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Abstract

Cancer is a complex disease caused by somatic alterations of the
genome and epigenome in tumor cells. Increased investments and
cheaper access to various technologies have built momentum for the
generation of cancer genomics data. The availability of such large
datasets offers many new possibilities to gain insight into cancer
molecular properties. Within this scope I present two methods that
exploit the broad availability of cancer genomic data: Oncodrive-
ROLE, an approach to classify mutational cancer driver genes into
activating and loss of function mode of actions and MutEx, a statis-
tical measure to assess the trend of the somatic alterations in a set of
genes to be mutually exclusive across tumor samples. Nevertheless,
the unprecedented dimension of the available data raises new com-
plications for its accessibility and exploration which we try to solve
with new visualization solutions: 1) Gitools interactive heatmaps
with prepared large scale cancer genomics datasets ready to be ex-
plored, ii) jHeatmap, an interactive heatmap browser for the web ca-
pable of displaying multidimensional cancer genomics data and de-
signed for its inclusion into web portals, and ii1)) SVGMap, a web
server to project data onto customized SVG figures useful for map-
ping experimental measurements onto the model.

Resum

El cancer és una malaltia complexa causada per alteracions soma-
tiques del genoma i epigenoma de les cél-lules tumorals. Un aug-
ment d’inversions i l'accés a tecnologies de baix cost ha provocat un
increment important en la generacio de dades genomiques de
cancer. La disponibilitat d’aquestes dades ofereix noves possibilitats
per entendre millor les propietats moleculars del cancer. En aquest
ambit, presento dos metodes que aprofiten aquesta gran disponibili-
tat de dades genomiques de cancer: OncodriveROLE, un procedi-
ment per a classificar gens “drivers” del cancer segons si el seu
mode d’acci6 ésl'activacio o la perdua de funci6 del producte genic;
1 MutEx, un estadistic per a mesurar la tendéncia de les mutacions



somatiques a I’exclusié mutua. Tanmateix, la manca de precedents
d’aquesta gran dimensi6 de dades fa sorgir nous problemes en quant
a la seva accessibilitat i exploracio, els quals intentem solventar
amb noves eines de visualitzacio: 1) Heatmaps interactius de Gitools
amb dades genomiques de cancer a gran escala, a punt per ser ex-
plorades, i1) jHeatmap, un heatmap interactiu per la web capa¢ de
mostrar dades genomiques de cancer multidimensionals i dissenyat
per la seva inclusio a portals web; 1 1i1) SVGMap, un servidor web
per traslladar dades en figures SVG customitzades, util per a la
transl-lacid de mesures experimentals en un model visual.

vi
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1 INTRODUCTION







1.1 Oncogenomics

Big efforts from both academia and industry have been and are
being put into the study of the group of diseases described as
cancer. Many of the different cancer diseases have been
described in detail from a morphological point of view. The
International Classification of Diseases for Oncology’ (ICDO)
reflects the complexity of the cancer disease describing the
numerous different cancer types which emerge from each of the
many tissues of the human body. Oncogenomics is a field within
cancer research that studies the genome, epigenome and
transcriptome of cancerous tissues in search of the genomic
variables and alterations that determine the cancer -cell
morphology and physiology. The knowledge gained from
oncogenomic studies should then enable new strategies for the

cancer disease treatment.
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1.1.1 Somatic alterations

Changes in the genomic sequence of somatic cells, the cells of
which all organs and tissues are composed of, are referred to as so-
matic alterations. Screening the genomic sequence of a cancer sam-
ple and comparing it to a healthy cell from the same patient always
yields an array of somatic alterations; the detection of these cancer
somatic alterations is the first step in cancer genomics studies.

Somatic alterations appear spontaneously when DNA of cells
replicates upon cell division — despite the complex machinery that a
cell disposes to control that the two emerging daughter cells are
identical replications of the parent cell. The probability of occur-
rence of mistakes in DNA replication is influenced by many co-
variates. Such co-variates may be environmental factors such as
radiation, viral infections or certain chemical substances that get
into our body and interact with the DNA or intrinsic to the genetic
replication system where the double-strand break repair mechanism
itself is known to introduce errors (Lieber 2010; Minamoto, Mai,
and Ronai 1999). Other known intrinsic co-variates are replication
timing, the compaction of the chromatin and the transcriptional sta-
tus of the DNA segment in question (Supek et al. 2014; Lawrence et
al. 2013). As diverse the influencing factors may be, they all trans-
late into somatic alterations of different types, of which the most
common are listed below.

*  Mutations

* Copy number changes

* Translocations, Insertions and Inversions
e Chromothripsis

These alterations may occur anywhere within the DNA of total
length of 3 gigabases that makes up the human genome. Neverthe-
less, most research has been done on the alterations within the pro-
tein coding genes or it's immediate vicinity which makes up less
than two percent of the genome.



Mutations: SNVs & other small-scale mutations

Mutations in the DNA are changes of one or very few nucleotides.
Point mutations, or SNVs (Single nucleotide variants) are minimal
changes in the genetic code where one nucleotide is substituted and
the length of the DNA sequence in question is not altered. Although
large-scale alterations of the DNA are also often referred to as mu-
tations, I'll reserve the term for small-scale changes of the DNA.

The consequence of a mutation on the protein function depends on
the nucleotide substitution, insertion or deletion. As shown in Fig-
ure la, some codons are redundant as they code for the same amino
acid. Point mutation that transform a codon into another that codes
for the same amino acid are referred to as synonymous mutations, as
the protein sequence is not altered after all. Even so, recent research
has suggested that synonymous mutations are not entirely silent as
could be expected. Possible consequences may be the alteration of
recognition patterns used for co-factors or splicing recognition or
influencing the transcription rate determined by the availability of
tRNA (Czech et al. 2010; Sauna and Kimchi-Sarfaty 2011; Supek
et al. 2014). If the nucleotide substitution entails an amino acid sub-
stitution in the protein sequence, it is classified as a missense (or
non-synonymous) mutation. Another possible consequence of point
mutations is the conversion of an amino acid codon into a prema-
ture stop codon (stop gained consequence) which truncates the rest
of the protein sequence. The inverse scenario, the sfop lost conse-
quence, occurs when the stop codon is mutated into a regular amino
acid codon and may add a nonsense sequence to the mRNA and the
protein.

Other small-scale mutations that alter the sequence length are clas-
sified either as insertions or deletions (also named indels), depend-
ing on whether nucleotides are added or removed. If the insertion or
deletion is not a multiple of three nucleotides the reading frame of
the coding sequence is shifted and the protein sequence will most
likely be garbage downstream of the frameshift. But in cases where
three or a multiple of three nucleotides are inserted or deleted (in-
frame insertions and in-frame deletions) within the reading frame,
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Figure 1: The amino acid codon table and consequence types of mutations

A) The codons composed always of three nucleotides are grouped by the amino
acids they code for. Leucine, for example, is encoded by six different codons.
(Wikipedia 2014) B) A schema from the ensembl variant effect predictor website
(Fiona 2014) which represents a gene annotated with mutational consequence
types. The exonic consequence types are the ones highlighted in the figure and
discussed in this chapter



the protein product is not changed dramatically, disregarding possi-
ble influences on alternative splicing or the disappearance or dis-
placement of key amino acid residues. Indel events are short-range
events, depending on the study they have been described to be from
1-10'000 bp in length (Mullaney et al. 2010). Mutations at exon
boundaries may prompt an alternative splicing of the mRNA and
their consequences termed splice donor & splice acceptor muta-
tions.

All the different consequences that point mutations, insertions and
deletions may have on the gene are organized in the sequence ontol-
ogy (Eilbeck et al. 2005) most of them are displayed in Figure 1b.
Various tools exist to classify a mutation into their consequence
types (Gonzalez-Perez, Mustonen, et al. 2013). A broad but impor-
tant classification of mutations is the distinctions between protein
truncating and protein altering mutations. The truncating mutations,
such as frame-shifts and premature stop codons dramatically change
the protein product. In most cases, it is safe to assume that the pro-
tein function is entirely lost. But mutations which alter the protein
sequence without being truncating may abolish, change or add a
certain function of the protein, while other functions are maintained.

Copy Number Alterations

Deletion and insertions as described in the preceding section are of
short range. Even so, large genomic regions can be deleted or in-
serted as described hereafter.

Upon comparing the genomes of two individuals certain genomic
regions may be found absent, duplicated or repeated multiple times
in one of the individuals. This type of structural variation or chro-
mosome abnormality is called copy number variation (CNV). The
same phenomena can be observed when comparing the genomes of
the tumor and the normal tissue. It is very common to observe ge-
nomic regions that are duplicated, repeated several times or entirely
lost in one or both homologous chromosomes. These somatic alter-
ations are termed copy number alterations (CNA). The extent of
CNAs may vary from focal events including regions comprising
some genes to loss or replications of whole chromosomal arms
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(Zack et al. 2013).

The change of copy numbers may ultimately translate to a change
in the number of copies of the gene transcripts. Genes that are sub-
ject to copy number gain — one chromosome carries multiple copies
of them — are generally expected to be transcribed at higher levels,
given that the necessary promoters, up- and downstream enhancers
are replicated along with the gene.

Duplicated
region
Deleted
region
Before After Before After
deletion deletion duplication duplication

Figure 2: A cartoon of a deletion and a duplication event of a genomic region.
In the left part, a the chromosome looses a stretch of about 6 bands. The right
part depicts the simplest case of copy number gain, a duplication. Figure adapted
from (Wikimedia Commons 2013)

Deletions of genomic regions may either erase one copy of the
gene by a heterozygous deletion or both copies by a homozygous
deletion event. A heterozygous deletion is sometimes also referred
to by loss of heterozygosity (LOH) and a copy-neutral LOH occurs



when the lost DNA segment is replaced with a new copy of the
other allele. Normal LOH can decrease the total amount of gene
products present in a cell. Whether this is the case or not may de-
pend on the regulation of the gene in question, as transcriptional
compensation mechanism for a lost allele have been described in
scientific literature (Guidi et al. 2004).

Considering the implications that copy number changes may have
on the abundance and therefore function of the resulting protein, it
is important to distinguish the deletions from translocations and in-
sertions which normally don't affect the copy number.

Translocations, Insertions and Inversions

Other chromosomal abnormalities delete a genomic region from a
chromosome and insert it into another and therefore does not alter
the copy number but the locus of the genomic sequence. In contrast
to copy number alterations, a translocation or insertion event may
affect multiple chromosomes.

A  (ODEUD |B COOLMNILD

Figure 3: A cartoon of a translocation and an insertion event

A A translocation event. B An insertion event. Adapted from. Image adapted from
(Wheeler 2007).
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A reciprocal translocation interchanges two segments of DNA
from two non-homologous chromosomes. The boundaries of the
translocation event may be far from any gene and therefore have
minimal effect on gene transcription. If the translocation occurs
near or within gene boundaries the effect of translocations is diffi-
cult to predict. Nevertheless, for leukemia especially several
translocations that have been described to produce fusion genes are
causative of the disease. This incident happens when the transloca-
tion event causes a gene to be inserted directly up- or downstream
an existing gene on the other chromosome. A fusion does not neces-
sarily include both genes in their entirety as just parts may be fused.
Many fusion genes are a product of the promoter of one gene that
has been fused upstream of the second gene. This scenario changes
the regulation of the second gene but not necessarily its protein
function. Thus, depending on which parts have been fused together,
fusion genes can yield a gene product with a new, altered or differ-
ently regulated function. A famous translocation between the band
ql1 of chromosome 22 and band q34 of chromosome 9, yielding the
Philadelphia chromosome. This translocation results in different fu-
sion products between the genes Ber and Abl to form the Ber-Abl
fusion genes which are associated to different types of leukemia re-
viewed in (Advani and Pendergast 2002). Insertions at a chromoso-
mal level are events where a genomic sequence is cut out from one
chromosome and inserted into another. It therefore resembles the
translocation with the distinction that no genetic material is intro-
duced where the genetic sequence has been cut out. Note that fusion
genes may also be a product of insertions, deletions or inversions.

Chromosomal inversions occur when a stretch of genomic se-
quence is cut out and inserted in the opposite sense. As with the
other genomic abnormalities these do not necessarily cause any
malfunctions, as the genes that are affected by the inversions can be
read in the opposite sense in the other strand. If the inversion occurs
at or within the coding sequence fusion genes may be produced.
Various cases of inversions associated with different cancers have
been described (Grimwade et al. 2010; Zech et al. 1984; Speleman
et al. 2005).

In extreme cases, cancer samples have been described that contain
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tens to hundreds of genomic rearrangements that are acquired in a
single event, termed chromothripsis. Chromothripsis has been re-
ported to occur in 2%-3% of all cancer samples and in about 25% of
bone cancers (Stephens et al. 2011).

Epigenetic alterations

Epigenetics is the study of inheritable traits within the genome that
are not caused by alterations in the nucleotide sequence of the
DNA. Chemical modifications of nucleotides have direct influence
on how the DNA is packed and organized and which parts of the
DNA are accessible to transcription factors. In particular modifica-
tions on histones and cystosine methylation changes are two types
of epigenetic alterations that are passed on to the daughter cells
upon cell division, providing mechanisms to inherit the state of
gene activity and expression (Richards 2006).

DNA methylation is a regulation mechanism of gene transcription.
It consists in adding methyl groups to cytosines typically within
CpG islands, regions with high recurrence of CG dinucleotides.
Genes whose promoters contain CpG islands can be silenced by
strong methylation of the CpG sites. Methyl groups are believed to
abolish the ability of the transcription factors to bind to the pro-
moter. Moreover, methylated DNA can indirectly recruit proteins
such as histone deacetylases and other factors that modify histones
and therefore alter the organization of DNA packing. Tightly packed
DNA, called heterochromatin, hinders the transcription of genes
contained in tightly packed regions.

Studies of DNA methylation patterns within cancer samples have
revealed many cases of DNA hyper- or hypomethylation upon com-
paring the methylation patterns of the cancer tissue with a normal
tissue (Jones and Laird 1999). Particularly, tumor suppressor genes
activities have been observed to be lost via hypermethylation of the
promoter CpG islands (Baylin and Jones 2011). Possible use of hy-
permethylated genes as biomarkers for drug response has been re-
viewed in (Heyn and Esteller 2012) as hypermethylation events are
normally observed locally at site-specific loci whereas generally the
cancer cells show genome-wide hypomethylation (Rodriguez-Pare-
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des and Esteller 2011).
1.1.2 Driving tumorigenesis

The genome of cancer cells bears a plethora of somatic alterations.
A principal aim of oncogenomics is to find out how these changes
in the genome and epigenome work mechanistically to give rise to
the cancer disease. In fact, many of the alterations are not the cause
of the cancer disease, but a consequence. So how does tumorigene-
sis work?

Clonal evolution: accumulating alterations

We know from evolutionary and molecular biology that a species
accumulates germ line mutations or alterations which are then
passed along with each new generation. The effect a new mutation
on an offspring may vary from none at all to a visible phenotypic or
measurable physiologic trait. In extreme cases such a trait may con-
fer the offspring an advantage or disadvantage for survival amongst
pears. This mechanism is the very basis for species evolution.

As described in the preceding chapter, mutations not only appear
in germ line, but also in somatic tissues. In few cases, a mutation
goes undetected by repair mechanisms of the cell and, if it is not
lethal, is established in the tissue. Given that one mutation is present
in a cell which gives rise the several generation of daughter cells,
over time a new clone of cells forms in the tissue with a genotype
differing by one mutation to the bulk of cells in the tissue. Analo-
gously to the evolution theory for species, a mutation in a tissue-
context may confer the cell an advantage which further helps the
stabilization of the clone in the tissue or a disadvantage with the op-
posite effect. Advantages of various forms occur: accelerated and/or
indefinite cell division or increased capability of energy uptake
and/or metabolic efficiency to name a few (Douglas Hanahan and
Weinberg 2011). If the new cell or clone of cells performs all the
necessary functions for the tissue where it is situated, it poses no
problem for the organism as such. In any case, while the described
process repeats itself further mutations are acquired in a sub-clones

13



of the tissue.

An acquired alteration that specifically interferes with repair
mechanisms of the cell confer a certain instability to the cell replica-
tion process which increases the probability of the introduction of
new alterations. As the alteration level is increased in time more
mutations potentially conferring strong advantages appear in the
genome of the clone, up to the point where the cells cease to per-
form the tissue function they were programmed to and becomes
somewhat autonomous — a neoplasm or tumor is emerging. The of-
ten cited definition of neoplasms is originating the British oncolo-
gist Willis: “A neoplasm is an abnormal mass of tissue, the growth
of which exceeds and is uncoordinated with that of the normal tis-
sues and persists in the same excessive manner after cessation of the
stimuli which evoked the change” (Baserga 1985). In order to be-
come a malignant tumor the neoplasm has to acquire a series of ca-
pabilities which often are referred to as the hallmarks of cancer, as
discussed in the next section.

a Clonal fractions at initial diagnosis Day 170 First relapse
0 T — =

+«HSCs

* DNMT3A, NPM1, FLT3, PTPRT, SMC3 ——— T ,,mgggwm-mc, 0

204

AML1/UPN933124

Cell type: Mutations:
@ Normal (@ AML ® Founding (cluster 1) Relapse enriched (cluster 3) @ Relapse specific (cluster 5) 7 Pathogenic mutations
® Primary specific (cluster 2) @ Relapse enriched (cluster 4)  © Random mutations in HSCs

Figure 4: An outline of a clonal evolution found within a patient.

The founder clone boar five mutations in the genes DNMT3A, NPMI, FLT3,
PTPRT, SMC3 as those mutations are present in all the detected sub-clones at
first diagnosis. Chemotherapy diminished the present clones, but also exerted
strong pressure for new clones with resistance alterations tor rise: ETV6, WNK-
1-WAC, MYOI18B. Image adapted from (Greaves and Maley 2012)

This process of accumulation of alterations is called clonal evolu-
tion. It has normally been going on already for many generation of
cells when a malignant tumor is detected in a patient and a sample
of it is obtained. Henceforth the tumoral tissue often contains a se-
ries of sub-clones, distinct in their somatic alteration patterns as
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shown in Figure 4. However, only recently the concept has received
more attention, as current high-throughput sequencing technologies
have yielded high resolution which allow the researchers to deter-
mine the clonal architecture of a tumor tissue sample (Nielsen et al.
2011). Via the fraction of sequence reads that bear a certain somatic
mutations it can be estimated which alterations were present only in
the founder clone, represented in gray in Figure 4. New sub-clones
can emerge spontaneously and outcompete other tumoral clones
which is represented by the yellow, orange and purple areas in Fig-
ure 4. The setting for the clonal evolution is defined by natural or
physiological restraints, environmentally derived genotoxicity and
cancer therapy, jointly termed selective pressure (Greaves and Ma-
ley 2012).

Which type of cells undergo the clonal evolution of tumorigenesis
is not clear as of yet. If the tumor type is known to follow the cancer
stem cells (CSC) model the explanation would be that it in the
CSCs is where the tumorigenesis happens. The CSC model is an al-
ternative to the clonal evolution paradigm which is based on the dis-
covery of cells with stem cell-like properties within the tumor tissue
that have a hierarchical relationship with other cells in the tumor tis-
sue. It is thought that the CSCs give rise to the rest of the tumor
cells, which are differentiated, in contrast to the tumorigenic CSCs
(Shackleton et al. 2009). The fraction of CSCs within a cancer can
vary: depending on the tumor type, the tissue consists of almost
only tumorigenic cells or contain only a low fraction of tumorigenic
CSCs. Some CSCs have been described as specific markers, as re-
vised in (Yuet al. 2012).

Drivers and passengers

The selective pressure that governs the local tissue environment
defines which mutations are advantageous, deleterious or neutral for
the cells and therefore drives the clonal selection. Those alterations
which are advantageous for the tumorigenesis are called driver al-
terations and the genes in which they fall are referred to as driver
genes. Some of the mutations in the founder clone are initial drivers
of the tumorigenesis. Along the way other drivers may be acquired
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in sub-clones that outcompete the original clone. As clones evolve
and explore the mutational space many neutral mutations are picked
up whereas cells that acquire disadvantageous alterations disappear
quickly or only form a small sub-clone. The non-lethal neutral alter-
ations which get fixed in the tumor tissue are called passenger al-
terations and the carrying genes passenger genes as those alter-
ations do not support the expansion of the cancer cell clones. (Haber
and Settleman 2007)

Tumor suppressor genes and oncogenes

Driver alterations may have several consequences for the affected
genes. Those consequences are broadly distinguished upon the ef-
fect they have on the protein function. As loss of function (LoF) we
consider those alterations that abolish a certain or all functions of a
protein and as activating alterations those that potentiate a protein
function or cause the appearance of a new function. Hence, cancer
drivers are generally classified into two classes which represent two
different mode of actions of the driver alteration or gene on tumor
formation: tumor suppressors and oncogenes.

Tumor suppressors are genes that counteract tumorigenic behavior.
Especially the p53 protein has been dubbed, the “guardian of the
genome” due to it's preservative function to maintain genome stabil-
ity (Lane 1992). As a general rule, a tumor suppressor gene is de-
fined by the fact that it is beneficial for the tumorigenic process and
the cancerous state of the cell, if its protein product, or at least its
function, is not available to the cell. Therefore tumor suppressor
genes are often lost in deletion events or truncated by mutations.

Oncogenes are the counterpart of tumor suppressors. Their high
activity is beneficial for the tumorigenesis or cancerous state of the
cell. Therefore the cancer cell often transcribes oncogenes in high
amounts as their activity is needed. Insertions, translocations and
mutation events may give rise to oncogenic protein products which
exert new functions that are not originally available in the cell. A
pathway may induce or maintain tumorigenesis by receiving an
oncogenic activation where a key component is always activated
due to over-expression or an activating mutation.
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Meanwhile, the type of alteration event a driver genes suffers can
be taken as indicator of its mode of action, but not all cases are
clear-cut. Lots of experimental studies have been performed in or-
der to study the oncogenic or tumor suppressor activities of all
kinds of proteins, which has often lead to contradicting statements
about the mode of action of a particular gene or protein. The diffi-
culty lies in reproducing an in vitro system whose regulatory pro-
grams resembles those in vivo, but also that depending on the origin
tissue and therefore on the activated genes and pathways, the tu-
morigenic role of the same protein may be opposite in different set-
tings (Licciulli et al. 2013; Liu, Zhang, and Ji 2013). Knowing in
which category a cancer driver falls has important implications on
the interpretation of effects on the pathway and possible treatment
possibilities. Generally, oncogenes are easier to target as the goal
would be to abolish their function. Developing a treatment that
compensates the loss function of a tumor suppressor gene is a much
more complex task, although it has been achieved (Lambert et al.
2009).

Hallmarks of cancer

Detecting which alterations are driver alterations is complicated,
because cancer is, considered from a genomic point of view, a very
heterogeneous disease. This is not only so when comparing cancer
types from distinct tissues, but also different tumor samples of the
same cancer type and tissue of disease. This may be explained by
the assumption that there is not one specific way for a neoplasm to
arise and turn malignant, although some common routes have been
identified. What capabilities the driver mutations should confer to
the cell in order to turn cancerous, has been discussed by Hanahan
& Weinberg in two crucial papers defining the “hallmarks of can-
cer” (D. Hanahan and Weinberg 2000; Douglas Hanahan and Wein-
berg 2011).

