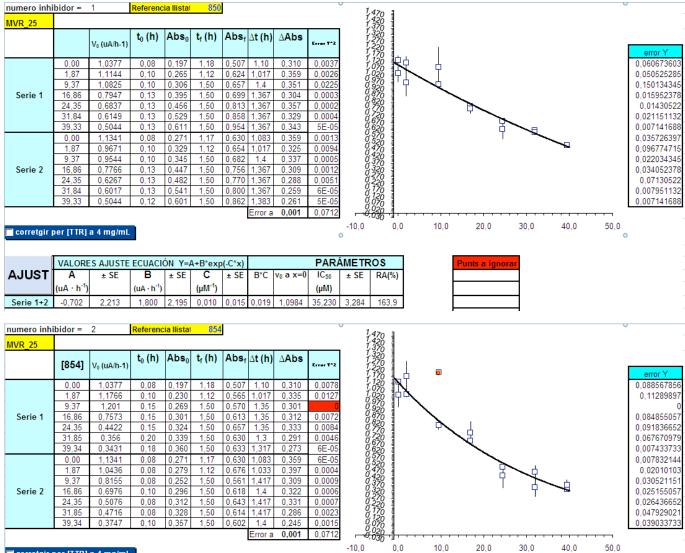
ANNEX

PhD Thesis Marta Vilà Rico

Cys10ArgTGTCGTPN, AN, EyeHungaryUemichi et al. [1992]Leu 12ProCTGCCGLM, PN, ANColumbiaBooth et al. [1996]Asp18GlyGATGGTLMHungaryVidal et al. [1996]Asp18GlyGATGGTLMHungaryVidal et al. [1996]Set23AsnAGTAATHeartGermanyJenne et al. [1996]Set23AsnAGTAATHeartGermanyJenne et al. [1996]Val20lleGTGATGPN, ANPortugalCarvalho et al. [2000]Val30MetGTGGGGHeart, ANJapanNakazato et al. [1992]Val30LeuGTGGGGLM, EyeFrancePetersen et al. [1992]Val30LigGTGGGGLM, EyePolandNakazato et al. [1992]Val30LeuGTGGTGGTCPN, ANJapanNakazato et al.CTCPN, ANJapanNakazato et al. [1992]Val30LauTTCCTCPN, ANHeartHapanNe33LeuTTCCTCPN, ANHeartHapanNe33LeuTTCCTCPN, ANHeartHapanNas35LeuTTCCTCPN, AN, HeartHapanKishikawa et al. [1995]Ala36ProGCTCCTPN, FANJapanKishikawa et al. [1995]Ala35ProGCGCGAHeartFranceDupuy et al. [1995]Giu42AspGAGGGGGAAPN, AN, HeartHeandHeartJ	Mutation	Coder	change	Predominant	Origin	Reference
Lie 12Pro Asp18Giu GAT GAC PN, AN UK Beret et al. [1996] Asp18Giu GAT GAT GAC PN, AN Columbia Booh et al. [1996] Asp18Giu GAT GAT GAT Heart Purgary Vidal et al. [1996] Mi2Die GTG ATG PN, AN Portugal Compose et al. [1996] Vi2Die GTG ATG PN, AN Portugal Compose et al. [1996] Vi2Die GTG ATG PN, AN Eve Several S	Mutation			clinical features	Origin	Reference
Asp18Glu Asp18Glu GATGAGPN, AN HeartColumbia Gernany Jenne et al. [1996]Vial2016 Vial2016GTCATCHeart HeartGernany Gernany Jenne et al. [1996]Vial2016 Vial2016GTCATCHeart Print HeartGernany Gernany Jense et al. [1997]Vial2016 Vial2016GTGGTGTCTCVial2016 Vial2016GTGGTGPN, AN, Eye SeveralSeveral SeveralSeveral 						
Asp18GbyGATGATGATGATHeartHungaryVidal et al. [1996]Ser23AsnAGTAATHeartHeartPortugalConnors et al. [1996]Ser23AsnAGTAATHeartHeartConnors et al. [1997]Ser23AsnAGTAATHeartPortugalConnors et al. [1997]Ser23AsnGTGATTHeartConnors et al. [1992]Val3OMetGTGGTGGTGHeartANSal2AbusGTGGTGCGHeartHeartVal3OLuGTGGTGGGL. LeyeFrancePetersen et al. [1992]Val3OLuGTGGTGCGPN, ANJapanNakazato et al. [1994]Phe33LeuTTCCTCPN, ANHeartHeartJap3ShlaAGCACAPN, HeartHalpPetros at al. [1996]Jap3ShlaGATGCTCTPN, ANHeartJap3ShlaGAGGGGPN, HeartHeartHeartJap3ShlaGAGGGGPN, ANJapanUene et al. [1991]Gil42LapGAGGGGCACPN, ANHeartJabaSbenTTCTCTTA, AN, HeartHealnHeartJabaSbenGCCCCCHeartHeartHeartJabaSbenGGCGCCCCCHeartHeartJabaSbenGGCGCCCCCHeartHeartJabaSbenGGCGCCCCCHeartHeart<						
Val2DileGTCATCHeartGernamyJenne et al. [1996]Pro23serCCTTCTHeart, CTS, PNUSAUenichi et al. [1995]Val2SMetCCTTCTHeart, CTS, PNUSAUenichi et al. [1992]Val2SMetGTGATGPN, ANDe PortugalCarvalo et al. [2000]Val3OLaGTGGCGFN, ANJaponNakazdo et al. [1992]Val3OLaGTGGTGCTCPN, EyePolandNakazdo et al. [1984]Phe33IseuTTCCTCPN, EyePolandLi et al. [1996]Phe33IseuTTCCTCPN, HeartItalyBooth et al. [1986]Arg3AThraAGAACAPN, HeartItalyPolandNakazdo et al. [1996]Arg3AThraAGAACAPN, HeartItalyJaponKishikawa et al. [1997]ApsBAblaGATGCTPN, HeartItalyJapanUeno et al. [1998]Giu42CaypGAGGGGCTPN, HeartFranceDupuy et al. [1998]Giu42CaypGAGGGGCGCCACHeartHeardJapanMabiSerGGCGGGCGCCCHeartHeardJapanJabaSerGGGGGGCGCCACHeartJapanMichaldsGGGGGGGGGHeartHeardJapanGiu42CaypGGGGGGGGGCGCHeartHeardJabaSerGGGGGGGGGHeartHeardJapan<						
Pre24Ser CCT TCT Heart, CTS, PN USA Uenichi et al. [1995] Val28Met GTG ATG PN, AN Portugal Carvable et al. [2000] Val30Mat GTG CCG Heart, AN Japan Nakazato et al. [1992] Val30Lau GTG CTG CTG PN, AN Eve Several Several Several Val30Lau GTG CTG CTG PN, AN Japan Nakazato et al. [1992] Val30Lau GTG CTG CTG N, AN Poland Li et al. [1994] Pre33Lau TTC GTC IN, Eve Prace Reliver at al. [1994] Pre33Lau TTC GTC PN, AN Poland Li et al. [1996] Arg34Thr AGA ACA PN, Heart Haly Patrosso et al. [1998] Jap35Asn AAG AACA PN, Heart Japan Kishikawa et al. [1999] Glu22Asp GGC GCT CCT PN, Eve Greece Jones et al. [1998] Glu22Asp GGC GGG PN, AN Japan Ueno et al. [1990] Glu22Asp GGC GGG PN, AN Japan Ueno et al. [1990] Glu22Asp GGC GGC PN, AN Japan Lieno et al. [1998] Glu22Asp GGC GGC PN, AN Japan Ueno et al. [1998] Glu22Asp GGC GGC PN, AN Japan Ueno et al. [1998] Glu22Asp GGC GGC PN, AN Japan Ueno et al. [1998] Glu22Asp GGC GGC PN, AN Japan Murakami et al. [1992] Glu22Asp GGC GGC PN, AN Japan Murakami et al. [1992] Glu22Asp GGC GGC PN, AN Japan Murakami et al. [1992] Glu22Asp GGC GGC PN, AN Japan Murakami et al. [1992] Glu22Asp GGC GGC PN, AN Japan Murakami et al. [1992] Glu27Atal GGG GGG PN, AN Japan Murakami et al. [1992] Glu27Atal GGG GGG PN, AN Japan Murakami et al. [1992] Glu37Atal GGG GGG PN M Germany Altiand [1999] Glu37Atal GGG GGG PN M Germany Altiand [1999] Glu37Atal GGG GGG PN M Germany Altiand [1992] Glu37Atal GGG GGG PN M Germany Altiand [1992] Glu37Atal GGG GGG PN, AN Heart Japan Murakami et al. [1992] Glu37Atal GGG GGG PN, AN Heart Japan Sakit et al. [1992] Glu35Atal GGG GGG PN M Germany Altiand [1999] He45Lev ACC ATC TCT PN, AN, Heart Japan Sakit et al. [1992] Hu53Mag CTG CGC CCT PN, Heart Japan Sakit et al. [1992] Hu53Mag CTG CGG CG PN, AN Heart Japan Sakit et al. [1993] Glu53Giu GGG GGA PN AN Heart Japan Sakit et al. [1993] Hu53Mag CTC CCC PN, N, Heart Germany Altiand [1999] Hu53Mag CTC CGC CTC PN, N, Heart Japan Sakit et al. [1993] Hu53Mag CTC CGC CTC PN, N, Heart Japan Sakit et a	Val20IIe	GTC	ATC	Heart	Germany	
Val28MetGTGATGPN, AN, EyePortugalCarvalho et al. [2000]Val30AlaGTGGGHeart, ANGermanyJones et al. [1992]Val30LuGTGGGCGPlant, ANGermanyJones et al. [1992]Val30LuGTGGGGLM, EyeFrancePetersen et al. [1997]Phe33luTTCGTCPN, ANPolandLi et al. [1991]Phe33luTTCGTCPN, ANPolandLi et al. [1991]Ag94ThrAGAACAPN, HeartHanoPatroso et al. [1996]Ag95AbaAGGGATGCTPN, NPatroso et al. [1991]Ag95AbaGAGGATGCTPN, NAppanKishikawa et al. [1991]Ag95AbaGAGGATHeartHanoJacobson et al. [1998]Ag45SbaGAGGATHeartHalyJacobson et al. [1998]Ag45SbaGAGGGGHeartHalyJacobson et al. [1992]Aja45SerGGCGGGHeartHalyJacobson et al. [1992]Aja45SerGGCGGGHeart, PNHalySaraiva et al. [1992]Aja45SerGGGGGGGGGHeartHalyJacobson et al. [1992]Aja45SerGGGGGGGGGHeartHalyJacobson et al. [1992]Aja45SerGGGGGGGGGHeartHalyJacobson et al. [1992]Aja45SerGGGGGGGGGGGGHeart, PNHalyAja45SerGG						
Val30MetGTGATGPN, AN, EyeSeveralSeveralVal30LeuGTGGTGCTGPN, ANJapanNakazato et al. [1992]Val30LeuGTGGTGCTGPN, ANJapanNakazato et al. [1992]Phe33LeTTCATCPN, EyePolandNakazato et al. [1994]Phe33LeTTCATCPN, SNLi et al. [1991]Phe33LeTTCATCPN, FayPolandNakazato et al. [1994]Phe33LeTTCCTCPN, ANHeartHalyPhe33LeTTCACAACAPN, HeartHalyPhe35LeGAGGGCCCTPN, EyeGreeceAn36ProGCTCCTPN, HeartJapanUeno et al. [1999]Glu42LapGAGGGGGGAHeartFranceDupy et al. [1999]Glu42LapGGGGCGCCCHeartStapenJacobon et al. [1930]Aha 55ArbrGCCGCCACCHeartStapenMarkami et al. [1992]Glu47ArgGGGGGGGGGPN, ANJapanMurakami et al. [1992]Glu47AralGGGGGGGGGPN, ANHapanMurakami et al. [1992]Glu47ArgGGGGGGGCGHeart, PN, ANHalyMureidate at al. [1992]Glu47ArgGGGGGGGCGPN, ANHapanMurakami et al. [1992]Glu47ArgGGGGGGGGGPN, AN, HeartJapanMurakami et al. [1992]Glu						
Val30AlaGTGGCGHeart, ANGermanyJones et al. [1992]Val30CuyGTGGGGCGP, ANJapanNakazato et al. [1997]Phe33LaTTCCTCPN, ANPolandLi et al. [1991]Phe33LaTTCCTCPN, ANPolandLi et al. [1991]Ang35hrAGAAGACCPN, HAHeartHa35hrAGAAGACCPN, HAHeartAng35hrAGAAGACCPN, HeartJapanAng36hrAGAGCTPN, HeartJapanKishikawa et al. [1991]Ap38AlaGATGCTPN, HeartJapanKishikawa et al. [1998]Ap38AlaGATGCTPN, HeartJapanKishikawa et al. [1998]Ap38AlaGAGGATHeartFranceDupuy et al. [1998]Ada5beroGCCGACHeartHalyJacobson et al. [1992]Ala45berGCCGCCGACHeartHalyJaadSFDrGCCGCCHeartHalySaraiva et al. [1992]Ala45brGGGGGGGGAHeartHalySaraiva et al. [1992]Ala45brGGGGGGGGAHeartHalySaraiva et al. [1992]Ala45brGGGGGGGGAHeartHalySaraiva et al. [1992]Ala45brGGGGGGGGAHeartHalySaraiva et al. [1992]Ala45brGGGGGGGGAHeart, NN, HartHalyHaly </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Val30CluvGTGCTGPN, ANJapanNakazato et al. [1997]Phe33LetTTCATCPN, EyePolandNakazato et al. [1997]Phe33LetTTCATCPN, ANPolandLi et al. [1991]Phe33LatTTCGTCPN, ANUKBooth et al. [1996]Phe33LatTTCGTCPN, ANUKBooth et al. [1991]Phe33LatAGAAAAPN, AN, HeartFranceRelily et al. [1995]Jas36honAGGGGCCTCPN, EyeJapanKulmowa et al. [1997]Am2302ibGAGGGGGGCFN, HANJapanKulmowa et al. [1998]Am453choGGCGGGGGGFN, HANJapanKulmowa et al. [1998]Phe445erTTTTTTTCTPN, AN, HeartIrelandKlein et al. [1998]Aha455brGCCGCCHeartItalyJanunger et al. [1992]Gly47ArgGGGGGGGGGFN, ANJapanMurakami et al. [1992]Gly47ArgGGGGGGGGGFN, ANJapanNakazini et al. [1992]Gly47ArgGGGGGGFN, ANJapanNakazini et al. [1992]Gly47ArgGGGGGGFRent, PNHalyAlmeide et al. [1992]Gly47AralGGGGGGFRent, PN, ANJapanNakazini et al. [1992]Gly47AralGGGGGGGGGFRent, PN, ANJapanGly47AralGGGGGGHeart, PN, ANJapanSacki et al. [1						
Val30GlyGTGGGGLM, EyeFrancePetersen et al. [1997]Phe33LeuTTCCTCPN, ANPolandLi et al. [1991]Phe33LeuTTCCTCPN, ANPolandLi et al. [1991]Arg34ThrAGAACAPN, HeartItalyPatrosso et al. [1998]Jag3AshAAGACAPN, HeartItalyPatrosso et al. [1996]Arg34ThrAGAACAPN, HeartJapanUeno et al. [1990]Jab2AlaGGTCCTPN, EyeGreeceJones et al. [1990]Glu4ZolyGGGGGCPN, ANJapanUeno et al. [1990]Glu4ZolyGGCGGCHeartItalyJacobson et al. [1990]AladSberGCCGGCHeartItalyJacobson et al. [1992]AladSberGCCGGCHeartItalyJacobson et al. [1992]Glu4ZolyGGGGGGGGCHeartHalySaraiva et al. [1992]Glu4ZolyGGGGGGGGCHeartHalySaraiva et al. [1992]Glu4ZolyGGGGGGGGCHeartHalyJapanMadShrGGGGGGGGCHeartHalyJapanGlu4ZolyGGGGGGGGCHeartHalyJapanGlu4ZolyGGGGGGGGCHeartHalyJapanGlu4ZolyGGGGGGGGCHeartHalyJapanGlu4ZolyGGGGGGGGCHeartJapanN						
Phe33lieTTCATCPN, EvePolandNakazato et al. [1994]Phe33LauTTCGTCPN, ANVKBooth et al. [1991]Phe33SulalTTCGTCPN, ANUKBooth et al. [1996]Ly35AsnAAGAACPN, HeartItalyParcesso et al. [1996]Ly35AsnAAGAACPN, HeartJapanChenes et al. [1996]Ap36AblaGATGCTCCTPN, HeartJapaneUeno et al. [1996]Ap36AblaGATGCCGCTPN, HeartJapaneUeno et al. [1996]Ap45AsrTTTTTTTTPN, AN, HeartIrelandKlein et al. [1996]Ab45SbrGCCGCCHeartNakastoJapaneJapanaAb45SbrGCCGCCHeartNakastoJapanaMarakasta al. [2000]Ab45TbrGCCGCCHeartItalyFerlini et al. [1992]Gly47AlgGGGGGGGCGPN, AN, HeartSri LankaBooth et al. [1992]Gly47AlgGGGGGGGCGHeart, PN, ANJapanNakamura et al. [1992]Thr49NlaACCGCCHeart, PN, ANJapanNakamura et al. [1992]Thr49NlaACCGCCHeartUKAJapanAldadoliyGAGGAGPN, AN, HeartUKAJapanGly47GluGGGGGGCCCHeartUKAJapanGly47GluGGGGGGCCCHeartUKAJapanJapan </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Phe33LenTTCCTCPN, ANPolandLi et al. [1991]Phe33ValTTCGTCPN, ANUKBoth et al. [1996]Arg34ThrAGAACAPN, HeartItalyPatrosso et al. [1995]JaS5AsnAAGCTPN, AN, HeartFranceReliby et al. [1995]JaB6NoGCTCCTPN, EyeGreeceJones et al. [1996]Glu422ajyGAGGGGPN, ANJapanKishkawa et al. [1998]Glu422ajyGAGGGGPN, ANJapanKishkawa et al. [1998]Phe45serTTTTTTTPN, AN, HeartHeatnHeastGGGGCCHeartHayMarkami et al. [1998]Glu427ajGGGGGGGGGHeart, PN, ANHayanMurakami et al. [1992]Glu47AlaGGGGGGGGGGlu477alaGGGGGGGGCHeart, PN, ANHayanGlu477aluGGGGGGGCCPN, HeartJapanJapanUne et al. [1992]CCThr49MlaACCACCGlu477aluGGGGGGGGGPN, NAJapanGlu477aluGGGGGGGCCPN, HeartJapanJapanUne et al. [1992]Ser50krgAGTAGGGlu51GlyGAGGGGGGGPN, NAJapanUser50krgCTCCCTPN, HeartUKBooth et al. [1992]Gu521brCTCCCTPN, HAy, HeartUKBooth et al. [1999]<						
AngAThrAGAACAPN, HeartItalyPatrosso et al. [1998]Lys35AanAAGAACPN, AN, HeartFranceRelib et al. [1995]Ah36ProGCTCCTPN, EyeGreeceJones et al. [1999]Glu42C3UGAGGGGPN, ANJapanUeno et al. [1998]Glu42C3UGAGGAGGATHeartFranceDupy et al. [1998]Phe44SerTTTTCTPN, AN, HeartIrelandKlein et al. [1992]Ala45SbrGCCGCCHeartItalyJacobson et al. [1992]Glu42AspGGGGCGPN, AN, HeartIrelandItalyJacatronGGGGCGPN, AN, HeartSri LankaBooth et al. [1992]Glu47AigGGGGGGGCGPN, AN, HeartSri LankaBooth et al. [1992]Glu47AigGGGGGGGCGPN, AN, HeartSri LankaBooth et al. [1992]Glu47AigGGGGGGPN, N, HeartJapanNakamura et al. [1992]Tra49NaACCGCCHeart, PN, ANJapanNakamura et al. [1999]Ser50neAGTAGGPN, ANJapanSaeki et al. [1999]Glu54CiyGAGGGGGGGHeartFranceComot at al.GGGGGGHeartHeartFranceGlu54CiyGAGGGGGGGHeartFranceGlu54CiyGAGGGGGGGHeartHeartGlu54CiyGAGGGGGGGHeart	Phe33Leu	TTC	CTC		Poland	Li et al. [1991]
LyS35AnnAAGAACPN, AN, HeartFranceRelly et al. [1995]Aa36ProGCTCCTPN, HeartJapanUeno es et al. [1991]Aap38AlaGATGCTPN, HeartJapanUeno es et al. [1993]Glu42GlyGAGGATHeartFranceDupuy et al. [1998]Glu42AspGAGGATHeartFranceNumuger et al. [1993]Ala45SerGCCGCCHeartItalyJacobson et al. [1992]Ala45SerGCCGCCHeartItalySaraiva et al. [1992]Gly47ArgGGGGCGHeart, PN, ANHalySaraiva et al. [1992]Gly47AlaGGGGCGHeart, PN, ANItalyAlmachani et al. [1992]Gly47CluGGGGGGGCCHeart, PNHalyGly47CluGGGGCGPN, HeartJapanNakamura et al. [1992]Gly47CluGGGGGGGCCPN, HeartJapanUeno et al. [1992]Gly47CluGGGGGGGGGHeart, PNJapanUeno et al. [1992]Gly47CluGGGGGGGGGHeartUSAJacobson et al. [1992]Ser50ArgAGTAGGAGTHeart, PN, ANJapanUeno et al. [1992]Ser50ArgCTCCCTPN, AN, HeartUKBooth et al. [1999]Ser50ArgCTGCCTPN, AN, HeartUKBooth et al. [1999]Ser50ArgCTGCCGPN, AN, HeartJapanTogashi et al. [1999]						
Ala36Pro Asp38AlaGCT GCTCCT PN, HeartFigure JapanJones et al. [1991] MapanGlu42ASP Glu42ASPGAG GGGGGG GAGPN, AN HeartJapan Irance HeartUeno et al. [1993] MatosPhe44Ser Phe44SerTTT TCTTCT PN, AN, HeartIrance Irance HeartDupuy et al. [1998] MatosAla45Ser GGCGCC GCCHeartItaly HeartJacobson et al. [1992] MatosGlu42Asp GGGGGG GGCCGC HeartHeart Haly JapanMurakami et al. [1992] Murakami et al. [1992] Glu47ArgGlu47Arg GGGGGG GGGGGG CGC Heart, PN, AN HeartJapan Japan Murakami et al. [1992] Murakami et al. [1992] Murakami et al. [1994]Glu47Cal Glu47CalGGG GGGGGG Heart, PN, AN HeartJapan Japan Matanu et al. [1992] Matanu et al. [1992] Matanu et al. [1992] Matanu Matanu et al. [1992] Matanu <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td></br<>						
App38AlaGATGATGATPN, I PN, ANJapanKishikawa et al. [1999]Glu42GyGAGGATHeartFranceDupuy et al. [1998]Glu42GyGAGGATHeartFranceDupuy et al. [1998]Ala 45SapGCCGACHeartItalyJacobson et al. [1993]Ala45SerGCCGCCHeartItalySaraiva et al. [1992]Glu47ArgGGGGCGHeartHeartSaraiva et al. [1992]Glu47AlaGGGGCGHeart, PN, ANHalpanMurakami et al. [1993]Glu47AlaGGGGGGGGGHeart, PN, ANHalpanGlu47CiluGGGGGGFN, ANHapanNakmeint et al. [1993]Glu47CiluGGGGGGHeartUsAJapanGlu47CiluGGGGGGHeartUSAJacobson et al. [1992]Thr49AlaACCACCPN, ANJapanUeno et al. [1990]Ser50ArgAGTAGGPN, ANJapanUeno et al. [1992]Glu51GiGGGGGGHeartUSAJacobson et al. [1992]Ser50ArgCTCCCTPN, AN, HeartHapanTakaobson et al. [1992]Glu54GiyGAGGGGPN, AN, HeartJapanUeno et al. [1993]Glu54GiyGAGGGGPN, AN, HeartJapanTakaobson et al. [1992]Lu55ArgCTGCCGPN, AN, HeartJapanTakaobson et al. [1993]Lu55ArgCTGCCGPN, AN,						
Gind 2Giy GAG GAG PN, AN Japan Ueno et al. [1990] Gind 2CAS GAT Heart France Dupuy et al. [1998] Ata 45As GCC GAC Heart Italy Jacobson et al. [1998] Ata 45As GCC GAC Heart Italy Jacobson et al. [1998] Ata 45As GCC UCC Heart Sweden Janunger et al. [2000] Ata45Thr GCC ACC Heart PN, AN Italy Ferlini et al. [1992] Glyd7Arg GGG CGG PN, AN Japan Murakami et al. [1992] Glyd7Ard GGG GCG PN, AN Heart Sri Lanka Booth et al. [1993] Glyd7Alu GGG GGC GHeart, PN, AN Italy Ferlini et al. [1994] Glyd7Alu GGG GGC PN, AN, Heart Sri Lanka Booth et al. [1992] Glyd7Alu GGG GGG PN, AN Japan Nurakami et al. [1992] Chyd7alu GGG GGG PN, AN Japan Saeki et al. [1992] Chyd7alu GGG GGG PN, AN Japan Saeki et al. [1992] Ser50hrg AGT AGG PN, AN Japan Saeki et al. [1992] Ser50hrg AGT AGG PN, AN Japan Saeki et al. [1992] Gly51Gly GAG GGG Heart USA Jacobson et al. [1990] Ser52bro TCT CCT PN, AN, Heart UK Booth et al. [1993] Gly53Glu GGA GAA IM, Heart UK Booth et al. [1999] Gly53Glu GGA GAA PN, AN, Heart UK Booth et al. [1999] Gly53Glu GGA GAA PN, AN, Heart Japan Saeki et al. [1999] Leu55Arg CTG CCG PN, Heart, AN Taiwan Jacobson et al. [1999] Leu55Arg CTG CCG CCS, PN, Heart, Bapan Saeki et al. [1995] Glu54Gly GAG GAG APN, AN, Heart Japan Saeki et al. [1995] Leu55Arg CTG CCG CCS, PN, Heart Germany Altland (1999] Leu58Arg CTC CAC CTS, AN, Fue Japan Saeki et al. [1991] Thr591µs ACA AAA Heart, PN Germany Altland (1999] Leu58Arg CTC CGC CTS, AN, Fue Japan Saeki et al. [1991] Thr591µs ACA AAA Heart, PN Thay Booth et al. [1995] Thr60AA ACT ACC TS, PN, Eye Germany Altand (1999] Leu58Arg CTC CAC CCTS, AN, Eye Japan Saeki et al. [1991] Thr60AI ACT GCT Heart, CTS Ireland Wallace et al. [1993] Thr60AI ACT GCC PN, Eye Germany Almeida et al. [1993] Ser77Phe TCT TTT PN Fy, CTS, Heart Italy Leet at al 2000] Ala975er GCC TCC PN						
Glu42Asp GAG GAG Heart France Dupy et al. [1998] Phe44Ser TTT TCT PN, AN, Heart Ireland Klein et al. [1998] Ala 45Sap GCC GAC Heart Italy Jacobson et al. [1993] Ala45Ser GCC UCC Heart Sweden Janunger et al. [2000] Ala45Thr GCC ACC Heart Italy Saraiva et al. [1992] Gly47Arg GGG GCG Heart, PN, AN Halp Ferlini et al. [1994] Gly47Ala GGG GCG Heart, PN, AN Halp Ferlini et al. [1994] Gly47Cliu GGG GGG PN AN Japan Murakami et al. [1993] Gly47Cliu GGG GGG CC Heart, PN, AN Haly Almeida et al. [1993] Gly47Cliu GGG GGG PN AN Japan Nakamure at .[1999] Ser50Arg AGT AGG PN, AN Japan Nakamure at .[1999] Ser50Arg AGT AGG PN, AN Japan Ueno et al. [1999] Ser50Arg AGT AGG PN, AN Japan Ueno et al. [1999] Ser50Arg AGT AGG PN, AN Japan Saeki et al. [1999] Ser50Arg AGT AGG GPN, AN Japan Saeki et al. [1999] Ser50Arg GGG Heart, PN, AN Japan Saeki et al. [1999] Ser50Arg CTC CCT PN, AN, Heart UK Booth et al. [1993] Gly3GGL GGA GGG PN, AN Japan Saeki et al. [1993] Gly3GGL GGA GGG PN, AN Japan Togashi et al. [1999] Leu55Arg CTG CCG PN, AN Heart Japan Jacobson et al. [1999] Leu55Arg CTG CCG PN, AN Heart Japan Jacobson et al. [1999] Leu55Arg CTG CCG CC PN, AN, Heart Japan Jacobson et al. [1999] Leu55Arg CTG CCG CC TS, Heart N Taiwan Jacobson et al. [1999] Leu55Arg CTG CCG CC CTS, AN, Eye Japan Saeki et al. [1999] Leu58His CTC CCAC CTS, AN, Eye Japan Saeki et al. [1999] Leu58His CTC CCAC CTS, AN, Eye Japan Shiomi et al. [1999] Leu58His CTC CCAC CTS, N, Eye Japan Shiomi et al. [1999] Leu58His CTC CCAC CTS, Heart Italy Liet at al. [1993] Thr60Ala ACT AAA Heart, PN Taiwan Jacobson et al. [1994] Leu58His CTC CCAC CTS, PN, Eye Germany Almeida et al. [1994] Leu58His CTC CCAC CTS, PN, Eye Germany Almeida et al. [1994] Leu58His CTC CCAC CYS, PN, Eye Germany Almeida et al. [1994] Leu59Arj CCC CCAC CYS, PN, Eye Germany Almei						
Phe44Ser Phe4KSerTTTTCTPN, AN, HeartIrelandKlein fer al. [1998] Ata65SerGCCGCCHeartItaly Jacobson et al. [1992]Alad55F Glyd7ArgGCGCCCHeartHalySaraiva et al. [1992]Glyd7ArgGGGCCGPN, ANHaly Seraiva et al. [1992]Glyd7ArgGGGGCGPN, ANHaly Seraiva et al. [1992]Glyd7ArgGGGGCGPN, AN, HeartSri LankaBooth et al. [1993]Glyd7CluGGGGGGGCGPNGermanyAltland [1994]ACCGCCHeart, PNHaly Altand [1999]Thr49AlaACCGCCHeart, PN, ANJapanSer50HaAGTAGGPN, ANJapanSer50HaGGAGGAPN, ANHeartGlu51GlyGAGGGGHeartUSAJacobson et al. [1999]Ser52ProTCTCCTGlu54GlyGAGGGGGGAPN, AN, HeartJababsonCGGCGGPN, AN, HeartJapanJacobson et al. [1999]Leu55ArgCTGCCGGlu54GlyGAGGAGPN, AN, HeartJapanJacobson et al. [1992]Leu55ArgCTGCCGJus5ArgCTGCCGPN, HeartJapanJacobson et al. [1995]Thr50JaACAAAAHeart, PNGermanyNichols et al. [1995]Leu5ArgCTCCACCTS, AN, EyeJapanJus5ArgCTCCAC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Ala 45AspGCCGACHeartItalyJacobson et al. [1993]Alad55rGCCUCCHeartItalyStraive et al. [1992]Alad5ThrGCCACCHeartItalyStraive et al. [1992]Gly47ArgGGGGCGPN, ANItalyFerlin et al. [1992]Gly47AlaGGGGCGHeart, PN, ANItalyFerlin et al. [1993]Gly47CluGGGGGGGAGPNN. HeartGly47CluGGGGGGPN, AN, HeartSti LankaBooth et al. [1992]Thr49AlaACCACCPN, HeartJapanNakarura et al. [1999]Ser50ArgAGTAGGPN, ANJapanNakarura et al. [1999]Ser50ArgGCGGGGHeart, PN, ANJapanSete tal. [1999]Ser50ArgGCGGGGHeartUSAJacobson et al. [1999]Ser50ArgGCGGGAAM. HeartFranceCamou et al. [1999]Ser50ArgGCGGGAPN. ANHeartHeartGly53GluGAGGGGPN. ANHeartHeartGly53GluGAGGAGGAGPN. ANHeartLeu55ArgCTGCCGPN. HeartHapanJacobson et al. [1999]Leu55ArgCTGCCGPN. Heart, ANGaranJacobson et al. [1999]Leu55ArgCTGCACCCCHeart, PN, ANGermanyAltand [1999]Leu55ArgCTGCACCCCCTS, HeartHapanJacobs						
Alad S5erGCCUCCHeartSwedenJanuager et al. [2000]Alad SThrGGCACCHeartItalySaraiva et al. [1992]Glyd 7AlaGGGGGGPN, ANJapanMurakami et al. [1992]Glyd 7AlaGGGGGGPN, ANHalyFerlini et al. [1993]Glyd 7AlaGGGGGGPN, ANHalyAlmeida et al. [1992]Thr 491leACCGCCHeart, PN, ANJapanNakamura et al. [1992]Ser50leAGTAGGPN, ANJapanNakamura et al. [1992]Ser50leAGTAGGGGHeartFranceGlu51GlyGAGGGGPN, ANJapanSaeki et al. [1992]Ser50leGAGGAGGAGHeartUKBooh et al. [1999]Glu54LyGAGGGGPN, ANJapanSaeki et al. [1999]Ser50reTCTCCTPN, AN, HeartUKBooh et al. [1999]Glu54LyGAGGAGPN, AN, HeartJapanTogash et al. [1999]Leu55ProCTGCGGLM, PNGermanyAlidan (1999)Leu55ArgCTGCGGHeart, ANTaiwanJacobson et al. [1992]Leu58HgCTCCACCTS, HeartUSAJacobson et al. [1992]Leu58HgCTCCACCTS, HeartGuapanSaeid et al. [1991]Thr59LyACAAAAHeart, CTSIrelandWalace et al. [1993]Leu58HgCTCCACCTS, HeartGuap						
Gly37Arg GGG CGG PN, AN Japan Murakami et al. [1992] Gly37Ala GGG GTG PN, AN, Heart Sri Lanka Booth et al. [1993] Gly37Alu GGG GTG PN, AN, Heart Sri Lanka Booth et al. [1993] Gly37GH GGG GAG PN Germany Altland [1999] Thr49Ha ACC GCC Heart, PN Htaly Almeida et al. [1992] Thr49Ha ACC ATC PN, Heart Japan Nakamura et al. [1992] Ser50Ha AGT AGG PN, AN Japan Saeki et al. [1992] Gu51Gly GAG GGG Heart, PN, AN Japan Saeki et al. [1992] Gu51Gly GAG GGG PN, AN Japan Saeki et al. [1992] Gu52Pro TCT CCT PN, AN, Heart France Camou et al. [1999] Gly33Glu GGA GAG APN, AN, Heart Grance Camou et al. [1999] Gly33Glu GGA GAG PN, AN UK Booth et al. [1993] Gly33Gru GAG GAG PN, AN, Heart Japan Togashi et al. [1999] Leu55Pro TCT CCT PN, AN, Heart Japan Togashi et al. [1999] Leu55Arg CTG CGG LM, PN Germany Altland [1999] Leu55Arg CTG CGG CTS, AN, Eye Japan Saeki et al. [1992] Leu58Ha CTC CAC CTS, AN, Eye Japan Saeki et al. [1999] Leu58Hg CTC CGC CTS, AN, Eye Japan Saeki et al. [1999] Leu58Hg CTC CGC CTS, AN, Eye Japan Saeki et al. [1999] Leu58Hg CTC CGC CTS, AN, Eye Japan Saeki et al. [1991] Thr59Ly AAA AA Heart, PN Italy Booth et al. [1993] Phe64Leu TTT CTT PN, CTS, Heart Italy Li et al. [1991] Phe64Ser TTT TCT LM, PN, Eye Italy Lietal, [1991] Phe64Ser TTT CTT PN, CTS, Heart Italy Lietal, [1991] Liy570Asn AAA AC CTS, PN, Eye Spain Almeida et al. [1993] lef3Mah ATA GTA PN, AN Bangladesh Booth et al. [1993] lef3Mah ATA GCA PN, Eye Spain Almeida et al. [1994] lef3Mah ATA GCA PN, CTS, Heart Italy Almeida et al. [1994] lef3Mah ATA GCA PN, AN Bangladesh Booth et al. [1993] lef3Mah ATA GCA PN, AN Bangladesh Booth et al. [1994] lef3Mah ATA GCA PN	Ala45Ser				Sweden	
Gig 47Aia GGG GCG Heart, PN, AN Heart Sri Lanka Berdin et al. [1994] Glyd7Glu GGG GTG PN, AN, Heart Germany Althand [1999] Thr49Ala ACC GCC Heart, PN Heart Japan Nakamura et al. [1992] Thr49Ala ACC ATC PN, Heart Japan Nakamura et al. [1992] Ser50Arg AGT AGG PN, AN Japan Uen et al. [1999] Ser50Arg AGT AGG PN, AN Japan Saeki et al. [1992] Ser50He AGT ATT Heart, PN, AN Japan Saeki et al. [1999] Ser50Arg GAG GGG Heart USA Japan Saeki et al. [1999] Glu51Gly GAG GGG PN, AN UK Booth et al. [1999] Glu54Gly GAG GGG PN, AN UK Reilly et al. [1999] Glu54Gly GAG GGG PN, AN UK Reilly et al. [1999] Glu54Gly GAG GGA PN, AN, Heart Japan Togashi et al. [1999] Leu55Arg CTG CGG CM, Heart, AN Taiwan Jacobson et al. [1999] Leu55Arg CTG CGG CTS, Heart Japan Togashi et al. [1999] Leu55Arg CTG CGC CTS, Heart Germany Althad [1999] Leu58Arg CTC CAC CTS, Heart Germany Nichols et al. [1991] Thr60Ala ACT GCT Heart, CN Japan Saeki et al. [1995] Glu61Lys GAG AAG PN AH Heart, PN Haly Booth et al. [1995] Thr60Ala ACT GCT Heart, CNS Ireland Wallace et al. [1996] Glu61Lys GAG AAG PN Heart, PN Japan Shiomi et al. [1991] Thr60Ala ACT GCT Heart, CNS Ireland Wallace et al. [1996] Jyr69His TAC CAC Eye Scotland Zeldemust et al. [1991] Thr60Ala ACT GCT Heart, CNS Ireland Wallace et al. [1993] Jyr69His TAC CAC Eye Scotland Zeldemust et al. [1993] Jyr69His TAC CAC Eye Scotland Zeldemust et al. [1994] Jyr69His TAC CAC Eye Germany Almeida et al. [1994] Jyr69His TAC CAC Eye Heart Germany Almeida et al. [1994] Jyr69His TAC CAC Eye Heart Germany Almeida et al. [1994] Jyr69His TAC CAC Eye Heart France Plante-Bordeneuve et al. [1994] Jyr69His TAC CAC						
Gig 47Val GGG GTG PN, AN, Heart Sr Lanka Booth et al. [1993] Gyl 47Giu GGG GAG PN Germany Altiand [1999] Thr49Ala ACC GCC Heart, PN Italy Altiand [1999] Makamura et al. [1992] Makamura et al. [1992] Ser50Arg AGT AGG PN, AN Japan Saeki et al. [1992] Ser50Arg AGT AGG PN, AN Japan Saeki et al. [1992] Ser50Arg AGT AGG GGG Heart USA Japan Saeki et al. [1999] Ser50Arg AGT AGG GGG PN, AN Japan Saeki et al. [1999] Ser52Pro TCT CCT PN, AN, Heart UK Booth et al. [1999] Ser52Pro TCT CCT PN, AN, Heart JUK Booth et al. [1999] Glu54Gly GAG GGG PN, AN UK Reilly et al. [1999] Leu55Pro CTG CGG LM, PN Germany Althand [1999] Leu55Arg CTG CGG LM, PN Germany Althand [1999] Leu58Arg CTC CGC CTS, AN, Eye Japan Saeki et al. [1999] Leu88His CTC CAC CTS, Heart Germany Nichols et al. [1999] Leu88His CTC CAC CTS, Heart Germany Nichols et al. [1999] Leu88His CTC CAC CTS, Heart Germany Nichols et al. [1999] Leu88Hig CTC CAC CTS, Heart Germany Nichols et al. [1999] Leu88Hig CTC CAC CTS, Heart Germany Nichols et al. [1993] Heavis Japan Saeki et al. [1993]						
Gio ArGui GGG GAG PN Germany Althand (1999) Thr49Ala ACC GCC Heart, PN Italy Althand (1994) Thr49Ale ACC ATC PN, Heart Japan Nakamura et al. [1992] Thr49Ale ACC ATC PN, Heart Japan Nakamura et al. [1992] Ser50HC AGT ATT Heart, PN, AN Japan Saeki et al. [1992] Glu51Gly GAG GGG Heart USA Japan Saeki et al. [1993] Glu51Gly GAG GGG PN, AN UK Booth et al. [1993] Glu54Gly GAG GGA PN, AN, Heart UK Booth et al. [1999] Glu54Gly GAG GGA PN, AN, Heart Japan Togashi et al. [1999] Glu54Gly GAG GGA PN, AN, Heart Japan Togashi et al. [1999] Leu55Arg CTG CGG CM, PN, AN, Heart USA Jacobson et al. [1999] Leu55Arg CTG CGG PN, IHeart, AN Taiwan Jacobson et al. [1999] Leu55Arg CTG CGG CT Heart USA Jacobson et al. [1999] Leu58His CTC CAC CTS, Heart Germany Nichols et al. [1999] Leu58His CTC CAC CTS, AN, Eye Japan Saeki et al. [1991] Thr59Lys ACA AAA Heart, PN Italy Booth et al. [1993] Thr59Lys ACA AAA Heart, CTS Ireland Wallace et al. [1986] Leu58His CTC CGC CTS, Heart Germany Altiand [1991] Thr59Lys GAG AAG PN theart taly U emichi et al. [1991] Phe64Leu TTT CTT PN, CTS, Heart Italy U emichi et al. [1991] Phe64Leu TTT CTT PN, CTS, Heart Italy U emichi et al. [1993] Life at alt CCC CC Eye Spain Almeida et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Germany Zumoto et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lifs70Asn AAA AAC CTS, PN, Eye Social A Zeldemust et al. [1994] Lif						
Thr 494ha ACC GCC Heart, PN traly Aneida et al. [1992] Thr 491h ACC ATC PN, Heart Japan Nakamure et al. [1992] Ser50Hrg AGT AGG PN, AN Japan Ueno et al. [1992] Ser50Hrg AGT AGG PN, AN Japan Seket et al. [1992] Ser50Hre AGT ATT Heart, PN, AN Japan Seket et al. [1992] Ser50Hre AGT ATT Heart, PN, AN Japan Seket et al. [1992] Ser52Pro TCT CCT PN, AN, Heart UK Booth et al. [1993] Glu53Glu GGA GAG ALM, Heart Trance Camou et al. [1999] Ser52Pro TCT CCT PN, AN, Heart UK Booth et al. [1999] Ser52Pro TCT CCT PN, AN, Heart UK Booth et al. [1999] Ser52Pro TCT CCG CG PN, AN UK Reilly et al. [1995] Glu54Lys GAG GAG PN, AN, Heart Japan Togashi et al. [1999] Leu55Arg CTG CGG LM, PN Germany Althand [1999] Leu55Arg CTG CGG CT, Heart USA Jacobson et al. [1992] Leu58Arg CTC CAC CTS, Heart Germany Nichols et al. [1992] Leu58Arg CTC CGC CTS, AN, Eye Japan Seket et al. [1991] Thr 50Lys ACA AAA Heart, PN Italy Booth et al. [1995] Thr 50Lys ACA AAA Heart, PN Italy Booth et al. [1995] Thr 50Lys ACA AAA Heart, PN Japan Shomi et al. [1995] Thr 50Lys ACA AAA Heart, PN Japan Shomi et al. [1993] Thr 50Lys ACA AAA Heart, PN Japan Shomi et al. [1993] Thr 50Lys ACA AAA Heart, PN Japan Shomi et al. [1993] Sort et al. [1993] Thr 50Lys ACA AAA Piart, PN Lye Italy Uenichi et al. [1993] Sort et al. [1994] Lys 70Asn AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] Ser77Fhe TCT TTT PN, CTS, Heart Italy Li et at. [1994] Ser77Fhe TCT TTT PN, CTS, Heart Bangladesh Booth et al. [1992] Thr 604lser AA AAC CTS, PN, Eye Spain Almeida et al. [1994] Ser77Fhe TCT TTT PN CTS, Heart Italy Uenichi et al. [1994] Ser77Fhe TCT TTT PN CTS, Heart Italy Almeida et al. [1994] Ser77Fhe TCT TTT PN CTS, Heart Bangladesh Booth et al. [1992] Martine AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] Ser77Fhe TCT TTT PN CTS, Heart Italy Almeida et al. [1994] AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] AAA AAC CC CTS TA PN, CTS France Planté Bord et al. [1994] AAA AA						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						
Ser50ArgAGTAGGPN, ANJapanUeno et al. [1990]Glu51GlyGAGGGGHeart, PN, ANJapanSaeki et al. [1992]Glu51GlyGAGGGGHeart, PN, AN, HeartUKBooth et al. [1993]Glu54GlyGGAGAALM, HeartUKBooth et al. [1999]Glu54LyGAGGGGPN, AN, HeartUKCamou et al. [1999]Leu55ProCTGCGGCG, M, PNGermanyAltand [1999]Leu55ArgCTGCGGCG, PN, Heart, ANTaiwanJacobson et al. [1999]Leu55ProCTGCGCCG, PN, Heart, ANJapanSaeki et al. [1991]Leu58ProCTGCGCCTS, AN, EyeJapanSaeki et al. [1991]Leu58ProCTCCACCTS, HeartGermanyNichols et al. [1992]Leu58ProCTCCACCTS, NN, EyeJapanSaeki et al. [1991]Leu58ProCTCCACCTS, NN, EyeJapanSaeki et al. [1991]Leu58ProCTCCACCTS, NN, EyeJapanSaeki et al. [1991]Ihr60AlaACTGCTHeart, CTSIrelandWallace et al. [1992]Glu51LysGAGAAGPNJapanSaeki et al. [1992]Ihr60AlaACTGCTCACHeartPNJr60HisTACCACEyenScoundJr60HisTACCACEyenScoundZeldemrust et al. [1991]Jr64LeuTTTCTTPN, EyeScound <td< td=""><td></td><td></td><td></td><td></td><td>- 1</td><td></td></td<>					- 1	
Ser50IIeAGTATTHeart, PN, ANJapanSaeki et al. [1992]Glu51GlyGAGGGGHeartUSAJacobson et al. [1993]Ser52ProTCTCCTPN, AN, HeartUKBooth et al. [1993]Glu54GlyGAGGGAGAALM, HeartFranceCamou et al. [1995]Glu54GlyGAGGAGGAAPN, ANHKReilly et al. [1995]Leu55ArgCTGCGGGCAPN, AN, HeartJapanTogashi et al. [1999]Leu55ArgCTGCGGPN, Heart, ANTaiwanJacobson et al. [1992]Leu55ArgCTGCCGCTS, HeartGermanyNichols et al. [1999]Leu58ArgCTCCACCTS, HeartGermanyNichols et al. [1991]Leu58ArgCTCCACAAAHeart, PNItalyBooth et al. [1991]Leu58ArgCTCCACAAAHeart, CTSIrelandWallace et al. [1991]Thr50LysGAGAAGPNStateJapanShiomi et al. [1993]Phe64LeuTTTCTTPN, CTS, HeartItalyUemichi et al. [1993]Lys70AsnAAAAACCTS, PN, EyeGermanyAlmeida et al. [1991]Lys70AsnAAAAACCTS, PN, EyeGermanyAlmeida et al. [1991]Lys70AsnAAAAACCTS, PN, EyeGermanyAlmeida et al. [1991]Lys70AsnAAAAACCTS, PN, EyeGermanyAlmeida et al. [1992]Ser77TyrTCTT						
Ser52ProTCTCCTPN, AN, HeartUKBooth et al. [1993]Gly53GluGGAGAALM, HeartFranceCamou et al. [1997]Glu54GlyGAGGGAPN, AN, HeartJapanTogashi et al. [1997]Glu54GlyGAGGGAPN, AN, HeartJapanTogashi et al. [1997]Leu55ArgCTGCCGEM, PNGermanyAltland [1999]Leu55ArgCATCGTHeart, ANTaiwanJacobson et al. [1992]Leu58HisCTCCACCTS, HeartGermanyNichols et al. [1993]Leu58ArgCTCCACCTS, HeartGermanyNichols et al. [1993]Leu58ArgCTCCACCTS, HeartHeant, NHailweet al. [1991]Thr59LysACAAAAHeart, CTSIrelandWallace et al. [1993]Leu58ArgCTCCACCTS, HeartItalyBooth et al. [1993]Phe64LeuTTTCTTPN, CTS, HeartItalyLi et at. [1991]Phe64LeuTTTTCTLM, PN, EyeItalyLi et at. [1994]Lys70AsnAAAAACCTS, PN, EyeSociandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeSpainAlmeida et al. [1998]Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77PheTCTTATPNFrancePlanté-Bordeneuve et al. [1998]Ser77PheTCTTATPNFrancePlanté-Bordeneuve et al. [1998] </td <td></td> <td>AGT</td> <td></td> <td></td> <td></td> <td></td>		AGT				
Gly53GluGGAGAALM, HeartFranceCamou et al. [1999]Glu54GlyGAGGGAPN, ANUKReilly et al. [1995]Glu54LysGAGGAAPN, AN, HeartJapanTogashi et al. [1999]Leu55ProCTGCCGCGPN, Heart, ANTaiwanJacobson et al. [1999]Leu58ProCTGCCGCGPN, Heart, ANTaiwanJacobson et al. [1999]Leu58ProCTCCATCGTHeartUSAJacobson et al. [1991]Leu58ArgCTCCACCTS, HeartGermanyNichols et al. [1993]Leu58ArgCTCCACCTS, AN, EyeJapanSacki et al. [1991]Thr50LysACAAAAHeart, PNItalyBooth et al. [1993]Phe64LeuTTTCTPN, CTS, HeartItalyUemichi et al. [1991]Phe64LeuTTTTTTTPN, CTS, HeartItalyUemichi et al. [1999]Ile68LeuATATTAHeartGermanyAlmeida et al. [1991]Lyr50HsTACCACEyeScotlandZelenrust et al. [1992]Val71AlaGTGGGCGPN, EyeItalyUemichi et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77TyrTCTTATPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile73ValATAGACAACEye, Heart </td <td>Glu51Gly</td> <td>GAG</td> <td></td> <td>Heart</td> <td>USA</td> <td>Jacobson et al. [1999]</td>	Glu51Gly	GAG		Heart	USA	Jacobson et al. [1999]
$ Leu55Årg CTG CGG LM, PN Germany Altland [1999] \\ Leu55Pro CTG CCG PN, Heart, AN Taiwan Jacobson et al. [1992] \\ Leu58Pro CTG CCG CTS, Heart USA Jacobson et al. [1999] \\ Leu58His CTC CAC CTS, Heart Germany Nichols et al. [1989] \\ Leu58Hig CTC CGC CTS, AN, Eye Japan Saeki et al. [1991] \\ Thr59Lys ACA AAA Heart, PN Italy Booth et al. [1995] \\ Thr59Lys ACA AAA Heart, CTS Ireland Wallace et al. [1993] \\ Phe64Leu TTT CTT PN, CTS, Heart Italy Li et at. [1991] \\ Phe64Ser TTT TCT LM, PN, Eye Italy Uemichi et al. [1993] \\ Le68Leu ATA TTA Heart Germany Almeida et al. [1994] \\ Tyr59His TAC CAC Eye Scotland Zeldenrust et al. [1994] \\ Tyr59His TAC CAC Eye Spain Almeida et al. [1993] \\ le68Leu ATA TTA Heart PN, AN Bangladesh Booth et al. [1994] \\ le73Val ATA GTG GCG PN, Eye Spain Almeida et al. [1998] \\ le73Val ATA GTG GCG PN, Eye Spain Almeida et al. [1998] \\ le73Val ATA GTA CT FN N Germany Wallace et al. [1998] \\ le84Ser ATC AAC Heart, CTS, Eye Switzerland Dwulet and Benson [1986] \\ lle84Asn ATC AAC Eye, Heart Italy Malmeida et al. [1998] \\ lle84Ser ATC AGC Heart, PN, AN Germany Stangou et al. [1998] \\ lle84Ser ATC AGC Heart, PN, AN Germany Stangou et al. [1998] \\ lle84Asn ATC AAC Eye, Heart Italy Almeida et al. [1998] lle84Ser GCG TCC PN, Heart France Misrahi et al. [1998] lle84Asn ATC AAC Eye, Heart Italy Almeida et al. [1998] lle84Asn ATC ACC Heart, PN, AN Germany Jacobson [1986] lle84Asn ATC ACC Heart, PN, AN Germany Jacobson [1986] lle84Asn ATC ACC CHeart, PN, CTS, Heart France Misrahi et al. [1998] Ala97Gly GCC GCG CGC Heart, N Japan Yasuda et al. [1998] Ala97Gly GCC GCG CC CTC PN, Heart France Misrahi et al. [1998] Ala97Gly GCC GCG CC CC CC PN Japan Yasuda et al. [1998] Ala97Gly GCC GC GCC Heart, PN Apan Yasuda et al. [1998] Ya114Cys TAC CAC CTS PN, Heart Germany Atama et al. [1998] Ya114Cys TAC CAC CTS PN, Heart Healy De Lucia et al. $						
Leu58Pro CTG CCG PN, Heart, AN Taiwan Jacobson et al. [1992] His56Arg CAT CGT Heart USA Jacobson et al. [1999] Leu58His CTC CAC CTS, Heart Germany Nichols et al. [1989] Leu58Arg CTC CGC CTS, AN, Eye Japan Saeki et al. [1991] Thr50Lys ACA AA Heart, PN Italy Booth et al. [1995] Thr60Ala ACT GCT Heart, CTS Ireland Wallace et al. [1993] Phe64Leu TTT CTT PN, CTS, Heart Italy Li et at. [1993] Phe64Leu TTT CTT LM, PN, Eye Italy Uemichi et al. [1993] Phe64Ser TTT TCT LM, PN, Eye Italy Uemichi et al. [1994] Tyr69His TAC CAC Eye Scotland Zeldenrust et al. [1994] Lys70Asn AAA AAC CTS, PN, Eye Germany Almeida et al. [1994] Lys70Asn AAA AAC CTS, PN, Eye Spain Almeida et al. [1993] lle73Val ATA GTA PN, AN Bangladesh Booth et al. [1993] lle73Val ATA GTA PN, AN Bangladesh Booth et al. [1998] lle73Val ATA GTA PN, AN Bangladesh Booth et al. [1998] lle84Asn ATC AGC Heart, CTS, Eye Switzerland Dwulet and Benson [1986] lle84Asn ATC AGC Heart, CTS, Eye Switzerland Dwulet and Benson [1986] lle84Asn ATC AGC Heart, PN, AN Germany Stangou et al. [1998] lle84Asn ATC AGC Heart, PN, AN Germany Stangou et al. [1998] lle84Asn ATC AGC Heart, PN, AN Germany Stangou et al. [1998] Ala97Gly GCG GGA PN, Heart Italy Almeida et al. [1998] Ala97Ser GCA TCA PN, CTS, Heart France Misrahi et al. [1998] Ala97Ser GCC TCC PN, Heart USA Nakamura et al. [2000] Hale75A PN, Heart DSA Nakamura et al. [2000] Hale75A PN, Heart Denmark Nordlie et al. [1998] Ala97Ser GCC TCC PN, Heart Germany Altand [1999] Ala97Ser GCC TCC PN, Heart Denmark Nordlie et al. [1994] Ala97Ser GCC TCC PN, Heart Germany Altand [1999] Ala1020Ser GCT TCC PN, Heart Germany Altand [1999] Ala1020Ser GCT TCC PN, Heart Denmark Nordlie et al. [1993] Tyr114Kis TAC CAC CTS Japan Murakami et al. [1994] Tyr114Esr TAT CTC PN, CTS France Misrahi et al						
$ His56Arg CAT CGT Heart USA Jacobson et al. [1999] \\ Leu58His CTC CAC CTS, Heart Germany Nichols et al. [1991] \\ Leu58Arg CTC CGC CTS, AN, Eye Japan Saeki et al. [1991] \\ Thr50Jus ACA AAA Heart, PN Italy Booth et al. [1995] \\ Thr60Ala ACT GCT Heart, CTS Ireland Wallace et al. [1986] \\ Glu61Lys GAG AAG PN Japan Shiomi et al. [1993] \\ Phe64Leu TTT CTT PN, CTS, Heart Italy Li et at. [1991] \\ Phe64Ser TTT TCT LM, PN, Eye Italy Uemichi et al. [1999] \\ Ile68Leu ATA TTA Heart Germany Almeida et al. [1991] \\ Tyr69His TAC CAC Eye Scotland Zeldenrust et al. [1994] \\ Lys70Asn AAA AAC CTS, PN, Eye Germany Izumoto et al. [1992] \\ Val71Ala GTG GCG PN, Eye Spain Almeida et al. [1993] \\ Ile73Val ATA GTA PN, AN Bangladesh Booth et al. [1998] \\ Ser77Phe TCT TTT PN GCT TTT PN Germany Wallace et al. [1998] \\ Ser77Thy TCT TAT PN Germany Wallace et al. [1998] \\ Ile84Ser ATC AGC Heart, CTS, Eye Switzerland Dwulet and Benson [1986] \\ Ile84Asn ATC AAC Eye, Heart Italy Almeida et al. [1992] \\ Ile84Shr ATC AGC Heart, PN, AN Germany Stangou et al. [1992] Ile84Shr ATC AGC Heart, PN, AN Germany Stangou et al. [1992] Ile84Shr ATC AGC Heart, PN, AN Germany Stangou et al. [1992] Ile84Shr ATC AGC Heart, PN, AN Germany Stangou et al. [1992] Ile84Shr ATC ACC Heart, PN, AN Germany Stangou et al. [1992] Ala97Ser GCA TCA PN, Heart Italy Almeida et al. [1992] Ala97Ser GCC TCC PN, Heart France Misrahi et al. [1998] Ala97Ser GCC TCC PN, Heart France Iachmann et al. [2000] Ala97Ser GCC TCC PN, Heart Denmark Nordlie et al. [1994] Ala97Ser GCC TCC PN, Heart Denmark Nordlie et al. [1994] Ala97Ser GCC TCC PN, Heart Denmark Nordlie et al. [1994] Ala100Ser GCT TC PN, Heart Denmark Nordlie et al. [1994] Ala100Ser GCT TC Heart, PN, AN Africa Gillmore et al. [1994] Tyr114His TAC CAC CTS Japan Murakami et al. [1994] Tyr114Fis TAC CAC CTS Japan Murakami et al. [1994] Tyr$						
Leu58HisCTCCACCTS, HeartGermanyNichols et al. [1989]Leu58ArgCTCCGCCTS, AN, EyeJapanSaeki et al. [1991]Thr59LysACAAAAHeart, PNItalyBooth et al. [1995]Thr60AlaACTGCTHeart, CTSIrelandWallace et al. [1986]Glu61LysGAGAAGPNJapanShiomi et al. [1993]Phe64LeuTTCTTPN, CTS, HeartItalyLi et at. [1991]Phe64SerTTTCTLM, PN, EyeItalyUemichi et al. [1993]Ile68LeuATATAHeartGermanyAlmeida et al. [1991]Tyr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalyAlmeida et al. [1998]Glu89GlnGAGCAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97SerGCCGCCGCCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCGCCGCCHeart, PNJapanYasuda et al.						
Leu58ArgCTCCGCCTS, AN, EyeJapanSaeki et al. [1991]Thr59LysACAAAAHeart, PNItalyBooth et al. [1995]Thr60AlaACTGCTHeart, CTSIrelandWallace et al. [1986]Glu61LysGAGAAGPNJapanShiomi et al. [1993]Phe64LeuTTTCTTPN, CTS, HeartItalyLi et at. [1991]Phe64SerTTTTTCTLM, PN, EyeItalyUemichi et al. [1991]Phe64SerTTTTCTLM, PN, EyeItalyUemichi et al. [1991]Jtr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77TyrTCTTATPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAACEye, HeartItalySkinner et al. [1998]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGAGCAGPN, HeartHeartUSAAla97SerGCCGCCHeart, PNJapanYasuda et al. [1998]Ala97SerGCCGCCTCCPN, HeartGermanyAltand [1999]Ala19Ser <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Leu58Arg	CTC	CGC	CTS, AN, Eye	Japan	Saeki et al. [1991]
Glu61LysGAGAAGPNJapanShiomi et al. [1993]Phe64LeuTTTCTTPN, CTS, HeartItalyLi et at. [1991]Phe64SerTTTTCTLM, PN, EyeItalyUemichi et al. [1999]Ile68LeuATAATATTAHeartGermanyAlmeida et al. [1991]Tyr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77IbrTCTTATPNFrancePlanté-Bordeneuve et al. [1998]Ser77IbrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Glu89GlnGAGCAGPN, HeartUSANakamura et al. [2000]Ala91SerGCCGCCHeart, PNJapanYasuda et al. [1998]Ala97GlyGCCGCCTCAPN, HeartFranceAla97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107NetATTATGHeartDenmarkNordlie et al. [1998]Ala97SerGCCTCCPN, HeartDapanDate et al. [1994]Ile107Val <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Phe64LeuTTTCTTPN, CTS, HeartItalyLi et at. $[1991]$ Phe64SerTTTTCTLM, PN, EyeItalyUemichi et al. $[1999]$ Ile68LeuATATTAHeartGermanyAlmeida et al. $[1991]$ Tyr69HisTACCACEyeScotlandZeldenrust et al. $[1992]$ Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. $[1992]$ Val71AlaGTGGCGPN, EyeSpainAlmeida et al. $[1993]$ Ile73ValATAGTAPN, ANBangladeshBooth et al. $[1998]$ Ser77TpheTCTTTTPNFrancePlanté-Bordeneuve et al. $[1998]$ Ser77TyrTCTTATPNGermanyWallace et al. $[1998]$ Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson $[1986]$ Ile84AsnATCAACEye, HeartItalySkinner et al. $[1992]$ Ile84ShrATCACCHeart, PN, ANGermanyStangou et al. $[1998]$ Glu89GlnGAGCAGPN, HeartUtalyAlmeida et al. $[1992]$ Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. $[1998]$ Ala97SerGCCGCCTCCPN, HeartFranceLachmann et al. $[2000]$ Ala109SerGCCTCCPN, HeartFranceLachmann et al. $[1994]$ Le107ValATTGTGHeartDenmarkNordlie et al. $[1993]$ Ile107ValATTGTGHea						
Phe64SerTTTTCTLM, PN, EyeItalyUemichi et al. [1999]Ile68LeuATATTAHeartGermanyAlmeida et al. [1991]Tyr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84AsnATCAACHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84SerATCAACHeartItalySkinner et al. [1992]Gku89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, CTS, HeartFranceMisrahi et al. [1992]Ala97GlyGCCGCCHeart, CTS, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107MetATTATGPN, HeartGermanyAltand [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ile107MetATTATGPN, HeartDenmarkNordlie et al. [1997] <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Ile68LeuATATTAHeartGermanyAlmeida et al. [1991]Tyr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ser77TheTCTTATPNGermanyWallace et al. [1998]Ser77ThrTCTTATPNGermanyWallace et al. [1998]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84ThrATCACCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84SpGinGAGCAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGAGCAGPN, HeartUSANakamura et al. [2000]Ala91SerGCCGCCGCCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTATTGTHeartGermanyAltand [1999]Ile107VatATTGTHeartDemarkNordlie et al. [1993]Ile107VatATTGTHeartDemarkNordlie et al. [1994]<						
Tyr69HisTACCACEyeScotlandZeldenrust et al. [1994]Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Lys71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77TpheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84AsnATCACCHeart, PN, ANGermanyStangou et al. [1998]Glu89GlnGAGCAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGCCHeart, CTS, PNGermanyJacobson [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTGTTHeart, CTS, PNGermanyAltand [1999]Ala109SerGCCTCCPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPN, HeartHeartDenmarkNordlie et al. [1992]IatobscrGCTTCCPNJapaanDate et al. [1993]Jacobson [1994]Iel107ValLe107ValATTGTG <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Lys70AsnAAAAACCTS, PN, EyeGermanyIzumoto et al. [1992]Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84AsnATCAACHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84SerATCAACHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84SerGAGCAGPN, HeartItalySkinner et al. [1992]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGCCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1993] <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
Val71AlaGTGGCGPN, EyeSpainAlmeida et al. [1993]Ile73ValATAGTAPN, ANBangladeshBooth et al. [1998]Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1998]Glu89GinGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCCGCCHeart, PNJapanYasuda et al. [1994]Ala97GlyGCCGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107MetATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ile107MetATTATGPN, HeartDenmarkNordlie et al. [1993]Leu111MetCTGATGHeartDemarkNordlie et al. [1993]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Tyr114CysTACCACCTSJapanMurakami et al. [1994]<						
Ser77PheTCTTTTPNFrancePlanté-Bordeneuve et al. [1998]Ser77IyrTCTTATPNGermanyWallace et al. [1998]Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84AsnATCACCHeart, PN, ANGermanyStangou et al. [1992]Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1992]Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1992]Ile84SerGAGCAGPN, HeartItalyAlmeida et al. [1992]Ile84SerGCCGCATCAPN, CTS, HeartFranceAla91SerGCATCAPN, CTS, HeartFranceLachmann et al. [2000]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107MetATTATGPN, HeartGermanyAlatod[1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1993]Tyr114CysTACCACCTSJapanUeno et al. [1993]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Tyr114Cys <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Ser77TyrTCTTATPNGermanyWallace et al. [1998]Ile84AsrATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84ArhrATCAACHeart, PN, ANGermanyStangou et al. [1998]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGCCGCATCAPN, CTS, HeartItalyAla91SerGCCGCCHeart, PNJapanYasuda et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ile107MetATTATGPN, HeartDenmarkNordlie et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanMurakami et al. [1993]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaSaraiva et al. [1999]<	lle73Val	ATA	GTA	PN, AN	Bangladesh	
Ile84SerATCAGCHeart, CTS, EyeSwitzerlandDwulet and Benson [1986]Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1998]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTGTTHeart, CTS, PNGermanyAlatobson [1994]Ile107ValATTGTHeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Le111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112IleAGCATCPN, AN, EyeJapanUeno et al. [1983]Tyr114CysTACCACCTSJapanMurakami et al. [1993]Tyr114HisTACCACCTSJapanMurakami et al. [1998]Val122IleGTCATCHeart, PN, ANAfricaSaraiva et al. [1998]Val122IeGTCATCHeartAfricaSaraiva et al. [1999]Val122IeGTCATCHeartAfricaSaraiva et al. [1990]Val122Ie <td></td> <td></td> <td></td> <td></td> <td></td> <td>Planté-Bordeneuve et al. [1998]</td>						Planté-Bordeneuve et al. [1998]
Ile84AsnATCAACEye, HeartItalySkinner et al. [1992]Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1998]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Glu89GlnGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachman et al. [2000]Ile107ValATTATTATGPN, HeartGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAlacobson [1994]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1993]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1993]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaSaraiva et al. [1990]Val122lleGTCATCHeart, PN, CTSEquador/SpainUemichi et al. [199						
Ile84ThrATCACCHeart, PN, ANGermanyStangou et al. [1998]Glu89GinGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107MetATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1998]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanMurakami et al. [1994]Tyr114CysTACCACCTSJapanMurakami et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaSaraiva et al. [1999]Val122lleGTCATCHeartAfricaSaraiva et al. [1990]Val122lelGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]						
Glu89GlnGAGCAGPN, HeartItalyAlmeida et al. [1992]Gku89LysGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ile107MetATTATGPN, HeartGermanyAltand [1999]Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanMurakami et al. [1994]Tyr114FisTACCACCTSJapanMurakami et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1998]Val122lleGTCATCHeartAfricaSaraiva et al. [1999]Val122lleGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1999]Val122lleGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1990]Val122lleGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]Heart, PN, CTSEquador/Spain <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Gku89LysGAGAAGPN, HeartUSANakamura et al. [2000]Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachmann et al. [2000]Ile107ValATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1977]Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanMurakami et al. [1994]Tyr114SerTACCACCTSJapanMurakami et al. [1994]Tyr114CysTACTGCPN, AN, EyeJapanMurakami et al. [1994]Tyr114SerTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1994]Val122lleGTCATCHeart, PN, ANAfricaGillmore et al. [1999]Val122lelGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]Heart, PN, CTSEquador/SpainUemichi et al. [2000]	01 00 01		0.0			
Ala91SerGCATCAPN, CTS, HeartFranceMisrahi et al. [1998]Ala97GlyGCCGGCHeart, PNJapanYasuda et al. [1994]Ala97SerGCCTCCPN, HeartFranceLachman et al. [2000]lle107ValATTGTTHeart, CTS, PNGermanyJacobson [1994]lle107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1993]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1994]Tyr114SerTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1994]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1998]Val122lleGTCATCHeartAfricaSaraiva et al. [1990]Val122leGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]HeartAfricaSaraiva et al. [2000]						
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Ile107ValATTGTTHeart, CTS, PNGermanyJacobson [1994]Ile107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990]Tyr114FisTACCACCTSJapanMurakani et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122lleGTCATCHeartAfricaSaraiva et al. [1990]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]HeartAfricaSaraiva et al. [2000]						Yasuda et al. [1994]
Ile107MetATTATGPN, HeartGermanyAltand [1999]Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990a]Tyr114FisTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122lleGTCATCHeart, PN, CTSEquador/SpainUemichi et al. [1999]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]	Ala97Ser	GCC	TCC		France	
Ala109SerGCCTCCPNJapanDate et al. [1997]Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990a]Tyr114HisTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122lleGTCATCHeartAfricaSaraiva et al. [1990]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]						
Leu111MetCTGATGHeartDenmarkNordlie et al. [1988]Ser112lleAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990a]Tyr114HisTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122lleGTCATCHeart, PN, CTSEquador/SpainUemichi et al. [1995]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]						
Ser11211eAGCATCPN, HeartItalyDe Lucia et al. [1993]Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990a]Tyr114HisTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val1221leGTCATCHeartAfricaSaraiva et al. [1990]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1990]						
Tyr114CysTACTGCPN, AN, EyeJapanUeno et al. [1990a]Tyr114HisTACCACCTSJapanMurakami et al. [1994]Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1990]Val122IleGTCATCHeart, PN, CTSEquador/SpainUeno et al. [1998]Val122delGTCLossHeart, PN, CTSMura Qués et al. [1990]						
Tyr 114HisTACCACCTSJapanMurakami et al. [1994]Tyr 116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122IleGTCATCHeartAfricaSaraiva et al. [1990]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]						
Tyr116SerTATTCTPN, CTSFranceMisrahi et al. [1998]Ala120SerGCTTCTHeart, PN, ANAfricaGillmore et al. [1999]Val122IleGTCATCHeartAfricaSaraiva et al. [1990]Val122delGTCLossHeart, PN, CTSEquador/SpainUemichi et al. [1995]Munar Qués et al. [2000]						
Ala 120Ser GCT TCT Heart, PN, AN Africa Gillmore et al. [1999] Val 122Ile GTC ATC Heart Africa Saraiva et al. [1990] Val 122Ide GTC Loss Heart, PN, CTS Equador/Spain Uemichi et al. [1995] Munar Qués et al. [2000]						
Val122Ile GTC ATC Heart Africa Saraiva et al. [1990] Val122del GTC Loss Heart, PN, CTS Equador/Spain Uumichi et al. [1995] Munar Qués et al. [2000]						
Val122del GTC Loss Heart, PN, CTS Equador/Spain Uemichi et al. [1995] Munar Qués et al. [2000]	Val122Ile			Heart	Africa	
	Val122del		Loss	Heart, PN, CTS	Equador/Spain	
Valizzala GIC GCC fiedri, Eye, Piv UK ineberge et al. [1999]	11 11 00 41	070	000	Hoart Eng DN	1117	
	valizzAla	GIC	GCC	riedit, Lye, riv	UK	mederge et al. [1999]

AN, autonomic neuropathy; CTS, carpal tunnel syndrome; Eye, vitreous deposition; PN, peripheral neuropathy; LM, leptomeningeal amyloid; Heart, cardiomyopathy.

Mutation	Codon	change	Frequency ^a	Reference
Gly6Ser	GGT	AGT	33/558	Jacobson et al. [1995]
Met13lle	ATG	ATC	ND	Altland [1999]
Asp74His	GAC	CAC	ND	Uemichi et al. [1994]
His90Asn	CAT	AAT	16/12,400	Saraiva et al. [1991]
Gly101Ser	GGC	AGC	ND	Kishikawa et al. [1998]
Pro102Arg	CCC	CGC	1/8,000	Almeida et al. [1991a]
Arg104Cys	CGC	TGC	ND	Saraiva et al. [1999]
Arg104His	CGC	CAC	ND	Terazaki et al. [1999]
Ala108Ala ^b	GCC	GCT	ND	Palha et al. [1997]
Ala109Thr	GCC	ACC	1/10,000	Alves et al. [1997]
Ala109Val	GCC	GTC	ND	Izumoto et al. [1993]
Thr119Met	ACG	ATG	35/10,000	Alves et al. [1997]
Pro125Ser	CCC	TCC	ND	Ferlini et al. [1996]
Compound heterozygotes				
Gly6Ser/Val30Met			7/160	Alves et al. [1996]
Gly6Ser Phe33Ile ^c			ND	Jacobson and Buxbaum [1994]
Gly6Ser/Ala45Asp			ND	Jacobson et al. [1993]
Gly6Ser/Ser77Tyr			ND	Planté-Bordeneuve et al. [1999]
Gly6Ser/Tyr114Cys			ND	Connors et al. [1999a]
Gly6Ser/Thr119Met			ND	Saraiva (personal communication)
Gly6Ser/Val122/Ala			ND	Theberge et al. [1999]
His90Asn/Val30Met			ND	Saraiva et al. [1991]
His90Asn Glu42Gly ^c			ND	Skare et al. [1994]
His90Asn/Thr119Met			ND	Alves et al. [1993]
Arg104His/Val30Met			ND	Terazaki et al. [1999]
Thr119Met/Val30Met			ND	Alves et al. [1996a]


Table A-2. Non-amyloid TTR mutations and compound heterozygotes (Saraiva 2001)

^aRefers to mutant allele frequency. ^bSilent mutation. ^cMutations on the same allele.

Bellow, all the results from the analysis of the different inhibitors (tables and adjustments) by the Kinetic Turbidimetric Assay are shown.

_24		1	Referenc		1 855					1.470 1.420 1.370							
	[854]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ t (h)	∆Abs	Errar T*2		h						
	0,00	1,221	0,08	0,258	1,18	0,604		0,346	0,0042	1,120 1,070							
	1,88 9,38	1,2514	0,08	0,292	1,12 1,50	0,784 0,786		0,492 0,49	0,0002	0,020				<u> </u>	<u> </u>		
Serie 1	16,88	1,1026	0,08	0,298	1,50	0,753		0,455	4E-06	0,820						- 0	
	24,38	1,0029	0,08	0,311	1,50	0,833		0,522	0,0005	0,¥0 0,¥20						þ	
	31,88 39,38	0,9338 0,897	0,08	0,327	1,50 1,50	0,823		0,496	0,0002	0,670							
	0,00	1,2504	0,08	0,271	1,00	0,624		0,353	0,0013	0,570							
	1,88	1,2781	0,08	0,285	1,12	0,813		0,528	0,0002	0,470							
Serie 2	9,38 16,88	1,2558	0,08	0,293	1,50 1,50	0,783		0,49	0,005	0,370							
00110 2	24,38	1,007	0,08	0,284	1,50	0,872	1,417	0,588	0,0003	0,270							
	31,88 39,38	1,0018	0,12	0,369	1,50 1,50	0,876		0,507	0,0031	0,170							
	39,30	0,7987	0,10	0,554	1,50	0,732	1,4 Error a		0,0049	0,020	1						
corretair	per (TTR)	a 4 mg/mL								-10,0	0,0	10,0	20,	0 3	0,0	40,0	50,0
										0							
JUST		ES AJUSTE ± SE	ECUACI	ÓN Y=/	A+B*exp	o(-C*x) ± SE	B*C	v ₀ a x=0		ÁMETROS ± SE RA((%)		Punts a	ignorar			
-0001	(uA · h ⁻¹)	÷ 3L	(uA · h ⁻¹)	J JL	(µM ⁻¹)	- JL			μM)		1.01						
Serie 1+2	-7,883	127,185	9,169	#####		0,017	0,011	1,2859	61,448	25,214 713	3,0						
	· · ·									7	,		1				
umero inhi VR 24	ibidor =	5	Referenci	a flistal	856	1				1,470 1,420							
		V₀ (uA/h-1)	t ₀ (h)	Abs_0	t _f (h)	Abs _f	∆ t (h)	$\Delta \textbf{Abs}$	Errar T*2	1,320 1,220 1,270							
	0.00	1,221	0,08	0,258	1,18	0,604	1,10	0,346	0,0018	00000000000000000000000000000000000000	閁						
	1,88	1,221	0,08	0,250	1,10	0,604	1,033	0,346	0,0018	1,070	$ \rangle$						
	9,38	0,3411	0,08	0,243	1,50	0,655	1,417	0,412	0	0,970							
Serie 1	16,89 24,40	0,6632 0,4245	0,13	0,254	1,50 1,50	0,604	1,367	0,35 0,354	0,0063 0,0171	0,870							
	31,91	0,4245	0,08	0,220	1,50		0,983	0,354	0,0002	0,720							
	39,41	0,3178	0,13	0,225	1,50	0,478	1,367	0,253	0,0155	0,620	al and a second		- P \				
	0,00	1,2504 1,204	0,08	0,271 0,290	1,17 1,12	0,624 0,752	1,083	0,353	0,0052	0,520 0,450	The second se		₽ 1				
	1,88 9,38	0,9162	0,10	0,290	1,12	0,752	1,017	0,462	0,0056	0 420				 			
Serie 2	16,89	0,558	0,25	0,568	1,50	0,862	1,25	0,294	0,034	0,20	4		•		- M	- H	
	1 04 40									0,350		-			_/	ų.	
