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Perceptual Information-Theoretic Measures for Viewpoint
Selection and Object Recognition

Abstract:
Viewpoint selection has been an emerging area in computer graphics for some years,

and it is now getting maturity with applications in fields such as scene navigation,
volume visualization, object recognition, mesh simplification, and camera placement.
But why is viewpoint selection important? For instance, automated viewpoint selec-
tion could play an important role when selecting a representative model by exploring
a large 3D model database in as little time as possible. Such an application could show
the model view that allows for ready recognition or understanding of the underlying
3D model. An ideal view should strive to capture the maximum information of the 3D
model, such as its main characteristics, parts, functionalities, etc. The quality of this
view could affect the number of models that the artist can explore in a certain period
of time.

In this thesis, we present an information-theoretic framework for viewpoint selec-
tion and object recognition. From a visibility channel between a set of viewpoints and
the polygons of a 3D model we obtain several viewpoint quality measures from the
respective decompositions of mutual information. We also review and compare in a
common framework the most relevant viewpoint quality measures for polygonal mod-
els presented in the literature.

From the information associated to the polygons of a model, we obtain several shad-
ing approaches to improve the object recognition and the shape perception. We also use
this polygonal information to select the best views of a 3D model and to explore it. We
use these polygonal information measures to enhance the visualization of a 3D terrain
model generated from textured geometry coming from real data.

Finally, we analyze the application of the viewpoint quality measures presented in
this thesis to compute the shape similarity between 3D polygonal models. The infor-
mation of the set of viewpoints is seen as a shape descriptor of the model. Then, given
two models, their similarity is obtained by performing a registration process between
the corresponding set of viewpoints.





Mesures Perceptuals de Teoria de la Informació per a la
Selecció de Punt de Vista i Reconeixement d’Objectes

Resum:
La selecció de punts de vista ha estat una àrea emergent en la computació gràfica

des de fa alguns anys i ara està aconseguint la maduresa amb aplicacions en camps com
la navegació d’una escena, la visualització de volums, el reconeixement d’objectes, la
simplificació d’una malla i la col·locació de la càmera. Però per què és important la se-
lecció del punt de vista? Per exemple, la automatització de la selecció de punts de vista
podria tenir un paper important a l’hora de seleccionar un model representatiu mitjan-
çant l’exploració d’una gran base de dades de models 3D en el menor temps possible.
Aquesta aplicació podria mostrar la vista del model que permet el millor reconeixement
o comprensió del model 3D. Un punt de vista ideal ha de captar la màxima informació
del model 3D, com per exemple les seves principals característiques, parts, funcionali-
tats, etc. La qualitat d’aquest punt de vista pot afectar el nombre de models que l’artista
pot explorar en un determinat període de temps.

En aquesta tesi, es presenta un marc de teoria de la informació per a la selecció
de punts de vista i el reconeixement d’objectes. Obtenim diverses mesures de qualitat
de punt de vista a través de la descomposició de la informació mútua d’un canal de
visibilitat entre un conjunt de punts de vista i els polígons d’un model 3D. També revi-
sem i comparem en un marc comú les mesures més rellevants que s’han presentat a la
literatura sobre la qualitat d’un punt de vista d’un model poligonal.

A partir de la informació associada als polígons d’un model, obtenim diversos tipus
de renderitzat per millorar el reconeixement d’objectes i la percepció de la forma. Utilit-
zem aquesta informació poligonal per seleccionar les millors vistes d’un model 3D i per
la seva exploració. També usem aquestes mesures d’informació poligonal per millorar
la visualització d’un model de terreny 3D amb textures generat a partir de dades reals.

Finalment, s’analitza l’aplicació de les mesures de qualitat de punt de vista presenta-
des en aquesta tesi per calcular la similitud entre dos models poligonals. La informació
del conjunt de punts de vista és vista com un descriptor del model. Llavors, donats
dos models poligonals, la seva similitud s’obté mitjançant la realització d’un procés de
registre entre els conjunts de punts de vista corresponents.





Medidas Perceptuales de Teoría de la Información para la
Selección de Puntos de Vista y Reconocimiento de Objetos

Resumen:
La selección de puntos de vista ha sido un área emergente en la computación grá-

fica desde hace algunos años y ahora está alcanzando la madurez con aplicaciones en
campos como la navegación de una escena, la visualización de volúmenes, el reconoci-
miento de objetos, la simplificación de una malla y la colocación de la cámara. Pero por
qué es importante la selección de un punto de vista? Por ejemplo, la automatización de
la selección de puntos de vista podría tener un papel importante a la hora de seleccionar
un modelo representativo mediante la exploración de una gran base de datos de mode-
los 3D en el menor tiempo posible. Esta aplicación podría mostrar la vista del modelo
que permite el mejor reconocimiento o comprensión del modelo 3D. Un punto de vista
ideal debe captar la máxima información del modelo, como por ejemplo sus principa-
les características, partes, funcionalidades, etc. La calidad de este punto de vista puede
afectar el número de modelos que el artista puede explorar en un determinado periodo
de tiempo.

En esta tesis, se presenta un marco de teoría de la información para la selección de
puntos de vista y el reconocimiento de objetos. Obtenemos diversas medidas de calidad
de punto de vista a través de la descomposición de la información mutua de un canal
de visibilidad entre un conjunto de puntos de vista y los polígonos de un modelo 3D.
También revisamos y comparamos en un marco común las medidas más relevantes que
se han presentado en la literatura sobre la calidad de un punto de vista de un modelo
poligonal.

A partir de la información asociada a los polígonos de un modelo, obtenemos varios
tipos de renderizado para mejorar el reconocimiento de objetos y la percepción de la
forma. Utilizamos esta información poligonal para seleccionar las mejores vistas de un
modelo 3D y para su exploración. También usamos estas medidas de información poli-
gonal para mejorar la visualización de un modelo de terreno 3D con texturas generado
a partir de datos reales.

Finalmente, se analiza la aplicación de las medidas de calidad de punto de vista
presentadas en esta tesis para calcular la similitud entre dos modelos poligonales. La
información del conjunto de puntos de vista es considerada como un descriptor del
modelo. Entonces, dados dos modelos poligonales, su similitud se obtiene mediante la
realización de un proceso de registro entre los conjuntos de puntos de vista correspon-
dientes.
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1.1 Motivation

A 3D model is a digital representation of a real or imaginary object and a key feature
in the Information Age. A large number of 3D models are used daily across diverse
fields such as computer games, computer-aided design, interior design, visualization,
simulation, and film industry. These 3D models can be computer-generated or done
by artists or a 3D scanner and can be represented in different ways, such as voxels,
polygons, point clouds, and nurbs (see Figure 1.1). When one of these 3D models needs
to be visualized in a computer, two choices have to be made.

First, we have to decide which point of view of the object we should present. This
could be a viewpoint where we can see a large part of the model or a great number of
details. It could also be a view that we are used to or a view that is highly aesthetic.
Second, we need to decide how we paint the object in order to perceive the shape as
well as possible. One way would be to visualize the object in a photorealistic way but
this would be expensive in terms of computation time and we should also decide the
situation of the lights to illuminate the model. In both situations we should provide
the user with as much information as possible in order to understand or recognize the
object.

In this thesis we analyze different measures based on information theory to quantify
the quality of a viewpoint, to represent a 3D polygonal model in different ways from the
quantification of the polygonal information, and to find the similarity between different
3D models.

1.2 Objectives

The main goal of this thesis is to find good information-theoretic measures to improve
the perception of 3D polygonal models and their recognition.

To reach this objective we aim to
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(a) Real object (b) 3D model

Figure 1.1: Lady of Elche.

• Analyze the use of different decompositions of the mutual information of an in-
formation channel between a set of viewpoints and a set of polygons to quantify
the quality of a viewpoint.

• Analyze the performance of the most significant viewpoint quality measures pre-
sented in the literature and group all of them together in a common framework.

• Quantify in different ways the information associated to a polygon from a 3D
model and use this information for visualization, viewpoint selection, and object
exploration.

• Analyze the use of viewpoint quality measures to measure the similarity between
two 3D models.

1.3 Thesis Outline

This dissertation is organized in eight chapters. Following this introduction, the next
seven chapters are:

• Chapter 2: Background and Previous Work

In this chapter, we review the pioneering work on the understanding of human
perception and the recognition process. We also review the basic concepts of in-
formation theory since it is the mathematical basis of most of our contributions.
Finally, the visibility channel between a set of viewpoints and a polygonal model
is reviewed.
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• Chapter 3: Viewpoint Information

In this chapter, we present a new perspective to quantify the information associ-
ated with a viewpoint. The starting point is twofold: a visibility channel between
a set of viewpoints and the polygons of an object, and two specific information
measures introduced in the field of neuroscience to evaluate the significance of
stimuli and responses in the neural code. These information measures are ap-
plied to the visibility channel in order to quantify the information associated with
each viewpoint. A number of experiments show the performance of the proposed
measures in best view selection.

The content of this chapter, titled Viewpoint Information, has been published in
Proceedings of 21st GraphiCon International Conference on Computer Graphics
and Vision, pages 16–19, September 2011 [Bonaventura 2011].

• Chapter 4: Survey of Viewpoint Selection Measures for Polygonal Models

In this chapter, we review and compare a significant amount of measures to se-
lect good views of a polygonal 3D model. These measures are classified in four
categories and their performance is analyzed using a benchmark where several
human subjects were asked to select the best view of different 3D models. We also
review several fields where the viewpoint selection measures have been applied.
All the viewpoint selection measures compared are implemented in a publicly
available framework.

The content of this chapter, titled A survey of viewpoint selection methods for polyg-
onal models, has been submitted to ACM Transactions on Applied Perception.

• Chapter 5: Information Measures for Object Understanding

In this chapter, we present a new information-theoretic framework for object un-
derstanding. Three specific information measures introduced in the field of neu-
ral systems are used to visualize the information associated with an object. We
also present several ways of evaluating the shape information from the observer’s
point of view. To do this, the polygonal information is ‘projected’ onto the view-
points to quantify the information associated with a viewpoint and is used to
select the N best views and to explore the object. A number of experiments show
the behavior of all proposed measures.

The content of this chapter, titled Information measures for object understanding,
has been published in Signal, Image and Video Processing, vol. 7, no. 3, pages
467–478, May 2013 [Bonaventura 2013a].

• Chapter 6: Information Measures for Terrain Visualization

In this chapter, we apply the information-theoretic framework for object under-
standing presented in Chapter 5 to terrain visualization and terrain view selec-
tion. The polygonal information measures are used in order to enhance the per-
ception of the terrain shape with the combination of the original terrain texture.
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These polygonal information measures are also used to select the N best views of
a terrain.

The content of this chapter, titled Information measures for terrain visualization,
has been submitted to Computer & Geosciences.

• Chapter 7: 3D Shape Retrieval Using Viewpoint Measures

In this chapter, we present an information-theoretic framework to compute the
shape similarity between 3D polygonal models. Given a 3D model, an informa-
tion channel between a sphere of viewpoints around the model and its polygonal
mesh is defined to compute the specific information associated with each view-
point. The obtained information sphere is seen as a shape descriptor of the model.
Then, given two models, their similarity is obtained by performing a registration
process between the corresponding information spheres. The distance between
the information histograms is also defined as a coarse measure of similarity, as
well as the scalar value given by the mutual information of the channel. The per-
formance of all these measures is tested using the Princeton Shape Benchmark
database.

The content of this chapter, titled 3D shape retrieval using viewpoint information-
theoretic measures, has been published in Computer Animations and Virtual Worlds,
vol. 26, no. 2, pages 147–156, 2015 [Bonaventura 2015]. This journal publica-
tion is an extension of the paper Viewpoint information-theoretic measures for 3D
shape similarity published in Proceedings of the 12th ACM SIGGRAPH Interna-
tional Conference on Virtual-Reality Continuum and Its Applications in Industry
(VRCAI’13), pages 183–190, November 2013 [Bonaventura 2013b].

• Chapter 8: Conclusions

In this chapter, conclusions of the thesis and future work will be presented, along
with a summary of the publications related with this thesis.
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2.1 Introduction

In this chapter, first, we review the pioneer work on visual perception and the different
schools of thought on the recognition process (Section 2.2). Second, we present the
most basic information theory concepts as well as three different ways of decompos-
ing the mutual information between two random variables (Section 2.3). Finally, we
review the visibility channel between a set of viewpoints and a 3D polygonal model
(Section 2.4).

