
UNIVERSITAT AUTÒNOMA DE BARCELONA, UAB
ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA

DEPARTAMENT D’INFORMÀTICA
PROGRAMA DE DOCTORAT EN INTEL.LIGÈNCIA ARTIFICIAL

TESI DOCTORAL

Trust and reputation
for agent societies

Jordi Sabater i Mir

Supervisor i Tutor:
Dr. Carles Sierra i Garcia (IIIA-CSIC)

Institut
d’Investigació

en Intel·ligència
Artificial

Consell
Superior
d’Investigacions
Cientı́fiques

Als meus pares.

Nothing in life is to be feared,
it is only to be understood.

(Marie Curie)

Contents

Agraı̈ments ix

Abstract xi

Resum xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and main contributions . 2
1.3 Publications . 4
1.4 Structure of the thesis . 5

2 Related work on computational trust and reputation models 7
2.1 Introduction . 7
2.2 Classification dimensions . 8

2.2.1 Paradigm type . 8
2.2.2 Information sources . 8
2.2.3 Visibility types . 10
2.2.4 Model’s granularity . 11
2.2.5 Agent behaviour assumptions 11
2.2.6 Type of exchanged information 12

2.3 Computational trust and reputation models 12
2.3.1 S. Marsh . 12
2.3.2 Online reputation models . 13
2.3.3 Sporas and Histos . 13
2.3.4 Schillo et al. 14
2.3.5 Abdul-Rahman and Hailes . 15
2.3.6 Esfandiary and Chandrasekharan 16
2.3.7 Yu and Singh . 17
2.3.8 Sen and Sajja . 18
2.3.9 AFRAS . 18
2.3.10 Carter et al. 19
2.3.11 Castelfranchi and Falcone . 20
2.3.12 Summary . 21

i

ii Contents

2.4 Trust and reputation test-beds . 22
2.4.1 Test-beds based on the Prisoner’s Dilemma 22
2.4.2 Castelfranchi et al. 25
2.4.3 SPORAS, ReGreT and AFRAS 26

2.5 Conclusions . 26

3 The SuppWorld framework 29
3.1 Introduction . 29
3.2 The SuppWorld framework, an overview 29
3.3 Markets . 30
3.4 Conventions . 32
3.5 Entrance of rough material . 33
3.6 Production process . 33
3.7 Entrance of money . 35
3.8 Negotiation process . 35
3.9 The agents behaviour . 36
3.10 Implementation . 37

4 The ReGreT system 39
4.1 Introduction . 39
4.2 Social Network Analysis and agent societies 40
4.3 The ReGreT system, a general view 42
4.4 Direct trust . 44
4.5 The reputation model . 47

4.5.1 Witness reputation . 48
4.5.2 Neighbourhood reputation . 57
4.5.3 System reputation . 58
4.5.4 Combining reputation types 59

4.6 Putting all together: the trust model 60
4.7 Ontological dimension . 61

5 Infrastructure: the agent model 63
5.1 Introduction . 63
5.2 Multi-context agents . 65

5.2.1 The basic model . 65
5.2.2 The extended model . 66

5.3 Modular agents . 68
5.3.1 Introducing modules . 68
5.3.2 Messages between modules 70

5.4 Specifying a simple agent . 72
5.4.1 A high-level description . 72
5.4.2 Specifications of the modules 73
5.4.3 Specifications of the units . 77
5.4.4 The agent in action . 78

5.5 Specifying more complex agents . 79
5.5.1 A high-level description . 79

Contents iii

5.5.2 Specifications of the modules 80
5.5.3 Specifications of the units . 85
5.5.4 The agents in action . 87

5.6 Related Work . 88

6 Engineering ReGreT using multi-context systems 91
6.1 Introduction . 91
6.2 A high level description . 91
6.3 Communication . 94
6.4 Impressions generator . 94
6.5 Direct trust calculation . 95
6.6 Social relations knowledge . 96
6.7 Credibility model . 96
6.8 Witness reputation . 98
6.9 Neighbourhood reputation . 99
6.10 System reputation . 99
6.11 Reputation and Trust . 100
6.12 Operational Semantic . 100
6.13 Bridge rules . 102

7 Experiments 105
7.1 Introduction . 105
7.2 The common framework . 105
7.3 Scenario I: Direct trust and witness reputation 108
7.4 Scenario II: Social credibility . 112
7.5 Conclusions . 114

8 Conclusions and Future Work 117
8.1 Conclusions . 117

8.1.1 Trust and reputation . 117
8.1.2 Multi-context systems . 118

8.2 Future work . 118
8.2.1 Trust and reputation . 119
8.2.2 Multi-context systems . 121

A Unit theories of the ReGreT module 123
A.1 ODB - Unit . 123
A.2 DT - Unit . 123
A.3 ICR - Unit . 124
A.4 SCR - Unit . 124
A.5 CR - Unit . 125
A.6 Witnesses - Unit . 126
A.7 WRep - Unit . 126
A.8 NiRep - Unit . 126
A.9 NRep - Unit . 129
A.10 SRep - Unit . 129

iv Contents

A.11 Rep - Unit . 129
A.12 Trust - Unit . 130

B Experiments’ specification 131
B.1 Configuration file description . 131
B.2 Configuration files of the experiments 135

B.2.1 Scenario I . 135
B.2.2 Scenario II . 140

Bibliography 142

List of Figures

3.1 SuppWorld example scenario. 30
3.2 Fixing the initial position of the buyers in the market. 31
3.3 Cell structure. 32
3.4 Activity flow in a generic cell. 33
3.5 SuppWorld agent’s storage facilities. 34
3.6 Production process example. 35
3.7 The SuppWorld graphical mode. 38

4.1 The ReGreT system. 42
4.2 g(x) = sin(π2x) . 46
4.3 No(ODB

a,b
gr(ϕ)), itm = 10 . 47

4.4 Witness selection within ReGreT. 51
4.5 Relevant social structures in a SuppWorld scenario to evaluate credibility. 52
4.6 Intensity of a social relation. 52
4.7 Fuzzy sets for the variable socialCr (a, wi, b). 53
4.8 Ap0 function. 55
4.9 Fuzzy sets for variables DT a→ni

and Rep
a

ni→b
. 57

4.10 Fuzzy sets for variable RL
a

ni→b
. 58

4.11 Ontological structure for a buyer in the SuppWorld scenario. 61

5.1 Module inter-connection (from a’s perspective only) 68
5.2 A pictorial explanation of the bus metaphor 69
5.3 The modules in the agent . 72
5.4 The plan library module (PL) . 73
5.5 The resource manager module . 74
5.6 The goal manager module (GM) . 76
5.7 An execution trace for the agent . 79
5.8 The modules in the agent . 80
5.9 The plan library module (PL) . 81
5.10 The goal manager module (GM) . 82
5.11 The resource manager module (RM) 83
5.12 The social manager module (SM) . 85
5.13 An execution trace for the agents . 88

6.1 Multi-context specification of the ReGreT system 92

v

vi List of Figures

7.1 SuppWorld base scenario. 106
7.2 Ontological structure for a buyer. 107
7.3 DT and WR experiments (I). 110
7.4 DT and WR experiments (II). 111
7.5 Large scenario. 112
7.6 Social credibility and competitive relations. 113
7.7 Social credibility and cooperative relations. 114

List of Tables

2.1 Comparison table. 23
2.2 Payoff matrix for the Prisoner’s Dilemma 24

4.1 Social credibility fuzzy rules. 53
4.2 Function T used in reliability rules. 58
4.3 Example of system reputations. 59

5.1 The inter module messages . 78
5.2 The inter module messages . 87

7.1 Relation between the alignment and the fulfillment of a contract. 108

vii

Agraı̈ments

Una tesi doctoral és un camı́ llarg i difı́cil, ple d’alegries però també de dificultats i
frustracions. Per sort aquest camı́ no es fa mai sol.

Vull començar aquests agraı̈ments per la persona que sens dubte a contribuit de
manera més directa a què aquesta història tingués un final feliç. Aquesta persona no
és altre que en Carles Sierra. A més de ser el millor director de tesi que hom podria
desitjar és un bon amic amb qui he compartit més d’una cervesa.

També vull donar molt especialment les gràcies:

• a en Jaume Agustı́ (projecte SLIE) i a en Lluı́s Godo (projecte SMASH) per haver
confiat en mi. Sense aquesta confiança hauria estat impossible portar a bon terme
aquesta tesi.

• to Professor Nick Jennings and Dr. Simon Parsons for their invaluable contribu-
tions to chapter 5. It has been a privilege to work with you.

• als meus col.legues de l’IIIA pels seus consells, les xerrades i els bons moments
que m’han fet passar.

• to my collegues in the university of Edinburgh, Dave Robertson and Chris Walton
and to my friend Wamberto Vasconcelos (now in the university of Aberdeen). The
SLIE project has been the best school to learn how to become a real scientist.

• a tots els meus amics. Per les bones estones que m’heu fet passar.

Finalment vull donar les gràcies als meus pares. Si a algú he d’agrair l’haver arribat
fins aquı́ és a vosaltres que, en els moments més difı́cils, sempre heu estat al meu costat
donant-me suport.

Aquest treball ha estat finançat pel CSIC i l’Hospital de Mataró a través del projecte
SMASH (TIC96-1038-C04001), i per la Comunitat Europea a través del projecte SLIE
(IST-1999-10948). El meu sincer agraı̈ment a aquestes institucions.

ix

x Agraı̈ments

Abstract

The area of trust and reputation mechanisms for virtual societies is a recent discipline
oriented to increase the reliability and performance of electronic communities by intro-
ducing in such communities these well known human social control mechanisms.

This thesis has two different parts. In the first part we present ReGreT, a sophisti-
cated trust and reputation system oriented to complex societies where the social com-
ponent of the agents behaviour has a special relevance. The system uses the knowledge
about the social structure of the society as a method to overcome the lack of direct ex-
periences and to evaluate the credibility of witnesses. By combining direct experiences,
third party information and social knowledge, the system can improve the computation
of trust and reputation values. It also provides a degree of reliability for these values
and can adapt to situations of partial information improving gradually its accuracy when
new information becomes available.

A trust and reputation system like ReGreT only has sense if it is used by a delibera-
tive agent. The second part of the thesis is devoted to the use of multi-context systems as
a means of specifying and implementing this kind of agents. We propose several exten-
sions to the multi-context approach that facilitate the specification and implementation
of complex deliberative agents. As the main example of using multi-context systems to
specify deliberative agents we present the specification of an agent’s component imple-
menting the ReGreT system.

xi

xii Abstract

Resum

L’ús de mecanismes de credibilitat i reputació en societats virtuals és una nova dis-
ciplina que persegueix la millora de la fiabilitat i el comportament de les comunitats
electròniques tot introduint en aquestes comunitats aquests dos mecanismes de control
propis de les societats humanes.

Aquesta tesi té dues parts ben diferenciades. En la primera part presentem ReGreT,
un sofisticat sistema de credibilitat i reputació pensat per ser utilitzat en societats com-
plexes on el component social del comportament dels agents té una gran rellevància.
El sistema utilitza el coneixement sobre estructures socials per tal de superar la manca
d’experiències directes i per evaluar la fiabilitat dels informadors. Gràcies a la combi-
nació d’experiències directes, informació provinent d’altres agents i coneixement so-
cial, el sistema es capaç de millorar el càlcul dels valors de credibilitat i reputació.
També proporciona una mesura de la fiabilitat dels valors calculats i es pot adaptar a
situacions d’informació limitada millorant gradualment l’exactitud dels valors a mesura
que arriba nova informació.

Un sistema de credibilitat i reputació com ReGreT només té sentit si és utilitzat per
un agent deliberatiu. La segona part de la tesi està dedicada a la utilització dels sis-
temes multi-contexte com un mitjà per especificar i implementar aquest tipus d’agents.
Proposem diverses extensions a l’aproximació bàsica dels multi-contexte que faciliten
l’especificació i implementació d’agents deliberatius complexes. Com a principal ex-
emple en l’ús dels sistemes multi-contexte presentem l’especificació del component
d’un agent que implementa el sistema ReGreT.

xiii

xiv Resum

Chapter 1

Introduction

1.1 Motivation

The sociologist Niklas Luhmann said “A complete absence of trust would prevent [one]
even getting up in the morning” [Luhmann, 1979]. Trust is necessary in our everyday
life. It is part of the “glue” that holds our society together. Without trust, governments
could not rule and people cannot work cooperatively together. Trust helps to reduce the
complexity of decisions that have to be taken in the presence of many risks.

Similarly, reputation is a universal concept that has been present in human societies
for a long time. From ancient Greeks to modern days, from Vietnamese to Bedouins,
the concept of reputation plays a very important role in human social organization.
Reputation is one of the most relevant elements that we use to build trust in others.

Until recently, both concepts were applicable only to human societies and therefore
they were a study field for sociologists, philosophers and psychologists. The irruption
of Internet and the emergence of virtual (not necessarily human) societies add a new
dimension to these old but very important concepts.

The scientific research in the area of trust and reputation mechanisms for virtual
societies is a recent discipline oriented to increase the reliability and performance of
electronic communities by introducing in such communities these well known human
social control mechanisms. Computer science has moved from the paradigm of an iso-
lated machine to the paradigm of a network of systems and of distributed computing.
Likewise, artificial intelligence is quickly moving from the paradigm of an isolated and
non-situated intelligence to the paradigm of situated, social and collective intelligence.
The new paradigm of the so called intelligent or adaptive agents and Multi-Agent Sys-
tems (MAS) together with the spectacular emergence of the information society tech-
nologies (specially reflected by the popularization of electronic commerce) are respon-
sible of the increasing interest on trust and reputation mechanisms applied to electronic
societies.

An agent is a computer system capable of flexible autonomous action in a dynamic,
unpredictable and open environment endowed with the capacity to interact with other
systems (artificial or natural). Agents are often deployed in environments in which they

1

2 Introduction

interact, and maybe cooperate, with other agents that have possibly conflicting aims.
Such environments are known as multi-agent systems and are called to become a key
element of the information society. In this context, trust and reputation play a similar
role that in human societies.

Up to now, the design of such systems has been approached using traditional soft-
ware development methods. However, the special characteristics of these systems sug-
gest the necessity of more specific techniques adapted to its peculiarities.

1.2 Overview and main contributions
The work of this thesis contributes to the state of the art in two areas.

First, in the area of computational trust and reputation models, we present ReGreT.
ReGreT is a modular trust and reputation system oriented to complex e-commerce envi-
ronments where social relations play an important role. ReGreT follows a mathematical
approach to the problem, with social ingredients that improve the calculation of trust
and reputation values. There is a lot of work done in computational trust and reputation
models, however little attention has been given to the social aspect of both concepts.
With our model we want to strength a line of research that we think is under-explored
and very promising.

The main characteristics of the ReGreT system can be summarized as follows:

• It takes into account direct experiences, information from third party agents and
social structures to calculate trust, reputation and credibility values.

• It has a trust model based on direct experiences and reputation.

• It incorporates an advanced reputation model that works with transmitted and
social knowledge.

• It has a credibility module to evaluate the truthfulness of information received
from third party agents.

• It uses social network analysis to improve the knowledge about the surrounding
society (specially when no direct experiences are available).

• It provides a degree of reliability for the trust, reputation and credibility values
that helps the agent to decide if it is sensible or not to use them in the agent’s
decision making process.

• It can adapt to situations of partial information and improve gradually its accuracy
when new information becomes available.

• It can manage at the same time different trust and reputation values associated
to different behavioural aspects. Also it can combine reputation and trust values
linked to simple aspects in order to calculate values associated to more complex
attributes.

1.2. Overview and main contributions 3

The study of trust and reputation has many applications in Information and Commu-
nication technology. Trust and reputation systems have been recognized as key factors
for successful electronic commerce adoption. These systems are used by intelligent
software agents both as a mechanism of search for trustworthy exchange partners and
as an incentive in decision-making about whether or not to honour contracts. Reputation
is used in electronic markets as a trust-enforcing, deterrent, and incentive mechanism to
avoid cheaters and frauds. Another area of application in agent technology is teamwork
and cooperation.

Besides technological issues, if we want that people enters massively to the informa-
tion society era, we have to make an effort to improve the real and perceived security of
electronic interaction. For instance, it is well known that lack of trust is one of the main
reasons for consumers, as well as companies, not engaging in electronic commerce.
This lack of confidence is even worse when users have to rely on autonomous agents
that act on their behalf. With no doubt, low level security measures are important and
necessary. However, building user confidence in e-Commerce (and electronic interac-
tions in general) is more than secure communication via electronic networks as can be
obtained with, for example public key cryptography techniques. Here is where trust and
reputation mechanisms come to scene. As in human societies, electronic communities
have started to use trust and reputation as a social control mechanism that complements
more expeditious approaches (based on social constructs and their corresponding dis-
ciplinary actions to punish deception and fraud). Further study on trust and reputation
mechanisms will directly contribute to increase both the reliability and performance of
electronic communities and the confidence that humans deserve on information society
technologies.

The second contribution is in the area of agent design. As we have pointed out in the
motivations’ section, traditional software development methods do not fully cover the
requirements needed for the design and implementation of autonomous agents. Several
approaches have been proposed to overcome this problem. However these proposals
usually leave a gap between specification and implementation, enforce a particular view
of architecture upon the specification or do not explicit structures for modelling the
components of an architecture or the relationships between them.

Following the steps of Parsons, Sierra and Jennings [Parsons et al., 1998] we pro-
pose the use of multi-context systems for the design and implementation of autonomous
agents.

Multi-context systems provide an overarching framework that allows distinct the-
oretical components to be defined and interrelated. Such systems consists of a set of
contexts, each of which can informally be considered a set of formulae written in a (pos-
sibly) different logic, and a set of bridge rules for transferring information between con-
texts. From a software engineering perspective, multi-context systems support modular
decomposition and encapsulation but what is more important for our purposes, from
a logical modelling perspective they provide an efficient means of specifying and exe-
cuting complex logics. We extend the multi-context theory with several elements that
makes the specification of dynamic components, as those needed to build autonomous
agents, easier.

As a nexus between both contributions, we show how it is possible to specify the

4 Introduction

ReGreT system using the multi-context approach.

1.3 Publications

The work presented in this thesis has generated the following set of publications:

• J. Sabater, C. Sierra, S. Parsons, N. Jennings (2002) Engineering executable
agents using multi-context systems, Journal of Logic and Computation. Vol 12,
n 3, pp. 413-442.

• J. Sabater, C. Sierra (2002) Reputation and social network analysis in multi-agent
systems, Proc. “First International Conference on Autonomous Agents and Mul-
tiagent systems (AAMAS-02)”, Bologna, Italy, (July 15-19), pp. 475-482.

• J.Sabater, C. Sierra (2002) Social aspects or ReGreT, a reputation model based on
social relations, Proc. “5è Congrés Català d’Intel.ligència Artificial (CCIA-02)”,
Castelló de la Plana, Spain, (Octover 24-25), pp. 336-343

• J. Sabater, C. Sierra (2002) Social ReGreT, a reputation model based
on social relations, SIGecom Exchanges. ACM, Vol 3.1, pp 44-56.
(http://www.acm.org/sigecom/exchanges/volume 3 (02)/3.1-Sabater.pdf)

• J. Sabater, C. Sierra (2001) REGRET: A reputation model for gregarious societies
(v.1), Proc. “Fourth Workshop on Deception Fraud and Trust in Agent Societies”,
Montreal, Canada, (May 28, June 9), pp. 61-70.

(Also published at Proc. “4t Congrés Català d’Intel.ligència Artificial”,
Barcelona, Spain, (Octover 24-25), pp. 214-222)

• J. Sabater, C. Sierra (2001) REGRET: A reputation model for gregarious societies
(v.2), Proc. “Fifth International Conference on Autonomous Agents”, Montreal,
Canada, (May 28, June 9), pp. 194-195

• J. Sabater, C. Sierra, S. Parsons, N. R. Jennings (1999) Using multi-context sys-
tems to engineer executable agents Proc. “6th Int.Workshop on Agent Theories
Architectures and Languages (ATAL-99)”, Orlando, Florida, USA, (July 15-17),
pp. 131-148.

Revised version in: Intelligent Agents VI (eds N. R. Jennings and L. Lesperance)
LNAI 1757 pp. 277-294.

(Also published at UKMAS 99 (2nd workshop of the UK special interest group
on multi-agent systems, Bristol, UK, (December 6-7)))

(Reduced version published -in Catalan- at “2n Congrés Català d’Intel.ligència
Artificial”, Girona, Spain, (October 25-27), pp. 185-191.)

1.4. Structure of the thesis 5

1.4 Structure of the thesis
The thesis is organized in eight chapters and two annex that are distributed in three
blocks: related work (chapter 2), the ReGreT system (chapters 3, 4, 7 and appendix A)
and the use of multi-context systems to engineer autonomous agents (chapters 5, 6 and
appendix B).

Chapter 2: we analyse a representative set of computational trust and reputation mod-
els as well as some frameworks/test-beds currently used to evaluate these models.
We also propose a classification of the models according to a set of relevant as-
pects associated to trust and reputation.

Chapter 3: this chapter introduces the SuppWorld framework, a flexible framework
specially designed to test trust and reputation models in a complex environment
where social relations play an important role.

Chapter 4: in this chapter ReGreT is presented, a trust and reputation system that gives
special relevance to the social relationships among individuals in virtual societies.

Chapter 5: is devoted to the use of multi-context systems as a means of specifying and
implementing agent architectures. We propose some add ons to the multi-context
base theory and, by means of two didactic examples, we show how it works in
practice.

Chapter 6: this chapter puts together the two main threads of this thesis: the trust and
reputation models and the multi-context approach for the design of autonomous
agents. We take the ReGreT system described in chapter 4 and specify it by using
the multi-context approach presented in chapter 5.

Chapter 7: an initial set of experimental results for the ReGreT system are presented
in this chapter. Using the framework described in chapter 3 we deploy a set of
scenarios that are used to test the ReGreT system capabilities.

Chapter 8: summarizes the conclusions of this work and shows the future directions.

Appendix A: this appendix presents the unit theories of the ReGreT system specifica-
tion made in chapter 6.

Appendix B: this appendix details the SuppWorld framework configuration files used
in the experiments of chapter 7.

Chapter 2

Related work on computational
trust and reputation models

2.1 Introduction
It is out of discussion the importance of trust and reputation in human societies.
Therefore, it is not a surprise that several disciplines, each one from a differ-
ent perspective, have studied and used both concepts. Psychology [Bromley, 1993,
Karlins and I.Abelson, 1970], sociology [Buskens, 1998], philosophy [Plato, 1955,
Hume, 1975] and economy [Marimon et al., 2000, Celentani et al., 1966] are a good
representation of disciplines that have dedicated efforts to the study of trust and reputa-
tion. In this overview, however, we will focus our attention on another discipline where
the study of trust and reputation has acquired a great relevance in the last few years.
We are talking about computer science and specifically about the area of distributed AI.
Two elements have contributed to substantially increase the interest on trust and rep-
utation in this area: the multi-agent system paradigm and the spectacular evolution of
e-commerce.

This review tries to offer a panoramic view on current computational trust and rep-
utation models. We propose a set of relevant aspects associated to both concepts that
are then used to establish a classification of these models. We present a representative
selection of models that, although far from be exhaustive, gives a rather complete idea
of the current state of the art.

The second part of this review is devoted to present some of the test-beds used to
evaluate and compare trust and reputation models. Currently, there is no test-bed (or set
of them) accepted by all the members of the community. That would make the com-
parison between models easier and more neutral. Unfortunately, Virtually every author
is using a different test-bed to show the properties of his/her model and to establish
comparisons with others models. In section 2.4 we analyze a representative group of
these test-beds.

There are not many works that give a general view of trust and reputation
from the point of view of computer science. Dellarocas in his article “The digital-

7

8 Related Work

ization of Word-Of-Mouth: Promise and Challenges of Online Reputation Mecha-
nisms” [Dellarocas, 2002] presents an overview of online reputation mechanisms that
are currently used in commercial web sites. In the area of trust, Grandison et al. in their
work “A survey of trust in Internet application” [Grandison and Sloman, 2000] exam-
ine the various definitions of trust in the literature and provide a working definition of
trust for Internet applications. There are also some proposals to establish a typology for
reputation [Mui et al., 2002] and trust [McKnight and Chervany, 2002].

2.2 Classification dimensions

Trust and reputation can be analyzed from different perspectives and can be used in a
wide range of situations. This makes the classification of trust and reputation models
a difficult task. In this section we propose a set of aspects from which we believe it
is possible to classify the current computational trust and reputation models in a clear
landscape.

2.2.1 Paradigm type

Two different paradigms are currently used in computational trust and reputation
models: a cognitive approach and a mathematical approach. As pointed out
in [Esfandiari and Chandrasekharan, 2001], in models based on a cognitive view, trust
is made up of underlying beliefs, and trust is a function of the degree of these beliefs.
On the opposite side we have the mathematical based models. These models do not
rely on beliefs nor intentions to model trust and reputation. Trust and reputation are
not the result of a mental process of the agent in a cognitive sense but the result of
a more pragmatic game with utility functions, probabilities and the evaluation of past
interactions. The cognitive approach tries to reproduce the human reasoning mecha-
nisms behind trust and reputation. In these approaches, we believe that the process of
building trust and reputation on others is as important as its outcome. In mathematical
models, on the contrary, the method used to obtain trust and reputation values is not so
important.

2.2.2 Information sources

It is possible to classify trust and reputation models considering the information sources
that they take into account to calculate trust and reputation values. Direct experiences
and witness information are the “traditional” information sources used by computa-
tional trust and reputation models. In addition to that, recently a few models have
started to use information associated to sociological aspects of agent’s behaviour.

The kind of information available to an agent depends on its sensorial capabilities.
Of course, the scenario must be in tune with these capabilities. The use of several
information sources increases the reliability of the calculated trust and reputation values
but also increases the complexity of the model. Moreover, scenarios that allow agents
to obtain diverse information demand smarter (and, therefore, more complex) agents.

2.2. Classification dimensions 9

Direct experiences

This is, without doubt, the most relevant and reliable information source for a
trust/reputation model. There are two types of direct experiences that an agent can
include as part of its knowledge. The first, and used by all the trust and reputation mod-
els analyzed in this overview, is the experience based on the direct interaction with the
partner. The second is the experience based on the observed interaction of other mem-
bers of the community. This second type is not so common and restricted to scenarios
that are prepared to allow it. Usually, in those models that consider the observation of
other partners activity, a certain level of noise in the so obtained information is assumed.

Witness information

Witness information (also called word-of-mouth or indirect information) is the informa-
tion that comes from other members of the community. That information can be based
on their own direct experiences or it can be information that they gathered from oth-
ers. If direct experience is the most reliable source of information for a trust/reputation
model, witness information is usually the most abundant. However, it is far more com-
plex for trust and reputation models to use it. The reason is the uncertainty that sur-
rounds this kind of information. It is not strange that witnesses manipulate or hide
pieces of information to their own benefit.

Sociological information

This information is only available in scenarios where there is a rich interaction between
agents. The base for this knowledge are the social relations between agents and the role
that these agents are playing in the society. The social relations established between
agents in a multi-agent system are usually a simplified reflection of the more complex
relations established between their human counterparts. Currently, only a few trust and
reputation models use this knowledge applied to agent communities to calculate or im-
prove the calculation of trust and reputation values. These models use techniques like
social network analysis. Social network analysis is the study of social relationships be-
tween individuals in a society that emerged as a set of methods for the analysis of social
structures, methods that specifically allow an investigation of the relational aspects of
these structures. The use of these methods, therefore, depends on the availability of
relational data [Scott, 2000].

Although currently the number of models that take into account this kind of infor-
mation is reduced, we guess that the increase of complexity in multi-agent systems will
make it more and more important in the near future.

Prejudice

The use of prejudice to calculate trust and reputation values is another mechanism not
very common but present in current trust and reputation models. As most people today
use the word, “prejudice” refers to a negative or hostile attitude toward another social
group, usually racially defined. However, the negative connotations that has prejudice
in human societies has to be revised when applied to agent communities. Differently

10 Related Work

from the signifiers used in human societies that range from skin color to sex, the set of
signifiers used in computational trust and reputation models are usually out of ethical
discussion.

2.2.3 Visibility types

Trust and reputation of an individual can either be seen as a global property shared by
all the observers or as a subjective property assessed particularly by each individual.

In the first case, the trust/reputation value is calculated from the opinions of the
individuals that in the past interacted with the individual being evaluated. This value is
publicly available to all members of the community and updated each time a member
issues a new evaluation of an individual. In the second case, each individual assigns
a personalized trust/reputation value to each member of the community according to
more personal elements like direct experiences, information gathered from witnesses,
known relations between members of the community and so on. In the later case, we
cannot talk about the trust/reputation of an individual x, we have to talk about the
trust/reputation of an individual x from the point of view of an individual y.

The position of taking trust and reputation as a global property is common in
online reputation mechanisms (see section 2.3.2). These systems are intended for
scenarios with thousands or even millions of users. As pointed out by Dellaro-
cas [Dellarocas, 2002], the size of these scenarios makes repeated interaction between
the same set of players unlikely and, therefore, reduces the incentives for players to
cooperate on the basis of hoping to develop a profitable relationship.

Take the example of an electronic auction house like those accessible nowadays
through Internet. One day, the user wants to buy a book and the next day s/he wants to
buy a computer. The intersection between users selling books and users selling com-
puters is probably empty so the few personal experiences accumulated buying books is
not useful in the computers market. Computer sellers are unknown for the user so s/he
has to rely on the information that people who bought computers in the past has left in
the form of a reputation value. The robustness of these systems relies on the number of
opinions available for a given partner. A great number of opinions minimize the risk of
single individual biased perceptions.

In models that consider trust and reputation as a global property, the main prob-
lem is the lack of personalization of that value. Something that is bad for me could
be acceptable for others and the other way around. Although this approach can be ac-
ceptable in simple scenarios where it is possible to assign a common “way of thinking”
to all members of the community, it is not useful when agents have to deal with more
complex and subjective affairs.

The antithesis of these models are the models that consider trust and reputation
as a subjective property. Each agent uses its personal experiences and what the other
agents have said to it personally, among other things, to build the trust and reputation
of each member of the community. These models are indicated for medium and small
size environments where agents meet frequently and therefore it is possible to establish
strong links among them.

2.2. Classification dimensions 11

2.2.4 Model’s granularity

Is trust/reputation context dependent? If we trust a doctor when she is recommending a
medicine it doesn’t mean we have to trust her when she is suggesting a bottle of wine.
The reputation as a good sportsman does not help if we are looking for a competent sci-
entist. It seems clear that the answer is yes: trust and reputation are context dependent
properties. However, adding to computational trust and reputation models the capabil-
ity to deal with several contexts has a cost in terms of complexity and adds some side
effects that are not always necessary or desirable.

A single-context trust/reputation model is designed to associate a single
trust/reputation value per partner without taking into account the context. On the con-
trary, a multi-context model has the mechanisms to deal with several contexts at a time
maintaining different trust/reputation values associated to these contexts for a single
partner.

One could argue that it is always possible to transform a single-context model into
a multi-context one just having different instances of the single-context model, one
for each considered context. However, if there is something in trust and reputation
environments that is usually scarce, that is the information used to calculate trust and
reputation values. So what really gives to a model the category of being a multi-context
model is the capability of making a smart use of each piece of information to calculate
different trust or reputation values associated to different activities. Identifying the right
context for a piece of information or using the same information in several context when
it is possible are two examples of the capabilities that define a real multi-context model.

Is this always necessary? Certainly not. Nowadays, there are very few computa-
tional trust and reputation models that care about the multi-context nature of trust and
reputation and even less that propose some kind of solution. This is because current
models are focused to specific scenarios with very delimited tasks to be performed by
the agents. In other words, it is possible to summarize all the agent activities in a single
context without losing too much versatility. However, and similarly to what we have
mentioned before about the use of sociological information, as the complexity of tasks
to be performed by agents will increase in the near future, we may also expect also an
increase of the importance devoted to this aspect in trust modelling.

2.2.5 Agent behaviour assumptions

The capacity to deal with agents showing different degrees of cheating behaviour is
the aspect considered here to establish a classification. We use three levels to categorize
trust and reputation models from this point of view according to what we have observed
in the analyzed trust and reputation models:

• Level 0. Cheating behaviour is not considered. They rely on a large number of
agents who offer honest ratings to counteract the potential effect of the ratings
provided by malicious agents.

• Level 1. The model assumes that agents can hide or bias the information but they
never lie.

12 Related Work

• Level 2. The model has specific mechanisms to deal with liars.

2.2.6 Type of exchanged information
The classification dimension here is the type of information expected from witnesses.
We can establish two big groups. Those models that assume boolean information and
those models that deal with continuous measures. Although it seems a trivial assump-
tion, as we will see, choosing one approach or the other has a great influence in the
design of the model. Usually, models that rely on probabilistic methods work with
boolean information while those models based on aggregation mechanisms use contin-
uous measures.

2.3 Computational trust and reputation models
A plethora of computational trust and reputation models have appeared last few years,
each one with its own characteristics and using different technical solutions. In this
section we go through a selection of these models, wide enough to provide a panoramic
view of the area.

2.3.1 S. Marsh
The trust model proposed by Marsh [Marsh, 1994] is one of the earliest. The model
only takes into account direct interaction. It differentiates three types of trust:

• Basic trust. Models the general trusting disposition independently of who is the
agent that is in front. It is calculated from all the experiences accumulated by the
agent. Good experiences lead to a greater disposition to trust, and vice versa. The
author uses the notation T tx to represent the trust disposition of agent x at time t.

• General trust. This is the trust that one agent has on another without taking into
account any specific situation. It simply represents general trust in the other
agent. It is noted as Tx(y)t representing the general trust that agent x has on
agent y at time t.

• Situational trust. This is the amount of trust that one agent has in another taking
into account a specific situation. The basic formula used to calculate this type of
trust is:

Tx(y, α)t = Ux(α)t × Ix(α)t ×
�
Tx(y)t

where x is the evaluator, y the target agent and α the situation. Ux(α)t represents
the utility x gains from situation α, Ix(α)t is the importance of the situation α
for agent x and

�
Tx(y)t is the estimate of general trust after taking into account all

possible relevant data with respect to Tx(y, α) in the past; i.e., if t is the current
time, x will aggregate all situations Tx(y, σ)T , with θ < T < t and σ similar or
identical to the present situation α. θ and t define the temporal window that the
agent is considering. Only the experiences within that window will be taken into
account for the aggregation.

2.3. Computational trust and reputation models 13

In order to define
�
Tx(y) the author proposes three statistical methods: the mean,

the maximum and the minimum. Each method is identified with a different
type of agent: the optimistic (that takes the maximum trust value from the
range of experiences it has had), the pessimistic (that uses the minimum trust
value) and the realistic (that calculates the value as a mean using the formula�
Tx(y) = 1

|A|

∑

α∈A Tx(y, α), where A is the set of situations similar to the
present situation α available in the temporal window).

These trust values are used to help an agent decide if it is worth it or not to cooperate
with another agent. Besides the situational trust, the decision mechanism takes into
account the importance of the action to be performed, the risk associated to the situation
and the perceived competence of the target agent. To calculate the risk and the perceived
competence, different types of trust (basic, general and situational) are used.

Finally, the model also introduces the notion of “reciprocation” as a modifier of the
trust values. The idea behind reciprocation is that if an agent x had helped an agent y
in the past and y responded that time by defecting, the trust x has on y will be reduced
(and the other way around).

2.3.2 Online reputation models
eBay [eBay, 2002], Amazon Auctions [Amazon, 2002] and OnSale Ex-
change [OnSale, 2002] are good examples of online marketplaces that use reputation
mechanisms. eBay [eBay, 2002] is one of the world’s largest online marketplace with
a community of over 50 million registered users. Most items on eBay are sold trough
English auctions and the reputation mechanism used is based on the ratings that users
perform after the completion of a transaction. The user can give three possible values:
positive(1), negative(-1) or neutral(0). The reputation value is computed as the sum of
those ratings over the last six months. Similarly, Amazon Auctions [Amazon, 2002]
and OnSale Exchange [OnSale, 2002] use also a mean (in this case of all ratings) to
assign a reputation value.

