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Abstract

Regular-SAT is the problem of deciding the satisfiability of a class of many-valued
propositional formulas called regular CNF formulas. A regular CNF formula is
a classical propositional conjunctive clause form based on a generalised notion
of literal, called regular literal. Given a truth value set N (|N| > 2) equipped
with a total ordering <, a regular literal is an expression of the form S : p, where
p is a propositional variable and S is a subset of N which is either of the form
Ti={j € N|j>i} or of the form i = {j € N|j < i} for some : € N. A given
many-valued interpretation (i.e., a mapping that assigns to every propositional
variable an element of the truth value set N) satisfies a regular literal S: p iff it
assigns to p a truth value that appears in S, and satisfies a regular clause iff it
satisfies at least one of its literals. A regular CNF formula is satisfiable iff there
exists an interpretation that satisfies all its clauses; otherwise, it is unsatisfiable.

In this thesis we focus on the design, implementation and analysis of systematic
and local search algorithms for Regular-SAT, and define a new and competitive
generic problem solving approach which consists in modeling hard combinatorial
problems as Regular-SAT instances and then solving the resulting encodings with
algorithms for Regular-SAT. In particular, we pay special attention to the defini-
tion of suitable data structures for representing formulas, heuristics for efficiently
exploring the search space, strategies for escaping from local minima in local search
algorithms, and suitable Regular-SAT encodings for modeling combinatorial prob-
lems.

Concerning systematic search algorithms we have designed and implemented
a variant of Regular-DP, which is a Davis-Putnam-style procedure for regular
CNF formulas. Concerning local search algorithms we have designed and im-
plemented two new families of algorithms, Regular-GSAT and Regular-WalkSAT,
which are natural generalizations of two prominent families —the GSAT and Walk-
SAT architectures— of local search algorithms for SAT. These are the first local
search algorithms described for regular CNF formulas. Our implementations of
Regular-DP, Regular-GSAT and Regular-WalkSAT are the only implementations
developed so far for solving Regular-SAT.
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We have also conducted a comprehensive experimental investigation for
(i) analysing and comparing Regular-DP, Regular-GSAT, and Regular-WalkSAT;
(ii) studying the existence of phase transitions in Regular Random 3-SAT; and
(iii) providing experimental evidence of the practical usefulness of the generic prob-
lem solving approach which consists in modeling hard combinatorial problems as
Regular-SAT instances and then solving the resulting encodings using algorithms
for Regular-SAT.

The results of the experimental investigation for Regular Random 3-SAT in-
stances provide experimental evidence of the existence of phase transitions in Reg-
ular Random 8-SAT. The results also indicate that the location of the threshold
increases logarithmically in the cardinality of the truth value set. We give a the-
oretical explanation of this fact by providing upper bounds on the location of the
unsatisfiability threshold.

The results of the experimental investigation for realistic problems
(k-colourability of graphs, round robin, and all-interval-series) provide experimen-
tal evidence of the practical usefulness of our generic problem solving approach,
and highlight the importance of defining suitable encodings. At least for the
combinatorial problems studied, our approach can outperform or compete with
state-of-the-art problem solving approaches.

As a byproduct of the experimental investigation, we have constructed the first
benchmark library, formed a representative sample of hard instances, for analysing

and comparing systematic and local search algorithms for Regular-SAT.
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Chapter 1

Introduction

1.1 Motivation

The satisfiability problem, or SAT, is the problem of determining if there is an
assignment of truth values to the variables in a classical propositional formula
in conjunctive normal form (CNF) that makes the formula true according to
the usual rules of interpretation. In this thesis we investigate Regular-SAT,
which is the satisfiability problem of a particular class of many-valued propo-
sitional formulas called regular CNF' formulas.

We focus on the design, implementation and analysis of systematic and
local search algorithms for Regular-SAT, and define a new and competitive
generic problem solving approach which consists in modeling hard combi-
natorial problems as Regular-SAT instances and then solving the resulting
encodings with algorithms for Regular-SAT.

A regqular CNF formula is a classical propositional conjunctive clause form
based on a generalised notion of literal, called regular literal. Given a do-
main N equipped with a total ordering <, a reqular literal is an expression
of the form S': p, where p is propositional variable and S, its sign, is a sub-
set of N which is either of the form 1i={j € N|j > i} or of the form
li={jeN|j<i} for some i € N. The informal meaning of S:p is “p
takes one of the values in S”.

11
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Let N be the set {0,1,2} with the standard order on natural numbers.
An example of regular CNF formula is

(0:prVIilippVT2:ps) A(T1:p1VI0:po),

which is represented in clause form as

{{\Lopla\l/l :p27T2 :p3}a{T1 :plaJ/O:pQ}}'

When N is considered as a truth value set, there is a natural generalization
of the classical concept of satisfiability. A truth assignment, or many-valued
propositional interpretation, is a mapping that assigns to every propositional
variable an element of N. It satisfies a regular literal S : p iff it assigns to p
a truth value that appears in S. It satisfies a regular clause iff it satisfies at
least one of its literals. A regular CNF formula is satisfiable iff there exists
a truth assignment that satisfies all its clauses; otherwise, it is unsatisfiable.

Regular CNF formulas turn out to be a generic representation for finite-
valued logics: given any finite-valued formula, one can derive a satisfiability
equivalent regular CNF formula in polynomial time using the methods de-
scribed in (Hdhnle, 1994b; Beckert et al., 2000b). Regular CNF formulas
offer a formalism for representing and solving the satisfiability problem of
any finite-valued logic, and avoid the development of specific clausal forms,
logical calculi and satisfiability algorithms for every finite-valued logic. Thus,
the algorithms described in this thesis are of particular interest to researchers
in the area of automated theorem proving in many-valued logics.

When S:p is interpreted as “p is constrained to the values in S”,
Regular-SAT turns out to be a constraint satisfaction problem (CSP). A CSP
consists of a finite set of variables X = {X;, X5,..., X}, an associated set
of finite domains D = {Dy, Ds, ..., D,} such that each X; takes values from
domain D;, and a finite set of constraints C = {C1, Cs, ... ,Ci}. Each C; is a
relation over some subset of Dis, i.e., C; C D; xD;, X...xD where the tu-
 Xijy-
A solution for a CSP is a complete assignment that satisfies every constraint.

UTOR

ples in C; are valid assignments of values to the variables X, X;,, ...
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In recent years, SAT has seen growing interest and activity, and has be-
come increasingly popular. This is due to different reasons: (i) it is the first
problem for which NP-completeness was established (Cook, 1971); (ii) it is
easy to think about (Freeman, 1995); (iii) it captures the essence of many dif-
ficult problems in disciplines such as artificial intelligence, computer science,
electrical engineering and operations research (Warners, 1999a); (iv) the dis-
covery of new systematic and local search procedures, as well as the memory
size and speed of contemporary computers, has extended the range and size
of SAT instances that can be efficiently solved; and (v) many real-world prob-
lems can be efficiently solved by encoding them into SAT (e.g. circuits (Warn-
ers and vanMaaren, 1999b; Li, 2000), cryptography (Massacci and Marraro,
2000), planning (Kautz and Selman, 1996; Kautz and Selman, 1999), and
scheduling (Crawford and Baker, 1994; Béjar and Manya, 2000)).

Motivated by the success of the results obtained for SAT, we will in-
vestigate whether similar, or even superior, results can be obtained for
Regular-SAT. There are several reasons to believe that we can obtain suc-

cessful results for regular CNF formulas:

e SAT is a special case of Regular-SAT. If we take N = {0,1} as truth
value set, we can transform any SAT instance I' into a logically equiv-
alent Regular-SAT instance I by replacing every positive (negative)

literal p (—p) occurring in I with 11 :p (J0: p).

e Proof methods such as resolution have been extended to regular CNF
formulas in a straightforward way (Hahnle, 1994b; H&hnle, 1996;
Manya, 1996).

e Satisfiability algorithms and heuristics for classical CNF formulas have
been generalized to regular CNF formulas quite naturally (Escalada-
Imaz and Manya, 1994; Hahnle, 1996; Manya, 1996; Manya et al.,
1998). As we will see, the good properties of the classical algorithms
remain in regular algorithms. This implies that for designing new algo-
rithms for regular CNF formulas we do not have to start from scratch,
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we can take advantage of the techniques that have proven to be suc-
cessful in the classical setting.

e Reqular-SAT, like SAT, is one of the syntactically and conceptually
simplest NP-complete problems. The design, implementation and anal-
ysis of algorithms for Regular-SAT tend to be easier than for other
NP-complete problems such as CSPs.

o As regular CNF formulas are a more expressive representation for-
malism than classical CNF formulas, some problems encoded as
Regular-SAT instances give rise to more compact encodings, which usu-
ally use a smaller number of propositional variables. It is expected that
this fact will extend the range and size of problems that can be solved
using Regular-SAT encodings and will have positive effects in the search

for a solution.

