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Dr. Noemı́ Carranza Centre for Genomic Regulation

This work was carried out in the Departament de Tecnologies de la In-
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“The future has many names: For the weak, it means the
unattainable. For the fearful, it means the unknown. For the

courageous, it means opportunity”

Victor Hugo





Abstract / Resumen
Abstract:

Cardiovascular diseases are the main cause of death in the western world. A
complete and accurate characterization of the heart is essential to help diagnosing
and treating any potential problems. To characterize cardiac function from different
perspectives, large amounts of data of different nature are often acquired in clinical
practice from the same patient, thus providing complementary information that is
useful for heart assessment.

Cardiac motion analysis has proven to be helpful for cardiac function assess-
ment. It can be estimated and quantified non-invasively using several imaging tech-
niques and, among all of them, ultrasound imaging is the most used. With this tech-
nique, different types of images, such as B-mode and tissue Doppler, are normally
acquired for cardiac motion assessment. Since all of them provide different infor-
mation, cardiac motion analysis is normally performed independently from each of
them.

Beside motion information, electrical data acquired using either non-invasive
(electrocardiography) or minimally invasive techniques (electro-anatomical
mapping) are often used to assess cardiac activation. In the latter case, electrical in-
formation is acquired intra-operatively and the possibility of using it together with
other types of information is constrained by the compatibility between the different
instruments and devices. Pre-operative information can also be used to guide the
intervention, but this information is not updated after any change that might occur
during the procedure.

Although the different data obtained from each patient are often analyzed se-
parately to assess cardiac function from different perspectives, the effective combi-
nation of this heterogeneous information may be useful for a better insight into the
heart’s anatomy and function. The main objective of this thesis is to develop me-
thods to integrate information of different nature for a more accurate and complete
cardiac tissue characterization. The contributions of this work can be summarized
as: (1) the development of a method to integrate B-mode and tissue Doppler ultra-
sound information for an accurate estimation and quantification of cardiac motion,
(2) the extension of this methodology to use multi-plane information to assess mo-
tion in the whole left ventricle, (3) the development of a method to estimate car-
diac motion intra-operatively using electro-anatomical mapping information, and
(4) the implementation of a framework that integrates tissue viability information
with intra-operative motion and electophysiological information for cardiac tissue
characterization. Each of these contributions has led to an article submitted or pu-
blished in a peer-reviewed international journal.
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Resumen:

Las enfermedades cardiovasculares son la principal causa de muerte en el
mundo occidental. Una caracterización completa y precisa del corazón es esencial
para ayudar en el diagnóstico y tratamiento de problemas potenciales. Para ca-
racterizar la función cardı́aca desde diferentes perspectivas, en la práctica clı́nica,
se adquieren grandes cantidades de datos de distinta naturaleza sobre un mismo
paciente, proporcionando información útil para la evaluación del corazón.

El análisis del movimiento del corazón ha demostrado ser útil para la
evaluación de la función cardı́aca. Se puede estimar y cuantificar de manera no
invasiva utilizando varias técnicas de adquisición de imagen y, entre todas ellas, la
imagen por ultrasonidos es la más utilizada. Con esta técnica, distintos tipos de
imágenes, como B-mode y Doppler tisular, se adquieren normalmente para eva-
luar el movimiento cardı́aco. Como todas proporcionan información diferente, el
análisis del movimiento cardı́aco se suele realizar de forma independiente a partir
de cada una de ellas.

A parte de la información de movimiento, los datos eléctricos adquiridos
utilizando técnicas no invasivas (electrocardiografı́a) o mı́nimamente invasivas
(mapeo electro-anatómico) se suelen utilizar para evaluar la activación cardı́aca.
En el segundo caso, la información eléctrica se adquiere de forma intra-operatoria
y la posibilidad de utilizarla junto con otros tipos de información está restringida
por la compatibilidad entre los distintos instrumentos y dispositivos. También se
puede utilizar información pre-operatoria para guiar la intervención, pero esta in-
formación no se actualiza tras cualquier cambio que se pueda producir durante el
procedimiento.

