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Abstract

Cancer is a complex disease caused by somatic alterations of the

genome and epigenome in tumor cells. Increased investments and

cheaper access to various technologies have built momentum for the

generation of cancer genomics data. The availability of such large

datasets  offers many new possibilities to gain insight into cancer

molecular properties. Within this scope I present two methods that

exploit the broad availability of cancer genomic data: Oncodrive-

ROLE, an approach to classify mutational cancer driver genes into

activating and loss of function mode of actions and MutEx, a statis-

tical measure to assess the trend of the somatic alterations in a set of

genes to be mutually exclusive across tumor samples. Nevertheless,

the unprecedented dimension of the available data raises new com-

plications for its accessibility and exploration which we try to solve

with  new visualization  solutions:  i)  Gitools  interactive  heatmaps

with prepared large scale cancer genomics datasets ready to be ex-

plored, ii) jHeatmap, an interactive heatmap browser for the web ca-

pable of displaying multidimensional cancer genomics data and de-

signed for its inclusion into web portals, and iii) SVGMap, a web

server to project data onto customized SVG figures useful for map-

ping experimental measurements onto the model.

Resum

El cancer és una malaltia complexa causada per alteracions somà-

tiques del genoma i epigenoma de les cèl·lules tumorals. Un aug-

ment d’inversions i l'accés a tecnologies de baix cost ha provocat un

increment  important  en  la  generació  de  dades  genòmiques  de

càncer. La disponibilitat d’aquestes dades ofereix noves possibilitats

per entendre millor les propietats moleculars del càncer. En aquest

àmbit, presento dos mètodes que aprofiten aquesta gran disponibili-

tat de dades genòmiques de càncer: OncodriveROLE, un procedi-

ment per  a  classificar  gens “drivers” del  càncer  segons si  el  seu

mode d’acció ésl'activació o la pèrdua de funció del producte gènic;

i MutEx, un estadístic per a mesurar la tendència de les mutacions
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somàtiques a l’exclusió mútua. Tanmateix, la manca de precedents

d’aquesta gran dimensió de dades fa sorgir nous problemes en quant

a  la  seva accessibilitat  i  exploració,  els  quals  intentem solventar

amb noves eines de visualització: i) Heatmaps interactius de Gitools

amb dades genòmiques de càncer a gran escala, a punt per ser ex-

plorades, ii) jHeatmap, un heatmap interactiu per la web capaç de

mostrar dades genòmiques de cancer multidimensionals i dissenyat

per la seva inclusió a portals web; i iii) SVGMap, un servidor web

per  traslladar  dades  en  figures  SVG customitzades,  útil  per  a  la

transl·lació de mesures experimentals en un model visual.
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1.1  Oncogenomics

Big efforts from both academia and industry have been and are

being put into the study of the group of diseases described as

cancer.  Many  of  the  different  cancer  diseases  have  been

described  in  detail  from  a  morphological  point  of  view. The

International Classification of Diseases for Oncology1 (ICDO)

reflects  the  complexity  of  the  cancer  disease describing  the

numerous different cancer types which emerge from each of the

many tissues of the human body. Oncogenomics is a field within

cancer  research  that  studies  the  genome,  epigenome  and

transcriptome  of  cancerous  tissues  in  search  of  the  genomic

variables  and  alterations  that  determine  the  cancer  cell

morphology  and  physiology.  The  knowledge  gained  from

oncogenomic studies should then enable new strategies for the

cancer disease treatment.

1 http://www.who.int/classifications/icd/en/
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1.1.1  Somatic alterations

Changes in  the genomic sequence of  somatic  cells,  the cells  of

which all organs and tissues are composed of, are referred to as so-

matic alterations. Screening the genomic sequence of a cancer sam-

ple and comparing it to a healthy cell from the same patient always

yields an array of somatic alterations; the detection of these cancer

somatic alterations is the first step in cancer genomics studies.

Somatic  alterations  appear  spontaneously  when  DNA  of  cells

replicates upon cell division – despite the complex machinery that a

cell  disposes  to  control  that  the two emerging daughter  cells  are

identical replications of the parent cell.  The probability of occur-

rence of mistakes in DNA replication is  influenced by many co-

variates.  Such co-variates  may  be  environmental  factors  such  as

radiation,  viral  infections  or  certain  chemical  substances  that  get

into our body and interact with the DNA or intrinsic to the genetic

replication system where the double-strand break repair mechanism

itself is known to introduce errors  (Lieber 2010; Minamoto, Mai,

and Ronai 1999). Other known intrinsic co-variates are replication

timing, the compaction of the chromatin and the transcriptional sta-

tus of the DNA segment in question (Supek et al. 2014; Lawrence et

al. 2013). As diverse the influencing factors may be, they all trans-

late into somatic alterations of different types, of which the most

common are listed below.

• Mutations

• Copy number changes

• Translocations, Insertions and Inversions

• Chromothripsis

These  alterations  may  occur  anywhere  within  the  DNA of  total

length of 3 gigabases that makes up the human genome. Neverthe-

less, most research has been done on the alterations within the pro-

tein coding genes or it's  immediate vicinity which makes up less

than two percent of the genome. 
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Mutations: SNVs & other small-scale mutations

Mutations in the DNA are changes of one or very few nucleotides.

Point mutations, or SNVs (Single nucleotide variants) are minimal

changes in the genetic code where one nucleotide is substituted and

the length of the DNA sequence in question is not altered. Although

large-scale alterations of the DNA are also often referred to as mu-

tations, I'll reserve the term for small-scale changes of the DNA.  

The consequence of a mutation on the protein function depends on

the nucleotide substitution, insertion or deletion. As shown in Fig-

ure 1a, some codons are redundant as they code for the same amino

acid. Point mutation that transform a codon into another that codes

for the same amino acid are referred to as synonymous mutations, as

the protein sequence is not altered after all. Even so, recent research

has suggested that synonymous mutations are not entirely silent as

could be expected. Possible consequences may be the alteration of

recognition patterns used for co-factors or splicing recognition or

influencing the transcription rate determined by the availability of

tRNA  (Czech et al. 2010; Sauna and Kimchi-Sarfaty 2011; Supek

et al. 2014). If the nucleotide substitution entails an amino acid sub-

stitution in the protein sequence, it is classified as a  missense  (or

non-synonymous) mutation. Another possible consequence of point

mutations is the conversion of an amino acid codon into a prema-

ture stop codon (stop gained consequence) which truncates the rest

of the protein sequence. The inverse scenario, the  stop lost  conse-

quence, occurs when the stop codon is mutated into a regular amino

acid codon and may add a nonsense sequence to the mRNA and the

protein.

Other small-scale mutations that alter the sequence length are clas-

sified either as insertions or deletions (also named indels), depend-

ing on whether nucleotides are added or removed. If the insertion or

deletion is not a multiple of three nucleotides the reading frame of

the coding sequence is shifted and the protein sequence will most

likely be garbage downstream of the frameshift. But in cases where

three or a multiple of three nucleotides are inserted or deleted (in-

frame insertions  and in-frame deletions) within the reading frame,

6
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A) Amino acid codon table

B) Consequence types

Figure 1: The amino acid codon table and consequence types of mutations

A) The codons composed always of three nucleotides are grouped by the amino

acids they code for. Leucine, for example,  is  encoded by six  different  codons.

(Wikipedia 2014) B) A schema from the ensembl variant effect predictor website

(Fiona 2014) which represents a gene annotated with mutational consequence

types. The exonic consequence types are the ones highlighted in the figure and

discussed in this chapter 



the protein product is not changed dramatically, disregarding possi-

ble influences on alternative splicing or the disappearance or dis-

placement of key amino acid residues. Indel events are short-range

events, depending on the study they have been described to be from

1-10'000 bp in  length  (Mullaney et  al.  2010).  Mutations at  exon

boundaries may prompt an alternative splicing of the mRNA and

their  consequences  termed  splice  donor  &  splice acceptor  muta-

tions.

All the different consequences that point mutations, insertions and

deletions may have on the gene are organized in the sequence ontol-

ogy (Eilbeck et al. 2005) most of them are displayed in Figure 1b.

Various  tools  exist  to  classify  a  mutation  into  their  consequence

types (Gonzalez-Perez, Mustonen, et al. 2013). A broad but impor-

tant classification of mutations is the distinctions between protein

truncating and protein altering mutations. The truncating mutations,

such as frame-shifts and premature stop codons dramatically change

the protein product. In most cases, it is safe to assume that the pro-

tein function is entirely lost. But mutations which alter the protein

sequence without  being truncating may abolish,  change or  add a

certain function of the protein, while other functions are maintained.

Copy Number Alterations

Deletion and insertions as described in the preceding section are of

short range. Even so, large genomic regions can be deleted or in-

serted as described hereafter.

Upon comparing the genomes of two individuals certain genomic

regions may be found absent, duplicated or repeated multiple times

in one of the individuals. This type of structural variation or chro-

mosome abnormality is called copy number variation (CNV). The

same phenomena can be observed when comparing the genomes of

the tumor and the normal tissue. It is very common to observe ge-

nomic regions that are duplicated, repeated several times or entirely

lost in one or both homologous chromosomes. These somatic alter-

ations  are termed copy number alterations  (CNA). The extent  of

CNAs may vary  from focal  events  including regions  comprising

some  genes  to  loss  or  replications  of  whole  chromosomal  arms
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(Zack et al. 2013). 

The change of copy numbers may ultimately translate to a change

in the number of copies of the gene transcripts. Genes that are sub-

ject to copy number gain – one chromosome carries multiple copies

of them – are generally expected to be transcribed at higher levels,

given that the necessary promoters, up- and downstream enhancers

are replicated along with the gene. 

Deletions  of genomic regions  may either erase one copy of the

gene by a heterozygous deletion or both copies by a homozygous

deletion event. A heterozygous deletion is sometimes also referred

to by loss of heterozygosity (LOH) and a copy-neutral LOH occurs

9

Figure 2: A cartoon of a deletion and a duplication event of a genomic region.

In the left part, a the chromosome looses a stretch of about 6 bands. The right

part depicts the simplest case of copy number gain, a duplication. Figure adapted

from (Wikimedia Commons 2013)



when the lost DNA segment is  replaced with a new copy of the

other allele.  Normal LOH can decrease the total  amount of gene

products present in a cell. Whether this is the case or not may de-

pend on the regulation of the gene in question, as transcriptional

compensation mechanism for a lost allele have been described in

scientific literature (Guidi et al. 2004).

Considering the implications that copy number changes may have

on the abundance and therefore function of the resulting protein, it

is important to distinguish the deletions from translocations and in-

sertions which normally don't affect the copy number.

Translocations, Insertions and Inversions

Other chromosomal abnormalities delete a genomic region from a

chromosome and insert it into another and therefore does not alter

the copy number but the locus of the genomic sequence. In contrast

to copy number alterations, a translocation or insertion event may

affect multiple chromosomes. 

10

Figure 3: A cartoon of a translocation and an insertion event

A A translocation event. B An insertion event. Adapted from. Image adapted from

(Wheeler 2007).



A reciprocal  translocation  interchanges  two  segments  of  DNA

from two  non-homologous  chromosomes.  The  boundaries  of  the

translocation event may be far from any gene and therefore have

minimal  effect  on  gene  transcription.  If  the  translocation  occurs

near or within gene boundaries the effect of translocations is diffi-

cult  to  predict.  Nevertheless,  for  leukemia  especially  several

translocations that have been described to produce fusion genes are

causative of the disease. This incident happens when the transloca-

tion event causes a gene to be inserted directly up- or downstream

an existing gene on the other chromosome. A fusion does not neces-

sarily include both genes in their entirety as just parts may be fused.

Many fusion genes are a product of the promoter of one gene that

has been fused upstream of the second gene. This scenario changes

the  regulation  of  the  second gene but  not  necessarily  its  protein

function. Thus, depending on which parts have been fused together,

fusion genes can yield a gene product with a new, altered or differ-

ently regulated function. A famous translocation between the band

q11 of chromosome 22 and band q34 of chromosome 9, yielding the

Philadelphia chromosome. This translocation results in different fu-

sion products between the genes Bcr and Abl to form the Bcr-Abl

fusion genes which are associated to different types of leukemia re-

viewed in (Advani and Pendergast 2002). Insertions at a chromoso-

mal level are events where a genomic sequence is cut out from one

chromosome and inserted into another. It therefore resembles the

translocation with the distinction that no genetic material is intro-

duced where the genetic sequence has been cut out. Note that fusion

genes may also be a product of insertions, deletions or inversions. 

Chromosomal  inversions  occur  when  a  stretch  of  genomic  se-

quence is cut out and inserted in the opposite sense. As with the

other  genomic  abnormalities  these  do  not  necessarily  cause  any

malfunctions, as the genes that are affected by the inversions can be

read in the opposite sense in the other strand. If the inversion occurs

at or within the coding sequence fusion genes may be produced.

Various cases of inversions associated with different cancers have

been described (Grimwade et al. 2010; Zech et al. 1984; Speleman

et al. 2005). 

In extreme cases, cancer samples have been described that contain
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tens to hundreds of genomic rearrangements that are acquired in a

single event,  termed chromothripsis. Chromothripsis has been re-

ported to occur in 2%-3% of all cancer samples and in about 25% of

bone cancers (Stephens et al. 2011).

Epigenetic alterations

Epigenetics is the study of inheritable traits within the genome that

are  not  caused  by  alterations  in  the  nucleotide  sequence  of  the

DNA. Chemical modifications of nucleotides have direct influence

on how the DNA is packed and organized and which parts of the

DNA are accessible to transcription factors. In particular modifica-

tions on histones and cystosine methylation changes are two types

of  epigenetic  alterations  that  are  passed on to  the  daughter  cells

upon  cell  division,  providing  mechanisms  to  inherit  the  state  of

gene activity and expression (Richards 2006). 

DNA methylation is a regulation mechanism of gene transcription.

It  consists  in  adding methyl  groups to  cytosines  typically  within

CpG  islands,  regions  with  high  recurrence  of  CG  dinucleotides.

Genes  whose promoters  contain  CpG islands can be  silenced by

strong methylation of the CpG sites. Methyl groups are believed to

abolish the ability of the transcription factors to bind to the pro-

moter. Moreover, methylated DNA can indirectly  recruit  proteins

such as histone deacetylases and other factors that modify histones

and therefore alter the organization of DNA packing. Tightly packed

DNA,  called  heterochromatin,  hinders  the  transcription  of  genes

contained in tightly packed regions. 

Studies of DNA methylation patterns within cancer samples have

revealed many cases of DNA hyper- or hypomethylation upon com-

paring the methylation patterns of the cancer tissue with a normal

tissue (Jones and Laird 1999). Particularly, tumor suppressor genes

activities have been observed to be lost via hypermethylation of the

promoter CpG islands (Baylin and Jones 2011). Possible use of hy-

permethylated genes as biomarkers for drug response has been re-

viewed in (Heyn and Esteller 2012) as hypermethylation events are

normally observed locally at site-specific loci whereas generally the

cancer cells show genome-wide hypomethylation (Rodríguez-Pare-

12



des and Esteller 2011).

1.1.2  Driving tumorigenesis

The genome of cancer cells bears a plethora of somatic alterations.

A principal aim of oncogenomics is to find out how these changes

in the genome and epigenome work mechanistically to give rise to

the cancer disease. In fact, many of the alterations are not the cause

of the cancer disease, but a consequence. So how does tumorigene-

sis work?

Clonal evolution: accumulating alterations 

We know from evolutionary and molecular biology that a species

accumulates  germ  line  mutations  or  alterations  which  are  then

passed along with each new generation. The effect a new mutation

on an offspring may vary from none at all to a visible phenotypic or

measurable physiologic trait. In extreme cases such a trait may con-

fer the offspring an advantage or disadvantage for survival amongst

pears. This mechanism is the very basis for species evolution.  

As described in the preceding chapter, mutations not only appear

in germ line, but also in somatic tissues. In few cases, a mutation

goes undetected by repair mechanisms of the cell and, if it is not

lethal, is established in the tissue. Given that one mutation is present

in a cell which gives rise the several generation of daughter cells,

over time a new clone of cells forms in the tissue with a genotype

differing by one mutation to the bulk of cells in the tissue. Analo-

gously to the evolution theory for species, a mutation in a tissue-

context may confer the cell an advantage which further helps the

stabilization of the clone in the tissue or a disadvantage with the op-

posite effect. Advantages of various forms occur: accelerated and/or

indefinite  cell  division  or  increased  capability  of  energy  uptake

and/or metabolic efficiency to name a few  (Douglas Hanahan and

Weinberg 2011). If the new cell or clone of cells performs all the

necessary functions for the tissue where it is situated, it poses no

problem for the organism as such. In any case, while the described

process repeats itself further mutations are acquired in a sub-clones

13



of the tissue. 

An  acquired  alteration  that  specifically  interferes  with  repair

mechanisms of the cell confer a certain instability to the cell replica-

tion process which increases the probability of the introduction of

new alterations.  As the alteration level is increased in time more

mutations  potentially  conferring  strong  advantages  appear  in  the

genome of the clone, up to the point where the cells cease to per-

form the  tissue function  they  were  programmed to  and becomes

somewhat autonomous – a neoplasm or tumor is emerging. The of-

ten cited definition of neoplasms is originating the British oncolo-

gist Willis: “A neoplasm is an abnormal mass of tissue, the growth

of which exceeds and is uncoordinated with that of the normal tis-

sues and persists in the same excessive manner after cessation of the

stimuli which evoked the change”  (Baserga 1985). In order to be-

come a malignant tumor the neoplasm has to acquire a series of ca-

pabilities which often are referred to as the hallmarks of cancer, as

discussed in the next section.

This process of accumulation of alterations is called clonal evolu-

tion. It has normally been going on already for many generation of

cells when a malignant tumor is detected in a patient and a sample

of it is obtained. Henceforth the tumoral tissue often contains a se-

ries  of  sub-clones,  distinct  in  their  somatic  alteration  patterns  as

14

Figure 4: An outline of a clonal evolution found within a patient. 

The founder clone boar five  mutations in  the  genes  DNMT3A, NPM1,  FLT3,

PTPRT, SMC3 as those mutations are present in all the detected sub-clones at

first  diagnosis.  Chemotherapy diminished the present  clones,  but  also exerted

strong pressure for new clones with resistance alterations tor rise: ETV6, WNK-

1-WAC, MYO18B. Image adapted from (Greaves and Maley 2012)



shown in Figure 4. However, only recently the concept has received

more attention, as current high-throughput sequencing technologies

have yielded high resolution which allow the researchers to deter-

mine the clonal architecture of a tumor tissue sample (Nielsen et al.

2011). Via the fraction of sequence reads that bear a certain somatic

mutations it can be estimated which alterations were present only in

the founder clone, represented in gray in Figure 4. New sub-clones

can  emerge  spontaneously  and  outcompete  other  tumoral  clones

which is represented by the yellow, orange and purple areas in Fig-

ure  4. The setting for the clonal evolution is defined by natural or

physiological restraints, environmentally derived genotoxicity and

cancer therapy, jointly termed selective pressure (Greaves and Ma-

ley 2012).

Which type of cells undergo the clonal evolution of tumorigenesis

is not clear as of yet. If the tumor type is known to follow the cancer

stem cells  (CSC)  model  the  explanation  would  be  that  it  in  the

CSCs is where the tumorigenesis happens. The CSC model is an al-

ternative to the clonal evolution paradigm which is based on the dis-

covery of cells with stem cell-like properties within the tumor tissue

that have a hierarchical relationship with other cells in the tumor tis-

sue. It is thought that the CSCs give rise to the rest of the tumor

cells, which are differentiated, in contrast to the tumorigenic CSCs

(Shackleton et al. 2009). The fraction of CSCs within a cancer can

vary:  depending on the tumor type,  the tissue consists  of  almost

only tumorigenic cells or contain only a low fraction of tumorigenic

CSCs. Some CSCs have been described as specific markers, as re-

vised in (Yu et al. 2012).

Drivers and passengers

The selective pressure that governs the local tissue environment

defines which mutations are advantageous, deleterious or neutral for

the cells and therefore drives the clonal selection. Those alterations

which are advantageous for the tumorigenesis are called driver al-

terations and the genes in which they fall are referred to as driver

genes. Some of the mutations in the founder clone are initial drivers

of the tumorigenesis. Along the way other drivers may be acquired

15



in sub-clones that outcompete the original clone. As clones evolve

and explore the mutational space many neutral mutations are picked

up whereas cells that acquire disadvantageous alterations disappear

quickly or only form a small sub-clone. The non-lethal neutral alter-

ations which get fixed in the tumor tissue are called  passenger al-

terations and  the  carrying  genes  passenger  genes as  those alter-

ations do not support the expansion of the cancer cell clones. (Haber

and Settleman 2007)

Tumor suppressor genes and oncogenes

Driver alterations may have several consequences for the affected

genes. Those consequences are broadly distinguished upon the ef-

fect they have on the protein function. As loss of function (LoF) we

consider those alterations that abolish a certain or all functions of a

protein and as  activating  alterations those that potentiate a protein

function or cause the appearance of a new function. Hence, cancer

drivers are generally classified into two classes which represent two

different mode of actions of the driver alteration or gene on tumor

formation: tumor suppressors and oncogenes. 

Tumor suppressors are genes that counteract tumorigenic behavior.

Especially the p53 protein has been dubbed, the “guardian of the

genome” due to it's preservative function to maintain genome stabil-

ity  (Lane 1992). As a general rule, a tumor suppressor gene is de-

fined by the fact that it is beneficial for the tumorigenic process and

the cancerous state of the cell, if its protein product, or at least its

function,  is  not available to the cell.  Therefore tumor suppressor

genes are often lost in deletion events or truncated by mutations.

Oncogenes are the counterpart  of tumor suppressors.  Their  high

activity is beneficial for the tumorigenesis or cancerous state of the

cell. Therefore the cancer cell often transcribes oncogenes in high

amounts as their  activity is  needed. Insertions,  translocations and

mutation events may give rise to oncogenic protein products which

exert new functions that are not originally available in the cell. A

pathway  may  induce  or  maintain  tumorigenesis  by  receiving  an

oncogenic activation where a key component is always  activated

due to over-expression or an activating mutation.
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Meanwhile, the type of alteration event a driver genes suffers can

be taken as indicator of its  mode of action,  but not all  cases are

clear-cut. Lots of experimental studies have been performed in or-

der  to  study  the  oncogenic  or  tumor  suppressor  activities  of  all

kinds of proteins, which has often lead to contradicting statements

about the mode of action of a particular gene or protein. The diffi-

culty lies in reproducing an  in vitro system whose regulatory pro-

grams resembles those in vivo, but also that depending on the origin

tissue and therefore on the activated genes and pathways, the tu-

morigenic role of the same protein may be opposite in different set-

tings  (Licciulli et al. 2013; Liu, Zhang, and Ji 2013). Knowing in

which category a cancer driver falls has important implications on

the interpretation of effects on the pathway and possible treatment

possibilities. Generally, oncogenes are easier to target as the goal

would  be  to  abolish  their  function.  Developing  a  treatment  that

compensates the loss function of a tumor suppressor gene is a much

more complex task, although it has been achieved  (Lambert et al.

2009).

