figure 4.6). Inputs can be
constrained by the the preconditions specified in the competence feature.

• The outputs feature represents the type of the data that is expected as
a result of applying the capability to solve the tasks it is suitable for.

4.2. The Abstract Architecture 75

The outputs are represented by elements of the sort Signature and can be
constrained by postconditions in the competence feature.

• The competence of a capability represents the relation between the input
and the output, and (as for tasks) is specified as a set of preconditions
and postconditions (Figure 4.7). Preconditions are conditions that have to
verify in order to enable the inference process provided by the capability,
while postconditions are the new conditions produced by the application
of the capability (also referred as the effects brought about), whenever the
preconditions hold. Both preconditions and postconditions are specified as
elements of the sort Formula, which is defined in the Object Language.

• The knowledge-roles are specifications of “inputs” to be provided by some
domain knowledge. Knowledge-roles refer to concepts characterizing the
application domain, and are used during the Knowledge Configuration to
select domain models that are compatible with a capability. Only the
domain models providing the concepts required by a knowledge-role are
suitable for a capability. A knowledge-role is defined as an element of the
sort Signature, like the inputs and outputs, and as such it is defined by the
sort Signature-element, to be refined in the Object Language.

• The assumptions of a capability are necessary criteria for the achievement
of the desired competence of the capability. Assumptions are conditions
required from a domain model providing a particular knowledge-role to be
sensibly used by the capability. Assumptions are associated to a particular
knowledge-role, from those specified in the knowledge-roles feature of the
capability. Assumptions are represented as elements of the homonym sort:
Assumptions (Figure 4.9). An assumption is specified as a pair consisting
of a knowledge-role, and a collection of conditions over the domain-model
providing such knowledge-role. If a capability introduces more than one
knowledge-role, then a domain-model is required to fill in every knowledge-
role, and each domain-model has to verify the conditions associated to that
knowledge-role.

• The communication slot defines technical information about the interac-
tion protocol and the data format used to communicate with the provider
of the capability. Since capabilities in ORCAS are provided by agents, the
communication information is basically defined by the agent communica-
tion language and some kind of interaction protocol describing the pattern
of communication between the requester and the provider of the capa-
bility. The information provided by the communication slot is required
during the Cooperative Problem-Solving process to request an agent to
apply a capability for solving a task. Since the communication property
is closer than other aspects of a capability to the implementation details,
it is avoided at the Knowledge Configuration process, and is instead pre-
sented as an operational property required for the ORCAS KMF to become

76 Chapter 4. The Knowledge Modelling Framework

a full-fledged Agent Capability Description Language. Consequently, com-
munication aspects are described in the Operational Framework (Chapter
§5).

Assumptions
knowledge-role → Signature
conditions → set-of Formula

Figure 4.9: The Assumptions sort

Skills

A skill describes a primitive reasoning capability, without decomposing the prob-
lem to be solved into subproblems. The sort Skill (Figure 4.10) is defined as a
subsort of the sort Capability. A skill does not need to introduce any new fea-
ture beyond the properties defined by the sort Capability. Therefore, a skill has
pragmatics and ontologies inherited from the sort Knowledge-Component; and
inputs, outputs, competence, knowledge-roles and assumptions inherited from
the sort Capability.

Skill is-a Capability
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Assumptions
communication → Communication

Figure 4.10: The Skill sort

Task-decomposers

A task-decomposer is a capability that decomposes a problem in subproblems.
A task-decomposer capability describes how a task is decomposed into a num-
ber of subtasks which combined competence satisfies the postconditions of the
capability, whenever the preconditions of the capability hold.

The sort Task-Decomposer (Figure 4.11) is defined as a subsort of the sort Ca-
pability. Like a capability, a task-decomposer is described with inputs, outputs,
knowledge-roles, competence, assumptions and communication, but in addition
a task-decomposer provides the subtasks in which it decomposes a task, and the

4.2. The Abstract Architecture 77

operational description of the problem-solving process, representing the control
and data flow among subtasks.

• The subtasks feature specifies a collection of tasks the combined compe-
tence of which can achieve the competence defined by the task-decomposer.
The subtasks feature is defined as a set of elements of the sort Task.

• The operational description feature specifies the reasoning steps applied
by a capability in order to achieve its competence. In the Knowledge-
Modelling Ontology, the operational description is defined as an element
of the sort Operational-Description. Like the sort Communication, the
sort Operational-Description is more closer to the implementation details
than the other features characterizing a task-decomposer, and consequently
it will be defined at the Operational Framework, as another element to
be extend the KMF in order to become an Agent Capability Description
Language (section 5.4.3).

Task-Decomposer is-a Capability
pragmatics → Pragmatics
ontologies → set-of Ontology
inputs → set-of Signature
outputs → set-of Signature
competence → Competence
knowledge-roles → set-of Signature
assumptions → set-of Formula
communication → Communication
subtasks → set-of Task
operational-description → Operational-Description

Figure 4.11: The Task-Decomposer sort

While other Knowledge Modelling frameworks describe the reasoning pro-
cess of a capability in terms of inference steps, we prefer to describe complex
capabilities in terms of a decomposition of interrelated subtasks (§5.4.3), with-
out further specifying which capability is applied to solve each subtask (this is
decided during the configuration of the task-decomposer at the Knowledge Con-
figuration process). Therefore, an operational description should be understood
as a template for decomposing a complex task into subtasks, without specifying
the way each subtask is solved, only the way they are combined. This way of
representing a task decomposition in terms of subtasks and not in terms of capa-
bilities maximizes reuse and allows a flexible configuration of a task by assigning
the most appropriate capabilities for each specified problem. A task-decomposer
is then a problem decomposition schema that can be instantiated or configured
on-demand, by selecting capabilities and domain-models suitable for a specific
problem. This way of decomposing a problem into subtasks is a key element

78 Chapter 4. The Knowledge Modelling Framework

of the Knowledge Configuration process backing the on-demand configuration
of Multi-Agent Systems to satisfy specified problem requirements. We do not
introduce now a concrete language for specifying the operational-description,
since this feature, like the communication feature, pertains to the Operational
Framework.

Both the Communication and the Operational-Description sorts are excluded
from the Knowledge Configuration process and the Knowledge Modelling On-
tology, thus they are described at the Operational Framework (Section §5.4).
The idea is to keep the Knowledge Configuration process independent of the
operational-level details of agent capabilities.

While a task decomposer corresponds to a white-box model of a capability,
a skill is described using a black-box model. This consideration implies a weak
notion of the difference between task-decomposers and skills according to the
two ways of modelling a process: white-box vs black-box, i.e. choosing a skill to
represent a capability does not necessarily mean that a very simple capability
is being represented, but it can obey to some interest in hiding the details of a
complex reasoning process. The purpose of introducing this consideration is to
support a more flexible approach to the operational framework. For example,
an agent may prefer to hide the details of a capability in order to keep it under
local control. Therefore, autonomous agents may decide to declare a capability
as a task-decomposer or as a skill according to its own preferences or to some
conditions.

Domain-models

A domain-model (DM) specifies the concepts, relations and properties charac-
terizing the knowledge of some application domain.

The sort Domain-Model (Figure 4.12) is defined as a subsort of the sort
Knowledge-Component, and as such a domain-model has a name, a textual
description, pragmatics and ontologies. Moreover, the sort domain-model in-
troduces some new features, namely knowledge-roles, properties and meta-
knowledge.

• The knowledge-roles define the concepts provided by the domain-model
ontologies to describe domain knowledge that can be used by a capabil-
ity. The knowledge-roles are specified as a set of elements of the sort
Signature-element, to be refined by the sort Signature-element in the Ob-
ject Language.

• The properties feature is used to represent properties verified by the knowl-
edge characterized by the domain-model.

• The meta-knowledge feature represents properties of the knowledge that
are assumed to be true though they cannot be verified.

Domain-models are used to explicitly describe the knowledge required by a
capability to solve a problem. Therefore, the concepts defined by a domain-

4.2. The Abstract Architecture 79

model ontology should be understood by a capability in order to use the knowl-
edge characterized by that domain-model, or there must exist a mapping between
the concepts defined in the capability ontology and equivalent concepts in the
domain-model ontology. Moreover, in addition to fill in the knowledge-roles of a
capability with domain-models, the assumptions of a capability must be satisfied
by the domain-models of choice. These assumptions can be verified by either
the domain-model’s properties or the meta-knowledge.

Domain-Model is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
knowledge-roles → set-of Signature-element
properties → set-of Formula
meta-knowledge → set-of Formula

Figure 4.12: The Domain-Model sort

Ontologies

Concerning ontologies, we agree with [Guarino, 1997b] about the potential role
of explicit ontologies to support reuse. Although a definition of what on-
tologies are is still a debated issue, it is a topic of active research in the
AI community, and has been declared as a key issue in maximizing reuse
[Fensel, 1997a, Fensel and Benjamins, 1998b]. From that view, the main goal
of an ontology is to make knowledge explicit and sharable. Below follows a
concrete definition that expresses worth the role played by ontologies in our
framework.

Ontologies are shared agreements about shared conceptualizations.
Shared conceptualizations include conceptual frameworks for mod-
elling domain knowledge; content-specific protocols for communicat-
ing among interoperating agents; and agreements about the repre-
sentation of particular domain theories. In the knowledge sharing
context, ontologies are specified in the form of definitions of repre-
sentational vocabulary [Guarino, 1997b].