One of the objectives of this thesis is the design, implementation and
analysis of efficient algorithms for solving Regular-SAT. Since Regular-SAT
is NP-complete, we have that Regular-SAT is a computationally intractable
problem; the known complete algorithms for solving Regular-SAT require
exponential time in the worst case, and it is considered unlikely that an algo-
rithm exists that can solve all instances of Regular-SAT in polynomial time.
We can obtain computationally tractable problems if we restrict the language
of regular CNF formulas: Regular-SAT can be solved in polynomial time
(i) when the clauses contain at most two literals, Regular 2-SAT (Manya,
1996; Manya, 2000), and (ii) when the clauses contain at most one positive
literal (i.e., a regular literal containing a sign of the form 1), Regular Horn
SAT (Héhnle, 1996; Manya, 1996). Thus, a good algorithm for solving any
given Regular-SAT instance might mean an algorithm performing well on
average, or with high probability, or on a wide range of instances agreed to
be important (Cook and Mitchell, 1997).

In this thesis we will consider both systematic search and local search sat-
isfiability algorithms. Systematic search algorithms perform a search through
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the space of all possible truth assignments, in a systematic manner, to prove
that either a given formula is satisfiable (the algorithm finds a satisfying
truth assignment) or unsatisfiable (the algorithm explores the entire search
space without finding any satisfying truth assignment). By contrast, local
search algorithms usually do not explore the entire search space, and a given
truth assignment can be considered more than once. They start typically
with some randomly generated truth assignment and try to find a satisfying
interpretation by iteratively changing the assignment of one propositional
variable. Such changes are repeated until either a satisfying interpretation
is found or a pre-set maximum number of changes is reached. This pro-
cess is repeated as needed, up to a pre-set maximum number of times. The
main difference among local search algorithms is the manner of selecting the
variable whose assignment has to be changed.

One difficulty with local search algorithms is that they can get stuck
in local minima. Another difficulty is that they are incomplete and cannot
prove unsatisfiability: if a solution is found, the formula is declared satisfiable
and the algorithm terminates successfully; but if the algorithm fails to find
a solution, no conclusion can be drawn. However, if a formula is satisfiable,
it is often determined much faster using a local search algorithm than using
a systematic search algorithm.

Concerning systematic search algorithms we will deal with variants of
Regular-DP (Hédhnle, 1996; Manya et al., 1998), which is a Davis-Putnam-
style procedure for regular CNF formulas. In particular, we will define the
data structures for representing formulas that we used in our implementa-
tions, and a new branching heuristic for exploring more efficiently the search
space.

Concerning local search algorithms we will describe two new families of
algorithms, Regular-GSAT and Regular-WalkSAT, which are natural gener-
alizations of two prominent families —the GSAT (Selman et al., 1992) and
WalkSAT (Selman et al., 1994) architectures— of local search algorithms for
SAT. In particular, we will give a detailed description of the data structures
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that we have defined and used to represent formulas in our implementations,
and we will define several strategies for escaping from local minima.

Regular-GSAT and Regular-WalkSAT are, to our best knowledge, the
first families of local search algorithms described for regular CNF formulas.
Moreover, our efficient implementations of Regular-DP, Regular-GSAT and
Regular-WalkSAT are the only implementations developed so far for solving
Regular-SAT.

Another of the objectives of this thesis is the analysis and comparison
of satisfiability algorithms for Regular CNF formulas. Unfortunately, there
is no satisfactory theoretical method for analysing algorithms: worst-case
analysis does not provide a realistic view of the behavior of the algorithms,
and probabilistic analysis is too complex to handle, for satisfiability algo-
rithms, with the currently available techniques. The more suitable form of
analysing and comparing satisfiability algorithms remains experimental eval-
uation (Warners, 1999a).

We will perform an experimental investigation for analysing and com-
paring Regular-DP, Regular-GSAT and Regular-WalkSAT. The results of
this experimental investigation, for realistic problems, will provide exper-
imental evidence of the practical usefulness of the generic problem solv-
ing approach which consists in modeling hard combinatorial problems as
Regular-SAT instances and then solving the resulting encodings using algo-
rithms for Regqular-SAT.

There are publicly available sets of benchmark instances for SAT which

are widely used to conduct experimental investigations.! As no set of bench-

'One of the oldest is provided by the benchmark library developed for
the Second DIMACS International Algorithm Implementation Challenge in 1993:
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

Another is the benchmark library created for the International Compe-
tition and Symposium on Satisfiability Testing held in Beijing in 1996:
http://www.cirl.uoregon.edu/crawford/beijing/

SATLIB (Hoos and Stiitzle, 2000b) is the most complete and recently created benchmark
library: http://www.informatik.tu-darmstadt.de/AI/SATLIB/
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mark instances for Regular-SAT has been created so far, we will start our
experimental investigation by constructing a benchmark library formed by
a representative sample of hard Regular-SAT instances.

On the one hand, we will conduct the experimental investigation with in-
stances of Regular Random 3-SAT, which is a subproblem of Reqular-SAT. A
Regular Random 3-SAT instance contains a given number of regular clauses,
and each clause is produced by choosing uniformly at random three non-
tautological regular literals, with different propositional variable, from the
set, of literals that can be formed from a given set of propositional variables
and a given truth value set.

We will investigate the occurrence of phase transitions in Regular Random
3-SAT in order to identify a class of instances which are difficult to solve for
both systematic and local search algorithms. Moreover, we will perform a
series of experiments to study how the location of the threshold varies as
we increase the cardinality of the truth value set, and how Regular-DP,
Regular-GSAT and Regular-WalkSAT behave on the region of the phase
transition that contains the more computationally difficult instances.

On the other hand, we will conduct the experimental investigation with
instances of more realistic problems: the k-colourability problem of graphs,
the round robin problem, and the all-interval-series problem. These problems
have computationally difficult instances which are standard benchmarks in
the communities of constraint programming, operations research, and SAT.
We will consider the same set of benchmark instances that were used in
previous empirical studies in order to compare our experimental results with
other published results. We will also define suitable encodings for modeling
these hard combinatorial problems as SAT and as Regular-SAT instances.

The ultimate goal of the experimental investigation is to have a clear pic-
ture of the strengths and weaknesses of our generic problem solving approach;
improve our implementations, and design better heuristics and algorithms;
and provide experimental evidence that, at least for the combinatorial prob-

lems studied, our problem solving approach can outperform or compete with
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state-of-the-art problem solving approaches.

1.2 Contributions

Some of the results presented in this thesis have already been published as

journal articles or in conference proceedings:

(1) F. Manya, R. Béjar, and G. Escalada-Imaz. The satisfiability prob-
lem in regular CNF-formulas. Soft Computing: A Fusion of Foundations,
Methodologies and Applications, 2(3):116-123, 1998.

(2) R. Béjar and F. Manya. Phase transitions in the Regular Random 3-SAT
problem. In Proceedings of Primer Congrés Catala d’Intel.ligéncia Artificial,
CCIA’98, Tarragona, Spain, pages 39-45, 1998.

(3) R. Béjar and F. Manya. A comparison of systematic and local search
algorithms for regular CNF formulas. In Proceedings of the Fifth European
Conference on Symbolic and Quantitative Approaches to Reasoning with Un-
certainty, FCSQARU’99, London, England, pages 22-31. Springer LNAI
1638, 1999.

(4) R. Béjar and F. Manya. Phase transitions in the Regular Random
3-SAT problem. 1In Proceedings of the Eleventh International Symposium
on Methodologies for Intelligent Systems, ISM15°99, Warsaw, Poland, pages
292-300. Springer LNAT 1609, 1999.

(5) R. Béjar and F. Manya. Solving combinatorial problems with regular
local search algorithms. In Proceedings of the Sizth International Confer-
ence on Logic for Programming and Automated Reasoning, LPAR’99, Tbilisi,
Republic of Georgia, pages 33-43. Springer LNAI 1705, 1999.

(6) R. Béjar and F. Manya. Solving the round robin problem using propo-
sitional logic. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, AAAI-2000, Austin, USA, pages 262—-266, 2000.
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The main contributions of this thesis, and partly reported in the above

publications, can be summarized as follows:

e Design and implementation of a variant of Regular-DP, equipped with

a new branching heuristic.

e Design and implementation of two new families of local search algo-
rithms for Regular-SAT: Regular-GSAT and Regular-WalkSAT.

e Construction of the first benchmark library, formed a representative
sample of hard instances, for analysing and comparing systematic and

local search algorithms for Regular-SAT.

e Experimental evidence of the existence of phase transitions in Regular
Random 3-SAT, as well as study of the change of the location of the

threshold as the cardinality of the truth value set is varied.

e Development of a new generic problem solving approach, which con-
sists in using the logic of regular CNF formulas to model combinatorial
problems and then solving the resulting encodings using regular satis-

fiability algorithms.

e The first experimental evaluation of algorithms for Regular-SAT.

Within the empirical study, our original results include:

— evidence that our branching heuristic for Regular-DP outperforms
previous branching heuristics on Regular Random 3-SAT instances

of the hard region of the phase transition.

— evidence that local search algorithms (Regular-GSAT and
Regular-WalkSAT) outperform systematic search algorithms
(Regular-DP) on satisfiable Regular Random 3-SAT instances of
the hard region of the phase transition.

— evidence that our problem solving approach is a very competi-
tive approach. For the round robin problem, the performance
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of our Regular-SAT-based approach is similar to the performance
of the SAT-based approach. For the k-colourability problem of
graphs and the all-interval-series problem, our Regular-SAT-based
approach outperforms the SAT-based approach.

— evidence that the round robin problem can be efficiently solved
by reducing it to a satisfiability problem. We have provided
the first solutions of this problem using both a SAT-based and
a Regular-SAT-based problem solving approach.

1.3 Thesis overview

The thesis is organized in six chapters and one appendix, whose contents are

summarized below.