As insinuated earlier in the text, one important acquisition is the ca-
pability of introducing genome instability and circumventing cell
cycle and DNA damage checkpoints and other control mechanisms
that are at the disposal of the cell. Cells which do not behave as ex-
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pected are confronted with possible immune destruction, senescence
and/or apoptosis (D. Hanahan and Weinberg 2000). Evading these
are some of the hallmarks of cancer.

Recent research suggests that immune surveillance control for the
presence of possibly cancerous cells: tumor-infiltrating lymphocytes
(TIL) infiltrate and initiate eradication of tumor cells (Kim, Emi,
and Tanabe 2007). Cancerous cells which are weakly immunogenic
may escape this “immunoediting” process and colonize a tissue.
The immunoediting both protects the host from cancerous cells and
sculpts an emerging tumor by exerting selective pressure in function
of the immunocompetence of the host (Dunn et al. 2002).

Cellular or replicative senescence is a phenomenon in which cells
cease to divide due to “aging”. Senescence may play an important
role in cancer as some research suggests that strong oncogene sig-
nals within the cell may initiate senescence (Braig et al. 2005; D.
Hanahan and Weinberg 2000; Collado and Serrano 2010) or apopto-
sis in response to signal imbalances. Apoptosis, also known as pro-
grammed cell death, is a mechanism of multicellular organisms that
targets possibly disturbing cells whose elimination is an advantage
for the organism. Thus, malignant cancer cells often develop strate-
gies to avoid or resist apoptosis (Lowe, Cepero, and Evan 2004). As
a result of this and the avoidance of senescence, tumor cells gain
unlimited replicative potential and start to proliferate quickly. Ex-
treme proliferation can itself lead to senescence and also stands in
conflict with various programs of the cell that negatively regulate its
proliferation. Nevertheless, senescence can be circumvented by
means of enlarging or maintaining the DNA telomere length (D.
Hanahan and Weinberg 2000) which are normally shortened upon
cell division and mark the age of the cell.

The typical tumor suppressor activities of RB1 and TP53, just to
name two examples, consist in controlling the decision making with
regard to cell proliferation. Signals of growth suppression are inte-
grated by tumor suppressors proteins and therefore mutations in
those may render the cell deaf to such stimuli.

Apart from avoiding and resisting the multiple programs that con-
trol the healthy state of the cell, cancerous cells must ensure that
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enough nutrients and oxygen are delivered to them in order to sus-
tain the rapid growth of the tumor tissue. One mechanism to achieve

Sustaining Evading
proliferative growth
signaling suppressors

Resisting Enabling

cell replicative
death immortality
Genome Tumqr-
instability & i promotln_g
mutation inflammation
Inducing Activating
angiogenesis invasion &
metastasis

Figure 5: The hallmarks of cancer

The six classical hallmarks of cancer Sustaining proliverative signaling,
evading growth suppressors, activating invasion & metastasis, Enabling
replicative immortality, Inducing angiogenesis and resisting cell death from (D.
Hanahan and Weinberg 2000) completed with four energy metabolism
reprogramming, avoiding immune destruction, tumor-promoting inflammation

and genome instability & mutation (Douglas Hanahan and Weinberg 2011; also
source of image).

this consists in switching on angiogenesis with the purpose of build-
ing new vessels that deliver increased amounts of blood to the cells.
Inflammation may similarly boost cancer growth because it can pro-
mote several of the aforementioned hallmarks by providing growth,
survival and pro-angiogenic factors (D. Hanahan and Weinberg
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2000; Douglas Hanahan and Weinberg 2011).

In summary, the hallmarks of cancer are a set of cell functions — or
pathways — that tumor become frequently altered in the tumorigenic
process. Some of the alterations may be more important than others
and the order in which they occur is not clear. These factors may
vary in function of the tissue where a tumor occurs. A certain alter-
ation may be prevalent within a tumor type of a specific tissue, but
at the same time this alteration may never be found in the samples
of another cancer type. This is exemplified by TP53, RB1 or PTEN,
all known tumor suppressors and accepted cancer drivers that are
often targeted by gene alterations. They are often not altered in can-
cer samples obtained from patients as they are not the only elements
of the pathways constituting the hallmarks. Tumorigenesis as a
process depends on the alteration of the hallmark pathways irre-
spective of the precise gene which carries it.

Some proteins play very central roles in the pathway signaling cas-
cade. Altering a hub in a protein-protein interaction network will
have a major effect which, if beneficial for tumorigenesis, is a good
target for alteration. These good targets are therefore often observed
when screening a cohort of cancer samples and are easily identified.
Regardless, unlikely alterations occur also and can result in the
same functional pathway signaling aberration or gain that is needed
by the tumorigenesis as one of the highly recurrent alterations may.
Consequently, driver mutations that are less likely to occur are auto-
matically less likely to be identified, as discussed in the next sec-
tion.
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1.2 ldentification of cancer drivers

Given the hallmarks of cancer, the interpretation of the
alterations that are observed in cancer cells is somewhat aided.
Any alteration observed in a gene whose protein product is
known to be implicated in one of the hallmarks becomes a
suspect of being implicated in tumorigenesis. The main hurdle,
as discussed in the preceding section, is that not all driver
mutations are evenly likely to occur. Another hurdle is that many
proteins are not thoroughly studied, and even well studied
proteins may exert yet unknown functions and prove to be
involved in tumorigenesis. Thus, how are cancer drivers being
identified? The first step is to identify somatic alterations within
the cancer samples by means of available technologies and
creating a data cohort. This cohort can then be studied in a
second step with bioinformatic tools in order to find putative

cancer drivers.

23



1.2.1 Technologies

The scientific questions that can be investigated depend largely on
the technology and its accessibility that is available to obtain data. A
bit more than twenty years ago, microarrays have been introduced,
revolutionizing genetics with new possibilities and arguably en-
abling transcriptomics. During the last decade there has been a shift
from array-based data generation to the use of sequencing tech-
nologies, paired with big investments in cancer research by govern-
ments world-wide. This has led to a massive surge in high-quality
cancer genomics data available to the scientific community around
the globe.

Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) is a technology employed to
clone fragments of DNA in order for signal quantification. By
means of a heat-stable DNA polymerase DNA fragments are treated
with successive cycles of heating and cooling in order to induce
DNA melting, dissociate the two DNA strands and then facilitate
DNA replication. With the help of short DNA fragments, called
primers, complementary to the extremes of the DNA sequence be-
ing amplified, specific regions of the genome can be targeted for the
PCR amplification. With each cycle, the targeted DNA stretches are
replicated and doubled in amount, and thus amplified exponentially.

The reverse-transcription PCR (rtPCR) allows to retro-transcribe
DNA from RNA. With this variation of PCR, it is possible to am-
plify the signal of mRNA and deduce the quantity of gene expres-
sion activity. The quantification has seen it's revolution with the in-
troduction of DNA microarrays.

DNA microarrays
DNA microarrays, short arrays, are chips with many tiny “wells”

called spots that contain little quantities of a specific DNA frag-
ment, called probes. The probes are designed complementary to cer-
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tain sites of a gene or other complementary DNA (cDNA) elements
in order to specifically hybridize that target sequence.

Before hybridizing the probes, the cDNA fragments are labeled
with dyes that turn fluorescent upon hybridizing the chip probes.
The emitted light is used as signal. Therefore the signal strength de-
pends on the amount of cDNA that binds to the spots, which is a rel-
ative proxy of how much of the original sequence, e.g. an mRNA of
a certain gene, was in the sample. The cDNA fragments can be am-
plified via the PCR or rtPCR reaction in order to ensure that enough
signal is available for measurement.

Different microarray technologies exist for various applications.
The most common ones are chips for gene expression profiling, sin-
gle nucleotide polymorphism (SNP) detection per SNP array and
chromosomal abnormality detection via comparative genomic hy-
bridization.

The different arrays have served well the scientific community, as
discussed with the example of expression arrays in cancer research
(see page 38). Microarrays have introduced a new era in biology of
measuring en masse. Never before the age of arrays, molecular biol-
ogists had to cope with that big amounts of measurable features at
once. The GeneChip Human Genome array from the company
Affymetrix, a DNA array of the latest generation, claims to report
on the abundance of 18'400 transcripts and variants including
around 14'500 human genes (http:/www.affymetrix.com/). The
analysis and interpretation of this data has enabled a new generation
of bioinformatics and biostatistics oriented scientists.

Besides the hurdles imposed for the biological interpretation of
several thousands of gene measurement for multiple samples, the
microarray poses challenges caused by technological artifacts.

A batch effect problem arises when comparing multiple samples
that have been processed over different time points and possibly
even with different microarray platforms (Leek et al. 2010). This is
especially a problem when collecting data that has been posted by
different researchers to public array data bases such as GEO (Edgar,
Domrachev, and Lash 2002) to be jointly analyzed. The batch effect
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appears because the specific conditions and factors, such as
reagents, that have been used to process the microarray influence
the measurements, the used platform or the personnel. Therefore the
intensities of two different samples of the same experimental group,
sample A and sample B, that are analyzed on the same machine, on
the same chip and under the same conditions may correlate better
than a replica of sample A on a second machine, another chip or
simply processed another day.

It is important to consider that the measurement of fluorescent in-
tensities is a relative quantification: The measurement is only infor-
mative in the context of other samples and relative differences be-
tween them and thus possible batch effects complicate the interpre-
tation as the quantities that are measured are influenced by non-bio-
logical factors that vary in between different processing batches.
Various normalization solutions have been proposed. The virtualAr-
ray package combines many proposed solutions from mean center-
ing to the empirical Bayes method (Heider and Alt 2013). Gener-
ally, a good experimental design of the batches may diminish their
influence on later erroneous correlation (Leek et al. 2010).

As for expression arrays, another problem is that the lowly ex-
pressed genes may be indistinguishable from random noise. After
the binding of the cDNA segments to the probes on the chip, a
washing is applied to eliminate all the sporadic association between
cDNA fragments and probes. In any case, some non-specifically
bound cDNA fragments will remain on the chip and cause noise sig-
nal. Therefore, microarrays are not able to report a non-zero (unex-
pressed) status, as for the spots where no complementary cDNA is
available and would bind strongly to the probe, unspecific binding
is more likely to happen and falsify the signal.

DNA Sequencing

Sequencing is generally defined as the process of determining the
primary structure of biopolymers. In other words, sequencing is
used to determine the exact order of amino acid in a polypeptide
chain or nucleotides in polynucleotide chains as DNA or RNA.

26



In the 1970s the first DNA sequences were determined with the
help of sequence-specific primers, as employed in the PCR method
(Jay et al. 1974) known as Sanger sequencing. This type of sequenc-
ing dominated until the early 2000s. Thereafter many techniques
and protocols have been described to improve DNA sequencing in
quality and speed and have enabled the creation several commer-
cially available high-throughput sequencing machines, allowing to
perform whole-exome and whole-genome sequencing in a reala-
tively short time. Paradoxically, they are still referred to as “next-
generation sequencing”. A time line featuring the different sequenc-
ing techniques and major sequencing achievements is displayed in
Figure 6.
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Figure 6: Timeline of sequencing techniques and achievements
Image from (Laing 2011).

Further generations of improved sequencing platforms are to be
expected, because available machines are manufactured by different
companies and employ different techniques which still are error-
prone. Additionally, the scientific community and in particular the
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health sector exert high pressure to lower sequencing costs.

The read length of DNA fragments that are sequenced are rather
short, between 50 and 1000 bp, depending on the technology. This
entails various problems for the assembly of the read sequences: in
general they are hard to align to the reference genome, in particular
in repetitive regions belong to and each platform has its bias to cer-
tain errors.

Generally, the higher the coverage the less errors are introduced as
non-recurrent bases can be identified as false positives. High cover-
age also makes the alignment process somewhat easier as the higher
the coverage the more overlapping parts are read and less gaps have
to be aligned. In cancer studies two samples are required for se-
quencing: one sequence from healthy tissue and another from the
cancer tissue such that somatic alterations can be determined from
the comparison of the aligned reads of both. The amount of data
stored is rather large which imposes a big challenge, especially for
large projects. It is important to store the original read data as the
aligner software and the human reference genome are both evolving
and thus the resulting alignment may result differently if repeated
after some time. The choice of an adequate sequence aligner is
somewhat of a challenge now, as different tools yield different re-
sults. Li and Homer reported in 2010 that already 20 short-read
alignment software packages have been published. Popular choices
are Bowtie or BWA due to their speed (H. Li and Homer 2010).

Overall the reads are more error-prone towards their ends. The
bases in each end are often discarded if high accuracy is needed as
is the case when calling genotypic variants for an individual. The
problem of the introduced sequencing errors is, that they may be in-
terpreted as alterations by the different bioinformatic approaches
that have been developed to make the variant calling. Additionally,
each method has its advantages and pitfalls when it comes to detect-
ing lowly frequent variants or the before-mentioned false variants
(Wang et al. 2013; Kim, Emi, and Tanabe 2007)
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RNA sequencing

The sequencing of RNA, also called RNA-seq, is superseding the
use of micro-array platforms for the quantification of the tran-
scribed DNA in a sample. The biggest advantage of RNA-seq over
micro-arrays is that theoretically all RNA present in the cell can be
detected and no prior knowledge is needed as is the case for design-
ing the microarray probes, except for a reference genome which is
already available. Furthermore, RNA-seq has more applications
than micro-arrays as not only abundance, but also the exact se-
quence is being detected. Besides gene expression quantification by
mRNA sequencing, RNA-seq can be used for detection of single
nucleotide variants (SNVs) or even post-transcriptional SNVs, in-
tron-exon boundaries, fusion genes and as well for the study of iso-
form balance and other RNA populations than mRNA. The mani-
fold opportunities of interpretation of RNA-seq goes hand in hand
with the space the resulting data takes up on disk. Similar to DNA-
sequencing, as RNA-seq is employed for big projects, it's data man-
agement is also becoming a challenge which has to be managed
well.

A particular problem for the study of RNA transcription in cancer
samples is that the matching of normal and cancer samples is more
difficult as not all tissues allow for taking normal samples (e.g.
brain) and the transcription of many genes is tissue-specific. There-
fore often times, when no paired normal sample is available, blood
samples or samples from healthy donors are used as backup. Al-
though these may be viable solutions, they do not reflect accurately
the transcription abundance in the healthy tissue of the cancer-site
of the same patient.

1.2.2 Large scale cancer genomic studies

The heterogeneous nature of the cancer disease makes it difficult
to reproduce singular findings such as de-regulation of a gene
(group) or a specific mutation in limited cohorts. On top of this, few
groups or institutes have the power to generate large enough cohorts
to address this statistical problem and identify the cancer alterations
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in depth. But in recent years, orchestrated efforts have been going
on to generate high-quality cancer data cohorts available for re-
search around the globe.

TCGA: The Cancer Genome Atlas

TCGA is a North American effort to characterize genomic aberra-
tions in cancer patients. In a pilot study, published in 2008 (McLen-
don et al. 2008) showing that by coordination of multiple centers it
is possible to gather large high-quality genomic cohorts that give
new molecular insights of the cancer disease, in this case of
Glioblastoma multiforme samples. For the ongoing phase, TCGA
has set itself the goal of gathering multidimensional genomic data,
including exon or whole-genome sequences, expression profiles,
copy number status and others, of minimum 500 cancer samples
from up to 25 different cancer types.

In 2013 researchers associated to TCGA released a series of stud-
ies under the title TCGA pan-cancer, in which a cancer cohort en-
compassing samples from twelve tumor types were analyzed to-
gether in order to gain new insight of differences and similarities
between them (The Cancer Genome Atlas Research Network et al.
2013). The TCGA pan-cancer datasets guarantee certain processing
standards of the data and therefore allow to pull together different
datasets. The TCGA pan-cancer mutation data for example, has
been produced with the same aligner and mutation callers.

On the data portal launch site, TCGA reported to have 10'206 ana-
lyzed cancer samples for which data is available (https://tcga-da-
ta.nci.nih.gov/tcga/, accessed July 24™ 2014).

ICGC: International Cancer Genome Consortium

With similar goals in mind as TCGA to create large cancer ge-
nomics resources, an international community of scientists started
to think about an international effort for collecting and providing
cancer genomics data. Altough the ICGC does not provide direct
funding for sequencing projects, it creates a powerful platform
where researchers can discuss, define common goals and also lobby
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the respective agencies to generate funding. In 2010, the resulting
ICGC presented their intentions of obtaining large-scale characteri-
zations of 25'000 cancer samples from 50 cancer types in a white
paper (Hudson et al. 2010). To date, the ICGC cites on their website
73 projects across the globe with funding commitment from their
respective countries. As the ICGC is a multinational effort, TCGA
provides an important part of the data coming from North America.
Spain is contributing to the ICGC with its CLL project. Following
TCGA pan-cancer, the ICGG has issued a call for whole-genome
pan-cancer studies and is providing collaboration coordination for
all participants.

1.2.3 Computational analysis of cancer genomic

data

The advanced knowledge of cancer genomics combined with the
large cancer genomics cohorts that are being produced creates a set-
ting where cancer genomics properties can be studied with novel
computational approaches. A simple question such as which genes
and alterations are driving different cancer types can be answered
with many different approaches, as discussed further on.

Mutational patterns: identifying mutational drivers

As cohorts of cancer samples are being collected, and all the muta-
tions in the genome are being registered, it is possible to survey for
mutational patterns of each gene. For example, the mutational re-
currence in a cancer sample cohort is a straight-forward indicator
that the gene is a driver candidate. A beautiful example of this is the
APC gene which has been reported mutated in about 80% of the
colorectal cancer samples (Stratton, Futreal, and Wooster 2004). As
easy as it seems, this interpretation harbors problems because genes
can also be recurrently mutated due to reasons other than the tu-
morigenesis. The reasons are several: the longer the gene is the
more likely it is that a mutation will fall within it's coding sequence,
such as in the case of TTN (Tamborero et al. 2013). Furthermore
not all genes are critical for the cancer cell to function and survive
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as they are not transcribed in a tissue or do not interfere with main-
tenance of the cancerous state of the cell. Such passenger mutations
may be carried along without problem. Conversely, if a mutation
falls in a gene which is critical to yield protein products for the can-
cer cells, this mutation is under negative selection and is therefore
less likely to pass to the next generation of cancer cells. Other genes
are more likely to be mutated as they lie in late-replication genomic
regions which are more error-prone (Koren et al. 2012). Therefore
the probability of receiving a mutation is not equal for all the genes.
In order to correctly model an enrichment in mutations across a
sample cohort, one would need to take into account the background
mutation rate (BMR) which reflects the likelihood that a gene is
mutated in a cell of a given tumor type. This approach is employed
by recurrence-based methods such as MuSic and MutSig (Lawrence
et al. 2013; Dees et al. 2012). Modeling the BMR is complicated as,
one cannot directly assume that the same BMR applies to all the tis-
sues and we do not control all the co-variates of it.

In any event, as there are mutations that are under negative selec-
tion during tumorigenesis, the contrary is also the case. We know
that mutations in genes that confer the cancer cell an advantage are
selected for. The selection process also leaves behind traces other
than recurrence, as listed in Figure 7. The functional impact (FM)
bias explores the selection for mutations that have a high impact on
protein function. The rationale is that sporadic passenger mutations
occur across the entire spectrum of functional impact. Driver muta-
tions on the other hand are not sporadic and are expected to either
abolish or alter the function of the protein. OncodriveFM takes up
this idea by exploring the functional impact scores of all mutations
in a gene and assessing if the gene is particularly targeted by muta-
tions with great impact on protein function more ofthen than pas-
senger ones (Gonzalez-Perez and Lopez-Bigas 2012). The func-
tional impact scoring depends on the mutation location and inferred
consequence. Truncating mutations have the major impact imagin-
able as they directly cancel any protein function. Missense muta-
tions may have very different consequences depending on where
they fall within the gene. The scores of functional impact for mis-
sense mutations are assessed by approaches such as SIFT,
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Polyphen2 or MutationAssessor (P. Kumar, Henikoff, and Ng 2009;
Adzhubei et al. 2010; Reva 2013) that largely depend on protein
alignment between different species of the gene in question in order
to assess the conservation of the nucleotide where the mutation
falls. A very conserved residue is thought to be critical for protein
function while a highly variable residue is not.

Signals of positive selection used to identify driver genes
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Figure 7: Mutational patterns of cancer driver genes

The positive selection for tumorigenic mutations leave behind mutational
patterns within a cancer sample cohort which can be used to identify mutational
cancer drivers. Figure adapted from (Tamborero et al. 2013).

Thus, a gene that shows no bias towards the accumulation of muta-
tions with high functional impact is arguably a gene bearing passen-
ger mutations and may therefore be discarded as a driver even if it
has a highly recurrent mutational pattern. A gene with very few
mutations, but all with great impact, signals a good candidate for
cancer driver. This allows to identify lowly recurrent driver genes,
and the bias measure of this approach allows to disregard correction
for the background mutation rate. An example is found in IntOGen-
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TCGA (Tamborero et al. 2013), which reports the DICER1 gene, a
cancer gene annotated as such in the cancer gene census (Futreal et
al, 2004), to have a functional impact bias within the TCGA uterus
datasets where 9 mutations have been registered amongst 230 sam-
ples where only 3 out of the 9 mutations are annotated as lowly im-
pacting.

In any case, not all cancer drivers bear mutations that are truncat-
ing or fall into very conserved sites. Very subtle changes with low
impact bias in the genomic sequence may assure that the resulting
protein is always in an activated or inactivated state. Only one or
very few mutational options may be available to achieve a very spe-
cific behavior or function of the protein. OncodriveCLUST is a tool
that tests if the mutations are accumulating at the same site or in a
cluster across a tumor samples cohort (Tamborero, Gonzalez-Perez,
and Lopez-Bigas 2013). The BRAF V600E is a classic example of
an oncogenic mutation that is found in most melanoma tumor sam-
ples. Even within the TCGA Glioblastoma dataset, IntOGen reports
5 out 7 samples with mutations within 290 tumor samples to have
the same mutation. Two further mutations affect amino acids that
are 2 and 4 positions apart only, very proximate to the well-known
mutational hot spot.

ActiveDriver is another tool designed to detect mutational patterns
associated to phosphorylation sites. Similarly to the rationale of
clustering, this approach tests if the registered mutations are affect-
ing the capability of signal transduction. The authors of Ac-
tiveDriver have reported a new phosphorylation site in the well
known oncogene EGFR and tissue-specific phosphorylation site af-
fecting mutations within the EGFR signaling module (Reimand,
Wagih, and Bader 2013).

In summary, many genes can be identified as cancer driver genes
by means of their mutational pattern. Two recent efforts, focusing
on somatic mutation data from cancer sample cohorts of 12 or more
tumor types have suggested around 250-290 driver genes (Tam-
borero, Gonzalez-Perez, and Lopez-Bigas 2013; Lawrence et al.
2014).
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Copy number drivers

Not all driver genes act through mutational alterations. Several
cancer drivers are known to be subject to chromosome abnormali-
ties such as copy number alterations. CDKN2A is a tumor suppres-
sor gene, upstream of TP53 signaling, that falls in a chromosomal
region where large deletions have been reported with high recur-
rence. Figure 8 shows that CDKN2A is homozygously deleted in al-
most 50% of the tumor samples from a cohort of Glioblastoma pa-
tients. EGFR, an oncogene is subject to recurrent copy number gain
in the same dataset. 45% of the samples are reported to have more
than two copies of EGFR. A quarter of the samples with EGFR
gains even have mutations in the EGFR gene, indicating that differ-
ent alteration types may have complementary effects on tumorigen-
esis.

