Chapter 4

Phase Transitions in
Regular Random 3-SAT

4.1 Introduction

Phase transitions occur in SAT, as well as in other NP-hard prob-
lems (Cheeseman et al., 1991). Mitchell et al. (1992) report results from
experiments on testing the satisfiability of classical Random 3-SAT instances
with the Davis-Putnam (DP) procedure (Davis et al., 1962). They observed
that (i) there is a sharp phase transition from satisfiable to unsatisfiable in-
stances for a certain value of the ratio of the number of clauses to the number
of variables. At lower ratios, most of the instances are under-constrained
and are thus satisfiable. At higher ratios, most of the instances are over-
constrained and are thus unsatisfiable. The value of that ratio where 50%
of the instances are expected to be satisfiable is referred to as the threshold;
and (ii) there is an easy-hard-easy pattern in the computational difficulty of
solving problem instances as that ratio is varied; the hard instances occur in
the area near the threshold. Nowadays, there is strong experimental evidence
that the value of the threshold is around 4.25, but there are no analytical
results. Only lower and upper bounds on the location of the threshold are
known (Kirousis et al., 1996).

29

Phase Transitions in Regular Random 3-SAT 60

In this chapter we first provide experimental evidence of the existence
of phase transitions in Reqular Random 3-SAT when the satisfiability of the
instances is determined with Regular-DP. Then, we report a series of exper-
iments that indicate that the location of the threshold increases logarithmi-
cally in the cardinality of the truth value set. We also provide a theoretical
explanation of this fact by providing upper bounds on the location of the
unsatisfiability threshold.

Our original interest in this problem was motivated by the search
of challenging benchmarks for analysing and comparing algorithms for
Regular-SAT. The experimental results we report here suggest that it makes
sense to evaluate satisfiability algorithms for regular CNF formulas on in-
stances of the hard region of the phase transition. We designed and im-
plemented a generator of Regular Random 3-SAT instances which is able to
provide a large number of such hard instances easily. We used this gener-
ator to compare the performance of Regular-DP/RH-1, Regular-DP /RH-2,
Regular-GSAT /Basic, and Regular-WalkSAT/Basic. The experimental re-
sults obtained are reported in the last section, and can be summarized as
follows: Regular-DP/RH-2 outperforms Regular-DP/RH-1 on instances of
the hard region of the phase transition, Regular-GSAT/Basic outperforms
Regular-DP/RH-2 on satisfiable instances of the hard region of the phase
transition, and Regular-WalkSAT /Basic outperforms Regular-GSAT /Basic
on satisfiable instances of the hard region of the phase transition.

This chapter is organized as follows. In Section 4.2 we present the gen-
erator of Regular Random 3-SAT instances; in Section 4.3 we provide ex-
perimental evidence of the existence of phase transitions and of the fact
that the location of the threshold increases logarithmically in the cardinal-
ity of the truth value set; in Sections 4.4 and 4.5 we derive upper bounds
on the location of the unsatisfiability threshold; in Sections 4.6 we present
the comparison of the performance of Regular-DP/RH-1, Regular-DP /RH-2,
Regular-GSAT /Basic, and Regular-WalkSAT /Basic. The experiments were
performed on Sun Ultra-5 workstations.

Phase Transitions in Regular Random 3-SAT 61

4.2 (Generator of Regular Random 3-SAT

instances

The generator of Regular Random 3-SAT instances we designed and imple-
mented for conducting the experimental investigation has as parameters the
number of clauses (C'), the number of propositional variables (V'), and the
cardinality of the truth value set (|N|). Given C and V, an instance of Reg-
ular Random 3-SAT is produced by generating C' non-tautological regular
clauses with three literals per clause. Each regular clause is produced by
choosing uniformly at random three literals with different propositional vari-
ables from the set of regular literals of the form |7 : p or 15 : p, where p
is a propositional variable, i € N\ {T}, j € N\ {L}, and T and L denote
the top and bottom elements of N. Observe that regular literals of the form
T :por 1L :p are tautological.

The generator of regular Random 3-SAT instances was implemented in

C++. It uses the random number generator ranl described in (Press et al.,
1988).

4.3 Phase transitions

In this section we first provide experimental evidence of the existence of
phase transitions in Regular Random 3-SAT when the satisfiability of the
instances is determined with Regular-DP /RH-1. Then, we report a series of
experiments that indicate that the location of the threshold increases loga-
rithmically in the cardinality of the truth value set.

Let us first describe a particular experiment to illustrate the phase tran-
sition phenomenon. We used our generator to produce sets of 300 Regular
Random 3-SAT instances. For all the sets, the input parameter |N| of the
generator was set to 7, and the input parameter V' was set to 60. The in-
put parameter C' was different for every set of instances: C was 300 in the
first set, 305 in the second, 310 in the third, ..., and 960 in the last; we

Phase Transitions in Regular Random 3-SAT 62

| | | | | | | | | |
1200 % satisfiable instances ——
branching nodes ------- - 100 %
1000
— 0,
800 75 %
600 1500
400 -‘\\
4 25%
200 ‘“_‘__‘
0 1 1 1 I 1 0%

5 6 7 8 9 10 11 12 13 14 15 16
CIv

Figure 4.1: Regular Random 3-SAT, |[N| =7,V =60

incremented the number of clauses by 5 in each step. This way we obtained
133 sets whose ratio of the number of clauses (C) to the number of variables
(V) ranged from 5 to 16. Then, we applied Regular-DP/RH-1 to all the
instances.

Figure 4.1 summarizes the experimental results obtained and visualizes
the phase transition phenomenon in Regular Random 3-SAT. The ratio C'/V
is shown along the horizontal axis. The number of branching nodes is shown
along the left vertical axis. For each set of instances, the figure shows the
average number of branching nodes per instance in the Regular-DP proof
tree as a function of the ratio C/V. Looking at the dashed line, one can
clearly observe the easy-hard-easy pattern in the computational difficulty of
solving instances as the ratio C/V is varied. The percentage of satisfiable
instances is shown along the right vertical axis. The solid line indicates the
percentage of instances that were found to be satisfiable.

Let us describe the experiment we conducted to investigate how the lo-
cation of the threshold varies as a function of the cardinality of the truth

Phase Transitions in Regular Random 3-SAT 63

IN| 2 3 1 5 6 7 8 9 10
Theesoa | 4.24 6.04 7.04 7.64 814 834 874 884 9.04

IN| 11 12 13 14 15 16 17 18 19
tweshod | 9.14 934 934 944 954 954 964 974 9.74

|N| 20 25 30 35 40 45 20 60 70
theeshold | 9.74 10.04 10.14 10.24 10.24 10.34 10.44 10.54 10.54

Table 4.1: Location of the threshold for different cardinalities of N

value set. We applied Regular-DP/RH-1 to 60-variable |N|-valued Regu-
lar Random 38-SAT instances for |N| = 2-20, 25, 30, 35, 40, 45, 50, 60, 70. For
each |N|, we varied the ratio C'//V from 1 to 12 for |N| < 7 and from 5 to
16 for |[N| > 7, incrementing the number of clauses by 5. At each setting
we ran the algorithm on 300 randomly generated instances. Therefore, the
number of instances executed for each |N| was 39,900, and the total number
of instances executed was 1,077,300. The thresholds obtained are shown in
Table 4.1.

The data indicates that the location of the threshold increases logarith-
mically in the cardinality of the truth value set |N| as the following equation
states:

L(IN]) = 6.26 % (|N)).

This equation was derived from the experimental thresholds by using the
Levenberg-Marquardt method for obtaining a non-linear regression model
implemented in the symbolic calculator Mathematica.

Since we had to run Regular-DP/RH-1 on a very large sample of Regu-
lar Random 3-SAT instances, we considered instances with 60 variables in
order to get experimental results in a reasonable amount of time. The more
propositional variables occur in an instance of the hard region of the phase
transition, the more time is needed to determine whether it is satisfiable.

In the remaining of this section we provide more details about our exper-

Phase Transitions in Regular Random 3-SAT 64

800 | | | | | | | | | |
o |
700 _
veER
600 =4~ -
INI=S oo B

a

Q

o
T

branching nodes
8
o
T

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.2: Regular Random 3-SAT, |N| =3,4,5,V =60

imental results by means of figures:
Figure 4.2 visualizes how the location of the threshold increases as the

cardinality of the truth value set increases. It shows the average number
of branching nodes in the proof tree created by Regular-DP/RH-1 when
IN| = 3, |IN| = 4 and |N| = 5. The ratio C'/V in the Regular Random
3-SAT instances tested is shown along the horizontal axis. Figure 4.3 is like
Figure 4.2 but for [N| = 9, |[N| = 11, |[N| = 13 and |N| = 15. One can
observe in both figures that the average number of branching nodes in the
proof tree increases in the area near the threshold as the cardinality of the
truth value set increases.

Figure 4.4 displays the percentage of satisfiable instances as a function
of the ratio C'/V for some of the cardinalities considered in our experiments.
Figure 4.5 shows the location of the threshold as a function of |[N|. The
experimental thresholds obtained and the equation derived with Mathemat-
ica are both plotted in the graph. One can observe in both figures that the

increase of the location of the threshold is not linear.

Phase Transitions in Regular Random 3-SAT

1800 [-
1600 i

1400
1200
1000

branching nodes

5 6 7 8 9 10 11 12 13 14 15 16
CIv

Figure 4.3: Regular Random 3-SAT, |N| =9,11,13,15, V = 60

100

abwnN

222222 —
,
1
1

~
a1
!

=11 - -

% satisfiable instances
a
o
T

N
[&)]
I

ZZ222222ZZZ2
N
-
N

| I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CIv

Figure 4.4: Percentage of satisfiable instances as a function of C/V

65

Phase Transitions in Regular Random 3-SAT 66

| | | | | | | | | T T T T T T
12 = experimenta thresholds X i
1 k- predicted thresholds ------- |
e X
10 + ‘x__x——%"x X~ X |
9+ ' |
> | %/ |
S5 8 Y,
7+ X |
6 x |
51 |]
4+ |
| || | | | | | | | | | | | | | |

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70
IN|

Figure 4.5: Location of the threshold as a function of |N/|

4.4 An upper bound on the unsatisfiability
threshold

Let I" be a Regular Random 3-SAT instance, let V' be the number of propo-
sitional variables in I', let C' be the number of regular clauses in I', and let
r = C/V be the ratio of the number of clauses to the number of variables in
I'. The problem we consider is to compute the least real number £ such that
if r strictly exceeds k, then the probability that [' is satisfiable converges
to 0 as V' approaches infinity. We say in this case that I' is asymptotically
almost certainly unsatisfiable. A proposition stating that if r exceeds a cer-
tain constant, then I' is asymptotically almost certainly unsatisfiable has
as an immediate corollary that this constant is an upper bound for k. In
this section we obtain an upper bound on the unsatisfiability threshold as a
function of the cardinality of the truth value set. This give us a theoretical
justification of our experimental results.

We consider the following model of Regular Random 3-SAT instances:

Phase Transitions in Regular Random 3-SAT 67

from the sample space of non-tautological regular clauses of size three, with
different variable in each literal, over V' propositional variables and |N| truth
values, uniformly, independently, and with replacement select C' clauses to
form a regular CNF formula I'. Given an interpretation I, the probability
%; observe that the number of
regular literals with positive polarity satisfied by an interpretation coincides

that I satisfies a regular random literal L is

with the number of regular literals with negative polarity that are not satis-
fied and vice versa. The probability that I satisfies a regular random clause
(with three literals) is 1 — (%)3 = %. The probability that I satisfies a Regu-

lar Random 3-SAT instance I' with C clauses is (%)C. Since there are |[N|V
possible interpretations for I', the expected number of interpretations that

satisfy I is

E[[{I |1 satisfies T}|] = |N|V(£)C.

Since the expected number of interpretations that satisfy I" is an upper bound
on the probability that I' is satisfiable, it holds that

7\ C
Pr[T is satisfiable] < E[|{I | I satisfies I'}|] = |N\V(§) :

letting C' = rV, an upper bound for k£ is found by choosing r so that the
expected number of interpretations that satisfy I converges to 0 as V ap-
proaches infinity. Thus, if r > logg |N|, then T is almost certainly unsatisfi-
able.

Therefore, if an upper bound on the unsatisfiability threshold increases
logarithmically in the cardinality of the truth value set, the location of the
threshold cannot increase quicker than the upper bound does. For that rea-
son, we should get experimental thresholds increasing logarithmically or less
than logarithmically in the cardinality of the truth value set.

Phase Transitions in Regular Random 3-SAT 68

4.5 A better upper bound on the
unsatisfiability threshold

In this section we derive a better upper bound for the location of the unsatis-
fiability threshold by generalising the technique for Random 3-SAT described
in (Kirousis et al., 1998). The regular CNF formulas considered in this sec-
tion have clauses of size three, and the same propositional variable never
occurs more than once in the same clause.

In order to generalise the above technique, we first define a subclass of
satisfying interpretations of Reqular Random 3-SAT instances. This subclass
is a subset of the total set of satisfying interpretations of a formula, and the
idea of the technique is to analyse when the expected value for the cardinality

of this subset converges to zero.

Definition 4.1 Given a Regular Random 3-SAT instance I' over V wari-
ables, Iy is the set of interpretations for ', fy is the set of satisfying inter-
pretations of I', and f, is the subset of satisfying interpretations I from fy
such that any interpretation obtained from I by changing exactly the truth
value of one variable to any truth value greater than the current one does not
satisfy T'.

We call the process of changing the truth value of one variable to any
of its greater truth values a single change (sc); and denote this process, for
a particular interpretation I, by I°¢. Observe that any variable with an as-
signed truth value smaller than the top element of N can be changed. We
denote by sc(I) the number of variables that can be changed in an interpre-
tation I. As in the classical case, this subclass of satisfying interpretations
is a subset of fi; with elements that are local maxima in the lexicographic
ordering.