Hallmarks of cancer

Detecting which alterations are driver alterations is complicated,

because cancer is, considered from a genomic point of view, a very

heterogeneous disease. This is not only so when comparing cancer

types from distinct tissues, but also different tumor samples of the

same cancer type and tissue of disease. This may be explained by

the assumption that there is not one specific way for a neoplasm to

arise and turn malignant, although some common routes have been

identified. What capabilities the driver mutations should confer to

the cell in order to turn cancerous, has been discussed by Hanahan

& Weinberg in two crucial papers defining the “hallmarks of can-

cer” (D. Hanahan and Weinberg 2000; Douglas Hanahan and Wein-

berg 2011).

As insinuated earlier in the text, one important acquisition is the ca-

pability  of introducing genome instability  and circumventing cell

cycle and DNA damage checkpoints and other control mechanisms

that are at the disposal of the cell. Cells which do not behave as ex-
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pected are confronted with possible immune destruction, senescence

and/or apoptosis  (D. Hanahan and Weinberg 2000). Evading these

are some of the hallmarks of cancer.

Recent research suggests that immune surveillance control for the

presence of possibly cancerous cells: tumor-infiltrating lymphocytes

(TIL) infiltrate and initiate eradication of tumor cells  (Kim, Emi,

and Tanabe 2007). Cancerous cells which are weakly immunogenic

may escape  this  “immunoediting”  process  and  colonize  a  tissue.

The immunoediting both protects the host from cancerous cells and

sculpts an emerging tumor by exerting selective pressure in function

of the immunocompetence of the host (Dunn et al. 2002).

Cellular or replicative senescence is a phenomenon in which cells

cease to divide due to “aging”. Senescence may play an important

role in cancer as some research suggests that strong oncogene sig-

nals within the cell may initiate senescence  (Braig et al. 2005; D.

Hanahan and Weinberg 2000; Collado and Serrano 2010) or apopto-

sis in response to signal imbalances. Apoptosis, also known as pro-

grammed cell death, is a mechanism of multicellular organisms that

targets possibly disturbing cells whose elimination is an advantage

for the organism. Thus, malignant cancer cells often develop strate-

gies to avoid or resist apoptosis (Lowe, Cepero, and Evan 2004). As

a result of this and the avoidance of senescence, tumor cells gain

unlimited replicative potential and start to proliferate quickly. Ex-

treme proliferation can itself lead to senescence and also stands in

conflict with various programs of the cell that negatively regulate its

proliferation.  Nevertheless,  senescence  can  be  circumvented  by

means of enlarging or maintaining the DNA telomere length  (D.

Hanahan and Weinberg 2000) which are normally shortened upon

cell division and mark the age of the cell. 

The typical tumor suppressor activities of RB1 and TP53, just to

name two examples, consist in controlling the decision making with

regard to cell proliferation. Signals of growth suppression are inte-

grated  by  tumor  suppressors  proteins  and  therefore  mutations  in

those may render the cell deaf to such stimuli.

Apart from avoiding and resisting the multiple programs that con-

trol the healthy state of the cell, cancerous cells must ensure that
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enough nutrients and oxygen are delivered to them in order to sus-

tain the rapid growth of the tumor tissue. One mechanism to achieve

this consists in switching on angiogenesis with the purpose of build-

ing new vessels that deliver increased amounts of blood to the cells.

Inflammation may similarly boost cancer growth because it can pro-

mote several of the aforementioned hallmarks by providing growth,

survival  and  pro-angiogenic  factors  (D.  Hanahan  and  Weinberg
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Figure 5: The hallmarks of cancer

The  six  classical  hallmarks  of  cancer  Sustaining  proliverative  signaling,

evading  growth  suppressors,  activating  invasion  &  metastasis,  Enabling

replicative immortality, Inducing angiogenesis and resisting cell death from (D.

Hanahan  and  Weinberg  2000) completed  with  four  energy  metabolism

reprogramming,  avoiding immune destruction, tumor-promoting inflammation

and genome instability & mutation (Douglas Hanahan and Weinberg 2011; also

source of image).



2000; Douglas Hanahan and Weinberg 2011). 

In summary, the hallmarks of cancer are a set of cell functions – or

pathways – that tumor become frequently altered in the tumorigenic

process. Some of the alterations may be more important than others

and the order in which they occur is not clear. These factors may

vary in function of the tissue where a tumor occurs. A certain alter-

ation may be prevalent within a tumor type of a specific tissue, but

at the same time this alteration may never be found in the samples

of another cancer type. This is exemplified by TP53, RB1 or PTEN,

all known tumor suppressors and accepted cancer drivers that are

often targeted by gene alterations. They are often not altered in can-

cer samples obtained from patients as they are not the only elements

of  the  pathways  constituting  the  hallmarks.  Tumorigenesis  as  a

process depends on the alteration of the hallmark pathways irre-

spective of the precise gene which carries it. 

Some proteins play very central roles in the pathway signaling cas-

cade.  Altering a hub in a protein-protein interaction network will

have a major effect which, if beneficial for tumorigenesis, is a good

target for alteration. These good targets are therefore often observed

when screening a cohort of cancer samples and are easily identified.

Regardless,  unlikely  alterations  occur  also  and  can  result  in  the

same functional pathway signaling aberration or gain that is needed

by the tumorigenesis as one of the highly recurrent alterations may.

Consequently, driver mutations that are less likely to occur are auto-

matically less likely to be identified, as discussed in the next sec-

tion. 
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1.2  Identification of cancer drivers

Given  the  hallmarks  of  cancer,  the  interpretation  of  the

alterations that are observed in cancer cells is somewhat aided.

Any  alteration  observed  in  a  gene  whose  protein  product  is

known  to  be  implicated  in  one  of  the  hallmarks  becomes  a

suspect of being implicated in tumorigenesis. The main hurdle,

as  discussed  in  the  preceding  section,  is  that  not  all  driver

mutations are evenly likely to occur. Another hurdle is that many

proteins  are  not  thoroughly  studied,  and  even  well  studied

proteins  may  exert  yet  unknown  functions  and  prove  to  be

involved in tumorigenesis. Thus, how are cancer drivers being

identified? The first step is to identify somatic alterations within

the  cancer  samples  by  means  of  available  technologies  and

creating  a  data  cohort.  This  cohort  can  then  be  studied  in  a

second step  with  bioinformatic  tools  in  order  to  find  putative

cancer drivers.
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1.2.1  Technologies

The scientific questions that can be investigated depend largely on

the technology and its accessibility that is available to obtain data. A

bit more than twenty years ago, microarrays have been introduced,

revolutionizing  genetics  with  new  possibilities  and  arguably  en-

abling transcriptomics. During the last decade there has been a shift

from array-based data  generation  to  the  use  of  sequencing  tech-

nologies, paired with big investments in cancer research by govern-

ments world-wide. This has led to a massive surge in high-quality

cancer genomics data available to the scientific community around

the globe.

Polymerase chain reaction (PCR)

Polymerase  chain  reaction  (PCR)  is  a  technology  employed  to

clone  fragments  of  DNA in  order  for  signal  quantification.  By

means of a heat-stable DNA polymerase DNA fragments are treated

with successive cycles of heating and cooling in order to induce

DNA melting, dissociate the two DNA strands and then facilitate

DNA replication.  With  the  help  of  short  DNA fragments,  called

primers, complementary to the extremes of the DNA sequence be-

ing amplified, specific regions of the genome can be targeted for the

PCR amplification. With each cycle, the targeted DNA stretches are

replicated and doubled in amount, and thus amplified exponentially.

The reverse-transcription PCR (rtPCR) allows to retro-transcribe

DNA from RNA. With this variation of PCR, it is possible to am-

plify the signal of mRNA and deduce the quantity of gene expres-

sion activity. The quantification has seen it's revolution with the in-

troduction of DNA microarrays.

DNA microarrays

DNA microarrays, short arrays, are chips with many tiny “wells”

called spots that  contain little  quantities of a  specific  DNA frag-

ment, called probes. The probes are designed complementary to cer-
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tain sites of a gene or other complementary DNA (cDNA) elements

in order to specifically hybridize that target sequence.

Before hybridizing the probes,  the cDNA fragments  are labeled

with dyes that turn fluorescent upon hybridizing the chip probes.

The emitted light is used as signal. Therefore the signal strength de-

pends on the amount of cDNA that binds to the spots, which is a rel-

ative proxy of how much of the original sequence, e.g. an mRNA of

a certain gene, was in the sample. The cDNA fragments can be am-

plified via the PCR or rtPCR reaction in order to ensure that enough

signal is available for measurement.

Different  microarray  technologies  exist  for  various  applications.

The most common ones are chips for gene expression profiling, sin-

gle nucleotide polymorphism (SNP) detection per SNP array and

chromosomal abnormality detection via comparative genomic hy-

bridization.

The different arrays have served well the scientific community, as

discussed with the example of expression arrays in cancer research

(see page 38). Microarrays have introduced a new era in biology of

measuring en masse. Never before the age of arrays, molecular biol-

ogists had to cope with that big amounts of measurable features at

once.  The  GeneChip  Human  Genome  array  from  the  company

Affymetrix, a DNA array of the latest generation, claims to report

on  the  abundance  of  18'400  transcripts  and  variants  including

around  14'500  human  genes  (http://www.affymetrix.com/).  The

analysis and interpretation of this data has enabled a new generation

of bioinformatics and biostatistics oriented scientists. 

Besides  the hurdles  imposed for  the biological  interpretation  of

several thousands of gene measurement for multiple samples,  the

microarray poses challenges caused by technological artifacts.

A batch effect problem arises when comparing multiple samples

that  have been processed over  different  time points  and possibly

even with different microarray platforms (Leek et al. 2010). This is

especially a problem when collecting data that has been posted by

different researchers to public array data bases such as GEO (Edgar,

Domrachev, and Lash 2002) to be jointly analyzed. The batch effect
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appears  because  the  specific  conditions  and  factors,  such  as

reagents, that have been used to process the microarray influence

the measurements, the used platform or the personnel. Therefore the

intensities of two different samples of the same experimental group,

sample A and sample B, that are analyzed on the same machine, on

the same chip and under the same conditions may correlate better

than a replica of sample A on a second machine, another chip or

simply processed another day. 

It is important to consider that the measurement of fluorescent in-

tensities is a relative quantification: The measurement is only infor-

mative in the context of other samples and relative differences be-

tween them and thus possible batch effects complicate the interpre-

tation as the quantities that are measured are influenced by non-bio-

logical  factors  that  vary in  between different  processing  batches.

Various normalization solutions have been proposed. The virtualAr-

ray package combines many proposed solutions from mean center-

ing to the empirical Bayes method  (Heider and Alt 2013). Gener-

ally, a good experimental design of the batches may diminish their

influence on later erroneous correlation (Leek et al. 2010). 

As for expression arrays,  another  problem is  that the lowly ex-

pressed genes may be indistinguishable from random noise. After

the  binding of  the  cDNA segments  to  the  probes  on the  chip,  a

washing is applied to eliminate all the sporadic association between

cDNA fragments  and probes.  In  any case,  some non-specifically

bound cDNA fragments will remain on the chip and cause noise sig-

nal. Therefore, microarrays are not able to report a non-zero (unex-

pressed) status, as for the spots where no complementary cDNA is

available and would bind strongly to the probe, unspecific binding

is more likely to happen and falsify the signal.

DNA Sequencing 

Sequencing is generally defined as the process of determining the

primary  structure  of  biopolymers.  In  other  words,  sequencing  is

used to determine the exact order of amino acid in a polypeptide

chain or nucleotides in polynucleotide chains as DNA or RNA.
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In the 1970s the first DNA sequences were determined with the

help of sequence-specific primers, as employed in the PCR method

(Jay et al. 1974) known as Sanger sequencing. This type of sequenc-

ing dominated until  the early 2000s.  Thereafter  many techniques

and protocols have been described to improve DNA sequencing in

quality and speed and have enabled the creation several commer-

cially available high-throughput sequencing machines, allowing to

perform whole-exome and  whole-genome sequencing  in  a  reala-

tively short time. Paradoxically, they are still referred to as “next-

generation sequencing”. A time line featuring the different sequenc-

ing techniques and major sequencing achievements is displayed in

Figure 6. 

Further generations of improved sequencing platforms are to be

expected, because available machines are manufactured by different

companies  and employ different  techniques  which still  are  error-

prone. Additionally, the scientific community and in particular the
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Figure 6: Timeline of sequencing techniques and achievements

Image from (Laing 2011).



health sector exert high pressure to lower sequencing costs. 

The read length of DNA fragments that are sequenced are rather

short, between 50 and 1000 bp, depending on the technology. This

entails various problems for the assembly of the read sequences: in

general they are hard to align to the reference genome, in particular

in repetitive regions belong to and each platform has its bias to cer-

tain errors. 

Generally, the higher the coverage the less errors are introduced as

non-recurrent bases can be identified as false positives. High cover-

age also makes the alignment process somewhat easier as the higher

the coverage the more overlapping parts are read and less gaps have

to be aligned. In cancer studies two samples are required for se-

quencing: one sequence from healthy tissue and another from the

cancer tissue such that somatic alterations can be determined from

the comparison of the aligned reads of both. The amount of data

stored is rather large which imposes a big challenge, especially for

large projects. It is important to store the original read data as the

aligner software and the human reference genome are both evolving

and thus the resulting alignment may result differently if repeated

after  some  time.  The  choice  of  an  adequate  sequence  aligner  is

somewhat of a challenge now, as different tools yield different re-

sults.  Li  and Homer  reported  in  2010 that  already 20 short-read

alignment software packages have been published. Popular choices

are Bowtie or BWA due to their speed (H. Li and Homer 2010).

Overall  the  reads  are  more  error-prone towards  their  ends.  The

bases in each end are often discarded if high accuracy is needed as

is the case when calling genotypic variants for an individual. The

problem of the introduced sequencing errors is, that they may be in-

terpreted  as  alterations  by  the  different  bioinformatic  approaches

that have been developed to make the variant calling. Additionally,

each method has its advantages and pitfalls when it comes to detect-

ing lowly frequent variants or the before-mentioned false variants

(Wang et al. 2013; Kim, Emi, and Tanabe 2007)
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RNA sequencing

The sequencing of RNA, also called RNA-seq, is superseding the

use  of  micro-array  platforms  for  the  quantification  of  the  tran-

scribed DNA in a sample. The biggest advantage of RNA-seq over

micro-arrays is that theoretically all RNA present in the cell can be

detected and no prior knowledge is needed as is the case for design-

ing the microarray probes, except for a reference genome which is

already  available.  Furthermore,  RNA-seq  has  more  applications

than  micro-arrays  as  not  only  abundance,  but  also  the  exact  se-

quence is being detected. Besides gene expression quantification by

mRNA sequencing, RNA-seq can be used for detection of single

nucleotide variants (SNVs) or even post-transcriptional SNVs, in-

tron-exon boundaries, fusion genes and as well for the study of iso-

form balance and other RNA populations than mRNA. The mani-

fold opportunities of interpretation of RNA-seq goes hand in hand

with the space the resulting data takes up on disk. Similar to DNA-

sequencing, as RNA-seq is employed for big projects, it's data man-

agement is  also becoming a challenge which has  to  be managed

well.

A particular problem for the study of RNA transcription in cancer

samples is that the matching of normal and cancer samples is more

difficult  as  not  all  tissues  allow for  taking  normal  samples  (e.g.

brain) and the transcription of many genes is tissue-specific. There-

fore often times, when no paired normal sample is available, blood

samples or samples from healthy donors are used as backup. Al-

though these may be viable solutions, they do not reflect accurately

the transcription abundance in the healthy tissue of the cancer-site

of the same patient. 

1.2.2  Large scale cancer genomic studies

The heterogeneous nature of the cancer disease makes it difficult

to  reproduce  singular  findings  such  as  de-regulation  of  a  gene

(group) or a specific mutation in limited cohorts. On top of this, few

groups or institutes have the power to generate large enough cohorts

to address this statistical problem and identify the cancer alterations
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in depth. But in recent years, orchestrated efforts have been going

on to  generate  high-quality  cancer  data  cohorts  available  for  re-

search around the globe.

TCGA: The Cancer Genome Atlas

TCGA is a North American effort to characterize genomic aberra-

tions in cancer patients. In a pilot study, published in 2008 (McLen-

don et al. 2008) showing that by coordination of multiple centers it

is possible to gather large high-quality genomic cohorts that give

new  molecular  insights  of  the  cancer  disease,  in  this  case  of

Glioblastoma multiforme samples. For the ongoing phase,  TCGA

has set itself the goal of gathering multidimensional genomic data,

including  exon  or  whole-genome  sequences,  expression  profiles,

copy number status and others,  of minimum 500 cancer samples

from up to 25 different cancer types.

In 2013 researchers associated to TCGA released a series of stud-

ies under the title TCGA pan-cancer, in which a cancer cohort en-

compassing  samples  from twelve  tumor  types  were  analyzed to-

gether in order to gain new insight of differences and similarities

between them (The Cancer Genome Atlas Research Network et al.

2013). The TCGA pan-cancer datasets guarantee certain processing

standards of the data and therefore allow to pull together different

datasets.  The  TCGA pan-cancer  mutation  data  for  example,  has

been produced with the same aligner and mutation callers.

On the data portal launch site, TCGA reported to have 10'206 ana-

lyzed cancer  samples for which data is  available (https://tcga-da-

ta.nci.nih.gov/tcga/, accessed July 24th 2014). 

ICGC: International Cancer Genome Consortium

With similar goals in mind as TCGA to create large cancer ge-

nomics resources, an international community of scientists started

to think about an international effort for collecting and providing

cancer genomics data. Altough the ICGC does not provide direct

funding  for  sequencing  projects,  it  creates  a  powerful  platform

where researchers can discuss, define common goals and also lobby
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the respective agencies to generate funding. In 2010, the resulting

ICGC presented their intentions of obtaining large-scale characteri-

zations of 25'000 cancer samples from 50 cancer types in a white

paper (Hudson et al. 2010). To date, the ICGC cites on their website

73 projects across the globe with funding commitment from their

respective countries. As the ICGC is a multinational effort, TCGA

provides an important part of the data coming from North America.

Spain is contributing to the ICGC with its CLL project. Following

TCGA pan-cancer, the ICGG has issued a call for whole-genome

pan-cancer studies and is providing collaboration coordination for

all participants. 

1.2.3  Computational analysis of cancer genomic 

data

The advanced knowledge of cancer genomics combined with the

large cancer genomics cohorts that are being produced creates a set-

ting where cancer genomics properties can be studied with novel

computational approaches. A simple question such as which genes

and alterations are driving different cancer types can be answered

with many different approaches, as discussed further on.

Mutational patterns: identifying mutational drivers 

As cohorts of cancer samples are being collected, and all the muta-

tions in the genome are being registered, it is possible to survey for

mutational patterns of each gene. For example, the mutational re-

currence in a cancer sample cohort is a straight-forward indicator

that the gene is a driver candidate. A beautiful example of this is the

APC gene which has been reported mutated in about 80% of the

colorectal cancer samples (Stratton, Futreal, and Wooster 2004). As

easy as it seems, this interpretation harbors problems because genes

can also be recurrently mutated due to reasons other than the tu-

morigenesis.  The  reasons  are  several:  the  longer  the  gene is  the

more likely it is that a mutation will fall within it's coding sequence,

such as in the case of TTN  (Tamborero et al. 2013). Furthermore

not all genes are critical for the cancer cell to function and survive
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as they are not transcribed in a tissue or do not interfere with main-

tenance of the cancerous state of the cell. Such passenger mutations

may be carried along without problem. Conversely, if a mutation

falls in a gene which is critical to yield protein products for the can-

cer cells, this mutation is under negative selection and is therefore

less likely to pass to the next generation of cancer cells. Other genes

are more likely to be mutated as they lie in late-replication genomic

regions which are more error-prone (Koren et al. 2012). Therefore

the probability of receiving a mutation is not equal for all the genes.

In order  to  correctly  model  an enrichment  in  mutations  across  a

sample cohort, one would need to take into account the background

mutation rate (BMR) which reflects  the likelihood that a gene is

mutated in a cell of a given tumor type. This approach is employed

by recurrence-based methods such as MuSic and MutSig (Lawrence

et al. 2013; Dees et al. 2012). Modeling the BMR is complicated as,

one cannot directly assume that the same BMR applies to all the tis-

sues and we do not control all the co-variates of it.

In any event, as there are mutations that are under negative selec-

tion during tumorigenesis, the contrary is also the case. We know

that mutations in genes that confer the cancer cell an advantage are

selected for. The selection process also leaves behind traces other

than recurrence, as listed in Figure  7. The functional impact (FM)

bias explores the selection for mutations that have a high impact on

protein function. The rationale is that sporadic passenger mutations

occur across the entire spectrum of functional impact. Driver muta-

tions on the other hand are not sporadic and are expected to either

abolish or alter the function of the protein. OncodriveFM takes up

this idea by exploring the functional impact scores of all mutations

in a gene and assessing if the gene is particularly targeted by muta-

tions with great impact on protein function more ofthen than pas-

senger  ones  (Gonzalez-Perez  and  Lopez-Bigas  2012).  The  func-

tional impact scoring depends on the mutation location and inferred

consequence. Truncating mutations have the major impact imagin-

able as they directly cancel any protein function. Missense muta-

tions  may have very different  consequences  depending on where

they fall within the gene. The scores of functional impact for mis-

sense  mutations  are  assessed  by  approaches  such  as  SIFT,
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Polyphen2 or MutationAssessor (P. Kumar, Henikoff, and Ng 2009;

Adzhubei et al.  2010; Reva 2013) that largely depend on protein

alignment between different species of the gene in question in order

to  assess  the  conservation  of  the  nucleotide  where  the  mutation

falls. A very conserved residue is thought to be critical for protein

function while a highly variable residue is not. 

Thus, a gene that shows no bias towards the accumulation of muta-

tions with high functional impact is arguably a gene bearing passen-

ger mutations and may therefore be discarded as a driver even if it

has  a  highly  recurrent  mutational  pattern.  A gene with  very  few

mutations, but all with great impact, signals a good candidate for

cancer driver. This allows to identify lowly recurrent driver genes,

and the bias measure of this approach allows to disregard correction

for the background mutation rate. An example is found in IntOGen-
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Figure 7: Mutational patterns of cancer driver genes

The  positive  selection  for  tumorigenic  mutations  leave  behind  mutational

patterns within a cancer sample cohort which can be used to identify mutational

cancer drivers. Figure adapted from (Tamborero et al. 2013).



TCGA (Tamborero et al. 2013), which reports the DICER1 gene, a

cancer gene annotated as such in the cancer gene census (Futreal et

al, 2004), to have a functional impact bias within the TCGA uterus

datasets where 9 mutations have been registered amongst 230 sam-

ples where only 3 out of the 9 mutations are annotated as lowly im-

pacting. 

In any case, not all cancer drivers bear mutations that are truncat-

ing or fall into very conserved sites. Very subtle changes with low

impact bias in the genomic sequence may assure that the resulting

protein is always in an  activated or inactivated state. Only one or

very few mutational options may be available to achieve a very spe-

cific behavior or function of the protein. OncodriveCLUST is a tool

that tests if the mutations are accumulating at the same site or in a

cluster across a tumor samples cohort (Tamborero, Gonzalez-Perez,

and Lopez-Bigas 2013). The BRAF V600E is a classic example of

an oncogenic mutation that is found in most melanoma tumor sam-

ples. Even within the TCGA Glioblastoma dataset, IntOGen reports

5 out 7 samples with mutations within 290 tumor samples to have

the same mutation. Two further mutations affect amino acids that

are 2 and 4 positions apart only, very proximate to the well-known

mutational hot spot.