All these models consider reputation as a global property and use a single value that
is not dependent on the context. The information source used to build the reputation
value is the information that comes from other agents that previously interacted with
the target agent (witness information). They do not provide explicit mechanisms to
deal with users that provide false information. A great number of opinions that “dilute”
false or biased information is the only way to increase the reliability of the reputation
value.

2.3.3 Sporas and Histos
Sporas

Sporas [Zacharia, 1999] is an evolved version of the online reputation models presented
in 2.3.2. In this model, only the most recent rating between two users is considered. An-
other important characteristic is that users with very high reputation values experience
much smaller rating changes after each update that users with a low reputation. Using

14 Related Work

a similar approach to the Glicko [Glickman, 1999] system —a computational method
used to evaluate the player’s relative strengths in pairwise games—, Sporas incorporates
a measure of the reliability of the users’ reputation based on the standard deviation of
reputation values.

This model has the same general characteristics that the previously commented on-
line reputation mechanisms 2.3.2. However, it is more robust to changes in the be-
haviour of a user and the reliability measure improves the usability of the reputation
value.

Histos

Histos [Zacharia, 1999] was designed as a response to the lack of personalization that
Sporas reputation values have. The model can deal with direct information (although in
a very primitive way) and witness information. On the contrary to Sporas, the reputation
value is a subjective property assigned particularly by each individual.

The treatment of direct interaction in this reputation model is limited to the use of
the most recent experience with the agent that is being evaluated. The strength of the
model relies on its use of witness information.

Pairwise ratings are represented as a directed graph where nodes represent agents
and edges carry information on the most recent reputation rating given by one agent
to another. The root node represents the agent owner of the graph. This structure is
similar to the TrustNet used by Schillo et al. [Schillo et al., 2000]. The reputation of
an agent at level X of the graph (with X > 0) is calculated recursively as a weighted
mean of the rating values that agents in level X-1 gave to that agent. The weights are
the reputations of the agents that rate the target agent. As we have seen, the agents who
have been rated directly by the agent owner of the graph have a reputation value equal to
the rating value. This is the base case of the recursion. The model also limits the length
and number of paths that are taken into account for the calculation. The reputation value
does not depend on the context and no special mechanisms are provided to deal with
cheaters.

A drawback of this model is the use of the reputation value assigned to a witness
also as a measure of its reliability. If an agent is a good seller, it does not mean that it
has to be also a reliable witness.

2.3.4 Schillo et al.
The trust model proposed by Schillo et al. [Schillo et al., 2000] is intended for scenarios
where the result of an interaction between two agents (from the point of view of trust)
is a boolean impression: good or bad; there are no degrees of satisfaction. More con-
cretely, to make the experiments they propose a Prisoner’s dilemma set of games with
a partner selection phase (see 2.4.1 for more details). Each agent receives the results of
the game it has played plus the information about the games played by a subset of all
players (its neighbours). The result of an interaction in this scenario is an impression
on the honesty of the partner (if she did what she claimed in the partner selection phase)
and which was the behaviour she had according to the normal prisoner’s dilemma ac-
tions (cooperation or defection). The model is based on probability theory. The formula

2.3. Computational trust and reputation models 15

to calculate the trust that an agentQ deserves to an agentA (that is, the probability that
the agent A be honest in the next interaction) is T (A,Q) = e

n where n is the number
of observed situations and e the number of times that the target agent was honest.

Complementing the information that results from direct interaction/observation, an
agent can interview other agents that it has met before. Each agent uses a different
TrustNet data structure. A TrustNet is a directed graph where nodes represent witnesses
and edges carry information on the observations that the parent node agent told the
owner of the net (the root node of the TrustNet) about the child node agents.

In this model, testimonial evidence from interviews may be brittle, as witnesses may
have different motives and may try to deceive agents about their true observation. Thus,
every agent is confronted with noise in the information and also with the possibility that
the source of information itself is biasing the data.

The answer of witnesses to a query is the set of observed experiences (and not a
summary of them). Given that, the authors assume that it is not worth it for witnesses to
give false information. A witness will not say that a target agent has played dishonest in
game x if this was not the case because the inquirer could have observed the same game
and, therefore, notice that the witness is lying. Witnesses do not want to be uncovered
by obviously betraying. Therefore, the model assumes that witnesses never lie but that
can hide (positive) information in order to make other agents appear less trustworthy.
Assuming that negative information will be always reported by witnesses, the problem
is reduced to know to what extend those witnesses have biased the reported data (hiding
positive observations).

To do that, betraying (hiding information) is modelled as a stochastic process where
an agent decides to inform about a positive fact of another agent with probability p
and hide that information with probability (1 − p). The application of this process can
be seen as a Bernoulli-experiment and the repetition of the experiment as a Bernoulli-
chain. Probability theory is then used to estimate the hidden amount of positive infor-
mation. This process can be applied recursively from the target agent through all its
ancestors up to the root node of the TrustNet.

With all this process, the agent is building for each piece of information an approxi-
mation of what the witnesses would have said if they had been completely honest about
their information.

As the information from the witnesses comprises the list of observations it can be
collated to eliminate the “correlated evidence” problem [Pearl, 1988]. This, however,
cannot be done for the hidden information. The proposed solution in this case is based
on the assumption that the relation of overlapping of the data in reported an non reported
(hidden) information is constant.

No information is given about how to combine direct experiences with information
coming from witnesses.

The trust value is a subjective property assigned particularly by each individual and
it does not depend on the context.

2.3.5 Abdul-Rahman and Hailes
This trust model [Abdul-Rahman and Hailes, 2000] uses four degrees of belief to typify
agent trustworthiness: vt (very trustworthy), t (trustworthy), u (untrustworthy) and vu

16 Related Work

(very untrustworthy). For each partner and context, the agent maintains a tuple with the
number of past experiences in each category. Then, from the point of view of direct in-
teraction, the trust of a partner in a given context is equal to the degree that corresponds
to the maximum value in the tuple. For instance if the associated tuple of a partner in a
given context is (0, 0, 4, 3) the trust assigned to that partner will be t (trustworthy) that
corresponds to the third position in the tuple. If there is more than one position in the
tuple with the maximum value, the model gives an uncertainty trust degree according
to a table of pattern situations that cover this cases. There are three possible uncertainty
values (and the corresponding patterns) to cover the situations where there are mostly
good and some bad, mostly bad and some good and equal amount of good and bad
experiences.

This is the only model analyzed where before combining the information that comes
from witnesses, the information is adjusted according to previous information coming
from that witness and the consequent outcomes that validate that information. For ex-
ample, suppose a informs to x that b is vt and x’s evaluation of its experience with
b is merely t. Next time that a gives information to x, x will adjust the information
accordingly before taking it into account.

The problem of this approach is that it is not possible to differentiate those agents
that are lying from those agents that are telling the truth but “think” different. Although
there are scenarios where this is not important (like the scenario suggested by the au-
thors where agents recommend goods to other agents) it can be a limitation in others.

In order to combine information, the model gives more relevance to the information
coming from those agents with a more similar point of view. That is, gives more im-
portance to the information that needs to be adjusted very little or, even better, do not
need to be adjusted at all because it comes from agents that have a similar perspective
in a given context.

Contrarily to other trust models where witness information is merged with direct
information to obtain the trust on the specific subject, this model is intended to evaluate
only the trust on the information given by witnesses. Direct experiences are used to
compare the point of view of these witnesses with the direct perception of the agent and
then be able to adjust the information coming from them accordingly.

2.3.6 Esfandiary and Chandrasekharan
In the trust model proposed by Esfandiari and Chandrasekha-
ran [Esfandiari and Chandrasekharan, 2001], two one-on-one trust acquisition
mechanisms are proposed. The first is based on observation. They propose the use
of Bayesian networks and to perform the trust acquisition by Bayesian learning. In
the simplest case of a known structure and a fully observable Bayesian network, the
learning task is reduced to statistical considerations.

The second trust acquisition mechanism is based on interaction. The approach is
the same used in [Lashkari et al., 1994]. There are two main protocols of interaction,
the exploratory protocol where the agent asks the others about known things to evaluate
their degree of trust and the query protocol where the agent asks for advice from trusted
agents. A simple way to calculate the interaction-based trust during the exploratory
stage is using the formula Tinter(A,B) = numberofcorrectreplies

totalnumberofreplies .

2.3. Computational trust and reputation models 17

To deal with witness information, each agent builds a direct labeled graph where
nodes represent agents and where an (a,b) edge represents the trust value that a has
on b. Edges are absent if the trust value is unknown. In such a graph, there is the
possibility of having cycles that artificially decrease the trust value and different paths
that give contradictory values. To solve this problem, instead of using a single value for
trust the model uses a trust interval determined by the minimum and maximum value
of all paths without cycles that connect two agents.

The authors claim that the calculation of this trust interval is equivalent to the prob-
lem of routing in a communication network and, therefore, known distributed algo-
rithms used to solve that problem can be successfully applied to this situation.

To allow a multi-context notion of trust (see section 2.2.4) the authors propose the
use of colored edges, with a color per task or type of trust. Trust would only propagate
through edges of the same color.

Finally, the authors propose a trust acquisition mechanism using institutions, what
they call institutionalized trust. This is similar to the concept of system reputation in
the ReGreT [Sabater and Sierra, 2002] model. The idea is to exploit the structure in the
environment to arrive at trust values.

No information is given about how to combine the different trust acquisition mech-
anisms.

2.3.7 Yu and Singh

In the model proposed by Yu and Singh [Yu and Singh, 2001, Yu and Singh, 2002b,
Yu and Singh, 2002a], the information stored by an agent about direct interactions is a
set of values that reflect the quality of these interactions (what they call quality of ser-
vice -QoS-). Only the most recent experiences with each concrete partner are consid-
ered for the calculations. Each agent defines an upper and lower threshold that define
the frontier between what are considered QoSs ascribed to trustworthy agents, QoSs
with no clear classification and QoSs ascribed to non trustworthy agents. Then, using
the historic information together with Dempster-Shafer theory of evidence, an agent
can calculate the probability that its partner gives a service ascribed to each one of
these groups. If the difference between the probability that the service belongs to the
first and latest group is greater than a threshold for trustworthiness, the agent being
evaluated is considered a trusty agent.

There are two kinds of information that a witness can provide when it is queried
about a target agent. If the target agent is one of its acquaintances it will return the
information about it. If not, it will return referrals to the target agent that can be queried
to obtain the information. These referrals, when queried, can provide the desired infor-
mation or provide again new referrals. If the referral that finally gives the information
is not far away to a depth limit in the chain, its information will be taken into account.
The set of referral chains generated due to a query is a TrustNet similar to that used by
Schillo et al. [Schillo et al., 2000] and in the Histos [Zacharia, 1999] model.

As we have said this model uses Dempster-Shafer theory of evidence as the underly-
ing computational framework. In this case, to aggregate the information from different
witnesses they use Dempster’s rule of combination.

18 Related Work

This model does not combine direct information with witness information (the two
sources of information that takes into account). If direct information is available, that’s
the only source that is considered to determine the trust of the target agent. Only when
direct information is not available the model appeals to witness information.

2.3.8 Sen and Sajja
In Sen and Sajja’s [Sen and Sajja, 2002] reputation model, both types of direct experi-
ences are considered: direct interaction and observed interaction. In the scenario where
this model is used, observations are noisy, i.e., the observations differ somewhat from
the actual performance. Only direct interaction gives an exact perception of the reality.
Reinforcement learning is the chosen mechanism to update the reputation value. Due
to the noise underlying observations, the rule used to update the reputation value when
there is a new direct interaction has a greater effect than the rule used to update the
value when there is a new observation. The reputation value ranges from 0 to 1. A
value greater than 0.5 represents a good performer and a value less than 0.5 represents
a bad performer.

Agents can query other agents about the performance of a given partner. The answer
is always a boolean value that says if the partner is good or not. The model is prepared
to support liars in the community. These liars are assumed to lie consistently, that
means that every time they are queried, they return a good value for a bad target agent
and vice versa. To decide, from the point of view of witness information, if a partner
is good or not, the model uses the number of positive and negative answers received
from witnesses. Knowing the number of witnesses and how many of them are liars,
the model provides a mechanism to calculate how many agents should be queried to
be sure that the likelihood of selecting a good partner has at least certain value. The
subset of agents to be queried is selected randomly from the set of possible witnesses
although the authors claim it is easy to add a smarter selection process based on a trust
mechanism.

Because the objective of this work was to study how agents use word-of-mouth rep-
utations to select one of several partners, agents only use witness information to take
decisions. Direct experiences are only used as pieces of information to be commu-
nicated to the others. Therefore, no indication is given by the authors about how to
combine direct experiences with witness information to obtain a final reputation value.

2.3.9 AFRAS
The main characteristic of this model [Carbo et al., 2002a] is the use of fuzzy sets to
represent reputation values. Once a new fuzzy set that shows the degree of satisfaction
of the latest interaction with a given partner is calculated, the old reputation value and
the new satisfaction value are aggregated using a weighted aggregation. The weights
of this aggregation are calculated from a single value that they call remembrance or
memory. This factor allows the agent to give more importance to the latest interaction
or to the old reputation value. The remembrance factor is modelled as a function of the
similarity between (1) the previous reputation and the satisfaction of the last interaction
and (2) the previous remembrance value. If the satisfaction of the last interaction and

2.3. Computational trust and reputation models 19

the reputation assigned to the partner are similar, the relevance of past experiences is
increased. If the satisfaction of the last interaction and the reputation value are different,
then is the relevance of the last experience what is increased.

The notion of reliability of the reputation value is modelled through the fuzzy sets
themselves. A wide fuzzy set for a reputation value represents a high degree of uncer-
tainty over that value while a narrow fuzzy set implies a reliable value.

Recommendations from other agents are aggregated directly with the direct expe-
riences. The weight given to each factor (old reputation value and new opinion) is de-
pendent on the reputation that the recommender has. Recommendations coming from
a recommender with a high reputation has the same degree of reliability that a direct
experience. On the contrary, opinions from an agent with bad reputation are not taken
into account. To calculate the reputation of recommenders, the agent compares the rec-
ommendation with the real behaviour of the recommended agent after the interaction
and increases or decreases the reputation of the recommender accordingly.

2.3.10 Carter et al.

The main idea behind the reputation model presented by Carter et
al. [Carter et al., 2002] is that the reputation of an agent is based on the degree
of fulfillment of roles ascribed to it by the society. All individuals have certain roles
within a society. If the society judges that they have met their roles, they are rewarded
with a positive reputation, otherwise they are punished with a negative reputation.

Each society has its own set of roles. As such, the reputation ascribed as a result
of these roles only makes sense in the context of that particular society where roles are
defined. According to this, it is impossible to universalize the calculation of reputation.

The authors formalize the set of roles within an information-sharing society and
propose methods to calculate the degree of satisfaction with each of these roles. An
information-sharing society is a society of agents that attempt to exchange relevant
information with each other in the hopes of satisfying a user’s request. They identify
five roles:

• Social information provider: Users of the society should regularly contribute new
knowledge about their friends to the society. This role exemplifies the degree of
connectivity of an agent with its community. Each particular recommendation
made by a user has a weight associated with it. This weight indicates the strength
of the recommendation and is the product of a time decay factor and the repu-
tation of the recommender. The degree to which the social information provider
role is satisfied by a given user is calculated as the summation of all these weights,
mapped in the interval [0,1].

• Interactivity role: Users are expected to regularly use the system. Without this
participation the system becomes useless. The degree of satisfaction for this role
is calculated as the number of user operations during a certain period of time
divided by the total number of operations performed by all the users in the system
during the same period.

20 Related Work

• Content provider: Users should provide the society with knowledge objects that
reflect their own areas of expertise. The degree of satisfaction is reflected by the
quality of the information agents that belong to that user. The quality of an agent
is measured considering how close is the subject of that information agent to the
user’s interest. The idea is that users that create information agents related to their
areas of expertise will produce higher quality content related to their interest than
those who do not.

• Administrative feedback role: Users are expected to provide feedback informa-
tion on the quality of the system. These qualities include easy-of-use, speed,
stability, and quality of information. Users are said to satisfy this role by provid-
ing such information.

• Longevity role: Users should be encouraged to maintain a high reputation to
promote the longevity of the system. The degree of satisfaction of this role is
measured taking into account the average reputation of the user to the present
time.

Given that, the user’s overall reputation is calculated as a weighted aggregation of
the degree of fulfillment of each role. The weights are entirely dependent on the specific
society.

The reputation value for each agent is calculated by a centralized mechanism that
monitors the system. Therefore, the reputation value of each user is a global measure
shared by all the observers.

2.3.11 Castelfranchi and Falcone

The trust model proposed by Castelfranchi and Fal-
cone [Castelfranchi and Falcone, 1998] is a clear example of a cognitive trust
model. The basis of their model is the strong relation between trust and delegation.
They claim that “trust is the mental background of delegation”. In other words, the
decision that takes an agent x to delegate a task on agent y is based on a specific set
of beliefs and goals and this mental state is what we call “trust”. Therefore, “only an
agent with goals and beliefs can trust”.

To build a mental state of trust, the basic beliefs that an agent needs are:

• Competence belief: the agent should believe that y can actually do the task.

• Dependence belief: the agent believes that y is necessary to perform the task or
that it is better to rely on y to do it.

• Disposition belief: not only is necessary that y could do the task, but that it will
actually do the task. In case of an intentional agent, the disposition belief must
be articulated in and supported by two more beliefs:

– Willingness belief: the agent believes that y has decided and intends to do
α (where α is the action that allows g).

2.3. Computational trust and reputation models 21

– Persistence belief: the agent believes that y is stable in its intentions of
doing α.

The first two beliefs compound what they call the core trust and together with the
disposition belief, the reliance. Supported and implied by the previous beliefs, another
belief arises:

• Fulfillment belief: if the agent “trust in y for g”, the agent decides: (i) not re-
nouncing to g, (ii) not personally bringing it about, (iii) not searching for alterna-
tives to y, and (iv) to pursue g through y.

To summarize, trust is a set of mental attitudes characterizing the “delegating” agent’s
mind (x) which prefers another agent (y) doing the action. y is a cognitive agent, so x
believes that y intends to do the action and y will persist in this.

The degree of trust is a function of the strength of the trusting beliefs. The greater
x’s belief in y’s competence and disposition, the greater x’s trust in y. The degree of
trust is used to formalize a rational basis for the decision of relying and betting on y.
Also relevant is the degree of importance of the goal that is going to be achieved through
the delegation. The resulting degree of trust is obtained by multiplying the degree of
those beliefs and goals useful to the trust relation. If this value exceeds a given threshold
and it is also the best solution of all the available solutions, then the decision to delegate
is taken.

2.3.12 Summary
In table 2.1 we show a summary of the models analyzed in this review from the point of
view of the classification dimensions presented in section 2.2. The abbreviations used
in the table are the following:

Paradigm M Mathematical
C Cognitive

Information sources

DI Direct Interaction
DO Direct Observation
WI Witness Information
SI Sociological Information
P Prejudice

Visibility S Subjective
G Global

Model’s Granularity
CD Context Dependent
NCD Non Context Dependent

Agent behaviour
assumptions (see section 2.2.5)

Model Type
Trust Trust model
Rep Reputation model

General
× No√

Yes
NA Not applicable

22 Related Work

We have to make some considerations about this table:

• We have described a set of classification aspects that allow a comparison be-
tween trust and reputation models. However, due to the diversity of such models,
the classification aspects do not always fit exactly with the characteristics of the
models and in some circumstances the classification for a specific model in one
category or another is subjective according to our interpretation.

• We have considered only the features explicitly presented by the authors (without
making suppositions on possible extensions).

• The decision of classifying the models as trust models or as reputation models is
based on what the authors claim in their articles.

2.4 Trust and reputation test-beds
As we have said, currently there is no test-bed that gives a common experimental en-
vironment where to compare all computational trust and reputation models under the
same conditions. Almost every model proposal is presented with a specific test-bed
designed to highlight some aspects of that model. This makes the comparison between
models very difficult. In this section we will present some of these test-beds. We do
not intend to be exhaustive but to show a sample of the scenarios currently used to test
computational trust and reputation models.

2.4.1 Test-beds based on the Prisoner’s Dilemma
The prisoner’s dilemma is a classic problem of game theory that raise the following
situation: two people have been arrested for robbing a bank and placed in separate
isolation cells. They have two options, remain silent or confess. If both remain silent,
they only can be accused on firearms possession what implies a very reduced sentence.
If one of them confess while the other remains silent, the one that has collaborated with
the police will go free while the other will receive a big punishment. Finally, if both
confess they will receive a moderate punishment.

The “dilemma” faced by the prisoners here is that, whatever the other does, it is
preferable to confess than remaining silent. But the outcome obtained when both con-
fess is worse for each than the outcome they would have obtained if they had both
remained silent.

The above situation can be presented in a more formal way as follows: each player
has two options, “cooperate” (C) or “defect” (D), corresponding, respectively, to the
options of remaining silent or confessing in the illustrative anecdote. The payoff matrix
for each action is showed in table 2.2 satisfying the following chain of inequalities: F
> R > P > S. For each possible pair of moves, the payoffs to Row and Column (in that
order) are listed in the appropriate cell.

The iterated version of this game is the basis for several test-beds designed to eval-
uate trust and reputation models.

2.4. Trust and reputation test-beds 23

Pa
ra

di
gm

In
fo

rm
at

io
n

so
ur

ce
s

V
is

ib
ili

ty

M
od

el
’s

gr
an

ul
ar

ity

A
ge

nt
be

ha
vi

ou
r

as
su

m
pt

io
ns

B
oo

le
an

ex
ch

an
ge

d
in

fo
rm

at
io

n?

Tr
us

t-
R

ep
re

lia
bi

lit
y

m
ea

su
re

?

M
od

el
ty

pe

S. Marsh M DI S CD NA(5) NA(5) × Trust

Online Rep.
Models M WI G NCD 0 × × Rep

Sporas M WI G NCD 0 × √
Rep

Histos M DI + WI S NCD 0 × × Rep

Schillo et al. M DI
DO , WI S NCD 1

√ × Trust

A.-Rahman
and Hailes M DI, WI(1) S CD 2 4 trust

values × Trust
Rep

Esfandiary and
Chandrasekharan M DI

DO , WI, P S CD 0 × × Trust

Yu and Singh M DI, WI S NCD 0 × × Trust
Rep

Sen and Sajja M DI
DO , WI(2) S NCD 2(3) √ × Rep

AFRAS M DI + WI S NCD 2 × √
Rep

Carter et al. M WI(6) G NCD 0 × × Rep

Castelfranchi
and Falcone C NA(4) S CD NA(4) × NA(4) Trust

ReGreT M DI + WI +
SI + P S CD 2 × √ Trust

Rep

Table 2.1: Comparison table.
(1) Direct experiences are used to compare the point of view of these witnesses with the

direct perception of the agent and then be able to adjust the information coming from
them accordingly.

(2) Because the objective of this work was to study how agents use word-of-mouth rep-
utations to select one of several partners, agents only use witness information to take
decisions.

(3) Liars are assumed to lie consistently.
(4) In the description of the model it is not specified how the agents obtain the information

to build their beliefs.
(5) There is no exchange of information between agents
(6) Besides information coming from other users (WI) there is a central authority that mon-

itors the agents behaviour and uses that information to build reputation.

24 Related Work

C D
C R,R S,F
D F,S P,P

Table 2.2: Payoff matrix for the Prisoner’s Dilemma

The PlayGround

This test-bed, designed by Marsh [Marsh, 1994] to test his trust model, consist of a 10
by 19 grid, with one cell being possibly occupied occupied by one agent at most at any
time. Agents have total freedom of movement. Interaction is achieved by a Prisoner’s
Dilemma played whenever and agent attempts to move into a cell which is already
occupied between the occupant and the visitor. The range of vision of the agents is
limited and so is the ability to move away from untrusted agents and toward trusted
ones.

A situation is a concrete payoff matrix for a Prisoner’s Dilemma game. The possible
situations and the payoff structure for each situation are known by the participating
agents. In any interaction, a random situation from a list of possible situations is chosen,
and both agents are informed of the situation name. After both agents have made their
decisions, fitness values are updated according to the payoff structure for the particular
situation. Each agent also adjusts its trust values. Generally speaking, if the other
cooperates, trust is increased, otherwise, trust is decreased.

Schillo et al.

Schillo et al. [Schillo et al., 2000] propose a disclosed iterated prisoner’s dilemma with
partner selection with a standard payoff matrix. It can be described as a five-step pro-
cess:

1. Each player pays a stake.

2. Pairs of players are determined by negotiation and declaration of intentions.
Agents have the possibility to deceive others about their intentions. For this step,
they introduce a contract net-like protocol that is executed until each player has
had the chance to find a partner.

3. The Prisoner’s Dilemma game is played, bearing in mind the previously declared
intentions.

4. The results are published. Due to limited perception, each agent receives only the
results of a subset of all players.

5. The prizes are paid.

Agents have a limited amount of points; if an agent loses all its points, it has to
retire from the game.

2.4. Trust and reputation test-beds 25

Mui et al.

An iterated prisoner’s dilemma game where the success of your strategy gives you a
greater number of descendants in the following generation is the proposal of Mui et
al. [Mui et al., 2002].

The characteristics of the game are the following:

• Participants for a single game are chosen randomly from the population.

• After certain number of dyadic encounters between agents (a generation), and
agent begets progeny in the next generation proportional to its fitness.

• The total population size is maintained from one generation to the next. There-
fore, an increase in the number of one type of agent is balanced by a decrease in
the number of other types of agents.

To the classical “always cooperate”, “always defect” and “Tit for Tat” there is a new
strategy that initially cooperates depending on the reputation of the other agent followed
by a Tit for Tat.

Taking this test-bed as the basis, they modify several characteristics of the agents
and their capabilities of interaction with the other agents in order to do experiments
with different notions of reputation.

2.4.2 Castelfranchi et al.
The test-bed presented by Castelfranchi et al. [Castelfranchi et al., 1998] is designed to
explore the effects of the interaction between populations following different criteria
for aggression control.

The scenario of this test-bed is a grid that has randomly scattered pieces of food. The
agents, that have a partial view of their environment, move through the grid in search for
food, stopping to eat when they find it. Eating a piece of food takes several turns. While
agents are eating they can be attacked by others. If the attack is successful, the aggressor
obtains the food that the victim was trying to eat. Moving through the grid, attacking
other agents or receiving attacks reduces the strength of the agent. This strength can
only be recovered by eating more pieces of food. Food only reports strength to the
agent once the eating process has completely finished. The goal of the agents is to
increase their strength as much as possible. There three different types of agents:

• Blind agent. Aggression is constrained only by personal utility.

• Strategic agent. Aggression is performed only if it knows it will win the contest.

• Normative agent. In this case, possession of food is ascribed to an agent on the
grounds of spatial vicinity. This type of agent follows the norm that says that
agents cannot attack possessors eating their ascribed food.

In further experiments the authors extend the capabilities of normative agents by adding
the notion of reputation and the possibility of exchanging information about cheaters.

26 Related Work

2.4.3 SPORAS, ReGreT and AFRAS

The set of experiments presented in this section where first used by Zacharia et
al. [Zacharia, 1999] to test the Sporas model. The same set of experiments where
used by Sabater and Sierra [Sabater and Sierra, 2001] to compare the ReGreT model
with Sporas and the reputation mechanism used in Amazon Auctions. Finally, an ex-
tended version of these experiments was proposed by Carbo et al. [Carbo et al., 2002b,
Carbo et al., 2002a] to compare AFRAS § 2.3.9 with Sporas § 2.3.3, ReGreT, Yu and
Singh’s § 2.3.7 model and two online reputation mechanisms (eBay and Bizrate) § 2.3.2.
It has to be clear that these sets of experiments are far to be a real test-bed because they
focus on a restricted set of situations. However, together with the prisoner’s dilemma,
are the only set of experiments used by several authors to compare their reputation
models under the same conditions.

The initial set of experiments focus on the convergence speed and the abuse of
prior performance. The objective is to analyze how the models react to the different
scenarios.

The experiment to test the convergence speed proposes a scenario with a fixed num-
ber of users with uniformly distributed real reputations. The users start with minimum
reputation. In each period of the simulation, the users are matched randomly and get
rated by each other according to their actual performance. The objective is to see how
long it takes for the models to reach the real reputation value.

In the abuse of prior performance scenario, a user joins the marketplace, behaves
reliably until s/he reaches a high reputation value and then starts abusing his/her repu-
tation to commit fraud. The aspect to be analyzed here is how quickly the models can
adapt to the new situation.

Carbo et al. [Carbo et al., 2002b, Carbo et al., 2002a] extend the set of experiments
with studies about how the use of cooperation between agents improve the convergence
of reputation values and the impact of coalitions between sellers and buyers.

2.5 Conclusions
After the analysis performed in this chapter, there are several things to be considered.

If we observe table 2.1, it is clear that mathematical modelling is the predominant
paradigm used nowadays for the design of computational trust and reputation mod-
els. Possibly, the reason for that is the profile of people that is working in the area of
multi-agent systems and e-commerce (economists and computer scientist) with a strong
background in game theory and AI techniques.

As would be expected, the main sources of information used by the trust and rep-
utation models are direct experiences and information from third party agents (witness
information). There are very few models (in fact only the ReGreT system and the model
proposed by Esfandiary and Chandrasekharan) that take into account other aspects to
calculate trust and reputation values.

We think that a good mechanism to increase the efficiency of actual trust and reputa-
tion models (and also to overcome the lack of confidence in e-markets) is the introduc-
tion of sociological aspects as part of these models. It is true that in the actual e-markets

2.5. Conclusions 27

this kind of sociological information is almost inexistent or it is not available to the par-
ticipating agents. Therefore, nowadays, a model that uses this kind of information is
not more useful than simpler models that only take into account (for example) direct
experiences. It has no sense to increase the complexity of trust and reputation models if
later on you have to use them in an environment where it is not possible to exploit their
capabilities.

Does it means we have to renounce to sophisticated trust and reputation models?
Certainly not. Electronic societies have to evolve to a new stage of complexity where
interaction and links between their members become more relevant (in a similar way
—taking into account the differences— we found in human societies).

Coming back again to table 2.1, we see that only the ReGreT system, the AFRAS
model and, in a way, the Histos model, propose methods to combine different sources
of information. Also, it is not usual to provide with the trust and reputation values a
measure of their reliability, something that we think it is very important for the agent
that has to use those values.

Finally, we observe that models are oriented to trust or to reputation but it is not
common to have both integrated in the same system.

With respect to test-beds, we think it is time to propose a set of benchmarks that al-
low the comparison of the different reputation models that currently exist. The number
of reputation models is increasing quickly and we need an objective way to compare
the different approaches, their benefits and drawbacks.

Chapter 3

The SuppWorld framework

3.1 Introduction
Although there are several frameworks that can be used to test computational trust and
reputation models (see chapter 2), none of these frameworks provides a scenario rich
enough to test all the dimensions of the ReGreT system. The main drawback in these
frameworks is that they are not prepared to naturally support social relations among
members. This is because they are designed to test trust and reputation models that
do not consider this aspect. As we will see, social relations play an essential role in
the ReGreT system. Therefore, we decided to design and implement a new framework
adapted to the special characteristics of ReGreT. In this chapter we present SuppWorld,
the framework we have used to test the ReGreT system and perform the experiments
detailed in chapter 7. This framework allows us to build simple scenarios oriented to
test the basic aspects of trust and reputation models and also complex scenarios where
social relations acquire a great relevance.

3.2 The SuppWorld framework, an overview
The SuppWorld is build around the idea of a supply chain. In a typical supply chain,
agents trade by buying one level below in the chain, adding value to the purchased
goods, and selling the manufactured good up to the next level in the chain. The Supp-
World allows the design of scenarios based on this structure and oriented to the study
of negotiation, trust and reputation models.

The activity in a SuppWorld scenario is organized in several scenes that can be
combined to recreate different supply chain configurations. These scenes are:

• Markets. As the name suggests, in these scenes is where agents trade. A set
of sellers sell one or different types of products to buyers. Agreements between
sellers and buyers materialize after a negotiation process.

• Conventions. Here is where an agent can exchange information with other agents
of the same type. It is also the place where agents can establish coalitions.

29

30 The SuppWorld framework

Market 1 Market 2 Market 3

$ $
MEGASTORE

Figure 3.1: SuppWorld example scenario.

• Entrance of rough material. A supply chain is not a closed environment. It is
necessary to allow the entrance of rough material that, properly transformed, will
follow its path up to the final consumers.

• Production process. In each link of the supply chain there is a process of trans-
formation that adds new value to the goods. This process is simulated in this
scene.

• Entrance of money. Similarly to the entrance of rough material, it is necessary at
least one point to introduce money to the supply chain. With this scene you can
simulate the action of final consumers or a “pay day” for these final consumers if
they are explicitly represented.

The heartbeat of a SuppWorld scenario is measured in ‘ticks’. All the activities
performed during a tick, from the point of view of the simulation, are supposed to run
in parallel.

In the following sections we describe in detail each scene type.

3.3 Markets

The market is the main scene in a SuppWorld scenario. A market is represented as a
toroidal grid where each cell is owned by a single seller. In a SuppWorld scenario you
can have several markets each one with their own sellers. As we have said, the markets
are organized as a supply chain, that is, the buyers in the first market are the sellers in
the second market, the buyers in the second market are the sellers in the third one and
so on. From now on, we will refer to the home grid of an agent as the grid (market)
where this agent acts as a seller and, therefore, where it has its home cell. Figure 3.1
shows a typical configuration of SuppWorld markets.

3.3. Markets 31

Market n Market n+1

Active layers

Sellers Buyers

Figure 3.2: Fixing the initial position of the buyers in the market.

Markets are opened one at a time and each market remains opened during a con-
figurable amount of time. This period that the market is open is what we call a market
session.

The physical location of the sellers in the home grid determines the position from
which they will start in the market when they act as buyers. There is a function that
distributes uniformly the buyers over the active market grid at the beginning of each
market session taking into account their position in the home grid (see Figure 3.2).

As we have said, the interaction of a buyer with the seller to buy goods is through
a negotiation process. This process is explained in section 3.8. For the moment it is
enough to know that both parts can withdraw from the negotiation at any moment. If
the negotiation leads to an agreement between the seller and the buyer, the seller sends
the goods to the buyer’s home cell (to be exact, to the mapped position of the buyer’s
home cell into the current grid). The buyer will pay the goods as soon as they arrive
to its destination but before it can inspect the delivery. Of course, both the seller and
the buyer are free to decide how they are going to fulfill the contract. Because the main
goal of this framework is the study of trust and reputation, there are no punishment
mechanisms for those agents that commit fraud and cheat the others. We want to test
the reaction of agents endowed with trust and reputation mechanisms.

While sellers stay always in its cell during a market session, buyers can move freely
from one cell to another. Buyers can move only to one of the adjacent cells at a time (in-
cluding diagonal movements) and this movement has a cost in time units (ticks). There
is a single exception to this. After the negotiation process, the seller can recommend
another seller to the buyer. If the buyer decides to follow the recommendation, it can
move directly from the actual cell to the cell of the recommended seller. The cost in
time for that movement is substantially less than moving to the same location without
following the recommendation. In other words, following a recommendation is like a
“direct flight” to the recommended cell. Giving a recommendation after the negotiation
process is not mandatory for the seller.

Because it is possible to have more than one buyer in each cell (in fact this will be

32 The SuppWorld framework

Market

Seller

S B B B

Buyers queue

Negotiation
process

Figure 3.3: Cell structure.

usually the case), the cells have a local queue where the buyers can wait their turn to
interact with the seller. If several buyers arrive at the same time to the same cell they
are added to the queue randomly. Only the first in the queue can interact with the seller.
The other buyers in the queue have three options: just waiting for its turn to interact
with the seller, move to another cell, or query one of the other buyers that are waiting
in the same queue.

The buyer that has interacted with the seller cannot stay in the same cell after the
negotiation and has to move necessarily to one of the adjacent cells or follow the rec-
ommendation (if it was performed).