2.2 Visual Perception and Object Recognition

The human visual system is classically described [Peters 2000] either in terms of its abil-
ity to recognize familiar three-dimensional objects as structural representations of their
comprising part-components [Biederman 1987], or as multiple-view descriptions [Koen-
derink 1979, Edelman 1992, Bülthoff 1995]. Biederman [Biederman 1987] proposed
that familiar object recognition can be conceptualized as a computational process by
which the projected retinal image of a three-dimensional object is segmented at regions
of deep concavity to derive a reduced representation of its simple geometric components
(e.g., blocks, cylinders, wedges, and cones) and their spatial relations. Nonetheless,
many studies have since proved that the visual system demonstrates preferential behav-
ioral and neuronal responses to particular object views [Bülthoff 1995, Tarr 1997, Lo-
gothetis 1995]. Indeed, recognition behavior continues to be highly selective for pre-
viously learned views even when highly unique object parts with little self-occlusion
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are made available for discrimination [Tarr 1997]. Naturally, this raises the question of
which view(s) ought to be represented for a given object, so as to support robust visual
recognition. Palmer et al. [Palmer 1981] found that participants tend to agree on the
canonical view (or the most representative image) of each familiar object that would
facilitate its recognition. They are often off-axis views, such as a top-down three-quarter
view, that arguably reveals the largest amount of surface area. In contrast, Harman et
al. [Harman 1999] allowed participants to learn novel 3D objects (objects with reduced
effects of familiarity and functionality [Blanz 1999]) by exploring them in virtual real-
ity. They found that their participants spent time exploring “plan” views, namely views
that were on-axis (or orthogonal) and parallel to the object’s structural axis. Perrett and
Harries [Perrett 1988] and Perrett et al. [Perrett 1992] found a similar preference for
“plan” views in tool-like as well as “novel” objects. The mixed evidence could be due to
the fact that view-canonicity can be expressed by multiple factors [Blanz 1999]: good-
ness for recognition (a good view for recognition shows the most salient and significant
features and it is stable with respect to small transformations, and it avoids a high num-
ber of occluded features), familiarity (recognition is influenced by the views that are
encountered more frequently and during the initial learning), functionality (recognition
is influenced by the views that are most relevant for how we interact with an object),
and aesthetic criteria (preferred views can be influenced by geometric proportions).
Blanz et al. [Blanz 1999] investigated the preferred views of different participants in
two different tasks. In the first task, the participants had to select a view for a brochure.
In the second task, participants were told an object and had to imagine it, and then se-
lected the view on a displayed similar 3D model that matched the corresponding mental
representation. While in the first task participants tried to avoid accidental views, in the
second task users frequently selected frontal- or side-views. Blanz et al. suggest that this
discrepancy can be due to the fact that mental images are subjected to internal storage
and processing economy while in the photography task the participants try to select the
view with as much information as possible.

Foster and Gilson studied the discrimination performance between sets of pairs of
similar models at different orientation, to find out what was dependent on structure
and what from viewpoint. The 3D models used in the extensive tests were formed by
the concatenation, at variable angles, of cylinders with axes of variable curvature and
length. They obtained that discrimination performance (measured by discrimination
index) was the additive effect of viewpoint-invariant and structure-invariant perfor-
mances, where the values of cue (or stimuli) considered (number, curvature and length
of parts, and angle between them) could be factorized out in both of them. I.e., they
established from their experiments that di = [ki + f (θ )]∆c, where di was the discrim-
ination index for cue i, ki a constant value depending on the cue considered, f (θ ) is
a function of the orientation angle θ and ∆c is the value of the cue (normalized for
all cues). They thus reconciled the opposed views of Biederman [Biederman 1987] and
Bulthoff [Bülthoff 1995] by integrating them into a single model.
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2.3 Information Theory

In 1948, Claude Shannon published “A mathematical theory of communication” [Shan-
non 1948] which marks the beginning of information theory. In this paper, he defined
measures such as entropy and mutual information, and introduced the fundamental
laws of data compression and transmission. Information theory deals with the trans-
mission, storage, and processing of information, and is used in fields such as physics,
computer science, mathematics, statistics, economics, biology, linguistics, neurology,
learning, image processing, and computer graphics.

In this section, we present some basic concepts of information theory. For more
details, see the books by Cover and Thomas [Cover 1991], Yeung [Yeung 2008], and
Sbert et al. [Sbert 2009].

2.3.1 Entropy

Let X be a discrete random variable with alphabetX and probability distribution {p(x)},
where p(x) = Pr{X = x} and x ∈ X . In this thesis, {p(x)}will be also denoted by p(X )
or simply p. This notation will be extended to two or more random variables.

The Shannon entropy H(X ) of a discrete random variable X with values in the set
X = {x1, x2, . . . , xn} is defined by

H(X ) = −
∑

x∈X
p(x) log p(x), (2.1)

where p(x) = Pr[X = x], the logarithms are taken in base 2 (entropy is expressed in
bits), and we use the convention that 0 log 0 = 0, which is justified by continuity. We
can use interchangeably the notation H(X ) or H(p) for the entropy, where p is the prob-
ability distribution {p1, p2, . . . , pn}. As − log p(x) represents the information associated
with the result x , the entropy gives us the average information or uncertainty of a ran-
dom variable. Uncertainty and information can be seen as opposite sides of the same
coin. While entropy quantifies the uncertainty we have before an event, information is
a measure of the reduction in that uncertainty after the event.

Some other relevant properties [Shannon 1948] of the entropy are

1. 0≤ H(X )≤ log n

• H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

• H(X ) = log n when all the probabilities are equal. This is the most uncertain
situation.

2. If we equalize the probabilities, entropy increases.

When n= 2, the binary entropy (Figure 2.1) is given by

H(X ) = −p log p− (1− p) log(1− p), (2.2)
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Figure 2.1: Plot of binary entropy.

where the variable X is defined by

X =

�

1 with probability p
0 with probability 1− p.

If we consider another random variable Y with probability distribution p(y) cor-
responding to values in the set Y = {y1, y2, . . . , ym}, the joint entropy of X and Y is
defined as

H(X , Y ) = −
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (2.3)

where p(x , y) = Pr[X = x , Y = y] is the joint probability.
The conditional entropy H(Y |X ) of a random variable Y given a random variable X

is defined by

H(Y |X ) =
∑

x∈X
p(x)H(Y |x) (2.4)

=
∑

x∈X
p(x)

 

−
∑

y∈Y
p(y|x) log p(y|x)

!

(2.5)

= −
∑

x∈X

∑

y∈Y
p(x , y) log p(y|x), (2.6)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability of y given x and
H(Y |x) is the entropy of Y given x .

The Bayes theorem expresses the relation between the different probabilities:

p(x , y) = p(x)p(y|x) = p(y)p(x |y). (2.7)

If X and Y are independent, then p(x , y) = p(x)p(y).
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The conditional entropy can be thought of in terms of a channel whose input is the
random variable X and whose output is the random variable Y . H(X |Y ) corresponds
to the uncertainty in the channel input from the receiver’s point of view, and vice versa
for H(Y |X ). Note that in general H(X |Y ) 6= H(Y |X ).

The following properties are also fulfilled:

1. H(X , Y )≤ H(X ) +H(Y )

2. H(X , Y ) = H(X ) +H(Y |X ) = H(Y ) +H(X |Y )

3. H(X )≥ H(X |Y )≥ 0

2.3.2 Mutual Information

The mutual information I(X ; Y ) between two random variables X and Y is defined by

I(X ; Y ) = H(X )−H(X |Y ) (2.8)

= H(Y )−H(Y |X ) (2.9)

= −
∑

x∈X
p(x) log p(x) +

∑

y∈Y

∑

x∈X
p(x , y) log p(x |y) (2.10)

=
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

(2.11)

=
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

. (2.12)

Mutual information represents the amount of information that one random variable, the
output of the channel, gives (or contains) about a second random variable, the input
of the channel, and vice versa, i.e., how much the knowledge of X decreases the uncer-
tainty of Y and vice versa. Therefore, I(X ; Y ) is a measure of the shared information
between X and Y .

Mutual information I(X ; Y ) has the following properties:

1. I(X ; Y )≥ 0 with equality if, and only if, X and Y are independent.

2. I(X ; Y ) = I(Y ; X )

H(X) H(Y)

H(X,Y)

H(X|Y) H(Y|X)I(X;Y)

Figure 2.2: Venn diagram of a discrete channel.
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3. I(X ; Y ) = H(X ) +H(Y )−H(X , Y )

4. I(X ; Y )≤ H(X )

The relationship between all the above measures can be expressed by the Venn
diagram, as shown in Figure 2.2.

The relative entropy or Kullback-Leibler distance DK L(p, q) between two probability
distributions p and q [Cover 1991, Yeung 2008], that are defined over the alphabetX ,
is given by

DK L(p, q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (2.13)

where, from continuity, we use the convention that 0 log 0 = 0, a log a
0 =∞ if a > 0,

and 0 log 0
0 = 0.

The relative entropy is “a measure of the inefficiency of assuming that the distribu-
tion is q when the true distribution is p” [Cover 1991].

The relative entropy satisfies the information inequality DK L(p‖q)≥ 0, with equality
only if p = q. The relative entropy is also called discrimination and it is not strictly a
distance, since it is not symmetric and does not satisfy the triangle inequality. Moreover,
we have to emphasize that the mutual information can be expressed as

I(X ; Y ) = DK L({p(x , y)}‖{p(x)p(y)}). (2.14)

2.3.3 Decomposition of Mutual Information

Given a communication channel X → Y , mutual information can be decomposed in
different ways to obtain the information associated with a value (or symbol) in X or
Y . Next, we present different definitions of information that have been proposed in
the field of neural systems to investigate the significance associated to stimuli and re-
sponses [Deweese 1999, Butts 2003].

For random variables S and R, representing an ensemble of stimuli S and a set of
responsesR , respectively, mutual information (see Equations 2.9 and 2.11) is given by

I(S; R) = H(R)−H(R|S) (2.15)

= H(R)−
∑

s∈S
p(s)H(R|s) (2.16)

=
∑

s∈S
p(s)

∑

r∈R
p(r|s) log

p(r|s)
p(r)

, (2.17)

where p(r|s) is the conditional probability of value r given a known value s, and p(S) =
{p(s)} and p(R) = {p(r)} are the marginal probability distributions of the input and
output variables of the channel, respectively. The capital letters S and R as arguments
of p(.) or p(.|.) are used to denote probability distributions.

To quantify the information associated to each stimulus or response, I(S; R) can be
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decomposed as

I(S; R) =
∑

s∈S
p(s)I(s; R) (2.18)

=
∑

r∈R
p(r)I(S; r), (2.19)

where I(s; R) and I(S; r) represent, respectively, the information associated to stimu-
lus s and response r. Thus, I(S; R) can be seen as a weighted average over individual
contributions from particular stimuli or particular responses. The definition of the con-
tribution I(s; R) or I(S; r) can be performed in multiple ways, but we present here the
three most basic definitions denoted by I1, I2 [Deweese 1999], and I3 [Butts 2003].

Given a stimulus s, three specific information measures that fulfill Equation 2.18
are defined:

• The surprise I1 can be directly derived from Equation 2.17, taking the contribution
of a single stimulus to I(S; R):

I1(s; R) =
∑

r∈R
p(r|s) log

p(r|s)
p(r)

. (2.20)

This measure expresses the surprise about R from observing s. It can be shown that
I1 is the only positive decomposition of I(S; R) [Deweese 1999]. This positivity
can be shown by observing that I1(s; R) is the Kullback-Leibler distance [Cover
1991] between the conditional probability p(R|s) and the marginal distribution
p(R).

• The specific information I2 [Deweese 1999] can be derived from Equation 2.16,
taking the contribution of a single stimulus s to I(S; R):

I2(s; R) = H(R)−H(R|s) (2.21)

= −
∑

r∈R
p(r) log p(r) +

∑

r∈R
p(r|s) log p(r|s).

The specific information I2 of a particular response is defined as the reduction
in uncertainty in the stimulus gained by the observation of that response [Butts
2003]. Thus, this measure expresses the change in uncertainty about R when s is
observed. Note that I2 can take negative values. This means that certain observa-
tions s do increase our uncertainty about the state of the variable R.

• The stimulus-specific information I3 is defined [Butts 2003] by

I3(s; R) =
∑

r∈R
p(r|s)I2(S; r) (2.22)

and also fulfills Equation 2.18 (for a proof, see [Butts 2003]). The most informa-
tive (or significant) stimuli are those that cause the most informative responses.
Thus, a large value of I3(s; R)means that the states of R associated with s are very
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informative in the sense of I2(S; r) (i.e., the specific information associated with
response r). That is, the most informative input values s are those that are related
to the most informative output values r. Observe that I1(s; R) and I2(s; R) are ob-
tained from both distributions p(R) and p(R|s), while I3(s; R) is a weighted sum
of the measure I2(S; r), which is obtained from distributions p(S) and p(S|r).

Similar to the above definitions for a stimulus s, the information associated to a
response r could be defined. The properties of positivity and additivity of these mea-
sures have been studied in [Deweese 1999, Butts 2003]. A measure is additive when
the information obtained about S from two observations, r1 ∈ R1 and r2 ∈ R2, is equal
to that obtained from r1 plus that obtained from r2 when r1 is known. While I1 is al-
ways positive and non-additive, I2 can take negative values but is additive, and I3 can
take negative values and is non-additive. On the one hand, because of the additivity
property, DeWeese and Meister [Deweese 1999] prefer I2 against I1 since they consider
that additivity is a fundamental property of any information measure. On the other
hand, Butts [Butts 2003] proposes some examples that show how I3 identifies the most
significant stimuli.

2.3.4 Jensen’s Inequality

Some important properties of information measures can be deduced from the Jensen’s
inequality [Cover 1991].

A function f (x) is convex over an interval (a, b) (the graph of the function lies below
any chord) if for every x1, x2 ∈ (a, b) and 0≤ λ≤ 1,

f (λx1 + (1−λ)x2)≤ λ f (x1) + (1−λ) f (x2). (2.23)

A function is strictly convex if equality holds only if λ = 0 or λ = 1. A function f (x) is
concave (the graph of the function lies above any chord) if − f (x) is convex.