ActiveDriver is another tool designed to detect mutational patterns

associated  to  phosphorylation  sites.  Similarly  to  the  rationale  of

clustering, this approach tests if the registered mutations are affect-

ing  the  capability  of  signal  transduction.  The  authors  of  Ac-

tiveDriver  have  reported  a  new phosphorylation  site  in  the  well

known oncogene EGFR and tissue-specific phosphorylation site af-

fecting  mutations  within  the  EGFR signaling  module  (Reimand,

Wagih, and Bader 2013).

In summary, many genes can be identified as cancer driver genes

by means of their mutational pattern. Two recent efforts, focusing

on somatic mutation data from cancer sample cohorts of 12 or more

tumor  types  have  suggested  around  250-290  driver  genes  (Tam-

borero,  Gonzalez-Perez,  and  Lopez-Bigas  2013;  Lawrence  et  al.

2014).
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Copy number drivers

Not  all  driver  genes  act  through  mutational  alterations.  Several

cancer drivers are known to be subject to chromosome abnormali-

ties such as copy number alterations. CDKN2A is a tumor suppres-

sor gene, upstream of TP53 signaling, that falls in a chromosomal

region where large deletions have been reported with high recur-

rence. Figure 8 shows that CDKN2A is homozygously deleted in al-

most 50% of the tumor samples from a cohort of Glioblastoma pa-

tients. EGFR, an oncogene is subject to recurrent copy number gain

in the same dataset. 45% of the samples are reported to have more

than two copies  of EGFR. A quarter  of the samples with EGFR

gains even have mutations in the EGFR gene, indicating that differ-

ent alteration types may have complementary effects on tumorigen-

esis.

The recurrence shown in Figure 8 can be interpreted as a clear sign

of positive selection for the CDKN2A and EGFR, especially so, as

both of the mentioned genes are well-known cancer  drivers.  But

copy number gains and losses are chromosomal abnormalities that

can affect many dozens of genes, which makes interpretation very

difficult for a single cancer sample. Thus, cancer sample cohorts can

help the detection of cancer genes by aligning the chromosome ab-

normalities  from  multiple  samples.  The  overlapping  regions  be-

tween the samples will put the focus on the genes that are recur-

rently targeted by the copy number alteration events. GISTIC is a
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Figure 8: Copy number drivers of the TCGA Glioblastoma datasets

The  above  figure  shows  in  alterations  across  the  561  Glioblastoma  cancer

samples for CDKN2A and EGFR. CDKN2A is lost due to large range deletions in

270 (48%) of the samples. EGFR, a oncogene, has been detected to have multiple

copies in 252 (45%) of the Glioblastoma samples. A subset of 61 samples have

EGFR gained and mutated.



computational  method  that  assesses  the  distribution  of  the  copy

number events, identifies the peak regions and reports the genes that

fall within the peak regions as putative copy number drivers (Mer-

mel  et  al.  2011).  Another  important  criteria  to  take  into  account

when identifying copy number drivers is the zygosity of the event.

A copy number loss of a tumor suppressor may only be effective if

both copies of the gene are lost, although some work suggests that

dosage may play a role in copy number drivers also  (Davoli et al.

2013). Similarly, the increase in transcription of an oncogene may

increase with each copy gained – the more copies the more mRNA

can possibly  be  transcribed  simultaneously. Gistic2  classifies  the

copy number alterations into weak and strong events for each sam-

ple. The recurrence of strong events (homozygous loss and multi-

copy gain) are more reliable indicators for copy number drivers.

Detection of mode of action

Other approaches to identify cancer drivers have been described

which directly part from the assumption that the cancer driver genes

are either proto-onocgenes or tumor suppressor genes. It has been

proposed  to  classify  the  recorded  mutations  into  truncating  and

repetitive missense which can then be used as proxy for tumor sup-

pressors and oncogenes. A critical underlying assumption for this

approach is that truncating mutations are not observed in oncogenes

(Vogelstein et al. 2013).

A somewhat more complex approach makes use of a set of classi-

fiers that distinguish the mutational and copy number patterns be-

tween oncogenes, tumor suppressor and neutral genes as proposed

by (Davoli et al. 2013). 

Both approaches are interesting, as the first is relatively simple,

and the latter includes multiple genomic evidences. Both methods

try to solve two problems in one step: identifying cancer drivers and

classifying them into oncogenes and tumor suppressors. It  is less

clear if those approaches are equally apt to discard passenger alter-

ations and genes as the methods described in the preceding chap-

ters, most of which have been developed specifically exactly to dis-

tinguish driver and passenger genes.
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Mutual exclusive alteration patterns within driver gene sets

As mentioned  earlier,  driver  alterations  are  expected  to  fall  into

hallmark pathways to confer the cell with tumorigenic capabilities.

Those pathways are therefore under a strong selective pressure to be

altered.  Once  altered  this  selective  pressure  is  relaxed.  As  men-

tioned before, some of the proteins within a pathway may be more

easily targeted by alterations than others, but each component of the

signal-cascade is a possible target. 

Hence, the multiple targets and the selective pressure contribute to

the idea that one alteration per hallmark pathway and sample may

be enough to give rise to tumorigenesis. This hypothesis would be

reflected by a mutual exclusive alteration pattern within driver path-

ways in tumor samples. Several methods have been developed in

order to detect gene groups with mutually exclusive alteration pat-

terns. Approaches for  de novo identification of possible gene-gene

interactions from mutually exclusive patterns across cancer samples

have been proposed  (Ciriello  et  al.  2011; Ciriello,  Cerami,  et  al.

2013; Vandin, Upfal, and Raphael 2011). A hurdle for the approach

to detect de novo cancer driver gens is the size of the combinatorial

possibilities to form gene modules.  If  we'd like to asses possible

combination of 22'000 genes in groups of three, we'd have to test

more than one thousand billion (1.3×1015) combinations. In MeMo

and  Dendrix  (Ciriello,  Cerami,  et  al.  2013;  Vandin,  Upfal,  and
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Figure 9: Mutual exclusive interaction modules detected by MeMo

The  two  cases  show  interacting  proteins  which  are  altered  in  the  genomic

sequence or an altered copy number within an ovarian cancer sample cohort.

Almost  all  alterations  are  mutually  exclusive  which  is  a  hint  at  a  positive

selection for  alterations within the module.  Figure taken from  (Ciriello  et  al.

2011)



Raphael 2011) this problem is somewhat alleviated by using prior

knowledge: network-based combinations. The opposite approach re-

lies on the hypothesis driven rationale of testing well-known cancer

pathways and modules. 

Expression patterns

Besides alterations in the coding sequence of the genes, regulatory

mechanisms can lead to the same tumorigenic effect by suppression

of the transcription or translation of a tumor suppressor protein or

the increased transcription, also called over-expression, of an onco-

gene. Additionally, the possibility to interrogate the transcriptome

provides researchers with a global view of the transcriptional status

of almost any gene within a tumor sample. Insight can be gained of

what genes and pathways are up-, down- and co-regulated across tu-

mor and normal samples (Alon et al. 1999).

 Employing gene expression profiling, cancer subtypes have been

identified and gene expression signatures of carefully selected genes

have been shown to predict the clinical outcome of cancer treatment

(Sørlie et al. 2001; van ’t Veer et al. 2002).
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1.3  Visual data exploration & cancer genomics data 

analysis

The large amounts of data that are being generated have to be

exploited and analyzed. Researchers and medical staff are and

will continue to need to access the data that is released to public

domain by TCGA, the ICGC and independent research groups as

multidimensional  large-scale oncogenomic data sets.  Raw data

coming out of the various platforms for a single sample has to be

processed  and  analyzed  before  it  is  interpretable.  This  can

constitute a barrier for the researcher as hurdles and questions

come up: How to process the raw data, what analyses to use?

How to merge various datasets  of possibly different platforms

and cancer types? How to store the processed data in order to

guarantee  efficient  exploration?  How  to  visually  explore  the

multidimensional oncogenomics data? 
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1.3.1  Interpretation and availability of 

multidimensional cancer genomics data

The pan-cancer datasets  that are now available – containing so-

matic  mutations,  CNA  alteration  status,  methylation  levels  and

many more genomic data points of thousands of cancer samples -

allow complex analysis. The plethora of data also bears dangers of

prompting  wrong  conclusions  and  correlations  which  are  not

causative. Thus, the context of every data point may prove crucial

for interpretation. For example clinical annotations about the cancer

patients and samples or molecular details about genes support the

interpretation  of  the  results.  For  Glioblastoma  multiforme  and

breast cancer samples, TCGA data already provides cancer subtype

information. When using this information as criteria to group cancer

samples for the visualization of the expression data, group-specific

expression patterns become visible. The distinct expression patterns

may be a reflection of the tumorigenic process that affects genes or

pathways in distinct manners in various cancer types and subtypes.

This heterogeneity is the very reason, hypotheses may prove right

in certain sub-cohorts but not in others. However, for cancer treat-

ments to become ever more adequate it is important to identify and

extract  cancer  sub-cohorts  that  have  specific  molecular  patterns.

How such a specific cohort is identified depends on how the data is

available. Data preparation and normalization is an expensive step

in the analysis pipeline and may be unnecessarily repeated by inde-

pendent groups that download raw cancer genomics data. Resources

that provide pre-analyzed and prepared data sets therefore eliminate

a big hurdle for many researchers. A good example is the cBio Can-

cer Genomics Portal  (Cerami et al. 2012) which allows the user to

select a TCGA cancer cohort and see some preliminary analysis and

alteration  data.  More  advanced  analyses  may  help  to  prefilter  a

TCGA cancer sample cohort. IntOGen mutations  (Gonzalez-Perez,

Perez-Llamas,  et  al.  2013) and  IntOGen  arrays  (Gundem  and

Lopez-Bigas 2012) similarly let the user browse and filter combined

cancer data sets and download gene-based results related to cancer
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and tumorigenesis. Both web resources combine a database for ana-

lyzed cancer data with visualization approaches.  This kind of re-

sources help speed up cancer research in general as quick consulta-

tion of preliminary hypotheses is possible as data in analyzed form

may be downloaded. Thus, the more effort is put into the combina-

tion of intuitive data browsing and easy data accessibility the more

the  research  community  will  profit.  Analysis  tools  that  are  used

widely in the research community should therefore have easy access

to widely used and prepared data sets  for  them to become more

valuable to the field.

1.3.2  Visualizing multidimensional cancer genomics 

data 

In 2013 we published a review on tools and approaches that specif-

ically aid the visualization and exploration of multidimensional can-

cer genomics data sets. As in this work we made a literature review

and with the purpose of avoiding self-plagiarism and repetition, I

include the review as a chapter in the introduction. 

Schroeder, M.P., Gonzalez-Perez, A., and Lopez-Bigas, N. 

(2013). Visualizing multidimensional cancer genomics data. 

Genome Medicine 5, 9. 
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O ncogenomics data and their dimensions
Cancer genomics benefi ts from high-throughput techno-
lo gies that allow the comparison of the genomic sequen-
ces, epigenomic profi les, and transcriptomes of tumor 
cells with those of normal cells. Th ese technologies often 
characterize diff erent types of somatic alterations (or 
variations) in a tumor cell population that are absent 
from normal cells - including copy number alterations 
(CNAs), mutations, gene expression changes and methy-
la tion changes [1-4]. Together, these somatic altera tions 
constitute multidimensional oncogenomics datasets that 

descri be the variations that coexist in common elements 
(for example, the genes) of the genome (or transcriptome) 
of a particular cohort of tumor cells. Such data are 
currently being used to identify cancer-driver genes and 
pathways, to discover molecular targets for new thera-
pies, and to defi ne molecular profi les that charac terize 
clinically meaningful patient categories. An array of 
analytical methods are currently used to exploit the 
information contained within this multidimensional 
layout [5-12].

Along with computational and statistical methodolo-
gies, eff ective visual exploration by experts is crucial to 
successful extraction of knowledge from oncogenomics 
data. For example, this step might be key to unraveling 
rare genomic events, verifying data quality at maximum 
resolution or identifying key players in cancer develop-
ment. Th us, researchers need intuitive tools that allow 
the visual integration and simultaneous exploration of 
both diff erent types of alterations and clinical informa-
tion. Many data visualization tools have been developed 
in recent years to support genomic studies. In this review, 
we revisit the most common ways in which these data are 
visualized, and present s elected tools that allow 
researchers to visualize multidimensional oncogenomics 
datasets eff ectively (Table 1).

To aid our review of the tools, we describe four case 
studies that illustrate their use: the visual exploration of 
1) alterations in cancer-driver genes per tumor through a 
representation based on OncoPrint (described below); 
2) cause-eff ect relationships between diff erent alteration 
types in tumor samples, through the use of Gitools and 
the Network viewer from the cBio Cancer Genomics 
Portal; 3)  the stratifi cation of tumor samples based on 
clinical annotations, using CircleMap, the Integrative 
Genomics Viewer (IGV) and Gitools; and 4) dramatic 
structural alterations that encompass the rearrangement 
of large chromosomal regions, employing the Circos tool 
and data obtained from the Catalogue of Somatic Muta-
tions in Cancer (Cosmic).

Types  of genomic data visualization
Numerous methods have been developed to automate the 
analysis of genomic data [13-15]. Nonetheless, the visual 
exploration of alterations in cancer genomes, epi g enomes 
and transcriptomes in multidimensional datasets, and of 

Abstract

Cancer genomics projects employ high-throughput 
technologies to identify the complete catalog of 
somatic alterations that characterize the genome, 
transcriptome and epigenome of cohorts of tumor 
samples. Examples include projects carried out by 
the International Cancer Genome Consortium (ICGC) 
and The Cancer Genome Atlas (TCGA). A crucial step 
in the extraction of knowledge from the data is the 
exploration by experts of the diff erent alterations, as 
well as the multiple relationships between them. To 
that end, the use of intuitive visualization tools that can 
integrate diff erent types of alterations with clinical data 
is essential to the fi eld of cancer genomics. Here, we 
review eff ective and common visualization techniques 
for exploring oncogenomics data and discuss a selection 
of tools that allow researchers to eff ectively visualize 
multidimensional oncogenomics datasets. The review 
covers visualization methods employed by tools such 
as Circos, Gitools, the Integrative Genomics Viewer, 
Cytoscape, Savant Genome Browser, StratomeX and 
platforms such as cBio Cancer Genomics Portal, IntOGen, 
the UCSC Cancer Genomics Browser, the Regulome 
Explorer and the Cancer Genome Workbench.
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the relationships between these alter ations, presents 
specific challenges. This review focuses on the visuali-
zation principles, methods and tools em ployed to analyze 
these multidimensional oncogenomics datasets. (For 
general reviews on omics data visualization, see [16-19].)

We distinguish between three main approaches com-
monly used to represent multidimensional onco genomics 
data: genomic coordinates, heatmaps and networks 
(Figure 1). These three approaches complement each other, 
and each is best suited to answer different specific questions.

Genomic coordinates

A common way to visualize oncogenomics data is to 
show alterations tied to their genomic loci. This approach 
is well suited to provide answers to questions about the 
genomic topography of alterations or to inspect particu-
lar genome loci. We distinguish between two main 
visualization approaches that use genomic coordinates: 
Genome Browsers and Circular Plots. Three of the most 
popular genome browsers employed to visualize cancer 
alterations are the Integrative Genomics Viewer (IGV) 
[20], the UCSC Cancer Genomics Browser [21], and the 
Savant Genome Browser [22]. All three support multiple 
data formats that are used to represent various types of 
alterations. They display the alterations in each tumor 
sample as genomic tracks, which can be loaded onto the 
browser and navigated by zooming and by scrolling to 
particular genomic regions.

The IGV and Savant genome browsers work as desktop 
applications and are particularly suited to the display of 
aligned sequencing data. IGV has a special focus on 
visualizing integrated datasets that include both array-
based and sequencing-based data as well as clinical infor-
mation about tumor samples and donors. The clinical 
information displayed in vertical lines in conjunction 
with the data tracks can be used to sort and group the 
tracks, thus simplifying the stratification of samples 
(Figures 2 and 3e). A further advantage of IGV is the split 
screen view, which allows multiple loci to be displayed 
next to each other. On the other hand, Savant offers an 
application programming interface (API) that allows 
third-party developers to extend and add visual, analytic, 
navigational, and data loading functions to the genome 
browser. Available plugins include edgeR [23], aimed at 
detecting differentially expressed genes or regions. Other 
plugins are described in the Savant Genome Browser 
manuscript [22]. Another strength of the Savant genome 
browser is the visualization of paired-end reads [19].

The web-based UCSC Cancer Genomics Browser offers 
an easy-to-use interface that can be used to browse 
cancer genomics datasets, such as those of The Cancer 
Genome Atlas (TCGA), which have been pre-analyzed 
with various tools and include clinical information. The 
user can choose between different plotting types: 

heat maps, box plots and proportions. The features are 
shown in either the classic representation bound to 
genomic locations or in a gene-set visualization, 
analogous to the IGV split-screen view, resulting in a 
browser-like heat map (Figure 2). Unlike IGV and Savant, 
the UCSC browser does not allow users to upload data.

Circos [24] is a flexible and popular tool that can be 
used in many different research fields to plot circular 
ideograms. In the case of multidimensional oncogeno-
mics data, the genomic coordinates of all chromosomes 
are represented in a circular layout (Figure 3f). This tool 
aptly illustrates relationships between distinct alterations, 
represented as data tracks outside the ideogram, that 
take place at different locations within the genome. These 
relationships between regions are normally depicted as 
ribbons. Intra- and inter-chromosomal translocations are 
particularly well represented in Circos.

Genome browser tools in general have limited capacity 
to display relationships between genomic features that 
are independent of location, such as the coordinated 
expression of genes. The IGV and UCSC Cancer Genomics 
Browser attempt to tackle this problem using the split-
screen and heatmap approaches, respectively. Another 
issue with visualization-based genomic refer ence is that 
it falls short in visualizing extensive genomic rearrange-
ments. The circular layout of Circos can compen sate for 
this deficit, or it can be resolved by the use of specific 
tools such as Gremlin [25]. Many other tools also per-
form specific tasks, exploiting the genomic coordinates 
representation scheme. For example, puta tive transloca-
tion events can be verified by the command-line tool 
Pairoscope [26], which generates relational diagrams of 
paired-end sequencing reads to aid in the discovery of 
translocation events. To view and analyze single nucleo-
tide polymorphism (SNP) and comparative genomic 
hybridi zation (CGH) array alteration data tools and 
methods such as VAMP [27] and waviCGH [28] are 
options based on web technologies, whereas Genome 
Alteration Print [29] is a desktop application. Further-
more, it has been proposed that there should be a move 
towards visualizing genomic rearrangements, such as 
gene fusions, graphically to emphasize the order of the 
rearranged segments rather than the genomic distance 
between the breakpoints [30].

Heatmaps

Heatmaps are graphical representations that are fre-
quently used to describe transcriptomics and genomics 
data stored in the form of matrices. In oncogenomics 
datasets, the columns in a heatmap usually correspond to 
tumor samples, whereas the rows are genes, transcripts, 
microarray probes, or other genomic elements (Figure 1). 
The color of each cell represents a value indicating a 
measurement of, let’s say, for simplicity, the gene in the 
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Figure 1. Cancer genomics projects generate multidimensional data for a cohort of patients. Diff erent technological platforms will screen 
for diff erent genomic and epigenomic changes in each patient, generating multidimensional data sets. The data are usually represented by clinical 
data along with one or more of the three main types of visualization tools: genomic coordinates, matrix heatmaps and networks.

Multidimensional cancer genomics data

Expression
patterns 

Somatic
mutations 

Epigenomic
profiles 

Structural
aberrations 

Copy number
alterations 

Clinical
information 

Matrix heatmaps Genomic coordinates

Networks

Chromosomal coordinates

Clinical data

Interactions

Patient cohort

C
lin

ic
a
l d

a
ta

O
m

ic
s 

d
a
ta

Genes

Clinical data
Omics data

Omics data

G
e
n
e
s

Samples

Omics data Clinical data

Schroeder et al. Genome Medicine 2013, 5:9 
http://genomemedicine.com/content/5/1/9

Page 5 of 13



tumor, such as its expression level or mutational status. 
As matrices, heatmaps impose no restriction on the order 
of the data. Th is allows data from distant genome loci to 
be grouped and visualized together for comparison. For 
example, genes in the same pathway or genes that are 
associated with certain tumor types might be grouped 
together. In other words, rows or columns can be 
clustered according to molecular or clinical features. It is 
precisely this fl exibility to explore visually patterns within 
the alterations that are correlated to external charac ter-
istics, such as the function of genes or the features of the 
tumor samples, that make heatmaps so popular as a way 
of representing multidimensional oncogenomics data.

Many tools and programs generate heatmaps from 
numerical or categorical matrices. We focus here on tools 

that have features that are particularly well suited to the 
visual exploration of multidimensional oncogenomics data.

Gitoo ls [31] is an open-so urce java application for the 
analysis and visualization of matrices using interactive 
heatmaps. Th e heatmaps in Gitools can contain multiple 
dimensions, that is, multiple values in each cell, which 
makes it especially well suited to the exploration of multi-
dimensional cancer genomics data. Its interactive capa-
bilities allow the user to fi lter, sort, move, and hide rows 
and columns in the heatmap and to launch several 
common exploratory analyses (such as correlation, clus ter-
ing, enrichment and diff erential expression analyses). 
Multi-value data matrices, which can contain all types of 
alterations detected across a cohort of cancer samples, can 
be explored visually in Gitools, either focusing on a single 

Figure 2. Screenshots of tools that are frequently used in cancer genomics research distributed according to their visualization 
principles. Each of the three visualization methods - matrix heatmaps, genomic coordinates and networks - are associated with a point of the 
triangle. Tools that are placed close to one of these points mainly use the visualization method associated with that point; those placed in between 
use a mixed-model visualization method.
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dimension (that is, one type of alteration) or fixing one 
dimension to explore its influence on others. Gitools also 
allows the integration of these data with clinical information.

The cBio Cancer Genomics Portal [32] is a web 
resource for visualization of oncogenomics datasets that 
uses heatmap representation, among other options. The 
OncoPrint heatmaps display alterations in arrays of genes 
across tumor samples. Individual genes are represented 
as rows, and individual cases or patients as columns. 
Different colors and shapes are used to show different 
alteration types, so that multiple alterations in a patient’s 
gene can be distinguished easily.

IntOGen is a resource that can be used to analyze and 
visualize oncogenomics data [33]. It presents different 
values, estimating the accumulation of somatic muta tions, 
CNA or transcriptional alterations in genes and path ways 
across tumor samples. Pre-computed data for more than 
300 cancer genome experiments are currently available. 
Web-interactive heatmaps are used to explore gene and 
pathway alterations across samples and tumor types.

Caleydo StratomeX [34] is a visualization tool built 
upon the Caleydo framework [35], with a focus on ex-
ploring interdependencies between different stratifica-
tions of cancer samples within a given study. Genomics 
data on different alterations can be clustered and 
visualized as matrix heatmaps. The clusters of different 
alterations are connected by ribbons whose widths 
corres pond to the number of samples shared by the 
connected clusters. Clusters can also be visualized as 
pathway diagrams, allowing the researcher to observe the 
impact of alterations on pathway function (Figure 2).

Heatmaps can also be represented not as rectangles but 
as circles, as with CircleMap [8] (Figure  2). With this 
command-line tool, dimensions can be aligned in a 
circular plot accompanying a gene, which is represented 
as a circle that can be attached to other genes in a 
network layout (Figure 3d).