Figure 3.3 shows the structure of a generic cell and figure 3.4 the activity flow in a
cell during a tick.

The first action is the exchange of information among buyers that are waiting in the
queue. This exchange of information is performed in turns and each agent has a fixed
number of opportunities to query the others. Then, the first buyer negotiates with the
seller and the seller gives (or not) a recommendation. The third stage gives the agents
the possibility to explore the nearest environment. Each agent receives the following
information about the adjacent cells: Who is the owner of the cell, the type of product
sold in that cell and the name of the agents waiting in its queue. This information can
be used by the agents in the final stage in order to decide if it is worth it to move to
another cell and, in that case, which is the best movement.

3.4 Conventions
The convention scene has two main functions in a SuppWorld scenario. First, it allows
agents hosted in the same grid to query their partners about other agents’ reputation.
Conventions give the possibility to query specific agents instead of relying on casual
meetings in the queue of a cell. This is specially important for agents in the first market
of a SuppWorld scenario. Because the agents in the first market never take the role of

3.5. Entrance of rough material 33

Negotiation
&

Recommendation

Information
exchange

Move to
another

cell?

1 tick

Look
around

B

B
BS

B

B

B
B

B

B

Figure 3.4: Activity flow in a generic cell.

buyers, they cannot meet in the queue of a cell to exchange information as the others
do. As in the waiting queue in a cell, the exchange of information is performed in turns
and each agent has a limited number of opportunities to query the others.

The second purpose of conventions is to give the agents the possibility of establish-
ing coalitions. As we have said, sellers can recommend other sellers after a negotiation
process. The (rational) reason for a seller a to recommend a seller b is based on the
belief that b will correspond recommending a to its clients. This belief is not an act
of faith but an act based on a previous established coalition between both agents in a
convention scene. It is important to note that a seller knows those agents that are in its
cell because of a recommendation and who was the recommender. This allows sellers
to evaluate the benefits of a coalition and if it is worth it to maintain it.

3.5 Entrance of rough material

Every supply chain needs at least one point to allow the entrance of new material. This
is the purpose of this scene. The new material usually enters to the supply chain in the
first layer. The amount of new material is fixed as a parameter of the scenario. Each
agent has a storage capacity and it has to cope with all the material assigned to it. If it
has not enough money or there is no free space in the store to put the new material, the
material is lost and the agent has to pay a penalty quote for each lost unit. Therefore, an
agent that cannot trade and move away the material present in its stores is condemned
to bankruptcy.

3.6 Production process

The production process recreates the transformation of goods produced in each layer
of a supply chain. This transformation adds new value to the original product. Then,

34 The SuppWorld framework

...

IN-STORAGE

1 1 1

1

Primary Prod. 1

2 2 2

2

Primary Prod 2

n n n

n

Primary Prod. n

3 2

Production
process

1

OUT-STORAGE

Figure 3.5: SuppWorld agent’s storage facilities.

the transformed product can be sold to agents in the next layer with the corresponding
benefit for the seller.

Figure 3.5 shows the storage facilities of a SuppWorld agent.
A SuppWorld agent has a set of in-storage facilities (one for each primary product

necessary to generate the final product) and one out-storage facility (where the final
product is stored until it can be sold in the next layer). To generate one unit of final
product, an agent needs one unit of each primary product. During the market sessions
(or during the entrance of rough material in the case of agents belonging to the first layer
of the supply chain) buyers acquire primary products. Each unit of primary product has
an associated quality. This quality will determine the quality of the final product and,
therefore, its value in the market. The best way to understand how the quality of primary
products determine the quality of the final product is through an example.

Suppose the initial situation just before the production process showed in Fig-
ure 3.6(a). This agent needs one unit of primary product A and one unit of primary
product B to generate one unit of final product AB. It has certain quantity of product
A with quality 1 (the worst possible quality) that needs to be mixed with product B.
Although the worst quality of product B available is 2, the mix of quality 1 and quality
2 generates final product of the minimum quality, that is, quality 1. The same process
is applied to each layer of quality as shown in Figure 3.6(b,c,d,e,f). At the end, the
primary product that cannot be transformed to final product because there is a lack of
other primary products, is lost (you can think we are dealing with perishable products
like food).

Generating each unit of final product is not free. There is a cost associated to each
generated unit. Moreover, the out-storage facility has a finite capacity. Either if the
agent cannot pay the production cost or there is not enough space in the out-storage
facility to store the final product, the final product cannot be generated and the primary
products are lost.

The final result of the production process is certain amount of final product in the

3.7. Entrance of money 35

� � ���
5� �

3� �� �
1� �3

2

� �� �
4 	

�

�
� � � �� �

� �� �� �� �� �
����
�

� � �
� � �

��+ � �� �
� � � �

4
� �

3� �
1

21 1

+ 33 3
+ 54 4

+ 23 1

2

a b c

d e f

A B ABA B AB A B AB

A B ABA B AB A B AB

-
Q

ua
lit

y
 +

Lost product

Figure 3.6: Production process example.

out-storage facility, with different qualities and ready to be sold in the next layer of the
supply chain.

3.7 Entrance of money
At the end of the supply chain we have the final consumers. They are responsible
of adding money to the chain. In a SuppWorld scenario, this is modelled using the
’entrance of money’ scene. This scene allows two possibilities. The first possibility
is to simulate a layer of final consumers that buy everything to the last sellers in the
chain. The price that is paid for the products is proportional to their quality. The second
possibility is the simulation of a salary for the final consumers. This is necessary if we
make explicit the final consumers layer.

3.8 Negotiation process
The mechanism that the agents use to buy and sell products in a Suppworld scenario
is a one-to-one negotiation. The negotiation model we have implemented in our pro-
totype is the one presented by Peyman Faratin, Carles Sierra and Nick R. Jennings in
[Faratin et al., 1997]. It is a model for bilateral negotiations about a set of quantitative
variables. In the case of a SuppWorld scenario, this variables are the price, the quantity,
the quality and the transport used by the seller to deliver the product.

Offers and counter offers are generated by linear combinations of simple functions,
called tactics. Tactics generate an offer, or counter offer, for a single component of
the negotiation object (in our case, price, quantity, quality and transport type) using a
single criterion (time, resource, etc.). Different weights in the linear combination allow

36 The SuppWorld framework

the varying importance of the criteria to be modelled.
There are two tactics available to agents in a SuppWorld scenario: Time dependent

tactics and tit-for-tat. A time dependent tactic uses time as the predominant factor to
decide which value to offer next. The acceptance value for the issue depends on the
remaining negotiation time. On the other side, tit-for-tat tactics compute the next offer
based on the previous attitude of the negotiation opponent.

A strategy determines how the agent changes the linear combination of tactics over
time. For instance, the agent can start using a tit-for-tat tactic and change gradually to
a time dependent tactic when the negotiation deadline is approaching.

3.9 The agents behaviour

There are two elements in a SuppWorld scenario that determine the behaviour of an
agent.

The first is what we call the alignment of the agent. The alignment defines the basic
behaviour of the agent in aspects like how contracts will be fulfilled or the truthfulness
of the information given to other members of the society.

The second are the social relations between the agent and the other members of the
society. In a SuppWorld scenario there are defined three types of social relations among
their members:

• Competition. This is the type of relation found between two agents that pursue
the same goals and need the same (usually scarce) resources. In this situation,
agents tend to use all the available mechanisms to take some advantage over their
competitors, for instance hiding information or lying. A competitive relation
between and agent a and an agent b is noted as comp(a,b).

• Cooperation. This relation implies significant exchange of sincere information
between the agents and some kind of predisposition to help each other if possi-
ble. Notice that we talk about “sincere” information instead of “true” information
because the agent who gives the information believes it is true. We consider that
two agents cannot have at the same time a competitive and a cooperative rela-
tion. This is also the relation type that identifies groups of agents. A cooperative
relation between and agent a and an agent b is noted as coop(a,b).

• Trade (trd). This type of relation reflects the existence of commercial transactions
between two agents and is compatible either with cooperative or competitive re-
lations. For the moment this is the only social relation that agents can identify by
themselves in a SuppWorld scenario. A trade relation between and agent a and
an agent b is noted as trd(a,b).

The social relations can change the basic behaviour defined by the alignment. For
instance, an agent that normally provides false information to the others, will tell the
truth to an agent that has a cooperative relation with it.

3.10. Implementation 37

3.10 Implementation

The SuppWorld framework is not a real multi-agent system. Agents are implemented
as C++ classes and everything is synchronous and sequential. We decided to use this
approach instead of a real multi-agent system (with agents running in parallel exchang-
ing messages through a communication platform) because it gives us more control over
the execution.

An experiment is specified using a text file with several blocks that need to be de-
fined:

• General parameters: The general parameters of the experiment like the number
of rounds and the sequence of scenes in each round.

• Transport: A list of the different transport types that are available to the sellers
in order to send the product to the buyers. Each transport type has a cost and a
speed associated.

• Product profiles: The different products and their characteristics. Production cost
and price range are examples of the parameters that define a product.

• Negotiation and trust/reputation engines: The specification of the negotiation and
trust/reputation engines that will use the agents in that experiment. The frame-
work allows the use of a different engine (or the same engine with different pa-
rameters) for each class of agent. The SuppWorld framework has been designed
not only to test the ReGreT system but trust and reputation models in general.
We have put special effort in the connexion between the kernel of the agent and
the trust and reputation model in order to facilitate the addition of other trust and
reputation models.

• Individuals: The different types of individuals that will populate the SuppWorld
scenario. The products each type of agent is interested in or the type of trust and
reputation model they use are the kind of agent properties defined here.

• Grids: The composition of the different markets. Once you have fixed the dimen-
sions of the grid, you have several options to specify the agents that will populate
it. For each cell in a grid, it is possible to specify the type of the agent (the owner
of the cell) individually or let the program to choose an agent type randomly
from a list of possibilities. Similarly you can choose the behaviour of the agent
or define a distribution of behaviours to be applied automatically.

• Conventions: The definition of conventions. It is limited to the grid and the
number of ticks given to agents in that grid to exchange information.

• Societies: The initial set of cooperative and competitive relations available to
each agent. As we have said, at this moment only trade relations can be detected
by agents. Therefore we need a mechanism to define the view agents will have
about cooperative and competitive relations.

38 The SuppWorld framework

Figure 3.7: The SuppWorld graphical mode.

The framework has a graphical mode that allows to monitor the experiment during
the execution and a silent mode to run experiments in background. Figure 3.7 show two
screen shots of the SuppWorld framework running in graphical mode. The framework
also has a log system to register the evolution of the experiments.

In appendix B you can find a detailed description of the configuration files and some
examples corresponding to the experiments presented in chapter 7.

Chapter 4

The ReGreT system

4.1 Introduction

Up to now, the computational models of trust and reputation have been consider-
ing two different information sources: (i) the direct interactions among agents and
(ii) the information provided by members of the society about experiences they
had in the past [Sabater and Sierra, 2001, Schillo et al., 2000, Yu and Singh, 2000,
Zacharia, 1999]. Those systems, however, forget a third source of information that
can be very useful. As a direct consequence of the interactions, it is possible (even in
not too complex societies) to identify different types of social relations between society
members. Sociologists and psychologists have been studying these social networks in
human societies for a long time and also how these social networks can be used to anal-
yse trust and reputation [Pujol et al., 2003, Buskens, 1999]. These studies show that it
is possible to say a lot about the behaviour of individuals using the information obtained
from the analysis of their social network.

In this chapter we present ReGreT, a modular trust and reputation model oriented
to complex e-commerce environments where social relations play an important role.

The main characteristics of ReGreT are:

• It takes into account direct experiences, information from third party agents and
social structures to calculate trust, reputation and credibility values.

• It has a trust model based on direct experiences and reputation.

• It incorporates an advanced reputation model that works with transmitted and
social knowledge.

• It has a credibility module to evaluate the truthfulness of information received
from third party agents.

• It uses social network analysis (see section 4.2) to improve the knowledge about
the surrounding society (specially when no direct experiences are available).

39

40 The ReGreT system

• It provides a degree of reliability for the trust, reputation and credibility values
that helps the agent to decide if it is sensible or not to use them in the agent’s
decision making process.

• It can adapt to situations of partial information and improve gradually its accuracy
when new information becomes available.

• It can manage at the same time different trust and reputation values associated
to different behavioural aspects. Also it can combine reputation and trust values
linked to simple aspects in order to calculate values associated to more complex
attributes.

Some people could argue that current e-commerce scenarios are not complex
enough to justify the degree of complexity modelled by the ReGreT system. Although,
as we will see, the modular design of the ReGreT system makes possible its use in
a wide range of environments, it is true that in order to fully exploit its capabilities
(specially those related with social network analysis) it is necessary a certain degree
of complexity in the society. We agree that this complexity is not present in current
operative e-commerce environments but we take the stance that in the near future, as
the complexity of tasks to be performed by agents will increase, these kind of complex
scenarios will become usual.

In the next section we will make a short presentation of what is social network
analysis and why we think it can be used as part of trust and reputation models to
increase their performance when used in complex societies. After a general perspective
of the ReGreT system in section 4.3 we explain the different elements that compound
it. We start with the direct trust module § 4.4. Then we analyse the different parts of the
reputation model § 4.5 (witness reputation § 4.5.1, neighbourhood reputation § 4.5.2 and
system reputation § 4.5.3) and how they are combined to become a complete reputation
mechanism § 4.5.4. The credibility module is explained in section 4.5.1 and the trust
model in section 4.6. To finish the presentation of the ReGreT system, we go through
the ontological dimension in section 4.7.

4.2 Social Network Analysis and agent societies

Social network analysis is the mapping and measuring of relationships between people,
groups, organizations, computers or other information/knowledge processing entities.
The nodes in the network are the people and groups while the links show relationships
between nodes. Social network analysis provides both a visual and a mathematical
analysis of these relationships.

As pointed out by Scott [Scott, 2000], three main traditions have contributed to the
development of present-day social network analysis: the advances on graph theory per-
formed by the sociometric analysts; the Harvard researches of the 1930s, who explored
patterns of interpersonal relations and the formation of ‘cliques’; and the Manchester
anthropologists, who built on both of these strands to investigate the structure of ‘com-
munity’ relations in tribal and village societies. These traditions were brought together

4.2. Social Network Analysis and agent societies 41

in the 1960s and 1970s to forge contemporary social network analysis. From then, so-
cial network analysis has been widely used in the social and behavioral sciences, as
well as areas like political science, economics, or industrial engineering.

One of the main characteristics of social network analysis is the use of relational
data instead of attribute data (which is usually quantified and analysed through statis-
tical methods). Relational data can be handled and managed in matrix form or using
graphs. A graph structure that shows social relations is called a sociogram. A different
sociogram is usually built for each social relation under study and depending on the
type of relation we have a directed or non-directed sociogram, with weighted edges or
without. Indegree, density or node centrality are examples of graph theory concepts
used in social network analysis to extract conclusions from sociograms.

We know that social network analysis can be used to analyze human societies, but
could it also be suitable for agent societies? The greater simplicity, in social terms,
of multi-agent systems suggests that social network analysis could be applied to au-
tonomous agents with even better results. Of course, social network analysis can be
useful in agent communities with a certain degree of complexity. It has no sense the
use of these techniques in simple societies where it is not possible to establish relations
of any kind. Also, we have to assume that agents are rational and that normally behave
according to these relations.

We have exposed the pros but, of course, there is a con. Obviously, the more re-
lational data the better the network analysis is. However, these data can be difficult to
obtain. Sociologists usually get them through public-opinion polls and interviews with
the individuals. This procedure is, a priory, not possible in agent societies. Moreover,
the analysis of human social structures is usually done by a sociologist external to the
society. This external position gives the analyst a privileged watchtower to make this
kind of analysis. In our case, as we want to use social analysis as part of the decision
making mechanism of the agent (specifically as part of the reputation and credibility
models), each agent has to do this analysis from its own limited vision of the world.

It is beyond the scope of the present work to propose solutions about the way an
agent builds such sociograms. We will assume that the agent owns a set of sociograms
that show the social relations in its environment. This sociograms are not necessarily
complete or accurate. We suppose they are built by each agent using the knowledge it
has about the environment. Therefore, sociograms are dynamic and agent dependent.

Before finishing this short presentation of social network analysis we want to men-
tion two works closely related with the one we are presenting here. Both works use
social network analysis, the first as part of a trust model and the second as part of a
reputation model.

In his work, Buskens [Buskens, 1998, Buskens, 1999] focus on how trust depends
on different structural properties of social networks such as density, outdegree, indegree
and centralization. Individual and global network parameters are distinguished to ex-
plain learning effects and control effects through social networks of trustors. Individual
network parameters refer to the network connections of the individual with the rest of
the net (indegree, outdegree, etc.) while global parameters refer to the network as a
whole (density, centralization, etc.). Individual network parameters are used to explain
differences in trust within one network while global network parameters are useful to

42 The ReGreT system

Ontological dimension

Reputation
model

ODB

Direct
Trust

Credibility Witness
reputation

System
reputation

Neigh-
bourhood
reputation

SDBIDB

Trust

ReGreT system

Reputation
model

ODB

Direct
trust

Credibility Witness
reputation

System
reputation

Neighbour-
hood

reputation

SDBIDB

Trust

Figure 4.1: The ReGreT system.

explain differences in trust between networks.
Pujol et al. [Pujol et al., 2002, Pujol et al., 2003] propose a reputation mechanism

based on the position of each member of the community within the corresponding social
network. They propose NodeRanking, an algorithm inspired in the ranking algorithms
for web pages based on web topology. The main idea is that each node has an authority
and part of this authority is propagated to the out-nodes via out-edges. At the same
time, the authority of a node depends on the authority of its in-nodes.

As we will see, the ReGreT system uses social network analysis in two different
situations. One is to choose a good set of witnesses to be queried for information. The
way social network analysis is used here has a lot of aspects in common with the way it
is used in the work of Buskens and Pujol et al. In this situation it is considered only one
type of relation and the analysis is based on parameters like centrality, the number of
other points in its neighbourhood (degree) and so on. However, in the ReGreT system,
social network analysis is also used as part of the reputation and credibility models. In
ReGreT only the relations among a small set of individuals is considered and the type
of relation is the most relevant aspect to perform the analysis. Having more that one
type of relation and how the relation types are taken into account for the analysis is not
considered by them.

4.3 The ReGreT system, a general view
Figure 4.1 shows a panoramic view of the ReGreT system.

The system maintains three knowledge bases. The outcomes data base (ODB) where
the agent stores previous contracts and their result; the information data base (IDB), that
is used as a container for the information received from other partners and finally the
sociograms data base (SDB) where the agent stores the sociograms that define its social
view of the world. These data bases feed the different modules of the system.

4.3. The ReGreT system, a general view 43

The direct trust module deals with direct experiences and how these experiences
can contribute to the trust on third party agents. Together with the reputation model
they are the basis for the trust model.

The reputation model is divided in three specialized types of reputation depending
on the information source that is used to calculate them. If the reputation is calculated
from the information coming from witnesses we talk about the witness reputation, if
the reputation is calculated using the information extracted from the social relations be-
tween partners we are talking about the neighbourhood reputation. Finally, reputation
based on roles and general properties is modelled by the system reputation.

The system also incorporates a credibility module that allows the agent to mea-
sure the reliability of witnesses and their information. As we will see, this module is
extensively used in the calculation of witness reputation.

All these modules work together to offer a complete trust model based on direct
knowledge and reputation. However, the modular approach in the design of the system
allows the agent to decide which parts it wants to use. For instance, the agent can
decide not to use neighbourhood reputation to calculate a reputation value or rely only
on direct trust to calculate the trust on an agent without using the reputation module.

Another advantage of this modular approach is the adaptability that the system has
to different degrees of knowledge. As we will see, the system is operative even when
the agent is a newcomer and it has an important lack of information. As long as the
agent increases its knowledge about the other members of the community and the social
relations between them, the system starts using other modules to improve the accuracy
of the trust and reputation values. This allows the system to be used in a wide range of
scenarios, from the most simple to the most complex. If the information is available,
the system will use it.

In the ReGreT system, each trust and reputation value has an associated reliability
measure. This measure tells the agent how confident is the system on that value ac-
cording to how it has been calculated. Thanks to this measure, the agent can decide,
for example, if it is sensible or not to use the trust and reputation values as part of the
decision making mechanism.

The last element in the ReGreT system is the ontological structure. As we argued
in the introduction, we consider that trust and reputation are not single and abstract con-
cepts but rather multi-facet concepts. The ontological structure provides the necessary
information to combine reputation and trust values linked to simple aspects in order
to calculate values associated to more complex attributes. For example, the reputation
of being a good flying company summarizes the reputation of having good planes, the
reputation of never losing luggage and the reputation of serving good food. In turn,
the reputation of having good planes is a summary of the reputation of having a good
maintenance service and the reputation of frequently renewing the fleet. Note that each
individual can have a different ontological structure to combine trust and reputation
values and a different way to weigh the importance of these values when they are com-
bined.

Trust and reputation have a temporal dimension. That is, the reputation and trust
value of an agent change along time. We will, however, omit the reference to time in the
notation in order to make it more readable. We will refer to the agent that is calculating

44 The ReGreT system

a reputation as a (what we call the “source agent”) and the agent that is the object of
this calculation as b (what we call the “target agent”).

In following sections we will describe in detail each one of the elements that com-
pound the ReGreT system.

4.4 Direct trust

We use the term direct trust to refer the trust that is build from direct interactions (that
is, using information perceived by the agent itself) in comparison to general trust that
is build using also other elements like reputation that depends on opinions and observa-
tions of third party agents (see section 4.6).

For simplicity we assume that there is no difference between direct interaction and
direct observation in terms of reliability of the information so, from now on, we will talk
about direct experiences to refer to both types of information. In the ReGreT system,
direct trust is always linked to a specific behavioural aspect. Therefore, we talk about
the direct trust agent a has in agent b in a specific context to perform a specific action.
I can trust in a friend to drive me to the airport but it doesn’t mean I trust him in flying
the plane. The ReGreT system, either for trust or reputation, takes always into account
the context.

The basic element to calculate a direct trust in the ReGreT system is the outcome.
We define the outcome of a dialog between two agents as either:

• An initial contract to take a particular course of action and the actual result of the
actions taken, or

• An initial contract to fix the terms and conditions of a transaction and the actual
values of the terms of the transaction.

An outcome is represented as a tuple of the form o = (a, b, I,X c, Xf , t) where
a and b are the agents involved in the contract, I a set of indexes that identify the
issues of the contract, Xc and Xf are two vectors with the agreed values of the
contract and the actual values after its fulfillment respectively, and t the time when
the contract was signed. We use a subindex i ∈ I to refer to the specific value
of issue i in vectors Xc and Xf . For instance, in a SuppWorld scenario we have
I = {Price ,Quantity ,Quality ,Transport Type}. If we want to make reference to
the Price value in the vector Xc we use the notation Xc

Price .
ODB is defined as the set of all possible outcomes. ODBa,b ⊆ ODB is the set of

outcomes that agent a has signed with agent b. We define ODB
a,b
{i1,··· ,in} ⊆ ODBa,b

as the set of outcomes that include {i1, · · · , in} as issues in the contract. For example,
ODB

a,b
{Price} is the set of outcomes that has agent a from previous interactions with

agent b and that fix, at least, the value for the issue Price.
Given that, we can define a direct trust (noted as DT a→b(ϕ) where ϕ is the be-

havioural aspect under evaluation) as the trust relationship calculated directly from an
agent’s outcomes database.

4.4. Direct trust 45

To calculate a direct trust relationship we use a weighted mean of the outcomes
evaluation, giving more relevance to recent outcomes.1 The evaluation of an outcome
o = (a, b, I,Xc, Xf , t) (what we call the impression of the outcome) depends on the
behavioural aspect. This dependency is reflected in two aspects. First, the issue of
the outcome that is relevant for the evaluation and second the function used for the
evaluation.

We define a grounding relation (gr) as the relation that links a behavioural aspect
ϕ with a specific issue and the function used to evaluate the outcome. This allows us
to select the right subset of outcomes from the general outcomes’ data base and also
evaluate the outcome according to the semantics of the behavioural aspect.

As an example, a possible grounding relation for a seller in a SuppWorld scenario
is defined in the following table:

ϕ gr (ϕ) V (Xs) ⊗ V (Xc)
offers good prices Price V (Xs) − V (Xc)

maintains agreed quantities Quantity abs(V (Xs) − V (Xc))
offers good quality Quality V (Xs) − V (Xc)

delivers quickly Transport Type V (Xs) − V (Xc)

where V (Xc) is the utility of the contract values, and V (Xs) is the utility of a
vector build using the following formula:

Xs
i =

{

Xf
i if i ∈ gr(ϕ)

Xc
i otherwise

In other words, we obtain this vector from vector Xc by replacing the value speci-
fied in the index gr(ϕ) by the value in the same positions in vector Xf .

The general formula to evaluate and outcome is:

Imp(o, ϕ) = g(V (Xs) ⊗ V (Xc))

Where g is a function that models the personality of the agent as the degree of
deception or reward obtained after the analysis of the outcome (an appropriate function
is g(x) = sin(π2x) shown in figure 4.2) and ⊗ is an aggregation function that depends
on the shape of the utility function for that issue. For instance, if instead of having the
behavioural aspect offers good prices we had offers bad prices, the function ⊗ would
be V (Xc) − V (Xs).

Given that, the formula to calculate a direct trust value in the ReGreT system is:

DT a→b(ϕ) =
∑

oi∈ODB
a,b

gr(ϕ)

ρ(t, ti) · Imp(oi, ϕ)

with ρ(t, ti) = f(ti,t)�
oj∈ODB

a,b
gr(ϕ)

f(tj ,t)
where t is the current time and f(ti, t) is a time

dependent function that gives higher values to values closer to t. A simple example of
this type of function is f(ti, t) = ti

t .

1There are many psychological studies that support recency as a determinant fac-
tor [Karlins and I.Abelson, 1970].

46 The ReGreT system

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.2: g(x) = sin(π2x)

We know how to calculate a direct trust value. However in order to use that value it
is very important for the agent to know also how reliable it is. There are many elements
that can be taken into account to calculate the reliability of a direct trust value. The
ReGreT system focus on two of them: the number of outcomes used to calculate the
direct trust value and the variability of their values. This approach is similar to that
used in the Sporas reputation model [Zacharia, 1999].

The intuition behind the number of outcomes factor (noted as No) is that an isolated
experience (or a few of them) is not enough to make a correct judgment about some-
body. You need a certain amount of experiences before you can assess how an agent
behaviour is. As the number of outcomes grows, the reliability degree increases until
it reaches a maximum value, what we call the intimate level of interactions (itm from
now on). From a social point of view, this stage is what we know as a close relation.
More experiences will not increase the reliability of our opinion from then on. The next
simple function is the one we use to model this:

No(ODB
a,b
gr(ϕ)) =

sin

(

π·|ODB
a,b

gr(ϕ)
|

2·itm

)

|ODB
a,b
gr(ϕ)| ≤ itm

1 otherwise

The function chosen to compute ODB
a,b
gr(ϕ) when |ODB

a,b
gr(ϕ)| ≤ itm serves the

purpose of reaching the value 1 when |ODB
a,b
gr(ϕ)| = itm and 0 when |ODB

a,b
gr(ϕ)| = 0.

Other functions sharing this property could be used as well.
There is nothing special with the equation we use when |ODB

a,b
gr(ϕ)| ≤ itm. The

important thing is that arrives to 1 when x = itm. Other equations can be used to model
a more credulous or distrustful behaviour.

The itm value is domain dependent: it depends on the interaction frequency of the
individuals in that society and also on the “quality” of those interactions. A plot of this
function when itm = 10 is shown in figure 4.3.

The outcome deviation (noted as Dv) is the other factor that the ReGreT system
takes into account to determine the reliability of a direct trust relationship. The greater
the variability in the rating values the more volatile will the other agent be in the fulfill-

4.5. The reputation model 47

0 5 10 15
0

0.5

1

1.5

itm = 10

Figure 4.3: No(ODB
a,b
gr(ϕ)), itm = 10

ment of its agreements. To have a measure of this variability we consider the impres-
sions of the outcomes that are used to calculate the direct trust.

We calculate the outcome reputation deviation as:

Dv(ODB
a,b
gr(ϕ)) =

∑

oi

ρ(t, ti) · |Imp(oi, ϕ) − DT a→b(ϕ)|

Where oi ∈ ODB
a,b
gr(ϕ) and Dv(ODB

a,b
gr(ϕ)) ∈ [0, 1]. A deviation value near 1

indicates a high variability in the rating values (that is, a low credibility on the direct
trust value from the outcome reputation deviation point of view) while a value close to
0 indicates a low variability (that is, a high credibility on the direct trust value). Note
that we are calculating a weighted mean deviation instead of a standard deviation.

Finally, we define the reliability of a direct trust relationship value (DTRL) as the
product of functions No and (1-Dv).

DTRLa→b(ϕ) = No(ODB
a,b
gr(ϕ)) · (1 − Dv(ODB

a,b
gr(ϕ)))

4.5 The reputation model
As we have seen, direct trust is used to build trust on the others based on direct experi-
ences. The problem with direct experiences is that they are usually expensive to obtain
in terms of time and cost (very often, the loss due to errors inherent to direct experi-
mentation is not acceptable). In human societies people use the experience of others to
overcome the lack of direct experiences. This aggregation of others’ experience is the
base of reputation. According to the concise oxford dictionary [Oxf, 2002], reputation
is defined as “what is generally said or believed about a person’s or thing’s character
or standing”. The reputation model of the ReGreT system differentiates three types of
reputation depending on the information source that is used to calculate them:

Witness Reputation. This reputation type is calculated using the information gath-
ered from other agents that belong to the community. That information is the result of
direct experiences that those agents had in the past with the target agent or to informa-
tion that they gathered from other agents. We note this reputation type as: R

a
W
→b

(ϕ)

48 The ReGreT system

Neighbourhood Reputation. It takes into account only the social environment
of the target agent and the kind of relations the target agent has established with that
environment. It is a reputation value based on prejudice because it is not based on the
behaviour of the target agent itself but on the behaviour of those agents that have some
kind of relation with it, together with the nature of that relation. The Spanish proverb
“Dime con quien andas y te dire quien eres” (Tell me who you associate with and I will
tell you who you are) illustrates the main idea behind this kind of reputation. It is noted
as: R

a
N
→b

(ϕ)
System Reputation. It is a default reputation based on objective features of the

target agent (like the role it is playing in the society, the company that it belongs to and
so on). It is not a reputation value based strictly on the target agent as and individual
but on its membership to a certain group. We note this type of reputation as: R

a
S
→b

(ϕ)
Usually the way to calculate system reputation and neighbourhood reputation is

inherited from the group to which the agent belongs to as a kind of common knowledge.
Therefore, both reputation types are representing the “way of thinking” of the group
toward the rest of individuals and groups in the society.

Each one of these reputation types demands a different kind of knowledge of the
agent society and the target agent. The System reputation is the easiest to calculate. We
are assuming that the features used to calculate system reputation are known (or directly
observable) by the other members of the society. The problem is that these features
do not give enough information to compute a reputation on all imaginable aspects.
For instance, if we know that somebody is a cook we can make suppositions about
his/her skills in the kitchen or his/her knowledge about vegetables but we cannot say,
for example, how good is playing tennis. Also, the reliability of this type of reputation
tends to be low because it doesn’t take into account the peculiarities of the individual
and its environment. This is the kind of reputation that an agent can use when it is
a newcomer and there is an important lack of interaction with the other agents in the
society. The neighbourhood reputation requires a deep knowledge of the environment
of the target agent. This type of reputation can be useful in those situations where there
is a good knowledge of the society and arrives a newcomer. Once the newcomer finds
its place in the community it is possible to analyze its relations with known members
of that community to extract some conclusions. Finally, witness reputation is based on
word-of-mouth, with all the advantages and inconveniences associated to this kind of
information.

Sociologically speaking, this division is far to be complete. However, we consider
that with these three types we maintain a good compromise between the complexity
of the system and the requirements that an agent can satisfy in an e-commerce envi-
ronment. In the following sections we explain in detail how each reputation type is
calculated and how the ReGreT reputation model aggregates the information to obtain
a single reputation value.

4.5.1 Witness reputation
Beliefs about trust can be (and usually are) shared among members of a society. The
reputation that an agent builds on another agent based on the beliefs gathered from
society members (witnesses) is what we call witness reputation. In an ideal world, with

4.5. The reputation model 49

only homogeneous and trusty agents, this information would be as relevant as direct
experiences. However, in the kind of scenarios we are considering, it may happen that:

Information be wrong. Either because the other agents are trying to lie or because
the information they own is not accurate, an agent has to be prepared to deal with wrong
information.

Information be biased. The received information, although correct in essence, can
be biased to favour the interests of the witness.

Agents hide information. An agent cannot assume that the information be com-
plete.

Besides that, the information that comes from other agents can be correlated (what is
called the correlated evidence problem [Pearl, 1988]). This happens when the opinions
of different witnesses are based on the same event(s) or when there is a considerable
amount of shared information that tends to unify the witnesses’ way of “thinking”. In
both cases, the trust on the information shouldn’t be as high as the number of simi-
lar opinions may suggest. As the event(s) that have generated the opinions for each
agent may be hidden, the agent cannot identify directly which agents are correlated.
Schillo et. al [Schillo et al., 2000] propose a method based on the analysis of “lying”
as a stochastic process to implicitly reconstruct witness observations in order to allevi-
ate this problem. We take a different approach based on the social relations between
agents. Analysing these relations, an agent can obtain useful information to minimize
the effects of the correlated evidence problem.

We assume that the information to be exchanged among agents is a tuple where
the first element is the trust value on the target agent for a specific behavioural as-
pect from the point of view of the witness, and the second element is a value that
reflects how confident the witness is about that trust value. We note the tuple as
〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉, where w is the agent giving the information (the
witness), b the target agent and ϕ the behavioural aspect considered. Each agent main-
tains a data base of received informations. Similar to the outcomes data base, IDB a is
defined as the set of all informations received by agent a and IDB a,w notes the subset
of informations received by agent a from agent w.

Identifying the witnesses

The first step to calculate a witness reputation is to identify the set of witnesses (W)
that will be taken into account by the agent to perform the calculation. The initial
set of potential witnesses might be the set of all agents that have interacted with the
target agent in the past. For instance, in an e-commerce environment, the initial set
can be composed by all the agents that had had a trade relation with the target agent
(it seems logical to think that the best witnesses about the commercial behaviour of the
target agent are those agents that had a trade relation with it before). This set, however,
can be very big and the information provided by its members probably suffer from the
correlated evidence problem.

We take the stance that grouping agents with frequent interactions among them and
considering each one of these groups as a single source of information minimizes the
correlated evidence problem. Moreover, assuming that asking for information has a
cost, it has no sense to ask for the same thing to agents that we expect will give us

50 The ReGreT system

more or less the same answer. Grouping agents and asking for information to the most
representative agent within each group reduces the number of queries to be done. A
domain dependent sociogram is what we use to build these groups and to decide who is
their most representative agent.

There are many heuristics that can be used to find groups and to select the best
individual to ask. The heuristic used by the ReGreT witness reputation mechanism is
based on the work by Hage and Harary [Hage and Harary, 1983]. Taking as the initial
graph the subset of the selected sociogram over the agents that had interactions with the
target agent, the heuristic is the following:

1. To identify the components of the graph. A component is defined as a maximally
connected subgraph.

2. To find the set of cut-points (CP) for each component. A cut-point is a node
whose removal would increase the number of components by dividing the sub-
graph into two or more separate sub-graphs among which there are no connec-
tions. A cut-point can be seen from a sociological point of view as indicating
some kind of local centrality. Cut-points are pivotal points of articulation be-
tween the agents that make up a component [Scott, 2000].

3. For each component that does not have cut-points, to choose as a representative
for that component the node with the larger degree. If there is more than one node
with the maximum degree, choose one randomly or, much better, you can use the
credibility as a fitness measure for the selection (see section 4.5.1). This node is
called a central point. Note that the degree can be regarded also as a measure of
local centrality [Scott, 2000]. We refer to this set of nodes as LCP.