Chapter 1: Introduction

In this chapter we first discuss and motivate the importance of design-
ing, implementing and evaluating satisfiability algorithms for regular
CNF formulas, as well as of encoding hard combinatorial problems as
Regular-SAT instances. Then, we describe the objectives, main results

and structure of the thesis.

Chapter 2: Regular CNF formulas

In this chapter we present regular CNF formulas as a subclass of signed
CNF formulas, define formally their syntax and semantics, and summa-
rize the main complexity results of the satisfiability problem for both
kinds of formulas.

Chapter 3: Satisfiability Algorithms

In this chapter we give a detailed description of the systematic and local
search algorithms for Regular-SAT that we have designed and imple-
mented in this thesis. Concerning systematic search algorithms we de-
scribe Regular-DP, which is a Davis-Putnam-style procedure for regular
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CNF formulas. Concerning local search algorithms we describe two new
families of algorithms, Regular-GSAT and Regular-WalkSAT, which
are natural generalizations of two prominent families —the GSAT and
WalkSAT architectures— of local search algorithms for SAT. In partic-
ular, we pay special attention to the definition of clever heuristics for
exploring the search space and suitable data structures for representing

formulas.

Chapter 4: Phase Transition in Regular Random 3-SAT

In this chapter we first provide experimental evidence of the existence
of phase transitions in Regular Random 3-SAT when the satisfiability of
the instances is determined with Regular-DP. Then, we report a series
of experiments that indicate that the location of the threshold increases
logarithmically in the cardinality of the truth value set. We also give
a theoretical explanation of this fact by providing upper bounds on
the location of the unsatisfiability threshold. Finally, we compare the
performance of Regular-DP,; Regular-GSAT, and Regular-WalkSAT on

instances of the hard region of the phase transition.

Chapter 5: Experimental Investigation

In this chapter we describe a comprehensive experimental investiga-
tion conducted for evaluating the algorithms for Regular-SAT that we
have designed and implemented, as well as for providing experimen-
tal evidence of the practical usefulness of the generic problem solving
approach which consists in modeling hard combinatorial problems as
Regular-SAT instances and then solving the resulting encodings using
algorithms for Regular-SAT. The combinatorial problems considered
in the experimental investigation were the k-colourability problem of

graphs, the round robin problem, and the all-interval-series problem.

Chapter 6: Conclusions
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In this chapter we briefly summarize the main contributions of the the-
sis, and point out some open problems and future research perspectives
that we plan to tackle in the near future.

Appendix A: Format of Regular CNF Formulas

In this appendix we describe the format that a file containing a regular
CNF formula must have. This file format is accepted by the regular
satisfiability algorithms described in this thesis, and is an adaptation
of the file format defined by the DIMACS Challenge Committee for
classical CNF formulas.

Finally, the reader can find the references appearing in the text and the

index.



Chapter 2

Regular CNF Formulas

2.1 Introduction

In this chapter we present regular CNF formulas as a subclass of signed
CNF formulas, define formally their syntax and semantics, and summarize
the main complexity results of the satisfiability problem for both kinds of
formulas. The main difference between signed and regular CNF formulas lies
in the notion of literal. In signed CNF formulas, a literal is an expression
of the form S : p, where p is a propositional variable and S, its sign, is any
subset of a non-empty, finite and not necessarily ordered truth value set.

In our informal definition of the logic of regular CNF formulas we assumed
that a total ordering was associated with the truth value set (cf. page 11).
However, regular CNF formulas over truth value sets equipped with a partial
ordering have also been considered in the literature (e.g. (Beckert et al.,
1999; Beckert et al., 2000a; Lu et al., 1993; Lu et al., 1998; Sofronie-
Stokkermans, 2000)). Thus, in this chapter we will use the term totally-
ordered reqular CNF formulas for formulas over domains equipped with a
total ordering, but as all the contributions of this thesis are for this particular
class of formulas, we do not make a distinction between totally-ordered and
partially-ordered formulas in the remaining chapters.

The reader interested in a recent survey on signed and regular CNF for-

23
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mulas is invited to consult (Beckert et al., 2000b). Surveys on deduction
methods for many-valued logics that contain results of signed and regular
CNF formulas are (Héhnle, 1994a; Hahnle and Escalada-Imaz, 1997; Héhnle,
2001).

This chapter is organized as follows. In Section 2.2 we define formally
the logic of signed and regular CNF formulas. In Section 2.3 we review the
main complexity results of the satisfiability problem for signed CNF formulas
and their subclasses. In the sections below we follow closely the presentation
of (Beckert et al., 2000b; Beckert et al., 2000a).

2.2 Syntax and semantics of signed and

regular CNF formulas

We assume that a signature, i.e., a denumerable set of propositional variables,
is given. To form signed literals, the propositional variables are adorned with

a sign that consists of a finite set of truth values.

Definition 2.1 A truth value set i4s a non-empty, finite set
N = {iy,i9,... ,in} where n € N. The cardinality of N is denoted by |N|
and |N| > 2. A partial order < is associated with N, which may be the
empty order.

Definition 2.2 A sign is a set S C N of truth values. A signed literal is an
expression of the form S :p, where S is a sign and p is a propositional vari-
able. The complement of a signed literal S : p, denoted by S : p, is (N \ S) : p.

A signed clause is a finite set of signed literals. A signed clause con-
taining exactly one literal is called a signed unit clause; and a signed clause
containing exactly two literals is called a signed binary clause. The empty
signed clause is denoted by O.

A signed CNF formula is a finite set of signed clauses. A signed CNF
formula whose clauses are binary is called a signed 2-CNF formula.
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The clauses of a signed CNF formula are implicitly conjunctively con-
nected; and the literals in a signed clause are implicitly disjunctively con-
nected. Sometimes we will use S;:p; V---V Sg:pr to represent a signed
clause of the form {S; : p1,...,Sk: pr}-

Example 2.1 Let N = {1,2,3} be ordered using the standard order on natu-

ral numbers. The following expression is an example of signed CNF formula:

{{{2’ 3} ‘D3, {17 2} :p4}7 {{1} D3, {27 3} D3, {3} :p2}a
{{1} ‘D3, {3} ‘D3, {2} ‘D2, {2} :p4}7 {{2’ 3} ‘D3, {3} :p4}’
{{2’ 3} ‘P3, {1’ 3} :p4}’ {{3} ‘D3, {1= 2} :p2}}

Definition 2.3 A signed literal S:p subsumes a signed literal S':p', denoted
by S:pC S":p, iff p=p and S C 5.

Definition 2.4 The size of a signed clause C, denoted by |C|, is its cardi-
nality. The size of a signed formula T, denoted by |U'|, is the sum of the sizes

of its signed clauses.

Definition 2.5 For each element 1 of the truth value set N, let 11 denote
the sign {j € N | 7 > i} and let | i denote the sign {j € N | j < i}, where <
is the (non-empty) partial order associated with N. A sign S is regular if it
15 tdentical to 11 or to | i for somei € N.

A signed literal S:p is a regular literal if (a) its sign S is regular or
(b) its sign S = S is the complement of a reqular sign S'. A signed clause
(a signed CNF formula) is a regular clause (a regular CNF formula) if all

its literals are regular.

Observe that the signs of the regular literals occurring in totally-ordered
regular CNF formulas are always regular signs. This is due to the fact that
the complement of a regular sign is also a regular sign in case N is equipped
with a total order. Because of this, in the remaining chapters we assume
that the signs of regular literals are either of the form 14 or of the form |:
for some 7 € N. As shown in Example 2.2, this does not happen when N is

equipped with a partial order.
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Example 2.2 Let the truth value set N = {1,2,3,4} be ordered as shown
below, i.e., we use the standard order on natural numbers except that 1 and 2

are incomparable.

4

/\
1 2
Then, the signs 11 = {1,3,4} and |1 = {1} are regular; and 11 = {2}
and 13 = {1,2} are complements of regular signs. The signs {3} and {1,4}
are neither regular nor complements of regular signs.
The complement 13 of the reqular sign 13 is not regular as it cannot be

represented as 11 or i for any i € N. Thus, a reqular literal can have a sign

that is not reqular (but is the complement of a regular sign).

Definition 2.6 A regular sign S is of positive (resp. negative) polarity if
it can be represented as 1i (resp. i) for some i € N. A regular literal is of
positive (negative) polarity if its sign is of positive (negative) polarity.

A reqular clause is a regular Horn clause if it contains at most one literal
of positive polarity and the signs of all its other literals are complements of
signs with positive polarity. A regular CNF formula is a regular Horn formula

if all its clauses are regular Horn clauses.

Example 2.3 Using the truth value set N and the associated ordering from
the previous ezample, the clause 11:p, the clause 12:pV 13:q, and the
clause 14 :q are Horn clauses. The regular clause T1:pV 12:q is not a

Horn clause as it contains more than one literal of positive polarity.

The polarities assigned to regular literals give rise to the generalized no-
tion of Horn clauses introduced in Definition 2.6. The particular case where
N is lattice-ordered and S is an order filter is investigated in annotated
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logic programming (Kifer and Subrahmanian, 1992) (there, S is called an
annotation); therefore, annotated logic programs can be considered to be a

particular class of signed CNF formulas.