	24,40	0,4428	0,07	0,220	1,50	0,583	1,433	0,363	0,0127	0,220 0,220 0,220 0,170		-		I		٦,	
	24,40 31,91 39,41	0,4428 0,3865 0,3445	0,07 0,12 0,13	0,220 0,227 0,225	1,50 1,10 1,50	0,583 0,572 0,497	1,433 0,983 1,367	0,363 0,345 0,272		00000000000000000000000000000000000000	ur huul uulu uulu uulu	-		Ι		7	
	31,91	0,3865	0,12	0,227	1,10	0,572 0,497	0,983	0,345	0,0127 0,0002	0.020				, , , , ,		<u>الم</u>	
corretgir (31,91 39,41	0,3865	0,12 0,13	0,227	1,10	0,572 0,497	0,983 1,367	0,345 0,272	0,0127 0,0002 0,0229 0,0713	0,020 0,036 -	алинини алинини о,о	10,0	20,0) 31	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40,0	 50,0
corretgir (31,91 39,41 per [TTR]	0,3865 0,3445 a 4 mg/mL	0,12 0,13	0,227	1,10 1,50	0,572 0,497	0,983 1,367	0,345 0,272	0,0127 0,0002 0,0229 0,0713	-10,0 -10,0 -10,0	0,0				, 0,0	40,0	
[31,91 39,41 per [TTR] VALORE	0,3865 0,3445 a 4 mg/mL ES AJUSTE	0,12 0,13 ECUACIO	0,227 0,225 ÓN Y=4	1,10 1,50 A+B*exp	0,572 0,497	0,983 1,367 Error a	0,345 0,272 0,001	0,0127 0,0002 0,0229 0,0713	-10,0 -10,0 -10,0			Punts a	ignorar	 0,0	40,0	
	31,91 39,41 per [TTR] VALORE	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE	0,12 0,13 ECUACIO	0,227	1,10 1,50 A+B*exp C	0,572 0,497	0,983 1,367 Error a	0,345 0,272	0,0127 0,0002 0,0229 0,0713 PARÁ	-10,0 -10,0 -10,0				ignorar	 0,0	40,0	
JUST	31,91 39,41 per [TTR] VALORE A (uA · h ⁻¹)	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE	0,12 0,13 ECUACIO B (uA · h ⁻¹)	0,227 0,225 ÓN Y=4	1,10 1,50 A+B*exp	0,572 0,497 (-C*x) ± SE	0,983 1,367 Error a B*C	0,345 0,272 0,001	0,0127 0,0002 0,0229 0,0713 PAR μ IC ₅₀ (μM)	-10,0 -10,0 	(%)		Punts a	ignorar	 0,0	40,0	
AJUST Serie 1+2	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114	0,227 0,225 ÓN Y=4 ± SE	1,10 1,50 Α+Β*exp C (μM ⁻¹) 0,003	0,572 0,497 (-C*x) ± SE 0,016	0,983 1,367 Error a B*C	0,345 0,272 0,001 v ₀ a x=0	0,0127 0,0002 0,0229 0,0713 PARÁ	-10,0 -10,0 -10,0	(%)		Punts a	ignorar	 0,0	40,0	
AJUST Serie 1+2 umero inhi	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020	0,12 0,13 ECUACIO B (uA · h ⁻¹)	0,227 0,225 ÓN Y=4 ± SE	1,10 1,50 Α+Β*exp C (μM ⁻¹) 0,003	0,572 0,497 (-C*x) ± SE 0,016	0,983 1,367 Error a B*C	0,345 0,272 0,001 v ₀ a x=0	0,0127 0,0002 0,0229 0,0713 PAR μ IC ₅₀ (μM)	-10,0 -10,0 	(%)		Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2 umero inhi	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor =	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc	0,227 0,225 ÓN Y=4 ± SE	1,10 1,50 Δ+B*exp C (μM ⁻¹) 0,003 858	0.572 0,497 (-C*x) ± SE 0,016	0,983 1,367 Error a B*C	0,345 0,272 0,001 v ₀ a x=0 1,1786	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (µM) 23,027	-10,0 -10,0	(%)		Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2 umero inhi	31,91 39,41 per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855]	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1)	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc t ₀ (h)	0,227 0,225 ÓN Y=4 ± SE ######	1,10 1,50 Δ+Β*exp C (μM ⁻¹) 0,003 858 t _f (h)	0,572 0,497 ± SE 0,016	0,983 1,367 Error a B*C 0,026	0.345 0.272 0,001 ν ₀ a x=0 1,1786	0.0127 0.0002 0.0229 0.0713 PARΑ IC ₅₀ (μM) 23.027	-10,0 -10,0	(%)		Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2	31,91 39,41 per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08	0,227 0,225 ÓN Y=4 ± SE ###### ia Ilistat	1,10 1,50 Δ+Β*exp C (μM ⁻¹) 0,003 858 t _r (h) 1,18	0,572 0,497 ± SE 0,016 Abs _f 0,604	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10	0.345 0.272 0,001 v ₀ a x=0 1,1786 Δ Abs 0,346	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (μM) 23,027	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2 umero inhi	31,91 39,41 per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855]	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1)	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc t ₀ (h)	0,227 0,225 ÓN Y=4 ± SE ######	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50	0.572 0.497 ± SE 0.016 Abs _f 0.604 0.689 0.705	0.983 1.367 Error a B*C 0.026 Δt (h) 1.10 1.033 1.383	0.345 0.272 0,001 ν ₀ a x=0 1,1786	0.0127 0.0002 0.0229 0.0713 ICs0 (µM) 23,027 5E-05 0.0006 0.0076	-10,0 -10,0	(%)		Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2 umero inhi	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86	0.3865 0.3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,02 0,12 0,13	0,227 0,225 ÓN Y=4 ± SE ###### Abs₀ 0,258 0,277 0,303 0,339	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50	0,572 0,497 0,497 ± SE 0,016 Abs _f 0,604 0,689 0,705 0,740	0,983 1,367 Error a B*C 0,026 Δt (h) 1,03 1,383 1,367	0.345 0.272 0,001 v ₀ a x=0 1.1786 ΔAbs 0.346 0.412 0.402 0.401	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (μΜ) 23.027 <u>Error 1*2</u> 5E-05 0.0006 0.0076 0.0013	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0	40,0	
AJUST Serie 1+2 umero inhi VR_24	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1.87 9,37	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,12	0,227 0,225 ÓN Y=4 ± SE ###### ia liistat Abs₀ 0,258 0,277 0,303	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50	0.572 0.497 ± SE 0.016 Abs _f 0.604 0.689 0.705	0.983 1.367 Error a B*C 0.026 Δt (h) 1.10 1.033 1.383	0.345 0.272 0,001 v ₀ a x=0 1,1786 ΔAbs 0.346 0.412 0.402	0.0127 0.0002 0.0229 0.0713 ICs0 (µM) 23,027 5E-05 0.0006 0.0076	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0	40,0	
JUST	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 31,85 31,85	0,3865 0,3445 a 4 mg/mL ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,12 0,13 0,08 0,08 0,08 0,08	0,227 0,225 0,225 ↓ SE ↓ SE ↓ SE ↓ SE ↓ SE ↓ SE ↓ SE ↓ SE	1,10 1,50 A+B*exp C (µM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50	0,572 0,497 ↓ SE 0,016 Abs _f 0,604 0,689 0,705 0,740 0,816 0,790	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,383 1,367 1,417 1,417	0.345 0.272 0,001 v₀ a x=0 1,1786 0.346 0.412 0.402 0.401 0.488 0.452 0.394	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (µM) 23.027 <u>5E-05</u> 0.0006 0.0076 0.0013 0.0036 0.0035	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
AJUST Serie 1+2 Imero inhi VR_24	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1.87 9,37 16,86 24,35 31,85 39,34 0,00	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ↓ ##### Abs ₀ 0,258 0,277 0,303 0,339 0,339 0,36 0,396 0,271	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17	0,572 0,497 ↓ SE ↓ SE 0,016 0,604 0,689 0,705 0,740 0,816 0,790 0,816 0,790 0,816	0.983 1.367 Error a B*C 1 0,026 Δt (h) 1.10 1.033 1.367 1.417 1.017 1.417 1.083	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.401 0.402 0.401 0.402 0.394 0.353	0.0127 0.0002 0.0229 0.0713 IC50 (µM) 23,027 5E-05 0.0006 0.0076 0.0013 0.0036 2E-05 0.0003 0.0013	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
JUST	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 39,34	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411	0,12 0,13 ECUACIO B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ↓ ##### Abso 0,258 0,277 0,303 0,339 0,339 0,339 0,364 0,271 0,285	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,10 1,17 1,12	0,572 0,497 0,497 ± SE 0,016 0,604 0,689 0,705 0,740 0,827 0,816 0,786	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,367 1,417 1,017 1,417 1,013 1,033 1,367	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.402 0.401 0.488 0.452 0.394 0.353 0.353	0.0127 0.0002 0.0229 0.0713 IC50 (µM) 23,027 5E-05 0.0013 0.0036 2E-05 0.0013 0.00242	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
AJUST Serie 1+2 Imero inhi VR_24	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1.87 9,37 16,86 24,35 31,85 39,34 0,00	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ↓ ##### Abs ₀ 0,258 0,277 0,303 0,339 0,339 0,36 0,396 0,271	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17	0,572 0,497 ↓ SE ↓ SE 0,016 0,604 0,689 0,705 0,740 0,816 0,790 0,816 0,790 0,816	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,023 1,387 1,417 1,017 1,417 1,083 1,417	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.401 0.402 0.401 0.402 0.394 0.353	0.0127 0.0002 0.0229 0.0713 IC50 (µM) 23,027 5E-05 0.0006 0.0076 0.0013 0.0036 2E-05 0.0003 0.0013	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
AJUST Serie 1+2 umero inhi VR_24	31,91 39,41 9er [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,229 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9634 0,9796	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ↓ SE ↓ ##### ia llistat ↓ Abs ₀ 0,258 0,277 0,303 0,339 0,339 0,339 0,339 0,339 0,339 0,339 0,325	1,10 1,50 A+B*exp C (µM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50 1,50	0.572 0.497 ↓ SE ↓ SE 0.016 0.604 0.689 0.705 0.740 0.816 0.790 0.827 0.816 0.790 0.624 0.786 0.754 0.754 0.754 0.754 0.754	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,367 1,417 1,083 1,417 1,417 1,367 1,417	0.345 0.272 0,001 v₀ a x=0 1,1786 0.346 0.412 0.402 0.401 0.452 0.394 0.353 0.501 0.454 0.346 0.416 0.49	0.0127 0.0002 0.0229 0.0713 PARÁ IC ₅₀ (µM) 23.027 5E-05 0.0006 0.0076 0.0013 0.0036 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0013 0.0242 0.01165 0.0045	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
AJUST Gerie 1+2 umero inhi VR_24	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1.87 9,37 16,86 24,35 31,85 39,34 0,00 1.87 9,37 16,86 24,35 31,85	0,3865 0,3445 a 4 mg/mL = S AJUSTE = SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9616 0,773	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225	1,10 1,50 (µM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0.572 0.497 ↓ SE ↓ SE 0.016 0.604 0.689 0.705 0.740 0.827 0.736 0.736 0.736 0.736 0.736 0.830 0.830	0.983 1.367 Error a B*C 0.026 Δt (h) 1.10 1.033 1.367 1.417 1.013 1.417 1.033 1.417 1.033 1.417 1.017	0.345 0.272 0,001 v₀ a x=0 1.1786 0.346 0.412 0.401 0.402 0.394 0.353 0.501 0.454 0.45	0.0127 0.0002 0.0229 0.0713 IC50 (µM) 23,027 5E-05 0.0006 0.0076 0.0013 0.00242 0.0013 0.00242 0.0013 0.00245 0.0013 0.00245 0.0013 0.00245 0.0013	-10,0 -10,0	(%)	10,0	Punts a	ignorar	0,0		
AJUST Serie 1+2 umero inhi IVR_24	31,91 39,41 9er [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37	0,3865 0,3445 a 4 mg/mL ES AJUSTE ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,229 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9634 0,9796	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ↓ SE ↓ ##### ia llistat ↓ Abs ₀ 0,258 0,277 0,303 0,339 0,339 0,339 0,339 0,339 0,339 0,339 0,325	1,10 1,50 A+B*exp C (µM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50 1,50	0,572 0,497 0,497 ± SE 0,016 0,604 0,689 0,705 0,740 0,624 0,786 0,736 0,736 0,736 0,736 0,736 0,736 0,830 0,803	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,367 1,417 1,083 1,417 1,417 1,367 1,417	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.402 0.401 0.402 0.353 0.501 0.454 0.454 0.389	0.0127 0.0002 0.0229 0.0713 PARÁ IC ₅₀ (µM) 23.027 5E-05 0.0006 0.0076 0.0013 0.0036 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0013 0.0242 0.01165 0.0045	-10,0 -10,0 	(%)	10,0	Punts a	ignorar	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Serie 1 Serie 1+2 Serie 1 Serie 1	31,91 39,41 9er [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37	0,3865 0,3445 a 4 mg/mL = S AJUSTE = SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9616 0,773	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225	1,10 1,50 (µM ⁻¹) 0,003 858 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,572 0,497 0,497 ± SE 0,016 0,604 0,689 0,705 0,740 0,624 0,786 0,736 0,736 0,736 0,736 0,736 0,736 0,830 0,803	0.983 1.367 Error a B*C 0.026 Δt (h) 1.10 1.033 1.367 1.417 1.017 1.417 1.017 1.437 1.457 1.457	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.402 0.401 0.488 0.452 0.394 0.353 0.501 0.454 0.45 0.389	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (µM) 23,027 23,027 5E-05 0.0006 0.0013 0.0036 2E-05 0.0003 0.0013 0.0035 0.0013 0.0012 0.0013 0.0010		(%)	10,0	Punts a		0,0	40,0	
AJUST Serie 1+2 umero inhi IVR_24 Serie 1	31,91 39,41 9er [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37 16,86 24,35 31,85 39,34 9,937	0,3865 0,3445 a 4 mg/mL =S AJUSTE ± SE 48,020 6 V₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9616 0,7796 0,73 0,7144 a 4 mg/mL	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ###### ia Ilistat Abs₀ 0,258 0,277 0,303 0,339 0,364 0,282 0,339 0,364 0,282 0,338 0,340 0,282 0,282 0,338 0,340 0,282	1,10 1,50 1,50 C (μM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,10 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,572 0,497 ↓ SE 0,016 0,016 0,604 0,689 0,705 0,740 0,827 0,816 0,790 0,624 0,786 0,736 0,736 0,736 0,736 0,736	0.983 1.367 Error a B*C 0.026 Δt (h) 1.10 1.033 1.367 1.417 1.017 1.417 1.017 1.437 1.457 1.457	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.402 0.401 0.488 0.452 0.394 0.353 0.501 0.454 0.45 0.389	0.0127 0.0002 0.0229 0.0713 PARÁ IC ₅₀ (µM) 23,027 23,027 5E-05 0.0006 0.0013 0.0036 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0013 0.0216 1E-05 0.0013 0.0216 1E-05 0.0013 0.0216 1E-05 0.0013 0.0216 1E-05 0.0013 0.0217 0.0012 0.0013 0.0014	-10,0 -1		10,0	Punts a 7				
AJUST Serie 1+2 umero inhi IVR_24 Serie 1	31,91 39,41 9er [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37 16,86 24,35 31,85 39,34 9,937	0,3865 0,3445 a 4 mg/mL ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,9634 0,9634 0,9634 0,9634 0,9716 0,773 0,7144	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ÓN Y= <i>I</i> ± SE ###### ia llista Abs ₀ 0,258 0,277 0,303 0,339 0,339 0,339 0,339 0,364 0,285 0,277 0,303 0,339 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,339 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,339 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,303 0,364 0,285 0,277 0,306 0,285 0,277 0,303 0,364 0,285 0,277 0,306 0,285 0,277 0,306 0,285 0,277 0,306 0,285 0,277 0,306 0,285 0,285 0,277 0,306 0,285 0,285 0,277 0,306 0,285	1,10 1,50 1,50 C (μM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,10 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0.572 0.497 ± SE 0.016 Abs _f 0.604 0.689 0.705 0.740 0.816 0.790 0.624 0.786 0.754 0.786 0.754 0.786 0.754 0.786 0.754 0.780	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,383 1,367 1,417 1,017 1,417 1,017 1,417 1,017 1,417 1,367 Error a	0.345 0.272 0,001 v₀ a x=0 1,1786 0.346 0.412 0.402 0.401 0.452 0.394 0.452 0.394 0.452 0.454 0.452 0.454 0.452 0.454 0.452 0.454 0.452 0.455 0.455	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (µM) 23,027 23,027 5E-05 0.0006 0.0013 0.0036 2E-05 0.0003 0.0036 2E-05 0.0003 0.0013 0.0035 0.0013 0.0035 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0016 0.0013 0.00140000000000			10,0	Punts a 7				
AJUST Serie 1+2 umero inhi VR_24 Serie 1 Serie 2	31,91 39,41 Per [TTR] VALORE A (uA · h ⁻¹) -7,936 ibidor = [855] 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0,00 1,87 9,37 16,86 24,35 31,85 39,34 0 ,00 1,87 9,37 16,86 24,35 31,85 39,34	0,3865 0,3445 a 4 mg/mL ± SE 48,020 6 V ₀ (uA/h-1) 1,221 1,209 0,9837 0,9221 0,7866 0,732 0,687 1,2504 1,3411 0,76634 0,9616 0,7796 0,73 0,7144 a 4 mg/mL ES AJUSTE ± SE	0,12 0,13 ECUACIC B (uA · h ⁻¹) 9,114 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,0	0,227 0,225 0,225 ↓ SE ###### ia Ilistat Abs₀ 0,258 0,277 0,303 0,339 0,364 0,282 0,339 0,364 0,282 0,338 0,340 0,282 0,282 0,338 0,340 0,282	1,10 1,50 A+B*exp C (μM ⁻¹) 0,003 858 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,10 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 4+B*exp	0,572 0,497 ↓ SE 0,016 0,016 0,604 0,689 0,705 0,740 0,827 0,816 0,790 0,624 0,786 0,736 0,736 0,736 0,736 0,736	0,983 1,367 Error a B*C 0,026 Δt (h) 1,10 1,033 1,383 1,367 1,417 1,017 1,417 1,017 1,417 1,017 1,417 1,367 Error a	0.345 0.272 0,001 v ₀ a x=0 1.1786 0.346 0.412 0.402 0.401 0.488 0.452 0.394 0.353 0.501 0.454 0.45 0.389	0.0127 0.0002 0.0229 0.0713 IC ₅₀ (µM) 23,027 23,027 5E-05 0.0006 0.0013 0.0036 2E-05 0.0003 0.0036 2E-05 0.0003 0.0013 0.0035 0.0013 0.0035 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0012 0.0013 0.0012 0.0012 0.0012 0.0012 0.0013 0.0016 0.0013 0.00140000000000	-10,0 -1		10,0	Punts a 7				

1																· · · · ·
numero inh	ibidor =	7	Reference	cia Ilistat	1 859					1.470						-
MVR_24										1,420						
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ t (h)	∆Abs	Errar T*2	1,320	.d					
		V ₀ (UA/n-1)							Lirrer 1-2	1,7%	× .					error Y
	0,00	1,221	0,08	0,258	1,18	0,604	1,10	0,346	0,0008	1,070	The second se	_ _				0,028916121
	1,87 9,37	1,2679 1,0668	0,08	0,278	1,12 1,50	0,754	1,033	0,476	0,0022 0,0017	0.20	Ŧ	<u> </u>				0,046483347 0,041503689
Serie 1	16,86	1,0000	0,12	0,314	1,50	0,774	1,303	0,433	0,0017	0,920						0,049606603
	24,35	0,7723	0,08	0,341	1,50	0,848	1,417	0,507	0,013	0,820				ь Ц		0,113968383
	31,84	0,7258	0,15	0,393	1,10	0,768	0,95	0,375	0,0027				T S			0,051511469
	39,34 0.00	0,7469	0,12	0,413	1,50 1,17	0,828	1,383	0,415	0,006 2E-07	0,620				-		0,077194311 0.000483879
	1.87	1,2504	0.08	0,271	1,17	0,624	1,003	0,353	0.0059	0.520						0,076583347
	9,37	1,0687	0,12	0,319	1,50	0,795	1,383	0,476	0,0016	0.420						0,039603689
Serie 2	16,86	1,0428	0,08	0,308	1,50	0,768	1,417	0,46	0,0021	0.320						0,046206603
	24,35 31,84	0,8055 0,7764	0,08	0,347 0,459	1,50 1,10	0,880	1,417 0,9	0,533 0,397	0,0065 8E-07	0,220						0,080768383 0,000911469
	39,34	0,7305	0,12	0,409	1,10	0,852	1,383	0,443	0,0037	0,120						0,060794311
							Error a	0,001	0,0712	0,036 -						
🗖 corretgir		a 4 ma/ml								-10,0 0,0	0 10,0	20,0	30,0	40,0	50,0	
Correign	per [TTK]	a 4 my/mc	-							0					0	> _
										,	-					
		ES AJUSTE		_		<u>, ,</u>				AMETROS		Punts a ig	norar			
AJUST	A	± SE	B	± SE	C	± SE	B*C	v ₀ a x=0		± SE RA(%)						
	(uA · h ^{·1})		(uA · h ⁻¹)	-	(µM⁻¹)				(µM)		-					
Serie 1+2	-7,900	84,866	9,150	#####	0,002	0,016	0,015	1,2499	42,480	16,718 732,1	J					
numoro inhi	hidor -	0	Deference	via lliator	960											,
numero inhi	bidor =	8	Reference	na ilistai	860					1.470 1.420						
MVR_24										1.320 1.320						
	[856]	V₀ (uA/h-1)	t₀ (h)	Abs ₀	t _f (h)	Abs	∆ t (h)	∆Abs	Errar T*2	7,270						
	· ·		0.00	0.055	4.40	0.001	4.40	0.010	0.0000	1 32 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	P -	1				error Y
	0,00	1,221 1,1605	0,08	0,258	1,18	0,604	1,10 1,033	0,346	0,0006	1.070	9 8	<u> </u>				0,023772353 0,013513562
	9,36	1,1085	0,08	0,276	1,50	0,755	1,417	0,479	0,0002	0,970						0,026753626
Serie 1	16,86	1,0955	0,08	0,269	1,50	0,690	1,417	0,421	0,011			-	ð (з Д		0,105085343
	24,35	0,8587	0,08	0,250	1,50	0,732	1,417	0,482	0,0017	0,200				<u> </u>		0,041308926
	31,84 39,33	0,8508 0,8264	0,08	0,240	1,10 1,50	0,668	1,017	0,428	0,0016	0,670				Ū.		0,040280207 0,104462036
	0,00	1,2504	0,08	0,271	1,00	0,624	1,083	0,353	0,0028	0,570			1			0,053172353
	1,87	1,1089	0,08	0,236	1,12	0,545	1,033	0,309	0,0042	0,470						0,065113562
Carda D	9,36	1,0576	0,08	0,249	1,50	0,592	1,417	0,343	0,0006	0.320						0,024146374
Serie 2	16,86 24,35	1,0076 0,755	0,07	0,226	1,50 1,50	0,550	1,433	0,324	0,0003	0,250						0,017185343 0,145008926
	31,84	0,7493	0,05	0,201	1,10	0,537	1,05	0,336	0,0037	0,170						0,061219793
	39,33	0,7015	0,08	0,213	1,50	0,482	1,417	0,269	0,0004	0,070						0,020437964
							Error a	0,001	0,0712	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						
🗖 corretgir	per [TTR]	a 4 mg/mL								-10,0 0,1	0 10,0	20,0	30,0	40,0	50,0	<u>,</u>
		_								0						· -
		ES AJUSTE	ECUACI	ÓN V-	∧ . D*ovr	J C*v)			DAD	ÁMETROS	1	Dunta o io	noror			
AJUST	A	± SE	B	± SE		± SE	B*C	v ₀ a x=0		± SE RA(%)		Punts a ig	norar			
	(uA · h ⁻¹)		(uA · h ⁻¹)		(µM ⁻¹)				(µM)							
Serie 1+2	-7,926	141,226	9,124	######		0,022	0,012	1,1972	49,889	27,261 762,1						
00110112	1,020	111,220	0,124		0,001	0,022	0,012	1,1072	40,000	27,201 102,1	1	I				
numero inhi	hidor =	9	Reference	ia llistat	200											
		5	Neterene	au motu	200					1.470	1					
MVR_24			t ₀ (h)	Abe	t _f (h)	Abe	∆ t (h)	AAba		1,370						
	1,204	V ₀ (uA/h-1)	L ₀ (II)	ADS0	ч _f (п)	Absf	∆t (n)	∆Abs	Errar T*2	7,7220 32270 32272 7,722770 7,7277 7,7777 7,7777 7,7777 7,7777 7,7777 7,7777 7,77777 7,777777	i A					
	0,00	1 001	0,08	0.050	1 10	0,604	1 10	0,346	0	1,120	T					error Y
	1,87	1,221 1,2241	0,08	0,258	1,18 1,12	0,604	1,10	0,346	0,0544	1,070						0,233228897
	9,37	0,3033	0,18	0,244	1,50	0,402	1,317	0,158	0							0
Serie 1	16,87	0,0593	0,48	0,228	1,50	0,283		0,055	0,0005	0.870	Ϋ́,					0,021454211
	24,37 31,87	0,024 0,0077	0,08	0,212 0,208	1,50 1,50	0,230	-	0,018 0,009	0,0002 0,0004	0,750	1					0,01353977 0,019677781
	39,37	-0,0033	0,40	0,200	1,50	0,217	1,1	0,009	0,0004	0,670	\					0,015840049
	0,00	1,2504	0,00	0,203	1,30	0,624	1,083	0,353	0,00057	00000000000000000000000000000000000000	\					0,07529208
	1,87	0,8761	0,08	0,233	1,12	0,538	1,033	0,305	0,0132	0,470	\					0,114771103
Conta D	9,37	0,2685	0,17	0,226	1,50	0,336		0,11	0,0011	0.350	\					0,032471765
Serie 2	16,87 24,37	0,0186	0,47	0,197	1,50 1,50	0,211 0,191	1,033 1,467	0,014	0,0039 8E-05	0,220	<u> </u>					0,062154211 0,00916023
	31,87	0,0003	0,05	0,192	1,50	0,195		0,001	0,0002	0770						0,012277781
	39,37	0,0016	0,08	0,188	1,50	0,195	1,417	0,007	0,0004	0,020			_			0,020740049
							Error a	0,001	0,0712	<u>, -, 6, 636 - 1</u>				<u> </u>		
corretgir (per <u>[TTR]</u>	a 4 <u>mg/mL</u>								-10,0 0,	0 10,0	20,0	30,0	40,0	50,0	0
																-
1	MALOS	C A ULCTO	FOUND	ÓN M	A . D*	100			DAD	METROS		D				
AJUST		ES AJUSTE ± SE	ECUACI B	ON Y=/	A+B*exp C	b(-C*x) ± SE	B*C	v ₀ a x=0		ÁMETROS ± SE RA(%)	-	Punts a ig 7	inorar			
	N 1	± SE		T DE		1 7 2 E		vu a x=0	10.50	± ∋Ľ KA(%)	1	(
~~~~	(11A + 6-1)		1114 . 15-14		(nW-1)				(			-				
	(uA · h ⁻¹ )	0.044	(uA · h ⁻¹ )	0.070	(µM ⁻¹ )	0.020	0.205	1 2057	(µM)	0 332 404 7	-	5				
Serie 1+2	(uA · h ⁻¹ ) -0,022	0,044	(uA · h ⁻¹ ) 1,348	0,079	(μM ⁻¹ ) 0,152	0,030	0,205	1,3257	<b>(μM)</b> 4,443	0,333 101,7	]	5				



#### 🔲 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 3

0,00

1.88

9.38

16,89

24,40

31,91

39.41

0,00

1.88

9.38

16,89

24,40

31,91

MVR 25

Serie 1

Serie 2

		VALORE	S AJUSTE	ECUACIÓ	ÓN Y=∕	4+B*exp	(-C*x)	PARÁMETROS					
1	AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
		(uA · h ⁻¹ )		$(uA \cdot h^{-1})$		(uM ⁻¹ )				(			
		(uA·n)		(uA·n)		(µw)				(µM)			

t_f (h)

1,18

1.12

1.50

1,50

1,50

1,17

1.12

1.50

1,50

Abs_f ∆t (h)

0,507 1,10

0,497 1,367

0,500 1,333

0,630 1,083

0.603 1.017

0.540 1.417

0,482 1,417

0,448 1,367

1,367

Error a

1,35

0.635 1.017

0,474

0,432

1 17 0 448 0 983

1,50 0,493 1,367

0 397

∆Abs

0,310

0,404

0,28

0,287

0,265

0,220

0.241

0,359

0,321

0.309

0,264

0,275

0,231 0,194

0.001 0.071

Errar T

0,0114

0.008

0,0100

0,00

0,00

0.000

0,000

0.001

0.004

9E-0

0,001

0,000

-10.0

0

0.00

Referencia Ilistal 856

Abs₀

0,197

0,231

0.217

0,213

0,209

0,212

0 207

0,271

0,282

0.231

0,229

0,207

0,217

0

t₀ (h)

0,08

0.10

0,13

0,17

0,15

0,18

0 18

0,08

0.10

0.08

0,13

0.13

V₀ (uA/h-1

1,0377

1.1153

1,0309

0,372

0,3136

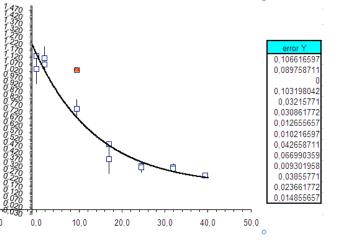
0.2531

1,1341

1 0682

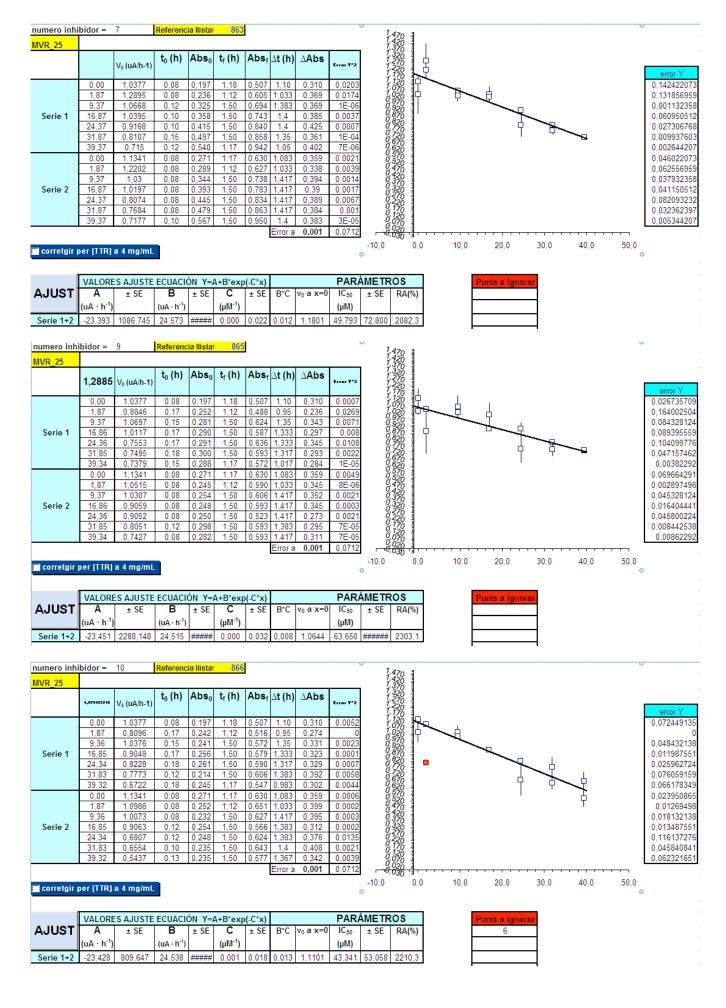
0.7467

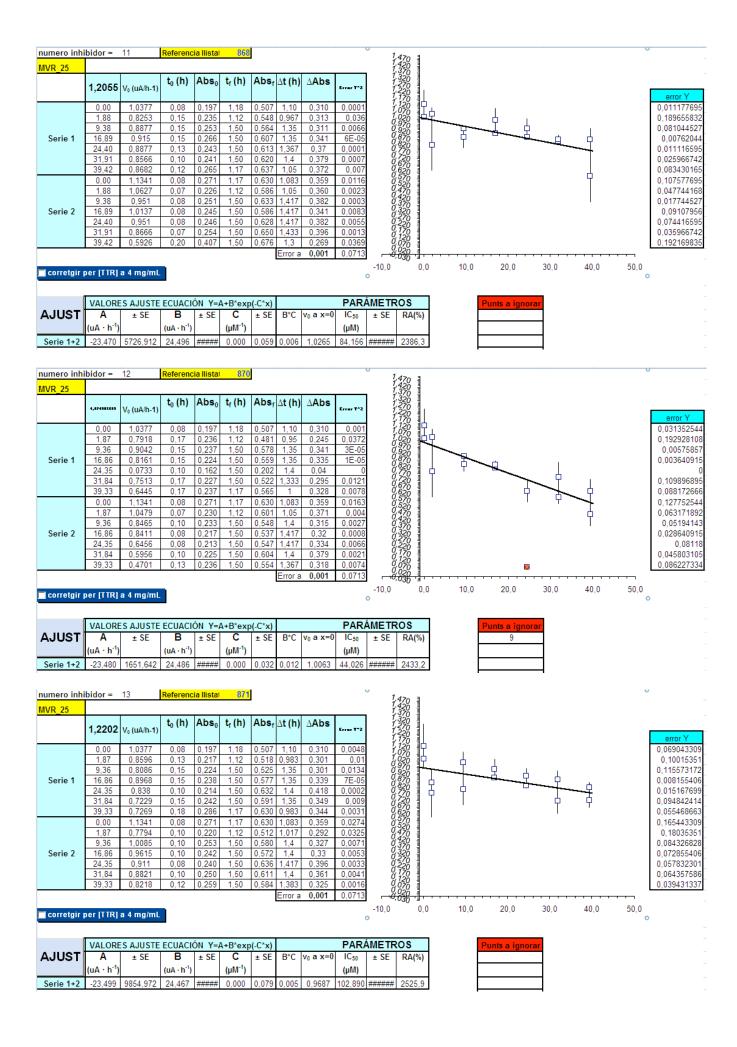
0,4845


0,3157

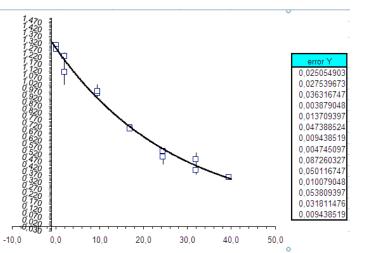
0,3064

I	Punts a ignorar
	7
l	





^ounts a ignora 7




	VALORE	S AJUSTE	ECUACIO	ÓΝ Y=/	A+B*exp	(-C*x)						
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM-1)				(µM)			
Serie 1+2	0,179	0,068	0,965	0,068	0,070	0,015	0,068	1,1443	12,841	0,513	84,3	

numero inhi	ibidor =	4	Referenc	ia Ilista	860					1.470					0	
MVR_25			t ₀ (h)	Abs ₀	t _f (h)	Abs	∆ <b>t (h)</b>	∆Abs		7,7,7,7 4,4,2,70 4,4,2,70 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,						
	[856]	V ₀ (uA/h-1)	•0 (11)	-D30	4 (11)	, nost	Δ <b>ι</b> (Π)	AADS	Errar T*2							error Y
	0,00 1,87	1,0377 1,204	0,08 0,10	0,197 0,230	1,18 1,12	0,507 0,575	1,10 1,017	0,310 0,345	0,0151	1.020	Ľ	<b>-</b> d				0,12290325
	9,36	1,2696	0,10	0,233	1,50	0,590	1,4	0,345	0	0,970			-			0,06149527
Serie 1	16,86 24,35	1,0559 0,8966	0,12	0,226	1,50	0,598	1,383	0,372	0,0033				4	<u>}</u>		0,0577042
	31,84	0,8639	0,12	0,209	1,50	0,578	1,383	0,369	8E-05	0,720			I .			0,00916486
	39,33 0,00	0,838 1,1341	0,15 0,08	0,215	1,17 1,17	0,495	1,017 1,083	0,28	0,003	0,620						0,05467854
	1,87	1,1849	0,07	0,255	1,12	0,662	1,05	0,407	0,0018	0,470						0,04239527
Serie 2	9,36 16,86	1,1543 1,0119	0,07	0,247	1,50 1,50	0,618	1,433 1,433	0,371	0,0071	0.370						0,08405614
	24,35	0,8265	0,08	0,236	1,50	0,637	1,417	0,401	0,01	0,220						0,09985968
	31,84 39,33	0,8192 0,7745	0,08 0,10	0,223	1,50 1,50	0,587	1,417 1,4	0,364 0,291	0,0013 8E-05	0,120						0,03553513
							Error a	0,001	0,0712						·	
corretgir (	per [TTR]	a 4 mg/mL								-10,0 0,0 >	10,0	20,0	30,0	40,0	50,0	
	VALOR	ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	o(-C*x)			PAR	METROS		Punts a ig	norar			
AJUST	A	± SE	B	± SE	C	± SE	B*C	v ₀ a x=0		± SE RA(%)		7				
Serie 1+2	(uA · h ⁻¹ ) -23,403	1599,476	(uA · h ⁻¹ ) 24,563	#####	(µM ⁻¹ ) 0,000	0,026	0,010	1,1606	(µM) 60,749	###### 2116,4						
Serie 1+2	-20,403	1555,476	24,003	1 <del>#####</del>	0,000	0,020	0,010	1,1000	00,749	###### 2110,4		I				
numero inhi	ibidor =	5	Reference	ia llista:	861					100 3					0	
MVR_25										1,420						
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errer T*2							
	0.00	1,0377	0,08	0,197	1,18	0,507	1,10	0,310	0,0244							error Y 0,15616479
	1,87	1,2616	0,08	0,227	1,12	0,648	1,033	0,421	0,0244	1,070		4				0,09152441
Serie 1	9,37 16,86	0,3411 1,0353	0,08	0,243	1,50 1,50	0,645	1,417 1,367	0,402	0,003	0,920		<b>D</b>	<b>q</b>	1		0.05471105
	24,35	0,8053	0,10	0,254	1,50	0,676	1,4	0,422	0,0066	0,820			ф — <del>Т</del>			0,08109463
	31,84 39,34	0,7902 0,6995	0,12	0,312	1,50	0,676	1,383	0,364	6E-06 2E-07	0,620			1	B		0,0023644
	0,00	1,1341	0,08	0,271	1,17	0,630	1,083	0,359	0,0036	0,570				I		0,05976479
	1,87 9,37	1,2885 1,0788	0,05 0,07	0,241 0,254	1,12 1,50	0,656	1,067 1,433	0,415 0,381	0,014 1E-05	0.420						0,11842441 0,00365121
Serie 2	16,86 24,35	0,9584 0,9148	0,07	0,263	1,50 1,50	0,659	1,433 1,45	0,396 0,448	0,0005	0320						0,02218894 0,02840536
	31,84	0,8737	0,05	0,201	1,50	0,695	1,45	0,446	0,0066	0,120 0,120 0,120						0,02840536
	39,34	0,6422	0,10	0,287	1,50	0,629	1,4 Error a	0,342	0,0032	0,020					l	0,05689700
corretgir (	ner (TTR)	a 4 mg/ml					Litor a	0,001		- <del>10,038,-∎</del> -10,0 0,0	10,0	20,0	30,0	40,0	50,0	
concegn	per [r m]	u + ng/me								0					0	
L	VALOR	ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	o(-C*x)			PAR	METROS		Punts a ig	norar			
AJUST	A	± SE	В	± SE	C	± SE	B*C	v ₀ a x=0		± SE RA(%)		7				
Serie 1+2	(uA · h ⁻¹ ) -23.386	1137,096	(uA · h ⁻¹ ) 24,580	#####	(µM ⁻¹ ) 0,001	0,024	0,013	1,1939	(µM) 47,559	76,527 2058,9						
Selle 1.2	-20,000	1137,030	24,300		0,001	0,024	0,015	1,1555	41,555	10,321 2030,3		I				
numero inhi	ibidor =	6	Referenc	ia Ilista	862	1			,	1470 3					U	
MVR_25										1,420						
	[860]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2						I	error Y
	0,00	1,0377	0,08	0,197	1,18	0,507	1,10	0,310	0,0089		Π	Н				0,09446249
	1,88 9,38	1,1606 0,9837	0,08	0,223 0,268	1,12 1,50	0,606 0,623	1,033 1,4	0,383 0,355	0,0018				4			0,04282728 0,07659791
Serie 1	16,88	1,0785	0,13	0,311	1,50	0,678	1,367	0,367	0,0057			Υ ·	φ <b>-</b>	<u>-</u>		0,07554224
	24,38 31,88	1,0047 0,8862	0,10 0,10	0,303 0,322	1,50 1,50	0,695 0,678	1,4 1,4	0,392 0,356	0,0035 6E-06	0,720			I			0,05894808 0,0024800
		0,857	0,12	0,348	1,17	0,683	1,05	0,335	0,0006	0,670						0,02525804
	39,38		0.00	0,271	1,17	0,630 0,666	1,083	0,359	4E-06 0,0077	0520						0,00193750
	39,38 0,00	1,1341	0,08	0.287		, .,		0,365	0,0004	2420						0,02010208
	39,38 0,00 1,88 9,38	1,1341 1,2055 1,0804	0,08 0,07	0,287	1,50	0,630	1,433			7320						
Serie 2	39,38 0,00 1,88 9,38 16,88	1,1341 1,2055 1,0804 0,9657	0,08 0,07 0,13	0,265 0,385	1,50 1,50	0,630 0,692	1,367	0,307 0,4	0,0014	0.320						
Serie 2	39,38 0,00 1,88 9,38 16,88 24,38 31,88	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665	0,08 0,07 0,13 0,08 0,08	0,265 0,385 0,340 0,360	1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757	1,367 1,417 1,417	0,307 0,4 0,397	0,0014 0,0056 0,0005	00000000000000000000000000000000000000						0,07485191 0,0221800
Serie 2	39,38 0,00 1,88 9,38 16,88 24,38	1,1341 1,2055 1,0804 0,9657 0,8709	0,08 0,07 0,13 0,08	0,265 0,385 0,340	1,50 1,50 1,50	0,630 0,692 0,740	1,367 1,417	0,307 0,4	0,0014 0,0056							0,07485191 0,0221800
	39,38 0,00 1,88 9,38 16,88 24,38 31,88 39,38	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665 0,827	0,08 0,07 0,13 0,08 0,08 0,10	0,265 0,385 0,340 0,360	1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757	1,367 1,417 1,417 1,4	0,307 0,4 0,397 0,338	0,0014 0,0056 0,0005 2E-05 0,0712	-10,0 0,0	10,0	20,0	30,0	40,0	50,0	0,07485191 0,0221800
	39,38 0,00 1,88 9,38 16,88 24,38 31,88 39,38	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665 0,827	0,08 0,07 0,13 0,08 0,08 0,10	0,265 0,385 0,340 0,360	1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757	1,367 1,417 1,417 1,4	0,307 0,4 0,397 0,338	0,0014 0,0056 0,0005 2E-05 0,0712		10,0	20,0	30,0	40,0	 50,0	0,07485191 0,0221800
corretgir p	39,38 0,00 1,88 9,38 16,88 24,38 31,88 39,38 per [TTR]	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665 0,827 a 4 mg/mL	0,08 0,07 0,13 0,08 0,08 0,10	0,265 0,385 0,340 0,360 0,382	1,50 1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757 0,720	1,367 1,417 1,417 1,4 Error a	0,307 0,4 0,397 0,338 0,001	0,0014 0,0056 0,0005 2E-05 0,0712	-10,0 0,0	10,0	20,0 Punts a ig		40,0		0,07485191 0,0221800
Serie 2	39,38 0,00 1,88 9,38 16,88 24,38 31,88 39,38 9er [TTR] VALORE A	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665 0,827 a 4 mg/mL	0,08 0,07 0,13 0,08 0,08 0,10	0,265 0,385 0,340 0,360 0,382	1,50 1,50 1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757 0,720	1,367 1,417 1,417 1,4 Error a	0,307 0,4 0,397 0,338	0,0014 0,0056 0,0005 2E-05 0,0712	<del>0,036,1], .</del> -10,0 0,0	10,0			40,0		0,03725775 0,07485191 0,0221800 0,00474195
corretgir p	39,38 0,00 1,88 9,38 16,88 24,38 31,88 39,38 per [TTR]	1,1341 1,2055 1,0804 0,9657 0,8709 0,8665 0,827 a 4 mg/mL	0,08 0,07 0,13 0,08 0,08 0,10	0,265 0,385 0,340 0,360 0,382	1,50 1,50 1,50 1,50 1,50	0,630 0,692 0,740 0,757 0,720	1,367 1,417 1,417 1,4 Error a	0,307 0,4 0,397 0,338 0,001	0,0014 0,0056 0,0005 2E-05 0,0712 РАПА IC ₅₀ (µM)	<del></del>	10.0			40,0		0,07485191 0,0221800





numero inhi	bidor =	1	Reference	ia Ilista	930				
NPC-052						-			
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,3087	0,08	0,273	1,18	0,629	1,10	0,356	0,0006
	1,87	1,2298	0,07	0,271	1,12	0,629	1,05	0,358	0,0008
	9,37	0,9639	0,08	0,262	1,50	0,591	1,417	0,329	0,0013
Serie 1	16,87	0,7154	0,08	0,252	1,50	0,592	1,417	0,34	2E-05
	24,37	0,5476	0,08	0,242	1,25	0,571	1,167	0,329	0,0002
	31,86	0,4889	0,08	0,243	1,08	0,530	1	0,287	0,0022
	39,36	0,3601	0,08	0,233	1,50	0,488	1,417	0,255	9E-05
	0,00	1,2789	0,08	0,210	1,17	0,558	1,083	0,348	2E-05
	1,87	1,115	0,08	0,230	1,12	0,596	1,033	0,366	0,0076
	9,37	0,9777	0,08	0,213	1,50	0,597	1,417	0,384	0,0025
Serie 2	16,87	0,7092	0,12	0,234	1,50	0,531	1,383	0,297	0,0001
	24,37	0,5075	0,15	0,218	1,50	0,417	1,35	0,199	0,0029
	31,86	0,4097	0,13	0,227	1,47	0,481	1,333	0,254	0,001
	39,36	0,3601	0,12	0,215	1,50	0,467	1,383	0,252	9E-05
							Error a	0,001	0,0711



þ

30,0

40,0

#### 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 2

[931]

0,00 1,87

9,37

16,87

24,37

31,87

39,37

0,00 1,87

9,37 16,87

24,37 31,87 V₀ (uA/h-1)

1.3087

1,2973

1,1757

1,1761

1,1178

1,0416

1,0083

1,2789 1,3816

1,308 1,29 1,2588 1,0592

1,0086

NPC-052

Serie 1

Serie 2

	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)	PARÁMETROS				
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,066	0,123	1,218	0,116	0,037	0,007	0,045	1,2836	20,287	0,533	94,9

t_f (h)

1.18

1,12

1,50

1,50

1,25

1,08

1,17

1,12

1,50

1.50

1.50

1,47

1,50

Abs_f ∆t (h) ∆Abs

0.356

0,36

0,427

0,41

0,412

0,408

0,394

0,348 0,397

0,397

0,419

0,437

0,441

0,391

0,001

0.000

0.000

0,006

0,000

0,000

0,001

0,000

0,00

0,008

0,013

0,000

0,0712

0

0.629 1.10

0,653 1,033

0,698 1,433

0,702 1,417

0,691 1,167

0,703 0,983

0,558 1,083

0,631 1,017

0,638 1,383

0.648 1.4

0,666 1,4

0,587

0,664 1,35

1,4

Error a

0,670 1,4

Referencia Ilistat 931

Abs₀

0.273

0,293

0,271

0,292

0,279

0,295

0,276

0,210 0,234

0,234 0,241 0,229 0,229 0,223

0,196

t₀ (h)

0.08

0,08

0,07

0,08

0,08

0,10

0,10

0,08

0,10

0,12

0,10

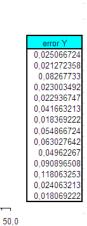
0,10

0,12

0,10

0

11111111110000


-10,0 -10,0

0,0

10,0

India

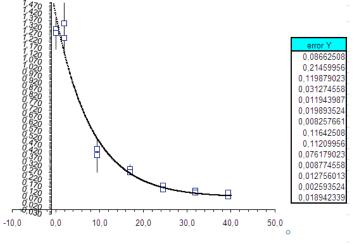


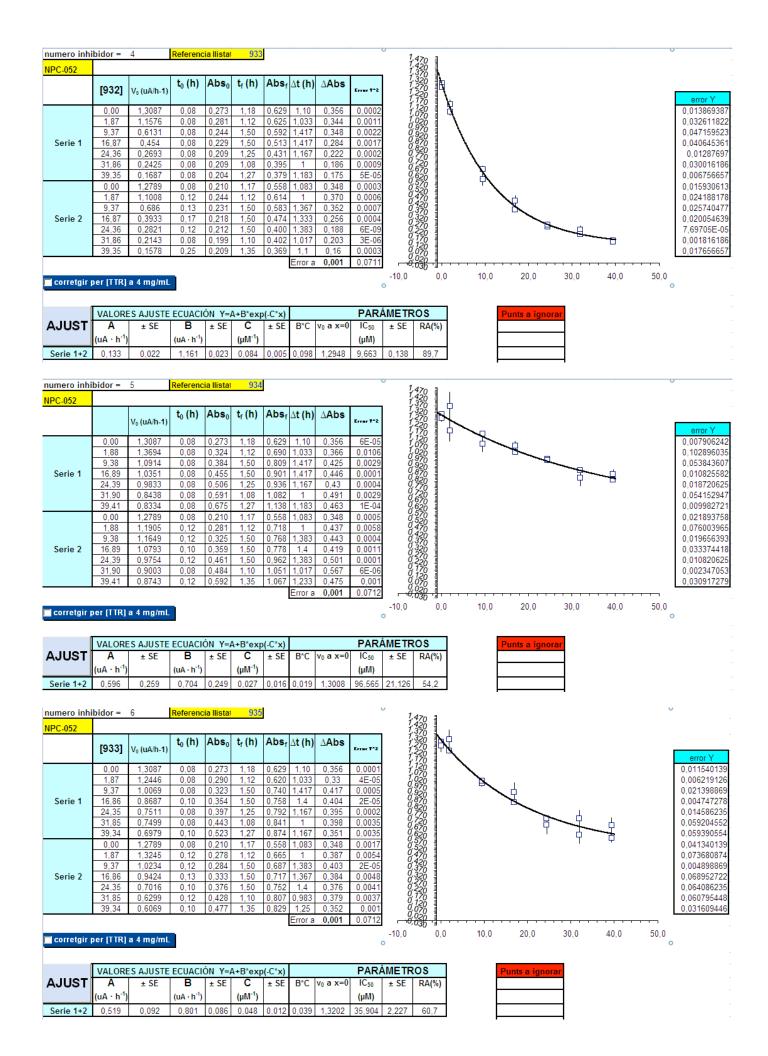


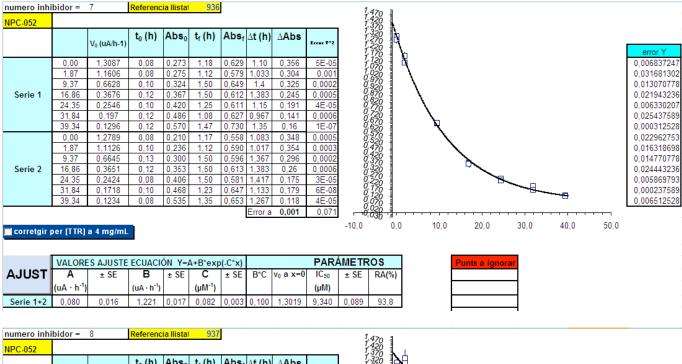
#### 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)	PARÁMETROS					
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)			
	· · · · · /				1 1				u /			

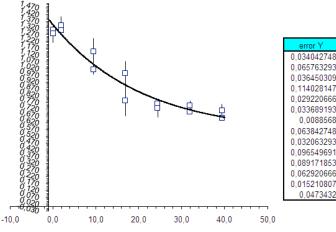
numero inh	ibidor =	3	Referenc	ia Ilistat	932				,
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,3087	0,08	0,273	1,18	0,629	1,10	0,356	0,0075
	1,88	1,3475	0,05	0,250	1,12	0,611	1,067	0,361	0,0461
	9,39	0,3959	0,08	0,250	1,50	0,489	1,417	0,239	0,0144
Serie 1	16,89	0,2962	0,12	0,264	1,50	0,473	1,383	0,209	0,001
	24,40	0,1749	0,12	0,284	1,25	0,459	1,133	0,175	0,0001
	31,91	0,1414	0,12	0,300	1,08	0,419	0,967	0,119	0,0004
	39,42	0,0964	0,23	0,313	1,50	0,420	1,267	0,107	7E-05
	0,00	1,2789	0,08	0,210	1,17	0,558	1,083	0,348	0,0136
	1,88	1,245	0,08	0,229	1,12	0,613	1,033	0,384	0,0126
	9,39	0,4396	0,13	0,234	1,50	0,432	1,367	0,198	0,0058
Serie 2	16,89	0,2737	0,13	0,255	1,50	0,457	1,367	0,202	8E-05
	24,40	0,1502	0,12	0,275	1,50	0,461	1,383	0,186	0,0002
	31,91	0,1241	0,12	0,286	1,47	0,441	1,35	0,155	7E-06
	39,42	0,1236	0,42	0,318	1,50	0,434	1,083	0,116	0,0004
	-	-					Error a	0.001	0.0713


## corretgir per [TTR] a 4 mg/mL


	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PAR	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,093	0,052	1,302	0,070	0,120	0,020	0,156	1,3953	6,400	0,343	93,3




^ounts a ignora


20,0







NPC-052						-			
	[934]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,3087	0,08	0,273	1,18	0,629	1,10	0,356	0,0012
	1,87	1,3397	0,08	0,298	1,12	0,605	1,033	0,307	0,0043
	9,37	1,0167	0,08	0,264	1,50	0,591	1,417	0,327	0,0013
Serie 1	16,87	0,7852	0,10	0,271	1,50	0,640	1,4	0,369	0,013
	24,36	0,7627	0,10	0,266	1,25	0,624	1,15	0,358	0,0009
	31,86	0,7508	0,10	0,254	1,08	0,623	0,983	0,369	0,0011
	39,36	0,6561	0,10	0,230	1,47	0,550	1,367	0,32	8E-05
	0,00	1,2789	0,08	0,210	1,17	0,558	1,083	0,348	0,0041
	1,87	1,306	0,10	0,242	1,12	0,625	1,017	0,383	0,001
	9,37	1,1497	0,12	0,242	1,50	0,594	1,383	0,352	0,0093
Serie 2	16,87	0,9884	0,12	0,240	1,50	0,550	1,383	0,31	0,008
	24,36	0,729	0,10	0,219	1,50	0,620	1,4	0,401	0,004
	31,86	0,7019	0,12	0,217	1,23	0,582	1,117	0,365	0,0002
	39,36	0,7123	0,12	0,213	1,35	0,551	1,233	0,338	0,0022
							Error a	0,001	0,0712



#### 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 9

1,1905 Vo (uA/h-1)

1,3087

1,2274 1,1319

1,1102

1,1013

0,921

0,7775

1,2789

1,1294

1.1135

1,0065

1,0032

0,8903

0,00

1,87

9.37

16,87

24,36

31,86

39,36

0,00

1,87 9,37

16.87

24,36

NPC-052

Serie 1

Serie 2

	VALORE	S AJUSTE	ECUACIO	ÓΝ Y=/	A+B*exp	(-C*x)			PAR	ÁMETR	OS
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0.545	0.124	0.798	0.116	0.048	0.016	0.038	1.3427	38,276	3,467	59.4

1.18

1,50

1,50

1,25

1,08

1.47

1 17

1,50

1,50

1,23

Abs₀ t_f (h) Abs_f ∆t (h) ∆Abs

0,629

0,687 1,017

0,676 1.4

0.659 1.4

0,662

0,689 0,983

0,738 1,383

0.558 0,647

0,639 1,133

0,680

1,10

1,083

1,017

1.383 0.642

1,233

Error a 0,001

0,653 1,383 0,725 1,4

0,356

0,37

0,365 0,33

0,394

0,427

0,348

0,422

0.398

0.407

0,489

0,379

0,411

Errar T*2

0,002

1E-04

0,00

0.000

0,007

0,009

0,007

0.001

0.000

0,000

0,003

0,000

0,0712

Referencia Ilistal 938

0,273

0,317

0,299

0,294 0,332

0,295

0,311

0,210 0,225

0.244

0.246

0,236

0,260

0,269

t₀ (h)

0,08

0,10

0,10

0,10

0,12

0,10

0,08

0,08

0,10

0.12

0.12

0,10

0,10

0,12

	1,1,1,1,000 4,4,3,3,000 4,4,3,3,000 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1							error Y
	1,070	11	¢	- <b>-</b> ¢	1			0,05258987
	1020	1		_	┝━_ └			0,00995033
	0,920					-		0,03098574
	0.870				Ļ			0,020867919
	ŏ,≯≶0					Ь		0,084621791
	0,730					Т		0,023913118
L	0,620							0,096525934
1	0,570	1						0,02278987
1	0,470							0,08515033
1	0.420							0,03348574
1	0.320							0,024167919
1	0.220							0,010178209
1	0,170							0,058286882
1	0,070							0,016274066
1	0.020	4						
	-10,0	0,0	10,0	20,0	30,0	40,0	50,0	
	10,0	0,0	10,0	20,0	33,0		30,0	

unts a igno

# 31,86 39,36 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIO	ÓN Y=A	A+B*exp	(-C*x)			PAR	<b>METR</b>	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-4,850	73,562	6,106	######	0,002	0,020	0,010	1,2561	66,108	22,783	486,1

Punts a ignorar



				ia Ilista:						1,470	-						
PC-052										1,370							
	1,873427833	V₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2	73200 33200 772200 77720000 777200000 77700000000	Þ	-		1			error \
	0,00	1,3087	0,08	0,273	1,18	0,629	1,10	0,356	0,0005	1,120 1,070	T IIIIII						0,02135
	1,87	1,2686	0,08	0,263	1,12	0,633	1,033	0,37	0,0013	1,020					L		0,03551
	9,37	1,2653	0,08	0,246	1,50	0,620	1,417	0,374	0,0041					Ę			0,06383
Serie 1	16,87	1,2017	0,08	0,249	1,50	0,619	1,417	0,37	0,0102	000000000000000000000000000000000000000				1	B	— 山	0,10116
	24,37	1,005	0,10	0,268	1,25	0,672	1,15	0,404	1E-05	Ö, ŽŠO						T	0,003693
	31,86	0,8604	0,10	0,260	1,08	0,674	0,983	0,414	0,0019	0,720						Ŷ	0,04333
	39,36	0,8496	0,08	0,235	1,47	0,620	1,383	0,385	0,0017	0,620							0,041792
	0,00	1,2789	0,08	0,210	1,17	0,558	1,083	0,348	0,0026	0.570	1						0,05115
	1,87	1,2708	0,10	0,215	1,12	0,608	1,017	0,393	0,0011	0,470							0,033310
	9,37	1,2605	0,10	0,210	1,50	0,594	1,4	0,384	0,0035	0.370							0,059033
Serie 2	16,87	1,1384	0,12	0,227	1,50	0,600	1,383	0,373	0,0014	0,320							0,037860
	24,37	0,9461	0,12	0,227	1,50	0,627	1,383	0,4	0,003	0,2%							0,055200
	31,86	0,8816	0,12	0,229	1,23	0,644	1,117	0,415	0,0005	0,120	1						0,02213
	39,36	0,7625	0,12	0,210	1,35	0,553	1,233	0,343	0,0021	ŏ,6≶0							0,04530
							Error a	0,001	0.0712	0,020							 
	VALOR	ES AJUSTE		ÓN Y=/		o(-C*x)			PAR	ÁMETROS			Pur	its a igno	rar		
AJUST	Α	± SE	В	ÓN Y=/ ± SE	C	o(-C*x) ± SE	B*C	v ₀ a x=0			.(%)		Pur	i <mark>ts a i</mark> gno	rar		
AJUST		± SE				<u>, ,</u>	B*C	v ₀ a x=0		± SE RA			Pur	<mark>its a ig</mark> no	rar		
AJUST Serie 1+2	Α	± SE	В		C	<u>, ,</u>	B*C 0,014	v₀ a x=0 1,3301	IC ₅₀	± SE RA			Pur	its a igno			
	A (uA · h⁻¹)	± SE	B (uA · h⁻¹)	± SE	С (µМ ⁻¹ )	± SE			IC ₅₀ (μΜ)	± SE RA	(%)		Pur	its a igno			
Serie 1+2	A (uA · h ⁻¹ ) -4,813	± SE	B (uA · h⁻¹)	± SE #####	С (µМ ⁻¹ )	± SE 0,015			IC ₅₀ (μΜ)	± SE RA	(%)		Pur	its a igno			
Serie 1+2 umero inhi	A (uA · h ⁻¹ ) -4,813	± SE 38,582	B (uA · h ⁻¹ ) 6,143 Reference	± SE ##### cia Ilistat	С (µМ ⁻¹ ) 0,002 200	± SE 0,015			IC ₅₀ (μΜ)	± SE RA	1,9		Pur	its a igno			 
Serie 1+2 umero inhi	A (uA · h ⁻¹ ) -4,813	± SE 38,582	<b>B</b> (uA · h ⁻¹ ) 6,143	± SE #####	С (µМ ⁻¹ ) 0,002 200	± SÉ 0,015			IC ₅₀ (μΜ)	± SE RA 12,317 46	1,9		Pur	its a igno			 error
	A (uA · h ⁻¹ ) -4,813 bidor =	± SE 38,582	B (uA · h ⁻¹ ) 6,143 Reference	± SE ##### cia Ilistat	С (µМ ⁻¹ ) 0,002 200	± SÉ 0,015	0,014	1,3301	IC ₅₀ (µM) 50,758	± SE RA 12,317 46	1,9		Pur	ts a igno			
Serie 1+2 numero inhi	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245	± SE 38,582 11 V ₀ (uA/h-1) 1,3087	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h)	± SE ###### Abs ₀ 0,273	C (μΜ ⁻¹ ) 0,002 200 t _f (h) 1,18	± SE 0,015 Abs _f 0,629	0,014 ∆ <b>t (h)</b> 1,10	1,3301 ∆ <b>Abs</b> 0,356	<ul> <li>IC₅₀</li> <li>(μM)</li> <li>50,758</li> <li>Error 1*2</li> <li>0,0023</li> </ul>	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	1,9		Pur	ts a igno			error 0,04836 0,15519
Serie 1+2 numero inhi	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00	± SE 38,582 11 V ₀ (uA/h-1)	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08	± SE ###### tia Ilistat	C (μM ⁻¹ ) 0,002 200 t _f (h)	± SE 0,015	0,014 ∆ <b>t (h)</b>	1,3301 ∆ <b>Abs</b>	IC ₅₀ (µM) 50,758	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	1,9		Pur	ts a igno			
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37	± SE 38,582 11 1,3087 1,0534 0,0241	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,08 0,15	± SE ###### ia llistat 0,273 0,253 0,222	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50	± SE 0,015 Abs _f 0,629 0,610 0,424	0,014 ∆t (h) 1,10 1,033 1,35	1,3301 ▲Abs 0,356 0,357 0,202	С ₅₀ (µМ) 50,758 Естер 12 0,0023 0,0241 0,0211	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	(%)		Pur	ts a igno			 0,04836 0,15519 0,14539
Serie 1+2 numero inhi	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1.87 9,37 16,87	± SE 38,582 11 V₀ (uA/h-1) 1,3087 1,0534 0,0241 0,0743	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,08 0,08 0,15 0,33	± SE ###### ia llistat 0,273 0,253 0,222 0,196	C (μM ⁻¹ ) 0,002 2000 t _f (h) 1,18 1,12 1,50 1,50	± SE 0,015 Abs _f 0,629 0,610 0,424 0,274	0,014 ∆ <b>t (h)</b> 1,10 1,033 1,35 1,167	1,3301 ▲Abs 0,356 0,357 0,202 0,078	С 50 (µМ) 50,758 Еггег 12 0,0023 0,0241 0,0211 0,0021	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	1,9		Pur	ts a igno			 0,04836 0,15519 0,14539 0,04575
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 24,37	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743	B (uA ⋅ h ⁻¹ ) 6,143 Referenc t ₀ (h) 0,08 0,08 0,15 0,33 0,53	± SE ###### Abso 0.273 0.253 0.222 0.196 0.181	C (μM ⁻¹ ) 0,002 2000 t _f (h) 1,18 1,12 1,50 1,50 1,50	± SE 0,015 Abs _f 0,629 0,610 0,424 0,274 0,202	0,014 ∆ <b>t (h)</b> 1,10 1,033 1,35 1,167 0,967	1,3301 ▲Abs 0,356 0,357 0,202 0,078 0,021	Errer 12 0,0023 0,00241 0,0025 0,00241 0,0021 0,0005	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	1,9		Pur	ts a igno			 0,04836 0,15519 0,14539 0,04575 0,0228
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1.87 9,37 16,87 24,37 31,87	± SE 38,582 11 1,3087 1,0534 0,0241 0,0241 0,0241 0,0241 0,0243	B (uA ⋅ h ⁻¹ ) 6,143 Referenc t ₀ (h) 0,08 0,08 0,08 0,08 0,15 0,33 0,53 0,47	± SE ###### Abso 0,273 0,253 0,222 0,196 0,181 0,193	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50 1,50 1,50	± SE 0,015 Abs _f 0,629 0,610 0,424 0,274 0,202 0,192	0,014 ∆t (h) 1,10 1,033 1,35 1,167 0,967 1,033	1,3301 ▲Abs 0,356 0,357 0,202 0,078 0,021 -0,001	Errer 122 0,0023 0,0241 0,0021 0,0021 0,0005 0,0001	± SE RA 12,317 46	1,9		Pur	t <del>s</del> a igno			 0,04836 0,15519 0,14539 0,04575 0,0228 0,01118
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 24,37 31,87 39,37	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0072 0,0012	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,08 0,08 0,08 0,08 0,08 0,03 0,03	± SE ###### Abs ₀ 0.273 0.222 0.196 0.181 0.193 0.204	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50	± SE 0,015 Abs _f 0,629 0,610 0,204 0,274 0,202 0,192 0,205	0,014 ∆t (h) 1,10 1,033 1,35 1,167 0,967 1,033 1,417	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,001	Error 12 0,0023 0,0021 0,0021 0,0021 0,0001 4E-05	± SE RA 12,317 46 12,317 46 1470 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,370 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,700 7,7000 7,700 7,7000 7,7000 7,7000 7,7000 7,7000 7,7000	1,9		Pur	t <u>s a ign</u> c			 0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1.87 9,37 16,87 24,37 31,87 39,37 0,00	± SE 38,582 11 V ₀ (uA/h-1) 1,3087 1,0534 0,0241 0,0743 0,0241 0,072 0,0012 1,2789	B (uA ⋅ h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,15 0,33 0,53 0,47 0,08 0,08	± SE ###### Abs ₀ 0.273 0.253 0.222 0.196 0.181 0.193 0.204 0.210	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17	± SE 0,015 Abs _f 0,629 0,610 0,424 0,202 0,192 0,205 0,558	0,014 ∆t (h) 1,10 1,033 1,35 1,167 0,967 1,033 1,417 1,083	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,001 0,348	Error 12 0,0023 0,00241 0,0021 0,0025 0,0005 0,0001 4E-05 0,0061	± SE R4	1,9		Pur	ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0241 0,072 0,0012 1,2789 0,9851	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,08 0,08 0,08 0,03 0,53 0,53 0,47 0,08 0,08 0,12	± SE ###### Abso 0.273 0.253 0.222 0.196 0.210 0.201 0.210	C (μM ⁻¹ ) 0,002 200 t _f (h) 1.18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12	± SE 0,015 0,015 0,629 0,610 0,424 0,274 0,202 0,205 0,205 0,205 0,558 0,480	0,014 Δt (h) 1,10 1,033 1,35 1,167 0,967 1,033 1,417 1,083 1	1,3301 △ <b>Abs</b> 0,356 0,357 0,202 0,078 0,021 -0,001 0,001 0,348 0,262	Errer 1*2 0,0023 0,00241 0,0005 0,0001 4E-005 0,0076	± SE R4	1,9		Pur	ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816 0,08689
Serie 1+2 Numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0241 0,072 0,0012 1,2789 0,9851 0,0334	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,08 0,015 0,33 0,53 0,53 0,47 0,08 0,08 0,08 0,12 0,23	± SE ###### Abso 0,273 0,253 0,222 0,196 0,181 0,201 0,210 0,210 0,218 0,217	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	± SE 0,015 0,015 0,629 0,610 0,424 0,274 0,202 0,205 0,558 0,588 0,580 0,334	0,014 Δt (h) 1,10 1,033 1,35 1,167 0,967 1,033 1,417 1,083 1 1,267	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,021 0,001 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,021 0,022 0,021 0,022 0,021 0,022 0,023 0,021 0,022 0,021 0,022 0,021 0,022 0,022 0,021 0,022 0,022 0,021 0,022 0,022 0,022 0,021 0,022 0,022 0,022 0,021 0,022 0,022 0,022 0,024 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,025 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005 0,005	Errer 12 0,0023 0,00241 0,0021 0,0021 0,0021 0,0021 0,0001 4E-05 0,0006 0,0076 0,0076 0,0185	± SE R4	1,9		Pur	ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816 0,08689 0,13609
Serie 1+2 numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 39,37 0,00 1,87 9,37 0,00 1,87 9,37 16,87	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0241 0,0072 0,0012 1,2789 0,9854 0,0334	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,15 0,33 0,53 0,47 0,08 0,12 0,08 0,12 0,23 0,40	± SE ###### Abs ₀ 0,273 0,253 0,222 0,196 0,191 0,193 0,204 0,210 0,210 0,217 0,190	C (μM ⁻¹ ) 0,002 2000 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,42	± SE 0,015 0,015 0,629 0,610 0,274 0,274 0,202 0,192 0,205 0,558 0,434 0,237	0,014 1,10 1,033 1,35 1,167 0,967 1,033 1,417 1,083 1,417 1,081 1,267 1,017	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,001 0,048 0,262 0,117 0,047	Errer 12 0,0023 0,00241 0,0025 0,0021 0,0021 0,0021 0,0021 0,0025 0,0001 4E-05 0,0061 0,0185 0,00076	± SE R4	1,9		Pur	ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816 0,08689 0,13609 0,02645
Serie 1+2 Numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1.87 9,37 16,87 24,37 31,87 39,37 0,00 1.87 9,37 0,00 1.87 9,37 0,00 1.87 9,37 0,00 1.87 24,37	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0241 0,0743 0,0072 1,2789 0,9851 0,0345 0,0334	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,15 0,33 0,53 0,47 0,08 0,45 0,08 0,12 0,08 0,12 0,23 0,240 0,43	± SE ###### Abs ₀ 0.273 0.222 0.196 0.193 0.204 0.210 0.210 0.218 0.217 0.190 0.218	C (μM ⁻¹ ) 0,002 200 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	+ SE 0,015 0,015 0,629 0,610 0,424 0,274 0,202 0,480 0,205 0,558 0,480 0,205 0,558 0,480 0,327 0,211	0.014 Δt (h) 1.10 1.033 1.35 1.167 0.967 1.033 1.417 1.083 1.267 1.017 1.067	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,001 0,048 0,262 0,117 0,047 0,025	Errer 1/2 0,0023 0,0024 0,0024 0,0024 0,0024 0,0025 0,0005 0,0001 4E-05 0,0006 0,0076 0,0076 0,0076 0,0077 0,001	± SE R4	1,9		Put	ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816 0,08689 0,13609 0,02645 0,0321
Serie 1+2 Numero inhi IPC-052	A (uA · h ⁻¹ ) -4,813 bidor = 1,3245 0,00 1,87 9,37 16,87 39,37 0,00 1,87 9,37 0,00 1,87 9,37 16,87	± SE 38,582 11 1,3087 1,0534 0,0241 0,0743 0,0241 0,0072 0,0012 1,2789 0,9854 0,0334	B (uA · h ⁻¹ ) 6,143 Reference t ₀ (h) 0,08 0,15 0,33 0,53 0,47 0,08 0,12 0,08 0,12 0,23 0,40	± SE ###### Abs ₀ 0,273 0,253 0,222 0,196 0,191 0,193 0,204 0,210 0,210 0,217 0,190	C (μM ⁻¹ ) 0,002 2000 t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,42	± SE 0,015 0,015 0,629 0,610 0,274 0,274 0,202 0,192 0,205 0,558 0,434 0,237	0,014 1,10 1,033 1,35 1,167 0,967 1,033 1,417 1,083 1,417 1,081 1,267 1,017	1,3301 △Abs 0,356 0,357 0,202 0,078 0,021 -0,001 0,001 0,048 0,262 0,117 0,047	Errer 12 0,0023 0,00241 0,0025 0,0021 0,0021 0,0021 0,0021 0,0025 0,0001 4E-05 0,0061 0,0185 0,00076	± SE R4	1,9			ts a igno			0,04836 0,15519 0,14539 0,04575 0,0228 0,01118 0,00620 0,07816 0,08689 0,13609 0,02645

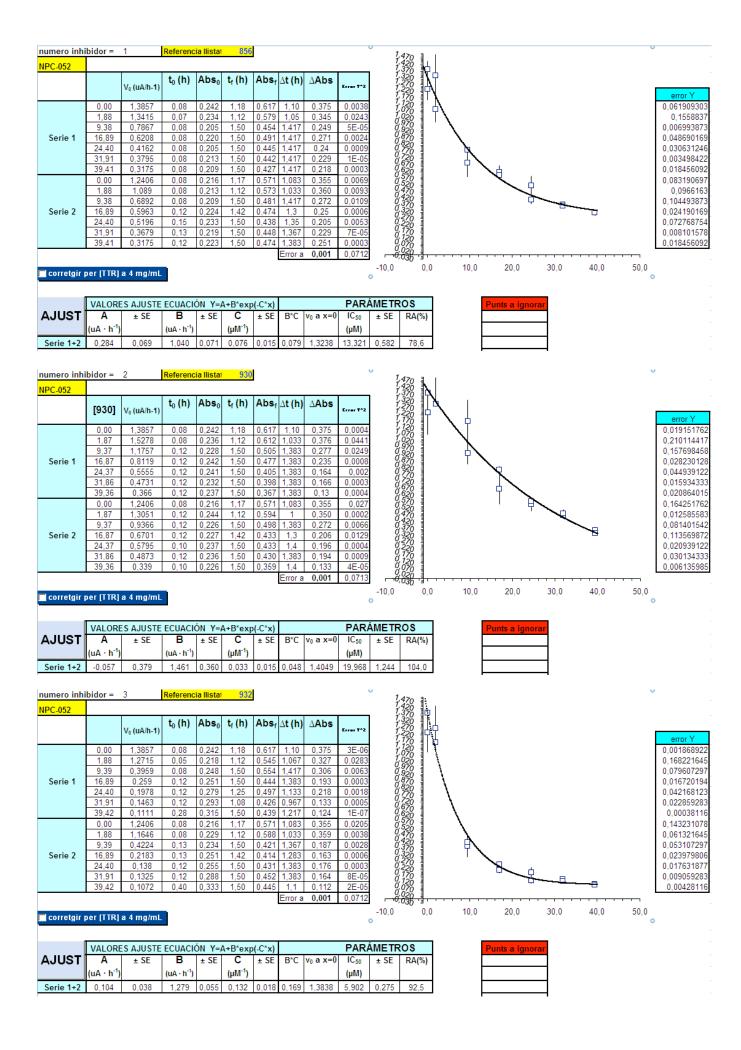
0,0

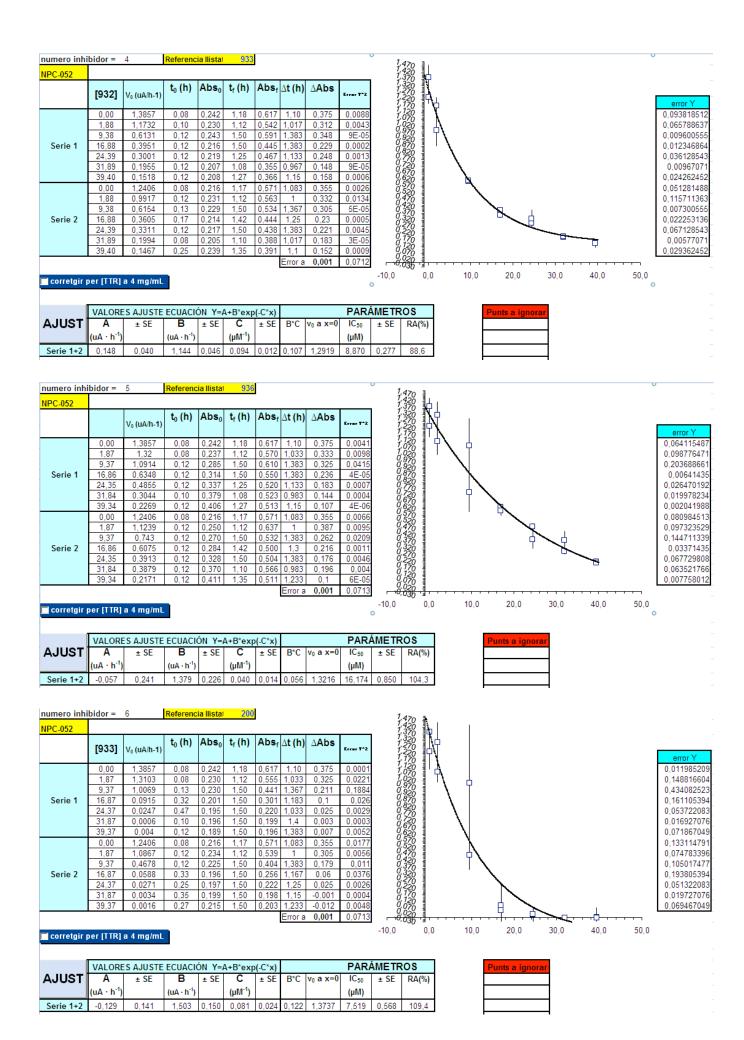
-038 -10,0

🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PAR	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-0,005	0,033	1,362	0,063	0,219	0,034	0,298	1,3571	3,146	0,263	100,4

Pu	nts a	ignora	r


20,0


30,0

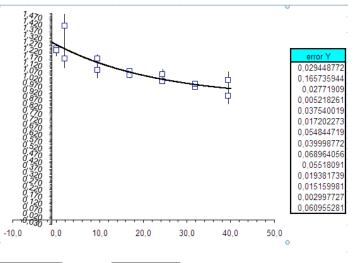
40,0

50,0

10,0



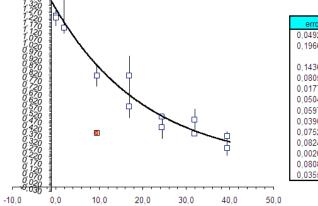



NPC-052         V ₀ (uA/h-1)         t ₀ (h)         Abs ₀ tr (h)         Abs ₁ ∆t (h)         △Abs         trow t*2           0.00         1.24655         0.08         0.225         1.18         0.571         1.10         0.346         0.0006           9.38         0.6294         0.12         0.214         1.50         0.441         1.383         0.224         0.0024           16.89         0.4842         0.12         0.216         1.50         0.417         1.383         0.224         0.0024           31.91         0.3687         0.08         0.226         1.417         0.225         0.0004           31.91         0.3687         0.08         0.226         1.70         0.584         1.083         0.201         0.0024           9.38         0.6965         0.12         0.225         1.12         0.542         1         0.310         0.0221           16.89         0.4833         0.12         0.225         1.50         0.448         1.383         0.273         0.0029         0.336         0.0021         0.336         0.0021         0.336         0.0021         0.336         0.0021         0.336         0.0021         0.336         0.0021 </th <th>numero inh</th> <th>ibidor =</th> <th>1</th> <th>Reference</th> <th>ia Ilista</th> <th>856</th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>470</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th>	numero inh	ibidor =	1	Reference	ia Ilista	856					1	470	1						,
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)	NPC-052						_				1	420							
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)			V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	1 1 1 1	320	Т						error Y
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		0,00	1,24655	0,08	0,225	1,18	0,571	1,10	0,346	0,0006	1	120	X						0,02366704
AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS         Ajust $A \pm SE$ $B \pm SE$ $C \pm SE$ $B^*C$ $v_0 a x=0$ $IC_{50} \pm SE$ $RA(\%)$ (uA · h^{-1})       (uA · h^{-1})       (uA · h^{-1})       (uM · h^{-1})       (uM · h^{-1}) $u_0$ $IC_{50} \pm SE$ $RA(\%)$		1,88	1,3537	0,08	0,244	1,12	0,583	1,033		0,0481	1	020	$\Box$						0,219252124
Image: correct gir per [TTR] a 4 mg/mL       -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       Image: correct gir per [TTR] a 4 mg/mL       PARÁMETROS       Paraámetros       Punts a ignorar         Image: correct gir per [TTR] a 4 mg/mL       Ima		9,38	0,8294	0,12	0,214	1,50	0,463	1,383	0,249	0,0063	ğ	970	Ϋ 🔪						0,079329173
Image: correct gir per [TTR] a 4 mg/mL       -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       Image: correct gir per [TTR] a 4 mg/mL       PARÁMETROS       Paraámetros       Punts a ignorar         Image: correct gir per [TTR] a 4 mg/mL       Ima	Serie 1	16,89	0,4842	0,12	0,216	1,50	0,417	1,383	0,201	0,0024		870	$  \rangle$	Ļ					0,049255138
Image: correct gir per [TTR] a 4 mg/mL       -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       Image: correct gir per [TTR] a 4 mg/mL       PARÁMETROS       Paraámetros       Punts a ignorar         Image: correct gir per [TTR] a 4 mg/mL       Ima		24,40	0,4305	0,08	0,206	1,50	0,465	1,417	0,259	0,0004	ğ	998	i N	4					0,019118637
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		31,91	0,3687	0,08	0,211	1,50	0,434	1,417	0,223	0,0007		220							0,026113313
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		39,41	0,3056	0,08	0,199	1,50	0,413	1,417	0,214	3E-06	ğ	620	٦						0,001782554
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		0,00	1,236	0,08	0,226	1,17	0,584	1,083	0,358	0,0012	l ö	570							0,03421704
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		1,88	0,9882	0,12	0,232	1,12	0,542	1	0,310	0,0214		470			ф н				0,146247876
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		9,38	0,6965	0,12	0,215	1,50	0,488	1,383	0,273	0,0029	ğ	320				-			0,053570827
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)	Serie 2	16,89	0,4833	0,12	0,205	1,50	0,406	1,383	0,201	0,0025		320				H H			0,050155138
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		24,40	0,4577	0,15	0,225	1,50	0,408	1,35	0,183	0,0021	ğ	220					_		0,046318637
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		31,91	0,306	0,13	0,205	1,50	0,401	1,367	0,196	0,0013	6	170							0,036586687
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)		39,41	0,3056	0,12	0,215	1,50	0,460	1,383	0,245	3E-06	Ö	070							0,001782554
-10,0       0,0       10,0       20,0       30,0       40,0       50,0         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         AJUST       VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS       Punts a ignorar         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (µM ⁻¹ )       B*C       v0 a x=0       IC ₅₀ ± SE       RA(%)								Error a	0,001	0,0713		020							
Corretgir per [1 R] a 4 mg/mL         o         o           AJUST         VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)         PARÁMETROS         Punts a ignorar           (uA · h^-1)         (uA · h^-1)         (µM^{-1})         (µM)         (µM)         (µM)													0 1	0.0	20.0	30.0	40.0	50.0	
AJUSTA $(uA \cdot h^{-1})$ ± SEB $(uA \cdot h^{-1})$ ± SEC $(\mu M^{-1})$ ± SEB*C $v_0$ a x=0IC s_0 $(\mu M)$ ± SERA(%)	corretgir	per [TTR]	a 4 mg/mL	-															
AJUSTA $(uA \cdot h^{-1})$ ± SEB $(uA \cdot h^{-1})$ ± SEC $(\mu M^{-1})$ ± SEB*C $v_0$ a x=0IC s_0 $(\mu M)$ ± SERA(%)																			
AJUST $A \downarrow SE B \downarrow SE C \downarrow \pm SE B'C \lor a x=0 IC_{50} \downarrow \pm SE RA(\%)$ $(\mu A \cdot h^{-1}) \downarrow (\mu A \cdot h^{-1}) \downarrow (\mu M^{-1})$		VALOR	ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	(-C*x)			PAR	ÁME TF	ros	1	Pu	ints a ignor	ar			
(uA · h ⁻¹ ) (μM ⁻¹ ) (μM ⁻¹ )	AJUST							B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	1						
Serie 1+2 0,254 0,080 1,016 0,083 0,076 0,018 0,078 1,2702 12,833 0,662 80,0									-										
	Serie 1+2	0.254	0.080	1.016	0.083	0.076	0.018	0.078	1,2702	12.833	0.662	80.0	1			1			
										,			-			-			

0

1,470

-

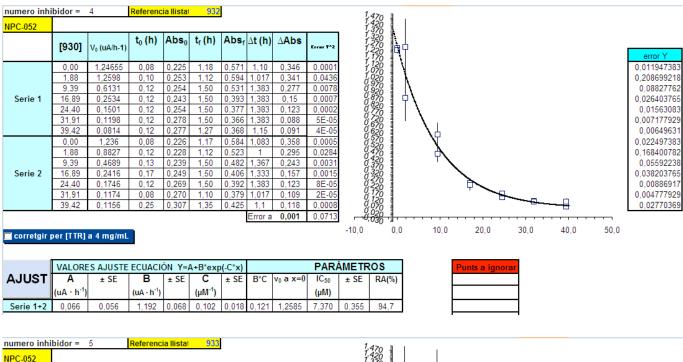

numero inhi	ibidor =	2	Referenc	ia Ilista	864				
NPC-052									
	[864]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2
	0,00	1,24655	0,08	0,225	1,18	0,571	1,10	0,346	0,0009
	1,87	1,4119	0,08	0,246	1,12	0,676	1,033	0,43	0,0275
	9,37	1,1757	0,08	0,262	1,50	0,621	1,417	0,359	0,0008
Serie 1	16,87	1,0818	0,12	0,324	1,50	0,657	1,383	0,333	3E-05
	24,37	1,0622	0,08	0,351	1,50	0,754	1,417	0,403	0,0014
	31,87	0,9697	0,12	0,384	1,50	0,715	1,383	0,331	0,0003
	39,37	0,9046	0,12	0,415	1,50	0,733	1,383	0,318	0,003
	0,00	1,236	0,08	0,226	1,17	0,584	1,083	0,358	0,0016