In ORCAS ontologies are used to explicitly declare the concepts used to spec-
ify the features characterizing a component, that are described in terms of two
sorts provided by the Object Language: Signature-element and Formula. We
adopt the usual approach to represent ontologies as hierarchies of concepts and
relations. Specifically, we use the Feature Terms [Armengol and Plaza, 1997,
Arcos, 1997] formalism to describe the sorts defined by an ontology, as described
in §4.3.

In Feature Terms, concepts are organized as a hierarchy of sorts, and both
descriptions and individuals as represented as collections of functional relations.

80 Chapter 4. The Knowledge Modelling Framework

Any ontology used to specify components in ORCAS provides two basic sorts
from which all the other sorts are descendant: the sort Signature-element and
the sort Formula.

The sort Ontology is defined as a subsort of the sort Knowledge-Component
(Figure 4.13), and as such it inherits the pragmatics feature, and the ontolo-
gies feature. But the information characterizing an ontology is mainly pro-
vided by a hierarchy of sorts below two main sorts: Signature-element and For-
mula. Therefore, an ontology includes a collection of sorts defined as subsorts
of Signature-element, and a collection of sorts defined as subsorts of Formula.
Furthermore, an element (an instance) of the sort Ontology can import other
ontologies through the “ontologies” feature, inherited from the sort Knowledge-
Component, and specified as a collection of elements of sort Ontology.

Ontology is-a Knowledge-Component
pragmatics → Pragmatics
ontologies → set-of Ontology
signature → set-of Signature-element
formulae → set-of Formula

Figure 4.13: The Ontology sort

Figure 4.14 shows the sorts defined by the ontology used to describe the
tasks and capabilities in the WIM application (Chapter 7). The sort Signature-
element is used to describe the inputs and outputs of a task or capability, and
the knowledge-roles of a capability or a domain-model. The sort Formula is
used to specify the preconditions and postconditions of a task or capability,
the assumptions of a capability, and the properties and meta-knowledge of a
domain-model.

The explicit, declarative and shared nature of component’s ontologies make
them appropriate to annotate components with semantic information; thus
enabling to compare component specifications on a semantic matching basis
[Guarino, 1997a, Paolucci et al., 2002]. Semantic matching has been defined as
an operator that takes two graph-like structures (e.g., database schemas or on-
tologies) and produces a mapping between elements of the two graphs that cor-
respond semantically to each other [Giunchiglia and Shvaiko, 2003].

4.2.2 Matching relations

This section describes the different relationships that may be established between
components in the Abstract Architecture and the role these relations play in the
Knowledge Configuration process.

The ORCAS KMF describes a system as a collection of tasks, capabilities
and domain-models. Nevertheless, an enumeration of classes of components
is not enough to describe a system, some structuring principle is needed. In

4.2. The Abstract Architecture 81

Figure 4.14: Hierarchy of sorts in the ISA-Ontology (from the WIM application,
Chapter 7)

82 Chapter 4. The Knowledge Modelling Framework

ORCAS this structure derives from the functional relations that can be estab-
lished among components in the Abstract Architecture. Specifically, the ORCAS
KMF includes two types of binary relations between components, namely Task-
Capability matching and Capability-Domain matching.

• A Task-capability matching relation is defined between a task and a capa-
bility. Intuitively, a task-capability matching denotes a suitability relation:
a task-capability relation is verified (is evaluated as true) when the capabil-
ity is suitable for the task. In other words, a task “matches” a capability if
the capability is able to solve the type of problems defined by the task. This
relation compares the inputs, outputs and competence of a task against
the homonym features of a capability to determine wether the application
of the capability is able to achieve the postconditions of the task, whenever
the preconditions of the task hold.

• A Capability-domain matching relation is defined between a capability and
a collection of domain models characterizing the knowledge required by the
capability. Since a capability may include many knowledge-roles, then a
domain-model would be required to fill in each knowledge-role. Intuitively,
a capability-domain matching denotes a relation of satisfiability : a capa-
bility “matches” a set of domain-models when the knowledge characterized
by those domain-models satisfies the knowledge requirements (the assump-
tions) of the capability for each knowledge-role. This relation is defined in
terms of knowledge-roles and capability assumptions that are satisfied by
the properties and meta-knowledge of the set of domain-models.

Task TMC

CMD

Matching

Capability

Domain
Model

Ontology

suitable for

compatible
 with

Figure 4.15: Matching relations in the Abstract Architecture

Figure 4.15 shows the components in the Abstract Architecture and the
matching relations than can be established among components.

Understanding the matching relations is important because the operations
to be performed during the Knowledge Configuration process are based on these

4.2. The Abstract Architecture 83

relations, and also because these relations are necessary to drive the analysis
and the knowledge acquisition phases of software development.

The second point will be realized progressively through the rest of the chap-
ter, but the main idea is using the matching relations to constrain the selection
of components during the Knowledge Configuration process.

A matching relation (also referred as a “match”) is determined by comparing
two specifications, and has the goal of determining whether two software com-
ponents are related in some way, e.g. two software components “match” if they
are substitutable or if one component can be adapted to fit the requirements of
another one.

The definition of a matching relation between components is built upon the
definition of a more basic relation between component features. Since compo-
nent features are specified in terms of the Object Language, matching will be
defined upon a relation between elements (signature-elements and formulae) of
the Object Language. Hence, in order to maximize the reuse of the Abstract
Architecture over different Object Languages, we introduce two levels in the def-
inition of a matching relation: the abstract-level matching and the object-level
matching.

• The abstract-level matching is situated at the level of the Abstract Archi-
tecture. Matching relations at this level are based on an abstract relation
between component features. Therefore, any system using the ORCAS
Abstract Architecture can use the matching relations at the abstract level.

• The object-level matching is concerned with the Object Language. Match-
ing relations at this level are defined as a refinement of the matching re-
lations at the abstract level. This refinement is achieved by replacing the
abstract relation by an object relation that is defined between elements
(signature-elements and formulae) in the Object Language.

Before providing specific definitions of the ORCAS matching rela-
tions we will give some basic definitions concerning matching. Our
approach to component matching is based on a combination of sig-
nature matching [Zaremski and Wing, 1995] and specification matching
[Zaremski and Wing, 1997], that we prefer to call competence matching. Signa-
ture matching relations compare the interface of two components in terms of
the types of information (and knowledge) they use (inputs and knowledge-roles)
and produce (output). Competence matching relations compare the features
characterizing the competence (preconditions and postconditions) of two com-
ponents to determine if two components are substitutable, or if a component
satisfies the requirements of another (e.g. a capability that is suitable for a task
must satisfy all postconditions of that task).

In general, a matching relation is defined between two component specifica-
tions as follows:

Match(S, S′) = matchsig(S, S) ∧ matchcomp(Q,S)

84 Chapter 4. The Knowledge Modelling Framework

where S, S′ are the specification of two components, matchsig is a signature
matching and matchcomp is a competence matching.

The particular definition of signature matching and competence matching
will be different for the different types of matching relation (Task-Capability
matching or Capability-Domain matching).

Task-capability matching

A Task-capability match is defined between a task T and a capability C to
determine wether C is suitable for the T (i.e. C can be applied to solve the type
of problems characterized by T).

We define a Task-capability match as the conjunction of a Generalized Type
Match over the input signature specification, and a Specialized Type Match over
the output signature specification [Zaremski and Wing, 1995], and a Plug-in
Match [Zaremski and Wing, 1997] over the competence specification.

Definition 4.1 (Task-capability match)
match(T,C) = matchgen(Tin, Cin) ∧matchspec(Tout, Cout) ∧matchplugin(T, C)

where T is a task and is a capability, matchgen is a Generalized Signature Match,
matchspec is a Specialized Signature Match, and matchplugin is a Plug-in match
defined over the competence specification (preconditions and postconditions).

The Generalized Signature Match over the input signatures means that the
capability has an input signature Cin equal or more general than task input
signature Tin.

matchgen(Tin, Cin) = (Tin ≥ Cin)

Inversely, the Specialized Signature Match over the output signatures means
that the capability output is of the same type or of a more specific type than
the task output.

matchspec(Tout, Cout) = (Tout ≤ Cout)

This combination of generalized and specialized matchings has the following
justification:

• On the one hand, a capability with a more general input than a task
implies the capability can extract from the task input all the information
it requires. However, if we select a capability with an input more specific
than a task (with more information), then the capability cannot obtain
all the information it uses as input, and this fact could result on a bad
capability operation.

• On the other hand, a capability with an output signature more specific
means that it is able to provide all the information characterizing the
output signature of a task, which is not true if the output of the capability
is more general (with less information) than the output of the task.

4.2. The Abstract Architecture 85

Moreover, the Plug-in Match (matchplugin) [Zaremski and Wing, 1997] re-
quires a capability C to have equal or weaker preconditions than a task T and
equal or stronger postconditions than T :

matchplugin(T, C) = (Tpre ⇒ Cpre) ∧ (Cpost ⇒ Tpost)

The reason to use that kind of matching is the following: we want to use
capabilities that are suitable for (able to solve) a task, thus we want that when-
ever the preconditions specified by the task hold, the application of the capability
guaranteed that the postconditions of the task will hold after its application.

The demonstration of the former property from the definition of the plug-in
match is as follows: Tpre entails that Cpre holds, due to the first conjunct of the
Plug-in Match, and C guarantees that Cpre ⇒ Cpost; consequently, it’s assured
that Cpost will hold after executing C, which entails also Tpost, due to the second
conjunct (Cpost ⇒ Tpost).

These definitions will be refined later in terms of object-level matching rela-
tions on signatures and on formulae (§4.3.3).