Definition 2.7 An interpretation is a mapping that assigns to every propo-
sitional variable an element of the truth value set. An interpretation I sat-
isfies a signed literal S:p iff I(p) € S. It satisfies a signed clause C iff it
satisfies at least one of the literals in C; and it satisfies a signed CNF for-
mula I iff it satisfies all clauses in I.

A signed CNF formula (a signed clause) is satisfiable iff it is satisfied by
at least one interpretation; otherwise it is unsatisfiable.

By definition, the empty signed clause is unsatisfiable and the empty
signed CNF formula is satisfiable.

The main semantic difference between classical and signed CNF formulas
arises in the definition of interpretation, where the number of truth values
is greater than two. Otherwise, the concept of satisfiability of signed clauses
and CNF formulas is the same as the classical one, but with respect to many-

valued interpretations.

2.3 Satisfiability problems of signed and

regular CNF formulas

It is well-known that SAT (the problem of deciding whether an arbitrary
classical CNF formula is satisfiable) is NP-complete (Cook, 1971). It is,
however, polynomially solvable under certain restrictions. Two important
and well investigated subproblems that admit linear-time algorithms are
Horn SAT (SAT in case all clauses of the formula have at most one positive
literal) (Dowling and Gallier, 1984; Minoux, 1988; Escalada-Imaz, 1989a;
Scutella, 1990; Ghallab and Escalada-Imaz, 1991), and 2-SAT (SAT in case
all clauses of the formula have at most two literals) (Even et al., 1976;
Aspvall et al., 1979; Escalada-Imaz, 1989b; del Val, 2000).
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In this section we first introduce the satisfiability problem of arbitrary
signed and regular CNF formulas. Then, we summarize the known results
on the complexity of Horn SAT and 2-SAT in the signed setting. Since
arbitrary signed literals do not have the concept of polarity, we will consider
Horn SAT only for regular CNF formulas.

Satisfiability problems of signed and regular CNF formulas have as input
parameters both the formula I' to be tested for satisfiability and the truth
value set N. Thus, Signed-SAT (Regular-SAT) is the problem of deciding for
an arbitrary signed (regular) CNF formula I' over an arbitrary truth value
set N, whether there is an interpretation over N satisfying I'. One also con-
siders decision problems where N is not an input parameter but fixed, which
is denoted by attaching the fixed truth value set N as an index to the name
of the decision problem. Thus, given a fixed truth value set N, Signed-SATy
(Regular-SATy) is the problem of deciding, for a signed (regular) CNF for-
mula I over NV, whether there is an interpretation over N satisfying I'. In
case N is not an input parameter, there is the additional computational cost
of determining the finite set of different truth values that occur in I'.

Signed-SAT, Signed-SATy, Regular-SAT, and Regular-SATy are
NP-complete: they clearly belong to NP —a non-deterministic algorithm
can guess a satisfying interpretation and check that it satisfies the formula
in polynomial time—, and they can be proved to be NP-hard by reducing
SAT to them.

2.3.1 The Regular Horn SAT problem

Horn SAT for totally-ordered regular CNF formulas was investigated first: it
is known that Regular Horn SATy can be solved in time linear in the size n
of the formula, and Regular Horn SAT can be solved in time proportional
to nlogn in the worst case (Hiahnle, 1996; Manya, 1996). An algorithm for
deciding the satisfiability of a particular subclass of regular Horn formulas
appeared before (Escalada-Imaz and Manya, 1994).

If N is a finite lattice, Reqular Horn SAT is solvable in time linear in the
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size of the formula and polynomial in the cardinality of N (Beckert et al.,
1999). For distributive lattices, the more precise bound n - |[N|* was found
independently (Sofronie-Stokkermans, 1998).

2.3.2 The Signed 2-SAT problem

Signed 2-SATy for |N|>3 and, thus, Signed 2-SAT are both
NP-complete (Manya, 1996; Beckert et al., 1999). However, Signed 2-SAT
is polynomially solvable in case all the signs occurring in the formula are
singletons (Manya, 1996; Manya, 2000).

Regular 2-SATy and Regular 2-SAT are NP-complete (Beckert et al.,
2000a). However, Regular 2-SATy and Regular 2-SAT are polynomially solv-
able in case the ordering of N is total (Manya, 1996; Manya, 2000). Recently,
the complexity of Regular 2-SATx for non-total orderings has been investi-
gated in more detail, and it is known that: (i) Regular 2-SATy and Regular
2-SAT are NP-complete even if the truth value set N is a complete, distribu-
tive or modular lattice; and (ii) these problems are polynomially solvable in
case N is a lattice and all signs occurring in the formulas are regular (signs

that are complements of regular signs but are not regular themselves are
excluded).



Chapter 3

Satisfiability Algorithms

3.1 Introduction

In this chapter we give a detailed description of the systematic and lo-
cal search algorithms for Regular-SAT that we have designed and imple-
mented in this thesis. Concerning systematic search algorithms we de-
scribe Regular-DP (Héhnle, 1996; Manya et al., 1998), which is a Davis-
Putnam-style procedure for regular CNF formulas. Concerning local search
algorithms we describe two new families of algorithms, Regular-GSAT and
Regular-WalkSAT, which are natural generalizations of two prominent fam-
ilies —the GSAT and WalkSAT architectures— of local search algorithms
for SAT. In particular, we pay special attention to the definition of clever
heuristics for exploring the search space and suitable data structures for
representing formulas, because these factors are decisive to get efficient im-
plementations. The programming language used in our implementations is
C++.

Systematic search algorithms perform a search through the space of all
possible truth assignments, in a systematic manner, to prove that either a
given formula is satisfiable (the algorithm finds a satisfying truth assignment)
or unsatisfiable (the algorithm explores the entire search space without find-
ing any satisfying truth assignment). By contrast, local search algorithms
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usually do not explore the entire search space, and a given truth assignment
can be considered more than once. They start typically with some randomly
generated interpretation and try to find a satisfying interpretation by itera-
tively changing the assignment of one propositional variable. Such changes
are repeated until either a satisfying interpretation is found or a pre-set max-
imum number of changes is reached. This process is repeated as needed, up
to a pre-set maximum number of times. The main difference among local
search algorithms is the manner of selecting the variable whose assignment
has to be changed.

One difficulty with local search algorithms is that they can get stuck in
local minima. Another difficulty is that they are incomplete and cannot prove
unsatisfiability: if a solution is found, the formula is declared satisfiable and
the algorithm terminates successfully; but if the algorithm fails to find a
solution, no conclusion can be drawn. However, if a formula is satisfiable, it
is often determined much faster using a local search than using a systematic
search algorithm.

As far as we know, Regular-GSAT and Regular-WalkSAT are the first
families of local search algorithm described for regular CNF formulas.
Moreover, our efficient implementations of Regular-DP, Regular-GSAT and
Regular-WalkSAT are the first implementations developed so far for solving
Regular-SAT.

The algorithms for Regular-SAT described in this thesis are generaliza-
tions of well-known algorithms for SAT. In case |N| = 2, our regular al-
gorithms work exactly as their classical counterparts and exhibit identical
behaviour.

This chapter is organized as follows. In Section 3.2 we describe
Regular-DP and define a new branching heuristic; in Section 3.3 we describe
the data structures used in our implementation of Regular-DP; in Section 3.4
we describe the Regular-GSAT architecture; in Section 3.5 we describe the
Regular-WalkSAT architecture; and in Section 3.6 we first describe the data
structures of the latest versions of (classical) GSAT and WalkSAT, and then
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the data structures of Regular-GSAT and Regular-WalkSAT used in our im-
plementations; and in Section 3.7 we discuss which local search algorithms
for Reqular-SAT are probabilistically approximately complete.

3.2 The Regular-DP procedure

In this section we first describe Regular-DP (Hihnle, 1996) and then a new
branching heuristic. Regular-DP is based on the following rules:

Regular one-literal rule: given a regular CNF formula I' containing a regular

unit clause {S:p},

1. remove all clauses containing a literal subsumed by {S:p}; i.e., all

clauses containing a literal S’:p such that S C S’;

2. delete all occurrences of literals S”:p such that SN S"” = (.

Regular branching rule: reduce the problem of determining whether a regu-
lar CNF formula I' is satisfiable to the problem of determining whether
I'U {S:p} is satisfiable or I' U {S:p} is satisfiable, where S:p is a reg-

ular literal occurring in I'.

The pseudo-code of Regular-DP is shown in Figure 3.1. It returns true
(false) if the input regular CNF formula I is satisfiable (unsatisfiable). First,
it applies repeatedly the regular one-literal rule and derives a simplified for-
mula I'". Once the formula cannot be further simplified, it selects a regular
literal S:p of IV, applies the branching rule and solves recursively the prob-
lem of deciding whether I'" U {S:p} is satisfiable or I U {S:p} is satisfiable.
As such subproblems contain a regular unit clause, the regular one-literal
rule can be applied again. Regular-DP terminates when some subproblem
is shown to be satisfiable by deriving the regular empty CNF formula or all
the subproblems are shown to be unsatisfiable by deriving the regular empty
clause in all of them. In the pseudo-code, I's., denotes the formula obtained
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procedure Regular-DP

Input: a regular CNF formula I’
Output: true if T is satisfiable and false if I' is unsatisfiable
begin
if I' = () then return true;
if O €T then return false;
/* regular one-literal rule*/
if T’ contains a unit clause {S’:p} then Regular-DP(I'g/.,);
let S:p be a regular literal occurring in T’
/* regular branching rule */
if Regular-DP(I's.,) then return true;
else return Regular-DP(I's, );

end

Figure 3.1: The Regular-DP procedure

after applying the regular one-literal rule to a regular CNF formula I' using
the regular unit clause {S:p}.