	1,87	1,1772	0,12	0,245	1,12	0,563	1	0,318	0,0048
	9,37	1,0928	0,12	0,266	1,50	0,602	1,383	0,336	0,003
Serie 2	16,87	1,0572	0,12	0,313	1,50	0,649	1,383	0,336	0,0004
	24,37	1,0095	0,10	0,349	1,50	0,687	1,4	0,338	0,0002
	31,87	0,9899	0,12	0,408	1,50	0,828	1,383	0,42	9E-06
	39,37	1,0204	0,10	0,433	1,50	0,842	1,4	0,409	0,0037
	-	-				-	Frror a	0.001	0 0712



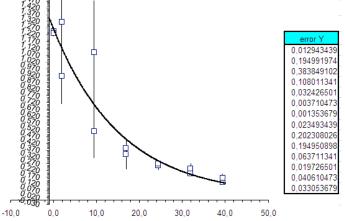
#### 🗖 corretgir per [TTR] a 4 mg/mL

		S AJUSTE	ECUACIO	ÓΝ Y=/	A+B*exp	(-C*x)			PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0 886	0.149	0.390	0 139	0.042	0.033	0.017	1 2760	#iNUM!	#iNUM!	30.5

numero inh	ibidor =	3	Referenc	ia Ilistat	930				
NPC-052						-			
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,24655	0,08	0,225	1,18	0,571	1,10	0,346	0,0024
	1,87	1,396	0,08	0,233	1,12	0,611	1,033	0,378	0,0387
	9,37	0,3959	0,10	0,230	1,50	0,537	1,4	0,307	0
Serie 1	16,87	0,8147	0,12	0,224	1,50	0,606	1,383	0,382	0,0206
	24,37	0,4378	0,12	0,220	1,50	0,507	1,383	0,287	0,0065
	31,86	0,3935	0,12	0,225	1,50	0,527	1,383	0,302	0,0003
	39,36	0,2857	0,28	0,254	1,50	0,465	1,217	0,211	0,0025
	0,00	1,236	0,08	0,226	1,17	0,584	1,083	0,358	0,0036
	1,87	1,1603	0,08	0,225	1,12	0,585	1,033	0,360	0,0015
	9,37	0,8136	0,13	0,232	1,50	0,535	1,367	0,303	0,0057
Serie 2	16,87	0,5886	0,13	0,225	1,50	0,499	1,367	0,274	0,0068
	24,37	0,5163	0,12	0,225	1,50	0,552	1,383	0,327	4E-06
	31,86	0,4921	0,12	0,241	1,50	0,527	1,383	0,286	0,0065
	39,36	0,3717	0,12	0,241	1,50	0,504	1,383	0,263	0,0013
							Error a	0,001	0.0713




unts a ignora


	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=/	A+B*exp	(-C*x)			PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,160	0,195	1,136	0,185	0,047	0,018	0,054	1,2958	17,850	1,077	87,7

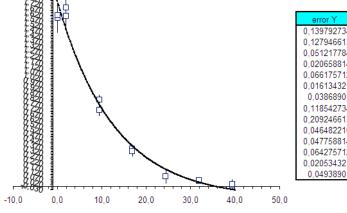
	Punts a ignorar
	7
ľ	

error Y
0.049222859
0,196648181
0
0,143609378
0,080570789
0,017765271
0,050449997
0,059772859
0,039051819
0,075251087
0,082490622
0,002070789
0,080834729
0,035550003



NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
	0,00	1,24655	0,08	0,225	1,18	0,571	1,10	0,346	0,0002
	1,87	1,3163	0,08	0,233	1,12	0,584	1,033	0,351	0,038
	9,37	1,0914	0,12	0,221	1,50	0,483	1,383	0,262	0,1473
Serie 1	16,87	0,3429	0,12	0,201	1,50	0,327	1,383	0,126	0,0117
	24,36	0,2593	0,12	0,203	1,50	0,295	1,383	0,092	0,0011
	31,86	0,1967	0,12	0,205	1,50	0,302	1,383	0,097	1E-05
	39,35	0,1331	0,12	0,201	1,27	0,264	1,15	0,063	2E-06
	0,00	1,236	0,08	0,226	1,17	0,584	1,083	0,358	0,0006
	1,87	0,919	0,12	0,220	1,12	0,547	1	0,327	0,0409
	9,37	0,5126	0,12	0,205	1,50	0,388	1,383	0,183	0,038
Serie 2	16,87	0,3872	0,12	0,209	1,50	0,355	1,383	0,146	0,0041
	24,36	0,272	0,12	0,208	1,50	0,335	1,383	0,127	0,0004
	31,86	0,2336	0,12	0,214	1,10	0,342	0,983	0,128	0,0016
	39,35	0,1648	0,12	0,211	1,35	0,293	1,233	0,082	0,0011
							Error a	0,001	0,0713




unts a ignora

#### 🗖 corretgir per [TTR] a 4 mg/mL

		S AJUSTE	ECUACIO	ÓΝ Y=/	A+B*exp	(-C*x)			PAR	<b>METR</b>	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0.032	0.186	1.228	0.180	0.064	0.026	0.078	1.2595	11.290	0.894	97.5

numero inh	ibidor =	4	Referenc	ia Ilistat	200				
NPC-052									
	#¡VALOR!	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,6047	0,08	0,224	1,18	0,631	1,10	0,407	0,0195
	1,87	1,6194	0,08	0,229	1,12	0,642	1,033	0,413	0,0164
	9,37	0,7294	0,12	0,238	1,50	0,522	1,383	0,284	0,0026
Serie 1	16,87	0,3647	0,20	0,228	1,40	0,397	1,2	0,169	0,0004
	24,37	0,0994	0,47	0,201	1,08	0,258	0,617	0,057	0,0044
	31,87	0,0595	0,50	0,186	1,12	0,219	0,617	0,033	0,0003
	39,37	0,0141	0,50	0,170	1,43	0,183	0,933	0,013	0,0015
	0,00	1,62595	0,10	0,253	1,17	0,629	1,067	0,376	0,0141
	1,87	1,7007	0,07	0,219	1,12	0,644	1,05	0,425	0,0438
	9,37	0,8271	0,13	0,229	1,50	0,510	1,367	0,281	0,0022
Serie 2	16,87	0,3376	0,22	0,223	1,25	0,359	1,033	0,136	0,0023
	24,37	0,1013	0,27	0,190	1,50	0,251	1,233	0,061	0,0041
	31,87	0,0639	0,48	0,191	1,28	0,241	0,8	0,05	0,0004
	39,37	0,0248	0,13	0,184	1,33	0,200	1,2	0,016	0,0024
	-						Error a	0,001	0,0713

		S AJUSTE	ECUACIÓ	ÓN Y=/	A+B*exp	(-C*x)			PARA	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-0,110	0,088	1,854	0,092	0,078	0,011	0,145	1,7445	8,121	0,311	106,3



Punts a ignorar

error Y
0,139792734
0,127946613
0,051217784
0,020658814
0,066175712
0,016134321
0,03868901
0,118542734
0,209246613
0,046482216
0,047758814
0,064275712
0,020534321
0,04938901

umero inh			Reference	la ilista	415					1 0										
IPC-052										Ť Š	81									
FC-0JZ			t ₀ (h)	Abs ₀	t _f (h)	Abe	∆ <b>t (h)</b>	∆Abs		<u> </u>	28									
		V ₀ (uA/h-1)	¹ 0 (11)	ADS0	4(11)	Absf	Δ <b>ι (n)</b>	AADS	Errar T*2	1	\$8 h									erro
	0.00	1,6047	0.08	0,224	1,18	0,631	1.10	0.407	0.0004	Ĩ, Š	% IX									0.018
	1.88	1.3977	0,00	0,256	1,12	0.690		0.434	0.007	<i>t</i> , 3	28   4	λ								0.083
	9.38	1,106	0,12	0.246	1.50	0.598	1.383	0.352	0.0059	Ţ	\$8   '	' N -								0.077
Serie 1	16,88	0,6856	0,13	0,243	1,40	0,584	1,267	0,341	0,0011	Ë	58	\	Д							0,033
	24,38	0,5137	0,17	0,245	1,08	0,490	0,917	0,245	6E-05	58	38		7							0,00
	31,88	0,4111	0,18	0,251	1,12		0,933	0,180	0,0026	, X	28		$\mathbf{X}$							0,0512
	39,38	0,2437	0,23	0,240	1,43	0,430	1,2	0,19	0,0003	88	81									0,0160
	0,00	1,62595	0,10	0,253	1,17	0,629	1,067	0,376	5E-06	82	281									0,0023
	1,88	1,5392	0,10	0,252	1,12	0,699	1,017	0,447	0,0034	88	28 ]			I						0,0579
	9,38	1,1298	0,10	0,241	1,50	0,581	1,4	0,34	0,0102	83	28			Y						0,1008
Serie 2	16,88	0,5449	0,12	0,220	1,25	0,493	1,133	0,273	0,0302	83	28									0,1738
	24,38 31,88	0,51	0,13	0,237	1,50 1,28	0,465	1,367	0,228 0,187	2E-05 0,0016	83	58									0,004 0,0401
	39,38	0,4	0,17	0,252	1,20	0,439	1,17	0,187	0,0018	83	38						_			0,0401
	33,30	0,2437	0,15	0,240	1,55	0,415	Error a		0,0003	3,8	28									0,0100
										-10.0	0.0		10,0	~	0,0	30,0	40,	•	50,0	
		ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	o(-C*x)			PARÁ	<b>METR</b>	19			Punts	a ignora	r				
	VALORI										/3									
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀		RA(%)		Ļ							
AJUST		± SE	B (uA · h⁻¹)	± SE	С (µМ ⁻¹ )	± SE	B*C	v ₀ a x=0	IC ₅₀ (µМ)											
AJUST	Α	± SE		<b>± SE</b> 0,120		± SE 0,009	B*C 0,080	v ₀ a x=0												
Serie 1+2	<b>A</b> (uA ⋅ h ⁻¹ ) 0,041	± SE 0,128	(uA · h ⁻¹ )	0,120	(μΜ ⁻¹ ) 0,050	0,009			(µM)	± SE	RA(%)		Ļ							
AJUST Serie 1+2 numero inh NPC-052	<b>A</b> (uA ⋅ h ⁻¹ ) 0,041	± SE 0,128	<b>(uA · h⁻¹)</b> 1,583	0,120	(μM ⁻¹ ) 0,050 941	0,009			(µM)	± SE	RA(%)				4	- 				
Serie 1+2 numero inh	<b>A</b> (uA ⋅ h ⁻¹ ) 0,041	± SE 0,128	<b>(uA · h⁻¹)</b> 1,583	0,120	(μM ⁻¹ ) 0,050 941	0,009			(µM)	± SE	RA(%)	1								error
Serie 1+2 numero inh	A (uA · h ⁻¹ ) 0,041 ibidor =	± SE 0,128	(uA · h ⁻¹ ) 1,583 Referenc	0,120	(μM ⁻¹ ) 0,050 941	0,009	0,080	1,6236	(μM) 14,316	± SE	RA(%)	l					<del>-</del>			
Serie 1+2 numero inh	A (uA · h ⁻¹ ) 0,041 ibidor = [941]	2 V ₀ (uA/h-1)	(uA · h ⁻¹ ) 1,583 Reference t ₀ (h)	0,120	(μM ⁻¹ ) 0,050 941 t _f (h)	0,009	0,080 Δt (h)	1,6236 ∆ <b>Abs</b>	(μM) 14,316	± SE	RA(%)	l								0,04548
Serie 1+2 numero inh	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00	± SE 0,128 2 V₀ (uA/h-1) 1,43885	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10	0,120 ia liistat Abs ₀ 0,211	(μM ⁻¹ ) 0,050 941 <b>t_f (h)</b> 1,18	0,009 Abs _f	0,080 ∆ <b>t (h)</b> 1,08	1,6236 Δ <b>Abs</b> 0,425	(µM) 14,316 Errer T*2 0,0021	± SE	RA(%)	1					Ę			0,04548 0,04704
Serie 1+2 numero inh	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1.88 9,38 16,88	± SE 0,128 2 V₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,10 0,12 0,12	0,120 ia liistat 0,211 0,231 0,233 0,240	(μM ⁻¹ ) 0,050 941 <b>t_r (h)</b> 1,18 1,12 1,50 1,50	0,009 Abs _f 0,636 0,723 0,712 0,722	0,080 ∆ <b>t (h)</b> 1,08 1,017 1,383 1,383	1,6236 Δ <b>Abs</b> 0,425 0,492 0,479 0,479	(µM) 14,316 14,316 0,0021 0,0022 0,0149 0,0202	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203
Serie 1+2 numero inh NPC-052	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 16,88 24,38	± SE 0,128 2 V ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,10 0,10 0,12 0,12 0,12	0,120 ia liistat Abso 0,211 0,231 0,233 0,240 0,226	(μM ⁻¹ ) 0,050 941 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50	0,009 Abs _f 0,636 0,723 0,712 0,722 0,703	0,080 ∆ <b>t (h)</b> 1,08 1,017 1,383 1,383 1,383	1,6236 Δ <b>Abs</b> 0,425 0,492 0,479 0,482 0,477	(µM) 14,316 14,316 0,0021 0,0022 0,0149 0,0202 0,0078	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829
Serie 1+2 numero inh IPC-052	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1.88 9,38 16,88 24,38 31,88	± SE 0,128 2 V₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12 0,10	0,120 ia llistat <b>Abs</b> ₀ 0,211 0,231 0,233 0,240 0,226 0,199	(μM ⁻¹ ) 0,050 941 <b>t</b> _r (h) 1,18 1,12 1,50 1,50 1,50 1,50	0,009 <b>Abs</b> f 0,636 0,723 0,712 0,722 0,703 0,675	0,080 ∆t (h) 1,08 1,017 1,383 1,383 1,383 1,4	1,6236 Δ <b>Abs</b> 0,425 0,492 0,492 0,479 0,482 0,477 0,476	(µM) 14,316 14,316 14,316 0,0021 0,0022 0,0149 0,0202 0,0149 0,0202 0,0078 0,003	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460
Serie 1+2 numero inh NPC-052	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 16,88 24,38 31,88 31,88 39,39	± SE 0,128 2 V ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12	0,120 ia llistat Abs ₀ 0,211 0,231 0,240 0,226 0,199 0,210	(μM ⁻¹ ) 0,050 941 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50	0,009 <b>Abs</b> _f 0,636 0,723 0,712 0,723 0,773 0,675 0,697	0,080 0,080 1,08 1,07 1,383 1,383 1,383 1,4 1,383	1,6236 △Abs 0,425 0,492 0,479 0,479 0,477 0,476 0,477	(µM) 14,316 Errer 1*2 0,0021 0,0022 0,0149 0,0022 0,0149 0,0022 0,0149 0,0022 0,0149 0,0022 0,0149 0,0022 0,0149 0,0022 0,0149 0,0022 0,003 2E-06	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154
Serie 1+2 numero inh NPC-052	A (uA · h ⁻¹ ) 0,041 bidor = [941] 0,00 1.88 9,38 16,88 24,38 31,88 39,39 0,00	± SE 0,128 2 V ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,31335	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12 0,12 0,12 0,08	0,120 a llistat 0,211 0,231 0,233 0,240 0,226 0,199 0,210 0,222	(μΜ ⁻¹ ) 0,050 941 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17	0,009 0,009 0,636 0,723 0,712 0,722 0,722 0,773 0,675 0,697 0,528	0,080 ∆ <b>t (h)</b> 1,08 1,017 1,383 1,383 1,383 1,4 1,383 1,083	1,6236 Δ <b>Abs</b> 0,425 0,492 0,479 0,479 0,477 0,477 0,487 0,487	(µM) 14,316 14,316 0,0021 0,0022 0,0149 0,0202 0,0078 0,003 2E-06 0,0292	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154 0,17098
Serie 1+2 numero inh NPC-052	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 16,88 24,38 31,88 31,88 39,39 0,00 1,88	± SE 0,128 2 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,31335 1,5112	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,10 0,22 0,10 0,22 0,10 0,22 0,10 0,22 0,10 0,22 0,10 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,22 0,2	0,120 ia liistat Abso 0,211 0,231 0,233 0,240 0,226 0,210 0,222 0,216	(µM ⁻¹ ) 0,050 941 <b>t_f(h)</b> 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12	0,009 0,009 0,636 0,723 0,712 0,722 0,703 0,675 0,697 0,528 0,689	0,080 0,080 <b>∆t (h)</b> 1,08 1,017 1,383 1,383 1,4 1,383 1,4 1,383 1,083 1,05	1,6236 Δ <b>Abs</b> 0.425 0.492 0.479 0.479 0.482 0.477 0.476 0.487 0.306 0.473	(µM) 14,316 14,316 0,0021 0,0022 0,001 0,0022 0,0078 0,003 2E-06 0,003 2E-006 0,00292 0,001	± SE	RA(%)	I					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154 0,17098 0,03194
Serie 1+2 numero inh NPC-052 Serie 1	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 24,38 31,88 39,39 0,00 1,88 9,38	± SE 0,128 2 V ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,4531 1,3769 1,4531 1,31335	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,10 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,10 0,12 0,07 0,07	0,120 0,120 <b>Abs</b> ₀ 0,211 0,233 0,240 0,226 0,210 0,2210 0,2210 0,217	(μΜ ⁻¹ ) 0,050 941 <b>t_f(h)</b> 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,009 0,009 0,636 0,723 0,712 0,722 0,703 0,675 0,697 0,528 0,697 0,528 0,697	0,080 0,080 1,08 1,08 1,07 1,383 1,383 1,383 1,383 1,4 1,383 1,4 1,383 1,05 1,433	1,6236 Δ <b>Abs</b> 0,425 0,429 0,479 0,479 0,476 0,477 0,306 0,473 0,507	(µM) 14,316 14,316 14,316 0,0021 0,0022 0,014 0,0202 0,0078 0,003 2E-06 0,0292 0,001 2E-05	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154 0,00154 0,17098 0,03194 0,00488
Serie 1+2 numero inh NPC-052	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 16,88 24,38 31,88 39,39 0,00 1,88 9,38 16,88	± SE 0,128 2 <b>V</b> ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,31335 1,5112 1,4541 1,4541 1,4062	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,07 0,07	0,120 ia llistat Abso 0,211 0,233 0,240 0,226 0,210 0,220 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2	(µM ⁻¹ ) 0,050 941 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,009 0,009 0,636 0,723 0,722 0,722 0,722 0,722 0,722 0,723 0,659 0,689 0,689 0,689 0,524 0,724	0,080 0,080 <b>∆t (h)</b> 1,08 1,017 1,383 1,383 1,383 1,383 1,4 1,383 1,4 1,383 1,4 1,083 1,05 1,433 1,433 1,433	1,6236 △Abs 0,425 0,492 0,479 0,482 0,477 0,476 0,487 0,477 0,476 0,487 0,477 0,507 0,507	(µM) 14,316 14,316 14,316 14,316 0,0021 0,0022 0,0149 0,0003 2E-06 0,003 2E-06 0,0092 0,0092 0,0001 2E-05 0,0011	± SE	RA(%)	1					Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154 0,00154 0,03194 0,00488 0,03256
Serie 1+2 numero inh NPC-052 Serie 1	A (uA · h ⁻¹ ) 0,041 bidor = [941] 0,00 1.88 9,38 16,88 24,38 31,88 9,39 0,00 1.88 9,39 0,00 1.88 9,39 0,00 1.88 9,38	± SE 0,128 2 V ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,31335 1,5112 1,4541 1,4062 1,3207	(uA · h ⁻¹ ) 1,583 Reference t ₀ (h) 0,10 0,10 0,12 0,12 0,12 0,12 0,12 0,01 0,07 0,07 0,07	0,120 a llistat Abso 0,211 0,233 0,240 0,220 0,210 0,222 0,216 0,219 0,210 0,221 0,211 0,221 0,212	(μM ⁻¹ ) 0,050 941 <b>t</b> _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,009 0,009 0,036 0,723 0,722 0,703 0,675 0,675 0,697 0,528 0,697 0,528 0,699 0,724 0,725	0,080 <b>∆t (h)</b> 1,08 1,017 1,383 1,383 1,4 1,383 1,4 1,383 1,4 1,383 1,4 1,383 1,4 1,383 1,4 1,433 1,433 1,433	1,6236 △Abs 0,425 0,492 0,479 0,479 0,477 0,476 0,477 0,476 0,477 0,476 0,477 0,476 0,477 0,507 0,507 0,515	(µM) 14,316 14,316 14,316 14,316 0,0021 0,0022 0,0149 0,0002 0,0018 0,003 2E-06 0,0292 0,001 2E-06 0,0021 0,0021 0,0022 0,001 2E-06 0,0021 0,0029 0,001 0,0029 0,001 0,0029 0,001 0,0029 0,001 0,0029 0,0001 0,0029 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0009 0,0001 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,0009 0,0001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00	± SE	RA(%)						Ę			0,04548 0,04704 0,12221 0,14203 0,08829 0,05460 0,00154 0,00154 0,03194 0,00488 0,03256 0,09790
Serie 1+2 numero inh NPC-052 Serie 1	A (uA · h ⁻¹ ) 0,041 ibidor = [941] 0,00 1,88 9,38 16,88 24,38 31,88 39,39 0,00 1,88 9,38 16,88	± SE 0,128 2 <b>V</b> ₀ (uA/h-1) 1,43885 1,5263 1,5812 1,5808 1,5069 1,4531 1,3769 1,31335 1,5112 1,4541 1,4541 1,4062	(uA · h ⁻¹ ) 1,583 Reference <b>t</b> ₀ (h) 0,10 0,12 0,12 0,12 0,12 0,12 0,12 0,12 0,07 0,07	0,120 ia llistat Abso 0,211 0,233 0,240 0,226 0,210 0,220 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2210 0,2	(µM ⁻¹ ) 0,050 941 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,009 0,009 0,636 0,723 0,722 0,722 0,722 0,722 0,722 0,723 0,659 0,689 0,689 0,689 0,524 0,724	0,080 0,080 <b>∆t (h)</b> 1,08 1,017 1,383 1,383 1,383 1,383 1,4 1,383 1,4 1,383 1,4 1,083 1,05 1,433 1,433 1,433	1,6236 △Abs 0,425 0,492 0,479 0,482 0,477 0,476 0,487 0,477 0,476 0,487 0,477 0,507 0,507	(µM) 14,316 14,316 14,316 14,316 0,0021 0,0022 0,0149 0,0003 2E-06 0,003 2E-06 0,0092 0,0092 0,0001 2E-05 0,0011	± SE	RA(%)						Ę			error 1 0,04548i 0,04704i 0,14223: 0,05460; 0,00154 0,03194i 0,03194i 0,03256i 0,03790; 0,0488i 0,03799;

--10,0

0,0

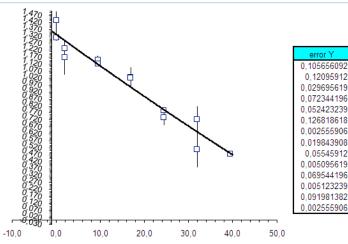
# 🗖 corretgir per [TTR] a 4 mg/mL

		VALORE	S AJUSTE	ECUACIO	ÓN Y=A	(-C*x)	PARÁMETROS					
	AJUST	Α	± SE	B ± SE C ± SE			B*C	v ₀ a x=0	IC ₅₀	± SE RA(%		
l		(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
	Serie 1+2	-5.968	2556.871	7.452	0.126	0.003	1.4843	288.699	#######	502.1		

Referencia Ilistat 415

Punts a ignorar

20,0

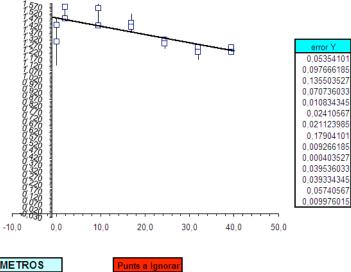

30,0

40,0

50,0

10,0

numero inhi	bidor =	1	Referenc	ia Ilistat	940				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0112
	1,87	1,1693	0,12	0,270	1,12	0,723	1	0,453	0,0146
	9,37	1,1507	0,13	0,329	1,50	0,789	1,367	0,46	0,0009
Serie 1	16,87	1,028	0,13	0,392	1,50	0,780	1,367	0,388	0,0052
	24,37	0,7417	0,12	0,465	1,50	0,952	1,383	0,487	0,0027
	31,87	0,5095	0,12	0,498	1,50	0,851	1,383	0,353	0,0161
	39,36	0,4796	0,12	0,589	1,50	0,974	1,383	0,385	7E-06
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0004
	1,87	1,2348	0,12	0,305	1,12	0,697	1	0,392	0,0031
	9,37	1,1261	0,12	0,322	1,50	0,727	1,383	0,405	3E-05
Serie 2	16,87	1,0252	0,12	0,402	1,50	0,790	1,383	0,388	0,0048
	24,37	0,789	0,12	0,454	1,50	0,828	1,383	0,374	3E-05
	31,87	0,7283	0,12	0,523	1,50	0,911	1,383	0,388	0,0085
	39,36	0,4796	0,12	0,598	1,50	0,960	1,383	0,362	7E-06
							Error a	0,001	0,0712



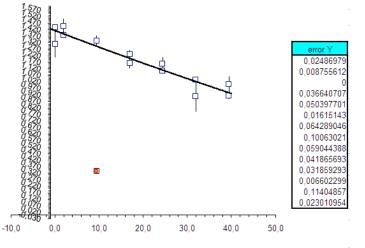

^ounts a ignorai

## 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIO	ŚN Y=A	(-C*x)	PARÁMETROS					
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-6,044	28,658	7,377	######	0,003	0.013	0.023	1,3332	30,414	7,507	553,3

numero inhi	umero inhibidor = 3		Referenc	ia Ilista	942				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0029
	1,87	1,5781	0,12	0,257	1,12	0,744	1	0,487	0,0095
	9,37	1,5683	0,12	0,240	1,50	0,742	1,383	0,502	0,0184
Serie 1	16,87	1,4562	0,13	0,253	1,50	0,691	1,367	0,438	0,005
	24,37	1,3276	0,12	0,219	1,50	0,706	1,383	0,487	0,0001
	31,87	1,2676	0,12	0,214	1,50	0,697	1,383	0,483	0,0006
	39,37	1,2664	0,12	0,204	1,50	0,669	1,383	0,465	0,0004
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0321
	1,87	1,4897	0,10	0,268	1,12	0,728	1,017	0,460	9E-05
	9,37	1,4332	0,10	0,248	1,50	0,672	1,4	0,424	2E-07
Serie 2	16,87	1,425	0,10	0,247	1,50	0,735	1,4	0,488	0,0016
	24,37	1,2991	0,10	0,243	1,50	0,707	1,4	0,464	0,0015
	31,87	1,2343	0,10	0,239	1,50	0,716	1,4	0,477	0,0033
	39,37	1,2353	0,10	0,231	1,50	0,691	1,4	0,46	1E-04
							Error a	0,001	0,0712




		VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)							PARÁMETROS					
AJUST	Α	± SE	B ± SE C ± SE B*C v			v ₀ a x=0	IC ₅₀	± SE	RA(%)					
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)					
Serie 1+2	-5,964	399,419	7,456	######	0,001	0,047	0,006	1,4924	123,178	#######	499,6			

umero inhi	ibidor =	7	Reference	cia Ilista	946				
NPC-052									
		V₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar 7*2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0008
	1,88	1,4433	0,12	0,252	1,12	0,723	1	0,471	0,0015
	9,38	0,9601	0,12	0,233	1,50	0,689	1,383	0,456	0
Serie 1	16,88	1,3938	0,12	0,235	1,50	0,704	1,383	0,469	0,0018
	24,38	1,2446	0,12	0,247	1,12	0,768	1	0,521	0,0067
	31,88	1,3237	0,12	0,234	1,30	0,744	1,183	0,510	0,0005
	39,38	1,3105	0,13	0,257	1,50	0,708	1,367	0,451	0,0011
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0095
	1,88	1,4437	0,07	0,216	1,12	0,698	1,05	0,482	0,0016
	9,38	1,3906	0,08	0,234	1,50	0,698	1,417	0,464	0,0002
Serie 2	16,88	1,3358	0,08	0,239	1,50	0,710	1,417	0,471	0,0003
	24,38	1,3244	0,08	0,252	1,08	0,712	1	0,46	5E-06
	31,88	1,286	0,07	0,223	1,50	0,752	1,433	0,529	0,0003
	39,38	1,2758	0,08	0,239	1,50	0,726	1,417	0,487	5E-06
							Error a	0,001	0,0712
							-		-

#### 🗖 corretgir per [TTR] a 4 mg/mL

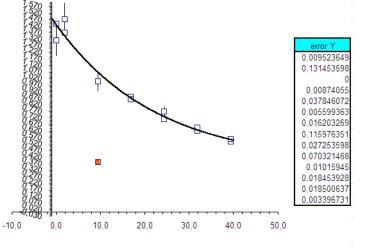
	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=A	(-C*x)	PARÁMETROS					
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,355	15,248	1,056	######	0,003	0,053	0,004	1,4109	322,915	#######	74,9

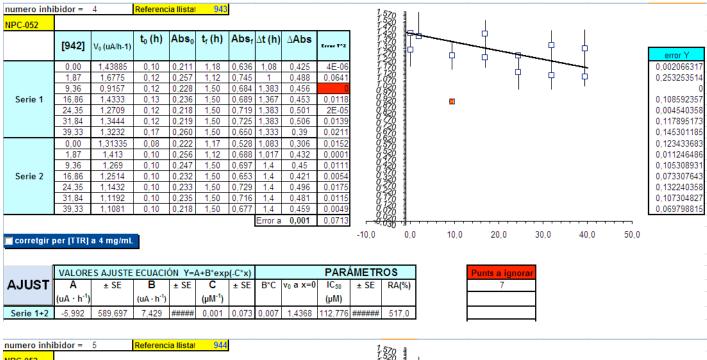
numero inhi	umero inhibidor = 8			ia Ilistat	947				
NPC-052									
	[944]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0006
	1,88	1,381	0,12	0,287	1,12	0,741	1	0,454	8E-05
	9,38	0,3393	0,12	0,352	1,50	0,760	1,383	0,408	0
Serie 1	16,88	1,1653	0,12	0,431	1,50	0,906	1,383	0,475	0,0013
	24,38	1,1623	0,12	0,508	1,12	0,998	1	0,49	0,0025
	31,88	1,0405	0,12	0,587	1,30	1,079	1,183	0,492	0,0003
	39,38	1,0035	0,12	0,654	1,50	1,132	1,383	0,478	0,0041
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0101
	1,88	1,4488	0,08	0,266	1,12	0,687	1,033	0,421	0,0035
	9,38	1,3364	0,08	0,348	1,50	0,794	1,417	0,446	0,0018
Serie 2	16,88	1,2338	0,08	0,428	1,50	0,884	1,417	0,456	0,001
	24,38	1,1053	0,08	0,507	1,08	1,011	1	0,504	4E-05
	31,88	0,9103	0,08	0,588	1,50	1,110	1,417	0,522	0,013
	39,38	0,9162	0,10	0,678	1,50	1,170	1,4	0,492	0,0005
							Error a	0,001	0,0712



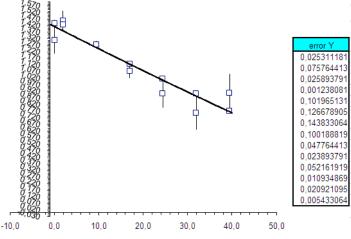
Punts a ignoral 7

Punts a ignora 7


unts a ignor


## 📕 corretgir per [TTR] a 4 mg/mL

		S AJUSTE	ECUACIO	ÓN Y=A	(-C*x)	PARÁMETROS					
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
			4		· · · · ·						
	(uA · h ⁻¹ )		(uA · h⁻¹)		(µM ⁻¹ )				(µM)		


numero inhi	ibidor =	10	Referenc	ia Ilista	949	I			
NPC-052									
	1,876383463	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	9E-05
	1,87	1,4762	0,12	0,226	1,12	0,690	1	0,464	0,0173
	9,37	0,3834	0,13	0,217	1,50	0,590	1,367	0,373	0
Serie 1	16,87	0,8801	0,13	0,212	1,50	0,598	1,367	0,386	8E-05
	24,37	0,7677	0,12	0,205	1,12	0,556	1	0,351	0,0014
	31,86	0,6229	0,12	0,209	1,30	0,595	1,183	0,386	3E-05
	39,36	0,5397	0,12	0,201	1,50	0,542	1,383	0,341	0,0003
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0135
	1,87	1,372	0,10	0,234	1,12	0,652	1,017	0,418	0,0007
	9,37	0,9986	0,10	0,210	1,50	0,636	1,4	0,426	0,0049
Serie 2	16,87	0,8612	0,12	0,218	1,50	0,584	1,383	0,366	0,0001
	24,37	0,7114	0,12	0,217	1,08	0,605	0,967	0,388	0,0003
	31,86	0,647	0,12	0,215	1,50	0,554	1,383	0,339	0,0003
	39,36	0,5593	0,12	0,210	1,50	0,530	1,383	0,32	1E-05
							Error a	0.001	0.0712

		VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)							PARÁMETROS					
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)			
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)					
Serie 1+2	0,373	0,138	1,057	0,130	0,045	0,012	0,047	1,4293	25,341	1,184	73,9			

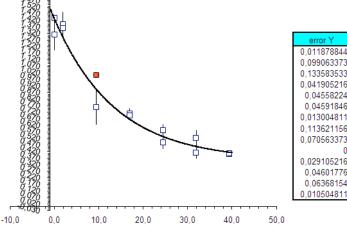




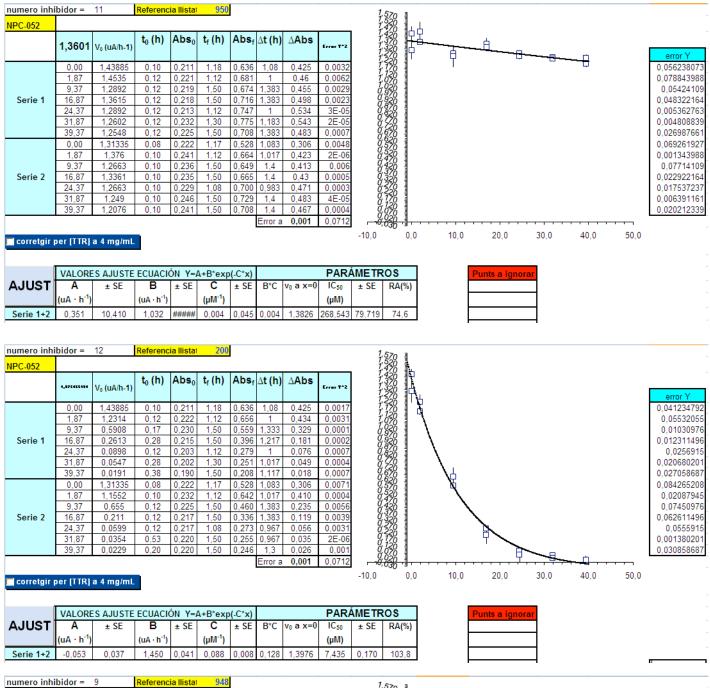
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0006
	1,88	1,4572	0,12	0,247	1,12	0,696	1	0,449	0,0057
	9,38	1,2803	0,12	0,227	1,50	0,662	1,383	0,435	0,0007
Serie 1	16,88	1,1308	0,15	0,257	1,50	0,645	1,35	0,388	2E-06
	24,39	0,9049	0,12	0,245	1,50	0,669	1,383	0,424	0,0104
	31,89	0,7596	0,12	0,262	1,50	0,677	1,383	0,415	0,016
	39,39	0,9116	0,12	0,256	1,50	0,679	1,383	0,423	0,0207
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,01
	1,88	1,4292	0,08	0,240	1,12	0,696	1,033	0,456	0,0023
	9,38	1,2783	0,08	0,233	1,50	0,689	1,417	0,456	0,0006
Serie 2	16,88	1,0774	0,12	0,254	1,50	0,629	1,383	0,375	0,0027
	24,39	1,0178	0,08	0,250	1,50	0,629	1,417	0,379	0,0001
	31,89	0,9072	0,12	0,271	1,50	0,607	1,383	0,336	0,0004
	39,39	0,7732	0,12	0,274	1,50	0,607	1,383	0,333	3E-05
							Error a	0,001	0,0712



^punts a ignora


#### 🗖 corretgir per [TTR] a 4 mg/mL

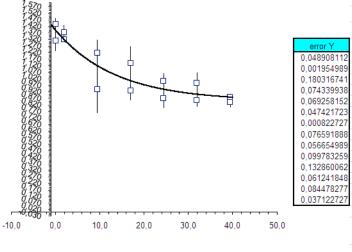
	VALORE	S AJUSTE	ECUACIO			PAR	<b>METR</b>	OS			
AJUST	A ± SE B ± SE C ± SE B*C v ₀ a x=0 IC ₅₀ ± SE									± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-6,003	52,892	7,417	#####	0,002	0,017	0,017	1,4135	43,305	14,092	524,7


numero inhi	bidor =	6	Referenc	ia Ilista	945				
NPC-052						-			
	[943]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0001
	1,88	1,3886	0,12	0,239	1,12	0,688	1	0,449	0,0098
	9,38	0,7615	0,13	0,217	1,50	0,601	1,367	0,384	0,0178
Serie 1	16,89	0,7094	0,17	0,210	1,50	0,565	1,333	0,355	0,0018
	24,40	0,4906	0,12	0,202	1,12	0,553	1	0,351	0,0021
	31,91	0,4145	0,12	0,207	1,30	0,538	1,183	0,331	0,0021
	39,41	0,4037	0,15	0,210	1,50	0,551	1,35	0,341	0,0002
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0129
	1,88	1,3601	0,12	0,268	1,12	0,647	1	0,379	0,005
	9,38	1,0055	0,12	0,224	1,50	0,604	1,383	0,38	0
Serie 2	16,89	0,6966	0,15	0,216	1,50	0,549	1,35	0,333	0,0008
	24,40	0,5822	0,12	0,213	1,08	0,525	0,967	0,312	0,0021
	31,91	0,5241	0,15	0,228	1,50	0,525	1,35	0,297	0,0041
	39,41	0,4062	0,12	0,207	1,50	0,460	1,383	0,253	0,0001
							Error a	0,001	0,0712

#### corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=	A+B*exp	(-C*x)			PARÁ	ÁMETR	OS
AJUST	Α	± SE	в	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,357	0,077	1,070	0,077	0,073	0,016	0,078	1,4270	15,006	0,709	75,0




^ounts a ignora 14

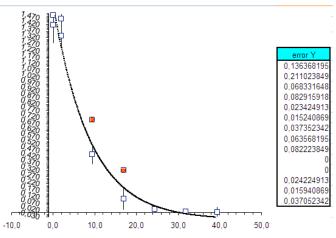


numero inhi	bidor =	9	Referenc	ia Ilistai	948				
NPC-052									
	1,4292	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
	0,00	1,43885	0,10	0,211	1,18	0,636	1,08	0,425	0,0024
	1,88	1,3223	0,10	0,216	1,12	0,635	1,017	0,419	4E-06
	9,38	0,9409	0,13	0,231	1,50	0,590	1,367	0,359	0,0325
Serie 1	16,88	0,9326	0,13	0,221	1,50	0,546	1,367	0,325	0,0055
	24,38	0,8721	0,13	0,220	1,12	0,547	0,983	0,327	0,0048
	31,88	0,8563	0,13	0,224	1,30	0,532	1,167	0,308	0,0022
	39,38	0,8813	0,13	0,222	1,50	0,552	1,367	0,33	7E-07
	0,00	1,31335	0,08	0,222	1,17	0,528	1,083	0,306	0,0059
	1,88	1,377	0,10	0,245	1,12	0,694	1,017	0,449	0,0032
	9,38	1,221	0,10	0,229	1,50	0,634	1,4	0,405	0,01
Serie 2	16,88	1,1398	0,10	0,219	1,50	0,613	1,4	0,394	0,0177
	24,38	1,0026	0,12	0,232	1,08	0,659	0,967	0,427	0,0038
	31,88	0,9882	0,13	0,239	1,50	0,616	1,367	0,377	0,0071
	39,38	0,845	0,12	0,229	1,50	0,588	1,383	0,359	0,0014
							Error a	0,001	0,0713

#### 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=∕	A+B*exp	(-C*x)			PAR	<b>METR</b>	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,853	0,087	0,537	0,089	0,074	0,035	0,040	1,3899	#¡NUM!	#¡NUM!	38,6




unts a ignor

										1 420 1 370							
		V ₀ (uA/h-1)	t₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y*2	1 270 1 220 1 122							error Y
	0,00	1,4207	0,08	0,242	1,18	0,614	1,10	0,372	0,0009	1 12 1 12							0,029463
	1,88	1,4233	0,08	0,243	1,12	0,629	1,033	0,386	0,0024	1 02		ų ,		<u>н</u> і			0,048980
	9,38	0,3198	0,08	0,234	1,50	0,630	1,417	0,396	0	0.920			-	¥]	_		
Serie 1	16,88	1,056	0,08	0,214	1,23	0,607	1,15	0,393	0,0011	0.870	2			9	÷È		0,032595
	24,38	1,0025	0,08	0,214	1,32	0,612	1,233	0,398	0,0031	0.73	2 I			1	т		0,056021
	31,88 39,38	0,8522 0,8495	0,10	0,215	1,50 1,50	0,543	1,4	0,328	0,0024 0,0006	0,67	51						0,04885 0,02473
	0.00	1.4935	0,12	0,222	1,50	0,552	1,303	0,33	0.0019	0,5%							0.043336
	1,88	1,3364	0.08	0,203	1,12	0,623	1,033	0,42	0,0013	0,520	2						0.037919
	9.38	1.0696	0.08	0.215	1,50	0,585	1,417	0,37	0.0071	0 42	2 I						0.084082
Serie 2	16.88	1.0104	0.12	0,229	1.50	0.578	1.383	0.349	0.0002	0.320	5						0.013004
	24,38	0,9822	0,10	0,217	1,50	0,549	1,4	0,332	0,0013	0,270	2						0,035721
	31,88	0,9657	0,12	0,221	1,50	0,512	1,383	0,291	0,0042	0,170	ź 🛛						0,06464
	39,38	0,831	0,13	0,226	1,50	0,501	1,367	0,275	0,0019	0,050	2						0,04323
							Error a	0,001	0,0712		<u>}</u>						
oorrotair		a 4 mg/mL								-10,0	0,0	10,0	20,0	30,0	40,0	50,0	
correign	per [rik]	a 4 mg/mL							0	0						c	)
	VALOR	ES AJU	STE EC	UACI	ÓN Y=A	+B*exp(-C*)	()		PARÁ	METROS	6		^p unts a igi	norar			
JUST	Α	± SE	B	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE R/	4(%)		7				
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )												
									(uM)								
iorio 1+2	· · ·	0.056		0.056		0.019	0.043	1.4502	(µM) #:NLIMI	##### A	2.4	┝					
Serie 1+2	0,836	0,056	0,615	0,056	0,070	0,019	0,043	1,4502	(µM) # _i NUM!	##### 42	2,4	ŀ					
umero inh	0,836	0,056 4			0,070	0,019	0,043	1,4502		147C	3						,
mero inh	0,836		0,615	cia Ilista	0,070 943		0,043	1,4502		147( 142( 132)	2,4		<u></u>				,
imero inh	0,836		0,615		0,070 943	0,019 Abs _f	0,043 Δ <b>t (h)</b>			147( 1,47( 1,42) 1,37( 1,37( 1,23) 1,27( 1,22)	3						, error Y
imero inh	0,836 ibidor = #¡VALOR!	4 V ₀ (uA/h-1)	0,615 Reference t ₀ (h)	Abs ₀	0,070 943 t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	#jNUM!	1477 1477 1427 1377 1227 1227 1227 1227	3						
imero inh	0,836	4	0,615	cia Ilista	0,070 943				# _i NUM!	+++++++ 4. 1,47( 1,42( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32( 1,32	3						0,0476644
umero inh	0,836 ibidor = #iVALOR! 0,00	4 V ₀ (uA/h-1) 1,4207	0,615 Reference t ₀ (h) 0,08	Abs ₀	0,070 943 <b>t_f (h)</b> 1,18	<b>Abs</b> _f 0,614	∆ <b>t (h)</b>	∆ <b>Abs</b> 0,372	#jNUM! Error Y^2 0,0023	147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147( 147))))))))))))))))))))))))))))))))))))	3						0,0476644
imero inh	0,836 ibidor = #iVALOR! 0,00 1,87	4 V ₀ (uA/h-1) 1,4207 1,5429	0,615 Reference <b>t</b> ₀ (h) 0,08 0,05	Abs ₀ 0,242 0,223 0,228 0,235	0,070 943 <b>t_f (h)</b> 1,18 1,12	Abs _f 0.614 0.641 0.716	∆t (h) 1,10 1,067 1,45 1,167	∆ <b>Abs</b> 0,372 0,453	#jNUM! Error Y^2 0,0023	###### 4. 1.477 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372 1.372	3					0	0,0476644 0,0913855
umero inh PC-052	0,836 ibidor = #;VALOR: 0,00 1,87 9,66 24,35	4 V ₀ (uA/h-1) 1,4207 1,5429 1,1812 1,4505 1,4173	0,615 Reference t ₀ (h) 0,08 0,05 0,05 0,07 0,05	Abs           0,242           0,223           0,228           0,235           0,205	0,070 943 <b>t</b> _f (h) 1,18 1,12 1,50 1,23 1,32	Abs _f 0,614 0,676 0,641 0,641 0,603	∆t (h) 1,10 1,067 1,45 1,167 1,267	∆Abs 0,372 0,453 0,413 0,481 0,398	#jNUM! #jNUM! 0,0023 0,0087 0,0092 0,0087	###### 4 1.477 1.477 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.2777 1.2777 1.2777 1.2777 1.2777 1.2777 1.2777 1.277	3					U	0,0476644 0,0913855 0,0960174 0,0931286
umero inh PC-052	0,836 bidor = #;VALOR: 0,00 1,87 9,36 16,86 24,35 31,84	4 V ₀ (uA/h-1) 1,4207 1,5429 1,1812 1,4505 1,4173 1,3517	0,615 <b>Reference</b> <b>t</b> ₀ (h) 0,08 0,05 0,05 0,05 0,05 0,05	Abs           0,242           0,223           0,228           0,225           0,205	0,070 943 <b>t</b> _f (h) 1,18 1,12 1,50	Abs, 0,614 0,676 0,641 0,716 0,603 0,741	Δ <b>t (h)</b> 1,10 1,067 1,45 1,167 1,267 1,45	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521	#iNUMI #iNUMI 0,0023 0,0084 0,0092 0,0092 0,0087 0,0025	###### 1 47(7 1 43(7) 1 47(7) 1 43(7) 1 47(7) 1 43(7) 1 43(	3						0,0476644 0,0913855 0,0960174 0,0931286 0,0498533
Serie 1+2 umero inh PC-052 Serie 1	0,836 bidor = #iVALOR! 0,00 1,87 9,36 16,86 24,35 31,84 39,33	4 V ₀ (uA/h-1) 1,4207 1,5429 1,1812 1,4173 1,3517 1,3604	0,615 <b>Reference</b> <b>t</b> ₀ (h) 0,08 0,05 0,05 0,05 0,05 0,05 0,05 0,05	Abs ₀ 0,242 0,223 0,228 0,225 0,205 0,220 0,221	0,070 943 <b>t</b> _f (h) 1,18 1,12 1,50 1,23 1,32 1,50 1,50	Abs, 0,614 0,676 0,641 0,716 0,603 0,741 0,669	∆t (h) 1,10 1,067 1,45 1,167 1,267 1,45 1,433	∆ <b>Abs</b> 0,372 0,453 0,413 0,481 0,398 0,521 0,448	#iNUMI #iNUMI 0,0023 0,0084 0,0087 0,0087 0,0085	###### 4 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 1477 14	3	•					0,0476644 0,0913855 0,0960174 0,0931286 0,049853 0,0749955
umero inh PC-052	0,836 bidor = #iVALOR! 0.00 1.87 9.36 16.86 24.35 31.84 39.33 0,00	4 V ₀ (uA/h-1) 1.4207 1.5429 1.1812 1.4505 1.4173 1.3504 1.3604 1.4935	0,615 Reference t ₀ (h) 0,08 0,05 0,05 0,05 0,05 0,05 0,07 0,07 0,07	Abs ₀ 0,242 0,223 0,228 0,235 0,205 0,220 0,221 0,209	0,070 943 <b>t</b> _f (h) 1,18 1,12 1,50 1,23 1,32 1,50 1,50 1,50 1,17	Abs _f 0.614 0.641 0.641 0.716 0.603 0.741 0.669 0.629	Δt (h) 1,10 1,067 1,45 1,167 1,45 1,433 1,1	∆ <b>Abs</b> 0,372 0,453 0,413 0,481 0,398 0,521 0,448 0,42	#INUMI #INUMI 0,0023 0,0084 0,0092 0,0087 0,0025 0,00056 0,0006	###### 4 ###### 4 1477 1420 1477 1727 1727 1727 1727 1727 1727 1727	3	•					0,0476644 0,0913855 0,0960174 0,0931286 0,0498533 0,0749955 0,0251355
umero inh PC-052	0,836 <b>ibidor =</b> <b>#;VALOR!</b> 0,00 1,87 9,36 24,35 31,84 39,33 0,00 1,87	4 V ₀ (uA/h-1) 1,4207 1,4207 1,4205 1,4173 1,4505 1,4173 1,3517 1,3604 1,4935 1,3973	0,615 <b>Reference</b> <b>t</b> ₀ (h) 0,08 0,05 0,05 0,05 0,07 0,05 0,07 0,07 0,07 0,07 0,07	Abs ₀ 0,242 0,223 0,228 0,225 0,205 0,220 0,220 0,221 0,209 0,283	0,070 943 t _r (h) 1,18 1,12 1,50 1,50 1,50 1,17 1,12	Abs _f 0,614 0,676 0,641 0,716 0,603 0,741 0,669 0,669 0,673	Δt (h) 1,10 1,067 1,45 1,167 1,267 1,45 1,433 1,1 1,017	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,448 0,42 0,390	#INUMI #INUMI Error Y*2 0,0023 0,0084 0 0,0092 0,0087 0,0025 0,0006 0,0006 0,0006 0,00029	###### 4 ###### 4 7 477 7 427 7 377 7 427 7 377 7 427 7 47 7 4	3	•					0,0476644 0,0913855 0,0960174 0,0931286 0,0498533 0,0749956 0,0251355 0,0542144
umero inh PC-052 Serie 1	0,836 bidor = #;VALOR: 0,00 1.87 9,36 24,35 31.84 39,33 0,00 1.87 9,36	4 V ₀ (uA/h-1) 1,4207 1,5429 1,4173 1,4505 1,4173 1,3517 1,3604 1,4935 1,3973 1,3644	0,615 <b>Reference</b> <b>t</b> ₀ ( <b>h</b> ) 0,08 0,05 0,05 0,05 0,07 0,05 0,07 0,07 0,07 0,07	Abs ₀ 0,242 0,223 0,228 0,225 0,205 0,220 0,221 0,220 0,221 0,229 0,223 0,238	0,070 943 <b>t</b> _r (h) 1,18 1,12 1,50 1,50 1,50 1,12 1,50 1,12 1,50	Abs _f 0,614 0,676 0,641 0,603 0,741 0,669 0,629 0,673 0,738	Δt (h) 1.10 1.067 1.45 1.45 1.45 1.433 1.1 1.017 1.433	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,448 0,42 0,390 0,5	#INUMI #INUMI 0,0023 0,0084 0,0092 0,0087 0,0025 0,0025 0,0025 0,0025 0,0029 0,0009 0,0001	###### 1 470 1 472 1 472 1 322 1 32 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	3		 				0,0476644 0,0913855 0,0960174 0,0931286 0,0498533 0,0749958 0,0251355 0,0542144 0,0312371
umero inh PC-052	0,836 bidor = #iVALOR! 0,00 1,87 9,36 16,86 24,35 31,84 39,33 0,00 1,87 9,36 16,86	4 V ₀ (uA/h-1) 1,4207 1,5429 1,5429 1,4505 1,4173 1,3517 1,3604 1,4935 1,3644 1,4935 1,3644 1,4935 1,3644 1,4277 1,3644 1,2787	0,615 Reference t ₀ (h) 0,08 0,05 0,05 0,05 0,05 0,05 0,07 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,	Abs ₀ 0,242 0,223 0,228 0,225 0,205 0,220 0,221 0,209 0,288 0,238 0,238	0,070 943 <b>t</b> _r (h) 1,18 1,12 1,50 1,23 1,32 1,50 1,50 1,17 1,12 1,50 1,50	Abs, 0,614 0,676 0,641 0,716 0,603 0,673 0,669 0,669 0,669 0,673 0,738 0,630	Δt (h) 1,10 1,067 1,45 1,267 1,45 1,433 1,1 1,017 1,433 1,4	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,448 0,390 0,521 0,448 0,390 0,55 0,374	#INUMI #INUMI Error Y*2 0,0023 0,0087 0,0025 0,0025 0,0005 0,0006 0,0009 0,0001 0,00057	######	3	-					0,0476644 0,0913855 0,0960174 0,0931286 0,0498533 0,0749958 0,0251355 0,0542144 0,031237 ⁺ 0,0757825
umero inh PC-052 Serie 1	0,836 bidor = #iVALOR! 0.00 1.87 9.36 16.86 24.35 31.84 39.33 0,00 1.87 9.36 16.86 24.35	4 V ₀ (uA/h-1) 1.4207 1.5429 1.1812 1.4505 1.4173 1.3604 1.4935 1.3973 1.3644 1.2787 1.2409	0,615 Reference <b>t</b> ₀ (h) 0.08 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08	Absolution           0,242           0,223           0,226           0,220           0,221           0,220           0,221           0,223           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,256	0,070 943 <b>t</b> _f (h) 1,18 1,18 1,12 1,50 1,23 1,50 1,50 1,17 1,12 1,50 1,50 1,50	Abs _f 0.614 0.676 0.641 0.716 0.603 0.741 0.669 0.629 0.673 0.738 0.630 0.771	Δt (h) 1,10 1,06 1,45 1,167 1,267 1,433 1,1 1,017 1,433 1,4 1,417	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,424 0,390 0,5 0,374 0,515	#INUMI #INUMI 0,0023 0,0084 0,0092 0,0087 0,0026 0,0006 0,0006 0,0029 0,001 0,0057 0,0005	###### 1 47(7 1 43(7) 1 47(7) 1 47(	3	•					0,0476644 0,0913854 0,0960177 0,0931286 0,0498533 0,0749956 0,0251355 0,0542144 0,0312377 0,0757829 0,0832713
umero inh PC-052 Serie 1	0,836 bidor = #;VALOR! 0,00 1,87 9,36 16,86 24,35 31,84 39,33 0,00 1,87 9,36 16,85 24,35 31,84	4 V ₀ (uA/h-1) 1,4207 1,4207 1,4209 1,4173 1,3617 1,3604 1,4935 1,3973 1,3644 1,2787 1,2409 1,2283	0,615 <b>Reference</b> <b>t</b> ₀ (h) 0.08 0.05 0.05 0.05 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.10 0.07 0.10 0.08 0.10	Abs ₀ 0.242 0.223 0.228 0.205 0.205 0.220 0.221 0.209 0.283 0.283 0.256 0.256 0.256	0,070 943 <b>t</b> _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50	Abs _f 0.614 0.676 0.661 0.603 0.741 0.669 0.629 0.673 0.738 0.630 0.771 0.708	Δt (h) 1.10 1.45 1.167 1.267 1.45 1.433 1.1 1.017 1.433 1.4 1.41 1.41 1.41	∆Abs 0,372 0,453 0,413 0,481 0,481 0,42 0,398 0,521 0,42 0,390 0,55 0,374 0,515 0,444	#INUMI #INUMI 0,0023 0,0087 0,0056 0,0056 0,0056 0,0005 0,0059 0,0054	###### 4 ###### 4 1477 1477 1477 1477 1477 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 177	3	•					0,0476644 0,0913855 0,0960174 0,0931286 0,049853 0,0749956 0,0251355 0,0542144 0,0312377 0,0757824 0,0832711 0,0735466
umero inh PC-052 Serie 1	0,836 bidor = #iVALOR! 0.00 1.87 9.36 16.86 24.35 31.84 39.33 0,00 1.87 9.36 16.86 24.35	4 V ₀ (uA/h-1) 1.4207 1.5429 1.1812 1.4505 1.4173 1.3604 1.4935 1.3973 1.3644 1.2787 1.2409	0,615 Reference <b>t</b> ₀ (h) 0.08 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08	Absolution           0,242           0,223           0,226           0,220           0,221           0,220           0,221           0,223           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,226           0,256	0,070 943 <b>t</b> _f (h) 1,18 1,18 1,12 1,50 1,23 1,50 1,50 1,17 1,12 1,50 1,50 1,50	Abs _f 0.614 0.676 0.641 0.716 0.603 0.741 0.669 0.629 0.673 0.738 0.630 0.771	Δt (h) 1,10 1,067 1,45 1,467 1,267 1,433 1,1 1,017 1,433 1,4 1,4 1,4 1,4 1,4	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,481 0,420 0,521 0,374 0,515 0,374 0,515 0,376	#INUMI #INUMI 0,0023 0,0084 0,0092 0,0087 0,0025 0,0056 0,0006 0,0006 0,0006 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 00	###### 4 ###### 4 1477 1457 1757 1757 1757 1757 1757 175	3	•					error Y 0,0476644 0,0913856 0,0960174 0,0931288 0,0251356 0,0251356 0,0542144 0,012377 0,0757826 0,0735466 0,0648041
umero inh PC-052 Serie 1	0,836 bidor = #;VALOR! 0,00 1,87 9,36 16,86 24,35 31,84 39,33 0,00 1,87 9,36 16,85 24,35 31,84	4 V ₀ (uA/h-1) 1,4207 1,4207 1,4209 1,4173 1,3617 1,3604 1,4935 1,3973 1,3644 1,2787 1,2409 1,2283	0,615 <b>Reference</b> <b>t</b> ₀ (h) 0.08 0.05 0.05 0.05 0.05 0.07 0.05 0.07 0.05 0.07 0.07 0.07 0.07 0.10 0.07 0.10 0.08 0.10 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Abs ₀ 0.242 0.223 0.228 0.205 0.205 0.220 0.221 0.209 0.283 0.283 0.256 0.256 0.256	0,070 943 <b>t</b> _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50	Abs _f 0.614 0.676 0.661 0.603 0.741 0.669 0.629 0.673 0.738 0.630 0.771 0.708	Δt (h) 1.10 1.45 1.167 1.267 1.45 1.433 1.1 1.017 1.433 1.4 1.41 1.41 1.41	∆Abs 0,372 0,453 0,413 0,481 0,398 0,521 0,448 0,42 0,521 0,390 0,5 0,374 0,515 0,374 0,515 0,376	#INUMI #INUMI 0,0023 0,0087 0,0056 0,0056 0,0056 0,0005 0,0059 0,0054	###### 4 ###### 4 1477 1477 1477 1477 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 1777 177	3	••••••	20.0		40.0	, 50.0	0,0476644 0,0913855 0,0960174 0,0931286 0,0498533 0,0749958 0,0251355 0,0542144 0,031237 ⁺ 0,0757825 0,0832713 0,0735466

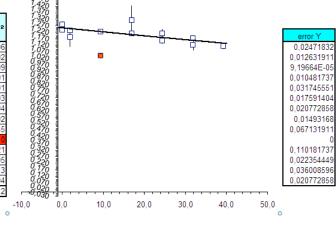
	VALOR	ES AJUS	STE EC	UACIO	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METR	los
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	1,239	0,204	0,229	0,194	0,041	0,072	0,009	1,4684	#jNUM!	#####	15,6

Punts a ignorar
7

numero inhi	ibidor =	6	Reference	ia Ilista:	200				
NPC-052									
	[943]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y*2
	0,00	1,4207	0,08	0,242	1,18	0,614	1,10	0,372	0,0186
	1,87	1,4625	0,08	0,240	1,12	0,656	1,033	0,416	0,0445
	9,37	0,4414	0,12	0,225	1,50	0,484	1,383	0,259	0,0047
Serie 1	16,87	0,1077	0,18	0,212	1,23	0,323	1,05	0,111	0,0069
	24,37	0,0299	0,30	0,234	1,32	0,257	1,017	0,023	0,0005
	31,87	0,0095	0,23	0,224	1,50	0,231	1,267	0,007	0,0002
	39,37	0,0062	0,12	0,218	1,50	0,219	1,383	0,001	0,0014
	0,00	1,4935	0,07	0,209	1,17	0,629	1,1	0,42	0,004
	1,87	1,3337	0,12	0,222	1,12	0,603	1	0,381	0,0068
	9,37	0,704	0,17	0,230	1,50	0,508	1,333	0,278	0
Serie 2	16,87	0,3205	0,28	0,215	1,50	0,359	1,217	0,144	0
	24,37	0,0291	0,20	0,203	1,50	0,211	1,3	0,008	0,0006
	31,87	0,0102	0,00	0,214	1,50	0,222	1,5	0,008	0,0003
	39,37	0,0059	0,25	0,198	1,50	0,199	1,25	0,001	0,0014
							Error a	0,001	0,0713



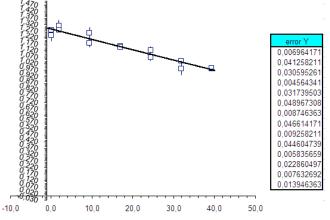
u<mark>nts a ignora</mark> 14 15


	VALOR	ES AJU	STE EC	UACIO	ÓN Y=A	\+B*exp(-C*x)			PARÁ	METF	ROS
AJUST	Α	± SE	В	± SE	C	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-0,050	0,059	1,607	0,074	0,112	0,020	0,181	1,5571	5,888	0,310	103,2

JUST A (uA · h ⁻¹ ) rrie 1+2 -0.075 erro inhibidor = -052 	0 1,42 7 1,46 7 0,44 7 0,11 7 0,02 7 0,00 0 1,48 7 1,33 7 0,7 7 0,02 7 0,00 0 1,49 7 0,02 7 0,02	0 0,00 25 0,0 14 0, 17 0,0 99 0,0 99 0,0 99 0,0 99 0,0 99 0,0 99 0,0 90 0,0 90 0,0 135 0,0 137 0,0 04 0,0 105 0,0 91 0,0 91 0,0 91 0,0 105 0,0 91	8 0,244 2 0,222 3 0,211 0 0,233 3 0,224 2 0,211 0 0,203 2 0,212 7 0,201 2 0,202 7 0,231 3 0,214 0 0,203 0 0,213 0 0,203 0 0,213 0 0,203 0 0,213 1 0,204 1 0,203 0 0,213 1 0,204 1 0,004 1 0,004 1 0,004 1 0,004 1 0,008 1 1	0 1.12 5 1.50 2 1.23 4 1.32 4 1.32 4 1.50 8 1.50 9 1.17 2 1.12 0 1.50 5 1.50 3 1.50 8 1.50 8 1.50 9 1.17 1.72 0 1.50 5 1.50 8 1.50	0,614 0,656 0,484 0,323 0,257 0,231 0,219 0,603 0,508 0,359 0,211 0,222 0,199 A+B*exp(-C' ± SE 0,015	B*C	0,259 0,111 0,023 0,001 0,42 0,381 0,278 0,144 0,008 0,008 0,001 a 0,001		0,308 1	<del>§g -</del> <u></u> ] 0,0	10,0	20,	,0	30,0		50,0	error 0,1248; 0,1851; 0,1354; 0,0493; 0,0520; 0,0520; 0,0520; 0,0663; 0,0463; 0,06773; 0,0501; 0,0103; 0,0446;
1.87         9.37         16.87         24,37         31.87         39.37         16.87         24,37         31.87         39.37         16.87         24,37         31.87         39.37         orretgir per [TR]         JUST         VALOR         A         (uA · h ⁻¹ )         rrie 1+2       -0.075         erie 1       -0.075         erie 1       -0.001         1.87       -0.075         erie 2       -0.075         erie 2       -0.075         erie 2       -0.001         1.87       -0.00         1.87       -0.00         1.87       -0.00         1.87       -0.39.37         erie 2       -0.001         1.87       -0.001         1.87       -0.001	7 1,4€ 7 0,44 7 0,44 7 0,00 7 0,00 7 0,00 7 0,00 1,45 7 0,7 7 0,32 7 0,7 7 0,00 (R) a 4 m ORES A h ⁻¹ ) 75 0,00	25 0,1 14 0,1 17 0,1 99 0,2 99 0,2 99 0,2 90 0,2 135 0,1 37 0,1 37 0,1 02 0,1 59 0,2 135 0,2 135 0,1 37 0,1 135 0,2 135 0,	8         0,241           2         0,223           3         0,213           0         0,233           3         0,224           2         0,213           0         0,233           3         0,224           2         0,201           0         0,233           3         0,211           0         0,203           0         0,214           5         0,194	0 1.12 5 1.50 2 1.23 4 1.32 4 1.32 4 1.50 8 1.50 9 1.17 2 1.12 0 1.50 5 1.50 3 1.50 8 1.50 8 1.50 9 1.17 1.72 0 1.50 5 1.50 8 1.50	0,656 0,484 0,323 0,257 0,231 0,219 0,603 0,508 0,359 0,211 0,222 0,199 0,199 <b>A+B*exp(-C</b> ± SE 0,015	1,033 1,383 1,05 1,017 1,267 1,383 1,1 1 1,333 1,217 1,3 1,5 5 1,25 Error a B*C 0,156	0.416 0.259 0.111 0.023 0.007 0.001 0.42 0.381 0.278 0.144 0.008 0.008 0.001 a 0.001 v ₀ a x=0	0.0343 0.0195 0.0183 0.0024 9E-05 0.002 0.0027 0.0032 0.00151 0.0002 0.0025 0.0001 0.0025 0.0001 0.0022 0.0713 РАКИ	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0	ـــــــــــــــــــــــــــــــــــــ	50,0	0,1851 0,1395 0,1354 0,0493 0,0096 0,0449 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
9,37     9,37       16,87     24,37       24,37     31,87       39,37     0,00       1,87     9,37       16,87     24,37       31,87     39,37       orretgir per [1TR]       VALOR       JUST     VALOR       (uA · h ⁻¹ )     (uA · h ⁻¹ )       rie 1+2     -0,075       ero inhibidor =     -0,02       0,00     1,87       9,37     16,87       24,37     31,87       39,37     0,00       erie 1     16,87       24,37     31,87       39,37     0,00       1,87     9,37       erie 2     24,37       1,87     39,37       orretgir per [11R] a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14     0,       17     0,       99     0,       99     0,       62     0,       35     0,       37     0,       04     0,       05     0,       99     0,       99     0,       95     0,20       105     0,20       05     0,20       91     0,20       02     0,1       59     0,2       105     0,2       11     1,6       Refer     to (1)	2 0,22: 3 0,21: 0,23: 3 0,22: 2 0,21: 7 0,23: 2 0,21: 7 0,23: 3 0,22: 7 0,23: 3 0,21: 0 0,20: 0 0,21: 5 0,19: ECUAC ± SE 1 0,08: mcia llista	5 1.50 2 1.23 4 1.32 4 1.32 4 1.50 9 1.17 2 1.17 2 1.17 2 1.17 2 1.17 3 1.50 4 1.50 5 1.50 5 1.50 5 1.50 6 1.50 7 (μM ⁻¹ ) 3 0,096 1 200	0,484 0,323 0,257 0,231 0,629 0,603 0,508 0,359 0,211 0,222 0,222 0,199 <b>A+B*exp(-C</b> ± SE 0,015	1,383 1,05 1,017 1,267 1,383 1,1 1 1 1,333 1,217 1,3 1,5 Error a <b>*X)</b> B*C 0,156	0,259 0,111 0,023 0,001 0,42 0,381 0,278 0,144 0,008 0,008 0,001 a 0,001	0,0195 0,0183 0,0024 9E-05 0,0022 0,0027 0,0032 0,0151 0,0006 0,0025 0,0001 0,002 0,0713 0,002 0,0713	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0		50,0	0,1395 0,1354 0,0493 0,0096 0,0449 0,0520 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
24,37 31,87 39,37 16,87 9,37 16,87 24,37 31,87 39,37 orretgir per [1 TR] UALOR A (uA · h ⁻¹ ) orie 1+2 -0.075 erro inhibidor = -052 0,00 1,87 9,37 errie 1 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 errie 2 24,37 31,87 39,37 0,00 1,87 9,37 1,87 9,37 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 39,37 1,87 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,	7     0.02       7     0.00       7     0.00       0     1.43       7     1.33       7     0.77       7     0.32       7     0.02       7     0.00       7     0.02       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       7     0.00       8     0.00       9     0.00       7     0.00       9     0.00       9     0.00       9     0.00       9     0.00       9     0.00       9     0.00       9     0.00       9     0.00       9 <t< td=""><td>99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0,</td><td>0 0,234 3 0,224 2 0,211 7 0,200 2 0,222 7 0,233 0 0,201 0 0,201 5 0,194 ECUAC n⁻¹) 1 0,088</td><td>4 1.32 4 1.50 3 1.50 9 1.17 2 1.12 0 1.50 5 1.50 3 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 1 .50 3 1.50 4 1.50</td><td>0,257 0,231 0,219 0,629 0,603 0,508 0,250 0,211 0,222 0,199 <b>A+B*exp(-C'</b> ± SE 0,015</td><td>1,017 1,267 1,383 1,11 1 1,333 1,217 1,33 1,55 1,25 Error a B*C 0,156</td><td>0,023 0,007 0,001 0,42 0,381 0,278 0,144 0,008 0,008 0,0001 a 0,001</td><td>0,0024 9E-05 0,002 0,0032 0,0151 0,006 0,0025 0,0001 0,0001 0,00713 PAR^Δ IC₅₀ (μM)</td><td>-10,0 AMETRO ± SE R 0,308 1</td><td>0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9</td><td>T </td><td></td><td></td><td>30,0</td><td></td><td>50,0</td><td>0,0493 0,0096 0,0449 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103</td></t<>	99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0, 99 0,	0 0,234 3 0,224 2 0,211 7 0,200 2 0,222 7 0,233 0 0,201 0 0,201 5 0,194 ECUAC n ⁻¹ ) 1 0,088	4 1.32 4 1.50 3 1.50 9 1.17 2 1.12 0 1.50 5 1.50 3 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 4 1.50 1 .50 3 1.50 4 1.50	0,257 0,231 0,219 0,629 0,603 0,508 0,250 0,211 0,222 0,199 <b>A+B*exp(-C'</b> ± SE 0,015	1,017 1,267 1,383 1,11 1 1,333 1,217 1,33 1,55 1,25 Error a B*C 0,156	0,023 0,007 0,001 0,42 0,381 0,278 0,144 0,008 0,008 0,0001 a 0,001	0,0024 9E-05 0,002 0,0032 0,0151 0,006 0,0025 0,0001 0,0001 0,00713 PAR ^Δ IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0		50,0	0,0493 0,0096 0,0449 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
31,87           39,37           0,00           18,87           9,37           16,87           24,37           31,87           39,37           orretgir per [TR]           JUST           VALOR           A           (uA · h ⁻¹ )           rite 1+2           -0,075           ero inhibidor =           -052           •	7         0,00           7         0,00           0         1,49           7         0,7           7         0,7           7         0,7           7         0,00           7         0,02           7         0,02           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           7         0,00           6         0,00           6         0,00	95 0,1 62 0,1 35 0,1 37 0,1 91 0,2 91 0,2 91 0,2 91 0,2 91 0,2 91 0,2 91 1,2 91 0,2 91 1,2 91 1,2	3       0,22:         2       0,21:         7       0,20:         2       0,22:         7       0,20:         7       0,23:         3       0,21:         0       0,22:         7       0,23:         3       0,21:         0       0,21:         0       0,21:         0       0,21:         0       0,21:         0       0,21:         0       0,21:         0       0,21:         0       0,21:         1       0,08:	4 1,50 8 1,50 9 1,17 1,17 1,17 1,17 1,17 1,50 1,50 3 1,50 3 1,50 8 1,50 8 1,50 8 1,50 8 1,50 8 1,50 8 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,231 0,219 0,629 0,603 0,508 0,359 0,211 0,222 0,199 <b>A+B*exp(-C</b> ± SE 0,015	1,267 1,383 1,1 1,333 1,217 1,3 1,25 Error a <b>*x)</b> B*C 0,156	0,007 0,001 0,42 0,381 0,278 0,144 0,008 0,001 a 0,001 v ₀ a x=0	9E-05 0,002 0,0027 0,0032 0,0151 0,000 0,0025 0,0001 0,002 0,0713 PAR/ IC ₅₀ (µM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0		50,0	0,0096 0,0449 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 orretgir per [TTR] <b>JUST</b> VALOR A (uA · h ⁻¹ ) rie 1+2 -0,075 ero inhibidor = -052 0,00 1,87 9,37 16,87 24,37 31,87 39,37 o,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 0,00 1,87 39,37 1,87 39,37 0,00 1,87 39,37 1,87 39,37 0,00 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 39,37 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62 0, 33 0, 33 0, 37 0, 04 0, 05 0, 91 0, 02 0, 59 0, 30 0, 59 0, 10 0, 59 0, 11 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2 0,211 7 0,202 2 0,222 7 0,233 3 0,211 0 0,200 0 0,214 5 0,194 ECUAC ± SE 1 0,085 mcia llista	δ     1,50       9     1,17       2     1,17       1     1,17       1     1,17       1     1,50       3     1,50       4     1,50       8     1,50       1     1,50       1     1,50       1     1,50       3     0,096       1     200	0,219 0,629 0,603 0,508 0,359 0,211 0,222 0,199 A+B*exp(-C ± SE 0,015	1,383 1,1 1 1,333 1,217 1,3 1,5 Error a *X) B*C 0,156	0,001 0,42 0,381 0,278 0,144 0,008 0,008 0,000 0,000 a 0,001 a 0,001	0,002 0,0027 0,0032 0,0151 0,006 0,0025 0,0001 0,002 0,0713 PAR/ IC ₅₀ (µM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0	<del>یے ، بل ، ، ،</del> 40,0	50,0	0,0449 0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
0,00           1.87           9,37           16,87           24,37           31,87           39,37   orretgir per [TTR]           JUST           VALOR           JUST           (uA · h ⁻¹ )           wrie 1+2           -0.075   ero inhibidor =           .052	0 1,45 7 1,33 7 0,7 7 0,32 7 0,02 7 0,00 7 0,00 (R] a 4 m ORES A h ⁻¹ ) 75 0,0	35         0,1           37         0,2           04         0,0           05         0,2           91         0,2           92         0,1           93         0,2           94         0,0           95         0,2           97         0,2           97         0,2           97         0,2           97         1,6           Refer         to (I)	7 0,203 2 0,223 3 0,211 3 0,211 0 0,200 0 0,211 5 0,194 ECUAC ± SE n ⁻¹ 1 0,083	1.17       1.17       1.12       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50 <td>0,629 0,603 0,508 0,359 0,211 0,222 0,199 <b>A+B*exp(-C</b> ± SE 0,015</td> <td>1,1 1,333 1,217 1,3 1,5 1,25 Error a *X) B*C 0,156</td> <td>0,42 0,381 0,278 0,144 0,008 0,008 0,001 a 0,001</td> <td>0,0027 0,0032 0,0151 0,006 0,0025 0,0001 0,002 0,0713 <b>ΡΑR</b>⁴ IC₅₀ (μM)</td> <td>-10,0 AMETRO ± SE R 0,308 1</td> <td>0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9</td> <td>T </td> <td></td> <td></td> <td>30,0</td> <td><del>در</del> - بر<del>ا</del> 40,0</td> <td>50,0</td> <td>0,0520 0,0563 0,1230 0,0773 0,0501 0,0103</td>	0,629 0,603 0,508 0,359 0,211 0,222 0,199 <b>A+B*exp(-C</b> ± SE 0,015	1,1 1,333 1,217 1,3 1,5 1,25 Error a *X) B*C 0,156	0,42 0,381 0,278 0,144 0,008 0,008 0,001 a 0,001	0,0027 0,0032 0,0151 0,006 0,0025 0,0001 0,002 0,0713 <b>ΡΑR</b> ⁴ IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0	<del>در</del> - بر <del>ا</del> 40,0	50,0	0,0520 0,0563 0,1230 0,0773 0,0501 0,0103
1.87         9.37         16.87         24,37         31,87         39,37         orretgir per [1 TR]         JUST A         (uA · h ⁻¹ )         prie 1+2       -0.075         erio inhibidor =         -052         0,00         1.87         9,37         erie 1         16.87         24,37         31.87         39,37         erie 2         24.37         31.87         39,37         erie 2         24.37         31.87         39,37         erie 2         24.37         31.87         39,37	7 1,33 7 0,7 7 0,32 7 0,00 7 0,00 7 0,00 ( <b>R</b> ] <b>a 4 m</b> <b>ORES A</b> <b>h</b> ⁻¹ ) 75 0,00	37 0, 04 0, 05 0, 91 0, 02 0, 59 0, 59 0, 59 0, 1, 59 0, 1, 1, 59 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	2 0,22; 7 0,23; 3 0,21; 0 0,20; 0 0,21; 5 0,19; ECUAC s SE n ⁻¹ 1 0,08; ncia llista	2 1,12 1,50 1,50 3 1,50 4 1,50 3 1,50 4 1,50 4 1,50 5 <b>C</b> (μM ⁻¹ ) 3 0,096 1 200	0,603 0,508 0,359 0,211 0,222 0,199 A+B*exp(-C ± SE 0,015	1 1,333 1,217 1,3 1,5 1,25 Error a B*C 0,156	0,381 0,278 0,144 0,008 0,008 0,001 a 0,001	0,0032 0,0151 0,006 0,0025 0,0001 0,002 0,0713 <b>PAR</b> ^μ IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0	<u></u> ¢ 40,0	50,0	0,0563 0,1230 0,0773 0,0501 0,0103
9.37         16.87           16.87         24.37           31.87         39.37           orretgir per [TR]         VALOR           JUST         VALOR           (uA · h ⁻¹ )	7 0,7 7 0,32 7 0,02 7 0,01 7 0,01 7 0,00 (R] a 4 m ORES A b ⁻¹ ) 75 0,0	04 0, 05 0, 91 0, 95 0, 59 0, 50	7 0,231 3 0,211 0 0,200 0 0,214 5 0,191 ECUAC ± SE 1 0,083 ncia llista	0 1.50 5 1.50 3 1.50 3 1.50 8 1.50 8 1.50 1.50 8 1.50 1.50 8 1.50 1.50 8 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	0,508 0,359 0,211 0,222 0,199 <b>A+B*exp(-C</b> ± SE 0,015	1,333 1,217 1,3 1,5 1,25 Error a B*C 0,156	0.278 0.144 0.008 0.008 0.001 a 0.001	0,0151 0,006 0,0025 0,0001 0,002 0,0713 <b>PAR</b> ^Δ IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	T 			30,0	<del>در ، بل</del> 40,0	50,0	0,1230 0,0773 0,0501 0,0103
erie 2 16,87 24,37 31,87 39,37 orretgir per [TTR] JUST A (uA · h ⁻¹ ) rie 1+2 -0,075 ero inhibidor = -052 0,00 1,87 9,37 16,87 24,37 31,87 39,37 erie 2 24,37 16,87 24,37 31,87 39,37 brieftgir per [TTR] a	i7     0,32       i7     0,02       i7     0,01       i7     0,00       i7     0,00       i7     0,00       i7     0,00       i8     a 4 m       ORES A       br1       i5     0,00	05 0,1 91 0,2 92 0,1 59 0,2 a/mL JUSTE E E (uA 71 1,6 Refer	3 0,211 0 0,201 0 0,214 5 0,194 ECUAC 1 0,083 ncia llista	5 1,50 3 1,50 4 1,50 8 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,5	0,359 0,211 0,222 0,199 A+B*exp(-C ± SE 0,015	1,217 1,3 1,5 Error a *X) B*C 0,156	v ₀ a x=0	0,006 0,0025 0,0001 0,002 0,0713 PAR/ IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	, , , , , , , , , , , , , , , , , , ,			30,0	<del></del> -ф 40,0	50,0	0,0773 0,0501 0,0103
31,87           39,37           orretgir per [T IR]           JUST         A           (uA · h ⁻¹ )           orie 1+2         -0,075           erie 1+2         -0,075           -052         -0,075           erie 1         1,87           9,37         31,87           39,37         -0,000           1,87         -9,37           erie 2         24,37           16,87         24,37           31,87         39,37           erie 2         24,37           31,87         39,37           orretgir per [TTR] a	7     0,011       77     0,000       78     a 4 m       ORES A       br1     ± 5       h ⁻¹ )     75	02 0,1 59 0,2 JUSTE E E (uA 71 1,6 Refer	0 0,21 5 0,19 5 0,09 5 0,00	4 1.50 3 1.50 <b>ΙΌΝ Υ=μ</b> <b>C</b> (μM ⁻¹ ) 3 0.096 <b>μ</b> 200	0,222 0,199 A+B*exp(-C ± SE 0,015	1,5 1,25 Error a *x) B*C 0,156	0,008 0,001 a 0,001 v ₀ a x=0	0,0001 0,002 0,0713 PARA IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	10,0			30,0	<del>ــــ</del> .¢ 40,0	50,0	0,0103