Figure 8: Copy number drivers of the TCGA Glioblastoma datasets

The above figure shows in alterations across the 561 Glioblastoma cancer
samples for CDKN2A and EGFR. CDKN2A is lost due to large range deletions in
270 (48%) of the samples. EGFR, a oncogene, has been detected to have multiple
copies in 252 (45%) of the Glioblastoma samples. A subset of 61 samples have
EGFR gained and mutated.

The recurrence shown in Figure 8 can be interpreted as a clear sign
of positive selection for the CDKN2A and EGFR, especially so, as
both of the mentioned genes are well-known cancer drivers. But
copy number gains and losses are chromosomal abnormalities that
can affect many dozens of genes, which makes interpretation very
difficult for a single cancer sample. Thus, cancer sample cohorts can
help the detection of cancer genes by aligning the chromosome ab-
normalities from multiple samples. The overlapping regions be-
tween the samples will put the focus on the genes that are recur-
rently targeted by the copy number alteration events. GISTIC is a
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computational method that assesses the distribution of the copy
number events, identifies the peak regions and reports the genes that
fall within the peak regions as putative copy number drivers (Mer-
mel et al. 2011). Another important criteria to take into account
when identifying copy number drivers is the zygosity of the event.
A copy number loss of a tumor suppressor may only be effective if
both copies of the gene are lost, although some work suggests that
dosage may play a role in copy number drivers also (Davoli et al.
2013). Similarly, the increase in transcription of an oncogene may
increase with each copy gained — the more copies the more mRNA
can possibly be transcribed simultaneously. Gistic2 classifies the
copy number alterations into weak and strong events for each sam-
ple. The recurrence of strong events (homozygous loss and multi-
copy gain) are more reliable indicators for copy number drivers.

Detection of mode of action

Other approaches to identify cancer drivers have been described
which directly part from the assumption that the cancer driver genes
are either proto-onocgenes or tumor suppressor genes. It has been
proposed to classify the recorded mutations into truncating and
repetitive missense which can then be used as proxy for tumor sup-
pressors and oncogenes. A critical underlying assumption for this
approach is that truncating mutations are not observed in oncogenes
(Vogelstein et al. 2013).

A somewhat more complex approach makes use of a set of classi-
fiers that distinguish the mutational and copy number patterns be-
tween oncogenes, tumor suppressor and neutral genes as proposed
by (Davoli et al. 2013).

Both approaches are interesting, as the first is relatively simple,
and the latter includes multiple genomic evidences. Both methods
try to solve two problems in one step: identifying cancer drivers and
classifying them into oncogenes and tumor suppressors. It is less
clear if those approaches are equally apt to discard passenger alter-
ations and genes as the methods described in the preceding chap-
ters, most of which have been developed specifically exactly to dis-
tinguish driver and passenger genes.
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Mutual exclusive alteration patterns within driver gene sets

As mentioned earlier, driver alterations are expected to fall into
hallmark pathways to confer the cell with tumorigenic capabilities.
Those pathways are therefore under a strong selective pressure to be
altered. Once altered this selective pressure is relaxed. As men-
tioned before, some of the proteins within a pathway may be more
easily targeted by alterations than others, but each component of the
signal-cascade is a possible target.

Somatic

Mutstion I Amplification | Homozygous Deletion

Mutually Exclusive Edge

A CCNET B) RNF1448 R
RBBPE
Altered Cases: 54% Altered Cases: 36%
p=5E4 p=6E-4
p*<1E2 -t p*<1E2
RB1
Myc BRCA2
myrc 3% [T T i
CCNET—20% (1111111 1111] IR
i

RBI 10% [ [mnET
RBBP8 4% 11 1

BRCA2 1%
CCNET 20% 11 TELEEEEEEEEE R e e e e e e e e e
RNF1448 7% || i

Figure 9: Mutual exclusive interaction modules detected by MeMo

The two cases show interacting proteins which are altered in the genomic
sequence or an altered copy number within an ovarian cancer sample cohort.
Almost all alterations are mutually exclusive which is a hint at a positive
selection for alterations within the module. Figure taken from (Ciriello et al.
2011)

Hence, the multiple targets and the selective pressure contribute to
the idea that one alteration per hallmark pathway and sample may
be enough to give rise to tumorigenesis. This hypothesis would be
reflected by a mutual exclusive alteration pattern within driver path-
ways in tumor samples. Several methods have been developed in
order to detect gene groups with mutually exclusive alteration pat-
terns. Approaches for de novo identification of possible gene-gene
interactions from mutually exclusive patterns across cancer samples
have been proposed (Ciriello et al. 2011; Ciriello, Cerami, et al.
2013; Vandin, Upfal, and Raphael 2011). A hurdle for the approach
to detect de novo cancer driver gens is the size of the combinatorial
possibilities to form gene modules. If we'd like to asses possible
combination of 22'000 genes in groups of three, we'd have to test
more than one thousand billion (1.3x10") combinations. In MeMo
and Dendrix (Ciriello, Cerami, et al. 2013; Vandin, Upfal, and
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Raphael 2011) this problem is somewhat alleviated by using prior
knowledge: network-based combinations. The opposite approach re-
lies on the hypothesis driven rationale of testing well-known cancer
pathways and modules.

Expression patterns

Besides alterations in the coding sequence of the genes, regulatory
mechanisms can lead to the same tumorigenic effect by suppression
of the transcription or translation of a tumor suppressor protein or
the increased transcription, also called over-expression, of an onco-
gene. Additionally, the possibility to interrogate the transcriptome
provides researchers with a global view of the transcriptional status
of almost any gene within a tumor sample. Insight can be gained of
what genes and pathways are up-, down- and co-regulated across tu-
mor and normal samples (Alon et al. 1999).

Employing gene expression profiling, cancer subtypes have been
identified and gene expression signatures of carefully selected genes
have been shown to predict the clinical outcome of cancer treatment
(Serlie et al. 2001; van ’t Veer et al. 2002).
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1.3 Visual data exploration & cancer genomics data

analysis

The large amounts of data that are being generated have to be
exploited and analyzed. Researchers and medical staff are and
will continue to need to access the data that is released to public
domain by TCGA, the ICGC and independent research groups as
multidimensional large-scale oncogenomic data sets. Raw data
coming out of the various platforms for a single sample has to be
processed and analyzed before it is interpretable. This can
constitute a barrier for the researcher as hurdles and questions
come up: How to process the raw data, what analyses to use?
How to merge various datasets of possibly different platforms
and cancer types? How to store the processed data in order to
guarantee efficient exploration? How to visually explore the

multidimensional oncogenomics data?
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1.3.1 Interpretation and availability of

multidimensional cancer genomics data

The pan-cancer datasets that are now available — containing so-
matic mutations, CNA alteration status, methylation levels and
many more genomic data points of thousands of cancer samples -
allow complex analysis. The plethora of data also bears dangers of
prompting wrong conclusions and correlations which are not
causative. Thus, the context of every data point may prove crucial
for interpretation. For example clinical annotations about the cancer
patients and samples or molecular details about genes support the
interpretation of the results. For Glioblastoma multiforme and
breast cancer samples, TCGA data already provides cancer subtype
information. When using this information as criteria to group cancer
samples for the visualization of the expression data, group-specific
expression patterns become visible. The distinct expression patterns
may be a reflection of the tumorigenic process that affects genes or
pathways in distinct manners in various cancer types and subtypes.

This heterogeneity is the very reason, hypotheses may prove right
in certain sub-cohorts but not in others. However, for cancer treat-
ments to become ever more adequate it is important to identify and
extract cancer sub-cohorts that have specific molecular patterns.
How such a specific cohort is identified depends on how the data is
available. Data preparation and normalization is an expensive step
in the analysis pipeline and may be unnecessarily repeated by inde-
pendent groups that download raw cancer genomics data. Resources
that provide pre-analyzed and prepared data sets therefore eliminate
a big hurdle for many researchers. A good example is the cBio Can-
cer Genomics Portal (Cerami et al. 2012) which allows the user to
select a TCGA cancer cohort and see some preliminary analysis and
alteration data. More advanced analyses may help to prefilter a
TCGA cancer sample cohort. IntOGen mutations (Gonzalez-Perez,
Perez-Llamas, et al. 2013) and IntOGen arrays (Gundem and
Lopez-Bigas 2012) similarly let the user browse and filter combined
cancer data sets and download gene-based results related to cancer
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and tumorigenesis. Both web resources combine a database for ana-
lyzed cancer data with visualization approaches. This kind of re-
sources help speed up cancer research in general as quick consulta-
tion of preliminary hypotheses is possible as data in analyzed form
may be downloaded. Thus, the more effort is put into the combina-
tion of intuitive data browsing and easy data accessibility the more
the research community will profit. Analysis tools that are used
widely in the research community should therefore have easy access
to widely used and prepared data sets for them to become more
valuable to the field.

1.3.2 Visualizing multidimensional cancer genomics

data

In 2013 we published a review on tools and approaches that specif-
ically aid the visualization and exploration of multidimensional can-
cer genomics data sets. As in this work we made a literature review
and with the purpose of avoiding self-plagiarism and repetition, I
include the review as a chapter in the introduction.

Schroeder, M.P., Gonzalez-Perez, A., and Lopez-Bigas, N.
(2013). Visualizing multidimensional cancer genomics data.

Genome Medicine 5, 9.

Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N. Visualizing
multidimensional cancer genomics data. Genome Medicine. 2013;
5:9. DOI 10.1186/gm413
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Genome Medicine

Visualizing multidimensional cancer genomics data

Michael P Schroeder', Abel Gonzalez-Perez' and Nuria Lopez-Bigas*'*

Abstract

Cancer genomics projects employ high-throughput
technologies to identify the complete catalog of
somatic alterations that characterize the genome,
transcriptome and epigenome of cohorts of tumor
samples. Examples include projects carried out by

the International Cancer Genome Consortium (ICGC)
and The Cancer Genome Atlas (TCGA). A crucial step

in the extraction of knowledge from the data is the
exploration by experts of the different alterations, as
well as the multiple relationships between them. To
that end, the use of intuitive visualization tools that can
integrate different types of alterations with clinical data
is essential to the field of cancer genomics. Here, we
review effective and common visualization techniques
for exploring oncogenomics data and discuss a selection
of tools that allow researchers to effectively visualize
multidimensional oncogenomics datasets. The review
covers visualization methods employed by tools such
as Circos, Gitools, the Integrative Genomics Viewer,
Cytoscape, Savant Genome Browser, StratomeX and
platforms such as cBio Cancer Genomics Portal, IntOGen,
the UCSC Cancer Genomics Browser, the Regulome
Explorer and the Cancer Genome Workbench.

Oncogenomics data and their dimensions

Cancer genomics benefits from high-throughput techno-
logies that allow the comparison of the genomic sequen-
ces, epigenomic profiles, and transcriptomes of tumor
cells with those of normal cells. These technologies often
characterize different types of somatic alterations (or
variations) in a tumor cell population that are absent
from normal cells - including copy number alterations
(CNAs), mutations, gene expression changes and methy-
lation changes [1-4]. Together, these somatic alterations
constitute multidimensional oncogenomics datasets that
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(UPF), Parc de Recerca Biomedica de Barcelona (PRBB), Dr. Aiguader 88, E-08003
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describe the variations that coexist in common elements
(for example, the genes) of the genome (or transcriptome)
of a particular cohort of tumor cells. Such data are
currently being used to identify cancer-driver genes and
pathways, to discover molecular targets for new thera-
pies, and to define molecular profiles that characterize
clinically meaningful patient categories. An array of
analytical methods are currently used to exploit the
information contained within this multidimensional
layout [5-12].

Along with computational and statistical methodolo-
gies, effective visual exploration by experts is crucial to
successful extraction of knowledge from oncogenomics
data. For example, this step might be key to unraveling
rare genomic events, verifying data quality at maximum
resolution or identifying key players in cancer develop-
ment. Thus, researchers need intuitive tools that allow
the visual integration and simultaneous exploration of
both different types of alterations and clinical informa-
tion. Many data visualization tools have been developed
in recent years to support genomic studies. In this review,
we revisit the most common ways in which these data are
visualized, and present selected tools that allow
researchers to visualize multidimensional oncogenomics
datasets effectively (Table 1).

To aid our review of the tools, we describe four case
studies that illustrate their use: the visual exploration of
1) alterations in cancer-driver genes per tumor through a
representation based on OncoPrint (described below);
2) cause-effect relationships between different alteration
types in tumor samples, through the use of Gitools and
the Network viewer from the cBio Cancer Genomics
Portal; 3) the stratification of tumor samples based on
clinical annotations, using CircleMap, the Integrative
Genomics Viewer (IGV) and Gitools; and 4) dramatic
structural alterations that encompass the rearrangement
of large chromosomal regions, employing the Circos tool
and data obtained from the Catalogue of Somatic Muta-
tions in Cancer (Cosmic).

Types of genomic data visualization

Numerous methods have been developed to automate the
analysis of genomic data [13-15]. Nonetheless, the visual
exploration of alterations in cancer genomes, epigenomes
and transcriptomes in multidimensional datasets, and of
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the relationships between these alterations, presents
specific challenges. This review focuses on the visuali-
zation principles, methods and tools employed to analyze
these multidimensional oncogenomics datasets. (For
general reviews on omics data visualization, see [16-19].)

We distinguish between three main approaches com-
monly used to represent multidimensional oncogenomics
data: genomic coordinates, heatmaps and networks
(Figure 1). These three approaches complement each other,
and each is best suited to answer different specific questions.

Genomic coordinates

A common way to visualize oncogenomics data is to
show alterations tied to their genomic loci. This approach
is well suited to provide answers to questions about the
genomic topography of alterations or to inspect particu-
lar genome loci. We distinguish between two main
visualization approaches that use genomic coordinates:
Genome Browsers and Circular Plots. Three of the most
popular genome browsers employed to visualize cancer
alterations are the Integrative Genomics Viewer (IGV)
[20], the UCSC Cancer Genomics Browser [21], and the
Savant Genome Browser [22]. All three support multiple
data formats that are used to represent various types of
alterations. They display the alterations in each tumor
sample as genomic tracks, which can be loaded onto the
browser and navigated by zooming and by scrolling to
particular genomic regions.

The IGV and Savant genome browsers work as desktop
applications and are particularly suited to the display of
aligned sequencing data. IGV has a special focus on
visualizing integrated datasets that include both array-
based and sequencing-based data as well as clinical infor-
mation about tumor samples and donors. The clinical
information displayed in vertical lines in conjunction
with the data tracks can be used to sort and group the
tracks, thus simplifying the stratification of samples
(Figures 2 and 3e). A further advantage of IGV is the split
screen view, which allows multiple loci to be displayed
next to each other. On the other hand, Savant offers an
application programming interface (API) that allows
third-party developers to extend and add visual, analytic,
navigational, and data loading functions to the genome
browser. Available plugins include edgeR [23], aimed at
detecting differentially expressed genes or regions. Other
plugins are described in the Savant Genome Browser
manuscript [22]. Another strength of the Savant genome
browser is the visualization of paired-end reads [19].

The web-based UCSC Cancer Genomics Browser offers
an easy-to-use interface that can be used to browse
cancer genomics datasets, such as those of The Cancer
Genome Atlas (TCGA), which have been pre-analyzed
with various tools and include clinical information. The
user can choose between different plotting types:
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heatmaps, box plots and proportions. The features are
shown in either the classic representation bound to
genomic locations or in a gene-set visualization,
analogous to the IGV split-screen view, resulting in a
browser-like heatmap (Figure 2). Unlike IGV and Savant,
the UCSC browser does not allow users to upload data.

Circos [24] is a flexible and popular tool that can be
used in many different research fields to plot circular
ideograms. In the case of multidimensional oncogeno-
mics data, the genomic coordinates of all chromosomes
are represented in a circular layout (Figure 3f). This tool
aptly illustrates relationships between distinct alterations,
represented as data tracks outside the ideogram, that
take place at different locations within the genome. These
relationships between regions are normally depicted as
ribbons. Intra- and inter-chromosomal translocations are
particularly well represented in Circos.

Genome browser tools in general have limited capacity
to display relationships between genomic features that
are independent of location, such as the coordinated
expression of genes. The IGV and UCSC Cancer Genomics
Browser attempt to tackle this problem using the split-
screen and heatmap approaches, respectively. Another
issue with visualization-based genomic reference is that
it falls short in visualizing extensive genomic rearrange-
ments. The circular layout of Circos can compensate for
this deficit, or it can be resolved by the use of specific
tools such as Gremlin [25]. Many other tools also per-
form specific tasks, exploiting the genomic coordinates
representation scheme. For example, putative transloca-
tion events can be verified by the command-line tool
Pairoscope [26], which generates relational diagrams of
paired-end sequencing reads to aid in the discovery of
translocation events. To view and analyze single nucleo-
tide polymorphism (SNP) and comparative genomic
hybridization (CGH) array alteration data tools and
methods such as VAMP [27] and waviCGH [28] are
options based on web technologies, whereas Genome
Alteration Print [29] is a desktop application. Further-
more, it has been proposed that there should be a move
towards visualizing genomic rearrangements, such as
gene fusions, graphically to emphasize the order of the
rearranged segments rather than the genomic distance
between the breakpoints [30].

Heatmaps

Heatmaps are graphical representations that are fre-
quently used to describe transcriptomics and genomics
data stored in the form of matrices. In oncogenomics
datasets, the columns in a heatmap usually correspond to
tumor samples, whereas the rows are genes, transcripts,
microarray probes, or other genomic elements (Figure 1).
The color of each cell represents a value indicating a
measurement of, let’s say, for simplicity, the gene in the
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tumor, such as its expression level or mutational status.
As matrices, heatmaps impose no restriction on the order
of the data. This allows data from distant genome loci to
be grouped and visualized together for comparison. For
example, genes in the same pathway or genes that are
associated with certain tumor types might be grouped
together. In other words, rows or columns can be
clustered according to molecular or clinical features. It is
precisely this flexibility to explore visually patterns within
the alterations that are correlated to external character-
istics, such as the function of genes or the features of the
tumor samples, that make heatmaps so popular as a way
of representing multidimensional oncogenomics data.
Many tools and programs generate heatmaps from
numerical or categorical matrices. We focus here on tools

that have features that are particularly well suited to the
visual exploration of multidimensional oncogenomics data.
Gitools [31] is an open-source java application for the
analysis and visualization of matrices using interactive
heatmaps. The heatmaps in Gitools can contain multiple
dimensions, that is, multiple values in each cell, which
makes it especially well suited to the exploration of multi-
dimensional cancer genomics data. Its interactive capa-
bilities allow the user to filter, sort, move, and hide rows
and columns in the heatmap and to launch several
common exploratory analyses (such as correlation, cluster-
ing, enrichment and differential expression analyses).
Multi-value data matrices, which can contain all types of
alterations detected across a cohort of cancer samples, can
be explored visually in Gitools, either focusing on a single
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dimension (that is, one type of alteration) or fixing one
dimension to explore its influence on others. Gitools also
allows the integration of these data with clinical information.

The cBio Cancer Genomics Portal [32] is a web
resource for visualization of oncogenomics datasets that
uses heatmap representation, among other options. The
OncoPrint heatmaps display alterations in arrays of genes
across tumor samples. Individual genes are represented
as rows, and individual cases or patients as columns.
Different colors and shapes are used to show different
alteration types, so that multiple alterations in a patient’s
gene can be distinguished easily.

IntOGen is a resource that can be used to analyze and
visualize oncogenomics data [33]. It presents different
values, estimating the accumulation of somatic mutations,
CNA or transcriptional alterations in genes and pathways
across tumor samples. Pre-computed data for more than
300 cancer genome experiments are currently available.
Web-interactive heatmaps are used to explore gene and
pathway alterations across samples and tumor types.

Caleydo StratomeX [34] is a visualization tool built
upon the Caleydo framework [35], with a focus on ex-
ploring interdependencies between different stratifica-
tions of cancer samples within a given study. Genomics
data on different alterations can be clustered and
visualized as matrix heatmaps. The clusters of different
alterations are connected by ribbons whose widths
correspond to the number of samples shared by the
connected clusters. Clusters can also be visualized as
pathway diagrams, allowing the researcher to observe the
impact of alterations on pathway function (Figure 2).

Heatmaps can also be represented not as rectangles but
as circles, as with CircleMap [8] (Figure 2). With this
command-line tool, dimensions can be aligned in a
circular plot accompanying a gene, which is represented
as a circle that can be attached to other genes in a
network layout (Figure 3d).

A general limitation of the heatmap visualization is that
structural relationships between genes are difficult to
grasp. For instance, it is very hard to discern whether the
coincidence of CNA in several genes reflects a possible
synergy or is simply a result of their location within a
recurrently amplified or deleted chromosomic fragment.
Gitools tries to solve this problem by offering the
possibility of adding genomic annotations to the rows
that can encode functional or structural information.
Caleydo StratomeX solves this problem by incorporating
pathway diagrams displaying functional relationships
between the genes, and CircleMap plots can also be used
as nodes to construct a network diagram for this purpose.

Networks
Networks represent functional relationships between
different entities, such as genes. This type of information
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is difficult to represent in heatmaps and non-circular
visualizations of genomic coordinates. Genetic features
can be coded in node attributes such as color, size, or
shape. Different alterations can be displayed as additional
halos around the node. The network arrangement allows
the researcher to explore visually clusters of nodes
representing highly interconnected altered genes that can
constitute driver pathways or subnetworks.

Cytoscape [36], a collaborative open-source project, is
a widely used and intuitive network visualization and
analysis tool in genomics research. No special bioinfor-
matics knowledge is needed to use Cytoscape. The
properties of the nodes and the edges and the network
layout are customizable, and the comprehensive array of
plugins constitutes an added value for researchers. This
tool has proven useful for integrating expression data
into a gene network [37], as well as for mapping genes
with cancer somatic alterations directly to a functional
interactions (FI) network [38] that identifies subnetworks
of altered genes in order to find cancer drivers. A web
version, Cytoscape-web [39], is compatible with common
internet browsers and facilitates interaction with the
networks displayed. The cBio Cancer Genomics Portal
[32] implements an adaption of this tool optimized for
visually exploring multidimensional oncogenomics data
from TCGA [40]. Node colors and halos encode the
alteration status of cancer genes.

Representation of the genomic alterations present in
individual tumor samples in network viewers presents a
challenge. As a consequence, many details about the
individual tumor samples are normally left out of net-
work figures. In the case of the cBio Cancer Genomics
Portal network viewer, this problem is alleviated by the
inclusion of plots that show the proportions of samples
with different genomic alterations. Similar effects can be
achieved with plugins for Cytoscape that transform
nodes into pie charts (such as GoogleChartFunctions
[41] and nodeCharts [42]).

Case studies

The case studies presented here elaborate on four
different oncogenomic research questions that can be
answered visually with the available tools and resources.
The description of the case studies focuses on their
biological interpretation. Supporting documentation on
how to generate images corresponding to those in
Figure 3 is included in the ‘Additional file 1 and 2!
Learning to use most of these tools requires a certain
investment of time, and tutorials provided by the
developers are highly recommended as a starting point.