Lemma 4.1 The ezpected value of the random variable |f| is given by the

formula

E[fs]=(7/8)" Y Pril € fi | 1€ fv]

IEIV

Phase Transitions in Regular Random 3-SAT 69

In the lemma, r is the ratio of the number of clauses to variables and
therefore 7V is the number of clauses of the formula. Remember that the first
term in the expression is the probability that a fixed interpretation satisfies
a Regular Random 3-SAT instance with rV clauses. Since this lemma is a
straightforward generalization of Lemma 2 in (Kirousis et al., 1998), its
proof remains valid for our lemma.

The following theorem is the result of the generalization of the proof

in (Kirousis et al., 1998) for our case.

Theorem 4.1 The expected value El[|f]] is at most

(7/8)y" (IN] = el) 4 0(1))

%

Then, the unique positive solution of the equation
(7/8)" <|N\ _ e(m?v—?in)) -1
1s an upper bound for k, the unsatisfiability threshold.

The proof is very similar to the proof for classical CNF formulas. First,
we need an expression for the probability that, given an interpretation I and
a fixed single change sc, I°¢ £ I" under the assumption that I =T

Observe that the assumption I = I excludes (|N| — 1)3(‘;) clauses from
the set of possible clauses that can appear in I', because this is the number of
different clauses that we can build with V' variables and | N| truth values that
are not satisfied by a particular interpretation I. So, we have 7(|N|—1)3(})
different clauses that are satisfied by /. From these clauses, the number of
clauses that contain the changed variable and that become unsatisfied if we

change the truth value of the changed variable to any of its greater values is

avi-12("5),

because there is only one possible regular literal with the changed variable
that is not satisfied by I°¢. Then, for any clause C' of I' we have that
(N-12(5Y _ 3

T(INT=13(5) T(NI=DV

equal to

Pl £ C|I = C) =

Phase Transitions in Regular Random 3-SAT 70

The probability that it does not satisfy I' is equal to
1—p(V,r,|N|),

where p(V, r,|N|) is the probability that I*¢ satisfies all the clauses of T'; i.e.,

3 (TV)
p(Vor,[NI) = (1 - W) -

Since the number of single changes for I is sc([), and following the same
argument as Kirousis et al. (1998), we derive the following upper bound on
the probability that no single change satisfies I™:

Prile fi| 1€ f]<(1—p(Vyr N = (1 =) 4 o(1))D.

Since the maximum number of single changes is V', we derive the following

upper bound on the expected value of E[|f#|] (when V — o0):

E(lfsl] < (7/8)" (‘N‘V (1 _ 6('7(1V?|’T—1))>V>
< (778" (IN] - e(ﬁ))v

Then, it follows that FEI[|f{|] converges to zero for values of
r that strictly exceed the unique positive solution of the equation
(7/8)" (|N| — 6(7(”_\’73‘11))) = 1. Therefore, as the expected value of E[|fy|]
is an upper bound on the probability that the formula is satisfiable (because
[t # 0 for a satisfiable instance) this solution provides an upper bound for .

4.6 Experimental results

In this section we report on an experimental investigation performed
in order to compare (i) Regular-DP/RH-1 with Regular-DP/RH-2,
and (ii) Regular-DP/RH-2 with = Regular-GSAT/Basic ~ and
Regular-WalkSAT /Basic when solving Regular Random 3-SAT instances

Phase Transitions in Regular Random 3-SAT 71

V
IN| 100 120 140 160 180
3 C 609 720 848 976 1100

4 C 712 855 997 1139 1284
c/v 712 713 712 712 713

5 C 772 926 1090 1248 1406
Cc/v 702 772779 7.8 7.81

Table 4.2: Regular Random 3-SAT test-sets: parameter settings of the generator

from the hard region of the phase transition. Such experiments were
performed on Sun Ultra-5 workstations.

We considered 15 test-sets of Regular Random 3-SAT instances in which
the ratio C/V corresponds to the location of the threshold of the phase
transition. The instances were generated using the setting of C, V and
|N| shown in Table 4.2. Observe that the location of the threshold, for a
fixed |N|, varies slightly as we increase the parameter V; this also happens
in (classical) Random 3-SAT (Crawford and Auton, 1996). Every test-set

contains 100 satisfiable instances and 100 unsatisfiable instances.

Comparison of branching heuristics

We performed an experiment in order to compare the performance of
Regular-DP/RH-1 and Regular-DP/RH-2. To this end, we ran the two al-
gorithms on both the satisfiable and unsatisfiable instances of the above
described test-sets for V' = 100, V = 120, and V = 140. Table 4.3 shows
the results obtained for Regular-DP/RH-1, and Table 4.4 shows the results
obtained for Regular-DP /RH-2. We measured both the average time needed

to solve an instance, and the average number of branching nodes (br. nodes)

Phase Transitions in Regular Random 3-SAT 72

|N | 100 120 140
sat unsat sat unsat sat unsat

3 br. nodes 2715 4708 9755 20912 33519 71546
time (sec) 4.21 746 1716 37.31 69.40 151.49

4 br. nodes 7293 11695 23523 51295 88212 203382
time (sec) 12.69 21.64 50.75 113.43 226.87 528.36

5 br. nodes 11420 21352 41536 90294 206011 465440
time (sec) 23.13 44.03 100.75 223.13 596.27 1370.13

Table 4.3: Results of Regular-DP/RH-1 on Regular Random 3-SAT

per instance in the Regular-DP proof tree. The results are shown separately
for satisfiable (sat) and unsatisfiable (unsat) instances.

For comparing the relative performance of Regular-DP/RH-1 with re-
spect to Regular-DP/RH-2, we measured the ratio of the average number of
branching nodes per instance obtained with Regular-DP /RH-1 to the average
number of branching nodes per instance obtained with Regular-DP/RH-2.
We also measured the ratio of the average time needed to solve an instance
with Regular-DP/RH-1 to the average time needed to solve an instance with
Regular-DP/RH-2. These ratios give us a measure of the scaling behaviour
of the relative performance between both algorithms.

Table 4.5 shows the results obtained. We observe that both ratios in-
crease as we increment V' and ||, and provide experimental evidence that,
at least for the class of instances tested, Regular-DP/RH-2 outperforms
Regular-DP /RH-1.

Phase Transitions in Regular Random 3-SAT 73

\%
|N | 100 120 140
sat unsat sat unsat sat unsat
3 br. nodes 1617 2823 5320 10930 16232 34135

time (sec) 148 2.63 5.57 11.51 21.06 44.58

4 br. nodes 2691 4528 9454 18066 25927 55695
time (sec) 295 5.06 12.29 23.48 44.23 93.84

b} br. nodes 3350 6102 11404 21961 34323 76144
time (sec) 428 7.96 18.16 35.57 64.99 145.47

Table 4.4: Results of Regular-DP/RH-2 on Regular Random 3-SAT

3 br. nodes 1.68 1.67 1.83 191 2.06 2.10
time (sec) 2.84 2.84 3.08 3.24 330 3.40
4 br. nodes 271 258 249 284 340 3.65
time (sec) 4.30 4.28 4.13 4.83 5.13 5.63
5 br. nodes 3.41 350 3.64 411 6.00 6.11

time (sec) 540 553 5.55 6.27 9.17 9.42

Table 4.5: Relative performance of Regular-DP/RH-1 wrt Regular-DP/RH-2 on
Regular Random 3-SAT

Phase Transitions in Regular Random 3-SAT 74

3 MaxChanges 6000 8000 12000 17000 24000
w 0.53 0.50 0.45 0.42 0.40

4 MaxChanges 9000 14000 18000 24000 35000
w 0.45 0.43 0.42 0.42 0.38

5 MaxChanges 14000 17000 24000 36000 47000
w 0.40 0.40 0.38 0.38 0.38

Table 4.6: Regular-GSAT and Regular-WalkSAT: parameter settings for Regular
Random 3-SAT

Systematic versus local search

We performed an experiment in order to compare the performance
of Regular-DP/RH-2 with the performance of Regular-GSAT/Basic and
Regular-WalkSAT /Basic on the satisfiable instances of the test-sets of Ta-
ble 4.2. Since local search algorithms are incomplete, we did not consider
unsatisfiable instances. Table 4.6 shows, for each test-set, the MaxChanges
parameter used by Regular-GSAT /Basic and Regular-WalkSAT /Basic, and
the noise parameter (w) used by Regular-WalkSAT/Basic. The displayed
values of MaxChanges and w are the best parameter settings we obtained
experimentally for the satisfiable instances of the test-sets. To obtain more
accurate results, each instance was run 25 times with Regular-GSAT/Basic
and 25 times with Regular-WalkSAT /Basic.

Table 4.7 shows the results obtained with Regular-GSAT /Basic. For each
test-set, it shows the average number of tries and the average time needed to
solve an instance of the test-set. The run time of each instance solved with
Regular-GSAT /Basic is the average run time of 25 runs on that instance.
Table 4.8 shows the same results but for Regular-WalkSAT /Basic. Finally,

Phase Transitions in Regular Random 3-SAT 75

v
IN| 100 120 140 160 180
3 tries 3 71 67 97 169

time (sec) 1.7 97 134 292 712

4 tries 97 239 276 381 443
time (sec) 9.3 423 823 172.6 277.1

) tries 183 265 610 394 460
time (sec) 25.6 74.2 2456 270.5 412.2

Table 4.7: Results of Regular-GSAT on Regular Random 3-SAT

v
|N| 100 120 140 160 180
3 tries 9 12 9 10

time (sec) 09 18 1.7 26 33

4 tries 12 13 10
time (sec) 1.6 31 35 16 3.6

5 tries 8 8 10 4 5
time (sec) 1.8 24 43 2.7 4.2

Table 4.8: Results of Regular-WalkSAT on Regular Random 3-SAT

Phase Transitions in Regular Random 3-SAT 76

v
IN| 100 120 140 160 180

3 Regular-DP /RH-2 1.5 585 21.1 542 1875
Regular-GSAT /Basic 1.7 97 134 292 T71.2
Regular-WalkSAT /Basic 0.9 1.8 1.7 2.6 3.3

4 Regular-DP /RH-2 2.9 123 44.2 181.5 4721
Regular-GSAT /Basic 9.3 423 823 1726 277.1
Regular-WalkSAT /Basic 1.6 3.1 3.5 1.6 3.6

5 Regular-DP /RH-2 43 182 64.8 286.3 899.4
Regular-GSAT /Basic 25.6 742 245.6 270.5 412.2

Regular-WalkSAT /Basic 1.8 24 4.3 2.7 4.2

Table 4.9: Comparison of the average time (sec) needed to solve an instance with
Regular-DP, Regular-GSAT and Regular-WalkSAT

Table 4.9 shows a comparison of the average time needed to solve an in-
stance with Regular-DP, Regular-GSAT /Basic and Regular-WalkSAT /Basic
for each test-set. From the experimental results we can conclude that local
search algorithms (Regular-GSAT and Regular-WalkSAT) outperform sys-
tematic search algorithms (Regular-DP) on satisfiable instances of the hard
region of the phase transition. Moreover, Regular-WalkSAT scales better
than Regular-GSAT as the number of variables and the number of truth
values in the problem instances increase.

Such results indicate that local search algorithms can extend the range
and size of satisfiability problems that can be efficiently solved in many-

valued logics.

Chapter 5

Experimental Investigation

5.1 Introduction

In this chapter we describe a comprehensive experimental investigation con-
ducted for analysing and comparing the algorithms for Regular-SAT that we
designed and implemented, as well as for providing experimental evidence of
the practical usefulness of the generic problem solving approach which con-
sists in modeling hard combinatorial problems as Regular-SAT instances and
then solving the resulting encodings using algorithms for Regular-SAT.

There are publicly available sets of benchmark instances for SAT which
are widely used to conduct experimental investigations. The most com-
plete and recently created benchmark library is SATLIB (Hoos and Stiitzle,
2000b). To our best knowledge, there is no publicly available set of bench-
mark instances for Regular-SAT. We thus started our experimental inves-
tigation by constructing the first collection of benchmark instances for this
problem. To this end, we selected a representative sample of combinatorial
problems and defined suitable Regular-SAT encodings for them. We also de-
fined a data format for Regular-SAT instances which is an adaptation of the
file format defined by the DIMACS Challenge Committee for classical CNF
formulas (DIM, 1993). This format, described in Appendix A, is accepted
by the regular satisfiability algorithms described in this thesis.

7

Experimental Investigation 78

The combinatorial problems selected were: the k-colourability problem
of graphs, the round robin problem, and the all-interval-series problem. We
selected such problems because they have computationally difficult instances
which are standard benchmarks in the communities of constraint program-
ming, operations research, and SAT; see (Johnson et al., 1991; Selman
and Kautz, 1993; McAloon et al., 1997; Gomes et al., 1998b; Hoos and
Stiitzle, 2000a; Schuurmans and Southey, 2000). We considered the same set
of benchmark instances that were used in previous empirical studies in order
to compare our experimental results with other published results.

We encoded all the benchmark instances considered in our experiments
as SAT and as Regular-SAT instances, and we then tested both kinds of in-
stances in the same computing environment. The SAT instances were tested
using the fastest existing SAT solvers whereas the Regular-SAT instances
were tested using our implementations of the algorithms for Regular-SAT
described in Chapter 3.

For the above combinatorial problems, the performance of the fastest SAT
solvers with respect to the performance obtained using other problem solving
approaches is well-known and well-documented. Thus, by reproducing SAT-
based experiments we were able to compare the experimental results obtained
using our Regular-SAT solvers with the best results obtained using other
problem solving approaches.