4. The set of selected nodes is the union between the set of cut-points and the set of
LCP. That is, W = CP ∪ LCP .

Figure 4.4 shows an example of the application of the heuristic.
At this point, the agent has to evaluate if it is necessary to ask for renewed infor-

mation to the members of the so calculated set of witnesses W or, on the contrary, the
information available in the IDB is recent enough to be used.

We have proposed a simple heuristic strongly based on social network analysis. This
heuristic doesn’t take into account, for example, the availability of the witness or the
economic cost associated to query that witness. In each domain it has to be considered
if it is necessary to consider these aspects.

Who can I trust? The credibility model

Once the information is gathered from witnesses (or recovered from the data base of
previous informations -IDB-), the agent obtains

{〈Trustwi→b(ϕ),TrustRLwi→b(ϕ)〉 | wi ∈ W}

where W is the subset of witnesses whom the agent has selected to be its sources of
information. The next step is to aggregate these values to obtain a single value for the

4.5. The reputation model 51

a

b

c

d

e
f

components

cut-points

g

h i

j

central point

CP = {b,d}
LCP = {h}
W = {b,d,h}

i

Figure 4.4: Witness selection within ReGreT.

witness Reputation. As we said before, however, it is possible that this information be
wrong or biased. The agent has to be careful to give the right degree of reliability to
each piece of information. The importance of each piece of information in the final
reputation value will be proportional to the witness credibility.

Two different methods are used to evaluate the witness credibility.
The first method is based on the social structure among the witness, the target agent

and the source agent. The idea is similar to that used to calculate the neighbourhood
reputation (see section 4.5.2). We define socialCr (a, wi, b) as the credibility that agent
a gives to wi when wi is giving information about b, taking only into account the social
relations among a, wi and b.

ReGreT uses fuzzy rules [Zadeh, 1975] to calculate how the structure of social re-
lations influences the credibility on the information. The antecedent of each rule is the
type and degree of a social relation (the edges in a sociogram) and the consequent is the
credibility of the witness from the point of view of that social relation. For example:

IF coop(wi, b) is high
THEN socialCr(a, wi, b) is very low

that is, if the level of cooperation between wi and b is high then the credibility that
the information coming from wi related to b has, from the point of view of a, is very
low. The heuristic behind this rule is that a cooperative relation implies some degree of
complicity between the agents that share this relation so the information coming from
one about the other is probably biased.

Which relations are relevant to calculate the credibility depends on the meaning
that each relation type has in the specific agent community. In a SuppWorld scenario,
for instance, a trade relation cannot cast any light on the credibility of the information

52 The ReGreT system

cooperative relation
competitive relation

w - witness
b - target agent
a - source agent

w
a

b
w

a

b

w
a

b
w

a

b
w

a

b

w
a

b
w

a

b
w

a

b

w
a

b

Figure 4.5: Relevant social structures in a SuppWorld scenario to evaluate credibility.

0 1
0

1

low
(l)

moderate
(m)

high
(h)

Figure 4.6: Intensity of a social relation.

coming from the agents involved in that relation (always from the point of view of social
analysis). In other scenarios, however, this could be the other way around.

Following with the SuppWorld scenario, from the set of social relations only the
cooperative relation (coop) and the competitive (comp) relation are relevant to calculate
a measure of credibility. Hence, together with the “no relation” (no rel) possibility
there are 9 social structures to be considered as shown in Figure 4.5.

Figure 4.6 shows the fuzzy sets —that give the meaning of the intensity labels used
on the arcs of the sociogram— for the values coop(wi, a), coop(wi, b), comp(wi, a),
and comp(wi, b), and figure 4.7 shows the fuzzy sets for the variable socialCr (a, wi, b).
The variable no rel is boolean. Table 4.1 shows a possible set of fuzzy rules. Note that
a great percentage of the rules tend to be “pessimistic”. This is because in those cases
where it is not clear that the behaviour is going to be good, we think it is preferable
to be cautious. At this moment the kind of influence of each social structure is hand-
coded and based on human common sense. An improvement would be the use of a rule
learning mechanism to automate the process.

4.5. The reputation model 53

0 1
0

1

very_low
(vl)

low
(l)

moderate
(m)

very_high
(vh)

high
(h)

Figure 4.7: Fuzzy sets for the variable socialCr (a, wi, b).

IF coop(wi, a) is l THEN socialCr (a,wi, b) is h
IF coop(wi, a) is m THEN socialCr (a,wi, b) is vh
IF coop(wi, a) is h THEN socialCr (a,wi, b) is vh
IF comp(wi, a) is l THEN socialCr (a,wi, b) is m
IF comp(wi, a) is m THEN socialCr (a,wi, b) is l
IF comp(wi, a) is h THEN socialCr (a,wi, b) is vl
IF coop(wi, b) is l THEN socialCr (a,wi, b) is m
IF coop(wi, b) is m THEN socialCr (a,wi, b) is l
IF coop(wi, b) is h THEN socialCr (a,wi, b) is vl
IF comp(wi, b) is l THEN socialCr (a,wi, b) is m
IF comp(wi, b) is m THEN socialCr (a,wi, b) is l
IF comp(wi, b) is h THEN socialCr (a,wi, b) is vl
IF no rel(wi, b) AND no rel(wi, a)

THEN socialCr (a,wi, b) is h

Table 4.1: Social credibility fuzzy rules.

The second method used in the ReGreT system to calculate the credibility of a
witness is to evaluate the accuracy of previous pieces of information sent by that
witness to the agent. The agent is using the direct trust value (see section 4.4)
to measure the truthfulness of the information received from witnesses. For exam-
ple, an agent a receives information from witness w about agent b saying agent
b offers good quality products. Later on, after interacting with agent b, agent a
realizes that the products that agent b is selling are horrible. This will be re-
flected in the value of the direct trust associated to the aspect offers good quality
〈DT a→b(offers good quality),DTRLa→b(offers good quality)〉. If the direct trust
value is low (near -1) it means agent b is offering bad products and therefore that agent
w was giving wrong information.

Summarizing, what an agent a is using to evaluate the accuracy of a witness w are
pairs of tuples of the form:

〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉
〈DT a→b(ϕ),DTRLa→b(ϕ)〉

54 The ReGreT system

with b ∈ B and ϕ ∈ ϕ, where B is the set of agents in that society and ϕ the set of
behavioural aspects.

One important property that has to be remarked about these tuples is that they are
not static. They change through time either because the agent collects more direct expe-
riences that modify the perspective it has on the target agent (giving or not more credi-
bility to the witness) or because the agent obtains new information from the witness that
overwrites the previous one. Only the most recent information referred to a specific tar-
get agent and behavioural aspect from a given witness is stored in the information data
base (IDB). Giving the witnesses the opportunity to rectify previous information we are
allowing them to correct previous mistakes.

By comparing the trust value assigned by the witness with its own perception of
the target agent (represented by the direct trust value) the agent obtains the degree
of truth of that piece of information. However, there is an important aspect we have
not considered up to now. When the trust values are very different but the reliability
assigned by the witness is very high and the reliability of the direct trust is very low, the
agent should decrease the credibility of the witness when it is almost sure that the direct
trust value the agent has calculated is wrong due to lack of knowledge? What happens
if it is the other way around? Is it sensible to decrease the trustworthiness of the witness
when the witness itself was giving advise about the weakness of the information by
means of the reliability value? Clearly, the method used to evaluate the accuracy of a
piece of information has to take much into account the reliability values associated to
the trust values in order to decide when the accuracy measure is relevant or not.

There are three main situations the model has to consider:

• DTRL ≈ 0. The agent does not have enough direct knowledge to judge the
truthfulness of what the witness is saying.

• TrustRL ≈ 0. The witness recognizes the weakness of the given information.
Therefore that information cannot be used to judge the credibility of the witness.

• DTRL ≈ 1, TrustRL ≈ 1. The witness is very confident about the informa-
tion and the agent has enough direct knowledge to judge the truthfulness of that
information (and therefore the credibility of the witness).

This can be easily modelled using the product between TrustRL and DTRL as
a factor of relevance for the comparison. Given a piece of information I =
〈Trustw→b(ϕ),TrustRLw→b(ϕ)〉 ∈ IDBa,w, we define the relevance of that infor-
mation as:

σI = TrustRLw→b(ϕ) · DTRLa→b(ϕ)

The formula used in the ReGreT system to evaluate the credibility of a witness
considering the accuracy of previous information received from that witness is:

infoCr (a, w) =

∑

I∈IDB
a,w
σ>0.5

σI · Ap0(Trustw→b(ϕ) − DT a→b(ϕ))
∑

I∈IDB
a,w
σ>0.5

σI

4.5. The reputation model 55

0 2-2

1

Figure 4.8: Ap0 function.

where IDB
a,w
σ>0.5 is defined as {I ∈ IDBa,w : σI > 0.5}. Imposing the restriction

of using only those pieces of information with a relevance greater than 0.5 we ensure a
minimum quality on the result. The functionAp0 is depicted in fig 4.8. If the difference
(Trustw→b(ϕ) − DT a→b(ϕ)) is near 0 it means the witness coincides with the agent
(and therefore we have a value for the credibility near 1), on the contrary if the differ-
ence shows a value near 1 or -1, it means the witness information is different to what
the agent has experienced by itself. The conclusion is that the witness is lying and we
obtain value for the credibility of that witness (always associated to that specific piece
of information) near 0.

Similar to the case of the direct trust, the ReGreT system calculates a measure of re-
liability for the credibility value infoCr. Again, we use the number of values considered
for the calculation and the variability of those values as a measure of that reliability. The
formula to calculate the reliability of a given infoCr value is:

infoCrRL(a, w) = Ni(IDB
a,w
σ>0.5) · (1 − Dv(IDBa,wσ>0.5))

where

Ni(IDB
a,w
σ>0.5) =

sin
(

π·|IDB
a,w
σ>0.5|

2·itm

)

|IDB
a,w
σ>0.5| ≤ itm

1 otherwise

Dv(IDB
a,w
σ>0.5) =

∑

I∈IDB
a,w
σ>0.5

(σI · |A|)
∑

I∈IDB
a,w
σ>0.5

σI

with A = Ap0(Trustw→b(ϕ) − DT a→b(ϕ)) − infoCr (a, w).

We consider that the credibility calculated considering the accuracy of previous
pieces of information (infoCr) is more reliable than the credibility based on social rela-
tions (socialCr). While the analysis of social relations is based on expected behaviours,
the analysis of previous information is based on particular facts from the witness the
agent wants to evaluate. However, in those situations where there is not enough infor-
mation to calculate a reliable infoCr value, the analysis of social relations can be a good
solution. Usually, social relations are easier to obtain than the necessary information
to calculate a reliable infoCr value. To define the credibility that a witness wi deserves
to an agent a when it is giving information about an agent b we have to differentiate
several possibilities:

56 The ReGreT system

• Both values (infoCr and socialCr) can be calculated. The agent uses the infoCr
value if it is reliable, if not, it uses the credibility based on social relations. The
formula for this situation is:

witnessCr(a, wi, b) = infoCrRL(a, wi) · infoCr (a, wi) +

(1 − infoCrRL(a, wi)) · socialCr (a, wi, b)

• The socialCr value is not available (the agent does not have enough social infor-
mation to calculate it). In this situation we have to differentiate two cases:

If (infoCrRL > 0.5) witnessCr(a, wi, b) = infoCr (a, wi)

Otherwise witnessCr(a, wi, b) = 0.5

• The infoCr value is not available (the agent does not have direct experiences to
evaluate if the information from the witness is reliable or not). Again there are
two possibilities:

If (socialCr is available) witnessCr(a, wi, b) = socialCr (a, wi)

Otherwise witnessCr(a, wi, b) = 0.5

The default value of 0.5 used when there is not enough information to judge the
credibility of a witness depends on how credulous is the agent.

Witness reputation

Now we have all the elements to calculate a witness reputation and its associated reli-
ability value considering that the information coming from the witnesses can be wrong
or biased. The formulae in the ReGreT system to calculate these values are:

R
a

W
→b

(ϕ) =
∑

wi∈W

ωwib · Trustwi→b(ϕ)

RL
a

W
→b

(ϕ) =
∑

wi∈W

ωwib · min(witnessCr(a, wi, b), T rustRLwi→b(ϕ))

where ωwib = witnessCr(a,wi,b)�
wj∈W

witnessCr(a,wj ,b)

These formulae require some explanations. To calculate a witness reputation the
agent uses the normalized credibility of each witness to weight its opinion in the final
value. For the calculation of the reliability, we want that each individual contributes
in the same proportion that has contributed for the calculation of the reputation value.
Therefore, the agent uses in the reliability formula the same weights that are used in the
reputation formula.

To calculate the reliability of a witness opinion, the agent uses the minimum be-
tween the witness credibility and the reliability value that the witness itself provides.
If the witness is a trusty agent, the agent can use the reliability value the witness has
proposed. If not, the agent will use the credibility of the witness as a measure for the
reliability of the information.

4.5. The reputation model 57

-1 10
0

1

very_bad
(vb)

bad
(b)

slightly_bad
(sb)

slightly_good
(sb)

good
(g)

very_good
(vg)

neutral
(n)

Figure 4.9: Fuzzy sets for variables DT a→ni
and Rep

a
ni→b

.

4.5.2 Neighbourhood reputation
The trust on the agents that are in the neighbourhood of the target agent and their rela-
tion with it are the elements used to calculate what we call the Neighbourhood Reputa-
tion. Neighbourhood in a MAS is not related with the physical location of the agents
but with the links created through interaction. The main idea is that the behaviour of
these neighbours and the kind of relation they have with the target agent can give some
clues about the behaviour of the target agent. We note the set of neighbours of agent b
as Nb = {n1, n2, · · · , nn}.

To calculate a Neighbourhood Reputation the ReGreT system uses fuzzy rules. The
antecedents of these rules are one or several direct trusts associated to different be-
havioural aspects and the relation between the target agent and the neighbour. The
consequent is the value for a concrete reputation (that can be associated to the same
behavioural aspect of the trust values or not).

The application of these rules generates a set of individual neighbourhood reputa-
tions noted as R

a
ni→b

(ϕ). For instance, using again the SuppWorld scenario, one rule
could be:

IF DT a→ni
(offers good quality) is X AND coop(b, ni) low

THEN R
a

ni
→b

(offers good quality) is X
IF DTRLa→ni

(offers good quality) is X’ AND coop(b, ni) is Y’
THEN RL

a
ni→b

(offers good quality) is T(X’, Y’)

In other words, we are saying that if the neighbour of the target agent is offering
good quality products and there is a relation of cooperation between the target and
this neighbour, then the target is also assumed to offer good quality products. Here,
a neighbour of agent b is an agent that has a coop relation with it. The fuzzy sets for
variables DT a→ni

and R
a

ni→b
are shown in figure 4.9 and the fuzzy sets for variable

RL
a

ni→b
are shown in figure 4.10.

Finally table 4.2 shows a possible set of values for function T .
As we have said, instead of relaying on the performed actions of the target agent,

Neighbourhood reputation is using prejudice as a mechanism for evaluation. In human
societies the word “prejudice” refers to a negative or hostile attitude toward another

58 The ReGreT system

0 1
0

1

very_low
(vl)

low
(l)

moderate
(m)

very_high
(vh)

high
(h)

Figure 4.10: Fuzzy sets for variable RL
a

ni→b

X’ Y’ l m h
vl vl vl vl
l vl vl l

m vl l m
h l m h

vh m h vh

Table 4.2: Function T used in reliability rules.

social group, usually racially defined. However we are not talking about human soci-
eties where prejudice is without any doubt blameworthy. We are talking about virtual
environments populated by software agents. We think that the use of prejudice in the
context of agents has a positive aspect. If an agent knows the others are judging it in part
because of its partners, it will be careful to choose the right partners and avoid cheaters
that perhaps at the beginning can offer better deals but at the end will deteriorate its
reputation in front of the community. Moreover, the modular design of the ReGreT
reputation model allows to cancel the influence of one type of reputation (in this case
the Neighbourhood reputation) if it is not useful or convenient in a given environment.

The general formulae we use to calculate a neighbourhood reputation and its relia-
bility are similar to those used to calculate a witness reputation:

R
a

N
→b

(ϕ) =
∑

ni∈Nb

ωnib · R
a

ni
→b

(ϕ)

RL
a

N
→b

(ϕ) =
∑

ni∈Nb

ωnib · RL
a

ni
→b

(ϕ)

where ωnib =
RL

a
ni
→b

(ϕ)�
nj∈Nb

RL
a

nj
→b

(ϕ)

In this case we are using the reliability of each neighbourhood reputation value to
weight the contribution to the final result, both for the reputation and the reliability.

4.5.3 System reputation
The idea behind System reputations is to use the common knowledge about social
groups and the role that the agent is playing in the society as a mechanism to assign

4.5. The reputation model 59

default reputations to the agents. We assume that the members of these groups have
one or several observable features that unambiguously identify their membership. The
idea behind system reputation is similar to the idea behind neighbourhood reputation.
As we have seen, Neighbourhood reputation focus on reduced groups of agents where
the links between their members can not always be easily recognized by the agents that
do not belong to the group. On the contrary, the groups considered by system reputation
are usually mid to big sized and their members can be easily identified. We assume that
the role that an agent is playing and the group (or groups) it belongs to is something
“visible” and unambiguous for the other agents in that society.

Each time an agent performs an action we consider that it is playing a single role. An
agent can play the role of buyer and seller but when it is selling a product only the role
of seller is relevant. Although we can think up some situations where an agent can play
two or more different roles at a time, we consider that there is always a predominant
role and the others can be disregarded.

The knowledge necessary to calculate a system reputation is usually inherited from
the group or groups to which the agent belongs to. Each group provides knowledge
about different aspects. We share the stance that groups influence the point of view of
their members [Karlins and I.Abelson, 1970].

System reputations are calculated using a table for each social group where the rows
are the roles the agent can play for that group, and the columns the behavioural aspects.

Table 4.3 shows an example of system reputations for agents that belong to company
B from the point of view of an agent of company A. As you notice, in this case the
opinion of company A toward agents in company B is not very good.

offers good prices maintains agreed quantities offers good quality delivers quickly pays on time
seller -0.6 -0.3 -0.8 -0.6 -
buyer - - - - -0.6

Table 4.3: Example of system reputations.

Using a similar table we would define the reliability for these reputations.
System reputations are noted as R

a
S
→b

(ϕ) and its reliability as RL
a

S
→b

(ϕ). Hence,
for example, using the table defined above, we have thatR

a
S
→b

(pays on time) = −0.6

where b is a buyer that belongs to company B.
The degree of influence that the group or groups to which the agent belongs to have

on it, will fix the reliability assigned to system reputation.

4.5.4 Combining reputation types

In the previous section we have gone through the three different reputation types con-
sidered in the ReGreT reputation model. To these reputation types we have to add a
fourth one, the reputation assigned to a third party agent when there is no information
at all: the default reputation. This reputation is noted as R

a
D
→b

(ϕ). Usually this will be
a fixed value for all b and ϕ values, however we give the possibility to assign different
default reputation values depending on the behavioural aspect (for example, in certain
situations the agent could be more trusting). Anyway, what is important is that the de-

60 The ReGreT system

fault reputation is always available. Similarly to other reputation types, there is also a
reliability value associated to the default reputation noted as RL

a
D
→b

(ϕ).
In this section we will show how these reputations are combined to obtain a single

reputation value. As we have seen, each reputation type has different characteristics
and there are a lot of heuristics that can be used to aggregate the four reputation values
to obtain a single and representative reputation value. The heuristic we propose here is
based on the default and calculated reliability assigned to each type.

Assuming we have enough information to calculate all the reputation types, we have
the stance that witness reputation is the first type that should be considered followed by
the neighbourhood reputation, system reputation and finally the default reputation. This
ranking, however, has to be subordinated to the calculated reliability for each type.

Given that, we define the reputation that an agent a assigns to an agent b associated
to certain behavioural aspect ϕ as:

Ra→b(ϕ) =
∑

i∈{W,N,S,D}

ξi ·Ra i
→b

(ϕ)

and similarly for reliability:

RLa→b(ϕ) =
∑

i∈{W,N,S,D}

ξi ·RLa i
→b

(ϕ)

Following the ranking we have established before, the factors {ξW , ξN , ξS , ξD} we
use in the general formula are:

ξW = RL
a

W
→b

(ϕ)

ξN = RL
a

N
→b

(ϕ) · (1 − ξW)

ξS = RL
a

S
→b

(ϕ) · (1 − ξW − ξN)

ξD = 1 − ξW − ξN − ξS

That is, we want the agent to give more relevance to the witness reputation in detri-
ment of the others. If the witness reputation has a low degree of reliability (for instance
because the witnesses are not reliable) then the agent will try to use the neighbourhood
reputation. If the agent has a poor knowledge of the social relationships and as result of
that the reliability of the neighbourhood reputation is low, it will try to use the system
reputation. Finally it will use the default reputation.

4.6 Putting all together: the trust model
As showed in figure 4.1 the ReGreT system considers two elements to calculate the
trust on an agent: the reputation of that agent and the direct trust (that is, the result of
direct experiences).

As we have argued, direct trust is a more reliable source of information than repu-
tation. Using the same approach that for the reputation calculation we define the trust
that an agent b deserves to and agent a on certain behavioural aspect ϕ as:

4.7. Ontological dimension 61

offers_good_quality

0.2

delivers_quickly offers_good_prices

good_seller

maintains_agreed_quantities

0.3 0.3 0.2

Figure 4.11: Ontological structure for a buyer in the SuppWorld scenario.

Trusta→b(ϕ) = DTRLa→b(ϕ) · DT a→b(ϕ) +

(1 − DTRLa→b(ϕ)) ·Ra→b(ϕ)

TrustRLa→b(ϕ) = DTRLa→b(ϕ) · DTRLa→b(ϕ) +

(1 − DTRLa→b(ϕ)) ·RLa→b(ϕ)

If the agent has a reliable direct trust value, it will use that as a measure of trust. If
that value is not so reliable then it will use reputation.

4.7 Ontological dimension

Up to now we have shown how to calculate reputation and trust values linked to be-
havioural aspects that refer to a single issue of a contract. With the ontological dimen-
sion we add the possibility of combining these reputations and trust values associated
to simple behaviours to calculate the reputation and trust of more complex behaviours.

To represent the ontological dimension we use graph structures. Figure 4.11 shows
an example of a simple ontology structure for a buyer in the SuppWorld scenario.

In this case, being a good seller implies delivering products quickly, offering good
products, offering good quality and maintain agreed quantities. The buyer gives more
relevance to the quality and price of the products to decide if a seller is a good seller or
not.

To calculate a given trust taking into account the ontological dimension, an agent
has to calculate the value of each of the related aspects that, in turn, can be the node of
another subgraph with other associated aspects. The trust values for those nodes that
are related with an atomic aspect of the behaviour (in the example: deliver quickly,
offer good prices, offer good quality and maintain agreed quantities), are calculated
using the methods we have presented in the previous sections. Note that an ontology
structure can be applied to different parts of the system. The agent can use the ontology
either to calculate a reputation value or to calculate a trust value.

The trust over an internal node ψ is computed as follows:

62 The ReGreT system

Trusta→b(ψ) =
∑

ϕ∈children(ψ)

ωψϕ · Trusta→b(ϕ)

TrustRLa→b(ψ) =
∑

ϕ∈children(ψ)

ωψϕ · TrustRLa→b(ϕ)

For instance, using the ontological structure in figure 4.11 we can calculate the trust
on b as a good seller from a’s perspective using the formula:

Trusta→b(good seller) = 0.3 · Trusta→b(deliver quickly) +

0.4 · Trusta→b(offer good prices) +

0.4 · Trusta→b(offer good quality) +

0.3 · Trusta→b(maintain agreed quantities)

TrustRLa→b(good seller) = 0.3 · TrustRLa→b(deliver quickly) +

0.4 · TrustRLa→b(offer good prices) +

0.4 · TrustRLa→b(offer good quality) +

0.3 · TrustRLa→b(maintain agreed quantities)

The same ontological structure could be used to calculate the reputation of being a
good seller.

Note that the importance (ωψϕ) of each aspect is agent dependent and not necessar-
ily static. The agent can change these values according to its mental state.

Chapter 5

Infrastructure: the agent model

In previous chapters we have presented the ReGreT system. Although, as we have
seen, the system can be used by simple agents in relatively simple environments, it
is only in complex societies where the system can show its potential. The agents that
populate this kind of societies must have a deliberative component with a certain degree
of complexity. Therefore, the specification and implementation of these agents is not
an easy task. Chapters 5 and 6 make a proposal in that direction.

5.1 Introduction
Agent-based computing is fast emerging as a new paradigm for engineering complex,
distributed systems [Jennings, 1999, Wooldridge, 1997]. An important aspect of this
trend is the use of agent architectures as a means of delivering agent-based func-
tionality (cf. work on agent programming languages [Meyer, 1998, Thomas, 1995,
Weerasooriya et al., 1995]). In this context, an architecture can be viewed as a sep-
aration of concerns—it identifies the main functions that ultimately give rise to the
agent’s behaviour and defines the interdependencies that exist between them. As
agent architectures become more widely used, there is an increasing demand for un-
ambiguous specifications of them and there is a greater need to verify their imple-
mentations. To this end, a range of techniques have been used to formally specify
agent architectures (eg Concurrent MetateM [Fisher, 1998, Wooldridge, 1996], DE-
SIRE [Brazier et al., 1995, Treur, 1991] and Z [d’Inverno et al., 1998]). However, these
techniques typically fall short in at least one of the following ways: (i) they enforce a
particular view of architecture upon the specification; (ii) they offer no explicit struc-
tures for modelling the components of an architecture or the relationships between
them; (iii) they leave a gap between the specification of an architecture and its im-
plementation.

To rectify these shortcomings, Parsons et al. proposed [Parsons et al., 1998] the
use of multi-context systems [Giunchiglia and Serafini, 1994] as a means of specifying
and implementing agent architectures. Multi-context systems provide an overarching
framework that allows distinct theoretical components to be defined and interrelated.

63

64 Infrastructure: the agent model

Such systems consist of a set of contexts, each of which can informally be considered
to be a logic and a set of formulae written in that logic, and a set of bridge rules for trans-
ferring information between contexts. Thus, different contexts can be used to represent
different components of the architecture and the interactions between these components
can be specified by means of the bridge rules between the contexts. We believe multi-
context systems are well suited to specifying and modelling agent architectures for two
main types of reason: (i) from a software engineering perspective they support modular
decomposition and encapsulation; and (ii) from a logical modelling perspective they
provide an efficient means of specifying and executing complex logics. Each of these
broad areas will now be dealt with in turn.

Let us first consider the advantages from a software engineering perspective. Firstly,
multi-context systems support the development of modular architectures. Each archi-
tectural component—be it a functional component (responsible for assessing the agent’s
current situation, say) or a data structure component (the agent’s beliefs, say)—can be
represented as a separate context. The links between the components can then be made
explicit by writing bridge rules to link the contexts. This ability to directly support
component decomposition and component interaction offers a clean route from the high
level specification of the architecture through to its detailed design. Moreover, this basic
philosophy can be applied no matter how the architectural components are decomposed
or how many architectural components exist. Secondly, since multi-context systems
encapsulate architectural components and enable flexible interrelationships to be speci-
fied, they are ideally suited to supporting re-use (both of designs and implementations).
Thus, contexts that represent particular aspects of the architecture can be packaged as
software components (in the component-ware sense [Szyperski, 1998]) or they can be
used as the basis for specialization of new contexts (inheritance in the object-oriented
sense [Booch, 1994]).

Moving onto the logical modelling perspective, there are four main advantages of
adopting a multi-context approach. The first is an extension of the software engineer-
ing advantages which specifically applies to logical systems. By breaking the logical
description of an agent into a set of contexts, each of which holds a set of related for-
mulae, we effectively get a form of many-sorted logic (all the formulae in one context
are a single sort) with the concomitant advantages of scalability and efficiency. The
second advantage follows on from this. Using multi-context systems makes it possible
to build agents which use several different logics in a way that keeps the logics neatly
separated (all the formulae in one logic are gathered together in one context). This
either makes it possible to increase the representational power of logical agents (com-
pared with those which use a single logic) or simplify agents conceptually (compared
with those which use several logics in one global context). This latter advantage is il-
lustrated in [Parsons et al., 1998] where multi-context systems are used to simplify the
construction of a belief/desire/intention (BDI) agent.

Both of the above advantages apply to any logical agent built using multi-context
systems. The remaining two advantages apply to specific types of logical agent—those
which reason about their mental attitudes and those of other agents. The first is that
multi-context systems make it possible [Giunchiglia and Serafini, 1994] to build agents
which reason in a way which conforms to the use of modal logics like KD45 (the stan-

5.2. Multi-context agents 65

dard modal logic for handling belief) but which obviates the difficulties usually inher-
ent in theorem proving in such logics. Thus the use of multi-context systems makes it
easy to directly execute agent specifications where those specifications deal with modal
notions. Again this is illustrated in [Parsons et al., 1998]. The final advantage is re-
lated to this. Agents which reason about beliefs are often confronted with the prob-
lem of modelling the beliefs of other agents, and this can be hard, especially when
those other agents reason about beliefs in a different way (because, for instance, they
use a different logic). Multi-context systems provide a neat solution to this problem
[Benerecetti et al., 1997, Cimatti and Serafini, 1995].

When the software engineering and the logical modelling perspectives are com-
bined, it can be seen that the multi-context approach offers a clear path from speci-
fication through to implementation. By providing a clear set of mappings from con-
cept to design, and from design to implementation, the multi-context approach offers
a way of tackling the gap that currently exists between the theory and the practice of
agent-based systems. To some extend the advantages of multi-context systems were
explored in [Parsons et al., 1998]. Here, we extend the former by further refining the
approach, extending the representation and providing additional support for building
complex agents. In particular we introduce three new ideas. The first is that of group-
ing contexts together into modules, giving another level of abstraction in defining agent
architectures. The second is the idea of bridge rules which delete formulae from cer-
tain contexts (as opposed to just introducing them), an idea which allows the modelling
of consumable resources. The third idea is that of introducing a time-delay into the
execution of a bridge rule in order to allow inter-context synchronisation.

The remainder of this chapter is structured in the following manner. Section 5.2
introduces the ideas of multi-context systems on which our approach is founded. Sec-
tion 5.3 explains how we have extended the use of multi-context systems to better
handle systems of high complexity. Section 5.4 then illustrates our approach using a
specific agent architecture and a specific exemplar scenario, and Section 5.5 extends
this example to include inter agent communication. Finally, section 5.6 compares our
approach to other proposals in more or less the same vein.

5.2 Multi-context agents
As discussed above, we believe that the use of multi-context systems offers a num-
ber of advantages when engineering agent architectures. However, multi-context sys-
tems are not a panacea. We believe that they are most appropriate when build-
ing agents which are logic-based and are therefore largely deliberative. Whether
such agents are the best solution depends on the task the agent is to perform. See
[Wooldridge and Jennings, 1995] for a discussion of the relative merits of logic-based
and non logic-based approaches to specifying and building agent architectures.

5.2.1 The basic model
Using a multi-context approach, an agent architecture consists of four basic types of
component. These components were first identified in the context of building theorem

66 Infrastructure: the agent model

provers for modal logic [Giunchiglia and Serafini, 1994], before being identified as a
methodology for constructing agent architectures [Noriega and Sierra, 1996] where full
detail of the components can be found. In brief, the components are the following:

• Units: Structural entities representing the main components of the architecture.

• Logics: Declarative languages, each with a set of axioms and a number of rules
of inference. Each unit has a single logic associated with it.

• Theories: Sets of formulae written in the logic associated with a unit.

• Bridge rules: Rules of inference which relate formulae in different units.

Units represent the various components of the architecture. They contain the bulk of
an agent’s problem solving knowledge, and this knowledge is encoded in the specific
theory that the unit encapsulates. In general, the nature of the units will vary between
architectures. For example, a BDI agent may have units which represent theories of be-
liefs, desires and intentions (as in [Parsons et al., 1998]), whereas an architecture based
on a functional separation of concerns may have units which encode theories of coop-
eration, situation assessment and plan execution. In either case, each unit has a suitable
logic associated with it. Thus the belief unit of a BDI agent has a logic of belief asso-
ciated with it, and the intention unit has a logic of intention. The logic associated with
each unit provides the language in which the information in that unit is encoded, and
the bridge rules provide the mechanism by which information is transferred between
units.

Bridge rules can be understood as rules of inference with premises and conclusions
in different units. For instance:

u1 : ψ, u2 : ϕ

u3 : θ

means that formula θ may be deduced in unit u3 if formulae ψ and ϕ are deduced in
units u1 and u2 respectively.

When used as a means of specifying agent architectures [Noriega and Sierra, 1996,
Parsons et al., 1998], all the elements of the model, both units and bridge rules, are
taken to work concurrently. In practice this means that the execution of each unit is a
non-terminating, deductive process. The bridge rules continuously examine the theories
of the units that appear in their premises for new sets of formulae that match them. This
means that all the components of the architecture are always ready to react to any change
(external or internal) and that there are no central control elements.

5.2.2 The extended model
The model as outlined above is that introduced in [Noriega and Sierra, 1996] and used
in [Parsons et al., 1998]. However, this model has proved deficient in a couple of ways,
both connected to the dynamics of reasoning. In particular we have found it useful to
extend the basic idea of multi-context systems by associating two control elements with
the bridge rules: consumption and time-outs. A consuming condition means that the
bridge rule removes the formula from the theory which contains the premise (remember

5.2. Multi-context agents 67

that a theory is considered to be a set of formulae). Thus in bridge rules with consum-
ing conditions, formulae “move” between units. To distinguish between a consuming
condition and a non-consuming condition, we use the notation ui > ψ for consuming
and ui : ψ for non-consuming conditions. Thus:

u1 > ψ, u2 : ϕ

u3 : θ

means that when the bridge rule is executed,ψ is removed from u1 but ϕ is not removed
from u2.

Consuming conditions increase expressiveness in the communication between units.
With this facility, we can model the movement of a formula from one theory to another
(from one unit to another), changes in the theory of one unit that cause the removal
of a formula from another one, and so on. This mechanism also makes it possible to
model the concept of state since having a concrete formula in one unit or another might
represent a different agent state. For example, later in the chapter we use the presence
of a formula in a particular unit to indicate the availability of a resource.

A time-out in a bridge rule means there is a delay between the instant in time at
which the conditions of the bridge rule are satisfied and the effective activation of the
rule. A time-out is denoted by a label on the right of the rule; for instance:

u1 : ψ

u2 : ϕ
[t]

means that t units of time after the theory in unit u1 gets formula ψ, the theory in unit
u2 will be extended by formulaϕ. If during this time period formulaψ is removed from
the theory in unit u1, this rule will not be applied. In a similar way to consuming con-
ditions, time-outs increase expressiveness in the communication between units. This
is important when actions performed by bridge rules need to be retracted if a specific
event does not happen after a given period of time. In particular, it enables us to repre-
sent situations where silence during a period of time may mean failure (in this case the
bridge rules can then be used to re-establish a previous state).

Both of these extensions to the standard multi-context system incur a cost. This
is that including them in the model means that the model departs somewhat from first
order predicate calculus, and so does not have a fully-defined semantics. One possibility
could be the use of linear logic, in which individual propositions can only be used once
in any given proof, as a means of giving a semantics to consuming conditions, and
various temporal logics (such as those surveyed in [Vila, 1995]) as a means of giving
a semantics to time-outs. As Gabbay [Gabbay, 1996] discusses, resource logics like
linear logic are captured naturally in systems of argumentation1, and it is also natural to
consider extending the predicates we use to have explicit temporal arguments.

1To be more precise Gabbay discusses how labelled deductive systems can be used to capture linear logic,
but the necessary features of labelled deductive systems are shared with systems of argumentation.

68 Infrastructure: the agent model

MODULE - a

com.
unit

MODULE - n1

com.
unit

MODULE - nn

com.
unit

...