Capability-domain matching

Matching of domain-models and capabilities is slightly different, since a domain-
model does not include a competence specification, neither an input nor an
output. However, a capability may introduce more than one knowledge-role,
consequently many domain-models would be required to match a single capabil-
ity.

If a capability introduces only one knowledge-role, then we can say that a
capability matches a domain model when the domain-model provides the kind of
knowledge characterized by that knowledge-role, and satisfies the assumptions
established by the capability for that knowledge-role. Moreover, if a capabil-
ity specifies more than one knowledge-role, then for each knowledge-role there
should exist one domain-model matching the specification of the capability .

Let’s define the set of knowledge-roles of a capability as Ckr = {Ci
kr : i =

1 . . . n}, and let’s represent the set of assumptions of a capability over a particular
knowledge-role as Ci

asm. A matching relation between a knowledge-role of a
capability (Ci

kr ∈ Ckr) and one domain-model (M) is called a partial capability-
domain match. A partial capability-domain match is defined such that there is at
least one knowledge-roles in the domain-model (Mkr) that is equivalent or more
specific than the knowledge-role of the capability (Ci

kr), and the assumptions
of the capability for that knowledge-role Ci

asm are satisfied by the union of the
properties and meta-knowledge of the domain-model (Mprop ∪Mmk), namely

Matchpartial(C, M, Ci
kr) = matchesp(Ci

kr,Mkr) ∧ (Mprop ∪Mmk ⇒ Ci
asm)

where Ci
kr is a knowledge-role of a capability and M is a domain-model;

matchspec is a Specialized Signature Match; Mprop and Mmk are the proper-
ties and meta-knowledge of M , and Ci

asm are the assumptions of capability C
for the knowledge-role Ci

kr.

86 Chapter 4. The Knowledge Modelling Framework

In this definition, a partial capability-domain match is expressed as a combi-
nation of a Specialized Type Match between the signature specification of a ca-
pability knowledge-role and the specification of the knowledge-roles of a domain-
model, and a special kind of Plug-in Match defined between the specification of
the assumptions of a capability for a single knowledge-role, and the properties
and meta-knowledge of the domain-model.

The Specialized Type Match between a knowledge-role and a domain-model
is defined as follows:

matchesp(Ci
kr,Mkr) = (Ci

kr ≤ Mkr)

The reason to use a Specialized Type Match here is that we must ensure the
knowledge-roles characterized by a domain-model M can provide at least all the
information required by a knowledge-role of a capability Ci

kr. This condition
is guaranteed when the signature specification of the knowledge-roles of the
domain-model (Mkr) is equal to or specializes the signature specification of the
capability knowledge-role (Ci

kr). If Mkr was more general than Ci
kr, then it

may occur than some of the information required by Ci
kr cannot be provided by

the knowledge characterized by Mkr, and thus the capability cannot use that
knowledge appropriately.

Moreover, in order for a capability to use the information characterized by a
knowledge-role (Ci

kr), the domain-model providing that knowledge-role should
guarantee that the assumptions of the capability over that role (Ci

asm) are sat-
isfied by M . The specification of a domain-model is divided in two parts called
properties (Mprop) and meta-knowledge (Mmk), consequently we define that the
assumptions of a capability for a knowledge-role Ci

asm are satisfied by a domain-
model when these assumptions are implied by the union of both the properties
and meta-knowledge of the domain-model (Mprop ∪Mmk), as follows:

(Mprop ∪Mmk ⇒ Ci
asm)

Now we can define a matching relation between a capability and a collec-
tion of domain models M that satisfy C as a conjunction of matching relations
between pairs consisting of a knowledge-role (a signature element) and a do-
main model that matches it, such that there is a domain-model matching every
knowledge-role specified by the capability.

Definition 4.2 (Capability-domain match)

match(C,M) = ∀Ci
kr ∈ Ckr : ∃M ∈M|Matchpartial(C,M,Ci

kr)
= ∀Ci

kr ∈ Ckr : ∃M ∈M| (Ci
kr ≤ Mkr) ∧ (Mprop ∪Mmk ⇒ Ci

asm)

where C is a capability, M is a set of domain-models; matchspec is a Specialized
Signature Match; Mprop and Mmk are the properties and meta-knowledge of M ,
and Casm are the assumptions of capability C.

4.3. The Object Language 87

Ontology mappings

Since ORCAS components declare its conceptualizations (the “universe of dis-
course”) as ontologies, and two components may be declared using different on-
tologies, then it can be necessary to establish a mapping between the concepts
of the two ontologies, what is called a ontology mapping.

An ontology mapping is a declarative specification of the transformations
required to match elements of one ontology to elements of another ontology.
An example of a mapping is a renaming, but a mapping can include any kind
of syntactic or semantic transformation: numerical mapping, lexical mapping,
regular expression mapping and others [Park et al., 1998].

Nevertheless, in this thesis we focus on the matchmaking process (the process
of verifying if a matching relation holds) assuming that all the components share
the same ontologies or the required ontology mappings are already built.

4.3 The Object Language

This section presents a specific Object Language to be used within the ORCAS
KMF to specify component features, and a particular relation (subsumption) to
compare the specification of components in order to verify whether a matching
relation holds.

We need an Object Language O in which to write the specification of ca-
pabilities, tasks and domain-models. Moreover, the Object Language has to be
used also to represent other objects required by the Knowledge Configuration
process, including the specification of problem requirements, task-configurations
(the result of the Knowledge-Configuration process), and search states (Knowl-
edge Configuration is approached as a search process over the space of possible
configurations).

The Object Language provides a formalism for defining the terminologies
used to specify component features. As we have introduced when describing the
Abstract Architecture (§4.2.1), most of the features used to describe a component
are specified by either signature elements or formulae in the Object Language:
The sort Signature-element is used to describe the input and output of tasks
and capabilities, and the knowledge-roles of capabilities and domain-models as
well. The sort Formula is used to specify the preconditions and postconditions
of tasks and capabilities, the assumptions of a capability, and the properties
and meta-knowledge of a domain-model1. In ORCAS the terminologies used to
specify component features are represented by ontologies, thus the elements of
the Object Language are specified as sorts of some ontology.

Figure 4.14 shows an example of an Object Language onotology used to
specify tasks and capabilities in the WIM application (Chapter 7). Notice that

1Usually, knowledge-modelling languages describe these kind of specifications with a formal
language, some examples are LOOM [Gaspari et al., 1998], OCML [Motta, 1999] and KARL
[Studer et al., 1996]

88 Chapter 4. The Knowledge Modelling Framework

every sort is a specialization (a subtype) of either the sort Signature-element or
the sort Formula.

Many languages could be used as the Object Language while keeping the
ORCAS Abstract Architecture, thanks to a clear separation of two levels in the
definition of a matching relation: the abstract level matching and the object level
matching.

We have already defined the matching relations at the abstract level, now
we are going to describe the Feature Terms formalism to be used as the Object
Language. Following, the ORCAS matching relations will be rewrited using
subsumption between feature terms as the object-level matching relation..

4.3.1 The Language of Feature Terms

The ORCAS Object Language is based on the Feature Terms formalism to rep-
resent ontologies and component features. Feature Terms (also called feature
structures or ψ-terms) are a generalization of first order terms. The difference
between feature terms and first order terms is the following: a first order term,
e.g. f(x, y, g(x, y)) can be formally described as a tree and a fixed tree-traversal
order. In other words, parameters are identified by position. The intuition be-
hind a feature term is that it can be described as a labelled graph i.e. parameters
are identified by name.

Specifically, we use a concrete implementation of feature terms as em-
bodied in the NOOS representation language [Arcos, 1997], in which sev-
eral Case Based Reasoning systems have been described and implemented
[Arcos et al., 1998, Arcos, 2001]. This formalism organizes concepts into a hi-
erarchy of sorts, and represents descriptions and individuals as collections of
features (functional relations) called feature terms. The attributes used to de-
scribe a component (signature-elements and formulae) will be specified as feature
terms in the Feature Terms formalism.

Before to define Feature Terms formally we need to introduce the following
elements:

1. a signature Σ = 〈S,F ,≤〉 (where S is a set of sort symbols that includes
⊥; F is a set of feature symbols; and ≤ is a decidable partial order on S
such that ⊥ is the least element),

2. and a set ϑ of variables;

Succinctly, we can now define a feature term ψ as an expression of the form:

ψ ::= X : s[f1
.= Ψ1 . . . fn

.= Ψn] (4.1)

where X is a variable in ϑ that is called the root of the feature term, s is a sort
in S (the root sort), f1 . . . fn are features in F , n ≤ 0, and each Ψi is a set
of Feature Terms and variables. When n = 0 we are defining a term without
features. The set of variables occurring in ψ is noted as ϑψ.

4.3. The Object Language 89

Sorts have an informational order relation (≤) among them, where ψ ≤ ψ′

means that ψ has less information than ψ′ (or equivalently that ψ is more general
than ψ′). The minimal element (⊥) is called any and represents the minimum
information. A feature with an unknown value is represented as having the value
any. All other sorts are more specific than any.

4.3.2 Subsumption

A basic notion of the Feature Terms formalism is that of subsumption, which we
use as the inference mechanism. Subsumption is an order relation among terms
built on the top of the ≤ relation among sorts.

Intuitively, we say of two Feature Terms ψ, ψ′ ∈ Φ that ψ subsumes ψ′

(ψ v ψ′) when all that is true for ψ is also true for ψ′. A more formal definition
of subsumption is introduced below, but first we need to introduce some notation
and basic definitions:

• Root(ψ) is defined as a function that returns the root of a term (a variable
X).