39,37           orretgir per [TTR]           JUST         VALOR A (uA · h ⁻¹ )           arie 1+2         -0.075           ereo inhibidor =         -0.075           -052         -0.075           erei 11         -0.075           9,37         16.87           24.37         31.87           39.37         -0.00           erie 2         16.87           24.37         31.87           39.37         -0.00           1.87         -39.37           erie 2         16.87           24.37         -31.87           39.37	(R) a 4 m ORES A ± 5 h ⁻¹ ) 75 0,0	JUSTE JUSTE E E (uA 71 1,6 Refer	5 0,197 ECUAC ± SE 1 0,083 ncia Ilista	δ         1,50           IÓN Y=J         Ε           C         (μM ⁻¹ )           3         0,096           μ         200	0,199 <b>A+B*exp(-C'</b> ± SE 0,015	1,25 Error a * <b>X)</b> B*C 0,156	0,001 a 0,001 v ₀ a x=0	0,002 0,0713 <b>PAR</b> (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	10,0			30,0	<u></u> ,-t <mark>¦</mark> 40,0	50,0	
orretgir per [TTR] JUST A (uA · h ⁻¹ ) rie 1+2 -0.075 ero inhibidor = -052 -052 -0,00 1,87 9,37 16,87 24,37 31,87 39,37 erie 2 -0,00 1,87 9,37 16,87 24,37 31,87 39,37 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0	(R) a 4 m ORES A ± 5 h ⁻¹ ) 75 0,0	JUSTE E E (uA 71 1,6 Refer	ECUAC ± SE 1 0,08: ncia llista	IÓN Y=μ C (μM ⁻¹ ) 3 0,096 1 200	A+B*exp(-C ± SE 0,015	*x) B*C 0,156	v ₀ a x=0	0,0713 <b>PAR</b> IC ₅₀ (μM)	-10,0 AMETRO ± SE R 0,308 1	0,0 8 8 8 8 8 8 9 8 9 8 9 9 9 9 9 9 9 9 9	10,0			30,0	<u></u> ¢ 40,0	50,0	0,0446
VALOR           A           (uA · h ⁻¹ )           erro inhibidor =           -0.075           erro inhibidor =           -052           -0.070           errie 1           0.00           1.87           9.37           16.87           24.37           31.87           39.37           errie 2           16.87           24.37           31.87           39.37           errie 2           16.87           24.37           31.87           39.37	ORES A ± 5 h ⁻¹ ) 75 0,0	JUSTE E E (uA 71 1,6 Refer	+ SE 1 0,083	C (μM ⁻¹ ) 3 0,096 1 200	± SE 0,015	* <b>x)</b> B*C 0,156	v ₀ a x=0	РАВА IC ₅₀ (µМ)	-10,0 <b>ÁMETRO</b> <b>±</b> SE R 0,308 1	0,0 9 <b>S</b> RA(%)	10,0			30,0	40,0	50,0	
VALOR           A           (uA · h ⁻¹ )           erro inhibidor =           -0.075           erro inhibidor =           -052           -0.070           errie 1           0.00           1.87           9.37           16.87           24.37           31.87           39.37           errie 2           16.87           24.37           31.87           39.37           errie 2           16.87           24.37           31.87           39.37	ORES A ± 5 h ⁻¹ ) 75 0,0	JUSTE E E (uA 71 1,6 Refer	+ SE 1 0,083	C (μM ⁻¹ ) 3 0,096 1 200	± SE 0,015	B*C		IC ₅₀ (µМ)	AMETRO ± SE R 0,308 1	9 <b>S</b> RA(%)	10,0			30,0	40,0	50,0	
JUST A (uA · h ⁻¹ ) rrie 1+2 -0.075 erro inhibidor = -052 	+ \$ h ⁻¹ ) 75 0,0	E E (uA) 71 1,6 Refer	+ SE 1 0,083	C (μM ⁻¹ ) 3 0,096 1 200	± SE 0,015	B*C		IC ₅₀ (µМ)	± SE R	RA(%)		Punts a	ignorar	-			
JUST A (uA · h ⁻¹ ) rrie 1+2 -0.075 erro inhibidor = -052 	+ \$ h ⁻¹ ) 75 0,0	E E (uA) 71 1,6 Refer	+ SE 1 0,083	C (μM ⁻¹ ) 3 0,096 1 200	± SE 0,015	B*C		IC ₅₀ (µМ)	± SE R	RA(%)		Punts a	ignorar	-			
JUST A (uA · h ⁻¹ ) rrie 1+2 -0.075 erro inhibidor = -052 	+ \$ h ⁻¹ ) 75 0,0	E E (uA) 71 1,6 Refer	+ SE 1 0,083	C (μM ⁻¹ ) 3 0,096 1 200	± SE 0,015	B*C		IC ₅₀ (µМ)	± SE R	RA(%)							
erie 1+2 -0.075 ero inhibidor = -052 0.000 1.87 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 erie 2 16.87 24.37 31.87 39.37 brite 2 24.37 31.87 39.37 	75 0,0	71 1,6 Refer	ncia Ilista	3 0,096			1,5455		1	104,9							
erie 1 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 39.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 1.87 9.37 1.87 1.87 1.87 1.87 39.37 0.00 1.87 9.37 1.87 1.87 39.37 0.00 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 39.37 0.00 1.87 9.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1		Refer	ncia llista	ı 200			1,5455	6,714	1	104,9				1			
erie 1 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 39.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 0.00 1.87 9.37 1.87 9.37 1.87 1.87 1.87 1.87 39.37 0.00 1.87 9.37 1.87 1.87 39.37 0.00 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 39.37 0.00 1.87 9.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1		Refer	ncia llista	ı 200					1	101,0				4			
-052 	= 12	t. (			Abs				1.0								
erie 1 9.37 16.87 24.37 39.37 0.00 1.87 39.37 0.00 1.87 9.37 16.87 24.37 39.37 16.87 24.37 39.37 16.87 24.37 39.37 16.87 24.37 39.37 1.87 39.37 0.00 1.87 39.37 1.87 39.37 0.00 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 39.37 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1		1-1)		t _f (h)	Abaf	∆t (h)	∆Abs	Error Y*2	1,270								
erie 1 1.87 9.37 16.87 24.37 31.87 39.37 0,00 1.87 9.37 16.87 24.37 31.87 9.37 16.87 24.37 31.87 9.37 16.87 24.37 31.87 9.37 16.87 9.37 1.87 9.37 1.87 9.37 0,00 1.87 9.37 0,00 1.87 9.37 1.87 9.37 0,00 1.87 9.37 1.87 9.37 0,00 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 9.37 1.87 1.87 39.37 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1	V ₀ (UA)																error `
erie 1 9.37 16.87 24.37 31.87 39.37 0,00 1.87 9.37 16.87 24.37 31.87 39.37 24.37 31.87 39.37 24.37 31.87 39.37 brit (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					0,538	1,12	0,321	0,0012	1,070								0,03485
erie 1 16.87 24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37 24.37 31.87 39.37 brretgir per [TTR] a	1,20				0,574	1,033	0,349	0,0489	020								0,22112
24.37 31.87 39.37 0.00 1.87 9.37 16.87 24.37 31.87 39.37	0,25				0,334 0,271	1,417	0,121 0,049	0,0031 0,0003	0,920	ğ 4							0,05550
31.87 39.37 0,00 1,87 9,37 16.87 24.37 31.87 39,37					0,263	1,133	0,043	6E-05	0.820								0,00803
0,00 1,87 9,37 16,87 24,37 31,87 39,37 brretgir per [TTR] a				1,47	0,276	1,317	0,035	0,0002	0,720								0,01529
1,87 9,37 16,87 24,37 31,87 39,37			0,243		0,270	1,283	0,027	0,0002	0,620		1						0,01438
9,37 16,87 24,37 31,87 39,37					0,510	1,1	0,298	0,0056	0,520	0	\						0,07450
erie 2 16,87 24,37 31,87 39,37 orretgir per [TTR] a	0,944				0,489	1,033	0,274	0,0017	0,470	Ď	\						0,04147
24,37 31,87 39,37			0,212		0,359 0,253	1,417	0,147 0,048	0,0015 0,0011	0.370	Ď.	\ \						0,03810
31,87 39,37 orretgir per [TTR] a					0,250	1,433	0,046	1E-05	0,270		À						0,03329
39,37 orretgir per [TTR] a				1,50	0,265	1,417	0,030	0,0003	0,170								0,01729
					0,256	1,417	0,029	0,0002	0,070	0		h	_				0,01448
						Error a	0,001	0,0712	0,020	ň I			∽₽∽∽	╤₽┯	┍┑┩╷╷	· · · ·	
									-10,0	0,0	10,0	20,0	) 3	30,0	40,0	50,0	
	kja 4 mg	/mL															
	DRESA				+B*exp(-C*				METROS			Punts a i	gnorar				
UST A		E B	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE RA	Α(%)							
(uA · h ⁻¹ )	± S	(uA ·	⁻¹ )	(µM ⁻¹ )				(µM)			ſ						
rie 1+2 0,003		4 1,31	2 0,054	0,154	0,020	0,202	1,3151	4,510	0,238 99	9,7	ľ						
	1 ⁻¹ )				- /				, 00	4.5	F						
	1 ⁻¹ )																
	1 ⁻¹ )																
	1 ⁻¹ )																
ero inhibidor =	1 ⁻¹ )							0	,							v	

numero inhi	bidor =	1	Referenc	ia Ilistai	872				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error ¥*2
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0006
	1,87	1,237	0,08	0,242	1,12	0,543	1,033	0,301	0,0002
	9,36	1,2266	0,08	0,223	1,50	0,611	1,417	0,388	8E-09
Serie 1	16,85	1,2143	0,08	0,234	1,23	0,598	1,15	0,364	0,0001
	24,35	1,2133	0,08	0,231	1,32	0,555	1,233	0,324	0,001
	31,84	1,1773	0,08	0,232	1,47	0,583	1,383	0,351	0,0003
	39,33	1,1175	0,08	0,224	1,43	0,578	1,35	0,354	0,0004
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0002
	1,87	1,1825	0,07	0,233	1,12	0,534	1,05	0,301	0,0045
	9,36	1,0411	0,08	0,222	1,50	0,555	1,417	0,333	0
Serie 2	16,85	1,314	0,08	0,243	1,50	0,639	1,417	0,396	0,0121
	24,35	1,1592	0,08	0,236	1,50	0,623	1,417	0,387	0,0005
	31,84	1,1237	0,08	0,234	1,50	0,608	1,417	0,374	0,0013
	39,33	1,1175	0,08	0,224	1,50	0,604	1,417	0,38	0,0004
							Error a	0,001	0,0712

## 🗖 corretgir per [TTR] a 4 mg/mL


	VALOR	ES AJU	STE EC	UACIÓ	ÓN Y=A	A+B*exp(-C*x)			PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,018	26,393	1,238	#####	0,003	0,057	0,003	1,2555	279,729	90,869	98,6

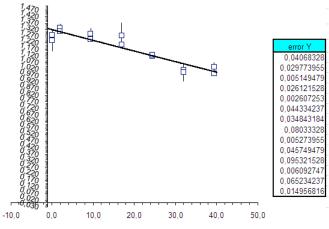


<mark>Punts a ignora</mark> 14

umero inhi	ibidor =	3	Reference	<mark>cia Ilista</mark> i	874					1.470 1.420	1						
PC-052		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y^2				<u>_</u>	Ļ	1		error \
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0013	T 120	'		_	<u>+</u>	р Нада – Н		0,03632
	1,87	1,3812	0,08	0,241	1,12	0,621	1,033	0,38	0,0061	1,020				Υc	5		0,077894
	9,37	1,277	0,08	0,239	1,50	0,609	1,417	0,37	0,0007	0,920				1	7		0,026398
Serie 1	16,86	1,2444	0,08	0,236	1,23	0,632	1,15	0,396	0,0021	0.870							0,046207
	24,35	1,2024	0,08	0,239	1,32	0,601	1,233	0,362	0,0032	0,250 I							0,056321
	31,84	1,1548	0,08	0,238	1,47	0,548	1,383	0,310	0,0037	0,620							0,060543
	39,33	1,0886	0,08	0,242	1,43	0,567	1,35	0,325	0,0021	0,620							0,045874
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0058	0.520							0,07597
	1,87	1,3093	0,08	0,245	1,12	0,605	1,033	0,360	4E-05	0,470							0,005994
	9,37	1,2626	0,08	0,251	1,50	0,656	1,417	0,405	0,0001	0.350							0,011998
Serie 2	16,86	1,1846	0,08	0,235	1,50	0,618	1,417	0,383	0,0002	0320							0,013592
	24,35	1,0601	0,08	0,239	1,50	0,643	1,417	0,404	0,0074	0,220							0,085978
	31,84	1,0139	0,08	0,245	1,50	0,663	1,417	0,418	0,0065	0,120							0,080356
	39,33	1,0039	0,08	0,240	1,50	0,619	1,417	0,379	0,0015	0,070							0,038825
							Error a	0,001	0,0712	<del>0,030</del> 1							
											.0	10.0	20.0	30.0	40.0	50,0	
corretgir	per [TTR]	a 4 mg/mL	-														
	VALOF	RES AJU	STE EC	UACI	ÓN Y=A	+B*exp(-C*x	)		PARÁ	METROS		F	unts a igr	orar			
JUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0		± SE RA(%)							
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)								
Serie 1+2	-8,094	381,653	9,411	#####	0,001	0,031	0.007	1,3165	96,604	74,054 714,8	-						
								.,			-	- F					
	la tata a		Defense	1- 10-c	075												
imero inhi	ibidor =	4	Reference	la llista	875					1,470 1,420 1,4370							

NPC-052									
	[874]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y*2
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	5E-05
	1,87	1,3133	0,08	0,231	1,12	0,590	1,033	0,359	0,0017
	9,36	1,1812	0,08	0,235	1,50	0,597	1,417	0,362	0,0009
Serie 1	16,86	1,1565	0,08	0,237	1,23	0,618	1,15	0,381	2E-05
	24,35	1,1242	0,08	0,238	1,32	0,608	1,233	0,37	0,001
	31,84	0,9844	0,08	0,237	1,47	0,620	1,383	0,383	0,0024
	39,33	0,9834	0,08	0,236	1,43	0,635	1,35	0,399	8E-05
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0022
	1,87	1,2813	0,08	0,243	1,12	0,614	1,033	0,371	9E-05
	9,36	1,2564	0,08	0,244	1,50	0,624	1,417	0,38	0,002
Serie 2	16,86	1,1461	0,08	0,240	1,50	0,625	1,417	0,385	3E-05
	24,35	1,0696	0,08	0,239	1,50	0,629	1,417	0,39	0,0005
	31,84	1,041	0,08	0,238	1,50	0,617	1,417	0,379	6E-05
	39,33	0,9886	0,08	0,234	1,50	0,576	1,417	0,342	0,0002
							Error a	0,001	0,0711




ts a igno

# 🗖 corretgir per [TTR] a 4 mg/mL

		ES AJU	STE EC	UACIÓ	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METR	ROS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		

numero inhi	bidor =	2	Referenc	ia Ilista:	873				
NPC-052									
	[873]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y*2
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0017
	1,88	1,3352	0,08	0,237	1,12	0,624	1,033	0,387	0,0009
	9,38	1,249	0,08	0,234	1,50	0,640	1,417	0,406	3E-05
Serie 1	16,89	1,2088	0,08	0,247	1,23	0,602	1,15	0,355	0,0007
	24,39	1,1193	0,08	0,265	1,32	0,611	1,233	0,346	7E-06
	31,90	1,0172	0,08	0,262	1,47	0,643	1,383	0,381	0,002
	39,40	1,0364	0,08	0,249	1,43	0,610	1,35	0,361	0,0012
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0065
	1,88	1,3107	0,08	0,240	1,12	0,601	1,033	0,361	3E-05
	9,38	1,2896	0,08	0,238	1,50	0,629	1,417	0,391	0,0021
Serie 2	16,89	1,278	0,08	0,252	1,50	0,621	1,417	0,369	0,0091
	24,39	1,128	0,08	0,256	1,50	0,629	1,417	0,373	4E-05
	31,90	0,9963	0,08	0,279	1,50	0,656	1,417	0,377	0,0043
	39,40	0,9866	0,08	0,261	1,50	0,624	1,417	0,363	0,0002
							Error a	0,001	0,0712

	VALOR	ES AJU	STE EC	UACIÓ	ÓN Y=/	A+B*exp(-C*x)			PARÁ	METR	lOS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-8,092	234,386	9,413	######	0,001	0,022	0,008	1,3209	83,055	45,602	712,6



Punts a	ignora

numero inh	ibidor =	5	Reference	ia Ilista	876					1.470	3					0	
NPC-052										1 420 1.320							
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y*2	177730000000000000000000000000000000000	<b> </b> -	<u> </u>					erro
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	1E-06	1,120			8 0			I	0,001
	1,88	1,2654	0,08	0,240	1,12	0,625	1,033	0,385	2E-05	1,020	1		Ū.	8	<u> </u>	I	0,004
	9,38	0,3198	0,08	0,232	1,50	0,613	1,417	0,381	0	0,970				<b>P</b>	<u> </u>	I	
Serie 1	16,88	1,1091	0,08	0,243	1,23	0,625	1,15	0,382	0,0005	0.870						I	0,023
	24,39	1,049	0,08	0,270	1,32	0,608	1,233	0,338	0,0007	°,250	1					I	0,0259
	31,89	0,9721	0,08	0,271	1,47	0,652	1,383	0,381	0,0025	0,730	-					I	0,0499
	39,39	0,9643	0,08	0,251	1,43	0,625	1,35	0,374	8E-05	0,620						I	0,008
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0015	0.570						I	0,0384
	1,88	1,27	0,08	0,243	1,12	0,614	1,033	0,371	7E-05	0,470							0,008
	9,38	1,2536	0,08	0,239	1,50	0,640	1,417	0,401	0,0035	0,350						I	0,0593
Serie 2	16,88	1,1352	0,08	0,244	1,50	0,643	1,417	0,399	9E-06	0.330						1	0,0029
	24,39	1,1034	0,08	0,255	1,50	0,622	1,417	0,367	0,0008	0,220						1	0,0284
	31,89	1,0191	0,08	0,296	1,50	0,655	1,417	0,359	9E-06	0,120						1	0,0029
	39,39	1,0175	0,08	0,257	1,50	0,610	1,417	0,353	0,002	0,070						I	0,0443
							Error a	0,001	0,0711	0,020							
										-10,0	0.0	10.0	20,0	30,0	40.0	50,0	
corretgir	per [TTR]	a 4 mg/mL								0		· · · · ·					

	VALOPES	ECHACIÓN	V=A+B*ev

Referencia Ilistat 877

0,217 0,240

0,250

0,252 0,274 0,295 0,291

0,212 0,245

t_f (h)

1,18 1,12 1,50

1,23 1,32 1,47

1.43

1,17 1,12 1,50 1,50 1,50 1,50

1.50

t₀ (h) Abs₀

0,07 0,08

0,08

0,08 0,08 0,08 0,08

0,07 0,08

0,08 0,08 0,08 0,08 0,08 0,249 0,248 0,256 0,275 0,289

0,08 0,291

	VALOR	ES AJU	STE EC	UACIO	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METE	los
AJUST	Α	± SE	в	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,382	1,127	0,897	1,119	0,011	0,016	0,009	1,2790	117,957	11,870	70,1

Abs

0,538 0,600

0,636 0,634 0,702 0,682

0,510 0,593 0,635 0,646 0,715 0,716

0,672

∆**t (h)** 

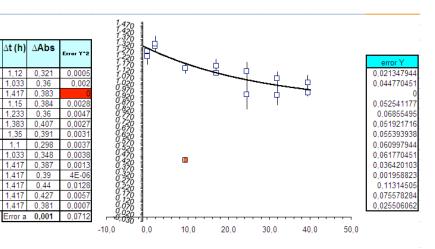
∆Abs

1,12 0,321 1,033 0,36 1,417 0,383

1,417 0,303 1,15 0,384 1,233 0,36 1,383 0,407 1,35 0,391

 1,1
 0,298

 1,033
 0,348


 1,417
 0,387

 1,417
 0,39

 1,417
 0,44

1,417 0,427 1,417 0,381

0,000



unts a ignora 7

#### 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 6

[875]

0,00 1,87

9,37

16,87 24,37 31,87 39,37

0,00 1,87

9,37 16,87 24,37 31,87

39 37

V₀ (uA/h-1)

1,2802 1,3195

0,4414

1,1654 1,1271 1,0686

1.0398

1,24055 1,3365 1,1469

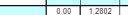
1,1109 0,9454 0,9411

0,9589

NPC-052

Serie 1

Serie 2

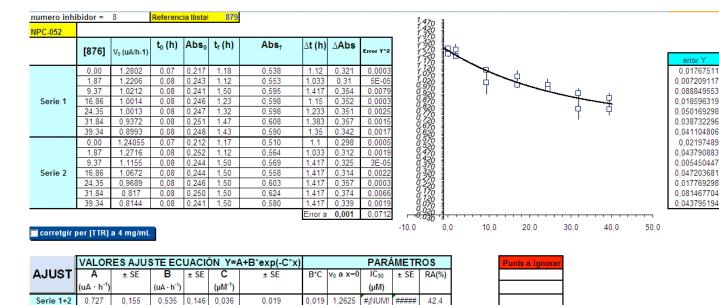

		VALOR	ES AJU	STE EC	UACIO	ÓN Y=A	\+B*exp(-C*x)			PARÁ	METR	los
F	JUST	Α	± SE	в	± SE	0	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
		(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
	Serie 1+2	0,876	0,226	0,426	0,216	0,035	0,033	0,015	1,3015	#¡NUM!	######	32,7

	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y*2
0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	6E-06
1,87	1,3108	0,08	0,237	1,12	0,601	1,033	0,364	0,0027
9,36	1,1856	0,08	0,238	1,50	0,580	1,417	0,342	0,0003
16,86	1,088	0,08	0,252	1,23	0,611	1,15	0,359	2E-08
24,35	1,0404	0,08	0,267	1,32	0,605	1,233	0,338	0,0011
31,84	0,9601	0,08	0,271	1,47	0,627	1,383	0,356	0,0006
39,33	0,9443	0,10	0,290	1,43	0,586	1,333	0,296	0,0054
0.00	1,24055	0.07	0.212	1,17	0,510	1,1	0,298	0,0018
1.87	1,2359	0.08	0.242	1.12	0.603	1.033	0.361	0.0005
9,36	1,1826	0,08	0,243	1,50	0,585	1,417	0,342	0,0002
16,86	1,0961	0,08	0,251	1,50	0,600	1,417	0,349	0,0002
24,35	0,9496	0,08	0,259	1,50	0,633	1,417	0,374	0,003
31,84	0,8644	0,08	0,266	1,50	0,660	1,417	0,394	0,0051
39,33	0.8349	0.08	0.273	1.50	0,612	1,417	0,339	0,0013
	1,87 9,36 16,86 24,35 31,84 39,33 0,00 1,87 9,36 16,86 24,35 31,84	0,00         1,2802           1,87         1,3108           9,36         1,1856           16,86         1,088           24,35         1,0404           31,84         0,9601           39,33         0,9443           0,00         1,24055           1,87         1,2359           9,36         1,1826           16,86         1,0961           24,35         0,94943           31,84         0,8644	Ve (uA/n-1)           0.00         1.2802         0.07           1.87         1.3108         0.08           9.36         1.1856         0.08           16.86         1.088         0.08           24.35         1.0404         0.08           31.84         0.9601         0.08           39.33         0.9443         0.10           0.00         1.24055         0.07           1.87         1.2359         0.08           9.36         1.1826         0.08           9.36         0.061         0.08           24.35         0.9496         0.08           31.84         0.8644         0.08	V ₀ (uA/n-1)           0.00         1.2802         0.07         0.217           1.87         1.3108         0.08         0.237           9.36         1.1856         0.08         0.232           16.86         1.098         0.08         0.252           24.35         1.0404         0.08         0.267           31.84         0.9601         0.08         0.271           0.00         1.24055         0.07         0.212           1.87         1.2359         0.08         0.242           9.36         1.1826         0.08         0.243           16.86         1.0961         0.08         0.242           9.36         1.1826         0.08         0.243           16.86         0.94961         0.08         0.259           31.84         0.8644         0.08         0.266	V _e (uA/h-1)         Vec (uA/h-1)           0.00         1.2802         0.07         0.217         1.18           1.87         1.3108         0.08         0.237         1.12           9.36         1.1856         0.08         0.237         1.12           9.36         1.1856         0.08         0.232         1.50           16.86         1.088         0.08         0.252         1.23           24.35         1.0404         0.08         0.267         1.32           31.84         0.9601         0.08         0.271         1.47           39.33         0.9443         0.10         0.290         1.43           0.00         1.24055         0.07         0.212         1.17           1.87         1.2359         0.08         0.242         1.12           9.36         1.1826         0.08         0.242         1.50           16.86         1.0961         0.08         0.251         1.50           24.35         0.9496         0.08         0.259         1.50           31.84         0.8644         0.08         0.266         1.50	Vo (uAh-1)         Vo (uAh-1)           0.00         1,2802         0,07         0,217         1,18         0,538           1.87         1,3108         0,08         0,237         1,12         0,601           9.36         1,1856         0,08         0,238         1,50         0,580           16,86         1,088         0,08         0,252         1,23         0,611           24,35         1,0404         0,08         0,267         1,32         0,605           31,84         0,9601         0,08         0,271         1,47         0,627           39,33         0,9443         0,10         0,290         1,43         0,586           0,00         1,24055         0,07         0,212         1,17         0,510           1,87         1,2359         0,08         0,242         1,12         0,603           9,36         1,1826         0,08         0,243         1,50         0,585           16,86         1,0961         0,08         0,243         1,50         0,600           24,35         0,9496         0,08         0,259         1,50         0,633           31,84         0,8644         0,08         0,266	Vo         (uAh-1)         vo         uAh         uAh <thuah< t<="" td=""><td>V₆ (uA/h-1)         Value         Value</td></thuah<>	V ₆ (uA/h-1)         Value         Value

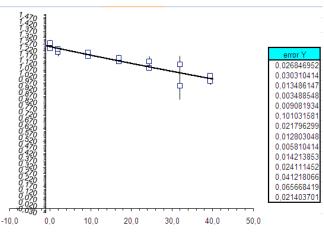
Error a

0,001

0,0712




1,32 1,27 1,22							error Y
1,12			-				0,002481605
1.07	2						0,052122387
0.97	51		7		Н		0,018035744
0.87	21		Y		I		0,004183057
0.82	2			Ч	đ		0,033559832
0,72							0,024013433
0.67	2 I						0,073246971
0,57	51						0,042131605
0.47	2						0,022777613
0 42	51						0,015035744
0.37	21						0,012283057
0,27	5 1						0,057240168
0,75							0,071686567
012	2 I						0,036153029
0,02							0,000100020
-0,03	) <u>-</u>						
-10,0	0,0	10,0	20,0	30,0	40,0	50,0	


corretgir per [TTR] a 4 mg/mL
-------------------------------

		ES AJU:	STE EC	UACIO	ÓN Y=A	\+B*exp(-C*x)			PARÁ	METE	ROS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		$(uA \cdot h^{-1})$		(µM⁻¹)				(µM)		
Serie 1+2	0,132	1,292	1,151	1,280	0,011	0,016	0,013	1,2827	72,397	5,800	89,7





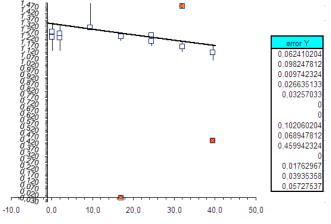
numero inhi	bidor =	9	Referenc	ia Ilista	880				
NPC-052									
	1,27	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y*2
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0007
	1,88	1,2105	0,07	0,213	1,12	0,589	1,05	0,376	0,0009
	9,38	1,178	0,08	0,235	1,50	0,612	1,417	0,377	0,0002
Serie 1	16,89	1,14	0,08	0,236	1,23	0,619	1,15	0,383	1E-05
	24,40	1,0877	0,08	0,241	1,32	0,655	1,233	0,414	8E-05
	31,91	0,9503	0,08	0,243	1,47	0,587	1,383	0,344	0,0102
	39,41	1,0289	0,08	0,260	1,43	0,693	1,35	0,433	0,0005
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0002
	1,88	1,235	0,08	0,226	1,12	0,567	1,033	0,341	3E-05
	9,38	1,2057	0,08	0,235	1,50	0,607	1,417	0,372	0,0002
Serie 2	16,89	1,1676	0,08	0,243	1,50	0,616	1,417	0,373	0,0006
	24,40	1,138	0,08	0,246	1,50	0,623	1,417	0,377	0,0017
	31,91	1,117	0,08	0,242	1,50	0,614	1,417	0,372	0,0043
	39,41	0,9857	0,08	0,250	1,50	0,621	1,417	0,371	0,0005
							Error a	0,001	0,0711



## 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 10

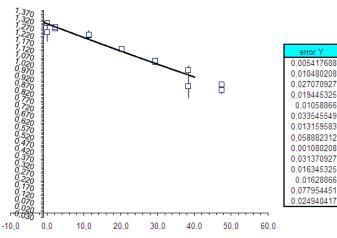
	VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x) PARÁMETROS											
AJUST	A ± SE B ± SE C ± S					± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)			
Serie 1+2	-0,593	11,459	1,846	#####	0,004	0,024	0,007	1,2534	114,164	17,726	147,3	


881

Punts a ignorar

NPC-052									
	1,\$74961341	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Error Y*2
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0039
	1,88	1,2361	0,08	0,220	1,12	0,638	1,033	0,418	0,0097
	9,38	1,3114	0,08	0,228	1,50	0,599	1,417	0,371	9E-05
Serie 1	16,89	1,2429	0,08	0,233	1,23	0,621	1,15	0,388	0,0007
	24,40	1,2054	0,08	0,241	1,32	0,694	1,233	0,453	0,0011
	31,91	1,4779	0,08	0,257	1,47	0,771	1,383	0,514	0
	39,41	0,4412	0,08	0,236	1,43	0,387	1,35	0,151	0
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,0104
	1,88	1,2654	0,08	0,226	1,12	0,572	1,033	0,346	0,0048
	9,38	1,7616	0,08	0,246	1,50	0,704	1,417	0,458	0,2115
Serie 2	16,89	0,0034	0,08	0,183	1,50	0,190	1,417	0,007	0
	24,40	1,2556	0,08	0,248	1,50	0,628	1,417	0,38	0,0003
	31,91	1,1676	0,08	0,260	1,50	0,678	1,417	0,418	0,0015
	39,41	1,1192	0,08	0,300	1,50	0,678	1,417	0,378	0,0033
							Error a	0,001	0,0713

Referencia Ilistat


	VALOR	ES AJU	STE EC	UACIO	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METF	ROS
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-0,548	137,563	1,891	#####	0,002	0,177	0,004	1,3426	187,943	#####	140,8



PC-052	4 0005		t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs		1	1,320 1,220								
	1,3365	V ₀ (uA/h-1)	,	Ů					Error Y*2		32700							e	error
	0,00	1,2802	0,07	0,217	1,18	0,538	1,12	0,321	0,0014		1,0%								03783
	1,87	1,2165	0,08	0,219	1,12	0,567	1,033	0,348	0,0434	e d	1.020 9.970	l di							20844
Serie 1	9,36 16,85	0,3801 0,3815	0,13	0,226	1,50 1,23	0,355 0,331	1,367	0,129	0,0128 8E-06	6	0.920								1130 0028
Selle I	24,35	0,3815	0,08	0,210	1,23	0,331	1,15	0,121	0,0004	6	0,8 <u>20</u>	\							0020
	31,84	0,3759	0,08	0,227	1,47	0,497	1,383	0,270	0,0004	6		\							0194
	39,33	0,3746	0,08	0,236	1,43	0,508	1,35	0,272	0,0004	j č	2620		$\backslash$						),019
	0,00	1,24055	0,07	0,212	1,17	0,510	1,1	0,298	0,006	į ž	2520		$\mathbf{X}$						0774
	1,87	1,0144	0,08	0,213	1,12	0,458	1,033	0,245	4E-05		2,470			- H					0063
Serie 2	9,36 16,85	0,3866 0,4163	0,15	0,228	1,50 1,50	0,432	1,35	0,204 0,189	0,0114		2.320		9	** <b>8</b>			<u> </u>		1065 0319
Serie Z	24,35	0,3866	0,15	0,222	1,50	0,410	1,35	0,103	0,0006	6	220					Ŷ			0252
	31,84	0,3314	0,15	0,231	1,50	0,432	1,35	0,201	0,0006	6	170								0250
	39,33	0,3889	0,08	0,225	1,50	0,435	1,417	0,21	0,0011		0,0×0 0,0×0							0,	,033
							Error a	a 0,001	0,0712		9,036 ·	<b></b>							
orrotair	ner (TTR)	a 4 mg/mL								-10,0		0,0	10,0	20,0	30,	0 4	40,0	50,0	
						· D* · · · · / O*·			DAD		200	-							
JUST			B			+B*exp(-C*)				AMETE				Punts a ig	norar				
JUS I		± SE		± SE	I	± SE	B*C	v ₀ a x=0		± SE	RA(%	•)	ŀ						
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)		_		(µM)				L						
erie 1+2	0.200	0.000	0.000	0.004		0.040	0.000												
	0,355	0,033	0,963	0,061	0,207	0,043	0,200	1,3180	5,560	0,561	73,1		ŀ		]				
	ibidor =		Reference				0,200	1,3180	5,560	0,561	73,1		Ļ						
nero inhi							0,200	1,3180	5,560 1,3 1,3	0,561	73,1		Ļ		]				
nero inhi		1			1 883				1,320 1,320 1,22		73,1		ļ		]				
nero inhi			Reference	cia Ilista	1 883	J		Errer T*2	1,320 1,320 1,22		73,1				]			error	·Y
nero inhi	ibidor = 0,00	1 V₀ (uA/h-1) 1,3111	Reference t ₀ (h)	cia Ilista Abs ₀ 0,259	t _f (h)	Abs _f ∆t (h)	∆ <b>Abs</b> 0,277	Errer T*2 0,0047	1,32 1,72 1,72 1,7 1,7 1,7		73,1							0,06852	2700
nero inhi	0,00 2,26	1 V₀ (uA/h-1) 1,3111 1,1393	Reference t ₀ (h) 0,08 0,07	cia Ilista Abs ₀ 0,259 0,259	<b>t_f (h)</b>	Abs _f ∆t (h) 0,536 1,10 0,590 1,05	∆ <b>Abs</b> 0,277 0,331	Errer 1^2 0,0047 0,0074	1,32 1,72 1,72 1,7 1,7 1,7		73,1				<b>−</b>			0,06852 0,08608	2700 8024
nero inhi :-052	0,00 2,26 11,29	1 V₀ (uA/h-1) 1.3111 1.1393 1.095	<b>t</b> ₀ (h) 0,08 0,07 0,07	<b>Abs</b> ₀ 0,259 0,259 0,247	1 883 <b>t_f (h)</b> 1,18 1,12 1,50	Abs _f ∆t (h) 0,536 1,10 0,590 1,05 0,606 1,433	∆ <b>Abs</b> 0,277 0,331 0,359	Error T*2 0,0047 0,0074 0,0039	1,32 1,72 1,72 1,7 1,7 1,7		73,1			-0-		¢		0,06852 0,08608 0,06240	2700 8024 0597
nero inhi :-052	0,00 2,26 11,29 20,32	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0628	Reference t ₀ (h) 0,08 0,07 0,07 0,07	<b>Abs</b> ₀ 0,259 0,259 0,247 0,270	t _f (h) 1,18 1,12 1,50 1,50	Abs _f ∆t (h) 0,536 1,10 0,590 1,05 0,606 1,433 0,649 1,433	∆ <b>Abs</b> 0.277 0.331 0.359 0.379	Errer 1*2 0,0047 0,0074 0,0039 0,0008	1,32 1,72 1,72 1,7 1,7 1,7		73,1			-0-		¢		0,06852 0,08608 0,06240 0,02788	2700 8024 0597 8881
nero inhi C-052	0,00 2,26 11,29 20,32 29,35	1 V ₀ (uA/h-1) 1.3111 1.393 1.095 1.0628 1.0141	<b>t</b> ₀ (h) 0,08 0,07 0,07 0,07 0,07	Abs           0,259           0,259           0,259           0,259           0,259           0,270           0,267	t _f (h) 1,18 1,12 1,50 1,50 1,12	Abs _f Δt (h)           0.536         1,10           0.590         1,05           0.606         1,433           0.627         1,05	∆ <b>Abs</b> 0,277 0,331 0,359 0,379 0,36	Errer 1*2 0,0047 0,0074 0,0039 0,0008 0,0001	1,32 1,72 1,72 1,7 1,7 1,7		73,1		ا بل	-0-		¢		0,06852 0,08608 0,06240 0,02788 0,01110	2700 8024 0597 8881 0549
nero inhi C-052	0,00 2,26 11,29 20,32 29,35 38,38	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0628 1,0141 0,9893	<b>t</b> ₀ (h) 0,08 0,07 0,07 0,07 0,07 0,07	Abs           0,259           0,259           0,259           0,259           0,259           0,270           0,270           0,279	t _f (h) 1,18 1,12 1,50 1,50 1,12 1,22	Abs _f ∆t (h) 0,536 1,10 0,590 1,05 0,606 1,433 0,627 1,05 0,627 1,05 0,623 1,15	∆ <b>Abs</b> 0,277 0,331 0,359 0,379 0,36 0,364	Errer 1*2 0,0047 0,0074 0,0008 0,0008 0,0001	1,32 1,72 1,72 1,7 1,7 1,7		73,1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836	2700 8024 0597 8881 0549 6680
nero inhi :-052	0.00 2.26 11.29 20.32 29.35 38.38 47.41	1 1,3111 1,313 1,095 1,0628 1,0141 0,9893 0,857	Reference t ₀ (h) 0,08 0,07 0,07 0,07 0,07 0,07 0,07 0,08	Absolution           0,259           0,247           0,270           0,267           0,270           0,279           0,279           0,297	<b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,12 1,22 1,50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.639         1.417	∆Abs 0,277 0,331 0,359 0,369 0,364 0,364	<b>Error 1°2</b> 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017	1,32 1,72 1,72 1,7 1,7 1,7		73,1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408	2700 8024 0597 8881 0549 6680 8495
nero inhi :-052	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0628 1,0141 0,9893 0,857 1,2468	<b>t</b> ₀ (h) 0,08 0,07 0,07 0,07 0,07 0,07 0,07 0,07	Abso           0,259           0,247           0,270           0,279           0,279           0,279           0,279           0,279           0,297	<b>t</b> , (h) 1,18 1,12 1,50 1,12 1,22 1,50 1,17	Abs _f ∆t (h) 0,536 1,10 0,590 1,05 0,606 1,433 0,649 1,433 0,649 1,433 0,643 1,15 0,639 1,417 0,524 1,067	△Abs 0,277 0,331 0,359 0,369 0,364 0,364 0,364 0,342	Errer 1/2 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017 2E-05	1,32 1,72 1,72 1,7 1,7 1,7		73.1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422	2700 8024 0597 8881 0549 6680 8495 2700
nero inhi C-052	0.00 2.26 11.29 20.32 29.35 38.38 47.41	1 1,3111 1,313 1,095 1,0628 1,0141 0,9893 0,857	Reference t ₀ (h) 0,08 0,07 0,07 0,07 0,07 0,07 0,07 0,08	Absolution           0,259           0,247           0,270           0,267           0,270           0,279           0,279           0,297	<b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,12 1,22 1,50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.639         1.417	∆Abs 0,277 0,331 0,359 0,369 0,364 0,364	<b>Error 1°2</b> 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017	1,32 1,72 1,72 1,7 1,7 1,7		73,1			-0-		¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408	2700 8024 0597 8881 0549 6680 8495 2700 8024
erie 1	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00 2,26	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0141 0,9893 0,857 1,246 1,2247	Reference           t ₀ (h)           0,08           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07	Abs           0,259           0,259           0,259           0,270           0,270           0,277           0,270           0,270           0,271           0,272           0,272           0,272	t _r (h) 1,18 1,12 1,50 1,50 1,12 1,50 1,17 1,12	Abs _f ∆t (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.639         1.413           0.627         1.05           0.639         1.417           0.524         1.067           0.524         1.067           0.524         1.057	△Abs 0,277 0,331 0,359 0,369 0,364 0,364 0,364 0,362 0,282 0,282 0,2317	Errer 172 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017 2E-05 5E-07	777777700998877766555443390		73.1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597
	0.00 2.26 11.29 20.32 29.35 38.38 47.41 0.00 2.26 11.29 20.32 29.35	1 1,3111 1,313 1,095 1,0628 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,1942 1,0967	to         (h)           0.08         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07	Abs           0,259           0,259           0,247           0,270           0,279           0,297           0,242           0,257           0,242           0,257           0,242           0,257           0,242           0,257           0,242           0,257           0,246           0,260	t _f (h) 1.18 1.12 1.50 1.50 1.12 1.22 1.50 1.17 1.12 1.50 1.17 1.12 1.50 1.50 1.50 1.50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.649         1.433           0.643         1.15           0.639         1.417           0.524         1.067           0.544         1.067           0.544         1.433           0.634         1.433           0.604         1.433	△Abs 0.277 0.331 0.359 0.366 0.364 0.342 0.282 0.317 0.345 0.256 0.344	Errer 1*2 0,0047 0,0074 0,0039 0,0008 0,0001 0,0008 0,0017 2E-05 5E-07 0,0002 0,0107 0,0051	777777700998877766555443390		73.1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450
erie 1	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00 2,26 11,29 20,32 29,35 38,38	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,942 1,0962	Reference           0,08           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07	Abs ₀ 0.259 0.259 0.270 0.267 0.270 0.270 0.270 0.279 0.227 0.224 0.279 0.242 0.257 0.246 0.278 0.246 0.276	t, (h) 1,18 1,12 1,50 1,12 1,50 1,12 1,50 1,17 1,12 1,50 1,50 1,50 1,50	Abs _f ∆t (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.624         1.67           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.433           0.634         1.433           0.644         1.433           0.644         1.433	△Abs 0,277 0,331 0,359 0,364 0,364 0,364 0,362 0,262 0,317 0,348 0,264 0,347	Errer 772 0,0047 0,0039 0,0008 0,0001 0,0008 0,0001 0,0002 5E-07 0,0002 0,0107 0,0001 7E-05	777777700998877766555443390	202/202/202/202/202/202/202/202/202/202	73.1					¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,01540 0,01549 0,07149 0,00826	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680
erie 1	0.00 2.26 11.29 20.32 29.35 38.38 47.41 0.00 2.26 11.29 20.32 29.35	1 1,3111 1,313 1,095 1,0628 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,1942 1,0967	to         (h)           0.08         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07           0.07         0.07	Abs           0,259           0,259           0,247           0,270           0,279           0,297           0,242           0,257           0,242           0,257           0,242           0,257           0,242           0,257           0,242           0,257           0,246           0,260	t _f (h) 1.18 1.12 1.50 1.50 1.12 1.22 1.50 1.17 1.12 1.50 1.17 1.12 1.50 1.50 1.50 1.50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.624         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.433           0.634         1.433           0.634         1.433           0.641         1.433           0.641         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,342 0,317 0,348 0,256 0,344 0,347 0,348 0,256 0,344 0,347 0,326	Errer 1*2 0,0047 0,0074 0,0008 0,0001 0,0008 0,0017 2E-05 5E-07 0,0002 0,0107 0,00051 7E-05 0,00017	7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,		73.1				<b>–</b>	¢		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680
erie 1	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00 2,26 11,29 20,32 29,35 38,38	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,942 1,0962	Reference           0,08           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07           0,07	Abs ₀ 0.259 0.259 0.270 0.267 0.270 0.270 0.270 0.279 0.227 0.224 0.279 0.242 0.257 0.246 0.278 0.246 0.276	t, (h) 1,18 1,12 1,50 1,12 1,50 1,12 1,50 1,17 1,12 1,50 1,50 1,50 1,50	Abs _f ∆t (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.624         1.67           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.433           0.634         1.433           0.644         1.433           0.644         1.433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,382 0,317 0,348 0,256 0,347 0,346 0,347 0,326	Errer 772 0,0047 0,0039 0,0008 0,0001 0,0008 0,0001 0,0002 5E-07 0,0002 0,0107 0,0001 7E-05	7.7.7.7.7.7.7.00099887.7.6665544339207.7.000 7.7.7.7.7.7.7.7.000900000000000									0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149 0,00826 0,0408	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680
erie 1 erie 2	0.00 2.26 11.29 20.32 29.35 38.38 47.41 0.00 2.26 11.29 20.32 29.35 38.38 47.41	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0628 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,0967 0,9692 0,857	Reference           t ₀ (h)           0.08           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07	Abs ₀ 0.259 0.259 0.270 0.267 0.270 0.270 0.270 0.279 0.227 0.224 0.275 0.246 0.278 0.246 0.276 0.269	t, (h) 1,18 1,12 1,50 1,12 1,50 1,12 1,50 1,17 1,12 1,50 1,50 1,50 1,50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.624         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.433           0.634         1.433           0.634         1.433           0.641         1.433           0.641         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,342 0,317 0,348 0,256 0,344 0,347 0,348 0,256 0,344 0,347 0,326	Errer 1*2 0,0047 0,0074 0,0008 0,0001 0,0008 0,0017 2E-05 5E-07 0,0002 0,0107 0,00051 7E-05 0,00017	7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,					30,0	-E. 40,0	中 		0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149 0,00826 0,0408	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680
erie 1 erie 2	0.00 2.26 11.29 20.32 29.35 38.38 47.41 0.00 2.26 11.29 20.32 29.35 38.38 47.41	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,942 1,0962	Reference           t ₀ (h)           0.08           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07           0.07	Abs ₀ 0.259 0.259 0.270 0.267 0.270 0.270 0.270 0.279 0.227 0.224 0.275 0.246 0.278 0.246 0.276 0.269	t, (h) 1,18 1,12 1,50 1,12 1,50 1,12 1,50 1,17 1,12 1,50 1,50 1,50 1,50	Abs _f Δt (h)           0.536         1.10           0.590         1.05           0.606         1.433           0.627         1.05           0.643         1.15           0.624         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.067           0.524         1.433           0.634         1.433           0.634         1.433           0.641         1.433           0.641         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433           0.644         1.433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,342 0,317 0,348 0,256 0,344 0,347 0,348 0,256 0,344 0,347 0,326	Errer 1*2 0,0047 0,0074 0,0008 0,0001 0,0008 0,0017 2E-05 5E-07 0,0002 0,0107 0,00051 7E-05 0,00017	7.7.7.7.7.7.7.00099887.7.6665544339207.7.000 7.7.7.7.7.7.7.7.000900000000000				20,0	30,0	40,0			0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149 0,00826 0,0408	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680
erie 1 erie 2	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00 2,26 11,29 20,32 29,35 38,38 47,41 20,32 29,35 38,38 47,41	1 1,3111 1,313 1,095 1,0628 1,0141 0,9893 0,857 1,2467 1,142 1,142 1,1942 1,0967 0,9692 0,857 a 4 mg/mL	Reference t ₀ (h) 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Abs           0,259         0,259         0,247           0,279         0,287         0,270           0,297         0,247         0,270           0,227         0,246         0,257           0,247         0,257         0,246           0,257         0,247         0,257           0,246         0,257         0,246           0,257         0,246         0,257           0,250         0,257         0,246	t, (h) 1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,50 1,50 1,50 1,50	Absr         ∆t (h)           0.536         1,10           0.590         1,05           0.606         1,433           0.627         1,05           0.623         1,15           0.639         1,417           0.574         1,05           0.543         1,417           0.524         1,067           0.534         1,433           0.604         1,433           0.614         1,433           0.596         1,433           0.596         1,433           0.596         1,433           0.596         1,433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,342 0,317 0,348 0,256 0,344 0,347 0,348 0,256 0,344 0,347 0,326	Errer 1*2 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017 2E-05 5E-05 0,0017 0,0002 0,0107 0,0051 7E-05 0,0017 0,0712	7,37,227,7,099887,766554433227,76000 0007,766554433227,7600 0007,7665544332227,76000 00000,00000,00000 000000,000000,00000,000000						40,0			0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149 0,00826 0,0408	2700 8024 0593 8883 0544 6680 8499 2700 8024 0593 1111 9450 6680
erie 1 erie 2	0,00 2,26 11,29 20,32 29,35 38,38 47,41 0,00 2,26 11,29 20,32 29,35 38,38 47,41 20,32 29,35 38,38 47,41	1 V ₀ (uA/h-1) 1,3111 1,1393 1,095 1,0628 1,0141 0,9893 0,857 1,2468 1,2247 1,142 1,0967 0,9692 0,857	Reference t ₀ (h) 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Abs           0,259         0,259         0,247           0,279         0,287         0,270           0,297         0,247         0,270           0,227         0,246         0,257           0,247         0,257         0,246           0,257         0,247         0,257           0,246         0,257         0,246           0,257         0,246         0,257           0,250         0,257         0,246	t, (h) 1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,50 1,50 1,50 1,50	Absr         ∆t (h)           0.536         1,10           0.590         1,05           0.606         1,433           0.627         1,05           0.623         1,15           0.639         1,417           0.574         1,05           0.543         1,417           0.524         1,067           0.534         1,433           0.604         1,433           0.614         1,433           0.596         1,433           0.596         1,433           0.596         1,433           0.596         1,433	△Abs 0,277 0,331 0,369 0,369 0,364 0,342 0,342 0,317 0,348 0,256 0,344 0,347 0,348 0,256 0,344 0,347 0,326	Errer 1*2 0,0047 0,0039 0,0008 0,0001 0,0008 0,0017 2E-05 5E-007 0,0020 0,0107 0,0051 7E-05 0,0017 0,0712	7.7.7.7.7.7.7.00099887.7.6665544339207.7.000 7.7.7.7.7.7.7.7.000900000000000						E. 40,0			0,06852 0,08608 0,06240 0,02788 0,01110 0,02836 0,0408 0,00422 0,00068 0,01540 0,10351 0,07149 0,00826 0,0408	2700 8024 0597 8881 0549 6680 8495 2700 8024 0597 1118 9450 6680

AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-2.450	33,230	3.693	#####	0.002	0.019	0.008	1.2426	89,114	18,781	297.2

numero inhi	bidor =	3	Referenc	ia Ilista	885				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T^2
	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	3E-05
	2,26	1,2735	0,08	0,269	1,12	0,583	1,033	0,314	0,0001
	11,28	1,2255	0,07	0,261	1,50	0,613	1,433	0,352	0,0007
Serie 1	20,30	1,1343	0,07	0,254	1,50	0,577	1,433	0,323	0,0004
	29,33	1,0438	0,07	0,263	1,12	0,563	1,05	0,3	0,0001
	38,35	0,987	0,07	0,270	1,22	0,584	1,15	0,314	0,0011
	47,37	0,8887	0,07	0,285	1,50	0,528	1,433	0,243	0,0002
	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	0,0035
	2,26	1,2829	0,07	0,240	1,12	0,569	1,05	0,329	1E-06
	11,28	1,2298	0,07	0,250	1,50	0,601	1,433	0,351	0,001
Serie 2	20,30	1,1312	0,07	0,236	1,50	0,545	1,433	0,309	0,0003
	29,33	1,0495	0,07	0,239	1,50	0,523	1,433	0,284	0,0003
	38,35	0,8755	0,07	0,239	1,50	0,539	1,433	0,3	0,0061
	47,37	0,8506	0,07	0,239	1,50	0,498	1,433	0,259	0,0006
							Error a	0,001	0,0711



nts a ignora

#### 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 2

[884] V₀ (uA/h-1)

0,00

2,30 11,50

20,71 29,91

39,11 48,31

0,00

2,30

20,71 29,91 39,11

48.31

1,3111 1,3568 1,4038 1,2926 1,245

1,0827

1,2468

1,2537 1,2178

1,2114 1,1402

1,0549

1,0153

NPC-052

Serie 1

Serie 2

	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PARA	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	-2,419	13,173	3,724	#####	0,003	0,010	0,010	1,3057	74,393	7,654	285,2

Referencia Ilistat 884

0,259

0,228 0,233

0,254

0,249

0,240

0,250

0,242

0,243

0,243

0,249

0,232 0,234

0,251

t₀ (h)

0,08

0,05 0,05 0,07 0,07

0,07

0,07

0,10

0,07

0,07

0,07

0,07

Abs₀ t_f (h)

1,18

1,12

1,50

1,22

1,50

1,17

1,12

1.50

1,50

1,50

1,50

Abs_f ∆t (h)

0,536 1,10 0,575 1,067

0.643 1.45

0,605 1,433

0,586 1,05

0,524 1,067

0,604 1,05

0.625 1.433

0,586 1,433

0,585 1,433

0,607 1,433

0,590 1,433

Error a

0,604 1,15

0,630 1,433 ∆Abs

0,277

0,347 0,41 0,351 0,337

0,364

0,38

0,282

0,361

0,382 0,337

0,353

0.339

0,001

Errar T^2

0,000

0,001

0,00

0,000

0,000


0,0074

0,0042

0,002 5E-06 0,0002

0,001

0,0712

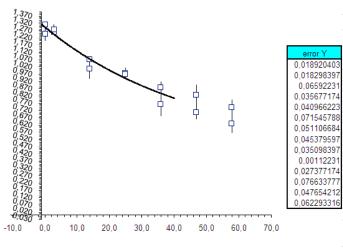


		VALORE	S AJUSTE	ECUACIO	ÓN Y=A	A+B*exp	(-C*x)			PARÁ	METR	OS
	AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
		(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
ĺ	Serie 1+2	-2,405	62,925	3,738	#####	0,002	0,028	0,006	1,3326	120,984	36,534	280,5

Punts a ignorar

Serie 1	 0,00 3,12	11 (11 A /b . 4)								1 220									
Serie 1		V ₀ (uA/h-1)	t₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2	1,220									
Serie 1		1,3111	0.08	0,259	1,18	0,536	1,10	0,277	0.0016	1,070									error \ 0.039493
Serie 1		1,0567	0.08	0,243	1,12	0,503	1,033	0.26	0,0010	0.970									0,00040
Serie 1	15.62	0,2251	0.08	0.218	1,50	0,296	1,417	0.078	0.0005	0.920									0.02249
	28,12	0,0578	0,08	0,218	1,50	0,250	1,417	0,032	0,0004	0,820	1								0,01933
(	40,62	0,0349	0,08	0,220	1,12	0,260	1,033	0,04	3E-06	6.40		1							0,00158
	53,11	0,0236	0,08	0,236	1,22	0,260	1,133	0,024	2E-06	0,720		\							0,00155
	65,61	0,0141	0,13	0,243	1,50	0,258	1,367	0,015	3E-05	0,570		\							0,0050
	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	0,0006	0.520		\							0,02480
	3,12	0,8838	0,07	0,210	1,12	0,431	1,05	0,221	0,0007	0,420									0,026884
	15,62	0,2995	0,07	0,210	1,50	0,353	1,433	0,143	0,0027	0.370		\							0,051900
	28,12	0,0737	0,07	0,207	1,50	0,246	1,433	0,039	1E-05	0,270		``	Ċ.						0,003430
	40,62	0,0441	0,12	0,217	1,50	0,275	1,383	0,058	0,0001	0,120			<u>р</u>						0,01078
	53,11	0,0218	0,22	0,217	1,50	0,237	1,283	0,02	6E-08	0,120									0,000248
	65,61	0,0161	0,28	0,232	1,50	0,251	1,217	0,019	9E-06	0,070				8		_		_	0,0030
							Error a	0,001	0,0711	- <del>0,030</del>	- di							╘┿┯╼┓	
corretgir per	r ITTRI	a 4 mɑ/ml								-10,0	0,0	10,0	20,0	30,0	40,0	50,0	60,0	70,0	
oonorgin poi	. []	u i ingilitz																	
_													_						
V	/ALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PARÁ	METR	DS S		P	unts a igi	norar				
JUST	Α	± SE	В	± SE	C	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	1		6					
	ıA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		• • •								
	0.018	0,011	1,253	0,019	0,109	0.005	0,136	1,2716	6,511	0,088	98,6	1	- H						
Jelle 1.7	0,010	0,011	1,200	0,015	0,105	0,005	0,150	1,2710	0,311	0,000	50,0	1							
umero inhibio	dor =	4	Reference	ia Ilista	886	1				1.0									U
										1 37	0 1								
DC 052				_						202	이 최나								
PC-052				A In	4 (6)	Aha	44 (1-)			127									
	[885]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	127			4						
										111110			2	Ч					error
I	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,0013	1,1,2,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,7,2,			3	4					0,03577
1	0,00 2,75	1,3111 1,236	0,08 0,07	0,259 0,263	1,18 1,12	0,536 0,639	1,10 1,05	0,277 0,376	0,0013 2E-05	11111000000000000000000000000000000000			3		_				0,03577 0,00410
	0,00 2,75 13,77	1,3111 1,236 1,1419	0,08 0,07 0,08	0,259 0,263 0,320	1,18 1,12 1,50	0,536 0,639 0,643	1,10 1,05 1,417	0,277 0,376 0,323	0,0013 2E-05 0,0013	111111000000					+				0,03577 0,00410 0,03581
Serie 1	0,00 2,75 13,77 24,78	1,3111 1,236 1,1419 1,0602	0,08 0,07 0,08 0,08	0,259 0,263 0,320 0,374	1,18 1,12 1,50 1,50	0,536 0,639 0,643 0,674	1,10 1,05 1,417 1,417	0,277 0,376 0,323 0,3	0,0013 2E-05 0,0013 0,0061	1111110099887					4	¢	I		0,03577 0,00410 0,03581 0,07783
Serie 1	0,00 2,75 13,77 24,78 35,79	1,3111 1,236 1,1419 1,0602 0,8449	0,08 0,07 0,08 0,08 0,07	0,259 0,263 0,320 0,374 0,434	1,18 1,12 1,50 1,50 1,12	0,536 0,639 0,643 0,674 0,782	1,10 1,05 1,417 1,417 1,05	0,277 0,376 0,323 0,3 0,348	0,0013 2E-05 0,0013 0,0061 0,0005	17177777000000000000000000000000000000			*		\$	¢	¢		0,03577 0,00410 0,03581 0,07783 0,02325
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81	1,3111 1,236 1,1419 1,0602 0,8449 0,7936	0,08 0,07 0,08 0,08 0,07 0,08	0,259 0,263 0,320 0,374 0,434 0,512	1,18 1,12 1,50 1,50 1,12 1,22	0,536 0,639 0,643 0,674 0,782 0,852	1,10 1,05 1,417 1,417 1,05 1,133	0,277 0,376 0,323 0,3 0,348 0,340	0,0013 2E-05 0,0013 0,0061 0,0005 0,001	0,67					₽	¢ ¢	4		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185	0,08 0,07 0,08 0,08 0,07 0,08 0,12	0,259 0,263 0,320 0,374 0,434 0,512 0,604	1,18 1,12 1,50 1,50 1,12 1,22 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,852	1,10 1,05 1,417 1,417 1,05 1,133 1,383	0,277 0,376 0,323 0,3 0,348 0,340 0,323	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022	0,67					\$	ф Ф	<b>¢</b>		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088 0,04688
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468	0,08 0,07 0,08 0,08 0,07 0,08 0,12 0,10	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524	1,10 1,05 1,417 1,417 1,05 1,133 1,383 1,067	0,277 0,376 0,323 0,3 0,348 0,340 0,323 0,282	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008	0,67			~		<del>\$</del> _	÷	<b>4</b> <b>7</b>		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088 0,04688 0,02852
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267	0,08 0,07 0,08 0,08 0,07 0,08 0,12 0,10 0,07	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582	1,10 1,05 1,417 1,417 1,05 1,133 1,383 1,067 1,05	0,277 0,376 0,323 0,3 0,348 0,340 0,323 0,282 0,334	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002	000000					≁	Ċ.	4 4		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088 0,04688 0,04688 0,02852 0,01340
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75 13,77	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267 1,0841	0,08 0,07 0,08 0,08 0,07 0,08 0,12 0,10 0,07 0,07	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248 0,300	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582 0,672	1,10 1,05 1,417 1,417 1,05 1,133 1,383 1,067 1,05 1,433	0,277 0,376 0,323 0,3 0,348 0,340 0,323 0,282 0,334 0,372	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002 0,0005	26655544353					*	8	4		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088 0,04688 0,02852 0,01340 0,02198
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75 13,77 24,78	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267 1,0841 0,916	0,08 0,07 0,08 0,07 0,08 0,07 0,08 0,12 0,10 0,07 0,07	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248 0,300 0,372	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582 0,672 0,719	1,10 1,05 1,417 1,417 1,05 1,133 1,383 1,067 1,05 1,433 1,417	0,277 0,376 0,323 0,34 0,340 0,323 0,282 0,334 0,372 0,347	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002 0,0005 0,0044	000000000000000000000000000000000000000					₽.	÷	4 4		0,03577 0,00410 0,0358 0,07783 0,02325 0,03088 0,04688 0,02852 0,01340 0,02198 0,0636
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75 13,77 24,78 35,79	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267 1,0841 0,916 0,883	0,08 0,07 0,08 0,07 0,08 0,12 0,10 0,07 0,07 0,07 0,08 0,10	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248 0,300 0,372 0,418	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,17 1,12 1,50 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582 0,672 0,672 0,719 0,763	1,10 1,05 1,417 1,05 1,133 1,383 1,067 1,05 1,433 1,417 1,4	0,277 0,376 0,323 0,348 0,340 0,323 0,282 0,334 0,372 0,347 0,345	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002 0,0008 0,0002 0,0005	00000000000000000000000000000000000000					≁	<b>†</b>	4 4		0,03577 0,00410 0,03581 0,07783 0,02322 0,03088 0,04688 0,02852 0,01340 0,02198 0,02198 0,0636 0,01484
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75 13,77 24,78 35,79 46,81	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267 1,0841 0,916 0,883 0,7206	0,08 0,07 0,08 0,07 0,08 0,12 0,10 0,07 0,07 0,07 0,08 0,10 0,12	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248 0,300 0,372 0,418 0,495	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,50 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582 0,672 0,719 0,763 0,862	1,10 1,05 1,417 1,05 1,133 1,383 1,067 1,05 1,433 1,417 1,4 1,383	0,277 0,376 0,323 0,348 0,340 0,323 0,282 0,334 0,372 0,347 0,345 0,367	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002 0,0005 0,0004 0,0002 0,0004	00000000000000000000000000000000000000					≁	¢	4 4		0,03577 0,00410 0,03581 0,07783 0,02322 0,03088 0,04688 0,02852 0,01340 0,02198 0,0636 0,01484 0,04211
Serie 1	0,00 2,75 13,77 24,78 35,79 46,81 57,82 0,00 2,75 13,77 24,78 35,79	1,3111 1,236 1,1419 1,0602 0,8449 0,7936 0,6185 1,2468 1,2267 1,0841 0,916 0,883	0,08 0,07 0,08 0,07 0,08 0,12 0,10 0,07 0,07 0,07 0,08 0,10	0,259 0,263 0,320 0,374 0,434 0,512 0,604 0,242 0,248 0,300 0,372 0,418	1,18 1,12 1,50 1,50 1,12 1,22 1,50 1,17 1,12 1,50 1,17 1,12 1,50 1,50	0,536 0,639 0,643 0,674 0,782 0,852 0,927 0,524 0,582 0,672 0,672 0,719 0,763	1,10 1,05 1,417 1,05 1,133 1,383 1,067 1,05 1,433 1,417 1,4 1,383	0,277 0,376 0,323 0,348 0,340 0,323 0,282 0,324 0,372 0,372 0,347 0,345 0,367 0,298	0,0013 2E-05 0,0013 0,0061 0,0005 0,001 0,0022 0,0008 0,0002 0,0008 0,0002 0,0005	00000000000000000000000000000000000000					4	0	4 4		0,03577 0,00410 0,03581 0,07783 0,02325 0,03088 0,04688 0,02852

Punts a ignorar


🗖 corretgir per	TTRIa 4 mm/ml
Confergin per	i ny a + nyme

			S AJUSTE	ECUACIO	ÓN Y=	PARÁMETROS							
1	AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
		(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)			
	Serie 1+2	-0.504	1,449	1,779	1,437	0,007	0,007	7 0.013 1.2753 61.125 2.552 139.5					

numero inhi	bidor =	5	Referenc	ia Ilistai	887				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,0004
	2,75	1,2616	0,07	0,271	1,12	0,636	1,05	0,365	0,0003
	13,77	1,0089	0,07	0,306	1,50	0,689	1,433	0,383	0,0043
Serie 1	24,78	0,9782	0,07	0,374	1,50	0,725	1,433	0,351	0,0013
	35,79	0,8796	0,10	0,434	1,12	0,743	1,017	0,309	0,0017
	46,81	0,8286	0,10	0,502	1,22	0,816	1,117	0,314	0,0051
	57,82	0,7441	0,13	0,621	1,50	0,882	1,367	0,261	0,0026
	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	0,0021
	2,75	1,2784	0,07	0,251	1,12	0,577	1,05	0,326	0,0012
	13,77	1,0737	0,07	0,295	1,50	0,660	1,433	0,365	1E-06
Serie 2	24,78	0,9699	0,08	0,365	1,50	0,679	1,417	0,314	0,0007
	35,79	0,762	0,10	0,436	1,50	0,777	1,4	0,341	0,0059
	46,81	0,7094	0,10	0,475	1,50	0,853	1,4	0,378	0,0023
	57,82	0,6307	0,10	0,539	1,50	0,924	1,4	0,385	0,0039
							Error a	0,001	0,0712
🗖 corretgir (	oer (TTR)	a 4 mg/mL							

## 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,459	0,201	0,833	0,191	0,022	0,009	0,018	1,2922	67,998	3,271	64,5



Punts a ignorar

Image: serie 1         Image:	61.70         0.8877         0.12         0.336         150         0.622         1.383         0.286         0.0005           2.44         1.2773         0.07         0.240         1.10         6.22         1.383         0.286         0.0005           2.44         1.2773         0.07         0.240         1.417         0.346         5.500         0.557         1.417         0.342         0.0015           2.64.4         1.068         0.255         1.50         0.557         1.417         0.342         0.0015           38.20         1.0005         0.07         0.246         1.50         0.557         1.433         0.32         9.500           61.70         0.8599         0.10         0.231         1.50         0.527         1.433         0.32         9.500           61.77         0.8599         0.10         0.331         1.50         0.527         1.433         0.32         0.001         0.071           1000         0.0         10.0         20.0         30.0         40.0         50.0         60.0         70.0           20070         1.417         2.32         B*C         Value         N*         N*         N*         N*	umero inh	ibidor =	6	Reference	ia Ilista	1 888	8				1,370	E								