Visual exploration of cancer drivers
Distinguishing the alterations that give cancer cells a
selective advantage (drivers) from those that are merely
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Figure 3. Four case studies are represented using one or several of the major visualization methods applied in oncogenomics.

(a) Heatmap of oncogenomic alterations ordered by mutual exclusivity plotted with Gitools. In the upper half of the image, colors indicate the
type of alteration: mutations (green), CNA gain (red) and CNA loss (blue). The heatmap below shows expression data (high expression in red and
low expression in green) for the same samples and genes, allowing the visual observation that genomics regions whose copy number is amplified
tend to have higher expression values. (b) The same data as in (a), with the same color code for alterations, represented as a network of functional
interactions between the genes, extracted from the cBio Cancer Genomics Portal. The halo around the four selected nodes is divided into three
sectors. Changes in the proportion of samples with altered copy number are indicated in red (gain) or blue (loss) in the top sector, whereas
changes in the proportion of samples with mutations are indicated in green in the lower-right sector. Expression changes are shown in light red
(increase) and light blue (decrease) in the lower-left sector of the halo. Panels (c-e) include clinical information. Each tumor sample is assigned

to one of four subtypes of glioblastoma, color-coded as dark green (classical), light green (mesenchymal), orange (neural) and red (proneural).

(c) Heatmap of pathway expression levels plotted with Gitools. Each column is a tumor sample. The subtype is represented in colors in the top
row and each row represents a biological pathway. The color of each cell indicates the Zscore of the sample level enrichment analysis (SLEA) of
the pathway in the sample. Clear differences in the expression values in different pathways can be observed for different cell subtypes. (d) Same
data as in (c) represented in the form of a network, drawn using CircleMap. Each node is a pathway and its edges indicate functional interactions
between pathways as extracted from KEGG. The two halos around each node indicate the Zscore of the pathway in each sample and the clinical
subtype. (e) CNA and expression data for the EGFR gene region of glioblastoma samples as shown by IGV. The top part of the plot indicates the
genomic position we are observing. Each sample is shown as a horizontal track, ordered by clinical subtype. Within each clinical subtype, the tracks
in the upper half illustrate CNA whereas those below show expression. This visualization reveals clear differences in the CNA and expression of
the EGFR locus in different clinical subtypes. (f) Adaptations of Circos plots of three breast tumors with three very different alteration landscapes.
The four circles in each plot, from outermost inwards, represent the human chromosomes, mutations, copy number alterations, and structural

rearrangement.

side effects (passengers) of the destabilization of the
cancer genome is a major problem in oncogenomics
research. Several new methodologies [5-8,11,38,43-46]
address this problem by exploiting the properties of
driver genes. For example, the mutually exclusive altera-
tion of genes in a pathway is a characteristic of cancer
drivers [5,6,47]. One plausible explanation of this behavior
is that an alteration that targets an affected pathway does
not confer further selective advantage to the cancer cell.
A built-in Gitools option sorts genes and samples within
a heatmap to present the pattern of mutually exclusive
alterations, which is one approach to visual exploration
of driver genes that are involved in the same pathway
(Figure 3a) [48]. Oncoprint (cBio Cancer Genomics
Portal) uses the same principle to display the alterations
across TCGA datasets of a gene set provided by the user.

An alternative approach to identify cancer drivers
involves mapping altered genes to a FI network (Figure 3b)
[7,38,46]. The Reactome FI Cytoscape plugin offers this
functionality. After a gene list is submitted, a FI network
is constructed using so-called linker genes: genes that are
not in the user-submitted list but that can connect two of
the submitted genes. Usually, this approach identifies
network regions in which recurrently altered genes,
which are thought to point to driver genes and sub-
networks, are enriched. The visualization of genes and
their alterations in the form of FI networks is thus very
useful (see Figure 3b for an example).

Visualizing cause-effect relationships between different
types of alterations

The effect of genomic alterations can be manifested at the
genome, transcriptome or proteome level. Single nucleo-
tide variants (SNVs) might not directly influence

transcription of the mutated gene but usually affect
protein functionality. On the other hand, CNA and
changes in methylation status frequently perturb the
expression levels of the altered genes or other genes
under their control. Determining the cause-effect
relationships of such alterations is important to our
understanding of cancer mechanisms. One approach is to
plot one type of alteration (for example, CNAs) in a
heatmap, sorting the tumor samples to separate diploid
genes from altered genes. Changes in gene expression
values, presented in another heatmap, can then be readily
compared between these two groups (Figure 3a), allowing
the detection of any significant differences.

Gitools can load a multidimensional data matrix contain-
ing different alterations for each sample, and a simple switch
between the values shown in the heatmap cells easily
changes the display from one heatmap to the other [49].

Networks offer another way of visualizing cause-effect
relationships. The interactions between genes in a
network can represent their functional relationships, for
example, one gene might regulate the expression of
another. Overlaying the alterations within a cohort of
tumors on top of each node of the network might
illustrate the effect of a gene alteration on the expression
of other genes in the network (analogous to Figure 3b).

The network viewer of the cBio Cancer Genomics
Portal supports the visualization of expression data, if
available. Similar visual effects could be achieved in
Cytoscape by mapping data onto node properties.

Visualizing cancer patient stratifications

Cancer is a complex disease. Tumors that seem very
similar when examined through conventional diagnostic
methods might look markedly different from the
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molecular viewpoint, which can lead to different out-
comes or treatment responses. Therefore, the molecular
features of tumors can be used to stratify patients to
support more accurate clinical and therapeutic decisions.
Over the past decade, molecular stratification of tumors
using expression microarrays has been an important area
of cancer research [50-53]. The visualization of molecular
alteration patterns in a heatmap is often used to explore
subgroups of tumors and to associate them with particular
clinical features. These heatmaps usually portray the
expression patterns of genes or transcripts across samples,
but the benefit of data analysis at the level of gene groups,
for example pathways [54-56], is increasingly evident.
Stratification and visualization can also be done at the level
of pathways or other gene modules (Figure 3c), for example
using sample level enrichment analysis (SLEA) [57,58],
which analyzes the transcriptional status of pathways (or
other gene sets) in each tumor sample.

In the case of multidimensional oncogenomics data,
various clinical features and alterations such as CNA or
changes in mRNA or microRNA expression can be used
to cluster or stratify tumors, leading to different group-
ings of samples. In Figure 3c,d, we show ways of repre-
senting the results of applying SLEA to the TCGA glio-
blastoma dataset, with the samples grouped by the
corresponding glioblastoma subtype. The alterations are
visualized using both Gitools and CircleMap. Please see
the ‘Additional file 1 and 2’ for a more detailed description
of this process.

Stratifications can also be meaningful when exploring a
single locus. Figure 3e illustrates the same grouping of
samples by glioblastoma subtype, employing copy number
and expression data from the TCGA glioblastoma study
using IGV (Figure 3e).

Caleydo StratomeX is especially well suited to explor-
ing relationships between groups of samples (Figure 2).
These relationships are visualized as ribbons of varying
width drawn between neighboring columns. Wide ribbons
encode a high co-occurrence of samples in different
groupings, whereas their absence indicates mutual exclu-
sion. This coding provides a straightforward and scalable
overview of the consistency of group memberships of
tumor samples across different data types.

Visualizing global alteration profile patterns

Various alteration phenotypes have been observed in
cancer cells. One of the most conspicuous of these is the
mutator phenotype [59]: tumor cells typically have an
abnormally high mutational burden. Tumor samples with
chromothripsis [60,61] or many chromosomal trans-
locations are also common. Categorization of the altera-
tion events in a cancer cell population could influence the
therapeutic decision, and requires a simultaneous
exploratory view of all the alteration events.
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One approach to exploring visually all the alterations of
a sample is the circular genome mapping proposed by
Krzywinski et al. using their tool Circos [24]. Several
cancer studies [59,62-64] have used Circos to show the
landscape of alterations. This tool is highly configurable,
which is evident from the figures in the cited publications.
One compact figure can represent all somatic alteration
events in a given tumor sample. Data from different
alteration types can be organized in layered circles while
rearrangement events occupy the innermost space.
Figure 3f is composed of three Circos plots of breast
cancer samples [59] as they are represented on the
Cosmic website [65]. The outer-most circle of each
diagram represents the human chromosomes, followed
by a plot of ticks showing point mutations. The next layer
plots CNA along all the chromosomes; the links in the
middle visualize the structural rearrangements.

The recently developed ggbio package [66] for the R
programming environment allows, among other things,
the creation of circular genome plots, and supports a
variety of data formats for sequencing data.

Interfacing of tools
Researchers often need to use several of the comple-
mentary tools described here to explore their datasets.
Nevertheless, the landscape of visualization tools for
multidimensional oncogenomics data seems rather frag-
mented. This is the result of different groups focusing on
the development of tools optimized to solve one
particular visualization issue, which is probably a more
efficient way of investing resources instead of engineering
one single monolithic tool that has all possible visuali-
zation capabilities. Unfortunately, this fragmentation
makes the use of different tools problematic: they accept
very different data formats, they look different to users
and so on. Thus, users need to spend time learning how
to use each tool and reformatting their data to each tool’s
requirements. This extra effort could be alleviated if
developers were to facilitate the combined use of tools.

One of the major efforts to develop a universal interface
that will bridge the gap between different bioinformatic
tools is the GenomeSpace project [67]. GenomeSpace
allows the user to store data in a common repository and
the same web interface guides users to execute the
integrated tools, load data, and store results.
Conveniently, it contains several built-in converters for
some often-used data formats. Several tools listed in
Table 1 (IGV, Genomica, Cytoscape and Gitools) are
included in this pilot project. This platform interface
approach is promising and possibly the most user-
friendly option for users who lack a background in
bioinformatics.

Another approach to facilitate the use of several tools is
the creation of direct tool-to-tool interfaces. These are
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possible when a tool offers an API that defines the form
of communication between the tool and the rest of the
world. There are different kinds of APIs, which allows the
implementation of different approaches. If the API offers
external control, it can send the tool a command and
indicate whether the execution of this command has
been successful or not. This is the case, for example, with
IGV and Gitools: both offer a set of commands that the
other application can use. Gitools has a built-in link that
sends a ‘find locus’ command to IGV, whereas IGV
exports data into a matrix format and commands Gitools
to load it. In practical terms, this means that the user can
explore the same data with two complementary visuali-
zation tools that can communicate with each other.

Another kind of API can be used for plugin develop-
ment. This is a general way of creating new capabilities
for established tools. As mentioned above, Cytoscape and
Savant support plugability, meaning that they possess
internal commands that can be used by an application to
extend the functions of the tool.

Unidirectional APIs are typically employed by databases
and allow easy data transfer between the data source and
tools. For example, IGV’s external control of the software
allows the cBio Cancer Genomics Portal and GenePattern
[68] to load data directly into IGV, and Gitools accepts
imported data for all BioMart [69] databases.

Conclusions and future directions

The cancer genomics research field is rapidly evolving in
parallel with advances in high-throughput genomics
technologies. This evolution of the field requires con-
tinuous advancement in visualization techniques and
tools. For instance, the amount of data it is possible to
generate for an oncogenomics project continues to
increase, requiring visualization tools that very efficiently
load and process large amounts of data.

As this rapid scientific evolution continues, cancer
researchers are highly dependent on computational
scientists and bioinformatics professionals to help them
manage, analyze and visualize data. To speed up research
advances, the barrier between the large amount of data
generated in oncogenomics projects and the effective
exploration of these data by cancer researchers must be
minimized. Visualization and exploration tools should be
intuitive and easy to use, not requiring computational or
bioinformatics expertise. Not all tools currently meet
these standards, as some programming or even
technological knowledge is required of the user. In recent
years, however, there has been an important effort to
facilitate access by ‘non-bioinformaticians’ to visuali-
zation tools for the analysis of oncogenomics data
[20,31,32]. Continued work to improve the usability of
visualization software is highly important, but requires
great effort from developers for low scientific reward
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when compared to the development of new methods or
visualization techniques. Funding agencies must under-
stand that increased investment in personnel dedicated
to the development and maintenance of new tools, as
well as user training and support, is crucial to the
achievement of improvements in the field.

The complexity of oncogenomics data and the multi-
tude of questions to be addressed ensure that a static plot
is often insufficient for data visualization. The user needs
to explore the data interactively in order to address a
wide range of questions. Several tools listed in Table 1
(including IGV, Gitools and Caleydo) make use of
interactive visualization techniques to make this possible.
Other web frameworks with various visualization and
some optional analysis possibilities are being developed,
including the cBio Cancer Genomics Portal [32],
IntOGen [33] and Regulome Explorer [70]. Open source
and plug-in architecture facilitates quick adoption of
these new platforms.

Although not discussed at length in this review, the use
of cancer genomics data visualization in the clinical
setting is likely to become a key topic in the near future,
as the results of cancer genome projects begin to be
translated into personalized cancer medicine. Clinicians
will be the main users of this information as they make
decisions regarding patient treatment. In this regard,
simple, efficient tools that support the visual stratification
of tumor genomic profiles and that highlight their
relationships to known drugs or treatments will be more
useful than the existing research-oriented tools. As a
result, it will probably be necessary to develop specialized
clinical tools or to adapt existing ones to the clinical
setting. This has been achieved in the case of the
MedSavant Browser [71], a clinical adaption of the Savant
Genome Browser.

In summary, visualization of multidimensional onco-
genomics data is essential for the extraction of useful
knowledge from the vast amount of data generated by
high-throughput technologies. Important efforts have
been made in recent years to create visualization tools
that can explore these datasets. Further efforts are
needed to develop those resources and to create new
tools to meet the changing needs of the field. Long-term
investment and funding are needed to guarantee the
maintenance, improvement, and evolution of visuali-
zation tools beyond their first publication.

Additional files

Additional file 1. The following additional data are available
with the online version of this paper. Additional file 1 provides
information on how to generate visualization images for the case
studies covered.

Additional file 2. Instructions on using Additional file 1.
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1.3.3 Modular data visualization: web data portals

In the preceding section, several tools which implement a specific
visualization approach have been described. Dedicated tools are
great for providing an in-depth experience of a specific approach
but fail to offer different types of visualization of the same data
which can be somewhat alleviated by inter-connectivity of different
tools on the desktop.

But the latest developments in web technologies provide a new en-
vironment with a unified rule set for so called web-applications.
That the browser and HTML documents can be used for research
purposes has been shown already with the USCS Genome Browser,
a web native application available since 2000. Today’s HTMLS5
combined with JavaScript and potent web browsers allow for com-
plex code to be executed within them — on desktops and mobile de-
vices. Especially genome browsers are popular as stand-alone web-
application (Meyer et al. 2012; Pak and Roth 2013; Westesson,
Skinner, and Holmes 2012), but in the context of multidimensional
cancer genomics data sets, the so-called portals are a very appealing
concept: a portal is a data browser that combines different visualiza-
tion approaches of data that may have been filtered according to
choices from the user. The data can be precomputed or even on the
fly computation may happen in the browser.

The development of approaches on data visualization web-applica-
tions is therefore much needed. As each developed component or
web-application has to be embedded in a HTML5 document, a
modular development approach makes sense as it serves the whole
community as well. In the case of data visualization, each devel-
oped visualization component may be used alongside others devel-
oped by other groups in a data portal. BioJS (Gomez et al. 2013) ex-
emplifies this by cataloging JavaScript applications that are related
to biological data access and representation in the web browser.
BioJS provides a loose framework for how each module has to be
installed but still leaving great flexibility to the module creators.

The cBioPortal (Cerami et al. 2012) for cancer genomics is a good
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example of how multidimensional datasets can be explored and
some simple analyses can be performed within the portal. In the
end, the user may download parts of the data for offline exploration
and analysis by applying filters. As stated above, web portals can
provide a wide range of views of data. Other dedicated web services
such as IntOGen Mutations (Gonzalez-Perez, Perez-Llamas, et al.
2013) offer online analysis coupled with online results browsing for
which independent visual components may be used.

One hurdle for complete web-application based data analysis and
research is that most research groups that create independent ser-
vices do not have resources (funding, time, know-how) to maintain
web-servers that support computational intensive tasks for a large
clientéle. Another hurdle is that in many cases researchers are not
legally allowed or simply uncomfortable to submit genomic data of
their patients samples to other services and thereafter oftline or lo-
cal solutions are still a requirement.
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In the light of the fields that have been introduced, I'd like to state
the goals of my PhD thesis separated into two main objectives:

Cancer data analysis

* Develop a framework or method that can classify cancer
driver genes into their respective roles of oncogenes and tu-
MOr SUppressor genes.

* Develop a hypothesis-driven method to test for mutually ex-
clusive alterations in cancer drivers

Biological data visualization

* Facilitate the accessibility, visualization and analysis of can-
cer genomics datasets with the help of interactive matrix
heatmap visualization solutions for different use cases:

©  On the desktop, focusing on good performance of large
datasets and easy data interpretation.

©  On the web, focusing on easy and interactive communi-
cation of complex datasets.

* Create an easy solution for mapping molecular biological
data onto complex figures.
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3.1 OncodriveROLE classifies cancer driver genes
in Loss of Function and Activating mode of

action

In this chapter | present the OncodriveROLE classifier, an
approach to separate cancer driver genes into different
mode of actions, namely activating and loss of function,
with the premise of aiding on the identification of drug
targets and provide valuable information for development
of computer models of the cancer disease.

The classifier is based on mutational and copy number
patterns within a cancer sample cohort. As we propose an
alternative approach we compare ours to two preceding
approaches in order to assess the capabilities of
OncodriveROLE.

Schroeder, M.P., Rubio-Perez, C., Tamborero, D., Gonzalez-
Perez, A., and Lopez-Bigas, N. OncodriveROLE classifies
cancer driver genes in Loss of Function and Activating mode

of action. Bioinformatics 30.

Schroeder MP, Rubio-Perez C, Tamborero D, Gonzalez-Perez A,
Lopez-Bigas N. OncodriveROLE classifies cancer driver genes in
loss of function and activating mode of action. Bioinformatics. 2014
Sep 1; 30(17): 1549-55. DOI: 10.1093/bioinformatics/btu467
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OncodriveROLE classifies cancer driver genes in loss of function

and activating mode of action
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ABSTRACT

Motivation: Several computational methods have been developed to
identify cancer drivers genes—genes responsible for cancer develop-
ment upon specific alterations. These alterations can cause the loss of
function (LoF) of the gene product, for instance, in tumor suppressors,
or increase or change its activity or function, if it is an oncogene.
Distinguishing between these two classes is important to understand
tumorigenesis in patients and has implications for therapy decision
making. Here, we assess the capacity of multiple gene features related
to the pattern of genomic alterations across tumors to distinguish be-
tween activating and LoF cancer genes, and we present an automated
approach to aid the classification of novel cancer drivers according to
their role.

Result: OncodriveROLE is a machine learning-based approach that
classifies driver genes according to their role, using several properties
related to the pattern of alterations across tumors. The method shows
an accuracy of 0.93 and Matthew’s correlation coefficient of 0.84 clas-
sifying genes in the Cancer Gene Census. The OncodriveROLE clas-
sifier, its results when applied to two lists of predicted cancer drivers
and TCGA-derived mutation and copy number features used by the
classifier are available at http://bg.upf.edu/oncodrive-role.
Availability and implementation: The R implementation of the
OncodriveROLE classifier is available at http://bg.upf.edu/oncodrive-
role.

Contact: abel.gonzalez@upf.edu or nuria.lopez@upf.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Research in cancer genomics has identified hundreds of genes
involved in different stages of tumorigenesis due to specific som-
atic events. Single nucleotide variants, and large-scale amplifica-
tions and deletions of chromosomal regions have been identified
as two of the main driver alterations in human tumors. The genes
suffering these alterations are traditionally classified as oncogenes
and tumor suppressors, depending on their role in cancer devel-
opment. When the product of tumor suppressors lose their func-
tion, tumor cells tend to proliferate faster. Driver alterations in
these genes frequently exhibit a recessive behavior. The loss of
function (LoF) can be achieved through truncating or missense
mutations, DNA deletions or hypermethylation of their pro-
moters. Some known LoF genes, most notably BRCA1 and
BRCA2, carry germline variants that increase the susceptibility
to develop a tumor because only one hit is required to inactivate

*To whom correspondence should be addressed.

their function. Oncogenes, on the other hand, increase or change
their function upon somatic variants in tumorigenesis. Therefore,
their mode of action follow a dominant pattern, as one faulty copy
of the gene is frequently enough to provide the required pheno-
type. A copy number gain may exponentiate the oncogenic func-
tion of the gene; a point mutation may achieve the same result by
changing key amino acid residues, which results in constitutive
activation of the protein, or produce a new biochemical function.
These special cases are also regarded as activating driver muta-
tions, as the new function is gained much like in the case of classic
oncogenes. The Cancer Gene Census (CGC; Futreal et al., 2004) is
a regularly updated compilation of well-studied cancer genes,
which classifies their mode of action as dominant or recessive,
following the oncogene/tumor suppressor paradigm, LoF and
Act (activated), hereafter. The CGC contains some 500 genes
implicated in cancer (November 2013). This is a rather small frac-
tion of the 20 000 genomes in the human genome (International
Human Genome Sequencing Consortium, 2004), but recent large-
scale re-sequencing projects of tumor genomes (Hudson et al.,
2010) suggest many additional genes may be involved in tumori-
genesis. One important first step in the analysis of datasets of
cancer genomics alterations is the identification of the genes that
drive tumorigenesis. This is a non-trivial problem because tumor
samples contain up to thousands of somatic alterations. The list of
genes altered in tumors is heterogeneous, even within the same
cancer type. Therefore, the difficult task is to distinguish between
driver and passenger alterations.

The most intuitive way to identify driver genes is to detect sig-
nals of positive selection across tumor samples because cancer cell
populations undergo a selection process during the progression of
the disease. Different methods that aim to identify driver genes
tackle different evidences to achieve their goal (Gonzalez-Perez
et al., 2013a). Two recent efforts to comprehensively identify
driver genes across large cohorts carried out by Lawrence et al.
(2014) and Tamborero et al. (2013b), combining several signals of
positive selection (Dees et al., 2012; Gonzalez-Perez and Lopez-
Bigas, 2012; Lawrence et al., 2013; Reimand et al., 2013) detected,
respectively, 291 and 260 likely driver genes.

Although years of experimental work have revealed the role of
most well-known cancer genes, now our capability of detecting
drivers has surpassed our capacity to probe their mode of action.
Thus, revealing the mode of action of driver genes in tumorigen-
esis is becoming crucial to fully understand the mechanisms of
tumorigenesis. This is essential for the development of new tar-
geted cancer therapies because as a general rule only Act drivers
are in principle susceptible to targeted drugs. Although excep-
tionally, some mutated tumor suppressors may be targeted (e.g.
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Lambert ez al., 2009), other strategies, such as synthetic lethality,
are needed to compensate for their LoF. This is the reason why
we need to develop bioinformatics approaches to make this clas-
sification as accurately as possible. Vogelstein er al. recently
described the so-called “20/20 rule’ to detect tumor suppressor
genes and oncogenes based on their mutational pattern across
tumor samples (Vogelstein ez al., 2013). It states that genes with
>20% truncating mutations are tumor suppressors, whereas
genes with >20% of missense mutations in recurrent positions
are oncogenes. While it correctly detects and classifies most of
the well-known cancer genes, the rule fails to identify drivers
included in newer catalogs (Tamborero et al., 2013b), mostly
the lowly recurrent ones.