Aunque los distintos datos obtenidos de cada paciente se suelen analizar por
separado para evaluar la función cardı́aca desde diferentes perspectivas, la com-
binación efectiva de esta información heterogénea podrı́a ser útil para tener una
mejor visión de la anatomı́a y la función cardı́aca. El objetivo principal de esta
tesis es el desarrollo de métodos para integrar información de distinta naturaleza
para una caracterización del tejido cardı́aco más completa y precisa. Las contribu-
ciones de este trabajo se pueden resumir en: (1) el desarrollo de un método para
integrar información de imágenes de ultrasonidos B-mode y Doppler tisular para
una estimación y cuantifición precisa del movimiento cardı́aco, (2) la extensión de
esta metodologı́a utilizando información multi-plano para evaluar el movimiento
en todo el ventrı́culo izquierdo, (3) el desarrollo de un método para estimar el
movimiento cardı́aco de forma intra-operatoria utilizando información de mapeo
electro-anatómico, y (4) la implementación un marco donde se integran infor-
mación de viabilidad del tejido con información electrofisiológica y de movimiento
intra-operatoria para la caracterización del tejido cardı́aco. Cada una de estas con-
tribuciones representa un artı́culo enviado o publicado en una revista internacional
con revisión de expertos.
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1.1. The heart

1.1 The heart

The heart is a muscular organ located in the thoracic cavity that acts as a
pump, making the blood flow through the circulatory system. It is enclosed
in the pericardium, which constitutes a sac with a small amount of fluid with
the objective of protecting the heart.

The heart contains four different cavities, two atria and two ventricles,
as represented in Figure 1.1. The deoxygenated blood from all organs but
the lungs, called systemic circulation, comes into the right atrium through
the vena cava. This blood is ejected to the right ventricle, which pumps
it to the lungs to be oxygenated. The left atrium gathers the oxygenated
blood from the lungs through the pulmonary veins and pumps it into the left
ventricle. This ejects the blood to the rest of the organs through the aorta.
As the cardiac cells need to be supplied oxygen and nutrients, there is also
a coronary circulation to this end. In particular, the left and right coronary
arteries supply the left and right parts of the heart, respectively.

The cardiac wall is divided into three layers. The inner layer is the
endocardium and is composed mainly by endothelial cells that protect the
cardiac chambers. The next layer is the myocardium, which is composed
by cardiomyocites. The coordinated activation of these cardiac cells is what
makes the heart contract and pump the blood out. Finally, the outer layer
is called epicardium. It is composed by connective tissue and provides an
outer protective layer for the myocardium.

Figure 1.1: Heart anatomy. The four chambers and the main vessels are repre-
sented. 1

1Source: MedlinePlus.gov. Retrieved 03 Feb. 2015 from http://www.mybwmc.org/
library/2/19612.
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1.1. The heart

1.1.1 Electrical conduction system

As previously indicated, the synchronous activation of the cardiomyocites is
what makes the cardiac wall contract. Since the heart needs to pump blood
periodically, there must be a periodical activation of those cells. The electri-
cal conduction system of the heart, represented in Figure 1.2, is responsible
for this activation.

The sinoatrial node is a tissue located at the right atrium that is able
to generate the electrical impulse as a physiological pacemaker. The gene-
rated impulse is propagated to the rest of the right atrium and through the
Bachmann’s bundle to the left atrium, thus producing the activation of both
atria.

The atrioventricular node is located at the top of the ventricles. It pro-
duces a delayed activation of the ventricles with respect to the atria, which
is essential for an efficient blood ejection. The bundle of His is a part of this
node that splits at septal level into the right and left bundle branches, which
are responsible of the activation of the right and left ventricles, respectively.
In particular, these branches are connected to the Purkinje fibers, conducting
the electrical impulse to different groups of cells in the ventricles.