For instance, x log x for x ≥ 0 is a strictly convex function, and log x for x ≥ 0 is a
strictly concave function [Cover 1991].

Jensen’s inequality: If f is convex on the range of a random variable X , then

f (E[X ])≤ E[ f (X )], (2.24)

where E denotes expectation. Moreover, if f (x) is strictly convex, the equality implies
that X = E[X ]with probability 1, i.e., X is a deterministic random variable with Pr[X =
x0] = 1 for some x0.

One of the most important consequences of Jensen’s inequality is the information
inequality DK L(p‖q) ≥ 0. Other previous properties can also be derived from this in-
equality.

Observe that if f (x) = x2 (convex function), then E[X 2] − (E[X ])2 ≥ 0. So, the
variance is invariably positive.

If f is substituted by the Shannon entropy, which is a concave function, we obtain
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the Jensen-Shannon inequality [Burbea 1982]:

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn)≡ H

� n
∑

i=1

πi pi

�

−
n
∑

i=1

πiH(pi)≥ 0, (2.25)

where JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) is the Jensen-Shannon divergence of probability
distributions p1, p2, . . . , pn with prior probabilities or weights π1,π2, . . . ,πn, fulfilling
∑n

i=1πi = 1. The JS-divergence measures how ‘far’ are the probabilities pi from their
likely joint source

∑n
i=1πi pi and equals zero if and only if all the pi are equal. It is

important to note that the JS-divergence is identical to I(X ; Y ) when πi = p(x i) and
pi = p(Y |x i) for each x i ∈ X , where p(X ) = {p(x i)} is the input distribution, p(Y |x i) =
{p(y1|x i), p(y2|x i), . . . , p(ym|x i)}, n= |X |, and m= |Y | [Burbea 1982, Slonim 2000].

2.4 Visibility Channel

Several measures and concepts introduced in this thesis are based on a visibility channel
built between a set of viewpoints and the polygons of a 3D model. From this channel
we can quantify, for instance, the information associated with both a viewpoint and
a polygon of a 3D model. Thus, in this section, we introduce the main elements of a
visibility channel.

Feixas et al. [Feixas 2009] proposed a viewpoint selection framework from an infor-
mation channel V → Z between the random variables V (input) and Z (output), which
represent, respectively, a set of viewpoints V and the set of polygons Z of an object.
This channel is defined by a conditional probability matrix obtained from the projected
areas of polygons at each viewpoint and can be interpreted as a visibility channel where
the conditional probabilities represent the probability of seeing a determined polygon
from a given viewpoint (Figure 2.3). Individual viewpoints are indexed by v and in-
dividual polygons by z. The capital letters V and Z as arguments of p(.) are used to
denote probability distributions. For instance, while p(v) denotes the probability of a
single viewpoint v, p(V ) represents the input distribution of the set of viewpoints.

The three basic elements of the visibility channel are:

• Conditional probability matrix p(Z |V ), where each element p(z|v) = az(v)
at (v)

is de-
fined by the normalized projected area of polygon z in the sphere of directions
centered at viewpoint v, where az(v) is the projected area of polygon z at view-
point v, and at(v) is the total projected area of all polygons in the sphere of
directions. Conditional probabilities fulfill

∑

z∈Z p(z|v) = 1.

• Input distribution p(V ), representing the probability of selecting each viewpoint,
is obtained from the normalization of the projected area of the object for each
viewpoint. The input distribution can be interpreted as the importance assigned
to each viewpoint v.
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Figure 2.3: Visibility channel.

• Output distribution p(Z), given by

p(z) =
∑

v∈V
p(v)p(z|v), (2.26)

which represents the average projected area of polygon z.

The mutual information of channel V → Z , that expresses the degree of dependence
or correlation between the set of viewpoints and the polygons of the model [Feixas
2009], is defined by

I(V ; Z) =
∑

v∈V
p(v)

∑

z∈Z
p(z|v) log

p(z|v)
p(z)

. (2.27)

From this visibility channel, different measures of viewpoint quality, such as view-
point entropy [Vázquez 2001] and viewpoint mutual information [Feixas 2009], have
been applied to viewpoint selection in computer graphics. These measures are reviewed
in Chapter 3.
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3.1 Introduction

Why is viewpoint selection important? A large number of 3D models or objects are
relied on daily across diverse fields such as computer game development, computer-
aided design, and interior design. For instance, automated viewpoint selection could
play an important role when an artist has to select a representative model by exploring
a large 3D model database in as little time as possible. Such an application could show
the model view that allows for ready recognition or understanding of the underlying
3D model. An ideal view should strive to capture the maximum information of the 3D
model, such as its main characteristics, parts, functionalities, etc. The quality of this
view could affect the number of models that the artist can explore in a certain period
of time.

Best view selection is a fundamental task in object recognition and as we have seen
in Section 2.2, many works have demonstrated that the recognition process is view-
dependent [Palmer 1981, Tarr 1997, Blanz 1999]. In computer graphics, several view-
point quality measures, such as viewpoint entropy and viewpoint mutual information,
have been applied in areas such as best view selection for polygonal models [Vázquez
2001, Feixas 2009], scene exploration [Sokolov 2006], and volume visualization [Bor-
doloi 2005, Viola 2006].

In this chapter, we propose two new viewpoint quality measures that are respec-
tively derived from two different decompositions of mutual information proposed by
DeWeese and Meister [Deweese 1999] and Butts [Butts 2003] in the field of neural
systems to quantify the information associated with stimuli and responses. First, we set
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an information channel between a set of viewpoints and the polygons of an object and,
then, we use those information measures to calculate the information associated with a
viewpoint. Experimental results show the performance of these information measures to
evaluate the quality of a viewpoint. This chapter is organized as follows. In Section 3.2,
we present some previous work on viewpoint quality measures. In Section 3.3, two
new viewpoint information measures are presented. In Section 3.4, experimental re-
sults show the behavior of the proposed measures to select the best views. Finally, in
Section 3.5, our conclusions are presented.

3.2 Background

In this section, we present several information-theoretic viewpoint selection measures
previously presented in the literature that lead us to the viewpoint quality measures
introduced in this chapter.

3.2.1 Viewpoint Entropy

From Equation 2.1, Vázquez et al. [Vázquez 2001] defined the viewpoint entropy (VE)
as the Shannon entropy of the probability distribution of the relative areas of the pro-
jected polygons over the sphere of directions centered at viewpoint v. Thus, the view-
point entropy is defined by

V Ev = −
N f
∑

i=0

ai

at
log

ai

at
, (3.1)

where N f is the number of polygons of the 3D polygonal model, ai is the projected
area of polygon i over the sphere, a0 represents the projected area of background,
and at =

∑N f

i=0 ai is the total area of the sphere. The maximum entropy is obtained
when a certain viewpoint can see all the polygons with the same projected area. The
best viewpoint is defined as the one that has maximum entropy. In molecular visual-
ization, both maximum and minimum entropy views show relevant characteristics of a
molecule [Vázquez 2006].

3.2.2 Viewpoint Kullback-Leibler

From Equation 2.13, Sbert et al. [Sbert 2005] defined the viewpoint Kullback-Leibler
distance (VKL) as

V K Lv =
N f
∑

i=1

ai

at
log

ai
at

Ai
AT

, (3.2)

where ai is the projected area of polygon i, at =
∑N f

i=1 ai , Ai is the actual area of polygon

i and AT =
∑N f

i=1 Ai is the total area of the object. The VKL measure is interpreted as
the distance between the normalized distribution of projected areas and the “ideal”
projection, given by the normalized distribution of the actual areas. In this case, the
projected area of the background can not be taken into account. The minimum value 0 is
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obtained when the normalized distribution of projected areas is equal to the normalized
distribution of actual areas. Thus, to select views of high quality means to minimize
V K Lv .

3.2.3 Viewpoint Mutual Information

From the Equation 2.27, Feixas et al. [Feixas 2009] defined the viewpoint mutual in-
formation measure to select the most representative view of an object. The viewpoint
mutual information of a viewpoint v is defined by

V M I(v; Z) =
∑

z∈Z
p(z|v) log

p(z|v)
p(z)

(3.3)

and quantifies the degree of dependence between the viewpoint v and the set of poly-
gons. V M I(v; Z) is interpreted as a measure of the quality of viewpoint v, where quality
is considered here equivalent to representativeness.

The best viewpoint is defined as the one that has minimum VMI. High values of
the measure mean a high dependence between viewpoint v and the object, indicating
a highly coupled view (for instance, between the viewpoint and a small number of
polygons with low average visibility). On the other hand, the lowest values correspond
to the most representative or relevant views, showing the maximum possible number
of polygons in a balanced way.

It is important to observe that V M I(v; Z) = DK L(p(Z |v), p(Z)), where p(Z |v) is the
conditional probability distribution between v and the object and p(Z) is the marginal
probability distribution of Z , which in our case corresponds to the distribution of the
average of projected areas. It is worth observing that p(Z) plays the role of the target
distribution in the DK L distance and also the role of the optimal distribution since the
objective is that p(Z |v) becomes similar to p(Z) to obtain the best views. On the other
hand, this role agrees with intuition since p(Z) is the average visibility of polygon z
over all viewpoints, i.e., the mixed distribution of all views, and we can think of p(Z)
as representing, with a single distribution, the knowledge about the scene. Note that
the difference between VMI (3.3) and VKL (3.2) is due to the fact that in the last case
the distance is taken with respect to the actual areas. Viola et al. [Viola 2006] showed
that the main advantage of VMI over VE is its robustness to deal with any type of dis-
cretisation or resolution of the volumetric dataset. The same advantage can be observed
for polygonal data. Thus, while a highly refined mesh will attract the attention of VE,
VMI will be almost insensitive to changes in the mesh resolution.

3.3 Viewpoint Information Measures

Inspired by the fact that VMI (Section 3.2.3) is obtained from a natural decomposition
of mutual information, in this chapter we explore other mutual information decompo-
sitions of the visibility channel.
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In this section, the information measures I1, I2 and I3, derived from the decom-
position of mutual information (Section 2.3.3), are applied to the visibility channel
presented in Section 2.4. Although this perspective of analyzing the viewpoint quality
is new, it is important to note that I1 is equivalent to viewpoint mutual information
(Section 3.2.3) and I2 has a close relationship with viewpoint entropy (Section 3.2.1).

Given the visibility channel V → Z , the viewpoint information is defined in the fol-
lowing three alternative ways:

• From (2.20), the viewpoint information I1 of a viewpoint v is defined as

I1(v; Z) =
∑

z∈Z
p(z|v) log

p(z|v)
p(z)

. (3.4)

Observe that I1 coincides with the viewpoint mutual information defined in [Fei-
xas 2009] (see Equation 3.3). The lowest value of I1 (i.e., I1(v; Z) = 0) would
be obtained when p(Z |v) = p(Z). This means that the distribution of projected
areas at a given viewpoint (p(Z |v)) would coincide with the average distribution
of projected areas from all viewpoints (p(Z)). In this case, the view is considered
maximally representative. Thus, while the most surprising views correspond to
the highest I1 values, the most representative ones correspond to the lowest I1

values. The best viewpoint is defined as the one that has the lowest value of I1

(i.e., maximum representativeness).

• From (2.21), the viewpoint information I2 of a viewpoint v is defined as

I2(v; Z) = H(Z)−H(Z |v) (3.5)

= −
∑

z∈Z
p(z) log p(z) +

∑

z∈Z
p(z|v) log p(z|v).

While the highest value of I2 would correspond to a viewpoint that could only
see one polygon, the lowest value of I2 would be obtained if a viewpoint could
see all polygons with the same projected area. In this case, the view is maximally
diverse. The best viewpoint is defined as the one that has the lowest value of I2

(i.e., maximum diversity).

Specific information I2(v; Z) is closely related to viewpoint entropy, defined as
H(Z |v) [Vázquez 2001, Feixas 2009], since I2(v; Z) = H(Z)− H(Z |v). As H(Z)
is constant for a given mesh resolution, I2(v; Z) and viewpoint entropy will es-
sentially have the same performance in viewpoint selection because the highest
value of I2(v; Z) corresponds to the lowest value of viewpoint entropy, and vice
versa. An important drawback of viewpoint entropy is that it goes to infinity for
finer and finer resolutions of the mesh (see [Feixas 2009]), while I2 presents a
more stable behavior due to the normalizing effect of H(Z) in (3.5). The advan-
tage of I2 against viewpoint entropy could be appreciated in areas such as object
recognition and mesh simplification. In the first case, the stable behavior of I2

would enable us to compare the obtained values for objects with different mesh
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resolutions and, in the second case, I2 would take into account the variation of
H(Z) in the simplification process.

• From (2.22), the viewpoint information I3 of a viewpoint v is defined as

I3(v; Z) =
∑

z∈Z
p(z|v)I2(V ; z), (3.6)

where I2(V ; z) is the specific information of polygon z given by

I2(V ; z) = H(V )−H(V |z) (3.7)

= −
∑

v∈V
p(v) log p(v) +

∑

v∈V
p(v|z) log p(v|z).