A general limitation of the heatmap visualization is that 
structural relationships between genes are difficult to 
grasp. For instance, it is very hard to discern whether the 
coincidence of CNA in several genes reflects a possible 
synergy or is simply a result of their location within a 
recurrently amplified or deleted chromosomic fragment. 
Gitools tries to solve this problem by offering the 
possibility of adding genomic annotations to the rows 
that can encode functional or structural information. 
Caleydo StratomeX solves this problem by incorporating 
pathway diagrams displaying functional relationships 
between the genes, and CircleMap plots can also be used 
as nodes to construct a network diagram for this purpose.

Networks

Networks represent functional relationships between 
different entities, such as genes. This type of information 

is difficult to represent in heatmaps and non-circular 
visualizations of genomic coordinates. Genetic features 
can be coded in node attributes such as color, size, or 
shape. Different alterations can be displayed as additional 
halos around the node. The network arrangement allows 
the researcher to explore visually clusters of nodes 
representing highly interconnected altered genes that can 
constitute driver pathways or subnetworks.

Cytoscape [36], a collaborative open-source project, is 
a widely used and intuitive network visualization and 
analysis tool in genomics research. No special bioinfor-
matics knowledge is needed to use Cytoscape. The 
properties of the nodes and the edges and the network 
layout are customizable, and the comprehensive array of 
plugins constitutes an added value for researchers. This 
tool has proven useful for integrating expression data 
into a gene network [37], as well as for mapping genes 
with cancer somatic alterations directly to a functional 
interactions (FI) network [38] that identifies subnetworks 
of altered genes in order to find cancer drivers. A web 
version, Cytoscape-web [39], is compatible with common 
internet browsers and facilitates interaction with the 
networks displayed. The cBio Cancer Genomics Portal 
[32] implements an adaption of this tool optimized for 
visually exploring multidimensional oncogenomics data 
from TCGA [40]. Node colors and halos encode the 
alteration status of cancer genes.

Representation of the genomic alterations present in 
individual tumor samples in network viewers presents a 
challenge. As a consequence, many details about the 
individual tumor samples are normally left out of net-
work figures. In the case of the cBio Cancer Genomics 
Portal network viewer, this problem is alleviated by the 
inclusion of plots that show the proportions of samples 
with different genomic alterations. Similar effects can be 
achieved with plugins for Cytoscape that transform 
nodes into pie charts (such as GoogleChartFunctions 
[41] and nodeCharts [42]).

Case studies
The case studies presented here elaborate on four 
different oncogenomic research questions that can be 
answered visually with the available tools and resources. 
The description of the case studies focuses on their 
biological interpretation. Supporting docu men tation on 
how to generate images corresponding to those in 
Figure  3 is included in the ‘Additional file 1 and 2’. 
Learning to use most of these tools requires a certain 
investment of time, and tutorials provided by the 
developers are highly recommended as a starting point.

Visual exploration of cancer drivers

Distinguishing the alterations that give cancer cells a 
selective advantage (drivers) from those that are merely 
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Figure 3. See next page for legend.
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side effects (passengers) of the destabilization of the 
cancer genome is a major problem in oncogenomics 
research. Several new methodologies [5-8,11,38,43-46] 
address this problem by exploiting the properties of 
driver genes. For example, the mutually exclusive altera-
tion of genes in a pathway is a characteristic of cancer 
drivers [5,6,47]. One plausible explanation of this behavior 
is that an alteration that targets an affected pathway does 
not confer further selective advantage to the cancer cell. 
A built-in Gitools option sorts genes and samples within 
a heatmap to present the pattern of mutually exclusive 
alterations, which is one approach to visual exploration 
of driver genes that are involved in the same pathway 
(Figure  3a) [48]. Oncoprint (cBio Cancer Genomics 
Portal) uses the same principle to display the alterations 
across TCGA datasets of a gene set provided by the user.

An alternative approach to identify cancer drivers 
involves mapping altered genes to a FI network (Figure 3b) 
[7,38,46]. The Reactome FI Cytoscape plugin offers this 
functionality. After a gene list is submitted, a FI network 
is constructed using so-called linker genes: genes that are 
not in the user-submitted list but that can connect two of 
the submitted genes. Usually, this approach identifies 
network regions in which recurrently altered genes, 
which are thought to point to driver genes and sub-
networks, are enriched. The visualization of genes and 
their alterations in the form of FI networks is thus very 
useful (see Figure 3b for an example).

Visualizing cause-effect relationships between different 

types of alterations

The effect of genomic alterations can be manifested at the 
genome, transcriptome or proteome level. Single nucleo-
tide variants (SNVs) might not directly influence 

trans cription of the mutated gene but usually affect 
protein functionality. On the other hand, CNA and 
changes in methylation status frequently perturb the 
expression levels of the altered genes or other genes 
under their control. Determining the cause-effect 
relationships of such alterations is important to our 
understanding of cancer mechanisms. One approach is to 
plot one type of alteration (for example, CNAs) in a 
heatmap, sorting the tumor samples to separate diploid 
genes from altered genes. Changes in gene expression 
values, presented in another heatmap, can then be readily 
compared between these two groups (Figure 3a), allowing 
the detection of any significant differences.

Gitools can load a multidimensional data matrix con tain-
ing different alterations for each sample, and a simple switch 
between the values shown in the heatmap cells easily 
changes the display from one heatmap to the other [49].

Networks offer another way of visualizing cause-effect 
relationships. The interactions between genes in a 
network can represent their functional relationships, for 
example, one gene might regulate the expression of 
another. Overlaying the alterations within a cohort of 
tumors on top of each node of the network might 
illustrate the effect of a gene alteration on the expression 
of other genes in the network (analogous to Figure 3b).

The network viewer of the cBio Cancer Genomics 
Portal supports the visualization of expression data, if 
available. Similar visual effects could be achieved in 
Cytoscape by mapping data onto node properties.

Visualizing cancer patient stratifications

Cancer is a complex disease. Tumors that seem very 
similar when examined through conventional diagnostic 
methods might look markedly different from the 

Figure 3. Four case studies are represented using one or several of the major visualization methods applied in oncogenomics. 
(a) Heatmap of oncogenomic alterations ordered by mutual exclusivity plotted with Gitools. In the upper half of the image, colors indicate the 
type of alteration: mutations (green), CNA gain (red) and CNA loss (blue). The heatmap below shows expression data (high expression in red and 
low expression in green) for the same samples and genes, allowing the visual observation that genomics regions whose copy number is amplified 
tend to have higher expression values. (b) The same data as in (a), with the same color code for alterations, represented as a network of functional 
interactions between the genes, extracted from the cBio Cancer Genomics Portal. The halo around the four selected nodes is divided into three 
sectors. Changes in the proportion of samples with altered copy number are indicated in red (gain) or blue (loss) in the top sector, whereas 
changes in the proportion of samples with mutations are indicated in green in the lower-right sector. Expression changes are shown in light red 
(increase) and light blue (decrease) in the lower-left sector of the halo. Panels (c-e) include clinical information. Each tumor sample is assigned 
to one of four subtypes of glioblastoma, color-coded as dark green (classical), light green (mesenchymal), orange (neural) and red (proneural). 
(c) Heatmap of pathway expression levels plotted with Gitools. Each column is a tumor sample. The subtype is represented in colors in the top 
row and each row represents a biological pathway. The color of each cell indicates the Zscore of the sample level enrichment analysis (SLEA) of 
the pathway in the sample. Clear differences in the expression values in different pathways can be observed for different cell subtypes. (d) Same 
data as in (c) represented in the form of a network, drawn using CircleMap. Each node is a pathway and its edges indicate functional interactions 
between pathways as extracted from KEGG. The two halos around each node indicate the Zscore of the pathway in each sample and the clinical 
subtype. (e) CNA and expression data for the EGFR gene region of glioblastoma samples as shown by IGV. The top part of the plot indicates the 
genomic position we are observing. Each sample is shown as a horizontal track, ordered by clinical subtype. Within each clinical subtype, the tracks 
in the upper half illustrate CNA whereas those below show expression. This visualization reveals clear differences in the CNA and expression of 
the EGFR locus in different clinical subtypes. (f) Adaptations of Circos plots of three breast tumors with three very different alteration landscapes. 
The four circles in each plot, from outermost inwards, represent the human chromosomes, mutations, copy number alterations, and structural 
rearrangement.
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molecular viewpoint, which can lead to different out-
comes or treatment responses. Therefore, the molecular 
features of tumors can be used to stratify patients to 
support more accurate clinical and therapeutic decisions. 
Over the past decade, molecular stratification of tumors 
using expression microarrays has been an important area 
of cancer research [50-53]. The visualization of molecular 
alteration patterns in a heatmap is often used to explore 
subgroups of tumors and to associate them with parti cular 
clinical features. These heatmaps usually portray the 
expression patterns of genes or transcripts across samples, 
but the benefit of data analysis at the level of gene groups, 
for example pathways [54-56], is increas ingly evident. 
Stratification and visualization can also be done at the level 
of pathways or other gene modules (Figure 3c), for example 
using sample level enrichment analysis (SLEA) [57,58], 
which analyzes the transcrip tional status of pathways (or 
other gene sets) in each tumor sample.

In the case of multidimensional oncogenomics data, 
various clinical features and alterations such as CNA or 
changes in mRNA or microRNA expression can be used 
to cluster or stratify tumors, leading to different group-
ings of samples. In Figure 3c,d, we show ways of repre-
senting the results of applying SLEA to the TCGA glio-
blastoma dataset, with the samples grouped by the 
corresponding glioblastoma subtype. The alterations are 
visualized using both Gitools and CircleMap. Please see 
the ‘Additional file 1 and 2’ for a more detailed description 
of this process.

Stratifications can also be meaningful when exploring a 
single locus. Figure  3e illustrates the same grouping of 
samples by glioblastoma subtype, employing copy number 
and expression data from the TCGA glioblastoma study 
using IGV (Figure 3e).

Caleydo StratomeX is especially well suited to explor-
ing relationships between groups of samples (Figure  2). 
These relationships are visualized as ribbons of varying 
width drawn between neighboring columns. Wide ribbons 
encode a high co-occurrence of samples in different 
group ings, whereas their absence indicates mutual exclu-
sion. This coding provides a straightforward and scalable 
overview of the consistency of group memberships of 
tumor samples across different data types.

Visualizing global alteration profile patterns

Various alteration phenotypes have been observed in 
cancer cells. One of the most conspicuous of these is the 
mutator phenotype [59]: tumor cells typically have an 
abnormally high mutational burden. Tumor samples with 
chromothripsis [60,61] or many chromosomal trans-
locations are also common. Categorization of the altera-
tion events in a cancer cell population could influence the 
therapeutic decision, and requires a simultaneous 
exploratory view of all the alteration events.

One approach to exploring visually all the alterations of 
a sample is the circular genome mapping proposed by 
Krzywinski et al. using their tool Circos [24]. Several 
cancer studies [59,62-64] have used Circos to show the 
landscape of alterations. This tool is highly configurable, 
which is evident from the figures in the cited publications. 
One compact figure can represent all somatic alteration 
events in a given tumor sample. Data from different 
alteration types can be organized in layered circles while 
rearrangement events occupy the innermost space. 
Figure  3f is composed of three Circos plots of breast 
cancer samples [59] as they are represented on the 
Cosmic website [65]. The outer-most circle of each 
diagram represents the human chromosomes, followed 
by a plot of ticks showing point mutations. The next layer 
plots CNA along all the chromosomes; the links in the 
middle visualize the structural rearrangements.

The recently developed ggbio package [66] for the R 
programming environment allows, among other things, 
the creation of circular genome plots, and supports a 
variety of data formats for sequencing data.

Interfacing of tools
Researchers often need to use several of the comple-
mentary tools described here to explore their datasets. 
Nevertheless, the landscape of visualization tools for 
multi dimensional oncogenomics data seems rather frag-
mented. This is the result of different groups focusing on 
the development of tools optimized to solve one 
particular visualization issue, which is probably a more 
efficient way of investing resources instead of engineering 
one single monolithic tool that has all possible visuali-
zation capabilities. Unfortunately, this fragmentation 
makes the use of different tools problematic: they accept 
very different data formats, they look different to users 
and so on. Thus, users need to spend time learning how 
to use each tool and reformatting their data to each tool’s 
requirements. This extra effort could be alleviated if 
developers were to facilitate the combined use of tools.

One of the major efforts to develop a universal interface 
that will bridge the gap between different bioinformatic 
tools is the GenomeSpace project [67]. GenomeSpace 
allows the user to store data in a common repository and 
the same web interface guides users to execute the 
integrated tools, load data, and store results. 
Conveniently, it contains several built-in converters for 
some often-used data formats. Several tools listed in 
Table  1 (IGV, Genomica, Cytoscape and Gitools) are 
included in this pilot project. This platform interface 
approach is promising and possibly the most user-
friendly option for users who lack a background in 
bioinformatics.

Another approach to facilitate the use of several tools is 
the creation of direct tool-to-tool interfaces. These are 
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possible when a tool offers an API that defines the form 
of communication between the tool and the rest of the 
world. There are different kinds of APIs, which allows the 
implementation of different approaches. If the API offers 
external control, it can send the tool a command and 
indicate whether the execution of this command has 
been successful or not. This is the case, for example, with 
IGV and Gitools: both offer a set of commands that the 
other application can use. Gitools has a built-in link that 
sends a ‘find locus’ command to IGV, whereas IGV 
exports data into a matrix format and commands Gitools 
to load it. In practical terms, this means that the user can 
explore the same data with two complementary visuali-
zation tools that can communicate with each other.

Another kind of API can be used for plugin develop-
ment. This is a general way of creating new capabilities 
for established tools. As mentioned above, Cytoscape and 
Savant support plugability, meaning that they possess 
internal commands that can be used by an application to 
extend the functions of the tool.

Unidirectional APIs are typically employed by data bases 
and allow easy data transfer between the data source and 
tools. For example, IGV’s external control of the software 
allows the cBio Cancer Genomics Portal and GenePattern 
[68] to load data directly into IGV, and Gitools accepts 
imported data for all BioMart [69] databases.

Conclusions and future directions
The cancer genomics research field is rapidly evolving in 
parallel with advances in high-throughput genomics 
technologies. This evolution of the field requires con-
tinuous advancement in visualization techniques and 
tools. For instance, the amount of data it is possible to 
generate for an oncogenomics project continues to 
increase, requiring visualization tools that very efficiently 
load and process large amounts of data.

As this rapid scientific evolution continues, cancer 
researchers are highly dependent on computational 
scientists and bioinformatics professionals to help them 
manage, analyze and visualize data. To speed up research 
advances, the barrier between the large amount of data 
generated in oncogenomics projects and the effective 
exploration of these data by cancer researchers must be 
minimized. Visualization and exploration tools should be 
intuitive and easy to use, not requiring computational or 
bioinformatics expertise. Not all tools currently meet 
these standards, as some programming or even 
technological knowledge is required of the user. In recent 
years, however, there has been an important effort to 
facilitate access by ‘non-bioinformaticians’ to visuali-
zation tools for the analysis of oncogenomics data 
[20,31,32]. Continued work to improve the usability of 
visualization software is highly important, but requires 
great effort from developers for low scientific reward 

when compared to the development of new methods or 
visualization techniques. Funding agencies must under-
stand that increased investment in personnel dedicated 
to the development and maintenance of new tools, as 
well as user training and support, is crucial to the 
achievement of improvements in the field.

The complexity of oncogenomics data and the multi-
tude of questions to be addressed ensure that a static plot 
is often insufficient for data visualization. The user needs 
to explore the data interactively in order to address a 
wide range of questions. Several tools listed in Table  1 
(including IGV, Gitools and Caleydo) make use of 
interactive visualization techniques to make this possible. 
Other web frameworks with various visualization and 
some optional analysis possibilities are being developed, 
including the cBio Cancer Genomics Portal [32], 
IntOGen [33] and Regulome Explorer [70]. Open source 
and plug-in architecture facilitates quick adoption of 
these new platforms.

Although not discussed at length in this review, the use 
of cancer genomics data visualization in the clinical 
setting is likely to become a key topic in the near future, 
as the results of cancer genome projects begin to be 
translated into personalized cancer medicine. Clinicians 
will be the main users of this information as they make 
decisions regarding patient treatment. In this regard, 
simple, efficient tools that support the visual stratification 
of tumor genomic profiles and that highlight their 
relationships to known drugs or treatments will be more 
useful than the existing research-oriented tools. As a 
result, it will probably be necessary to develop specialized 
clinical tools or to adapt existing ones to the clinical 
setting. This has been achieved in the case of the 
MedSavant Browser [71], a clinical adaption of the Savant 
Genome Browser.

In summary, visualization of multidimensional onco-
geno mics data is essential for the extraction of useful 
knowledge from the vast amount of data generated by 
high-throughput technologies. Important efforts have 
been made in recent years to create visualization tools 
that can explore these datasets. Further efforts are 
needed to develop those resources and to create new 
tools to meet the changing needs of the field. Long-term 
investment and funding are needed to guarantee the 
maintenance, improvement, and evolution of visuali-
zation tools beyond their first publication.

Additional files

Additional file 1. The following additional data are available 
with the online version of this paper. Additional file 1 provides 
information on how to generate visualization images for the case 
studies covered.

Additional file 2. Instructions on using Additional file 1.
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1.3.3  Modular data visualization: web data portals

In the preceding section, several tools which implement a specific

visualization  approach  have  been  described.  Dedicated  tools  are

great for providing an in-depth experience of a specific approach

but  fail  to offer different  types of visualization of the same data

which can be somewhat alleviated by inter-connectivity of different

tools on the desktop. 

But the latest developments in web technologies provide a new en-

vironment  with a  unified rule  set  for  so called  web-applications.

That the browser and HTML documents can be used for research

purposes has been shown already with the USCS Genome Browser,

a  web  native  application  available  since  2000.  Today’s  HTML5

combined with JavaScript and potent web browsers allow for com-

plex code to be executed within them – on desktops and mobile de-

vices. Especially genome browsers are popular as stand-alone web-

application  (Meyer  et  al.  2012;  Pak  and  Roth  2013;  Westesson,

Skinner, and Holmes 2012), but in the context of multidimensional

cancer genomics data sets, the so-called portals are a very appealing

concept: a portal is a data browser that combines different visualiza-

tion approaches of data that may have been filtered according to

choices  from the user. The data can be precomputed or even on the

fly computation may happen in the browser. 

The development of approaches on data visualization web-applica-

tions is therefore much needed. As each developed component or

web-application  has  to  be  embedded  in  a  HTML5 document,  a

modular development approach makes sense as it serves the whole

community as well.  In the case of data visualization, each devel-

oped visualization component may be used alongside others devel-

oped by other groups in a data portal. BioJS (Gómez et al. 2013) ex-

emplifies this by cataloging JavaScript applications that are related

to  biological  data  access  and representation  in  the  web browser.

BioJS provides a loose framework for how each module has to be

installed but still leaving great flexibility to the module creators.

The cBioPortal (Cerami et al. 2012) for cancer genomics is a good

59



example  of  how  multidimensional  datasets  can  be  explored  and

some simple analyses can be performed within the portal.  In the

end, the user may download parts of the data for offline exploration

and analysis by applying filters. As stated above, web portals can

provide a wide range of views of data. Other dedicated web services

such as IntOGen Mutations  (Gonzalez-Perez, Perez-Llamas, et al.

2013) offer online analysis coupled with online results browsing for

which independent visual components may be used. 

One hurdle for complete web-application based data analysis and

research is that most research groups that create independent ser-

vices do not have resources (funding, time, know-how) to maintain

web-servers that support computational intensive tasks for a large

clientèle. Another hurdle is that in many cases researchers are not

legally allowed or simply uncomfortable to submit genomic data of

their patients samples to other services and thereafter offline or lo-

cal solutions are still a requirement.
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In the light of the fields that have been introduced, I'd like to state

the goals of my PhD thesis separated into two main objectives:

Cancer data analysis

• Develop  a  framework  or  method  that  can  classify  cancer

driver genes into their respective roles of oncogenes and tu-

mor suppressor genes.

• Develop a hypothesis-driven method to test for mutually ex-

clusive alterations in cancer drivers

Biological data visualization

• Facilitate the accessibility, visualization and analysis of can-

cer  genomics  datasets  with  the  help  of  interactive  matrix

heatmap visualization solutions for different use cases:

◦ On the desktop, focusing on good performance of large

datasets and easy data interpretation.

◦ On the web, focusing on easy and interactive communi-

cation of complex datasets.

• Create an easy solution  for  mapping molecular  biological

data onto complex figures.
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3.1  OncodriveROLE classifies cancer  driver  genes

in  Loss  of  Function  and  Activating  mode  of

action

In this chapter I present the OncodriveROLE classifier, an

approach  to  separate  cancer  driver  genes  into  different

mode of actions,  namely  activating and  loss of function,

with  the  premise  of  aiding  on  the  identification  of  drug

targets and provide valuable information for development

of computer models of the cancer disease.

The  classifier  is  based  on  mutational  and  copy  number

patterns within a cancer sample cohort. As we propose an

alternative approach we compare  ours  to  two preceding

approaches  in  order  to  assess  the  capabilities  of

OncodriveROLE. 

Schroeder, M.P., Rubio-Perez, C., Tamborero, D., Gonzalez-

Perez, A., and Lopez-Bigas, N. OncodriveROLE classifies 

cancer driver genes in Loss of Function and Activating mode

of action. Bioinformatics 30.
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ABSTRACT

Motivation: Several computational methods have been developed to

identify cancer drivers genes—genes responsible for cancer develop-

ment upon specific alterations. These alterations can cause the loss of

function (LoF) of the gene product, for instance, in tumor suppressors,

or increase or change its activity or function, if it is an oncogene.

Distinguishing between these two classes is important to understand

tumorigenesis in patients and has implications for therapy decision

making. Here, we assess the capacity of multiple gene features related

to the pattern of genomic alterations across tumors to distinguish be-

tween activating and LoF cancer genes, and we present an automated

approach to aid the classification of novel cancer drivers according to

their role.

Result: OncodriveROLE is a machine learning-based approach that

classifies driver genes according to their role, using several properties

related to the pattern of alterations across tumors. The method shows

an accuracy of 0.93 and Matthew’s correlation coefficient of 0.84 clas-

sifying genes in the Cancer Gene Census. The OncodriveROLE clas-

sifier, its results when applied to two lists of predicted cancer drivers

and TCGA-derived mutation and copy number features used by the

classifier are available at http://bg.upf.edu/oncodrive-role.

Availability and implementation: The R implementation of the

OncodriveROLE classifier is available at http://bg.upf.edu/oncodrive-

role.

Contact: abel.gonzalez@upf.edu or nuria.lopez@upf.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Research in cancer genomics has identified hundreds of genes
involved in different stages of tumorigenesis due to specific som-
atic events. Single nucleotide variants, and large-scale amplifica-
tions and deletions of chromosomal regions have been identified
as two of the main driver alterations in human tumors. The genes
suffering these alterations are traditionally classified as oncogenes
and tumor suppressors, depending on their role in cancer devel-
opment. When the product of tumor suppressors lose their func-
tion, tumor cells tend to proliferate faster. Driver alterations in
these genes frequently exhibit a recessive behavior. The loss of
function (LoF) can be achieved through truncating or missense
mutations, DNA deletions or hypermethylation of their pro-
moters. Some known LoF genes, most notably BRCA1 and
BRCA2, carry germline variants that increase the susceptibility
to develop a tumor because only one hit is required to inactivate

their function. Oncogenes, on the other hand, increase or change

their function upon somatic variants in tumorigenesis. Therefore,

theirmode of action follow a dominant pattern, as one faulty copy

of the gene is frequently enough to provide the required pheno-

type. A copy number gain may exponentiate the oncogenic func-

tion of the gene; a point mutation may achieve the same result by

changing key amino acid residues, which results in constitutive

activation of the protein, or produce a new biochemical function.