Figure 1.2: Electrical conduction system of the heart. 2

2Source: CEUfast.com. Retrieved 03 Feb. 2015 from http://www.ceufast.com/
courses/viewcourse.asp?id=239.
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1.2. Quantification of cardiac motion

Figure 1.3: The three main stages of the cardiac cycle. 3

1.1.2 Contraction during the cardiac cycle

Cardiac activation, contraction and relaxation in a healthy heart is periodi-
cal. Figure 1.3 shows the three main stages of the cardiac cycle. Taking as
a reference the instant when the ventricles are contracted and the blood is
ejected, the cycle starts with the relaxation of the ventricles and the opening
of the valves separating them from the atria. The difference of pressure be-
tween the atria and the ventricles produces the blood filling of the ventricles
as they relax. The subsequent atrial contraction ejects most of the remaining
blood in the atria to the ventricles. At ventricle activation, the tricuspid and
mitral valves, which separate the ventricles and the atria, close. The pres-
sure increase in the ventricles produces the opening of the aortic and the
pulmonary valves and the ejection of the blood to the circulatory system. In
addition, the blood from the circulatory system also comes into the atria as
they relax.

1.2 Quantification of cardiac motion

The main goal of the heart is to pump blood to provide oxygen and nutri-
ents to the rest of the body, so it must be able to eject the blood volume the
body needs to work. The stroke volume depends on the way the heart con-
tracts, which in turn depends on its electrical activation. Therefore, studying

3Source: “The Cardiac Cycle.” Boundless Biology. Boundless, 14 Nov. 2014. Retrieved
03 Feb. 2015 from https://www.boundless.com/biology/textbooks/boundless-biology-
textbook/the-circulatory-system-40/mammalian-heart-and-blood-vessels-226/the-cardiac-
cycle-852-12097/.
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1.2. Quantification of cardiac motion

cardiac motion provides insight into cardiac function [1].

Cardiac motion assessment is normally done non-invasively from image
data. Among the different available techniques (magnetic resonance, com-
puted tomography...), ultrasound (US) imaging is the most used because of
its low cost, non-invasiveness and good temporal resolution. From echocar-
diographic images, it is possible to estimate different local and global para-
meters for heart assessment.

The ejection fraction is used to globally assess ventricle function and it
is defined as the fraction of the volume of blood contained in the relaxed
ventricle (end diastole) that is ejected after contraction (end systole). It can
be estimated using M-mode images [2], 2D images [3] and 3D images [4].
This parameter gives information about the cardiac output, but not about
how the heart produces this output.

For a deeper insight on cardiac mechanics, different parameters giving
local information about heart contraction are used. The displacement of a
specific point in the cardiac wall can be estimated by tracking 2D or 3D
gray-scale echocardiographic images. The velocity can also be estimated
using Tissue Doppler (TD) images, but only its component on the US beam
direction [5]. The deformation can be estimated by calculating the strain,
which gives information about how neighboring points in the cardiac wall
change their position with respect to each other. Finally, the strain rate is
the velocity at which the strain changes in time. Figure 1.4 represents the
relation between these four parameters.

Displacement Strain

Strain
rateVelocity

spatial derivation

spatial integration

te
m

po
ra

l i
nt

eg
ra

tio
n

te
m

po
ra

l d
er

iv
at

io
n

Figure 1.4: Parameters for motion quantification. The scheme shows the spatial
and temporal relations between displacement, strain, strain rate and velocity.
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1.3. Integration of information for heart assessment

1.2.1 Ultrasound imaging modalities

Theoretically, knowing one of the parameters from Figure 1.4, it is possible
to estimate the others. However, the accuracy in the estimation of any of
them is compromised by the limitations of the acquisition system and the
spatial and temporal resolution of the acquired data. In particular, in US
imaging, there is always a tradeoff between spatial and temporal resolution,
so increasing one of them is done at the expense of reducing the other one.

2D B-mode echocardiographic images have been used for heart motion
assessment by tracking the speckles in the image sequence. However, there
are some problems that are intrinsic to the image nature, as the presence of
artifacts, reverberations, curvature dependency and the limited spatiotem-
poral resolution [6]. In addition, it is necessary to consider that the motion
estimation is dependent on the tracking method used.

2D TD images, on the other hand, measure the projection of the real
velocity of the structures imaged on the beam direction. However, pro-
blems like the presence of random noise and aliasing are also present in this
imaging modality.