• Sort(X) is defined as a function that returns the sort of the variable X.

• A path ρ(X, fi) is defined as a sequence of features going from the variable
X to the feature fi. There is a path equality when two paths point to the
same value. Path equality is equivalent to variable equality in first order
terms.

• We use a “dot notation” to reference a particular feature within a term,
thus ψ.f refers to the feature f of the term ψ.

Now we can define subsumption as follows:

Definition 4.3 (Subsumption) Feature term ψ subsumes ψ′ (ψ v ψ′) if:

1. Sort(Root(ψ)) ≤ Sort(Root(ψ′)), i.e. the root sort of ψ′ is the same sort
or a subsort of the root sort of ψ.

2. ∀f ∈ F : ψ.f 6= ⊥ ⇒ ψ′.f 6= ⊥, i.e. every defined feature in ψ is also
defined (has a value different from ⊥) in ψ′.

3. ∀f ∈ F : ψ.f = v 6= ⊥ ⇒ v v v′ = ψ′.f if v is a singleton,

4. otherwise if ψ.f is a set ψ.f = V = {v1 . . . vm} then ∀vi ∈ V : ∃v′j ∈ V ′ =
ψ′.f : vi v v′j), i.e. there is a subsumption mapping between the sets.

5. (ρ(Root(ψ), f1) = ρ((Root(ψ), f2) = v) ⇒ (ρ(Root(ψ′), f1) =
ρ((Root(ψ′), f2) = v′ ∧ v v v′); i.e., path equality is satisfied downwards.

90 Chapter 4. The Knowledge Modelling Framework

y = person
name name

last
family-name

father
person name

name
last

y’ = person
name name

first

last

John

Smith

address NYCity

lives-at

city

father

person
name

name
last

Figure 4.16: Representation of feature terms as labelled graphs

Notice that step 4 of Definition 4.3 provides a concrete interpretation of the
subsumption between two sets: thus given two sets of feature terms Ψ, Ψ′ we
say that Ψ v Ψ′ if step 4 of Definition 4.3 is verified.

Figure 4.16 shows an example of two features that verify a subsumption
relation. This picture shows feature terms as labelled directed graphs: for each
variable X : s there is a node q labelled with sort s, while an arc from q to
another node q′ is labelled by f , for each feature f defined in q with feature
value q′.

In this example there are two feature terms ψ, ψ′ with the same root sort,
person. Notice that ψ subsumes ψ′, ψ v ψ′, since ψ′ contains more information
than ψ (ψ′ is a specialization of ψ, which entails that all that is true for ψ′ is
also true for ψ, ψ ⇒ ψ): Both ψ and ψ′ are of sort person. ψ has two features,
name and father, specified as elements of sort name and person respectively. The
feature name is specified as terms of sort name, which has a feature called last
representing the father’s name. For both terms the father’s name has a single
feature called name which is the same (there is path equality) than the last name
of the person. However, ψ′ specializes ψ in the following aspects: the last name
of ψ is specified as a term of sort family-name, and the last name of ψ′ is John,
which identifies a term of sort family name, and thus it is just a specialization of
the last name of ψ′. Finally, ψ′ has another feature not existing in ψ (lives-at)
that contains a partial description of their home address. ψ′ is a specialization
of psi, since ψ′ contains more information than ψ, and thus we conclude than
ψ′ is subsumed by ψ.

4.3. The Object Language 91

4.3.3 Matching by subsumption

Subsumption can be now used to define the matching relations at the object-
level. Both signatures and formulae in our Object Language are represented
using terms in the Feature Terms formalism. Moreover, each term ψ has an
associated root sort (Sort(ψ)), and these sorts are organized into a hierarchy of
sorts in the component’s ontology. As a consequence, terms without any feature
can be directly evaluated upon the informational partial order relation (≤) over
their root sorts.

In general a signature or a formula can be expressed as a full fledged Feature
Terms structure, and therefore the relations (≤ and⇒) used to define the match-
ing relations should be reformulated using Feature Terms concepts, namely the
informational partial order relation ≤ and the implication ⇒ relation. These
relations will be specialized by the subsumption relation among Feature Terms
(Definition 4.3) as follows.

• On the one hand, if a term ψ subsumes another term ψ′ (ψ v ψ′), then the
root sorts for these terms verify a partial order relation (Step 1 of Definition
4.3): ψ v ψ′ ⇒ Sort(ψ) ≤ Sort(ψ′). Intuitively, the subsumption relation
can be regarded as a generalization of the informational order relation (≤)
to compare terms having no empty features (features with a value different
of ⊥) with structures, in place of single sorts. Therefore, the partial order
relation (≤) introduced at the abstract-level matching is replaced by the
subsumption relation at the object-level matching.

• On the other hand, the implication relation (⇒) introduced at the abstract-
level matching boils down to subsumption over Feature Terms at the
object-level matching. Intuitively, a term ψ subsuming another term ψ′

(ψ v ψ′) means that ψ′ is more specific or has more information than ψ,
and this implies that all that is true for ψ is also true for ψ′: ψ ⇒ ψ′.

Now we can express signature matching over inputs and outputs using sub-
sumption over Feature Terms, as follows:

matchsig(T, C) = Tin v Cin ∧ Tout v Cout

where subsumption (v) is among sets (step 4 of Definition 4.3).
Similarly, we can reformulate the definition of a Plug-in Match between a

task and a capability as follows:

matchplugin(T, C) = Tpre v Cpre ∧ Cpost v Tpost

Now that we have defined the basic matching relations between signature-
elements and formulae expressed at the object-level, we are ready to reformulate
the whole definition of a Task-capability match (Definition 4.1) to the language
of Feature Terms using subsumption:

Definition 4.4 (Task-capability match by subsumption)
match(T,C) = Tin v Cin ∧ Cout v Tout ∧ Cpre v Tpre ∧ Tpost v Cpost

92 Chapter 4. The Knowledge Modelling Framework

Intuitively, this definition is justified as follows: If the input of the capa-
bility subsumes the input of the task (Cin v Tin) then the input for the task
will provide at least all the information required by the capability, since the
input of the task is more specific or has more information that the input of the
task. Complementarily, the output of the capability subsumes the output of
task (Cout v Tout) implies that the output of the capability is more specific than
the output of the task and, consequently, the application of the capability can
provide at least all the information required by the task output.

Concerning the competence, the fact that the preconditions of the capability
subsume the preconditions of the task (Cpre v Tpre) means that all the precondi-
tions of the capability are guaranteed by the equal or more specific preconditions
of the task, and viceversa: the fact that the postconditions of the task subsume
the capability postconditions (Tpost v Cpost) means that all task postconditions
are guaranteed by the capability postconditions.

Similarly, we can specialize the definition of a Capability-domain match (Def-
inition 4.1) to the language of Feature Terms by using subsumption as the basic
matching:

Definition 4.5 (Capability-domain match)

match(C,M) = ∀Ci
kr ∈ Ckr : ∃M ∈M|Matchpartial(C,M,Ci

kr)
= ∀Ci

kr ∈ Ckr : ∃M ∈M| (Ci
kr v Mkr) ∧ (Ci

asm v Mprop ∪Mmk)

where C is a capability, M is a set of domain-models; Ckr are the knowledge-
roles, and Ci

asm are the assumptions of the capability for the ith knowledge-role,
specified as a set of signature-elements and formulae respectively; and Mprop,
Mmk are the properties and meta-knowledge of a domain-model, specified as
formulae. Both signature-elements and formulae are specified by feature terms.

In this definition, two conditions are imposed for establishing a match be-
tween a capability and a collection of domain-model:

1. the specification of knowledge-role signatures by the domain-models must
provide at least as much information as required by the signature specifi-
cation of the knowledge-role of the capability. This condition is ensured
if for each signature specifying a knowledge-role of the capability, there is
a specification of domain-model signatures that refines or is more specific
than it, which in feature terms is expressed by the idea of being subsumed
(Ci

kr v Mkr);

2. the assumptions of the capability for each knowledge-role Ci
kr must be

satisfied by the properties and meta-knowledge of a domain-model that in
addition verifies the matching between the signature specification: this is
assured if all that is true for the domain-model is also true for the assump-
tions of the capability ((Mprop ∪Mmk) ⇒ Ci

asm). Using feature terms this
condition can be expressed using subsumption as Casm v (Mprop ∪Mmk).

4.4. Knowledge Configuration 93

4.4 Knowledge Configuration

We have defined the MAS configuration process as being performed at two lay-
ers: the Knowledge Configuration process, that is situated at the knowledge-
layer (this chapter), and the Team Formation process, that is carried on at the
operational-layer (Chapter 5).

During the previous sections of the chapter the Abstract Architecture and
a concrete Object Language for the ORCAS KMF have been described. In ad-
dition, we have formally defined the matching relations to be used during the
Knowledge Configuration process in order to verify whether a capability is suit-
able for a task, and whether a domain-model satisfies a capability. Hence, we
have described the basic concepts required to explain the Knowledge Configura-
tion process itself, which is the aim of this section.

The Knowledge Configuration process has the goal of finding a configuration
in terms of a composition of application tasks, agent capabilities and domain-
models, in such a way that the requirements of the problem at hand are satisfied.
This process actually follows a Problem Specification process, the main purpose
of which is the characterization of the problem at hand in order to later select
the most appropriate components during the Knowledge Configuration process.
This characterization of a problem is formalized by a specification of problem
requirements to be satisfied by a Task-Configuration.