Building upon the same idea, Davoli er al. developed a ma-
chine learning approach to directly identify tumor suppressor
genes and oncogenes from the somatic alterations observed
across cohorts of tumor samples through their mutational and
copy number patterns. Many cancer drivers are recognized cor-
rectly by carefully selected features (Davoli et al., 2013).

We recently proposed a strategy to obtain a comprehensive list
of drivers minimizing the probability of detecting false-positive
findings by combining complementary methods that detected
different signals of positive selection (Tamborero et al., 2013b).

Once a list of high-confidence drivers (HCDs) is obtained, it is
important to classify those in their mode of action. To this aim, we
first carefully assessed the capability of 30 features to differentiate
between these two groups of cancer genes. Then, we combined dif-
ferent sets of features with various classification algorithms to
create several automated classifiers. We trained these classifiers
with CGC genes, and after careful check of their performance, we
selected a random forest algorithm that achieves an accuracy
(ACC) of 93%, which we call OncodriveROLE. It is the first
freely available automatic classifier that undertakes the task of as-
sessing the mode of action of driver genes. Used in this setting, it
may shed light upon the mechanisms of tumorigenesis in major
cancer types. We have used it to classify the two previously men-
tioned lists of mutational drivers that have been recently published,
namely, HCDs (Tamborero et al., 2013b) and Cancer5000
(Lawrence et al., 2014), and describe the results of this analysis.

2 METHODS

2.1 Mutation data, copy number alteration data and
cancer driver lists

We retrieved data for the 17 TCGA (The Cancer Gene Census) projects
currently available without restriction: BLCA, BRCA, COAD/READ,
GBM, HNSC, KIRC, LAML, LGG, LUAD, LUSC, OV, PRAD,
SKCM, STAD, THCA and UCEC. We designed and computed several
features that we hypothesized might be useful to classify driver genes
according to the role using mutation and copy number data. These fea-
tures are based on the patterns of mutations and copy number alterations
(CNAs) across tumor samples. Tumors with at least one mutation in the
TCGA pan-cancer 17 dataset available at Synapse (syn1729383.2) were
retrieved after excluding those considered as hypermutators (Kandoth,
2014; Kandoth et al., 2013). Hypermutators of a tumor type contained
more than (Q3 + 4.5 x IQR) somatic mutations, where Q3 and IQR are
the third quartile and the interquartile range of the distribution of muta-
tions across all samples of the tumor type, respectively. After filtering, the
pan-cancer 17 dataset was composed of 4327 samples. These mutations

were mapped to protein positions, and their consequence types were as-
sessed using the IntOGen-mutations pipeline (Gonzalez-Perez et al.,
2013b), which makes use of the Ensembl Variant Effect Predictor (v70;
Chen et al., 2010). The CNA status for all probed genes was downloaded
from the January run of the TCGA FIREHOSE pipeline at the Broad
Institute (http://gdac.broadinstitute.org/).

To apply the OncodriveROLE classifier, we gathered two lists of likely
cancer drivers from the Supplementary Material of two independent
papers (Lawrence er al., 2014; Tamborero er al., 2013b). From the
Tamborero et al. (2013b), we selected the list of 291 genes annotated as
HCDs, discarding one non-coding gene. From Lawrence ez al. (2013), we
obtained a list of 260 genes from the spreadsheet ‘Individual g-values’.

For comparison purposes, we retrieved the classifications of genes
carried out by the previous work by Davoli er al. from the
Supplementary Material of their paper, applying the same cutoffs
described in the manuscript (Davoli ez al., 2013). We also obtained the
classification carried out by applying the 20/20 rule (Vogelstein er al.,
2013) to the mutational dataset of 17 tumors types.

Whenever possible, data were obtained associated to Ensembl gene
identifiers (Flicek et al., 2013). Other identifiers have been mapped to
Ensembl gene identifiers with a dataset obtained from Ensembl v70.

2.2 Classifiers

We chose six different classifiers to test: cforest.party (cforest method in R),
conditionalTree (ctree), logisticRegression (glm), naiveBayes (train),
simpleTree (rpart) and randomForest (Breiman, 2001; Hothorn er al.,
2006, Kuhn, 2008; Olshen ez al., 1984; R Core Team, 2013). Some classifiers
either do not accept missing values or perform variable imputation for those.
Therefore, we opted to remove genes if they had missing values in one or
more of the features and leave them unclassified. From each classifier we
obtained a score of the certainty that each gene belongs to the Act class.

2.3 Training set

To use cancer genes with well-established roles as training set, we down-
loaded the material available at the CGC in November 2013 (Futreal
et al., 2004). See below details on the curation of this dataset for training
the classifier.

The CGC contains extensive and manually annotated information on
well-known cancer genes and classifies the cancer genes into dominant
(Dom) and recessive (Rec) influence on tumorigenesis. We have used the
CGC classification into Rec and Dom classes as proxy for LoF and Act
genes. Genes with ambiguous annotation, such as ‘Rec?” or ‘Dom?’ or not
citing observed somatic mutations were discarded, leaving 381 entries (see
Supplementary Table S7 for their classification). To only include CGC
driver genes, which are likely to act across the TCGA pan-cancer 17
cohort, we used a one-signal filter: we discarded genes not detected as
significant by MutSigCV (recurrence signal), OncodriveFM (mutations
impact signal) or OncodriveCLUST (mutations clustering signal). We
also rejected genes with<12 protein affecting mutations (PAMs;
Gonzalez-Perez and Lopez-Bigas, 2012; Lawrence er al., 2013;
Tamborero et al., 2013a). Only 115 CGC genes passed this filter.
Equally, all CGC genes that were solely associated to translocation
events—all labeled with Dom—were not allowed in the training set, fi-
nally leaving 76 entries in the training set.

2.4 Computing features

All features we computed are listed in Table 1 along with a brief explanation
of their computation: some of them are similar to the ones used previously
(Davoli er al., 2013; Vogelstein et al., 2013). Truncating mutations include
mutations causing a frameshift, a gained or lost stop codon as well as mu-
tations in splice donor or acceptor sites. PAMs include truncating mutations
and missense mutations. Benign missense refers to missense mutations that
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are categorized as low or unknown functional impact by TransFIC
(Gonzalez-Perez et al., 2012). OncodriveFM P-values (Gonzalez-Perez and
Lopez-Bigas, 2012) and the location of OncodriveCLUST clusters of muta-
tions (Tamborero ef al., 2013a) for all driver genes were obtained by running
the IntOGen-mutations pipeline on the TCGA pan-cancer 17 dataset.

The R implementation of Wilcoxon’s signed rank (R Core Team,
2013) was used to compare the distribution of each feature between the
CGC Rec and CGC Dom genes. We also used the variable importance
function from the party library (Hothorn et al., 2006; Strobl et al., 2008)
to rank features for their selection to be taken into account by the
classifiers.

2.5 Training and prediction

The selected CGC genes were therefore used as training set of the classifiers.
With all different classification settings, we performed a leave-one-out cross-
validation: each item in the training set is classified with a model built with the
rest of the training set items. We found three genes whose initial classification
extremely contradicted their CGC category: NOTCH1, NPM1 and CEBPA

Table 1. List of mutational and CNA features for cancer driver genes

genes, which have evidence in the literature for a dual role (Halmos et al., 2002;
Sportoletti et al., 2008; Vogelstein et al., 2013). Therefore, we decided to dis-
card them from the training set. Thus, the final, trimmed CGC training set
included 28 Dom and 45 Rec genes.

For the classification of HCD and Cancer5000 genes, we considered
that values between 0.7 and 1 as Act and those with values between 0 and
0.3 as LoF. We computed the ACC and MCC (Matthew’s correlation
coefficient) of each classifier at the leave-one-out cross-validation of the
training set. Furthermore, we calculated the coverage (COV) of the clas-
sifier, which reflects the percentage of the entire training set for which a
prediction could be made.

3 RESULTS
3.1 Identifying features that differentiate Act from LoF
driver genes

We tested 30 features that we initially hypothesized could be used
to characterize and discriminate between LoF and Act drivers

Attribute name

Description

CNA_cbs_countGain
CNA_cbs_countLoss
CNA_cbs_logratio_GvL
CNA_gain_freq
CNA_loss_freq
MUTS_clusters_miss_VS_pam
MUTS_freq_clustered
MUTS_freq_disruptive
MUTS_freq_missH
MUTS_freq_missHM

MUTS_freq_truncating
MUTS_missense_clustercov
MUTS_missense_mutrec
MUTS_missense_rec_freq
MUTS_missense_recHM
MUTS_OncoFM_pvalue
MUTS_pams_count
MUTS_pams_freq
MUTS_pams_ratio
MUTS_pamsrec_freq
MUTS_trunc_count
MUTS_trunc_freq_cohort
MUTS_trunc_mutfreq

MUTS_trunc_vs_missbenign_ratio

MUTS_trunc_vs_missense_ratio
MUTS_trunc_vs_notrunc_ratio

MUTS_tuson_missHM_missbenign_ratio
MUTS_tuson_splicing_missbenign_ratio

MUTS_tuson_trunc_missbenign_ratio

# samples in cohort with CBS value> 1.1

# samples in cohort with CBS value<1.1

Logl0-ratio of countGain VS countLoss

# samples in cohort with CBS value>1.1 / cohort size

# samples in cohort with CBS value< 1.1 / cohort size

Logl0-ratio of missense VS PAM within OncodriveCLUST peaks

# of mutations in OncodriveCLUST peaks / # of samples with gene mutated

# of samples with truncating mutations or high impact missense / # of samples having gene mutations

# of high impact missense mutations not in OncodriveCLUST peaks / # samples with gene mutated

# of high and medium impact missense mutations not in OncodriveCLUST peaks / # samples with gene
mutated

# of samples with truncating mutations / # of samples with at least one mutation

# missense mutations in OncodriveCLUST peaks / # missense mutations / # amino acids covered by peaks
# recurrent missense mutations / # high and medium impact missense mutations

# recurrent missense mutations / # mutations (as in Vogelstein ez al.)

# samples with high and medium impact recurrent missense mutations / # samples with missense mutations
OncodriveFM P-value

# samples with PAM

# samples with PAM / # samples with gene mutations

# samples with PAM VS # samples with no PAM

# samples with PAM VS # of samples with gene mutation

# samples with truncating mutations

# of truncating mutations / # of samples with gene mutations

# truncating mutations / # mutations (as in Vogelstein et al.)

# samples with truncating mutations VS # samples with benign missense mutations

# samples with truncating mutations VS # samples with missense mutations

# samples with truncating mutations VS # samples without truncating mutations

# samples with high and medium impact mutations VS # samples with benign missense mutations (as
described in Davoli et al.)

# samples splicing variants mutations VS # samples with benign missense mutations (as described in Davoli
et al)

# samples with truncating (excluding splicing variants) mutations VS # samples with benign missense mu-
tations (as described in Davoli et al.)

Note: List of features initially created for characterizing LoF and Act genes. The description reflects the formula applied for the calculation of the features. All features
elaborated describe either mutation or CNA characteristics. Abbreviations used in the descriptions are: # (number sign): Count/number of, / (slash): divided by, CBS : circular
binary segmentation, truncating mutations: frameshift, stop gained and lost, splice donor and acceptor, missense: all missense mutations and insertions and deletions not
altering the reading frame, high and medium impact mutations: all missense mutations with and TransFIC impact of 1 and 2, benign missense: all missense with low or unknown
TransFIC impact, PAM : protein affecting: frameshift, stop gained and lost, splice donor and acceptor, missense, (gene) mutations: all mutations-affecting coding sequence,

VS : versus—a ratio has been obtained.
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(see Table 1 for detailed description of each). All features elab-
orate on somatic mutation and CNA patterns across data from
the pan-cancer 17 cohort. We expected LoF genes to be affected
more frequently by deleterious events such as CNA loss and
truncating mutations. Act genes should be more frequently
amplified and receive protein-affecting non-truncating muta-
tions, which may increase and/or alter the protein function.

To select the most informative features for the task of
distinguishing between Act and LoF genes, we compared the
distribution of the features in both categories of CGC genes
(Fig. 1). The features we considered can be divided into four
broad categories (Fig. 1A): (i) features that measure the relative
abundance of truncating mutations, (ii) features that reflect the
CNA status of the gene across tumors, (iii) features that account
for the relative abundance of PAMs and (iv) features that meas-
ure the degree of clustering of missense mutations along the pro-
tein sequence.

Features in Group iii show the poorest performance to dis-
criminate between CGC Dom and CGC Rec genes (light blue in
Fig. 1A). On the other hand, all the features in Group i (green in
Fig. 1A) rank at the top of performance of all features analyzed.
As expected, this reflects that Act genes (or proto-oncogenes) are
intolerant to truncating mutations because an active protein
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Fig. 1. A) The list of features ordered by Mann—-Whitney—Wilcoxon rank
sum test P-value significance. Features dependant on truncating muta-
tions are the best discriminators for LoF and Act genes. Features
described in (B) are marked with asterisk. A detailed explanation of
each feature can be found in Table 1. (B) Box plots comparing the dis-
tribution of the three non-redundant top-ranking features that have been
selected for the OncodriveROLE classifier in CGC genes annotated as
Dom and Rec

product is required for tumorigenesis. In LoF (or tumor suppres-
sor) genes the truncation of the protein product gene is positively
selected, which facilitates the identification of LoF candidates.
The best performing feature in this group was the ratio of trun-
cating mutations to the total number of coding mutations in the
protein (Fig. 1B).

The distribution of mutations within the gene (Group iv, dark
blue in Fig. 1A) differs significantly between CGC Dom and
CGC Rec genes. The CGC Dom genes have fewer mutational
hotspots, detected as clusters by OncodriveCLUST, than CGC
Rec genes, whose mutations tend to be more evenly distributed
(Supplementary Fig. S1) along the protein sequence. This is
probably because Act driver genes receive mutations that po-
tentiate their function, e.g. by constitutively activating a regula-
tory site, or cause a switch of the protein function. To achieve
such behavior through mutations, these must occur at specific
places in the sequence, which results in fewer numbers of recur-
rent sites (clusters) than in CGC Rec genes (Supplementary Fig.
S1). We elaborated a series of features based on impact, fre-
quency and clustering of missense mutations. Many did not
show any power of discrimination of CGC Rec and Dom. The
features that perform reasonably well are based on the recurrence
of missense mutations. The best-performing feature in this group
compares the ratio of missense mutations with total number of
PAMs within OncodriveCLUST peaks (MUTS_
clusters_miss_VS_PAM; Fig. 1). Another feature in this group
that performs relatively well is the ratio recurrent missense mu-
tations (MUTS_missense_rec_freq).

All features in Group ii are designed to capture the known fact
that LoF genes have a tendency to be deleted, whereas Act genes
are more frequently affected by amplifications (Davoli et al.,
2013). In this case, we found that the ratio of amplifications to
deletions across all tumors in the cohort achieved the best sep-
aration of the two groups of genes.

3.2 Developing a classifier to differentiate between LoF
drivers and Act drivers

Thereafter, we created a feature set that contained non-redun-
dant best-performing features from Groups i, ii and iv, disregard-
ing those of Group iii because of their poor performance
resulting  in  three  features: MUTS_trunc_mutfreq,
MUTS_clusters_miss_VS_PAM and CNA_cbs_logratio_GvL.
We tested six machine learning approaches trained with the
trimmed version of the CGC (see Section 2). For each gene,
the classifiers produced a score of the likelihood that it belonged
to the CGC Dom class. A score of value 0 means that the clas-
sifier regards the gene as an LoF beyond all doubt, whereas a
score of value 1 means it exactly resembles the model of an Act
gene. We assessed the performance of each classifier through the
ACC, the MCC and the COV of the driver set (all listed in
Supplementary Table S1). ACC and MCC validate the perform-
ance of the classifiers on the 76 CGC driver genes by means of a
leave-one-out cross-validation approach. We computed these
values for different classification probabilities thresholds to
select the cutoff that maximize the ACC and MCC, even at the
cost of reducing the COV. Then, we used these sets of values to
choose the classifier with the best performance and a reasonable
COV. Overall, randomForest produced the best results

i552

+10T ‘97 18nSny uo eIqe] nadwog JeIISIOATUN) B 9p BJ0I[qIg Ik /S10°s[euInolpIoyxo soneuLiojurolq//:dny woiy papeoumoq


,
a
;
b
;
c
;
d
,
d
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
to
a
d
Methods
)
)
)
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
coverage
http://bioinformatics.oxfordjournals.org/

OncodriveROLE classifies cancer driver genes

(Supplementary Table SI). We also trained classifiers with dif-
ferent combinations of the three selected features and included
MUTS_missense_rec_freq feature for testing purposes. We
found that multiple combinations of these features perform simi-
larly (Supplementary Table S2 and Supplemental Text). We
decided to use the randomForest classifier trained with the
three non-redundant features shown in Figure 1B to create
OncodriveROLE, under the rationale that features representing
the three independent groups could provide more information to
classify novel drivers. The method shows an ACC of 0.94, MCC
of 0.84 and COV of 88% in the leave-one-out cross-validation.
We further tested OncodriveROLE in an independent set of
tumor suppressor genes (Zhao et al., 2013) that are not present
in the CGC. OncodriveROLE accurately classified 91.7% of
those genes as LoF drivers (Supplemental Text).

3.3 Applying OncodriveROLE to lists of cancer
driver genes

We identified two recent studies in which identified novel cancer
driver genes could be classified with OncodriveROLE. The first
study detected cancer drivers by integrating four methods that
assess different signals of positive selection across samples of the
pan-cancer 12 dataset. This analysis resulted in 291 high-confi-
dence cancer drivers (Tamborero et al., 2013b). In the second
study, MutsigCV was applied in a cohort of about 5000 tumor
samples to obtain a cancer driver list composed of 260 genes
(Lawrence et al., 2013, 2014). The two lists will be referred to
as HCD and Cancer5000 further on. Even though both lists have
similar sizes, their overlap is only 50%, making the two gene sets
different as can be seen in Figure 2. As for the training set, we
applied the one-signal filter to only predict the role of genes
possibly acting as drivers in the dataset under evaluation result-
ing in 200 HCD and 144 Cancer5000 genes.

The overall distribution of probabilities of these two groups of
genes is roughly bimodal in both driver lists, which allowed us to
choose these symmetric cutoff values (Fig. 2 and Supplementary
Fig. S2) such as 0.3 and 0.7 for LoF and Act genes, respectively.
Other cutoffs may be used for the datasets under analysis depend-
ing on how strict a classification the user wants for their list of
cancer drivers. Interestingly, we classified three CGC Dom genes
as LoF (‘Dom? in Fig. 2). The genes in question are NOTCHI,
NPMI1 and CEBPA. All three have been implicated in leukemia
(Cancer Genome Atlas Research Network, 2013; Liu et al., 2013;
Ohlsson et al., 2014) and both NOTCH1 and NPM1 are anno-
tated in the CGC as partners of translocation events in leukemia.
NOTCHI has been described as an oncogene as well as a tumor
suppressor. Its actual role may depend on the tumor type (Licciulli
et al., 2013; Liu et al., 2013; Vogelstein et al., 2013). Equally,
CEBPA and NPM1 have been characterized as tumor suppressors
in the literature (Halmos e al., 2002; Sportoletti ez al., 2008). We
cannot be certain of the functional impact of the translocation on
the function of the product of the fused gene. It may associate to a
new promoter and change its expression accordingly, or it may be
truncated as a result of the fusion and thus function as an LoF.
For this reason, we had previously excluded all CGC Dom genes
that are solely associated to translocation events in the Census.
The plot in Figure 2 shows those genes labeled as DomT, and their

classification shows no clear resemblance to LoF or Act, which
supports our decision to remove them from the training set.

3.4 Comparison of OncodriveROLE with other
bioinformatics approaches

The 20-20 rule was created to identify mutational driver genes,
both oncogenes and tumor suppressor genes (Vogelstein et al.,
2013). Therefore, it differs from OncodriveROLE, designed to
classify previously identified driver genes into their most probable
roles. The simple 20-20 rule reaches a high ACC (Table 2) when
applied to the trimmed CGC list. However, it is unable to reach a
decision on many drivers where none of its two estimators (see
Section 2) surpasses the threshold of 20% (Tables 2 and 3).

We also compared the results obtained by the approach de-
signed by Davoli ef al. (2013), implemented in a classifier named
Tuson. As with the 20-20 rule, Tuson was created to distinguish
oncogenes and tumor suppressor genes from genes with passen-
ger mutations, instead of classifying previously identified cancer
drivers as is the case of OncodriveROLE. We found
OncodriveROLE  slightly outperforms Tuson in ACC and
MCC on the trimmed CGC dataset. Note that Tuson method
was trained with CGC genes, and the performance reported in
Table 2 does not remove genes in the training set, as it is done in
the leave-one-out cross-validation of OncodriveROLE. We can
conclude that well-known cancer genes are classified with a high
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Fig. 2. Classification of 200 (HCD list) and 144 (Cancer5000 list) cancer
driver genes into the classes Act and LoF. The training set of
OncodriveROLE constitutes of all ‘Dom’ and ‘Rec’ labeled data points.
‘Dom?" are CGC-annotated dominant genes excluded from the training
set because of strong resemblance to the ‘Rec’ genes and previous litera-
ture evidence of this role. ‘DomT’ genes are CGC-annotated dominant
genes only citing translocation events as prove and therefore not included
in the training set. All *-’ labeled data points are driver genes not anno-
tated in CGC, and whose prediction was the main goal of the study. The
thresholds are drawn at 0.3 (as top limit of the LoF class) and 0.7 (as
bottom limit of the Act class). Working with classification score thresh-
olds of 0.3 (as top limit of the LoF class) and 0.7 (as bottom limit of the
Act class), we classified 109 genes as LoF, 76 as Activating and left 15
genes as unclassified in the HCD list; meanwhile, we classified 97 genes as
LoF, 43 as Activating and left 4 genes as unclassified (Fig. 2) in the
Cancer5000 list. Genes for which we have observed <12 mutations
were directly classified as ‘No class’” and assigned NA values in the clas-
sifications results (see Supplementary Tables S4 and S6)
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Table 2. List of approaches and their performance on trimmed CGC
dataset

Method ACC MCC COV (%)
OncodriveROLE" 0.925 0.848 83
20-20 rule 0.895 0.769 75
Tuson 0914 0.817 92

“Results of leave-one-out cross-validation.

Table 3. List of approaches and their performance on the 290 drivers
from the HCD list and 260 drivers from the Cancer5000 list

Method Act/ LoF/ Unclassified Coverage
Oncogene Tumour (%)
suppressor
HCD
Oncodrive 76 109 15 92
ROLE 0.3/0.7
Oncodrive 58 96 46 77
ROLE 0.2/0.8
20-20 rule 23 96 81 60
Tuson 44 92 64 68
Cancer5000
Oncodrive 43 97 4 97
ROLE 0.3/0.7
Oncodrive 40 91 13 91
ROLE 0.2/0.8
20-20 rule 18 90 36 75
Tuson 32 90 22 85

ACC with all approaches. The main difference between the three
approaches lies in the COV that can be reached when predicting
the role of novel cancer drivers in tumorigenesis.