Technical advances during the last years have allowed for the acquisition
of 3D gray-scale US images. With this approach, small volumetric informa-
tion is acquired during consecutive cardiac cycles. Then, all the acquired
information is integrated for the reconstruction of the whole 3D volume.
However, the spatial and temporal resolution of the acquired information is
low in comparison with the resolution of 2D US data. In addition, since in-
formation from different beats is integrated, its interpretation from patients
presenting unstable heart rhythms is challenging [7].

1.3 Integration of information for heart assessment

In clinical practice, large volumes of information from different nature are
normally obtained from the same patient. Most of the data acquired are
often used separately to assess cardiac function. Since the data from diffe-
rent sources provide complementary information, the integration of these
heterogeneous data may be useful to have a better insight into cardiac func-
tion.

Methods fusing cardiac US images to produce another image with higher
quality that improved image analysis were proposed in several papers [8, 9].
In other approaches [10, 11, 12], the data from different images, which were
not necessarily from the same nature, were directly used together to quan-
tify cardiac motion. However, the combination of different information is
still challenging, since the different images normally present different spa-
tiotemporal resolutions, provide complementary information and may lead

7
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to inconsistencies.
In the particular case of US imaging, B-mode and TD images are the

most used techniques to assess cardiac motion. The combination of the in-
formation provided by each modality should let overcoming the drawbacks
of using each of them separately. In [13], TD images are used for tracking
along the US beam, while speckle tracking from B-mode images is used for
tracking transverse to the US beam. Another approach is the simultaneous
analysis of B-mode and TD images proposed in [14] where they estimate a
2D velocity field using a spatial affine velocity model inside a sliding win-
dow.

In many cases, mechanical abnormalities are directly related to elec-
trophysiological problems. However, local electrophysiological informa-
tion cannot be obtained directly by using non-invasive imaging techniques,
so other approaches are needed. Electro-Anatomical Mapping Systems
(EAMS) are used in clinical practice as a minimally invasive technique to
record local electrical information from the cardiac wall. The integration of
the recorded electrical activity with mechanical information from the heart
would provide a more complete characterization of the myocardial tissue.
The possibility of estimating mechanical information using an EAMS and
its potential applications has been explored in [15, 16, 17, 18, 19].

Beyond mechanical and electrical assessment, tissue viability informa-
tion is also considered to diagnose and treat different cardiomyopathies. In
particular, images from Delayed-Enhancement Magnetic Resonance (DE-
MR) are acquired to identify injured areas in the myocardium. The ad-
ministration of a contrast agent (i.e., gadolinium) results in its uptake into
normal and injured myocardium. While in the normal myocardium there is
an early washout of the contrast agent, it is slower in injured myocardium.
This is translated into images where non-healthy tissue is depicted as areas
with high signal intensity, while healthy myocardium presents low signal
intensity.

1.4 Objective of the thesis

The global aim of this thesis was to integrate different types of images and
information for a better cardiac tissue characterization. This was structured
in:

• Development of a method to integrate information from different US
image modalities for an accurate assessment of cardiac motion. In
particular, B-mode and tissue Doppler ultrasound images were inte-
grated, thus minimizing the drawbacks of using each of them separa-
tely.
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• Development of a method to integrate intra-operatively electrical and
motion information for cardiac tissue characterization.

• Development of a framework to integrate tissue viability, electrical
and motion information for a more complete cardiac tissue characte-
rization.

1.5 Contributions of this thesis

This thesis presents four main contributions, with one chapter dedicated to
each contribution:

• Chapter 2 presents a diffeomorphic registration framework that inte-
grates 2D B-mode and TD images for an improved cardiac motion
estimation. The continuous representation of the transformation both
in time and space allows considering each type of information at the
location and time it is acquired. Increased accuracy is achieved com-
pared to using a single modality.

• Chapter 3 builds on the previous framework to integrate multi-plane
B-mode and TD images for simultaneous motion estimation in the
whole left ventricle. This is useful for an accurate motion analysis in
the ventricle in those cases where a useful 3D US image cannot be ac-
quired. In addition, it incorporates the use of quantitative information
(i.e., Doppler velocities) for motion estimation, which is not available
in 3D US imaging.

• Chapter 4 presents a method to estimate cardiac motion intra-
operatively using catheter position information from an EAMS to help
decision making during catheter-guided interventions.