After introducing some basic definitions and notation (§4.4.1) we will describe
the Problem Specification process (§4.4.2) and the Knowledge Configuration
process (§4.4.3). Next, three strategies for the Knowledge Configuration process
(§4.4.4) are presented.

4.4.1 Notation and basic definitions

We have already seen the components defined in the Abstract Architecture and
the different relations constraining the way in which components can be con-
nected, which have been defined as matching relations. This section summarizes
the specification of components in the Abstract Architecture and introduces
some basic definitions.

We deal with three main types of knowledge-level components, namely: task,
domain-model and capability, which have two further subtypes: skill and task-
decomposer.

Knowl.-Component X
Task T < X T = 〈in, out, pre, post〉
Capability C < X C = 〈in, out, pre, post, com, asm, kr〉
Task-Decomposer D < C < X D = 〈in, out, pre, post, com, asm, kr, st〉
Skill S < C < X S = 〈in, out, pre, post, com, asm, kr〉
Domain Model M < X M = 〈kr, prop, mk〉

Table 4.1: Types of knowledge components an their main features

94 Chapter 4. The Knowledge Modelling Framework

Table 4.1 sums up the hierarchy of sorts used to describe the components
in the Abstract Architecture, and the features used to specify each compo-
nent, where A < B means that A is a subsort (subtype) of B, st are sub-
tasks (st ⊂ T), in, out, kr are inputs, outputs and knowledge-roles, specified as
signature-elements in the Object Language O, pre, post, asm are preconditions,
postconditions and assumptions, specified as formulae in the same language O,
com, od are the communication aspects and the operational description of a ca-
pability respectively, and pro,mk are the properties and the metaknowledge of
a domain model, specified by formulae in O.

We will note an element of a tuple specification as subscript, e.g. Tin is the
input signature of task T and Tpost are the postconditions of T .

However, since the Knowledge Configuration process requires a repository of
components as an input to choose from the components of a task-configuration,
we will introduce the idea of a repository of components or a library.

A Library is a collection of tasks and capabilities specified using some Object
Language. A Library is independent of the domain because both tasks and
capabilities are described in terms of their own ontologies, and not in terms of
the domain ontology.

Definition 4.6 (Library)
L = 〈T , C,O〉,
where

• T is a set of tasks,

• C is a set of capabilities,

• and O is the Object Language.

In the following definitions we will note T and C as the set of tasks and
capabilities in the library used by the Knowledge Configuration process.

The Knowledge Configuration process takes a specification of stated prob-
lem requirements and a library of components as input and produces a task-
configuration as output. Since a task-configuration is a complex structure we
need first to define its constituent elements, called configuration schemas. We
will note κ ∈ k as a configuration schema and the set of all configuration schemas;
moreover, we will note (T .= U) ∈ B as a binding and the set of all bindings,
where a binding is a link between a task and a capability or a configuration
schema that is selected to solve that task. More formally:

Definition 4.7 (Binding) A binding (T .= U) is a pair with a task T ∈ T in
the head and a capability C ∈ C or a configuration schema k ∈ k in the tail:
U ∈ C ∪ k

Definition 4.8 (Configuration schema) A configuration schema κ ∈ k is
a pair 〈(T .= C), {(Ti

.= κji)}i=1...n〉 where T, T1, . . . , Tn ∈ T , C ∈ C, and
κj1 , . . . , κjn ∈ k, and T1, . . . , Tn ∈ Cst.

4.4. Knowledge Configuration 95

A configuration schema specifies in the head of the pair a binding between
a task T and a capability C (T .= C). The tail of the configuration schema is a
set of bindings from Cst (the subtasks of C) (which will be empty if C is a skill,
since skills have no subtasks) to other configuration schemas. A configuration
schema can be complete or partial, defined as follows:

Complete(κ) ⇔ ∀Ti ∈ Cst ∃κji
: (Ti

.= κji
) ∈ tail(κ)

i.e. if all subtasks of C are bound to another schema in the tail; otherwise κ is
partial.

We define a configuration relation R among schemas as follows:

R(κ, κ′) ⇔ ∃(Ti
.= κ′) ∈ tail(κ)

i.e. two schemas are related if one of them is bound to a subtask in the tail of
the other.

Noting R∗ the closure of R we can now define a task-configuration as follows:

Definition 4.9 (Task-configuration) A task-configuration is defined in terms
of configuration schemas Conf(κ) = {κ′ ∈ k|R∗(κ, κ′)}. A task-configuration
Conf(κ) can be complete or partial: Complete(Conf(κ)) iff ∀κ′ ∈ Conf(κ) :
Complete(κ′); otherwise Conf(κ) is partial.

Thus, a task-configuration is a collection of interrelated configuration schemas
(starting from a root schema κ). A task-configuration is complete when all
schemas belonging to it are complete.

We will note K a task-configuration and K the set of all the task-
configurations (K ∈ K).

4.4.2 The Problem Specification process

The Problem Specification process aims at characterizing the problem to be
solved in terms of a task to be solved and a set of requirements the configured
system must comply to. We are not interested on the particular strategy to
carry on this process; actually we are interested in the result of the Problem
Specification process, since this is an input (the other input is a library of com-
ponents) for the Knowledge Configuration process (Figure 4.17). Nonetheless,
we will succinctly describe a iterative approach to specify problem requirements
by interacting with the user and using a matching relation between problem re-
quirements and tasks to find out which tasks are representative of the problem
at hand.

The Problem Specification process starts with the specification of some ini-
tial requirements that are used to select the application task T0. The idea is
that a configured system is an application that results of assembling existing
components such that the resulting composition satisfies the requirements of
the problem at hand. We call this class of application that is designed and as-
sembled on-demand by reusing and existing components over a (probably new)

96 Chapter 4. The Knowledge Modelling Framework

User
Interaction

Task
selection

Refinement

Problem
requirements

Problem Specification

Problem
Data

Knowledge
Configuration

Team
Formation

Problem
solving

Problem
requirements

Figure 4.17: Problem Specification process

specific domain, an on-the-fly application. The task that is decided as the better
characterization of the problem at hand is the starting point for the Knowledge
Configuration process and is called the application task.

Since many tasks may satisfy the initial problem requirements, these require-
ments can be further refined and modified to better characterize the problem at
hand, according to the needs and preferences of the requester (a human user or
a software agent).

Problem requirements are used by two processes: Problem Specification and
Knowledge Configuration. On the one hand, problems requirements are used
as both input and output of the Problem Specification process; on the other
hand the final output of the Problem Specification process is a collection of
requirements that becomes an input for the Knowledge Configuration process.

The Problem Specification process starts with a query containing some prob-
lem requirements, and proceeds by selecting a set of tasks characterizing the
problem at hand. Afterwards the user may select a task he thinks is a better
characterization of his problem (the application task T0) and may add or delete
requirements from the query to be satisfied by the configuration of that task.

Definition 4.10 (Query) A query Q is a tuple Q = 〈in, out, pre, post, dm〉
where in, out are the query input and output signatures, which specify the type of
the data provided to solve a problem, and the type of data expected as a result
to that problem; pre are preconditions, which characterize the circumstances
holding before starting the problem solving process, post are postconditions, or
the effects to bring about after solving the problem; and dm ⊂ M is a set of
domain-models characterizing the application domain..

Notice that the specification of a query is like the specification of a task,
but a query adds in a collection of domain-models characterizing the application
domain.

4.4. Knowledge Configuration 97

In order to find out which tasks in the library satisfy the requirements stated
by a query, it is necessary to establish a matching relation between a query Q
and a task (T ∈ T). We define a query-task matching relation following the idea
of a task-capability match (Def. 4.4), but in this case the query plays the role of
the task, and the task plays the role of the capability.

match(Q,T) = matchgen(Qin, Tin) ∧matchspec(Qout, Tout) ∧matchplugin(Q,T)

We specialize this definition for the case of using Feature Terms as the Object
Language, by using the subsumption (v) relation as the basic matching relation.

match(Q,T) = Tin v Qin ∧ Tout v Qout ∧ Tpre v Qpre ∧Qpost v Tpost

The idea of this matching relation is to assess whether a task is representative
of a problem. A task is considered to be representative of a problem if, given
an input of the type specified by the query, and assumed that the preconditions
stated by the query holds, the solution to the task will provide all the infor-
mation required by the query output signature, and guarantees that the query
postconditions will hold afterwards.

The task-selection activity can be described as function (Q × T → T) that
retrieves from a library a set of tasks that are representative of the problem at
hand, where representativeness is decided upon the verification of a query-task
match. This function takes a query and the tasks in a library as input and return
those tasks that verify a matching relation with the query. We can now define
the result of the task-selection activity as a set TQ of tasks satisfying a matching
with Q, formally:

TQ = {Ti ∈ T |match(Q,Ti)}

At the end of the Problem Specification process one task is selected by the
user as the application task: T0 ∈ TQ. Otherwise, all the tasks satisfying (match-
ing) the query can be used as legitimate starting points for the Knowledge Con-
figuration process.

The final result of the Problem Specification is a collection of problem require-
ments and problem data. The resulting specification of problem requirements
(Figure 4.18) includes an application task (the task to be configured), a specifi-
cation of the kind of inputs provided to and outputs expected from the Problem
Solving process, a collection of preconditions that are assumed to hold, a collec-
tion of postconditions to be satisfied, and a specification of domain-models to be
used. It does not matter whether the task is straightforwardly selected by the
user, by an automated service, or through an interactive problem-specification
support tool, like the interactive broker presented in §4.4.4.