4 DISCUSSION

Two main rationales to detect LoF and Act driver genes acting
across tumor samples exist. The first approach consists in dir-
ectly detecting genes that exhibit known alterations patterns cor-
responding to these two classes from mutations and CNA data.
This strategy was first conceptualized by Vogelstein et al. (2013)
to be implemented later on as a machine learning algorithm by
Davoli et al. (2013). In the second approach, first driver genes
acting in tumor samples are detected by combining the signals of
positive selection they exhibit (Lawrence e al., 2014; Tamborero
et al., 2013b). Then, in a second step, these drivers are classified
into the two aforementioned classes exploiting similar alteration
patterns as in the first approach. This second two-step approach
has two main advantages. First, genes that do not exhibit clear
alterations pattern that define them as LoF or Act can still be
detected as drivers if they show clear signals of positive selection.
Second, the combination of several signals controls the ratio of

false-positive drivers identified (Tamborero et al., 2013b), which
is unattainable to the direct classification of genes.

This is the reason why we have decided to develop
OncodriveROLE, a machine learning classifier, which takes a
list of pre-selected driver genes and sorts them according to
their mode of action. We first carefully compared and selected
a set of features that best captures the differences of alterations
patterns of these two groups of drivers. We then used those fea-
tures to train the classifier, on a carefully trimmed subset of the
CGC genes. When applied to two recent lists of drivers, we found
that, even under strict classification conditions, OncodriveROLE
was able to classify more drivers than the 20-20 rule and the
Tuson machine learning algorithm.

The OncodriveROLE validation procedure identified several
likely misclassified drivers in the CGC. The most salient ex-
amples of these are probably some genes that drive hematopoi-
etic malignancies upon translocation and fusion with other
genomic regions, all classified as Dom in the GCG. However,
when analyzed using mutational and CNAs data from the pan-
cancer 17 dataset, some of them appear as clear LoF drivers. For
instance, OncodriveROLE assigns MLL, RUNXI1 and SUZI12
classification probabilities under 0.003 (see Supplementary
Tables S3-S6 for feature and classification values). These genes
could be Act drivers upon fusion to other genes, but LoF upon
mutations.

Even though OncodriveROLE is able to classify most of the
genes in the two drivers lists as LoF or Act, it still leaves few of
them unclassified. Some of these correspond to lowly recurrent
drivers whose mutational features are not correctly computed
because of the scarcity of their alterations. Sequencing more
tumors will certainly improve their classification. Others may
not have a clear enough pattern to be classified in one of the
two classes, as they could be exhibiting different roles in different
contexts. In some rare cases, the method misclassifies known
cancer genes. For example, KEAPI is classified as an Act
driver, although it is reported to lose its function upon mutation
(Hayes and McMahon, 2009; Shibata et al., 2008). A close look
at its mutational pattern reveals missense mutations dominate
and accumulate in certain regions of the protein. As member
of a ubiquitin-mediated proteolysis complex, the function of
KEAPI is probably essential to the cell, and its impairment is
likely lethal. Therefore, few truncating mutations may appear in
KEAPI, and it is ultimately misclassified by OncodriveROLE.
Future finer measurements of the impact of missense mutations
may help correcting this problem.

Summing up, in this article, we have described the develop-
ment and validation of OncodriveROLE, an approach to differ-
entiate between LoF and Act driver genes. The OncodriveROLE
classifier is freely available at http://bg.upf.edu/oncodrive-role as
an R object that researchers may use to classify the drivers they
have detected across a cohort of tumor samples. At the same
URL, the pre-computed TCGA pan-cancer 17 mutational and
copy number features used for the classification are available for
download.
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and the Spanish National Institute of Bioinformatics (INB).
M.P.S. and C.R.-P. are supported by FPI fellowships.

i554

+10T ‘97 18nSny uo eIqe] nadwog JeIISIOATUN) B 9p BJ0I[qIg Ik /S10°s[euInolpIoyxo soneuLiojurolq//:dny woiy papeoumoq


coverage
missclassified
inant
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu467/-/DC1
E.g.
n
paper
http://bg.upf.edu/oncodrive-role
,
http://bioinformatics.oxfordjournals.org/

OncodriveROLE classifies cancer driver genes

Conflict of Interest: none declared.

REFERENCES

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5-32.

Cancer Genome Atlas Research Network. (2013) Genomic and epigenomic land-
scapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 368,
2059-2074.

Chen,Y. et al. (2010) Ensembl variation resources. BMC Genomics, 11, 293.

Davoli,T. er al. (2013) Cumulative haploinsufficiency and triplosensitivity drive
aneuploidy patterns and shape the cancer genome. Cell, 155, 948-962.

Dees,N.D. et al. (2012) MuSiC: identifying mutational significance in cancer gen-
omes. Genome Res., 22, 1589-1598.

Flicek,P. et al. (2013) Ensembl 2013. Nucleic Acids Res., 41, D48-D55.

Futreal,P.A. er al. (2004) A census of human cancer genes. Nat. Rev. Cancer, 4,
177-183.

Gonzalez-Perez,A. and Lopez-Bigas,N. (2012) Functional impact bias reveals
cancer drivers. Nucleic Acids Res., 40, e169.

Gonzalez-Perez.A. et al. (2012) Improving the prediction of the functional impact of
cancer mutations by baseline tolerance transformation. Genome Med., 4, 89.
Gonzalez-Perez,A. et al. (2013a) Computational approaches to identify functional

genetic variants in cancer genomes. Nat. Methods, 10, 723-729.

Gonzalez-Perez,A. et al. (2013b) IntOGen-mutations identifies cancer drivers across
tumor types. Nat. Methods, 10, 1081-1082.

Halmos,B. et al. (2002) Down-regulation and antiproliferative role of C/EBP« in
lung cancer. Cancer Res., 62, 528-534.

Hayes.J.D. and McMahon,M. (2009) NRF2 and KEAPI mutations: permanent
activation of an adaptive response in cancer. Trends Biochem. Sci., 34, 176-188.

Hothorn,T. e al. (2006) Unbiased recursive partitioning: a conditional inference
framework. J. Comput. Graph. Stat., 15, 651-674.

Hudson,T.J. ef al. (2010) International network of cancer genome projects. Nature,
464, 993-998.

International Human Genome Sequencing Consortium. (2004) Finishing the eu-
chromatic sequence of the human genome. Nature, 431, 931-945.

Kandoth,C. (2014) MAF files - strictly filtered. http://dx.doi.org/10.7303/
syn1729383.2.

Kandoth,C. e al. (2013) Mutational landscape and significance across 12 major
cancer types. Nature, 502, 333-339.

Kuhn,M. (2008) Building predictive models in R using the caret package. J. Stat.
Sofiw., 28, 1-26.

Lambert,J.M.R. et al. (2009) PRIMA-I reactivates mutant p53 by covalent binding
to the core domain. Cancer Cell, 15, 376-388.

Lawrence,M.S. ef al. (2013) Mutational heterogeneity in cancer and the search for
new cancer-associated genes. Nature, 499, 214-218.

Lawrence,M.S. et al. (2014) Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature, 505, 495-501.

Licciulli,S. et al. (2013) Notchl is required for Kras-induced lung adenocarcinoma
and controls tumor cell survival via p53. Cancer Res., 73, 5974-5984.

Liu.N. et al. (2013) The emerging roles of Notch signaling in leukemia and stem
cells. Biomark. Res., 1, 23.

Ohlsson,E. er al. (2014) Initiation of MLL-rearranged AML is dependent on C/
EBPa. J. Exp. Med., 211, 5-13.

Olshen,L.B. et al. (1984) Classification and Regression Trees. Wadsworth Int.
Group. CHAPMAN & HALL/CRC.

R Core Team. (2013) R: A Language and Environment for Statistical Computing R
Foundation for Statistical Computing, Vienna, Austria.

Reimand.J. et al. (2013) The mutational landscape of phosphorylation signaling in
cancer. Sci. Rep., 3, 2651.

Shibata,T. et al. (2008) Cancer related mutations in NRF2 impair its recognition by
Keapl-Cul3 E3 ligase and promote malignancy. Proc. Natl Acad. Sci. USA, 105,
13568-13573.

Sportoletti,P. e al. (2008) Npml is a haploinsufficient suppressor of myeloid and
lymphoid malignancies in the mouse. Blood, 111, 3859-3862.

Strobl,C. et al. (2008) Conditional variable importance for random forests. BMC
Bioinformatics, 9, 307.

Tamborero,D. er al. (2013a) OncodriveCLUST: exploiting the positional clus-
tering of somatic mutations to identify cancer genes. Bioinformatics, 29,
2238-2244.

Tamborero,D. ez al. (2013b) Comprehensive identification of mutational cancer
driver genes across 12 tumor types. Sci. Rep., 3.

Vogelstein,B. et al. (2013) Cancer genome landscapes. Science, 339, 1546-1558.

ZhaoM. et al. (2013) TSGene: a web resource for tumor suppressor genes. Nucleic
Acids Res., 41, D970-D976.

+10T ‘97 18nSny uo eIqe] nadwio JeIISIOATUN) B 9p BO2J01[qIg I8 /SI0°s[euInolpIoyxo soneuLiojuiolq//:dny woiy papeoumoq


http://dx.doi.org/10.7303/syn1729383.2
http://dx.doi.org/10.7303/syn1729383.2
http://bioinformatics.oxfordjournals.org/




3.2 Assessing statistical significance of mutual
exclusive patterns amongst cancer driver

alterations

In this chapter | present a method which allows to assess
the significance of mutual exclusivity in the alteration
pattern of several cancer drivers. The implementation of
the method to assess the likelihood of the occurrence of
somatic alterations in a mutually exclusive manner
between samples was required for a manuscript that is
currently under revision. Our main interest was that the
method would respect the mutational burden for samples
and genes. The development and testing of the method
has been performed in collaboration with Abel Gonzalez-
Perez who has collected the mutational data and classified
the driver genes in the cancer modules within which we

searched for mutual exclusivity patterns.
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Introduction

The selective pressure acting upon certain pathways and functions
of the cells that are involved in the tumorigenic process is expected
to leave behind a traceable pattern of mutually exclusive alteration
between samples (Greaves and Maley 2012). The underlying as-
sumption is that a pathway that is needed to behave differently
within a cancer cell which may be achieved targeting genes of the
pathway. And once a pathway or module is altered, an alteration of
an equivalent target in the same pathway does not increase further
the fitness of the tumor and is therefore not selected for. Once one
of the possible targets has been altered and the pathway behaves as
required for the tumorigenesis, the selective pressure ceases to act
upon this pathway and a mutation of a further target becomes more
unlikely. Thus, upon screening a cancer sample cohort, it is ex-
pected that cancer driver mutations occur in a mutually exclusive
manner within pathways.

The somatic mutation datasets available nowadays provide a
unique chance to test pathways for mutual exclusive alteration pat-
terns for a big cohort. Mutual exclusive alteration patterns have
been reported for Glioblastoma, ovarian and lung cancer in 2011 in
approaches to detect de novo cancer drivers via their mutual exclu-
sive patterns (Ciriello et al. 2011; Vandin, Upfal, and Raphael
2011). Since then the available alteration data has grown consider-
ably and the detection of cancer mutational drivers has improved
substantially (Tamborero et al. 2013), which allows us to work with
consolidated cancer drivers. A very important feature to take into
account is the heterogenic nature of cancer samples and genes. The
alteration burden is not equal for all the samples and genes which
has implications for the measure of mutual exclusivity: Gene X and
Y both are more likely to be in altered state in a sample group of so-
called hypermutators — cancer samples with many alterations/muta-
tions. The probability of both genes being altered at the same time is
therefore elevated and if the case, does not necessarily reflect a se-
lection process but be a result of stochastic (passenger) alterations
due to genomic instability.
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We therefore propose the classification of the cancer drivers with
methods that test for traces of positive selection within cancer muta-
tions and classify the drivers in tumorigenic modules that under-
stood as groups of functionally related genes that when altered pro-
duce the same cancer phenotype. The method serves to test the in-
tegrity of the modules by a hypothesis-driven approach for testing
mutual exclusivity and takes into account the observed alteration
burden of samples and genes. Note that the test does not identify de
novo cancer drivers. The detection of mutually exclusive driver al-
terations helps on the one hand to understand tumorigenesis in dif-
ferent cancer types and discover possible homogeneity underlying
the heterogeneity of tumor samples and on the other to discover
routes to indirectly target driver alterations with anti-cancer drugs.

Material and Methods

Identification of mutational drivers: We obtained mutation data
for 27 cancer types from TCGA, ICGC and independent studies. We
then applied the IntOGen pipeline (Gonzalez-Perez, Perez-Llamas,
et al. 2013) in order to obtain a list of mutational cancer drivers for
each cancer type and as well the complete cancer samples cohort.
The detection of cancer drivers was performed by combining sev-
eral signals of positive selection as explained in (Tamborero et al.
2013) and (Rubio-Perez et al.). All data sources are listed in Table 2
of this chapter along with the abbreviations of the tumor types.

Modules: The detected mutational driver genes were classified
into 41 biological modules (gene sets), which were created based on
literature of the gene in question. Additionally we annotated each
gene with known implication in one of the hallmarks of cancer. A
gene may be included in multiple modules which are listed in Table
1 of this chapter.

Computation: To test the significance of an observed pattern of
mutual exclusivity, we compared its signal (the total number of
samples where at least one gene in the module bears an alteration)
to that of 1x10° randomly generated mutational patterns, respecting
the number of alterations observed in each gene and the mutational
burden of each sample, following the rationale of the CDCOCA
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method (N. Kumar et al. 2011).
See Figure 1, a step by step illustration of the MutEx algorithm.

1. We calculate sample alteration weights by summing up the
positive events, in our case mutations, for each sample and
divide it by the total alteration count. (Figure 1, step 1).

2. For the gene set in question the total signal (all positive
events within the binary matrix) and the coverage (number
of samples with at least one mutation) are calculated for
later reference (Figure 1, step 2).

3. Then, permutations were performed by a random generation
of altered samples per gene in which the number of altered
samples per gene is maintained as observed and the overall
alteration burden per sample was preserved by using the
sample alteration weights as alteration probability in each of
the samples (Figure 1, step 3). For each permutation we cal-
culate the coverage.

4. With the array of coverage values from the permutation we
can calculate the empirical p-value and Z-score. Formulas
are listed in Figure 1, step 4.

MutEx has been implemented and run using the R environment (R
Core Team 2013). Results were only computed for modules that
have at least 2 driver genes within the cancer type in question. The
method has also been implemented for Gitools, see details in Chap-
ter 3.3.

Results

We collected a cancer tumor cohort of almost 7000 samples and
identified mutational drivers following the rational described in
(Rubio-Perez et al.; Tamborero et al. 2013) for all cancer cohorts of
each cancer type and a pan-cancer cohort in order to obtain muta-
tional driver lists. All data sources are listed in Table 1.

Cancer driver genes were manually mapped into functional mod-
ules and sub-modules for each cancer type, including both well-
known cancer drivers as well as novel cancer genes which are func-
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tionally connected through pathways (Minoru Kanehisa and Goto
2000; Minoru Kanehisa et al. 2014). In order to assess the likeli-
hood of each of the modules to function as a driver module in a
given cancer type we implemented the MutEx method for the R
programming environment and applied it to each of the 27 cancer
sample cohort and the pool of all TCGA samples, designated by
PAN. Figure 2 shows the Z-scores of each module in for each can-
cer type and module. The colors of the heatmap cells designate the
tendency to mutual exclusivity of the mutations within the module
whereas the number within the cells shows the proportion of sam-
ples that are mutated within the module.

Many of the non-significant results can be explained with the fact
the corresponding modules have very few mutations recorded in
that module whereas the cohort of all samples together, the PAN
column, gives more statistical power to the driver detection on one
hand and the MutEx calculations on the other. This effect is visible
in the Apoptosis, HDAC and targets and Cadherin prod control
modules. The PAN results let us conclude that many modules in-
deed may constitute units of the regulatory network that are targeted
as a pathway by tumorigenesis. But a significant mutually exclusive
pattern within the PAN cohort, does not mean that same selective
pressure acts upon a specific cancer type. E.g. the MAPK-JNK
Stress Resp or the PI3K-PI3K activation modules show tendency to-
wards mutual exclusion in some cancer types whereas in others
clearly not in spite of a high proportion of samples mutated within
the module (See Figure 2 and 3). A possible explanation is that the
canonical units that are targeted by the tumorigenesis depend on the
tissue of origin and cancer type.

Discussion

As opposed to approaches which use a combination of some prior
knowledge and unsupervised combinations (Ciriello, Cerami, et al.
2013; Vandin, Upfal, and Raphael 2011) we chose an entirely hy-
pothesis driven approach for testing the mutual exclusivity of muta-
tional events. This choice is due to our goal which was not to detect
driver genes de novo but rather understand which cancer drivers
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Figure 1: Step-wise illustration of the MutEx algorithm.

The algorithm describes how the empirical p-value and the Z-score are
calculated for the gene set or module consisting of genes 1, 2 and 3. See the
methods section for a detailed explanation of each step.

85



may act coordinately in tumorigenesis. Thus, before applying the
MutEx algorithm we needed to detect the driver genes and map
them into modules according to their known functions. This ap-
proach lets us perform the MutEx testing in a computation-efficient
manner as we consider only a subset of all possible combinations of
genes that bear driver mutations. E.g. the MEMo approach is com-
putationally expensive as no limitation to what functional units to
examine is supplied and many possible combinations are explored.
A disadvantage of this very property is that we are limited to the
available knowledge of interactions, which may be incomplete.

Another important property of MutEx is that the mutational burden
of a cancer sample is taken into account, as opposed to conventional
statistical tests of distribution imbalances such as the Fisher's exact
test or the solution proposed by (Yeang, McCormick, and Levine
2008). The MutEx algorithm has also been implemented in the Java
language as a part of the Gitools application. We have thus brought
together the visual interactive exploration of the pattern of alter-
ations across tumor samples of genes in a module and its statistical
analysis (See chapter 3.3).
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Figure 2: Z-scores for mutual exclusion of mutations within all 41 modules
and 27+1 sample cohorts.
Cancer types are listed in columns whereas modules are shown in rows. Modules
that show a clear bias towards having a mutually exclusive mutational pattern
are colored in dark red in the respective cancer tissue. Grey cells show
insignificant results and white cells represent module-cancer type combinations
for which not enough mutations were recorded in order to apply MutEx. Blue-
shifted colors are modules that have tend towards overlapping mutations
amongst the genes. The numbers in the cells designate the proportion of samples
that is mutated within the module.
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headers show the tissue code and color the project sources in different colors A
shows the MAPK-JNK Stress Response module for the 510 out of 1148 breast
carcinoma (BRCA) samples covered by 540 mutations in the gene set. B displays

the data for the PI3K-PI3K activation module in which 183 out of 388 lung
adenocarcinoma (LUAD) samples bear 192 mutations. Both modules belong to
the proliferation hallmark and the respective modules are do not a significant
tendency of mutual exclusive mutational patterns in the other tumor type.
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3.3 Exploring cancer genomics data with interactive

heatmaps in Gitools 2

The exploration of multidimensional cancer genomics data
imposes numerous challenges in terms of data collection,
normalization and harmonization. In this chapter | present
a manuscript in preparation that describes Gitools, a data
visualization software, together with comprehensive cancer
genomics data sets from several TCGA tumor sample
cohorts and the IntOGen resource. For the effective
navigation of those large multidimensional cancer
genomics data sets, we developed a new version of
Gitools, version 2, which is able to load and display the
data as editable heatmaps. Jointly with Jordi Deu-Pons we
have particularly worked on the implementation of new
analyses, the improvement of the user's interface, the data
access management (loading and saving) as well as

interaction with third-party tools.

Schroeder, M.P, Deu-Pons, J., Tamborero, D., Perez-
Llamas, C., Gonzalez-Perez, A. and Lopez-Bigas, N.
Exploring cancer genomics data with interactive heatmaps in

Gitools 2. (in preparation).
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Abstract

The increased abundance of profiled genomic, transcriptomic and
epigenomic data from multiple tumor types is providing a valuable
data resource for cancer research. The complexity and size of such
datasets hampers the intuitive exploration of this valuable data by
many cancer researchers and clinicians. Data pre-processing and cu-
ration as well as intuitive software is needed to provide easy access
to this data. We have compiled genomic, transcriptomic, epige-
nomic and clinical data of several large cohorts of tumor samples, to
form multidimensional matrices ready to be explored using Gitools
interactive heatmap visualizer and analyzer. In order to efficiently
explore these matrices we have developed a new version of Gitools.
Gitools 2 is able to load heavy data matrices in a memory efficient
way, possesses an improved user’s interface and includes new func-
tions and analysis options specifically designed for the study of
multidimensional cancer genomics data. Gitools 2 and prepared
datasets are available from within the application and at
http://www.gitools.org.

Introduction

The complexity of cancer genomics has given rise to large consor-
tia such as The Cancer Genome Atlas (TCGA) (The Cancer
Genome Atlas Network 2008) and The International Cancer
Genome Consortium (ICGC) (Hudson et al. 2010), which aim to
complete genomic, transcriptomic and epigenomic profiles of at
least 500 samples of numerous tumor types. Several independent
cancer genomics datasets covering different cancer types have been
published (The Cancer Genome Atlas Network, 2008; The Cancer
Genome Atlas Network, 2013; The Cancer Genome Atlas Network,
2013a; The Cancer Genome Atlas Research Network, 2011), and
one important challenge that arises is how to visually explore these
large and complex data efficiently to contribute to the final goal of
speeding up cancer research.

There are two main challenges to visually explore large cancer ge-
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nomics datasets: 1) datasets are big, complex and difficult to manip-
ulate for most researchers and ii) multitude of different questions
can be addressed using these datasets. Thus there is a need for visu-
alization software that allows researchers to efficiently and flexibly
explore cancer genomics datasets in a user-friendly manner.

Several programs and web portals exists that facilitate cancer ge-
nomics data access, such as the TCGA Data Portal (https://tcga-da-
ta.nci.nih.gov/tcga/), Synapse (Omberg et al. 2013), the cBio Can-
cer Portal (Cerami et al. 2012), the UCSC cancer genome browser
(Zhu et al. 2009) and IntOGen (Gonzalez-Perez, Perez-Llamas, et
al. 2013; Gundem et al. 2010). Cancer genomics data is often vis-
ually represented in one of these three basic visualization types: ge-
nomic coordinates, matrix heatmaps and interaction networks (as
covered in a recent review (Schroeder, Gonzalez-Perez, and Lopez-
Bigas 2013)).

Heatmaps, in particular are useful intuitive graphical representa-
tions of matrices frequently used to represent transcriptomics and
genomics data. Many existing tools and resources can represent ge-
nomics data, especially expression values, as heatmaps (Lex et al.
2012; Pavlidis and Noble 2003; Michael Reich et al. 2006; Saeed et
al. 2003). In most cases heatmaps are generated as static images,
which fall short to address the myriad of questions that arise from
the analysis of these multidimensional cancer data sets, which in
principle require that the user is able to flexibly interact with the
heatmap.