A high value of I3(v; Z) means that the polygons seen by v are highly informa-
tive in the sense of I2(V ; z). The most informative viewpoints are considered as
the best views and correspond to the viewpoints that see the highest number of
maximally informative polygons.

As we have seen above, I1(v; Z), I2(v; Z), and I3(v; Z) represent three different ways
of quantifying the information associated with a viewpoint v. Observe that we con-
sider that the best views correspond to the lowest values of I1 and I2, and the highest
values of I3; and the contrary for the worst views. That is, the goodness of a view-
point is associated with its representativeness (minimum I1), diversity (minimum I2),
and informativeness (maximum I3). The word ‘informativeness’ is used here to express
the capability of I3 to capture information from the polygons of the object. As I(V ; Z)
expresses the degree of correlation between viewpoints and polygons, the measures
I1(v; Z), I2(v; Z), and I3(v; Z) can be interpreted as three different forms of correlation
between a viewpoint and the object. Another aspect to take into account is that the
concept of ‘best’ or ‘worst’ is relative to the objective we pursue. Thus, for instance, the
‘worst’ view in the sense of I2 could be used to select the view with the lowest diversity,
such as the one that better shows the structure of a molecule (see [Vázquez 2006]).

3.4 Results

In this section, the behavior of I1, I2, and I3 is analyzed. To calculate these measures, we
need to obtain the projected area of every polygon for every viewpoint, and these areas
will enable us to obtain the probabilities of the visibility channel (p(V ), p(Z |V ), and
p(Z)). In this chapter, all measures have been computed without taking into account the
background, and using a projection resolution of 640×480. In our experiments, all the
objects are centered in a sphere of 642 viewpoints built from the recursive discretization
of an icosahedron and the camera is looking at the center of this sphere. To obtain the
viewpoint sphere, the smallest bounding sphere of the model is obtained and, then, the
viewpoint sphere adopts the same center as the bounding sphere and a radius three
times the radius of the bounding sphere.
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I1 I1 sphere I2 I2 sphere I3 I3 sphere

(i.a) (i.b) (i.c) (i.d) (i.e) (i.f)

(ii.a) (ii.b) (ii.c) (ii.d) (ii.e) (ii.f)

(iii.a) (iii.b) (iii.c) (iii.d) (iii.e) (iii.f)

(iv.a) (iv.b) (iv.c) (iv.d) (iv.e) (iv.f)

Figure 3.1: (columns a, c, and e) The best view and (columns b, d, and f) the corre-
sponding sphere of viewpoints of models (row i) lady of Elche, (row ii) coffe cup, (row
iii) horse, and (row iv) ship, using (columns a–b) I1, (columns c–d) I2, and (columns
e–f) I3.

In Table 3.1 we show the number of polygons of the models used in this section and
the cost of the preprocess step, i.e., the cost of computing the projected areas az(v) and
at . To show the behavior of the measures, the sphere of viewpoints is represented by
a color map, where red and blue colors correspond respectively to the best and worst
views. Remember that a good viewpoint corresponds to a low value of I1 and I2, and
to high value of I3. Our tests were run on a Intel c© CoreTM i5 430M 2.27GHz machine
with 4 GB RAM and an ATI Mobility RadeonTM HD 5470 with 512 MB.

To evaluate the performance of the viewpoint quality measures, four models have
been used: a coffee cup, a horse, the Lady of Elche, and a ship. Figures 3.1 and 3.2 show,
respectively, the best and worst views and the corresponding sphere of viewpoints for
these models using measures (a–b) I1, (c–d) I2, and (e–f) I3.

While the best views selected by I1 show a global view of the object, the best views
obtained by I2 capture the maximum number of polygons in a balanced way (i.e., with
a similar projected area). This means that I2 has a high dependence of the resolution of
the mesh, trying to see the areas with a finer discretization. On the contrary, it has been
shown in [Feixas 2009] that I1 is very robust with respect to the variation of the mesh
resolution. The behavior of I3 is very different of the one of I1 and I2 because the view
with maximum I3 tries to see the most informative polygons, that in general are placed
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I1 I1 sphere I2 I2 sphere I3 I3 sphere

(i.a) (i.b) (i.c) (i.d) (i.e) (i.f)

(ii.a) (ii.b) (ii.c) (ii.d) (ii.e) (ii.f)

(iii.a) (iii.b) (iii.c) (iii.d) (iii.e) (iii.f)

(iv.a) (iv.b) (iv.c) (iv.d) (iv.e) (iv.f)

Figure 3.2: (columns a, c, and e) The worst view and (columns b, d, and f) the corre-
sponding sphere of viewpoints of models (row i) lady of Elche, (row ii) coffe cup, (row
iii) horse, and (row iv) ship, using (columns a–b) I1, (columns c–d) I2, and (columns
e–f) I3.

Model # of polygons Computational cost (ms)

Coffee cup 10732 3526
Horse 43571 3650
Ship 48811 3822
Lady of Elche 51978 3946

Table 3.1: Number of polygons of the models used and computational cost of the pre-
processing step for each model in milliseconds.
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in the most occluded, salient, and complex areas of the object. To better appreciate
the behavior of I3, the best and worst views (see column (e) in Figures 3.1 and 3.2 )
show the degree of informativeness of each polygon using a thermal scale, from blue
(minimum information) to red (maximum information). Thus, it can be easily seen how
I3 selects the views with the highest informativeness. It is also important to note that a
similar view can be considered as the best for one measure and the worst for another.
See for instance the best and worst view of the coffee cup for I2 and I1, respectively
(Figures 3.1(ii.c) and 3.2(ii.a)), and the best and worst view of the horse for I3 and I1,
respectively (Figures 3.1(iii.e) and 3.2(iii.a)).

3.5 Conclusions

In this chapter, we have presented a new perspective based on the decomposition of
mutual information to study the quality of a viewpoint. Two measures of specific in-
formation introduced in the field of neural systems have been adapted to quantify the
information associated with a viewpoint (I2 and I3). These measures have been com-
pared with viewpoint entropy and viewpoint mutual information, and several experi-
ments have shown their performance in best view selection. The concepts of surprise,
diversity, and informativeness associated with a viewpoint have been also discussed.
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4.1 Introduction

The basic question underlying the viewpoint selection study and application is “what
are good views of a 3D object or a scene?” In order to address this question, a number
of computational measures have been proposed to quantify the goodness or the quality
of a view. Depending on our goals, the best viewpoint can be, for instance, the view that
allows us to see the largest number of parts of the object, the view that shows the most
salient regions of the object, or the view that maximally changes when the underlying
object is jittered. The main problem is how you decide if a viewpoint quality measure
is better than another one. We can say when a view is good or not in a intuitive way
but an impartial procedure is required to decide it. We need to set a benchmark where
all the measures will be compared computing the best views for the same 3D models

In this chapter, we review and compare a significant amount of measures to se-
lect good views of a polygonal 3D model. The computational measures reviewed are
those that were motivated for “goodness for recognition” instead of other aspects such
as familiarity and aesthetics. To compare these measures we have used the Dutagaci
et al. benchmark [Dutagaci 2010] and they are classified according to recent work by
Secord et al. [Secord 2011]. We also mention several fields where the viewpoint selec-
tion measures have been applied. The main contribution of this survey lies in collecting
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5.1 Introduction

How well can we perceive shape from shading under diffuse illumination? In diffuse
shading, the image intensity is related to the degree of self-occlusion, for instance, the
concavities in the surface correspond to a darker shade in the image. According to
Thompson et al. [Thompson 2011], very little is known about how the visual system
uses this type of shading to estimate shape, although it has been suggested that the
brain could use the heuristic that “dark is deep” [Langer 2000]. In other words, darker
intensities in the image tend to be deeper in concavities [Thompson 2011]. Diffuse
global illumination is usually approximated by a much cheaper non-physically realistic
technique, ambient occlusion or obscurances [Zhukov 1998, Landis 2002, Iones 2003,
Méndez-Feliu 2009], that gives a photorealistic appearance to objects with complex
geometries by providing the visual shading cues associated with self-occlusion.

In this chapter, we present a new information-theoretic framework that allows to
a human observer to analyze and visualize the information associated with an object.
This work is based on a visibility channel between the polygons of an object and a set
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of viewpoints, and three specific information measures introduced in the field of neural
systems [Deweese 1999, Butts 2003]. We extend some previous work on both viewpoint
quality and polygonal information introduced by Feixas et al. [Feixas 2009], González
et al. [González 2008], and Bonaventura et al. [Bonaventura 2011]. We adopt two
different perspectives. On the one hand, shape information is given by several polygo-
nal information measures that provide us with different forms of perceiving the object
shape. On the other hand, we present different viewpoint quality measures, obtained
from the projection of the polygonal information onto the viewpoints, and also two
algorithms to select the N best views and to explore the object, respectively. Different
experiments show the behavior of all these measures and algorithms. The main contri-
butions of this chapter are the introduction of specific information measures to quantify
the polygonal information, the use of Tsallis mutual information to analyze the polygo-
nal information depending on an entropic index, the definition of new viewpoint quality
measures based on different forms of polygonal information, and new algorithms for N
best views and object exploration.

This chapter is organized as follows. In Section 5.2, we present two generalizations
of mutual information and basic information about obscurances and ambient occlusion.
In Section 5.3, we introduce new polygonal information measures that will be visualized
in comparison with other measures previously introduced. In Section 5.4, we present
new viewpoint quality measures to select the best views and to explore the object.
Finally, in Section 5.5, our conclusions are presented.

5.2 Background

In this section, we present a generalized version of Shannon entropy and two different
ways of generalizing mutual information.

5.2.1 Tsallis Information Measures

Rényi [Rényi 1961] proposed a generalized entropy which recovers the Shannon en-
tropy as a special case and Harvda and Charvát [Harvda 1967] introduced a new gen-
eralized definition of entropy which also includes the Shannon entropy as a particular
case. Tsallis [Tsallis 1988] used the Harvda-Charvát entropy in order to generalize the
Boltzmann entropy in statistical mechanics. The introduction of this entropy responds
to the objective of generalizing the statistical mechanics to non-extensive systems. For
the objectives of this thesis we review the so-called Harvda-Charvát-Tsallis entropy or,
simply, Tsallis entropy.

The Harvda-Charvát-Tsallis entropy Hα(X ) of a discrete random variable X is de-
fined by

Hα(X ) = k
1−

∑

x∈X p(x)α

α− 1
, (5.1)

where k is a positive constant (by default k = 1) and α ∈ R − {1} is called entropic
index.
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This entropy recovers the Shannon entropy (calculated with natural logarithms)
when α → 1 and fulfills the properties of non-negativity and concavity (for α > 0).
If X and Y are independent, then the Harvda-Charvát-Tsallis entropy fulfills the non-
additivity property:

Hα(X , Y ) = Hα(X ) +Hα(Y ) + (1−α)Hα(X )Hα(Y ), (5.2)

where Hα(X , Y ) is the Tsallis joint entropy. The Tsallis conditional entropy Hα(Y |X ) is
defined by

Hα(Y |X ) =
∑

x∈X
p(x)αHα(Y |x)

=
∑

x∈X
p(x)α

1−
∑

y∈Y p(y|x)α

α− 1
, (5.3)

where Hα(Y |x) is the Tsallis entropy of Y known x.
Similar to Equation 2.12, the Tsallis mutual information M Iα(X ; Y ) is defined [Taneja

1988, Tsallis 1998] by

M Iα(X ; Y ) =
1

1−α

 

1−
∑

x∈X

∑

y∈Y

p(x , y)α

p(x)α−1p(y)α−1

!

. (5.4)

Another way of generalizing mutual information is the so-called Tsallis mutual en-
tropy M Eα(X ; Y ), that, similar to Equation 2.11, is defined [Furuichi 2006] by

M Eα(X ; Y ) = Hα(Y )−Hα(Y |X )
= Hα(Y )−

∑

x∈X

p(x)αHα(Y |x)

= Hα(Y )−
∑

x∈X

p(x)α
 

∑

y∈Y

p(y|x)− p(y|x)α

α− 1

!

. (5.5)

Furuichi [Furuichi 2006] defined Tsallis mutual entropy for α > 1 to ensure non-
negativity, but for the purposes of this thesis this assumption is not necessary. Observe
that both measures, M Iα(X ; Y ) and M Eα(X ; Y ), recover the Shannon mutual informa-
tion (calculated with natural logarithms) when α→ 1 and are different for α 6= 1.

5.2.2 Obscurances and Ambient Occlusion

Illumination in real world is very complex and the simulation of the effects is a complex
task. Imagine an environment where the illumination is mostly diffuse as for example
in open air in a cloudy day. The illumination of every object is the product of many
interreflections but we can notice that the objects that are more hidden are seen as
darker. These effects can be reproduced with global illumination techniques but the
computational cost is high.
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Figure 5.1: Shape of function ρ(d).

Zhukov et al. [Zhukov 1998] and Iones et al. [Iones 2003] presented an efficient
technique, called obscurances, that achieved some features of global illumination tech-
niques in a much more economic way. This technique is much more simple and much
less costly than global illumination, as in this case it is necessary to simulate the inter-
action of light between all the objects. The effect of obscurances can be considered as
a pure geometric property of every point of the scene and can be computed evaluating
the occlusion of the point with the objects around it.