Problem requirements are specified by the following features (Figure 4.18):

• Application task : the task characterizing the type of problem to be solved.
This task characterizes the type of problems to which the current problem
is supposed to belong to.

98 Chapter 4. The Knowledge Modelling Framework

Problem-Requirements
application-task → String
ontology → Ontology
inputs → set-of Signature
outputs → set-of Signature
preconditions → set-of Formula
postconditions → set-of Formula
domain-models → set-of Domain-Model
configuration-options → set-of Configuration-Options

Figure 4.18: Features used to specify problem requirements

• Inputs and outputs are specified as signature elements in the Object Lan-
guage. These signatures characterize the kind of data provided as an input
to the problem and the kind of data expected or required as a solution.
These signatures verify the signature matching relation between of a query-
task matching with respect to the application task T0. More formally,
Tin v Qin ∧ Tout v Qout.

• Preconditions are also used to select a task during the initial problem
specification, but can be extended to better characterize the problem in
order to refine the collection of candidate tasks. Finally, the preconditions
included as problem requirements must guarantee that the preconditions of
the application task hold, which is achieved by the condition Tpre v Qpre

applied during the task-selection activity.

• Postconditions are the most outstanding element of problem requirements,
since they characterize the goals of the problem. Postconditions are used
twice: once during the selection of the application task; and afterwards,
during the Knowledge Configuration process, to verify whether a task-
configuration is valid (satisfies the requirements). The application task
must assure that the postconditions of the query will hold after solving
that task, which is endorsed when all that is true for the postconditions of
the task is also true for the postconditions of the query. This condition is
represented by the conjunct Qpost v Tpost in the specification of a query-
task matching relation.

• Domain-models are used to restrict the domain knowledge that can be
used by the selected capabilities during the Problem Solving process. Only
domain-models included in the query are considered during the Knowledge
Configuration process.

• Configuration Options are used to setup the Knowledge Configuration pro-
cess. The main configuration option is the strategy to be used for the
Knowledge Configuration process (§4.4.4). Three strategies have been im-
plemented: one based on a deep-first search strategy, another one based

4.4. Knowledge Configuration 99

on a best-first strategy guided by past-configuration cases, and one more
that is guided by the user though the user is provided with a heuristic help
to decide which components are used. Other options control parameters
that are specific of a particular configuration strategy.

The problem is specified using the same ontology used by the application task
or there is an ontology mapping between the problem requirements ontology and
the task ontology.

Figure 4.19 shows a screenshot of the problem specification interface as pre-
sented to the user when using the Interactive Configuration strategy (§4.4.4.
This screen shows the user the collection of signature-elements and formulae
that can be chosen by the user in order to specify the inputs, preconditions,
postconditions characterizing his problem.

Figure 4.19: User Interface used to specify problem requirements.

Figure 4.20 shows a screenshots of the problem specification interface where
the user can define the domain-models he is interested in.

4.4.3 Overview of the Knowledge Configuration process

The input for the Knowledge Configuration process is twofold: on the one hand
it uses a collection of problem requirements, as described above, and on the
other hand it uses a repository or library of component specifications to build
up a configuration. The result of the Knowledge Configuration process is a task-
configuration that, if complete and correct verifies the following: a) each task is
bound at least to one capability that can achieve it, b) each capability requiring

100 Chapter 4. The Knowledge Modelling Framework

Figure 4.20: User Interface where the user defines the domain-models to be used
during the Knowledge Configuration process.

knowledge is assigned a set of domain-models satisfying its assumptions, and c)
the whole configuration complies to the problem requirements.

The Knowledge Configuration process has been designed and implemented as
a search process in the space of partial configurations, where each state represents
a partial configuration of a task.

The main information to be represented in a state is the set of task-capability
bindings used in a partial configuration, but it also holds information about
the requirements (inputs, preconditions and postconditions, domain-models and
assumptions), those ones already satisfied and the ones yet to be satisfied.

The Knowledge Configuration process uses the problem requirements to gen-
erate an initial state. From the initial state, new states are generated by binding
capabilities to tasks, where the bindings are realized through the verification of
the matching relation between tasks and capabilities. The generation of new
states continues until one of the new states is considered a final state; which
occurs when the following conditions occur simultaneously: all tasks are bound
to suitable capabilities, there are domain models satisfying the requirements of
every capability included, and all the problem requirements are satisfied.

Figure 4.21 shows the main activities performed during the Knowledge Con-
figuration process: task-configuration, capability-configuration and verification.

1. Task-configuration: The Knowledge Configuration process starts with an
initial task and chooses a capability suitable for it (i.e. verifying a task-
capability match).

4.4. Knowledge Configuration 101

Task
configuration

Capability
configuration

Verification

Task decomposition

Knowledge Configuration

Team
Formation

Problem
solving

Problem
specification

Problem Data

Problem
requirements Task

Configuration

Figure 4.21: Main activities of the Knowledge Configuration process

2. Capability-configuration: The selected capability is configured by selecting
domain-models compatible with it (verifying a capability-domain match).
If a capability is a task-decomposer, then the task-configuration process
should be performed for each subtask, which then becomes a recursive
activity.

3. Verification: finally, verification is the process of checking whether the
global problem requirements are met or not. If the global problem re-
quirements are met —configuration is correct— and the configuration is
complete, then the Knowledge Configuration ends, and the resulting task-
configuration can be used to guide the Team Formation process. The
point is that a verified task-configuration can be considered as design-level
description of an application to be performed by a team of agents.

A task-configuration is recursively defined in term of a capability-
configuration that boils down to a task-configuration for each subtask of the
task-decomposer (a configuration schema), until all tasks are bound to a capa-
bility and thus there are no more subtasks to spawn from. The result is a tree of
tasks that are bound to capabilities, and capabilities bound to domain-models,
as shown in Figure 4.22.

4.4.4 Strategies for the Knowledge Configuration process

We have already introduced the notion of the Knowledge Configuration as a
search process among the space of possible configurations: from an initial state
the Knowledge Configuration process explores successor states according to some
order until reaching a final state. We have implemented three different strategies
for the search process, depending on the kind of user and the availability of past
configuration cases, namely.

We differentiate between experts users, which are knowledgeable of the OR-
CAS KMF and the Knowledge Configuration process (usually the knowledge

102 Chapter 4. The Knowledge Modelling Framework

Information search

Elaborate
Query Customize

Query Retrieve Aggregate

Query-expansion-
with-thesaurus

Query-
Customization Retrieval

Metasearch

Aggregation

Items-Elaboration Arithmetic-Mean

Aggregate-
Items

Elaborate-
Items

MeSH
(Thesaurus)

Task
Task decomposer
Skill
Domain-model

Source
Descritpions

Figure 4.22: Example of a task-configuration

engineer), and the final user, which does not have such a knowledge.
The three strategies implemented for the Knowledge Configuration process

are the following, namely: Search and Subsumes, Constructive Adaption and
Interactive Configuration.

• Search and Subsume is appropriate for non expert users whether past con-
figurations are not available or are not desired. The Search and Subsume
configuration mode implements a depth first strategy for searching. This
strategy uses subsumption for retrieving capabilities that match a task.
For each retrieved capability, a new state (called successor state) is gener-
ated. The new states generated are added to a stack of open states; and
the next state to be explored is always the head of this stack.

• Constructive Adaption is appropriate when the user (expert or not) wants
to use Case-Based Reasoning (CBR) to drive the search process. The
Constructive Adaptation strategy follows a best-first search process in the
state space [Plaza and Arcos, 2002]. There is a heuristic function that
assesses which state is “best”, based on problem requirements previously
used to configure a system (i.e. previous configurations here used as cases).
This strategy uses past configurations to order the successor states accord-
ing to a measure of similarity to the current state. A similarity measure
called SHAUD [Armengol and Plaza, 2001] is used to evaluates the simi-
larity between Feature Terms structures. The result is a ranking of past
configuration cases that are used to order the states. Then, once we have
reordered the states, the search process selects to expand the state with a
higher heuristic value based on case-based similarity.

• Interactive Configuration is appropriate for expert users who want to have
more control over the Knowledge Configuration process. This strategy in-

4.4. Knowledge Configuration 103

terleaves the specification and the configuration phases until a complete
configuration is found. The Interactive Configuration strategy operates
through a graphical user interface that shows the partial configuration,
the available components and other information. Once the user selects a
task to be configured, the interface presents the capabilities that are suit-
able for that task (those matching that task). These capabilities are ranked
with the similarity measure used in the case-based strategy (Constructive
Adaptation) in order to guide the user about which are the capabilities
recommended by the system upon past configuration experience, but the
user is free to select any capability based in its own criteria. If the selected
capability is a task-decomposer, then the capability selection process is
repeated for every subtask. In order to facilitate the user decision, the
interface presents some extra information about the components and in-
formation about the current state of the configuration. The configuration
service interleaves the problem specification and the task-configuration ac-
tivities, and brings the user the possibility of deciding the next state to
follow by selecting the capability to bind to the current task (from the
set of suitable capabilities for that task). This mode is also useful for a
knowledge engineer to build a initial case-base of configuration examples,
thus allowing the end-user to use the constructive-adaptation strategy.

Figure 4.23 shows an example of a partial configuration as presented by the
interface of the Interactive Configuration mode. The left part shows the current
configuration of a task; and the rest of the interface shows from left to right
and up to down the following information: first row shows available capabilities
that are suitable for the task at hand, ranked according to the similarity of the
current problem to past configuration cases, and a description of the capability
currently selected by the user; the second row includes the pending precondi-
tions, assumptions and goals (postconditions), and the unavailable or missing
knowledge-roles; and finally, the bottom row of the interface shows the already
achieved preconditions, postconditions, assumptions and knowledge-roles. In
particular, this is an example from the WIM configurable application, which is
described in Chapter 7. In this example, the Information-Search task is being
configured. Only the configuration of the subtask Aggregate-Items remains un-
concluded. The user has to select one of the four aggregation capabilities that
are suitable for that task: the Average, the Weighted-mean, the OWA or the
WOWA.