An important part of our experimental investigation was devoted to the
definition of suitable encodings for modeling hard combinatorial problems
as SAT and as Regular-SAT instances. For some problems, we observed
that minor changes in the encoding can vary remarkably the time needed
to solve the problem instances. A challenging question that we would like
to investigate in the near future is to deepen our understanding of SAT and
Regular-SAT encodings so that they can be applied more effectively to solve
combinatorial problems. For instance, we would like to identify design prin-
ciples which make an encoding successful; and to understand how encoding

components, problem characteristics and good performance for particular

Experimental Investigation 79

satisfiability algorithms are related.

Interestingly, we defined SAT and Regular-SAT encodings of the round
robin problem that gave rise to a dramatic improvement with respect to
other approaches; we solved instances of the round robin problem which
cannot be solved using solvers based on integer programming and constraint
programming. We also defined better SAT encodings for the all-interval-
series problem. Therefore, this thesis not only contains contributions to
Regular-SAT, but also to SAT.

This experimental investigation allowed us to have a clear picture of the
strengths and weaknesses of our generic problem solving approach; helped
us in improving our implementations, and in designing better heuristics and
algorithms; and provided experimental evidence that, at least for the combi-
natorial problems studied, our problem solving approach can outperform or
compete with state-of-the-art problem solving approaches.

As said in Chapter 4, the Regular Random 3-SAT instances of the hard
region of the phase transition are also suitable benchmark instances for eval-
uating and comparing algorithms for Regular-SAT. Actually, the experimen-
tal results reported in Chapter 4 are part of the experimental investigation
conducted in this thesis. We decided, however, to include those results in
the chapter of phase transitions, and to devote this chapter to more realistic
problems which can be naturally modeled as SAT instances and are standard
benchmarks in other research communities.

This chapter is organized as follows. In Section 5.2 we focus on the
k-colourability problem of graphs, in Section 5.3 we focus on the round robin
problem, and in Section 5.4 we focus on the all-interval-series problem. For
each problem we provide its definition, its SAT and Regular-SAT encodings,
and report the experimental results obtained and the conclusion than can
be drawn from these results. In the description of the round robin problem
we follow closely the presentation of (Gomes et al., 1998b), and in the de-
scription of the all-interval-series problem we follow closely the presentation
of (Hoos, 1998).

Experimental Investigation 80

5.2 The k-colourability problem of graphs

The k-colourability problem is a well-known combinatorial problem from
graph theory: given an undirected graph G = (V, E), where V is the set of
vertices and E is the set of edges, determine if there is a colouring such that
connected vertices always have different colour; i.e., determine if there is a
function ¢ : V' — {1,...,k} such that c(u) # c(v) for each edge [u,v] € E.

5.2.1 SAT encoding of the k-colourability problem

Given an undirected graph G = (V, E), the k-colourability problem of G can
be encoded as an instance of SAT as follows:

1. The set of propositional variables is

{u;|lu e Vand 1 <i<k},

and its cardinality is k£ - |V/|. The intended meaning of u; is that vertex

u is coloured with colour i € {1,...,k},

2. For each vertex u € V, we define the following clauses:

\/ U; A /\ (_|’U,Z' V _|Uj)
i€{1,... .k} i,je{l,... .k}
i#J
The intended meaning of the whole expression is that vertex wu is

coloured with exactly one colour.

3. For each edge [u,v] € E, we define the following clauses:

/\ (_|UZ' V _'Uz')

ie{l,...,k}
The intended meaning of this expression is that the adjacent vertices
u and v do not have the same colour.

Experimental Investigation 81

5.2.2 Regular-SAT encoding of the k-colourability

problem

Given an undirected graph G = (V, F), the k-colourability problem of G can

be encoded as an instance of Regular-SAT as follows:

1. The truth value set N is {1,...,k}. Each truth value represents a

colour.
2. The set of propositional variables is V', and its cardinality is |V/|.

3. For each edge [u,v] € E, we define k regular clauses:

(Cy) t2:uVv1t2:v
(Cy) Jl1:uVv1t3:uVvil:oVv1T3:w
() =D :uVvt(@E+1):uvi@E—1):0oVt@E+1):v

(bk_l) i(k—?):&VTk:u\/i(k—Z):vak:v
(Ck) Jk=1):uvi](k—-1):v

The intended meaning of the previous regular clauses is that vertex u and
vertex v do not have the same colour. For each i € {1,...,k}, the intended
meaning of regular clause C; is that vertex u and vertex v are not both
coloured with colour 7. Observe that from the definition of interpretation
we can ensure that every vertex is coloured with exactly one colour. Also
observe that the size of the regular CNF formula obtained is in O(|N|- |E|),
where |N| is the number of colours and |E| is the number of edges. Thus,
the k-colourability problem for an undirected graph can be represented in a
more concise way if we use regular CNF formulas instead of classical CNF

formulas.

Experimental Investigation 82

test-set Parameters
d

vertices P edges ¢ gfes flatness colours

vertices
flat100-3c¢ 100 0.072 239 2.39 0 3
f1at100-4c 100 0.124 465 4.65 0 4
flat150-3c 150 0.048 360 2.40 0 3
flat150-4c 150 0.074 623 4.15 0 4

Table 5.1: Flat graph generator: parameter settings

5.2.3 Experimental results

In this section we describe an experimental investigation conducted for com-
paring the performance of algorithms for SAT on graph colouring instances
with the performance of algorithms for Regular-SAT on the same instances.
Such experiments were performed on Sun Ultra-5 workstations.

We first considered four different test-sets of k-colourable, flat graph
colouring instances (Culberson and Luo, 1996); each test-set contained 100
randomly generated instances. Two test-sets (flat100-3c and flat150-3c)
are from the SATLIB. The other two test-sets (f1at100-4c and flat150-4c)
were generated with a publicly available flat graph generator;! the number
of vertices, the number of colours, the edge probability (p), and the flatness
parameter used by the generator are shown in Table 5.1. Test-sets have dif-
ferent settings of the number of vertices (100 and 150) and of the number
of colours (3 and 4). The settings of the edge probability and the flatness
parameter employed allowed us to generate graphs which are, on average,
computationally difficult.

It was shown in (Hoos and Stiitzle, 2000a) that WalkSAT /Basic is a
suitable algorithm for solving SAT encoded flat graphs. In our experiments

1 The generator is available from http://web.cs.ualberta.ca/~joe/Coloring/, Joe
Culberson’s Graph Coloring Page. This generator was also employed to generate
£1at100-3c and flat150-3c.

Experimental Investigation 83

vertices = 100 vertices = 150
Encoding Encoding
k classical regular classical regular
mean CV mean CV mean CV mean CV
3 w 0.50 0.42 0.50 0.44
changes 44945 0.87 8730 0.81 183992 1.22 35696 1.13
time (sec) 0.24 0.86 0.12 0.82 092 1.21 0.52 1.13
4 w 0.46 0.38 0.44 0.38
changes 60880 0.69 14578 0.63 397862 2.31 69121 1.85
time (sec) 0.45 0.68 0.29 0.62 3.02 2.48 1.48 1.84

Table 5.2: Results of WalkSAT /Basic and Regular-WalkSAT/Basic on flat graph

instances

we used WalkSAT /Basic and Regular-WalkSAT /Basic. We used the same
basic algorithm for SAT and Regular-SAT instances in order to focus on the
effects of using different encodings (classical and regular).

For each test-set and for each kind of encoding, Table 5.2 shows the noise
setting parameter (w) employed, the mean number of changes needed to solve
an instance, and the mean time needed to solve an instance. Each instance
was executed 100 times using an approximately optimal noise parameter,
MaxTries was set to 1, and MaxChanges was set to an extremely high value
for obtaining a solution in only one try. We also report the coefficient of
variation (CV) for the distributions of the mean number of changes and
the mean time. The CV of a distribution gives a measure of the relative
dispersion of the values of the distribution with respect to its mean value,
and it is calculated as the ratio of the standard deviation to the mean.

The results of Table 5.2 show that the mean number of changes and the
mean time needed to solve an instance using the Regular-SAT encoding is
always smaller than using the SAT encoding. The mean number of changes
is always between 4 and 6 times smaller, and the mean time is always be-

Experimental Investigation 84

changes/second
. classical
classical regular

regular

flat100-3c¢ 187270 72750 2.57
flat100-4c 135288 49526 2.73
flat150-3c 199140 68646 2.90
flat150-4c 131742 46704 2.82

Table 5.3: Comparison of changes per second on flat graph instances

tween 1.5 and 2 times smaller. Moreover, the CV is always smaller with the
Regular-SAT encoding, and the difference becomes more significant as we
increase the number of vertices and the number of colours.

The fact that the difference in the mean time needed to solve the flat
graphs is less significant than the number of changes needed is simply a
consequence of the fact that the average time needed to perform a change
is greater in Regular-WalkSAT /Basic than in WalkSAT/Basic because the
number of clauses affected by a simple change is greater. A simple expla-
nation for this difference is the following one. The two encodings produce
formulas with a number of clauses very similar, but the number of variables
is smaller in the Regular-SAT encoding. So, a variable in a Regular-SAT
instance must appear in more clauses than a variable in the corresponding
SAT instance.

For comparing the mean time needed to perform changes with
WalkSAT /Basic and Regular-WalkSAT /Basic, Table 5.3 shows the mean
number of changes per second performed by each algorithm. Observe that
the ratio of the mean number of changes per second in WalkSAT /Basic to
the mean number of changes per second in Regular-WalkSAT /Basic indi-
cates that the relative speed between them does not vary significantly as the
number of vertices and the number of colours increase.

In the following, when we say hardness distribution we mean the distribu-

log 10(mean # changes WalkSAT)

Experimental Investigation 85

5.6 5.6 T T T T T T
54 N g 54 | g
52]
=< 52t -
5F 1z .
48 | 18
=
46 | 41 8 48 E
%
44 T g 46 - T
42 - 1€
= 44 i
4 1S
38 | 18 42} i
36 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1
3 32 34 36 38 4 42 44 46 48 5 34 3.6 338 4 42 44 46
log 10(mean # changes Regular-Walk SAT) log 10(mean # changes Regular-WalkSAT)

Figure 5.1: Correlation between mean hardness with Regular-WalkSAT /Basic
and WalkSAT /Basic for £1at100-3c (left) and flat100-4c (right)

tion of the mean number of changes needed to solve an instance. The results
of Table 5.2 indicate that the mean hardness for a test-set is greater with
WalkSAT /Basic than with Regular-WalkSAT /Basic, but they tell us nothing
about the relation between the hardness of individual instances. To this end,
we have performed a correlation analysis for the hardness of the instances of
each test-set.

Figure 5.1 shows two log-log scatter plots of the correlation between
the mean hardness of solving an instance with Regular-WalkSAT /Basic
and of solving the same instance with WalkSAT/Basic. The left plot cor-
responds to the instances of £1at100-3c, and the right plot corresponds
to the instances of flat100-4c. Figure 5.2 shows the same plots but
for the test-sets flat150-3c and flat150-4c. Every point (z,y) in the
scatter plot represents, in logarithmic scale, the mean hardness associated
with a particular instance of the test-set when this instance is solved with
Regular-WalkSAT /Basic (z-axis) and with WalkSAT/Basic (y-axis). The
scatter plots indicate a clear positive correlation between the mean hard-
ness; i.e., the mean hardness in WalkSAT /Basic tends to be greater than the
mean hardness in Regular-WalkSAT /Basic in each instance of the test-sets

48

log 10(mean # changes WalkSAT)

Experimental Investigation 86

T T T T T
—~ 7 B 7
5
x 65 E
<
=
g ot :
=
IS}
S
% D55 E
E st -
=1
-
S 45 | E
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
36 38 4 42 44 46 48 5 52 54 56 35 4 45 5 55 6
log 10(mean # changes Regular-Walk SAT) log 10(mean # changes Regular-WalkSAT)

Figure 5.2: Correlation between mean hardness with Regular-WalkSAT /Basic
and WalkSAT /Basic for f1at150-3c (left) and flat150-4c (right)

considered. This type of hardness correlation analysis was used to compare
SAT and CSP encodings in (Hoos, 1999b).

To quantify the correlations suggested by the scatter plots, we also
performed least-mean-squares (lms) linear regression analysis of the loga-
rithm of the mean hardness for each test-set. The resulting linear equations
logio(y) = alogyy(z) + b are plotted together with their corresponding scat-
ter plots, and they correspond to power functions of the type y = bz?,
where b = 10¥. We work with a power function model because the pa-
rameter a allows us to model possible performance differences between
Regular-WalkSAT /Basic and WalkSAT /Basic as the intrinsic hardness in-
creases.” Table 5.4 shows the results of the linear regression analysis. This
table shows the equations obtained, the adjusted coefficient of determina-
tion (R2), and the values of P associated with the statistical tests for the

hypothesis @ = 0 and b = 1. The R? value is defined as

R2 — 1 o n-—]' (1 _ Z?:l(gl _g)2>
¢ n—2 Yo wi—9)?)"’

2By working with the logarithm of the data we can perform the regression analysis of

a power function model as a linear regression analysis.

6.5

Experimental Investigation 87

test-set Results
Regression equation R2 P P
(y = bz?) fora=0 forb=
flat100-3c y=3.34z1% 0.873 < 0.0001 < 0.001
flat100-4c y = 4.552%%% 0.895 < 0.0001 < 0.0001
flat150-3c y=3.81z"% 0923 <0.0001 < 0.0001
flat150-4c y =226z 0.956 < 0.0001 < 0.002
Table 5.4: Results of hardness regression analysis between

Regular-WalkSAT/Basic (z) and WalkSAT/Basic (y) on flat graph instances

where y; denotes the mean hardness associated with the ith instance of the
test-set when this instance is solved with WalkSAT /Basic, § denotes the
mean value of all the y; values and ¢; denotes the predicted mean hardness
by the linear regression model obtained (4; = alog;y(z;) +V'). R2 varies from
0 to 1 and gives a measure of the level of correlation, under the given model,
between the data. Given a particular hypothesis that we want to validate or
refute, and a statistic obtained from the empirical data of the experiment,
the value of P is the probability of obtaining a value for the statistic equal to
or greater than the one observed if the hypothesis is true. Low values of P
for the test a = 0 indicate rejection of the hypothesis of no correlation, under
the model y = bx®, between the data; and low values of P for the test b =1
indicate rejection of the hypothesis of no significant effect of the parameter
b in the regression model. The values of P in the table indicate that there is
a correlation between the data under the given model.