Regular-DP can be viewed as the construction of a proof tree using a
depth-first strategy. The root node contains the input formula and the re-
maining nodes represent applications of the regular one-literal rule. Other-
wise stated, there is one node for each recursive call of Regular-DP. When all
the leaves contain the regular empty clause, the input formula is unsatisfi-
able. When some leaf contains the regular empty formula, the input formula
is satisfiable.

The (classical) Davis-Putnam procedure (Davis and Putnam, 1960;
Davis et al., 1962) is a particular case of Regular-DP. In order to obtain
the Davis-Putnam procedure, we take N = {0,1} and represent a classical

positive (negative) literal p (—p) by the regular literal 11 :p ({0 : p).
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r
Fru{io:p} FUu{tl:p}
{{40: ps}, {{41:p2}, {12:ps},
{TQ:pZ’T1:p3}’ {T2:p25T1:p3}3
{12:p2,10: p3}} {12:p2,10: p3}},
{40:po} {41:p2}

{11:p3}, {40 p3}} {{t2:ps}, {t1:ps}, {1 0:ps}}

{t1:ps} {12:ps}
O O

Figure 3.2: A proof tree created by Regular-DP

Example 3.1 Let N = {0,1,2}, and let T be the following reqular CNF
formula:

{{{0:p, 41 :po}, {11 :p1, L0}, {40 p1, 12 p3},
{TQ:anT]- :p3}a{T2:p2a\L0:p3}}

Figure 3.2 shows the proof tree created by Reqular-DP when the input is I.
Edges labelled with o reqular CNF' formula indicate the application of the
reqular branching rule and the regular one-literal rule using the regular unit
clause in the label. The nodes that contain a reqular CNF formula resulting
of first applying the reqular branching rule and then applying the reqular
one-literal rule are called branching nodes. FEdges labelled with a reqular unit

clause indicate the application of the reqular one-literal rule using that clause.

In our experimental investigation we will use both the run time and the
number of branching nodes as a measure of the computational difficulty of
solving Regular-SAT instances with Regular-DP. We prefer branching nodes
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to arbitrary nodes because the worst-case time complexity of applying the
regular one-literal is linear in the length of the regular CNF formula.

The performance of Regular-DP depends dramatically on the heuris-
tic that selects the next literal to which the branching rule is applied. A
branching heuristic for Regular-DP, which is an extension of the two-sided
Jeroslow-Wang rule, was defined in (Hdhnle, 1996): given a regular CNF
formula I', such a heuristic selects a regular literal L occurring in I' that

maximizes J(L) + J(L), where

JLy= > 279 (3.1)
ar L CL
L'eCerT
L is the complement of literal L, and L' C L denotes that literal L' subsumes
literal L.
Taking into account the work of (Hooker and Vinay, 1995) on the
Jeroslow-Wang rule in the classical setting, we propose the following defi-
nition of J(L):

mw= Y ( 11 M) | (3.2
ar’ L' Cc L \SpEC 2N =1)
L'eCeTl
Héhnle’s definition of J(L) assigns a bigger value to those regular literals
L subsumed by regular literals L' that appear in many small clauses. This
way, when Regular-DP branchs on L, the probability of deriving new regular
unit clauses is bigger. Our definition of J(L) takes into account the length of
regular signs as well. This fact is important because regular literals with small
signs have a bigger probability of being eliminated during the application of
the regular one-literal rule. Observe that in the case that [N| = 2 we get the
same equation.
In the following we will refer to the branching heuristic that uses (3.1)
to calculate J(L) + J(L) as RH-1, and the branching heuristic that
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uses (3.2) as RH-2. In Section 4.6 we provide experimental evidence that
Regular-DP with RH-2 (Regular-DP/RH-2) outperforms Regular-DP with
RH-1 (Regular-DP/RH-1) on a class of randomly generated instances.

3.3 Data structures for Regular-DP

In this section we describe the data structures that we have used in our
implementation of Regular-DP. These data structures, inspired by the data

structures defined in (Manya, 1996), are the following ones:

e A regular CNF formula is represented as a doubly-linked list of its

clauses (clause list).

e A regular clause is represented by a clause head, which has a counter
of its length, and a doubly-linked list of its literals (clause literal list).

Each literal has a pointer to the clause head.

e We maintain a list of regular literals occurring in regular unit clauses
(unit-clause literal list).

e We maintain a doubly-linked list of the different variables occurring in
the formula (variable list), but we also provide direct access to such

variables using an array of pointers.

e For each variable p we have a doubly-linked list of the different positive
signs (positive sign list) and a doubly-linked list of the different negative
signs (negative sign list) occurring in regular literals with the variable
p. For each sign S we have in turn a doubly-linked list of all the
occurrences of literals of the form S :p (literal occurrence list). Sign

lists are sorted by cardinality of signs.

Example 3.2 Figure 3.3 shows the data structure defined above for the fol-
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Figure 3.3: Data structures for Regular-DP

lowing regular CNF' formula:

{{TOE) : plaT03 : pQ}a {\LO’Y p15T04 : anTos : p3}a
{10.6: p1},{10.3: ps}}

Observe that if we see the representation of the formula as a matriz, rows

are literal occurrence lists and columns are clause literal lists.

In the following we will examine the worst-case time complexity of the

main operations appearing in procedure Regular-DP.
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operation complexity
r="90 o)
Oe'r 0(1)
RH-1(T) o(r))
RH-2(T") o(IT)
regular-one-literal-rule(T") | O(|T'|)

We maintain a global counter of clauses and so we can decide in constant
time if ' = 0).

For each variable p, we have a pointer to the positive (resp. a pointer to
the negative) literal S : p of the unit-clause literal list, where S is the sign
with smallest cardinality among the positive (resp. negative) literals S’:p of
regular unit clauses of the form {S’:p}. When a regular unit clause {S:p} is
deduced, and before inserting S:p in the unit-clause literal list, we check if
the intersection of S and the sign of the literal, in the unit-clause literal list,
of opposite polarity with smallest cardinality is empty. As we have direct
access to the latter literal and to p, the test O € I" needs constant time.

The election of the next literal to which the branching rule is applied
with heuristic RH-1 (RH-2) is done in such a way that every regular literal
occurring in I' is visited exactly once. Thus, the worst-case time complexity
of heuristic RH-1 (RH-2) is in O(|T')).

The worst-case time complexity of applying the regular one-literal rule to
a regular CNF formula I" using a regular unit clause {S:p} is in O(|T'|):

e Removing regular clauses of the form {---,S":p,---}, where S C 5’| is
proportional to the length of the clauses removed: direct access (i) to
the variable p is provided by the array of pointers, (ii) from p to the
literal occurrence lists of literals of the form S’:p is provided by the
ordered sign lists, and (iii) to the clauses with literal S":p is provided
by literal occurrence lists; each literal in the clause, except for S’:p, is
unlinked from its literal occurrence list in constant time and the clause
head is unlinked from the clause list in constant time; and S’ is unlinked

from the corresponding sign list in constant time.
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e Removing regular literals of the form S”:p, where S” NS = (), is pro-
portional to the number of occurrences of this literal: each occurrence
of a literal S”:p is unlinked from its clause literal list in constant time
and S” is unlinked from the corresponding sign list in constant time
and the counter of the clause is decremented in constant time since
each literal has a pointer to its clause head. When removing regular
clauses and literals, if both sign lists become empty we also unlink the

variable from the variable list.

e Detecting regular unit clauses is done in constant time, since the clause

head has a counter of the clause length.

Notice that when we apply the regular one-literal rule to a formula I,
we modify the data structures of I' for obtaining a formula I''. We maintain
a stack where we insert the literals of the regular unit clauses used by the
regular one-literal rule. This way, we have just one formula in memory and
avoid the cost of copying I for obtaining I''. When the algorithm backtracks,
it obtains I' from [ undoing the operations in reverse order using the infor-
mation in the mentioned stack and recovering the pointers unlinked during
the creation of I''. Otherwise, the memory space required would be quadratic

in the size of the formula in the worst case.

3.4 The Regular-GSAT architecture

In this section we give a detailed description of two local search algorithms
—Regular-GSAT /Basic and Regular-GSAT /Tabu— which are based on the
Regular-GSAT architecture. Regular-GSAT is an extension of the GSAT
architecture (Selman et al., 1992) to the framework of regular CNF formulas.