4.4.5 Searching the Configuration Space

The Knowledge Configuration process is approached as a search process over the
space of possible configurations in order to find a configuration that is complete
and satisfies all the requirements of the problem at hand.

The search space is K(L), the set of possible (partial and complete) config-
urations given a component library L and a query containing the requirements
of the problem (Q). Moreover, a configuration K ∈ K can be a solution for the

104 Chapter 4. The Knowledge Modelling Framework

Figure 4.23: Interface that shows a partial task-configuration

query only if K is complete.
Let’s start defining a query as a collection of problem requirements and op-

tionally a selected application task.

Definition 4.11 (Query) A query Q ∈ Q is a tuple Q =
〈T0, in, out, pre, post, dm〉

where T0 is the application task, which characterizes the type of problem the
application will be configured for, in, out are the input and output signatures
describing the type of data available and the type of data expected as a result of
the Cooperative Problem-Solving process, preconditions pre are properties that
are stated to be true, postconditions post are properties to be achieved by the
“execution” of the configuration (the performance of a CPS process based on
that configuration), and dm ⊂M is the set of allowed domain-models.

The Knowledge Configuration search process starts with a query Q and an
empty configuration, and searches new states that model more detailed configu-
rations by adding configuration schemas and recursively configuring them until
a complete configuration is found. The Constructive Adaptation model tells us
that we can improve the construction of the solution by using cases to decide
which states to explore first—i.e. which configuration schemas to add to a given
partial configuration. This search process adds configuration schemas until a
complete configuration K is reached, and then checks if this K satisfies the
query Q: if correct then a solution has been found and the process terminates;
otherwise the search algorithm proceeds exploring other branches.

We turn now to consider how to represent a state in the Knowledge Con-
figuration process. The main issue to be represented in a state is the set of

4.4. Knowledge Configuration 105

task-capability bindings (T .= C) in effect within a partial configuration. For
this purpose the state needs not to represent the whole configuration K but
only the subset of tasks included in a configuration TK ⊂ T that are bound to
a capability.

The second important issue for a state is determining which pre- and post-
conditions of the query Q are satisfied by the components involved in a partial
configuration—and which are not yet satisfied. Finally, we are interested in
states that represent valid configurations, so states have to satisfy the task-
capability matching relation for every task-capability binding (T .= C) in a
state.

Definition 4.12 (State) A state Z for a configuration K in a Knowl-
edge Configuration process with a query Q is a tuple Z(K, Q) =
〈cpre, cpost, opre, opost, okr, ckr, ot, tc〉

where cpre and cpost are the closed preconditions and postconditions respec-
tively (those in query Q that are satisfied in Z), opre and opost are the open
pre- and post conditions (those in query Q that are not satisfied in Z), okr
and ckr are the open and closed knowledge-roles (those required by capabilities
bound to a task), tc is a set of task-capability bindings (T .= C), and ot is the
set of open tasks (those tasks in the configuration K that are not bound to any
capability).

A state Z is valid iff ∀(T .= C) ∈ Ztc ⇒ match(T,C) = true.

State
open-postconditions → set-of Formula
open-preconditions → set-of Formula
closed-postconditions → set-of Formula
closed-preconditions → set-of Formula
open-knowledge-roles → set-of Signature
closed-knowledge-roles → set-of Signature
open-tasks → set-of Task
tc-bindings → set-of Task-Capability-binding

Figure 4.24: Features characterizing a state

Figure 4.24 shows the features characterizing a state: open-postconditions
and open-preconditions are those postconditions and preconditions not yet sat-
isfied in the current state; closed-postconditions and closed-preconditions are the
preconditions and postconditions satisfied by the partial configuration; open-
tasks attribute holds the tasks that have no capability bound to them; open-
and closed-knowledge-roles refer to the knowledge-roles to be filled or already
filled respectively, by a domain-model (from those established by the query);
and tc-bindings is a collection of task-capability bindings (i.e. pairs composed
of a task bound to a capability (T .= C)).

106 Chapter 4. The Knowledge Modelling Framework

Next we are going to explain how the search proceeds for the Knowledge
Configuration process. For this purpose we are going to answer with the following
questions:

1. how initial states are generated from the library of components (§ 4.4.5);

2. how succesor states are generated (§ 4.4.5);

3. how the state search is guided by case-based retrieval (only for the Con-
structive Adaptation strategy, described in § 4.5);

4. and how final states (solutions) are detected (§ 4.4.5).

Initializing the search process

The initialization process takes the specification of problem requirements or
query Q and a library of components L as inputs and produces the initial state
as output (initial-states: Q× L→ Z).

The first state is generate according to the application task T0 specified in
the query Q:

Z0 = 〈∅, ∅, Qpre, Qpost, T0, ∅〉

The application task T0 is a starting point for the search process, thus
this task becomes an open task, since there is no capability bound to it yet.
The pre-conditions and post-conditions of the query Q become open pre- and
post-conditions, and there are neither closed pre- and post-conditions, nor task-
capability bindings.

If there is no application task selected, then all tasks satisfying the query
TQ = {Ti ∈ T |match(Q, Ti) are established instead as legitimate starting points
for the search process. Consequently, for each task T i

Q ⊆ TQ an initial state is
generated as follows:

Zi = 〈∅, ∅, Qpre, Qpost, T
i
Q, ∅〉

Successor states

The process of generating successor states from a given state (the successors
function) is basically the addition of a new task-capability binding to those
present in the tc-bindings of the given state (Ztc). We are interested in retrieving
from the library a capability that matches one of the open tasks (Zot).

We take, for a state Z, a task from open tasks T ∈ Zot and retrieve2 a
collection CT of capabilities such that they match with T . In addition, only
capabilities which knowledge-roles can be filled in by domain-models included

2The particular retrieval method (based on subsumption) that we use has been described
in [Arcos and López de Mántaras, 1997].

4.4. Knowledge Configuration 107

in the query Qdm, and which assumptions are guaranteed for all its knowledge-
roles, are allowed. Therefore, we can now define the set of capabilities CT that
can be bound to a task, as follows:

CT = { C ∈ C | match(T,C) ∧match(C,Qdm)}

where match(T, C) is a task-capability match (definitions 4.1 and 4.4) and
match(C, Qdm)) is a capability-domain match (definitions 4.2 and 4.5), and Qdm

is the set of domain-models specified in the query Q.
A new successor state of Z is generated for each capability Ch ∈ CT . A

successor state Zh has no longer T as an open task and has a new binding
(T .= Ch) ∈ CT . In addition, incorporating a new capability Ch achieves some
new postconditions that were not yet achieved in Z; therefore the generation
of the successor state updates the pre- and post-conditions that are open and
closed.

When Ch is a task decomposer, it will introduce new subtasks that are to be
considered now as open tasks—and, since a new open task can introduce new
pre- and postconditions, the open and closed pre- and postconditions have to be
revised accordingly. Thus, the successor state is

succ(Z, Ch) = 〈cpreh, cposth, opreh, oposth, Zot ∪ Ch
st, Ztp ∪ (T .= Ch)〉

and cpreh, cposth, opreh, oposth are the task-decomposer open and closed pre-
and postconditions.

Another source of variability depends on the domain-models that can be
sensibly used by the capability Ch. Let us consider the set of domain-models in
the query Mh ⊆ Qdm that satisfy the signature specification of the capability
knowledge-roles Ch

kr. If there is a one to one mapping from the domain-models
in Mh to the signatures in Ch

kr then the pair (Ch,Mh) is unique. However,
if there is a many to one (non-injective) mapping from the domain-models in
Mh to the signatures in Ch

kr then there may be several pairs (Ch,Mh
i) where

Mh
i ⊂Mh has a one to one mapping to the signatures in Ch. In this situation

one successor state is generated for each pair.

Final states

The verification of whether a state ZG is a solution to the configuration problem
(the goal-test function) has to test whether a (task) configuration is complete
and valid :

1. A configuration is complete if all tasks are bound to some capability, thus
all we need to check is whether there are no open tasks, i.e. whether
ZG

ot = ∅.
2. A configuration is valid if all the problem-requirements are satisfied, that

is verified when there are no open-postconditions in the state, i.e. whether
Zopost = ∅

108 Chapter 4. The Knowledge Modelling Framework

A more formal definition of a valid configuration is based on the verification
of a satisfiability relation between the configuration obtained in state ZG and
the problem requirements imposed by the query Q (sat(Q,ZG)) as follows:

sat(Q, ZG) ⇐⇒ (Qpre ⇒ ZG
pre) ∧ (ZG

post ⇒ Qpost)

The same definition specialized with the subsumption relation over Feature
Terms is the following:

sat(Q,ZG) ⇐⇒ (Qpost v ZG
post) ∧ (ZG

pre v Qpre)

That is to say, the state ZG satisfies the initial query Q when all postcon-
ditions imposed by the query are satisfied (subsumed) by the postconditions of
state ZG and when all preconditions required by the capabilities included in
the configuration of the state ZG are satisfied (subsumed) by the preconditions
established by the query.

We know, by construction, that the completeness condition is assured by
ZG

ot = ∅ and the validness condition is assured by Zopost = ∅.