These special cases are also regarded as activating driver muta-

tions, as the new function is gained much like in the case of classic

oncogenes. TheCancerGeneCensus (CGC;Futreal et al., 2004) is

a regularly updated compilation of well-studied cancer genes,

which classifies their mode of action as dominant or recessive,

following the oncogene/tumor suppressor paradigm, LoF and

Act (activated), hereafter. The CGC contains some 500 genes

implicated in cancer (November 2013). This is a rather small frac-

tion of the 20 000 genomes in the human genome (International

HumanGenome Sequencing Consortium, 2004), but recent large-

scale re-sequencing projects of tumor genomes (Hudson et al.,

2010) suggest many additional genes may be involved in tumori-

genesis. One important first step in the analysis of datasets of

cancer genomics alterations is the identification of the genes that

drive tumorigenesis. This is a non-trivial problem because tumor

samples contain up to thousands of somatic alterations. The list of

genes altered in tumors is heterogeneous, even within the same

cancer type. Therefore, the difficult task is to distinguish between

driver and passenger alterations.
The most intuitive way to identify driver genes is to detect sig-

nals of positive selection across tumor samples because cancer cell

populations undergo a selection process during the progression of

the disease. Different methods that aim to identify driver genes

tackle different evidences to achieve their goal (Gonzalez-Perez

et al., 2013a). Two recent efforts to comprehensively identify

driver genes across large cohorts carried out by Lawrence et al.

(2014) and Tamborero et al. (2013b), combining several signals of

positive selection (Dees et al., 2012; Gonzalez-Perez and Lopez-

Bigas, 2012; Lawrence et al., 2013; Reimand et al., 2013) detected,

respectively, 291 and 260 likely driver genes.
Although years of experimental work have revealed the role of

most well-known cancer genes, now our capability of detecting

drivers has surpassed our capacity to probe their mode of action.

Thus, revealing the mode of action of driver genes in tumorigen-

esis is becoming crucial to fully understand the mechanisms of

tumorigenesis. This is essential for the development of new tar-

geted cancer therapies because as a general rule only Act drivers

are in principle susceptible to targeted drugs. Although excep-

tionally, some mutated tumor suppressors may be targeted (e.g.*To whom correspondence should be addressed.
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Lambert et al., 2009), other strategies, such as synthetic lethality,
are needed to compensate for their LoF. This is the reason why
we need to develop bioinformatics approaches to make this clas-
sification as accurately as possible. Vogelstein et al. recently
described the so-called ‘20/20 rule’ to detect tumor suppressor
genes and oncogenes based on their mutational pattern across
tumor samples (Vogelstein et al., 2013). It states that genes with
!20% truncating mutations are tumor suppressors, whereas
genes with420% of missense mutations in recurrent positions
are oncogenes. While it correctly detects and classifies most of
the well-known cancer genes, the rule fails to identify drivers
included in newer catalogs (Tamborero et al., 2013b), mostly
the lowly recurrent ones.
Building upon the same idea, Davoli et al. developed a ma-

chine learning approach to directly identify tumor suppressor
genes and oncogenes from the somatic alterations observed
across cohorts of tumor samples through their mutational and
copy number patterns. Many cancer drivers are recognized cor-
rectly by carefully selected features (Davoli et al., 2013).
We recently proposed a strategy to obtain a comprehensive list

of drivers minimizing the probability of detecting false-positive
findings by combining complementary methods that detected
different signals of positive selection (Tamborero et al., 2013b).
Once a list of high-confidence drivers (HCDs) is obtained, it is

important to classify those in their mode of action. To this aim, we
first carefully assessed the capability of 30 features to differentiate
between these two groups of cancer genes. Then, we combined dif-
ferent sets of features with various classification algorithms to
create several automated classifiers. We trained these classifiers
with CGC genes, and after careful check of their performance, we
selected a random forest algorithm that achieves an accuracy
(ACC) of 93%, which we call OncodriveROLE. It is the first
freely available automatic classifier that undertakes the task of as-
sessing the mode of action of driver genes. Used in this setting, it
may shed light upon the mechanisms of tumorigenesis in major
cancer types. We have used it to classify the two previously men-
tioned lists of mutational drivers that have been recently published,
namely, HCDs (Tamborero et al., 2013b) and Cancer5000
(Lawrence et al., 2014), and describe the results of this analysis.

2 METHODS

2.1 Mutation data, copy number alteration data and
cancer driver lists

We retrieved data for the 17 TCGA (The Cancer Gene Census) projects

currently available without restriction: BLCA, BRCA, COAD/READ,

GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD,

SKCM, STAD, THCA and UCEC. We designed and computed several

features that we hypothesized might be useful to classify driver genes

according to the role using mutation and copy number data. These fea-

tures are based on the patterns of mutations and copy number alterations

(CNAs) across tumor samples. Tumors with at least one mutation in the

TCGA pan-cancer 17 dataset available at Synapse (syn1729383.2) were

retrieved after excluding those considered as hypermutators (Kandoth,

2014; Kandoth et al., 2013). Hypermutators of a tumor type contained

more than (Q3+4.5" IQR) somatic mutations, where Q3 and IQR are

the third quartile and the interquartile range of the distribution of muta-

tions across all samples of the tumor type, respectively. After filtering, the

pan-cancer 17 dataset was composed of 4327 samples. These mutations

were mapped to protein positions, and their consequence types were as-

sessed using the IntOGen-mutations pipeline (Gonzalez-Perez et al.,

2013b), which makes use of the Ensembl Variant Effect Predictor (v70;

Chen et al., 2010). The CNA status for all probed genes was downloaded

from the January run of the TCGA FIREHOSE pipeline at the Broad

Institute (http://gdac.broadinstitute.org/).

To apply the OncodriveROLE classifier, we gathered two lists of likely

cancer drivers from the Supplementary Material of two independent

papers (Lawrence et al., 2014; Tamborero et al., 2013b). From the

Tamborero et al. (2013b), we selected the list of 291 genes annotated as

HCDs, discarding one non-coding gene. From Lawrence et al. (2013), we

obtained a list of 260 genes from the spreadsheet ‘Individual q-values’.

For comparison purposes, we retrieved the classifications of genes

carried out by the previous work by Davoli et al. from the

Supplementary Material of their paper, applying the same cutoffs

described in the manuscript (Davoli et al., 2013). We also obtained the

classification carried out by applying the 20/20 rule (Vogelstein et al.,

2013) to the mutational dataset of 17 tumors types.

Whenever possible, data were obtained associated to Ensembl gene

identifiers (Flicek et al., 2013). Other identifiers have been mapped to

Ensembl gene identifiers with a dataset obtained from Ensembl v70.

2.2 Classifiers

We chose six different classifiers to test: cforest.party (cforest method in R),

conditionalTree (ctree), logisticRegression (glm), naiveBayes (train),

simpleTree (rpart) and randomForest (Breiman, 2001; Hothorn et al.,

2006; Kuhn, 2008; Olshen et al., 1984; R Core Team, 2013). Some classifiers

either do not accept missing values or perform variable imputation for those.

Therefore, we opted to remove genes if they had missing values in one or

more of the features and leave them unclassified. From each classifier we

obtained a score of the certainty that each gene belongs to the Act class.

2.3 Training set

To use cancer genes with well-established roles as training set, we down-

loaded the material available at the CGC in November 2013 (Futreal

et al., 2004). See below details on the curation of this dataset for training

the classifier.

The CGC contains extensive and manually annotated information on

well-known cancer genes and classifies the cancer genes into dominant

(Dom) and recessive (Rec) influence on tumorigenesis. We have used the

CGC classification into Rec and Dom classes as proxy for LoF and Act

genes. Genes with ambiguous annotation, such as ‘Rec?’ or ‘Dom?’ or not

citing observed somatic mutations were discarded, leaving 381 entries (see

Supplementary Table S7 for their classification). To only include CGC

driver genes, which are likely to act across the TCGA pan-cancer 17

cohort, we used a one-signal filter: we discarded genes not detected as

significant by MutSigCV (recurrence signal), OncodriveFM (mutations

impact signal) or OncodriveCLUST (mutations clustering signal). We

also rejected genes with512 protein affecting mutations (PAMs;

Gonzalez-Perez and Lopez-Bigas, 2012; Lawrence et al., 2013;

Tamborero et al., 2013a). Only 115 CGC genes passed this filter.

Equally, all CGC genes that were solely associated to translocation

events—all labeled with Dom—were not allowed in the training set, fi-

nally leaving 76 entries in the training set.

2.4 Computing features

All features we computed are listed in Table 1 along with a brief explanation

of their computation: some of them are similar to the ones used previously

(Davoli et al., 2013; Vogelstein et al., 2013). Truncating mutations include

mutations causing a frameshift, a gained or lost stop codon as well as mu-

tations in splice donor or acceptor sites. PAMs include truncating mutations

and missense mutations. Benign missense refers to missense mutations that
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are categorized as low or unknown functional impact by TransFIC

(Gonzalez-Perez et al., 2012). OncodriveFM P-values (Gonzalez-Perez and

Lopez-Bigas, 2012) and the location of OncodriveCLUST clusters of muta-

tions (Tamborero et al., 2013a) for all driver genes were obtained by running

the IntOGen-mutations pipeline on the TCGA pan-cancer 17 dataset.

The R implementation of Wilcoxon’s signed rank (R Core Team,

2013) was used to compare the distribution of each feature between the

CGC Rec and CGC Dom genes. We also used the variable importance

function from the party library (Hothorn et al., 2006; Strobl et al., 2008)

to rank features for their selection to be taken into account by the

classifiers.

2.5 Training and prediction

The selected CGC genes were therefore used as training set of the classifiers.

With all different classification settings, we performed a leave-one-out cross-

validation: each item in the training set is classified with amodel built with the

rest of the training set items. We found three genes whose initial classification

extremely contradicted their CGC category: NOTCH1, NPM1 and CEBPA

genes,which have evidence in the literature for a dual role (Halmos et al., 2002;

Sportoletti et al., 2008; Vogelstein et al., 2013). Therefore, we decided to dis-

card them from the training set. Thus, the final, trimmed CGC training set

included 28 Dom and 45 Rec genes.

For the classification of HCD and Cancer5000 genes, we considered

that values between 0.7 and 1 as Act and those with values between 0 and

0.3 as LoF. We computed the ACC and MCC (Matthew’s correlation

coefficient) of each classifier at the leave-one-out cross-validation of the

training set. Furthermore, we calculated the coverage (COV) of the clas-

sifier, which reflects the percentage of the entire training set for which a

prediction could be made.

3 RESULTS

3.1 Identifying features that differentiate Act from LoF
driver genes

We tested 30 features that we initially hypothesized could be used
to characterize and discriminate between LoF and Act drivers

Table 1. List of mutational and CNA features for cancer driver genes

Attribute name Description

CNA_cbs_countGain # samples in cohort with CBS value41.1

CNA_cbs_countLoss # samples in cohort with CBS value51.1

CNA_cbs_logratio_GvL Log10-ratio of countGain VS countLoss

CNA_gain_freq # samples in cohort with CBS value41.1 / cohort size

CNA_loss_freq # samples in cohort with CBS value51.1 / cohort size

MUTS_clusters_miss_VS_pam Log10-ratio of missense VS PAM within OncodriveCLUST peaks

MUTS_freq_clustered # of mutations in OncodriveCLUST peaks / # of samples with gene mutated

MUTS_freq_disruptive # of samples with truncating mutations or high impact missense / # of samples having gene mutations

MUTS_freq_missH # of high impact missense mutations not in OncodriveCLUST peaks / # samples with gene mutated

MUTS_freq_missHM # of high and medium impact missense mutations not in OncodriveCLUST peaks / # samples with gene

mutated

MUTS_freq_truncating # of samples with truncating mutations / # of samples with at least one mutation

MUTS_missense_clustercov # missense mutations in OncodriveCLUST peaks / # missense mutations / # amino acids covered by peaks

MUTS_missense_mutrec # recurrent missense mutations / # high and medium impact missense mutations

MUTS_missense_rec_freq # recurrent missense mutations / # mutations (as in Vogelstein et al.)

MUTS_missense_recHM # samples with high and medium impact recurrent missense mutations / # samples with missense mutations

MUTS_OncoFM_pvalue OncodriveFM P-value

MUTS_pams_count # samples with PAM

MUTS_pams_freq # samples with PAM / # samples with gene mutations

MUTS_pams_ratio # samples with PAM VS # samples with no PAM

MUTS_pamsrec_freq # samples with PAM VS # of samples with gene mutation

MUTS_trunc_count # samples with truncating mutations

MUTS_trunc_freq_cohort # of truncating mutations / # of samples with gene mutations

MUTS_trunc_mutfreq # truncating mutations / # mutations (as in Vogelstein et al.)

MUTS_trunc_vs_missbenign_ratio # samples with truncating mutations VS # samples with benign missense mutations

MUTS_trunc_vs_missense_ratio # samples with truncating mutations VS # samples with missense mutations

MUTS_trunc_vs_notrunc_ratio # samples with truncating mutations VS # samples without truncating mutations

MUTS_tuson_missHM_missbenign_ratio # samples with high and medium impact mutations VS # samples with benign missense mutations (as

described in Davoli et al.)

MUTS_tuson_splicing_missbenign_ratio # samples splicing variants mutations VS # samples with benign missense mutations (as described in Davoli

et al.)

MUTS_tuson_trunc_missbenign_ratio # samples with truncating (excluding splicing variants) mutations VS # samples with benign missense mu-

tations (as described in Davoli et al.)

Note: List of features initially created for characterizing LoF and Act genes. The description reflects the formula applied for the calculation of the features. All features

elaborated describe either mutation or CNA characteristics. Abbreviations used in the descriptions are: # (number sign): Count/number of, / (slash): divided by, CBS : circular

binary segmentation, truncating mutations: frameshift, stop gained and lost, splice donor and acceptor, missense: all missense mutations and insertions and deletions not

altering the reading frame, high and medium impact mutations: all missense mutations with and TransFIC impact of 1 and 2 , benign missense: all missense with low or unknown

TransFIC impact, PAM : protein affecting: frameshift, stop gained and lost, splice donor and acceptor, missense, (gene) mutations: all mutations-affecting coding sequence,

VS : versus—a ratio has been obtained.
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(see Table 1 for detailed description of each). All features elab-

orate on somatic mutation and CNA patterns across data from

the pan-cancer 17 cohort. We expected LoF genes to be affected

more frequently by deleterious events such as CNA loss and

truncating mutations. Act genes should be more frequently

amplified and receive protein-affecting non-truncating muta-

tions, which may increase and/or alter the protein function.
To select the most informative features for the task of

distinguishing between Act and LoF genes, we compared the

distribution of the features in both categories of CGC genes

(Fig. 1). The features we considered can be divided into four

broad categories (Fig. 1A): (i) features that measure the relative

abundance of truncating mutations, (ii) features that reflect the

CNA status of the gene across tumors, (iii) features that account

for the relative abundance of PAMs and (iv) features that meas-

ure the degree of clustering of missense mutations along the pro-

tein sequence.
Features in Group iii show the poorest performance to dis-

criminate between CGC Dom and CGC Rec genes (light blue in

Fig. 1A). On the other hand, all the features in Group i (green in

Fig. 1A) rank at the top of performance of all features analyzed.

As expected, this reflects that Act genes (or proto-oncogenes) are

intolerant to truncating mutations because an active protein

product is required for tumorigenesis. In LoF (or tumor suppres-
sor) genes the truncation of the protein product gene is positively
selected, which facilitates the identification of LoF candidates.
The best performing feature in this group was the ratio of trun-
cating mutations to the total number of coding mutations in the
protein (Fig. 1B).
The distribution of mutations within the gene (Group iv, dark

blue in Fig. 1A) differs significantly between CGC Dom and
CGC Rec genes. The CGC Dom genes have fewer mutational
hotspots, detected as clusters by OncodriveCLUST, than CGC
Rec genes, whose mutations tend to be more evenly distributed
(Supplementary Fig. S1) along the protein sequence. This is
probably because Act driver genes receive mutations that po-
tentiate their function, e.g. by constitutively activating a regula-
tory site, or cause a switch of the protein function. To achieve
such behavior through mutations, these must occur at specific
places in the sequence, which results in fewer numbers of recur-
rent sites (clusters) than in CGC Rec genes (Supplementary Fig.
S1). We elaborated a series of features based on impact, fre-
quency and clustering of missense mutations. Many did not
show any power of discrimination of CGC Rec and Dom. The
features that perform reasonably well are based on the recurrence
of missense mutations. The best-performing feature in this group
compares the ratio of missense mutations with total number of
PAMs within OncodriveCLUST peaks (MUTS_
clusters_miss_VS_PAM; Fig. 1). Another feature in this group
that performs relatively well is the ratio recurrent missense mu-
tations (MUTS_missense_rec_freq).
All features in Group ii are designed to capture the known fact

that LoF genes have a tendency to be deleted, whereas Act genes
are more frequently affected by amplifications (Davoli et al.,
2013). In this case, we found that the ratio of amplifications to
deletions across all tumors in the cohort achieved the best sep-
aration of the two groups of genes.

3.2 Developing a classifier to differentiate between LoF
drivers and Act drivers

Thereafter, we created a feature set that contained non-redun-
dant best-performing features from Groups i, ii and iv, disregard-
ing those of Group iii because of their poor performance
resulting in three features: MUTS_trunc_mutfreq,
MUTS_clusters_miss_VS_PAM and CNA_cbs_logratio_GvL.
We tested six machine learning approaches trained with the
trimmed version of the CGC (see Section 2). For each gene,
the classifiers produced a score of the likelihood that it belonged
to the CGC Dom class. A score of value 0 means that the clas-
sifier regards the gene as an LoF beyond all doubt, whereas a
score of value 1 means it exactly resembles the model of an Act
gene. We assessed the performance of each classifier through the
ACC, the MCC and the COV of the driver set (all listed in
Supplementary Table S1). ACC and MCC validate the perform-
ance of the classifiers on the 76 CGC driver genes by means of a
leave-one-out cross-validation approach. We computed these
values for different classification probabilities thresholds to
select the cutoff that maximize the ACC and MCC, even at the
cost of reducing the COV. Then, we used these sets of values to
choose the classifier with the best performance and a reasonable
COV. Overall, randomForest produced the best results

Fig. 1. A) The list of features ordered by Mann–Whitney–Wilcoxon rank

sum test P-value significance. Features dependant on truncating muta-

tions are the best discriminators for LoF and Act genes. Features

described in (B) are marked with asterisk. A detailed explanation of

each feature can be found in Table 1. (B) Box plots comparing the dis-

tribution of the three non-redundant top-ranking features that have been

selected for the OncodriveROLE classifier in CGC genes annotated as

Dom and Rec
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(Supplementary Table S1). We also trained classifiers with dif-

ferent combinations of the three selected features and included

MUTS_missense_rec_freq feature for testing purposes. We

found that multiple combinations of these features perform simi-

larly (Supplementary Table S2 and Supplemental Text). We

decided to use the randomForest classifier trained with the

three non-redundant features shown in Figure 1B to create

OncodriveROLE, under the rationale that features representing

the three independent groups could provide more information to

classify novel drivers. The method shows an ACC of 0.94, MCC

of 0.84 and COV of 88% in the leave-one-out cross-validation.

We further tested OncodriveROLE in an independent set of

tumor suppressor genes (Zhao et al., 2013) that are not present

in the CGC. OncodriveROLE accurately classified 91.7% of

those genes as LoF drivers (Supplemental Text).

3.3 Applying OncodriveROLE to lists of cancer
driver genes

We identified two recent studies in which identified novel cancer

driver genes could be classified with OncodriveROLE. The first

study detected cancer drivers by integrating four methods that

assess different signals of positive selection across samples of the

pan-cancer 12 dataset. This analysis resulted in 291 high-confi-

dence cancer drivers (Tamborero et al., 2013b). In the second

study, MutsigCV was applied in a cohort of about 5000 tumor

samples to obtain a cancer driver list composed of 260 genes

(Lawrence et al., 2013, 2014). The two lists will be referred to

as HCD and Cancer5000 further on. Even though both lists have

similar sizes, their overlap is only 50%, making the two gene sets

different as can be seen in Figure 2. As for the training set, we

applied the one-signal filter to only predict the role of genes

possibly acting as drivers in the dataset under evaluation result-

ing in 200 HCD and 144 Cancer5000 genes.
The overall distribution of probabilities of these two groups of

genes is roughly bimodal in both driver lists, which allowed us to

choose these symmetric cutoff values (Fig. 2 and Supplementary

Fig. S2) such as 0.3 and 0.7 for LoF and Act genes, respectively.

Other cutoffs may be used for the datasets under analysis depend-

ing on how strict a classification the user wants for their list of

cancer drivers. Interestingly, we classified three CGC Dom genes

as LoF (‘Dom?’ in Fig. 2). The genes in question are NOTCH1,

NPM1 and CEBPA. All three have been implicated in leukemia

(Cancer Genome Atlas Research Network, 2013; Liu et al., 2013;

Ohlsson et al., 2014) and both NOTCH1 and NPM1 are anno-

tated in the CGC as partners of translocation events in leukemia.

NOTCH1 has been described as an oncogene as well as a tumor

suppressor. Its actual rolemay dependon the tumor type (Licciulli

et al., 2013; Liu et al., 2013; Vogelstein et al., 2013). Equally,

CEBPAandNPM1have been characterized as tumor suppressors

in the literature (Halmos et al., 2002; Sportoletti et al., 2008). We

cannot be certain of the functional impact of the translocation on

the function of the product of the fused gene. It may associate to a

new promoter and change its expression accordingly, or it may be

truncated as a result of the fusion and thus function as an LoF.

For this reason, we had previously excluded all CGC Dom genes

that are solely associated to translocation events in the Census.

The plot inFigure 2 shows those genes labeled asDomT, and their

classification shows no clear resemblance to LoF or Act, which
supports our decision to remove them from the training set.

3.4 Comparison of OncodriveROLE with other
bioinformatics approaches

The 20-20 rule was created to identify mutational driver genes,
both oncogenes and tumor suppressor genes (Vogelstein et al.,
2013). Therefore, it differs from OncodriveROLE, designed to
classify previously identified driver genes into their most probable
roles. The simple 20-20 rule reaches a high ACC (Table 2) when
applied to the trimmed CGC list. However, it is unable to reach a
decision on many drivers where none of its two estimators (see
Section 2) surpasses the threshold of 20% (Tables 2 and 3).
We also compared the results obtained by the approach de-

signed by Davoli et al. (2013), implemented in a classifier named
Tuson. As with the 20-20 rule, Tuson was created to distinguish
oncogenes and tumor suppressor genes from genes with passen-
ger mutations, instead of classifying previously identified cancer
drivers as is the case of OncodriveROLE. We found
OncodriveROLE slightly outperforms Tuson in ACC and
MCC on the trimmed CGC dataset. Note that Tuson method
was trained with CGC genes, and the performance reported in
Table 2 does not remove genes in the training set, as it is done in
the leave-one-out cross-validation of OncodriveROLE. We can
conclude that well-known cancer genes are classified with a high

Fig. 2. Classification of 200 (HCD list) and 144 (Cancer5000 list) cancer

driver genes into the classes Act and LoF. The training set of

OncodriveROLE constitutes of all ‘Dom’ and ‘Rec’ labeled data points.