The value of R? shows that the correlation becomes stronger as we in-
crease the number of vertices and the number of colours of the graphs. We
also observe that there is a slight increase in the hardness difference mod-
eled by the equations. This increase is more significant in f1at100-4c and
flat150-4c, when increasing the hardness in Regular-WalkSAT/Basic (z

Experimental Investigation 88

value), due to the difference in the parameter a.

Observe that the hardness analysis that we have performed with the flat
graphs is based on experiments where both algorithms —WalkSAT /Basic
and Regular-WalkSAT /Basic— were executed with an approximately opti-
mal noise parameter, MaxTries was set to 1, and MaxChanges was set to an
extremely high value for obtaining a solution in only one try. Since they find
a solution in each try, both algorithms are PAC for the flat graph instances
considered.

It could be argued that the best performance of the algorithms could
be obtained with other parameter settings. However, it was shown
in (Hoos, 1998) that WalkSAT /Basic shows exponential run-length distribu-
tions (RLDs) when the flat graph instances are solved with an approximately
optimal noise parameter. If a local search algorithm shows exponential RLDs,
the probability of finding a solution in a try with ¢ changes is the same as the
probability of finding a solution in & tries of ¢/k changes every try. Thus, it
does not make sense to use the algorithm with restarts (MaxTries> 1) and
finite values of MaxChanges.

The empirical RLD on an instance is obtained by recording the number
of changes performed in each jth successful try (changes(j)). Given a set of
n tries, the RLD in its cumulative form is defined as

: N
P(changes <t) = AVA Chcmgnes(]) < t}]

By using all the data obtained in the experiments with the flat graphs, we
obtained empirical RLDs for WalkSAT /Basic and Regular-WalkSAT /Basic
on the flat graph instances. We observed that both WalkSAT /Basic and
Regular-WalkSAT /Basic showed exponential RLDs. Here we concentrate
on the results with three instances of £flat150-4c. The three instances
selected were the easy, medium and hard instances of the test-set. To
identify these instances, we sorted all the instances of the test-set by the
Regular-WalkSAT /Basic mean hardness. For obtaining more accurate RLDs,
these instances were solved 400 times. The RLDs for WalkSAT /Basic and

Experimental Investigation 89

Regular-WalkSAT
ed[5158] = ---eeeg I
WalkSAT

~
s
g ost -
&
=
[&]
T
025 - -

N i i N | N Ly
100 1000 10000 100000 1let+06
changes
Figure 5.3: RLDs for Regular-WalkSAT /Basic and WalkSAT /Basic on the easy

instance of f1lat150-4c

Regular-WalkSAT /Basic were approximated with the cumulative form of an

exponential distribution (ED):

edm](z) =1—27%/™,

where m is the median of the distribution. The approximation was derived
using the Marquart-Levenberg algorithm. Figures 5.3, 5.4 and 5.5 show
the empirical cumulative RLDs for the algorithms on the three instances,
as well as the corresponding exponential RLDs obtained. We observe that
Regular-WalkSAT /Basic dominates WalkSAT /Basic on the three instances;
i.e., the probability of finding a solution with Regular-WalkSAT /Basic in less
than ¢ changes is always greater than the probability of finding a solution with
WalkSAT /Basic. Thus, for any value of MaxChanges, the success probability
for Regular-WalkSAT /Basic is always greater than for WalkSAT /Basic.

For testing the goodness-of-fit of the exponential distributions we used
the x? test statistic. Given an empirical RLD and the corresponding ex-
ponential distribution ed[m| obtained by the approximation, it generates a
statistic —the value y?— that is used to measure the correspondence be-

Experimental Investigation 90

1 T T T T T T
regularl-WalkSATI X
ed[26469] --------
WalkSAT 0O §F
0.75 |- ed[149613] ------ 3
’>-<\ 52
\Y ;:»‘
8531, 05 ;,2’. i
8
£ f
g
0.25 g ﬁ i
%]
|
e
[(T ey o N Lol Ll -
100 1000 10000 100000 1e+06 le+07
changes

Figure 5.4: RLDs for Regular-WalkSAT/Basic and WalkSAT/Basic on the

medium instance of flat150-4c

Regular-V\llaJkSAT X 3
ed[862927] --------
WalkSAT &3
075 | ed[65613701
=<
\%
QJ 05
g &
S %e'
a X
0.25 - %‘?g
w XX s
oL % T E"".”“;”.[;‘...l T B
10000 100000 1let+06 1let+07 1et+08
changes

Figure 5.5: RLDs for Regular-WalkSAT/Basic and WalkSAT /Basic on the hard
instance of flat150-4c

Experimental Investigation 91

classical regular
x? d.f. P x> d.f. P
easy 286.49 112 < 0.00001 237.60 99 < 0.00001
median 107.37 95 > 0.19 91.13 86 > 0.33
hard 40.72 58 > 0.95 31.75 38 > 0.75

Table 5.5: Results of the x? test on the easy, median and hard instances of
flat150-4c

tween the empirical RLD and the predicted exponential distribution. The
correspondence is measured by the value of P associated with the value x2.
The value of P is the probability of obtaining a value for the x? test statis-
tic greater than or equal to the value obtained if the empirical distribution
really fits to the distribution ed[m|. High values of P indicate a strong corre-
spondence between the two distributions, whereas low values indicate a poor
correspondence. Table 5.5 shows the results of the y? test for comparing
the RLDs with their corresponding approximations as EDs, for the three in-
stances, with both Regular-WalkSAT /Basic and WalkSAT /Basic. The table
also shows, for every x? value, the degrees of freedom (d.f.) of the associated
x? distribution for the statistic.

The results of the test show that for both Regular-WalkSAT /Basic and
WalkSAT /Basic the level of correspondence of their RLDs with EDs increases
with the hardness of the instance. Observe that for the easy instance the
value P strongly rejects the fit of the RLD with the ED; for the medium
instance the correspondence is very significant; and for the hard instance
the value of P is even greater than in the medium one indicating the most
strongest correspondence of the RLDs with EDs. This result is consistent
with the findings of (Hoos, 1998; Hoos and Stiitzle, 2000a) where it was shown
that the RLDs for local search algorithms for SAT are better approximated
with EDs as the hardness of the instance increases. This result indicates that

Experimental Investigation 92

vertices edges colours

DSJC125.5.col 125 4927 17
DSJC250.5.col 250 7782 29

Table 5.6: Characteristics of instances DSJC125.5.col and DSJC250.5.col

this characteristic of local search algorithms for SAT is well preserved in their
generalizations for Regular-SAT, at least for the instances and algorithms
considered here. Graphically, we can observe in the figures that the part of
the RLD where the algorithms differ with respect to the ED found by the
approximation is the part related to the probability of finding solutions with
few changes.

The results obtained for flat graph instances clearly show that the
Regular-SAT encoding outperforms the SAT encoding. Let us now see what
happens with two well-known graph colouring instances of the DIMACS
repository.®> They were originally used in (Johnson et al., 1991) to com-
pare a number of simulated annealing algorithms (Kirkpatrick et al., 1983)
for colouring graphs, and then were used to evaluate local search algorithms
for SAT (Selman and Kautz, 1993). These graphs, compared to the flat
graphs, are very large in terms of the number of edges they have. Table 5.6
shows their number of vertices, number of edges, and the optimum number of
colours. We encoded the two instances as SAT instances and as Regular-SAT
instances.

We compared WalkSAT /Basic and Regular-WalkSAT /Basic on the SAT
and Regular-SAT encodings of the DIMACS instances. Each instance was
solved 400 times; the noise parameter was approximately optimal, MaxTries
was set to 1, and MaxChanges was set to an extremely high value. Table 5.7
shows the mean number of changes and the mean time needed to find a solu-

tion for both encodings. As with the flat graphs, both algorithms solved the

3ftp://dimacs.rutgers.edu/pub/challenge/graph /benchmarks/colour

Experimental Investigation 93

Encoding
classical regular
mean CV mean CV
DSJC125.5.col w 0.13 0.14
changes 4827960 0.98 793332 0.89
time (sec) 470 0.98 161 0.88
DSJC250.5.col w 0.15 0.186
changes 2068166 0.79 513480 0.74
time (sec) 776 0.81 353 0.76

Table 5.7: Results for DIMACS graph colouring instances

instances in all the runs, indicating that they are PAC for these instances
as well. For instance DSJC125.5.col, the mean number of changes with
Regular-WalkSAT /Basic is about 5 times smaller than with WalkSAT /Basic,
and the mean time is about 2.9 times smaller. For instance DSJC250.5.col,
the mean number of changes with Regular-WalkSAT /Basic is about 4 times
smaller than with WalkSAT /Basic, and the mean time is about 2.2 times
smaller. Observe that instance DSJC125.5.col is harder to solve than in-
stance DSJC250.5.col in terms of the number of changes needed but it is
easier to solve in terms of the time needed. This is due to the fact that the
cost of a change in DSJC250.5. col is greater than in DSJC125.5.col because
DSJC250.5.col contains more edges.

To perform a more detailed analysis of the run-time behaviour, we ob-
tained empirical RLDs for WalkSAT /Basic and Regular-WalkSAT /Basic on
the two instances. Figure 5.6 shows the RLDs on instance DSJC125.5.col,
and Figure 5.7 shows the RLDs on instance for DSJC250.5.col, as well as
their corresponding EDs obtained by the approximation algorithm. As be-
fore, Regular-WalkSAT/Basic dominates WalkSAT /Basic.

Table 5.8 shows the mean number of changes per second for the two

instances, and the ratio of the mean number of changes per second in the

Experimental Investigation 94

changes/second
. classical
classical regular
regular
DSJC125.5.col 10270 4927 2.08
DSJC250.5.col 2665 1454 1.83

Table 5.8: Comparison of changes per second for DIMACS graph colouring in-

stances
classical regular
x? df P x? df P
DSJC125.5.col 95.85 124 > 0.97 108.86 125 > 0.84
DSJC250.5.col 97.98 80 > 0.08 99.80 82 > 0.08

Table 5.9: Results of the x? test on DIMACS graph colouring instances

algorithm for SAT to the mean number of changes per second in the algorithm
for Regular-SAT. We observe that this ratio does not vary too much between
DSJC125.5.col and DSJC250.5.col.

Table 5.9 shows the results of the x? test. For instance DSJC125.5.col,
the values of P suggest that the RLD fits strongly to an ED. For instance
DSJC250.5.col, the values of P suggest that the RLD fits weakly to an ED.
This is consistent with the results of the three flat graph instances, where the
goodness-of-fit was higher for harder instances. Another common point with
the RLDs on the easy and medium flat graph instances is that the difference
between the RLD and the approximated ED on instance DSJC250.5.col is
found in the low part of the RLD. Observe that another factor that indicates
that the RLD on DSJC125.5.col is more similar to an ED than the RLD on
DSJC250.5.col is that the CV of the first one is closer to 1 than the CV of

the second one, because an ED satisfies that its CV is equal to 1.

Experimental Investigation 95

1 T T T T T
Regular-VIValkSAT I
ed[566360]
WalkSAT
0.75 |-ed[3340740] _
=
\
4]
& 05 _
8
<
[&]
a
0.25 _
0.) aﬂ»’u'»-'--'-,f%--?ﬁﬂ""']""mD L) L) .
1000 10000 100000 le+06 le+07 le+08

changes
Figure 5.6: RLDs for Regular-WalkSAT /Basic and WalkSAT /Basic on instance
DSJC125.5.col

Regular-WalkSAlT
ed[367212]
WalkSAT
0.75 L €d[1463000]
=<
\
Qz 05 |
8
=
[&]
T
0.25 |
."‘ v '
------ e g K
0‘*“““3 T‘%....m D.D. il , Lo
10000 100000 1e+06 le+07

changes
Figure 5.7: RLDs for Regular-WalkSAT /Basic and WalkSAT /Basic on instance
DSJC250.5.col

Experimental Investigation 96

vertices = 100 vertices = 150
Encoding Encoding

k classical regular classical regular
mean CV mean CV mean CV mean CV
3 br. nodes 349 1.05 89 0.88 6182 1.71 597 1.12
time (sec) 0.70 1.04 0.075 0.90 19 1.57 0.80 1.05
4 br.nodes 133572 1.96 156303 1.97 2457689 1.5 3861096 1.95
time (sec) 470 191 191 1.88 9955 1.3 5920 1.83

Table 5.10: Results of DP and Regular-DP/RH2 on flat graph instances

To our best knowledge, the DIMACS instances have not yet been solved
with systematic algorithms for SAT. We solved the flat graph instances with
DP and Regular-DP/RH2. In this chapter, when we say DP we mean our
implementation of Regular-DP/RH2 with N = {0, 1}; i.e., the Davis-Putnam
procedure with the two-sided Jeroslow-Wang branching rule. Table 5.10
shows the mean number of branching nodes per instance and the mean
time needed to solve an instance. For 4 colours and 150 vertices, only 10%
of instances were solved with DP, and 85% of instances were solved with
Regular-DP /RH2; in both cases we used a cutoff of 4 hours, and the results
shown correspond to the instances successfully solved. We can conclude that
(i) local search algorithms outperform systematic search algorithms on flat
graph instances, and (ii) Regular-SAT encodings are more well-suited than

SAT encodings; the differences are impressive for systematic search.