...

a: ϕ

n1:ϕ1,...,nn:ϕν
......

a: φ

n1:φ1,...,nn:φn

a: ψ

 n1:ψ1,...,nn:ψn

Figure 5.1: Module inter-connection (from a’s perspective only)

5.3 Modular agents
Using units and bridge rules as the only structural elements is cumbersome
when building complex agents (as can be seen from the model we developed in
[Parsons et al., 1998] or the complexity that can achieve a single module like the one
described in chapter 6). As the complexity of the agent increases, it rapidly becomes
very difficult to deal with the necessary number of units and their interconnections us-
ing bridge rules alone. Adding new capabilities to the agent becomes a complex task
in itself. To solve this problem we suggest adding another level of abstraction to the
model—the module. Essentially we group related units into modules and separate inter-
connections into those inside modules and those between modules. This abstraction is,
of course, one of the main conceptual advantages of object orientation [Booch, 1994].

5.3.1 Introducing modules

A module is a set of units and bridge rules that together model a particular capability or
facet of an agent. For example, planning agents must be capable of managing resources,
and such an agent might have a module modelling this ability. Similarly, such an agent
might have a module for generating plans, a module for handling communication, and
so on. Note that currently we do not allow modules to be nested inside one another,
largely because we have not yet found it necessary to do so. However, it seems likely
that we will need to develop a means of handling nested heirachies of modules in order

5.3. Modular agents 69

com.
unit

com.
unit

com.
unit

MODULE - A

MODULE - N1

MODULE - Nn

...

......

Figure 5.2: A pictorial explanation of the bus metaphor

to build more complex agents than we are currently constructing.
Each module must have a communication unit. This unit is the module’s unique

point of contact with the other modules and it knows what kind of messages its mod-
ule can deal with. All of an agent’s communication units are inter-connected with the
others using multicast bridge rules (MBRs) as in Figure 5.1. This figure shows three
MBRs (the rectangles in the middle of the diagram) each of which has a single premise
in module a and a single conclusion in each of the modules ni. The use of broad-
cast communication within the agent was chosen for convenience and simplicity—it is
clearly not an essential part of the approach. It does, however, enhance the plug and
play approach we are aiming for since when broadcast is used it is not necessary to alter
the message handling within an agent when modules are added or removed.

Note that under this scheme all modules receive all messages, even those messages
that are not specially for them. This obviates the need for a central control mechanism
which routes messages or chooses which modules should respond to requests from other
modules. With this type of connection, adding or removing a module doesn’t affect the
others (in a structural sense). We can see this communication net as a bus connecting
all modules and firing a MBR is the same as putting a message onto this bus. There are
as many kinds of messages running along this bus as there are MBRs (see Figure 5.2).

Since the MBRs send messages to more than one module, a single message can pro-
voke more than one answer and, hence, contradictory information may appear. There
are many possible ways of dealing with this problem, and here we consider one of them
which we have found useful as an example. We associate a weight with each message.
This value is assigned to the message by the communication unit of the module that
sends it out. Weights are drawn from the interval [0, 1] (maximum importance is 1 and
minimum is 0), and their meaning is the strength of the opinion given in the message.

70 Infrastructure: the agent model

For example, in the multi-context version of the ReGreT model described in chapter 6,
the weight of a message indicates the degree of reliability that has the trust value from
the point of view of the module. These weights can also be used to resolve contra-
dictory messages. For instance, the message with highest weight might be preferred,
or the different weights of incoming messages could be combined by the communica-
tion unit receiving them to take a final decision (for instance using the belief revision
mechanism described in [Parsons and Giorgini, 1999] where weights are taken to be
degrees of belief in the truth of the message). Note that we only use weights in inter
module messages, though it is quite possible to imagine using weights, especially those
representing degress of belief, in inter agent messages as well.

Obviously, the use of modules does not solve every problem associated with altering
the structure of an agent. For instance, if the only module which can perform a given
task is removed, the agent will no longer be able to perform this task. Similarly, if one
module depends on another module to do something and the second is removed, the
first module becomes useless. However, the use of modules does simplify dealing with
these kinds of interdependencies. Working at the unit level these problems are very
difficult to deal with, but they became easier to handle when working at the module
level because the number of modules that constitute an agent is usually small (7 or 8 in
a relatively complex agent) and their area of influence is clearly circumscribed.

5.3.2 Messages between modules

We start with a setAN of agent names and a setMN of module names. Our convention
is that agent names are upper case letters, and module names are lower case letters. An
inter module message has the form:

I(S,R, ϕ,G, ψ)

where

• I is an illocutionary particle that specifies the kind of message. Examples of
illocutions are Ask , Query , Inform or Answer .

• S and R both have the form A[/m]∗2 where A ∈ AN or A = Self (Self refers
to the agent that owns the module) and m ∈MN or m = all (all denotes all the
modules within that agent). S reflects who is sending the message and R indicates
to whom it is directed.

• ϕ is the content of the message.

• G is a record of the derivation of ϕ. It has the form: {{Γ1 ` ϕ1} . . .{Γn ` ϕn}}
where Γ is a set of formulae and ϕi is a formula with ϕn = ϕ.

• ψ ∈ [0, 1] is the weight associated with the message.

2As elsewhere we use BNF syntax, so that A[/m]∗ means A followed by one or more occurrences of
/m.

5.3. Modular agents 71

Note that G is exactly the set of grounds of the argument for ϕ [Parsons et al., 1998].
Where the agent does not need to be able to justify its statements, this component of
the message can be discarded. Note that, as argued by Gabbay [Gabbay, 1996] this ap-
proach is a generalisation of classical logic—there is nothing to stop the same approach
being used when messages are just formulae in classical logic.

To see how this works in practice, consider the following. Suppose that an agent
(named B) has four modules (a, b, c, d). Module a sends the message:

ask(Self/a, Self/all, Give(B,A,Nail), ψ1, 0.5)

This means that module a of agent B is asking all the other modules in B whether B
should give an agent called “A” a nail. The reason for doing this is ψ1 and the weight
a puts on this request is 0.5. Assume modules c and d send the answer

answer(Self/c, Self/a, not(Give(B,A,Nail)), ψ2, 0.6)

and
answer(Self/d, Self/a, not(Give(B,A,Nail)), ψ3, 0.7)

while module b sends

answer(Self/b, Self/a,Give(B,A,Nail), ψ4, 0.3)

Currently we treat the weights of the messages as possibility measures
[Dubois and Prade, 1988], and so combine the disjunctive support for
not(Give(B,A,Nail)) using max. As this combined weight is higher than the
weight of the positive literal, the communication unit of Module a will accept the
opinion not (Give (B, A, Nail)).

These degrees can change over time as the agent in question obtains new informa-
tion which modifies its beliefs and intentions. In the last example, suppose that after
some period of time, Module b receives new information which enables it to deduce that
giving something to agent A is very desirable. It can increase the degree of importance
of its answer:

answer(Self/b, Self/a,Give(b, a,Nail), ψ4, 0.9)

Later, if Module a tries to give a Nail to agent A, it will succeed.
The messages we have discussed so far are those which are passed around the agent

itself in order to exchange information between the modules which compose it. Our
approach also admits the more common idea of messages between agents. Such inter
agent messages have the same basic form, but they have two minor differences:

• S and R are agent names (i.e. S,R ∈ AN), no modules are specified.

• there is no degree of importance (because it is internal to a particular agent).
However inter agent messages could be augmented with a degree of belief
[Parsons and Giorgini, 1999] which could be based upon the weight of the rel-
evant intra-agent messages. For instance, the witness information that receives
an agent with a trust and reputation model like ReGreT should have associated a
degree of reliability (assigned by the witness itself) that indicates how confident
is the witness about that information.

72 Infrastructure: the agent model

goal
manager

resource
manager

plan
library

Figure 5.3: The modules in the agent

Thus, a message from B to A offering the Nail mentioned above would have the form:

inform(A,B,Give(B,A,Nail), ψ5)

With this machinery in place, we are ready to specify realistic agent architectures.

5.4 Specifying a simple agent
This section gives a specification of a simple agent using the approach outlined above.
The agent in question is a simple version of the home improvement agents first dis-
cussed in [Parsons and Jennings, 1996], which is supposed to roam the authors’ homes
making small changes to their environment. In particular the agent we discuss here at-
tempts to hang pictures. As mentioned, the agent is rather simpler than those originally
introduced, the simplification being intended to filter out unnecessary details that might
confuse the reader. As a result, compared with the more complex versions of the home
improvement agents described in [Parsons et al., 1998], the agent is not quite solipsistic
(since it has some awareness of its environment) but it is certainly autistic (since it has
no mechanisms for interacting with other agents). Subsequent sections build upon this
basic definition to produce more sophisticated agents.

5.4.1 A high-level description
The basic structure of the agent is that of Figure 5.3. There are three modules connected
by multicast bridge rules. These are the plan library (PL), the resource manager (RM),
and the goal manager (GM). Broadly speaking, the plan library stores plans for the
tasks that the agent knows how to complete, the resource manager keeps track of the
resources available to the agent, and the goal manager relates the goals of the agent to
the selection of appropriate plans.

There are two types of illocution which get passed along the multicast bridge rules.
These are the following:

• Ask: a request to another module.

5.4. Specifying a simple agent 73

S

CU

GET_PLAN

Figure 5.4: The plan library module (PL)

• Answer: an answer to an inter module request.

Thus , what all the modules can do is to make requests on one another and answer
those requests. We also need to define the predicates which form the content of such
messages. Given a set of agent names AN , and with AN ′ = AN ∪ {Self}.

• goal(X): X is a string describing an action. This denotes the fact that the agent
has the goal X .

• have(X,Z): X ∈ AN ′ is the name of an agent (here always instantiated to
Self , the agent’s name for itself, but a variable since the agent is aware that other
agents may own things), and Z is the name of an object. This denotes Agent X
has possession of Z.

Note that, from now on, we adopt a Prolog-like notation in which the upper case letters
X,Y, Z, P are taken to be variables.

As can be seen from the above, the content of the messages is relatively simple,
referring to goals that the agent has, and resources it possesses. Thus a typical message
would be a request from the goal manager as to whether the agent possesses a hammer:

ask(Self /GM,Self /all, goal(have(Self , hammer)), {})

Note that in this message, as in all messages in the remainder of this chapter, we ignore
the weight in the interests of clarity. Such a request might be generated when the goal
manager is trying to ascertain if the agent can fulfill a possible plan which involves
using a hammer.

5.4.2 Specifications of the modules
Having identified the structure of the agent in terms of modules, the next stage in the
specification is to detail the internal structure of the modules in terms of the units they

74 Infrastructure: the agent model

R

CU

ALLOCATE

Figure 5.5: The resource manager module

contain, and the bridge rules connecting those units. The structure of the plan library
module is given in Figure 5.4. In this diagram, units are represented as circles, and
bridge rules as rectangles. Arrows into bridge rules indicate units which hold the an-
tecedents of the bridge rules, and arrows out indicate the units which hold the conse-
quents. The two units in the plan library module are:

• The communication unit (CU): the unit which handles communication with other
units.

• The plan repository (S): a unit which holds a set of plans.

The bridge rule connecting these units is:

GET PLAN =

CU > ask(Self /Sender,Self /all, goal(Z), {}),
S : plan(Z, P)

CU : answer(Self /PL,Self /Sender, goal(Z), {P})

where the predicate plan(Z, P) denotes the fact that P , taken to be a conjunction of
terms, is a plan to achieve the goal Z3.

When the communication unit sees a message on the inter module bus asking about
the feasibility of the agent achieving a goal, then, if there is a plan to achieve that goal
in the plan repository, that plan is sent to the module which asked the original question.
Note that the bridge rule has a consuming condition—this is to ensure that the question
is only answered once.

The structure of the resource manager module is given in Figure 5.5. The two units
in this module are:

• The communication unit (CU).

3Though here we take a rather relaxed view of what constitutes a plan—our “plans” are little more than a
set of pre-conditions for achieving the goal.

5.4. Specifying a simple agent 75

• The resource repository (R): a unit which holds the set of resources available to
the agent.

The bridge rule connecting the two units is the following:

ALLOCATE =

CU > ask(Self /Sender, Self /RM, goal(have(Self, Z)), {}),
R > resource(Z, free)

CU : answer(Self /RM, Self /Sender, have(Self, Z), {}),
R : resource(Z, allocated)

where the resource(Z, allocated) denotes the fact that the resource Z is in use, and
resource(Z, free) denotes the fact that the resource Z is not in use.

In a similar way, it is clear that in a complete specification, a bridge rule to deal-
locate a resource would be necessary. We have obviated this bridge rule in the current
specification because it is not relevant for our example. This help us to maintain things
as simple as possible.

When the communication unit sees a message on the inter module bus asking if the
agent has a resource, then, if that resource is in the resource repository and is currently
free, the formula recording the free resource is deleted by the consuming condition, a
new formula recording the fact that the resource is allocated is written to the repository,
and a response is posted on the inter module bus. Note that designating a resource
as “allocated” is not the same as consuming a resource (which would be denoted by
the deletion of the resource), and that once again the bridge rule deletes the original
message from the communication unit.

The goal manager is rather more complex than either of the previous modules we
have discussed, as is immediately clear from Figure 5.6 which shows the units it con-
tains, and the bridge rules which connect them. These units are:

• The communication unit (CU).

• The plan list unit (P): this contains a list of plans the execution of which is cur-
rently being monitored.

• The goal manager unit (G): this is the heart of the module, and ensures that the
necessary sub-goaling is carried out.

• The resource list module (R): this contains a list of the resources being used as
part of plans which are currently being executed.

The bridge rules relating these units are as follows. The first two bridge rules handle
incoming information from the communication unit:

RESOURCE =
CU > answer(Self /RM,Self /GM, have(Self , Z), {})

R : Z

PLAN =
CU > answer(Self /PL,Self /GM, goal(Z), {P})

P : plan(Z, P)

The first of these, RESOURCE, looks for messages from the resource manager re-
porting that the agent has possession of some resource. When such a message arrives,

76 Infrastructure: the agent model

G

CU

P

R
DONE

ASK

PLAN

RESOURCE

MONITOR

Figure 5.6: The goal manager module (GM)

the goal manager adds a formula representing the resource to its resource list module.
The second bridge rule PLAN does much the same for messages from the plan library
reporting the existence of a plan—such plans are written to the plan library. There is
also a bridge rule ASK which generates messages for other modules:

ASK =

G : goal(X),

G : not(done(X)),

R : not(X),

P : not(plan(X,Z))

G : not(done(ask(X))),

CU : ask(Self /G,Self /all, goal(X), {}),
G : done(ask(X))

If the agent has the goal to achieve X , and X has not been achieved, nor is X an
available resource (and therefore in the R unit), nor is there a plan to achieve X , and
X has not already been requested from other modules, then X is requested from other
modules and this request is recorded. Note that the “not” used in this bridge rule is not
a logical negation but a negation by failure (like in PROLOG).

5.4. Specifying a simple agent 77

The remaining bridge rules are:

MONITOR =

G : goal(X),

R : not(X),

P : plan(X,P)

G : monitor(X,P)

DONE =

G : goal(X),

R : X

G : done(X)

The MONITOR bridge rule takes a goal X and, if there is no resource to achieve X
but there is a plan to obtain the resource, adds the formula monitor(X,P) to the G
unit, which has the effect of beginnning the search for the resources to carry out the
plan. The DONE bridge rule identifies that a goalX has been achieved when a suitable
resource has been allocated.

5.4.3 Specifications of the units
Having identified the individual units within each module, and the bridge rules which
connect the units, the next stage of the specification is to identify the logics present
within the various units, and the theories which are written in those logics. For this
agent most of the units are simple containers for atomic formulae. In contrast, the G
unit contains a theory which controls the execution of plans. The relevant formulae are:

monitor(X,P) → assert subgoals(P)

monitor(X,P) → prove(P)

monitor(X,P) ∧ proved(P) → done(X)

assert subgoals(
∧

i

Yi) →
∧

i

goal(Yi)

prove(X ∧
∧

i

Yi) ∧ done(X) → prove(
∧

i

Yi)

∧

i

done(Yi) → proved(
∧

i

Yi)

The monitor predicate forces all the conjuncts which make up its first argument to be
goals (which will be monitored in turn), and kicks off the “proof” of the plan which is
its second argument4. This plan will be a conjunction of actions, and as each is “done”
(a state of affairs achieved through the allocation of resources by other bridge rules),
the proof of the next conjunct is sought. When all have been “proved”, the relevant goal
is marked as completed.

4Given our relaxed view of planning, this “proof” consists of showing the pre-conditions of the plan can
be met.

78 Infrastructure: the agent model

ask(Self/GM,Self/all, goal(hangP icture(Self)), {}) (GM1)
answer(Self/PL, Self/GM, goal(hangP icture(Self)),
{have(Self , picture) ∧ have(Self , nail) ∧ have(Self , hammer)}) (PL1)

ask(Self/GM,Self/all, goal(have(Self , picture)), {}) (GM2)
ask(Self/GM,Self/all, goal(have(Self , nail)), {}) (GM3)
answer(Self/RM,Self/GM, have(Self , picture), {}) (RM1)
ask(Self/GM,Self/all, goal(have(Self , hammer)), {}) (GM4)
answer(Self/RM,Self/GM, have(Self , nail), {}) (RM2)
answer(Self/RM,Self/GM, have(Self , hammer), {}) (RM3)

Table 5.1: The inter module messages

The specification as presented so far is generic—it is akin to a class description
for a class of autistic home improvement agents. To get a specific agent we have to
“program” it by giving it information about its initial state. For our particular example
there is little such information, and we only need to add formulae to three units. The
plan repository holds a plan for hanging pictures using hammers and nails:

S : plan(hangP icture(X),

have(X, picture) ∧ have(X,nail) ∧ have(X,hammer))

Of course, this is a very rudimentary plan, which only consists of the basic resources
needed to achieve the goal of hanging a picture. The resource repository holds the
information that the agent has a picture, nail and a hammer:

R : resource(picture, free)

R : resource(nail, free)

R : resource(hammer, free)

Finally, the goal manager contains the fact that the agent has the goal of hanging a
picture:

G : goal(hangP icture(Self))

With this information, the specification is complete.

5.4.4 The agent in action
When the agent is instantiated with this information and executed, we get the following
behaviour. The goal manager unit, which has the goal of hanging a picture, does not
have the resources to hang the picture, and has no information on how to obtain them.
It therefore fires the ASK bridge rule to ask other modules for input, sending mes-
sage GM1 (see Table 5.1). When this message reaches the plan library, the bridge rule
GET PLAN is fired, returning a plan (PL1). This triggers the bridge rule PLAN in the
goal manager, adding the plan to its P unit. This addition causes the MONITOR bridge

5.5. Specifying more complex agents 79

GM

PL

RM

GM1

GM1 PL1

PL1 GM2

GM2

GM3 GM4

RM1

RM1

GM3 RM2 GM4

RM2

RM3

RM3

Figure 5.7: An execution trace for the agent

rule to fire. This, along with the theory in the G unit, causes the goal manager to realise
that it needs a picture, hammer and nail, and to ask for these (GM2, GM3, GM4). As
each of these messages reaches the resource manager, they cause the ALLOCATE rule
to fire, identifying the resources as being allocated, and generating messages back to
the goal manager (RM1, RM2, RM3). These resources cause the RESOURCE bridge
rule in the goal manager to fire and the resources to be added to the resource list, R.
The addition of the resouces is all that is required to complete the plan of hanging a pic-
ture, and the bridge rule DONE fires, adding the formulae done(have(Self, picture)),
done(have(Self, hammer)) and done(have(Self, nail)) to the G unit. The theory
in G then completes execution.

The messages passed between modules are represented in pictorial form in Fig-
ure 5.7—each row in the diagram identifies one module, time runs from left to right,
and the diagonal lines represent the transfer of messages between modules.

5.5 Specifying more complex agents
This section gives a specification of a pair of agents which build upon those in the
previous section. Indeed the agents introduced here are strict extensions of those in the
previous section, containing all the components (down to the level of individual units)
of the autistic agents and other components besides. The main extension is to reduce
the autism of the model by giving each agent mechanisms for interacting with other
agents.

5.5.1 A high-level description
The basic structure of the agent is that of Figure 5.8. There are four modules connected
by multicast bridge rules. These are the plan library (PL), the resource manager (RM),
the goal manager (GM) and the social manager (SM). The first three modules carry out
the same basic functions as their namesakes in Section 5.4. The social manager handles
interactions with other agents.

The intra-agent messages are exactly the same as for the autistic agent, but there
are also two types of inter agent message, which broadly correspond to the ask and
answer messages. These are:

• Request: a request to another agent.

• Reply: an answer to an inter agent request.

80 Infrastructure: the agent model

goal
manager

resource
manager

plan
library

social
manager

Figure 5.8: The modules in the agent

As in the previous section, uttering these illocutions are the only actions available to the
agents. Thus the agents can talk about passing resources among them, but we provide
no mechanisms for actually passing the resources.

The only new predicate which these agents employ is:

• give(X,Y, Z): X ∈ AN ′ and Y ∈ AN ′ are agent names, and Z is a string
describing a resource. This denotes X giving Z to Y .

and this is used in conjunction with the request and reply message types to build inter
agent messages, which are of the form:

request(A,B, give(B,A, nail), {})

In this example, A requests that B gives a nail to A. In the following:

reply(B,A, give(B,A, nail), {})

B replies to A that B will give the nail to A.

5.5.2 Specifications of the modules

Once again, having decided on the overall structure of the agent, we have to specify
the internal structure of the individual modules. The plan library module, pictured in
Figure 5.9 has exactly the same structure as in the simple agent5. The two units in the
plan library module are:

• The communication unit (CU): the unit which handles communication with other
units.

• The plan repository (S): a unit which holds a set of plans.

5For ease of reference we repeat those parts of the specification which were also in the autistic agent
model.

5.5. Specifying more complex agents 81

S

CU

GET_PLAN

Figure 5.9: The plan library module (PL)

The bridge rule connecting these units is:

GET PLAN =

CU > ask(Self /Sender,Self /all, goal(Z), {}),
S : plan(Z, P)

CU : answer(Self /PL,Self /Sender, goal(Z), {P})

and the unit works in exactly the same way as in the simple agent.
The goal manager, pictured in Figure 5.10 is also the same as in the simple agent.

The units are the following:

• The communication unit (CU).

• The plan list unit (P): this contains a list of plans the execution of which is cur-
rently being monitored.

• The goal manager unit (G): this is the heart of the module, and ensures that the
necessary sub-goaling is carried out.

• The resource list module (R): this contains a list of the resources being used as
part of plans which are currently being executed.

The bridge rules relating these units are:

RESOURCE =
CU > answer(Self /RM,Self /GM, have(Self , Z), {})

R : Z

82 Infrastructure: the agent model

G

CU

P

R
DONE

ASK

PLAN

RESOURCE

MONITOR

Figure 5.10: The goal manager module (GM)

PLAN =
CU > answer(Self /PL,Self /GM, goal(Z), {P})

P : plan(Z, P)

ASK =

G : goal(X),

G : not(done(X)),

R : not(X),

P : not(plan(X,Z)),

G : not(done(ask(X))),

CU : ask(Self /G,Self /all, goal(X), {}),
G : done(ask(X))

MONITOR =

G : goal(X),

R : not(X),

P : plan(X,P)

G : monitor(X,P)

5.5. Specifying more complex agents 83

R

CU

ALLOCATEINF

C_INF_ID
ASK_OUT

GIVE

CONSISTENCE

ALLOCATE2

Figure 5.11: The resource manager module (RM)

DONE =

G : goal(X),

R : X

G : done(X)

and these work in exactly the same way as in the simple agent. As can be seen by
comparing Figure 5.5 with Figure 5.11, the resource manager of our new agents is
considerably more complex than that in Section 5.4. This resource manager contains
and extra unit INF which holds information about the resources possessed by agents in
contrast with the R unit which simply records whether resources are free or allocated—
this is a complication introduced by moving from one agent to several. Because the
autistic agent does not deal with any external entities, any resources it considers belong
to it, and any resources which do not belong to it do not exist as far as it is concerned.
The social agents, in contrast, need to consider two aspects to every resource—whether
or not it is free, and who has control over it. The R unit deals with the former, and the
INF unit with the latter.

Clearly with more units we have more bridge rules. Of those in Figure 5.11, only
the ALLOCATE rule is familiar from the autistic agent:

ALLOCATE =

CU > ask(Self /Sender, Self /Receiver, goal(have(X,Z)), {P}),
R > resource(Z, free)

CU : answer(Self /RM, Self /Sender, have(X, Z), {}),
R : resource(Z, allocated)

where resource(Z, allocated) denotes the fact that the resource Z is in use, and
resource(Z, free) denotes the fact that the resource Z is not in use. This rule will

84 Infrastructure: the agent model

be used if the agent is dealing with its own need for a resource that it owns, as in the
case of the autistic agent.

Because we now have two agents, the resource that one agent requires may be
owned by another agent, and this situation is where the INF unit comes into play. There
are four bridge rules which relate this unit to R and CU. The first of these is C INF ID,
which places knowledge about which agent has which resource into INF as a result of
an inform message:

C INF ID =
CU > inform(U, V, have(X, Z), {W})

INF : knowledge(have(X,Z))

The name indicates that the rule is a kind of identity rule between the CU and INF units.
Because in this model resources belong to just one agent, there is a contradiction if a
resource is thought to belong two agents at once. The CONSISTENCE rule ensures
that this situation does not occur by ensuring that the agent doesn’t think another agent
has a resource knowledge(have(X,Z)) when in fact the agent has the resource itself
resource(Z, free).

CONSISTENCE =

INF > knowledge(have(X,Z)),

R : resource(Z, free)

INF : knowledge(not(have(X,Z)))

If an agent requires a resource it does not have, the ASK OUT bridge rule allows it to
request the resource from another agent, and the GIVE rule makes it possible to accept
a resource if it is given:

ASK OUT =

CU : ask(Self/Sender, Self/Receiver, goal(have(X,Z)), {P},
R : not(resource(Z, free)),

INF : knowledge(have(Y,Z))

CU : ask(Self/RM, Self/SM, give(Y,X, Z, {P}

GIVE =

CU > ask(Self/RM, Self/SM, give(X,Y, Z), {P},
CU > answer(Self/SM, Self/RM, give(X, Y, Z), {Q}

R : resource(Z, free)

The final resource-related situation an agent may be in is when it has a resource that an-
other agent requires. This situation is handled by the ALLOCATE2 bridge rule, which
hands over a resource if it is free and the social manager tells it to, updating the INF
unit with information about where the resource is:

ALLOCATE2 =

CU > ask(Self /SM, Self /Receiver, give(Self, Y, Z), {P}),
R > resource(Z, free)

CU : answer(Self /RM, Self /SM, give(Self, Y, Z), {P}),
INF : knowledge(have(Y,Z))

This completes the description of the resource manager.
The final module is the social manager. As can be seen from Figure 5.12, here the

social manager consists of a single communication unit CU. This unit is responsible
of receiving and sending reply and request messages from/to the social managers of
the other agents. The generation of these messages is carried out by the theory in the
communication unit.

5.5. Specifying more complex agents 85

CU

Social
Manager

AGENT B

CU

Social
Manager

AGENT A
request

reply

Figure 5.12: The social manager module (SM)

5.5.3 Specifications of the units
So far we have described the modules which make up the new agents, and for each
module we have identified both the units which composed them and the connections
necessary between the units. The next step is to decide what the internal structure of
the units will be—which formulae and theories they will contain, and which logics
those theories will be written in. Once again, there are not many units which include
more than just a few atomic formulae. One of these is the unit G of the goal manager
which contains the same theory as in the autistic agent:

monitor(X,P) → assert subgoals(P)

monitor(X,P) → prove(P)

monitor(X,P) ∧ proved(P) → done(X)

assert subgoals(
∧

i

Yi) →
∧

i

goal(Yi)

prove(X ∧
∧

i

Yi) ∧ done(X) → prove(
∧

i

Yi)

∧

i

done(Yi) → proved(
∧

i

Yi)

The other unit which contains more than just atomic formulae is the CU unit in the
social manager, which contains:

ask(Self/Sender, Self/SM, give(X,Self, Z), {})→
request(Self,X, give(X,Self, Z), {})

86 Infrastructure: the agent model

reply(X,Self, give(X, self, Z), {})
∧ ask(Self/Sender, Self/SM, give(X,Self, Z), {})→

answer(Self/SM,Self/Sender, give(X,Self, Z), {})
request(X,Self, give(Self,X, Z), {})→

ask(Self/SM,Self/RM, give(Self,X, Z), {})
answer(Self/Sender, Self/SM, give(Self,X, Z), {}) →

reply(Self,X, give(Self,X, Z), {})

This theory takes care of the translation from intra-agent messages to inter agent mes-
sages. The first formula takes an incoming ask message which contains a request for
another agent X to give a resource, and converts it into a request illocution. The sec-
ond formula handles the reply to that request—if another agent responds positively to
a request that the agent has previously made, then an answer message is generated
and sent to the originator of the request. The next two formulae handle responses to
requests. The first of these takes a request for a resource from another agent and turns
it into a message to the resource manager. The second takes a positive response, and
converts that into a reply message. The logic used in this unit, as in all the units in this
agent specification, is classical first order logic.

As in Section 5.4, the specification up to this point is generic, defining something
like a class description for simple non-autistic agents. For the particular scenario we
have in mind, that of two agents which co-operate in hanging a picture, it is necessary
to instantiate this generic description twice. The first instantiation creates an agent A
which is virtually the same as the autistic agent of Section 5.4, the only difference
being that A does not have the nail necessary to hang the picture, knowing instead that
an agent B has the nail. A’s plan repository holds the same plan as that of the autistic
agent:

S : plan(hangP icture(X),

have(X, picture) ∧ have(X,nail) ∧ have(X,hammer))

A’s resource repository holds the information that the agent has a picture and a hammer:

R : Resource(picture, free)

R : Resource(hammer, free)

while A’s INF unit holds the information that B has a nail:

INF : knowledge(have(B, nail))

Finally, A’s goal manager contains the fact that the agent has the goal of hanging a
picture:

G : goal(hangP icture(A))

This completes the specification of A. B is much simpler to instantiate, since it is only
necessary to program it with the resource of a nail, by adding the following formula to

5.5. Specifying more complex agents 87

Agent A

ask(Self/GM,Self/all, goal(hangP icture(A)), {}) (GM1)
answer(Self/PL, Self/GM, goal(hangP icture(A)),
{have(A, picture) ∧ have(A, nail) ∧ have(A, hammer)}) (PL1)

ask(Self/GM,Self/all, goal(have(A, picture)), {}) (GM2)
ask(Self/GM,Self/all, goal(have(A, nail)), {}) (GM3)
answer(Self/RM,Self/SM, give(B,A, nail), {}) (RM1)
ask(Self/GM,Self/all, goal(have(A, hammer)), {}) (GM4)
request(A,B, give(B,A, nail), {}) (SM1)
answer(Self/RM,Self/GM, have(A, picture), {}) (RM2)
answer(Self/RM,Self/GM, have(A, hammer), {}) (RM3)
answer(Self/SM,Self/RM, give(B,A, nail), {}) (SM2)
answer(Self/RM,Self/GM, have(A, nail), {}) (RM4)

Agent B

ask(Self/SM,Self/RM, give(B,A, nail), {}) (SM1)
answer(Self/RM,Self/SM, give(B,A, nail), {}) (RM1)
reply(B,A, give(B,A, nail), {}) (SM2)

Table 5.2: The inter module messages

its resource repository:

R : Resource(nail, free)

This completes the specification of the two agents.

5.5.4 The agents in action
If we execute these two agents, they generate and exchange the messages in Table 5.2
and Figure 5.13, which are very similar to those generated by the autistic agent. The
main difference in this case concerns the provision of the nail required to hang the
picture. In the case of the autistic agent, this nail was the property of the agent and so
all the agent had to do to execute its “plan” of owning the nail was to allocate it. In this
case when Agent A wants the nail it has to request it from B. Luckily for A, when B
receives this request, it immediately agrees.

In more detail, the execution proceeds as follows. The goal manager unit of Agent
A, has the goal of hanging a picture, does not have the resources to hang the picture,
and has no information on how to obtain them. It therefore fires the ASK bridge rule
to ask other modules for input, sending message GM1 (detailed in Table 5.1). When
this message reaches A’s plan library, the bridge rule GET PLAN is fired, returning a
plan (PL1). This triggers the bridge rule PLAN in the goal manager, adding the plan to
its P unit. This addition causes the MONITOR bridge rule to fire. This, along with the

88 Infrastructure: the agent model

GM

PL

RM

GM1

PL1

PL1 GM2 GM4

GM2 RM1 GM4 RM3

RM3

SM

AGENT-B

AGENT-A

RM1 SM1

GM

PL

RM

SM SM1 SM1

SM1 RM1

RM1

SM2

SM2

GM3

GM3 RM2

RM2

SM2

SM2 RM4

RM4

GM1

Figure 5.13: An execution trace for the agents

theory in the G unit, causes the goal manager to realise that it needs a picture, hammer
and nail, and to ask for these (GM2, GM3, GM4). When GM2 and GM4 reach the
resource manager, they cause the same sequence of events as in the autistic agent, firing
the ALLOCATE rule, generating the messages RM2 and RM3 and allowing the goal
manager to build part of its plan.

The problem, of course, is with GM3 which is requesting a nail. Since this is not
a resource that A owns, the ASK OUT rule is fired, generating RM1 which in turn
sparks off activity in the social manager resulting in SM1. This request is passed
to B, where the social manager generates SM1. This goes to B’s resource manager,
triggering the ALLOCATE2 rule and then RM1 which confirms that B is happy to give
a nail to A. The message passes back through B’s social manager as SM2, is received
by A social manager becoming A’s SM2 message. This activates the GIVE rule in
A’s resource manager, which updates its resource list finally allowing it to alocate the
nail. The message RM4 is sent to the goal manager which now has all the resources it
requires. Consequently DONE fires, adding the formulae done(have(Self, picture)),
done(have(Self, hammer)) and done(have(Self, nail)) to the G unit. The theory
in G then completes execution.

5.6 Related Work
There are two main strands of work to which ours is related—work on executable
agent architectures and work on multi-context systems. As mentioned above, most
previous work which has produced formal models of agent architectures, for example
dMARS [Ingrand et al., 1992], Agent0 [Shoham, 1993] and GRATE* [Jennings, 1995],

5.6. Related Work 89

has failed to carry forward the clarity of the specification into the implementation—
there is a leap of faith required between the two. Our work maintains a clear link
between specification and implementation through the direct execution of the specifica-
tion as exemplified in our running example. This relation to direct execution also dis-
tinguishes our work from that on modelling agents in Z [d’Inverno et al., 1998], since
it is not yet possible to directly execute a Z specification6.

More directly related to our work is that on DESIRE and Concurrent MetateM.
DESIRE [Brazier et al., 1995, Treur, 1991] is a modelling framework originally con-
ceived as a means of specifying complex knowledge-based systems. DESIRE views
both the individual agents and the overall system as a compositional architecture. All
functionality is designed as a series of interacting, task-based, hierarchically structured
components. Though there are several differences, from the point of view of the pro-
posal advocated in this paper we can see DESIRE’s tasks as modules and information
links as bridge rules. In our approach there is not an explicit task control knowledge of
the kind found in DESIRE. There are no entities that control which units, bridge rules
or modules are activated nor when and how they are activated. Also, in DESIRE the
communication between tasks is carried out by the information links that are wired-in
by the design engineer. Our inter module communication is organized as a bus and the
independence between modules means new ones can be added without modifying the
existing structures. Finally the communication model in DESIRE is based on a one-to-
one connection between tasks, in a similar way to that in which we connect units inside
a module. In contrast, our communication between modules is based on a multicast
model. We could, of course, simulate the kind of control found in DESIRE by building
a central controlling module, if this were required.