‘Dom?’ are CGC-annotated dominant genes excluded from the training

set because of strong resemblance to the ‘Rec’ genes and previous litera-

ture evidence of this role. ‘DomT’ genes are CGC-annotated dominant

genes only citing translocation events as prove and therefore not included

in the training set. All ‘-’ labeled data points are driver genes not anno-

tated in CGC, and whose prediction was the main goal of the study. The

thresholds are drawn at 0.3 (as top limit of the LoF class) and 0.7 (as

bottom limit of the Act class). Working with classification score thresh-

olds of 0.3 (as top limit of the LoF class) and 0.7 (as bottom limit of the

Act class), we classified 109 genes as LoF, 76 as Activating and left 15

genes as unclassified in the HCD list; meanwhile, we classified 97 genes as

LoF, 43 as Activating and left 4 genes as unclassified (Fig. 2) in the

Cancer5000 list. Genes for which we have observed 512 mutations

were directly classified as ‘No class’ and assigned NA values in the clas-

sifications results (see Supplementary Tables S4 and S6)
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ACC with all approaches. The main difference between the three
approaches lies in the COV that can be reached when predicting
the role of novel cancer drivers in tumorigenesis.

4 DISCUSSION

Two main rationales to detect LoF and Act driver genes acting
across tumor samples exist. The first approach consists in dir-
ectly detecting genes that exhibit known alterations patterns cor-
responding to these two classes from mutations and CNA data.
This strategy was first conceptualized by Vogelstein et al. (2013)
to be implemented later on as a machine learning algorithm by
Davoli et al. (2013). In the second approach, first driver genes
acting in tumor samples are detected by combining the signals of
positive selection they exhibit (Lawrence et al., 2014; Tamborero
et al., 2013b). Then, in a second step, these drivers are classified
into the two aforementioned classes exploiting similar alteration
patterns as in the first approach. This second two-step approach
has two main advantages. First, genes that do not exhibit clear
alterations pattern that define them as LoF or Act can still be
detected as drivers if they show clear signals of positive selection.
Second, the combination of several signals controls the ratio of

false-positive drivers identified (Tamborero et al., 2013b), which
is unattainable to the direct classification of genes.
This is the reason why we have decided to develop

OncodriveROLE, a machine learning classifier, which takes a
list of pre-selected driver genes and sorts them according to
their mode of action. We first carefully compared and selected
a set of features that best captures the differences of alterations
patterns of these two groups of drivers. We then used those fea-
tures to train the classifier, on a carefully trimmed subset of the
CGC genes. When applied to two recent lists of drivers, we found
that, even under strict classification conditions, OncodriveROLE
was able to classify more drivers than the 20-20 rule and the
Tuson machine learning algorithm.
The OncodriveROLE validation procedure identified several

likely misclassified drivers in the CGC. The most salient ex-
amples of these are probably some genes that drive hematopoi-
etic malignancies upon translocation and fusion with other
genomic regions, all classified as Dom in the GCG. However,
when analyzed using mutational and CNAs data from the pan-
cancer 17 dataset, some of them appear as clear LoF drivers. For
instance, OncodriveROLE assigns MLL, RUNX1 and SUZ12
classification probabilities under 0.003 (see Supplementary
Tables S3–S6 for feature and classification values). These genes
could be Act drivers upon fusion to other genes, but LoF upon
mutations.
Even though OncodriveROLE is able to classify most of the

genes in the two drivers lists as LoF or Act, it still leaves few of
them unclassified. Some of these correspond to lowly recurrent
drivers whose mutational features are not correctly computed
because of the scarcity of their alterations. Sequencing more
tumors will certainly improve their classification. Others may
not have a clear enough pattern to be classified in one of the
two classes, as they could be exhibiting different roles in different
contexts. In some rare cases, the method misclassifies known
cancer genes. For example, KEAP1 is classified as an Act
driver, although it is reported to lose its function upon mutation
(Hayes and McMahon, 2009; Shibata et al., 2008). A close look
at its mutational pattern reveals missense mutations dominate
and accumulate in certain regions of the protein. As member
of a ubiquitin-mediated proteolysis complex, the function of
KEAP1 is probably essential to the cell, and its impairment is
likely lethal. Therefore, few truncating mutations may appear in
KEAP1, and it is ultimately misclassified by OncodriveROLE.
Future finer measurements of the impact of missense mutations
may help correcting this problem.
Summing up, in this article, we have described the develop-

ment and validation of OncodriveROLE, an approach to differ-
entiate between LoF and Act driver genes. The OncodriveROLE
classifier is freely available at http://bg.upf.edu/oncodrive-role as
an R object that researchers may use to classify the drivers they
have detected across a cohort of tumor samples. At the same
URL, the pre-computed TCGA pan-cancer 17 mutational and
copy number features used for the classification are available for
download.

Funding: We acknowledge funding from the Spanish Ministry of
Economy and Competitivity (grant number SAF2012-36199)
and the Spanish National Institute of Bioinformatics (INB).
M.P.S. and C.R.-P. are supported by FPI fellowships.

Table 3. List of approaches and their performance on the 290 drivers

from the HCD list and 260 drivers from the Cancer5000 list

Method Act/

Oncogene

LoF/

Tumour

suppressor

Unclassified Coverage

(%)

HCD

Oncodrive

ROLE 0.3/0.7

76 109 15 92

Oncodrive

ROLE 0.2/0.8

58 96 46 77

20-20 rule 23 96 81 60

Tuson 44 92 64 68

Cancer5000

Oncodrive

ROLE 0.3/0.7

43 97 4 97

Oncodrive

ROLE 0.2/0.8

40 91 13 91

20-20 rule 18 90 36 75

Tuson 32 90 22 85

Table 2. List of approaches and their performance on trimmed CGC

dataset

Method ACC MCC COV (%)

OncodriveROLEa 0.925 0.848 83

20-20 rule 0.895 0.769 75

Tuson 0.914 0.817 92

aResults of leave-one-out cross-validation.
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3.2  Assessing statistical significance of mutual 

exclusive patterns amongst cancer driver 

alterations

In this chapter I present a method which allows to assess

the  significance  of  mutual  exclusivity  in  the  alteration

pattern of  several  cancer  drivers.  The implementation of

the method to assess the likelihood of the occurrence of

somatic  alterations  in  a  mutually  exclusive  manner

between  samples  was  required  for  a  manuscript  that  is

currently  under  revision.  Our  main  interest  was  that  the

method would respect the mutational burden for samples

and genes.  The development and testing of  the method

has been performed in collaboration with Abel Gonzalez-

Perez who has collected the mutational data and classified

the driver genes in the cancer modules within which we

searched for mutual exclusivity patterns.
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Introduction

The selective pressure acting upon certain pathways and functions

of the cells that are involved in the tumorigenic process is expected

to leave behind a traceable pattern of mutually exclusive alteration

between samples  (Greaves  and Maley 2012).  The underlying  as-

sumption  is  that  a  pathway  that  is  needed  to  behave  differently

within a cancer cell which may be achieved targeting genes of the

pathway.  And once a pathway or module is altered, an alteration of

an equivalent target in the same pathway does not increase further

the fitness of the tumor and is therefore not selected for. Once one

of the possible targets has been altered and the pathway behaves as

required for the tumorigenesis, the selective pressure ceases to act

upon this pathway and a mutation of a further target becomes more

unlikely. Thus,  upon screening a  cancer  sample  cohort,  it  is  ex-

pected that cancer driver mutations occur in a mutually exclusive

manner within pathways.

The  somatic  mutation  datasets  available  nowadays  provide  a

unique chance to test pathways for mutual exclusive alteration pat-

terns  for  a  big  cohort.  Mutual  exclusive  alteration  patterns  have

been reported for Glioblastoma, ovarian and lung cancer in 2011 in

approaches to detect de novo cancer drivers via their mutual exclu-

sive  patterns  (Ciriello  et  al.  2011;  Vandin,  Upfal,  and  Raphael

2011). Since then the available alteration data has grown consider-

ably and the detection of cancer mutational drivers has improved

substantially (Tamborero et al. 2013), which allows us to work with

consolidated cancer drivers. A very important feature to take into

account is the heterogenic nature of cancer samples and genes. The

alteration burden is not equal for all the samples and genes which

has implications for the measure of mutual exclusivity: Gene X and

Y both are more likely to be in altered state in a sample group of so-

called hypermutators – cancer samples with many alterations/muta-

tions. The probability of both genes being altered at the same time is

therefore elevated and if the case, does not necessarily reflect a se-

lection process but be a result of stochastic (passenger) alterations

due to genomic instability.
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We therefore propose the classification of the cancer drivers with

methods that test for traces of positive selection within cancer muta-

tions and classify the drivers in tumorigenic modules that under-

stood as groups of functionally related genes that when altered pro-

duce the same cancer phenotype. The method serves to test the in-

tegrity of the modules by a hypothesis-driven approach for testing

mutual exclusivity  and takes into account the observed alteration

burden of samples and genes. Note that the test does not identify de

novo cancer drivers. The detection of mutually exclusive driver al-

terations helps on the one hand to understand tumorigenesis in dif-

ferent cancer types and discover possible homogeneity underlying

the heterogeneity of  tumor samples  and on the other  to  discover

routes to indirectly target driver alterations with anti-cancer drugs.

Material and Methods

Identification of mutational drivers: We obtained mutation data

for 27 cancer types from TCGA, ICGC and independent studies. We

then applied the IntOGen pipeline  (Gonzalez-Perez, Perez-Llamas,

et al. 2013) in order to obtain a list of mutational cancer drivers for

each cancer type and as well the complete cancer samples cohort.

The detection of cancer drivers was performed by combining sev-

eral signals of positive selection as explained in  (Tamborero et al.

2013) and (Rubio-Perez et al.). All data sources are listed in Table 2

of this chapter along with the abbreviations of the tumor types.

Modules:  The  detected  mutational  driver  genes  were  classified

into 41 biological modules (gene sets), which were created based on

literature of the gene in question. Additionally we annotated each

gene with known implication in one of the hallmarks of cancer. A

gene may be included in multiple modules which are listed in Table

1 of this chapter.

Computation: To test the significance of an observed pattern of

mutual  exclusivity, we  compared  its  signal  (the  total  number  of

samples where at least one gene in the module bears an alteration)

to that of 1x10⁵ randomly generated mutational patterns, respecting

the number of alterations observed in each gene and the mutational

burden of  each sample,  following the  rationale  of  the CDCOCA
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method (N. Kumar et al. 2011). 

See Figure 1, a step by step illustration of the MutEx algorithm. 

1. We calculate sample alteration weights by summing up the

positive events, in our case mutations, for each sample and

divide it by the total alteration count. (Figure 1, step 1).

2. For  the  gene set  in  question  the  total  signal  (all  positive

events within the binary matrix) and the coverage (number

of  samples  with  at  least  one  mutation)  are  calculated  for

later reference (Figure 1, step 2). 

3. Then, permutations were performed by a random generation

of altered samples per gene in which the number of altered

samples per gene is maintained as observed and the overall

alteration  burden  per  sample  was  preserved  by  using  the

sample alteration weights as alteration probability in each of

the samples (Figure 1, step 3). For each permutation we cal-

culate the coverage.

4. With the array of coverage values from the permutation we

can calculate the empirical p-value and Z-score. Formulas

are listed in Figure 1, step 4.

MutEx has been implemented and run using the R environment (R

Core Team 2013).  Results  were only computed for modules that

have at least 2 driver genes within the cancer type in question. The

method has also been implemented for Gitools, see details in Chap-

ter 3.3.

Results

We collected a cancer tumor cohort of almost 7000 samples and

identified  mutational  drivers  following  the  rational  described  in

(Rubio-Perez et al.; Tamborero et al. 2013) for all cancer cohorts of

each cancer type and a pan-cancer cohort in order to obtain muta-

tional driver lists. All data sources are listed in Table 1. 

Cancer driver genes were manually mapped into functional mod-

ules  and sub-modules  for  each cancer  type,  including both well-

known cancer drivers as well as novel cancer genes which are func-
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tionally connected through pathways  (Minoru Kanehisa and Goto

2000; Minoru Kanehisa et al. 2014). In order to assess the likeli-

hood of each of the modules to function as a driver module in a

given cancer  type we implemented the MutEx method for  the R

programming environment and applied it to each of the 27 cancer

sample cohort and the pool of all  TCGA samples,  designated by

PAN. Figure 2 shows the Z-scores of each module in for each can-

cer type and module. The colors of the heatmap cells designate the

tendency to mutual exclusivity of the mutations within the module

whereas the number within the cells shows the proportion of sam-

ples that are mutated within the module. 

Many of the non-significant results can be explained with the fact

the  corresponding modules  have very  few mutations  recorded in

that module whereas the cohort of all  samples together, the PAN

column, gives more statistical power to the driver detection on one

hand and the MutEx calculations on the other. This effect is visible

in  the  Apoptosis,  HDAC and targets and  Cadherin  prod control

modules. The PAN results let us conclude that many modules in-

deed may constitute units of the regulatory network that are targeted

as a pathway by tumorigenesis. But a significant mutually exclusive

pattern within the PAN cohort, does not mean that same selective

pressure  acts  upon  a  specific  cancer  type.  E.g.  the  MAPK-JNK

Stress Resp or the PI3K-PI3K activation modules show tendency to-

wards  mutual  exclusion  in  some cancer  types  whereas  in  others

clearly not in spite of a high proportion of samples mutated within

the module (See Figure 2 and 3). A possible explanation is that the

canonical units that are targeted by the tumorigenesis depend on the

tissue of origin and cancer type.

Discussion

As opposed to approaches which use a combination of some prior

knowledge and unsupervised combinations (Ciriello, Cerami, et al.

2013; Vandin, Upfal, and Raphael 2011) we chose an entirely hy-

pothesis driven approach for testing the mutual exclusivity of muta-

tional events. This choice is due to our goal which was not to detect

driver  genes  de novo but  rather  understand which cancer  drivers
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Figure 1: Step-wise illustration of the MutEx algorithm.

The  algorithm  describes  how  the  empirical  p-value  and  the  Z-score  are

calculated for the gene set  or module consisting of genes 1, 2 and 3. See the

methods section for a detailed explanation of each step.



may act coordinately in tumorigenesis. Thus, before applying the

MutEx algorithm we needed to  detect  the  driver  genes  and map

them into  modules  according to  their  known functions.  This  ap-

proach lets us perform the MutEx testing in a computation-efficient

manner as we consider only a subset of all possible combinations of

genes that bear driver mutations. E.g. the MEMo approach is com-

putationally expensive as no limitation to what functional units to

examine is supplied and many possible combinations are explored.

A disadvantage of this very property is that we are limited to the

available knowledge of interactions, which may be incomplete.

Another important property of MutEx is that the mutational burden

of a cancer sample is taken into account, as opposed to conventional

statistical tests of distribution imbalances such as the Fisher's exact

test or the solution proposed by  (Yeang, McCormick, and Levine

2008). The MutEx algorithm has also been implemented in the Java

language as a part of the Gitools application. We have thus brought

together  the visual  interactive exploration of the pattern of alter-

ations across tumor samples of genes in a module and its statistical

analysis (See chapter 3.3).
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Figure 2: Z-scores for mutual exclusion of mutations within all 41 modules

and 27+1 sample cohorts.

Cancer types are listed in columns whereas modules are shown in rows. Modules

that show a clear bias towards having a mutually exclusive mutational pattern

are  colored  in  dark  red  in  the  respective  cancer  tissue.  Grey  cells  show

insignificant results and white cells represent module-cancer type combinations

for which not enough mutations were recorded in order to apply MutEx. Blue-

shifted  colors  are  modules  that  have  tend  towards  overlapping  mutations

amongst the genes. The numbers in the cells designate the proportion of samples

that is mutated within the module.
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A) MAPK-JNK Stress Resp 

B) PI3K-PI3K activation

Figure 3: Modules with significant trend towards mutual exclusivity

A and B display the mutational signal for two distinct modules that with high Z-

scores (> 9). Genes are aligned in rows and the samples as columns. The column

headers show the tissue code and color the project sources in different colors A

shows the MAPK-JNK Stress Response module for the 510 out of 1148 breast

carcinoma (BRCA) samples covered by 540 mutations in the gene set.  B displays

the data for  the  PI3K-PI3K activation module in  which  183 out  of  388 lung

adenocarcinoma (LUAD) samples bear 192 mutations. Both modules belong to

the proliferation hallmark and the respective modules are do not a significant

tendency of mutual exclusive mutational patterns in the other tumor type. 
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3.3  Exploring cancer genomics data with interactive 

heatmaps in Gitools 2

The exploration of multidimensional cancer genomics data

imposes numerous challenges in terms of data collection,

normalization and harmonization. In this chapter I present

a manuscript in preparation that describes Gitools, a data

visualization software, together with comprehensive cancer

genomics  data  sets  from  several  TCGA  tumor  sample

cohorts  and  the  IntOGen  resource.  For  the  effective

navigation  of  those  large  multidimensional  cancer

genomics  data  sets,  we  developed  a  new  version  of

Gitools,  version 2, which is able to load and display the

data as editable heatmaps. Jointly with Jordi Deu-Pons we

have  particularly  worked  on  the  implementation  of  new

analyses, the improvement of the user's interface, the data

access  management  (loading  and  saving)  as  well  as

interaction with third-party tools. 

Schroeder, M.P, Deu-Pons, J., Tamborero, D., Perez-

Llamas, C., Gonzalez-Perez, A. and Lopez-Bigas, N. 

Exploring cancer genomics data with interactive heatmaps in

Gitools 2. (in preparation).
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Abstract

The increased abundance of profiled genomic, transcriptomic and

epigenomic data from multiple tumor types is providing a valuable

data resource for cancer research. The complexity and size of such

datasets hampers the intuitive exploration of this valuable data by

many cancer researchers and clinicians. Data pre-processing and cu-

ration as well as intuitive software is needed to provide easy access

to  this  data.  We have  compiled  genomic,  transcriptomic,  epige-

nomic and clinical data of several large cohorts of tumor samples, to

form multidimensional matrices ready to be explored using Gitools

interactive heatmap visualizer and analyzer. In order to efficiently

explore these matrices we have developed a new version of Gitools.

Gitools 2 is able to load heavy data matrices in a memory efficient

way, possesses an improved user’s interface and includes new func-

tions  and analysis  options  specifically  designed  for  the  study of

multidimensional  cancer  genomics  data.  Gitools  2  and  prepared

datasets  are  available  from  within  the  application  and  at

http://www.gitools.org.

Introduction

The complexity of cancer genomics has given rise to large consor-

tia  such  as  The  Cancer  Genome  Atlas  (TCGA)  (The  Cancer

Genome  Atlas  Network  2008) and  The  International  Cancer

Genome Consortium (ICGC)  (Hudson et al.  2010), which aim to

complete  genomic,  transcriptomic  and  epigenomic  profiles  of  at

least 500 samples of numerous tumor types. Several independent

cancer genomics datasets covering different cancer types have been

published (The Cancer Genome Atlas Network, 2008; The Cancer

Genome Atlas Network, 2013; The Cancer Genome Atlas Network,

2013a;  The Cancer Genome Atlas Research Network, 2011),  and

one important challenge that arises is how to visually explore these

large and complex data efficiently to contribute to the final goal of

speeding up cancer research.

There are two main challenges to visually explore large cancer ge-
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nomics datasets: i) datasets are big, complex and difficult to manip-

ulate for most researchers and ii) multitude of different questions

can be addressed using these datasets. Thus there is a need for visu-

alization software that allows researchers to efficiently and flexibly

explore cancer genomics datasets in a user-friendly manner.

Several programs and web portals exists that facilitate cancer ge-

nomics data access, such as the TCGA Data Portal (https://tcga-da-

ta.nci.nih.gov/tcga/), Synapse  (Omberg et al. 2013), the cBio Can-

cer Portal  (Cerami et al. 2012), the UCSC cancer genome browser

(Zhu et al. 2009) and IntOGen  (Gonzalez-Perez, Perez-Llamas, et

al. 2013; Gundem et al. 2010). Cancer genomics data is often vis-

ually represented in one of these three basic visualization types: ge-

nomic coordinates,  matrix  heatmaps and interaction networks  (as

covered in a recent review (Schroeder, Gonzalez-Perez, and Lopez-

Bigas 2013)).

Heatmaps, in particular are useful intuitive graphical representa-

tions of matrices frequently used to represent transcriptomics and

genomics data. Many existing tools and resources can represent ge-

nomics data, especially expression values, as heatmaps  (Lex et al.

2012; Pavlidis and Noble 2003; Michael Reich et al. 2006; Saeed et

al. 2003). In most cases heatmaps are generated as static images,

which fall short to address the myriad of questions that arise from

the analysis of these multidimensional cancer data sets, which in

principle require that the user is able to flexibly interact with the

heatmap.

Three years ago we presented Gitools an interactive heatmap visu-

alization tool accompanied with some common analyzes, such as

enrichment and correlation studies (Perez-Llamas and Lopez-Bigas

2011).  The heatmaps in  Gitools  can represent  multiple  values  in

each cell, which makes it especially well suited for the representa-

tion of multidimensional cancer genomics data. When using Gitools

to show cancer genomics data columns and rows normally represent

tumor samples and genes respectively, and each cell contains multi-

ple values for the different omic profiles obtained. Its interactive ca-

pabilities allow the user to filter, sort, move and hide rows and col-

umns in the heatmap in context of gene and tumor sample annota-
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tions and to launch several common exploratory analyses such as

correlations, clustering, enrichment and statistical comparisons be-

tween groups of samples. A built-in option allows the users to sort

the genes and samples within a heatmap following the pattern of the

mutual exclusivity of alterations and test if the distribution of mu-

tual  exclusivity  is  expected with the  given distribution  of  events

amongst samples and genes. In summary, we have developed the

second generation of Gitools which presents fundamental improve-

ments  in  three  main  areas  of  the  exploration  of  oncogenomics

datasets. First, data manipulation has been reinforced to allow load-

ing, exploring and analyzing bigger datasets in desktop computers,

and data sharing and interoperability with other common tools has

been  introduced.  For  example,  Gitools  2  is  integrated  within

GenomeSpace (http://www.genomespace.org) and can inter-operate

with the Integrative Genomics Viewer  (Thorvaldsdóttir, Robinson,

and Mesirov 2012), allowing the user to explore the same data in

two complementary visualization tools that can communicate with

each other. Second, the interface has been enhanced to account for

more  intuitive  heatmaps  handling  and  exploration.  The  Graphic

User Interface (GUI) provides a more streamlined workflow and the

gene and sample annotations now play a critical role in the process

of exploration. Third, new analyses linking several data dimensions,

called data layers in Gitools, in the dataset have been implemented.

One example of these are comparisons of the values of one dimen-

sion in the matrix in groups formed by values in another dimension.

We present here a data repository of compiled genomic, transcrip-

tomic, epigenomic and clinical data of several large cohorts of tu-

mor  samples,  ready  to  be  explored  in  the  form  of  interactive

heatmaps  with  Gitools  2.  Currently  the  repository  contains  19

heatmaps  generated  from data  obtained  from two  main  sources:

TCGA (The Cancer Genome Atlas Research Network et al. 2013)

and  IntOGen-mutations  (Gonzalez-Perez,  Perez-Llamas,  et  al.