Given a regular CNF formula I'; Regular-GSAT starts with a randomly
generated interpretation, and tries to reduce the number of unsatisfied clauses
by iteratively choosing one propositional variable occurring in I' and then

changing its truth assignment. Such changes are repeated until either a
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satisfying interpretation is found or a pre-set maximum number of changes
(MaxChanges) is reached. This process is repeated as needed, up to a pre-set

maximum number of times (MaxTries).

procedure Regular-GSAT

Input: a regular CNF formula I', MaxChanges and MaxTries
Output: a satisfying interpretation of T', if found
begin
for 7 := 1 to MaxTries
I := a randomly generated interpretation for I';
for 7 := 1 to MaxChanges
if I satisfies I' then return I;
S := select-Regular-GSAT( T, T );
p' := pick_variable( {p | (p,k) € S} );
k' .= pick_value( {k | (p',k) € S} );
I := I with the truth assignment of p’ changed to k';
end for
end for
return “no satisfying interpretation found”;

end
Figure 3.4: The Regular-GSAT architecture

The pseudo-code of Regular-GSAT is shown in Figure 3.4. Function
select-Regular-GSAT returns a subset of the set of all possible changes that
can be applied to the current interpretation. This subset contains the best
changes that can be applied in a given step; and only one of such changes is
chosen and applied in each step. Every change is represented by a pair (p, k),
where p is a propositional variable occurring in the input formula I' and &
is a truth value of the set N of truth values occurring in I'. The meaning
of a change (p,k) is: the current assignment of p is changed to k. Func-
tion pick-variable chooses, at random, one propositional variable and func-



Satisfiability Algorithms 41

function select-Regular-GSAT

Input: a regular CNF formula I' and an interpretation I
Output: a set S of variable-value pairs
begin
u' := maz ( {decrease((p,k),T,I) | (p,k) € changes(T,I)} );
S = {(p,k) | (p,k) € changes(F I) and decrease((p,k),T,I) = u'};
return S

end

Figure 3.5: Function select-Regular-GSAT for Regular-GSAT /Basic

tion pick-value chooses, at random, one truth value. The difference between
Regular-GSAT /Basic (cf. Section 3.4.1) and Regular-GSAT /Tabu (cf. Sec-
tion 3.4.2) lies in the strategy followed to construct the set returned by
select-Regular-GSAT.

3.4.1 Regular-GSAT /Basic

The algorithm Regular-GSAT /Basic uses the function select-Regular-GSAT
whose pseudo-code is shown in Figure 3.5. Function decrease((p, k), T, I) re-
turns the difference between the total number of regular clauses not satisfied
by I' and the total number of regular clauses not satisfied by I, where I’ is
the interpretation that is identical to I except that the truth assignment of
p is changed to k; and changes(I', I) denotes the set of all possible changes
that can be applied to the current interpretation; i.e., the set of the pairs
(p, k) such that (i) p is a propositional variable occurring in I', and (ii) & is
a truth value of the set NV of truth values occurring in I' such that I(p) # k.
Thus, select-Regular-GSAT returns the subset of changes(I',I) formed by
those changes that produce the maximum decrease in the total number of
unsatisfied clauses.

Observe that the maximum decrease may be zero, or even negative, and
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therefore the algorithm can get stuck in local minima. To cope with this
problem, the most basic strategy is to restart the algorithm after a fixed
number of changes if the algorithm does not find a solution. This is the
strategy used by Regular-GSAT /Basic.

3.4.2 Regular-GSAT /Tabu

Regular-GSAT /Tabu is an extension of Regular-GSAT /Basic which incor-
parates a tabu search mechanism (Glover, 1989; Glover and Laguna, 1997) for
preventing the algorithm to get stuck in local minima. Regular-GSAT /Tabu
maintains a list of a fixed size ¢, called tabu list, that contains the last ¢
propositional variables whose assignment has been modified. The way of
preventing the algorithm to get stuck in local minima is to forbid changing
the assignment of the variables of the tabu list.

Function select-Regular-GSAT for Regular-GSAT /Tabu is the same as in
Figure 3.5, but now changes(I', I) denotes the set of the pairs (p, k) such
that (i) p is a propositional variable occurring in I" which is not in the tabu
list, and (ii) & is a truth value of the set N of truth values occurring in T’
such that I(p) # k.

3.5 The Regular-WalkSAT architecture

In this section we give a detailed description of a family of local
search  algorithms —Regular-WalkSAT/Basic,  Regular-WalkSAT/G,
Regular-WalkSAT /G+Tabu, Regular-WalkSAT /Novelty, and
Regular-WalkSAT /R-Novelty— which are based on the Regular-WalkSAT
architecture. Regular-WalkSAT is an extension of the WalkSAT architec-
ture (Selman et al., 1994) to the framework of regular CNF formulas.
Given a regular CNF formula I', Regular-WalkSAT starts with a ran-
domly generated interpretation, and tries to find a satisfying interpretation
by iteratively choosing, at random, one clause C' of I' not satisfied by the
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procedure Regular-WalkSAT

Input: a regular CNF formula I', MaxChanges, MaxTries, and w € [0, 1]
Output: a satisfying interpretation of T', if found
begin
for 7 := 1 to MaxTries
I := a randomly generated interpretation for I';
for 7 := 1 to MaxChanges
if I satisfies I' then return I;
Pick one unsatisfied clause C' from I’
S := select-Regular-WalkSAT(T', C, I, w );
p' := pick_variable( {p | (p,k) € S} );
k' := pick_value( {k | (p',k) € S} );
I := I with the truth assignment of p’ changed to k';
end for
end for
return “no satisfying interpretation found”;

end

Figure 3.6: The Regular-WalkSAT architecture

current interpretation and then changing the truth assignment of one propo-
sitional variable occurring in C. Such changes are repeated until either a
satisfying interpretation is found or a pre-set maximum number of changes
(MaxChanges) is reached. This process is repeated as needed, up to a pre-set
maximum number of times (MaxTries).

The pseudo-code of Regular-WalkSAT is shown in Figure 3.6. Function
select-Regular-WalkSAT returns the set of best changes that can be applied
to the unsatisfied clause C chosen by Regular-WalkSAT; this set is a subset of
the set of all changes that let C' become satisfied by the new interpretation.
Function pick-variable chooses, at random, one propositional variable and

function pick-value chooses, at random, one truth value. The parameter
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function select-Regular-WalkSAT
Input: a regular CNF formula I', a clause C, an interpretation I, and w € [0, 1]
Output: a set S of variable-value pairs
begin
u := min ( {broken((p,k),T,I) | (p,k) € changes(C,I)} );
if (u > 0) then
with probability w return changes(C,I);
end if
S :={ (p,k) | broken((p,k),T,I) = u and (p,k) € changes(C,I)};
return S;

end

Figure 3.7: Function select-Regular-WalkSAT for Regular-WalkSAT /Basic

w € [0, 1] is a noise parameter whose aim is to introduce noise in a controlled
way to escape from local minima. This means that, with certain probability,
the change applied by the algorithm is not necessarily one of the apparently
best changes. There is enough experimental evidence that these random walks
accelerate the search for a solution. The difference among the algorithms
based on the Regular-WalkSAT architecture lies in the strategy followed to
construct the set returned by select-Regular-WalkSAT.

3.5.1 Regular-WalkSAT /Basic

The algorithm Regular-WalkSAT /Basic uses the function
select-Regular-WalkSAT whose pseudo-code is shown in Figure 3.7.
Function broken((p, k),I’, I) returns the number of broken clauses; i.e. the
number of clauses of I' that are satisfied by I but that would become
unsatisfied if the assignment of p is changed to k; and changes(C, I) denotes
the set of variable-value pairs (p, k) such that (i) p is a propositional variable

occurring in clause C, and (ii) C is satisfied by the interpretation I’ which
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function select-Regular-WalkSAT

Input: a regular CNF formula I', a clause C, an interpretation I, and w € [0, 1]
Output: a set S of pairs
begin
with probability w return changes(C,I);
u' := maz ( {decrease((p,k),T) | (p,k) € changes(C,I)} );
S :={ (p,k) | decrease((p,k),T,I) =u' and (p,k) € changes(C,I)};
return S;

end

Figure 3.8: Function select-Regular-WalkSAT for Regular-WalkSAT /G

is identical to I except that the truth assignment of p is changed to k;
i.e., changes(C, I) denotes the set of all changes that let C' become satisfied
by the new interpretation. If the minimum number of broken clauses in
changes(C,I), say u, is greater than zero, then (i) with probability w,
select-Regular-WalkSAT returns changes(C,I), and (ii) with probability
1 — w, select-Regular-WalkSAT returns the subset of changes(C,I) formed
by the changes for which the number of broken clauses is u. If u = 0,
then select-Regular-WalkSAT returns the set of changes for which v = 0.
Observe that while the GSAT /Basic objective function counts the number
of unsatisfied clauses, the Regular-WalkSAT /Basic objective function counts

the number of broken clauses.

3.5.2 Regular-WalkSAT /G

The algorithm Regular-WalkSAT /G, which is a generalization of the al-
gorithm WalkSAT/G for SAT (McAllester et al., 1997), uses the func-
tion select-Regular-WalkSAT whose pseudo-code is shown in Figure 3.8.
With probability w, select-Regular-WalkSAT returns changes(C,I), and
with probability 1 — w, select-Regular-WalkSAT returns the subset of
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changes(C, I) formed by the changes (p, k) that produce the maximum de-
crease in the total number of unsatisfied clauses when the truth value of p is
changed to k.

3.5.3 Regular-WalkSAT /G+Tabu

The algorithm Regular-WalkSAT/G+Tabu is an extension of
Regular-WalkSAT /G  which incorporates tabu search for preventing
the algorithm to get stuck in local minima by avoiding to repeat earlier
changes. Regular-WalkSAT /G+Tabu maintains a list of a fixed size ¢, called
tabu list, that contains the last ¢ changes performed by the algorithm.
With probability w, select-Regular-WalkSAT returns changes(C,I), and
with probability 1 — w, select-Regular-WalkSAT returns the subset of
changes(C, I) formed by the changes (p, k) that are not in the tabu list and
produce the maximum decrease in the total number of unsatisfied clauses
when the truth value of p is changed to k. If all the pairs in changes(C,I)
are tabu, select-Regular-WalkSAT returns the empty set indicating to the
algorithm that a new unsatisfied clause must be chosen instead. If all the
possible changes in all the unsatisfied clauses are tabu, then the tabu list
is ignored. In contrast to the other algorithms with a tabu list such as
Regular-GSAT /Tabu and WalkSAT /Tabu (Selman et al., 1994), the tabu
list of Regular-WalkSAT/G+Tabu contains a list of changes instead of a list
of propositional variables.