Concurrent MetateM defines concurrent semantics at the level of single rules
[Fisher, 1998, Wooldridge, 1996]. An agent is basically a set of temporal rules which
fire when their antecedents are satisfied. Our approach does not assume concurrency
within the components of units, rather the units themselves are the concurrent compo-
nents of our architectures. Our model has an inherent concurrent semantics at the level
of the units and has no central control mechanism. Though our exemplar uses what is
essentially first order logic (albeit a first order logic labelled with arguments), we could
use any logic we choose—we are not restricted to a temporal logic as in MetateM.

There are also differences between our work and previous work on using multi-
context systems to model agents’ beliefs. In the latter [Giunchiglia, 1993], different
units, all containing a belief predicate, are used to represent the beliefs of the agent and
the beliefs of all the acquaintances of the agent. The nested beliefs of agents may lead
to tree-like structures of such units (called belief contexts). Such structures have then
been used to solve problems like the three wise men [Cimatti and Serafini, 1995]. In
our case, however, any nested beliefs would typically be included in a single unit or
module. Moreover we provide a more comprehensive formalisation of an autonomous
agent in that we additionally show how capabilities other than that of reasoning about
beliefs can be incorporated into the architecture.

6It is possible to animate specifications, which makes it possible to see what would happen if the speci-
fication were executed, but animating agent specifications is some way from providing operational agents of
the kind possible using our approach.

Chapter 6

Engineering ReGreT using
multi-context systems

6.1 Introduction
In the previous chapter we have shown how multi-context systems can be used to spec-
ify simple agents that can communicate to exchange information. In the two examples
(see section 5.4 and section 5.5), for the sake of clarity, the complexity of the modules
has been reduced to the minimum. In this section we want to show that multi-context
systems are not restricted to simple, and somehow naive, specifications. We show how
the multi-context approach can be used to specify ReGreT, the trust and reputation
model presented in chapter 4. The result of this exercise is a multi-context module built
using the constructs we have presented in the previous chapter and with the functional-
ity of the trust and reputation model presented in chapter 4.

After an overview of the module in section 6.2 we present, grouped in several func-
tional parts, the units and bridge rules that compound the multi-context version of the
ReGreT system. In section 6.12 we propose operational semantics for the module. Fi-
nally, section 6.13 lists the set of bridge rules in the module and appendix A do the
same for unit theories.

6.2 A high level description
The modular nature of the ReGreT system simplifies in great measure its specification
using multi-context systems (at least at the module level). Figure 6.1 shows the structure
of the ReGreT module.

The model has 16 units and 24 bridge rules. According to the complexity of the
units we can establish the following classification:

• Container units. Units that are simple containers for facts. They use a first order
logic and do not have an inference engine mechanism (GR, IDB, SDB and CU).
This kind of units are not strictly necessary and could be removed without losing

91

92 Engineering ReGreT using multi-context systems

NRep

Rep

SRep

Trust

WRep

ODB

DT

SDBIDB

IMPRESSION

WIT-REP N-REP S-REP

DIRECT-TRUST

REPUTATION

CU

SR-GROUPWIT-INFO

INFO-CR SOCIAL-CR

CREDIBILITY

GR

GROUND-REL SOCIAL-REL

Witne
sses

SR-SCR SR-NRepSR-W

WIT-SET

TARGETCONTRACT FULFILLMENT QUERY

CR

ICR SCR

2

2

Communication

Impressions generator

Direct Trust calculation

Social relations knowledge

Credibility model

Witness reputation

Neighbourhood reputation

System reputation

Reputation

Trust

SINGLE-NREP

WIT-CRWIT-TR

NiRep

1

1

3

3

Figure 6.1: Multi-context specification of the ReGreT system

6.2. A high level description 93

any functionality. However, they are essential to maintain a clear structure of the
module and its different parts.

• Aggregation units. Units that aggregate values coming from other units and
store the results as new facts (DT, ICR, CR, WRep, NRep, Rep and Trust).

• Reasoning units. Units with a reasoning mechanism. (ODB, SCR, Witnesses,
NiRep and SRep).

On the other hand, bridge rules range from the simple “get here and put there”
rule (that is, the rule gets something that has been deduced in one unit and introduces
exactly the same into another) to the more complex bridge rules that have to make some
calculation as part of the translation process (see for example the IMPRESSION bridge
rule).

In order to facilitate the description of the module we will divide it in several func-
tional blocks:

• Communication

• Impressions generator

• Direct trust calculation

• Social relations knowledge

• Credibility model

• Witness reputation

• Neighbourhood reputation

• System reputation

• Reputation and trust

With this division we also want to stress the intra-module organization of the units
and bridge rules that, as we have said in the previous chapter, makes the multi-context
approach a very good solution from a software engineering perspective. For example,
if we want to change the way the agent generates impressions, it is easy to see that we
have to change units GR and ODB and perhaps bridge rules IMPRESSION, GROUND-
REL, CONTRACT and FULFILLMENT. What is important is that the links of this
block with the rest of the elements that compound the module is clearly defined by the
bridge rules and makes the substitution a very simple and free of error process.

In the following sections we will go through each block analyzing the different units
and bridge rules.

94 Engineering ReGreT using multi-context systems

6.3 Communication
The CU is the link of the module with the rest of the elements that compound the agent.
Together with the bridge rules attached to it, the communication unit feeds with new
information several units and makes the work of the module available to other modules.
The CU is quite simple. It uses a first order logic with no inference mechanism.

As we have said in chapter 5, an inter-module message has the form:

I(S,R, ϕ,G, ψ)

In the case of the ReGreT module, we have I = {Ask ,Answer , Inform}. At this
moment, the module does not build (and cannot analyse) the derivation record of a trust
value so the parameterG is not used neither for incoming nor outgoing messages.

The parameter ψ that weights the message is identified with the reliability of the
content when the illocutionary particle is Inform or Answer and the urgency of the
information when it is an Ask. For instance, in the message

Answer(Self /ReGreT ,Self /U, trust(Y, φ, T), , 0.6)

the parameter ψ is indicating that the reliability of the trust value T associated to
the behavioural aspect φ for agent Y is 0.6.

The set of bridge rules associated to incoming information (GROUND-REL, CON-
TRACT, FULFILLMENT, WIT-INFO, SOCIAL-REL and SR-GROUP) simply take
the content of the inter-module message and add it into the corresponding unit theory
(removing at the same time the message from the CU).

The QUERY bridge rule adds to the CU the answer to a request about the trust
that deserves a target agent. It gets the information from the Trust unit. At the same
time, it removes the query from the CU to be sure that the module answers the request
only once. The CU “sends” the answer to the module that made the request. In the
specification that we are presenting, the module is only prepared to respond to a request
about the trust of a target agent. However it is easy, adding the corresponding bridge
rules, to prepare the module to answer queries about credibility, reputation, etc.

Finally, the TARGET bridge rule is also fired when the module receives a request.
This bridge rule adds a new target to the Witnesses and SRep unit theories.

6.4 Impressions generator
An impression in the ReGreT model can be defined as the impact (either positive or
negative) that a contract and its fulfillment has in the agent’s opinion about the partner.
This part of the module generates these impressions.

Two units are used to model the impressions generator. A container unit (GR) that
maintains the knowledge of the agent about the grounding relations and a unit that
builds and stores the outcomes (ODB). Both units use first order logic.

Grounding relations are relations that link a behavioural aspect with an specific is-
sue of an outcome and the function to evaluate that outcome. The predicate to represent
a grounding relation is gr(φ, Ii, f) where φ is the behavioural aspect, Ii a specific issue

6.5. Direct trust calculation 95

in the contract and f the function to evaluate an outcome (see chapter 4 for more de-
tails). For example, gr(offers good quality , quality , f(X c, Xs) = V (Xs) − V (Xc))
informs that the issue in the contracts that has to be taken into account to measure if
the partner offers good quality products is “quality” and the function to evaluate an
outcome from that perspective is f(Xc, Xs) = V (Xs) − V (Xc). The GR unit is a
container for these predicates.

The ODB unit is responsible of generating outcomes from contracts and their ful-
fillments. The predicates for a contract and its fulfillment are the following:

contract(ID , Y, I,Xc, t) fulfillment(ID , Y, I,Xf , t′)

where ID is a unique identifier that links a contract with its fulfillment, Y is the partner
for that contract, I = {I1, · · · , In} an index of issues, Xc/Xf the value for the issues
in the contract/fulfillment and t/t′ a time stamp. The theory in the ODB unit is the single
deduction rule

contract (ID, Y, I, Xc, t) ∧ fulfillment(ID, Y, I,Xf , t′) → outcome(ID, Y, I, V c, Xf , t′)

and the inference mechanism a Modus Ponens.
Besides the bridge rules that add new facts to the aforementioned units, there is only

one more bridge rule related with the impressions generator part of the module. This
bridge rule is who really makes the calculation of the impression.

The IMPRESSION bridge rule takes an outcome and a grounding relation (where
the issue considered by the grounding relation is an issue that appears in the outcome),
generates an impression and adds this impression to the DT unit’s theory. The value
of the impression is calculated by the bridge rule. Therefore, on the contrary of other
bridge rules that only make a syntactic translation from one theory to another, in this
bridge rule the translation implies the evaluation of a function.

6.5 Direct trust calculation

This part of the module is responsible of calculating the direct trust, that is, trust that is
built only from direct interactions. The DT unit uses the impressions generated by the
‘impressions generator block’ we have explained in previous section.

The method to calculate a direct trust and its reliability in the ReGreT model is
explained in detail in chapter 4. Summarizing, the method consists on a weighted ag-
gregation of impressions taking into account the recency of each impression. Given
the mathematical nature of the method, we propose as the theory for this unit a logic
program written in Prolog. Therefore, the inference mechanism will be resolution. The
Prolog code is shown in A.2.

Note that the consequent of the IMPRESSION bridge rule is a Prolog assert that
adds the impression directly to the DT unit’s theory.

Finally, the DIRECT-TRUST bridge rule is a simple “get here and put there” rule.

96 Engineering ReGreT using multi-context systems

6.6 Social relations knowledge
This block models the agent’s knowledge about social relations in its environment. This
knowledge is modeled using a set of sociograms (graph structures that show social
relations), one for each relation type. It is composed by one unit (SDB) and three bridge
rules (SR-SCR, SR-W and SR-NREP).

The SDB unit is a container unit with a first order logic and no inference mechanism.
The predicates in this unit have the form socialRel (RelType,X, Y, V), where RelType

is a social relation type between agents X and Y , and V is the intensity of that relation.
Notice that these predicates are the edges of the sociograms. The knowledge stored
in this unit is used in other three units. The task of bridge rules SR-SCR, SR-W and
SR-NREP is to translate this knowledge into a format suitable for the logic in each one
of these units.

Given that, the question is: Why we need the SDB unit? There is no problem to
connect bridge rules SR-SCR, SR-W and SR-NREP directly to the CU. However, we
maintain the SDB unit to claim the importance of this block as a relevant and essential
part of the module (a block that would disappear if we leave only the bridge rules).

It is true that, as it is, this block is only a container unit that stores social relations
and a set of bridge rules that distribute this knowledge to other blocks. This is because
we are supposing that the knowledge about social relations is available and ready to be
used. However, in a real environment this will not be the case and this block should
be replaced by another block that be able to build this knowledge from more basic
information. So, although now the SDB unit is just a container unit, it is likely to
contain a more complex theory that would fully justify its presence.

It is important to remark again that thanks to the multi-context approach, this sub-
stitution (and similarly the substitution of the other blocks that compound the module)
is a very clean and easy process.

6.7 Credibility model
The credibility model is composed by three units and the same number of bridge rules.
This is the part of the module that evaluates the credibility of other agents when they are
providing information (witnesses). Following the structure of the ReGreT system, two
aspects are considered in order to determine the credibility of an agent. The analysis of
previous information from that agent (modeled by unit ICR and bridge rule INFO-CR)
and the social relations of that agent with the target and source agents (modeled by unit
SCR and bridge rule SOCIAL-CR). Unit CR, appropriately aggregates both aspects in a
single credibility value. Finally, bridge rule CREDIBILITY propagates this knowledge
to other blocks.

The theory in the ICR unit is a logic program written in Prolog very similar to
that used in the DT unit. You can find a detailed description of the method used to
evaluate the credibility based on previous information in chapter 4. Basically, the agent
compares previous pieces of information from that witness with its own perception
about that information (based on direct experiences). Then, it performs a weighted
aggregation of these accuracy values to obtain the credibility of the witness. Bridge

6.7. Credibility model 97

rule INFO-CR propagates these credibility values to the CR unit. The predicate added
by the INFO-CR bridge rule to the CR unit’s theory has the form iCr(W,Cr ,CrRL)
where W is the witness ID, Cr the credibility value and CrRL the reliability of that
value.

As we have said, the second method that the ReGreT system uses to evaluate the
credibility of a witness is the analysis of the social structure among that witness, the
target agent and the source agent. The ReGreT system proposes the use of fuzzy rules
to make this analysis. Given that, it is almost obvious the choice of a fuzzy logic with a
forward chaining inference mechanism for unit SCR and a set of fuzzy rules as its the-
ory. These fuzzy rules codify the necessary knowledge to analyse the aforementioned
structure. The set of rules is the same we presented in chapter 4. To specify this unit we
have used the Milord II language [Puyol-Gruart, 1996, Puyol-Gruart and Sierra, 1997,
Puyol-Gruart et al., 1998, Godo et al., 2002]. Milord II is an architecture and a lan-
guage for the development of knowledge-based systems. The language is based on
modules as a method for programming in the large. Modules, generic modules and a
set of operations among them are the basis of this language. A program in Milord II is
then a hierarchical structure of modules. Modules are encapsulated components with
a well defined interface. Each module is composed of deductive knowledge (facts and
rules), local logic (an algebra declaration over uncertainty values) and a local control
component (Horn-like meta-rules).

The advantage of using this language to specify the unit is that we are approaching
the specification to the implementation level.

As we will explain when we talk about the operational semantics in section 6.12, we
want for our units an inference mechanism that works by saturation. In other words, we
want an inference mechanism that once it is started tries to deduce as much as possible
with the facts that are available in the unit’s theory at that moment. Given the nature of
the Milord II language we need an external inference control mechanism to obtain this
behaviour.

We use Prolog to implement this mechanism. The Prolog part calls the Milord II
engine with the different possibilities as parameters. The fuzzyfication and defuzzifica-
tion of the values is performed by the Milord II engine. The Prolog code and the Milord
II specification is shown in section A.4.

Similar to the INFO-CR bridge rule, the SOCIAL-CR bridge rule adds the credibil-
ity values calculated in the SCR unit to the CR unit. This time, the predicate added to
the CR unit’s theory has the form sCr(W,T,Cr). This can be read as the credibility
(Cr) that has witness W when is giving information about the target agent T .

Finally, CR is the unit responsible of aggregating both perspectives about the cred-
ibility. Like in the other aggregation units, we use a logic program written in Prolog.
The code is shown in section A.5. The result of the inference process is a set of pred-
icates with the form wCr(W,T,Cr). The parameters have the same meaning that for
the social credibility but this time the credibility value Cr is a compendium of both,
the social credibility and the credibility based on previous information. Again, you can
find the details of this aggregation in chapter 4.

98 Engineering ReGreT using multi-context systems

6.8 Witness reputation
The ReGreT system differentiates three types of reputation depending on the informa-
tion source that is used to evaluate them. The witness reputation is the reputation that
is calculated using the information gathered from other agents that belong to the com-
munity. The witness reputation block is composed by three units and four bridge rules.

The IDB unit is a container unit to store the opinions about trust received from
witnesses. There are two bridge rules that propagate this knowledge.

The WIT-CR bridge rule adds new facts to theory in unit ICR. This bridge rule is
fired only if (i) the agent has received information from a witness and (ii) there is a
direct trust value that can be used to evaluate the accuracy of that information. Bridge
rule WIT-TR, on the contrary, is fired each time a new piece of information appears in
the IDB unit adding the relevant parts of it to the WRep and Witnesses unit theories.

The Witnesses unit is the unit that decides the witnesses that have to be taken into
account to evaluate the reputation of a target agent. To build these lists the unit manages
three information elements:

• The ID of the witnesses that have sent information and about whom is that infor-
mation. This is received from the IDB unit through the WIT-TR bridge rule.

• The target agents. Received through the TARGET bridge rule.

• The social relations among agents. Received from the social relation knowledge
block.

There are a lot of possibilities to make the selection of witnesses for a concrete target
agent. One possibility, based on social network analysis, is presented as part of the
ReGreT system in chapter 4, section 4.5.1. For this specification we will use a simpler
approach. The set of witnesses that will be taken into account to calculate the witness
reputation of a target agent Y on a concrete behavioural aspect φ will be simply the
witnesses that have sent some information associated to that behavioural aspect for
that specific agent and we know have had a trade relation with the target. This can be
specified using first order logic and Modus Ponens as the inference mechanism. Then,
a possible theory for unit Witnesses is:

target (X) ∧ witness(W, X, φ) ∧ trade(W,X) → tmp(X, φ, ∅)
witness(W,X, φ) ∧ tmp(X, φ, S) → tmp(X, φ, S ∪ W)

tmp(X, φ, S) ∧ (! witness(W,X, φ) ∧ trade(W,X))|W ∈ S) → wSet(X, φ, S)

The bridge rule WIT-SET is a “get here put there” bridge rule that takes the set of
witnesses for each target agent calculated in unit Witnesses and adds them to theory of
unit WRep.

Unit WRep calculates the witness reputation. The calculation is an aggregation
of the opinions that a selected group of witnesses have provided. This selection is
performed in unit Witnesses. The weight of each opinion is according to the credibility
of each witness. The credibility model (see section 6.7) provides this knowledge. The
logic program used to specify this unit is shown in section A.7.

6.9. Neighbourhood reputation 99

Finally, bridge rule WIT-REP propagates witness reputation to the general reputa-
tion block.

6.9 Neighbourhood reputation
Neighbourhood reputation is the second reputation type that considers the ReGreT sys-
tem. It takes into account only the social environment of the target agent and the kind
of relations the target agent has established with that environment. The ReGreT sys-
tem proposes the use of fuzzy rules to calculate this kind of reputation. This block is
composed by two units and two bridge rules (see figure 6.1).

Unit NiRep is the kernel of this block and is very similar to unit SCR. It uses fuzzy
logic and, as the SCR unit, is specified using the Milord II language and Prolog. This
unit calculates a reputation value based on the social relations between each neighbour
of the target agent and the target agent. It also calculates the reliability of that reputation
value. The specification of unit NiRep is detailed in section A.8. Note that the Milord
II part of the specification has two Milord modules, one for the reputation and the other
for the reliability.

Bridge rule SINGLE-NREP adds the reputation due to each neighbour to the theory
of unit NRep. Then, this unit aggregates these individual reputations into a single value.
The Prolog code for this aggregation unit is shown in section A.9.

6.10 System reputation
In this section we will specify the last type considered in the ReGreT reputation model,
the system reputation. This is the simplest and primary type of reputation an agent using
the ReGreT system can calculate. It is based on the default reputation for an agent due
to its ownership to a certain group. In the ReGreT system it is also taken into account
the role the agent is playing. Here to simplify we only consider the group. Moreover
we assume that an agent only belongs to a single group.

Bridge rule SR-GROUP adds to SRep unit’s theory the information about to which
group belong each target agent. This information is acquired by the agent at run time.
The predicate to represent this knowledge has the form inGroup(Y,G).

The SRep unit uses a first order logic with Modus Ponens. Its initial theory is a set
of predicates with the form

groupRep(G, φ,Rep)

that codify the reputation (Rep) that has a group G (and therefore all its members)
associated to behavioural aspect φ. As said in chapter 4, this information is usually
inherited from relevant members of the group the agent belongs to. The theory of unit
SRep is completed with the deduction rule:

target(Y) ∧ inGroup(Y,G) ∧ groupRep(G, φ,Rep) → sRep(Y, φ,Rep)

Similar to bride rules WIT-REP and N-REP in the case of witness and neighbour-
hood reputation, bridge rule S-REP adds the system reputation values inferred in unit
SRep to the Rep unit’s theory.

100 Engineering ReGreT using multi-context systems

6.11 Reputation and Trust
The reputation block is a composite block. It is formed by the witness, neighbourhood
and system reputation blocks plus an aggregation unit (Rep) and a bridge rule (REP-
UTATION). The task of unit Rep is to aggregate the different reputation types into a
single value. The aggregation is performed as described in chapter 4, section 4.5.4.
Basically, the unit aggregates the witness, neighbourhood, system and default reputa-
tion types following this order of preference and considering the reliability associated
to each reputation type value. The specification of this unit is detailed in section A.11.
Note the defaultRep(R,RL) predicate denoting the default reputation of a target agent.

The REPUTATION bridge rule is a simple “get here put there” bridge rule that adds
the reputation values inferred by unit Rep to the theory of unit Trust.

Finally, unit Trust is responsible of calculating the trust values that will be the out-
come of the ReGreT module. This unit receives reputation values from the reputation
block, and direct trust values from the direct trust calculation block. Then, according to
the ReGreT system specification presented in chapter 4, it aggregates the values into a
single trust value. The specification of this unit is detailed in section A.12.

6.12 Operational Semantic
In this section we propose operational semantics for the ReGreT module. This opera-
tional semantics is also applicable to the examples in chapter 5.

As we have said, each unit has a different theory. The schema is always the same.
Taking the unit as the center, we have a set of bridge rules that add new elements to
this theory (what we call the input bridge rules) and a set of bridge rules that use the
elements deduced by the theory (what we call the output bridge rules). The unique
objective of the unit is to deduce things for the output bridge rules. Therefore, it seems
coherent that the output bridge rules be the elements that lead the deduction process of
the unit. To be concrete, the antecedents of the output bridge rules.

Each time a new fact is introduced in a unit theory by the input bridge rules, the
antecedents of the output bridge rules are used as a guide to start the deduction process
of the unit. The antecedents of the output bridge rules show what has to be deduced in
the unit in order to apply the consequents. How the antecedents of the output bridge
rules trigger the deduction process depends on the inference mechanism. Basically there
are two possibilities: backward chaining and forward chaining inference mechanism.

If the unit has a backward chaining inference mechanism (like the one used by PRO-
LOG), the antecedents of the output bridge rules are the query that starts the inference
process. For instance, in those units that have a PROLOG program as theory, the an-
tecedents of the output bridge rules specify the PROLOG predicate that is used to query
the PROLOG engine. Take for example the unit DT. This unit has two output bridge
rules: DIRECT-TRUST and WIT-CR. The antecedent in both bridge rules that refers to
unit DT is dt(Y, φ,DT ,DTRL) and this is exactly the main predicate of the PROLOG
program that conforms the theory of unit DT. Each time a new predicate is added to unit
DT, bridge rules DIRECT-TRUST and WIT-CR start the inference mechanism of unit
DT by means of query ‘?- dt(Y, φ,DT ,DTRL)’. If the predicate can be proved (and

6.12. Operational Semantic 101

the other antecedents are satisfied), the bridge rule is fired.
If the unit has a forward chaining inference mechanism the only thing that the output

bridge rules can do is to start the inference process of the unit and wait. One example
of this type of unit is the Witnesses unit. Each time one of the (input) bridge rules
WIT-TR, TARGET or SR-W add a new fact to the theory of unit Witnesses, (output)
bridge rule WIT-SET starts the inference mechanism of the unit and waits until the
inference process has finished. Then, it checks if there is any new fact that matches
wSet(X,φ, {s1, . . . , sn}).

All new facts arrive through the communication unit (CU) and, like a wave, affect
progressively different areas of the module. After some time, the units and bridge rules
come back to a stable state where it is not possible to infer new things.

The module works as an any time algorithm. You always can query the module
to obtain a result but this result is not necessarily the most updated one. For instance,
suppose agent a receives a new fulfillment for a contract with agent b. This fulfillment
is introduced to the ReGreT module and starts the process through the communication
block, the impressions generator block and the direct trust calculation block to update
the trust on agent b. However, at the same time, another module asks for the trust on
agent b. Probably, the Trust unit has a trust value for agent b but it is not updated with
the result of the last interaction. If the requirement is urgent, the module can send the
current value in the Trust unit, otherwise it can wait until all the units and bridge rules
come back to a stable state to be sure that the value is up-to-date.

This approach requires a control mechanism to monitor the state of the units and
bridge rules.

Although in the ReGreT module the inference processes are very quick and there-
fore this control mechanism is not very relevant, you can have modules with units where
the inference process is a matter of seconds, minutes or even hours. In these kind of
modules is where this control mechanism becomes essential.

To finish this section we want to make a few comments about the connection be-
tween PROLOG and MILORD-II in units SCR and NiRep. Each MILORD-II module
has a set of input variables (defined in the Import section of the module) and a set of out-
put variables (defined in the Export section). The set of input variables are the variables
that have to be instantiated before starting the inference process. Once the inference
process comes to an end, the result is stored in the output variables.

The PROLOG part of the unit is responsible of instantiating the input variables
of the MILORD-II module, start the inference mechanism and get the result from the
output variables (in our case there is only a single output variable). The names of
the PROLOG predicate that calls the MILORD-II module and the MILORD-II module
name coincide as well as the name of the input and output variables.

102 Engineering ReGreT using multi-context systems

6.13 Bridge rules

GROUND − REL =
CU > Inform(Self / ,Self /ReGreT, gr(φ, Ii), ,)

GR : gr(φ, Ii)

CONTRACT =
CU > Inform(Self / ,Self /ReGreT, contract(ID , Y, I,Xc, t), ,)

ODB : contract(ID , Y, I,Xc, t)

FULFILLMENT =
CU > Inform(Self / ,Self /ReGreT, fulfillment(ID , Y, I,Xf , t), ,)

ODB : fulfillment(ID , Y, I,Xf , t)

WIT − INFO =
CU > Inform(Self / , Self /ReGreT,wI (W, Y,φ,T ,TRL), ,)

IDB : wI (W, Y, φ,T ,TRL)

TARGET =
CU : Ask(Self / ,Self /ReGreT,Trust(Y), ,)

Witnesses : target(Y),SRep : target(Y)

SOCIAL − REL =
CU > Inform(Self / ,Self /ReGreT, socialRel(RelType,X, Y, V), ,)

SDB : socialRel(RelType,X, Y, V)

SR − GROUP =
CU > Inform(Self /U,Self /ReGreT, inGroup(X,G), ,),

SRep : inGroup(X,G)

QUERY =

CU > Ask(Self /U, Self /ReGreT,Trust(Y), ,),

Trust : trust(Y, φ, T, TRL)

CU : Answer (Self /ReGreT,Self /U, trust(Y, φ, T), , TRL)

IMPRESSION =
ODB : outcome(ID, Y, I,Xc,Xf , T) GR : gr(φ, Ii, f), [Ii ∈ I]

DT : assert(imp(ID, Y,φ, v, T)) with v = f(Xc,Xs)

DIRECT − TRUST =
DT : dt(Y, φ,DT ,DTRL)

Trust : assert(dt(Y,φ,DT ,DTRL)), NiRep : assert(dt(Y,φ,DT ,DTRL))

SR − SCR =
SDB : socialRel(RelType,X, Y, V)

SCR : assert(RelType(X, Y,V))

SR − W =
SDB : socialRel(RelType,X, Y, V)

Witnesses : RelType(X,Y)

SR − NREP =
SDB : socialRel(RelType,X, Y, V)

NiRep : assert(RelType(X,Y, V))

INFO − CR =
ICR : iCr(W,Cr ,CrRL)

CR : assert(iCr(W,Cr ,CrRL))

SOCIAL − CR =
SCR : sCr(W, T,Cr)

CR : assert(sCr(W, T,Cr))

CREDIBILITY =
CR : wCr(W, T,Cr)

WRep : assert(cR(W, T,Cr))

WIT − CR =
IDB : wI (W, Y,φ,T ,TRL), DT : dt(Y, φ,DT ,DTRL)

ICR : assert(wI (W, Y,φ,Comp))
with Comp = (DTRL · TRL · Ap0(T − DT))

WIT − TR =
IDB : wI (W, Y, φ,T ,TRL),

WRep : assert(wI (W, Y,φ,T ,TRL)), Witnesses : witness(W,Y, φ)

WIT − SET =
Witnesses : wSet(X,φ, {s1, . . . , sn})

WRep : assert(wSet(X,φ, [s1, . . . , sn]))

6.13. Bridge rules 103

WIT − REP =
WRep : wRep(Y,φ,R,Rl)

Rep : assert(wRep(Y, φ,R,Rl))

SINGLE − NREP =
NiRep : niRep(X,N,φ,R,RL)

NRep : assert(niRep(X,N, φ,R,RL))

N − REP =
NRep : nRep(Y, φ,R,RL)

Rep : assert(nRep(Y, φ,R,RL))

S − REP =
SRep : sRep(Y,φ,R)

Rep : assert(sRep(Y,φ,R))

REPUTATION =
Rep : reputation(X,φ,R, Rl)

Trust : assert(reputation(X,φ,R, Rl))

Chapter 7

Experiments

7.1 Introduction
In this chapter we will present a set of experiments to show how the ReGreT sys-
tem behaves in different situations. We will present several scenarios to experiment
with different parts of the system. The experiments are designed using the SuppWorld
framework described in chapter 3 with some simplifications to make the results more
comprehensible.

The set of experiments can be divided in two main blocks that correspond to two
different scenarios. In the first scenario we consider a society with no other social
relations among agents that trade relations. This scenario will allow us to test and
show how the direct trust and the witness reputation work. In the second scenario we
add cooperative and competitive relations among the members of the society and we
analyze the ReGreT social credibility module.

7.2 The common framework
Although as we have said there are two different scenarios, both share a common struc-
ture. In this section we describe this structure.

The Suppworld base scenario used in all the experiments is composed by two grid
markets. The first grid is the home of “producers” and the second grid the home of
“manufacturers”. The manufacturers buy products in the first market and then sell them
in the second market. The buyers in the second market are simulated by a single entity
that always buy all the product available from manufacturers. Figure 7.1 shows the
sequence of events in the base scenario.

The first step is the entrance of rough material in the producers storage facilities.
Then, during the production process scene the producers generate the product that will
be sold to manufacturers in the market scene. Before starting the market scene, there is a
convention of manufacturers that allow them to exchange information about producers.
The market scene is the central event. Here the manufacturers negotiate with the pro-
ducers to buy products. The round finishes with a production scene for manufacturers

105

106 Experiments

M

M M

M

M

Entrance of rough
material1 Product

generation2 Manufacturers
convention3

Manufacturers
market6 Product

generation5 Producers
market4

P

M P

P

P

M

M

M

M

M

M

P

P

P

Figure 7.1: SuppWorld base scenario.

and the sale of the manufacturer product to the entity that simulates final consumers.
We have made some simplifications to the scenario in order to make the analysis of

the results simpler and clearer.
Because we want to focus our analysis on the manufacturers, producers are designed

to never lose money and to have always product in stock. Therefore, it never happens
that a manufacturer cannot buy because the producer does not have product to sell. To
ensure that, we give to the producers enough storage capacity to satisfy the demand,
renewing this capacity each round without taking into account their cash.

Producers only sell one type of product. The presence of more than one product
implies that manufacturers need some kind of strategy to adjust the amount of product
of each type if they do not want to lose money (see section 3.6 in chapter 3). This
strategy is very relevant for the final success of a buyer in a Suppworld scenario and, at
this stage, complicates the analysis of trust and reputation mechanisms unnecessarily.

As we have said, the activity of producers is not taken into account in our experi-
ments. Therefore, we have eliminated the possibility of performing coalitions and the
capability of recommending other producers to manufacturers.

The last simplification is in the negotiation process. In a SuppWorld scenario, a
contract has four issues: price, quantity, quality and transport type. Each issue has a
minimum and maximum value that is fixed by the engineer for each experiment. This
minimum and maximum values are used to ensure that agents are negotiating always
into a controlled range for each issue. Because for the moment we do not want negoti-
ation to interfere with the analysis of trust and reputation, all producers and manufac-
turers use the same negotiation engine with the same parameters. This parameters are
adjusted to obtain the agreement exactly when the value for each issue is in the middle
of its range. In our example this happens when Price = 30, Quantity = 10, Quality = 3
and Transport type = 3. As we will see, this specific point in the negotiation has been

7.2. The common framework 107

offers_good_qualityoffers_good_prices

good_seller

0.5 0.5

Figure 7.2: Ontological structure for a buyer.

chosen to give a symmetry in the definition of good and bad behaviours when the agents
fulfill a contract and it is not relevant in the analysis of trust and reputation.

Once the producer and the manufacturer arrive to an agreement, producer has to
send the product to the manufacturer. At this point, producers can decide not to fulfill
what was agreed. The quantity and the transport type are fixed. Therefore, the producer
can only influence on the price and the quality. This fact fixes another parameter that is
common for all the experiments: the ontological structure of the buyers. This ontologi-
cal structure is shown in figure 7.2 and defines a good seller as a seller that offers good
prices and good quality, giving the same relevance to both aspects.

We differentiate five types of producers according to their behaviour in the fulfill-
ment of contracts (what we have referred in chapter 3 as the “alignment” of the agent):

• SAINT: 30% of the times favours the partner by decreasing the price to the min-
imum and increasing the quality to the maximum.

• GOOD: 30% of the times favours the partner by decreasing the price and increas-
ing the quality a quantity equal to 1/4 of the issue’s range.

• NEUTRAL: Always fulfill the contracts as agreed.

• BAD: 75% of the times cheats the partner by increasing the price and decreasing
the quality a quantity equal to 1/4 of the issue’s range.

• EVIL: 75% of the times cheats the partner by increasing the price to the maximum
and decreasing the quality to the minimum.

When they are not cheating/favouring the partner, all the producers fulfill the con-
tracts as agreed.

Given that the agreement contract is fixed, it is possible to characterize the align-
ment of producers using the contract they send when cheat or favour the partner. Ta-
ble 7.2 shows the relation between the alignment of a producer and the fulfillment of a
contract (remember that we do not allow producers to modify the values for Quantity
and Transport type).

The position of manufacturers in the producers’ grid at the beginning of each round
is decided randomly. We have adopted this configuration, instead of considering their
position in the home grid, to force the buyers to explore all the market and avoid the
advantage of a good initial position. The movement of manufacturers is also random.

108 Experiments

Alignment Price Quantity Quality Trans.Type
Agreement 30 10 3 3
Saint 10 10 5 3
Good 20 10 4 3
Neutral 30 10 3 3
Bad 40 10 2 3
Evil 50 10 1 3

Table 7.1: Relation between the alignment and the fulfillment of a contract.

To summarize, the base scenario for our experiments is a market grid populated by
a fixed amount of sellers (producers) that offer all of them the same kind of product.
At the beginning of each market session, a set of buyers (manufacturers) are distributed
randomly over that grid. During the market session they move around randomly and
buy things. However, sellers not always fulfill contracts as agreed. Manufacturers
have only trust and reputation mechanisms to fight against cheaters. At the end of
each round, manufacturers sell all the product to final consumers (simulated by a single
entity). Depending on how each contract was fulfilled they will win or lose money in
that transaction.

With the restrictions we have imposed, you can see the interaction among producers
and manufacturers as a Prisoner’s dilemma game where only producers decide if they
want to cooperate (fulfill the contract as was agreed) or defect (cheat the partner by
applying worse conditions in the fulfillment). Here, however, the producers can choose
among different degrees of cooperation and defection.

7.3 Scenario I: Direct trust and witness reputation
The objective of these experiments is to see how an agent can improve its performance
by using direct trust and witness reputation (without the credibility module). The per-
formance of an agent is measured by the amount of cash that has won (or lost) after a
fixed number of rounds.

We have compared four types of manufacturers:

• Manufacturers that always negotiate with producers. (Negotiate always)

• Manufacturers that use direct trust to decide if it is worth it or not to negotiate.
(DT)

• Manufacturers that use direct trust and witness reputation. (DT + WR)

• Manufacturers that use direct trust and witness reputation but always provide
wrong information to other manufacturers. ((DT + WR (LIERS))

The first three types are tested in an environment where manufacturers always say the
truth and do not try to lie the others. The fourth type, however, reproduces a situation
where manufacturers always give wrong information.