$ \frac{61.70}{2.94} = \frac{0.8877}{1.2} = 0.238 + \frac{1.80}{1.0} = 0.622 + \frac{1.383}{1.20} = 0.2065 + \frac{0.0065}{0.208} = 0.0065 + \frac{0.847}{0.0063} = 0.427 + \frac{0.0065}{0.224} = 0.047 + \frac{0.0065}{0.224} = 0.057 + \frac{0.047}{0.0063} = 0.025 + \frac{0.0065}{0.0224} = 0.0005 + \frac{0.0065}{0.0224} = 0.007 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.001 + \frac{0.0065}{0.0007} = 0.0001 + \frac{0.0065}{0.0007} =$	61.70         0.8877         0.12         0.338         1.50         0.6221         1.383         0.228         0.00021         0.00021         0.0001         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.0236         0.0236         0.0226         0.0236         0.0226         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0226         0.0226         0.0226	PC-052						_				1,320 1,270	i pa								
$ \frac{61.70}{2.94} = \frac{0.8877}{1.2} = 0.238 + \frac{1.80}{1.0} = 0.622 + \frac{1.383}{1.20} = 0.2065 + \frac{0.0065}{0.208} = 0.0065 + \frac{0.847}{0.0063} = 0.427 + \frac{0.0065}{0.224} = 0.047 + \frac{0.0065}{0.224} = 0.057 + \frac{0.047}{0.0063} = 0.025 + \frac{0.0065}{0.0224} = 0.0005 + \frac{0.0065}{0.0224} = 0.007 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.001 + \frac{0.0065}{0.0007} = 0.0001 + \frac{0.0065}{0.0007} =$	61.70         0.8877         0.12         0.338         1.50         0.6221         1.383         0.228         0.00021         0.00021         0.0001         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.0236         0.0236         0.0226         0.0236         0.0226         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0226         0.0226         0.0226		[886]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2	1,220 1,170 1,120			<b>-</b>	ļ					error
$ \frac{6170}{2.94} + \frac{10.877}{1.273} + \frac{0.12}{0.07} + \frac{0.36}{0.240} + \frac{1.50}{1.77} + \frac{0.622}{0.241} + \frac{1.70}{1.77} + \frac{0.264}{0.241} + \frac{1.70}{0.252} + \frac{0.0065}{0.262} + \frac{0.647}{0.262} +$	61.70       0.8877       0.12       0.336       1.50       0.6221       1.383       0.286       0.0065         2.34       1.2773       0.01       0.246       1.17       0.558       1.057       0.348       55.66       0.477         2.44       1.2733       0.07       0.240       1.17       0.524       1.050       0.576       1.433       0.328       0.0065         26.44       1.0694       0.07       0.281       1.60       0.576       1.433       0.328       0.0065         38.20       1.0695       0.576       1.433       0.328       0.0065       0.673       0.007       0.281       0.627       0.433       0.328       0.0065       0.007       0.281       0.007       0.281       0.007       0.281       0.007       0.281       0.007       0.001       0.011       0.010       0.028       0.028       0.028       0.0028       0.0028       0.0028       0.0028       0.001       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0.028       0		0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,0003	1,070				0					0,01632
$ \frac{6170}{2.94} + \frac{0.3877}{1.2} + \frac{0.12}{0.236} + \frac{1.50}{1.0} + \frac{0.622}{1.138} + \frac{0.286}{0.228} + \frac{0.005}{0.228} + \frac{0.005}{0.228} + \frac{0.005}{0.229} + \frac{0.005}{0.229} + \frac{0.005}{0.229} + \frac{0.005}{0.229} + \frac{0.005}{0.229} + \frac{0.005}{0.228} + \frac{0.005}{0.005} $	6170       0.8877       0.12       0.336       1.50       0.6221       1.383       0.286       0.00051       0.00051       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.001       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.021       0.0224       0.021       0.021		2,94	1,3049	0,07	0,258	1,12	0,638	1,05	0,38	0,0012	0.970	2 =				L				0,03443
$ \frac{6170}{2.94} + \frac{1010}{2.244} + \frac{1010}{2.247} + \frac{1010}{2.241} + 10$	61.70       0.8877       0.12       0.336       1.80       0.6221       1.383       0.286       0.0065         2.94       1.2773       0.01       0.246       1.71       0.524       1.60       0.571       0.386       0.007       0.286       0.007       0.286       0.007       0.286       0.007       0.286       0.007       0.286       0.007       0.286       1.60       0.575       1.433       0.328       0.0013       0.336       0.0228       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0356       0.0298       0.0356       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298       0.0298 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0,870</td> <td>5 =</td> <td></td> <td></td> <td></td> <td></td> <td>Р</td> <td>н</td> <td></td> <td></td>										0	0,870	5 =					Р	н		
$ \frac{61.70}{2.94} = \frac{0.8877}{1.2} = 0.238 + \frac{1.80}{1.0} = 0.622 + \frac{1.383}{1.20} = 0.2065 + \frac{0.0065}{0.208} = 0.0065 + \frac{0.847}{0.0063} = 0.427 + \frac{0.0065}{0.224} = 0.047 + \frac{0.0065}{0.224} = 0.057 + \frac{0.047}{0.0063} = 0.025 + \frac{0.0065}{0.0224} = 0.0005 + \frac{0.0065}{0.0224} = 0.007 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.001 + \frac{0.0065}{0.0007} = 0.0001 + \frac{0.0065}{0.0007} =$	61.70         0.8877         0.12         0.338         1.50         0.6221         1.383         0.228         0.00021         0.00021         0.0001         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.0236         0.0236         0.0226         0.0236         0.0226         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0226         0.0226         0.0226	Serie 1										0,770							-		
$ \frac{61.70}{2.94} = \frac{0.8877}{1.2} = 0.238 + \frac{1.80}{1.0} = 0.622 + \frac{1.383}{1.20} = 0.2065 + \frac{0.0065}{0.208} = 0.0065 + \frac{0.847}{0.0063} = 0.427 + \frac{0.0065}{0.224} = 0.047 + \frac{0.0065}{0.224} = 0.057 + \frac{0.047}{0.0063} = 0.025 + \frac{0.0065}{0.0224} = 0.0005 + \frac{0.0065}{0.0224} = 0.007 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.021 + \frac{0.0065}{0.0007} = 0.001 + \frac{0.0065}{0.0007} = 0.0001 + \frac{0.0065}{0.0007} =$	61.70         0.8877         0.12         0.338         1.50         0.6221         1.383         0.228         0.00021         0.00021         0.0001         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.021         0.0236         0.0236         0.0226         0.0236         0.0226         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0263         0.0226         0.0226         0.0226         0.0226											0,720									
$ \frac{0.00}{2529} \frac{12.468}{1.459} \frac{11.061}{1.12} \frac{0.242}{1.17} \frac{11.0624}{1.12} \frac{0.023}{1.12} \frac{10.65}{0.348} \frac{10.67}{1.423} \frac{0.282}{0.229} \frac{0.0025}{0.0025} \frac{0.0005}{0.0025} \frac{0.0025}{0.0025} \frac{0.0025}{0.0005} \frac{0.000}{0.000} \frac{0.000}{0.0000} \frac{0.0000}{0.000} \frac{0.0000}{0.000} \frac{0.0000}{0.000} 0.000$	View         View <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,620</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											0,620	)								
View         View <th< td=""><td>$\frac{1000}{114,69} \frac{1}{14,419} \frac{1}{12,713} \frac{1}{12} 1$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.570</td><td></td><td></td><td><b></b></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	$ \frac{1000}{114,69} \frac{1}{14,419} \frac{1}{12,713} \frac{1}{12} 1$											0.570			<b></b>						
$ \frac{14.63}{22.44} \frac{11.419}{10.009} \frac{0.225}{0.077} \frac{11.47}{1.50} \frac{10.597}{0.260} \frac{11.413}{1.50} \frac{10.257}{0.261} \frac{11.433}{1.50} \frac{10.22}{0.229} \frac{10.005}{0.005} \frac{0.005}{0.005} \frac{0.005}{0.005} \frac{0.005}{0.007} \frac{10.0}{0.261} \frac{11.50}{1.50} \frac{0.581}{0.433} \frac{11.433}{0.322} \frac{0.005}{0.005} \frac{0.005}{0.007} \frac{0.000}{0.000} \frac{10.0}{0.000} \frac{0.000}{0.000} \frac{0.000}{$	Serie 2       14.69 14.69 14.69 14.11 14.19 10.005 13.00 10.005 13.00 10.005 13.005 10.005 13.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.005 15.0											0,470	/ 1		_						
Serie 2         2644         10684         0.07         0.248         150         0.075         1433         0.322         0.0005         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256         0.0256	Serie 2         26.44         10684         0.07         0.248         150         0.576         1.433         0.322         0.0051           32.02         10.009         0.7         0.260         150         0.500         150         0.500         150         0.500         0.0021         0.0051         0.0023         0.0059         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023         0.0023											0,420									
33 20 1 0009 0.07 0.280 1.50 0.580 1.433 0.32 90.003       0.0051 1.43 0.32 0.0059       0.0059         49.95 0.9599 0.10 0.303 1.50 0.627 1.4 0.324 3E.55       0.0024       0.0059       0.001 0.071         correctoir per (1TR) a 4 mg/mL       -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0       0.0059         JUST       A ± SE B (uA. h ⁺ ) t	¹³ 8 20 ¹³ 00009 ¹³ 00009 ¹³ 00009 ¹³ 100009 ¹³ 1100009 ¹³ 1100009 ¹³ 1100009 ¹³ 1100009 ¹³ 1100009 ¹³ 1100009 ¹³ 1110009 ¹³ 1100009	Soria 2										0.320	/ 1								
49.95       0.9057       0.07       0.281       1.50       0.613       1.433       0.332       0.00039       0.0024       3E-00       0.001       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011       0.0011	$\frac{49}{51,70} = \frac{9}{0,859} = \frac{0,07}{0,10} = \frac{0,07}{0,303} = \frac{1}{1,50} = 0.613 = \frac{1}{1,43} = \frac{0}{0,324} = \frac{3}{325,65} = \frac{0}{200,97} = \frac{0}{10,0} = \frac{0}{0,001} = \frac$	Selle Z										0,270	2								
$\frac{  rror a 0.001 0.0711 }{10.0 0 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 0.0711 }{10.0 0 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}{10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 1.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}{10.0 2.0 0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}{10.001 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}$ $\frac{  rror a 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}{10.001 0.001 1.2948 105.168 4.352 105.4}$ $  rror a 0.001 1.3111 0.08 0.259 1.18 0.536 1.10 0.277 32-65 0.0047 1.12 0.558 1.137 0.324 2.0047 1.12 0.558 1.137 0.324 2.0047 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.143 0.331 0.18 0.0003 1.18 0.00378 0.0002 1.12 0.558 1.143 0.331 0.18 0.00358 0.0002 1.12 0.558 1.143 0.331 0.18 0.00358 0.0002 1.12 0.558 1.143 0.331 0.18 0.0003 0.0358 0.0002 1.12 0.15$	$  Frora \ 0.001 \ 0.071 \ 0.071 \ 0.071 \ 0.071 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ $											0,170									
$\frac{  rror a 0.001 0.0711 }{10.0 0 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 0.0711 }{10.0 0 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}{10.0 20.0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 1.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0}{10.0 2.0 0 30.0 40.0 50.0 60.0 70.0}$ $\frac{  rror a 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}{10.001 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}$ $\frac{  rror a 0.001 1.457 1.365 1.448 0.006 0.008 0.008 1.2948 105.168 4.352 105.4}{10.001 0.001 1.2948 105.168 4.352 105.4}$ $  rror a 0.001 1.3111 0.08 0.259 1.18 0.536 1.10 0.277 32-65 0.0047 1.12 0.558 1.137 0.324 2.0047 1.12 0.558 1.137 0.324 2.0047 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0014 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.336 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0358 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.147 0.0338 0.0002 1.12 0.558 1.143 0.331 0.18 0.0003 1.18 0.00378 0.0002 1.12 0.558 1.143 0.331 0.18 0.00358 0.0002 1.12 0.558 1.143 0.331 0.18 0.00358 0.0002 1.12 0.558 1.143 0.331 0.18 0.0003 0.0358 0.0002 1.12 0.15$	$  Frora \ 0.001 \ 0.071 \ 0.071 \ 0.071 \ 0.071 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.071 \ 0.0 \ 10.0 \ 20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ $											0,120	2								
$\frac{10,0}{10,0} = 0,0 = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 60,0 = 70,0$ $\frac{10,0}{10,0} = 10,0 = 20,0 = 30,0 = 40,0 = 50,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10,0 = 10$	$\frac{1}{10.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 \ 0.0 $		01,70	0,0000	0,10	0,000	1,00	0,021	-			0.020	E (								0,00000
$ \begin{array}{c} \hline \text{Correlgir per [TTR] a 4 mg/mL} \\ \hline \textbf{VALORES AJUSTE ECUACIÓN Y=A+B^*exp(-C*x) PARÁME TROS \\ \hline \textbf{A} \pm SE B C (\mu A \cdot h^*) \pm (\mu M^*) \pm SE C (\mu + SE B^*C v_0 a x=0   L_{S0} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE (\mu A \cdot h^*) \pm SE C (\mu + SE B^*C v_0 a x=0   L_{S0} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE (\mu A \cdot h^*) \pm SE (\mu A \cdot h^*) \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE (\mu A \cdot h^*) \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE (\mu A \cdot h^*) \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE (\mu A \cdot h^*) \pm SE RA (\mu A \cdot h^*) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) + SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \\ \hline \textbf{(\mu A \cdot h^*)} \pm SE RA(\%) \\ \hline \textbf{(\mu A \cdot h^*)} \\ \hline ($	$ \frac{ValORES AJUSTE ECUACIÓN Y – A + B'exp(-C'x) PARÁMETROS}{A i + SE B C (uA + h^{-1}) i (uA + h^{-1}) i (uM $				_					,				10.0	20.0	20.0	40.0	50.0	60.0	70.0	
(uA · h ⁻¹ )         (uA · h ⁻¹ )         (µM ⁻¹ )         (µM ¹ )	(uA · h ⁻¹ )         (uA · h ⁻¹ )         (µM ⁻¹ )         (µM)           ierie 1+2         -0.070         1.457         1.365         1.448         0.006         0.008         1.2948         105.168         4.352         105.4           mero inhibidor =         7         Referencia llistat         089           C0.52		VALOR	ES AJUSTE		ÓN Y=		o(-C*x)			PAR	ÁMETR	os	]	P	unts a ig	norar				
serie 1+2         -0.070         1.457         1.365         1.448         0.006         0.008         1.2948         105.168         4.352         105.4           mero inhibidor =         7         Referencia Illistai         889	erie 1-2       -0.070       1.457       1.365       1.448       0.006       0.008       0.008       1.2948       105.168       4.352       105.4         mero inhibidor =       7       Referencia liistat       805         %C-052       1       0.00       0.259       1.18       0.536       1.10       0.277       3E-05         3.10       1.3335       0.07       0.245       1.12       0.570       1.05       0.322       0.0014         3.10       1.3335       0.07       0.245       1.12       0.570       1.05       0.322       0.0047         65.01       0.7446       1.00       0.257       1.60       0.282       0.0024         52.63       0.9006       0.07       0.282       1.033       0.294       0.0024         7.786       1.0048       0.07       0.227       1.50       0.586       1.032       0.294       0.0024         8       0.01       0.242       1.20       0.576       1.40       0.282       0.0024         9.00       1.3117       0.07       0.232       1.050       0.356       0.0027       0.336       0.294       0.0024       0.336       0.0024       0.0056	JUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)			7					
$ \frac{\text{mero inhibidor}}{\text{Sc.052}} = \frac{7}{\frac{\text{Referencia llistat}}{27.66}} \frac{809}{1,008} \frac{\text{tr} (h)}{1,3335} \frac{\text{Abs}_{5}}{0.025} \frac{\text{tr} (h)}{1,12} \frac{\text{Abs}_{5}}{0.576} \frac{\text{Lt} (h)}{1,05} \frac{\text{Abs}_{5}}{0.226} \frac{\text{Lt} (h)}{0.2277} \frac{\text{Abs}_{5}}{3.10} \frac{\text{Lt} (h)}{1,3335} \frac{\text{Abs}_{5}}{0.07} \frac{\text{Lt} (h)}{0.245} \frac{\text{Abs}_{5}}{1,12} \frac{\text{Lt} (h)}{0.277} \frac{\text{Abs}_{5}}{3.10} \frac{\text{Lt} (h)}{1,3335} \frac{\text{Abs}_{5}}{0.07} \frac{\text{Lt} (h)}{0.245} \frac{\text{Abs}_{5}}{1,12} \frac{\text{Lt} (h)}{0.2277} \frac{\text{Abs}_{5}}{3.10} \frac{\text{Lt} (h)}{1,3335} \frac{\text{Abs}_{5}}{0.024} \frac{\text{Lt} (h)}{0.0245} \frac{\text{Abs}_{5}}{1,12} \frac{\text{Abs}_{5}}{0.125} \frac{\text{Lt} (h)}{0.0245} \frac{\text{Abs}_{5}}{1,12} \frac{\text{Lt} (h)}{0.225} \frac{\text{Abs}_{5}}{1,12} \text{Ab$	mero inhibidor =       7       Referencia Illistai       089         rC.052       vs (uAln-1)       to (h)       Abso tr (h)       Abso tr (h)       ΔAbs true rrz         0.00       1.3111       0.08       0.259       1.18       0.536       1.10       0.277       3E-05         3.10       1.3335       0.07       0.245       1.12       0.570       1.05       0.322       0.0047         Serie 1       27.86       1.0038       0.08       0.257       1.50       0.581       1.417       0.324       2E-06         40.24       0.966       0.07       0.252       1.22       0.534       1.15       0.282       0.0042         56.01       0.7474       0.10       0.2281       1.057       0.586       1.033       0.294       0.0024         56.01       0.7474       0.10       0.2281       1.60       0.556       1.433       0.289       0.0051         57.86       1.0048       0.07       0.2237       1.50       0.555       1.433       0.311       8E-08         0.007       0.223       1.50       0.555       1.433       0.311       8E-08       0.007       0.228       1.000       0.777       0.00228		(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)										
PC-052         V ₀ (uAh-1)         V ₀ (h)         Abs ₀ tr (h)         Abs ₁ \L(h)         \LAbs         trow V2           0.00         1.3111         0.08         0.259         1.18         0.536         1.10         0.277         3E-05           3.10         1.3335         0.07         0.245         1.12         0.570         1.05         0.325         0.0047           15.48         1.0838         0.08         0.253         1.50         0.589         1.417         0.336         0.0014           40.24         0.960         0.08         0.2561         1.417         0.328         0.0022         0.0024           52.63         0.9006         0.07         0.252         1.22         0.534         1.417         0.282         0.0042           0.0028         1.117         0.526         1.0037         0.0042         0.0042           52.63         0.9006         0.07         0.252         1.22         0.534         1.417         0.328         0.0022           3.10         1.3117         0.07         0.228         1.0037         0.298         0.0051           0.0028         1.548         1.0048         0.07         0.237	VC.052       Vo (uAh-1)       to (h)       Absol tr (h)       Absol (h)	Serie 1+2	-0,070	1,457	1,365	1,448	0,006	0,008	0,008	1,2948	105,168	4,352	105,4								
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071	umero inh	bidor =	7	Reference	ia Ilista	889		-			1.370									
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071	PC-052										1,270									
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071			V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	1,220 1,170 1,120									error Y
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071		0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	3E-05	1,020			Ч <b>`</b>						0,005533
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071		3,10		0,07						0,0047	0,970			1	-	<b></b> ¢	1			0,06884
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,0277         0,02773         0,001         0,07773         0,00028         0,001         0,276         0,0106         0,0106         0,0106         0,017         0,227         1,50         0,555         1,433         0,311         8E-08         0,226         0,0101         0,276         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071			1,0838						0,336		0,870						皇			0,037332
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,07733         0,0028         0,0011         0,370         0,371         8E-08         0,0001         0,376         0,0012         0,370         0,266         0,0011         0,270         0,227         1,50         0,555         1,433         0,311         8E-08         0,0028         0,0011         0,370         0,301         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071	Serie 1										0,930									0,001289
65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,520         0,00688         0,00876         0,026688         0,007         0,520         0,05876         0,05876         0,04704         0,04704         0,017         0,222         1,17         0,524         1,067         0,282         0,0035         0,0526         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,398         0,0021         0,370         0,07733         0,0028         0,0011         0,370         0,371         8E-08         0,0001         0,376         0,0012         0,370         0,266         0,0011         0,270         0,227         1,50         0,555         1,433         0,311         8E-08         0,0028         0,0011         0,370         0,301         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106         0,0106	65,01         0,7474         0,10         0,288         1,50         0,576         1,4         0,288         0,007         0,570         0,650         0,570         0,02666         0,05876         0,007         0,520         0,05876         0,04704         0,0288         1,050         0,526         1,41         0,282         0,0035         0,520         0,05876         0,04704         0,04704         0,04704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,230         1,12         0,588         1,05         0,358         0,0022         0,4704         0,077         0,2207         1,50         0,555         1,433         0,311         8E-08         0,370         0,370         0,07173         0,0010         0,07173         0,0106         0,07173         0,0106         0,071         0,240         1,50         0,555         1,433         0,315         0,0001         0,770         0,0106         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00578         0,00578         0,0071											0,720							Ē	7	0,04873
85,01         0,1474         0,10         0,268         1,30         0,570         0,000         0,570         0,000         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0266         0,0276         0,282         0,0035         0,0266         0,04704         0,04704         0,04704         0,04704         0,04704         0,077         0,227         1,50         0,525         1,433         0,311         8E-08         0,220         0,0016         0,077733         0,00028         0,0001         0,270         0,0001         0,270         0,0016         0,077         0,233         1,50         0,573         1,433         0,315         0,0001         0,270         0,0016         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,0071         0,00751         0,0071         0,00751         0,0071         0,0071         0,0071         0,0	85,01         0,1/474         0,10         0,268         1,30         0,570         0,0007         0,570         0,0007         0,268         0,0007         0,0280         0,0035         0,0035         0,770         0,0035         0,0035         0,0035         0,0035         0,0037         0,220         0,0037         0,2282         0,0035         0,0022         0,0037         0,230         1,12         0,588         1,05         0,358         0,0022         0,0037         0,230         1,12         0,588         1,05         0,358         0,0022         0,0037         0,230         1,12         0,588         1,05         0,358         0,0022         0,07173         0,07173         0,07173         0,0016         0,07173         0,0016         0,07173         0,00026         0,0017         0,237         1,50         0,555         1,433         0,311         0,200         0,270         0,00026         0,0017         0,0016         0,07173         0,00026         0,0016         0,07173         0,00026         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0376         0,0376           52,63         0,8426         0,070         0,256         1,50         0,548 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,670</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,06518</td></t<>											0,670									0,06518
3,10         1,3117         0,07         0,230         1,12         0,588         1,05         0,358         0,0022         0,420         0,4704         0,07133         0,04704         0,07133         0,07133         0,07133         0,07133         0,0016         0,07133         0,0028         0,0028         0,0028         0,0001         0,00028         0,00028         0,0001         0,00028         0,0001         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,0016         0,00578         0,00578         0,0013         0,00578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,003578         0,00578 <th< td=""><td>3.10         1.3117         0.07         0.230         1.12         0.588         1.05         0.358         0.0022         0.420         0.420         0.04704         0.07102           15.48         1.0494         0.07         0.227         1.50         0.525         1.433         0.298         0.0051         0.370         0.227         0.0010         0.07173         0.0026         0.07173         0.0026         0.0010         0.07102         0.0010         0.07102         0.0010         0.0210         0.0010         0.220         0.01010         0.01010         0.01010         0.01010         0.0010         0.0210         0.0010         0.0210         0.0010         0.0210         0.0010         0.0210         0.0010         0.0010         0.0311         8E-05         0.0010         0.0210         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.03578         0.0010         0.0378         0.0010         0.0378         0.0010         0.0378         0.0010         0.0378         0.00578         0.0010         0.0378         0.0378         0.0378         0.0378         0.0378         0.0010         0.0378         0.0378         0.0378         0.0378         0.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	3.10         1.3117         0.07         0.230         1.12         0.588         1.05         0.358         0.0022         0.420         0.420         0.04704         0.07102           15.48         1.0494         0.07         0.227         1.50         0.525         1.433         0.298         0.0051         0.370         0.227         0.0010         0.07173         0.0026         0.07173         0.0026         0.0010         0.07102         0.0010         0.07102         0.0010         0.0210         0.0010         0.220         0.01010         0.01010         0.01010         0.01010         0.0010         0.0210         0.0010         0.0210         0.0010         0.0210         0.0010         0.0210         0.0010         0.0010         0.0311         8E-05         0.0010         0.0210         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.0010         0.03578         0.0010         0.0378         0.0010         0.0378         0.0010         0.0378         0.0010         0.0378         0.00578         0.0010         0.0378         0.0378         0.0378         0.0378         0.0378         0.0010         0.0378         0.0378         0.0378         0.0378         0.									-											
Serie 2         15.48         1.0494         0.07         0.227         1.50         0.525         1.433         0.298         0.0051         0.375         0.00128         0.007173         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0016         0.0011         0.0017         0.0011         0.0017         0.0011         0.0016         0.0011         0.0016         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0013         0.0011         0.003578         0.0011         0.003578         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0013         0.0	Serie 2         15.48         1.0494         0.07         0.227         1.50         0.525         1.433         0.298         0.0051         0.370         0.07173         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00028         0.00018         0.00028         0.00018         0.00028         0.00018         0.00028         0.00018         0.00028         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018         0.00018											0,470									0,058766
Serie 2         27,86         1,0048         0.07         0.237         1,50         0,548         1,433         0,311         8E-08         0,320         0,220         0,00028         0,00028         0,00028         0,00028         0,00028         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016         0,00016	Serie 2         27,86         1,0048         0,07         0,237         1,50         0,548         1,433         0,311         8E-08         0,320         0,320         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,00026         0,0001         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00076         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         0,00376         <											0,420									
40,24         0,9006         0,07         0,240         1,50         0,555         1,433         0,315         0,0001         0,220         0,0016         0,220         0,0016         0,220         0,00171         0,220         0,00171         0,220         0,00171         0,220         0,00171         0,220         0,00378         0,00578         0,03578         0,00578         0,03578         0,00578         0,03578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578         0,00578	40.24         0.9006         0.07         0.240         1.50         0.555         1.433         0.315         0.0001         0.220         0.0106         0.220         0.0106         0.220         0.0106         0.220         0.0106         0.220         0.0106         0.020         0.0011         0.020         0.0011         0.020         0.0011         0.020         0.0106         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0.0011         0											0,370									
52,63 0,8426 0,07 0,239 1,50 0,573 1,433 0,334 5E-05 0,720 0,0071 65,01 0,7383 0,08 0,256 1,50 0,548 1,417 0,292 0,0013 0,207 0,0071 0,03578	52.63         0.8426         0.07         0.239         1.50         0.573         1.433         0.334         5E-05         0.70         0         0         0.007         0.039         0.007         0.039         0.007         0.0348         1.417         0.292         0.0013         0.020         0         0.03578         0.03578         0.03578         0.03578         0.03678         0.0371         0.03578         0.03578         0.03678         0.03678         0.03718         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778         0.03778	Serie 2									-										
55,01 0,7383 0,08 0,256 1,50 0,548 1,417 0,292 0,0013 9,730 0 0,03378	32:03         3:0426         3:05         1:05         1:05         1:05         1:05         0:054         1:05         0:054         1:05         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:054         0:0556         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:056         0:05			0 9006	1 0 07	10/240	1 1 50	10.555	1,433	0,315	0,0001	2/20	1 =								0.01066
	Error a 0,001 0,0712								4 400	0.001	CE 05	9,170	E								
			52,63	0,8426	0,07	0,239	1,50	0,573				2,170									0,00718

corrotair	DOT TTP	1 a 4 mg/mL

		ES AJUSTE	ECUACIO	ÓΝ Y=/	A+B*exp	(-C*x)			PAR	<b>METR</b>	OS
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		

-10,0

0

0,0

10,0

20,0

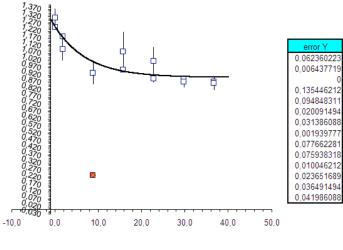
30,0

Punts a ignorar

40,0

50,0

60,0


70,0

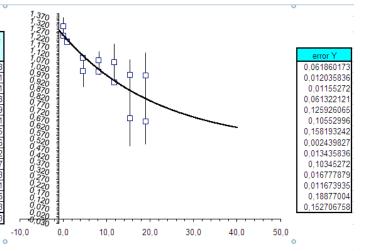
0

numero inhi	bidor =	8	Referenc	ia Ilistai	890				
NPC-052									
	[887]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,0039
	1,75	1,1835	0,07	0,251	1,12	0,562	1,05	0,311	4E-05
	8,73	0,2376	0,07	0,255	1,50	0,575	1,433	0,32	0
Serie 1	15,72	1,0825	0,07	0,238	1,50	0,553	1,433	0,315	0,0183
	22,70	1,0165	0,07	0,235	1,12	0,582	1,05	0,347	0,009
	29,69	0,8916	0,07	0,229	1,22	0,562	1,15	0,333	0,0004
	36,67	0,8764	0,07	0,218	1,50	0,541	1,433	0,323	0,001
	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	4E-06
	1,75	1,0994	0,07	0,217	1,12	0,498	1,05	0,281	0,006
	8,73	0,9359	0,07	0,242	1,50	0,597	1,433	0,355	0,0058
Serie 2	15,72	0,9571	0,07	0,232	1,50	0,599	1,433	0,367	0,0001
	22,70	0,898	0,07	0,217	1,50	0,605	1,433	0,388	0,0006
	29,69	0,8752	0,07	0,216	1,50	0,587	1,433	0,371	0,0013
	36,67	0,8658	0,07	0,203	1,50	0,538	1,433	0,335	0,0018
							Error a	0,001	0,0712

## 🔲 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=/	A+B*exp	(-C*x)			PARÁ	<b>METR</b>	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,905	0,037	0,343	0,050	0,134	0,071	0,046	1,2487	#jNUM!	#¡NUM!	27,5



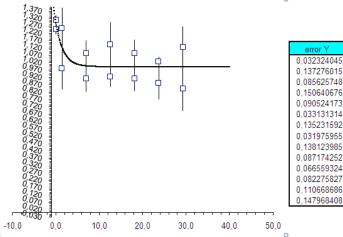

unts a ignora 7

30

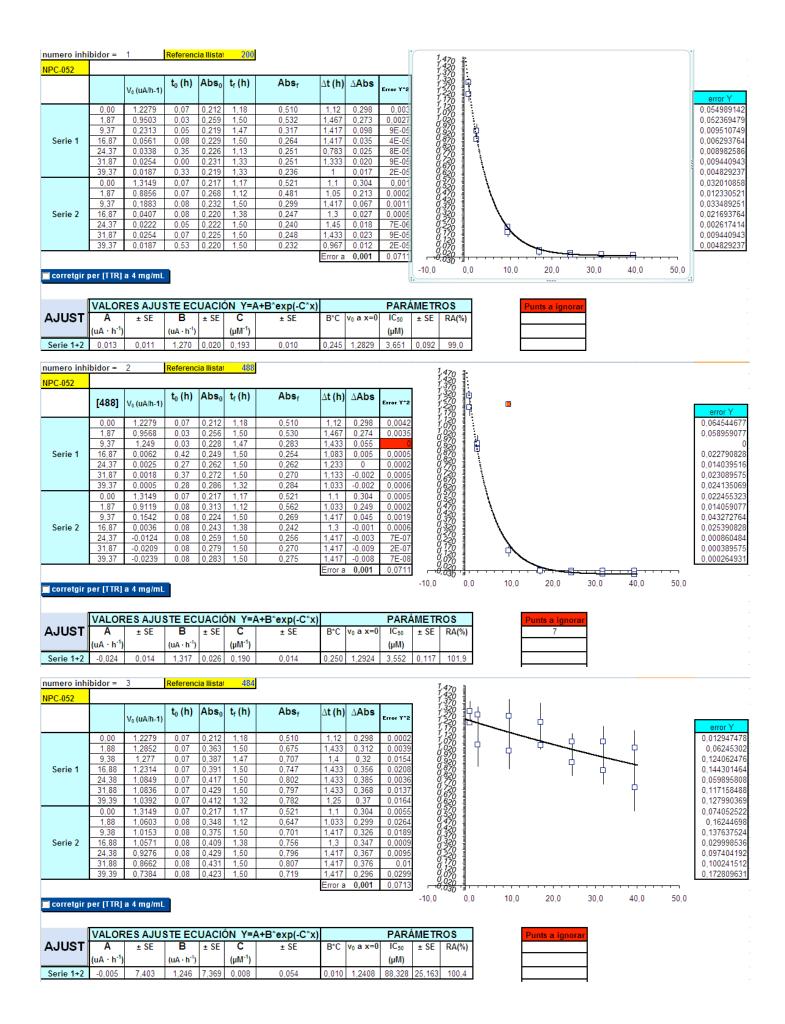
numero inhi	ibidor =	9	Reference	ia Ilista	891					1.:	370 3							
NPC-052										1	320	<b>5</b> .						
	1,2784	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2	1 1 1			J					error Y
	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,002	1,0	220	' f		~-₽				0,044924245
	1,25	1,2198	0,07	0,233	1,12	0,587	1,05	0,354	0,0006	0,0	970							0,024066745
	6,24	1,2031	0,07	0,235	1,50	0,607	1,433	0,372	0,0011	0,2	370							0,033353367
Serie 1	11,24	1,2006	0,07	0,226	1,50	0,557	1,433	0,331	0,0073	0,3	30							0,085616034
	16,23	1,0791	0,07	0,227	1,12	0,613	1,05	0,386	2E-05	0	20							0,004576709
	21,23	1,0494	0,07	0,222	1,22	0,575	1,15	0,353	2E-05	0,6	570							0,004770546
	26,23	1,0252	0,07	0,226	1,50	0,588	1,433	0,362	7E-06	07	570							0,002657212
	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	0,0004	0,2	220							0,019375755
	1,25	1,244	0,07	0,220	1,12	0,537	1,05	0,317	2E-08	0.2	120							0,000133255
	6,24	1,1117	0,07	0,220	1,50	0,585	1,433	0,365	0,0034	Ő,	320							0,058046633
Serie 2	11,24	1,0628	0,07	0,215	1,50	0,598	1,433	0,383	0,0027	0.	270							0,052183966
	16,23	1,0541	0,07	0,220	1,50	0,616		0,396	0,0004	0,	<u>i</u>							0,020423291
	21,23 26,23	1,0594	0,08	0,228	1,50 1.50	0,595	1,417	0,367	0,0002	0.	120							0,014770546 0,016742788
	20,23	1,0000	0,07	0,213	1,50		Error a		0,0003	0,0	220							0,010742700
								0,001	0,0711							40.0		
🗖 corretgir (	per [TTR]	a 4 mg/mL								-10,0	0	,0 10,0	)	20,0	30,0	40,0	50,0	0
		<u> </u>																·
				-								_			_			
	VALORE	ES AJUSTE	ECUACI	ÓN Y=	<b>\+B</b> *exp	(-C*x)			PAR/	METR	os		Punt	s a ignora	r			
AJUST	Α	± SE	B	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%	)						
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)									
Serie 1+2	0,960	0,102	0,306	0,095	0,061	0,039	0,019	1,2662	#¡NUM!	#¡NUM!	24,2				7			
												_	H		-1			

0

numero inhi	bidor =	10	Referenc	ia Ilista	892				
NPC-052									
	2,338213566	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
Serie 1	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,0038
	0,90	1,2074	0,07	0,231	1,12	0,602	1,05	0,371	0,0001
	4,51	1,1001	0,07	0,229	1,50	0,618	1,433	0,389	0,0001
	8,12	1,0814	0,07	0,237	1,50	0,617	1,433	0,38	0,0038
	11,73	1,0682	0,07	0,249	1,12	0,639	1,05	0,39	0,0159
	15,35	0,9817	0,07	0,260	1,22	0,668	1,15	0,408	0,0111
	18,96	0,9782	0,07	0,261	1,50	0,636	1,433	0,375	0,025
Serie 2	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	6E-06
	0,90	1,206	0,07	0,216	1,12	0,573	1,05	0,357	0,0002
	4,51	1,0082	0,07	0,204	1,50	0,518	1,433	0,314	0,0107
	8,12	1,0033	0,07	0,223	1,50	0,595	1,433	0,372	0,0003
	11,73	0,9306	0,08	0,226	1,50	0,542	1,417	0,316	0,0001
	15,35	0,6874	0,07	0,248	1,50	0,563	1,433	0,315	0,0356
	18,96	0,6673	0,07	0,255	1,50	0,558	1,433	0,303	0,0233
							Error a	0,001	0,0713




its a igi

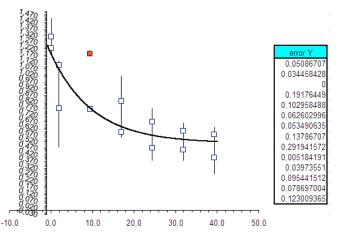

## 🔲 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓΝ Y=/	A+B*exp	(-C*x)			PAR/	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		

anicio nin	ibidor =	11	Reference	ia Ilista:	893				
PC-052									
	1,2773	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
Serie 1	0,00	1,3111	0,08	0,259	1,18	0,536	1,10	0,277	0,001
	1,39	1,2583	0,07	0,242	1,12	0,624	1,05	0,382	0,0188
	6,96	1,0855	0,07	0,231	1,50	0,542	1,433	0,311	0,0073
	12,53	1,1458	0,07	0,230	1,50	0,596	1,433	0,366	0,0227
	18,09	1,0855	0,07	0,228	1,12	0,626	1,05	0,398	0,0082
	23,66	1,0281	0,07	0,243	1,22	0,654	1,15	0,411	0,0011
	29,23	1,1302	0,07	0,256	1,50	0,654	1,433	0,398	0,0183
Serie 2	0,00	1,2468	0,10	0,242	1,17	0,524	1,067	0,282	0,001
	1,39	0,9829	0,07	0,220	1,12	0,473	1,05	0,253	0,0191
	6,96	0,9127	0,07	0,232	1,50	0,511	1,433	0,279	0,0076
	12,53	0,9286	0,07	0,231	1,50	0,556	1,433	0,325	0,0044
	18,09	0,9127	0,07	0,227	1,50	0,558	1,433	0,331	0,0068
	23,66	0,8843	0,07	0,250	1,50	0,623	1,433	0,373	0,0122
	29,23	0,847	0,07	0,256	1,50	0,574	1,433	0,318	0,0219



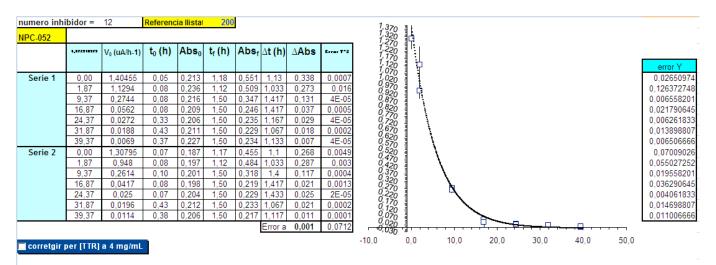
		S AJUSTE	ECUACIO	ÓN Y=/	A+B*exp	(-C*x)			PAR	<b>ÁMETR</b>	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,995	0,038	0,284	0,090	0,583	0,532	0,165	1,2788	#jNUM!	#¡NUM!	22,2




PC-052	ibidor =	4	Referenc		482					1,470 1,420							
0.002	[484]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y^2								error
	0,00	1,2279	0,07	0,212	1,18	0,510	1,12	0,298	2E-06	7,120 7,070	√ _						0,0013
	1,88 9,38	1,198 1,1812	0,07	0,324	1,50	0,577 0,497	1,433	0,253	0,0234	0,970	Ν						0,1529
Serie 1	16,88	0,4301	0,12	0,316	1,50	0,451	1,383	0,135	0,0203	0.870	$  \rangle$						0,1425
	24,38	0,2147	0,08	0,347	1,50	0,484	1,417	0,137	0,0039	0,20	<b>₽ \</b>						0,0621
	31,88 39,38	-0,0332 -0,0298	0,32	0,239	1,50 1,50	0,197 0,190	1,183	-0,042 -0,045	0,0133 0,0057	0,670	$  \rangle$						0,1154
	0,00	1,3149	0,07	0,217	1,17	0,521	1,1	0,304	0,0073	0,570	$  \rangle$	. 1					0,0856
	1,88	0,8008	0,08	0,300	1,12	0,533	1,033	0,233	0,0596	0.470	þ	∖ ¦					0,2442
Serie 2	9,38 16,88	0,4635 0,256	0,08	0,291	1,50 1,38	0,432	1,417	0,141 0,083	0,0069 0,001	0.370	I						0,0833
Jene 2	24,38	0,1719	0,08	0,344	1,50	0,407	1,417	0,063	0,0004	0,270		- <b>`</b>	<u>&gt; н</u>				0,0193
	31,88	0,13	0,08	0,384	1,50	0,434	1,417	0,05	0,0023	0,170			H	<u></u>			0,0477
	39,38	0,0863	0,03	0,392	1,50	0,423	1,467 Error a	0,031 0,001	0,0017 0,0713	0.020							0,0406
							LITOT a	0,001	0,0713	-10,0 0,0	) 10	0	20,0	30,0	40.0	50.0	
orretgir (	per [TTR]	a 4 mg/mL								-10,0 0,0		,0	20,0	50,0	40,0	50,0	
	VALOF	RESAJUS		UACI		+B*exp(-C*:	x)		PARÁ	METROS		Punt	<mark>s a ignor</mark>	ar			
JUST	A (uA · h ⁻¹ )	± SE	B (uA · h ⁻¹ )	± SE	С (µМ ⁻¹ )	± SE	B*C	v ₀ a x=0	IC ₅₀ (μΜ)	± SE RA(%)			7	_			
erie 1+2	0,006	0,096	1,223	0,103	0,087	0,024	0,106	1,2292		0,530 99,5							
												•		•			
nero inhi	bidor =	5	Referenc	ia Ilistat	480					1,470 1,420 1,320							
C-052			t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs		100 1							
		V ₀ (uA/h-1)							Error Y*2								error
	0,00	1,2279	0,07	0,212	1,18	0,510	1,12	0,298	0,0026	1,120	É						0,0513
	1,87 9,37	0,0023 0,3198	0,00	0,164	1,50 1,47	0,169 0,178	1,5 1,183	0,005	0,0047	020	n						0,06821
Serie 1	16,87	-0,0119	0,23	0,214	1,50	0,199	1,267	-0,015	0,0044	0.870	1						0,06603
	24,37	0,0435	0,08	0,248	1,50	0,271	1,417	0,023	0,0022	0,220	1						0,04667
	31,87 39,37	0,0368 0,0299	0,35	0,323 0,318	1,50 1,50	0,362	1,15	0,039	0,0032	0,670	\						0,05660
	0,00	1,3149	0.07	0,217	1,17	0,540	1,135	0,304	0,0013	0570							0,0356
	1,87	0,9515	0,08	0,325	1,12	0,604	1,033	0,279	0,0004	0470							0,01959
0	9,37	0,2186	0,08	0,277	1,50	0,344	1,417	0,067	0,0011	0320	$ \setminus $						0,03298
Serie 2	16,87 24,37	0,0137	0,08	0,307	1,38 1,50	0,312 0,315	1,3 1,417	0,005	0,0016	0,220	Z						0,04043
	31,87	-0,0351	0,08	0,336	1,50	0,324	1,417	-0,012	0,0002	0,120	Ļ						0,01529
	39,37	-0,0672	0,08	0,349	1,50	0,328	1,417	-0,021	0,0018	0,020	_		- d	Ь	Н		0,0425
			_				Error a	0,001	0,0712	-10,0 0,0	<b>1</b> 0		20,0	30,0	40.0	50,0	
corretgir (	per [TTR]	a 4 mg/mL								-10,0 0,0	10	,0	20,0	50,0	40,0	50,0	
1	VAL OF	ES AJUS	TE EC	UACIO	ΌΝ Υ=Δ	+B*exp(-C*)	c)		PARÁ	METROS		Punts	a ignora	ar			
JUST	Α	± SE	В	± SE	С	± SE		v ₀ a x=0	IC ₅₀	± SE RA(%)			6				
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)					_			
	-0,027	0,023	1,306	0,039	0,165	0,016	0,215	1,2793	4,080	0,165 102,1				_			
erie 1+2																	
					415					1,470							
mero inhi	ibidor =	6	Referenc	a mota													
erie 1+2 mero inhi C-052				Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y*2	7320 77270	I						
mero inhi	[482]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀						1111 0000000000 111111111111111111111	۲. ۲						
mero inhi	[ <b>482]</b>	V₀ (uA/h-1) 1,2279	<b>t₀ (h)</b>	Abs ₀	1,18	0,510	1,12	0,298	0,0004		ł						0,0196
nero inhi	[482]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀						1997 1997 1997 1997 1997 1997 1997 1997							0,0196 0,0864
nero inhi C-052	[482] 0,00 1,88 9,38 16,88	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115	<b>t</b> ₀ ( <b>h</b> ) 0,07 0,08 0,07 0,07	Abs ₀ 0,212 0,343 0,257 0,230	1,18 1,50 1,47 1,50	0,510 0,620 0,517 0,390	1,12 1,417 1,4 1,433	0,298 0,277 0,26 0,16	0,0004 0,0075 0,0253 0,0139	20000000000000000000000000000000000000							0,0196 0,0864 0,1591 0,1177
nero inhi C-052	[482] 0,00 1,88 9,38 16,88 24,38	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333	<b>t</b> ₀ (h) 0,07 0,08 0,07 0,07 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245	1,18 1,50 1,47 1,50 1,50	0,510 0,620 0,517 0,390 0,398	1,12 1,417 1,4 1,433 1,417	0,298 0,277 0,26 0,16 0,153	0,0004 0,0075 0,0253 0,0139 0,001	1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444 14444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444							0,0196 0,0864 0,1591 0,1177 0,0322
mero inhi C-052	[482] 0,00 1,88 9,38 16,88 24,38 31,88	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333 0,2541	<b>t</b> ₀ (h) 0,07 0,08 0,07 0,07 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245	1,18 1,50 1,47 1,50 1,50 1,50	0,510 0,620 0,517 0,390 0,398 0,339	1,12 1,417 1,4 1,433 1,417 1,417	0,298 0,277 0,26 0,16 0,153 0,094	0,0004 0,0075 0,0253 0,0139 0,001 3E-05	1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990							0,0196 0,0864 0,1591 0,1177 0,0322 0,0054
nero inhi C-052	[482] 0,00 1,88 9,38 16,88 24,38	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333 0,2541 0,1888	<b>t</b> ₀ (h) 0,07 0,08 0,07 0,07 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,246	1,18 1,50 1,47 1,50 1,50 1,50 1,50	0,510 0,620 0,517 0,390 0,398 0,339 0,314	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417	0,298 0,277 0,26 0,16 0,153 0,094 0,068	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027	1990		<u> </u>					0,0196 0,0864 0,1591 0,1177 0,0322 0,0054 0,0520
nero inhi C-052	[482] 0,00 1,88 9,38 16,88 24,38 31,88 39,38 0,00 1,88	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333 0,2541 0,1888 1,3149 0,936	t ₀ (h) 0,07 0,08 0,07 0,07 0,08 0,08 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,245 0,246 0,217 0,292	1,18 1,50 1,47 1,50 1,50 1,50 1,50 1,17 1,12	0,510 0,620 0,517 0,390 0,398 0,339 0,314 0,521 0,533	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417 1,1 1,033	0,298 0,277 0,26 0,16 0,153 0,094 0,068 0,304 0,241	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027 0,0045 0,0158	1997							0,0196 0,0864 0,1591 0,1177 0,0322 0,0054 0,0520 0,0673 0,1258
mero inhi C-052 Serie 1	[482] 0,00 1,88 9,38 16,88 24,38 31,88 39,38 0,00 1,88 9,38	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333 0,2541 0,1888 1,3149 0,936 0,6412	t ₀ (h) 0,07 0,08 0,07 0,07 0,08 0,08 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,246 0,217 0,292 0,250	1,18 1,50 1,47 1,50 1,50 1,50 1,50 1,17 1,12 1,50	0,510 0,620 0,517 0,390 0,398 0,339 0,314 0,521 0,533 0,460	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417 1,1 1,033 1,417	0,298 0,277 0,26 0,16 0,153 0,094 0,068 0,304 0,241 0,21	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027 0,0045 0,0158 0,0017	1990,000,000,000,000,000,000,000,000,000			< +				0,0196 0,0864 0,1591 0,1177 0,0322 0,0054 0,0520 0,0673 0,1258 0,0406
nero inhi C-052 Serie 1	[482] 0,00 1,88 9,38 16,88 24,38 31,88 39,38 0,00 1,88 9,38 16,88	V ₀ (uA/h-1) 1.2279 1.1483 0.4414 0.5115 0.3333 0.2541 0.1888 1.3149 0.936 0.6412 0.4265	t ₀ (h) 0,07 0,08 0,07 0,08 0,08 0,08 0,08 0,08 0,08 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,246 0,217 0,292 0,250 0,233	1,18 1,50 1,47 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,38	0,510 0,620 0,517 0,390 0,398 0,339 0,314 0,521 0,533 0,460 0,379	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417 1,1 1,033 1,417 1,3	0,298 0,277 0,26 0,16 0,153 0,094 0,068 0,304 0,241 0,21 0,146	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027 0,0045 0,0158 0,0017 0,0011								0,0196 0,0864 0,1591 0,1177 0,0322 0,0054 0,0520 0,0673 0,1258 0,0406 0,0327
nero inhi C-052	[482] 0,00 1,88 9,38 16,88 24,38 31,88 39,38 0,00 1,88 9,38	V ₀ (uA/h-1) 1,2279 1,1483 0,4414 0,5115 0,3333 0,2541 0,1888 1,3149 0,936 0,6412	t ₀ (h) 0,07 0,08 0,07 0,07 0,08 0,08 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,246 0,217 0,292 0,250	1,18 1,50 1,47 1,50 1,50 1,50 1,50 1,17 1,12 1,50	0,510 0,620 0,517 0,390 0,398 0,339 0,314 0,521 0,533 0,460	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417 1,1 1,033 1,417	0,298 0,277 0,26 0,16 0,153 0,094 0,068 0,304 0,241 0,21	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027 0,0045 0,0158 0,0017								0,0196 0,0864 0,1591 0,1177 0,0322 0,0054 0,0520 0,0673 0,1258 0,0406 0,0327 0,0385
nero inhi C-052 Gerie 1	[482] 0,00 1,88 9,38 16,88 24,38 31,88 39,38 0,00 1,88 9,38 9,38 16,88 24,38	V ₀ (uAh-1) 1,2279 1,1483 0,4414 0,5115 0,2541 0,2541 0,2541 0,2541 0,2541 0,2541 0,2541 0,2545 0,3336 0,440 0,410 0,410 0,410 0,510 0,2541 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,254 0,	t ₀ (h) 0,07 0,08 0,07 0,08 0,08 0,08 0,08 0,08	Abs ₀ 0,212 0,343 0,257 0,230 0,245 0,245 0,245 0,246 0,217 0,292 0,250 0,233 0,242	1,18 1,50 1,47 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,38 1,50	0,510 0,620 0,517 0,390 0,398 0,314 0,521 0,533 0,460 0,379 0,381	1,12 1,417 1,4 1,433 1,417 1,417 1,417 1,417 1,1 1,033 1,417 1,3 1,417	0,298 0,277 0,26 0,16 0,153 0,094 0,068 0,304 0,241 0,21 0,21 0,146 0,139	0,0004 0,0075 0,0253 0,0139 0,001 3E-05 0,0027 0,0045 0,0158 0,0017 0,0011 0,0015								error 0,0196 0,0864 0,15912 0,1177 0,0322 0,0054 0,0250 0,0673 0,0250 0,0406 0,0375 0,0325 0,0206 0,03315

## 🗖 corretgir per [TTR] a 4 mg/mL

		ES AJU	STE EC	UACIO	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METE	ROS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0.226	0.050	1.022	0.063	0.107	0.020	0.109	1.2475	8.814	0.460	81.9


numero inhi	bidor =	7	Referenc	ia Ilista	882				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Error Y*2
	0,00	1,2279	0,07	0,212	1,18	0,510	1,12	0,298	0,0026
	1,87	1,0981	0,08	0,322	1,50	0,606	1,417	0,284	0,0012
	9,36	1,1856	0,08	0,290	1,47	0,559	1,383	0,269	0
Serie 1	16,85	0,8263	0,08	0,273	1,50	0,523	1,417	0,25	0,0368
	24,35	0,6719	0,08	0,255	1,50	0,474	1,417	0,219	0,0106
	31,84	0,6004	0,08	0,246	1,50	0,465	1,417	0,219	0,0039
	39,33	0,5765	0,10	0,228	1,50	0,416	1,4	0,188	0,0029
	0,00	1,3149	0,07	0,217	1,17	0,521	1,1	0,304	0,019
	1,87	0,7717	0,08	0,274	1,12	0,497	1,033	0,223	0,0852
	9,36	0,7675	0,08	0,261	1,50	0,484	1,417	0,223	3E-05
Serie 2	16,85	0,5948	0,08	0,239	1,38	0,428	1,3	0,189	0,0016
	24,35	0,4735	0,08	0,228	1,50	0,416	1,417	0,188	0,0091
	31,84	0,4591	0,08	0,225	1,50	0,435	1,417	0,21	0,0062
	39.33	0.4	0.08	0.217	1.50	0.381	1,417	0.164	0.0151



Punts a ignora 7

#### corretgir per [TTR] a 4 mg/mL

	VALOR	ES AJU:	STE EC	UACIO	ÓN Y=/	\+B*exp(-C*x)			PARÁ	METF	ROS
AJUST								v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,510	0,094	0,667	0,110	0,099	0,056	0,066	1,1770	21,477	5,231	56,7



Error a 0,001 0,0713

		VALORE	S AJUSTE	ECUACIÓ	ŚN Y=∕	A+B*exp	(-C*x)			PARÁ	<b>METR</b>	OS
	AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
		(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
1	Serie 1+2	-0,001	0,021	1,379	0,035	0,169	0,014	0,233	1,3780	4,090	0,148	100,1

952

1.18 0.55

1.50

1.50

1,50

1,50

1,50

1.17

1,12

1,50

1.50

1,50

1,50 0,438

Abs_f ∆t (h)

0,563

0.469

0.346

0.360

0,315

0,455 1.1

0,579

0,527 1,383

1.13

1,067

1 4 17

1,383

1,433

1,033

0,437 1,367 0,224

0.420 1.383 0.227

0,470 1,383 0,278

1,383

0,311 1,433

1,433 0,259

∆Abs

0,338

0,345

0.145

0.146

0,128

0,121

0,268

0,360

0,314

0,248

Error a 0,001 0,0712

Error T*2

0,0003

0,0242

2E-0

0,000

0,013

0,003

0,005

0.001

0,000

0,000

030 -10,0

0,0

10,0

9E-06

5E-0

Abs₀ t_f (h)

0.213

0,218

0.210

0.201

0.214

0,187

0,190

0,187

0,219

0.213

0 193

0,192

0,190

Referencia Ilistat

t₀ (h)

0,05

0,05

0,07

0.08

0.12

0,07

0,07

0,07

0,08

0,12

0.13

0.12

0,12

0,12

V₀ (uA/h-1)

1,40455

1,4503

1.4038

0,5373

0,3838

0,3229

1,30795

1,3154


1,0039

0.7668

0.4858

0,4312

0,3483







## 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 2

[952]

0,00

1,88

9.38

16.89

24,40

31,91

39,41

0,00

1,88

9.38

16.89

24.40

31,91

39.41

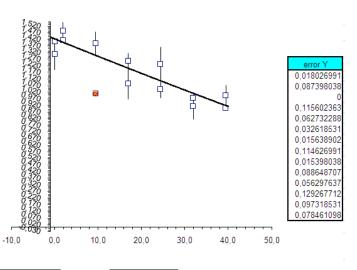
NPC-052

Serie 1

Serie 2

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=/	A+B*exp	(-C*x)			PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,140	0,152	1,283	0,144	0,050	0,013	0,064	1,4231	16,226	0,748	90,2

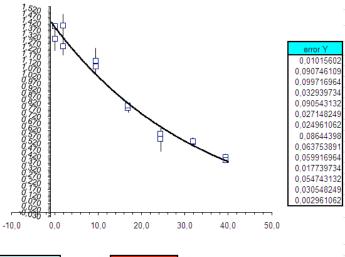



20,0

30.0

40.0

50.0

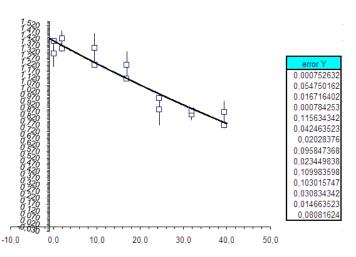

numero inhi	bidor =	5	Referenc	ia Ilistai	955				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
Serie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0003
	1,88	1,4851	0,07	0,250	1,12	0,632	1,05	0,382	0,0076
	9,38	1,0089	0,07	0,235	1,50	0,598	1,433	0,363	0
	16,88	1,0865	0,07	0,237	1,50	0,617	1,433	0,38	0,0134
	24,38	1,0438	0,07	0,238	1,50	0,596	1,433	0,358	0,0039
	31,88	0,9798	0,07	0,252	1,50	0,600	1,433	0,348	0,0011
	39,39	0,9041	0,07	0,250	1,50	0,579	1,433	0,329	0,0002
Serie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	0,0131
	1,88	1,4131	0,07	0,214	1,12	0,572	1,05	0,358	0,0002
	9,38	1,3878	0,07	0,216	1,50	0,687	1,433	0,471	0,0079
	16,88	1,2584	0,08	0,230	1,50	0,589	1,417	0,359	0,0032
	24,38	1,2358	0,10	0,239	1,50	0,674	1,4	0,435	0,0167
	31,88	0,9151	0,10	0,239	1,50	0,622	1,4	0,383	0,0095
	39,39	0,9982	0,10	0,247	1,50	0,640	1,4	0,393	0,0062
							Error a	0,001	0,0713



<mark>unts a ignora</mark> 7

	VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x) PARÁMETROS						OS				
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		

numero inhi	bidor =	4	Referenc	ia Ilista	954				
NPC-052									
	[953]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2
Serie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0001
	1,87	1,4067	0,05	0,234	1,12	0,569	1,067	0,335	0,0082
	9,36	1,1419	0,05	0,301	1,50	0,591	1,45	0,29	0,0099
	16,85	0,7898	0,07	0,393	1,50	0,650	1,433	0,257	0,0011
	24,34	0,5563	0,07	0,449	1,50	0,720	1,433	0,271	0,0082
	31,83	0,533	0,08	0,540	1,50	0,788	1,417	0,248	0,0007
	39,32	0,4178	0,07	0,610	1,50	0,833	1,433	0,223	0,0006
Serie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	0,0075
	1,87	1,2522	0,07	0,227	1,12	0,655	1,05	0,428	0,0041
	9,36	1,1021	0,10	0,309	1,50	0,661	1,4	0,352	0,0036
	16,85	0,805	0,13	0,384	1,50	0,651	1,367	0,267	0,0003
	24,34	0,5921	0,10	0,453	1,50	0,647	1,4	0,194	0,003
	31,83	0,5364	0,10	0,532	1,50	0,713	1,4	0,181	0,0009
	39,32	0,3958	0,10	0,595	1,50	0,743	1,4	0,148	9E-06
							Error a	0,001	0,0712

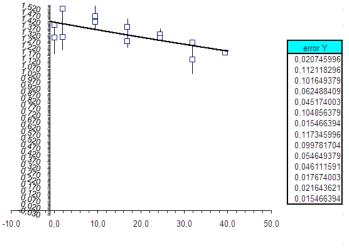



🗖 corretgir per [TTR] a 4 mg/mL
---------------------------------

	VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x) PARÁMETROS						OS				
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
			4								
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		

Punts a ignorar

numero inhi	bidor =	3	Referenc	ia Ilista	953	I			
NPC-052									
		V ₀ (uA/h- <b>1</b> )	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2
Serie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	6E-07
	1,87	1,4254	0,05	0,220	1,12	0,559	1,067	0,339	0,003
	9,37	1,2255	0,05	0,253	1,50	0,648	1,45	0,395	0,0003
	16,86	1,1194	0,07	0,273	1,50	0,622	1,433	0,349	6E-07
	24,35	0,8886	0,07	0,289	1,50	0,541	1,433	0,252	0,0134
	31,84	0,8516	0,07	0,323	1,50	0,695	1,433	0,372	0,0018
	39,33	0,7691	0,08	0,345	1,50	0,560	1,417	0,215	0,0004
Serie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	0,0092
	1,87	1,3472	0,07	0,215	1,12	0,534	1,05	0,319	0,0005
	9,37	1,3522	0,08	0,248	1,50	0,688	1,417	0,44	0,0121
	16,86	1,2232	0,10	0,266	1,50	0,661	1,4	0,395	0,0106
	24,35	0,9734	0,07	0,282	1,50	0,660	1,433	0,378	0,001
	31,84	0,8794	0,17	0,340	1,50	0,714	1,333	0,374	0,0002
	39,33	0,8702	0,18	0,367	1,50	0,713	1,317	0,346	0,0065
							Error a	0,001	0,0712




## 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=	A+B*exp	(-C*x)			PARÁ	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-1.206	5.625	2.610	5,605	0.007	0.017	0.018	1.4038	45,903	5,777	185.9

Pu	ints a ignorar

numero inhi	bidor =	1	Referenc	ia Ilistat	951				
NPC-052									
		V ₀ (uA/h- <b>1</b> )	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2
Serie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0004
	1,87	1,5264	0,05	0,229	1,12	0,565	1,067	0,336	0,0126
	9,37	1,4727	0,05	0,222	1,50	0,638	1,45	0,416	0,0103
	16,86	1,3916	0,05	0,226	1,50	0,641	1,45	0,415	0,0039
	24,35	1,3336	0,05	0,217	1,50	0,659	1,45	0,442	0,002
	31,84	1,1441	0,05	0,199	1,50	0,575	1,45	0,376	0,011
	39,33	1,1952	0,05	0,192	1,50	0,564	1,45	0,372	0,0002
Serie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	0,0138
	1,87	1,3145	0,08	0,233	1,12	0,619	1,033	0,386	0,01
	9,37	1,4257	0,07	0,205	1,50	0,693	1,433	0,488	0,003
	16,86	1,283	0,07	0,201	1,50	0,589	1,433	0,388	0,0021
	24,35	1,3061	0,07	0,204	1,50	0,688	1,433	0,484	0,0003
	31,84	1,2706	0,07	0,198	1,50	0,633	1,433	0,435	0,0005
	39,33	1,1952	0,08	0,198	1,50	0,585	1,417	0,387	0,0002
							Error a	0,001	0,0712



## 🗖 corretgir per [TTR] a 4 mg/mL

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=∕	A+B*exp	(-C*x)			PARÁ	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-0,032	17,347	1,457	#####	0,004	0,052	0,006	1,4253	165,755	51,237	102,3

Punts a ign

	bidor =	6	Referenc		956					1,520 1,470 1,420		<u>–</u>	Ţ			1		
	[954]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	1320 1320 1220	Ч   					4		error
erie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0001	1,170 1,120				т	φ -	+		0,01106
	1,87	1,4811	0,07	0,244	1,12	0,649	1,05	0,405	0,0057	1,070						'		0,0752
	9,37 16,87	0,5518	0,07	0,246	1,50 1,50	0,636	1,433	0,39 0,413	0,0082	0 920								0,09064
	24,37	1,2486	0,07	0,230	1,50	0,607	1,433	0,377	0,0017	0,820								0,04178
	31,87 39,36	1,2074 1,1489	0,07	0,226	1,50 1,50	0,618	1,433 1,433	0,392	0,002	0,720 0,670								0,04493
erie 2	0,00	1,30795	0,07	0,200	1,17	0,352	1,435	0,320	0,0043	0,620 0,570								0,00502
	1,87	1,4337	0,07	0,211	1,12	0,603	1,05	0,392	0,0008	0,520		-						0,0278
	9,37 16,87	1,396 1,3016	0,08	0,213	1,50 1,50	0,682	1,417	0,469	0,0008	0 370								0,02883
	24,37	1,2549	0,07	0,100	1,50	0,550	1,433	0,506	0,0007	0,270								0,02705
	31,87	1,2546	0,07	0,209	1,50	0,683	1,433	0,474	5E-06	0,720								0,00226
	39,36	1,3235	0,10	0,209	1,50	0,631	1,4 Error a	0,422 0,001	0,0119 0,0712	0,070								0,10897
orretair r	or ITTP1	a 4 mg/mL						0,001	0,0712	-10,0	0,0	10,0	20,0	30	),0	40,0	50,0	
neign p		a 4 mg/mz																
UST	VALORE	ES AJUSTE ± SE	ECUACI B	ÓN Y=/	∖+B*exp C	(-C*x) ± SE	B*C	v ₀ a x=0		METROS ± SE RA(9	()		ounts a ig	Inorar				
031			(uA · h ⁻¹ )	I DE	(µM⁻¹)	I OL	вс	v ₀ a x-0	(μM)	T SE RA(	•)	F	1					
rie 1+2	-5,073	394,719	6,489	#####	0,001	0,049	0,005	1,4156		###### 458,	4	þ						
												•						,
ero inhi -052	bidor =	7	Referenc	ia Ilistat	957					1.520 1.470								<u> </u>
		V ₀ (uA/h-1)	<b>t</b> ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T^2	1370 1370 1220 1220								error
erie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,001	1,170 1,120		4						0,03222