3.5.4 Regular-WalkSAT /Novelty

The algorithm Regular-WalkSAT /Novelty is an extension of the algorithm
WalkSAT /Novelty for solving SAT (McAllester et al., 1997). Function
select-Regular-WalkSAT returns a singleton, i.e., a set containing only one
change. For selecting this change, it first sorts the changes of changes(C,I)
by the decrease in the number of unsatisfied clauses that such changes pro-

duce. When more than one change produces the same decrease, ties are
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broken in favor of the least recently applied change. Then, it considers the
best and second best changes under this sort. If the best change is not the
most recently applied to the clause under consideration, it selects the best
pair. Otherwise, it either selects, with probability w, the second best pair,
or it selects, with probability 1 — w, the best pair.

By taking into consideration the last time a particular change was applied,
function select-Regular-WalkSAT tries to avoid to select a same pair more

than once within a short period of time.

3.5.5 Regular-WalkSAT /R-Novelty

The algorithm Regular-WalkSAT /R-Novelty is an extension of the algorithm
WalkSAT /R-Novelty for solving SAT (McAllester et al., 1997). Function
select-Regular-WalkSAT also returns a singleton and sorts the changes of
changes(C, I) by the decrease in the number of unsatisfied clauses that such
changes produce. Let (p;, k;) be the best change, let (p;, k;) be the second
best change, and let n be the difference between the number of unsatisfied
clauses produced by (p;, k;) and the number of unsatisfied clauses produced
by (pj, k;). Then, if the best change is not the most recently applied to the
clause under consideration, select-Regular-WalkSAT selects (p;, k;). Other-

wise, there are four cases:

1. When w < 0.5 and n > 1, it selects (p;, k;)-

2. When w < 0.5 and n =1, then it either selects, with probability 2w,
(pj, kj), or it selects, with probability 1 — 2w, (p;, k;).

3. When w > 0.5 and n = 1, it selects (p;, k;).

4. When w > 0.5 and n > 1, then it either selects, with probability
2(w—0.5), (pj, k), or it selects, with probability 1 — 2(w — 0.5),
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Moreover, to inhibit loops, select-Regular-WalkSAT randomly selects
one change from changes(C,I) every 100 changes. In contrast to
Regular-WalkSAT /Novelty, when choosing between the best and second best
pair, select-Regular-WalkSAT takes into consideration both the noise param-

eter w and the difference n.

3.6 Data structures for local search

algorithms

One important point in the design and implementation of local search algo-
rithms is the definition of suitable data structures that allow algorithms to
select and apply changes as fast as possible. The selection of changes amounts
to implement the selection functions described above (select-Regular-GSAT
and select-Regular-WalkSAT'). The application of changes amounts to mod-
ify the current interpretation and update, in the clauses that are affected by
the new interpretation, the literal counter. This counter contains the num-
ber of literals of the clause that are satisfied by the new interpretation. We
associate a literal counter with each clause.

To obtain a low time complexity for the selection of changes, we should
avoid to calculate, in each step and for each change, the number of clauses
that become unsatisfied by the interpretation resulting of applying the change
(broken clauses) and the number of clauses that become satisfied (repaired
clauses). To this end, we associate two counters with each change: the break
counter and the repair counter. These counters are updated at the beginning
of each try, and after the application of a particular change, only the break

and repair counters affected by this change are updated.

3.6.1 Data structures for GSAT and WalkSAT

Before presenting in detail the data structures for Regular-GSAT and
Regular-WalkSAT, we first describe the data structures used in the latest
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implementations of GSAT and WalkSAT, which are publicly available at
the SATLIB. The description below was obtained by inspecting the code of
GSAT (version 41) and WalkSAT (version 35).

In GSAT and WalkSAT the truth value set is N = {0,1} and, therefore,
there are two possible changes —(p,0) and (p,1)— for each propositional
variable p. A break counter and a repair counter is associated with each
change, and a literal counter is associated with each clause. Observe that
the difference between the repair counter and the break counter gives the in-
crement in the total number of clauses satisfied by the interpretation resulting
of applying the change. In the following, we will refer to the interpretation
resulting of applying a given change as the interpretation induced by that
change.

In GSAT, an array containing the set of best changes is maintained, and
this array is updated after each change application. In WalkSAT, there is no
data structure for the best changes because we consider a different clause in
each change. Thus, the worst-case time complexity of selecting a change is
in O(1) for GSAT and is in O(m) for WalkSAT, where m is the maximum
number of literals per clause.

When a change (p, k) is applied, the literal counter of the clauses that
contain the variable p has to be modified. Given a change (p,0) ((p, 1)), the
literal counter of the clauses that contain the literal p (—p) is decremented
(incremented) and the literal counter of the clauses that contain the literal —p
(p) is incremented (decremented). Moreover, every time the literal counter
of a clause is modified, there are four situations in which it is also necessary

to update break and repair counters:

1. the literal counter goes from 0 to 1. We must decrement the repair
counter of all the changes such that the interpretation induced by them
satisfy the clause and increment the break counter of the change such
that its induced interpretation unsatisfies the clause. If the change is

of the form (p,0) ((p,1)), we have to increment the break counter of
the change (p,1) ((p,0)).



Satisfiability Algorithms 50

clause Ci Cy C3 C4

literal counter | 0 1 2 1

change (,0) (1) (¢,0) (¢,1) (r,0) (r1)
repair counter 0 1 1 0 0 1
break counter 0 1 1 0 0 0

Figure 3.9: Literal, break and repair counters before applying the change

2. the literal counter goes from 1 to 2. We must decrement the break
counter of the change such that its induced interpretation, previous to
the application of the change (p, k), unsatisfied the clause.

3. the literal counter goes from 2 to 1. We must increment the break
counter of the change such that its induced interpretation unsatisfies
the clause. If the change is of the form (p,0) ((p,1)), we have to
increment the break counter of the change (p,1) ((p,0)).

4. the literal counter goes from 1 to 0. We must increment the repair
counter of all the changes such that the interpretation induced by
them satisfy the clause and decrement the break counter of the change
such that its induced interpretation, previous to the application of the
change (p, k), unsatisfied the clause.

For each change (p,0) ((p,1)), we have a list containing the clauses with
an occurrence of the literal —p (p). This way, counters are efficiently updated.
If clauses are non-tautological, they never occur more than once in the same
list.

Example 3.3 To illustrate how break and repair counters are updated during

the application of changes, we present an example based on the satisfiable
CNF formula T = {Cy,Cy, C3,Cy}, where
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clause Ci Cy C3 C4

literal counter | 1 2 1 0

change (,0) (1) (¢,0) (g,1) (r0) (r1)
repair counter | 1 0 1 0 0 0
break counter | 1 0 1 0 0 0

Figure 3.10: Literal, break and repair counters after applying the change

Cr={p,~q,r} Co={p,q,r}
Cs={wqt  Ci={-p g}

Assume that the initial interpretation for I, which is randomly generated
by a local search algorithm, is: I(p) =0, I(q) =1 and I(r) = 0. The initial
values of the literal, break and repair counters are shown in Figure 3.9.

In case we apply the change (p,1), we have to update the counters as

follows:

1. The literal counter of C1 goes from 0 to 1. Then, we decrement the
repair counter of the changes (p,1), (¢,0) and (r,1) and increment the

break counter of the change (p,0).

2. The literal counter of Cy goes from 1 to 2. Then, we decrement the

break counter of the change (g, 0).

3. The literal counter of Cs goes from 2 to 1. Then, we increment the

break counter of the change (q,0).

4. The literal counter of Cy goes from 1 to 0. Then, we increment the
repair counter of the changes (p,0) and (¢,0) and decrement the break
counter of the change (p,1).

Figure 3.10 shows the values of the literal, break and repair counters after

applying the change (p,1).



Satisfiability Algorithms 52

With the above data structures, the worst-case time complexity of apply-
ing a change in WalkSAT is in

o),

where I is the subformula formed by all the clauses whose literal counters
have been updated by WalkSAT.

The complexity of applying a change in GSAT is bigger than in WalkSAT.
This is due to the fact that we have to insert and remove changes in the
array that stores the best changes. As the time complexity of an insertion
(deletion) is in O(1), the time complexity of updating the array usually is in
O(|I''). The exception is when the array contains only one change and its
counters are modified in such a way that the change is no longer the unique
best change. In this case, the array that stores the best changes must be
rebuilt from scratch. The cost of rebuilding the array is in O(|V|), where
V' is the set of propositional variables occurring in the formula. Thus, the

worst-case time complexity of applying a change in GSAT is in

o' + V).

3.6.2 Data structures for Regular-GSAT and
Regular-WalkSAT

The complexity of selecting and applying changes in local search algorithms
for Regular-SAT is bigger due to the following facts: (i) the same propo-
sitional variable can occur more than once in a (non-tautological) regular
clause, and (ii) a regular literal S : p is associated with as many changes as
truth values appear in S.