4.5 Case-based Knowledge Configuration

The Constructive Adaptation strategy views the Knowledge Configuration pro-
cess as a search process guided by case-base information.

In addition to develop a Knowledge Configuration algorithm as a search over
the space of possible configurations, we are going to use a case-based retrieval
approach to rank the successor states according to the similarity of the current
problem to past configuration problems. This is the reason to introduce the
notion of a configuration case as a pair composed by a query and a past solution;
specifically a configuration case is a pair (Q,K) where Q is the query, that
contains some problem requirements and K is a configuration of components
that satisfies Q.

Definition 4.13 (Configuration Case) A case is a pair (Q,K) where Q ∈ Q
and configuration K ∈ K is a complete configuration. A configuration case is
valid if K satisfies Q.

A case is thus a pair composed by a specification of problem requirements
(the query to the system) and the task-configuration that is a solution (that
satisfies) for the input query. A case base B is a collection of configuration cases
B = {(Q,K)}1...N and B is a valid case base if all cases are valid.

Constructive Adaptation uses information of similar cases to guide the search
process. Since in the ORCAS Knowledge Configuration process the main step is
to choose a new capability hypothesis to include in a successor state, the retrieved
cases are used to decide the selection of capability hypothesis. Let us suppose
that we are trying to find the configuration for a query Q, that CB = {(Qi,Ki)}

4.5. Case-based Knowledge Configuration 109

is a case base (a collection of cases), and that Sim(Q,Qi) is a similarity measure
that assesses the relevance of cases in CB with respect the problem query Q.

Since a new successor state of Z is generated for each capability in CT let us
call ZT the set of those states. Moreover, at any point in the search process there
is a set of states that are “open”, i.e. states from which successor states have
yet to be generated; let us call Zopen the set of those states. We will use similar
cases to order the set of all open states ZT ∪ Zopen; the search process will use
this ordering to decide the next state from which successor states are spawned.
Therefore, the search process follows a first-search strategy where a similarity
assessment of states against past configuration cases is used as an heuristics to
decide the “best” successor state.

We use the similarity measure Sim(Q,Qi) to rank the cases in the case base
CB = {(Qi,Ki)} with respect to their similarity to our current problem Q.
Once they are ordered, we need to transfer this ordering to the the set of all
open states ZT ∪ Zopen. For this purpose, let us define two new elements:

• CKi is the set of capabilities used in some task on configuration Ki.

• CZj is the new capability that has been introduced as hypothesis when
state Zj was generated.

Now, the new ordering over states is computed by transferring similarity S
over cases to a similarity SZ over states. Specifically, we define state similarity
SZ(Q, Zj) as follows:

SZ(Q,Zj) = max
Qi∈CB

{Sim(Q,Qi)|CZj ∈ CKi}

That is to say, for each open state Zj ∈ ZT ∪ Zopen we consider the newly
added hypothesis (CZj), then we check in which cases the capability CZj appears
as part of the configuration (CKi), and we take the most similar (to Q) as the
degree of similarity for state Zj .

Thus, Constructive Adaptation proceeds by constructing the solution guided
by the information of cases embodied by the similarity measure SZ . At every
decision step, Constructive Adaptation selects the state Zmax w.r.t SZ as the
best node to expand the search tree. Or, in other words, the best-first process
uses SZ in the cost function that decides whether a state Z is better than another
state Z ′, as follows

Similarity-fn(Z, Z ′) = SZ(Q,Z) > SZ(Q, Z ′)

.
Figure 4.25 shows the relation between the problem space and the solution

space according to a similarity (distance) assessment. In ORCAS the problem
space is defined by the set of possible problem requirements, while the solution
space is the set of possible configurations. Given a problem that is similar to
the current problem (R distance), then the solution of the previous case will be
near to the solution for the current problem (A distance).

110 Chapter 4. The Knowledge Modelling Framework

Problem space
(requirements)

Solution space
(configurations)

A

R

Figure 4.25: Relation between similarities in the problem space and the solution
space

4.6 Configuration as reuse

One of the motivations of this work can be summed up in the idea of reuse, which
is closely related to the notion of domain independence. We aim at providing a
framework that maximizes the reuse of agent capabilities over new application
domains. But what we mean by “reuse”?

Looking at the literature we have realized that there are two main approaches
to the reuse issue, though they can adopt different nomenclatures and may be
representative of different research lines, yet we can classify them in two general
categories, that we call engineering-oriented reuse and execution-oriented reuse.

• Engineering-oriented reuse: this category includes those efforts devoted to
the design of new applications by retrieving and adapting existing compo-
nents. In general, we consider this class of reuse when components cannot
be automatically composed and connected, but they rather require some
adaptation in order to be executed. Most of the work carried over in the
field of Knowledge Engineering and CBSD fall within this category. In
general, there are very general components (like the so called “Off-the-
Shelf” components) that can be parameterized to fit the requirements of
a new problem, or it is necessary to modify the code of some components
and then recompile. Usually there is a single application that is configured
of tailored for a specific application by a software or knowledge engineer.
This approach allows to develop very specific applications with reduced
development costs, and enables the interoperation of fairly heterogeneous
components, but requires the participation of an expert (the knowledge or
software engineer).

• Execution-oriented reuse: this category includes those systems where com-
ponents can be connected and executed in a very dynamic way, with min-
imal human guidance. The point is that the final user should be able

4.6. Configuration as reuse 111

to drive the reuse of existing components without a deep knowledge of
the components. The notions of “on-the-fly or ”plug-and-play” applica-
tions fall within this category. The idea is that there exist a library of
components that can be straightforward connected to interact, without
adaptation or modification of the code. Therefore, there are many pos-
sible configurations that can be configured on-demand to better fit the
problem at hand, rather than configuring a single application for a very
specific problem.

The ORCAS framework maximizes the reuse of existing components in both
the above approaches to reuse. The key to maximize reuse is the decoupling
of the different types of components in the Abstract Architecture, even at the
semantic level, by allowing them to be specified using independent ontologies
providing the semantics of the components.

However, the Knowledge Configuration process as discussed here falls within
the second approach to reuse (Execution-oriented reuse), since it is an auto-
mated process that allows a non expert user to specify the requirements of the
problem at hand, and is able to obtain a configuration of components that can
be then operationalized on runtime by forming a team of agents customized for
that configuration. We assume that all the components share the same ontolo-
gies and use the same infrastructure to communicate; otherwise, it cannot be
guaranteed that a configuration is found, or that two agents selected for a team
can interact. Further work can be started here to work upon the consideration of
different ontologies and the application of ontology-mappings to avoid ontology
mismatches.

The engineering aspects about the use of the ORCAS KMF (e.g. the use
of ontology mappings) are out of the scope of this work, that is focused on
the automatic configuration of MAS based applications, though they are briefly
addressed in the chapter about methodological guidelines (Chapter ??).

Concerning the issues of reuse and configurable applications, we give now
some definitions to better characterize the idea of reuse as used in the Knowledge
Configuration process. First of all we will introduce the notion of a library and
an on-the-fly application, and then we will introduce the notion of a configurable
application.

An On-the-fly Application is a particular configuration of problem-solving
components (tasks and capabilities) that are able to solve a task T0 in some
application domain, according to some problem requirements. An on-the-fly
application is the result of connecting the tasks and capabilities of a particular
task-configuration to the domain-models characterizing an specific application
domain.

Definition 4.14 (On-the-fly Application) An on-the-fly application A is a
tuple A(Q,L) = 〈T,C,M, K,O〉

where L is a library of domain-independent problem-solving components (tasks
and capabilities, represented as T and C) Q is a query containing problem

112 Chapter 4. The Knowledge Modelling Framework

requirements, including an application task T0 ∈ T , and a collection of domain-
model characterizing the application domain Qdm; K is a task-configuration
for the application task T0; T ⊆ T is the set of tasks used in K, C ⊆ C is a set
of capabilities included in K; M is a set of domain-models to be used by the
capabilities in C; and O is the Object Language.

A Configurable application is the result of linking a library of components
(tasks and capabilities) to a collection of domain-models characterizing some
application domain. In a configurable application there are multiple possible
configurations over the components of the library. While an on-the-fly applica-
tion is a particular configuration of components to solve a specific task, a con-
figurable application is potentially able to solve many types of problems (each
task defines a problem type), and the same type of problems can be solved in
different ways, using different task-configurations. A configurable application
have multiple, alternative capabilities to solve the same class of problems, or
there are multiple domain-models available to choose from.

Definition 4.15 (Configurable Application) A configurable application is a
tuple A(L,M) = 〈T , C,M,K,O〉

where L is a library of problem-solving components (tasks and capabilities), M
is a collection of domain-models characterizing the application domain, T is the
set of tasks in L, C is the set of capabilities in L, M is a set of domain-models
to be used by C (all the components share a common ontology or there exist a
collection of mappings between ontologies such that they be treated as sharing
a single ontology), and there exist a collection of task-configurations over the
components K (K ∈ K). A configurable application is not an application in the
classical sense, it is rather a collection of components that can be connected and
configured “on-the-fly”, by finding one of the possible configurations in K that
satisfies the requirements of a specific problem, as far as the problem can be
characterized by one the tasks in T . In other words, a configurable application
can be seen as a collection of potential on-the-fly applications sharing the same
application domain.

An example of a configurable application is shown in Chapter ??, WIM.

4.6. Configuration as reuse 113

Library

Configurable Application
many possible configurations

Application
one configuration

Task
TD
PSC
DM

Figure 4.26: Library, application and configurable application