In 2002, Landis [Landis 2002] and Bredow [Bredow 2002] presented a technique
based on simplified obscurances and named it ambient occlusion. For a survey see
Mendez and Sbert [Méndez-Feliu 2009].

5.2.2.1 The Obscurances Illumination Model

Let us take a look how to compute the obscurances introduced by [Zhukov 1998]. The
obscurances of a point P is defined as:

W (P) =
1
π

∫

ω∈Ω

ρ (d (P,ω)) cosθ dω (5.6)

where:

• d (P,ω) is the distance from P to the first intersection point in ω direction.

• ρ is a monotone increasing function with values between 0 and 1 defined for all
positive values. The result is 0 with distance 0, a value between 0 and 1 with a
distance from 0 to dmax and 1 with distances greater than dmax (Figure 5.1).

• θ is the angle between direction ω and the normal at point P.

The integral is over the hemisphere oriented according to the surface normal. Then the
W (P) takes values from 0 to 1 where 0 means totally occluded and 1 means completely
open.

We can see that we only consider a limited environment around P and beyond it we
will not consider the occlusions. To control this limited environment we use the param-
eter dmax , depending on amount of shadow that we want. dmax will be in concordance
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(a) Image without obscurances nor di-
rect light

(b) Image with only obscurances

Figure 5.2: Obscurances in videogames. By courtesy of Àlex Méndez.

with the relative sizes of the objects with respect to the scene and with the size of the
scene itself.

Obscurances computes the indirect light of the scene, the inter-reflections between
objects. The direct light of the scene can be computed separately with other common
techniques. It is very important that the indirect light computed with obscurances (Fig-
ure 5.2) looks similar than indirect light computed with other global illumination tech-
niques, especially in average intensity.

For this reason, we have to combine W (P) in the following way to get the final
indirect illumination:

I(P) = R(P)× IA×W (P) (5.7)

That is, the obscurances at point P is multiplied by the diffuse reflectivity (R(P)) at the
point and by an average ambient intensity of the whole scene (IA).

IA is computed assuming that light energy is distributed uniformly and illuminates
all the objects with the same intensity:

IA =
Rave

1− Rave
×

1
Atotal

n
∑

i=0

Ai × Ei (5.8)

where Ai and Ei are the area and the emittance of the patch i respectively, Atotal is the
area of all patches and Rave is the average reflectivity of all patches weighted by its
area:

Rave =
1

Atotal

n
∑

i=0

Ai × Ri (5.9)

5.3 View-Based Polygonal Information

In this section, we define the polygonal information measures derived from the infor-
mation measures presented in Section 2.3.3.
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5.3.1 Shannon Polygonal Information

As we have seen in the Sections 2.4 and 3.3, the information associated with each
viewpoint has been obtained from the definition of the channel between the sphere
of viewpoints and the polygons of the object. We now want to obtain the information
associated with each polygon. To illustrate this new approach, the reversed channel
Z → V is considered, where Z is the input and V the output.

The three basic elements of the channel Z → V are the conditional probability
matrix p(V |Z), the input distribution p(Z), and the output distribution p(V ). Observe
that, using the Bayes theorem, each element p(v|z) of the conditional probability matrix
can be computed as p(v|z) = p(v)p(z|v)

p(z) . The distributions p(Z) and p(V ) have been
defined in Section 2.4.

To obtain the information associated with a polygon of the object, the information
measures I1, I2, and I3 (Section 2.3.3) are now rewritten in the context of the channel
Z → V :

• From Equation 2.20, the polygonal information I1 of a polygon z is defined as

I1(z; V ) =
∑

v∈V
p(v|z) log

p(v|z)
p(v)

. (5.10)

It is important to remark that the polygonal information I1 was previously intro-
duced by Feixas et al. [Feixas 2009] with the name of polygonal mutual informa-
tion. Observe that I1(z; V ) is a Kullback-Leibler distance (Equation 2.13) between
p(V |z) and p(V ). Thus, low values of I1(z; V ) correspond to polygons that “see”
the maximum number of viewpoints with a probability distribution p(V |z) similar
to p(V ), while high values indicate low visibility.

• From Equation 2.21, the polygonal information I2 of a polygon z is defined as

I2(z; V ) = H(V )−H(V |z) (5.11)

= −
∑

v∈V
p(v) log p(v) +

∑

v∈V
p(v|z) log p(v|z).

Observe that low values of I2(z; V ) are achieved by entropic polygons, that is,
polygons that “see” the maximum number of viewpoints in a uniform way (i.e.,
with a uniform probability distribution). On the other hand, when a polygon
“sees” few viewpoints, its entropy is low and the value of I2 is high.

• From Equation 2.22, the polygonal information I3 of a polygon z is defined as

I3(z; V ) =
∑

v∈V
p(v|z)I2(Z; v), (5.12)
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where I2(Z; v) is the specific information of viewpoint v (Section 3.3) given by

I2(Z; v) = H(Z)−H(Z |v) (5.13)

= −
∑

z∈Z
p(z) log p(z) +

∑

z∈Z
p(z|v) log p(z|v).

Note that low values of viewpoint information I2(Z; v) correspond to high values
of viewpoint entropy H(Z |v), and vice versa (Section 3.3). Thus, low values of
I3(z; V ) are obtained when the viewpoints “seen” by the polygon z are not infor-
mative in the sense of I2(Z; v) (i.e., these viewpoints are highly entropic). The
opposite happens with high values.

In Section 5.3.3, we will show the behavior of all these measures.

5.3.2 Tsallis Polygonal Information

In Section 5.2.1, two generalized versions of mutual information, M Iα and M Eα (Equa-
tions 5.4 and 5.5), have been derived from the Kullback-Leibler form of mutual infor-
mation (Equation 2.12) and from the definition of mutual information as a difference
of entropies (Equation 2.9), respectively. On the other hand, the polygonal information
measures I1(z; V ) and I2(z; V ) have been also derived from Equations 2.12 and 2.9. In a
similar way, we now derive two generalized versions of polygonal information measures
I1 and I2 from M Iα and M Eα, respectively:

• Similarly to Equation 2.18, Equation 5.4 can be rewritten as

M Iα(V ; Z) =
∑

z∈Z

p(z)
1

1−α

�

1−
∑

v∈V

p(v|z)α

p(v)α−1

�

=
∑

z∈Z

p(z)I1α(z; V ) (5.14)

where

I1α(z; V ) =
1

1−α

�

1−
∑

v∈V

p(v|z)α

p(v)α−1

�

(5.15)

is called Tsallis polygonal information I1.

• Similarly to Equation 2.18, Equation 5.5 can be written as

M Eα(V ; Z) =
∑

z∈Z

p(z)α
�

H(V )α
∑

z∈Z p(z)α
−
∑

v∈V

p(v|z)− p(v|z)α

α− 1

�

=
∑

z∈Z

p(z)α I2α(z; V ) (5.16)

where

I2α(z; V ) =
H(V )α

∑

z∈Z p(z)α
−
∑

v∈V

p(v|z)− p(v|z)α

α− 1
(5.17)
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Model # of polygons Computational cost (ms)

Lady of Elche 51978 1576
Angel 11758 1404
Coffee cup 6376 1389
Mini 42910 1575
Ogre head 4336 1388
Horse 48811 1627

Table 5.1: Number of polygons of the models used and computational cost of the pre-
processing step for each model in milliseconds.

is called Tsallis polygonal information I2.

It is important to note that while I1α(z; V ) is weighted by p(z) in Equation 5.14,
I2α(z; V ) is weighted by p(z)α in Equation 5.16. These factors appear in a natural way
when the dependence on p(z) is removed from I1α(z; V ) and I2α(z; V ).

5.3.3 Results

In this section we analyze the performance of polygonal measures I1, I2, and I3 in
comparison with obscurances, introduced by Zhukov et al. [Zhukov 1998]. We also
show the results obtained with the Tsallis-based measures I1α and I2α.

To calculate all these measures, we need to obtain the projected area of every poly-
gon from each viewpoint. Then, these areas will enable us to obtain the probability dis-
tributions of the visibility channel (p(V ), p(Z |V ), and p(Z)). In this chapter, all mea-
sures have been computed without taking into account the background, and using a
projection resolution of 640×640. In our experiments, all the objects are centered in a
sphere of 642 viewpoints built from the recursive discretization of an icosahedron and
the camera is looking at the center of this sphere. To obtain the viewpoint sphere, the
smallest bounding sphere of the model is computed and, then, the viewpoint sphere
adopts the same center as the bounding sphere and a radius three times the radius of
the bounding sphere. Our tests were run on a Intel c© CoreTM i7-2600K 3.40GHz ma-
chine with 16 GB RAM and an ATI RadeonTM HD 6950 with 2048 MB. In Table 5.1, we
show the number of polygons of the models used in this section and the cost of the
preprocessing step, that is, the cost of computing the projected areas az(v) and at(v).

In Figure 5.3, we show the obscurances (Figure 5.3(a)) and the polygonal infor-
mation I1 (Figure 5.3(b)), I2 (Figure 5.3(c)), and I3 (Figure 5.3(d)) for the lady of
Elche and the angel models. We compute obscurances casting rays from polygons and
averaging the distances to the hit point weighted by a square root function, as done
in [Méndez-Feliu 2009]. To obtain the images, I1, I2, and I3 have been normalized be-
tween 0 and 1 and subtracted from 1. Thus, low values of I1 and I2, corresponding to
non-occluded polygons, are represented by bright colors (i.e., values near to 1) in the
grey-map, while high values, corresponding to occluded polygons, are represented by
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(a) (b) (c) (d)

Figure 5.3: Visualization of (a) obscurances, (b) polygonal information I1, (c) polygonal
information I2, and (d) polygonal information I3 for the lady of Elche and the angel
models.

(a) (b) (c) (d)

Figure 5.4: (a, b) Visualization of polygonal information I2 for the lady of Elche and (c,
d) polygonal information I3 for the coffee cup. Images have been generated (b,d) with
and (a,c) without polygonal interpolation, respectively.

dark colors (i.e., values near to 0) in the grey-map. On the other hand, low values of
I3, corresponding to polygons that are seen by viewpoints with low values of viewpoint
information I2, are represented by bright colors, and vice versa. Observe that the perfor-
mance of I1 (Figure 5.3(b)) and I2 (Figure 5.3(c)) is very similar and can be interpreted
as a kind of obscurances or ambient occlusion [Zhukov 1998, Landis 2002, Iones 2003].
On the other hand, using I3 (see Figure 5.3(d)), we obtain a non-photorealistic visual-
ization in the sense that it can not be obtained with a physically based rendering of the
object, and that permits us to perceive the shape of the object in a novel and expres-
sive way. Although we compute the information for each polygon, in the images of this
chapter, the polygonal information is interpolated to obtain a smoother visualization.
Figure 5.4 shows the difference of applying or not the polygonal interpolation to two
different models (lady of Elche and coffee cup), where the grey-map has been obtained
from the polygonal information measures I2 and I3, respectively.

In Figures 5.5 and 5.6, we show the Tsallis polygonal information measures I1 and
I2 depending on the entropic index α. From left to right, more contrasted images re-
sulting in sharper shading are obtained with lower α values while the contrast almost
vanishes with higher values. Note the similar behavior of I1 and I2 for all α values.
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α= 0.2 α= 0.4 α= 0.6 α= 0.8 α= 1.0 α= 1.2 α= 1.4 α= 1.6

Figure 5.5: Grey-map representation of Tsallis polygonal information I1 depending on
the α-value. Lower α values result in sharper shading.

α= 0.2 α= 0.4 α= 0.6 α= 0.8 α= 1.0 α= 1.2 α= 1.4 α= 1.6

Figure 5.6: Grey-map representation of Tsallis polygonal information I2 depending on
the α-value. Lower α values result in sharper shading.
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(a) (b) (c)

Figure 5.7: Visualization of (a) obscurances, (b) Tsallis polygonal information I1 with
α= 0.6, and (c) Tsallis polygonal information I2 with α= 0.6.
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Figure 5.8: Combination of a textured model with Tsallis polygonal information I2 with
α= 0.6.

In Figure 5.7, the results obtained with Tsallis polygonal information I1 and I2 with
α = 0.6 are compared with obscurances. Observe that for some models as the car, the
shading based on I1 and I2 can help us to spot better some details that are difficult to
see with the obscurances. In Figure 5.8, we show the effect of combining a textured
model with the Tsallis polygonal information I2 with α= 0.6.

5.4 Viewpoint Selection and Object Exploration

In this section, we present three new viewpoint quality measures based on the projec-
tion of the polygonal information onto the viewpoints, and we introduce two algorithms
to select the N best views and to explore an object, respectively.

5.4.1 Viewpoint Selection

First, we introduce several viewpoint quality measures based on the polygonal infor-
mation measures introduced in Section 5.3. Then, the behavior of these measures is
compared with the viewpoint information measures I1 and I2 (Section 3.3), which are
respectively equivalent to the viewpoint mutual information and the complementary
of viewpoint entropy [Feixas 2009, Vázquez 2001] (i.e., viewpoint information I2 per-
forms inversely to viewpoint entropy and, thus, the view with maximum entropy coin-
cides with the view with minimum I2, and vice versa).