7.3. Scenario I: Direct trust and witness reputation 109

We performed an initial set of experiments where the full population of manufac-
turers had, in turn, each one of the profiles commented before. We were expecting an
increase of performance for the first three types of manufacturers but when we arrived to
the manufacturers that were using witness reputation, we found that their performance
was worse than the performance of manufacturers that were using only direct trust.

The reason for that is the nature of witness reputation. Suppose the situation where
all the manufacturers start from scratch and witnesses only give information based on
their own direct experiences. Even assuming the witnesses always tell the truth, a man-
ufacturer only can provide reliable information after several rounds. For that time,
however, all the other manufacturers have had a similar number of direct experiences
and witness information is useless. In this scenario, witness reputation is redundant.
Moreover, if producers do not have a fixed behaviour (that is, bad agents not always
behave badly) you can have witnesses that are distributing wrong information. In that
case, the use of witness information is self-defeating. This is what was happening in
our experiments.

As you can imagine, the situation is even worse if witnesses also spread opinions
based on reputation.

The conclusion is that witness reputation is only useful if you can guarantee that
there is a pool of individuals that can provide well founded information. It is not worth
it (and can be even self-defeating) the use of witness reputation in those situations where
there is a general lack of knowledge.

Knowing that, we repeated the experiments but this time using the following proce-
dure.

All the manufacturers use only direct trust for a number of rounds until we are sure
that the general knowledge about the market among manufacturers is good enough.
Then we select a set of manufacturers and initialize their internal status (as if they were
just arriving to the market), changing the parameters of the ReGreT system according
to the characteristics we want to study. This is the moment when the experiment really
starts. We monitor the performance of these selected set of manufacturers during a fixed
number of rounds.

The main parameters of the experiments are the following:

• 16 producers (4x4 grid).

• 64 manufacturers (8x8 grid).

• 50 rounds. Each round has 30 ticks.

• From the 64 manufacturers, 10 are randomly selected to be monitored as ex-
plained before.

• 30 rounds preparing the market, 20 rounds monitoring the selected group of man-
ufacturers.

• For each round there is a 1 tick convention of manufacturers.

Maintaining this configuration we made 5 sets of experiments, each set correspond-
ing to a different alignment configuration for producers. Concretely we tried the fol-
lowing alignment configurations:

110 Experiments

100 % - EVIL

Rounds

0 2 4 6 8 10 12 14 16 18 20

C
as

h

-60000

-50000

-40000

-30000

-20000

-10000

0

10000

50 % NEUTRAL - 50 % EVIL

Rounds

0 2 4 6 8 10 12 14 16 18 20

C
as

h

-60000

-50000

-40000

-30000

-20000

-10000

0

10000

Negotiate always
DT + WR (LIERS)
DT
DT + WR

Figure 7.3: DT and WR experiments (I).

• 100% of producers are EVIL.

• 50% are BAD, 50% are EVIL.

• 50% are NEUTRAL, 50% are EVIL.

• 100% are BAD.

• 50% NEUTRAL, 30% BAD and 20% EVIL.

We tested each alignment configuration with the different type of manufacturers pre-
sented before, that is, manufacturers that always negotiate with producers, manufac-
turers that use direct trust to decide if it is worth it or not to negotiate, manufacturers
that use direct trust and witness reputation and manufacturers that use direct trust and
witness reputation but in an environment where witness information is always wrong.

The results of these experiments are shown in figure 7.3 and figure 7.4. These
plots show, for each alignment configuration, the average performance of the selected
manufacturers from the moment they are initialized to the end of the experiment.

This time, for all the alignment configurations, we get the expected result. There is
a great improvement in the performance of manufacturers that use direct trust to decide
if it is worth it or not to negotiate with a specific producer compared with the manufac-
turers that always negotiate. As it would be expected, this difference is bigger in hostile
environments like the first three but also quite significant in more normal environments
like the latest shown in figure 7.4. Also remarkable is the improvement of performance
for those manufacturers that were using witness reputation in a collaborative environ-
ment compared with manufacturers that only were using direct trust.

Finally, you can observe that the performance of agents that use witness reputation
in an environment where witness information is always wrong is always worse than the

7.3. Scenario I: Direct trust and witness reputation 111

100 % - BAD

Rounds

0 2 4 6 8 10 12 14 16 18 20

C
as

h

-10000

-5000

0

5000

10000

15000

20000

50 % NEUTRAL - 30 % BAD
20 % EVIL

Rounds

0 2 4 6 8 10 12 14 16 18 20

C
as

h

-10000

-5000

0

5000

10000

15000

20000

Negotiate always
DT + WR (LIERS)
DT
DT + WR

Figure 7.4: DT and WR experiments (II).

performance of manufacturers that use only direct trust. This supports our hypothesis
that if there are no guarantees that witness information has a minimum quality it is
better to ignore it. These results also validate the results obtained in the experiments
with manufacturers that use witness reputation in a collaborative environment.

In order to check if these results can be extended to bigger societies we repeated the
last experiment in a bigger scenario. The relevant parameters for this experiment are:

• 64 producers (8x8 grid).

• 256 manufacturers (16x16 grid).

• 90 rounds. Each round has 60 ticks.

• From the 256 manufacturers, 10 are randomly selected to be monitored as ex-
plained before.

• 50 rounds preparing the market, 40 rounds monitoring the selected group of man-
ufacturers.

• For each round there is a 20 ticks convention of manufacturers.

The results are shown in figure 7.5. As you can observe, the results are very similar to
those obtained for the medium size environment.

The complete set of parameters used in these experiments are detailed in ap-
pendix A.

112 Experiments

50 % NEUTRAL - 30 % BAD
20 % EVIL

Rounds

0 10 20 30 40

C
as

h

0

10000

20000

30000

40000

50000

60000

Negotiate always
DT + WR (LIERS)
DT
DT + WR

Figure 7.5: Large scenario.

7.4 Scenario II: Social credibility
In the scenario proposed in this section, we will add competitive and cooperative re-
lations among the members of the society. Competitive and cooperative relations in a
SuppWorld scenario (as in real life) have a direct impact on the behaviour of the agents.
Because we want to analyse the social credibility module, we will focus on the impact
that cooperative and competitive relations have in the truthfulness of the information
given by witnesses.

We want to observe how the use of the social credibility module of the ReGreT
system can improve the performance of the manufacturers in such kind of scenarios.

In a SuppWorld scenario, competitive and cooperative relations define the probabil-
ity to deliberately provide wrong information. To compute this probability, an agent
takes into account the competitive and cooperative relations among the agent that is
making the query (the source), the subject of the query (the target) and the witness (the
agent itself). To do that, it uses the same set of fuzzy rules used to calculate the social
credibility (see table 4.1). In those cases where there is no cooperative and compet-
itive relation among the source, the target and the witness, the witness computes the
probability to cheat according to its alignment.

For this experiment we have compared three types of manufacturers:

• Manufacturers that use direct trust to decide if it is worth it or not to negotiate.
(DT)

• Manufacturers that use direct trust and witness reputation. (DT + WR)

7.4. Scenario II: Social credibility 113

Comp Sociogram Density = 0.2

Rounds

0 5 10 15 20 25 30

C
as

h

0

10000

20000

30000

40000

Comp Sociogram Density = 0.5

Rounds

0 5 10 15 20 25 30

0

10000

20000

30000

40000

DT + WR + SCr
DT
DT + WR

Comp Sociogram Density = 0.8

Rounds

0 5 10 15 20 25 30

0

10000

20000

30000

40000

Figure 7.6: Social credibility and competitive relations.

• Manufacturers that use direct trust, witness reputation and the social credibility
module. (DT + WR + SCr)

We have to say that the manufacturers that use the social credibility module have
a perfect knowledge of the society. In a real world, the sociograms usually have some
mistakes that would decrease the performance of the module.

The main parameters of the experiments are the following:

• 16 producers (4x4 grid).

• 64 manufacturers (8x8 grid).

• 50 rounds. Each round has 30 ticks.

• From the 64 manufacturers, 10 are randomly selected to be monitored.

• 20 rounds preparing the market, 30 rounds monitoring the selected group of man-
ufacturers.

• For each round there is a 10 tick convention of manufacturers.

We maintain a fixed configuration of 25% SAINTs and 75% EVILs in the case
of producers and a 100% of SAINTs in the case of manufacturers (thinking that the
behaviour of the manufacturers is also conditioned by the social relations).

In the first set of experiments showed in figure 7.6 we can see the performance of
the manufacturers given different environments, each one more competitive than the
previous. The degree of competition in the environment is measured by the density
of the competitive sociogram shared by all the manufacturers. For instance, a density
of 0.5 means that a manufacturer has a competitive relation with a 50% of the agents
(manufacturers and producers) in that society.

It is interesting to see that even with a density of only 0.2, the performance of
manufacturers that use witness reputation and direct trust is worse than the performance

114 Experiments

Coop Sociogram Density = 0.2

Rounds

0 5 10 15 20 25 30

C
as

h

0

10000

20000

30000

40000

Coop Sociogram Density = 0.5

Rounds

0 5 10 15 20 25 30

0

10000

20000

30000

40000

DT + WR + SCr
DT
DT + WR

Coop Sociogram Density = 0.8

Rounds

0 5 10 15 20 25 30

0

10000

20000

30000

40000

Figure 7.7: Social credibility and cooperative relations.

of those that use only direct trust. As expected, the social credibility module improves
considerably the performance of the manufacturers that use witness reputation.

With a density of 0.5 the situation is similar. However the performance of the man-
ufacturers using witness reputation (with or without the social credibility module) is
worse than in the previous case (density = 0.2). This happens because by increasing the
number of agents with a competitive relation we are decreasing the number of reliable
witnesses and, as a consequence, we are decreasing the amount of useful information
that can be used by the witness reputation module. In the last experiment we force this
situation by fixing a density of 0.8. Here, even using the credibility module, the use of
witness reputation is not worth it. Again, as we observed in the Scenario I, not always
the use of witness reputation implies an improvement in the performance.

We repeated the same set of experiments with the same parameters but this time
considering only cooperative relations. Figure 7.7 shows the obtained results.

It seems that cooperative relations (as they are defined in the SuppWorld framework)
do not have the same relevance that competitive relations. The performance of the
agents that use the social credibility module is very similar in the three experiments.
The agents that use witness reputation without the social credibility module experiment
a decrease in performance when the number of cooperative relations increases but it is
not comparable with the decrease of performance due to competitive relations.

7.5 Conclusions

The aim of the experiments we have presented is to show how the SuppWorld frame-
work can be used to test the ReGreT system and, in general, any complex trust and
reputation model. These experiments are a small sample of the full set of experiments
that are necessary to validate a system with the complexity of ReGreT. However, even
knowing they are not complete, it is possible to extract some interesting conclusions.

As we have seen in the experiments of the Scenario I not always the use of witness

7.5. Conclusions 115

reputation contributes to improve the performance of the agent. There are situations
where the use of witness reputation is self-defeating. Something similar happens with
the use of social information.

One of the most important factors to be taken into account to decide if it is worth it or
not the use of alternative sources of information is the cost to obtain direct experiences.
In an scenario where it is easy and cheap to get direct experiences it is difficult that the
use of other solutions to compute trust and reputation values compensates the problems
associated to them. However, as long as the cost of direct experiences increases, the use
of other sources of information like witness information or social knowledge become
more and more important.

Given that, it seems clear that we cannot rely in a static mechanism to combine
the different sources of information. In chapter 4 we proposed a method to combine
the different sources of information of the ReGreT system. We are not saying that that
method is worthless but that only covers part of the possible scenarios. So if we really
want a generic trust and reputation system we have to go for a dynamic method to
combine the different sources of information that can adapt to the characteristics of the
environment.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.1.1 Trust and reputation
In this thesis we have presented ReGreT. ReGreT is a trust and reputation system to
be used in complex agent societies where the social relations among members play an
important role.

The main characteristic of the ReGreT system is the use of several sources of infor-
mation (direct experiences, information from third party agents and social structures)
to calculate trust, reputation and credibility values instead of relying on a single source
of information like other systems do. The combination of complementary methods that
use different aspects of the interaction and social relations, allows the agent to calculate
trust and reputation values at different stages of its knowledge of the society.

Associated to each trust or reputation value, the system calculates a measure of its
reliability. This measure can be very useful in order to decide to which extend an agent
can rely on the trust and reputation values to make a decision.

On the contrary of other systems, ReGreT makes a clear distinction between trust
and reputation. In the system, reputation is used to improve the calculation of trust
values.

The ReGreT system has also a hierarchical ontology structure that allows to con-
sider at the same time several trust and reputation values associated to different be-
havioural aspects. Moreover, we consider that trust and reputation are not single and
abstract concepts but rather multi-facet concepts. The ontological structure provides the
necessary information to combine reputation and trust values linked to simple aspects
in order to calculate values associated to more complex attributes.

Finally, we have shown how social network analysis can be used to improve the
accuracy of the reputation values and, as a consequence, the trust values. Social network
analysis is used also in the mechanism to select the best possible witnesses and in the
credibility module.

We have also introduced the SuppWorld framework, an experimental framework de-
signed to test trust and reputation models. This framework allows us to build simple

117

118 Conclusions and Future Work

scenarios oriented to test the basic aspects of trust and reputation models and also com-
plex scenarios where social relations acquire a great relevance. To show how it works
we have designed a set of experiments to test several features of the ReGreT system.

The main conclusion extracted from these experiments is that although the use of
witness reputation and social knowledge can improve spectacularly the performance of
the agent, in some situations they are self-defeating. If we really want a generic trust
and reputation system that can be used in a broad range of situations we have to go for
a dynamic method to combine the different sources of information that can adapt to the
characteristics of the environment.

8.1.2 Multi-context systems
We have proposed a general approach to defining agent architectures which extends
the work of [Parsons et al., 1998, Sabater et al., 1999] with the idea of modules and,
as a result, links the approach more strongly with the software engineering tradition.
This approach provides a means of structuring logical specifications of agents in a way
which makes them directly executable. The approach has a number of advantages over
other work on defining agent architectures. Firstly it bridges the gap between the spec-
ification of agents and the programs which implement those specifications. Secondly,
the modularity of the approach makes it easier to build agents which are capable of
carrying out complex tasks such as distributed planning. From a software engineering
point of view, the approach leads to architectures which are easily expandable, and have
re-usable components.

From this latter point of view, our approach suggests a methodology for building
agents which has similarities with object-oriented design [Booch, 1994]. The notion
of inheritance can be applied to groups of units and bridge rules, modules and even
complete agents. These elements could have a general design which is specialized to
different and more concrete instances by adding units and modules, or by refining the
theories inside the units of a generic agent template.

Then we have used the multi-context systems approach to specify ReGreT, the trust
and reputation system presented in chapter 4. With this exercise we have demonstrated
that, using multi-context systems with the extensions presented in chapter 5, it is possi-
ble to specify complex agents with advanced capabilities.

We have to recognize that the mathematical nature of the ReGreT system limits
somehow the real potential of the multi-context systems approach. As we commented
in chapter 5, multi-context systems are most appropriate when building agents which
are logic-based and are therefore largely deliberative. Therefore, thinking in the area of
trust and reputation models, we can adventure that the multi-context systems approach
will be even more suitable for the specification of cognitive models.

8.2 Future work
We have divided the future work in two different parts. The future work related with
trust and reputation models and the future work related with the design of autonomous
agents using a multi-context approach.

8.2. Future work 119

8.2.1 Trust and reputation

The area of trust and reputation models for virtual societies is a very young, although
very active, discipline and therefore there is still a lot of work to be done. Here we
propose a short list of topics we think deserve a special attention:

• As stated in chapter 2, it is necessary to propose a common method to evalu-
ate the different trust and reputation models. The number of models is increasing
quickly and because different groups use different methods to evaluate their mod-
els, it is very difficult to establish a comparison. In chapter 3 we have presented
the SuppWorld, a framework designed to evaluate trust, reputation, and negoti-
ation models. This framework is a small step (we think in the right direction)
toward the objective of having a common method to evaluate trust and reputation
models. As a result of our work in the SuppWorld framework we have sketched
the characteristics this method should have:

– It has to be accepted by the community members. This is, without any
doubt, the most important characteristic. You can have the most fantastic
test-bed in the world but, if nobody is using it, it is useless.

– You have to be able to evaluate from the most simple trust and reputation
model to the most sophisticated. To achieve that, we propose an approach
used in other areas of computer science. Instead of having a single test,
we propose to have a set of them. Each individual test covers a different
problem and scenario, associated to trust and reputation, with an increasing
complexity. Usually, each model will be able to execute only a subset of
these tests.

– The time and effort necessary to adapt the models to run the test-bed has
to be reduced to the minimum. Therefore, the link with the framework that
supports the test-bed needs to be clean and, if it is possible, independent of
the programming language that has been used to implement the models.

– The test-bed has to be open. This means it has to be easy the addition of
new tests to the original set to cover new problems and situations.

• The ReGreT system takes into account two elements to calculate the trust on
an agent: the direct trust and the reputation. Similarly, the reputation value is
a combination of different types of reputation (witness, neighbourhood, system,
and default reputation). We have proposed a mechanism to aggregate all these
elements to obtain a final trust value. We have argued that direct trust is more
reliable than reputation and that witness reputation is better than neighbourhood
reputation. Similarly, we have seen that neighbourhood reputation is better than
system reputation. Using this ranking, the ReGreT system aggregates the differ-
ent values to obtain a single and representative value.

Although this method to aggregate the different elements is fine for certain sce-
narios, it is far to be a general method that can be used in all possible scenarios.
The set of experiments we have performed have shown that depending on the

120 Conclusions and Future Work

characteristics of the scenario the ranking we propose in this thesis is not the
right one. In fact, we think that this general method doesn’t exist.

For example, in a scenario where it is cheap and easy to obtain direct experiences
it is better not to use reputation at all when the possibility that other agents give
wrong information is high (for instance, because there is a strong competition).
Similarly, in those scenarios where the group policy is very important and the
links between members are strong, neighbourhood and system reputation acquire
a great relevance (even greater than direct experiences).

These are only two examples that show that the way the different elements of the
system have to be combined cannot be static. Ideally, the agent should be clever
enough to adapt the aggregation rules to the characteristics of the scenario even
if these characteristics change along time.

This is not an easy task. The agent has to be able to extract the characteristics of
the scenario analyzing the behaviour of the other agents. We think that further
investigation in the use of social network analysis applied to agent societies is
fundamental to achieve this objective.

• We have shown how the use of social network analysis can improve the capabili-
ties of trust and reputation models. However, social network analysis techniques
rely on the availability of accurate sociograms. We have to provide mechanisms
that allow the agents to build and maintain these sociograms.

• We have to carry out more experiments oriented to analyze the use of social
information as part of trust and reputation models. ReGreT is a first step toward
the use of these techniques in trust and reputation models. More work in the same
direction is necessary if we want to improve the efficiency of these models.

• Once the social dimension is introduced in trust and reputation systems and the
agents start to take into account social relations, it becomes more and more im-
portant to consider not only which is the reputation of the other agents, but what
can an agent do to get and maintain its own reputation. The agent needs mech-
anisms to analyze the impact of its actions in order to maintain its reputation in
the society. This aspect of reputation needs further study.

• Further study on cognitive models is necessary. We are not claiming that cogni-
tive models are the panacea. Probably the answer is in the use of hybrid models
with cognitive as well as mathematical elements. However, up to now almost
all the efforts have been directed to build mathematical models (check the list of
models presented in chapter 2). It is time to analyze deeply what the cognitive
approach can offer.

• Another area that requires further study is the use of trust and reputation models
together with negotiation models, in other words, how trust and reputation can
influence the negotiation strategies in order to improve the success of the negoti-
ation process. In the SuppWorld framework examples that we have presented in
chapter 7, agents use trust to decide if it is worth it or not to negotiate with a given

8.2. Future work 121

partner. However, we have not say anything about how these trust values can be
used to modify the behaviour of the agent during the negotiation process. One
possibility could be the use of the trust value to decide how preservative or confi-
dent has to be the agent during the negotiation (that is, the degree of concession)
or which has to be the acceptance/withdrawal point.

8.2.2 Multi-context systems
We have demonstrated that the use of multi-context systems for the design and imple-
mentation of autonomous agents is not only feasible but very convenient. However
there are some aspects that have to be improved.

• We need to resolve the question of the semantics of the consuming conditions
and time-outs in bridge rules. The inclusion of these two elements means that the
model departs somewhat from first order predicate calculus, and so does not have
a fully-defined semantics. As we have said in chapter 5, one possibility could be
the use of linear logic, as a means of giving a semantics to consuming conditions,
and various temporal logics as a means of giving a semantics to time-outs.

• It would be nice and very convenient to have a graphical tool for the rapid pro-
totyping of declarative agents, with a library of different units and bridge rules
which can be connected together and edited as required.

• In connexion with our work in the area of trust and reputation, we plan to use
the multi-context approach for the specification and implementation of trust and
reputation cognitive models. The characteristics of the multi-context approach
makes this combination very promising and convenient.

Appendix A

Unit theories of the ReGreT
module

A.1 ODB - Unit

contract(ID , Y, I,Xc, t) ∧ fulfillment(ID , Y, I,Xf , t′) → outcome(ID , Y, I,Xc,Xf , t′)

A.2 DT - Unit
itm(10).

sum([],0).
sum([X|Xs],Res) :-

sum(Xs,Res2),
Res is X + Res2.

g(V,Res) :-
itm(Itm),
V =< Itm,
!,
Res is sin((3.1416 * V) / (2 * Itm)).

g(_,1).

dv([],[],_,_,[]).
dv([V|Vs],[T|Ts],SumT,DT,[R|Rs]) :-

R is (T / SumT) * abs(V - DT),
dv(Vs,Ts,SumT,DT,Rs).

dtVal([],[],_,[]).
dtVal([V|Vs],[T|Ts],SumT,[R|Rs]) :-

R is (T / SumT) * V,
dtVal(Vs,Ts,SumT,Rs).

dt(Y,Phi,DT,DTRL) :-
findall(V,imp(_,Y,Phi,V,_),LV),
findall(T,imp(_,Y,Phi,_,T),LT),
sum(LT,SumT),
dtVal(LV,LT,SumT,LR1),
sum(LR1,DT),
dv(LV,LT,SumT,DT,LR2),
sum(LR2,Dv),
length(LV,Length),

123

124 Appendix A

g(Length,No),
DTRL is No * (1 - Dv).

A.3 ICR - Unit
itm(10).

sum([],0).
sum([X|Xs],Res) :-

sum(Xs,Res2),
Res is X + Res2.

g(V,Res) :-
itm(Itm),
V =< Itm,
!,
Res is sin((3.1416 * V) / (2 * Itm)).

g(_,1).

dv([],_,[]).
dv([Rel|Rels],ICr,[R|Rs]) :-

R is (Rel - ICr),
dv(Rels,ICr,Rs).

iCr(W,Cr,CrRL) :-
findall(R,wI(W,_,_,R),LR),
sum(LR,SumR),
length(LR,Length),
Cr is SumR / Length,
g(Length,No),
dv(LR,Cr,LR2),
sum(LR2,Dv),
CrRL No * (1 - Dv).

A.4 SCR - Unit
- PROLOG:
check(W,Y,Coop,-1,false) :-

(coop(W,Y,Coop) ; coop(Y,W,Coop)).
check(W,Y,-1,Comp,false) :-

(comp(W,Y,Comp) ; comp(Y,W,Comp)).
check(_,_,-1,-1,true).

sCr(W,S,T,sCr(W,T,NUM_socialCr)) :-
check(W,S,NUM_coop_ws,NUM_comp_ws,No_rel_ws),
check(W,T,NUM_coop_wt,NUM_comp_wt,No_rel_wt),
!,
fuzzy_Inference_SCR(NUM_coop_ws,NUM_comp_ws,No_rel_ws,

NUM_coop_wt,NUM_comp_wt,No_rel_wt,NUM_socialCr).

- MILORD II:
Module fuzzy_Inference_SCR =

Begin
Import NUM_coop_ws, NUM_comp_ws, No_rel_ws

NUM_coop_wt, NUM_comp_wt, No_rel_wt
Export NUM_socialCr
Deductive knowledge
Dictionary:

Predicates:
NUM_coop_ws = Type: numeric
NUM_comp_ws = Type: numeric
No_rel_ws = Type: boolean
NUM_coop_wt = Type: numeric
NUM_comp_wt = Type: numeric

A.5. CR - Unit 125

No_rel_wt = Type: boolean
NUM_socialCr = Type: numeric

Relation: needs_qualitative socialCr
coop_ws = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_coop_ws
comp_ws = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_comp_ws
coop_wt = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_coop_wt
comp_wt = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_comp_wt
socialCr = Type: (vl "very low" (0,0,0.0625,0.1875),

l "low" (0.0625,0.1875,0.3125,0.4375),
m "moderate" (0.3125,0.4375,0.5625,0.6875),
h "high" (0.5625,0.6875,0.8125,0.9375),
vh "very high" (0.8125,0.9375,1,1))

Rules:
R001 [If coop_ws is l

then conclude socialCr is h] is true
R002 [If coop_ws is m

then conclude socialCr is vh] is true
R003 [If coop_ws is h

then conclude socialCr is vh] is true
R004 [If comp_ws is l

then conclude socialCr is m] is true
R005 [If comp_ws is m

then conclude socialCr is l] is true
R006 [If comp_ws is h

then conclude socialCr is vl] is true
R007 [If coop_wt is l

then conclude socialCr is m] is true
R008 [If coop_wt is m

then conclude socialCr is l] is true
R009 [If coop_wt is h

then conclude socialCr is vl] is true
R010 [If comp_wt is l

then conclude socialCr is m] is true
R011 [If comp_wt is m

then conclude socialCr is l] is true
R012 [If comp_wt is h

then conclude socialCr is vl] is true
R013 [If No_rel_ws and No_rel_wt

then conclude socialCr is h] is true
End deductive

End

A.5 CR - Unit
wCr(W,WCr) :-

iCr(W,ICr,ICrRL),
sCr(W,SCr),
WCr is ICrRL * ICr + (1-ICrRL) * SCr.

wCr(W,SCr) :-
\+ iCr(W,_,_),
sCr(W,SCr).

wCr(W,ICr) :-
iCr(W,ICr,ICrRL),

126 Appendix A

\+ sCr(W,_),
ICrRL > 0.5.

wCr(W,0.5).

A.6 Witnesses - Unit

target(X) ∧ witness(W,X,φ) ∧ trade(W,X) → tmp(X,φ, ∅)

witness(W,X,φ) ∧ tmp(X, φ, S) → tmp(X,φ, S ∪W)

tmp(X, φ, S) ∧ (" witness(W,X,φ) ∧ trade(W,X))|W ∈ S) → wSet(X,φ, S)

A.7 WRep - Unit
min(A,B,A) :-

A < B.
min(_,B,B).

sum([],0).
sum([X|Xs],Res) :-

sum(Xs,Res2),
Res is X + Res2.

select(_,_,[],[],[]).
select(Y,Phi,[W|Ws],[Cr|Crs],[op(W,T,TRL)|Ops]) :-

cR(W,Y,Cr),
wI(W,Y,Phi,T,TRL),
select(Y,Phi,Ws,Crs,Ops).

select(Y,Phi,[_|Ws],Crs,Ops) :-
select(Y,Phi,Ws,Crs,Ops).

wRepVal(_,[],[],[],[]).
wRepVal(SumCr,[Cr|Crs],[op(_,T,TRL)|Ops],[R|Rs],[Rl|Rls]) :-

R is (Cr / SumCr) * T,
min(Cr,TRL,Min),
Rl is (Cr / SumCr) * Min,
wRepVal(SumCr,Crs,Ops,Rs,Rls).

wRep(Y,Phi,R,Rl) :-
wSet(Y,Ws),
select(Y,Phi,Ws,Crs,Ops),
sum(Crs,SumCr),
wRepVal(SumCr,Crs,Ops,Rs,Rls),
!,
sum(Rs,R),
sum(Rls,Rl).

A.8 NiRep - Unit
- PROLOG:
rep(X,Phi,niRep(X,N,Phi,NUM_R,NUM_RL)) :-

(coop(N,X,NUM_coop) ; coop(X,N,NUM_coop)),
dt(N,Phi,NUM_dt,NUM_dtrl),
fuzzy_Inference_R(NUM_dt,NUM_coop,NUM_R),
fuzzy_Inference_RL(NUM_dtrl,NUM_coop,NUM_RL).

- MILORD:
Module fuzzy_Inference_R =

Begin
Import NUM_dt, NUM_coop

A.8. NiRep - Unit 127

Export NUM_R
Deductive knowledge
Dictionary:

Predicates:
NUM_dt = Type: numeric
NUM_coop = Type: numeric
NUM_R = Type: numeric

Relation: needs_qualitative R
dt = Type: (vb "very bad" (-1,-1,-0.8,-0.7),

b "bad" (-0.8,-0.7,-0.5,-0.4),
sb "slightly bad" (-0.5,-0.4,-0.2,-0.1),
n "neutral" (-0.2,-0.1,0.1,0.2),
sg "slightly good" (0.1,0.2,0.4,0.5),
g "good" (0.4,0.5,0.7,0.8),
vg "very good" (0.7,0.8,1,1))

Relation: needs_quantitative NUM_dt
coop = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_coop
R = Type: (vb "very bad" (-1,-1,-0.8,-0.7),

b "bad" (-0.8,-0.7,-0.5,-0.4),
sb "slightly bad" (-0.5,-0.4,-0.2,-0.1),
n "neutral" (-0.2,-0.1,0.1,0.2),
sg "slightly good" (0.1,0.2,0.4,0.5),
g "good" (0.4,0.5,0.7,0.8),
vg "very good" (0.7,0.8,1,1))

Rules:
R001 [If dt is vb and coop is h
then conclude R is vb] is true
R002 [If dt is b and coop is h
then conclude R is b] is true
R003 [If dt is sb and coop is h
then conclude R is sb] is true
R004 [If dt is n and coop is h
then conclude R is n] is true
R005 [If dt is sg and coop is h
then conclude R is sg] is true
R006 [If dt is g and coop is h
then conclude R is g] is true
R007 [If dt is vg and coop is h
then conclude R is vg] is true
R008 [If dt is vb and coop is m
then conclude R is vb] is almost-true
R009 [If dt is b and coop is m
then conclude R is b] is almost-true
R010 [If dt is sb and coop is m
then conclude R is sb] is almost-true
R011 [If dt is n and coop is m
then conclude R is n] is almost-true
R012 [If dt is sg and coop is m
then conclude R is sg] is almost-true
R013 [If dt is g and coop is m
then conclude R is g] is almost-true
R014 [If dt is vg and coop is m
then conclude R is vg] is almost-true
R015 [If dt is vb and coop is l
then conclude R is vb] is quite-true
R016 [If dt is b and coop is l
then conclude R is b] is quite-true
R017 [If dt is sb and coop is l
then conclude R is sb] is quite-true
R018 [If dt is n and coop is l
then conclude R is n] is quite-true
R019 [If dt is sg and coop is l
then conclude R is sg] is quite-true
R020 [If dt is g and coop is l
then conclude R is g] is quite-true

128 Appendix A

R021 [If dt is vg and coop is l
then conclude R is vg] is quite-true

End deductive
End

Module fuzzy_Inference_RL =
Begin

Import NUM_dtrl, NUM_coop
Export NUM_RL
Deductive knowledge
Dictionary:

Predicates:
NUM_dtrl = Type: numeric
NUM_coop = Type: numeric
NUM_RL = Type: numeric

Relation: needs_qualitative RL
dtrl = Type: (vl "very low" (0,0,0.0625,0.1875),

l "low" (0.0625,0.1875,0.3125,0.4375),
m "moderate" (0.3125,0.4375,0.5625,0.6875),
h "high" (0.5625,0.6875,0.8125,0.9375),
vh "very high" (0.8125,0.9375,1,1))

Relation: needs_quantitative NUM_dtrl
coop = Type: (l "low" (0,0,0.2,0.4),

m "medium" (0.2,0.4,0.6,0.8),
h "high" (0.6,0.8,1,1))

Relation: needs_quantitative NUM_coop
RL = Type: (vl "very low" (0,0,0.0625,0.1875),

l "low" (0.0625,0.1875,0.3125,0.4375),
m "moderate" (0.3125,0.4375,0.5625,0.6875),
h "high" (0.5625,0.6875,0.8125,0.9375),
vh "very high" (0.8125,0.9375,1,1))

Rules:
R001 [If dtrl is vl and coop is l
then conclude RL is vl] is true
R002 [If dtrl is vl and coop is m
then conclude RL is vl] is true
R003 [If dtrl is vl and coop is h
then conclude RL is vl] is true
R004 [If dtrl is l and coop is l
then conclude RL is vl] is true
R005 [If dtrl is l and coop is m
then conclude RL is vl] is true
R006 [If dtrl is l and coop is h
then conclude RL is l] is true
R007 [If dtrl is m and coop is l
then conclude RL is vl] is true
R008 [If dtrl is m and coop is m
then conclude RL is l] is true
R009 [If dtrl is m and coop is h
then conclude RL is m] is true
R010 [If dtrl is h and coop is l
then conclude RL is l] is true
R011 [If dtrl is h and coop is m
then conclude RL is m] is true
R012 [If dtrl is h and coop is h
then conclude RL is h] is true
R013 [If dtrl is vh and coop is l
then conclude RL is m] is true
R014 [If dtrl is vh and coop is m
then conclude RL is h] is true
R015 [If dtrl is vh and coop is h
then conclude RL is vh] is true

End deductive
End

A.9. NRep - Unit 129

A.9 NRep - Unit
sum([],0).
sum([X|Xs],Res) :-

sum(Xs,Res2),
Res is X + Res2.

nRepVal([],[],_,[],[]).
nRepVal([R|Rs],[Rl|Rls],SumRl,[SR|SRs],[SRl|SRls]) :-

SR is (Rl / SumRl) * R,
SRl is (Rl / SumRl) * Rl,
nRepVal(Rs,Rls,SumRl,SRs,SRls).

nRep(Y,Phi,NR,NRl) :-
findall(R,niRep(_,Y,Phi,R,_),LR1),
findall(Rl,niRep(_,Y,Phi,_,Rl),LRl1),
sum(LRl1,SumRL),
nRepVal(LR1,LRl1,SumRL,LR2,LRl2),
sum(LR2,NR),
sum(LRl2,NRl).

A.10 SRep - Unit

target(Y) ∧ inGroup(Y,G) ∧ groupRep(G,φ,Rep) → sRep(Y, φ,Rep)

As part of the initial theory there are also a set of facts that relate a group and a behavioural aspect with the reputation value.
These facts have the form:

groupRep(G,φ,Rep)

where G is the group, φ the behavioural aspect and Rep the reputation value.

A.11 Rep - Unit
defaultRep(0,1).
defaultSRL(1).

getWRep(X,Phi,WRL,WR,WRL) :-
wRep(X,Phi,WR,WRL).

getWRep(_,_,0,0,0).

getNRep(X,Phi,Ew,En,NR,NRL) :-
nRep(X,Phi,NR,NRL),
En is NRL * (1-Ew).

getNRep(_,_,_,0,0,0).

getSRep(X,Phi,Ew,En,Es,SR,SRL) :-
defaultSRL(SRL),
sRep(X,Phi,SR),
Es is SRL * (1-Ew-En).

getSRep(_,_,_,_,0,0,0).

getDRep(_,_,Ew,En,Es,Ed,DR,DRL) :-
defaultRep(DR,DRL),
Ed is (1-Ew-En-Es).

reputation(X,Phi,R,Rl) :-
getWRep(X,Phi,Ew,WR,WRl),
getNRep(X,Phi,Ew,En,NR,NRl),
getSRep(X,Phi,Ew,En,Es,SR,SRl),
getDRep(X,Phi,Ew,En,Es,Ed,DR,DRl),
R is (Ew * WR) + (En * NR) + (Es * SR) + (Ed * DR),
Rl is (Ew * WRl) + (0.75 * En * NRl) + (0.5 * Es * SRl) +

(0.25 * Ed * DRl).