5.3 The round robin problem

In sports scheduling one of the issues is to find a feasible schedule for a
sports league that takes into consideration constraints on how the competing

teams can be paired, as well as how each team’s games are distributed in

Experimental Investigation 97

the entire schedule. Here we consider the timetabling problem for the classic
“round robin” schedule: every team must play every other team exactly once.
The global nature of the pairing constraints makes this a particularly hard
combinatorial search problem.

A game will be scheduled on a certain field at a certain time. This kind of
combination will be called a slot. These slots can vary in desirability due to
such factors as lateness in the day, the location and the condition of the field,
etc. The problem is to schedule the games such that the different fields are
assigned to the teams in an equitable manner over the course of the season.

The round robin problem for n teams (rrn) is formally defined as follows:

1. There are n teams (n even) and every two teams play against each

other exactly once.
2. The season lasts n — 1 weeks.
3. Every team plays one game in each week of the season.

4. There are n/2 fields and, each week, every field is scheduled for one

game.

5. No team plays more than twice in the same field over the course of the

SeasoOIl.

The meeting between two teams is called a game and takes place in a slot;
i.e., in a particular field in a particular week. Table 5.11 shows a solution
for the rr8 problem; teams are named 1,...,8. An rrn timetable contains
n(n — 1)/2 slots and slots are filled in with games. A game is represented
by a pair of teams (¢1,t2) with 1 < t; < t; < n. We assume that ¢; < t5 in
order to obtain more compact encodings.

The combinatorics of the round robin problem are explo-
sive (McAloon et al., 1997): For an rrn league, there are n/2 - (n — 1)
games (7,7) with 1 <4 < j < n to be played. A schedule can be thought of
as a permutation of these games. So, for n teams the search space size is

Experimental Investigation 98

‘ H Week 1 ‘ Week 2 ‘ Week 3 ‘ Week 4 ‘ Week 5 ‘ Week 6 ‘ Week 7 ‘

Field1] (L,2) | (1,3) | (5.8 | 47 | (48 | (26 | (3,5
Field2 | (3,4) | (2,8) | (1,4) | (6,8) | (2,5) | (1,7) | (6,7)
Field3 || (5,6) | (4,6) | 27 | (1,5 | 37 | 3.8 | (1,8)
Field4 | (7,8) | (5,7) | (3,6) | (2,3) | (1,6) | (4,5) | (2,4)

Table 5.11: An 8-team round robin timetable

(n/2-(n—1))!; i.e., the search space size grows as the factorial of the square
of n/2.

A related sports scheduling problem that has received increasing interest
in the last years is the problem of finding a timetable for the Atlantic Coast
Basketball Conference (Nemhauser and Trick, 1998; Walser, 1998).

5.3.1 SAT encoding of the round robin problem

The rrn problem can be encoded as an instance of SAT as follows:

1. The set of propositional variables is

{pif|1<i<n/2,1<jk<n-1}U

{p2|1<i<n/2,1<j<n-1,2<k<n},

and its cardinality is n(n — 1)%
Each slot in the timetable is filled in by a pair of variables (pzl]kl, pfjkz)
The intended meaning of the pair (plljkl, pf]k"’) is that team k; will play

against team ks in field ¢ in week j.

2. In each slot, one team plays against another team. For each slot
(pzlfl,pfjh) (1 <k <n-1,2<ky <n), we define the clauses

ln 1)

Experimental Investigation 99

These clauses together with the clauses in (4) ensure that one team

plays exactly against another team every week.

3. In each slot (p¥, p2¥') it holds that k < k'. For each two teams ki, ks

such that k1 > ko, we define the clause

1k1 2ko
TPV D

4. FEvery team plays one game in each week of the season. For each week
j, for each team k, for each two fields 41,45 (1 < 41,4 < n/2) and for

r1,79 (1 < 711,79 < 2), we define the clause

rik rok

TPiyj V TPy

. k k
provided that p;; # p;>;
In all the steps of the encoding, clauses containing a variable of the

21

form pij or p;7* are not generated.

5. Fvery two teams play against each other exactly once. For each two
different slots of the form (p;’%,p*2) and (p;)7,, piaz) such that ji # ja

and ki < ko, we define the clause

1k1

2ko 1k; 2ko
_|pi1j1 v _‘piljl v _|pi2j2 vV p

i2]2

The clauses of (5) ensure that every two teams play against each other
at most once over the course of the season. Since the total number
of slots coincides with the total number of possible games, the above
clauses not only ensure that each possible game appears at most in one

slot, but exactly once.

Experimental Investigation 100

6. No team plays more than twice in the same field over the course of the
season. For each team k, for each field ¢, for each three different weeks

J1, J2, 73 and for each ry, 9,73 (1 < ry, 79,73 < 2), we define the clause

~pi ViV oy

The number of clauses of the SAT instance obtained with the above en-
coding for the rrn problem is in O(n%). By employing additional variables,
it is possible to obtain a SAT encoding that produces a formula with a num-
ber of clauses which is in O(n?*). In our expermental investigation we used
the encoding that gives rise to a SAT instance whose number of clauses is in
O(nb) because this encoding is more efficient for the satisfiability algorithms

used in our experiments.

5.3.2 Regular-SAT encoding of the round robin

problem

The rrn problem can be encoded as an instance of Regular-SAT as follows:

1. The truth value set N is {1,2,... ,n—1}. Each truth value represents
either a team from the subset of teams {1,2,... ,n—1} or a team from
the subset of teams {2,...,n}.

2. The set of propositional variables is
;11 <r<2,1<i<n/2,1<j<n-—1},

and its cardinality is n(n — 1).

Each slot in the timetable is represented by a pair of variables. The pair
(pzlj, pfj) refers to the slot corresponding to field ¢+ and week j. Since the
total number of slots is n(n — 1)/2, we use n(n — 1) variables. Given
a satisfying interpretation I, the intended meaning of (pj;,pj;) is that

team I (p;;) will play against team I(p;) + 1 in field 7 and week j.

Experimental Investigation 101

3. In each slot (py;,p3;) it holds that I(p;;) < I(pj;) + 1. For each team
t < n and for each slot (p;;,pj;), we define the regular clause

L(t-1) 5pzleT(t+1) :pzljth:pz?j

in order to ensure that I(p;;) < I(p;;) +1. We assume in all the steps
that regular literals either of the form |0 : p or of the form tn : p

appearing in a regular clause are removed.

4. Every team plays one game in each week of the season. For each week
Jj, for each team t < n, for each two fields i1,y (1 < 41,42 < n/2) and

for ri, o (1 < ry,re < 2), we define the clause

(1 —=1): pgll,j VA (t+1) :pﬁj Vi(ta—1) :pg’j VA (ta+1): pgj,j

where t; = tif r; = 1 and t; = ¢t — 1 if r; = 2, provided that p;} ; # pi ;.
5. Every two teams play against each other exactly once. For each two
different slots (pj,;,,p;,) and (pi,j,, Ph;,) such that j; # j, and for
each possible game (¢1,t3) such that t; < ty, we define the regular

clause

=1 ipi, VIt +1) ipiy VI (t2 = 2) s piy, VTt i pf 5,V
i(tl - 1) :pzl2j2 \ T(tl + 1) :p’}2j2 \ \L(t2 - 2) : pZ?2j2 ‘AR :p?zjz

in order to ensure that every two teams play against each other exactly
once. As with the classical encoding, the above regular clauses not only
ensure that each possible game appears at most in one slot, but exactly

once.

Experimental Investigation 102

6. No team plays more than twice in the same field over the course of the
season. For each team ¢, for each field 7, for each three different weeks

J1,J2, j3 and for each ry, 79,73 (1 < rq, 79,73 < 2), we define the clause

Vit —=1):pi V(i +1) i pij Vv

V(e —1):pi2, V(2 +1) 1 pi7 Vv

Vs —1):pi VT(ts+1):pi2
where t;, =tifr;,=1and t; =t —1if r;, =2

The size of the regular CNF formula obtained for the rrn problem is in
O(n®), although the exact number of clauses is slightly smaller than in the
classical encoding. This is because the set of clauses of (2) in the classical
encoding is not necessary in the regular encoding, and the number of clauses
of (3) is in O(n*) in the classical encoding and is in O(n?®) in the regular

encoding.

5.3.3 Experimental results

In this section we report on a series of experiments on the round robin
problem performed for comparing the performance of the SAT encoding
with the performance of the Regular-SAT encoding. The SAT instances
were solved with WalkSAT/G+Tabu and WalkSAT/R-Novelty, and the
Regular-SAT instances were solved with Regular-WalkSAT/G+Tabu and
Regular-WalkSAT /R-Novelty. Such experiments were performed on a Sun
Enterprise Ultra-250 Station.

Table 5.12 shows the parameter settings used in the experiments. In-
stances rr12, rr14 and rri16 were solved 100 times; the noise parame-
ter was approximately optimal, MaxTries was set to 1, and MaxChanges
was set to an extremely high value. The size of the tabu lists ranged
from 7 to 8. Instances rri18 and rr20 were solved 25 times with the
algorithms WalkSAT/G+Tabu and Regular-WalkSAT /G+Tabu using the
above parameter settings. For rr18 and rr20, WalkSAT/R-Novelty and

Experimental Investigation 103

G+Tabu R-Novelty
Encoding Encoding
classical regular classical regular
tabu w tabu w MaxChanges w MaxChanges w

rrli2 7 0.17 7 0.19 oco 0.09 oo 0.13
rri4 8 0.14 8 0.14 oo 0.05 oo 0.112
rri6 8 0.128 8 0.128 oo 0.045 oo 0.046
rri8 8 0.10 8 0.080 5-106 0.034 10-10% 0.023
rr20 8 0.07 8 0.054 9-10° 0.026 13-10% 0.015

Table 5.12: Parameter settings for the round robin instances

Regular-WalkSAT /R-Novelty needed restarts; i.e., they used finite values of
MaxChanges, and as many tries as necessary.

Table 5.13 shows the mean number of changes and the mean time needed
to solve the instances with the SAT and the Regular-SAT encodings. The
results show that the mean number of changes needed to solve an in-
stance is always about 6 times smaller with Regular-WalkSAT /G+Tabu
than with WalkSAT/G+Tabu, and about 4 times smaller with
Regular-WalkSAT /R-Novelty than with WalkSAT/R-Novelty. The mean
time is, however, quite similar in both approaches for all the algorithms,
and we do not observe that an algorithm outperforms the others. Thus, the
Regular-SAT-based approach is comparable in performance with the SAT-
based approach for the round robin problem.

The two encodings are comparable in performance because the reduction
in the mean number of changes is compensated by the decrease in the number
of changes per second with the Regular-SAT encoding. Table 5.14 shows the
mean number of changes per second for the different instances, and the ratio

Experimental Investigation 104
G+Tabu R-Novelty
Encoding Encoding
classical regular classical regular
mean CV mean CV mean Ccv mean Cv
rr12 changes 31-10* 0.89 49992 0.89 15-10* 1.00 19755 1.00
time (sec) 22 1.00 19 0.89 14 0.99 8 0.89
rri4 changes 12-10° 091 2-10° 0.87 6-10° 0.98 1.2-10° 1.09
time (sec) 139 0.91 134 0.87 84 0.97 80 1.08
rri6 changes 6-10° 0.93 1-10° 1.14 6-10° 1.11 1-106 0.89
time (sec) 885 0.93 890 1.14 1033 1.11 1068 0.89
rri8 changes 49-10° 0.99 6-10° 0.75 43-10% 1.14 10 - 106 1.10
time (sec) 9950 0.99 8812 0.73 10248 1.14 11000 1.15
rr20 changes 325-10% 0.92 34-10° 0.79 326-10° 1.03 >70-10° > 1.00
time (sec) 88961 1.02 73256 0.81 98827 1.03 > 125680 > 1.00

Table 5.13: Results for the round robin instances

Experimental Investigation 105

a - changes/second b - changes/second
classical regular ratio classical regular ratio

rri2 13609 2501 5.45 11155 2512 4.44
rri4 8453 1503 5.62 7897 1530 5.16
rri6 6676 1126 5.93 4955 1026 4.83
rri8 4871 693 7.03 4470 856 5.22
rr20 3352 464 7.22 3297 560 5.89

Table 5.14: Comparison of changes per second for the round robin instances
between WalkSAT/G+Tabu and Regular-WalkSAT/G+Tabu (a) and between
WalkSAT/R-Novelty and Regular-WalkSAT /R-Novelty (b)

classical regular
X2 df P X2 df P
rri2 26.35 23 >0.28 20.66 26 > 0.75
rri4 1254 30 > 0.99 16.72 25 > 0.89

Table 5.15: Results of the x? test on instances rr12 and rri4

of the mean number of changes per second in the algorithms for SAT to the
mean number of changes per second in the algorithms for Regular-SAT. As
in the graph colouring instances, this ratio does not vary too much when the
size of the instances is increased, and has always values between 5 and 7 for
WalkSAT/G+Tabu and Regular-WalkSAT /G+Tabu, and between 4 and 5
for WalkSAT /R-Novelty and Regular-WalkSAT /R-Novelty.

We selected two instances, rr12 and rri4, for studying in more de-
tail the run-time behaviour of the algorithms Regular-WalkSAT /R-Novelty
and WalkSAT/R-Novelty. For obtaining more accurate RLDs, these in-
stances were solved 250 times. Figure 5.8 shows the RLDs on instance

Experimental Investigation 106

Regular-W/FIQ-Nov
ed[13742]
W/R-Nov
0.75 | ed[102506]
=<
\
Qs 05 |
8
=
[8]
T
0.25
0k ;K;"*‘.:;K:Xﬁzé‘.. . o
100 1000 10000 100000 1le+06

changes
Figure 5.8: RLDs for Regular-WalkSAT /R-Novelty and WalkSAT /R-Novelty on

instance rri12

rr12, and Figure 5.9 shows the RLDs on instance rri4. Observe that
Regular-WalkSAT /R-Novelty dominates WalkSAT /R-Novelty in both in-
stances. Table 5.15 shows the results of the x? test statistic for the two
instances with both algorithms. The values of P indicate that the RLDs fit
strongly to their approximated EDs, especially for instance rri4.