The new measures of the quality of a viewpoint are obtained by projecting (or
spreading) the polygonal information to the sphere of viewpoints. This method is sim-
ilar to the one used by Feixas et al. [Feixas 2009] to obtain the saliency of a viewpoint.
The projection of the polygonal information over a viewpoint v is done by weighting the
polygonal information of polygon z by the transition probability p(v|z) and summing
over all polygons.

From the polygonal information measures I1, I2 and I3, the viewpoint quality of v is
defined by

VQ i(v) =
∑

z∈Z
p(v|z)I ′i (z; V ), (5.18)

where i stands for the values 1, 2, or 3; I ′1(z; V ) and I ′2(z; V ) are given by I1(z; V )
and I2(z; V ) linearly scaled between 0 and 1; and I ′3(z; V ) is given by 1− I3(z; V ) with
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(a) (b) (c) (d) (e)

Figure 5.9: Best views for (a) the viewpoint information I1, (b) viewpoint information
I2, (c) VQ1, (d) VQ2, and (e) VQ3.

I3(z; V ) linearly scaled between 0 and 1. Observe that high values of VQ will correspond
to viewpoints that see the most complex parts of the model which are represented by
the areas with more occlusions or significant details (i.e., with high values of polygonal
information I1 and I2, and low values of polygonal information I3). On the other hand,
low values of VQ correspond to viewpoints that see the smoothest areas of the model,
with small changes in visibility and less detail (i.e., with the lowest values of polygonal
information I1 and I2, and the highest values of polygonal information I3).

To evaluate the performance of these viewpoint quality measures, three models
have been used: the Lady of Elche, the coffee cup, and the horse. Figures 5.9 and 5.10
has been organized as follows. From (a) to (e), we show the results of viewpoint in-
formation I1 (called viewpoint mutual information), viewpoint information I2 (which
performs inversely to viewpoint entropy), VQ1, VQ2, and VQ3, respectively. Figure 5.9
shows the “best” views and Figure 5.10 shows the “worst” views. Note that the models
of (c-e) have been visualized with the polygonal information used to compute the cor-
responding measure VQ. It is important to note that the best views for the viewpoint
information I1 and I2 correspond to the lowest values of these measures, and while
the best view for I1 shows a representative view of the object (from a geometrical per-
spective), the best view obtained by I2 captures the maximum number of polygons in
a uniform way (maximum entropy). Hence, I2 is highly dependent on the resolution
of the mesh, trying to see the areas with a finer discretization. On the other hand, the
best views for the viewpoint quality measures VQ correspond with the highest values of
these measures, showing the most complex parts of the object. These experiments show
the good performance of the viewpoint quality measures VQ that capture the maximum
information of the model coming from the areas with more details and saliency. Observe
that, in the shown examples, I2 obtains similar best views to VQ since usually views with
maximum entropy see highly complex, very refined, areas. The contrary would happen
for the worst views.
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(a) (b) (c) (d) (e)

Figure 5.10: Worst views for (a) the viewpoint information I1, (b) viewpoint informa-
tion I2, (c) VQ1, (d) VQ2, and (e) VQ3.

5.4.2 N Best Views and Object Exploration

In order to understand or model an object, we are interested in selecting a set of repre-
sentative views which provides an approximate representation of the object. With this
goal in mind, a new viewpoint selection algorithm based on the viewpoint information
I1 extended with the polygonal information I2 (or polygonal information I3) is pre-
sented. Due to the similar behavior of the polygonal information measures I1 and I2,
we only explore the performance of extending the viewpoint information I1 with the
polygonal information I2 and I3.

To compute the most representative set of views, Feixas et al. [Feixas 2009] pro-
posed a viewpoint information I1-based algorithm to select the set of viewpoints that
minimize the I1(bv; Z) value of a set of views bv:

I1(bv; Z) =
∑

z∈Z
p(z|bv) log

p(z|bv)
p(z)

(5.19)

where
p(bv) =

∑

v∈bv

p(v) (5.20)

and

p(z|bv) =
∑

v∈bv p(v)p(z|v)
p(bv)

. (5.21)

Due to the fact that this algorithm is NP-complete, a greedy solution was used. The
viewpoint with minimum I1(v; Z) is selected as the first element of the set. Then, the
next viewpoint selected is the one that minimizes I1(bv; Z), where bv represents the virtual
viewpoint that results from the clustering of the first two viewpoints. This process is
repeated until N views are selected.

We now define an extended viewpoint measure EI1, where the target distribution
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p(z) is weighted by an importance distribution based on the polygonal information
measures I2 or I3. The measure EI1 will be used to compute the N best views. Observe
that, using the polygonal information measures I2 or I3 as importance distribution, we
prioritize to see the polygons with a high informativeness, that is, the ones with the
most relevant shape information.

The extended viewpoint information EI1(v; Z) is defined by

EI1(v; Z) =
∑

z∈Z

p(z|v) log
p(z|v)
p′(z)

, (5.22)

where the target distribution p′(z) is given by

p′(z) =
p(z)imp(z)

∑

z∈Z p(z)imp(z)
(5.23)

and the importance factor imp(z) is given by I ′2(z; V ) or I ′3(z; V ) defined in Section 5.4.1.

Using the extended viewpoint information measure EI1(v; Z), our best view algo-
rithm proceeds in the same way as the I1-based algorithm [Feixas 2009] but we now
minimize EI1(bv; Z) instead of minimizing I1(bv; Z). The minimization of EI1(bv; Z) is
based on the fact that we are interested in minimizing the Kullback-Leibler distance
between the distribution of projected areas captured by the viewpoints and the tar-
get distribution p′(z) given by the average projected area of all polygons weighted by
the importance distribution. In Figures 5.11 and 5.12, we show the results of selecting
the six best views using the I1-based algorithm without importance distribution [Feixas
2009] (column 1) and with importance distribution given by the polygonal information
measures I2 (column 2) and I3 (column 3), respectively. The models of columns 2 and
3 have been rendered using polygonal information I2 and polygonal information I3,
respectively, to illustrate how the algorithm selects the views depending on the polyg-
onal information. Observe how our EI1-based algorithm focuses the attention on the
most informative parts of the model and enhances the view selection achieved with the
I1-based algorithm.

Finally, we present an exploratory algorithm, called exploratory tour, that first se-
lects the best viewpoint (i.e., with minimum EI1(v; Z)) and then successively visits the
neighbor viewpoints that minimize the value of EI1(bv; Z) of all visited viewpoints. This
algorithm is similar to the one presented by Feixas et al. [Feixas 2009] but now the
selection of the successive viewpoints is also guided by the informativeness of poly-
gons. Figures 5.13 and 5.14 show the performance of our EI1-based algorithm using
the polygonal information measures I2 and I3 as importance factors, respectively. The
models of Figures 5.13 and 5.14 have been rendered using polygonal information I2

and polygonal information I3, respectively, to show how the exploration depends on the
polygonal information. In these examples, the stopping criteria used by the exploration
algorithms guided by the polygonal information I2 and I3 are given by the 25% and
15% of the initial value EI1(v; Z), respectively.
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Figure 5.11: Six best views of the lady of Elche using (column 1) the I1-based algorithm
and the EI1-based algorithm weighted by the polygonal information (column 2) I2 and
(column 3) I3.
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Figure 5.12: Six best views of the angel using (column 1) the I1-based algorithm and the
EI1-based algorithm weighted by the polygonal information (column 2) I2 and (column
3) I3.
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Figure 5.13: Exploratory tour with the extended viewpoint information EI1 weighted
by the polygonal information I2.

Figure 5.14: Exploratory tour with the extended viewpoint information EI1 weighted
by the polygonal information I3.
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5.5 Conclusions

In this chapter, we have presented an information theory framework for object under-
standing. From the definition of visibility channel between the polygons of an object and
a set of viewpoints, we obtain several shading approaches using the polygonal informa-
tion. Two of our shading measures (polygonal information I1 and polygonal information
I2) are perceptually related to diffuse shading, where image intensity depends on the
degree of self-occlusion, and a third measure (polygonal information I3) represents a
novel perceptual approach. Several results show that those measures improve on per-
ceiving shape on similar ambient occlusion measures and that our viewpoint quality
measures perform well in capturing object complexity. Finally, we apply the polygonal
information measures to select best views and to explore an object.
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6.1 Introduction

Digital elevation models are used ubiquitously within the geosciences, facilitating stud-
ies of natural and man-made phenomena across a wide range of scales. Commonly,
elevation data, comprising height measurements linked by a grid or triangulation struc-
ture, are supplemented with digital image texture as the basis for qualitative and quan-
titative interpretation. Visualising and communicating terrain model data, with or with-
out image texture, is important to fully exploit the benefits of geospatial data in geo-
science applications. However, until now, user support for obtaining representative
viewpoints and guiding the extraction of salient information about the terrain’s shape
has been minimal.

In this chapter, the information-theoretic framework for object understanding pre-
sented in Chapter 5 is applied to terrain visualization and terrain view selection. From
a visibility channel between a set of viewpoints and the component polygons of a 3D
terrain model, we obtain three specific polygonal information measures. These mea-
sures are used to visualize the information associated with each polygon of the terrain
model. In order to enhance the perception of the terrain’s shape, we explore the ef-
fect of combining the calculated information measures with the supplementary terrain
texture. From polygonal information, we also introduce a method to select a set of
representative views of the terrain model. Finally, we evaluate the performance of the
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7.1 Introduction

Quantifying the shape similarity between 3D polygonal models is a key problem in
different fields, such as computer graphics, computer vision and pattern recognition.
Recently, as the number of large digital repositories of 3D models grows dramatically,
3D data are becoming ubiquitous. As a result, there is an increasing demand for search
engines that are able to retrieve similar models using shape similarity measures. In the
last few years, a number of algorithms have been proposed for the retrieval of both rigid
(see [Tangelder 2008] for a survey on content-based 3D shape retrieval) and non-rigid
3D shapes [Lian 2013]. Several 3D shape-based retrieval methods are based on view
similarity, where two 3D models are considered similar if they look similar from all
viewing angles. In this chapter, we advance in this line by tackling the shape similarity
problem from an information-theoretic framework.
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From this framework, several information-theoretic methods are presented to com-
pute the similarity matrix of a set of models. Given a 3D model, our information mea-
sures are obtained from a visibility channel created between the set of viewpoints and
the polygonal mesh. We define different information measures: the mutual informa-
tion of a 3D model, and the specific information measures I1 and I2 associated with
each viewpoint. The last-mentioned measures correspond to two different forms of de-
composing the mutual information and enable us to create two different information
spheres for each model.

From the above information-theoretic measures, we present three methods to ob-
tain the similarity matrix for all the models of a database. In the first method, a regis-
tration process between the information spheres of two models is carried out to obtain
the pose that achieves the minimum L2 distance. This distance quantifies the degree
of dissimilarity between two model shapes. In the second method, the earth mover’s
distance between the information histograms of two models is also used to calculate
the degree of dissimilarity between the corresponding shapes. In the third method, the
mutual information of a 3D model is considered as a shape signature and the difference
in absolute value of the mutual information of each model can be also seen as a shape
discrimination measure.

This chapter is organized as follows. In Section 7.2, we summarize some related
work in 3D shape retrieval. In Section 7.3, we propose several methods to compute
the similarity between 3D models. In Section 7.4, experimental results show the per-
formance of the proposed measures for 3D shape retrieval. Finally, in Section 7.5, the
conclusions are presented.

7.2 Background

Recent developments in techniques for modeling, digitizing and visualizing 3D shapes
have provoked an explosion in the number of available 3D models on the Internet and
in specific databases. This has led to the development of 3D shape retrieval systems
(see [Tangelder 2008] for a survey) that, given a query object, retrieve similar 3D ob-
jects.

At conceptual level, a typical shape retrieval framework consists of a database with
an index structure created off-line and an on-line query engine. Each 3D model has to
be identified with a shape descriptor, providing an overall description of its shape. The
indexing data structure and the searching algorithm are used to carry out an efficient
search. The on-line query engine computes the query descriptor, and the models similar
to the query model are retrieved by matching descriptors to the query descriptor from
the index structure of the database. The similarity between two descriptors is quantified
by a dissimilarity measure.

According to Tangelder and Veltkamp [Tangelder 2008], 3D shape retrieval systems
are usually evaluated with respect to several requirements of content based 3D retrieval,
such as shape representations requirements, properties of dissimilarity measures, ef-
ficiency, discrimination abilities, ability to perform partial matching, robustness, and



7.2. Background 77

necessity of pose normalization. Different number of tools exist to validate 3D shape
retrieval systems such as the Princeton Shape Benchmark (PSB) [Shilane 2004], the
Purdue engineering shape benchmark [Jayanti 2006], or the McGill 3D shape bench-
mark [Siddiqi 2008]. There is also the SHape REtrieval Contest (SHREC) organized
every year since 2006 [Veltkamp 2006] where a dataset is provided to the participants
to run their 3D shape retrieval methods. Some of the above benchmarks have been part
of SHREC editions.

Shape matching methods can be divided in three broad categories: feature-based
methods, graph-based methods, and view-based methods.