• Chapter 5 uses the previous method to estimate cardiac motion from
EAMS data and integrates it with electrophysiological and DE-MR
information for catheter ablation planning and guidance.

Each of these 4 chapters is self-contained and is an adaptation of articles
that are published or submitted to peer-reviewed journals. Therefore, some
of the concepts introduced in this chapter may be repeated or reformulated
according to the particular interests of each chapter.

9
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This chapter presents a technique for myocardial motion estimation
based on image registration using both B-mode echocardiographic images
and tissue Doppler sequences acquired interleaved. The velocity field is
modeled continuously using B-splines and the spatiotemporal transforma-
tion is constrained to be diffeomorphic. A comparison between using polar
and Cartesian transformation models is performed. The proposed dissimila-
rity measure penalizes the disagreement between tissue Doppler velocities
and the estimated velocity field. In addition, a measure including speckle
statistics to track motion in the B-mode sequence is tested against using a
more traditional mean-squared-error-based measure. Registration accuracy
is evaluated and compared to other alternatives using a realistic synthetic
dataset, obtaining mean displacement errors of about 1 mm. Finally, the
method is demonstrated on data acquired from 6 volunteers, both at rest and
during exercise. Results show that our method provides a robust motion es-
timate in cases with low image quality and reduced number of frames due
to fast heart rates.

The content of this chapter is adapted from the following publication:

A. R. Porras, M. Alessandrini, M. De Craene, N. Duchateau, M. Sit-
ges, B. H. Bijnens, H. Delingette, M. Sermesant, J. D’hooge, A. F. Frangi,
and G. Piella. Improved myocardial motion estimation combining tissue
Doppler and B-mode echocardiographic images. IEEE Transactions on
Medical Imaging, vol. 33, no. 11, pp. 2098-2106. 2014.
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2.1. Introduction

2.1 Introduction

As introduced in Section 1.2, quantification of cardiac motion and strain
has proven to be helpful for cardiac function assessment, providing infor-
mation on how a given pathology affects global and local mechanics of the
myocardium [1, 5, 20]. Among the different imaging techniques available
to quantify cardiac motion, US imaging is one of the most used, since it
captures a large range of information (e.g., valve flows and tissue veloci-
ties) dynamically and at a reasonable cost. Novel trends in the acquisition
process, as the use of shear waves [21] and ultrafast imaging through planar
waves [22], are believed to lead to significant improvements in spatiotem-
poral resolution. These advances will also enrich the spectrum of functional
information that can be captured by this modality.

Many approaches for tracking anatomical structures in B-mode echocar-
diography were proposed during the last years. Speckle-tracking-based ap-
proaches [23] use block matching algorithms to track local speckle patterns
along US sequences under the assumption that they are stable between con-
secutive frames. These algorithms do not make use of the temporal infor-
mation in the whole image sequence and may require regularizations, which
are performed in post-processing steps.

Several image registration approaches were explicitly designed as spa-
tiotemporal registration schemes [24, 25, 26]. In these papers, temporal
continuity of displacements is guaranteed. However, since the displacement
at a given time instant does not functionally depend on the displacement at
previous time instants, the temporal continuity of the recovered velocity is
not guaranteed. To overcome this limitation, a transformation based on the
velocity field was proposed in [27], calculating displacements by integra-
ting velocities at all previous time instants. To preserve the topology and
orientation of the anatomical structures, the transformation was constrained
to be diffeomorphic (smooth, invertible and with smooth inverse) [28]. An
additional regularization term minimizing the compressibility of the my-
ocardium was also added to the cost function. Other approaches to guide
and constrain cardiac tracking including shape information were proposed
in [29, 30, 31].