	1,87	1,3529 1,0838	0,07	0,223	1,12	0,569	1,05	0,346	0,0018	1 020								0,0423
	9,36 16,86	0,9079	0,07	0,251 0,288	1,50 1,50	0,575	1,435	0,324	0,0001	0 920								0,0108
	24,35	0,6749	0,08	0,303	1,50	0,533	1,417	0,23	0,0111	0,220				Ū.				0,1054
	31,84	0,6762	0,07	0,330	1,50	0,561	1,433	0,231	7E-05	0,720					<u>_</u>			0,00854
erie 2	39,33 0.00	0,5101	0,08	0,358	1,50 1,17	0,557	1,417	0,199	0,0045	0.620 0.570				Ť		<u> </u>		0,0668
	1,87	1,2898	0,07	0,233	1,12	0,455	1,033	0,318	0,00041	0.520						ę		0,0207
	9,36	1,1561	0,08	0,254	1,50	0,595	1,417	0,341	0,0038	0,420 0,370						1		0,0616
	16,86 24,35	0,9054 0,816	0,10	0,279 0,306	1,50 1,50	0,564	1,4 1,433	0,285	0,0002 0,0013	0,320								0,015
	31,84	0,7365	0,07	0,333	1,50	0,628	1,433	0,295	0,0013	0,220 0,170								0,0558
	39,33	0,6233	0,08	0,377	1,50	0,613	1,417	0,236	0,0022	0,070								0,0463
							Error a	0,001	0,0712	<u>, 0,ŏ36 ,</u>								
orretgir p	er [TTR]	a 4 mg/mL							c		0,0	10,0	20,0	30	,0	40,0	50,0	þ
	VALOR	ES AJUSTE	ECUACI	ÓN Y=/	+B*exp	(-C*x)			PARÁ	METROS			^o unts a ig	norar				
					C	± SE	B*C	v ₀ a x=0		± SE RA(%	6)		units a 13					
	Α	± SE	В	± SE		- 01					•/	- F						
		± SE	<b>B</b> (uA ⋅ h ⁻¹ )	± SE 0,248	(µM⁻¹)		0,034	1,3723	(μM) 30,492		·	F						
	A (uA · h⁻¹)	± SE	<b>B</b> (uA ⋅ h ⁻¹ )		(µM⁻¹)		0,034	1,3723	(µM)		·							
rie 1+2 nero inhi	<b>A</b> (uA · h ⁻¹ ) 0,202	± SE 0,260	<b>B</b> (uA ⋅ h ⁻¹ )	0,248	(µМ ⁻¹ ) 0,029	0,011	0,034	1,3723	(µM)		·							,
ie 1+2 ero inhi	<b>A</b> (uA · h ⁻¹ ) 0,202	± SE 0,260	B (uA · h ⁻¹ ) 1,170 Reference	0,248	(µМ ⁻¹ ) 0,029	0,011	0,034 ∆ <b>t (h)</b>		(µM)		·	Ē						,
rie 1+2 ero inhi -052	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00	± SE 0,260 8 V₀ (uA/h-1) 1,40455	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05	0,248 ia llistat Abs ₀ 0,213	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18	0,011 Abs _f 0,551	∆ <b>t (h)</b> 1,13	∆ <b>Abs</b> 0,338	(μM) 30,492 Errer τ*2 2E-05									error 0,0040
ie 1+2 ero inhi -052	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87	± SE 0,260 8 V ₀ (uA/h-1) 1,40455 1,5367	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07	0,248 ia llistat Abs ₀ 0,213 0,243	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12	0,011 Abs _f 0,551 0,643	∆ <b>t (h)</b> 1,13 1,05	∆ <b>Abs</b> 0,338 0,4	(μM) 30,492									
ie 1+2 ero inhi -052	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37	± SE 0,260 8 V₀ (uA/h-1) 1,40455 1,5357 0,2376	B (uA · h ⁻¹ ) 1,170 Referenc t ₀ (h) 0,05 0,07 0,07	0,248 ia llistat 0,213 0,213 0,243 0,259	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50	0,011 Abs _f 0,551 0,643 0,638	∆ <b>t (h)</b> 1,13 1,05 1,433	∆ <b>Abs</b> 0,338 0,4 0,379	(μM) 30,492 <u>Errer 1^2</u> <u>2E-05</u> 0,0231 0			÷			Ь			0,0040 0,1520
ie 1+2 ero inhi -052	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36	± SE 0,260 8 V ₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07 0,07 0,07 0,07	0,248 ia llistat 0,213 0,213 0,243 0,259 0,276 0,300	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50	0,011 <b>Abs</b> f 0,551 0,643 0,638 0,625 0,672	∆ <b>t (h)</b> 1,13 1,05 1,433 1,433 1,433	∆Abs 0,338 0,4 0,379 0,349 0,372	(µM) 30,492 Error 1*2 2E-05 0,02116 5E-05									0,0040 0,1520 0,10790
ie 1+2 ero inhi -052	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85	± SE 0,260 8 V ₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07	0,248 ia liistat 0,213 0,213 0,243 0,259 0,276 0,300 0,320	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> f 0,551 0,643 0,625 0,672 0,668	∆ <b>t (h)</b> 1,13 1,05 1,433 1,433 1,433 1,433	∆ <b>Abs</b> 0,338 0,4 0,379 0,349 0,372 0,348	(µM) 30,492 2E-05 0,023 0,0116 5E-05 0,0035			<u>.</u>				<b>P</b>		0,0040 0,1520 0,10790 0,00738 0,0593
ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 39,35	± SE 0,260 8 V₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488 0,8929	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07 0,07	0,248 ia liistat 0,213 0,213 0,243 0,259 0,276 0,300 0,320 0,330	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> _f 0,551 0,643 0,638 0,625 0,672 0,668 0,624	∆ <b>t (h)</b> 1,13 1,05 1,433 1,433 1,433 1,433 1,433	∆ <b>Abs</b> 0,338 0,4 0,379 0,349 0,372 0,348 0,294	(µM) 30,492 Error T*2 2E-05 0,0231 0 0,0116 5E-05 0,0035 3E-07			÷				<b>/</b>		0,0040 0,1520 0,10790 0,00738 0,0593 0,0008
rie 1+2 ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85	± SE 0,260 8 V ₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07	0,248 <b>Abs</b> ₀ 0,213 0,243 0,243 0,259 0,276 0,300 0,320 0,330 0,187	(μM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> f 0,551 0,643 0,625 0,672 0,668	∆ <b>t (h)</b> 1,13 1,05 1,433 1,433 1,433 1,433	∆ <b>Abs</b> 0,338 0,4 0,379 0,349 0,372 0,348	(µM) 30,492 2E-05 0,023 0,0116 5E-05 0,0035			4				<b>/</b>		0,0040 0,1520 0,10790 0,00735 0,0593 0,0005 0,1006
rie 1+2 ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 39,35 0,00 1,87 9,37	± SE 0,260 8 1,40455 1,5367 0,2376 1,2933 1,0798 1,0488 0,8929 1,30795 1,2321 1,3278	B (uA · h ⁻¹ ) 1,170 Reference t ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,248 <b>Abs</b> 0,213 0,243 0,259 0,276 0,300 0,320 0,330 0,187 0,216 0,252	(µM ⁻¹ ) 0,029 958 <b>t</b> r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,12 1,12 1,50	0,011 0,551 0,643 0,625 0,672 0,668 0,625 0,672 0,668 0,625 0,672 0,625 0,535 0,709	∆t (h) 1,13 1,05 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433	∆Abs 0,338 0,4 0,379 0,349 0,372 0,348 0,294 0,268 0,294 0,268 0,319 0,457	(µM) 30,492 2E-05 0,0231 0 0,0116 5E-05 0,0035 3E-07 0,0101 0,023 0,0019							<b>/</b>		0,0040 0,1520 0,00735 0,00735 0,0005 0,0005 0,1006 0,1515 0,04357
rie 1+2 erro inhi -052 errie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 39,35 0,00 1,87 9,37 16,86	± SE 0,260 8 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488 0,8929 1,30795 1,2321 1,3278 1,3278 1,24	B (uA · h ⁻¹ ) 1,170 <b>Referenc</b> <b>t</b> ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,248 <b>Abs</b> 0 0,213 0,243 0,243 0,259 0,276 0,300 0,320 0,330 0,330 0,187 0,2152 0,252 0,285	(µM ⁻¹ ) 0,029 958 <b>t</b> r(h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> f 0,551 0,643 0,638 0,625 0,668 0,624 0,455 0,535 0,535 0,535 0,535 0,538 0,624 0,455 0,551 0,551 0,643 0,643 0,654 0,654 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,555 0,655 0,655 0,655 0,655 0,555 0,555 0,655 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0	∆t (h) 1,13 1,05 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,1 1,05 1,433 1,417	∆Abs 0,338 0,4 0,349 0,349 0,349 0,372 0,348 0,294 0,268 0,319 0,457 0,409	μM) 30,492 2E-05 0,0231 0 0,0116 5E-05 0,0035 3E-07 0,0101 0,023 0,0019 0,003						-0	<b>/</b>		0,0040 0,1520 0,00735 0,0593 0,0005 0,1006 0,1515 0,04357 0,05460
rie 1+2 ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 0,00 1,87 9,37 16,86 24,36	± SE 0,260 8 V₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488 0,8929 1,30795 1,2321 1,3278 1,2321 1,3278 1,24 1,24 1,075	B (uA · h ⁻¹ ) 1,170 <b>Referenc</b> <b>t₀ (h)</b> 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,248 <b>Abs</b> ₀ 0,213 0,243 0,259 0,276 0,300 0,320 0,330 0,320 0,330 0,187 0,216 0,226 0,2285 0,299	(µM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50 1,50 1,50	0,011 0,551 0,643 0,625 0,622 0,668 0,624 0,455 0,624 0,455 0,709 0,694 0,682	∆ <b>t (h)</b> 1,13 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,05 1,433 1,105 1,433 1,417 1,417	∆Abs 0,338 0,4 0,349 0,349 0,372 0,348 0,294 0,268 0,294 0,268 0,294 0,268 0,319 0,457 0,409 0,383	(µM) 30,492 2E-05 0,0116 5E-05 0,0035 0,0019 0,0019 0,0001							<b>/</b>		0,0040 0,1520 0,00735 0,00593 0,0005 0,1006 0,1515 0,04357 0,05460 0,01215
rie 1+2 ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 39,35 0,00 1,87 9,37 16,86	± SE 0,260 8 1,40455 1,5357 0,2376 1,2933 1,0798 1,0488 0,8929 1,30795 1,2321 1,3278 1,3278 1,24	B (uA · h ⁻¹ ) 1,170 <b>Referenc</b> <b>t</b> ₀ (h) 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,248 <b>Abs</b> 0 0,213 0,243 0,243 0,259 0,276 0,300 0,320 0,330 0,330 0,187 0,2152 0,252 0,285	(µM ⁻¹ ) 0,029 958 <b>t</b> r(h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> _f 0,551 0,643 0,638 0,625 0,638 0,624 0,638 0,624 0,634 0,638 0,624 0,634 0,624 0,632 0,644 0,654 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,555 0,655 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555	∆t (h) 1,13 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,417 1,417 1,417 1,417 1,4	∆ <b>Abs</b> 0,338 0,4 0,379 0,349 0,372 0,348 0,268 0,268 0,268 0,268 0,263 0,264 0,263 0,264 0,383	(µM) 30,492 2E-05 0,023 0,0116 5E-05 0,0035 3E-07 0,0101 0,023 0,0019 0,003 0,00019 0,003 0,00019 0,0026 6E-06			÷				<b>/</b>		0,0040 0,1520 0,00735 0,0593 0,0005 0,1006 0,1515 0,04357 0,05460
ero inhi -052 erie 1	A (uA · h ⁻¹ ) 0,202 bidor = [955] 0,00 1,87 9,37 16,86 24,36 31,85 39,35 0,00 1,87 9,37 16,86 24,36 31,85	± SE 0,260 8 V₀ (uA/h-1) 1,40455 1,5357 0,2376 1,2933 1,0798 1,0798 1,0798 1,0795 1,2321 1,3278 1,24 1,075 0,8393	B (uA · h ⁻¹ ) 1,170 <b>Reference</b> 0,05 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,248 0,248 0,213 0,243 0,223 0,229 0,276 0,300 0,320 0,330 0,187 0,216 0,262 0,289 0,216 0,228 0,231 0,248 0,213 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,248 0,300 0,320 0,248 0,248 0,248 0,330 0,248 0,248 0,330 0,248 0,248 0,248 0,330 0,248 0,248 0,248 0,330 0,248 0,248 0,248 0,330 0,288 0,288 0,288 0,330 0,288 0,288 0,288 0,288 0,330 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,288 0,	(µM ⁻¹ ) 0,029 958 <b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50 1,50 1,50 1,50	0,011 <b>Abs</b> _f 0,551 0,643 0,638 0,625 0,638 0,624 0,638 0,624 0,634 0,638 0,624 0,634 0,624 0,632 0,644 0,654 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,655 0,555 0,655 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555 0,555	Δt (h) 1,13 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,434 1,433 1,434 1,434 1,435 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,437 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,447 1,	∆ <b>Abs</b> 0,338 0,4 0,379 0,349 0,372 0,348 0,268 0,268 0,268 0,268 0,263 0,264 0,263 0,264 0,383	(µM) 30,492 2E-05 0,0216 5E-05 0,0036 3E-07 0,0011 0,023 0,0019 0,0001 0,0026			E 10,0	20,0			<b>4</b> 0.0		0,004( 0,152( 0,0073 0,0053 0,0003 0,100( 0,151( 0,0435) 0,0546( 0,0121( 0,0121) 0,150

	VALORE	S AJUSTE	ECUACIO	ŚN Y=∕	A+B*exp	(-C*x)			PAR	ÁMETR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	-15,448	574,145	16,857	#####	0,001	0,027	0,013	1,4086	53,995	61,657	1196,7

Punts a ignorar
7

PC-052 Serie 1		9	Referenci	la ilistai	959					1,4% ].					-		
Serie 1	1,4131	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errer T*2		┇						
Serie 1										1,270	φĹ	Ч		1	T		error Y
-	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0056	1,120	' Y		4		I	[	0,074516236
ŀ	1,88	1,2446	0,08	0,201	1,12		1,033	0,318	0,0079	1,020							0,088975984
ŀ	9,38	1,1831	0,08	0,211	1,50		1,417	0,321	0,0271	0.970							0,16473310
	16,88	1,3151	0,08	0,223	1,50		1,417	0,336	0,0022	0.870			I				0,04713247
-	24,38 31,88	1,9995 1,3745	0,08	0,302	1,50 1,50		1,417 1,383	0,681	0,3878								0,622724493
F	39,38	1,4406	0,12	0,202	1,50		1,303	0,400	0,0003	0,620 I							0.03430168
Serie 2	0.00	1,30795	0.07	0,187	1,17	0,455	1,1	0,268	0.0005	0,520							0,022083764
	1,88	1,4063	0,07	0,209	1,12	0,564	1,05	0,355	0,0053	0.520							0,072724010
	9,38	1,3703	0,07	0,221	1,50		1,433	0,486	0,0005	0,420							0,022466893
	16,88	1,306	0,07	0,222	1,50	0,682	1,433	0,46	0,0032	0,320 T							0,05623247
Ļ	24,38	1,1304	0,07	0,228	1,50		1,433	0,408	0,0607	0,220							0,24637550
	31,88	1,3338	0,08	0,251	1,50		1,417	0,454	0,0033	0,120							0,05766363
	39,38	1,2797	0,07	0,252	1,50		1,433 Error a	0,428 0,001	0,016 0,0714	0,070						L	0,12659831
						Ľ	Linor a	0,001	0,0114	-10,0 0,0	10,	0 2	0,0	30,0	40,0	50,0	
orretgir p	er [TTR] i	a 4 mg/mL							0							0	
ſ	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=A	+B*exp	(-C*x)			PARÁ	METROS		Punts	a ignora				
UST	A	± SE	B	± SE	С	± SE	B*C v	′₀ax=0	IC ₅₀	± SE RA(%)				-			
	(uA · h ⁻¹ )	107.1	(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)					4			
rie 1+2	-0,095	437,432	1,425	#####	-0,001	0,396	-0,002	1,3300	#######	###### 107,2				4			
														-			
														1			
nero inhib	bidor =	10	Reference	ia Ilista	960					1, 220 1				-			
-052										T 620							
	1,8745004	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	<i>138</i>	1						
										138	pΫ						error Y
erie 1	0,00	1,40455	0,05	0,213	1,18	0,551	1,13	0,338	0,0034	\$28 F	1						0,058727
	1,87	1,2845	0,08	0,213	1,12	0,598	1,033	0,385	0,0015	1,738		·					0,038452
	9,37 16,86	1,1001 1,7823	0,10	0,255	1,50 1,50	0,595	1,4 1,417	0,34 0,597	0,0175	7,628	C	. <b>~</b>	<u>-</u>				0,132372
ŀ	24,35	1,0071	0,00	0,336	1,50	0,654	1,417	0,318	0,0024	888			φ·	<u> </u>	_		0.049109
ŀ	31,85	0,9323	0,12	0,392	1,50	0,707	1,383	0,315	0,0014	8358 1				ų			0,038073
Ē	39,34	0,9028	0,10	0,387	1,50	0,694	1,4	0,307	0,0003	858							0,01676
erie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	0,0014	8838 1							0,037872
	1,87	1,4489	0,08	0,222	1,12	0,644	1,033	0,422	0,0159	2532							0,125947
-	9,37	1,2037	0,08	0,247	1,50	0,605	1,417	0,358	0,0008	2.3 <u>7</u> 8							0,028772
	16,86	1,1778	0,10	0,296	1,50	0,690	1,4	0,394	0,0012	x 328							0,034232
	24,35 31,85	1,1102 0,9844	0,12	0,336	1,50 1,50	0,683	1,383	0,347	0,0029	8328							0,053990
ŀ	39,34	0,9844	0,10	0,372	1,50	0,750	1,4 1,433	0,300	0,0002	8,128							0,014026 0,02106
	55,54	0,0071	0,07	0,400	1,50	0,702	Error a	0,001	0,0004	888							0,02100
						I		0,001	0,0112	-10.0 0.	0 1	0.0	20.0	30.0	40.0	50.0	
orretgir p	er [TTR]	a 4 mg/mL															
ſ	VALORE	S AJUSTE	FCUACI	ÓN Y=	∆+B*exr	(-C*x)			PARÁ	METROS	1	Pun	s a ignor	ar			
UST	A	± SE	B	± SE	C	± SE	B*C	v ₀ a x=0		± SE RA(%)			8				
531	(uA · h ⁻¹ )		(uA · h⁻¹)		(µM ⁻¹ )				(µM)								
	-3,874	48,450	5,220	#####	0,002	0,023	0,012	1,3458	58,883	18,847 387,8							
erie 1+2	oidor =	11	Referenc	ia Ilistat	961					1 ~-							
rie 1+2 nero inhib	oidor =	11	Referenc	ia Ilistai	961					1,520 mm 1,470 1,440							
rie 1+2 nero inhib :-052		11 V ₀ (uA/h-1)		<mark>ia Ilista≀</mark> Abs₀		Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	17777777777777777777777777777777777777	<u></u>					0	
rie 1+2 nero inhib C-052	1,4337	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)						<u>ф</u>				Ļ		error Y
rie 1+2 nero inhib C-052	<b>1,4337</b>	V₀ (uA/h-1) 1,40455	<b>t₀ (h)</b> 0,05	<b>Abs</b> ₀ 0,213	<b>t_f (h)</b> 1,18	0,551	1,13	0,338	0,0095					<u>P</u>		0	0,0972338
rie 1+2 nero inhib C-052	<b>1,4337</b> 0,00 1,87	V ₀ (uA/h-1) 1,40455 1,358	<b>t₀ (h)</b> 0,05 0,08	Abs ₀ 0,213 0,224	<b>t_f (h)</b> 1,18 1,12	0,551 0,602	1,13 1,033	0,338 0,378	0,0095 0,0037							0	0,0972338 0,0604726
rie 1+2 nero inhib 2-052	<b>1,4337</b> 0,00 1,87 9,37	V ₀ (uA/h-1) 1,40455 1,358 1,1318	<b>t₀ (h)</b> 0,05 0,08 0,07	Abs ₀ 0,213 0,224 0,204	<b>t_f (h)</b> 1,18 1,12 1,50	0,551 0,602 0,542	1,13 1,033 1,433	0,338 0,378 0,338	0,0095 0,0037 0,0162				Q				0,0972338 0,0604726 0,1273091
erie 1+2 nero inhib C-052	1,4337 0,00 1,87 9,37 16,87	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626	<b>t₀ (h)</b> 0,05 0,08 0,07 0,08	Abs ₀ 0,213 0,224 0,204 0,231	<b>t_f (h)</b> 1,18 1,12 1,50 1,50	0,551 0,602 0,542 0,588	1,13 1,033 1,433 1,417	0,338 0,378 0,338 0,357	0,0095 0,0037 0,0162 0,0035	200000-1-1-1-1-1-1-1-2-2-2-2-2-2-2-2-2-2							0,0972338 0,0604726 0,1273091 0,0592436
rie 1+2 nero inhib C-052	<b>1,4337</b> 0,00 1,87 9,37	V ₀ (uA/h-1) 1,40455 1,358 1,1318	<b>t₀ (h)</b> 0,05 0,08 0,07	Abs ₀ 0,213 0,224 0,204	<b>t_f (h)</b> 1,18 1,12 1,50	0,551 0,602 0,542 0,588 0,556	1,13 1,033 1,433	0,338 0,378 0,338	0,0095 0,0037 0,0162								0,0972338 0,0604726 0,1273091 0,0592436 0,0538963
rie 1+2 nero inhib C-052	1,4337 0,00 1,87 9,37 16,87 24,37	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318	<b>t₀ (h)</b> 0,05 0,08 0,07 0,08 0,08	Abs ₀ 0,213 0,224 0,204 0,231 0,243	<b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50	0,551 0,602 0,542 0,588	1,13 1,033 1,433 1,417 1,417	0,338 0,378 0,338 0,357 0,313	0,0095 0,0037 0,0162 0,0035 0,0029								0,0972338 0,0604726 0,1273091 0,0592436 0,0538963 0,078233
rie 1+2 hero inhib 2-052 erie 1	0,00 1,87 9,37 16,87 24,37 31,87	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318 1,0724 1,0982 1,30795	<b>t</b> ₀ (h) 0,05 0,08 0,07 0,08 0,08 0,08	Abs ₀ 0,213 0,224 0,204 0,231 0,243 0,250	<b>t</b> _f (h) 1,18 1,12 1,50 1,50 1,50 1,50	0,551 0,602 0,542 0,588 0,556 0,590	1,13 1,033 1,433 1,417 1,417 1,417	0,338 0,378 0,338 0,357 0,313 0,340	0,0095 0,0037 0,0162 0,0035 0,0029 0,0061 0,0003 4E-07		ф ф 6		<u>-</u> 				0,0972338 0,0604726 0,1273091 0,0592436 0,0538963 0,078233 0,0184229 0,0006338
rie 1+2 nero inhib C-052	1,4337 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318 1,0724 1,0982 1,30795 1,2442	t ₀ (h) 0,05 0,08 0,07 0,08 0,08 0,08 0,08 0,08 0,07 0,08	Abs ₀ 0,213 0,224 0,204 0,231 0,243 0,250 0,255 0,187 0,207	t _f (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12	0,551 0,602 0,542 0,588 0,556 0,590 0,655 0,455 0,549	1,13 1,033 1,433 1,417 1,417 1,417 1,417 1,417 1,417 1,1 1,033	0,338 0,378 0,338 0,357 0,313 0,340 0,4 0,268 0,342	0,0095 0,0037 0,0162 0,0035 0,0029 0,0061 0,0003 4E-07 0,0028		ф ф 		<u>-</u>  				0,0972338 0,0604726 0,1273091 0,0592436 0,0538963 0,078233 0,0184229 0,0006338 0,0533273
rie 1+2 hero inhib -052 erie 1	0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318 1,0724 1,0724 1,0982 1,30795 1,2442 1,2166	t ₀ (h) 0,05 0,08 0,07 0,08 0,08 0,08 0,08 0,08 0,07 0,08 0,08	Abs ₀ 0,213 0,224 0,204 0,231 0,243 0,250 0,255 0,187 0,207 0,226	t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50	0,551 0,602 0,542 0,588 0,556 0,590 0,655 0,455 0,549 0,597	1,13 1,033 1,433 1,417 1,417 1,417 1,417 1,417 1,1 1,033 1,417	0,338 0,378 0,338 0,357 0,313 0,340 0,4 0,268 0,342 0,371	0,0095 0,0037 0,0162 0,0035 0,0029 0,0061 0,0003 4E-07 0,0028 0,0018		¢ • •		<u>-</u>				0,0972338 0,0604726 0,1273091 0,0592436 0,0538963 0,078233 0,0184229 0,0006338 0,0533273 0,0425091
rie 1+2 hero inhib 2-052 erie 1	1,4337 0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37 16,87	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318 1,0724 1,0982 1,30795 1,2442 1,2166 1,3642	t ₀ (h) 0,05 0,08 0,07 0,08 0,08 0,08 0,08 0,07 0,08 0,07 0,08 0,08	Abs ₀ 0.213 0.224 0.204 0.231 0.243 0.250 0.255 0.187 0.207 0.226 0.231	t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,551 0,602 0,542 0,588 0,556 0,590 0,655 0,455 0,549 0,597 0,678	1,13 1,033 1,433 1,417 1,417 1,417 1,417 1,417 1,1 1,033 1,417 1,417	0,338 0,378 0,338 0,357 0,313 0,340 0,4 0,268 0,342 0,371 0,447	0,0095 0,0037 0,0162 0,0035 0,0029 0,0061 0,0003 4E-07 0,0028 0,0018 0,0203								0.0972338 0.0604726 0.1273091 0.0592436 0.058963 0.078233 0.0184229 0.0006338 0.0533273 0.0425091 0.1423563
ero inhib -052 erie 1	0,00 1,87 9,37 16,87 24,37 31,87 39,37 0,00 1,87 9,37	V ₀ (uA/h-1) 1,40455 1,358 1,1318 1,1626 1,1318 1,0724 1,0724 1,0982 1,30795 1,2442 1,2166	t ₀ (h) 0,05 0,08 0,07 0,08 0,08 0,08 0,08 0,08 0,07 0,08 0,08	Abs ₀ 0,213 0,224 0,204 0,231 0,243 0,250 0,255 0,187 0,207 0,226	t _r (h) 1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50	0,551 0,602 0,542 0,588 0,556 0,590 0,655 0,455 0,549 0,597	1,13 1,033 1,433 1,417 1,417 1,417 1,417 1,417 1,1 1,033 1,417	0,338 0,378 0,338 0,357 0,313 0,340 0,4 0,268 0,342 0,371	0,0095 0,0037 0,0162 0,0035 0,0029 0,0061 0,0003 4E-07 0,0028 0,0018								0,0972338 0,0604726 0,1273091 0,0592436 0,0538963 0,078233 0,0184229 0,0006338 0,0533273 0,0425091

	39,37	1,0982	0,08	0,255	1,50	0,655	1,417	0,4	0,0003	0,6
Serie 2	0,00	1,30795	0,07	0,187	1,17	0,455	1,1	0,268	4E-07	00000 000000 00000
	1,87	1,2442	0,08	0,207	1,12	0,549	1,033	0,342	0,0028	0,4
	9,37	1,2166	0,08	0,226	1,50	0,597	1,417	0,371	0,0018	0.4
	16,87	1,3642	0,08	0,231	1,50	0,678	1,417	0,447	0,0203	Q'3
	24,37	1,2166	0,08	0,223	1,50	0,633	1,417	0,41	0,001	ŏ, ź
	31,87	1,1325	0,08	0,247	1,50	0,642	1,417	0,395	0,0003	01
	39,37	1,2367	0,08	0,259	1,50	0,713	1,417	0,454	0,0144	Ŭ Ó
							Error a	0,001	0,0713	<del>0,0</del>
										-10.0
🗖 corretgir p	per [TTR]	a 4 mg/mL							0	

20,0

Punts a ignorar

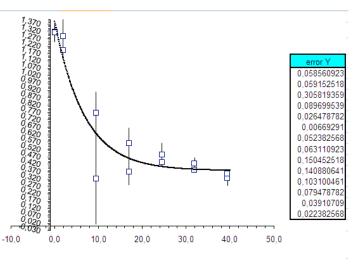
30,0

40,0

	VALORE	S AJUSTE	(-C*x)	*x) PARÁMETROS								
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)			
Serie 1+2	0,017	18,669	1,290	#####	0,004	0,063	0,005	1,3073	173,897	63,039	98,7	

0,0

10,0


50,0 o

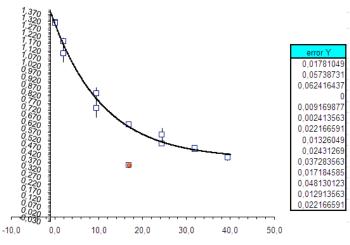
numero inhi	ibidor =	2	Reference	cia Ilista	1 952					1.370	ал .						
VPC-052										1,320							
	[952]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2	2825320000000000000000000000000000000000							erro
	0,00	1,31645	0,07	0,239		0,567	1,12	0,328	0,0014	1.020	1 \						0,0378
	1,88	1,1938	0,07	0,239		0,575	1,05	0,336	7E-05	0,970	1	<b>\</b>					0,0081
	9,38	0,3233	0,07	0,229	1,50	0,489		0,26	0	0,870		\					
Serie 1	16,89	0,3718	0,07	0,227	1,50	0,378		0,151	0,0263	0.320							0,1622
	24,40	0,4324	0,07	0,222	1,50	0,463		0,241	4E-06	0,720		X					0,0020
	31,91	0,3808	0,07	0,214		0,380	1,433	0,166	7E-07	0,670	1						0,0008
	39,41	0,329	0,07	0,211	1,50	0,354	1,433	0,143	0,0007	0,570		```					0,0264
	0,00	1,3119	0,07	0,255		0,605	1,1	0,35	0,0018	0.520				Н			0,0423
	1,88	1,2851	0,07	0,242		0,554	1,05	0,312	0,0099	0,420				ă. d			0,0994
	9,38	0,77	0,07	0,217	1,50	0,492	1,433	0,275	0,0005	0,370			¢				0,0227
Serie 2	16,89	0,5646	0,07	0,221	1,50	0,411	1,433	0,19	0,0009	0,270					Ļ		0,0305
	24,40	0,4854	0,07	0,225	1,17	0,411	1,1	0,186	0,003	0,220	1						0,05502
	31,91	0,4266	0,07	0,223	1,50	0,434	1,433	0,211	0,0022	0,120							0,04662
	39,41	0,359	0,07	0,215	1,50	0,390		0,175	1E-05	0,070 0,020							0,00353
							Error a	0,001	0,0712	- <del>0,030</del>							
										-10,0	0,0	10,0	20,0	30,0	40,0	50,0	
corretgir	per [l IR]	a 4 mg/mL	-														
												_					
	VALOR	ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	o(-C*x)				ÁMETROS			Punts a igi	norar			
AJUST	Α	± SE	B	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE RA(	%)		7				
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)			Г					

75,5

numero inhi	bidor =	2	Referenc	ia Ilista	952				
NPC-052						-			
	[952]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,31645	0,07	0,239	1,18	0,567	1,12	0,328	0,0034
	1,88	1,1938	0,07	0,239	1,12	0,575	1,05	0,336	0,0035
	9,38	0,3233	0,07	0,229	1,50	0,489	1,433	0,26	0,0935
Serie 1	16,89	0,3718	0,07	0,227	1,50	0,378	1,433	0,151	0,008
	24,40	0,4324	0,07	0,222	1,50	0,463	1,433	0,241	0,0007
	31,91	0,3808	0,07	0,214	1,50	0,380	1,433	0,166	4E-05
	39,41	0,329	0,07	0,211	1,50	0,354	1,433	0,143	0,0027
	0,00	1,3119	0,07	0,255	1,17	0,605	1,1	0,35	0,004
	1,88	1,2851	0,07	0,242	1,12	0,554	1,05	0,312	0,0226
	9,38	0,77	0,07	0,217	1,50	0,492	1,433	0,275	0,0198
Serie 2	16,89	0,5646	0,07	0,221	1,50	0,411	1,433	0,19	0,0106
	24,40	0,4854	0,07	0,225	1,17	0,411	1,1	0,186	0,0063
	31,91	0,4266	0,07	0,223	1,50	0,434	1,433	0,211	0,0015
	39,41	0,359	0,07	0,215	1,50	0,390	1,433	0,175	0,0005
							Error a	0,001	0,0713

1,022 0,055 0,096 0,017 0,098 1,3543 11,310 0,509




# 🗖 corretgir per [TTR] a 4 mg/mL

Serie 1+2 0,332

	IC ₅₀ ± SE	RA(%)
$(uA \cdot h^{-1})$ $(uA \cdot h^{-1})$ $(\mu M^{-1})$ (	(µM)	
Serie 1+2 0,378 0,059 0,997 0,090 0,147 0,042 0,147 1,3750 7	7,961 0,852	72,5

	Punts a ignorar
[	
ſ	
ł	
ł	

numero inhi	bidor =	1	Referenc	ia Ilistai	954				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,31645	0,07	0,239	1,18	0,567	1,12	0,328	0,0003
	1,87	1,1077	0,07	0,272	1,12	0,609	1,05	0,337	0,0033
	9,36	0,739	0,07	0,327	1,50	0,631	1,433	0,304	0,0039
Serie 1	16,85	0,3508	0,07	0,408	1,50	0,520	1,433	0,112	0
	24,34	0,4997	0,07	0,486	1,50	0,761	1,433	0,275	8E-05
	31,83	0,4581	0,07	0,559	1,50	0,781	1,433	0,222	6E-06
	39,32	0,4055	0,07	0,652	1,50	0,869	1,433	0,217	0,0005
	0,00	1,3119	0,07	0,255	1,17	0,605	1,1	0,35	0,0002
	1,87	1,1894	0,07	0,261	1,12	0,628	1,05	0,367	0,0006
	9,36	0,8387	0,07	0,334	1,50	0,648	1,433	0,314	0,0014
Serie 2	16,85	0,627	0,07	0,408	1,50	0,608	1,433	0,2	0,0003
	24,34	0,557	0,07	0,482	1,17	0,696	1,1	0,214	0,0023
	31,83	0,4686	0,07	0,575	1,50	0,801	1,433	0,226	0,0002
	39,32	0,4055	0,07	0,669	1,50	0,810	1,433	0,141	0,0005
							Error a	0,001	0,0711



<mark>unts a ignora</mark>ı 8

# 🗖 corretgir per [TTR] a 4 mg/mL

numero inhibidor = 6 NPC-052

[415] V₀ (uA/h-1)

	VALORE	S AJUSTE	ECUACIÓ	ÓN Y=∕	A+B*exp	(-C*x)							
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)		
	(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)				
Serie 1+2	0.396	0.028	0.902	0.031	0.086	0.009	0 077	1.2986	14.867	0.393	69.5		

1,1,220 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,						
1,120 1,070						error Y
1,120 1,070 0,0270 0,9920						0,042002293
0,970						0,082674907
0.870						0,144456496
820						0,049690113
0,720						0,018784738
0,670						0,014654289
0,5%						0,014512221
0,520						0,046552293
0,420	\					0,086474907
0,370	1	<b>P</b>				0,090256496
0,250	N N					0,295909887
0,220						0,015984738
0,120	- ā 🔪					0,015454289
0,070		7				0,012712221
		,T, , , F				
-10,0 0,0	10,0	20,0	30,0	40,0	50,0	

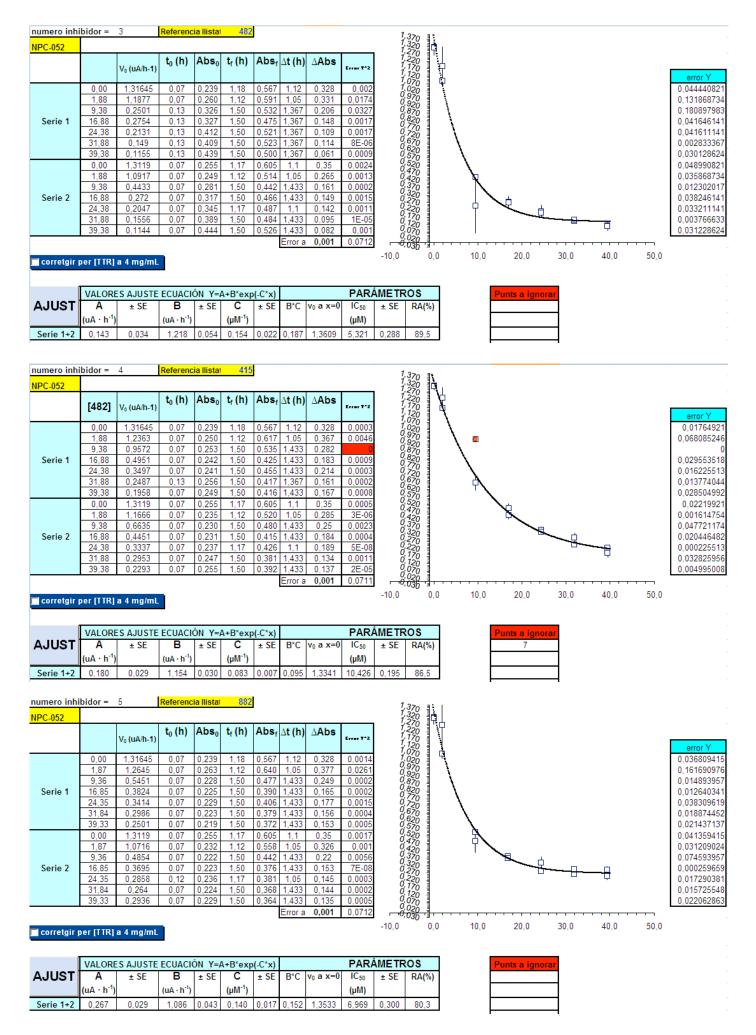
	0,00	1,31645	0,07	0,239	1,18	0,567	1,12	0,328	0,0018
	1,87	1,0792	0,07	0,249	1,12	0,568	1,05	0,319	0,0068
	9,37	0,1535	0,07	0,220	1,50	0,364	1,433	0,144	0,0209
Serie 1	16,87	0,051	0,07	0,222	1,50	0,255	1,433	0,033	0,0025
	24,37	0,0262	0,17	0,239	1,50	0,272	1,333	0,033	0,0004
	31,87	0,0146	0,07	0,229	1,50	0,253	1,433	0,024	0,0002
	39,37	0,0103	0,07	0,220	1,50	0,234	1,433	0,014	0,0002
	0,00	1,3119	0,07	0,255	1,17	0,605	1,1	0,35	0,0022
	1,87	1,083	0,07	0,232	1,12	0,565	1,05	0,333	0,0075
	9,37	0,2077	0,07	0,219	1,50	0,348	1,433	0,129	0,0081
Serie 2	16,87	0,3966	0,07	0,294	1,50	0,481	1,433	0,187	0,0876
	24,37	0,029	0,07	0,216	1,17	0,256	1,1	0,04	0,0003
	31,87	0,0138	0,18	0,237	1,50	0,251	1,317	0,014	0,0002
	39,37	0,0121	0,40	0,230	1,50	0,244	1,1	0,014	0,0002
							Error a	0,001	0,0713
🔲 corretgir p	per [TTR]	a 4 mg/mL							

Referencia Ilistat 200

Abs₀

t_f (h)

Abs_f ∆t (h)


∆Abs

Errar

t₀ (h)

		VALORE	S AJUSTE	ECUACIÓ	ÓN Y=/	(-C*x)							
	AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)	
l		(uA · h⁻¹)		(uA · h ⁻¹ )		(µM⁻¹)				(µM)			
ſ	Serie 1+2	0,023	0,048	1,335	0,080	0,169	0,033	0,225	1,3585	4,214	0,349	98,3	

Punts a ignorar



$\frac{292}{192} + \frac{1}{192} + $	column         view h         k         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h <t< th=""><th>umero inh</th><th>ibidor =</th><th>7</th><th>Referenc</th><th>ia Ilista:</th><th>200</th><th></th><th></th><th></th><th></th><th>1,370</th><th>1:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	umero inh	ibidor =	7	Referenc	ia Ilista:	200					1,370	1:							
$ \frac{1}{12} $	$\frac{1}{12} \frac{1}{2} 1$	PC-052			+ (b)	Aba	+ (b)	Aba	A4 (b)	A A ha		1,270								
$ \frac{1}{12} $	$\frac{1}{12} \frac{1}{2} 1$			V ₀ (uA/h-1)	ι ₀ (n)	ADS ₀	ч _f (n)	Abs	Δ <b>τ (Π)</b>	AADS	Errar T*2	1,170	17							orror V
$ \frac{1}{12} $	$\frac{1}{12} \frac{1}{2} 1$		0,00	1,21815	0,07	0,206	1,18	0,454	1,12	0,248	0,0011	1.070								0,033282
$ \frac{1}{12} $	$\frac{1}{12} \frac{1}{2} 1$											0,970								0,078194
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$	C										0,870								0,058666
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$	Serie 1										0,770								
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,670	dunda .							0,012528
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,570		\						0,0121
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,520	1 mile	1						
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,420	THE REAL PROPERTY AND ADDRESS OF ADDRES							
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$	Serie 2										0,320								0,01300
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,220		7						0,00813
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$											0,120		ų.						
$\frac{10.0  0.0  10.0  20.0  30.0  40.0  50.0}{100  20.0  30.0  40.0  50.0}$ $VALORES AJUSTE ECUACIÓN Y=A+B*exp(C'x) restriction of the second of $	$\frac{1}{100} 0 0 10 20 30 40 500 500 500 500 500 500 500 500 500$		39,37	0,0069	0,10	0,210	1,50	0,223		1		0,020	1							0,0115
$ \frac{ V  _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _{V_{1}}  V   _$	$\frac{Valcetery per l l l k j a l mg/ml}{(\mu_{A} + h^{2})} = \frac{1}{(\nu_{A} + h^{2})} \frac{1}{(\nu_$				_				21101 0	0,001	0,0111			10 (	) )	20.0	30.0	40.0	50.0	
$\begin{array}{  c                                  $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	corretgir	per [TTR]	a 4 mg/mL									-,-							
$\begin{array}{  c                                  $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																			
$\frac{  u ^{2} + h^{2}  }{  u ^{2} + h^{2}  } (u u ^{2} + h^{2}) (u u ^{2}) (u u u ^{2}) (u u ^{2}) ($	$\frac{  \mathbf{u} \mathbf{u} \mathbf{h} \cdot \mathbf{h}' }{ \mathbf{r}_{1} + 1^{2} } (\mathbf{u}\mathbf{u} \cdot \mathbf{h}')} (\mathbf{u}\mathbf{u} \cdot \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}' \mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h} \cdot \mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{h}') (\mathbf{u}\mathbf{u}\mathbf{u}') (\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}^{'}) (\mathbf{u}\mathbf{u}\mathbf{u}^{'}) (\mathbf{u}\mathbf{u}^{'}) (\mathbf{u}\mathbf{u}\mathbf{u}^{'}) $														Pun	ts a igno	rar			
$ \frac{122}{100} = \frac{1}{100} = \frac$	$\frac{rie 1 + 2}{2} - 0.005 0.016 1.257 0.029 0.187 0.014 0.236 1.2514 3.689 0.129 100.4}{0.236 1.2514 3.689 0.129 100.4}$ $\frac{rie 1 + 2}{2} - 0.005 0.016 1.267 0.029 0.187 0.014 0.236 1.2514 3.689 0.019}{0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.$	JUST		± SE		± SE		± SE	B*C	v ₀ a x=0		± SE RA	A(%)				_			
$\frac{\operatorname{reror} \operatorname{inh}\operatorname{bldor} = 1}{1000} \frac{\operatorname{Referencial listar}}{1000} \frac{943}{1000} \frac{\operatorname{Referencial} \operatorname{listar}}{10000} \frac{943}{10000} \frac{\operatorname{Ref} \operatorname{Ref} \operatorname$	$\frac{\operatorname{rero} \operatorname{inh}\operatorname{lbidor} - 1}{\operatorname{seriel} 1} \xrightarrow{\operatorname{Referencial listat}} \xrightarrow{\operatorname{S4B}} \\ \frac{\operatorname{cos}}{\operatorname{seriel} 1} \xrightarrow{\operatorname{cos} (\operatorname{h} \operatorname{Abs}_{0} \operatorname{tr} (\operatorname{h} \operatorname{Abs}_{0} \operatorname{tr}$		-																	
$\frac{c.692}{c.692} = \frac{1}{160} + \frac{1}{100} $	$\frac{1}{2} \frac{1}{1687} \frac{1}{1687} \frac{1}{1687} \frac{1}{1684} \frac{1}{162} \frac{1}{12} $	erie 1+2	-0,005	0,016	1,257	0,029	0,187	0,014	0,235	1,2514	3,689	0,129 10	0,4							
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$											1 2 20	1							
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$				t _e (h)	Abs	t. (h)	Abs	At (h)	۸ <b>Δhs</b>		1,270								
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$			V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2	1,270 1,220 1,170 1,170								error
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$		0,00									1,220 1,220 1,120 1,120 1,020		<b>、</b>						
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$		1,87	1,21815 1,0705	0,07 0,07	0,206 0,223	1,18 1,12	0,454 0,512	1,12 1,05	0,248 0,289	0,0002 0,001	122200 112220 111200 00000 000000 00000000								0,013702 0,03124
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$		1,87 9,37	1,21815 1,0705 0,8033	0,07 0,07 0,07	0,206 0,223 0,206	1,18 1,12 1,50	0,454 0,512 0,507	1,12 1,05 1,433	0,248 0,289 0,301	0,0002 0,001 1E-05	122700 27200 112700 111200 2000 2000 200								0,013702 0,03124 0,003745
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	Serie 1	1,87 9,37 16,87	1,21815 1,0705 0,8033 0,641	0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211	1,18 1,12 1,50 1,50	0,454 0,512 0,507 0,472	1,12 1,05 1,433 1,433	0,248 0,289 0,301 0,261	0,0002 0,001 1E-05 0,0005	111110099882770 000000099882770 000000000000000000000000000000000								0,013702 0,03124 0,003745 0,023385
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	Serie 1	1,87 9,37 16,87 24,37	1,21815 1,0705 0,8033 0,641 0,533	0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204	1,18 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440	1,12 1,05 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236	0,0002 0,001 1E-05 0,0005 0,0006	11111100000000000000000000000000000000								0,013702 0,03124 0,003745 0,023387 0,024937
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	Serie 1	1,87 9,37 16,87 24,37 31,86 39,36	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388	0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194	1,18 1,12 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375	1,12 1,05 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002	20020202020202020202020202020202020202			~					0,013702 0,03124 0,003745 0,023385 0,02493 0,02493 0,000985 0,0144
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	Serie 1	1,87 9,37 16,87 24,37 31,86 39,36 0,00	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05	20020200000000000000000000000000000000			~					0,013702 0,03124 0,003745 0,023385 0,02493 0,000985 0,0144 0,005802
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	Serie 1	1,87 9,37 16,87 24,37 31,86 39,36 0,00 1,87	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,299	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001	20000000000000000000000000000000000000			-	<u>_</u>				0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$		1,87 9,37 16,87 24,37 31,86 39,36 0,00 1,87 9,37	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,13 1,05 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,299 0,246	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001	20000000000000000000000000000000000000			~	<u>_</u>				0,013702 0,03124 0,003745 0,023385 0,02493 0,000985 0,01044 0,005802 0,01025 0,011554
$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$	$\frac{[Error a 0,001 0,071]}{-10,0 0,0 10,0 20,0 30,0 40,0 50,0}$		1,87 9,37 16,87 24,37 31,86 39,36 0,00 1,87 9,37 16,87 24,37	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,203	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454 0,373 0,372	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,299 0,246 0,172 0,169	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001 0,0007 7E-05	20000000000000000000000000000000000000			-	<u>_</u>	<u>_</u>			0,013702 0,03124 0,003745 0,02338 0,02493 0,01044 0,005802 0,01025 0,01025 0,01025 0,01025 0,01025 0,01025 0,01025 0,01026 0,01025 0,01026 0,01025 0,01026 0,01025 0,0008465
corretgir per [TTR] a 4 mg/mL         -10,0       0,0       10,0       20,0       30,0       40,0       50,0         JUST $X = 0 + SE =$	Notice in the image of the	Serie 1 Serie 2	1,87 9,37 16,87 24,37 31,86 39,36 0,00 1,87 9,37 16,87 24,37 31,86	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,203	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454 0,373 0,372 0,394	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,269 0,301 0,261 0,236 0,191 0,277 0,299 0,246 0,172 0,169 0,192	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001 0,0007 7E-05 0,0005	20000000000000000000000000000000000000	indone and		~	<u>_</u>	<u>_</u>			0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025 0,011554 0,026012 0,008468 0,023285
Corretigiir per [11R] a 4 mg/mL         VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS         JUST       A       ± SE       B       ± SE       C       ± SE       B*C       v ₀ a x=0       IC ₅₀ ± SE       RA(%)         (uA · h ⁻¹ )       0.058       0.058       1.2044       17.718       0.246       71.6	Sorretgir per [1 IR] a 4 mg/mL         VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)       PARÁMETROS         JUST       A       ± SE       B       ± SE       C       ± SE       B*C       v ₀ a x=0       IC ₅₀ ± SE       RA(%)         (uA · h ⁻¹ )       (uA · h ⁻¹ )       (uA · h ⁻¹ )       0.062       0.005       0.058       1.2044       17.718       0.246       71.6		1,87 9,37 16,87 24,37 31,86 39,36 0,00 1,87 9,37 16,87 24,37 31,86	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,203	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454 0,373 0,372 0,394	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,269 0,301 0,261 0,236 0,191 0,277 0,299 0,246 0,172 0,169 0,192 0,128	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001 0,0001 0,0007 7E-05 0,0005 0,0002				~	<u>_</u>	<b>_</b>			0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025 0,011554 0,026012 0,008468 0,023285
JUST       A $\pm$ SE       B $\pm$ SE       C $\pm$ SE       B*C $v_0$ a x=0       IC ₅₀ $\pm$ SE       RA(%)         erie 1+2       0.342       0.021       0.862       0.021       0.068       0.005       0.058       1.2044       17.718       0.246       71.6	JUST       A $\pm$ SE       B $\pm$ SE       C $\pm$ SE       B*C $v_0$ a x=0       IC s_0 $\pm$ SE       RA(%) $(uA \cdot h^{-1})$ (uA · h^{-1})       (uA · h^{-1})       (uA · h^{-1})       (uA · h^{-1})       E       B*C $v_0$ a x=0       (µM) $\pm$ SE       RA(%)         erie 1+2       0.342       0.021       0.862       0.021       0.068       0.005       0.058       1.2044       17.718       0.246       71.6	Serie 2	1.87 9.37 16.87 24.37 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654 0,388	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,203	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454 0,373 0,372 0,394	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,269 0,301 0,261 0,236 0,191 0,277 0,299 0,246 0,172 0,169 0,192 0,128	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001 0,0001 0,0007 7E-05 0,0005 0,0002	0; <u>036</u>	-1-1-1-		~	20,0			, 50.0	0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025 0,011554 0,026012 0,008468 0,023285
JUST       A $\pm$ SE       B $\pm$ SE       C $\pm$ SE       B*C $v_0$ a x=0       IC ₅₀ $\pm$ SE       RA(%)         erie 1+2       0.342       0.021       0.862       0.021       0.068       0.005       0.058       1.2044       17.718       0.246       71.6	JUST       A $\pm$ SE       B $\pm$ SE       C $\pm$ SE       B*C $v_0$ a x=0       IC s_0 $\pm$ SE       RA(%) $(uA \cdot h^{-1})$ (uA · h^{-1})       (uA · h^{-1})       (uA · h^{-1})       (uA · h^{-1})       E       B*C $v_0$ a x=0       (µM) $\pm$ SE       RA(%)         erie 1+2       0.342       0.021       0.862       0.021       0.068       0.005       0.058       1.2044       17.718       0.246       71.6	Serie 2	1.87 9.37 16.87 24.37 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654 0,388	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,203	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,512 0,454 0,373 0,372 0,394	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,269 0,301 0,261 0,236 0,191 0,277 0,299 0,246 0,172 0,169 0,192 0,128	0,0002 0,001 1E-05 0,0005 0,0006 1E-06 0,0002 3E-05 0,0001 0,0001 0,0001 0,0007 7E-05 0,0005 0,0002	0; <u>036</u>	-1-1-1-	10,0		20,0	30,0		50,0	0,013702 0,03124 0,003745 0,023387 0,024933 0,00988 0,0144 0,005802 0,01025 0,01025 0,01155 0,026012 0,008468 0,023285
(μA · h ⁻¹ )         (μM ⁻¹ )         (μM ¹ )         (μM)           erie 1+2         0,342         0,021         0,662         0,005         0,058         1,2044         17,718         0,246         71,6	(μA · h ⁻¹ )     (μA · h ⁻¹ )     (μM ⁻¹ )     (μM)       erie 1+2     0.342     0.021     0.862     0.021     0.068     0.005     0.058     1.2044     17.718     0.246     71.6	Serie 2	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>per [TTR]</b>	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654 0,388 a 4 mg/ml	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,202 0,201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,17 1,12 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,394 0,375 0,498 0,454 0,373 0,372 0,394 0,329	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,269 0,301 0,261 0,236 0,191 0,277 0,299 0,246 0,172 0,169 0,192 0,128	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0007 0,0002 0,071	-10,0		10,0		20,0	30,0	<u>-</u>	50,0	0,013702 0,03124 0,003745 0,023387 0,024933 0,00988 0,0144 0,005802 0,01025 0,01025 0,01155 0,026012 0,008468 0,023285
erie 1+2         0.342         0.021         0.862         0.021         0.068         0.005         0.058         1.2044         17.718         0.246         71.6	erie 1+2         0.342         0.021         0.862         0.021         0.068         0.005         0.058         1.2044         17.718         0.246         71.6	Serie 2 corretgir	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>per [TTR]</b>	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4654 0,388 a 4 mg/ml	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0,206 0,223 0,206 0,211 0,204 0,203 0,194 0,221 0,213 0,208 0,201 0,202 0,201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,375 0,498 0,512 0,454 0,373 0,373 0,373 0,373 0,373	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,298 0,246 0,172 0,246 0,172 0,169 0,192 0,128 0,001	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0005 0,0005 0,0005 0,0005	-10,0			_		-	<u>-</u>	50,0	0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025 0,011554 0,026012 0,008468 0,023285
mero inhibidor = 2 Referencia llistat 482	nero inhibidor = 2 Referencia llista 483	Serie 2 corretgir	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>24</b> .37 <b>31</b> .86 39.36 <b>Per [TTR]</b>	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4996 0,4654 0,388 <b>a 4 mg/ml</b> <b>s AJUSTE</b> <b>± SE</b>	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0.206 0.223 0.206 0.211 0.204 0.203 0.194 0.221 0.203 0.208 0.201 0.203 0.202 0.201 0.201 0.201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,472 0,440 0,375 0,498 0,512 0,454 0,373 0,373 0,373 0,373 0,373	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,1 1,05 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,298 0,246 0,172 0,246 0,172 0,169 0,192 0,128 0,001	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005	-10,0			_		-		50,0	0,013702 0,03124 0,003745 0,023387 0,024931 0,000985 0,0144 0,005802 0,01025 0,011554 0,026012 0,008468 0,023285
mero inhibidor = 2 Referencia llista 482 1 270 3	nero inhibidor = 2 Referencia Ilista 482 1,370 g C-052 7,320 1	Serie 2 corretgir	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>v</b> ALORE <b>A</b> (uA · h ⁻¹ )	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4654 0,388 <b>a 4 mg/ml</b> <b>s AJUSTE</b> <b>± SE</b>	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0.206 0.223 0.206 0.211 0.204 0.203 0.194 0.213 0.208 0.201 0.203 0.202 0.201 0.201 0.201 0.201 0.201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,470 0,394 0,394 0,375 0,454 0,373 0,375 0,454 0,454 0,454 0,454 0,373 0,372 0,394 0,329 0,454 0,512 0,454 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,510	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,294 0,246 0,172 0,169 0,192 0,128 0,001	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0007 1 0,0002	-10,0			_		-		50,0	error Y 0,013702 0,03124 0,023387 0,024931 0,000986 0,0144 0,005802 0,011554 0,026012 0,008405 0,023265 0,0144
mero inhibidor = 2 Referencia Ilista 482 1 270 3	nero inhibidor = 2 Referencia Ilista 482 1,370 g C-052 7,320 1	Serie 2 corretgir	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>v</b> ALORE <b>A</b> (uA · h ⁻¹ )	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4654 0,388 <b>a 4 mg/ml</b> <b>s AJUSTE</b> <b>± SE</b>	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0.206 0.223 0.206 0.211 0.204 0.203 0.194 0.213 0.208 0.201 0.203 0.202 0.201 0.201 0.201 0.201 0.201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,470 0,394 0,394 0,375 0,454 0,373 0,375 0,454 0,454 0,454 0,454 0,373 0,372 0,394 0,329 0,454 0,512 0,454 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,510	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,294 0,246 0,172 0,169 0,246 0,172 0,192 0,128 0,001	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0007 1 0,0002	-10,0		10,0	_		-		50,0	0,013702 0,03124 0,003744 0,02338 0,02493 0,01044 0,005802 0,01024 0,01025 0,01025 0,01025 0,01155 0,026012 0,008460 0,023285
		Serie 2 corretgir JUST	1.87 9.37 16.87 24.37 31.86 39.36 0.00 1.87 9.37 16.87 24.37 31.86 39.36 <b>v</b> ALORE <b>A</b> (uA · h ⁻¹ )	1,21815 1,0705 0,8033 0,641 0,533 0,4431 0,388 1,21025 1,112 0,788 0,5916 0,4654 0,388 <b>a 4 mg/ml</b> <b>s AJUSTE</b> <b>± SE</b>	0,07 0,07 0,07 0,07 0,07 0,07 0,07 0,07	0.206 0.223 0.206 0.211 0.204 0.203 0.194 0.213 0.208 0.201 0.203 0.202 0.201 0.201 0.201 0.201 0.201	1,18 1,12 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	0,454 0,512 0,507 0,470 0,394 0,394 0,375 0,454 0,373 0,375 0,454 0,454 0,454 0,454 0,373 0,372 0,394 0,329 0,454 0,512 0,454 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,507 0,470 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,512 0,510	1,12 1,05 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433 1,433	0,248 0,289 0,301 0,261 0,236 0,191 0,181 0,277 0,294 0,246 0,172 0,169 0,246 0,172 0,192 0,128 0,001	0,0002 0,001 1E-05 0,0006 1E-06 0,0002 3E-05 0,0002 3E-05 0,0007 7E-05 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0005 0,0007 1 0,0002	-10,0		10,0	_		-		50,0	0,013702 0,03124 0,003744 0,02338 0,02493 0,01044 0,005802 0,01024 0,01025 0,01025 0,01025 0,01155 0,026012 0,008460 0,023285

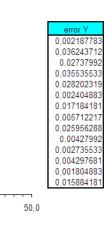
-10,0 -10,0 -10,0

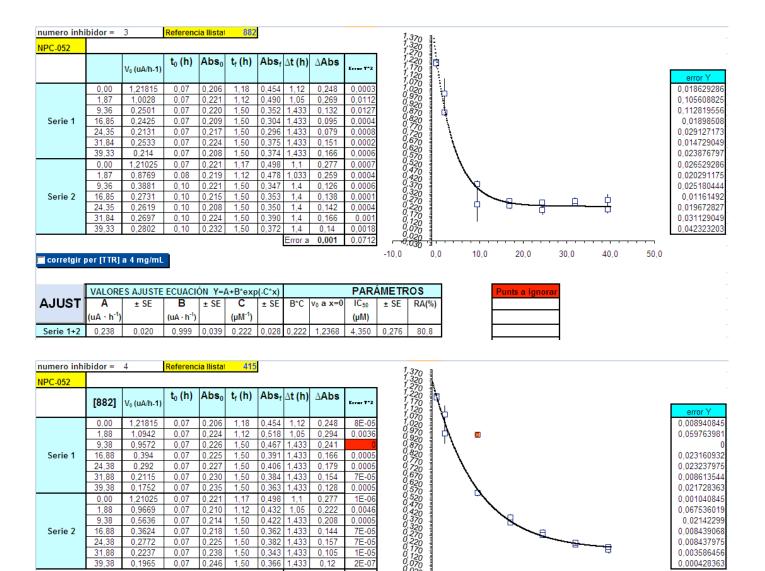
0,0

þ

numero inn	- 10010	2	Referenc	ia ilista	402				
NPC-052									
	[482]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T^2
	0,00	1,21815	0,07	0,206	1,18	0,454	1,12	0,248	5E-06
	1,88	0,9634	0,07	0,229	1,12	0,489	1,05	0,26	0,0013
	9,38	0,3233	0,07	0,274	1,50	0,380	1,433	0,106	0,0007
Serie 1	16,88	0,2128	0,07	0,310	1,50	0,387	1,433	0,077	0,0013
	24,38	0,1533	0,07	0,339	1,50	0,398	1,433	0,059	0,0008
	31,88	0,107	0,07	0,371	1,50	0,416	1,433	0,045	6E-06
	39,38	0,0875	0,07	0,401	1,50	0,441	1,433	0,04	0,0003
	0,00	1,21025	0,07	0,221	1,17	0,498	1,1	0,277	3E-05
	1,88	0,9012	0,07	0,226	1,12	0,482	1,05	0,256	0,0007
	9,38	0,3464	0,07	0,261	1,50	0,370	1,433	0,109	2E-05
Serie 2	16,88	0,18	0,07	0,307	1,50	0,366	1,433	0,059	7E-06
	24,38	0,1208	0,07	0,339	1,50	0,386	1,433	0,047	2E-05
	31,88	0,1076	0,07	0,376	1,50	0,427	1,433	0,051	3E-06
	39,38	0,0888	0,07	0,413	1,50	0,458	1,433	0,045	0,0003
							Error a	0,001	0,0711

# 🗖 corretgir per [TTR] a 4 mg/mL


VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)									PARÁ	METR	OS
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)		
Serie 1+2	0,103	0,010	1,113	0,016	0,160	0,007	0,178	1,2160	4,933	0,087	91,6




20,0

30,0

10,0





🗖 corretgir per	[TTR] a 4 mg/mL

31,88

39.38

0,1965

0,07

0,07

	VALORE	S AJUSTE	PARÁMETROS								
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM⁻¹)				(µM)		
Serie 1+2	0,176	0,022	1,033	0,025	0,099	0,008	0,102	1,2092	8,904	0,183	85,5

1,50

1,50

0,246

0,343 1,43

0,366 1,433

Error a

0,105

0,12

0,001

1E-0

2E-07

0,0711

<del>0,036</del>

0,0

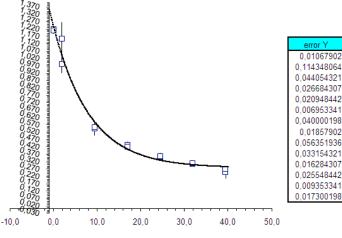
10,0

20.0

unts a ign 7

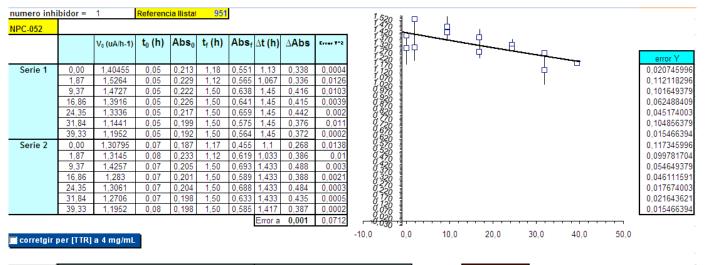
30.0

40,0


50.0

-10,0

numero inhi	bidor =	5	Referenc	ia Ilistai	952				
NPC-052									
		V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆t (h)	∆Abs	Errar T*2
	0,00	1,21815	0,07	0,206	1,18	0,454	1,12	0,248	0,0001
	1,88	1,1526	0,07	0,225	1,12	0,537	1,05	0,312	0,0131
	9,38	0,5451	0,07	0,208	1,50	0,458	1,433	0,25	0,0019
Serie 1	16,89	0,4326	0,07	0,210	1,50	0,382	1,433	0,172	0,0007
	24,40	0,3521	0,07	0,200	1,50	0,369	1,433	0,169	0,0004
	31,91	0,3076	0,07	0,206	1,50	0,380	1,433	0,174	5E-05
	39,41	0,2482	0,07	0,197	1,50	0,314	1,433	0,117	0,0016
	0,00	1,21025	0,07	0,221	1,17	0,498	1,1	0,277	0,0003
	1,88	0,9819	0,08	0,218	1,12	0,495	1,033	0,277	0,0032
	9,38	0,556	0,08	0,207	1,50	0,447	1,417	0,24	0,0011
Serie 2	16,89	0,4222	0,08	0,208	1,50	0,366	1,417	0,158	0,0003
	24,40	0,3567	0,07	0,200	1,50	0,362	1,433	0,162	0,0007
	31,91	0,31	0,07	0,201	1,50	0,355	1,433	0,154	9E-05
	39,41	0,2709	0,08	0,208	1,50	0,337	1,417	0,129	0,0003
							Error a	0,001	0,0712


### 🔲 corretgir per [TTR] a 4 mg/mL

	VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)								PARÁMETROS					
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)			
	(uA · h ⁻¹ )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)					
Serie 1+2	0,280	0,025	0,949	0,034	0,119	0,013	0,113	1,2288	8,727	0,292	77,2			



0,003586456

numero inh	ibidor =	6	Reference	cia Ilista	954				
PC-052									
	[415]	V ₀ (uA/h-1)	t ₀ (h)	Abs ₀	t _f (h)	Abs _f	∆ <b>t (h)</b>	∆Abs	Errar T*2
	0,00	1,21815	0,07	0,206	1,18	0,454	1,12	0,248	0,0001
	1,87	1,1184	0,07	0,245	1,12	0,544	1,05	0,299	0,0013
	9,36	0,1535	0,07	0,315	1,50	0,539	1,433	0,224	0
Serie 1	16,85	0,5489	0,07	0,387	1,50	0,610	1,433	0,223	0,0003
	24,34	0,4211	0,07	0,479	1,50	0,741	1,433	0,262	1E-06
	31,83	0,3754	0,07	0,548	1,50	0,746	1,433	0,198	0,0002
	39,32	0,3055	0,07	0,634	1,50	0,805	1,433	0,171	0,0005
	0,00	1,21025	0,07	0,221	1,17	0,498	1,1	0,277	7E-06
	1,87	1,0403	0,08	0,242	1,12	0,525	1,033	0,283	0,0017
	9,36	0,6898	0,08	0,314	1,50	0,574	1,417	0,26	0,0015
Serie 2	16,85	0,5445	0,08	0,393	1,50	0,599	1,417	0,206	0,0002
	24,34	0,4417	0,08	0,463	1,50	0,699	1,417	0,236	0,0004
	31,83	0,3644	0,08	0,550	1,50	0,777	1,417	0,227	1E-05
	39,32	0,3146	0,08	0,651	1,50	0,854	1,417	0,203	0,0002
							Error a	0,001	0,0711
corretgir	per [TTR]	a 4 mg/ml	-						
	VALOR	ES AJUSTE	ECUACI	ÓN Y=	A+B*exp	o(-C*x)			PAR/
AJUST	Α	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀



Punts a ignora

	VALORES AJUSTE ECUACIÓN Y=A+B*exp(-C*x)								PARÁMETROS					
AJUST	A	± SE	В	± SE	С	± SE	B*C	v ₀ a x=0	IC ₅₀	± SE	RA(%)			
	(uA · h ^{·1} )		(uA · h ⁻¹ )		(µM ⁻¹ )				(µM)					

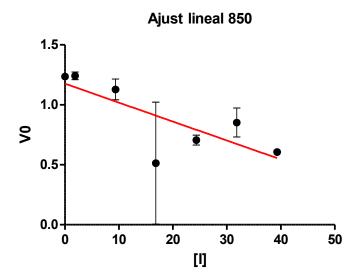
(uA · h⁻¹)

0,284

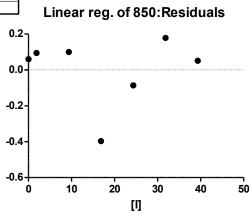
Serie 1+2

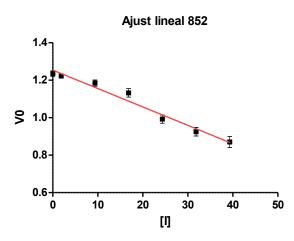
0,023

(uA · h⁻¹)

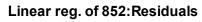

(µM⁻¹)

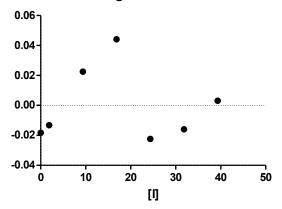
0,924 0,024 0,078 0,006 0,072 1,2077


(µM)

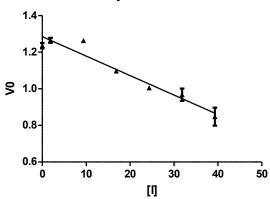

13,590 0,230

Δ	Δ
-	_

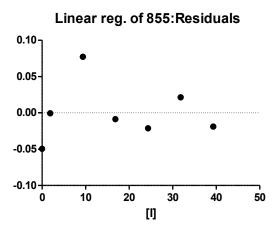




Best-fit values	
Slope	-0.01579 ± 0.005593
Y-intercept when X=0.0	1.176 ± 0.1256
X-intercept when Y=0.0	74.50
1/slope	-63.34
95% Confidence Intervals	
Slope	-0.02797 to -0.003601
Y-intercept when X=0.0	0.9025 to 1.450
X-intercept when Y=0.0	48.44 to 268.2
Goodness of Fit	
R square	0.3990
Sy.x	0.2902
Is slope significantly non-zero?	
F	7.968
DFn, DFd	1.000, 12.00
P value	0.0154
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

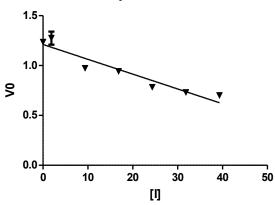




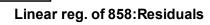

-0.009825 ± 0.0006374
1.254 ± 0.01431
127.6
-101.8
-0.01121 to -0.008436
1.223 to 1.285
113.9 to 145.9
0.9519
0.03307
237.6
1.000, 12.00
< 0.0001
Significant
7
2
14
0

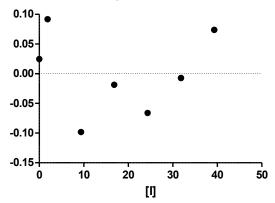




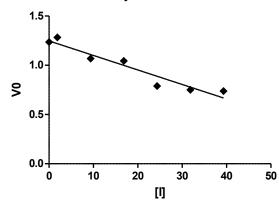





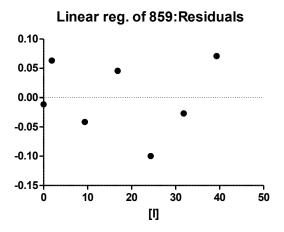


Best-fit values	
Slope	-0.01064 ± 0.0009240
Y-intercept when X=0.0	1.285 ± 0.02075
X-intercept when Y=0.0	120.8
1/slope	-94.00
95% Confidence Intervals	
Slope	-0.01265 to -0.008625
Y-intercept when X=0.0	1.240 to 1.330
X-intercept when Y=0.0	104.2 to 145.1
Goodness of Fit	
R square	0.9170
Sy.x	0.04794
Is slope significantly non-zero?	
F	132.6
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0



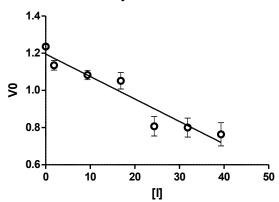


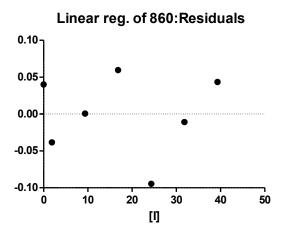

-0.01485 ± 0.001455
1.211 ± 0.03268
81.54
-67.33
-0.01802 to -0.01168
1.140 to 1.282
69.98 to 99.20
0.8967
0.07552
104.1
1.000, 12.00
< 0.0001
Significant
7
2
14
0

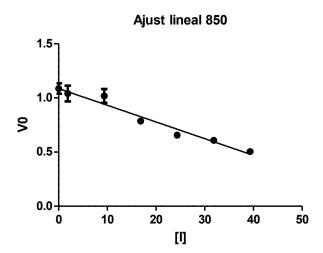




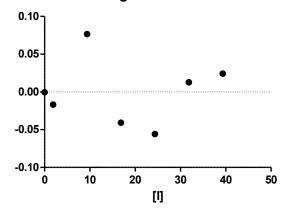




Best-fit values	
Slope	-0.01473 ± 0.001245
Y-intercept when X=0.0	1.247 ± 0.02796
X-intercept when Y=0.0	84.65
1/slope	-67.87
95% Confidence Intervals	
Slope	-0.01745 to -0.01202
Y-intercept when X=0.0	1.186 to 1.308
X-intercept when Y=0.0	73.97 to 100.0
Goodness of Fit	
R square	0.9211
Sy.x	0.06461
Is slope significantly non-zero?	
F	140.0
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

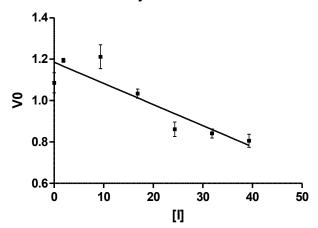



Ajust lineal 860



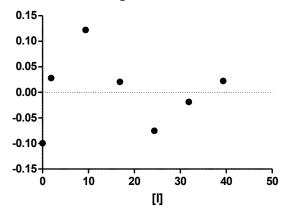

Best-fit values	
Slope	-0.01208 ± 0.001368
Y-intercept when X=0.0	1.196 ± 0.03071
X-intercept when Y=0.0	98.96
1/slope	-82.77
95% Confidence Intervals	
Slope	-0.01506 to -0.009102
Y-intercept when X=0.0	1.129 to 1.263
X-intercept when Y=0.0	82.59 to 125.9
Goodness of Fit	
R square	0.8667
Sy.x	0.07096
Is slope significantly non-zero?	
F	78.03
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values 7	
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

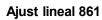





-0.01541 ± 0.001231
1.086 ± 0.02763
70.49
-64.89
-0.01809 to -0.01273
1.026 to 1.146
62.35 to 81.93
0.9289
0.06385
156.8
1.000, 12.00
< 0.0001
Significant
7
2
14
0

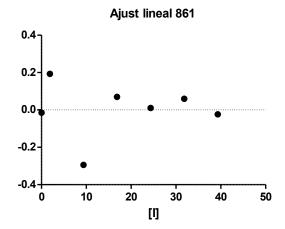
Linear reg. of 850:Residuals



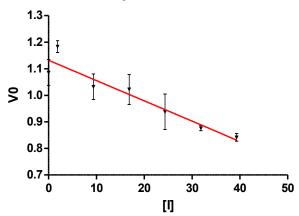


Ajust lineal 860



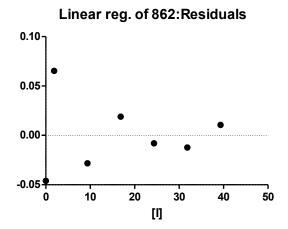

Best-fit values	
Slope	-0.01021 ± 0.001603
Y-intercept when X=0.0	1.185 ± 0.03600
X-intercept when Y=0.0	116.1
1/slope	-97.94
95% Confidence Intervals	
Slope	-0.01370 to -0.006717
Y-intercept when X=0.0	1.107 to 1.264
X-intercept when Y=0.0	90.67 to 167.6
Goodness of Fit	
R square	0.7716
Sy.x	0.08319
Is slope significantly non-zero?	
F	40.55
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

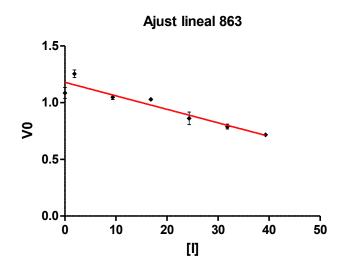

Linear reg. of 860:Residuals



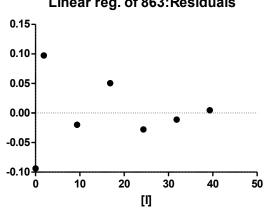




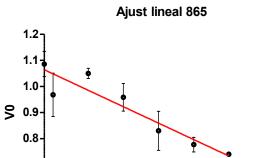


Best-fit values	
Slope	-0.01033 ± 0.004156
Y-intercept when X=0.0	1.101 ± 0.09331
X-intercept when Y=0.0	106.6
1/slope	-96.80
95% Confidence Intervals	
Slope	-0.01939 to -0.001275
Y-intercept when X=0.0	0.8978 to 1.304
X-intercept when Y=0.0	64.10 to 739.2
Goodness of Fit	
R square	0.3399
Sy.x	0.2156
Is slope significantly non-zero?	
F	6.179
DFn, DFd	1.000, 12.00
P value	0.0287
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0





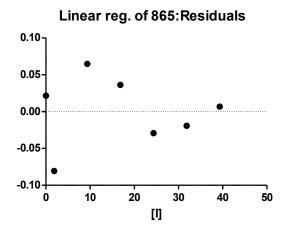




Best-fit values	
Slope	-0.007641 ± 0.001141
Y-intercept when X=0.0	1.132 ± 0.02562
X-intercept when Y=0.0	148.2
1/slope	-130.9
95% Confidence Intervals	
Slope	-0.01013 to -0.005154
Y-intercept when X=0.0	1.076 to 1.188
X-intercept when Y=0.0	115.9 to 211.3
Goodness of Fit	
R square	0.7889
Sy.x	0.05920
Is slope significantly non-zero?	
F	44.84
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

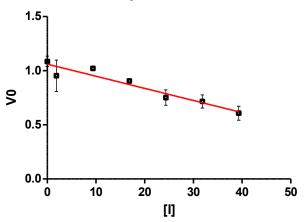




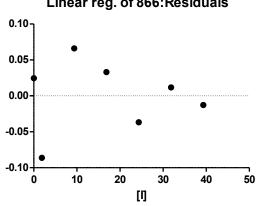

Best-fit values	
Slope	-0.01190 ± 0.001353
Y-intercept when X=0.0	1.180 ± 0.03037
X-intercept when Y=0.0	99.12
1/slope	-84.02
95% Confidence Intervals	
Slope	-0.01485 to -0.008954
Y-intercept when X=0.0	1.114 to 1.246
X-intercept when Y=0.0	82.66 to 126.2
Goodness of Fit	
R square	0.8658
Sy.x	0.07019
Is slope significantly non-zero?	
F	77.41
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0




Linear reg. of 863:Residuals

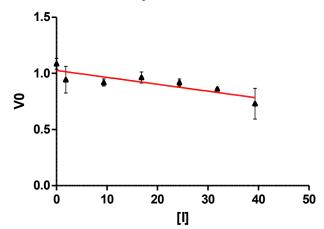



0.7-					
0.6 0	10	20	30	40	 50
		[	IJ		

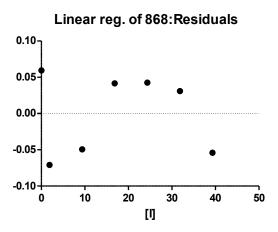

Best-fit values	
Slope	-0.008408 ± 0.001420
Y-intercept when X=0.0	1.064 ± 0.03189
X-intercept when Y=0.0	126.6
1/slope	-118.9
95% Confidence Intervals	
Slope	-0.01150 to -0.005313
Y-intercept when X=0.0	0.9948 to 1.134
X-intercept when Y=0.0	96.95 to 190.4
Goodness of Fit	
R square	0.7449
Sy.x	0.07370
Is slope significantly non-zero?	