130 Appendix A

A.12 Trust - Unit
getDT(Y,Phi,DT,DTRL) :-

dt(Y,Phi,DT,DTRL).
getDT(_,_,0,0).

getRep(Y,Phi,R,RL) :-
reputation(Y,Phi,R,RL).

getRep(_,_,0,0).

trust(Y,Phi,T,TRL) :-
getDT(Y,Phi,DT,DTRL),
getRep(Y,Phi,R,RL),
T is (DTRL * DT) + ((1-DTRL) * R),
TRL is (DTRL * DTRL) + ((1-DTRL) * RL).

Appendix B

Experiments’ specification

B.1 Configuration file description
A SuppWorld configuration file has 9 sections. We will go through the parameters of
each section one by one.

Section EXPERIMENT: This is the section for the general parameters of the experiment.

Parameter Description
ExperimentID An ID for the experiment.
numRounds Number of rounds.
Sequence This is an ordered list of the scenes that are executed each round. The first element is

the number of scenes. Each scene is described by two or three characters depending on
its type. The first character is the scene type. There are 4 possible types:

• ‘f’ Input/output of products. This scene is both to simulate the entrance of
rough material, the action of final consumers or the “pay day”.

• ‘p’ Production process. Transformation process that adds new value to a prod-
uct.

• ‘c’ Convention.

• ‘g’ Market session.

The second character indicates the home grid of the agents that will participate in that
scene. The third is only used if the scene type is ’f’. In that case indicates if there
is an entrance of rough material (‘i’), the material has to be bought to simulate final
consumers (‘o’) or we have to simulate a “pay day” (‘s’). For example: “f2o” defines
a final consumers simulation scene that will be performed with agents that have the
home cell in grid number 2. “g1” defines a market session in grid number 1 (therefore
the sellers will be the agent that have the home cell in grid number 1 and the buyers the
agents that have the home cell in grid number 2).

EndSeq Ordered list of scenes that are executed at the end of the experiment
Social Level Determines if the agents take into account the social relations (this is only applicable

to cooperative and competitive relations, trade relations are always taken into account).
There are two possible values: NON SOCIAL (the agents do not take into account so-
cial relations) and SOCIAL ALL (the agents take into account social relations). Social
relations influence the fulfillment of contracts and the truthfulness of given information.

LogMode Fixes the log mode. Depending on the value of this parameter, the SuppWorld frame-
work monitors different aspects of the execution. There are three possibilities: SIN-
GLE (the framework only monitors a selected subset of individuals), POPULUS (the
framework monitors all the individuals) and NONE

IndToMonitor This is the list of individuals that will be initialized. For each individual it is specified
the ID and the type of trust model that will use after the initialization.

ResetRound At this round, the individuals specified in the IndToMonitor parameter are initialized.

131

132 Appendix B

Section TRANSPORT: This section contains the list of different transport types available to sellers in order to send
goods to the buyers.

Parameter Description
type The name of the transport.
ID An ID for the transport.
speed This is the number of ticks that the transport invests to move a set of goods from one cell to

the adjacent.
cost The cost (in terms of money) that has to move each unit of product from one cell to the

adjacent.

Section PRODUCT PROFILES: Here you can specify the profile for each type of product in the supply chain.

Parameter Description
type The name of the product type.
profID The ID of the product type.
inProduction Number of product units of this type that are generated during an “Input of prod-

ucts” scene (the scene that simulates the entrance of rough material in the supply
chain). This is the number of units that receives each agent.

inCost The cost of each product unit if it is considered rough material (that is, if the agent
obtains the product in a “Input of products” scene).

inLostCost Money that the agent has to pay for each product unit that cannot be acquired dur-
ing an “Input of products” scene (either because the agent does not have enough
storage capacity, either because it has not enough money to buy the product unit).

productionCost Cost to transform a unit of product in order to sell it in the next layer of the supply
chain.

outProduction Number of product units of this type that can be sold during an “Output of prod-
ucts” scene (when it simulates the action of final consumers). This is the number
of units that can sell each agent.

outCost The price of each product unit when it is sold in an “Output of products” scene
simulating the action of final consumers.

Price range Allowed price range for each unit of the product when it is sold in a “market”
scene.

Quantity range Minimum and maximum quantity of product that can be traded in a single negoti-
ation process when the product is sold in a “market” scene.

Quality range Minimum and maximum quality that can have this product.
Transport Transport types that can be used to deliver this product.

Section NEGO ENGINES: This section defines the parameters of the negotiation engines that use the agents to nego-
tiate. Currently, the only strategy available is a tit-for-tat.

Parameter Description
type Negotiation engine type.
behaviour This parameter modulates the degree of concession. As we have said, the negotiation engine

follows a tit-for-tat strategy. Once the engine has decided how much it is going to concede
(following the tit-for-tat strategy), this parameter is used to influence the degree of conces-
sion. There are five possible values {B, b, n, c, C}. ‘B’ and ‘b’ decrease the concession
percentage dictated by the tit-for-tat strategy a 40% and a 20% respectively. ‘n’ do not
modify the concession percentage. Finally, ‘c’ and ‘C’ increase the concession percentage
a 20% and 40% respectively.

Price Util Weight of the issue ‘Price’ in the utility function.
Quantity Util Weight of the issue ‘Quantity’ in the utility function.
Quality Util Weight of the issue ‘Quality’ in the utility function.
TransType Util Weight of the issue ‘TransType’ in the utility function. It is mandatory that the summation

of these four weights be equal to 1.

Section TRUST AND REPUTATION MODELS: This section specifies the parameters for the trust and reputation
models. The set of parameters that specify a trust and/or reputation engine are dependent on the engine. Only the two first
parameters (type, Model) are mandatory for all the engines. Here we will detail the parameters that specify the ReGreT
system. As a convention, when we say that the parameter is a flag it means that a value of 1 activates the resource and a value
of 0 deactivates it.

B.1. Configuration file description 133

Parameter Description
type An ID for the set of parameters.
Model The type of engine. In our examples will be always REGRET.
Model params These parameters allow to control which parts of the system are active.
DirectTrust Flag that activates the use of the direct trust module.
Reputation Flag that activates the use of reputation.
WRep Flag that activates the use of the witness reputation module.
Witness itm level Fixes the itm value for the witness reputation module.
Credibility Flag that activates the use of the credibility module.
infoCr Flag that activates the credibility based on previous information.
socialCr Flag that activates the credibility based on social network analysis.
DefaultCrValue Default credibility value.
NRep Flag that activates the use of the neighbourhood reputation module.
SRep Flag that activates the use of the system reputation module.
DRep Value Default reputation value.
DRl Value Reliability for the default reputation value.
Expert systems These parameters specify the files that contain the information to instantiate the

fuzzy systems of the ReGreT system.
expertSocialCr File with the rules to evaluate the credibility using social network analysis.
expertNRep File with the specification for the neighbourhood reputation module (reputation

values).
expertNRl File with the specification for the neighbourhood reputation module (reliability

values).
GrRelations This is the specification of the ontological dimension. The specification consists

on a list of nodes and how they are related.
node Label that identifies the node and describes its associated behavioural aspect.
itm level Fixes the itm value. This parameter is used to calculate the reliability of a direct

trust value when it is considered the number of outcomes that have been used to
make the calculation.

child Label identifying a child node that contributes to the calculation of the current
node. If the current node is related with an atomic aspect of the behaviour, this
label defines the issue of the contract associated to this aspect.

w Relevance that has the child node value in the calculation of the parent node value.
The summation of all the weights associated to a single parent node must be equal
to 1.

Section INDIVIDUALS: This section describes the different types of individuals that will populate the supply chain.

Parameter Description
type Label that identifies this type of individual.
class This parameter defines the base class of the agent depending on tis position in the

supply chain. There are four possibilities:

• ‘PRODUCER’ Agent that populates the first layer of the supply chain.

• ‘MANUFACTURER’ Agent that inhabits the middle layers of the supply
chain (that is, buy things in one market and sells the modified product in an-
other market).

• ‘MANUFACTURER F’ Agent that populates the last layer of the supply chain
and sells its products to a simulated final consumer.

• ‘CONSUMER’ Agent that populates the last layer of the supply chain and
receives a salary.

socID Specifies which view of the society will be assigned to this type of agent (see section
SOCIETY VIEWS).

FarmType If the class is ‘PRODUCER’, this parameter fixes the quality of the product that the
agents of this type will generate.

Cash Initial amount of money.
PrIn This is a list of the products that needs this type of agent to produce the output product.
PrType An ID for the product.
productProfile The profile for the product (it must be one of the profiles defined in section ‘PRODUCT

PROFILES’).
MaxStock Maximum capacity that has the agent to store this type of product (in number of units).

134 Appendix B

Stock Initial stock of this kind of product at the beginning of the experiment.
StockQuality Quality distribution of the initial stock.
PrOut This is the product that this type of agent produces and sells to the others. To produce

one unit of this product the agent needs one unit of each product specified in the PrIn
section

PrType An ID for the product.
productProfile The profile for the product (it must be one of the profiles defined in section ‘PRODUCT

PROFILES’).
MaxStock Maximum capacity that has the agent to store this type of product (in number of units).
Stock Initial stock of this kind of product at the beginning of the experiment.
StockQuality Quality distribution of the initial stock.
NegoEngineStr Negotiation engine that uses this type of agent. It must be one of the negotiation engines

specified in the ‘NEGO ENGINES’ section.
TrustEngineStr Trust engine that uses this type of agent. It must be one of the models specified in the

‘TRUST AND REPUTATION MODELS’ section.

Section MARKETS: This section describes the markets (grids) in the supply chain.

Parameter Description
ID An ID for the market.
dim The size of the market.
sessionTime Number of ticks that the market remains open during a session.
popTypes List of agent types that can own a cell in this market. This parameter is used to

generate a population randomly.
BehDstr Fixes the behaviour of the agents that populate the market. The first element of

the list represents the percentage of SAINTs, the second the percentage of GOOD
agents and so on. The summation of the five elements must be equal to 100.
Again, this is used to generate the agents behaviour of a population randomly but
following a fixed distribution.

Grid specification This section reproduces explicitly the distribution of agent types and behaviours
over the market. Each position represents a physical cell on the market and the
type and behaviour of its owner. For example, ‘AB-G’ represents an agent of
type ‘AB’ with a GOOD behaviour. You can use ‘??’ for the type and ‘?’ for
the behaviour to left the system to calculate randomly the type and behaviour
according to the specifications in parameters ‘popTypes’ and ‘NehDstr’.

Section CONVENTIONS: This section describes the convention scenes.

Parameter Description
gridID This parameter specifies the grid that hosts the agents that will participate in the convention.
sessionTime The duration, in number of ticks, of the convention. During a tick, each agent that partici-

pates in the convention can make one single question to another agent.

Section SOCIETIES: This section specifies how are generated the sociograms that define the point of view of each
agent about the society.

Parameter Description
socID The ID for this specific set of sociograms.
market This specifies the set of agents that appear in the sociograms (in other words, the nodes of

the sociograms). For instance, if ‘market = grid1’ means that the nodes of the sociograms
are the agents that own a cell in ‘grid1’ (acting as sellers) and the agents that buy in that
market (acting as buyers).

densityCoop Density of the cooperation sociogram.
densityComp Density of the competition sociogram.

B.2. Configuration files of the experiments 135

B.2 Configuration files of the experiments
B.2.1 Scenario I
100% EVIL
// **
// EXPERIMENT
// **

ExperimentID = ExpID
numRounds = 50
Sequence = [6,f1i,p1,c2,g1,p2,f2o]
EndSeq = [2,p2,f2o]
Social_Level = NON_SOCIAL
LogMode = SINGLE
IndToMonitor = [(2025|ALLNEGO),(2004|ALLNEGO),(2045|ALLNEGO),

(2054|ALLNEGO),(2032|ALLNEGO),(2026|ALLNEGO),
(2005|ALLNEGO),(2046|ALLNEGO),(2055|ALLNEGO),
(2033|ALLNEGO)]

ResetRound = 30

// **
// TRANSPORT
// **

begin
type = BOAT
ID = 1
speed = 1
cost = 1

type = TRAIN
ID = 2
speed = 2
cost = 2

type = TRUCK
ID = 3
speed = 3
cost = 3

type = PLANE
ID = 4
speed = 4
cost = 4

type = SHUTTLE
ID = 5
speed = 5
cost = 5

end

// **
// PRODUCT PROFILES
// **

begin
type = ROUGH_PRODUCT
profID = 1
inProduction = 200
inCost = 10
inLostCost = 3
productionCost = 5
outProduction = -1
outCost = -1
Price_range = [10,50]
Quantity_range = [20,20]
Quality_range = [1,5]
Transport = [BOAT,TRAIN,TRUCK,PLANE,SHUTTLE]

type = MANUFACTURED_PRODUCT
profID = 2
inProduction = -1
inCost = -1
inLostCost = 0
productionCost = 15
outProduction = -1
outCost = 20
Price_range = [0,200]
Quantity_range = [1,50]
Quality_range = [1,5]
Transport = [BOAT,TRAIN,TRUCK,PLANE,SHUTTLE]

end

// **
// NEGO ENGINES
// **

136 Appendix B

begin
type = LINEAR
behaviour = n
Price_Util = 0.5
Quantity_Util = 0
Quality_Util = 0.5
TransType_Util = 0

end

// **
// TRUST AND REPUTATION MODELS
// **
begin

// **
// ALWAYS NEGOTIATE
// **
type = ALLNEGO
Model = REGRET

// Model params
DirectTrust = 0
Reputation = 0
WRep = 0
Witness_itm_level = 5
Credibility = 0
infoCr = 0
socialCr = 0
DefaultCrValue = 0
NRep = 0
SRep = 0
DRep_Value = 0
DRl_Value = 0.3

// Expert systems
expertSocialCr = ../socialCr.fex
expertNRep = ../NRep.fex
expertNRl = ../NRl.fex

// Ontological dimension
begin

node = offers_good_prices
itm_level = 3
begin

child = PRICE
w = 1.0

end

node = offers_good_quality
itm_level = 3
begin

child = QUALITY
w = 1.0

end

node = good_seller
itm_level = -1
begin

child = price
w = 0.5

child = quality
w = 0.5

end
end

// **
// DT
// **
type = DT
Model = REGRET

// Model params
DirectTrust = 1
Reputation = 0
WRep = 0
Witness_itm_level = 5
Credibility = 0
infoCr = 0
socialCr = 0
DefaultCrValue = 0
NRep = 0
SRep = 0
DRep_Value = 0
DRl_Value = 0.5

// Expert systems
expertSocialCr = ../socialCr.fex
expertNRep = ../NRep.fex
expertNRl = ../NRl.fex

B.2. Configuration files of the experiments 137

// Ontological dimension
begin

node = offers_good_prices
itm_level = 3
begin

child = PRICE
w = 1.0

end

node = offers_good_quality
itm_level = 3
begin

child = QUALITY
w = 1.0

end

node = good_seller
itm_level = -1
begin

child = price
w = 0.5

child = quality
w = 0.5

end
end

// **
// DT + WR
// **
type = DT+WR
Model = REGRET

// Model params
DirectTrust = 1
Reputation = 1
WRep = 1
Witness_itm_level = 5
Credibility = 0
infoCr = 0
socialCr = 0
DefaultCrValue = 0
NRep = 0
SRep = 0
DRep_Value = 0
DRl_Value = 0.3

// Expert systems
expertSocialCr = ../socialCr.fex
expertNRep = ../NRep.fex
expertNRl = ../NRl.fex

// Ontological dimension
begin

node = offers_good_prices
itm_level = 3
begin

child = PRICE
w = 1.0

end

node = offers_good_quality
itm_level = 3
begin

child = QUALITY
w = 1.0

end

node = good_seller
itm_level = -1
begin

child = price
w = 0.5

child = quality
w = 0.5

end
end

// **
// INDIVIDUALS
// **
begin

// **** PRODUCER: aA **
type = aA
class = PRODUCER
socID = market1
FarmType = 4
Cash = 5000

138 Appendix B

// PrIn
begin

PrType = a
productProfile = ROUGH_PRODUCT
MaxStock = 1000
Stock = 0
StockQuality = [0,0,0,0,0]

end

// PrOut
PrType = A
productProfile = ROUGH_PRODUCT
MaxStock = 1000
Stock = 0
StockQuality = [0,0,0,0,0]

// NegoEngine
NegoEngineStr = LINEAR

// ReputationEngine
TrustEngineStr = NONE

// **** MANUFACTURER: AB ************************************
type = AB
class = MANUFACTURER_F
socID = market1
FarmType = -1
Cash = 5000

// PrIn
begin

PrType = A
productProfile = ROUGH_PRODUCT
MaxStock = 100
Stock = 0
StockQuality = [0,0,0,0,0]

end

// PrOut
PrType = B
productProfile = MANUFACTURED_PRODUCT
MaxStock = 100
Stock = 0
StockQuality = [0,0,0,0,0]

// NegoEngine
NegoEngineStr = LINEAR

// ReputationEngine
TrustEngineStr = DT

end

// **
// MARKETS
// **

begin
ID = grid1
dim = [4,4]
sessionTime = 30
popTypes = [aA]
BehDstr = [0,0,0,0,100]
begin

aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-?

end

ID = grid2
dim = [8,8]
sessionTime = 0
popTypes = [AB]
BehDstr = [100,0,0,0,0]
begin

AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-?

end
end

// **
// CONVENTIONS
// **

B.2. Configuration files of the experiments 139

begin
gridID = grid2
sessionTime = 1

end

// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.1
densityComp = 0.1

end

Taking the previous configuration file as a basis we compared four types of manufacturers. Each type of manufacturer
was tested by modifying the following fields:

Manufacturer: NEGOTIATE ALWAYS

IndToMonitor = [(2025|ALLNEGO),(2004|ALLNEGO),(2045|ALLNEGO),
(2054|ALLNEGO),(2032|ALLNEGO),(2026|ALLNEGO),
(2005|ALLNEGO),(2046|ALLNEGO),(2055|ALLNEGO),
(2033|ALLNEGO)]

Manufacturer: DT + WR (LIERS)

IndToMonitor = [(2025|DT+WR),(2004|DT+WR),(2045|DT+WR),
(2054|DT+WR),(2032|DT+WR),(2026|DT+WR),
(2005|DT+WR),(2046|DT+WR),(2055|DT+WR),
(2033|DT+WR)]

BehDstr = [0,0,0,0,100]

Manufacturer: DT

IndToMonitor = [(2025|DT),(2004|DT),(2045|DT),
(2054|DT),(2032|DT),(2026|DT),
(2005|DT),(2046|DT),(2055|DT),
(2033|DT)]

Manufacturer: DT + WR

IndToMonitor = [(2025|DT+WR),(2004|DT+WR),(2045|DT+WR),
(2054|DT+WR),(2032|DT+WR),(2026|DT+WR),
(2005|DT+WR),(2046|DT+WR),(2055|DT+WR),
(2033|DT+WR)]

50% NEUTRAL - 50% EVIL
Same parameters of the experiment “100% EVIL” with the following difference in the grid1 specification:

BehDstr = [0,0,50,0,50]

100% BAD
Same parameters of experiment “100% EVIL” with the following difference in the grid1 specification:

BehDstr = [0,0,0,100,0]

50% NEUTRAK - 30% BAD - 20% EVIL
Same parameters of the experiment “100% EVIL” with the following difference in the grid1 specification:

BehDstr = [0,0,50,30,20]

140 Appendix B

50% NEUTRAK - 30% BAD - 20% EVIL (LARGE SCENARIO)
Same parameters of the experiment “100% EVIL” changing the following fields:

// **
// EXPERIMENT
// **

numRounds = 90
...
ResetRound = 50

// **
// GRIDS
// **

begin
ID = grid1
dim = [8,8]
sessionTime = 60
popTypes = [aA]
BehDstr = [0,0,50,30,20]
begin

aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?
aA-? aA-? aA-? aA-? aA-? aA-? aA-? aA-?

end

ID = grid2
dim = [16,16]
sessionTime = 0
popTypes = [AB]
BehDstr = [100,0,0,0,0]
begin

AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...
AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? AB-? ...

end
end

// **
// CONVENTIONS
// **

begin
gridID = grid2
sessionTime = 20

end

B.2.2 Scenario II
For these experiments we use the configuration presented in B.2.1 with the following modifications:

Social_Level = SOCIAL_MAN
...
ResetRound = 20
...

// **
// DT + WR + SCr
// **
type = DT+WR+SCr
Model = REGRET

// Model params
DirectTrust = 1
Reputation = 1
WRep = 1
Witness_itm_level = 5
Credibility = 1
infoCr = 0

B.2. Configuration files of the experiments 141

socialCr = 1
DefaultCrValue = 0
NRep = 0
SRep = 0
DRep_Value = 0
DRl_Value = 0.3

// Expert systems
expertSocialCr = ../socialCr.fex
expertNRep = ../NRep.fex
expertNRl = ../NRl.fex

// Ontological dimension
begin

node = offers_good_prices
itm_level = 3
begin

child = PRICE
w = 1.0

end

node = offers_good_quality
itm_level = 3
begin

child = QUALITY
w = 1.0

end

node = good_seller
itm_level = -1
begin

child = price
w = 0.5

child = quality
w = 0.5

end
end

...

// **
// CONVENTIONS
// **

begin
gridID = grid2
sessionTime = 10

end

Comp Sociogram Density = 0.2
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.0
densityComp = 0.2

end

Comp Sociogram Density = 0.5
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.0
densityComp = 0.5

end

Comp Sociogram Density = 0.8
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.0
densityComp = 0.8

end

142 Appendix B

Coop Sociogram Density = 0.2
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.2
densityComp = 0.0

end

Coop Sociogram Density = 0.5
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.5
densityComp = 0.0

end

Coop Sociogram Density = 0.8
// **
// SOCIETY VIEWS
// **

begin
socID = market1
market = grid1
densityCoop = 0.8
densityComp = 0.0

end

Bibliography

[Oxf, 2002] (2002). The concise oxford disctionary of current english. Oxford Univer-
sity Press.

[Abdul-Rahman and Hailes, 2000] Abdul-Rahman, A. and Hailes, S. (2000). Support-
ing trust in virtual communities. In Proceedings of the Hawaii’s International Con-
ference on Systems Sciences, Maui, Hawaii.

[Amazon, 2002] Amazon (2002). Amazon Auctions. http://auctions.amazon.com.

[Benerecetti et al., 1997] Benerecetti, M., Cimatti, A., Giunchiglia, E., Giunchiglia, F.,
and Serafini, L. (1997). Formal specification of beliefs in multi-agent systems. In
Müller, J. P., Wooldridge, M. J., and Jennings, N. R., editors, Intelligent Agents III,
pages 117–130. Springer Verlag, Berlin.

[Booch, 1994] Booch, G. (1994). Object-oriented analysis and design with applica-
tion. Addison Wesley, Wokingham, UK.

[Brazier et al., 1995] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R., and
Treur, J. (1995). Formal specification of multi-agent systems. In Proceedings of the
1st International Conference on Multi-Agent Systems, pages 25–32.

[Bromley, 1993] Bromley, D. B. (1993). Reputation, Image and Impression Manage-
ment. John Wiley & Sons.

[Buskens, 1998] Buskens, V. (1998). The social structure of trust. Social Networks,
(20):265—298.

[Buskens, 1999] Buskens, V. (1999). Social networks and trust. PhD thesis, Utrecht
University.

[Carbo et al., 2002a] Carbo, J., Molina, J., and Davila, J. (2002a). Comparing predic-
tions of sporas vs. a fuzzy reputation agent system. In 3rd International Conference
on Fuzzy Sets and Fuzzy Systems, Interlaken, pages 147—153.

[Carbo et al., 2002b] Carbo, J., Molina, J., and Davila, J. (2002b). Trust management
through fuzzy reputation. Int. Journal in Cooperative Information Systems, pages
in–press.

143

144 Bibliography

[Carter et al., 2002] Carter, J., Bitting, E., and Ghorbani, A. (2002). Reputation formal-
ization for an information-sharing multi-agent sytem. Computational Intelligence,
18(2):515—534.

[Castelfranchi et al., 1998] Castelfranchi, C., Conte, R., and Paolucci, M. (1998). Nor-
mative reputation and the cost of compliance. Journal of Artificial Societies and
Social Simulation (JASSS), 1(3).

[Castelfranchi and Falcone, 1998] Castelfranchi, C. and Falcone, R. (1998). Prin-
ciples of trust for mas: Cognitive anatomy, social importance, and quantifica-
tion. In Proceedings of the International Conference on Multi-Agent Systems (IC-
MAS’98),Paris,France, pages 72—79.

[Celentani et al., 1966] Celentani, M., Fudenberg, D., Levine, D., and Psendorfer, W.
(1966). Maintaining a reputation against a long-lived opponent. Econometrica,
64(3):691—704.

[Cimatti and Serafini, 1995] Cimatti, A. and Serafini, L. (1995). Multi-agent reasoning
with belief contexts: The approach and a case study. In Wooldridge, M. J. and
Jennings, N. R., editors, Intelligent Agents, pages 62–73. Springer Verlag, Berlin.

[Dellarocas, 2002] Dellarocas, C. (2002). The digitalization of word-of-mouth:
Promise and challenges of online reputation mechanisms. in-press.

[d’Inverno et al., 1998] d’Inverno, M., Kinny, D., Luck, M., and Wooldridge, M.
(1998). A formal specification of dMARS. In Singh, M. P., Rao, A. S., and
Wooldridge, M., editors, Intelligent Agents IV, pages 155–176. Springer Verlag,
Berlin.

[Dubois and Prade, 1988] Dubois, D. and Prade, H. (1988). Possibility Theory: An
Approach to Computerized Processing of Uncertainty. Plenum Press, New York,
NY.

[eBay, 2002] eBay (2002). eBay. http://www.eBay.com.

[Esfandiari and Chandrasekharan, 2001] Esfandiari, B. and Chandrasekharan, S.
(2001). On how agents make friends: Mechanisms for trust acquisition. In Pro-
ceedings of the Fourth Workshop on Deception, Fraud and Trust in Agent Societies,
Montreal, Canada, pages 27—34.

[Faratin et al., 1997] Faratin, P., Sierra, C., and Jennings, N. (1997). Negotiation
decision functions for autonomous agents. Robotics and Autonomous Systems,
(24):159—182.

[Fisher, 1998] Fisher, M. (1998). Representing abstract agent architectures. In Müller,
J. P., Singh, M. P., and Rao, A. S., editors, Intelligent Agents V, pages 227–242.
Springer Verlag, Berlin.

[Gabbay, 1996] Gabbay, D. (1996). Labelled Deductive Systems. Oxford University
Press, Oxford, UK.

Bibliography 145

[Giunchiglia, 1993] Giunchiglia, F. (1993). Contextual reasoning. In Proceedings of
the IJCAI Workshop on Using Knowledge in Context.

[Giunchiglia and Serafini, 1994] Giunchiglia, F. and Serafini, L. (1994). Multilan-
guage hierarchical logics (or: How we can do without modal logics). Artificial
Intelligence, 65:29–70.

[Glickman, 1999] Glickman, M. E. (1999). Parameter estimation in large dynamic
paired comparison experiments. Applied Statistics, (48):377—394.

[Godo et al., 2002] Godo, L., Puyol-Gruart, J., and Sierra, C. (2002). Control tech-
niques for complex reasoning: The case of Milord II. In Meyer, J.-J. C. and Treur,
J., editors, Agent-based Defeasible Control in Dynamic Environments, volume 7
of Handbook of Defeasible and Uncertainty Management Systems, pages 65–97.
Kluwer Academic Publishers. Invited paper. ISBN: 1-4020-0834-1.

[Grandison and Sloman, 2000] Grandison, T. and Sloman, M. (2000). A survey of trust
in internet application.

[Hage and Harary, 1983] Hage, P. and Harary, F. (1983). Structural Models in Anthro-
pology. Cambridge University Press.

[Hume, 1975] Hume, D. (1975).

[Ingrand et al., 1992] Ingrand, F. F., Georgeff, M. P., and Rao, A. S. (1992). An archi-
tecture for real-time reasoning and system control. IEEE Expert, 7(6):34–44.

[Jennings, 1995] Jennings, N. R. (1995). Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions. Artificial Intelligence, 75:195–
240.

[Jennings, 1999] Jennings, N. R. (1999). Agent-based computing: Promise and perils.
In Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 1429–1436.

[Karlins and I.Abelson, 1970] Karlins, M. and I.Abelson, H. (1970). Persuasion, how
opinion and attitudes are changed. Crosby Lockwood & Son.

[Lashkari et al., 1994] Lashkari, Y., Metral, M., and Maes, P. (1994). Collaborative
interface agents. In Proceedings of the Twelfth National Conference on Artificial
Intelligence,AAAI-Press.

[Luhmann, 1979] Luhmann, N. (1979). Trust and Power. Chichester: Wiley.

[Marimon et al., 2000] Marimon, R., Nicolini, J., and Teles, P. (2000). Competition
and reputation. In Proceedings of the World Conference Econometric Society, Seat-
tle.

[Marsh, 1994] Marsh, S. (1994). Formalising Trust as a Computational Concept. PhD
thesis, Department of Mathematics and Computer Science, University of Stirling.

146 Bibliography

[McKnight and Chervany, 2002] McKnight, D. H. and Chervany, N. L. (2002). No-
tions of reputation in multi-agent systems: A review.

[Meyer, 1998] Meyer, J. J. (1998). Agent languages and their relationship to other
programming paradigms. In Müller, J. P., Singh, M. P., and Rao, A. S., editors,
Intelligent Agents V, pages 309–316. Springer Verlag, Berlin.

[Mui et al., 2002] Mui, L., Mohtashemi, M., and Halberstadt, A. (2002). Notions of
reputation in multi-agent systems: A review.

[Noriega and Sierra, 1996] Noriega, P. and Sierra, C. (1996). Towards layered dialogi-
cal agents. In Müller, J. P., Wooldridge, M. J., and Jennings, N. R., editors, Intelligent
Agents III, pages 173–188, Berlin. Springer Verlag.

[OnSale, 2002] OnSale (2002). OnSale. http://www.onsale.com.

[Parsons and Giorgini, 1999] Parsons, S. and Giorgini, P. (1999). An approach to using
degrees of belief in BDI agents. In Bouchon-Meunier, B., Yager, R. R., and Zadeh,
L. A., editors, Information, Uncertainty, Fusion. Kluwer, Dordrecht.

[Parsons and Jennings, 1996] Parsons, S. and Jennings, N. R. (1996). Negotiation
through argumentation—a preliminary report. In Proceedings of the 2nd Interna-
tional Conference on Multi Agent Systems, pages 267–274.

[Parsons et al., 1998] Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that
reason and negotiate by arguing. Journal of Logic and Computation, 8(3):261—292.

[Pearl, 1988] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann.

[Plato, 1955] Plato (1955).

[Pujol et al., 2002] Pujol, J. M., Sangesa, R., and Delgado, J. (2002). Extracting repu-
tation in multi-agent systems by means of social network topology. In Proceedings
of the first international joint conference on autonomous agents and multiagent sys-
tems (AAMAS-02), Bologna, Italy, pages 467—474.

[Pujol et al., 2003] Pujol, J. M., Sangesa, R., and Delgado, J. (2003). Web Intelligence,
chapter A Ranking Algorithm Based on Graph Topology to Generate Reputation or
Relevance. Springer Verlag.

[Puyol-Gruart, 1996] Puyol-Gruart, J. (1996). MILORD II: A Language for
Knowledge-Based Systems, volume 1 of Monografies del IIIA. IIIA–CSIC. ISBN:
84–00–07499–8.

[Puyol-Gruart et al., 1998] Puyol-Gruart, J., Godo, L., and Sierra, C. (1998). Special-
isation calculus and communication. International Journal of Approximate Reason-
ing (IJAR), 18(1/2):107–130.

[Puyol-Gruart and Sierra, 1997] Puyol-Gruart, J. and Sierra, C. (1997). Milord II: a
language description. Mathware and Soft Computing, 4(3):299–338.

Bibliography 147

[Sabater and Sierra, 2001] Sabater, J. and Sierra, C. (2001). Regret: A reputation
model for gregarious societies. In Proceedings of the Fourth Workshop on Deception,
Fraud and Trust in Agent Societies, Montreal, Canada, pages 61—69.

[Sabater and Sierra, 2002] Sabater, J. and Sierra, C. (2002). Reputation and social net-
work analysis in multi-agent systems. In Proceedings of the first international joint
conference on autonomous agents and multiagent systems (AAMAS-02), Bologna,
Italy, pages 475—482.

[Sabater et al., 1999] Sabater, J., Sierra, C., Parsons, S., and Jennings, N. R. (1999).
Using multi-context systems to engineer executable agents. In Jennings, N. R.
and Lespérance, Y., editors, Intelligent Agents VI, pages 277–294. Springer Verlag,
Berlin.

[Schillo et al., 2000] Schillo, M., Funk, P., and Rovatsos, M. (2000). Using trust for
detecting deceitful agents in artificial societites. Applied Artificial Intelligence, (Spe-
cial Issue on Trust, Deception and Fraud in Agent Societies).

[Scott, 2000] Scott, J. (2000). Social Network Analysis. SAGE Publications.

[Sen and Sajja, 2002] Sen, S. and Sajja, N. (2002). Robustness of reputation-based
trust: Booblean case. In Proceedings of the first international joint conference on au-
tonomous agents and multiagent systems (AAMAS-02), Bologna, Italy, pages 288—
293.

[Shoham, 1993] Shoham, Y. (1993). Agent-oriented programming. Artificial Intelli-
gence, 60:51–92.

[Szyperski, 1998] Szyperski, C. (1998). Component Software. Addison Wesley, Wok-
ingham, UK.

[Thomas, 1995] Thomas, S. R. (1995). The PLACA agent programming language. In
Wooldridge, M. J. and Jennings, N. R., editors, Intelligent Agents, pages 355–370.
Springer Verlag, Berlin.

[Treur, 1991] Treur, J. (1991). On the use of reflection principles in modelling complex
reasoning. International Journal of Intelligent Systems, 6:277–294.

[Vila, 1995] Vila, L. (1995). On temporal representation and reasoning in knowledge-
based systems. PhD thesis, Institut d’Investigació en Intelligencia Artficial.

[Weerasooriya et al., 1995] Weerasooriya, D., Rao, A., and Rammamohanarao, K.
(1995). Design of a concurrent agent-oriented language. In Wooldridge, M. J. and
Jennings, N. R., editors, Intelligent Agents, pages 386–402. Springer Verlag, Berlin.

[Wooldridge, 1996] Wooldridge, M. (1996). A knowledge-theoretic semantics for
Concurrent MetateM. In Müller, J. P., Wooldridge, M. J., and Jennings, N. R., edi-
tors, Intelligent Agents III, pages 357–374. Springer Verlag, Berlin.

[Wooldridge, 1997] Wooldridge, M. (1997). Agent-based software engineering. IEE
Proceedings on Software Engineering, 144:26–37.

148 Bibliography

[Wooldridge and Jennings, 1995] Wooldridge, M. J. and Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. The Knowledge Engineering Review, 10:115–
152.

[Yu and Singh, 2000] Yu, B. and Singh, M. P. (2000). A social mechanism of repu-
tation management in electronic communities. In Cooperative Information Agents
(CIA), Boston, USA, pages 154—165.

[Yu and Singh, 2001] Yu, B. and Singh, M. P. (2001). Towards a probabilistic model
of distributed reputation management. In Proceedings of the Fourth Workshop on
Deception, Fraud and Trust in Agent Societies, Montreal, Canada, pages 125—137.

[Yu and Singh, 2002a] Yu, B. and Singh, M. P. (2002a).

[Yu and Singh, 2002b] Yu, B. and Singh, M. P. (2002b). An evidential model of dis-
tributed reputation management. In Proceedings of the first international joint con-
ference on autonomous agents and multiagent systems (AAMAS-02), Bologna, Italy,
pages 294—301.

[Zacharia, 1999] Zacharia, G. (1999). Collaborative reputation mechanisms for online
communities. Master’s thesis, Massachusetts Institute of Technology.

[Zadeh, 1975] Zadeh, L. (1975). Fuzzy logic and approximate reasoning. Synthese,
30:407–428.