Complementary to B-mode echocardiographic images, TD imaging is
widely used in clinical practice. It allows an objective quantification of true
tissue velocities with normally higher temporal resolution than B-mode and
better signal-to-noise ratio [5]. Estimating a displacement field from TD
data can be done by temporally integrating the measured velocities. How-
ever, only the projection of the velocity along the beam direction is available
and, due to the low spatial resolution of TD images, local changes may not
be captured. In addition, the noise present in the images is accumulated at
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each integration step, possibly leading to strong drift artifacts.
Some approaches have been proposed to overcome the problems of each

technique by using both B-mode and TD images together for a better quan-
tification of heart motion. In [13], TD information was used to track heart
motion along the beam direction, while B-mode sequences were used to
track in the direction perpendicular to the beam. These two components
were estimated separately and no additional regularization was performed.
In [14], an optical flow based registration method was proposed, modeling
the velocity using a spatial affine model. Registration was performed con-
sidering pairs of frames, so temporal coherence was not guaranteed. Fur-
thermore, the evaluated B-mode and TD frames had to coincide in time.
Therefore, either temporal interpolation of the B-mode sequence was ne-
cessary or TD frames had to be discarded, thus losing temporal resolution.
A similar optical flow based method was also presented in [32]. Recently,
some authors have introduced the possibility of estimating tissue velocities
in two directions using transverse oscillation images [33, 34], although this
technique is not yet ready for clinical use.

In this chapter, a registration framework that takes into account both B-
mode images and TD velocities, acquired interleaved with the same probe,
is proposed to calculate a single continuous spatiotemporal diffeomorphic
transformation. In this case, TD sequences and B-mode data coincide in
space, so no further spatial alignment is required.

In the proposed approach, the velocity field was modeled continuously
using B-spline kernels. All frames were registered simultaneously by esti-
mating a single spatiotemporal transformation to preserve both spatial and
temporal consistency, as in [27]. To estimate this transformation, the agree-
ment between the velocity field estimated projected on the beam direction
and the velocities obtained from TD images was measured. Moreover, an
image dissimilarity measure to track anatomical structures in the B-mode
sequence was used. In our implementation, the estimated transformation
was constrained to be diffeomorphic, thus being smooth, invertible and with
smooth inverse at every spatiotemporal location.

The proposed method was validated using a realistic US simulator and
the performance of different image dissimilarity measures was tested. In
addition, the feasibility of using the current method for clinical cases was
also shown. Stress echocardiography aims at understanding the relation be-
tween cardiac function and functional capacity during effort [35, 36]. In
this protocol, image quality and temporal resolution may be low. The ro-
bustness of our method in this clinical setting was demonstrated. Results
obtained with the proposed method were compared to results using only
B-mode images. Our method allowed estimating a realistic motion field in
cases where tracking using one modality failed due to the quality of the data
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B-mode 
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TD
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Figure 2.1: Registration scheme. The optimizer finds the optimal parameters of the
transformation by combining a pixel intensity based dissimilarity and a measure of
the disagreement between the estimated velocities projected on the beam direction
and the ones obtained from TD images.

from this protocol.

2.2 Methodology

A basic scheme describing the proposed methodology is shown in Figure
2.1. In the following sections, each component in the registration scheme is
described.

2.2.1 The transformation

The proposed approach models the velocity field continuously in time and
space using B-spline kernels, as proposed in [27]:

v(x, t;p) = ∑
i, j,k

B
(

x−qi

∆i

)
B
(

y−q j

∆ j

)
B
(

t−qk

∆k

)
pi, j,k, (2.1)

where x = (x,y) are the spatial coordinates of the point whose velocity is
evaluated, B(·) is a cubic B-spline kernel function, Q =

(
qi,q j,qk

)
repre-

sents the grid of uniformly spaced control points, ∆ =
(
∆i,∆ j,∆k

)
are the

spacings between control points, and p is a vector containing the B-spline
coefficients, which correspond to the velocities associated to each control
point.

To map a point from t = t0 to a time instant t = T , it is then necessary to
integrate the velocity field:

ϕt0(x,T ;p) = x+
∫ T

t0
v
(
ϕt0(x, t;p), t;p

)
dt. (2.2)
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(a) (b) (c)

Figure 2.2: Grid topology. (a) Grid of control points in Cartesian coordinates. (b)
Grid of control points in polar coordinates. (c) Representation of the image from
(b) in Cartesian coordinates.