F	35.04
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0



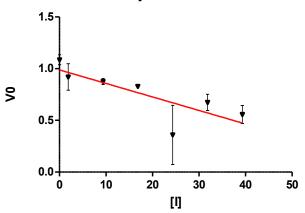




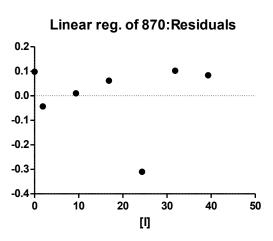

Best-fit values	
Slope	-0.01120 ± 0.001785
Y-intercept when X=0.0	1.061 ± 0.04009
X-intercept when Y=0.0	94.72
1/slope	-89.25
95% Confidence Intervals	
Slope	-0.01510 to -0.007314
Y-intercept when X=0.0	0.9740 to 1.149
X-intercept when Y=0.0	74.43 to 136.1
Goodness of Fit	
R square	0.7665
Sy.x	0.09264
Is slope significantly non-zero?	
F	39.38
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0



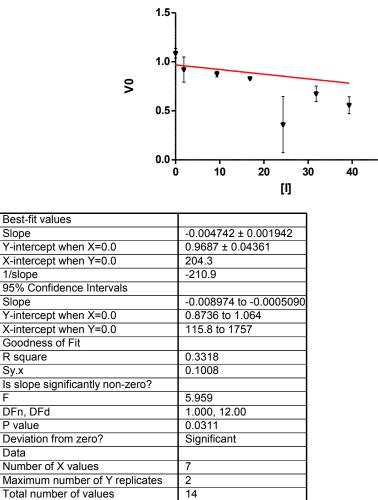

Linear reg. of 866:Residuals







Best-fit values	
Slope	-0.006152 ± 0.001900
Y-intercept when X=0.0	1.026 ± 0.04267
X-intercept when Y=0.0	166.9
1/slope	-162.6
95% Confidence Intervals	
Slope	-0.01029 to -0.002011
Y-intercept when X=0.0	0.9335 to 1.119
X-intercept when Y=0.0	106.4 to 474.5
Goodness of Fit	
R square	0.4662
Sy.x	0.09859
Is slope significantly non-zero?	
F	10.48
DFn, DFd	1.000, 12.00
P value	0.0071
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

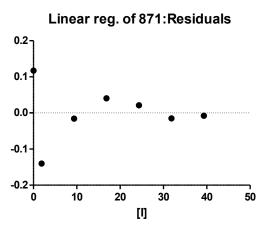







Best-fit values	
Slope	-0.01307 ± 0.003888
Y-intercept when X=0.0	0.9879 ± 0.08729
X-intercept when Y=0.0	75.60
1/slope	-76.52
95% Confidence Intervals	
Slope	-0.02154 to -0.004597
Y-intercept when X=0.0	0.7977 to 1.178
X-intercept when Y=0.0	51.74 to 183.4
Goodness of Fit	
R square	0.4850
Sy.x	0.2017
Is slope significantly non-zero?	
F	11.30
DFn, DFd	1.000, 12.00
P value	0.0057
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

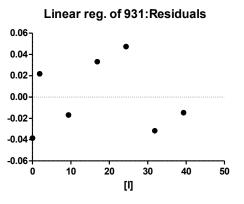




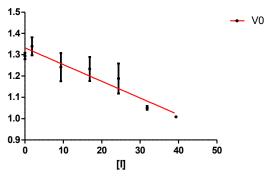



0

F


Number of missing values




. 50

60

Best-fit values	
Slope	-0.007856 ± 0.001152
Y-intercept when X=0.0	1.332 ± 0.02589
X-intercept when Y=0.0	169.6
1/slope	-127.3
95% Confidence Intervals	
Slope	-0.01037 to -0.005345
Y-intercept when X=0.0	1.276 to 1.389
X-intercept when Y=0.0	132.6 to 241.2
Goodness of Fit	
R square	0.7948
Sy.x	0.05983
Is slope significantly non-zero?	
F	46.48
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0



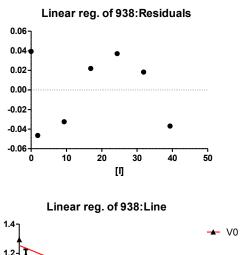
Linear reg. of 931:Line

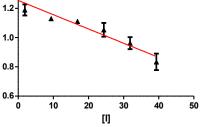


Best-fit values	
Slope	-0.01176 ± 0.001016
Y-intercept when X=0.0	1.274 ± 0.02284
X-intercept when Y=0.0	108.4
1/slope	-85.06
95% Confidence Intervals	
Slope	-0.01397 to -0.009542
Y-intercept when X=0.0	1.224 to 1.324
X-intercept when Y=0.0	93.80 to 129.6
Goodness of Fit	
R square	0.9177
Sy.x	0.05278
Is slope significantly non-zero?	
F	133.8
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

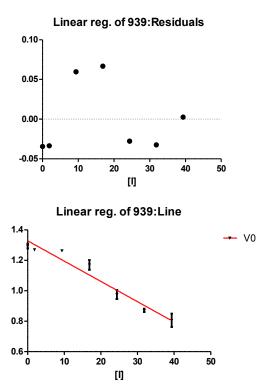
Linear reg. of 934:Residuals 0.06 0.04 0.02 0.00 -0.02 -0.04-50 20 ò 10 30 40 [1] Linear reg. of 934:Line 1.6-■ V0 1.4 1.2 1.0-0.8-0.6 0

20

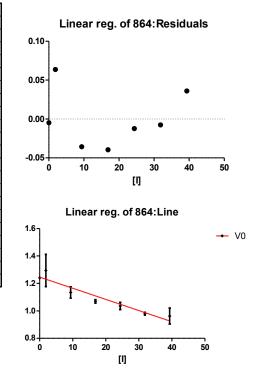

10


50

40

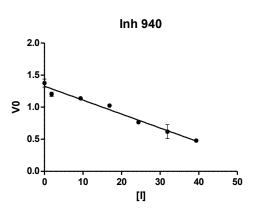

30 [1]

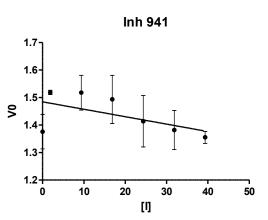
Best-fit values	
Slope	-0.009750 ± 0.001027
Y-intercept when X=0.0	1.255 ± 0.02307
X-intercept when Y=0.0	128.7
1/slope	-102.6
95% Confidence Intervals	
Slope	-0.01199 to -0.007513
Y-intercept when X=0.0	1.204 to 1.305
X-intercept when Y=0.0	107.8 to 161.9
Goodness of Fit	
R square	0.8826
Sy.x	0.05331
Is slope significantly non-zero?	
F	90.19
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0





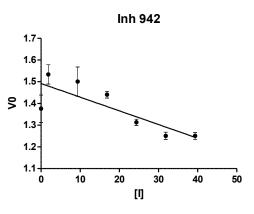

Best-fit values	
Slope	-0.01333 ± 0.001002
Y-intercept when X=0.0	1.328 ± 0.02253
X-intercept when Y=0.0	99.63
1/slope	-75.01
95% Confidence Intervals	
Slope	-0.01552 to -0.01115
Y-intercept when X=0.0	1.279 to 1.377
X-intercept when Y=0.0	87.90 to 115.9
Goodness of Fit	
R square	0.9365
Sy.x	0.05205
Is slope significantly non-zero?	
F	176.9
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

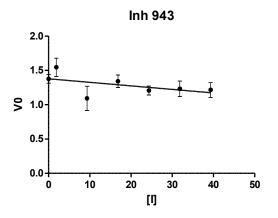




-0.006852 ± 0.0008045
1.208 ± 0.01875
176.3
-145.9
-0.008622 to -0.005081
1.167 to 1.249
143.8 to 231.3
0.8683
0.03964
72.53
1.000, 11.00
< 0.0001
Significant
7
2
13
1



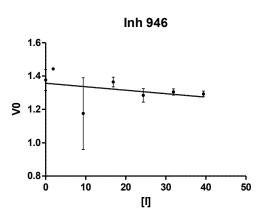
Best-fit values	
Slope	-0.02171 ± 0.001431
Y-intercept when X=0.0	1.328 ± 0.03216
X-intercept when Y=0.0	61.14
1/slope	-46.05
95% Confidence Intervals	
Slope	-0.02483 to -0.01859
Y-intercept when X=0.0	1.258 to 1.398
X-intercept when Y=0.0	55.37 to 68.74
Goodness of Fit	
R square	0.9504
Sy.x	0.07432
Is slope significantly non-zero?	
F	230.2
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

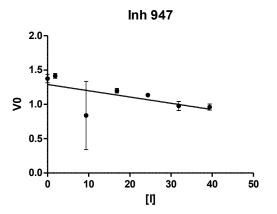

-0.002700 ± 0.001764
1.484 ± 0.03965
549.7
-370.3
-0.006545 to 0.001144
1.398 to 1.571
236.9 to +infinity
0.1633
0.09163
2.342
1.000, 12.00
0.1518
Not Significant
7
2
14
0






Best-fit values	
Slope	-0.006298 ± 0.001525
Y-intercept when X=0.0	1.492 ± 0.03427
X-intercept when Y=0.0	236.9
1/slope	-158.8
95% Confidence Intervals	
Slope	-0.009621 to -0.002975
Y-intercept when X=0.0	1.418 to 1.567
X-intercept when Y=0.0	161.0 to 482.0
Goodness of Fit	
R square	0.5870
Sy.x	0.07920
Is slope significantly non-zero?	
F	17.06
DFn, DFd	1.000, 12.00
P value	0.0014
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

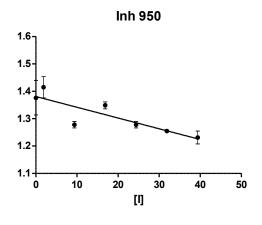

Best-fit values	
	0.005150 . 0.000071
Slope	-0.005158 ± 0.003371
Y-intercept when X=0.0	1.378 ± 0.07568
X-intercept when Y=0.0	267.2
1/slope	-193.9
95% Confidence Intervals	
Slope	-0.01250 to 0.002186
Y-intercept when X=0.0	1.213 to 1.543
X-intercept when Y=0.0	120.1 to +infinity
Goodness of Fit	
R square	0.1633
Sy.x	0.1749
Is slope significantly non-zero?	
F	2.342
DFn, DFd	1.000, 12.00
P value	0.1519
Deviation from zero?	Not Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

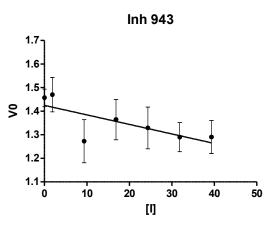


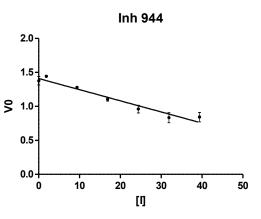



Best-fit values	
Slope	-0.002086 ± 0.002371
Y-intercept when X=0.0	1.357 ± 0.05331
X-intercept when Y=0.0	650.7
1/slope	-479.4
95% Confidence Intervals	
Slope	-0.007253 to 0.003081
Y-intercept when X=0.0	1.241 to 1.473
X-intercept when Y=0.0	199.4 to +infinity
Goodness of Fit	
R square	0.06057
Sy.x	0.1232
Is slope significantly non-zero?	
F	0.7737
DFn, DFd	1.000, 12.00
P value	0.3963
Deviation from zero?	Not Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

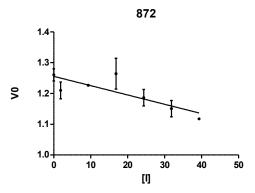
Best-fit values	
Slope	-0.009150 ± 0.005175
Y-intercept when X=0.0	1.290 ± 0.1163
X-intercept when Y=0.0	141.0
1/slope	-109.3
95% Confidence Intervals	
Slope	-0.02043 to 0.002126
Y-intercept when X=0.0	1.037 to 1.544
X-intercept when Y=0.0	71.95 to +infinity
Goodness of Fit	
R square	0.2067
Sy.x	0.2688
Is slope significantly non-zero?	
F	3.127
DFn, DFd	1.000, 12.00
P value	0.1024
Deviation from zero?	Not Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

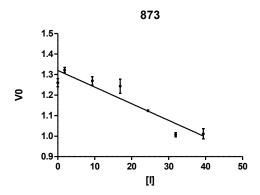


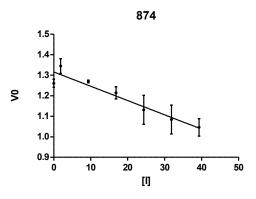



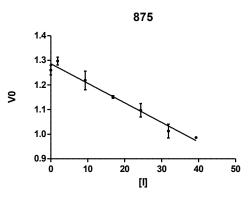


000000 + 0 0000044
000000 . 0 0000044
.003929 ± 0.0009241
381 ± 0.02077
51.5
54.5
.005942 to -0.001915
336 to 1.426
38.2 to 702.6
6010
04799
3.08
000, 12.00
0011
gnificant
ļ

Best-fit values	
	-0.004040 ± 0.001869
Slope	
Y-intercept when X=0.0	1.425 ± 0.04197
X-intercept when Y=0.0	352.7
1/slope	-247.5
95% Confidence Intervals	
Slope	-0.008114 to 3.336e-005
Y-intercept when X=0.0	1.333 to 1.516
X-intercept when Y=0.0	184.2 to +infinity
Goodness of Fit	
R square	0.2802
Sy.x	0.09700
Is slope significantly non-zero?	
F	4.671
DFn, DFd	1.000, 12.00
P value	0.0516
Deviation from zero?	Not Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

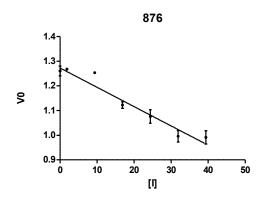

Best-fit values	
Slope	-0.01638 ± 0.001497
Y-intercept when X=0.0	1.410 ± 0.03365
X-intercept when Y=0.0	86.08
1/slope	-61.07
95% Confidence Intervals	
Slope	-0.01964 to -0.01311
Y-intercept when X=0.0	1.336 to 1.483
X-intercept when Y=0.0	74.44 to 103.4
Goodness of Fit	
R square	0.9089
Sy.x	0.07776
Is slope significantly non-zero?	
F	119.7
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

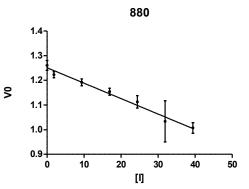


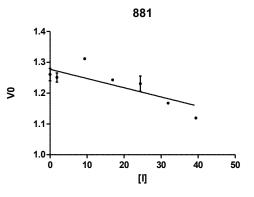



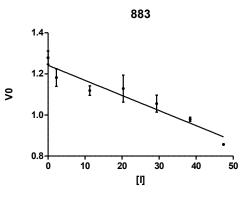




Best-fit values           Slope           Sinpe           Y-intercept when X=0.0           X-intercept when Y=0.0           1/slope           95% Confidence Intervals           Slope           Y-intercept when X=0.0           X-intercept when X=0.0           X-intercept when X=0.0           Goodness of Fit           R square           Sy.x           Is slope significantly non-zero?           F           DFn, DFd	-0.003029 ± 0.0008625 1.256 ± 0.01997 414.5 -330.1
Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	1.256 ± 0.01997 414.5
X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	414.5
1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	-330.1
Slope           Y-intercept when X=0.0           X-intercept when Y=0.0           Goodness of Fit           R square           Sy.x           Is slope significantly non-zero?           F           DFn, DFd	
Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	
X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	-0.004928 to -0.001131
Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	1.212 to 1.300 261.7 to 1080
R square Sy.x Is slope significantly non-zero? F DFn, DFd	201.7 10 1000
Is slope significantly non-zero? F DFn, DFd	0.5286
F DFn, DFd	0.04413
DFn, DFd	
	12.33
P value	1.000, 11.00 0.0049
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	13
Number of missing values	<u> </u>
Best-fit values	
Slope V-intercent when X=0.0	-0.008123 ± 0.000935' 1.321 ± 0.02103
Y-intercept when X=0.0 X-intercept when Y=0.0	1.321 ± 0.02103 162.6
1/slope	-123.1
95% Confidence Intervals	
Slope	-0.01016 to -0.006086
Y-intercept when X=0.0	1.275 to 1.366
X-intercept when Y=0.0 Goodness of Fit	133.3 to 211.2
R square	0.8628
Sy.x	0.04860
Is slope significantly non-zero?	
F	75.46
DFn, DFd	1.000, 12.00
P value Deviation from zero?	< 0.0001 Significant
Data	Significant
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
Best-fit values	
Slope Y-intercept when X=0.0	-0.006970 ± 0.001121 1.316 ± 0.02517
X-intercept when Y=0.0	188.8
1/slope	-143.5
95% Confidence Intervals	
Slope	-0.009413 to -0.004528
Y-intercept when X=0.0	1.261 to 1.371
X-intercept when Y=0.0 Goodness of Fit	144.2 to 281.4
R square	0.7632
Sy.x	0.05816
Is slope significantly non-zero?	
F	38.67
DFn, DFd P value	1.000, 12.00 < 0.0001
P value Deviation from zero?	< 0.0001 Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
Best-fit values	-0.007951 ± 0.0005899
Slope	1.287 ± 0.01325
Slope Y-intercept when X=0.0	161.8
Slope Y-intercept when X=0.0 X-intercept when Y=0.0	105.0
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope	-125.8
Slope Y-intercept when X=0.0 X-intercept when Y=0.0	-125.8 -0.009236 to -0.006666
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals	
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0	-0.009236 to -0.006666
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380 0.03061
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero?	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380 0.03061 181.7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero?	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380 0.03061 181.7 1.000, 12.00
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380 0.03061 181.7 1.000, 12.00 < 0.0001 Significant
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.0380 0.03061 181.7 1.000, 12.00 < 0.0001 Significant 7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	-0.009236 to -0.006666 1.258 to 1.315 141.6 to 189.7 0.9380 0.03061 181.7 1.000, 12.00 < 0.0001 Significant



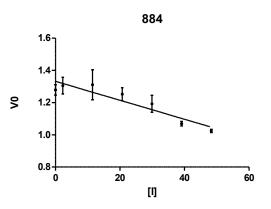



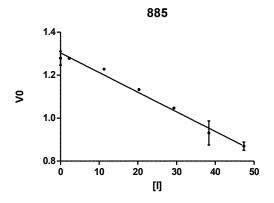



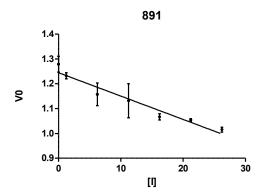

Best-fit values	0.007000 - 0.0000
Slope Y-intercept when X=0.0	-0.007826 ± 0.0006509 1.273 ± 0.01510
X-intercept when Y=0.0	162.6
1/slope	-127.8
95% Confidence Intervals	
Slope	-0.009259 to -0.006393
Y-intercept when X=0.0	1.239 to 1.306
X-intercept when Y=0.0 Goodness of Fit	140.2 to 195.1
R square	0.9293
Sy.x	0.03336
Is slope significantly non-zero?	
F	144.5
DFn, DFd	1.000, 11.00
P value	< 0.0001
Deviation from zero?	Significant
Data Number of X values	7
Maximum number of Y replicates	2
Total number of values	13
Number of missing values	1
Best-fit values	0.000057 + 0.0007003
Slope Y-intercept when X=0.0	-0.006257 ± 0.0007827 1.251 ± 0.01761
X-intercept when Y=0.0	200.0
1/slope	-159.8
95% Confidence Intervals	
Slope	-0.007962 to -0.004551
Y-intercept when X=0.0	1.213 to 1.289
X-intercept when Y=0.0	160.8 to 268.4
Goodness of Fit	
R square	0.8419
Sy.x	0.04069
Is slope significantly non-zero?	63.90
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	Ū.
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
Best-fit values	
Slope	-0.002987 ± 0.0008626
Y-intercept when X=0.0	1.277 ± 0.01756
X-intercept when Y=0.0	427.6
1/slope	-334.8
95% Confidence Intervals	
Slope	-0.004976 to -0.000997
Y-intercept when X=0.0 X-intercept when Y=0.0	1.237 to 1.318 262.5 to 1250
Goodness of Fit	202.5 10 1250
R square	0.5998
Sy.x	0.03748
Is slope significantly non-zero?	
F	11.99
DFn, DFd	1.000, 8.000
P value	0.0085
Deviation from zero?	0.0085 Significant
Deviation from zero? Data	Significant
Deviation from zero? Data Number of X values	Significant 7
Deviation from zero? Data Number of X values Maximum number of Y replicates	Significant 7 2
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values	Significant 7
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values	Significant 7 2 10
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values	Significant 7 2 10 4
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope	Significant 7 2 10 4 -0.007340 ± 0.0008822
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0	Significant 7 2 10 4 
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0	Significant 7 2 10 4 - 0.007340 ± 0.0008822 1.242 ± 0.02388 169.2
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope	Significant 7 2 10 4 
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0	Significant 7 2 10 4 - 0.007340 ± 0.0008822 1.242 ± 0.02388 169.2
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 1/slope 95% Confidence Intervals Slope	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2 -0.009262 to -0.005417
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X.intercept when X=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 K.intercept when X=0.0 Slope	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X/intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero?	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169 2 -136 2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522 0.05517
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 Slope Sigope Y-intercept when X=0.0 X-intercept when X=0.0 Sigope Sy X Is square Sy X Is slope significantly non-zero? F	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169 2 -136.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522 0.05517 69.22
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 Slope Y-intercept when X=0.0 X.intercept when X=0.0 Sodness of Fit R square Sy.x Is slope significantly non-zero? F	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -1.36.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522 0.05517 -69.22 1.000, 12.00
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value	Significant 7 2 10 4 
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Godness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero?	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -1.36.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522 0.05517 -69.22 1.000, 12.00
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X.intercept when X=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 X.intercept when X=0.0 Siope Siope Slope Sl	Significant 7 2 10 4 
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Godness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero?	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -1.36.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.8522 0.05517 -69.22 1.000, 12.00 < 0.0001 Significant
Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope 95% Confidence Intervals Sl	Significant 7 2 10 4 -0.007340 ± 0.0008822 1.242 ± 0.02388 169.2 -136.2 -0.009262 to -0.005417 1.190 to 1.294 138.3 to 221.9 0.05517 69.22 1.000, 12.00 < 0.0001 Significant 7



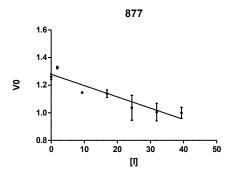


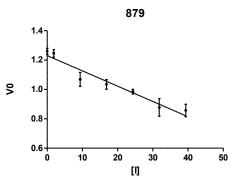


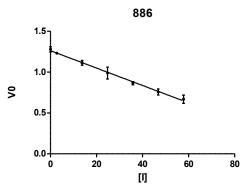



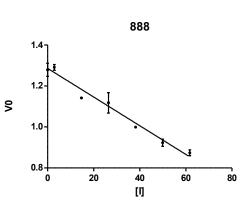


Best-fit values	
Slope	-0.005885 ± 0.001050
Y-intercept when X=0.0	1.332 ± 0.02897
X-intercept when Y=0.0	226.4
1/slope	-169.9
95% Confidence Intervals	
Slope	-0.008174 to -0.00359
Y-intercept when X=0.0	1.269 to 1.395
X-intercept when Y=0.0	168.8 to 357.0
Goodness of Fit	
R square	0.7235
Sy.x	0.06694
Is slope significantly non-zero?	
F	31.39
DFn, DFd	1.000, 12.00
P value	0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

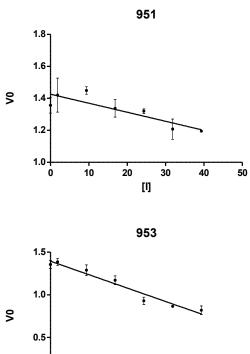
Best-fit values	
Slope	-0.009130 ± 0.0005358
Y-intercept when X=0.0	1.303 ± 0.01449
X-intercept when Y=0.0	142.8
1/slope	-109.5
95% Confidence Intervals	
Slope	-0.01030 to -0.007962
Y-intercept when X=0.0	1.272 to 1.335
X-intercept when Y=0.0	128.9 to 160.7
Goodness of Fit	
R square	0.9603
Sy.x	0.03348
Is slope significantly non-zero?	
F	290.3
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

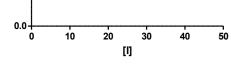

Best-fit values	
Slope	-0.009408 ± 0.001259
Y-intercept when X=0.0	1.245 ± 0.01884
X-intercept when Y=0.0	132.3
1/slope	-106.3
95% Confidence Intervals	
Slope	-0.01215 to -0.00666
Y-intercept when X=0.0	1.203 to 1.286
X-intercept when Y=0.0	105.0 to 182.0
Goodness of Fit	
R square	0.8232
Sy.x	0.04355
Is slope significantly non-zero?	
F	55.87
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0

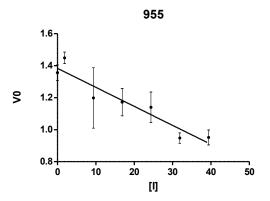


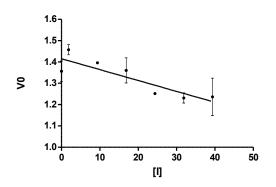





Best-fit values	0.000402 + 0.004240
Slope Y-intercept when X=0.0	-0.008193 ± 0.001318 1.279 ± 0.03054
X-intercept when Y=0.0	156.2
1/slope	-122.1
95% Confidence Intervals	
Slope	-0.01109 to -0.005293
Y-intercept when X=0.0	1.212 to 1.347
X-intercept when Y=0.0	119.9 to 231.9
Goodness of Fit	
R square	0.7785
Sy.x Is slope significantly non-zero?	0.06749
F	38.66
DFn, DFd	1.000, 11.00
P value	< 0.0001
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	13
Number of missing values	1
Dest ft velves	
Best-fit values	0.01042 ± 0.001072
Slope Y-intercept when X=0.0	-0.01042 ± 0.001072 1.231 ± 0.02408
X-intercept when Y=0.0	118.2
1/slope	-96.00
95% Confidence Intervals	
Slope	-0.01275 to -0.008079
Y-intercept when X=0.0	1.178 to 1.283
X-intercept when Y=0.0	99.54 to 147.5
Goodness of Fit	
R square	0.8871
Sy.x	0.05565
Is slope significantly non-zero?	
F	94.33
DFn, DFd	1.000, 12.00
P value	< 0.0001
Deviation from zero?	Significant
Data	7
Number of X values	7
Maximum number of Y replicates Total number of values	2
Number of missing values	0
	, ř
Best-fit values	
Slope	-0.01063 ± 0.0005986
Y-intercept when X=0.0	1.262 ± 0.01976
X-intercept when Y=0.0	118.7
1/slope	-94.03
95% Confidence Intervals	0.011011-0.000000
Slope Y-intercept when X=0.0	-0.01194 to -0.009330 1.219 to 1.305
X-intercept when Y=0.0	108.3 to 131.9
	100.010 101.0
unconness of Fit	
Goodness of Fit R square	0.9634
R square	0.9634 0.04566
R square Sy.x	0.9634 0.04566
R square	
R square Sy.x Is slope significantly non-zero?	0.04566
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value	0.04566 315.7
R square Sy.x Is slope significantly non-zero? F DFn, DFd	0.04566 315.7 1.000, 12.00
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	0.04566 315.7 1.000, 12.00 < 0.0001 Significant
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14
R square Sy.x is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Number of missing values Best-fit values	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y veplicates Number of missing values Best-fit values Slope Y-intercept when X=0.0	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X. intercept when Y=0.0	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Number of missing values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Values Number of Maises Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603
R square Sy.x Is slope significantly non-zero? F DFn, DFd Deviation from zero? Data Number of X values Number of X values Number of X values Number of Y replicates Total number of Y replicates Total number of Y replicates Stope Siope Y-intercept when X=0.0 X-intercept when X=0.0 Siope Siope Siope Siope Siope Sio	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 I/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Values Number of Maises Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 I/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.03560
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Slope Y-intercept when Y=0.0 Slo	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.05560 249.6
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope 95% Confidence Intervals Slope 95% Confidence Intervals Slope Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero?	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.03560 249.6 1.000, 11.00
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-interc	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.05506 249.6
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Number of X values Total number of Y replicates Total number of Values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F Drn, DFd	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.03560 249.6 1.000, 11.00 < 0.0001
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 F DFn, DFd P value Deviation from zero?	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.03560 249.6 1.000, 11.00 < 0.0001
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of Y replicates Total number of Y replicates Total number of Y replicates Number of Naiues Best-fit values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.05560 249.6 1.000, 11.00 < 0.0001 Significant 7 2
R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Vieplicates Total number of Vieplicates Total number of values Best-fit values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 Slope Slope Slope Slope Defn, DFd P value Deviation from zero? Data Number of X values	0.04566 315.7 1.000, 12.00 < 0.0001 Significant 7 2 14 0 -0.007006 ± 0.000443 1.287 ± 0.01611 183.6 -142.7 -0.007982 to -0.00603 1.251 to 1.322 164.5 to 208.9 0.9578 0.03560 249.6 1.000, 11.00 < 0.0001 Significant 7



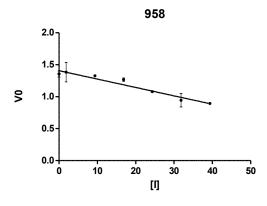



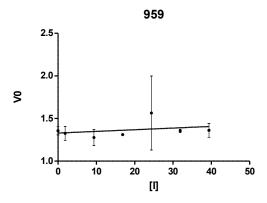


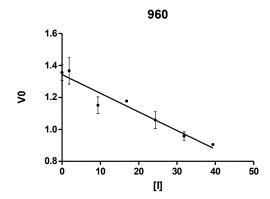



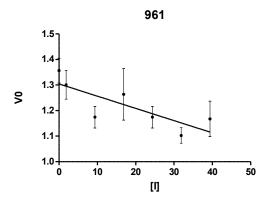






Best-fit values	
Best-fit values Slope	-0.005657 ± 0.001462
Y-intercept when X=0.0	-0.005657 ± 0.001462 1.426 ± 0.03284
X-intercept when Y=0.0	1.426 ± 0.03284 252.2
1/slope	-176.8
95% Confidence Intervals	-
Slope	-0.008843 to -0.00247
Y-intercept when X=0.0	1.355 to 1.498
X-intercept when Y=0.0	167.4 to 554.9
Goodness of Fit	
R square	0.5549
Sy.x	0.07587
Is slope significantly non-zero?	
F	14.96
DFn, DFd	1.000, 12.00
P value	0.0022 Significant
Deviation from zero?	Significant
Data Number of X values	7
Number of X values Maximum number of X replicates	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	v
Best-fit values	
Slope	-0.01575 ± 0.001357
Y-intercept when X=0.0	1.395 ± 0.03046
X-intercept when Y=0.0	88.58
1/slope	-63.49
95% Confidence Intervals	
Slope	-0.01871 to -0.01279
Y-intercept when X=0.0	1.329 to 1.461
X-intercept when Y=0.0	77.12 to 105.2
Goodness of Fit	
R square	0.9183
Sy.x	0.07038
Is slope significantly non-zero?	124.0
F DEp DEd	134.8
DFn, DFd P value	1.000, 12.00 < 0.0001
P value Deviation from zero?	< 0.0001 Significant
Deviation from zero?	organiount
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
	J
Best-fit values	0.01100 + 0.000000
Slope	-0.01190 ± 0.002223
Y-intercept when X=0.0 X-intercept when Y=0.0	1.384 ± 0.04999 116.3
X-Intercept when Y=0.0 1/slope	-84.07
95% Confidence Intervals	5
Slope	-0.01674 to -0.007050
Y-intercept when X=0.0	1.275 to 1.493
X-intercept when Y=0.0	87.39 to 184.5
Goodness of Fit	
R square	0.7046
Sy.x	0.1155
Is slope significantly non-zero?	
F	28.62
DFn, DFd	1.000, 12.00
P value	0.0002
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
Best-fit values	

Best-fit values	
Slope	-0.005113 ± 0.001305
Y-intercept when X=0.0	1.415 ± 0.03024
X-intercept when Y=0.0	276.8
1/slope	-195.6
95% Confidence Intervals	
Slope	-0.007985 to -0.00224
Y-intercept when X=0.0	1.349 to 1.482
X-intercept when Y=0.0	183.6 to 608.2
Goodness of Fit	
R square	0.5826
Sy.x	0.06682
Is slope significantly non-zero?	
F	15.36
DFn, DFd	1.000, 11.00
P value	0.0024
Deviation from zero?	Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	13
Number of missing values	1









Best-fit values	
Slope	-0.01313 ± 0.001849
Y-intercept when X=0.0 X-intercept when Y=0.0	1.407 ± 0.04283 107.2
1/slope	-76.17
95% Confidence Intervals	
Slope	-0.01720 to -0.009059
Y-intercept when X=0.0	1.313 to 1.502
X-intercept when Y=0.0	85.81 to 147.5
Goodness of Fit	0.0000
R square Sy.x	0.8209 0.09466
Is slope significantly non-zero?	0.00100
F	50.42
DFn, DFd	1.000, 11.00
P value	< 0.0001
Deviation from zero?	Significant
Number of X values	7
Maximum number of Y replicates	2
Total number of values	13
Number of missing values	1
Best-fit values	
Slope	0.001954 ± 0.004013
Y-intercept when X=0.0	1.329 ± 0.09022
X-intercept when Y=0.0	-680.4
1/slope	511.7
95% Confidence Intervals	0.000700.
Slope	-0.006790 to 0.01070
Y-intercept when X=0.0 X-intercept when Y=0.0	1.133 to 1.526 -infinity to -109.2
Goodness of Fit	-mining to - 109.2
R square	0.01938
Sy.x	0.2085
Is slope significantly non-zero?	
F	0.2371
DFn, DFd P value	1.000, 12.00 0.6351
Deviation from zero?	Not Significant
Data	
Number of X values	7
Maximum number of Y replicates	2
Total number of values	14
Number of missing values	0
Best-fit values	
Slope	-0.01168 ± 0.001303
Slope Y-intercept when X=0.0	1.343 ± 0.02976
Slope Y-intercept when X=0.0 X-intercept when Y=0.0	1.343 ± 0.02976 115.0
Slope Y-intercept when X=0.0	1.343 ± 0.02976
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope	1.343 ± 0.02976 115.0 -85.60
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero?	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero?	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4
Slope         Y-intercept when X=0.0         X-intercept when Y=0.0         1/slope         95% Confidence Intervals         Slope         Y-intercept when X=0.0         X-intercept when X=0.0         X-intercept when Y=0.0         Goodness of Fit         R square         Sy.x         Is slope significantly non-zero?         F         DFn, DFd         P value         Deviation from zero?         Data         Number of X values         Maximum number of Y replicates         Total number of values         Number of missing values         Best-fit values         Slope         Y-intercept when X=0.0         X-intercept when X=0.0         X-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 1/slope	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 -0.006763 -0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.00160 1.305 ± 0.00160 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of V alues Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero?	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248 0.04248 0.04248 0.04255
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of missing values Best-fit values Slope Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248 0.04355 8.864
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y replicates Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero?	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248 0.04248 0.04248 0.04255
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y values Number of x values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when Y=0.0 X-intercept when Y=0.0 X-intercept when Y=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248 0.08355 - 8.864 1.000, 12.00
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of X values Number of X values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when X=0.0 Slope Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 -0.006763 -0.000, 11.00 < 0.0001 Significant -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 -0.4248 0.08355 -0.0015 Significant Significant
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y alues Number of X values Maximum number of Y replicates Total number of Y alues Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 0.4248 0.08355 8.864 1.000, 12.00 0.0115 Significant 7
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of X values Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 X-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 -0.08355 8.864 1.000, 12.00 0.0115 Significant 7 2
Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when X=0.0 X-intercept when X=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values Maximum number of Y replicates Total number of Y alues Number of X values Maximum number of Y replicates Total number of Y alues Number of missing values Best-fit values Slope Y-intercept when X=0.0 X-intercept when Y=0.0 1/slope 95% Confidence Intervals Slope Y-intercept when Y=0.0 Goodness of Fit R square Sy.x Is slope significantly non-zero? F DFn, DFd P value Deviation from zero? Data Number of X values	1.343 ± 0.02976 115.0 -85.60 -0.01455 to -0.00881 1.278 to 1.409 95.55 to 146.9 0.8796 0.06763 80.35 1.000, 11.00 < 0.0001 Significant 7 2 13 1 -0.004789 ± 0.00160 1.305 ± 0.03615 272.4 -208.8 -0.008295 to -0.0012 1.226 to 1.383 164.5 to 968.0 -0.4248 0.08355 -0.00115 Significant 7 7

PTM	TTR	Fragmentation	lon	Observed m	Theoretical m	Δm ^a	ppm
Free Cys	wt		983.94	13753.0116	13752.8800	-	9.57
-		ECD	pScore	pDE⁵	# fragments	# c-ions	# z-ions
			0.991	6.61	2	0	2
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			0.991	6.61	10	0	10
S-Sulfo	wt		989.64	13832.8896	13832.8450	79.957	3.22
		ECD	pScore	pDE ^b	# fragments	# c-ions	# z-ions
			7.13E-04	97.50	3	0	3
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			0.069	3.55	9	6	3
S-Cys	wt		992.35	13871.9020	13871.8924	119	0.7
•		ECD	pScore	pDE ^b	# fragments	# c-ions	# z-ions
			5.11E-11	73.20	12	5	7
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			2.94E-19	72.60	25	17	8
S-CysGly	wt		996.5	13928.8962	13928.9200	176.026	1.7
-		ECD	pScore	рDЕ ^ь	# fragments	# c-ions	# z-ions
			2.35E-34	39.40	97	53	44
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			1.16E-05	50.50	19	15	4
S-GSH	wt		1005.72	14057.1816	14057.9560	305.068	55 ^c
-		ECD	pScore	pDE ^b	# fragments	# c-ions	# z-ions
			1.29E-05	48.70	9	3	6
Free Cys	V30M		986.22	13784.8913	13784.8603	-	2.25
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			7.53E-01	4.41	6	1	5
S-Sulfo	V30M		991.93	13863.9136	13864.8173	79.957	65.18 ^d
-		CID	pScore	рDЕ ^ь	# fragments	# b-ions	# y-ions
			7.96E-01	3.62	4	0	4
S-Cys	V30M		994.71	13903.4582	13903.8644	119.004	0.73
-		CID	pScore	рDE ^ь	# fragments	# b-ions	# y-ions
			1.77E-11	74.60	28	17	11
S-CysGly	V30M		998.79	13961.9241	13960.8863	176.026	74.3 ^c
•		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			8.47E-05	16.70	11	3	8
S-GSH	V30M		1008.07	14089.9257	14089.9283	305.068	0.18
		CID	pScore	pDE ^b	# fragments	# b-ions	# y-ions
			1.22E-04	35.10	7	5	2

Table A-3. Summary of top-down MS characterization of wild type (wt) and V30M TTR Cys-10 PTM isoforms

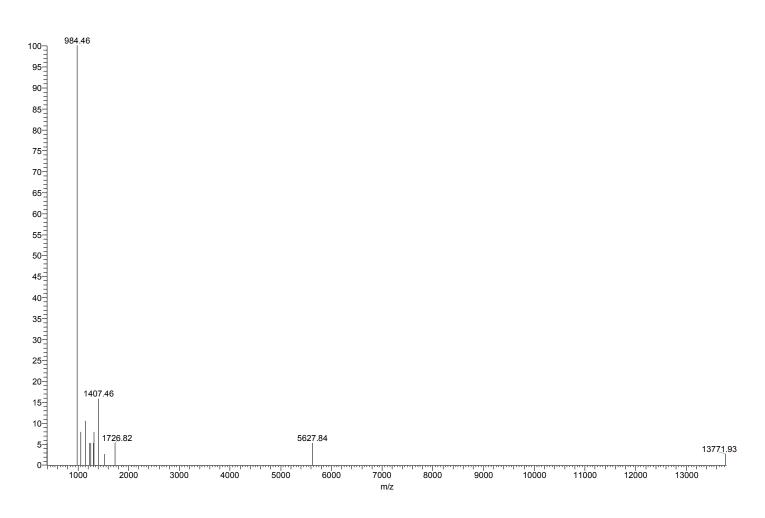
^b McLuckey score

^c Isoform detected as a minor species. The monoisotopic mass could not be accurately measured due to bad ion statistics

^d Deconvolution algorithm errors due to overlapping forms could account for the low accuracy determination

of the monoisotopic mass of this form

### Table A-4. Top-down MS identification of Free Cys wt TTR. ECD fragmentation


Fragmentation	ΡΤΜ	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
ECD	Free Cys	wt	983.94	13753.0116	13752.8800	-	9.57
			pScore	pDE⁵	# fragments	# c-ions	# z-ions

^a Mass difference compared to Free Cys form

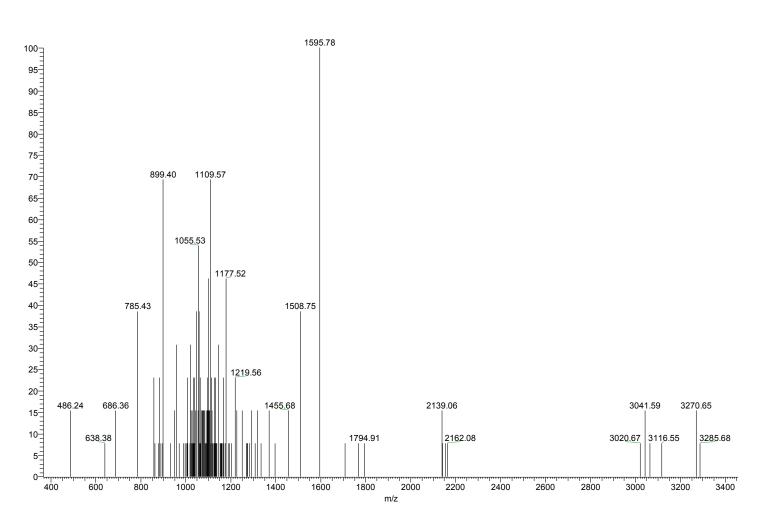
^b McLuckey score

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
22	Z16	1726.8230	1726.8200	0.0055	3.2076
24	Z51	5624.8185	5624.8100	0.0055	0.9751

# Figure A-1. Top-down deconvoluted MS/MS spectra of Free Cys wt TTR. ECD fragmentation



### Table A-5. Top-down MS identification of Free Cys wt TTR. CID fragmentation

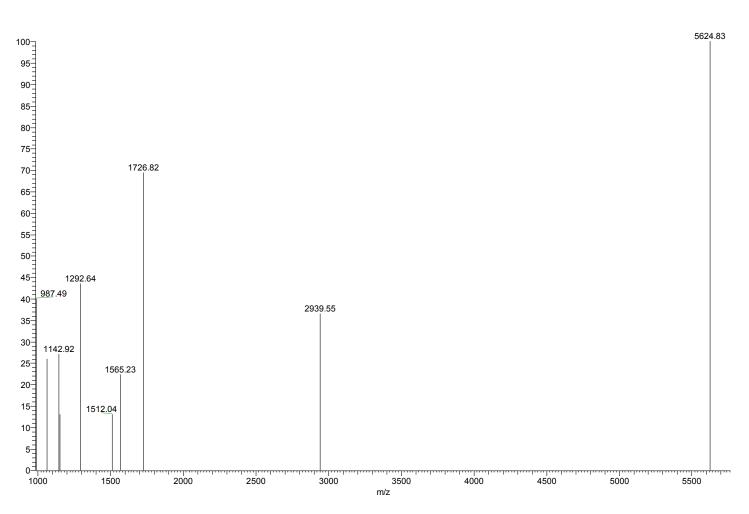

РТМ	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
Free Cys	wt	983.94	13753.0116	13752.8800	-	9.57
		pScore	pDE ^ь	# fragments	# b-ions	# y-ions
		0.991	6.61	10	0	10
			Free Cys wt 983.94 pScore	Free Cys         wt         983.94         13753.0116           pScore         pDE ^b	Free Cys         wt         983.94         13753.0116         13752.8800           pScore         pDE ^b # fragments	Free Cys         wt         983.94         13753.0116         13752.8800         -           pScore         pDE ^b # fragments         # b-ions

^a Mass difference compared to Free Cys form

^b McLuckey score

ID	<u>Name</u>	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
19	¥4	486.2438	486.2460	-0.0020	-4.0618
47	Y6	686.3600	686.3620	-0.0019	-2.7493
76	¥7	785.4279	785.4300	-0.0024	-3.0035
97	Y8	856.4654	856.4670	-0.0020	-2.3025
154	Y9	957.5131	957.5150	-0.0020	-2.1336
262	Y10	1058.5592	1058.5600	-0.0036	-3.3971
383	Y11	1145.5954	1145.5900	0.0006	0.5124
545	Y12	1308.6516	1308.6600	-0.0065	-4.9585
756	Y28	3041.5945	3041.5800	0.0103	3.3841
761	Y30	3270.6514	3270.6500	-0.0026	-0.7891

# Figure A-2. Top-down deconvoluted MS/MS spectra of Free Cys wt TTR. CID fragmentation




### Table A-6. Top-down MS identification of S-Sulfo wt TTR. ECD fragmentation

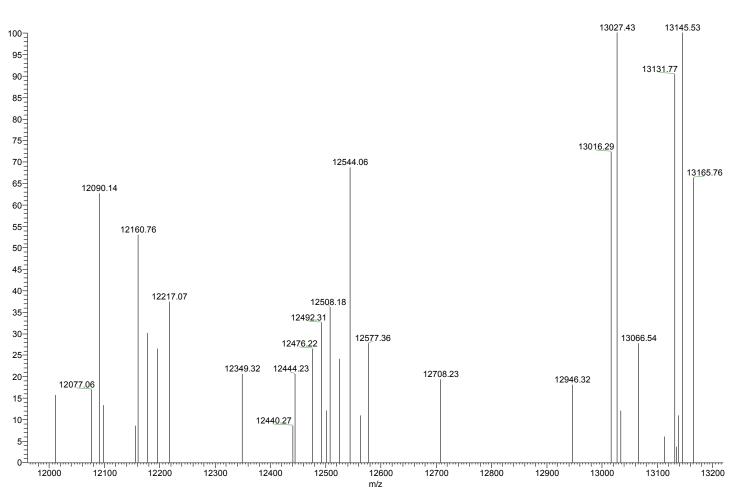
Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
ECD	S-Sulfo	wt	989.64	13832.8896	13832.8450	79.957	3.22
			pScore	pDE ^ь	# fragments	# c-ions	# z-ions
			7.13E-04	97.50	3	0	3
^a Mass difference cor	npared to Free	Cys form					
^b McLuckey score							
	<u>ID</u> <u>Nam</u>	e Mass Monoi	sotopic Theor	etical Mass Error	(Da) Error (ppm)		

10	rame	Hass Honoisotopic	Theoretical Plass		citor (ppin/
8	Z12	1292.6399	1292.6400	0.0025	1.8961
12	Z16	1726.8225	1726.8200	0.0050	2.9192
14	Z51	5624.8284	5624.8100	0.0154	2.7457

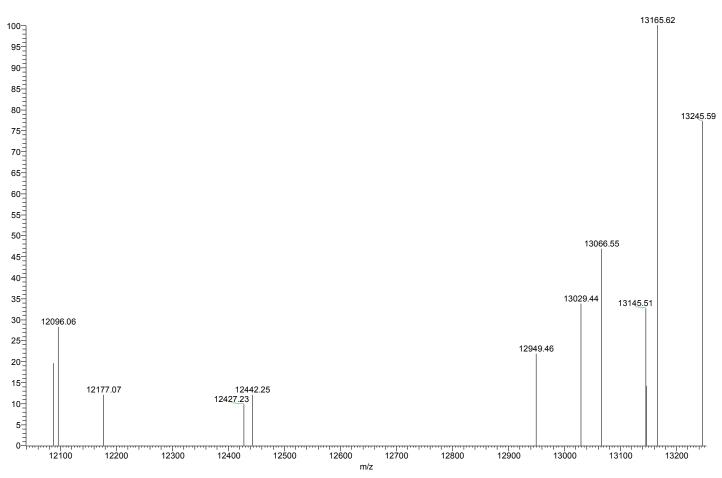




### Table A-7. Top-down MS identification of S-Sulfo wt TTR. CID fragmentation


Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
CID*	S-Sulfo	wt	989.64	13832.8896	13832.8450	79.957	3.22
			pScore	pDE ^ь	# fragments	# b-ions	# y-ions
			0.069	3.55	9	6	3

^a Mass difference compared to Free Cys form

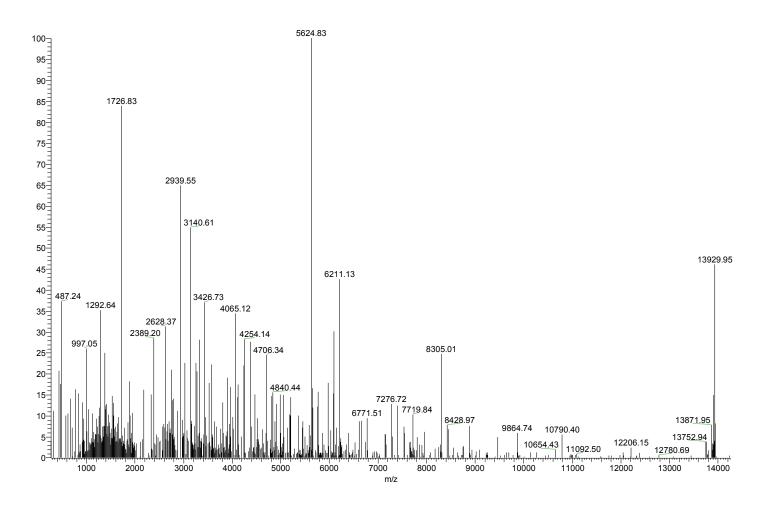

^b McLuckey score

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
376	B111	12090.1370	12090.0000	0.0837	6.9217
46	B112	12177.0699	12177.0000	0.0284	2.3347
380	B112	12177.1728	12177.0000	0.0874	7.1794
390	B115	12524.3532	12524.2000	0.1198	9.5649
53	B121	13146.5101	13146.5000	0.0243	1.8446
55	B122	13245.5937	13245.6000	0.0394	2.9783
69	¥7	785.4298	785.4300	-0.0005	-0.6162
70	Y8	856.4677	856.4670	0.0003	0.3129
53	Y119	13146.5101	13146.6000	-0.0503	-3.8299

* The fragments reported in the table are combination of CID+SID



### Figure A-4. Top-down deconvoluted MS/MS spectra of S-Sulfo wt TTR. CID+SID fragmentation

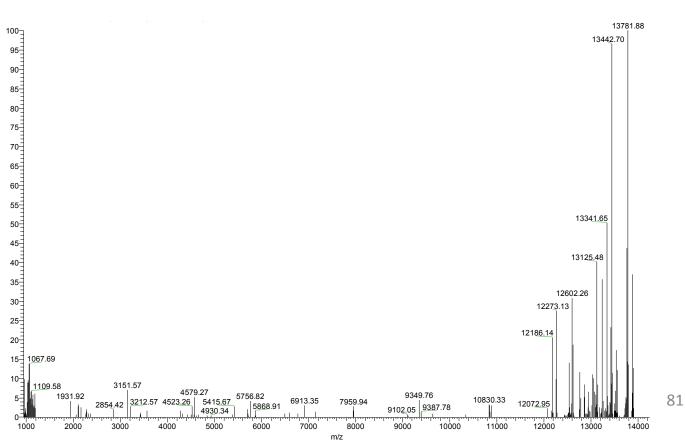



# Figure A-5. Top-down deconvoluted MS/MS spectra of S-Sulfo wt TTR. CID fragmentation

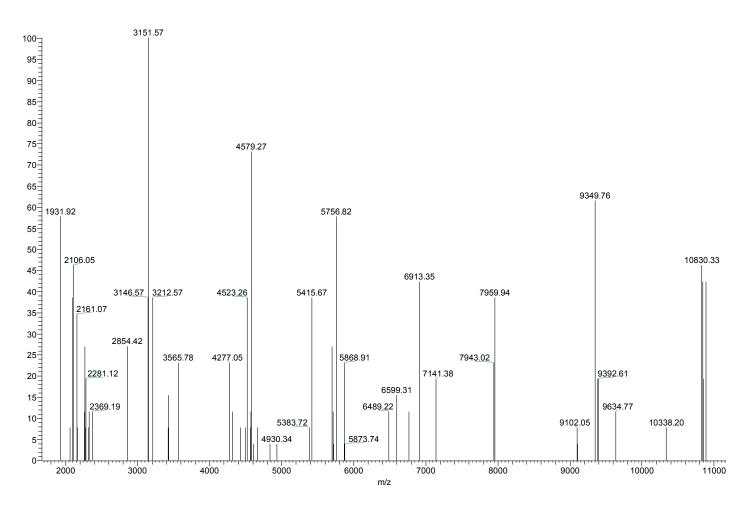
### Table A-8. Top-down MS identification of S-Cys wt TTR. ECD fragmentation

Fragmentation	PTN	I T	TR Ion	Observed m	Theoret	ical m	Δm ^a	ppm			
ECD	S-Cy	s ۱	vt 992.35	13871.9020	13871.	8924	119.0004	0.7			
	_		pScore	рDE ^ь	# fragn	nents	# c-ions	# z-ions			
			5.11E-11	73.20	12		5	7			
^a Mass difference compared to Free Cys form											
^b McLuckey score											
,	ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (pp	n)				
	58		1833.9194								
	59	C20	2119.0478	2119.0500	0.0003	0.15	29				
	60	C22	2332.1802	2332.1700	0.0101	4.34	49				
	63	C27	2814.4239	2814.4200	0.0049	1.74	32				
	65	C38	4008.0906	4008.0900	0.0048	1.18	69				
	32	Z12	1292.6456	1292.6400	0.0082	6.38	07				
	40	Z13	1379.6762	1379.6700	0.0068	4.95	33				
	55	Z16	1726.8212	1726.8200	0.0037	2.11	49				
	62	Z24	2628.3661	2628.3600	0.0100	3.78	83				
	67	Z51	5624.8474	5624.8100	0.0344	6.12	02				
	68	Z54	5969.0093	5968.9800	0.0267	4.46	79				
	70	Z56	6211.1259	6211.1100	0.0165	2.66	46				

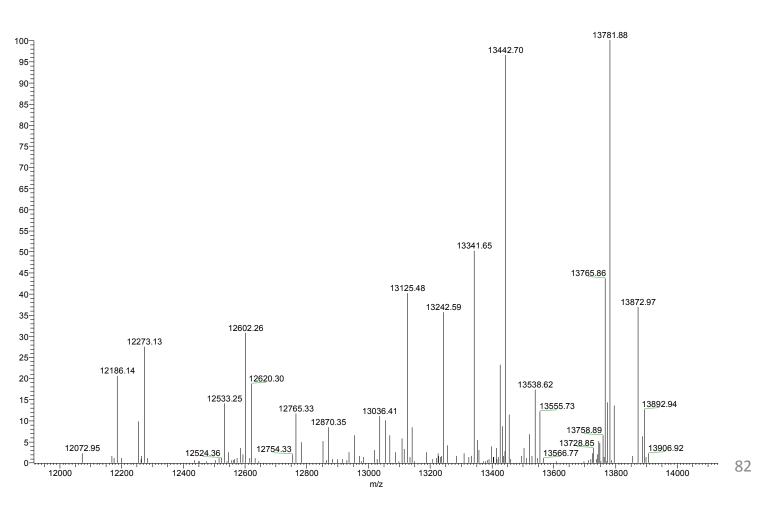
### Figure A-6. Top-down deconvoluted MS/MS spectra of S-Cys wt TTR. ECD fragmentation




Fragmentation	ΡΤΜ	TTR	lon	Observed m	Theoretical m	<b>Δm</b> ^a	ppm
CID	S-Cys	wt	992.35	13871.9020	13871.8924	119.0004	0.7
			pScore	pDE⁵	# fragments	# b-ions	# y-ions
			2.94E-19	72.60	25	17	8


^b McLuckey score


ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
144	B18	1931.9222	1931.9200	0.0065	3.3480
153	B42	4522.2621	4522.2600	0.0061	1.3460
154	B54	5699.7908	5699.7800	0.0096	1.6764
156	B99	10830.3068	10830.3000	-0.0037	-0.3463
162	B111	12129.0718	12129.1000	0.0153	1.2614
165	B112	12216.1346	12216.1000	0.0461	3.7745
167	B114	12476.1938	12476.2000	-0.0108	-0.8624
170	B115	12563.2501	12563.2000	0.0135	1.0730
172	B116	12726.4016	12726.3000	0.1017	7.9920
174	B117	12813.3443	12813.3000	0.0124	0.9693
179	B119	13015.4056	13015.4000	-0.0217	-1.6650
185	B120	13086.5185	13086.5000	0.0541	4.1348
191	B121	13185.5981	13185.5000	0.0653	4.9516
196	B122	13284.6394	13284.6000	0.0382	2.8755
203	B123	13385.6850	13385.6000	0.0361	2.6962
209	B124	13499.6878	13499.7000	-0.0040	-0.2948
219	B126	13724.8604	13724.8000	0.0208	1.5177
2	Y6	686.3612	686.3620	-0.0007	-1.0199
3	¥7	785.4292	785.4300	-0.0011	-1.3470
- 4	Y8	856.4674	856.4670	-0.0000	-0.0432
6	Y9	957.5153	957.5150	0.0002	0.2099
62	Y10	1058.5619	1058.5600	-0.0009	-0.8719
137	Y11	1145.5946	1145.5900	-0.0002	-0.2008
191	Y119	13185.5981	13185.6000	-0.0093	-0.7061
222	Y126	13814.8963	13814.9000	0.0231	1.6714


Figure A-7. Top-down deconvoluted MS/MS spectra of S-Cys wt TTR. CID fragmentation



### Figure A-8. Top-down deconvoluted MS/MS spectra (zoom in 2000–11000 Da) of S-Cys wt TTR. CID fragmentation

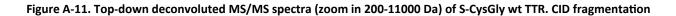


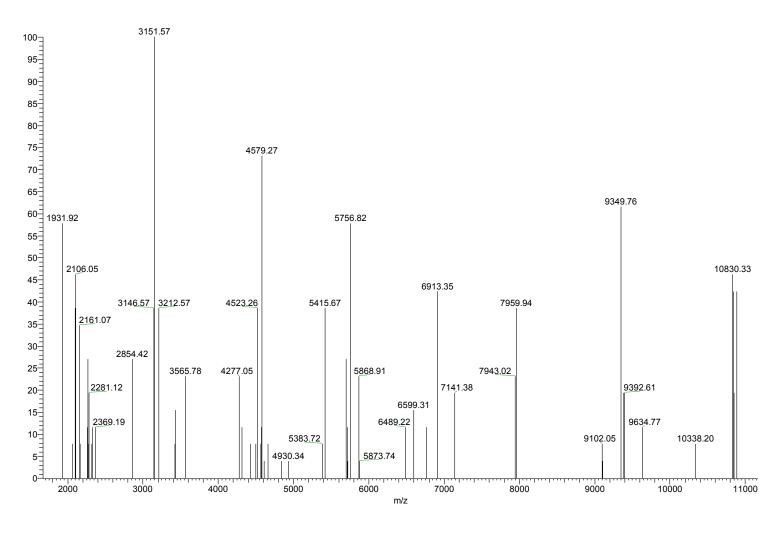




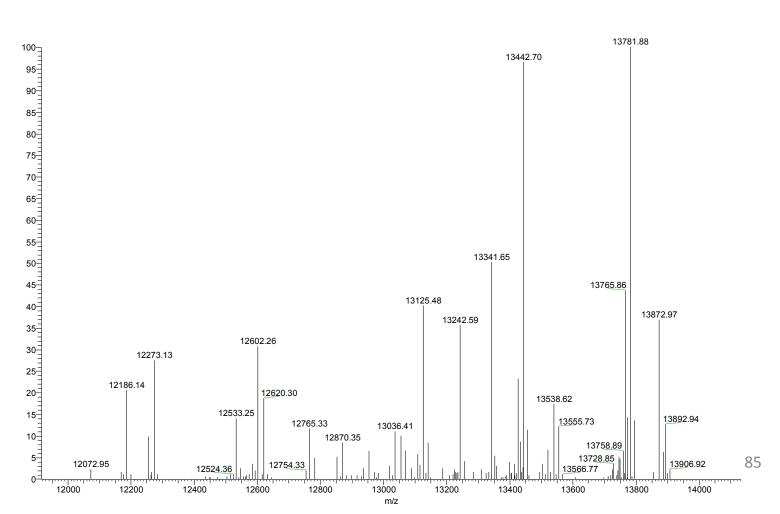
Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
ECD	S-CysGly	wt	996.5	13928.8962	13928.9200	176.026	1.7
			pScore	pDE ^ь	# fragments	# c-ions	# z-ions
			2.35E-34	39.40	97	53	44

^b McLuckey score


ID I	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
2	C3	272.1486	272.1480	0.0003	1.1942
3	C4	329.1702	329.1700	0.0004	1.1028
5	C5	430.2181	430.2180	0.0006	1.4853
7	C6	487.2397	487.2390	0.0007	1.4654
11	C7	616.2828	616.2820	0.0012	1.9520
15	C8	703.3151	703.3140	0.0015	2.0773
278	C11	1207.5016	1207.5000	0.0050	4.1524
663	C13	1451.6301	1451.6200	0.0089	6.1297
821	C14	1550.6919	1550.6900	0.0023	1.4742
970	C15	1678.7845	1678.7800	-0.0001	-0.0554
109	C17	1890.9423	1890.9400	0.0052	2.7515
183	C20	2176.0777	2176.0700	0.0082	3.7885
188	C21	2332.1792	2332.1700	0.0086	3.6777
193	C22	2389.2026	2389.1900	0.0105	4.4010
210	C24	2573.2814	2573.2800	0.0045	1.7499
	C26				
229	C28	2757.4065	2757.4000	0.0084	3.0333
-	C28	2970.5009 3041.5614	2970.5100	-0.0085	-2.8470
257			3041.5500 3140.6100	0.0149	4.8942
266	C30	3140.6144		-0.0005	-0.1608
281	C31	3277.6848	3277.6700	0.0110	3.3557
306	C33	3523.8274	3523.8100	0.0168	4.7673
333	C34	3679.8565	3679.9100	-0.0366	-9.9510
353	C35	3808.0052	3808.0100	-0.0015	-0.4068
388	C37	3950.0977	3950.0800	0.0168	4.2455
401	C38	4065.1211	4065.1100	0.0133	3.2712
410	C39	4180.1477	4180.1300	0.0130	3.0999
431	C41	4467.2417	4467.2600	-0.0200	-4.4805
460	C43	4693.3845	4693.3600	0.0274	5.8323
472	C44	4840.4438	4840.4300	0.0183	3.7852
479	C45	4911.4392	4911.4600	-0.0234	-4.7611
489	C46	4998.5051	4998.4900	0.0105	2.0992
495	C47	5055.5251	5055.5200	0.0090	1.7719
505	C48	5183.5879	5183.6100	-0.0232	-4.4733
513	C49	5284.6738	5284.6600	0.0150	2.8412
546	C51	5500.7404	5500.7300	0.0070	1.2806
557	C52	5587.7700	5587.7700	0.0046	0.8318
565	C53	5644.7784	5644.7900	-0.0085	-1.4987
576	C54	5773.8578	5773.8300	0.0283	4.8991
588	C55	5886.9575	5886.9100	0.0439	7.4650
605	C57	6081.0245	6080.9900	0.0305	5.0103
	C58	6194.1226	6194.0800	0.0445	7.1795
	C60		6396.1700	0.0031	0.4840
	C61	6525.2151	6525.2200	-0.0010	-0.1497
	C61	6525.2351	6525.2200	0.0190	2.9147
	C61	6525.2375	6525.2200	0.0214	3.2756
	C62	6654.2956	6654.2600	0.0369	5.5459
	C71	7718.8377	7718.8100	0.0247	3.2013
	C72	7847.8801	7847.8600	0.0245	3.1185
	C72	7847.8932	7847.8600	0.0376	4.7879
	C75	8177.0886	8177.0100	0.0743	9.0875
752	C76	8305.0102	8305.1100	-0.0805	-9.6925
133					
790	C88 C88	9691.7426	9691.8200	-0.0752	-7.7547


ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
6	Z4	470.2257	470.2250	0.0006	1.2292
12	2 Z6	670.3426	670.3410	0.0014	2.1511
- 18	3 Z7	769.4114	769.4100	0.0018	2.3836
23	3 Z8	840.4484	840.4470	0.0017	2.0001
- 43	3 Z9	941.4985	941.4940	0.0041	4.3240
105	5 Z10	1042.5458	1042.5400	0.0037	3.5903
187	Z11	1129.5851	1129.5700	0.0110	9.7558
422	Z12	1292.6427	1292.6400	0.0053	4.1102
560	Z13	1379.6710	1379.6700	0.0016	1.1742
804	Z14	1542.7214	1542.7300	-0.0113	-7.3319
1008	3 Z16	1726.8251	1726.8200	0.0076	4.3953
108	Z17	1839.9122	1839.9000	0.0106	5.7568
1146	5 Z18	1952.9954	1952.9900	0.0097	4.9534
1178	3 Z19	2024.0288	2024.0200	0.0060	2.9767
1200	Z23	2472.2768	2472.2500	0.0218	8.8170
1215	5 Z24	2628.3709	2628.3600	0.0148	5.6491
1256	5 Z28	3025.5928	3025.5600	0.0293	9.6771
1266	5 Z29	3140.6144	3140.5900	0.0240	7.6402
1280	Z30	3254.6522	3254.6300	0.0189	5.8181
1287	Z31	3325.6823	3325.6700	0.0119	3.5824
1300	Z32	3426.7313	3426.7200	0.0132	3.8643
1311	Z33	3573.8056	3573.7900	0.0191	5.3419
1393	3 Z37	3972.0215	3972.0000	0.0185	4.6460
1403	Z38	4109.0802	4109.0600	0.0183	4.4570
1412	2 Z39	4238.1166	4238.1000	0.0121	2.8664
1420	240 Z40	4375.1780	4375.1600	0.0146	3.3482
1439	Z41	4522.2397	4522.2300	0.0079	1.7374
146)	Z43	4706.3390	4706.3200	0.0224	4.7663
1469		4819.4149	4819.4000	0.0142	2.9506
1477		4876.4699	4876.4200	0.0477	9.7872
1496		5060.5569	5060.5400	0.0135	2.6655
1500		5188.6633	5188.6400	0.0249	4.7895
1562		5624.8312	5624.8100	0.0182	3.2410
1562		5624.8312	5624.8100	0.0182	3.2410
1592		5969.0053	5968.9800	0.0227	3.8010
1623		6211.1326	6211.1100	0.0233	3.7576
1675		6900.4370	6900.4800	-0.0472	-6.8404
1694		7404.6474	7404.7100	-0.0588	-7.9343
1696		7533.8042	7533.7500	0.0554	7.3578
1767		8746.3489	8746.3100	0.0377	4.3046
1772		8874.3849	8874.4100	-0.0213	-2.3999
1786		9462.6101	9462.6600	-0.0505	-5.3387
1789		9648.8337	9648.7400	0.0938	9.7171
1795		9864.7369	9864.8100	-0.0776	-7.8701
1810	Z96	10652.2983	10652.2000	0.0498	4.6779


Deconvoluted MS/MS spectra is shown in Chapter 2, Fig. C2-7

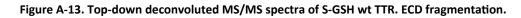

# Table A-11. Top-down MS identification of S-CysGly wt TTR. CID fragmentation

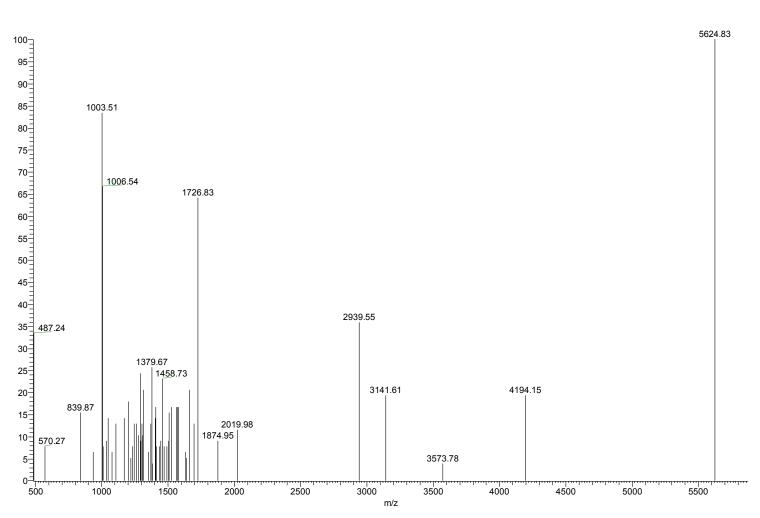
CID	S-Cys	Slv	wt 9	996.5	13928.8	962 13	3928.9200	176.026	1.7
0.2	<i>c c j c</i>	.,		Score	pDE ^b		ragments	# b-ions	
				16E-05	50.50		19	15	4
^a Mass difference con	npared to F	ree Cy							
^b McLuckey score		,							
5	ID N	ame M	ass Monoisotopi	ic Theoret	tical Mass E	rror (Da)	Error (ppm)		
	362		2854.420		2854.4100	0.0060	2.1174		
	521		4579.272		4579.2800	-0.0060	-1.3124		
	498	B54	5756.819		5756.8000	0.0164	2.8531		
	454	B64	6913.347	8	6913.3400	0.0044	0.6404		
	277		7141.381		7141.4500	-0.0544	-7.6228		
	387 E		12072.951		12073.0000	-0.0427	-3.5360		
	571 E		12186.135		12186.1000	0.0573	4.6980		
	573 E		12273.129		12273.1000	0.0186	1.5139		
	567 E		12533.250		12533.2000	0.0235	1.8750		
	570 E		12620.303		12620.3000	0.0452	3.5831		
	548 E 575 E		12870.354 13242.588		12870.4000 13242.6000	0.0008	0.0653		
	579 E		13242.566		13242.6000	0.0341	2.1414		
	580 E		13442.697		13442.7000	0.0263	1.9557		
	581 E		13781.877		13781.9000	0.0159	1.1559		
	554		957.515		957.5150	0.0006	0.6214		
	529		1145.571		1145.5900	-0.0045	-3.9520		
	325 1	(111	12168.025	7 :	12168.1000	-0.0643	-5.2868		
Fig	325 ) 575 )	(119	12168.025 13242.588 wn deconvolut	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1344
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	gmentation	1334 <u>1.65</u>
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613		1334 <u>1.65</u>
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613		13341.65 13125.48 12602.26
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	12273	13341.65 13125.48 12602.26
Fig	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613		13341.65 13125.48 12602.26
	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	12273	13341.65 13125.48 12602.26
	325 ) 575 )	(119	13242.588	9 :	13242.6000	-0.0405	-3.0613	12273	13341.65 13125.48 12602.26
7.69 09.58 3151.5	325 ) 575 ) gure A-10. ⁻	7119 Top-do	13242.588	9 :	13242.6000	-0.0405	-3.0613 wt TTR. CID fra	1 12273 1218 <u>6.14</u>	13341.65 13125.48 12602.26
7.69 09.58 3151.5 1931 92	325 ) 575 ) gure A-10. ⁻	7119 Top-do	13242.588 wn deconvolut	9 :	13242.6000	-0.0405	-3.0613 wt TTR. CID fra	1 12273 1218 <u>6.14</u>	13341.65 13125.48 12602.26









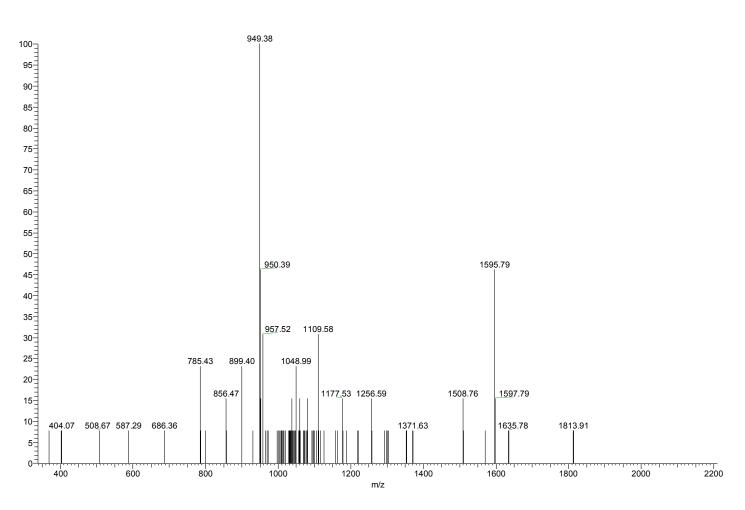


Fragmentation	РТМ	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
ECD	S-GSH	wt	1005.72	14057.1816	14057.9560	305.068	55 [°]
			pScore	pDE ^ь	# fragments	# c-ions	# z-ions
			1.29E-05	48.70	9	3	6

^b McLuckey score

^c Isoform detected as a minor species. The monoisotopic mass could not be accurately measured due to bad ion statistics

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
1	C6	487.2397	487.2390	0.0007	1.4818
89	C17	2019.9824	2019.9800	0.0033	1.6376
94	C38	4194.1513	4194.1500	0.0015	0.3657
35	Z12	1292.6422	1292.6400	0.0048	3.7009
51	Z13	1379.6706	1379.6700	0.0012	0.8901
87	Z16	1726.8261	1726.8200	0.0086	5.0034
92	Z33	3573.7833	3573.7900	-0.0032	-0.8923
93	Z33	3573.8197	3573.7900	0.0332	9.2803
95	Z51	5624.8254	5624.8100	0.0124	2.2068






Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
CID	Free Cys	V30M	986.22	13784.8913	13784.8603	-	2.25
			pScore	pDE ^ь	# fragments	# b-ions	# y-ions
			7.53E-01	4.41	6	1	5

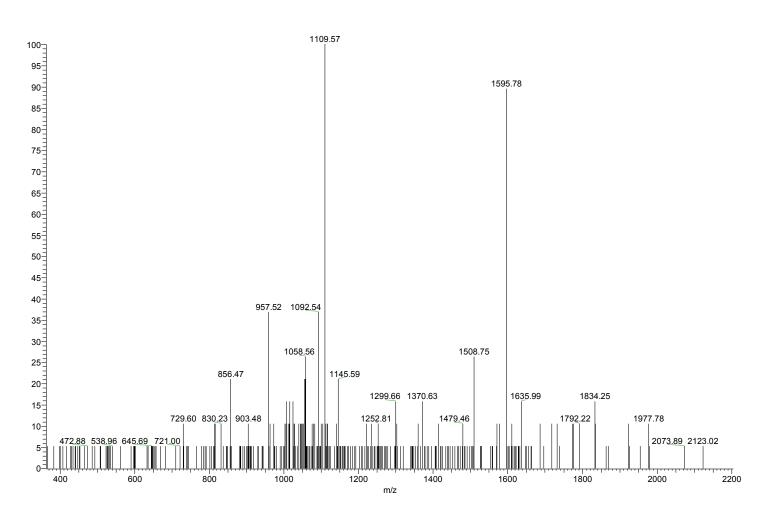
^b McLuckey score

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
613	B18	1812.9145	1812.9100	0.0028	1.5219
32	Y5	587.2927	587.2930	-0.0008	-1.3469
56	Y6	686.3608	686.3620	-0.0011	-1.6405
92	¥7	785.4288	785.4300	-0.0015	-1.9263
112	Y8	856.4664	856.4670	-0.0010	-1.1326
141	Y9	957.5154	957.5150	0.0003	0.2653

### Figure A-14. Top-down deconvoluted MS/MS spectra of Free Cys V30M TTR. CID fragmentation



Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	∆m ^a	ppm
CID	S-Sulfo	V30M	991.93	13863.9136	13864.8173	79.957	65.18 ^c
			pScore	pDE ^b	# fragments	# b-ions	# y-ions
			7.96E-01	3.62	4	0	4


^b McLuckey score

^c Deconvolution algorithm errors due to overlapping forms could account for the low accuracy determination

of the monoisotopic mass of this form

ID	<u>Name</u>	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
86	Y8	856.4663	856.4670	-0.0011	-1.2376
117	Y9	957.5155	957.5150	0.0004	0.4700
180	Y10	1058.5613	1058.5600	-0.0015	-1.4406
244	Y11	1145.5928	1145.5900	-0.0020	-1.7598





# Table A-15. Top-down MS identification of S-Cys V30M TTR. CID fragmentation

Fragmentation	РТМ	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
CID	S-Cys	V30M	994.71	13903.4582	13903.8644	119.004	0.73
			pScore	pDE ^ь	# fragments	# b-ions	# y-ions
			1.77E-11	74.60	28	17	11

^a Mass difference compared to Free Cys form ^b McLuckey score

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
238	B13	1377.5755	1377.5700	0.0026	1.8859
239	B13	1377.5755	1377.5700	0.0026	1.8859
249	B18	1931.9137	1931.9200	-0.0020	-1.0606
252	B27	2797.3843	2797.3900	-0.0084	-3.0082
272	B42	4554.2247	4554.2300	-0.0034	-0.7468
278	B54	5731.7489	5731.7500	-0.0044	-0.7725
285	B63	6741.2022	6741.2300	-0.0229	-3.3960
290	B67	7173.4043	7173.4300	-0.0217	-3.0316
300	B111	12161.0622	12161.0000	0.0336	2.7596
303	B112	12248.0677	12248.1000	0.0071	0.5772
307	B114	12508.1883	12508.2000	0.0116	0.9242
314	B115	12595.1316	12595.2000	-0.0771	-6.1198
320	B117	12845.3000	12845.3000	-0.0040	-0.3130
334	B120	13118.4376	13118.4000	0.0011	0.0839
339	B121	13217.5197	13217.5000	0.0148	1.1167
344	B122	13316.6208	13316.6000	0.0475	3.5685
353	B123	13417.6853	13417.6000	0.0643	4.7885
373	B126	13756.8289	13756.8000	0.0172	1.2525
1	Y5	587.2917	587.2930	-0.0018	-3.0768
3	Y6	686.3597	686.3620	-0.0022	-3.1441
5	Y7	785.4278	785.4300	-0.0025	-3.1728
7	Y8	856.4650	856.4670	-0.0024	-2.7894
13	Y9	957.5129	957.5150	-0.0022	-2.2767
166	Y11	1145.5891	1145.5900	-0.0057	-4.9861
167	Y11	1145.5891	1145.5900	-0.0057	-4.9861
227	Y12	1308.6569	1308.6600	-0.0012	-0.9269
259	Y33	3589.8122	3589.8100	0.0050	1.3873
276	Y45	4892.4055	4892.4400	-0.0374	-7.6492
292	Y85	9349.6309	9349.6400	-0.0078	-0.8348
339	Y119	13217.5197	13217.6000	-0.0598	-4.5273

### Figure A-16. Top-down deconvoluted MS/MS spectra of S-Cys V30M TTR. CID fragmentation

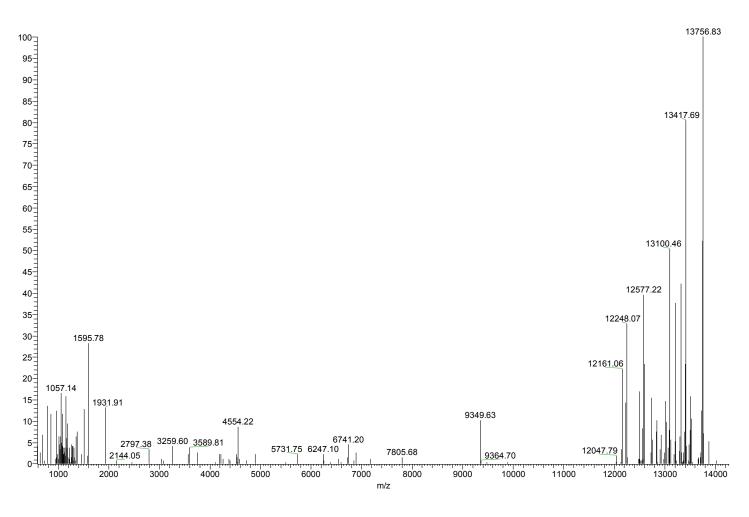
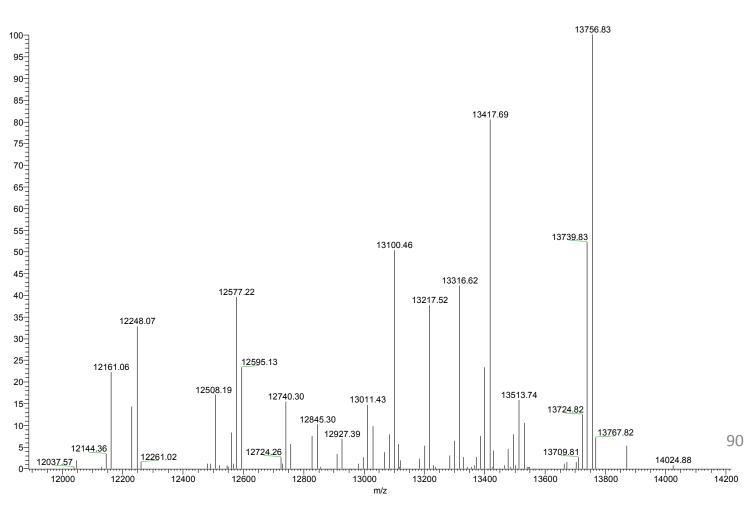
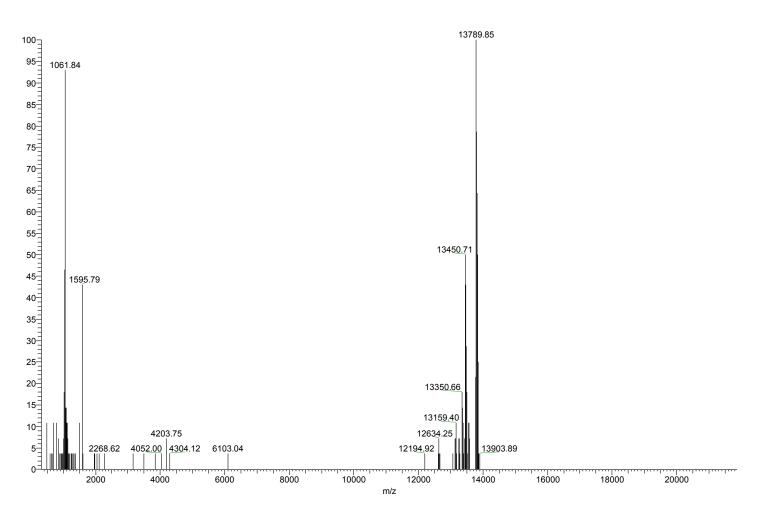




Figure A-17. Top-down deconvoluted MS/MS spectra (zoom in 12000-14200 Da) of S-Cys V30M TTR. CID fragmentation




Fragmentation	ΡΤΜ	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
CID	S-CysGly	V30M	998.79	13961.9241	13960.8863	176.026	74.3 ^c
			pScore	pDE ^ь	# fragments	# b-ions	# y-ions
			8.47E-05	16.70	11	3	8

^b McLuckey score

^c Isoform detected as a minor species. The monoisotopic mass could not be accurately measured due to bad ion statistics

ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
150	B120	13175.4482	13175.5000	-0.0104	-0.7856
246	B123	13474.6833	13474.6000	0.0403	2.9945
255	B126	13813.8644	13813.8000	0.0307	2.2210
214	¥4	486.2444	486.2460	-0.0014	-2.9471
1	Y5	587.2922	587.2930	-0.0013	-2.2544
215	Y6	686.3607	686.3620	-0.0012	-1.7658
216	Y7	785.4294	785.4300	-0.0009	-1.1140
166	Y8	856.4652	856.4670	-0.0022	-2.5243
220	Y10	1058.5651	1058.5600	0.0023	2.1973
200	Y11	1145.5957	1145.5900	0.0009	0.8223
165	Y126	13903.8871	13903.9000	0.0198	1.4233

# Figure A-18. Top-down deconvoluted MS/MS spectra of S-CysGly V30M TTR. CID fragmentation



### Figure A-19. Top-down deconvoluted MS/MS spectra (zoom in 400-1400 Da) of S-CysGly V30M TTR. CID fragmentation

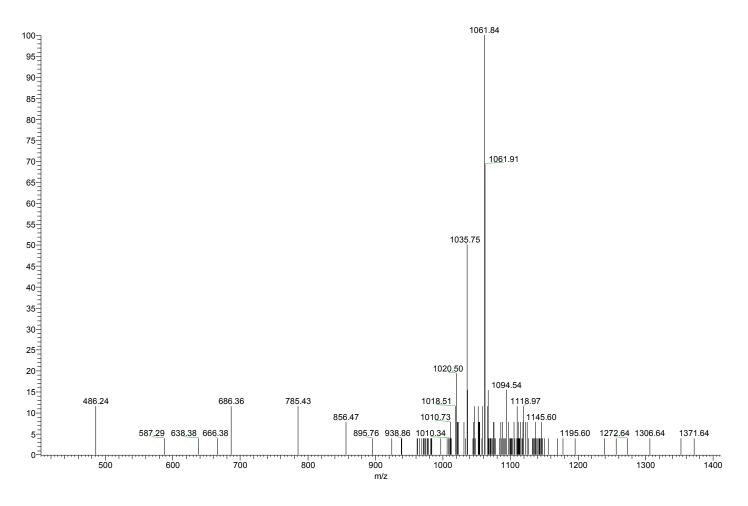
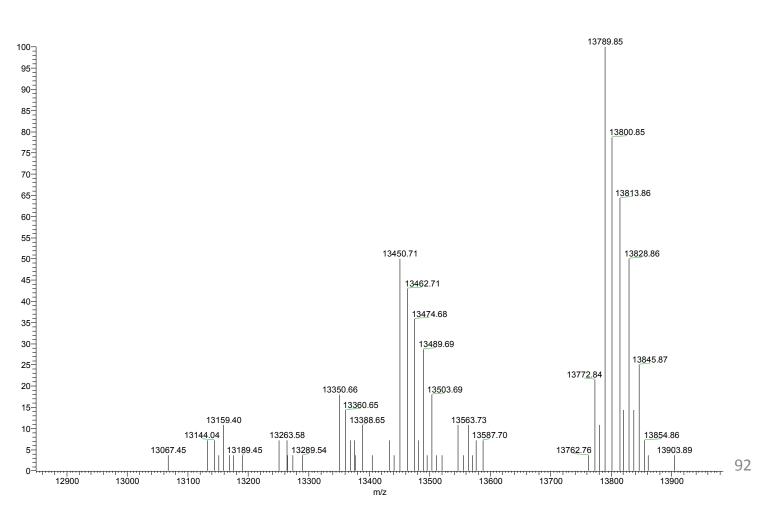
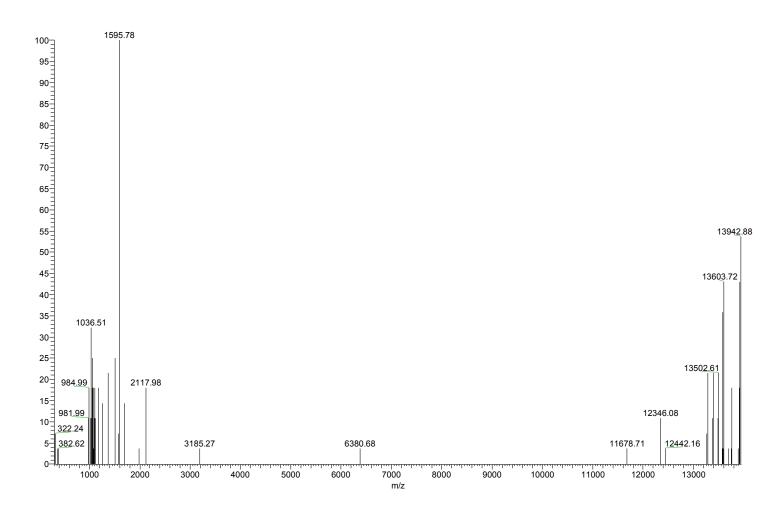




Figure A-20. Top-down deconvoluted MS/MS spectra (zoom in 12800-14000 Da) of S-CysGly V30M TTR. CID fragmentation




Fragmentation	PTM	TTR	lon	Observed m	Theoretical m	Δm ^a	ppm
CID	S-GSH	V30M	1008.07	14089.9257	14089.9283	305.068	0.18
			pScore	pDE ^b	# fragments	# b-ions	# y-ions
			1.22E-04	35.10	7	5	2

^b McLuckey score

1	ID	Name	Mass Monoisotopic	Theoretical Mass	Error (Da)	Error (ppm)
	77	B18	2117.9753	2117.9800	-0.0044	-2.0784
	88	B121	13403.5680	13403.6000	-0.0009	-0.0649
	90	B122	13502.6147	13502.6000	-0.0226	-1.6715
	95	B123	13603.7156	13603.7000	0.0306	2.2464
	106	B126	13942.8779	13942.9000	0.0022	0.1585
	40	Y10	1058.5614	1058.5600	-0.0014	-1.3348
	88	Y119	13403.5680	13403.6000	-0.0755	-5.6306





### Figure A-22. Top-down deconvoluted MS/MS spectra (zoom in 800-2400 Da) of S-GSH V30M TTR. CID fragmentation

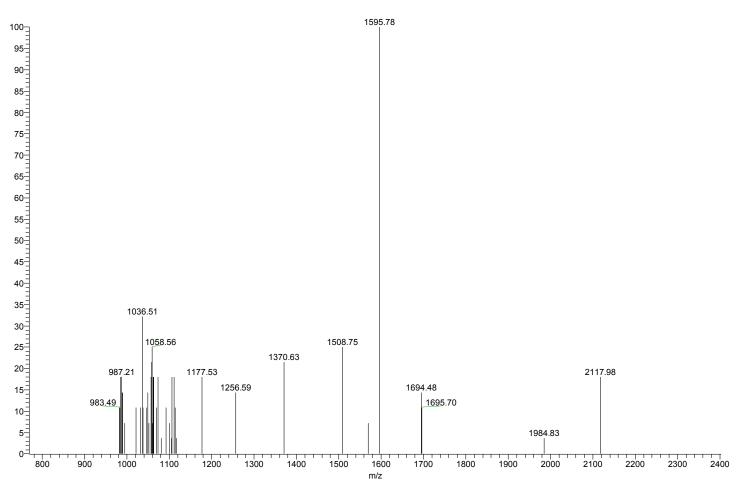
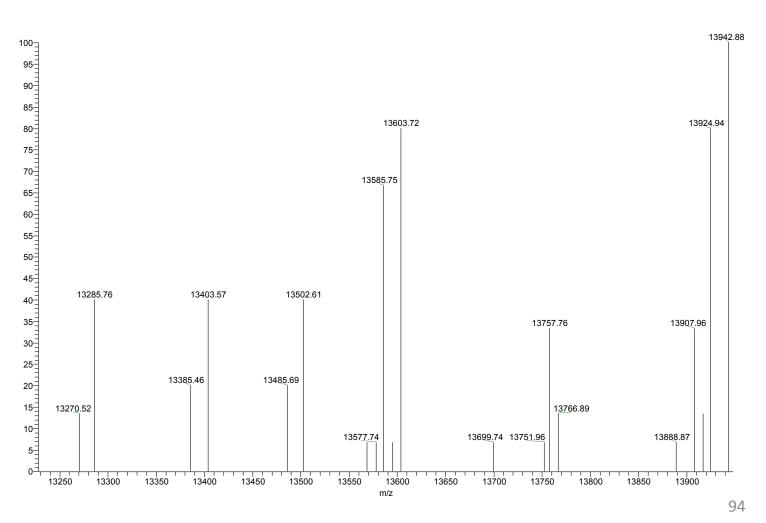




Figure A-23. Top-down deconvoluted MS/MS spectra (zoom in 13250-13950 Da) of S-GSH V30M TTR. CID fragmentation

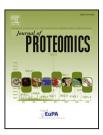


		%	Each form	ו			ng/	µL Each for	rm	
Sample ^a	Free Cys	S-Cys	S-CysGly	S-GSH	S-Sulfo	Free Cys	S-Cys	S-CysGly	S-GSH	S-Sulfo
Sample 1	13.72	67.27	0.86	0.19	17.96	7.20	35.30	0.45	0.10	9.42
Sample 2	2.57	76.19	0.86	0.25	20.14	1.60	47.47	0.54	0.15	12.55
Sample 3	3.31	78.35	1.06	0.27	17.01	3.94	93.18	1.26	0.32	20.23
Sample 4	3.24	71.47	0.77	0.2	24.32	1.68	37.01	0.40	0.10	12.60
Sample 5	1.77	80.98	0.54	0.08	16.64	0.43	19.81	0.13	0.02	4.07
Sample 6	3.19	74.84	1.11	0.26	20.6	4.34	101.61	1.50	0.35	27.98
Sample 7	2.21	75.48	1.08	0.16	21.07	2.39	81.85	1.17	0.18	22.84
Sample 8	1.91	72.38	0.83	0.2	24.68	1.50	56.96	0.65	0.16	19.42
Sample 9	2.1	76	0.6	0.22	21.09	1.64	59.64	0.47	0.17	16.55
Sample 10	2.22	72.29	1.04	0.33	24.12	2.37	77.37	1.11	0.35	25.81

Table A-18. Absolute quantification of Cys-10 PTMs in TTR by HR-XIC

^a Samples 1-5 correspond to wt individual human samples and samples 6-10 to V30M individual human samples

Ms in TTR by intact protein
ss of Cys-10 PT
lative abundance
Table A-19. Re


			0		o-cya			ပင်နှင်ပြန်	Ŋ		100-0	
Sample ^a 9	% in wt	% in V30M	% in wt % in V30M % in total TTR % in wt % in V30M % in total TTR % in wt % in V30M % in total TTR % in wt % in V30M % in total TTR	% in wt	% in V30M	% in total TTR	% in wt	% in V30M	% in total TTR	% in wt	% in V30M 9	% in total TTR
Sample 1	56.04	ı	ı	30.10	·	ı	9.53	ı		4.33	ı	·
Sample 2	57.07	ı	ı	30.38		ı	8.23	I		4.32	ı	ı
Sample 3	52.42	ı	ı	33.70	ı	ı	9.99	ı	·	3.89	ı	ı
Sample 4	51.33	I	ı	35.05	·	ı	9.50	I		4.11	ı	ı
Sample 5	18.32	I	I	64.43	ı	I	13.27	I		3.98	ı	ı
Sample 6	24.45	21.72	23.13	51.56	53.41	52.45	16.00	16.29	16.14	7.99	8.58	8.28
Sample 7	23.44	19.99	21.81	49.14	54.04	51.45	18.87	16.25	17.63	8.55	9.72	9.10
Sample 8	28.50	27.32	27.94	46.02	47.94	46.93	17.16	15.81	16.52	8.31	8.93	8.61
Sample 9	27.59	17.38	22.56	42.95	54.27	48.53	20.09	18.67	19.39	9.37	9.68	9.52
Sample 10	20.54	30.38	24.82	50.29	31.05	41.92	18.57	23.42	20.68	10.60	15.16	12.58

JOURNAL OF PROTEOMICS XX (2015) XXX-XXX



Available online at www.sciencedirect.com

# **ScienceDirect**



www.elsevier.com/locate/jprot

# Quantitative analysis of post-translational modifications in human serum transthyretin associated with familial amyloidotic polyneuropathy by targeted LC–MS and intact protein MS¹/₂

# Marta Vilà-Rico^a, Núria Colomé-Calls^b, Luna Martín-Castel^b, Marina Gay^c, Sebastián Azorín^d, Marta Vilaseca^c, Antoni Planas^{a,*}, Francesc Canals^{b,**}

^aLaboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain

^bProteomics Laboratory, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain

^cInstitute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain

^dNephrology and Transplant Unit, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain

### ARTICLEINFO

Keywords: Transthyretin Absolute quantification Post-translational modifications Intact protein analysis Targeted proteomics High resolution XIC quantification

### $\mathsf{A} \mathrel{\mathsf{B}} \mathsf{S} \mathrel{\mathsf{T}} \mathsf{R} \mathrel{\mathsf{A}} \mathsf{C} \mathrel{\mathsf{T}}$

Transthyretin (TTR) is an amyloidogenic tetrameric protein, present in human plasma, associated with several familial amyloidoses. Variability of TTR is not only due to point mutations in the encoding gene but also to post-translational modifications (PTMs) at Cys10, being the most common PTMs the S-sulfonation, S-glycinylcysteinylation, S-cysteinylation and S-glutathionylation. It is thought that PTMs at Cys10 may play an important biological role in the onset and pathological process of the amyloidosis. We report here the development of a methodology for quantification of PTMs in serum samples, as well as for the determination of serum TTR levels, from healthy (wt) and TTR-amyloidotic (V30M mutation) individuals. It involves an enrichment step by immunoprecipitation followed by mass spectrometry analysis of (i) the intact TTR protein and (ii) targeted LC-MS analysis of peptides carrying the PTMs of interest. Analysis of serum samples by the combination of the two methods affords complementary information on the relative and absolute amounts of the selected TTR PTM forms. It is shown that methods based on intact protein are biased for specific PTMs since they assume constant response factors, whereas the novel targeted LC-MS method provides absolute quantification of PTMs and total TTR variants.