Regarding systematic algorithms, we were only able to solve instance
rr8 with Satz (Li and Anbulagan, 1997b; Li and Anbulagan, 1997a), the
randomized version of Satz (Gomes et al., 1998a), and Regular-DP/RH-2;
and we solved instance rr10 with REL-SAT (Bayardo and Schrag, 1997).
We were not able to solve instance rr12 with systematic algorithms for SAT
and Regular-SAT.

The scheduling as satisfiability approach was used to solve the job shop
problem in (Crawford and Baker, 1994). To our best knowledge, we first
solved the round robin problem using SAT and Regular-SAT encodings.

To have an idea of the computational difficulty of this problem it is worth
mentioning that it was solved for 14 teams using a constraint programming
formulation in (McAloon et al., 1997). Then, Gomes et al. (Gomes et al.,

Experimental Investigation 107

Regular-W/FIQ-Nov)
ed[82543]
W/R-Nov
0.75 | ed[454763] S 9
V "
E& 05 ,
% oK
e v
[&) ’ ;
E_f -]
025 | yggxﬁ
0 —*"'"i'—"-"-i"'%f:.'—ﬁh";;‘[------ EIE.] L i i
1000 10000 100000 let+06 le+07

changes
Figure 5.9: RLDs for Regular-WalkSAT /R-Novelty and WalkSAT /R-Novelty on

instance rri4

1998b) used both an integer programming and a constraint programming
formulation. With the former formulation, they were unable to find a solution
for 14 teams and they needed 14 hours to find a solution for 12 teams. With
the latter formulation and a randomized constraint programming algorithm,
they found a solution for 18 teams after 22 hours.

Very recently, we learned that Jean-Charles Régin (personal communica-
tion, August 2000) presented results on solving rr24 using a CSP encoding
in (Régin, 1998), and results on solving rr40 in (Régin, 1999). In (Hamiez
and Hao, 2000) there are results for instance rr40 with a tabu approach, and

are also reported Régin’s results.

5.4 The all-interval-series problem

The all-interval-series problem is an arithmetic problem first used in (Hoos,
1998) in the context of evaluating stochastic local search algorithms for SAT.
This problem is inspired by a well-known problem occurring in serial musical
composition, which, in its original form, can be stated in the following way:

Experimental Investigation 108

given the twelve standard pitch-classes (¢, c#,d, ...), represented by numbers
0,1,...,11, find a series in which each pitch-class occurs exactly once, and
in which the musical intervals between neighbouring notes cover the full set
of intervals from the minor second (1 semitone) to the major seventh (11
semitones), i.e., for each of these intervals, there is a pair of neigbhouring
pitch-classes in the series, between which this interval appears.

These musical all-interval-series have a certain prominence in serial com-
position; they can be traced back to Alban Berg and have been exten-
sively studied and used by Ernst Krenek, e.g., in his orchestral piece op.170,
“Quaestio temporis”.

The problem of finding such series can be easily formulated as an instance
of a more general arithmetic problem in Z,,, the set of integer residues modulo

n: given a positive integer n, find a vector s = (sy,..., S,), such that
1. s is a permutation of Z, = {0,1,... ,n — 1}; and

2. the interval vector v = (|se — s1|, [s3 — sa2|, ... , |Sn — Sp—1]) is a permu-
tation of Z,, — {0} = {1,2,... ,n —1}.

A vector v satisfying these conditions is called an all-interval-series of size n;
the problem of finding such a series is called the all-interval-series problem
of size n and denoted by aisn.

Instances of the all-interval-series problem encoded as SAT instances are
very hard for local search algorithms like GSAT or WalkSAT, but are rather
easy for systematic algorithms, such as Satz (Li and Anbulagan, 1997b; Li
and Anbulagan, 1997a); at least when considering the SAT encoding pre-
sented in (Hoos, 1998).

5.4.1 SAT encoding of the all-interval-series problem

The all-interval-series problem can be modeled as a CSP in a rather straight-
forward way. Each element of s and v is represented as a variable; the do-

mains of these variables are Z,, and Z,,— {0}, respectively; and the constraint

Experimental Investigation 109

relations encode the conditions 1 and 2 from the definition given above. From
this CSP formulation, instances of the all-interval-series problem can be eas-
ily transformed into a SAT instance by using essentially the same encoding
as for the two previous combinatorial problems, where each assignment of a
value to a single CSP variable is represented by a propositional variable and
each of the two conditions from the definition above is represented by a set
of clauses.
The aisn problem can be encoded as an instance of SAT as follows:

1. The set of propositional variables is
{slli,j e} U {v]li,j €Z,—{0}}

and its cardinality is n? + (n — 1)2.

Each element i of the vector s is filled in by a variable of the form sg ,
and each element i of the vector v is filled in by a variable vzj . The
intended meaning of the variable s? is that the element i of the vector
s has assigned the value j, and the intended meaning of the variable v{

is that the element 7 of the vector v has assigned the value j.

2. The vector s is a permutation of Z,. For each ¢ € Z, we define the
clause
(3(.) VeV 5’?—1);

3 7
and for each two different values i1,i5 € Z,, and for each value j € Z,,

we define the clause

—s] V os)

in order to ensure that the set of variables s? encodes a valid permuta-
tion of the set Z,,.

3. The interval vector v is a permutation of Z, — {0} and is the interval

vector assoctated with the encoded permutation in the variables sg .

Experimental Investigation 110

(a)

For each i € Z,, — {0}, we define the clause

(o} vV

1

and for each two different values i1,is € Z, — {0}, and for each
value j € Z, — {0}, we define the clause

-] V),

J

in order to ensure that the set of variables v; encodes a valid

permutation of the set Z, — {0}.
For each two different values z,y € Z,, and for each value
i € Z, — {0}, we define the clause

st Vst Vg,

where z = |x—y/|, in order to ensure that the permutation encoded
in the variables vzj corresponds to the interval vector associated
with the permutation encoded in the variables s?.

In the SAT encoding of the all-interval-series described in (Hoos, 1998),

two additional sets of clauses were used in order to ensure that satisfying

interpretations assign exactly one value to each CSP variable. Our SAT en-

coding does not use these two sets because this condition is satisfied without

using these sets. Concerning the variables s{ , the set of clauses of (2) ensures

that the variables sg encode valid permutations of the set Z,. Observe that

a valid permutation has the property that its encoding with the variables s{

can never assign two different values to the same variable of the permutation

because one of the two values would appear also in another variable of the

permutation. The same holds for the variables v/ but thanks to the set of

clauses of (3-a).

Experimental Investigation 111

5.4.2 Regular-SAT encoding of the all-interval-series

problem

The aisn problem can be encoded as an instance of Regular-SAT as follows:

1. The truth value set N is Z,. Each truth value represents one of the
values that can be assigned to the elements of the vector s or one of
the values associated with the interval vector v of s.

2. The set of propositional variables is
{si|i € Z,} U {v; |i € Z, —{0}}

and its cardinality is n + (n — 1).

Each element ¢ of the vector s is represented by the variable s;, and
each element ¢ of the interval vector v is represented by the variable
v;. Given a satisfying interpretation I, the intended meaning of the
variables s; and v; is that the component ¢ of the vector s has assigned
the value I(s;), and that the component i of the interval vector v has
assigned the value I(v;). As the values that can be assigned to elements
of the interval vector v are from the set Z,,—{0} but N contains also the
value 0, for the variables v; the truth values 0 and 1 are used indistinctly
as the first value of the set Z, — {0}.

3. The vector s is a permutation of Z,. For each two different values

11,19 € Zy, and for each value j € Z,, we define the regular clause
\L(j_l) - Siy VT(j+1) - Siy V\L(].— 1) : Sisz(j+1) - Siy

in order to ensure that the set of variables s; encodes a valid permu-
tation of the set Z,. We assume in all the steps that regular literals
either of the form |—1 : p or of the form 1 n : p appearing in a regular

clause are removed.

Experimental Investigation 112

4. The interval vector v is a permutation of Z, — {0} and is the interval

vector associated with the encoded permutation in the variables s;.

For each two different values iy,is € Z, — {0}, and for each value
j #1€Z,— {0}, we define the regular clause

LU= vy, VT4 v, VIG—=1) i, VTG +1) 2 vy
when j = 1, we define instead the regular clause
12:v;, VT2:v,
in order to ensure that the set of variables v; encodes a valid
permutation of the set Z, — {0}.
(a) For each two different values z,y € Z,, and for each value

i € Zy,, — {0}, we define the two regular clauses

llz—1):siaVT(z+1) s Vi(y—1) iV (y+ 1) s s,z

llz—1):siaVT(z+1):siaVi(y—1) iV (y+ 1) s,z

where z = |z —y|, in order to ensure that the permutation encoded
in the variables v; corresponds to the interval vector associated

with the permutation encoded in the variables s;.

The number of clauses in the above encoding is in O(n?). Actually, the

set of clauses of (4a) has twice the number of clauses of the SAT encoding.

5.4.3 Experimental results

In this section we report on a series of experiments on the all-interval-series
problem performed for comparing the performance of the SAT encoding with
the performance of the Regular-SAT encoding. The SAT instances were
solved with WalkSAT /R-Novelty, and the Regular-SAT instances were solved
with Regular-WalkSAT /R-Novelty.

Experimental Investigation

Encoding

classical
mean CV

regular
mean CV

113

aisl2 w 0.16 0.32
changes 149645 0.99 22368 0.95
time (sec) 2 099 1 094
aisi4 w 0.10 0.26
changes 745899 0.93 81260 1.10
time (sec) 12 0.93 6 1.08
ais16 w 0.08 0.24
changes 4934000 1.04 441556 0.99
time (sec) 88 1.04 47 0.99
ais18 w 0.06 0.24
changes 24129740 0.98 2375661 1.11
time (sec) 626 0.98 331 1.11

Table 5.16: Results for instances aisn

We considered the all-interval-series instances ais12, ais14, ais16 and
ais18. Every instance was solved 100 times; the noise parameter was ap-
proximately optimal, MaxTries was set to 1, and MaxChanges was set to
an extremely high value. Although both Regular-WalkSAT /R-Novelty and
WalkSAT /R-Novelty are not PAC, they always found a solution in every try
for all the instances considered. This indicates that these algorithms are
PAC for our instances. By contrast, WalkSAT/R-Novelty was shown to be
essentially incomplete in (Hoos, 1998) with the encoding defined by Hoos.

Table 5.16 shows the mean number of changes, and the mean time needed
to solve the instances with the SAT and the Regular-SAT encodings. The
results show that the mean number of changes and the mean time needed

to solve an instance is always smaller when using the Regular-SAT encod-

Experimental Investigation 114

changes/second
. classical
classical regular

regular

aisl2 83374 16723 4.97
aisl4 64680 12671 5.10
ais16 56101 9394 5.88
ais18 38500 7177 5.36

Table 5.17: Comparison of changes per second for instances aisn

classical regular
X2 df P X2 df P
ais12 14.24 26 > 0.96 18.60 30 >0.95
aisl4 1821 23 >0.74 17.61 30 > 0.96

Table 5.18: Results of the x? test on instance ais12 and instance ais14

ing than when using the SAT encoding. The difference in the number of
changes increases from about 7 times smaller in ais12 to about 10 times
smaller in ais18 and the mean time is always about 2 times smaller with the
Regular-SAT encoding, similarly to what happens with the flat graphs.

Table 5.17 shows the mean number of changes per second for the different
instances, and the ratio of the mean number of changes per second in the
algorithm for SAT to the mean number of changes per second in the algorithm
for Regular-SAT. As for the previous problems, this ratio does not vary too
much when the size of the instances is increased.

We selected two instances, ais12 and ais14, for studying in more de-
tail the run-time behaviour of the algorithms Regular-WalkSAT /R-Novelty
and WalkSAT/R-Novelty. For obtaining more accurate RLDs, these in-

Experimental Investigation 115

Regular-W/R-Nov

ed[15671] ~ ---mee-
W/R-Nov
0.75 |-€d[104549] s
<
\Y
8
@ 05
8
<
[&)
g
0.25
% e
0k Ségmmmn R .;Kn...----;-"l*lnl L]
100 1000 10000 100000 1e+06

changes
Figure 5.10: RLDs for Regular-WalkSAT /R-Novelty and WalkSAT /R-Novelty on

instance ais12

1 . — . —
Regular-\/l\//R-Nov I
ed[55451]
W/R-nov
0.75 |-ed[530589]
)
\"
Q, 05
8
=
[&)
g
0.25 -
0k . D i .1%%‘ L L LA
100 1000 10000 100000 1e+06 let+07

changes
Figure 5.11: RLDs for Regular-WalkSAT /R-Novelty and WalkSAT /R-Novelty on

instance aisi4

Experimental Investigation 116

stances were solved 250 times. Figure 5.10 shows the RLDs on instance
ais12, and Figure 5.11 shows the RLDs on instance ais14. Observe that
Regular-WalkSAT /R-Novelty dominates WalkSAT /R-Novelty in both in-
stances. Table 5.18 shows the results of the x? test statistic for the two
instances with both algorithms. The values of P indicate that the RLDs fit
strongly to their approximated EDs.