2013), which covers more than 5000 tumor samples and contains

data from 12 different cancer types. We present specific examples in

which  browsing  this  data  in  the  form  of  Gitools  interactive

heatmaps allows to easily answer key questions related to cancer bi-

ology.
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Results

We first describe the cancer genomics datasets prepared to be ex-

plored with Gitools and available at www.gitools.org/datasets (Ta-

ble 1), we then explain Gitools software improvements designed to

effectively explore this data,  finally we depict some use cases of

these data employing Gitools 2.

Oncogenomics datasets ready to be explored with 

Gitools

TCGA pan-cancer 12 heatmaps

The TCGA pan-cancer 12 dataset consists in the union of twelve

cohorts of samples of different tumor types. Each tumor sample has

been probed for various genetic, epigenetic and transcriptomic al-

terations,  such  as  somatic  mutations,  copy  number  alterations

(CNAs), promoter methylation and mRNA expression levels. Addi-

tionally,  patients’ information  has  been  gathered,  yielding  a  rich

dataset of clinical information. We have collated the aforementioned

omics data, together with a set of tumor and patient’s clinical anno-

tations into a multidimensional Gitools data heatmap, containing in-

formation for 5'065 samples and 22’047 protein-coding genes and

five data layers (see Table 1 and Table 2 for a detailed explanation

of the content of the matrix). 

We have prepared a series of meta-data for both samples and genes

which can be added as labels to the columns' or rows’ headers and

can be used to operate with, such as when applying filters or orders

based on those annotations or to compare profiles among annotation

groups (see case studies below). In Figure 1, the annotations added

as column headers are TCGA-Project Id and Sample Id, while gene

annotations, added as row headers are CGC (Cancer Gene Census),

OncodriveFM q-value and the Gene Symbol. The complete set of

sample and gene annotations is listed in Table 2.

Protein expression data measured by RPPA (reverse phase protein

array) technology for 3467 tumor samples are also ready to navigate
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in a separate heatmap. This heatmap has 131 rows corresponding to

proteins probed in the protein array (J. Li et al. 2013).

We have also prepared an excerpt from TCGA pan-cancer heatmap

focused  on  driver  genes  and  in  which  samples  are  grouped  by

COCA subtypes according to  (Hoadley et al. 2014). This heatmap

contains  information  only of  genes  annotated  in  the  cancer  gene

census (CGC) (Futreal et al. 2004) and those 291 genes detected as

high confidence drivers as described in (Tamborero et al. 2013).

TCGA individual projects

In addition to the TCGA 12 pan-cancer matrix we have prepared

heatmaps focused on each particular TCGA project, which contains

only  samples  of  that  tumor  type.  This  avoids  downloading large

amount of data to those users interested only in a particular tumor

type. Some of those heatmaps contain specific annotations only rel-

evant for that tumor type, for example, Breast Cancer dataset con-

tains the annotation of intrinsic subtypes for each sample and the

Glioblastoma  tumors  are  annotated  with  Glioblastoma  molecular

subtypes Classical, Mesenchymal, Neural and Proneural (Table 1).

The expression data has been median-centered for each individual

project  in  order  to  reflect  expression  differences  relative  to  the

project cohort rather than all the pan-cancer12 dataset.

IntOGen-mutations datasets 

IntOGen-mutations is a platform devoted to identify cancer driver

mutations, genes and pathways across tumour types on the basis of

the analysis of somatic mutations from thousands of tumour re-se-

quenced  genomes  (Gundem  et  al.  2010;  Gonzalez-Perez,  Perez-

Llamas, et al. 2013). We have prepared heatmaps summarizing the

information contained in IntOGen-mutations on the analysis of 28

independent cancer genome sequencing projects covering more than

4600 tumors (Table 1). 
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Improvements of Gitools 2

Gitools was originally developed to visualize high-throughput data

in the form of matrix heatmaps and to be able to interact with them

and perform some exploratory analyses (Table 3; Perez-Llamas and

Lopez-Bigas  2011).  Gitools  2  presents  major  improvements  over

the original software that can be summarized in three main points: i)

improved  data  manipulation  and  data  storage,  ii)  more  intuitive

graphic user interface, iii) introduction of new analysis options.

Improved data manipulation and data storage

Some cancer genomics datasets describe above have large sizes, of

the order of several gigabytes (Gb). To be able to explore this data

powerfully using regular computers we have specifically improved

the efficiency to handle big datasets in Gitools 2. On the basis of the

.tabix (H. Li 2011) file indexing for genomic coordinates, we devel-

oped  a  new  format  for  multidimensional  matrices  and  tables

(.mtabix) in order to save RAM (Random-Access Memory) when

loading large matrices. For example, the TCGA pan-cancer matrix

has a file size of 2.2 Gb in the flat text file format, which would in-

crease when loaded into the application's memory. The new .mtabix

format indexes and compresses the data matrix down to 380 Mb on

disk and only reads and decompresses the data needed for visualiza-

tion. This allows loading and browsing this heatmap at any desktop

computer with only 1 Gb of available RAM. 

In order to make it easy to load user’s own data, now Gitools can

open any text  file  with  tab,  comma or  semicolon separated  data

fields. Data files can be either in a matrix format, with column iden-

tifiers in the first line and row identifiers in the first column of each

line, or a table format with lines containing data for a heatmap cell

as well as the column and row identifier. If multiple data sets for the

same sample are available, it is possible to integrate them by im-

porting the additional data file as new data layer. 

Interoperability with other tools

We have developed an interface for Gitools that can be used for in-

108



teroperability with other tools or platforms. This interface has facili-

tated  the  interoperability  of  Gitools  with  Integrative  Genomics

Viewer (IGV)  (Thorvaldsdóttir, Robinson, and Mesirov 2012) and

with GenomeSpace (M. Reich et al. 2013), in a way that it is possi-

ble  to  run  Gitools  directly  from the  GenomeSpace  or  open data

from IGV directly into Gitools. IGV communicates to a running in-

stance of Gitools and GenomeSpace starts a new Gitools using the

Java Web Start available at our server. Both options are available to

any developer.

More intuitive graphic user interface

The browsing interface of Gitools has been re-designed and the

control panels to the left have been minimized, so that the heatmap

occupies  more  space  (see  Figure  1B).  Other  changes  make  the

heatmap browsing and editing  easier  and quicker  for  the user:  a

right-click on gene and sample annotations now reveals a contextual

menu which provides many readily accessible options, such as sort-

ing, filtering and searching the rows and columns of the heatmap in

function of the given annotation.  Rows and columns can now be

dragged and dropped to the position desired by the user. Zooming

allows to rapidly change the perspective and amount of data dis-

played on screen. The minimal zoom (broadest view) permitted is 1

pixel height and width per cell. A new button to open the heatmap

as a static image in a new tab in order to view its status in full size

is  available  in  the  toolbar.  Following  exploration  and  analysis,

heatmaps can be exported as image files either in bitmap (PNG) or

in scalable (SVG) format for later use in publications.

Additional annotations to heatmaps are very important to correlate

clinical variables with genomics and transcriptomics profiles within

the data matrix. Thus Gitools allows the user to add color-coded an-

notations as headers to rows and columns and to sort them both as

text and numerically. Rows and columns can also be annotated with

aggregation functions. For example, the mean expression value per

tumor type can be added as an annotation track. Specific contextual

menus in columns and rows headers help the user to sort, group and

filter based on annotations. Thus, the heatmap can easily be sorted
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following annotations to samples, such as tumor type and anatomi-

cal site to highlight differences in genomics/transcriptomics profiles

between clusters or groups of samples.

The color coding of the heatmap and header data is flexible; there

are several kinds of color scales to represent different data types. In

particular, the new categorical scale allows to visualize and annotate

the data points for categorical values, such as the Genomic Alter-

ations data layer in the TCGA pan-cancer matrix  (see Figure 1).

Each color scale comes with an event classifier. According to the

value cut-offs chosen in the color scale, the event classifier can de-

cide if a specific value is an event or a non-event. For example, in

the p-value color scale,  all  values passing below the significance

threshold are events. This information is displayed in a selection-

specific context box and is used for the mutual exclusivity sorting

and weight calculations in the statistical test. Upon selecting rows

and/or columns, the selection specific context box displays simple

statistics that may be useful to the user. For example when viewing

data represented by a categorical scale such, the counts of occur-

rence of each category are reported. If the selected data is repre-

sented by a linear scale, mean and standard deviation are reported as

well as a count of adjustable events (above scale values, below scale

values). 

New analysis options

In addition to exploratory options, Gitools contains some built-in

analysis to be done over the heatmaps (Table 3). In Gitools 2 we

have included several new analyses, which are especially useful to

analyze cancer genomics data, although are not exclusive for this

type of data. The mutual exclusivity sorting and testing feature (ap-

plied in Fig. 1, 2A, 2B and 2C) helps the researcher to identify gene

sets that follow this alteration pattern (case study 1), which may in-

dicate pathways containing cancer genes with driver alterations in-

volved in tumorigenesis (Ciriello et al. 2011). A permutation based

approach (see chapter 3.2 for details) allows to test the significance

of mutual exclusivity and co-occurrence in the alteration pattern of

a gene set. The new Group Comparison analysis allows the user to
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perform  a  Mann-Whitney-Wilcoxon  pairwise  comparison  of  two

groups of samples, in order to detect significant differences between

them. Samples may be grouped using their identifiers, annotations

or values in the data layer being compared or any other. One exam-

ple involves grouping samples with the same copy number status of

a given gene, and detect differences of gene expression levels be-

tween them, thus measuring the cis- or trans- effect of amplifica-

tions and deletions (see case study 2).

The clustering methods for numerical  clustering of the heatmap

have been rewritten and their default settings are adjusted to provide

good clustering results with different data types. In particular the hi-

erarchical clustering opens the hierarchical tree as a bitmap file in a

new tab. In the heatmap tab, the hierarchical cluster is represented

by color codes at different levels of the hierarchical tree (Figure 2),

simplifying  the  information  for  better  understanding  and  staying

valid upon changing the order of the rows or columns. Upon per-

forming a clustering the new bookmark function is used to store the

order rows and columns and visible data layer of the heatmap in a

heatmap  bookmark.  The  bookmarks  are  saved  along  with  the

heatmap to the disk and can be restored later on.

Case studies: Visualizing pan-cancer data with Gitools

In the following case studies we describe several questions that

may be answered through exploration of the pan-cancer dataset pro-

vided with Gitools 2. 

Searching for mutational cancer drivers across 12 cancer 

types

The  discrimination  between  driver  –  that  cause  or  promote  tu-

morigenesis-- and passenger genes is still a challenge even though

intense  research  in  that  direction  has  been  done  in  recent  years

(Kandoth et al. 2013; Lawrence et al. 2014; Tamborero et al. 2013).

In order to be able to help the researcher to spot likely driver genes,

we have added to the pan-cancer heatmap the annotations of several

bioinformatics methods that identify mutational driver genes: Ac-
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tiveDriver (Reimand, Wagih, and Bader 2013), MuSiC (Dees et al.

2012), OncodriveFM and OncodriveCLUST (Tamborero, Gonzalez-

Perez,  and  Lopez-Bigas  2013;  Gonzalez-Perez  and  Lopez-Bigas

2012).  We have  also  annotated  genes  that  are  High  Confidence

Drivers  (HCDs) and Candidate  drivers  (CDs),  determined as  de-

scribed  elsewhere  (Tamborero  et  al.  2013).  Briefly,  these  two

groups were retrieved after combining the results of the aforemen-

tioned methods. Additional gene annotations include genes in the

Cancer Gene Census (Futreal et al. 2004) and the pan-cancer Mut-

Sig  results  (syn1715784.2;  (Lawrence  et  al.  2014)).  Once  the

PCMD matrix is loaded, annotations can be visualized at the ex-

treme  right  of  each  row  as  indicated  in  Figure  1.  Because  re-

searchers may be interested in a small group of driver candidates, it

may help to see if the alterations have an overlapping or mutually

exclusive alteration pattern in this group, as represented in Figure

3A. There, genes that exhibit a mutually exclusive pattern of alter-

ations  in  Glioblastoma  (Ciriello  et  al.  2011) samples  have  been

sorted according to the alteration data using the built-in mutual ex-

clusivity sorting capability. In Figure 3A we can see that alterations

in these genes cover a large fraction of the cohort. A further ex-

ploratory step could be aimed at finding potential drivers in the rest

of the cohort (not displayed). This can be achieved by hiding all the

samples where these genes are mutated and browse the mutations in

the remaining tumor samples. 

The cis-impact of CNAs on gene expression

Tumor genomes contain changes in the number of copies of certain

chromosomal regions. We included CNA events in the pan-cancer

alterations  matrix  relating each events  to all  the genes  in the af-

fected chromosomal region. CNA events can be browsed in the pan-

cancer heatmap at two different data layers: CNA Status represents

homozygous losses of a gene in blue and multi-copy amplifications

in red, labeled accordingly in Gitools. In Genomic Alterations data

layer, the sample CNA status of each gene can be visualized to-

gether  with protein affecting mutations.  The pan-cancer RNA-se-

quence data can be visualized in the Expression data layer and, then

directly compared to the CNA status. A decrease in gene expression
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is expected for homozygously or heterozygously lost genes which

could help elucidate their  implication in tumorigenesis;  amplified

genes involved in tumorigenesis are expected to show higher ex-

pression values. It is therefore useful to test whether the CNA of a

gene has a cis-effect on its expression. The “Group Comparison”

capability that has been added recently to Gitools allows the user to

compare the values of two groups of samples employing the Mann-

Withney-Wilcoxon test. We have performed this test for the whole

PCMD Matrix and annotated the rows with the corrected p-value

for negative or positive cis-effects, as shown in Figure 3B, followed

by two column annotations  marking which  genes  are  mutational

HCDs,  and  their  chromosomal  location.  The  figure  contains  the

heatmaps of the CNA Status and Expression data layers. The genes

with the 10 most significant Group Comparison p-values are dis-

played. Should a user want to perform a Group Analysis for a par-

ticular subtype, it can be easily done with the data we distribute fol-

lowing  the  on-line  Tutorial  at  our  documentation  website

(http://www.gitools.org/documentation). 

Exploring molecular differences between cancer subtypes

In a large cohort of different tumor types such as the Pan-cancer

data set, clustering and stratification of samples based on genomic

features becomes an interesting way to assess similarities or impor-

tant differences between samples. The PCMD Matrix contains sev-

eral clinical annotations for each sample that can be employed to

stratify patients. In Figure 3C, the integrated alterations data of the

pan-cancer  heatmap  is  annotated  and  sorted  by  the  International

Classification of Diseases (ICD-10) (http://www.who.int/classifica-

tions/icd/en/)  cancer site in a manner that allows to compare ge-

nomic alterations between tumors from different sites. The figure

shows that mutations in e.g. TP53 or APC are unevenly distributed

between sites. It is thus possible to visually recognize differences in

the mutational frequency of genes across cancer sites. (This numeric

gene annotation has been added by an aggregation function within

Gitools.) By means of the Group Comparison analysis the user can

test if two groups of samples that seem different in their mutational

patterns, also differ in the expression values of certain genes, analo-
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gously to the approach of the cis-impact case study.

Sample Level Enrichment Stratification

Changes in the level of expression of individual genes are complex

and difficult to interpret and it is often easier to study the transcrip-

tional changes of groups or modules of genes. Gitools has a built-in

capability to perform a Sample Level Enrichment Analysis (SLEA)

(Gundem et al. 2010). A SLEA result reveals the relative transcrip-

tional status of gene sets in each input sample. Figure 3D depicts

the results of a SLEA which represents the relative expression status

of eight core KEGG pathways (M. Kanehisa et al. 2010) and a set

of  chromatin  regulatory  factors  (Gonzalez-Perez,  Jene-Sanz,  and

Lopez-Bigas 2013). The three color-coded column headers repre-

sent annotation data (from top downwards): TCGA project, cancer

tissue site and ICD-O 3 histology. Some obvious differences in the

expression status of modules between tumor types are easy to ob-

serve. The samples of the acute myeloid leukemia cohort show very

high relative expression of chromatin regulatory factors when com-

pared to other cancer types. On the other hand, kidney tumors show

very high relative expression of Cytokine-Cytokine receptors path-

way and very low relative expression levels of chromatin regulatory

factors and Cell Cycle genes. A SLEA analysis can be carried out

directly within Gitools for any gene set submitted by the researcher.

Any  annotation  for  rows  and  columns  such  as  those  mentioned

above may serve as criteria for stratification. Gitools now allows to

sort and filter by any annotation loaded, be it text or numeric, and

this option is easily accessible by right clicking on the column or

row headers. This empowers the researcher to easily break big data

matrices into smaller subsets without the necessity of any coding

skills. 

Discussion

Although several other heatmap viewers are available  (Lex et al.

2012; Pavlidis and Noble 2003; Saeed et al. 2003; Michael Reich et

al.  2006), Gitools 2 is currently the only one that allows the de-

scribed high degree of interactivity in combination with the flexibil-
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ity to import any additional user data. This is a key aspect of its con-

ceptual design that makes it very suitable for the type of analyses

described in  the use cases,  particularly, in  large datasets  like the

pan-cancer cohort. Its efficient data management in terms of mem-

ory usage permits its employment in almost every personal com-

puter and increases its value in the context of research and clinical

settings. With Gitools 2, researchers are able to visually explore and

analyze  both  pre-compiled  or  ad-hoc  datasets.  Such  exploratory

analyses can aid to propose hypotheses on the involvement of can-

didate driver genes in tumorigenesis in particular cancer types. Fur-

thermore, they help to identify new profiles of genomic alterations

that define specific groups of tumor samples. 

The  new  Gitools  2  software  as  well  as  all  the  pre-compiled

datasets are freely available at http://www.gitools.org/datasets. For

illustrative purposes, we have prepared four use cases of Gitools 2

in the PCMD matrix and a genomics alterations and mutations sum-

mary matrix available under the same URL. All examples can be

downloaded and then opened within Gitools 2. Additionally to the

pan-cancer  matrix,  the  reader  may  find  cohort  specific  matrices,

with annotations of four specific mutational driver detection meth-

ods: ActiveDriver, MuSiC, OncodriveCLUST and OncodriveFM.

Downloading the pre-compiled matrices and Gitools 2 enables off-

line exploration of all mutations, copy number alterations and ex-

pression data of the TCGA pan-cancer. Heatmaps configuration can

be saved and reopened later and can also be exported as bitmap or

vectorial image files for publication, or sharing with collaborators.

If the researcher is interested in the data itself, it is possible to ex-

port it in a flat file format, both in matrix and in table form. 

The software architecture of Gitools 2 allows loading any dataset

in a matrix format. Thus, in addition to explore the pre-compiled

TCGA data, users can load their own data in Gitools 2: the user may

add further information to TCGA data, for example extra annota-

tions to samples or genes, or load a custom dataset of cancer ge-

nomics data. This can be done with a flat matrix file or, in case of a

multidimensional data set, a flat text file or spreadsheet in table for-

mat. Navigation settings are configurable for each data data layer, in
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the panels below the details box.

In summary, we have presented a second generation Gitools, opti-

mized to  explore large multidimensional  oncogenomics heatmaps

interactively. We foresee that this new version of Gitools and the

datasets  pre-compiled  for  this  paper  (available  at  http://www.gi-

tools.org/datasets), will simplify the effective exploration of multi-

dimensional oncogenomics datasets by cancer researchers We could

already observe a relative popularity of the second generation Gi-

tools which has seen several public software releases during the last

year:  We  have  registered  about  4500  events  (downloads  and

launches) for the Gitools 2 application and about 1000 events for

the  prepared  datasets.  For  both  figures,  the  events  counts  from

Barcelona have been removed.

Methods

Pan-cancer data set compilation

All pan-cancer related data have been downloaded from the pan-

cancer repository at Synapse  (Omberg et al. 2013), id syn300013.

Samples  with  at  least  one  mutation  were  retrieved  from

syn1729383, after excluding 71 considered as hypermutated sam-

ples  according  to  the  criteria  described  in  that  repository.  Copy

number alteration data was retrieved from syn1695369; only multi-

copy amplifications or homozygous deletions were considered as

copy number  changes.  Methylation  data  has  been  obtained from

syn2486658, protein expression from syn1756922. Finally, expres-

sion  values  were  retrieved  from  the  RNA-seq  data  available  in

syn1695373.

Patient Annotations

All patient annotations were downloaded from the same Synapse

pan-cancer collection (syn1446125.3, syn1446151.3, syn1446088.3,

syn1446058.3,  syn1446167.2,  syn1446078.3,  syn1446135.3,

syn1446109.3,  syn1446094.3,  syn1446118.3,  syn1446065.3,

syn1446101.3) with the exception of the PAM50 calls and Glioblas-
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toma subtype annotations, which were downloaded from the UCSC

Cancer Genomics Browser. 

Gene Annotations

General gene information and description were downloaded from

the Ensembl Biomart version 71 (Kinsella et al. 2011). The annota-

tions for the driver calling methods ActiveDriver ((Reimand, Wagih,

and Bader 2013), MuSiC (Dees et al. 2012), OncodriveFM and On-

codriveCLUST  (Gonzalez-Perez  and  Lopez-Bigas  2012;  Tam-

borero, Gonzalez-Perez, and Lopez-Bigas 2013) have been gener-

ated from the corresponding outputs generated by the respective au-

thors. The cis-effect annotations were generated with Gitools Group

Comparisons for all gain values and all  homozygous loss values.

The Cancer Gene Census information was downloaded from their

web site and the MutSig results for (Lawrence et al. 2013) pan-can-

cer were obtained from Synapse (syn1715784.2).

Mutual exclusive test

The empirical p-values for the mutual exclusivity mutational pat-

tern test are calculated taking into account the overall distribution of

events  across  genes  and samples  as  explained in  (Hoadley  et  al.

2014). When performing the test for a group of genes (in rows), the

overall sample coverage is used as background model for 10'000

weighted permutations  for each gene.  The weights  are calculated

according to the mutational burden of the samples, taking into ac-

count the entire data matrix, including hidden rows). The p-value

reflects  the  probability  of  obtaining  the  overall  sample  coverage

given X mutations in each gene within the group.

Indexing big matrix and tabular data files with .mtabix

We  adapted  the  approach  and  format  of  the  genomic  file

indexing .tabix to generic tabular data files and is now used as the

standard to access the gitools matrix data sets. Code is available at

https://bitbucket.org/bbglab/mtabix and can be freely used for other

applications or to prepare big data for loading in Gitools.
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Gitools 2

Gitools 2 is written in the Java programming language and is avail-

able for major operating systems (Linux, Windows, OS X). The new

compressed format for storing the matrix,  the use of the .mtabix

format,  allows  to  independently  read  and decompressed  the  data

values when they are needed at runtime.

Figures

Figures 1-3 have been produced with Gitools 2 with and arranged

with Inkscape and Gimp.
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Figure 1:  The Gitools 2 interface

Two screenshots of Gitools 2 with TCGA data separated by black diagonal line.