7.2.1 Feature-Based Methods

Feature-based methods are the most commonly used as features that can directly denote
the geometric and topological properties of 3D shapes. According to the type of shape
features used, feature based methods can be further categorized into: global features,
global feature distributions, spatial maps and local features, in all of which two models
are compared according to their feature distance in the fixed d-dimensional space. The
first three categories use a single d-dimensional vector to represent features, while local
feature-based methods compute feature vectors for a number of surface points, which
are often the salient points of a 3D model. Corresponding feature based methods of
each category for the 3D shape retrieval include self-similarity (symmetry) [Kazhdan
2004] and the global descriptors based on volume and area [Zhang 2001], distance
distributions [Osada 2002] and spectral shape analysis [Reuter 2006, Lian 2013], sta-
tistical moments [Kazhdan 2003, Novotni 2003], and the local features combined with
the bag-of-words model [Bronstein 2011] or the heat kernel diffusion [Sun 2009].

7.2.2 Graph-Based Methods

Graph-based methods use a graph to extract a geometric meaning from a 3D shape
and utilize the topological information of 3D objects to measure the similarity between
them, rather than only considering the pure geometry of the shape as the feature-based
methods do. Graph-based methods can be applied to articulated models. According
to the type of the used graphs, three categories can be considered in this technique
including model graphs [El-Mehalawi 2003b, El-Mehalawi 2003a], Reeb graphs [Hilaga
2001, Tung 2005], and skeletons [Sundar 2003]. Compared with the feature based
methods, the graph based methods are less robust, but the graph based structure is
suitable for partial matching.

7.2.3 View-Based Methods

Based on the fact that 3D models are similar when they look similar from all viewing an-
gles, view-based similarity methods are proposed. The earlier reference to view-based
retrieval is given by [Loffler 2000] who used a 2D query interface to retrieve 3D mod-
els. Funkhouser et al. describe an image-based approach allowing users to query the
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engine by drawing one or more sketches [Funkhouser 2003]. Chen et al. provide a
system-based on a set of lightfield descriptors [Chen 2003], and one hundred orthogo-
nal projections of an object are encoded both by Zernike moments and Fourier descrip-
tors as features for retrieval. Gonzalez et al. use the sphere of viewpoints with viewpoint
mutual information as a descriptor of the model [González 2007]. The sketch-based 3D
model retrieval system proposed by [Yoon 2010] is robust against variations of shape,
pose or partial occlusion of the sketches, but the drawing process is still a little both-
ering. Although the discriminative and robust sketch-based 3D shape retrieval system
by [Shao 2011] requires dense sampling and registration and incurs a high compu-
tational cost, critical acceleration methods based on pre-computation and multi-core
platforms or GPUs are designed to achieve interactive performance. Eitz et al. collect
a significant number of sketches for the evaluation of shape retrieval performance and
achieve significantly better result than the previous methods [Eitz 2012], but realistic
inputs are still a very hard problem, which is related to their bag-of-features and the
new descriptor for line-art renderings. Liu et al. design a statistical measure based on
sketch similarity for CAD model retrieval, which accounts for users’ drawing habits [Liu
2013]. The limitation of the method is that a single freeform sketch mainly captures
some geometric information other than semantic meanings.

7.3 View-Based Similarity Framework

As we have seen in Sections 2.4 and 3.3, I(V ; Z) expresses the degree of correlation be-
tween a set of viewpoints and the 3D model, and the viewpoint information measures
I1(v; Z) and I2(v; Z) quantify the degree of correlation between a single viewpoint and
the model. Our view-based similarity approach is an extension of the method presented
by [González 2007], where preliminary results were given for a single measure, view-
point mutual information.

In this section, we present three different methods to evaluate the shape similarity
between two models and to obtain the distance matrix for all the models of a data
set. These methods are respectively based on the L2 distance between information
spheres (Section 7.3.1), the earth mover’s distance between information histograms
(Section 7.3.2), and the absolute difference between the mutual information of each
model (Section 7.3.3).

7.3.1 L2 Distance between Information Spheres

In this method, given a 3D model, two information spheres are respectively obtained
by computing the information measures I1 and I2 for each viewpoint presented in Sec-
tion 3.3. These measures have been defined as follows:

• The viewpoint information I1 of a viewpoint v is defined as

I1(v; Z) =
∑

z∈Z
p(z|v) log

p(z|v)
p(z)

. (7.1)
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Figure 7.1: (first row) I1-spheres and (second row) I2-spheres corresponding to four
different 3D models of the same class.

• The viewpoint information I2 of a viewpoint v is defined as

I2(v; Z) = H(Z)−H(Z |v) (7.2)

= −
∑

z∈Z
p(z) log p(z) +

∑

z∈Z
p(z|v) log p(z|v).

Then, a registration process is done to find the minimum distance that characterizes
the degree of dissimilarity between two models.

Figure 7.1 shows both the I1-spheres and the I2-spheres for four different models of
the same class. Observe how similar information spheres are obtained for all the models,
although the most similar patterns are provided by the measure I1. The information
spheres are considered as shape descriptors (or signatures) for a given model.

To compute the dissimilarity (or distance) between two I1-spheres (or I2-spheres),
a registration process is carried out to obtain the pose that achieves the minimum dis-
tance between the viewpoint information values. In the registration process, we aim
to find the transformation that brings one sphere (floating) into the best possible spa-
tial correspondence with the other one (fixed) by minimizing the distance between
the information measures of the corresponding viewpoints. The distance used is the
L2 distance which is based on the absolute difference between each pair of matching
viewpoint information values.

To achieve the best matching between both the fixed and the floating sphere, we
consider the following points. First, the discrete nature of our information spheres (e.g.,
642 viewpoints) requires an interpolator component. In our implementation, the near-
est neighbor interpolator has been used. Second, the L2 distance between the informa-
tion spheres S1 and S2 (corresponding to the models Z1 and Z2) for a specific matching
is given by

D(S1, S2) =
√

√

∑

v∈V
(I(v; Z1)− I(v; Z2))2, (7.3)

where I(v; Z) stands for I1(v; Z) or I2(v; Z). Third, we use two transformation parame-
ters (degrees of freedom): R(θ) and R(ϕ), defined respectively as the rotation around
Z and Y axis. These two parameters take values in the range [0◦, 360◦] and [0◦, 180◦],
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respectively. Through this process we get the method to be robust to rotations of the
models.

In this method, we assume that the correct matching is given by the minimum value
of D(S1, S2). Since this matching process is time-consuming if all the possible positions
are checked, we use Powell’s method to speed up the registration [Powell 1964]. Pow-
ell’s method is a numerical optimizer that finds the minimum of a function without
using derivatives.

To sum up, the fundamental idea of this view-based similarity approach is that the
viewpoint measures used to build the information spheres supply an information mea-
sure for each viewpoint. Thus, the sphere of viewpoints can be seen as a shape represen-
tation of the object. In our case, two 3D models are similar when their corresponding
information spheres are also similar, that is, capture a similar information distribution.
Note that we only store one scalar value for each viewpoint, differently to other meth-
ods, that store the silhouette or the depth map [Eitz 2012, Ohbuchi 2008].

7.3.2 Earth Mover’s Distance between Information Histograms

As in Section 7.3.1, the first step is the creation of the I1 and I2 spheres corresponding
to a given model. Then, we obtain the information histograms that are used as shape
descriptors of the model.

To create both the I1-histogram and the I2-histogram from the corresponding infor-
mation spheres, we need to fix three parameters: the minimum and the maximum value
of the information measure (i.e., I1 or I2), and the number of bins of the histogram.
Taking into account that I1 is always greater or equal to 0, its minimum value has been
fixed to 0. On the other hand, the maximum value of I1 has been taken from the high-
est I1 value among all the models in the database. In a similar way, the minimum and
maximum values of I2 have been obtained from the lowest and highest I2 values among
all the models in the database, respectively. The maximum and minimum values could
be also fixed using a training set and doing some kind of clipping to avoid outliers. As
we will see in the next section, our tests have been performed using different number
of bins.

The dissimilarity between two models is computed by the Earth Mover’s Distance
(EMD) between their histograms [Rubner 1998]. EMD is a measure of the distance
between two distributions. If the two distributions are interpreted like two ways of
pilling up an amount of earth, then EMD is the least amount of work needed to turn
one pile into the other. A unit of work corresponds to transporting a unit of earth by a
unit of distance. In our case, this distance is given by the distance between bins and the
amount of earth is given by the probability of belonging to a bin. If both distributions
have the same amount of earth, EMD is a true distance. This condition is also fulfilled
in our case.

The earth mover’s distance between two information histograms H1 and H2 is de-
fined as

EM D(H1, H2) =

∑

i∈H1

∑

j∈H2
ci j fi j

∑

i∈H1

∑

j∈H2
fi j

, (7.4)
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1.61682 1.55162 1.59637 1.60485 1.5955 1.60598

Figure 7.2: 3D models of the same class with similar value of I(V ; Z).

where ci j represents the distance between bin i of histogram H1 and bin j of histogram
H2, and fi j represents the amount of occurrences that is transferred between bin i and
bin j.

7.3.3 Mutual Information Difference

We can also use the mutual information I(V ; Z) between the set of viewpoints and the
model as a signature of the model. Let us remember that the mutual information ex-
presses the degree of correlation or dependence between the set of viewpoints and the
model. The distance between two models is now computed as the difference between
their mutual information in absolute value. This is a very coarse approach but the ad-
vantage is that the signature is represented by a single scalar value and the comparison
between signatures is really fast. This would allow, at almost no cost, to build a short
list of candidate matching models. In Figure 7.2, we see one example that shows how
the objects of a same class have similar values of I(V ; Z).

7.4 Results and Discussion

In this section, we analyze and discuss the behavior of I1 and I2 spheres, I1 and I2

histograms, and I(V ; Z) as shape descriptors for 3D object retrieval.

7.4.1 Experimental Results

To calculate the information-theoretic measures presented in Section 3.3, we need to
obtain the projected area of every polygon for every viewpoint, and these areas will
enable us to obtain the probabilities of the visibility channel (p(V ), p(Z |V ), and p(Z)).
In this chapter, all the measures have been computed without taking into account the
background, and using a projection resolution of 640 × 640. In our experiments, all
the models are centered inside a sphere of 642 viewpoints built from the recursive
discretization of an icosahedron and the camera is looking at the center of this sphere.
To obtain the viewpoint sphere, the smallest bounding sphere of the model is obtained
and, then, the viewpoint sphere adopts the same center as the bounding sphere and
a radius three times the radius of the bounding sphere. Centering the object to the
center of the sphere we get a method invariant to translations and, as the viewpoints
are uniformly distributed over the sphere, we have also invariance to rotations. The
642 values of the viewpoint sphere for I1 and I2, and the mutual information of the
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Descriptors Size (elements) Generation time (s) Comparison time (s)

I1,I2-sphere 642 1.44 0.064236
I1,I2-histogram # of bins 1.44 0.001407
I(V ; Z) 1 1.36 0.000000

Table 7.1: For each measure, the size of the signature, the time to generate it, and the
time to compare two models are shown.

visibility channel are used to compute the shape descriptors of every model as explained
in Section 7.3.

The shape descriptors of each model are computed in advance and stored into a
database. At run time, we only have to compare the shape descriptors of the models
and to generate a descriptor when a new model is added to the database. The storage
size for each descriptor in number of float values depends on the method used as well
as the cost of computing each descriptor and the comparison between descriptors (see
Table 7.1). Our tests were run on an Intel c© CoreTM i7-2600K 3.40GHz machine with 16
GB RAM and an ATI RadeonTM HD 6950 with 2048 MB.

To test the performance of our methods we use the Princeton Shape Benchmark
(PSB) database and its utilities [Shilane 2004]. First, we run the methods using the
training set of 907 objects using the base classification file that groups the models in 90
different classes. The training set is intended to tune the parameters of the methods, in
our case we only have to adjust the number of bins when we create the histograms. In
Table 7.2 we can see the results of executing our three methods with this training data
set. For the method that uses the information histograms we have tested with different
number of bins: 16, 32, 64, 96 and 128.

The first three statistics (nearest neighbor (NN), first tier (FT), and second tier (ST))
indicate the percentage of the top K matches that belong to the same class as the query.
For the nearest neighbor statistic, K is 1, and for the first tier and second tier statistics,
K is C−1 and 2(C−1), respectively, where C is the size of the query’s class. In all three
cases, an ideal matching result (where all the other models within the query’s class
appear as the top matches) gives a score of 100%. The fourth statistic is the E-Measure
(E-M), which is a composite measure of precision and recall for a fixed number of
retrieved results. The E-Measure is defined by

E =
2

1
P +

1
R

(7.5)

where P is the precision and R is the recall. Remember that P = T P/(T P + F P) and
R= T P/(T P+ FN) where T P are the true positives, F P the false positives, and FN the
false negatives. The maximum value of E is 1 and higher values indicate better results.
The fifth statistic (discounted cumulative gain) (DCG) gives a sense of how well the
overall retrieval would be viewed by a human. Correct shapes near the front of the list
are more likely to be seen than correct shapes near the end of the list. More information
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Measures NN FT ST E-M DCG

I1-sphere 47.5% 24.7% 32.8% 15.5% 49.8%
I2-sphere 29.7% 13.8% 19.1% 9.7% 37.9%
I1-hist 96 25.5% 12.2% 18.1% 10.3% 37.3%
I1-hist 128 24.8% 12.0% 18.1% 10.3% 37.2%
I1-hist 64 24.6% 12.0% 17.8% 10.2% 37.1%
I1-hist 32 23.0% 12.0% 17.6% 10.1% 36.6%
I1-hist 16 18.6% 10.7% 16.5% 9.6% 35.2%
I2-hist 128 17.4% 9.0% 14.2% 8.1% 33.1%
I2-hist 96 17.0% 9.2% 14.1% 8.1% 33.2%
I2-hist 64 16.9% 8.8% 14.5% 8.0% 33.1%
I2-hist 32 16.9% 8.7% 13.3% 8.0% 32.7%
I2-hist 16 14.3% 7.9% 12.0% 7.4% 31.4%
I(V ; Z) 6.8% 4.5% 8.1% 4.7% 27.6%

Table 7.2: Results of our measures with the Princeton Shape Benchmark training set.