Three years ago we presented Gitools an interactive heatmap visu-
alization tool accompanied with some common analyzes, such as
enrichment and correlation studies (Perez-Llamas and Lopez-Bigas
2011). The heatmaps in Gitools can represent multiple values in
each cell, which makes it especially well suited for the representa-
tion of multidimensional cancer genomics data. When using Gitools
to show cancer genomics data columns and rows normally represent
tumor samples and genes respectively, and each cell contains multi-
ple values for the different omic profiles obtained. Its interactive ca-
pabilities allow the user to filter, sort, move and hide rows and col-
umns in the heatmap in context of gene and tumor sample annota-
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tions and to launch several common exploratory analyses such as
correlations, clustering, enrichment and statistical comparisons be-
tween groups of samples. A built-in option allows the users to sort
the genes and samples within a heatmap following the pattern of the
mutual exclusivity of alterations and test if the distribution of mu-
tual exclusivity is expected with the given distribution of events
amongst samples and genes. In summary, we have developed the
second generation of Gitools which presents fundamental improve-
ments in three main areas of the exploration of oncogenomics
datasets. First, data manipulation has been reinforced to allow load-
ing, exploring and analyzing bigger datasets in desktop computers,
and data sharing and interoperability with other common tools has
been introduced. For example, Gitools 2 is integrated within
GenomeSpace (http://www.genomespace.org) and can inter-operate
with the Integrative Genomics Viewer (Thorvaldsdottir, Robinson,
and Mesirov 2012), allowing the user to explore the same data in
two complementary visualization tools that can communicate with
each other. Second, the interface has been enhanced to account for
more intuitive heatmaps handling and exploration. The Graphic
User Interface (GUI) provides a more streamlined workflow and the
gene and sample annotations now play a critical role in the process
of exploration. Third, new analyses linking several data dimensions,
called data layers in Gitools, in the dataset have been implemented.
One example of these are comparisons of the values of one dimen-
sion in the matrix in groups formed by values in another dimension.

We present here a data repository of compiled genomic, transcrip-
tomic, epigenomic and clinical data of several large cohorts of tu-
mor samples, ready to be explored in the form of interactive
heatmaps with Gitools 2. Currently the repository contains 19
heatmaps generated from data obtained from two main sources:
TCGA (The Cancer Genome Atlas Research Network et al. 2013)
and IntOGen-mutations (Gonzalez-Perez, Perez-Llamas, et al.
2013), which covers more than 5000 tumor samples and contains
data from 12 different cancer types. We present specific examples in
which browsing this data in the form of Gitools interactive
heatmaps allows to easily answer key questions related to cancer bi-

ology.
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Results

We first describe the cancer genomics datasets prepared to be ex-
plored with Gitools and available at www.gitools.org/datasets (Ta-
ble 1), we then explain Gitools software improvements designed to
effectively explore this data, finally we depict some use cases of
these data employing Gitools 2.

Oncogenomics datasets ready to be explored with

Gitools

TCGA pan-cancer 12 heatmaps

The TCGA pan-cancer 12 dataset consists in the union of twelve
cohorts of samples of different tumor types. Each tumor sample has
been probed for various genetic, epigenetic and transcriptomic al-
terations, such as somatic mutations, copy number alterations
(CNAs), promoter methylation and mRNA expression levels. Addi-
tionally, patients’ information has been gathered, yielding a rich
dataset of clinical information. We have collated the aforementioned
omics data, together with a set of tumor and patient’s clinical anno-
tations into a multidimensional Gitools data heatmap, containing in-
formation for 5'065 samples and 22’047 protein-coding genes and
five data layers (see Table 1 and Table 2 for a detailed explanation
of the content of the matrix).

We have prepared a series of meta-data for both samples and genes
which can be added as labels to the columns' or rows’ headers and
can be used to operate with, such as when applying filters or orders
based on those annotations or to compare profiles among annotation
groups (see case studies below). In Figure 1, the annotations added
as column headers are TCGA-Project Id and Sample Id, while gene
annotations, added as row headers are CGC (Cancer Gene Census),
OncodriveFM g-value and the Gene Symbol. The complete set of
sample and gene annotations is listed in Table 2.

Protein expression data measured by RPPA (reverse phase protein
array) technology for 3467 tumor samples are also ready to navigate
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in a separate heatmap. This heatmap has 131 rows corresponding to
proteins probed in the protein array (J. Li et al. 2013).

We have also prepared an excerpt from TCGA pan-cancer heatmap
focused on driver genes and in which samples are grouped by
COCA subtypes according to (Hoadley et al. 2014). This heatmap
contains information only of genes annotated in the cancer gene
census (CGC) (Futreal et al. 2004) and those 291 genes detected as
high confidence drivers as described in (Tamborero et al. 2013).

TCGA individual projects

In addition to the TCGA 12 pan-cancer matrix we have prepared
heatmaps focused on each particular TCGA project, which contains
only samples of that tumor type. This avoids downloading large
amount of data to those users interested only in a particular tumor
type. Some of those heatmaps contain specific annotations only rel-
evant for that tumor type, for example, Breast Cancer dataset con-
tains the annotation of intrinsic subtypes for each sample and the
Glioblastoma tumors are annotated with Glioblastoma molecular
subtypes Classical, Mesenchymal, Neural and Proneural (Table 1).
The expression data has been median-centered for each individual
project in order to reflect expression differences relative to the
project cohort rather than all the pan-cancer12 dataset.

IntOGen-mutations datasets

IntOGen-mutations is a platform devoted to identify cancer driver
mutations, genes and pathways across tumour types on the basis of
the analysis of somatic mutations from thousands of tumour re-se-
quenced genomes (Gundem et al. 2010; Gonzalez-Perez, Perez-
Llamas, et al. 2013). We have prepared heatmaps summarizing the
information contained in IntOGen-mutations on the analysis of 28
independent cancer genome sequencing projects covering more than
4600 tumors (Table 1).
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Improvements of Gitools 2

Gitools was originally developed to visualize high-throughput data
in the form of matrix heatmaps and to be able to interact with them
and perform some exploratory analyses (Table 3; Perez-Llamas and
Lopez-Bigas 2011). Gitools 2 presents major improvements over
the original software that can be summarized in three main points: 1)
improved data manipulation and data storage, ii) more intuitive
graphic user interface, iii) introduction of new analysis options.

Improved data manipulation and data storage

Some cancer genomics datasets describe above have large sizes, of
the order of several gigabytes (Gb). To be able to explore this data
powerfully using regular computers we have specifically improved
the efficiency to handle big datasets in Gitools 2. On the basis of the
.tabix (H. Li 2011) file indexing for genomic coordinates, we devel-
oped a new format for multidimensional matrices and tables
(.mtabix) in order to save RAM (Random-Access Memory) when
loading large matrices. For example, the TCGA pan-cancer matrix
has a file size of 2.2 Gb in the flat text file format, which would in-
crease when loaded into the application's memory. The new .mtabix
format indexes and compresses the data matrix down to 380 Mb on
disk and only reads and decompresses the data needed for visualiza-
tion. This allows loading and browsing this heatmap at any desktop
computer with only 1 Gb of available RAM.

In order to make it easy to load user’s own data, now Gitools can
open any text file with tab, comma or semicolon separated data
fields. Data files can be either in a matrix format, with column iden-
tifiers in the first line and row identifiers in the first column of each
line, or a table format with lines containing data for a heatmap cell
as well as the column and row identifier. If multiple data sets for the
same sample are available, it is possible to integrate them by im-
porting the additional data file as new data layer.

Interoperability with other tools

We have developed an interface for Gitools that can be used for in-

108



teroperability with other tools or platforms. This interface has facili-
tated the interoperability of Gitools with Integrative Genomics
Viewer (IGV) (Thorvaldsdottir, Robinson, and Mesirov 2012) and
with GenomeSpace (M. Reich et al. 2013), in a way that it is possi-
ble to run Gitools directly from the GenomeSpace or open data
from IGV directly into Gitools. IGV communicates to a running in-
stance of Gitools and GenomeSpace starts a new Gitools using the
Java Web Start available at our server. Both options are available to
any developer.

More intuitive graphic user interface

The browsing interface of Gitools has been re-designed and the
control panels to the left have been minimized, so that the heatmap
occupies more space (see Figure 1B). Other changes make the
heatmap browsing and editing easier and quicker for the user: a
right-click on gene and sample annotations now reveals a contextual
menu which provides many readily accessible options, such as sort-
ing, filtering and searching the rows and columns of the heatmap in
function of the given annotation. Rows and columns can now be
dragged and dropped to the position desired by the user. Zooming
allows to rapidly change the perspective and amount of data dis-
played on screen. The minimal zoom (broadest view) permitted is 1
pixel height and width per cell. A new button to open the heatmap
as a static image in a new tab in order to view its status in full size
is available in the toolbar. Following exploration and analysis,
heatmaps can be exported as image files either in bitmap (PNG) or
in scalable (SVG) format for later use in publications.

Additional annotations to heatmaps are very important to correlate
clinical variables with genomics and transcriptomics profiles within
the data matrix. Thus Gitools allows the user to add color-coded an-
notations as headers to rows and columns and to sort them both as
text and numerically. Rows and columns can also be annotated with
aggregation functions. For example, the mean expression value per
tumor type can be added as an annotation track. Specific contextual
menus in columns and rows headers help the user to sort, group and
filter based on annotations. Thus, the heatmap can easily be sorted
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following annotations to samples, such as tumor type and anatomi-
cal site to highlight differences in genomics/transcriptomics profiles
between clusters or groups of samples.

The color coding of the heatmap and header data is flexible; there
are several kinds of color scales to represent different data types. In
particular, the new categorical scale allows to visualize and annotate
the data points for categorical values, such as the Genomic Alter-
ations data layer in the TCGA pan-cancer matrix (see Figure 1).
Each color scale comes with an event classifier. According to the
value cut-offs chosen in the color scale, the event classifier can de-
cide if a specific value is an event or a non-event. For example, in
the p-value color scale, all values passing below the significance
threshold are events. This information is displayed in a selection-
specific context box and is used for the mutual exclusivity sorting
and weight calculations in the statistical test. Upon selecting rows
and/or columns, the selection specific context box displays simple
statistics that may be useful to the user. For example when viewing
data represented by a categorical scale such, the counts of occur-
rence of each category are reported. If the selected data is repre-
sented by a linear scale, mean and standard deviation are reported as
well as a count of adjustable events (above scale values, below scale
values).

New analysis options

In addition to exploratory options, Gitools contains some built-in
analysis to be done over the heatmaps (Table 3). In Gitools 2 we
have included several new analyses, which are especially useful to
analyze cancer genomics data, although are not exclusive for this
type of data. The mutual exclusivity sorting and testing feature (ap-
plied in Fig. 1, 2A, 2B and 2C) helps the researcher to identify gene
sets that follow this alteration pattern (case study 1), which may in-
dicate pathways containing cancer genes with driver alterations in-
volved in tumorigenesis (Ciriello et al. 2011). A permutation based
approach (see chapter 3.2 for details) allows to test the significance
of mutual exclusivity and co-occurrence in the alteration pattern of
a gene set. The new Group Comparison analysis allows the user to
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perform a Mann-Whitney-Wilcoxon pairwise comparison of two
groups of samples, in order to detect significant differences between
them. Samples may be grouped using their identifiers, annotations
or values in the data layer being compared or any other. One exam-
ple involves grouping samples with the same copy number status of
a given gene, and detect differences of gene expression levels be-
tween them, thus measuring the cis- or trans- effect of amplifica-
tions and deletions (see case study 2).

The clustering methods for numerical clustering of the heatmap
have been rewritten and their default settings are adjusted to provide
good clustering results with different data types. In particular the hi-
erarchical clustering opens the hierarchical tree as a bitmap file in a
new tab. In the heatmap tab, the hierarchical cluster is represented
by color codes at different levels of the hierarchical tree (Figure 2),
simplifying the information for better understanding and staying
valid upon changing the order of the rows or columns. Upon per-
forming a clustering the new bookmark function is used to store the
order rows and columns and visible data layer of the heatmap in a
heatmap bookmark. The bookmarks are saved along with the
heatmap to the disk and can be restored later on.

Case studies: Visualizing pan-cancer data with Gitools

In the following case studies we describe several questions that
may be answered through exploration of the pan-cancer dataset pro-
vided with Gitools 2.

Searching for mutational cancer drivers across 12 cancer

types

The discrimination between driver — that cause or promote tu-
morigenesis-- and passenger genes is still a challenge even though
intense research in that direction has been done in recent years
(Kandoth et al. 2013; Lawrence et al. 2014; Tamborero et al. 2013).
In order to be able to help the researcher to spot likely driver genes,
we have added to the pan-cancer heatmap the annotations of several
bioinformatics methods that identify mutational driver genes: Ac-
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tiveDriver (Reimand, Wagih, and Bader 2013), MuSiC (Dees et al.
2012), OncodriveFM and OncodriveCLUST (Tamborero, Gonzalez-
Perez, and Lopez-Bigas 2013; Gonzalez-Perez and Lopez-Bigas
2012). We have also annotated genes that are High Confidence
Drivers (HCDs) and Candidate drivers (CDs), determined as de-
scribed elsewhere (Tamborero et al. 2013). Briefly, these two
groups were retrieved after combining the results of the aforemen-
tioned methods. Additional gene annotations include genes in the
Cancer Gene Census (Futreal et al. 2004) and the pan-cancer Mut-
Sig results (syn1715784.2; (Lawrence et al. 2014)). Once the
PCMD matrix is loaded, annotations can be visualized at the ex-
treme right of each row as indicated in Figure 1. Because re-
searchers may be interested in a small group of driver candidates, it
may help to see if the alterations have an overlapping or mutually
exclusive alteration pattern in this group, as represented in Figure
3A. There, genes that exhibit a mutually exclusive pattern of alter-
ations in Glioblastoma (Ciriello et al. 2011) samples have been
sorted according to the alteration data using the built-in mutual ex-
clusivity sorting capability. In Figure 3A we can see that alterations
in these genes cover a large fraction of the cohort. A further ex-
ploratory step could be aimed at finding potential drivers in the rest
of the cohort (not displayed). This can be achieved by hiding all the
samples where these genes are mutated and browse the mutations in
the remaining tumor samples.

The cis-impact of CNAs on gene expression

Tumor genomes contain changes in the number of copies of certain
chromosomal regions. We included CNA events in the pan-cancer
alterations matrix relating each events to all the genes in the af-
fected chromosomal region. CNA events can be browsed in the pan-
cancer heatmap at two different data layers: CNA Status represents
homozygous losses of a gene in blue and multi-copy amplifications
in red, labeled accordingly in Gitools. In Genomic Alterations data
layer, the sample CNA status of each gene can be visualized to-
gether with protein affecting mutations. The pan-cancer RNA-se-
quence data can be visualized in the Expression data layer and, then
directly compared to the CNA status. A decrease in gene expression
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is expected for homozygously or heterozygously lost genes which
could help elucidate their implication in tumorigenesis; amplified
genes involved in tumorigenesis are expected to show higher ex-
pression values. It is therefore useful to test whether the CNA of a
gene has a cis-effect on its expression. The “Group Comparison”
capability that has been added recently to Gitools allows the user to
compare the values of two groups of samples employing the Mann-
Withney-Wilcoxon test. We have performed this test for the whole
PCMD Matrix and annotated the rows with the corrected p-value
for negative or positive cis-effects, as shown in Figure 3B, followed
by two column annotations marking which genes are mutational
HCDs, and their chromosomal location. The figure contains the
heatmaps of the CNA Status and Expression data layers. The genes
with the 10 most significant Group Comparison p-values are dis-
played. Should a user want to perform a Group Analysis for a par-
ticular subtype, it can be easily done with the data we distribute fol-
lowing the on-line Tutorial at our documentation website
(http://www.gitools.org/documentation).

Exploring molecular differences between cancer subtypes

In a large cohort of different tumor types such as the Pan-cancer
data set, clustering and stratification of samples based on genomic
features becomes an interesting way to assess similarities or impor-
tant differences between samples. The PCMD Matrix contains sev-
eral clinical annotations for each sample that can be employed to
stratify patients. In Figure 3C, the integrated alterations data of the
pan-cancer heatmap is annotated and sorted by the International
Classification of Diseases (ICD-10) (http://www.who.int/classifica-
tions/icd/en/) cancer site in a manner that allows to compare ge-
nomic alterations between tumors from different sites. The figure
shows that mutations in e.g. TP53 or APC are unevenly distributed
between sites. It is thus possible to visually recognize differences in
the mutational frequency of genes across cancer sites. (This numeric
gene annotation has been added by an aggregation function within
Gitools.) By means of the Group Comparison analysis the user can
test if two groups of samples that seem different in their mutational
patterns, also differ in the expression values of certain genes, analo-
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gously to the approach of the cis-impact case study.
Sample Level Enrichment Stratification

Changes in the level of expression of individual genes are complex
and difficult to interpret and it is often easier to study the transcrip-
tional changes of groups or modules of genes. Gitools has a built-in
capability to perform a Sample Level Enrichment Analysis (SLEA)
(Gundem et al. 2010). A SLEA result reveals the relative transcrip-
tional status of gene sets in each input sample. Figure 3D depicts
the results of a SLEA which represents the relative expression status
of eight core KEGG pathways (M. Kanehisa et al. 2010) and a set
of chromatin regulatory factors (Gonzalez-Perez, Jene-Sanz, and
Lopez-Bigas 2013). The three color-coded column headers repre-
sent annotation data (from top downwards): TCGA project, cancer
tissue site and ICD-O 3 histology. Some obvious differences in the
expression status of modules between tumor types are easy to ob-
serve. The samples of the acute myeloid leukemia cohort show very
high relative expression of chromatin regulatory factors when com-
pared to other cancer types. On the other hand, kidney tumors show
very high relative expression of Cytokine-Cytokine receptors path-
way and very low relative expression levels of chromatin regulatory
factors and Cell Cycle genes. A SLEA analysis can be carried out
directly within Gitools for any gene set submitted by the researcher.
Any annotation for rows and columns such as those mentioned
above may serve as criteria for stratification. Gitools now allows to
sort and filter by any annotation loaded, be it text or numeric, and
this option is easily accessible by right clicking on the column or
row headers. This empowers the researcher to easily break big data

matrices into smaller subsets without the necessity of any coding
skills.

Discussion
Although several other heatmap viewers are available (Lex et al.
2012; Pavlidis and Noble 2003; Saeed et al. 2003; Michael Reich et

al. 2006), Gitools 2 is currently the only one that allows the de-
scribed high degree of interactivity in combination with the flexibil-
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ity to import any additional user data. This is a key aspect of its con-
ceptual design that makes it very suitable for the type of analyses
described in the use cases, particularly, in large datasets like the
pan-cancer cohort. Its efficient data management in terms of mem-
ory usage permits its employment in almost every personal com-
puter and increases its value in the context of research and clinical
settings. With Gitools 2, researchers are able to visually explore and
analyze both pre-compiled or ad-hoc datasets. Such exploratory
analyses can aid to propose hypotheses on the involvement of can-
didate driver genes in tumorigenesis in particular cancer types. Fur-
thermore, they help to identify new profiles of genomic alterations
that define specific groups of tumor samples.

The new Gitools 2 software as well as all the pre-compiled
datasets are freely available at http://www.gitools.org/datasets. For
illustrative purposes, we have prepared four use cases of Gitools 2
in the PCMD matrix and a genomics alterations and mutations sum-
mary matrix available under the same URL. All examples can be
downloaded and then opened within Gitools 2. Additionally to the
pan-cancer matrix, the reader may find cohort specific matrices,
with annotations of four specific mutational driver detection meth-
ods: ActiveDriver, MuSiC, OncodriveCLUST and OncodriveFM.

Downloading the pre-compiled matrices and Gitools 2 enables off-
line exploration of all mutations, copy number alterations and ex-
pression data of the TCGA pan-cancer. Heatmaps configuration can
be saved and reopened later and can also be exported as bitmap or
vectorial image files for publication, or sharing with collaborators.
If the researcher is interested in the data itself, it is possible to ex-
port it in a flat file format, both in matrix and in table form.

The software architecture of Gitools 2 allows loading any dataset
in a matrix format. Thus, in addition to explore the pre-compiled
TCGA data, users can load their own data in Gitools 2: the user may
add further information to TCGA data, for example extra annota-
tions to samples or genes, or load a custom dataset of cancer ge-
nomics data. This can be done with a flat matrix file or, in case of a
multidimensional data set, a flat text file or spreadsheet in table for-
mat. Navigation settings are configurable for each data data layer, in
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the panels below the details box.

In summary, we have presented a second generation Gitools, opti-
mized to explore large multidimensional oncogenomics heatmaps
interactively. We foresee that this new version of Gitools and the
datasets pre-compiled for this paper (available at http://www.gi-
tools.org/datasets), will simplify the effective exploration of multi-
dimensional oncogenomics datasets by cancer researchers We could
already observe a relative popularity of the second generation Gi-
tools which has seen several public software releases during the last
year: We have registered about 4500 events (downloads and
launches) for the Gitools 2 application and about 1000 events for
the prepared datasets. For both figures, the events counts from
Barcelona have been removed.

Methods

Pan-cancer data set compilation

All pan-cancer related data have been downloaded from the pan-
cancer repository at Synapse (Omberg et al. 2013), id syn300013.
Samples with at least one mutation were retrieved from
syn1729383, after excluding 71 considered as hypermutated sam-
ples according to the criteria described in that repository. Copy
number alteration data was retrieved from syn1695369; only multi-
copy amplifications or homozygous deletions were considered as
copy number changes. Methylation data has been obtained from
syn2486658, protein expression from synl1756922. Finally, expres-
sion values were retrieved from the RNA-seq data available in
syn1695373.

Patient Annotations

All patient annotations were downloaded from the same Synapse
pan-cancer collection (syn1446125.3, syn1446151.3, syn1446088.3,
syn1446058.3, synl446167.2, synl446078.3, synl446135.3,
syn1446109.3, synl1446094.3, synl446118.3, synl1446065.3,
syn1446101.3) with the exception of the PAMS50 calls and Glioblas-

116



toma subtype annotations, which were downloaded from the UCSC
Cancer Genomics Browser.

Gene Annotations

General gene information and description were downloaded from
the Ensembl Biomart version 71 (Kinsella et al. 2011). The annota-
tions for the driver calling methods ActiveDriver ((Reimand, Wagih,
and Bader 2013), MuSiC (Dees et al. 2012), OncodriveFM and On-
codriveCLUST (Gonzalez-Perez and Lopez-Bigas 2012; Tam-
borero, Gonzalez-Perez, and Lopez-Bigas 2013) have been gener-
ated from the corresponding outputs generated by the respective au-
thors. The cis-effect annotations were generated with Gitools Group
Comparisons for all gain values and all homozygous loss values.
The Cancer Gene Census information was downloaded from their
web site and the MutSig results for (Lawrence et al. 2013) pan-can-
cer were obtained from Synapse (synl1715784.2).

Mutual exclusive test

The empirical p-values for the mutual exclusivity mutational pat-
tern test are calculated taking into account the overall distribution of
events across genes and samples as explained in (Hoadley et al.
2014). When performing the test for a group of genes (in rows), the
overall sample coverage is used as background model for 10'000
weighted permutations for each gene. The weights are calculated
according to the mutational burden of the samples, taking into ac-
count the entire data matrix, including hidden rows). The p-value
reflects the probability of obtaining the overall sample coverage
given X mutations in each gene within the group.