In  each  half  of  the  Figure  we  can  see  different  value  dimensions:  Genomic

alterations in the lower part and expression in the upper part. The figure shows

the distribution of visualization, information and input space of Gitools.
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Figure 2:  Hierarchical cluster representation

Figure to shows the expression data for the UCEC cancer samples in the genes

annotated as cancer drivers. Both sample and gene dimensions are clustered with

the hierarchical cluster algorithm, whose hierarchies are displayed at the top and

at  the  right  of  the  heatmap.  The  default  parameters  were  used:  As  distance

measure we employed the Euclidean distance and used average linking. 
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Figure 3:  Cancer genomics cohorts in Gitools

Figure three shows the figures that accompany the different use cases described

in  the  manuscript.  A displays  the  genomic  alteration  for  four  genes  and  all

samples. The leftmost part is a zoomed-in view of the four TCGA projects with

fewer samples. B shows the CIS-effect of the CNA on expression status. The CNA

data has been ordered by mutual exclusivity. When visualizing the expression

values  after  sorting  we  can  see  the  mutual  exclusive  CNA  pattern  clearly

reflected in the expression status. Sub-figure C shows the genomic alterations for

the HNSC and COADREAD samples, sorted by mutual exclusivity and grouped

by the ICD10 cancer site annotation. It is recognizable that both APC and TP53

are not mutated with the same frequencies across different ICD10 cancer site

groups.  Additionally  we  used  Gitools  to  add  a  row  header  that  shows  the
frequency for each group. D Shows the expression status as reflected by SLEA for

select KEGG pathways. The samples are grouped by TCGA project and ICDO 3

Histology annotations in order to reveal possible subgroup-specific expression

status of the pathways.
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3.4  jHeatmap: an interactive heatmap viewer for the 

web

The  idea of  visualizing  and exploring  data  by  means of

interactive heatmaps is as valid for the desktop as it is for

the  web.  The main  limitation  of  web-native  technologies

are the web browsers and their JavaScript engine which

determine  the  possibilities  of  computation  within  the

browser. In any case, huge advances in web technologies

allow for ever more complex computation in the browser

and has enabled us to translate the interactive heatmap

idea from Gitools to jHeatmap. jHeatmap is a JavaScript

library that can load multidimensional datasets into the web

browser and integrates user interactions such as sorting,

filtering,  visibility  toggling  which  makes  it  an  ideal

component for web-platforms looking to communicate big

data sets to fellow researchers. jHeatmap was developed

jointly with Jordi Deu Pons who implemented the jHeatmap

core aided by my contribution in form of test and repairing

(debugging)  with  the  biological  examples.  Furthermore  I

wrote the manuscript published in Bioinformatics.

Deu-Pons, J., Schroeder, M.P., and Lopez-Bigas, N. (2014). 

jHeatmap: an interactive heatmap viewer for the web. 

Bioinformatics btu094.
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3.5  SVGMap: configurable image browser for 

experimental data

In  order  to  communicate  data  efficiently  and  easily  to

decode it is sometimes best mapped onto what the data is

representing:  the  original  model.  It  is  common  for

geographical information such as per-region data points as

for  example  temperature.  The  same  concept  can  be

applied to biological data as for example gene expression

in different tissue or cell types or even cell compartment-

specific data points.  For this reason we have developed

SVGMap, a data browser that  translates the data points

into  colored regions of  an SVG graphic.  The initial  idea

came from a collaboration with a wet-lab group. Thereafter

Xavier Rafel-Plaou and me developed a generic tool that

allows researchers to load any of their own data and SVG

graphics in order to map the data onto the custom figure.

Besides contributing code to the application, I have created

various use cases described in the article and written the

manuscript which was published in Bioinformatics.

Rafael-Palou, X., Schroeder, M.P., and Lopez-Bigas, N. 

(2011). SVGMap: configurable image browser for 

experimental data. Bioinformatics 28, 119–120.
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4  4  DISCUSSIONDISCUSSION





The work that I have done during my PhD training can be divided

into two areas:  cancer  genomics  and data visualization.  Firstly, I

will discuss cancer genomic studies that have been realized in the

past years and what I was able to contribute with OncodriveROLE

and MutEx. Secondly I will discuss my contributions to data visu-

alization, particularly of multidimensional cancer genomics data in

a cohort of cancer patients with Gitools and jHeatmap, as well as

the SVGMap browser, a technology to create high-quality custom-

ized figures onto which experimental data is mapped.

4.1  Cancer genomics

As every day new bits and pieces are being published in many sci-

entific journals, the complexity of the disease seems to be boundless

and many aspects of the molecular mechanisms of cancer and the

tumorigenesis remain unknown to this day. Nevertheless the orches-

trated efforts  of TCGA and ICGC plus many independent efforts

have provided the scientific community with data that lets us look at

a more complete picture of cancer than ever before, from a genomic

point of view. 

The genomic characterization of the pan-cancer samples has re-

vealed the common and distinct patterns between the different can-

cer types and has lead to proposals of new classification of cross-

tissue cancer types  (Zack et al. 2013; Ciriello, Miller, et al. 2013;

Hoadley et al. 2014) which may be of great importance for the plan-

ning  and  organizations  of  upcoming  clinical  trials.  Furthermore,

some distinctions between tumor sample groups indicate different

oncogenic  processes  driven  by  distinct  alteration  types  as  main

cause (Ciriello, Miller, et al. 2013).

The identification of mutational drivers from cancer genomics data

has flourished during last  years and has helped to unmask many

novel  cancer  driver  candidates,  particularly  including  lowly  fre-

quently mutated genes. Studies of the TCGA pan-cancer12 cohort

propose up to 290 candidates for driving tumorigenesis (Tamborero

et al. 2013; Lawrence et al. 2014). Our research group, in particular,

provided the IntOGen-mutations pipeline for online and offline use

(Gonzalez-Perez, Perez-Llamas, et al. 2013; see annex), a powerful
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tool to identify mutational candidate cancer drivers.

All these efforts to try to understand tumorigenesis and identifying

cancer  drivers  and molecular  patterns  should eventually  translate

into a more focused development of new drugs on new targets and

improved survival chances for cancer patients as a whole. 

Drug development particularly does not only depend on the identi-

fication of novel cancer drivers but also on the way they act upon

tumorigenesis. Predicting the mode of action of cancer drivers could

only be assessed by thorough wet-lab studies. The availability of

large re-sequenced tumor exomes and genomes gave us the opportu-

nity to approach this question in a computational way by analyzing

the pattern of somatic alterations observed in the tumoral DNA se-

quences.  Differences  between  oncogenes  and  tumor  suppressor

genes have been exploited to develop OncodriveROLE, a classifier

that can separate identified cancer driver genes into possible activat-

ing and loss of action roles within tumorigenesis. As discussed in

the chapter of OncodriveROLE, our approach differs from Tuson

(Davoli et al. 2013) and the 20/20-rule  (Vogelstein et al. 2013) in

that OncodriveROLE is not identifying cancer drivers, but classify-

ing already identified cancer drivers into their mode of action. Thus,

the cancer drivers that do not have a clear pattern of either role are

not discarded as cancer drivers.

 With OncodriveROLE we are the first group to provide a public

classifier that can fulfill this kind of task. Another available method

is Paradigm-Shift (Ng et al. 2012) which may give an indication of

whether the gene alteration has an activating effect on downstream

pathways. Even though similar, Paradimg-Shift differs from Onco-

driveROLE. Paradigm-Shift is a sample-based analysis, that returns

a value for each sample that reflects a deregulation of the down-

stream signaling of the gene in question whereas OncodriveROLE

returns a value per gene reflecting the driver class. Another impor-

tant difference is that Paradigm-Shift is a rather elaborate method

depending on the network model and is costly in terms of computa-

tion.  

As for OncodriveROLE, we have assessed a total of 30 features.

Besides the chosen features for the OncodriveROLE classifier, we
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have also reported many other features in order to avoid that other

research groups have to go through repetitive work. The chosen fea-

tures assess mutational and copy number patterns, but it is possible

that  new evidences  may be incorporated in  the future.  Abundant

cancer genomics and epigenomics data will be released by TCGA

and ICGC such that as f.  ex. more knowledge about methylation

patterns or expression patterns is being generated and could be used

make the OncodriveROLE classifier more accurate. Particularly hy-

permethylation patterns are interesting as recurrent hypermethyla-

tion  of  tumor  suppressors  gene  promoters  have  been  reported

(Baylin and Jones 2011).  Expression data is somewhat more diffi-

cult to use as a matched normal is not always available or it may not

be clear if it was affected by the neighboring cancer tissue. The dy-

namic nature of expression statuses makes it even more complicated

to call expression alteration with confidence. The solution to this

problem would be a comprehensive catalog of expression data from

all human tissues where cancers are known to arise. This catalog

should cover several hundred individuals per tissue, age, ethnicity,

sex, etc. in order to be able to establish a  normal gene expression

quantity and variability for every gene and possible patient group

and most importantly reflect the different tissues of the human body

with high accuracy.

As more cancer samples are being sequenced, it should be the goal

to maximize the number for each tissue, such that rare tissue-spe-

cific variants can be detected and an approach such as Oncodrive-

ROLE can be applied at a tissue level with confidence. Given that

OncodriveROLE is able to gather enough information for most, but

not all in a cohort of 4327 from 17 different cancer types, one may

estimate that this same number per tissue may yield close to com-

prehensive  results.  A  similar  number  has  been  estimated  in

(Lawrence et al. 2014). Assuming we would want 5000 cancer sam-

ples per cancer type, and take over the goal from ICGC to gather 50

different cancer types, this would mean that we'd need the sequence

250'000  cancer  samples  another  250'000  matched  normal  se-

quences. Ideally thus and if the available data allows enough statis-

tical power, a thorough genomics study has to be conducted for each

cancer type separately, considering each cancer a separate disease.
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For OncodriveROLE this is particularly important as the classifier

could detect cases where the protein products of the same gene in

different tissues may have opposite as is the case with NOTCH1

(Licciulli et al. 2013; Liu, Zhang, and Ji 2013). 

In the end, these numbers would not only help approaches such as

OncodriveROLE,  but  also  as  before-mentioned  the  detection  of

lowly frequent drivers and also the identification of intrinsic cancer

pathways would be facilitated and an important step would be taken

towards the often-mentioned goal of personalized therapy for cancer

patients.  The  knowledge  gained  with  thorough  genomic,  epige-

nomic, transcriptomic and proteomic studies for every cancer type

would not only allow the more precise development of anti cancer

drugs,  but  if  somatic  alterations  are  available  from hundreds  of

thousands of cancer patients, we could also generate precise knowl-

edge about somatic alterations that may serve as subtype and treat-

ment markers in order to give the best treatment possible to a pa-

tient. All in all, TCGA and ICGC had had ambitious goals when the

projects were announced, but it seems that it is time to step up and

numerically increase the decided goals to drive the thorough study

of the cancer  disease.  Increased efforts  of  sequencing would not

only give more power to cancer driver detection, but also pinpoint

which genes and genomic regions must  be understood better  be-

cause for many novel cancer drivers that are being identified, thor-

ough knowledge about functions and interactions is still lacking.

Nevertheless,  not  all  depends  on  consortia  such  as  TCGA and

ICGC  and  primary  cancer  sample  sequences.  On  the  one  hand,

many independent efforts are generating valuable data sets of their

own that can be combined with available datasets from ICGC and

TCGA in  order  to  gain  more  statistical  (Gonzalez-Perez,  Perez-

Llamas, et al. 2013). Some may even deserve some special attention

as they may represent specific populations and their specific affini-

ties and predispositions for certain cancer types and mutations. On

the other hand, we need to keep in mind that understanding tumori-

genesis and understanding therapy resistance and disease recurrence

are two separate pair of shoes. Cancer is difficult to treat because it

is a multi-clonal disease. An existing clone of the cancerous tissue

may not be affected by the treatment or new clones emerge upon the
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new selective pressure exerted by anti-cancer drugs. The creation of

cohorts featuring the follow-up history of cancer patients through-

out the treatment may elucidate which paths the cancer cells choose

in order to gain resistance.  Furthermore the choice of what com-

pounds are to used to treat a cancer patient may also depend on ex

vivo performance of the drug as has been exemplified in a study

where 28 AML samples from 18 patients were obtained and the ex

vivo drug sensitivity and resistance has been assessed (Pemovska et

al.  2013).  This  study shows two future  trends  mentioned above:

time-series that portray the disease and possible relapses plus addi-

tionally to genomic assays a drug-screening that may already give a

hint of what drugs may work for the patient.  A caveat today is that

the various genomic assays may take several weeks until the results

are available.

Independent efforts can set future trends and the involved mem-

bers and institutes gain valuable specific knowledge. But also, one

must consider that they may not dispose of the same overall know-

how  as  institutes  that  are  involved  in  the  macro-projects  from

TCGA, such as the Broad Institute or the Wellcome Trunst Sanger

Center  which  is  affiliated  to  the  Cancer  Genome  Project.  Thus,

more modest cancer research institutes and hospitals  all  over the

world depend on available methods and software. This is why we

chose to develop not only approaches, but aim to make them avail-

able as we have done with OncodriveROLE, the rest of the Onco-

drive family  (Tamborero, Gonzalez-Perez, and Lopez-Bigas 2013;

Gonzalez-Perez, Perez-Llamas, et al. 2013; Tamborero, Lopez-Bi-

gas, and Gonzalez-Perez) and also with the MutEx approach.

Private cancer genomics data can easily be readied for loading in

Gitools and apply the  MutEx method, which may serve as testing

tool if a predefined gene set of cancer drivers is acting as a tumori-

genic function within  the cohort  in  question.  As the tumorigenic

functions can be different in function of the cancer type or even

subtype it is important to confirm those as such before the a treat-

ment can be developed and applied.

 MutEx is therefore an approach that is easily accessible and also

open  to  novel  cancer  genomics  data:  The  MutEx  approach  may
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equally be applied to expression or methylation data with the only

condition that data must be interpretable as a binary matrix (data

events in Gitools). 

4.2  Data Visualization

The importance of data visualization becomes ever bigger as the

amount of data that is being generated is increasing daily. New ap-

proaches need to be developed in order to grasp all the data avail-

able  in  the  least  visualizations  possible.  Nevertheless,  one  must

never loose touch with singular results and their visualization. In or-

der to communicate biological data in an intuitive way it is helpful

to map the data onto a cartoon that represents the model which is

being studied. In collaboration in 2011 with a wet-lab back working

with  Arabidposis root  expression  data  we  come up  with  an  ap-

proach, called SVGMap, that let them map the data onto a Scalable

Vector  Graphic  (SVG)  image  containing  labeled  regions  of  the

model corresponding to the different measurements taken. The col-

ors that are projected onto the SVG model are customizable via the

web-interface.

The use of SVG has since been popularized by libraries such as D3

(Bostock,  Ogievetsky, and Heer  2011) and derivatives,  affirming

our choice of using SVG. The main difference between D3 and the

SVGMap is that the SVGMap server lets the user load images and

tabulated data files via it's interface and does not require any script-

ing knowledge whereas D3 provides a scripting interface that en-

ables the web-creator to modify and animate SVG images within

the web browser. However, given the popularity of D3, if SVGMap

would have to be implemented today it would be convenient to use

D3 as SVG manipulation instead of the letting the Java back-end

server manipulate the SVG image. Nevertheless, SVGMap brings

together the ability of generating specific precise figures of singular

results with the access and management to all results at once. This

idea could be developed further, as both SVG graphics of biological

models such as organism, specific tissues etc. could be created and

released in public domain as has been done with the figures used for

the examples of SVGMap. 
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As for the consultation and exploration of large data sets such mul-

tidimensional cancer genomics datasets that are being generated by

TCGA and  ICGC,  quite  tedious  preparation  tasks  and  advanced

scripting skills may be needed to finally be able to create intuitive

and evident. This creates a certain barrier between the data genera-

tion and the exploration by researchers as not all groups may dis-

pose of the required knowledge. The data needs to be normalized,

prepared and put into easily accessible and intuitive tools and plat-

forms which cancer researchers then may access and query the data.

Data portals such as Cosmic, cBio cancer portal, the ICGC data por-

tal or IntOGen database  (Cerami et al. 2012; Gundem et al. 2010;

Gonzalez-Perez,  Perez-Llamas,  et  al.  2013;  Zhang  et  al.  2011;

Forbes et al. 2010) already try to give some aggregated views of the

data in form of customized plots. 

With Gitools and jHeatmap we have contributed two quite unique

solutions to the scientific community which enable users to browse

their data in interactive heatmaps. The interactivity is the key for

continuous and flexible study of the data.

jHeatmap is the interactive heatmap solution for the web and is

designed for easy re-use and incorporation into existing projects.

The goal is to lessen the effort that is required by creating data por-

tals, which is rather big as different aspects from data storage over

user interface (UI) and plot generation have be well implemented.

But  all  web-portals  share  the  same  programming  environment:

HTML5 documents with JavaScript capabilities. This shared foun-

dation allows for energy-efficient development and re-use of com-

ponents such as jHeatmap. jHeatmap was initially developed for our

own needs  of  visualizing  data  from multidimensional  cancer  ge-

nomics cohorts in the IntOGen platform. The heatmap viewer writ-

ten in JavaScript, can handle relatively large datasets and multiple

data dimensions which are properties to handle large genomic can-

cer data.

As mentioned, jHeatmap is already in use in IntOGen, but it has

also been incorporated by the GenomeSpace (M. Reich et al. 2013)

platform and Achilles project (Cheung et al. 2011). 

To further increase the usefulness of jHeatmap, we have included
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the jHeatmap component into the BioJS code base. According to the

project description of BioJS, it aims to “create a library of graphical

components easy to reuse to represent biological information” and

already disposes more than forty components which may be in any

website and portal by simply installing BioJS (Gómez et al. 2013).

Apart from bringing together many JavaScript visualization solu-

tions  in  a  registry, BioJS also supports  a  common events frame-

work, that let the different components talk to each other.

Another application of jHeatmap is the use of the JavaScript li-

brary  within  the  IPython  Notebook  (Pérez  and  Granger  2007).

IPython Notebooks are data-driven documents backed by powerful

libraries  for  data  manipulation,  analysis  and documentation  tools

and therefore combines scripting, documentation and plotting into a

sequential document which can be saved as such and therefore al-

lows researchers  to create easily  reproducible analyses.  Any data

that is  loaded in a so called DataFrame structure,  as also known

from the  R programming  environment,  can  be  visualized  with  a

couple  of  commands  as  an  interactive  heatmap  by  using  the

jHeatmap IPython package. The code is available for download at

GitHub along with instructions and an example IPython Notebook:

https://github.com/jheatmap/jheatmap-ipython.

The future will probably bring even more improved environments

for web-based computation and a full port of  Gitools capabilities

may be starting to make sense. But for the time being Gitools is pro-

viding advanced interactive  heatmap manipulation,  browsing and

data analysis for large multidimensional genomic cancer cohorts on

the desktop.

Over the years we have maintained Gitools for both own and pub-

lic use and converted it into a software application apt for browsing

large multidimensional cancer genomics cohorts. On the one hand it

is possible to load private data and on the other we have tried to

tackle the barrier between data generation and exploration by pre-

paring an array of heatmaps with cancer genomics data sets from

TCGA and  IntOGen  that  are  available  for  download  and  explo-

ration.

In a collaboration with the developers of the IGV genome browser
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and GenomeSpace from the Broad institute we have added interac-

tivity and data transport from both applications and platforms re-

spectively. As for the future, more external control functions can be

added to Gitools and interactions as well as data sending and receiv-

ing can be extended with whatever tool is used in combination with

Gitools. The open source code basis would allow for other develop-

ers to add new functions,  as the code basis  is  moving towards a

plug-in design. 

We know that Gitools is able to handle the current datasets even on

machines with 2 Gb of RAM (Random-access memory). Neverthe-

less, we can be certain that the amount of cancer genomics data is

ever increasing and will reach levels where a single machine is not

able to cope anymore with an entire samples cohort dataset. Tech-

nologies  available  in  Java,  such  as  Hazelcast

(https://github.com/hazelcast/hazelcast), allow for using distributed

memory within  a  cluster  of  computers.  The idea  is  to  make the

Hazelcast technology available in Gitools in order to be prepared

for  the  future  datasets.  In  combination  with  Webswing

(http://www.webswing.org), another technology which allows to ex-

ecute  a  server  and  interact  with  Java  applications  via  the  web

browser, Gitools is not far away from being executed on the cluster

and accessed from whatever terminal available.

As for functionality, a logical step for the application would be to

allow not only visual manipulation of the underlying data, but enter

formulas  and generate  new data  layers  or  aggregation  heatmaps.

Such  capabilities  would  make  Gitools  even  more  interesting  for

users that do not posses advanced scripting skills as a median-cen-

tering may easily performed after loading the data within the Gi-

tools application and turn the application into what one may call an

Excel for bioinformatics. 

Last, but not least we know from download and usage statistics

that the improvements over  the years have lent  Gitools a certain

popularity. Between April 1st and July 31st we have registered 1245

usages of Gitools from 364 users from all continents, excluding all

sessions from Barcelona in order to exclude ourselves.  The first Gi-

tools publication has been cited over 50 times and we hope that the
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upcoming publication of the Gitools 2 will gain further visibility for

the application. All in all we have the feeling that we have contrib-

uted a useful tool for data exploration and figure generation to the

scientific community.
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5  5  CONCLUSIONSCONCLUSIONS
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The major points of my work can be summarized as follows:

1. We have developed and published an approach, named On-

codriveROLE, to classify cancer driver genes into Loss of

Function and Activating roles.

2. We have developed a method to measure the tendency of a

mutual  exclusive  relationship  between  somatic  alteration

events, called MutEx

3. We have incorporated MutEx into Gitools application in or-

der to make the approach easily available for the scientific

community

4. We have improved Gitools in many aspects such that it is fit

to browse multidimensional genomics datasets, particularly

large cancer cohorts.

5. We have complemented the available analyses possibilities

with “Group Comparisons Analysis“, “MutEx & Co-occur-

rence Analysis” and substantially improved the “Clustering

analysis” with an innovative representation model for den-

drograms.

6. We have  prepared  cancer  genomics  heatmaps  for  Gitools

that on one hand showcase the possibilities of the applica-

tion and on the other hand are an easy manner to obtain inte-

grated  TCGA datasets  with  genomic  and  clinical  annota-

tions.

7. We have  developed  an  interactive  heatmap  JavaScript  li-

brary, called jHeatmap, for the web which is easy to inte-

grate on any platform.

8. We have developed SVGMap, a data browser that maps ex-

perimental values onto SVG graphics in order to provide a

tool to generate intuitive and high-quality figures.
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6.1  IntOGen-mutations identifies cancer drivers 

across tumor types

Abstract:  The  IntOGen-mutations  platform  summarizes

somatic  mutations,  genes  and  pathways  involved  in

tumorigenesis.  It  identifies and visualizes cancer  drivers,

analyzing 4,623 exomes from 13 cancer sites. It provides

support  to  cancer  researchers,  aids  the  identification  of

drivers across tumor cohorts and helps rank mutations for

better clinical decision-making. 

My  main  contribution  to  this  manuscript  was  the

involvement  in  general  design  questions  of  the  platform

and more particularly in the employment of jHeatmap.

Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., 

Tamborero, D., Schroeder, M.P., Jene-Sanz, A., Santos, A., 

and Lopez-Bigas, N. (2013). IntOGen-mutations identifies 

cancer drivers across tumor types. Nature Methods 10, 

1081–1082.

Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, 
Schroeder MP, Jene-Sanz A et al. IntOGen-mutations identifies 
cancer drivers across tumor types. Nat Methods. 2013 Nov; 10(11): 
1081-2. DOI: 10.1038/nmeth.2642

http://www.nature.com/nmeth/journal/v10/n11/full/nmeth.2642.html
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