To reduce the time complexity, there is a preprocessing phase in which
tautological clauses are eliminated, and all the occurrences of literals with the
same propositional variable in a non-tautological clause are grouped together.
Given a regular clause with several occurrences of literals with the same

propositional variable, we can obtain a logically equivalent regular clause by
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eliminating all the positive (negative) literals with this variable except for
the positive (negative) literal whose sign has the greatest cardinality; i.e.,
subsumed literals are eliminated. This way, we have at most one positive
(14 : p) and one negative ({ j : p) literal with the same propositional variable
in each regular clause, which are stored in a common data structure that we
call metaliteral and that we denote by {| 4,77} :p. The metaliteral {(,1j} :p
({44,0} :p) is used when there are only occurrences of positive (negative)
literals. Finally, we maintain, for each metaliteral, a list that contains the
clauses in which this metaliteral appears. For every different variable p,
the lists of clauses in which there are metaliterals with the variable p are
accessed through a two-dimensional array such that the list for the metaliteral
{14,717} :p is found at row 7 and column j.

To select changes in Regular-GSAT, fast access to the best changes is
provided. To this end, an array containing the propositional variables occur-
ring in the best changes is maintained and, for each propositional variable,
an array with its best truth values is maintained. With these data structures
we have that the time complexity of selecting a change in Regular-GSAT is
in O(1).

The complexity of applying changes in Regular-GSAT is bigger than in
GSAT. This is due to the fact that the cardinality of the truth value set
is greater than 2. Every time the assignment of a propositional variable
p is changed from a value k to a new value k', Regular-GSAT considers
both the metaliterals that become satisfied and the metaliterals that become
unsatisfied. The metaliterals {| 4,1} :p that become unsatisfied are those
metaliterals such that either k& is in | ¢ or in 1 j but &’ is not in any of them,
and the metaliterals that become satisfied are those metaliterals such that
k is not in any of the two signs but &' is in one of them. Observe that a
metaliteral {] 4,17} :p such that £ isin |7 and &' is in 17, or k£ is in 1 and
k' is in | ¢, remains satisfied and so the literal counter of clauses containing
that metaliteral is not modified.

The literal counter of the clauses that contain a metaliteral that has
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become satisfied is incremented, and the literal counter of the clauses that
contain a metaliteral that has become unsatisfied is decremented. As clauses
contain at most one metaliteral with the same propositional variable, literal
counters of clauses are updated at most once during the application of a
given change.

Every time the literal counter of a regular clause is modified, it is nec-
essary to update the break and repair counters like in GSAT (cf. page 51).
In Regular-GSAT, the difference is that the number of changes whose break
and repair counters are affected by the modification of a given literal counter
is bigger than in GSAT. This is due to the fact that the number of changes
whose induced interpretations satisfy or unsatisfy a given metaliteral depends
on |N|. Moreover, the array used to store the variables occurring in the best
changes must be also updated every time the counters of a change are modi-
fied. The time complexity of updating the counters of all the changes affected
by the increase or decrease of a given literal counter is in O(m - |[N|), where
m is the maximum number of metaliterals per clause. The time complexity
of inserting or deleting variables to/from the array that stores the variables
occurring in the best changes is in O(1). Sometimes, like in GSAT, this array
must be rebuilt from scratch after applying a change with a time complexity
which is in O(|V]). Thus, we have that the worst-case time complexity of
applying a change in Regular-GSAT is in

O(Il"[ - INT+[V]),

where I is the subformula formed by all the clauses whose literal counters
have been updated by Regular-GSAT. Observe that we have direct access to
the clauses of I'" thanks to the lists of metaliterals.

Regular-WalkSAT selects and applies changes in a very different way. In
contrast to Regular-GSAT, it does not maintain data structures for providing
fast access to the best changes because only the best changes of one clause
are considered. Another difference is the way of updating the break and
repair counters of changes.
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As before, given a change (p,k) we have to update the literal counter
of some clauses and the break and repair counters of some changes. First,
the literal counter of the clauses that contain a metaliteral that has be-
come satisfied is incremented, and the literal counter of the clauses that
contain a metaliteral that has become unsatisfied is decremented. Second,
we should update the break and repair counters of the changes like in GSAT
(cf. page 51).

Updating the counters of all the changes affected by the increase or de-
crease of a given literal counter can be done in time O(m - |N|), where m is
the maximum number of metaliterals per clause. Actually, in order to obtain
a time complexity in O(m), we delay updating the break and repair counters
until we really need to know the values of such counters. To this end, we
associate two auxiliary counters with the repair counter of each change and
two auxiliary counters with the break counter. Given a change (p', k'), one
of the auxiliary counters associated with the repair counter indicates the in-
crement or decrement that has to be applied to the repair counter of all the
changes (p', k1) such that &' < ki, and the other auxiliary counter indicates
the increment or decrement that has to be applied to the repair counter of all
the changes (p', k2) such that ks < &’. The two auxiliary counters associated
with the break counter are used in a similar way. Regular-WalkSAT updates
the break and repair counters of all the changes associated with the vari-
able p’ when p’ appears in the clause selected by select-Regular-WalkSAT.
Updating the break and repair counters of these changes by using the aux-
iliary counters is in O(|N|). Therefore, the worst-case time complexity of
selecting a change in Regular-WalkSAT is in O(m - |N|), and the worst-case
time complexity of applying a change is in O(|I|), where I is the subfor-
mula formed by all the clauses whose literal counters have been updated by
Regular-WalkSAT.

Table 3.1 shows the worst-case time complexity of selecting and applying
one change in the GSAT, Regular-GSAT, WalkSAT and Regular-WalkSAT
families. Observe that there is a trade-off between the complexity of selecting



Satisfiability Algorithms 56

a change and the complexity of applying it. In GSAT and Regular-GSAT,
the fact of maintaining the set of best changes is performed at the cost of
increasing the complexity of applying changes. By contrast, the complexity
of selecting changes in WalkSAT and Regular-WalkSAT is greater than in
GSAT and Regular-GSAT, but the complexity of applying changes is smaller.

classical regular
selecting applying selecting applying
GSAT o) O(I+[v)) o) o(r'-|N|+|V])
WalkSAT O(m) o(r') O(m - |N|) oqr’)

Table 3.1: The complexity of selecting and applying changes in local search algo-
rithms for SAT and Regular-SAT

3.7 Probabilistically approximately complete

algorithms

In this section we first define probabilistically approximately complete al-
gorithm (Hoos, 1999a), and then analyse this property for the regular local
search algorithms described in this thesis.

Definition 3.1 Let I1 be a decision problem. Let A be a randomized Las
Vegas algorithm for 11; i.e., A’s output is always correct and A’s run time is a
random variable. For a given soluble problem instance m € 11, let Ps(RT4, <
t) denote the probability that A finds a solution for m in time less than or equal
tot, and let P CII. A is probabilistically approzimately complete (PAC) for
P if limy oo [Ps(RTa, < t)] = 1 for all soluble instances 1 € P. A is
essentially incomplete for P if it is not PAC for P; i.e., there is a soluble
instance m € P for wich limy_oo|Ps(RT 4 < t)] < 1.
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This property has been shown to be important for local search algorithms
for SAT (Hoos, 1998; Hoos, 1999a; Hoos and Stiitzle, 2000a). A local search
algorithm with this property is more robust with respect to the setting of the
MaxChanges parameter; i.e., the algorithm is always able to find a solution
in only one try when the setting of the MaxChanges parameter is infinite.

A sufficient condition for having the PAC property a local search algo-
rithm of the Regular-GSAT and Regular-WalkSAT families is that in every
change the algorithm performs a random step with a probability greater than
zero. By a random step we mean, for the algorithms of the Regular-GSAT
family, to randomly select a change from the set changes(I', I') and, for the al-
gorithms of the Regular-WalkSAT family, to randomly select a change from
changes(C,I). We assume that the probability of choosing one arbitrary
change from changes(T', I') and changes(C, I) is greater than zero. The proof
that this is a sufficient condition is the same as the proof in (Hoos, 1999a) for
classical local search algorithms. It relies on the fact that, in each change,
the algorithm decreases the Hamming distance between the current interpre-
tation and a satisfying interpretation with a probability greater than zero.
The Hamming distance decreases if the algorithm can perform arbitrary long
sequences of random steps and there is at least one change in changes(I', I)
(or in changes(C,I)) that decreases the Hamming distance by one.

The algorithms Regular-WalkSAT/G and Regular-WalkSAT /G+Tabu
are PAC because they satisfy the above condition. @ On the other
hand, the algorithms Regular-GSAT /Basic, Regular-WalkSAT /Novelty and
Regular-WalkSAT /R-Novelty, like their classical counterparts (Hoos, 1998),
are essentially incomplete.

It is an open question to know whether Regular-WalkSAT /Basic and
Regular-GSAT /Tabu are PAC. The experimental investigation reported
in (Hoos, 1998) suggests that WalkSAT might be PAC. The experimen-
tal results described in Chapter 5 indicate that Regular-WalkSAT /Basic
is PAC for a particular class of problem instances.  Observe that

Regular-WalkSAT /Basic does not satisfy the random step condition, because
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this algorithm does not perform a random step with probability greater than
zero in each step; it only considers random steps when all the changes in
changes(C, I) break clauses.