Indexing big matrix and tabular data files with .mtabix

We adapted the approach and format of the genomic file
indexing .tabix to generic tabular data files and is now used as the
standard to access the gitools matrix data sets. Code is available at
https://bitbucket.org/bbglab/mtabix and can be freely used for other
applications or to prepare big data for loading in Gitools.
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Gitools 2

Gitools 2 is written in the Java programming language and is avail-
able for major operating systems (Linux, Windows, OS X). The new
compressed format for storing the matrix, the use of the .mtabix
format, allows to independently read and decompressed the data
values when they are needed at runtime.

Figures

Figures 1-3 have been produced with Gitools 2 with and arranged
with Inkscape and Gimp.
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Figure 2: Hierarchical cluster representation

Figure to shows the expression data for the UCEC cancer samples in the genes
annotated as cancer drivers. Both sample and gene dimensions are clustered with
the hierarchical cluster algorithm, whose hierarchies are displayed at the top and
at the right of the heatmap. The default parameters were used: As distance
measure we employed the Euclidean distance and used average linking.
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Figure 3: Cancer genomics cohorts in Gitools

Figure three shows the figures that accompany the different use cases described
in the manuscript. A displays the genomic alteration for four genes and all
samples. The leftmost part is a zoomed-in view of the four TCGA projects with
fewer samples. B shows the CIS-effect of the CNA on expression status. The CNA
data has been ordered by mutual exclusivity. When visualizing the expression
values after sorting we can see the mutual exclusive CNA pattern clearly
reflected in the expression status. Sub-figure C shows the genomic alterations for
the HNSC and COADREAD samples, sorted by mutual exclusivity and grouped
by the ICD10 cancer site annotation. It is recognizable that both APC and TP53
are not mutated with the same frequencies across different ICDI0 cancer site
groups. Additionally we used Gitools to add a row header that shows the
frequency for each group. D Shows the expression status as reflected by SLEA for
select KEGG pathways. The samples are grouped by TCGA project and ICDO 3
Histology annotations in order to reveal possible subgroup-specific expression
status of the pathways.
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3.4 jHeatmap: an interactive heatmap viewer for the

web

The idea of visualizing and exploring data by means of
interactive heatmaps is as valid for the desktop as it is for
the web. The main limitation of web-native technologies
are the web browsers and their JavaScript engine which
determine the possibilities of computation within the
browser. In any case, huge advances in web technologies
allow for ever more complex computation in the browser
and has enabled us to translate the interactive heatmap
idea from Gitools to jHeatmap. jHeatmap is a JavaScript
library that can load multidimensional datasets into the web
browser and integrates user interactions such as sorting,
filtering, visibility toggling which makes it an ideal
component for web-platforms looking to communicate big
data sets to fellow researchers. jHeatmap was developed
jointly with Jordi Deu Pons who implemented the jHeatmap
core aided by my contribution in form of test and repairing
(debugging) with the biological examples. Furthermore |

wrote the manuscript published in Bioinformatics.

Deu-Pons, J., Schroeder, M.P., and Lopez-Bigas, N. (2014).

jHeatmap: an interactive heatmap viewer for the web.

Bioinformatics btu094.
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3.5 SVGMap: configurable image browser for

experimental data

In order to communicate data efficiently and easily to
decode it is sometimes best mapped onto what the data is
representing: the original model. It is common for
geographical information such as per-region data points as
for example temperature. The same concept can be
applied to biological data as for example gene expression
in different tissue or cell types or even cell compartment-
specific data points. For this reason we have developed
SVGMap, a data browser that translates the data points
into colored regions of an SVG graphic. The initial idea
came from a collaboration with a wet-lab group. Thereafter
Xavier Rafel-Plaou and me developed a generic tool that
allows researchers to load any of their own data and SVG
graphics in order to map the data onto the custom figure.
Besides contributing code to the application, | have created
various use cases described in the article and written the

manuscript which was published in Bioinformatics.

Rafael-Palou, X., Schroeder, M.P., and Lopez-Bigas, N.
(2011). SVGMap: configurable image browser for

experimental data. Bioinformatics 28, 119-120.
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2012 Jan 1; 28(1): 119-20. DOI: 10.1093/bioinformatics/btr581
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4 DISCUSSION







The work that [ have done during my PhD training can be divided
into two areas: cancer genomics and data visualization. Firstly, 1
will discuss cancer genomic studies that have been realized in the
past years and what [ was able to contribute with OncodriveROLE
and MutEx. Secondly I will discuss my contributions to data visu-
alization, particularly of multidimensional cancer genomics data in
a cohort of cancer patients with Gitools and jHeatmap, as well as
the SVGMap browser, a technology to create high-quality custom-
ized figures onto which experimental data is mapped.

4.1 Cancer genomics

As every day new bits and pieces are being published in many sci-
entific journals, the complexity of the disease seems to be boundless
and many aspects of the molecular mechanisms of cancer and the
tumorigenesis remain unknown to this day. Nevertheless the orches-
trated efforts of TCGA and ICGC plus many independent efforts
have provided the scientific community with data that lets us look at
a more complete picture of cancer than ever before, from a genomic
point of view.

The genomic characterization of the pan-cancer samples has re-
vealed the common and distinct patterns between the different can-
cer types and has lead to proposals of new classification of cross-
tissue cancer types (Zack et al. 2013; Ciriello, Miller, et al. 2013;
Hoadley et al. 2014) which may be of great importance for the plan-
ning and organizations of upcoming clinical trials. Furthermore,
some distinctions between tumor sample groups indicate different
oncogenic processes driven by distinct alteration types as main
cause (Ciriello, Miller, et al. 2013).

The identification of mutational drivers from cancer genomics data
has flourished during last years and has helped to unmask many
novel cancer driver candidates, particularly including lowly fre-
quently mutated genes. Studies of the TCGA pan-cancer12 cohort
propose up to 290 candidates for driving tumorigenesis (Tamborero
et al. 2013; Lawrence et al. 2014). Our research group, in particular,
provided the IntOGen-mutations pipeline for online and offline use
(Gonzalez-Perez, Perez-Llamas, et al. 2013; see annex), a powerful
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tool to identify mutational candidate cancer drivers.

All these efforts to try to understand tumorigenesis and identifying
cancer drivers and molecular patterns should eventually translate
into a more focused development of new drugs on new targets and
improved survival chances for cancer patients as a whole.

Drug development particularly does not only depend on the identi-
fication of novel cancer drivers but also on the way they act upon
tumorigenesis. Predicting the mode of action of cancer drivers could
only be assessed by thorough wet-lab studies. The availability of
large re-sequenced tumor exomes and genomes gave us the opportu-
nity to approach this question in a computational way by analyzing
the pattern of somatic alterations observed in the tumoral DNA se-
quences. Differences between oncogenes and tumor suppressor
genes have been exploited to develop OncodriveROLE, a classifier
that can separate identified cancer driver genes into possible activat-
ing and loss of action roles within tumorigenesis. As discussed in
the chapter of OncodriveROLE, our approach differs from Tuson
(Davoli et al. 2013) and the 20/20-rule (Vogelstein et al. 2013) in
that OncodriveROLE is not identifying cancer drivers, but classify-
ing already identified cancer drivers into their mode of action. Thus,
the cancer drivers that do not have a clear pattern of either role are
not discarded as cancer drivers.

With OncodriveROLE we are the first group to provide a public
classifier that can fulfill this kind of task. Another available method
is Paradigm-Shift (Ng et al. 2012) which may give an indication of
whether the gene alteration has an activating effect on downstream
pathways. Even though similar, Paradimg-Shift differs from Onco-
driveROLE. Paradigm-Shift is a sample-based analysis, that returns
a value for each sample that reflects a deregulation of the down-
stream signaling of the gene in question whereas OncodriveROLE
returns a value per gene reflecting the driver class. Another impor-
tant difference is that Paradigm-Shift is a rather elaborate method
depending on the network model and is costly in terms of computa-
tion.

As for OncodriveROLE, we have assessed a total of 30 features.
Besides the chosen features for the OncodriveROLE classifier, we
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have also reported many other features in order to avoid that other
research groups have to go through repetitive work. The chosen fea-
tures assess mutational and copy number patterns, but it is possible
that new evidences may be incorporated in the future. Abundant
cancer genomics and epigenomics data will be released by TCGA
and ICGC such that as f. ex. more knowledge about methylation
patterns or expression patterns is being generated and could be used
make the OncodriveROLE classifier more accurate. Particularly hy-
permethylation patterns are interesting as recurrent hypermethyla-
tion of tumor suppressors gene promoters have been reported
(Baylin and Jones 2011). Expression data is somewhat more diffi-
cult to use as a matched normal is not always available or it may not
be clear if it was affected by the neighboring cancer tissue. The dy-
namic nature of expression statuses makes it even more complicated
to call expression alteration with confidence. The solution to this
problem would be a comprehensive catalog of expression data from
all human tissues where cancers are known to arise. This catalog
should cover several hundred individuals per tissue, age, ethnicity,
sex, etc. in order to be able to establish a normal gene expression
quantity and variability for every gene and possible patient group
and most importantly reflect the different tissues of the human body
with high accuracy.

As more cancer samples are being sequenced, it should be the goal
to maximize the number for each tissue, such that rare tissue-spe-
cific variants can be detected and an approach such as Oncodrive-
ROLE can be applied at a tissue level with confidence. Given that
OncodriveROLE is able to gather enough information for most, but
not all in a cohort of 4327 from 17 different cancer types, one may
estimate that this same number per tissue may yield close to com-
prehensive results. A similar number has been estimated in
(Lawrence et al. 2014). Assuming we would want 5000 cancer sam-
ples per cancer type, and take over the goal from ICGC to gather 50
different cancer types, this would mean that we'd need the sequence
250'000 cancer samples another 250'000 matched normal se-
quences. Ideally thus and if the available data allows enough statis-
tical power, a thorough genomics study has to be conducted for each
cancer type separately, considering each cancer a separate disease.
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For OncodriveROLE this is particularly important as the classifier
could detect cases where the protein products of the same gene in
different tissues may have opposite as is the case with NOTCHI1
(Licciulli et al. 2013; Liu, Zhang, and Ji 2013).

In the end, these numbers would not only help approaches such as
OncodriveROLE, but also as before-mentioned the detection of
lowly frequent drivers and also the identification of intrinsic cancer
pathways would be facilitated and an important step would be taken
towards the often-mentioned goal of personalized therapy for cancer
patients. The knowledge gained with thorough genomic, epige-
nomic, transcriptomic and proteomic studies for every cancer type
would not only allow the more precise development of anti cancer
drugs, but if somatic alterations are available from hundreds of
thousands of cancer patients, we could also generate precise knowl-
edge about somatic alterations that may serve as subtype and treat-
ment markers in order to give the best treatment possible to a pa-
tient. All in all, TCGA and ICGC had had ambitious goals when the
projects were announced, but it seems that it is time to step up and
numerically increase the decided goals to drive the thorough study
of the cancer disease. Increased efforts of sequencing would not
only give more power to cancer driver detection, but also pinpoint
which genes and genomic regions must be understood better be-
cause for many novel cancer drivers that are being identified, thor-
ough knowledge about functions and interactions is still lacking.

Nevertheless, not all depends on consortia such as TCGA and
ICGC and primary cancer sample sequences. On the one hand,
many independent efforts are generating valuable data sets of their
own that can be combined with available datasets from ICGC and
TCGA in order to gain more statistical (Gonzalez-Perez, Perez-
Llamas, et al. 2013). Some may even deserve some special attention
as they may represent specific populations and their specific affini-
ties and predispositions for certain cancer types and mutations. On
the other hand, we need to keep in mind that understanding tumori-
genesis and understanding therapy resistance and disease recurrence
are two separate pair of shoes. Cancer is difficult to treat because it
is a multi-clonal disease. An existing clone of the cancerous tissue
may not be affected by the treatment or new clones emerge upon the
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new selective pressure exerted by anti-cancer drugs. The creation of
cohorts featuring the follow-up history of cancer patients through-
out the treatment may elucidate which paths the cancer cells choose
in order to gain resistance. Furthermore the choice of what com-
pounds are to used to treat a cancer patient may also depend on ex
vivo performance of the drug as has been exemplified in a study
where 28 AML samples from 18 patients were obtained and the ex
vivo drug sensitivity and resistance has been assessed (Pemovska et
al. 2013). This study shows two future trends mentioned above:
time-series that portray the disease and possible relapses plus addi-
tionally to genomic assays a drug-screening that may already give a
hint of what drugs may work for the patient. A caveat today is that
the various genomic assays may take several weeks until the results
are available.

Independent efforts can set future trends and the involved mem-
bers and institutes gain valuable specific knowledge. But also, one
must consider that they may not dispose of the same overall know-
how as institutes that are involved in the macro-projects from
TCGA, such as the Broad Institute or the Wellcome Trunst Sanger
Center which is affiliated to the Cancer Genome Project. Thus,
more modest cancer research institutes and hospitals all over the
world depend on available methods and software. This is why we
chose to develop not only approaches, but aim to make them avail-
able as we have done with OncodriveROLE, the rest of the Onco-
drive family (Tamborero, Gonzalez-Perez, and Lopez-Bigas 2013;
Gonzalez-Perez, Perez-Llamas, et al. 2013; Tamborero, Lopez-Bi-
gas, and Gonzalez-Perez) and also with the MutEx approach.

Private cancer genomics data can easily be readied for loading in
Gitools and apply the MutEx method, which may serve as testing
tool if a predefined gene set of cancer drivers is acting as a tumori-
genic function within the cohort in question. As the tumorigenic
functions can be different in function of the cancer type or even
subtype it is important to confirm those as such before the a treat-
ment can be developed and applied.

MutEx is therefore an approach that is easily accessible and also
open to novel cancer genomics data: The MutEx approach may
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equally be applied to expression or methylation data with the only
condition that data must be interpretable as a binary matrix (data
events in Gitools).

4.2 Data Visualization

The importance of data visualization becomes ever bigger as the
amount of data that is being generated is increasing daily. New ap-
proaches need to be developed in order to grasp all the data avail-
able in the least visualizations possible. Nevertheless, one must
never loose touch with singular results and their visualization. In or-
der to communicate biological data in an intuitive way it is helpful
to map the data onto a cartoon that represents the model which is
being studied. In collaboration in 2011 with a wet-lab back working
with Arabidposis root expression data we come up with an ap-
proach, called SVGMap, that let them map the data onto a Scalable
Vector Graphic (SVG) image containing labeled regions of the
model corresponding to the different measurements taken. The col-
ors that are projected onto the SVG model are customizable via the
web-interface.

The use of SVG has since been popularized by libraries such as D3
(Bostock, Ogievetsky, and Heer 2011) and derivatives, affirming
our choice of using SVG. The main difference between D3 and the
SVGMap is that the SVGMap server lets the user load images and
tabulated data files via it's interface and does not require any script-
ing knowledge whereas D3 provides a scripting interface that en-
ables the web-creator to modify and animate SVG images within
the web browser. However, given the popularity of D3, if SVGMap
would have to be implemented today it would be convenient to use
D3 as SVG manipulation instead of the letting the Java back-end
server manipulate the SVG image. Nevertheless, SVGMap brings
together the ability of generating specific precise figures of singular
results with the access and management to all results at once. This
idea could be developed further, as both SVG graphics of biological
models such as organism, specific tissues etc. could be created and
released in public domain as has been done with the figures used for
the examples of SVGMap.
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As for the consultation and exploration of large data sets such mul-
tidimensional cancer genomics datasets that are being generated by
TCGA and ICGC, quite tedious preparation tasks and advanced
scripting skills may be needed to finally be able to create intuitive
and evident. This creates a certain barrier between the data genera-
tion and the exploration by researchers as not all groups may dis-
pose of the required knowledge. The data needs to be normalized,
prepared and put into easily accessible and intuitive tools and plat-
forms which cancer researchers then may access and query the data.
Data portals such as Cosmic, cBio cancer portal, the ICGC data por-
tal or IntOGen database (Cerami et al. 2012; Gundem et al. 2010;
Gonzalez-Perez, Perez-Llamas, et al. 2013; Zhang et al. 2011;
Forbes et al. 2010) already try to give some aggregated views of the
data in form of customized plots.

With Gitools and jHeatmap we have contributed two quite unique
solutions to the scientific community which enable users to browse
their data in interactive heatmaps. The interactivity is the key for
continuous and flexible study of the data.

jHeatmap is the interactive heatmap solution for the web and is
designed for easy re-use and incorporation into existing projects.
The goal is to lessen the effort that is required by creating data por-
tals, which is rather big as different aspects from data storage over
user interface (UI) and plot generation have be well implemented.
But all web-portals share the same programming environment:
HTMLS documents with JavaScript capabilities. This shared foun-
dation allows for energy-efficient development and re-use of com-
ponents such as jHeatmap. jHeatmap was initially developed for our
own needs of visualizing data from multidimensional cancer ge-
nomics cohorts in the IntOGen platform. The heatmap viewer writ-
ten in JavaScript, can handle relatively large datasets and multiple
data dimensions which are properties to handle large genomic can-
cer data.

As mentioned, jHeatmap 1is already in use in IntOGen, but it has
also been incorporated by the GenomeSpace (M. Reich et al. 2013)
platform and Achilles project (Cheung et al. 2011).

To further increase the usefulness of jHeatmap, we have included
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the jHeatmap component into the BioJS code base. According to the
project description of BioJS, it aims to “create a library of graphical
components easy to reuse to represent biological information” and
already disposes more than forty components which may be in any
website and portal by simply installing BioJS (Gomez et al. 2013).
Apart from bringing together many JavaScript visualization solu-
tions in a registry, BioJS also supports a common events frame-
work, that let the different components talk to each other.

Another application of jHeatmap is the use of the JavaScript li-
brary within the I[Python Notebook (Pérez and Granger 2007).
[Python Notebooks are data-driven documents backed by powerful
libraries for data manipulation, analysis and documentation tools
and therefore combines scripting, documentation and plotting into a
sequential document which can be saved as such and therefore al-
lows researchers to create easily reproducible analyses. Any data
that is loaded in a so called DataFrame structure, as also known
from the R programming environment, can be visualized with a
couple of commands as an interactive heatmap by using the
jHeatmap IPython package. The code is available for download at
GitHub along with instructions and an example [Python Notebook:
https://github.com/jheatmap/jheatmap-ipython.

The future will probably bring even more improved environments
for web-based computation and a full port of Gitools capabilities
may be starting to make sense. But for the time being Gitools is pro-
viding advanced interactive heatmap manipulation, browsing and
data analysis for large multidimensional genomic cancer cohorts on
the desktop.

Over the years we have maintained Gitools for both own and pub-
lic use and converted it into a software application apt for browsing
large multidimensional cancer genomics cohorts. On the one hand it
is possible to load private data and on the other we have tried to
tackle the barrier between data generation and exploration by pre-
paring an array of heatmaps with cancer genomics data sets from
TCGA and IntOGen that are available for download and explo-
ration.

In a collaboration with the developers of the IGV genome browser
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and GenomeSpace from the Broad institute we have added interac-
tivity and data transport from both applications and platforms re-
spectively. As for the future, more external control functions can be
added to Gitools and interactions as well as data sending and receiv-
ing can be extended with whatever tool is used in combination with
Gitools. The open source code basis would allow for other develop-
ers to add new functions, as the code basis is moving towards a
plug-in design.

We know that Gitools is able to handle the current datasets even on
machines with 2 Gb of RAM (Random-access memory). Neverthe-
less, we can be certain that the amount of cancer genomics data is
ever increasing and will reach levels where a single machine is not
able to cope anymore with an entire samples cohort dataset. Tech-
nologies available in  Java, such  as Hazelcast
(https://github.com/hazelcast/hazelcast), allow for using distributed
memory within a cluster of computers. The idea is to make the
Hazelcast technology available in Gitools in order to be prepared
for the future datasets. In combination with Webswing
(http://www.webswing.org), another technology which allows to ex-
ecute a server and interact with Java applications via the web
browser, Gitools is not far away from being executed on the cluster
and accessed from whatever terminal available.

As for functionality, a logical step for the application would be to
allow not only visual manipulation of the underlying data, but enter
formulas and generate new data layers or aggregation heatmaps.
Such capabilities would make Gitools even more interesting for
users that do not posses advanced scripting skills as a median-cen-
tering may easily performed after loading the data within the Gi-
tools application and turn the application into what one may call an
Excel for bioinformatics.

Last, but not least we know from download and usage statistics
that the improvements over the years have lent Gitools a certain
popularity. Between April 1% and July 31* we have registered 1245
usages of Gitools from 364 users from all continents, excluding all
sessions from Barcelona in order to exclude ourselves. The first Gi-
tools publication has been cited over 50 times and we hope that the
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upcoming publication of the Gitools 2 will gain further visibility for
the application. All in all we have the feeling that we have contrib-

uted a useful tool for data exploration and figure generation to the
scientific community.
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5 CONCLUSIONS
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The major points of my work can be summarized as follows:

1.

We have developed and published an approach, named On-
codriveROLE, to classify cancer driver genes into Loss of
Function and Activating roles.

We have developed a method to measure the tendency of a
mutual exclusive relationship between somatic alteration
events, called MutEx

We have incorporated MutEx into Gitools application in or-
der to make the approach easily available for the scientific
community

We have improved Gitools in many aspects such that it is fit
to browse multidimensional genomics datasets, particularly
large cancer cohorts.

We have complemented the available analyses possibilities
with “Group Comparisons Analysis®, “MutEx & Co-occur-
rence Analysis” and substantially improved the “Clustering
analysis” with an innovative representation model for den-
drograms.

We have prepared cancer genomics heatmaps for Gitools
that on one hand showcase the possibilities of the applica-
tion and on the other hand are an easy manner to obtain inte-
grated TCGA datasets with genomic and clinical annota-
tions.

We have developed an interactive heatmap JavaScript li-
brary, called jHeatmap, for the web which is easy to inte-
grate on any platform.

We have developed SVGMap, a data browser that maps ex-
perimental values onto SVG graphics in order to provide a
tool to generate intuitive and high-quality figures.

159






6 APPENDIX
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6.1 IntOGen-mutations identifies cancer drivers

across tumor types

Abstract: The IntOGen-mutations platform summarizes
somatic mutations, genes and pathways involved in
tumorigenesis. It identifies and visualizes cancer drivers,
analyzing 4,623 exomes from 13 cancer sites. It provides
support to cancer researchers, aids the identification of
drivers across tumor cohorts and helps rank mutations for

better clinical decision-making.

My main contribution to this manuscript was the

involvement in general design questions of the platform

and more particularly in the employment of jHeatmap.

Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J.,
Tamborero, D., Schroeder, M.P., Jene-Sanz, A., Santos, A.,
and Lopez-Bigas, N. (2013). IntOGen-mutations identifies
cancer drivers across tumor types. Nature Methods 10,
1081-1082.

Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D,
Schroeder MP, Jene-Sanz A et al. IntOGen-mutations identifies

cancer drivers across tumor types. Nat Methods. 2013 Nov; 10(11):
1081-2. DOI: 10.1038/nmeth.2642
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