Chapter 6
Conclusions

In the preceding chapters we have been concerned with the design, im-
plementation and analysis of systematic (Regular-DP) and local search
(Regular-GSAT and Regular-WalkSAT) algorithms for Regular-SAT, and we
have defined a new and competitive generic problem solving approach which
consists in modeling hard combinatorial problems as Regular-SAT instances
and then solving the resulting encodings with algorithms for Regular-SAT.

We have paid special attention to the definition of suitable data struc-
tures for representing formulas, heuristics for efficiently exploring the search
space, strategies for escaping from local minima in local search algorithms,
and suitable encodings for modeling combinatorial problems as Regular-SAT
instances. Our implementations have allowed us to put our ideas into prac-
tice and, from this experience, we have gained new insights for developing
new procedures and improving existing ones.

In Chapter 1, we have already given in detail the main contributions of

this thesis. Here, we summarize them briefly:

e Design and implementation of a variant of Regular-DP, equipped with

a new branching heuristic.

e Design and implementation of two new families of local search algo-
rithms for Regular-SAT: Regular-GSAT and Regular-WalkSAT.

117

Conclusions 118

e Construction of the the first benchmark library, formed a representative
sample of hard instances, for analysing and comparing systematic and
local search algorithms for Regular-SAT.

e Experimental evidence of the existence of phase transitions in Regular
Random 3-SAT, as well as study of the change of the location of the
threshold as the cardinality of the truth value set is varied.

e Empirical study of the generic problem solving approach which consists
in modeling hard combinatorial problems as Regular-SAT instances and
then solving the resulting encodings with algorithms for Regular-SAT.
Within this empirical study, we have provided evidence that, at least
for the combinatorial problems studied, our problem solving approach
can outperform or compete with state-of-the-art problem solving ap-
proaches.

Finally, we would like to point out some future research perspectives:

e Definition and analysis of further branching heuristics and branching
rules for Regular-DP, as well as simplification techniques to avoid re-
dundant and useless computations during the exploration of the search

space.

e Definition and analysis of new strategies for escaping from local minima
in Regular-GSAT and Regular-WalkSAT.

e Design and implementation of a declarative language for modeling com-
binatorial problems, and design and implementation of translators to
produce classical, regular and signed CNF formulas from the problem

specification.

e Conducting an experimental investigation to deepen our understanding
of SAT and Regular-SAT encodings so that they can be applied more

effectively to solve combinatorial problems. For instance, we would like

Conclusions 119

to identify design principles which make an encoding successful; and
to understand how encoding components, problem characteristics and

good performance for particular satisfiability algorithms are related.
e Application of our problem solving approach to optimization problems.

e Finding further application areas (e.g. bioinformatics, planning, and

timetabling) for our problem solving approach.

e Creation and maintenance of a web site —similar to SATLIB— with
valuable resources for researchers of Regular-SAT containing bench-
marks, solvers, comparisons, a bibliography, and links to researchers
and events. The benchmark library should facilitate the use of the
same set of problem instances across different empirical studies and

the comparison of experimental results.

e Extension of the results obtained for totally-ordered regular CNF for-
mulas to both partially-ordered regular CNF formulas and signed CNF
formulas.

Appendix A

Format of Regular
CNF Formulas

The regular satisfiability algorithms described in this thesis read a regular
CNF formula from a file and then determine whether the formula is satisfi-
able. In this section we describe the format that a file containing a regular
CNF formula must have. Such a file format is an adaptation of the file
format defined by the DIMACS Challenge Committee for classical CNF for-
mulas (DIM, 1993). The DIMACS format is currently accepted by almost all
of the best-performing SAT solvers and tools, is simple to parse and gener-
ate, reasonably concise and flexible, portable across different platforms, and
human-readable (Hoos and Stiitzle, 2000b). In addition to the information
included in the classical setting, we must also include the cardinality of the
truth value set and the value of the sign of regular literals.

Without loss of generality, given a regular CNF formula over a particular
truth value set N, we will take the set of natural numbers {1,2,--- |N|}
as the truth value set of that formula. We can establish an isomorphism
between the particular set N and the set {1,2,---,|N|} that preserves the
total ordering relation associated with regular literals. For that reason, we
specify the cardinality of the truth value set instead of the set itself.

The file has two parts, the preamble and the body. The preamble, which

120

Format of Regular CNF Formulas 121

contains information about the formula, is followed by the body, which con-
tains the regular clauses occurring in the formula. We can put any number
of carriage returns between the preamble and the body.

The preamble is formed by comment lines and the problem line. Comment
lines give information about the formula and are ignored by the program.
Each comment line begins with the character ’c’ and ends with a carriage
return. The problem line contains the parameters that allow to correctly
process the formula: the cardinality of the truth value set (|N|), the number
of propositional variables (V') and the number of clauses (C). The syntax of

the problem line is as follows:
p format [N| V C

The letter ’p’ indicates that this is the problem line. The field format con-
tains a string that identifies the type of logical formula under consideration;
in our case, that string must be regenf, which stands for regular CNF for-
mula. This way of identifying the kind of formula follows directly from the
recommendations of the DIMACS Challenge Committee.

The body part begins after the problem line and is formed by a sequence
of regular clauses. A regular clause is specified by giving the sequence of
its regular literals. A regular literal is specified by two integer numbers
separated by either spaces or tabulators or newline characters. The first
integer specifies the regular sign of the literal. Given a positive regular sign
of the form 1 a, where a is an integer from 1 to |N|, we represent this sign by
the positive integer a, and given a negative regular sign of the form | a, we
represent this sign by the negative integer —a. We use the integers from 1 to
|N| to denote the elements of the truth value set, having in mind that there
is an implicit isomorphism between the elements of the real truth value set
and the set {1,2,---,|N|}. The second integer specifies the variable of the
literal. It must be a positive number between 1 and V because the different
variables appearing in the literals of the formula are assumed to be numbered
consecutively. We separate the distinct regular literals of the clause by either

Format of Regular CNF Formulas 122

spaces or tabulators or newline characters and we terminate each clause with
the number 0.

Example A.1 Let N = {0, %, %, 1} and let T be the following reqular CNF
formula:

I = {{\LOplaTl :p3aT1 :p4}a{¢% :pla\l/% :p37T1 :p4}7
{\l/ozplai% :p3a\l/% :p4}a{T1 :pla‘l/o :p5}a
{12:pi,t5:ps}, {1 1:ps, L5 pa}}

The representation of I' in a file should contain the following information:

¢ File for the above regular CNF formula

p regenf 4 5 6

43 44
-2 3 44
-23-24
5

N
[I N T e
|
-
O O O O O O

5
-2 4

References

Aspvall, R., Plass, M. and Tarjan, R. (1979). A linear time algorithm for test-
ing the truth of certain quantified boolean formulae. Information Processing
Letters, 8(3):121-123.

Bayardo, R. J. and Schrag, R. C. (1997). Using CSP look-back techniques to
solve real-world SAT instances. In Proceedings of the 14th National Confer-
ence on Artificial Intelligence, AAAI’97, Providence/RI, USA, pages 203—
208. AAAI Press.

Beckert, B., Hiahnle, R. and Manya, F. (1999). Transformations between
signed and classical clause logic. In Proceedings, 29th International Sympo-
sium on Multiple- Valued Logics (ISMVL), Freiburg, Germany, pages 248-
255. IEEE Press, Los Alamitos.

Beckert, B., Hihnle, R. and Manya, F. (2000a). The 2-SAT problem of reg-
ular signed CNF formulas. In Proceedings, 30th International Symposium on
Multiple-Valued Logics (ISMVL), Portland/OR, USA, pages 331-336. IEEE
CS Press, Los Alamitos.

Beckert, B., Hdahnle, R. and Manya, F. (2000b). The SAT problem of signed
CNF formulas. In Basin, D., D’Agostino, M., Gabbay, D., Matthews, S. and
Vigano, L., editors, Labelled Deduction, volume 17 of Applied Logic Series,
pages 61-82. Kluwer, Dordrecht.

Béjar, R. and Manya, F. (1998). Phase transitions in the regular random

123

References 124

3-SAT problem. In Proceedings, 1r Congrés Catala d’Intel.ligéncia Artificial,
CCIA’98, Tarragona, Spain, pages 39-45.

Béjar, R. and Manya, F. (1999a). A comparison of systematic and local
search algorithms for regular CNF formulas. In Proceedings of the 5th Eu-
ropean Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty, ECSQARU’99, London, England, pages 22-31. Springer
LNAT 1638.

Béjar, R. and Manya, F. (1999b). Phase transitions in the regular ran-
dom 3-SAT problem. In Proceedings of the 11th International Symposium
on Methodologies for Intelligent Systems, ISM1S5°99, Warsaw, Poland, pages
292-300. Springer LNAT 1609.

Béjar, R. and Manya, F. (1999¢). Solving combinatorial problems with reg-
ular local search algorithms. In Proceedings of the 6th International Confer-
ence on Logic for Programming and Automated Reasoning, LPAR’99, Tbilist,
Republic of Georgia, pages 33-43. Springer LNAT 1705.

Béjar, R. and Manya, F. (2000). Solving the round robin problem using
propositional logic. In Proceedings of the 17th National Conference on Artifi-
cial Intelligence, AAAI-2000, Austin/TX, USA, pages 262-266. AAAI Press.

Cheeseman, P., Kanefsky, B. and Taylor, W. M. (1991). Where the really
hard problems are. In Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI’91, pages 331-337. Morgan Kaufmann.

Cook, S. (1971). The complexity of theorem-proving procedures. In Pro-
ceedings of the 3rd Annual ACM Symposium on Theory of Computing, pages
151-158.

Cook, S. and Mitchell, D. G. (1997). Finding hard instances of the satis-
fiability problem: A survey. In Du, D., Gu, J. and Pardalos, P., editors,
Satisfiability Problem: Theory and Applications, volume 35 of DIMACS Se-

ries in Discrete Mathematics and Theoretical Computer Science.

References 125

Crawford, J. M. and Baker, A. B. (1994). Experimental results on the ap-
plication of satisfiability algorithms to scheduling problems. In Proceedings
of the 12th National Conference on Artificial Intelligence, AAAI’94, Seat-
tle/WA, USA, pages 1092-1097. AAAI Press.

Crawford, J. M. and Auton, L. D. (1996). Experimental results on the
crossover point in random 3-SAT. Artificial Intelligence, 81:31-57.

Culberson, J. C. and Luo, F. (1996). Exploring the k-colorable landscape with
iterated greedy. In Johnson, D. S. and Trick, M. A., editors, Cliques, Coloring
and Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science.

Davis, M. and Putnam, H. (1960). A computing procedure for quantification
theory. Journal of the ACM, 7(3):201-215.

Davis, M., Logemann, G. and Loveland, D. (1962). A machine program for
theorem-proving. Communications of the ACM, 5:394-397.

del Val, A. (2000). On 2-SAT and renamable Horn. In Proceedings of the
17th National Conference on Artificial Intelligence, AAAI-2000, Austin/TX,
USA, pages 279-284. AAAI Press.

DIMACS Challenge Committee (1993). Satisfiability Suggested Format.
ftp://dimacs.rutgers.edu.

Dowling, W. and Gallier, J. (1984). Linear-time algorithms for testing the
satisfiability of propositional Horn formula. Journal of Logic Programming,
3:267-284.

Escalada-Imaz, G. (1989a). Optimisation d’Algorithmes d’Inference Mono-
tone en Logique des Propositions et du Premier Ordre. PhD thesis, Université

Paul Sabatier, Toulouse, France.

Escalada-Imaz, G. (1989b). Un algorithme de complexité quadratique et un

References 126

algorithme de complexité lineaire pour la 2-satisfiabilité. Technical Report
89378, LAAS, Toulouse.

Escalada-Imaz, G. and Manya, F. (1994). The satisfiability problem for
multiple-valued Horn formulee. In Proceedings, International Symposium on
Multiple-Valued Logics, ISMVL’94, Boston/MA, USA, pages 250-256. IEEE

Press, Los Alamitos.

Even, S., Itai, A. and Shamir, A. (1976). On the complexity of timetable
and multicommodity flow problems. SIAM J. Computing, 5:691-703.

Freeman, J. W. (1995). Improvements to Propositional Satisfiability Search
Algorithms. PhD thesis, Department of Computer and Information Science,

University of Pennsylvania, PA, USA.

Ghallab, M. and Escalada-Imaz, G. (1991). A linear control algorithm for a
class of rule-based systems. Journal of Logic Programming, 11:117-132.

Glover, F. (1989). Tabu search — Part I & II. ORSA Journal on Computing,
1/2(3/1):190-206/4-32.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publish-

ers.

Gomes, C. P., Selman, B. and Kautz, H. (1998a). Boosting combinatorial
search through randomization. In Proceedings of the 15th National Confer-
ence on Artificial Intelligence, AAAI’'98, Madison/WI, USA, pages 431-437.
AAATI Press.

Gomes, C. P., Selman, B., McAloon, K. and Tretkoff, C. (1998b). Random-
ization in backtrack search: Exploiting heavy-tailed profiles for solving hard
scheduling problems. In Proceedings of the International Conference on Ar-
tificial Intelligence Planning Systems, AIPS’98, Pittsburg/PA, USA. AAAI

Press.

References 127

Héhnle, R. (1994a). Automated Deduction in Multiple- Valued Logics, vol-
ume 10 of International Series of Monographs in Computer Science. Oxford

University Press.

Hiéhnle, R. (1994b). Short conjunctive normal forms in finitely-valued logics.
Journal of Logic and Computation, 4(6):905-927.

Héhnle, R. (1996). Exploiting data dependencies in many-valued logics. Jour-
nal of Applied Non-Classical Logics, 6:49—69.

Héhnle, R. and Escalada-Imaz, G. (1997). Deduction in many-valued logics:
A survey. Mathware and Soft Computing, 4(2):69-97.