Measures NN FT ST E-M DCG

I1-sphere 39.4% 20.8% 27.9% 14.4% 45.3%
I2-sphere 27.6% 12.5% 17.6% 9.3% 36.3%
I1-hist 96 18.2% 8.9% 14.0% 8.5% 32.9%
I2-hist 96 14.0% 6.9% 11.4% 6.8% 30.2%
I(V ; Z) 4.0% 2.6% 5.0% 3.6% 25.0%

Table 7.3: Results of our measures with the Princeton Shape Benchmark test set.

about these statistics can be seen at [Shilane 2004].
In Table 7.2, the methods have been ordered using the NN statistic. Observe that

the best results are obtained with the L2 distance between I1-spheres, which are clearly
better than the ones obtained between I2-spheres. Thus, these results confirm the visual
hint (see Figure 7.1) that I1-spheres are better descriptors than I2-spheres. Concerning
the information histograms, the EMD distance also achieves better results with I1 than
with I2. We can also see that the best results with the information histograms are ob-
tained using 96 bins. The I2-histogram method with 128 bins gives slightly better results
with the nearest neighbor and the second tier statistic but not with the first tier. Thus,
from now on, we will use 96 bins for the histogram-based methods. Finally, for illus-
trative purposes, we have also added the mutual information difference, which being a
scalar measure has a very low discrimination power.

Once we have fixed the number of bins, we analyze the behavior of our approach
with the PSB test database that contains 907 objects distributed in 92 different classes.
In Table 7.3, we can observe how the order of the measures is kept with respect to the
training data set although the results have worsened. Next, we analyze these results.
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Figure 7.3: Two objects with similar I(V ; Z) values (1.58079 and 1.58275) and different
patterns for the I1-spheres.

1.33927 1.13282 1.00385 1.23747

Figure 7.4: 3D models of the same class where we can see some models where the value
of I(V ; Z) is quite different between them. The three last models are malformed.

The measure with clearly worst results is I(V ; Z) but if we go deeper we can observe
why it fails and when this measure could be useful. As we can see in Figure 7.2, the
objects of the same class tend to have a similar value of I(V ; Z). However, objects of
different classes can also have a similar value of I(V ; Z). When in this case we check
the information spheres, we can see that their patterns are considerably different (see
Figure 7.3). That is, even though the distribution of the I1 values on the sphere can be
different, their average can be similar. Taking into account this behavior, the I(V ; Z)
method could be used as a filter to select a subset of models with similar I value and,
then, other methods such the ones based on information histograms or information
spheres could be applied.

In some occasions we can see a class with the values of I(V ; Z) not so similar as
expected (see Figure 7.4). To explain this behavior we analyze some models with an
unexpected value of I(V ; Z). In Figure 7.5 we can see a model where I(V ; Z) is different
from other models of the same class. The model has been rendered in a way that the
background is white, the faces seen from the front are gray, and the faces seen from
the rear are black. For many purposes, when you can see the back face of polygons, it
is considered that the model is malformed. This is due to the fact that if we apply the
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Figure 7.5: Malformed model where we can see the back face of some polygons in black
and the background through some holes in white. This model corresponds to the second
model of Figure 7.4.

Figure 7.6: (left) I1-histogram and (right) I2-histogram corresponding to two models
of the same class (see Figure 7.8).

back face culling optimization then the polygon seen from the rear are invisible. If we
do not apply the back face culling, we can have problems with the normals when we
apply illumination methods.

These malformed models affect the performance of our measure due to the way
used to compute the visibility channel. To compute the projected area of a polygon
from a viewpoint, we project the polygons from the front and from the back. This is
done to handle when a model has wrong normals and mixed polygons clockwise and
counter clockwise as it happens in PSB. This implies that if we have a plane constructed
with only two triangles instead of four (two looking up and two looking down), we
construct a channel where the two triangles are seen by all the viewpoints. To get a
good behavior of the measures we need that the half hemisphere of viewpoints see two
triangles looking up and the other half see two other triangles looking down.

Figures 7.6 and 7.7 show the I1 and I2 histograms of two models of the same class
and of two models of different classes, respectively. Observe that we have reduced the
range of the bins to enhance the visualization. In Figure 7.8, we can see the models used
to create the histograms. Basically, we can observe how the histograms of two models
of the same class (Figure 7.6) have a remarkable similarity, while the histograms of two
models of very different classes (Figure 7.7) are very dissimilar.

In Table 7.3 we can also observe that the performance of measures has decreased
with relation to the ones for the training set shown in Table 7.2 but the order of effi-
ciency is preserved between the methods. This behavior can be explained if we analyze
the results in the training and test set grouped by classes. If we take the two classes
with the worst results in the test set, we see that they are the covered wagons and the
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Figure 7.7: (left) I1-histogram and (right) I2-histogram corresponding to two models
of different classes (see Figure 7.8).

m1124 m1134 m481

Figure 7.8: 3D models used for the histogram figures.

satellite dish classes, two classes that are not present in the training set. It also happens
that the class that gives better results in the training set is the swingset which is not
present in the test set. If we look at the classes that are common in both training and test
sets we can see that sometimes the result is better with the training set and sometimes
is better with the test set as we would expect.

A possible explanation of the bad results for the covered wagons class is that more
than half of the models are malformed. For the satellite dish class, the overall shape of
the models is different and our methods are not able to detect the common piece that is
the dish (see Figure 7.9). It also happens that the dish of model m1813 is malformed.

7.4.2 Discussion

The results for our 3D shape retrieval framework based on viewpoint information chan-
nel are preliminary, and from Table 7.4 we can see that even with our best method,
based on I1-spheres, they are still far from being competitive. They depend heavily on
the good construction of the models and, hence, we plan to check with databases of

m1811 m1812 m1813 m1814

Figure 7.9: The satellite dish class of the test set.
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well formed models. But we should also investigate a strategy to overcome this prob-
lem, maybe by projecting the triangles as a double face. We are also limited in principle
to rigid models, but as far as they can identify the different poses of a same model as
coming from the same family the retrieval would be correct.

A multilevel retrieval strategy could be used within our framework. We will first use
MI to build at practically no cost a preliminary list of candidate models, which would
be further refined into a shortlist with histogram comparison at very low cost. Finally,
we will register the short list elements with the I1-spheres.

We have used the standard L2 distance as a registration measure for 3D spheres,
but maybe a more conceptual measure would yield better results. An experiment with
humans classifying objects by only looking at the information spheres would give the
maximum discrimination power of our measures, and thus the room for improvement
in a registration measure.

7.5 Conclusions

In this chapter, we have presented a framework for 3D shape retrieval based on the in-
formation channel between the set of viewpoints around a 3D model and the 3D model
polygons. From this channel we have derived different similarity measures, based on
the decomposition of mutual information. The presented quality measures associated
with the sphere of viewpoints have been used as a shape representation of the object.
The performance of these measures has been tested using the Princeton Shape Bench-
mark database obtaining the best results with the registration of I1-spheres using L2

distance. Used individually, our measures can not compete with the state of the art
methods, but offer room for a multilevel retrieval strategy where mutual information
would be used to obtain a preliminary list of candidates.
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Conclusions
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8.1 Contributions

The main objective of this thesis was to find good information-theoretic measures to
improve the perception of 3D polygonal models and their recognition. This objective
has been achieved with the following contributions:

• We have analyzed the use of several mutual information decompositions of an
information channel between a set of viewpoints and a 3D model to quantify the
quality of a viewpoint.

Two measures of specific information introduced in the field of neural systems
have been applied to quantify the information associated with a viewpoint. These
measures have been compared with viewpoint entropy and viewpoint mutual
information, and different experiments have shown their performance in best
view selection. The concepts of surprise, diversity, and informativeness associated
with a viewpoint have been also discussed.

This contribution has been published in Proceedings of 21st GraphiCon Interna-
tional Conference on Computer Graphics and Vision, pages 16–19, September
2011 titled Viewpoint Information. [Bonaventura 2011]

• We have analyzed the performance of the most significant viewpoint quality mea-
sures presented in the literature and we have grouped all of them together in a
common framework.

We have reviewed the main measures for viewpoint selection that support good
recognition of polygonal models. We have implemented and compared all these
measures in a common framework using a user evaluation database to allow for
a fair comparison. This framework has been made publicly available and allows
to easily include any new measure for comparison, or to use another database
as ground-truth. We have also presented a short list of measures that effectively
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represent the viewpoint preferences of the users and together with the application
fields that the different measures have been employed in.

This contribution has been submitted to ACM Transactions on Applied Perception
titled A survey of viewpoint selection methods for polygonal models.

• We have quantified in different ways the information associated to the polygons of
a 3D model. This information has been used for visualization, viewpoint selection,
and object exploration.

Defining a visibility channel between the polygons of a 3D model and a set of
viewpoints, we obtain several shading approaches of the model using the polygo-
nal information. Two of these shading measures are perceptually related to diffuse
shading, where image intensity depends on the degree of self-occlusion, and a
third measure represents a novel perceptual approach. Several experiments show
that the polygonal information measures improve on perceiving shape on similar
ambient occlusion measures and that the obtained viewpoint quality measures
show a good performance to capture object complexity. Finally, the polygonal in-
formation measures are applied to select N best views and to object exploration.

This contribution has been published in Signal, Image and Video Processing, vol.
7, no. 3, pages 467–478, May 2013 titled Information measures for object under-
standing. [Bonaventura 2013a]

• We have applied our object understanding framework to terrain visualization.

We have obtained and visualized the polygonal information of a terrain model
getting several shading approaches. We have also combined the polygonal infor-
mation measures and the original terrain texture in order to enhance the percep-
tion of the terrain shape. Finally, we have used the viewpoint quality measures to
get a set of representative views of the terrain.

This contribution has been submitted to Computer & Geosciences titled Informa-
tion measures for terrain visualization.

• We have analyzed the use of viewpoint quality measures to measure the similarity
between two 3D models.

We have presented a framework for 3D shape retrieval based on the information
channel between the set of viewpoints around a 3D model and the model poly-
gons. From this channel we have derived different similarity measures based on
the decomposition of mutual information. We have studied the performance of
the sphere of viewpoints as a shape representation of the object.

This contribution has been published in Computer Animations and Virtual Worlds,
vol. 26, no. 2, pages 147–156, 2015 titled 3D shape retrieval using viewpoint
information-theoretic measures [Bonaventura 2015]. This journal publication is
an extension of the paper Viewpoint information-theoretic measures for 3D shape
similarity published in Proceedings of the 12th ACM SIGGRAPH International
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Conference on Virtual-Reality Continuum and Its Applications in Industry (VR-
CAI’13), pages 183–190, November 2013 [Bonaventura 2013b].

8.2 Future Work

The work done during the accomplishment of this thesis can be extended in different
ways:

• The viewpoint quality measures obtained from the decomposition of mutual in-
formation will be extended with the use of Tsallis-entropy.

• By comparing the viewpoint selection measures, we have obtained a short list
of measures that individually behave best. However, if we want to investigate a
combination of measures we believe we have to consider not only the ones in the
short list but also some of the ones that performed not so well. This is because
some of those last measures can contribute identifying different aspects than the
ones in the short list. We will analyze, in particular, the combination of I1 (not
shortlisted), I2 (shortlisted), and I3 (not shortlisted).

• For the object understanding, we have used Tsallis entropy to sharp or smooth
the shading obtained with Shannon entropy. Another generalization of Shannon
entropy, called Rényi entropy, will also be used to this purpose.

• We will use the polygonal information to navigate above a 3D terrain model sim-
ilarly to the exploratory tour presented in Chapter 5.

• For object and terrain understanding we will investigate how the shading of the
models using polygonal information can help a human observer to better under-
stand the models.

• In the context of shape retrieval, we have seen that our measures perform far from
the state of the art. The results could be improved by optimizing the registration
process, using other registration measures than L2 distance, investigating other
viewpoint measures and looking for an optimal combination of them.

• To compute the viewpoint quality measures and the polygonal information asso-
ciated with a 3D model, we have used a sphere of viewpoints around the model.
When the models have a clear elongation axis such as a pencil or a terrain model,
a different distribution of viewpoints could be more convenient. Thus, we will in-
vestigate other viewpoint distributions (e.g., ellipsoid, convex hull, hemisphere)
to improve the quality of the captured information.

• Malformed models (incorrect normals or triangles seen from both sides) have an
impact on viewpoint selection measures and on shape retrieval. We will study its
influence on the different defined measures and we will propose a preprocessing
step to alleviate this impact.
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• The computation time of the different measures and processes presented in this
thesis can be accelerated by using GPU techniques.
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