#### **Biological significance**

The study of TTR has a high clinical relevance since it is responsible for diverse familial polyneuropathies. In particular, more than 80 point mutations have been described through genetic studies. However, genetic heterogeneity alone fails to explain the diverse onset and

☆ This article is part of a Special Issue entitled: HUPO 2014.

- * Correspondence to: A. Planas, Institut Químic de Sarrià, Via Augusta 390, 08017 Barcelona, Spain.
- ** Correspondence to: F. Canals, Vall d'Hebron Institut d'Oncologia, Psg. Vall d'Hebron 119-129, 08035 Barcelona, Spain. E-mail addresses: antoni.planas@iqs.edu (A. Planas), fcanals@vhio.net (F. Canals).

http://dx.doi.org/10.1016/j.jprot.2015.04.016 1874-3919/© 2015 Elsevier B.V. All rights reserved.

JOURNAL OF PROTEOMICS XX (2015) XXX-XXX

pathological process of the TTR related amyloidosis. The use of proteomic characterization is required to gather information about the PTMs variants present in serum, which have been suggested to be relevant for the amyloidotic pathology. This article is part of a Special Issue entitled: HUPO 2014.

© 2015 Elsevier B.V. All rights reserved.

### 1. Introduction

Human transthyretin (hTTR; MIM#176300) is a homotetrameric protein that functions as the backup transporter for thyroxine hormone (T4) in plasma and it is its main transporter across the blood brain barrier. TTR is also the main carrier of retinol by forming a 1:1 complex with the retinol-binding protein (RBP) [1,2]. It is synthesized in the liver and the choroid plexus of the brain [3], the liver being the main responsible for plasmatic TTR production. Whereas TTR transports nearly all the circulating RBP in serum and it is the main thyroxin transporter in cerebrospinal fluid (CSF), it only transports around the 15% of the serum circulating thyroxin [4]. hTTR is an amyloidogenic protein associated with senile systemic amyloidosis (SSA), caused by wild-type (wt) TTR [5], affecting up to 25% of the population that is more than 80 years old. It is also related to several hereditary amyloidosis classified as rare diseases [6,7]: familial amyloidotic polyneuropathy (FAP), produced by single point mutants like V30M or L55P, where the pathology can develop at an early age; familial amyloidotic cardiomyopathy (FAC), mainly associated with V122I and T60A variants; and central nervous system selective amyloidosis (CNSA), the main representative being the A25T and D18G TTR variants [8].

Amyloid fibril formation is initiated by TTR tetramer dissociation into dimers and monomers that evolve to a misfolded or non-native monomer intermediate that starts an intermolecular aggregation process involving a number of states through soluble oligomers and leading to mature fibrils [9–13]. Several studies have shown that TTR intermediates (protofibrils and soluble oligomers), rather than mature fibrils, are the toxic species in cell cultures and that they may play a role in pathogenesis [14,15].

TTR is a highly abundant protein in plasma with concentrations around 0.2–0.4  $\mu$ g/ $\mu$ L in healthy individuals. However, lower TTR levels have been described for TTR-amyloidotic patients [16,17]. It occurs as a very heterogeneous protein where variability is not only due to point mutations in the encoding gene but also to post-translational modifications (PTMs) at Cys-10, the single Cys residue in the protein sequence [18,19]. Only around 10–15% of the circulating TTR in plasma remains unmodified at this residue and the most common PTMs at Cys-10 are the S-sulfonation (S-Sulfo), S-glycinylcysteinylation (S-CysGly), S-cysteinylation (S-Cys) and S-glutathionylation (S-GSH) [20]. It is thought that PTMs may play an important biological role in the onset and pathological process of the TTR-related amyloidosis, although clinical implications are still badly understood [21–27].

Prior studies based on mass spectrometry have addressed the detection and identification of TTR variants in plasma, serum or CSF. In all cases, a common starting step involves the enrichment of TTR by the use of polyclonal antibodies or by SDS-PAGE. Analysis of the immunoprecipitated protein is then performed by MALDI-MS [28,29], MALDI-FTICR-MS [30,31] or LC-MS [20,32-36] techniques. In most cases, the study of TTR heterogeneity is based on the analysis of the intact protein, where the different TTR variants are assigned on the basis of the mass shift observed in the spectra. An additional digestion step by a combination of different enzymes (trypsin, Arg-C, Asp-N, Glu-C or Lys-C) is often performed to further confirm or determine the location of the modification [28-31,35,36]. Few studies are designed to quantify the total amount of TTR and the different TTR variants. These works are based on the study of the intact protein [29,34] or by mass fingerprinting [30,31] with the assumption that all Cys-10 forms or point mutation variants present the same response factor. However, the presence of a modification or mutation may affect the ionization of the protein resulting in different signal responses.

We here report the development of an analytical mass spectrometry methodology with the aim of quantifying the absolute concentration of the 5 most common TTR Cys-10 PTMs in serum and plasma samples. Additionally, the same methodology will allow the determination of the total amount of TTR in serum and plasma of healthy and FAP individuals bearing V30M mutation, as well as the mutant:wild type (V30M:wt) protein level ratios, which could also play a role in the development of amyloidosis. The strategy is based on targeted LC-MS high resolution analysis (HR-XIC) of a mixture of peptides coming from the digestion of the immunoprecipitated TTR in an Ultra High Resolution-QTOF instrument. For the quantification of wt TTR, V30M TTR, and their PTMs at Cys-10 (free Cys, S-Cys, S-CysGly, S-GSH and S-Sulfo) a set of 7 unique labeled TTR peptides containing the sequence of interest and their modifications were synthesized and added to the samples at known concentrations. In this way, possible changes in response factor due to the presence or absence of modifications are taken into account to determine the percentages of each modification as well as the wt:V30M ratio. In parallel, we used an ESI-MS strategy based on the analysis of the intact protein as described in the bibliography [20], where the immunoprecipitated TTR was directly infused in an Ultra High Resolution-QTOF instrument, and the relative abundance of each TTR variant was calculated based on the intensity of its corresponding signals in the MS spectra.

### 2. Materials and methods

#### 2.1. Samples

Human serum samples were kindly provided by the Department of Nephrology and Urology at the Hospital Clínic de Barcelona and had the corresponding informed consent agreement.

Human blood samples were collected and allowed to clot for 30 min at room temperature and subsequently centrifuged at 1300 ×g for 15 min (BD Vacutainer® SST^{IM} Tubes). Serum specimen was extracted from the tube avoiding the fraction closer to the separating gel. Aliquots of 250  $\mu$ L were then prepared and immediately frozen at -80 °C until analyzed.

#### 2.2. Characterization of TTR digestion with different proteases

Recombinant wt TTR (wt rhTTR), obtained as described in [37], was digested with trypsin (Trypsin Gold Mass Spectrometry Grade, Promega), chymotrypsin (Sigma), Asp-N (Sigma), Glu-C (Sigma) and arginine-C (Arg-C, Sigma). 100 µg of protein was digested in each protease test in 1 M urea-50 mM ammonium bicarbonate (AB) buffer, at 1:10 (trypsin), 1:50 (chymotrypsin, Arg-C, Glu-C) and 1:100 (Asp-N) enzyme:protein ratios, ON at 37 °C. Samples of each of the different digests (500 ng) were analyzed on a Maxis Impact Q-TOF spectrometer (Bruker, Bremen), coupled to a nano-HPLC system (Proxeon, Denmark). The samples, dissolved in 5% ACN-0.1% formic acid in water, were first concentrated on a 100 µm ID, 2 cm Proxeon nanotrapping column and then loaded onto a 75 µm ID, 25 cm Acclaim PepMap nanoseparation column (Dionex). Chromatography was run using a 0.1% formic acid-ACN gradient (5-35% in 20 min; flow rate 300 nL/min). The column was coupled to the mass spectrometer inlet through a Captive Spray (Bruker) ionization source. MS acquisition was set to cycles of MS (2 Hz), followed by 3 second cycles of MS/MS (4-16 Hz, intensity depending) of a variable number of the most intense precursor ions, with an intensity threshold for fragmentation of 2000 counts, and using a dynamic exclusion time of 2 min, with an automated precursor re-selection when a 3 fold increase in intensity was observed. All spectra were acquired on the range 150-2200 Da. LC-MS/MS data was analyzed using the Data Analysis 4.0 software (Bruker). Peptides were identified using Mascot (Matrix Science, London UK) by search on a database constructed with TTR sequences (wt and V30M). MS/MS spectra were searched with a precursor mass tolerance of 10 ppm, fragment tolerance of 0.05 Da, protease specificity with a maximum of 2 missed cleavages, cysteine modifications (S-Cys, S-Sulfo, S-CysGly and S-GSH) set as variable modifications and methionine oxidation also set as variable modification. Significance threshold for the identifications was set to p < 0.01, minimum Ions score of 20.

# 2.3. Targeted LC–MS analysis by high resolution-extracted ion chromatograms (HR-XIC)

# 2.3.1. Immunoprecipitation with hydrazide-immobilized antibody (IP Ab-ULH)

Polyclonal rabbit anti-human TTR antibody (Dako) was coupled to UltraLink® Hydrazide Resin (Thermo Scientific) following the resin manufacturer's protocol. 225  $\mu$ g of immobilized antibody (Ab-ULH) was incubated with 25  $\mu$ L of human serum for 1 h and 40 min at room temperature with soft agitation. After TTR binding to the Ab-ULH, 5 washes with 500  $\mu$ L PBS were performed. TTR was eluted with 100 mM triethylamine (TEA, Fluka) pH = 11.5 solution. Elution was performed in 3 steps by addition of 400  $\mu$ L TEA followed by 2 min of sonication on a ultrasonic bath, and the total eluted volume was concentrated to 50  $\mu$ L after 8 M urea-50 mM AB buffer exchange, by diafiltration in an Amicon® Ultra-0.5 mL centrifugal Filter, Ultracel®-3 K cut off membrane (Millipore).

#### 2.3.2. Enzymatic digestion of transthyretin

After immunoprecipitation, determination of the total protein amount for each sample was performed using Bio-Rad DCTM Protein Assay Kit (Bio-Rad). Based on the amount of protein quantified, a fraction of the immunoprecipitated TTR (10 µg) was digested with Arginine-C (Endoproteinase Arg-C Sequencing Grade, Roche) during 6 h, 37 °C at a 1:23 ratio enzyme:protein. Another fraction (10 µg) of the immunoprecipitated protein was digested with trypsin (Trypsin Gold Mass Spectrometry Grade, Promega) ON, 37 °C at a 1:10 ratio enzyme:protein.

#### 2.3.3. Standard labeled peptides

Labeled (5C13,N15 proline) peptides for the quantification of the 5 Cys-10 forms (>98% purity and quantified by AAA) were purchased from Peptide Synthetics (United Kingdom). The different peptides for the quantification of Cys-10 modifications (Table 1) will be referred as N-term heavy peptides. Labeled (6C13,4N15 arginine) peptides for the total TTR determination (99% purity and quantified by AAA) were purchased from AQUA Peptide Sigma-Aldrich. The two different peptides (Table 1) used for the total amount of protein determination will be referred as GSPAIN peptides (wt and V30M, for the wt TTR form and the mutant V30M TTR form, respectively). Labeled (6C13,4N15 arginine) GSPAIN V30M peptide carrying methioninesulfoxide (>95% purity and quantified by AAA) was obtained from Centro Nacional de Biotecnología, Madrid, Spain.

#### 2.3.4. LC-MS measurement with UHR-QTOF

TTR from human samples was purified and digested with Arg-C and trypsin as described above. Standard labeled N-term peptides were spiked into Arg-C digested samples after digestion and prior to LC-MS measurement. The same procedure was followed for the standard labeled GSPAIN peptides and the trypsin digested samples. The amount of heavy peptides in column was of 50 fmols for each GSPAIN peptide and of 50, 12.5, 7.5, 200 and 200 fmols for the Free Cys, S-CysGly, S-GSH, S-Cys and S-Sulfo N-term peptides, respectively. The samples were analyzed on a UHR-QTOF mass spectrometer (Bruker Impact), coupled to a Proxeon Easy nano-LC (Bruker). Samples of the TTR digests (50 ng) spiked with the standard peptides were first loaded into a 100 µm ID, 2 cm Proxeon nanotrapping column and then separated with a 10 min 0.1% formic acid-ACN gradient (5-35% in 10 min; flow rate 300 nL/min) on a Acclaim PepMap 75 µm × 25 cm,  $3\,\mu m$  particle size reverse phase nanoseparation column (Dionex) coupled to the mass spectrometer inlet through a Captive Spray (Bruker) ionization source. For quantification, MS acquisition was set to cycles of MS (0.5 Hz). All spectra were acquired on the range 150-2200 Da.

#### 2.3.5. Data analysis

LC–MS data was first processed using Data Analysis 4.1 (Bruker) and then quantified using Skyline Software (MacCoss Lab) to filter and integrate precursor signals of target peptides. Using a HR-XIC Skyline template, extracted ion chromatograms for the

#### JOURNAL OF PROTEOMICS XX (2015) XXX-XXX

Table 1 – Summary of the signals m	nonitored an	d its calculated	LOD and LOQ.			
Peptide	Charge	Label	m/z heavy	m/z light	LOD (fmol)	LOQ (fmol)
GP*TGTGESKCP*LMVKVLDAVR	4	P 5C13,N15	543.296	540.289	1.38	4.59
GP*TGTGESKC(C)P*LMVKVLDAVR ^a	4	P 5C13,N15	573.047	570.041	2.49	8.28
GP*TGTGESKC(GSH)P*LMVKVLDAVR ^b	4	P 5C13,N15	619.563	616.557	0.09	0.29
GP*TGTGESKC(CG)P*LMVKVLDAVR ^c	4	P 5C13,N15	587.303	584.296	0.44	1.47
GP*TGTGESKC(S03H)P*LMVKVLDAVR ^d	3	P 5C13,N15	750.712	746.702	23.0	31.6
GSPAINVAVHVFR*	2	R 6C13,4N15	688.887	683.883	61.7	61.7
GSPAINVAMHVFR*	2	R 6C13,4N15	704.873	699.869	43.0	44.1

^a C(C):S-cysteinylation (S-Cys), cysteine on the side chain of cysteine by disulfide bond.

^b C(GSH):S-glutathionylation (S-GSH), glutathione on the side chain of cysteine by disulfide bond.

^c C(CG): S-glycinylcysteinylation (S-CysGly), H-cysteinyl-glycine-OH on the side chain of cysteine by disulfide bond.

^d C(SO3H):S-sulfonation (S-Sulfo).

m/z corresponding to the main isotope and charge state signal for each target peptide were used for quantification.

# 2.3.6. Determination of response factor for methionine oxidized GSPAIN peptide

Pure recombinant hTTR protein was quantified based on absorbance at 280 nm [37] and 10  $\mu$ g of protein was spiked into a 70  $\mu$ g/ $\mu$ L BSA solution, which was then immunoprecipitated and digested with trypsin according to the above described protocol. The resulting digested protein was used to prepare solutions at 25, 50, 100 and 150 ng/ $\mu$ L of digested rhTTR. A known amount of total V30M GSPAIN peptide, containing both oxidized and non-oxidized forms at unknown proportions, was added to each solution (total final concentrations of 25, 50, 100 and 150 fmol/ $\mu$ L, respectively). Samples were then analyzed by the described LC–MS strategy. From the results, and taking into account the known concentrations of rhTTR and total GSPAIN peptide, the response factors for the non-oxidized and oxidized forms of the V30M GSPAIN peptide were calculated.

Additionally, a standard curve for the labeled V30M GSPAIN oxidized peptide was performed in triplicate analyzing serial dilutions of the standard labeled peptide in the presence of trypsin digest of TTR as a matrix. The results were used to calculate the response factor for the oxidized form of the peptide.

### 2.4. Intact protein analysis

#### 2.4.1. In solution immunoprecipitation

For TTR immunoprecipitation, 225  $\mu$ g of the polyclonal rabbit anti-human TTR antibody (Dako) was incubated with 25  $\mu$ L of human serum over night at 4 °C. After incubation, centrifugation at 9000 ×*g*, 10 min and 4 °C allowed the precipitation of the TTR-Ab complex. The pellet obtained was washed 3 times with 0.1 M AB buffer and finally resuspended in 50% methanol–1% formic acid [20] at approximately 4 pmol TTR/ $\mu$ L, according to the reported TTR concentrations in serum.

#### 2.4.2. Intact protein measurement with UHR-QTOF

TTR immunoprecipitated as described below was analyzed on a UHR-QTOF mass spectrometer (Bruker Impact). The sample was directly infused with a syringe pump at 3  $\mu$ L/min into an ESI source (Bruker). The MS acquisition method was set up to acquire only MS data during 5 min, with MS cycles of 0.5 Hz in

the mass range from 50 m/z to 1500 m/z. MS data was analyzed using Data Analysis 4.1 software (Bruker).

Lock mass calibration was performed prior to averaging the spectra. All measurements were done in charge envelope +14, taking into account the intensity of the 5 most intense isotope peaks for each modification. Peak inspection was performed manually and the sum of these 5 isotopes was considered as the total intensity for a given modification. From the total intensity of each form, the percent of each modification with respect to the sum of all forms was calculated, for both wt and V30M TTR.

### 2.5. Top-down MS analysis

Top-down MS experiments were performed on a 7 T LTQ-FT Ultra mass spectrometer (Thermo Scientific). Purified TTR was reconstituted with ESI solution (MeOH, 1% FA (1:1, v/v)) and infused by automated nanoelectrospray using a Triversa Nanomate (Advion BioSciences) as the interface. Full MS spectra (m/z 200-2000) were acquired at 100,000 resolution (m/ $\Delta$ m 50% at 400 m/z) and, after full scan analysis, individual charge state ions of the multiply protonated proteoforms were selected for isolation in the LTQ using isolation widths of 5-10 m/z. Isolated ions were then fragmented by either CID or ECD. CID fragmentation was performed in the trap whereas isolated ions were guided to the FTICR cell for ECD fragmentation. Fragment detection was done in the FTICR cell for both types of fragmentation at 100,000 resolution (m/ $\Delta$ m 50% at 400 m/z) and averaging 200–1000 scans. For CID experiments precursor ions were activated using 30% to 40% normalized collision energy at the default activation q-value of 0.25. For ECD experiments the following settings were used: 3-5 energy (arbitrary units) corresponding to a cathode voltage of 1.5 V to 3.5 V, 127 ms delay (with 0 ms additional delay) and 15-75 ms duration. Fragmentation efficiency was optimized to maximize product ion signal intensity for both CID and ECD. The analyzer charge capacity was set to a target value of 500,000 and 1000,000 counts for CID and ECD MS/MS experiments respectively. Protein masses and zero charged fragments masses were determined by deconvolution using Xtract algorithm integrated in Xcalibur software vs 2.07 (Thermo Scientific). Data validation was done using ProSight PC 2.0 software (Thermo Scientific) in a single protein mode using a sequence gazer option.

J O U R N A L O F P R O T E O M I C S X X (2015) X X X – X X X

#### 3. Results and discussion

### 3.1. Immunoprecipitation of TTR from serum

The first step of both methodologies consists of immunoprecipitation of serum TTR using a polyclonal antibody. Polyclonal antibodies present several advantages, such as the lack of specificity for a certain modification or the lack of sensitivity in front of point mutations, allowing the use of the same procedure for a wide variety of samples. In addition, they can form precipitating immune complexes with homogeneous monomeric protein antigens, since each antibody can interact with a different epitope on the antigen. In the particular case of TTR, and given its tetrameric nature in plasma, they are able to form precipitating immune complexes without the need of adding immobilized protein A or G. We chose to use this immunoprecipitation "in solution" for minimal manipulation of the sample for intact protein analysis. However, in the case of the LC-MS HR-XIC strategy the antibody was first immobilized, used to capture TTR from plasma, and then treated with triethylamine, to release antibody-free TTR in order to improve the yield of the enzymatic digestion of the protein.

3.1.1. Immunoprecipitation of TTR with hydrazide-immobilized antibody and TTR recovery

Conditions for the immunoprecipitation with immobilized antibodies (Ab-ULH, see the Materials and methods section) were set up using solutions of known concentration of recombinant human TTR (rhTTR). rhTTR was prepared either in PBS buffer alone or in the presence of BSA at concentrations similar to plasma, to mimic plasmatic conditions, in case the complexity of the sample could affect the yield of the IP. The recovery from TTR solutions in the concentration range reported for plasma TTR was practically quantitative (Supplementary material, Fig. S1A). In order to further check that the amount of Ab used is enough to rescue all the plasmatic TTR, solutions ranging from 0.1 to 0.6  $\mu$ g/ $\mu$ L of rhTTR in PBS or PBS plus 70 µg/µL BSA were immunoprecipitated (Fig. 1A). The amount of TTR in the IP fraction was quantified using the standard curve prepared from known amounts of rhTTR in a SDS-PAGE gel (Fig. 1B). The results confirmed that recovery was practically quantitative and linear in all the range of concentrations assayed. In addition, two negative controls were performed (Fig. 1A, IP BSA and IP PBS). Applying the immunoprecipitation protocol to a solution of BSA or PBS showed no bands interfering with TTR, but some background of BSA, even after extensive washing, or leaking Ab was

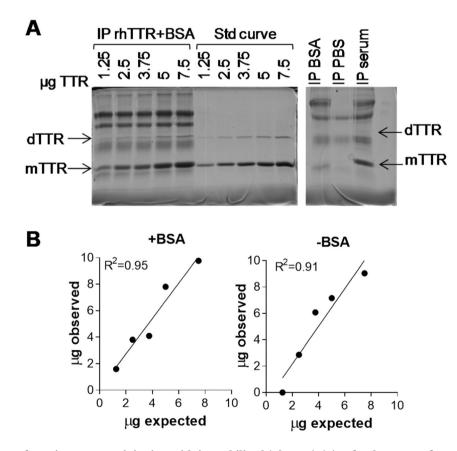



Fig. 1 – Optimization of TTR immunoprecipitation with immobilized (Ab-ULH). (A) Left: Ab-ULH IPs from solutions with increasing amounts of rhTTR, as indicated, in the presence of BSA (70  $\mu$ g/ $\mu$ L) and rhTTR standard calibration curve. Right: control IPs from a BSA solution and PBS, and IP from serum sample. Half of each IP was loaded in the gel; (B) recovery determination for experiment in panel A and for the same experiment in the absence of BSA. Gels were stained with Coomassie Blue, scanned with LabScan and quantified using ImageQuant software (GE Healthcare). Bands corresponding to monomer and dimer of TTR are indicated with arrows as mTTR and dTTR, respectively.

observed. Finally, immunoprecipitation from human serum samples according to the established protocol was tested (Fig. 1A, IP serum), confirming quantitative recovery of serum TTR.

3.1.2. TTR recovery upon immunoprecipitation in solution In a similar way, we checked the conditions for total recovery of TTR by immunoprecipitation with the antibody in solution, performed essentially as in [20]. Immunoprecipitation from 25  $\mu$ L solutions containing rhTTR concentrations ranging from 0.2 to 0.6  $\mu$ g/ $\mu$ L was quantitative, confirming total TTR rescue from the solution after immunoprecipitation (Supplementary material, Fig. S1B).

#### 3.2. Strategy 1: targeted LC-MS method

3.2.1. Selection of target peptides and digestion optimization Digestion of purified rhTTR with different enzymes was performed to test the coverage of the TTR sequence by LC-MS/MS analysis (Fig. 2). Since we are interested in the study of TTR Cys-10 modifications, digestion with trypsin does not provide a suitable peptide, due to the presence of two Lys residues too close in the sequence (Lys9 and Lys15), which would result in a peptide too short for LC-MS analysis, and with the cleavage site contiguous to the modified residue, which could affect the cleavage efficiency. Suitable peptides were observed in both the Asp-N and Arg-C digests, the later being the one giving the strongest MS signal. Thus, Arg-C digestion was selected for the analysis of the N-term peptides carrying the different modifications at Cys-10. The same digestion produces also the GSPAINVAVHVFR peptide (and its V30M mutant version) that can be used for the quantification of the total TTR amount.

Since the GSPAIN peptides are also tryptic peptides, they allowed a direct comparison between the efficiency of trypsin and Arg-C digestion of TTR. Experiments to assess the digestion performance were carried out on serum samples having both wt and V30M TTR. After immunoprecipitation with ULH immobilized antibody, the amount of the different peptides obtained was quantified using standard peptides, as detailed below. Different conditions for Arg-C digestion were tested attempting to optimize the yield, as monitored by the GSPAIN peptide quantification in comparison to a parallel trypsin digestion of the same sample. Conditions assayed included: different enzyme:protein ratios (1:15 to 1:100), presence of different denaturing agents (10% ACN, 10% trifluoroethanol, 2 M urea, 8 M urea), addition of 10 mM CaCl₂, different incubation times (4-16 h), different protein concentrations during the digestion, and 3 successive additions of the enzyme, at 2 h intervals. It was found (Fig. 3A and B) that the yields of the GSPAIN peptides upon Arg-C digestion were 4 to 10-fold lower than the obtained for trypsin digestion. A decrease in the amount of GSPAIN peptide measured at long digestion times was also apparent (Fig. 3B). LC-MS/MS analysis of the Arg-C digests showed the presence of some non tryptic peptides, in particular N-terminal truncated forms derived from the GSPAIN peptides (Supplementary material, Fig. S2), pointing to the presence of some minor proteolytic activity that could explain the observed decrease in the measured amount of GSPAIN peptides. Similar results were obtained when using other Arg-C enzymes available from different vendors.

Since improving the Arg-C digestion yield was not really possible, and the Arg-C N-term peptide being the best-suited for the study of Cys-10 modifications, we devised an analysis strategy based on two parallel digestions. After immunoprecipitation of serum TTR, an aliquot of the recovered protein was digested with trypsin for the quantification of the total TTR amount in serum through the GSPAIN peptides. A second aliquot was digested with Arg-C for the quantification of the different N-term peptides. Since Arg-C digestion cannot be completed, we checked that the relative amounts of each of the Cys-10 modified forms were constant along the progression of the digestion. As shown in Fig. 3C and 3D, the proportion of the different forms is constant within experimental error up to 10 h of digestion. We chose a digestion time of 6 h under these conditions to measure the relative amounts of each Cys-10 form. From those, the absolute amounts of each TTR form were calculated based on the total TTR amount determined from the analysis of the trypsin-digested protein.

#### 3.2.2. Labeled peptide standard curves for quantification

Table 1 shows the peptide ions used in the quantification for the HR-XIC strategy, as well as the limits of detection (LOD, S/N = 3) and the limits of quantification (LOQ, S/N = 10) for the different peptides, derived from their corresponding standard curves (Supplementary material, Fig. S3). Standard curves for

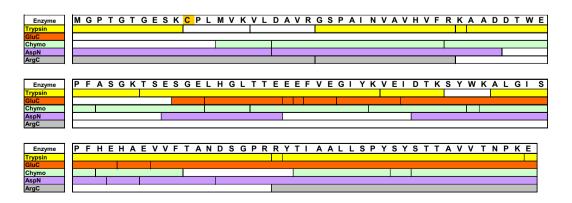



Fig. 2 – Schematic representation of the peptides resulting from rhTTR digestion with several proteases. The different boxes indicate the peptides obtained in a theoretical digestion; colored boxes indicate the peptides detected by MS/MS.

JOURNAL OF PROTEOMICS XX (2015) XXX-XXX

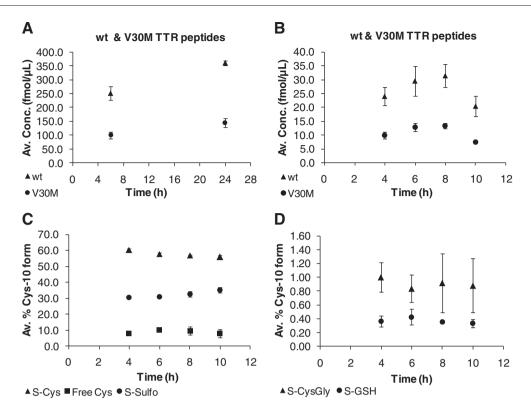



Fig. 3 – Time course of the digestions of immunoprecipitated TTR with trypsin and ArgC. (A) Trypsin digestion. Measured concentrations of GSPAINVAVHVFR (wt) and GSPAINVAMHVFR (V30M), respectively, as quantified by HR-XIC. (B) Arg-C digestion measured concentrations of GSPAIN wt and V30M TTR peptides, as in panel A. (C and D) N-term peptides measured along Arg-C digestion. The percent of each modified N-term peptide, GPTGTGESKC*PLMVKVLDAVR, was quantified by HR-XIC. In all cases, the average values measured at each time point for three replicate digestions are shown. Error bars correspond to the standard deviation. Note that the sample used for digestion was a pool of different serum samples and thus the wt:V30M ratio measured is not representative of a real sample.

each of the labeled peptides used for quantification were performed by serial dilution of Arg-C (N-term peptides) or trypsin (GSPAIN peptides) in the presence of digested immunoprecipitated TTR as matrix. The average heavy/light (H/L) ratio of the three replicates analyzed was represented against the concentration (fmol/ $\mu$ L) of heavy peptide injected. All the peptides presented linear standard curves in the concentration range studied, with R² values between 0.957 and 0.998. The charge state and isotopic species giving the strongest signal for each heavy labeled form were used for quantification.

#### 3.2.3. Methionine oxidized peptides

The presence of methionine residues in the peptides used for quantification is normally avoided when designing peptide targeted analysis methods. In this study, however, both the N-terminal peptides used for Cys-10 modifications and the GSPAIN peptides used for total protein quantification have methionine residues. In the first case, methionine 13 is close to the modification site, and cannot be excluded from the targeted peptide by any suitable digestion procedure. In the case of the GSPAIN peptide, methionine is the site of the mutant of interest, and quantifying wt and V30M forms of TTR is one of the goals of the method. Thus, we had to take into account methionine oxidation of the peptides of interest. The signals for the ions corresponding to all possible methionine oxidized forms, both from the endogenous and the labeled peptides, were monitored in the HR-XIC LC–MS analysis.

We found that the signals for the oxidized forms for all the N-term peptides were negligible compared to the non-oxidized forms, and thus they were not further considered in the quantification. However, the standard peptide GSPAINVAMHVFR, used for quantification of total V30M TTR was found particularly prone to oxidation. The standard heavy peptide, of known total concentration derived from the amino acid analysis provided by the manufacturer, contained in fact both oxidized and non-oxidized forms at unknown proportions. Since attempts to convert the standard peptide quantitatively to the reduced or oxidized form were not successful, we devised an indirect strategy to obtain an estimation of the response factors of the oxidized and non-oxidized heavy peptide forms, and their proportions in the standard, based in the use of a rigorously quantified solution of a non-oxidized rhTTR V30M as a reference. The recombinant protein was quantified based on absorbance at 280 nm [37] and was used to prepare a solution of known concentration of rhTTR V30M spiked into a 70  $\mu$ g/ $\mu$ L BSA solution, which was then immunoprecipitated and digested with trypsin according to the established protocol. The resulting digested protein was used to prepare solutions at various

known concentrations of digested rhTTR, to which different amounts of total V30M GSPAIN peptide, containing both oxidized and non-oxidized forms at unknown proportions, were added. Analysis of these samples by the described LC–MS strategy was used to derive response factors (signal area/fmol peptide) for the non-oxidized and oxidized forms of the V30M GSPAIN, based on the known concentrations of rhTTR and total GSPAIN peptide. A response factor significantly higher (13.63 fold) for the oxidized peptide was found.

We further confirmed the response factor for the oxidized V30M GSPAIN peptide by an independent, more accurate, measurement using a synthetic labeled standard peptide carrying a Met-sulfoxide. The standard curve for this peptide was determined as in Section 3.2.2, and is shown in Supplementary Fig. S3. Together with the results measured using the mixture of non-oxidized and oxidized forms of V30M GSPAIN, we calculated the ratio of response factors to be 11.11 (oxidized:non-oxidized V30M).

The measured response factors were used to quantify the total V30M TTR in samples, as the sum of non-oxidized and oxidized forms. In all serum samples analyzed, the proportion of the Met-30 oxidized form was found to be below 7%.

3.2.4. Intra- and inter-assay precision for the targeted LC-MS strategy

In order to determine intra- and inter-assay precision, a pool of serum from healthy individuals was used. From this pool, the complete sample preparation procedure, including immunoprecipitation and trypsin and Arg-C digestions, was performed in triplicate. Each of the digests was then analyzed by HR-XIC LC-MS in triplicate. The results obtained for total protein determination (trypsin digestion) and Cys-10 modified forms (Arg-C digestion) are shown in table 2. The reproducibility of the assay was very good, with coefficients of variation  $\leq 2\%$  for the determination of the total amount of protein and variations  $\leq$ 8% for the quantification of the different Cys-10 forms, both intra- (triplicate sample processing) and inter-assay (triplicate LC-MS analysis). The only exception was for the Free Cys quantification, which presented an inter-assay coefficient of variation of 19%. It is likely that the higher variability observed for the Free Cys form reflects its susceptibility to oxidation during the manipulation of the sample. We have not explored preanalytical issues at this point of the development of the methods, but this is clearly a point to take into account, given the nature of the modifications of interest and in the light of previous reports [20].

#### 3.3. Strategy 2: intact protein MS analysis

3.3.1. Relative quantification by intact protein analysis Analysis of intact immunoprecipitated TTR from serum by direct infusion to the electrospray source on a HR-QTOF instrument (Bruker Impact) allowed us to detect signals of m/z values compatible with the main Cys-10 modified forms of wt and V30M TTR, in charge states ranging from z = 9 to z = 19. Fig. 4A shows an example of the spectra obtained for 2 different serum samples, one containing only wt TTR and the other wt and V30M TTR. All the modifications of interest are shown, plus an unknown modification corresponding to a mass shift of +14 Da. As shown in Fig. 4B, a good agreement

		•				•													
		Ц	Free Cys			S-Cys		Ϋ́	S-CysGly		03	S-GSH		03	S-Sulfo		L	Total TTR	R
Intra-assay		IP1	IP2	IP3	IP1		IP1	IP1	IP2	IP3	IP1	IP2	IP3		IP2	IP3	IP1	IP2	IP3
STDV		0.085	0.264	0.083	0.329		0.354	0.073	0.068				0.007	0.354	0.275	0.179	0.950	0.450	0.107
Mean (%	Mean (% of PTM or ng TTR/ $\mu$ L serum) 4.95	4.95	4.13	3.18	70.55	70.80	22.02			2.18	0.48	0.46	0.54		22.76	20.47	55.11	54.99	56.26
CV (%)		1.71	6.4	2.61	0.47	0.09	1.61						1.29		1.21	0.87	1.72	0.82	0.19
Av CV (%)	(%)	3.57			0.28			3.12			1.42						0.91		
Inter-assay STDV			0.779			1.495			0.153			0.039			1.042			0.701	
Mean (%	Mean (% of PTM or ng TTR/ $\mu L$ serum)		4.09			71.66			2.01			0.49			21.75			55.45	
CV (%)			19.06			2.09			7.61			7.88			4.79			1.26	

#### J O U R N A L O F P R O T E O M I C S X X (2015) X X X – X X X

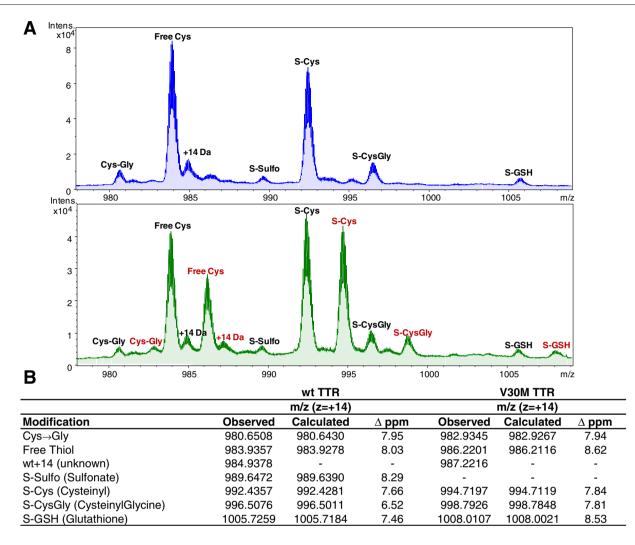



Fig. 4 – TTR spectra obtained by intact protein. (A) wt TTR spectra (blue) and V30M spectra (green) obtained by intact protein strategy in Impact (Bruker); (B) table of m/z values for the different modifications monitored in the charge state + 14.

between the calculated and observed m/z values was obtained. To further confirm the identity of each of the assigned ions, a top-down analysis of each of the TTR forms (Fig. 5) was performed on a 7T LTQ-FT Ultra mass spectrometer confirming in all cases the structure assigned in Fig. 4 (Supplementary material, Tables S1–S15).

By this methodology it was not possible however to quantify the relative amount of the S-Sulfo form in V30M TTR, since its whole peak is overlapped with part of the S-Cys peak in wt TTR. For comparison purposes, the relative amounts of PTMs determined by this methodology were calculated without taking into account S-Sulfo forms (neither wt, nor V30M).

# 3.3.2. Intra- and inter-assay precision for the intact protein strategy

To determine the intra-assay precision we performed four different immunoprecipitations from a pool of human serum, and analyzed them according to the protocol described in the Materials and methods section. A second pool was immunoprecipitated and analyzed in 4 different days to assess inter-assay precision. The results are shown in Table 3. The procedure showed to be highly robust, giving an intra-assay coefficient of variation <8% for the total intensities measured, and <6% for the calculated % of the different PTMs measured. Results of the assay of a sample on different days, after cycles of freezing and thawing, showed a higher variation (<20%) for the total intensities, but even in this case the values for percent of PTMs showed a coefficient of variation ≤4%. The ratio of total wt:V30M TTR was calculated as the ratio of the signals resulting from totalling the peaks corresponding to the modified forms for wt and V30M TTR, respectively. Determination of the ratio total wt:V30M TTR gave also coefficients of variation <0.5% for both intra- and inter-assay.

# 3.4. Comparison between targeted LC–MS and intact protein strategies

In order to compare the results obtained by the two different analytical strategies, a group of 10 human serum samples, five carrying only wt TTR and five carrying both wt and V30M TTR, was analyzed by the two methodologies. The results obtained by the targeted LC–MS strategy for the absolute quantity of TTR are shown in Table 4. For V30M samples, in the case of the intact protein strategy, it was also possible to calculate the

Please cite this article as: Vilà-Rico M, et al, Quantitative analysis of post-translational modifications in human serum transthyretin associated with familial amyloidotic polyne..., J Prot (2015), http://dx.doi.org/10.1016/j.jprot.2015.04.016

9

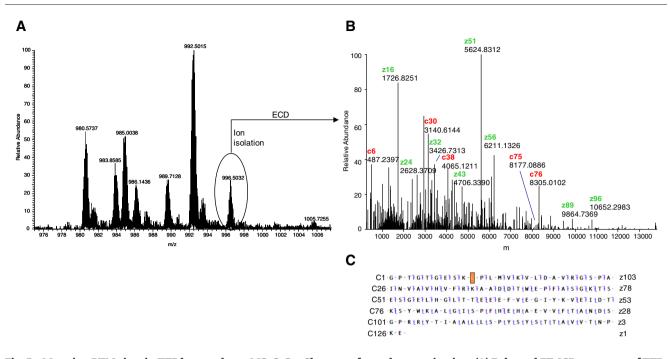



Fig. 5 - Mapping PTM sites in TTR by top-down MS. S-CysGly proteoform characterization. (A) Enlarged FT-ICR spectrum of TTR, Z = +14; (B) ion deconvoluted ECD spectrum of isolated ion m/z 996.50; (C) ECD fragmentation map showing S-CysGly PTM at Cys10, explained by fragments from C3 to C88 (total of 49 fragments).

ratio wt:V30M, by comparing the global intensity for each TTR form (Table 4, right).

Fig. 6A shows the comparison of the distribution pattern of the different Cys-10 forms, as determined by the two methods (Supplementary material, Tables S16 and S17). For this comparison, the S-Sulfo form was not considered since as it has been already mentioned, it cannot be properly quantified by the intact protein procedure. As it is clear from the figure, the observed pattern was quite different between both methodologies. By intact protein measurements, free Cys, S-CysGly and S-GSH fractions appear more abundant than they really are, according to the levels obtained from the absolute quantification. Conversely, the observed proportion for the S-Cys form appears to be much lower by intact protein measurement.

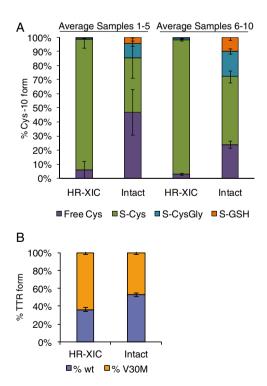
We also compared the % of total V30M and wt TTR in the serum samples, calculated by both strategies (Fig. 6B). We observed that both variants appear to be at approximately the same concentration, when looking at the intact protein level. However, absolute quantification shows that wt TTR was less abundant than V30M TTR, with a ratio around 40:60.

Comparison of the results from both techniques demonstrates that indeed, the response factor of the different TTR variants, when analyzed as intact protein, is not the same. Although relative quantification can be a good tool to compare protein forms among different samples, it is not suitable to establish which of those forms are really more abundant in a sample. The results shown here demonstrate the need for absolute quantification using labeled peptide standards to

	Intra-assay							Inter-assay								
	In wt TTR				In V30M TTR			In wt TTR			In V30M TTR					
	TI % PT		% PTM	PTM		% PTM			TI		% PTM		TI	% PTM		
	CV (%)	Mean	STDV	CV (%)	CV (%)	Mean	STDV	CV (%)	CV (%)	Mean	STDV	CV (%)	CV (%)	Mean	STDV	CV (%)
Free Cys S-Cys S-CysGly S-GSH	5.59 2.06 4.29 7.08	15.73 55.17 20.21 8.89	0.425 0.911 0.475 0.415	2.70 1.65 2.35 4.67	4.97 1.50 4.30 6.69	22.64 54.90 13.85 8.60	0.599 1.182 0.250 0.412	2.65 2.15 1.80 4.79	17.69 19.00 16.96 14.92	13.63 57.89 19.83 8.65	0.122 0.686 0.297 0.339	0.90 1.19 1.50 3.92	18.48 18.79 16.84 15.00	19.15 54.89 17.49 8.47	0.119 0.477 0.275 0.296	0.62 0.87 1.57 3.49
						Mean	STDV	CV (%)						Mean	STDV	CV (%)
% V30M TTR						46.70	0.053	0.11						48.25	0.037	0.08

# Table 3 – Determination of the intra- and inter-assay precision for the total intensity, % of PTMs in wt and V30M TTR, and

J O U R N A L O F P R O T E O M I C S X X (2015) X X X – X X X


Table 4 - Absolute quantification of TTR by HR-XIC and
relative abundances of wt and V30M TTR by intact protein.

Sample ^a				Intact protein					
	ng TT	'R/μL pl	asma						
	wt TTR	V30M TTR	Total TTR	% wt	% V30M	% wt	% V30M		
Sample 1	52.41	0.08	52.49	100	-	100	-		
Sample 2	62.14	0.18	62.31	100	-	100	-		
Sample 3	118.79	0.16	118.95	100	-	100	-		
Sample 4	51.43	0.38	51.81	100	-	100	-		
Sample 5	24.42	0.06	24.47	100	-	100	-		
Sample 6	51.24	84.54	135.78	37.74	62.26	51.69	48.31		
Sample 7	42.73	65.71	108.44	39.4	60.6	52.76	47.24		
Sample 8	25.7	52.99	78.69	32.66	67.34	52.58	47.42		
Sample 9	28.09	50.44	78.48	35.73	64.27	50.71	49.29		
Sample 10	38.08	68.95	107.03	35.58	64.42	56.53	43.47		
^a Samples 1–5 correspond to wt individual human samples and samples 6–10 to V30M individual human samples.									

measure the absolute amounts of the different forms and thus have a real evaluation of their distribution in serum. The differences observed between the intact protein analysis and the LC–MS method would result from different response factors of the different proteoforms, which would be a consequence of their different ionization capability upon electrospray ionization. In the LC–MS method, the response of the measurement of each form is corrected by the corresponding internal standard, and therefore the proportions of the different forms measured should be closer to the real composition of the sample.

However, it should also be noted that the intact protein analysis method affords information on the relative amounts of the Cys-10 PTM forms of wt and V30M TTR proteins separately, whereas in the targeted LC–MS method the N-term peptides used for PTM quantification measure the total amounts of those PTM forms. On the other hand, as seen in Fig. 6A, due to the greater response factor for some of the minor PTM forms (S-CysGly, S-GSH), the intact protein method presents a somehow higher sensitivity for their relative quantification.

The most common technique to determine the total amount of TTR in serum samples is the ELISA method. In an attempt to compare the results here obtained for absolute quantification by the targeted LC-MS method, a set of serum samples were analyzed in parallel by both methods (see Supplementary material, Fig. S27). We observed a reasonable correlation between both techniques up to 50 ng TTR/µL serum, but the ELISA response was saturated at higher concentrations even though the measured absorbances in the ELISA were in the linear range of the standard curve. It suggests that some interference caused by serum components is affecting the ELISA method here tested. On the other hand, the total TTR concentration values measured by our LC-MS method were significantly lower than the established normal range (150-360 ng/µL) [38], suggesting a systematic bias. Incomplete recovery of the immunoprecipitated TTR, or incomplete digestion of the protein, could potentially account for this discrepancy. In the described experiments to control the immunoprecipitation procedure we found the recovery of



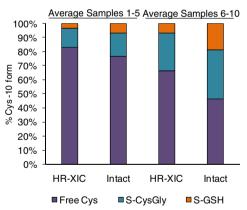



Fig. 6 – HR-XIC and intact protein measurement comparison. (A) On the left, distribution of Cys-10 modified TTR forms by both methodologies, error bars show standard deviation between the average of two groups of samples, 1–5 wt TTR, 6–10 V30M TTR; on the right, distribution of Cys-10 modified forms excluding S-Cys. (B) Percent proportion of total wt and V30M TTR measured by both methodologies for samples 6–10.

12

# **ARTICLE IN PRESS**

rhTTR to be practically quantitative (Fig. 1). TTR capture from plasma samples appeared to be also complete. However, it cannot be completely ruled out that elution from the antibody resin was less efficient from plasma samples. We also looked at the time-course of tryptic digestion. Although the amount of measured TTR by the LC-MS method showed no further increase after 24 h of digestion, this again does not rule out that TTR digestion is in fact incomplete. Other factors that could potentially result in the observed discrepancy could be the presence of modified TTR forms not prone to trypsin digestion, such as glycation or carbonylation derivatives. Troubleshooting of the ELISA procedure assayed, or checking alternative ELISA assays available to clarify these discrepancies is beyond the purpose of this work. Our results show that the LC-MS method developed can be at least as sensitive and robust as the usual immunological methods used, and give a further insight into the detailed composition of different TTR Cys-10 modified forms.

### 4. Conclusion

Two complementary MS based methods for the quantification of the most common Cys-10 PTM isoforms of TTR in plasma or serum have been set up. The targeted LC-MS method developed here, unlike previously described methods, allows the absolute quantification of the levels of each of the Cys-10 modifications, as well as the absolute concentrations of wt TTR and the amyloidotic V30M isoform. Intact protein analysis, on the other hand, provides additional valuable information of the relative distribution of the Cys-10 PTMs for wt and V30M proteins. It is shown that the intact protein ions of the different isoforms display large differences in response factors, which makes the targeted LC-S analysis, using standard peptides, mandatory for absolute quantification of their levels in serum. Overall, the combined analysis by the two developed strategies constitutes a robust method for the characterization of the PTM forms of TTR in serum, which, when applied to the appropriate clinical samples, can shed light into the relevance of these isoforms on TTR amyloidosis.

### **Conflict of interest**

The authors declare no conflicts of interest.

#### Acknowledgments

The authors wish to acknowledge Dr. JM Campistol (Hospital Clínic de Barcelona) for providing the clinical samples analyzed in this study. We also acknowledge the Fundació Privada de la Marató de TV3 for grant 101431/32 to FC and AP. MVR and NCC acknowledge fellowships from the granted project by the Fundació Privada de la Marató de TV3. We thank Pierre-Olivier Schmit and Stephanie Kaspar (Bruker), for valuable technical advise and support. Top-down MS analysis were performed in the IRB Barcelona Mass Spectrometry Core Facility that participates in the BMBS European COST Action BM 1403. We thank Mar Vilanova from the IRB MS Core for the helpful assistance.

Both the Proteomics Laboratory at VHIO and the IRB Barcelona Mass Spectrometry Core Facility, are members of ProteoRed, part of PRB2-ISCIII, supported by grant PT13/0001.

### Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jprot.2015.04.016.

#### REFERENCES

- Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin–retinol binding protein complex. J Biol Chem 1969;244(12):3230–7.
- [2] Raz A, Shiratori T, Goodman DS. Studies on the protein–protein and protein–ligand interactions involved in retinol transport in plasma. J Biol Chem 1970;245(8):1903–12.
- [3] Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS. Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J Biol Chem 1985;260(21): 11793–8.
- [4] Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB. Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol 1990; 258(2 Pt 2):R338–45.
- [5] Westermark P, Sletten K, Johansson B, Cornwell III GG. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci U S A 1990;87(7):2843–5.
- [6] Connors LH, Lim A, Prokaeva T, Roskens VA, Costello CE. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 2003;10(3):160–84.
- [7] Saraiva MJ. Hereditary transthyretin amyloidosis: molecular basis and therapeutical strategies. Expert Rev Mol Med 2002; 4(12):1–11.
- [8] Arsequell G, Planas A. Methods to evaluate the inhibition of TTR fibrillogenesis induced by small ligands. Curr Med Chem 2012;19(15):2343–55.
- [9] Colon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 1992;31(36):8654–60.
- [10] Quintas A, Saraiva MJ, Brito RM. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J Biol Chem 1992;274(46):32943–9.
- [11] Quintas A, Vaz DC, Cardoso I, Saraiva MJ, Brito RM. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J Biol Chem 2001;276(29):27207–13.
- [12] Cardoso I, Goldsbury CS, Muller SA, Olivieri V, Wirtz S, Damas AM, et al. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for *in vitro* assembled transthyretin amyloid-like fibrils. J Biol Chem 2002;317(5):683–95.
- [13] Hurshman AR, White JT, Powers ET, Kelly JW. Transthyretin aggregation under partially denaturing conditions is a downhill polymerization. Biochemistry 2004;43(23):7365–81.
- [14] Sousa MM, Cardoso I, Fernandes R, Guimarães A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of non-fibrillar aggregates. Am J Pathol 2001;159(6):1993–2000.
- [15] Sörgjerd K, Klingstedt T, Lindgren M, Kågedal K, Hammarström P. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture. Biochem Biophys Res Commun 2008;377(4): 1072–8.

- [16] Buxbaum J, Anan I, Suhr O. Serum transthyretin levels in Swedish TTR V30M carriers. Amyloid 2010;17(2):83–5.
- [17] Saraiva MJ, Costa PP, Goodman DS. Studies on plasma transthyretin (prealbumin) in familial amyloidotic polyneuropathy, Portuguese type. J Lab Clin Med 1983;102(4): 590–603.
- [18] Terazaki H, Ando Y, Suhr O, Ohlsson PI, Obayashi K, Yamashita T, et al. Post-translational modification of transthyretin in plasma. Biochem Biophys Res Commun 1998;249(1):26–30.
- [19] Altland K, Winter P, Sauerborn MK. Electrically neutral microheterogeneity of human plasma transthyretin (prealbumin) detected by isoelectric focusing in urea gradients. Electrophoresis 1999;20(7):1349–64.
- [20] Poulsen K, Bahl JM, Tanassi JT, Simonsen AH, Heegaard NH. Characterization and stability of transthyretin isoforms in cerebrospinal fluid examined by immunoprecipitation and high-resolution mass spectrometry of intact protein. Methods 2012;56(2):284–92.
- [21] Nakanishi T, Yoshioka M, Moriuchi K, Yamamoto D, Tsuji M, Takubo T. S-sulfonation of transthyretin is an important trigger step in the formation of transthyretin-related amyloid fibril. Biochim Biophys Acta 2010;1804(7):1449–56.
- [22] Kingsbury JS, Klimtchuk ES, Théberge R, Costello CE, Connors LH. Expression, purification, and in vitro cysteine-10 modification of native sequence recombinant human transthyretin. Protein Expr Purif 2007;53(2):370–7.
- [23] Zhang Q, Kelly JW. Cys10 mixed disulfides make transthyretin more amyloidogenic under mildly acidic conditions. Biochemistry 2003;42(29):8756–61.
- [24] Hammarström P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A 2002;99(Suppl. 4):16427–32.
- [25] Jiang X, Smith CS, Petrassi HM, Hammarström P, White JT, Sacchettini JC, et al. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 2001;40(38):11442–52.
- [26] Kishikawa M, Nakanishi T, Miyazaki A, Shimizu A. Enhanced amyloidogenicity of sulfonated transthyretin in vitro, a hypothetical etiology of senile amyloidosis. Amyloid 1999; 6(3):183–6.
- [27] Altland K, Winter P. Potential treatment of transthyretin-type amyloidoses by sulfite. Neurogenetics 1999;2(3):183–8.
- [28] Bergquist J, Andersen O, Westman A. Rapid method to characterize mutations in transthyretin in cerebrospinal fluid from familial amyloidotic polyneuropathy patients by use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 2000;46(9):1293–300.

- [29] Trenchevska O, Kamcheva E, Nedelkov D. Mass spectrometric immunoassay for quantitative determination of transthyretin and its variants. Proteomics 2011;11(18): 3633–41.
- [30] da Costa G, Gomes R, Correia CF, Freire A, Monteiro E, Martins A, et al. Identification and quantitative analysis of human transthyretin variants in human serum by Fourier transform ion-cycloton resonance mass spectrometry. Amyloid 2009; 16(4):201–7.
- [31] Ribeiro-Silva C, Gilberto S, Gomes RA, Mateus É, Monteiro E, Barroso E, et al. The relative amounts of plasma transthyretin forms in familial transthyretin amyloidosis: a quantitative analysis by Fourier transform ion-cyclotron resonance mass spectrometry. Amyloid 2011;18(4):191–9.
- [32] Kishikawa M, Nakanishi T, Miyazaki A, Shimizu A, Nakazato M, Kangawa K, et al. Simple detection of abnormal serum transthyretin from patients with familial amyloidotic polyneuropathy by high-performance liquid chromatography/electrospray ionization mass spectrometry using material precipitated with specific antiserum. J Mass Spectrom 1996;31(1):112–4.
- [33] Ando Y, Ohlsson PI, Suhr O, Nyhlin N, Yamashita T, Holmgren G, et al. A new simple and rapid screening method for variant transthyretin-related amyloidosis. Biochem Biophys Res Commun 1996;228(2):480–3.
- [34] Ando Y, Suhr O, Yamashita T, Ohlsson PI, Holmgreen G, Obayashi K, et al. Detection of different forms of variant transthyretin (Met30) in cerebrospinal fluid. Neurosci Lett 1997;238(3):123–6.
- [35] Suhr OB, Svendsen IH, Ohlsson PI, Lendoire J, Trigo P, Tashima K, et al. Impact of age and amyloidosis on thiol conjugation of transthyretin in hereditary transthyretin amyloidosis. Amyloid 1999;6(3):187–91.
- [36] Lim A, Prokaeva T, McComb ME, Connors LH, Skinner M, Costello CE. Identification of S-sulfonation and S-thiolation of a novel transthyretin Phe33Cys variant from a patient diagnosed with familial transthyretin amyloidosis. Protein Sci 2003;12(8):1775–85.
- [37] Dolado I, Nieto J, Saraiva MJ, Arsequell G, Valencia G, Planas A. Kinetic assay for high-throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors. J Comb Chem 2005;7(2):246–52.
- [38] Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferring and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal 1999;13(6):273–9.