Héhnle, R. (to appear, 2001). Advanced many-valued logics. In Gabbay,
D., editor, Handbook of Philosophical Logic, volume 2, chapter 5. Kluwer,

Dordrecht, second edition.

Hamiez, J. and Hao, J. (2000). Solving the sports league scheduling problem
with tabu search. In Workshop on Local Search for Planning and Scheduling,
European Conference on Artificial Intelligence (ECAI-2000), Berlin, Ger-

many.

Hooker, J. N. and Vinay, V. (1995). Branching rules for satisfiability. Journal
of Automated Reasoning, 15:359-383.

Hoos, H. H. (1998). Stochastic Local Search — Methods, Models, Applica-
tions. PhD thesis, Department of Computer Science, Darmstadt University
of Technology.

Hoos, H. H. (1999a). On the run-time behaviour of stochastic local search
algorithms for SAT. In Proceedings of the 16th National Conference on Ar-
tificial Intelligence, AAAI’99, pages 661-666. AAAI Press.

Hoos, H. H. (1999b). SAT-encodings, search space structure, and local search

performance. In Proceedings of the International Joint Conference on Ar-

References 128

tificial Intelligence, IJCAI’99, Stockholm, Sweden, pages 296-303. Morgan

Kaufmann.

Hoos, H. H. and Stiitzle, T. (2000a). Local search algorithms for SAT: An
empirical evaluation. Journal of Automated Reasoning, 24(4):421-481.

Hoos, H. H. and Stiitzle, T. (2000b). SATLIB: An online resource for research
on SAT. In Gent, I., van Maaren, H. and Walsh, T., editors, SAT2000.
Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers
in Artificial Intelligence and Applications, pages 283-292. I0OS Press.

Johnson, D. S.; Aragon, C. R., McGeoch, L. A. and Schevon, C. (1991).
Optimization by simulated annealing: An experimental evaluation; part II,

graph coloring and number partitioning. Operations Research, 39(3):378-406.

Kautz, H. A. and Selman, B. (1996). Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In Proceedings of the 14th National
Conference on Artificial Intelligence, AAAI’96, Portland/OR, USA, pages
1194-1201. AAAT Press.

Kautz, H. A. and Selman, B. (1999). Unifying SAT-based and graph-based
planning. In Proceedings of the International Joint Conference on Artificial
Intelligence, IJCAI’99, Stockholm, Sweden, pages 318-325. Morgan Kauf-

manim.

Kifer, M. and Subrahmanian, V. S. (1992). Theory of generalized anno-
tated logic programming and its applications. Journal of Logic Programminyg,
12:335-367.

Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220:671-680.

Kirousis, L. M., Kranakis, E. and Krizanc, D. (1996). Approximating the
unsatisfiability threshold of random formulas. In Proceedings of the 4th An-

References 129

nual FEuropean Symposium on Algorithms, ESA’96, Barcelona, Spain, pages
27-38. Springer LNCS 1136.

Kirousis, L. M., Kranakis, E., Krizanc, D. and Stamatiou, Y. C. (1998).
Aproximating the unsatisfiability threshold of random formulas. Random
Structures and Algorithms, 12(3):253-269.

Li, C. M. and Anbulagan, (1997a). Heuristics based on unit propagation for
satisfiability problems. In Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI’97, Nagoya, Japan, pages 366-371. Morgan
Kaufmann.

Li, C. M. and Anbulagan, (1997b). Look-ahead versus look-back for sat-
isfiability problems. In Proceedings of the 3rd International Conference on
Principles of Constraint Programming, CP’97, Linz, Austria, pages 341-355.
Springer LNCS 1330.

Li, C. M. (2000). Integrating equivalence reasoning into Davis-Putnam pro-
cedure. In Proceedings of the 17th National Conference on Artificial Intelli-
gence, AAAI-2000, Austin/TX, USA, pages 291-296. AAAT Press.

Lu, J. J., Murray, N. V. and Rosenthal, E. (1993). Signed formulas and
annotated logics. In Proceedings 23st International Symposium on Multiple-

Valued Logic, pages 48-53. IEEE Computer Society Press, Los Alamitos.

Lu, J. J., Murray, N. V. and Rosenthal, E. (1998). A framework for auto-
mated reasoning in multiple-valued logics. Journal of Automated Reasoning,
21(1):39-67.

Manya, F. (1996). Proof Procedures for Multiple-Valued Propositional Log-
ics. PhD thesis, Universitat Autonoma de Barcelona. Published in (Manya,
1999).

Manya, F., Béjar, R. and Escalada-Imaz, G. (1998). The satisfiability prob-

References 130

lem in regular CNF-formulas. Soft Computing: A Fusion of Foundations,
Methodologies and Applications, 2(3):116-123.

Manya, F. (1999). Proof Procedures for Multiple-Valued Propositional Log-
ics. Number 9 in Monografies de I'Institut d’Investigacié en Intel.ligencia
Artificial. ITTA-CSIC, Bellaterra (Barcelona).

Manya, F. (2000). The 2-SAT problem in signed CNF formulas. Multiple-
Valued Logic. An International Journal, 5(4):307-325.

Massacci, F. and Marraro, L. (2000). Logical cryptanalysis as a SAT-problem.
Journal of Automated Reasoning, 24(1/2):165-203.

McAllester, D., Selman, B. and Kautz, H. (1997). Evidence for invariants
in local search. In Proceedings of the 14th National Conference on Artificial
Intelligence, AAAI’97, Providence/RI, USA, pages 321-326. AAAI Press.

McAloon, K., Tretkoff, C. and Wetzel, G. (1997). Sports league scheduling.
In Proceedings of the 1997 ILOG Optimization Suite International Users’
Conference, Paris, France.

Minoux, M. (1988). LTUR: A simplified linear time unit resolution algorithm
for Horn formulae and its computer implementation. Information Processing
Letters, 29:1-12.

Mitchell, D., Selman, B. and Levesque, H. (1992). Hard and easy distribu-
tions of SAT problems. In Proceedings of the 10th National Conference on
Artificial Intelligence, AAAI’92, San Jose/CA, USA, pages 459-465. AAAI
Press.

Nemhauser, G. L. and Trick, M. A. (1998). Scheduling a major college
basketball conference. Operations Research, 46(1):1-8.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1988).
Numerical Recipes in C. Cambridge University Press.

References 131

Régin, J. (1998). Modeling and solving sports league scheduling with con-
straint programming. In Proceedings, 1er Congrés de la Societé Frangaise de

Recherche Opérationalle et Aide d la Décision, Paris, France.

Régin, J. (1999). Sports scheduling and constraint programming. In IN-
FORMS, Cincinnati, Ohio.

Schuurmans, D. and Southey, F. (2000). Local search characteristics of in-
complete SAT procedures. In Proceedings of the 17th National Conference on
Artificial Intelligence, AAAI-2000, Austin/TX, USA, pages 297-302. AAAI
Press.

Scutella, M. (1990). A note on Dowling and Gallier’s algorithm for proposi-
tional Horn satisfiability. Journal of Logic Programming, 8:265-273.

Selman, B., Levesque, H. and Mitchell, D. (1992). A new method for solv-
ing hard satisfiability problems. In Proceedings of the 10th National Confer-
ence on Artificial Intelligence, AAAI’92, San Jose/CA, USA, pages 440-446.
AAATI Press.

Selman, B. and Kautz, H. A. (1993). Domain-independent extensions of
GSAT: Solving large structured satisfiability problems. In Proceedings of the
International Joint Conference on Artificial Intelligence, IJCAI’93, Cham-
bery, France, pages 290-295. Morgan Kaufmann.

Selman, B., Kautz, H. A. and Cohen, B. (1994). Noise strategies for improv-
ing local search. In Proceedings of the 12th National Conference on Artificial
Intelligence, AAAI'94, Seattle/WA, USA, pages 337-343. AAAI Press.

Sofronie-Stokkermans, V. (1998). On translation of finitely-valued logics
to classical first-order logic. In Proceedings, 13th European Conference on
Artificial Intelligence, ECAI’98, Brighton, UK, pages 410-411. John Wiley

and Sons.

Sofronie-Stokkermans, V. (2000). Automated theorem proving by resolu-

References 132

tion for finitely-valued logics based on distributive lattices with operators.
Multiple-Valued Logic. An International Journal. In Press.

Walser, J. P. (1998). Domain-Independent Local Search for Linear Integer
Optimization. PhD thesis, Universitat des Saarlandes, Saarbriicken, Ger-

many.

Warners, J. P. (1999a). Nonlinear Approaches to Satisfiability Problems. PhD
thesis, Faculty of Information Technology and Systems, Delft University of
Technology, Holland.

Warners, J. P. and van Maaren, H. (1999b). A two phase algorithm for
solving a class of hard satisfiability problems. Operations Research Letters,
23(3-5):81-88.

Index

LCL, 24
N, 10, 23
I, 24

x2, 87

<, 10, 23
41, 10, 24
w, 42

L, 34

S:p, 10, 23
S:p, 23
114, 10, 24
|C|, 24

IN|, 23
DIMACS, 75
2-SAT, 26

aisn, 106

all-interval-series problem, 105
Regular-SAT encoding, 109
SAT encoding, 106

annotated logic programming, 26

benchmark, 58
benchmark library, 16, 18, 75, 116

bioinformatics, 117
body, 118

133

branching heuristic, 14
RH-1, 34
RH-2, 35
branching node, 33
branching rule
regular, 31
break counter, 47
broken clause, 43, 47

C++, 29

change, 39

circuits, 12

CNF, 10

coefficient of determination, 84
coefficient of variation, 81
combinatorial problem, 10, 76
complement, 23

constraint programming, 16, 76
constraint satisfaction problem, 11
correlation, 83

cryptography, 12

CSP, 11

CV, 81

d.f., 89
data structures, 14

INDEX

GSAT, 47
Regular-DP, 35
Regular-GSAT, 47, 51
Regular-WalkSAT, 47, 51
WalkSAT, 47
Davis-Putnam procedure, 14, 32
degree of freedom, 89
depth-first, 32
DIMACS, 118

easy-hard-easy, 57

ED, 87

essentially incomplete, 55

experimental results, 68, 80, 100,
110

exponential distribution, 87

file, 75, 118
format, 75, 118
regenf, 119

generator of Regular Random
3-SAT instances, 59
GSAT, 14

hardness distribution, 82
Horn SAT, 26

implementations, 15, 30
incomplete, 14, 30
interpretation, 11, 26
intractable problem, 13

Jeroslow-Wang rule

two-sided, 34

k-colourability problem, 78
Regular-SAT encoding, 79
SAT encoding, 78

Las Vegas algorithm, 55
least-mean-squares, 84
library, 16, 18, 75, 116
literal

regular, 10
literal counter, 47
local minima, 14, 40, 41, 45
local search, 13, 29

lower bound, 57

mapping, 26
MaxChanges, 39, 42
MaxTries, 39, 42

metaliteral, 52

negative, 25
node

branching, 33
noise parameter, 42
NP-complete, 13, 26

one-literal rule

regular, 31
operations research, 16, 76
optimization, 117
ordering

partial, 22

total, 22

134

INDEX

PAC, 55
partial ordering, 22, 23
pattern

easy-hard-easy, 57
phase transition, 16, 57, 59
pick-value, 40, 42
pick-variable, 39, 42
planning, 12, 117
polarity, 25
polynomially solvable, 13, 26
positive, 25
preamble, 118
probabilistically approximately

complete, 55

problem solving, 15
proof tree, 32
propositional variable, 10, 23

random walk, 43

regenf, 119

regression, 84

Regular 2-SAT, 13, 28

Regular 2-SATy, 28

regular branching rule, 31

regular clause, 24

regular CNF formula, 10, 23, 24
totally-ordered, 22

regular Horn clause, 25

regular Horn formula, 25

Regular Horn SAT, 13, 27

regular literal, 10, 24

complement, 23

135

regular one-literal rule, 31
Regular Random 3-SAT, 16, 59
instance, 59
regular sign, 24
negative, 25
positive, 25
Regular-DP, 14, 31
Regular-DP/RH-1, 35
Regular-DP/RH-2, 35
Regular-GSAT, 38
Regular-GSAT /Basic, 40
Regular-GSAT /Tabu, 41
Regular-SAT, 27
encoding, 13, 16, 79, 98, 109
instance, 10
Regular-SATy, 27
Regular-WalkSAT, 41
Regular-WalkSAT /Basic, 43
Regular-WalkSAT/G, 44
Regular-WalkSAT /G+Tabu, 45
Regular-WalkSAT /Novelty, 45
Regular-WalkSAT /R-Novelty, 46
repair counter, 47
repaired clause, 47
RH-1, 34
RH-2, 35
RLDs, 86
round robin problem, 94
Regular-SAT encoding, 98
SAT encoding, 96

rrn, 95

INDEX

run time, 33

run-length distributions, 86

SAT, 10
encoding, 78, 96, 106
satisfiability, 26
satisfiable, 26
SATLIB, 15, 117
scheduling, 12
search
local, 13, 29
systematic, 13, 29
sign, 10, 23
regular, 24
signature, 23
signed 2-CNF formula, 23
Signed 2-SAT, 28
signed binary clause, 23
signed clause, 23
empty, 23
signed CNF formula, 23
empty, 26
signed literal, 23
complement, 23
signed unit clause, 23
Signed-SAT, 27
Signed-SATy, 27
size, 24
subsumed literal, 24, 31
subsumption, 24
systematic search, 13, 29

tabu list, 41, 45

136

tabu search, 41, 45
threshold, 16, 18, 57, 59
location, 57-59

tie, 45

timetabling, 117

total ordering, 22

totally-ordered regular CNF for-
mulas, 22

tractable problem, 13

truth assignment, 11

truth value set, 11, 23

unsatisfiability, 30
unsatisfiability threshold, 58, 64
unsatisfiable, 26

upper bound, 57, 64

WalkSAT, 14