To compute the integral in Equation 2.2, a forward Euler integration
scheme was used. Thus, the transformation was approximated by:

ϕt0(x, tn;p) = x+
n−1

∑
k=0

v
(
ϕt0(x, tk;p), tk;p

)
∆tk, (2.3)

where ∆tk = tk+1− tk.
With this approach, the temporal sampling used to approximate the in-

tegration of the velocity field has to be small enough for a good estimation
of the trajectory. In [27], a time interval of 1/2 the spacing between B-mode
frames was found to be small enough. In our implementation, it was reduced
to 1/4 the temporal spacing between consecutive TD frames to increase
the accuracy when estimating displacements. To ensure invertibility of the
transformation, the determinant of its spatial Jacobian was constrained to
be positive. To achieve this, if a negative value was detected, the temporal
sampling was divided by a factor of 2 until no negative values were found
[27].

Grid topology

Most of the B-spline based image tracking methods use a Cartesian grid
on the US images, as shown in Figure 2.2(a). However, the acquisition of
echocardiography images is performed in polar coordinates. For this rea-
son, we compared the use of a Cartesian grid with a polar one, as in Figure
2.2(b). Setting a grid in polar coordinates allows processing images before
scan conversion, thus avoiding unnecessary interpolations. As it can be ob-
served in Figure 2.2, while the Cartesian spacing between control points
in a Cartesian grid is uniform, the Cartesian spacing between polar control
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points increases with their distance to the transducer at the origin of the field
of view.

2.2.2 The dissimilarity measure

Unlike the case of B-mode US image registration, not only image voxel in-
tensities are considered but also tissue velocities. Therefore, the cost func-
tion proposed takes into account two different terms, one for each informa-
tion source considered:

M(p) = (1−λ )U(p)+λD(p), (2.4)

where U(p) represents the matching between the registered B-mode frames,
D(p) measures the agreement between the estimated velocity field and the
velocity values provided by TD images, and λ is a term balancing the con-
tribution of U(p) and D(p). Note that U(p) and D(p) contribute indepen-
dently to estimate a single and continuous transformation. Therefore, B-
mode and TD frames do not need to coincide at specific discrete locations,
so data interpolation is not required to compensate for different resolutions.

Scan converted images

For the term U(p) in Equation 2.4, a squared difference of pixel intensities
between the reference frame and the rest of frames can be used, as proposed
in [27]:

U(p) =
N

∑
n=0

∑
xεΩI0

(
In

(
ϕt0(x, tn,p)

)
− I0(x)

)2

, (2.5)

where N + 1 is the number of B-mode frames in the sequence, In(x) is the
pixel intensity value from B-mode frame n at coordinates x, and ΩI0 is the
spatial domain of I0. This dissimilarity term can be used under the assump-
tion that tissue intensities are globally preserved during the cardiac cycle.

In contrast with Equation 2.5, a dissimilarity measure comparing con-
secutive frames can also be used to track anatomical structures. In par-
ticular, under the assumption that speckle patterns can be represented as a
multiplicative Rayleigh distributed noise, and that they are preserved be-
tween consecutive frames, a dissimilarity term based on [37] can also be
used, similar to [12]:

U(p) =
N

∑
n=1

∑
x∈ΩIn−1

ln(e2∆n
n−1(x;p)+1)−∆

n
n−1(x;p), (2.6)
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where ∆n
n−1(x;p) = In−1(x)− In

(
ϕtn−1(x, tn;p)

)
.

For the second term in Equation 2.4, D(p), a dissimilarity term mea-
suring the disagreement between the velocities provided by the TD images
and the velocity field estimated projected on the beam direction was pro-
posed:

D(p) =
M
∑

m=0
∑

x∈ΩV0

(
b
(
ϕt0(x, tm;p)

)
·v
(
ϕt0(x, tm;p), tm;p

)
−Vm

(
ϕt0(x, tm;p)

))2
, (2.7)

where b(ϕt0(x, tm;p)) is a unitary vector in the beam direction, Vm(x) is
the velocity value provided at location x by frame m from the TD image
sequence, M + 1 is the number of TD frames, and ΩV0 corresponds to the
spatial domain of the first TD frame.

Non-scan converted images

The terms in Equation 2.5, 2.6 and 2.7 were designed to work with data in
Cartesian coordinates. However, some changes are necessary to use them
with polar coordnates. When using a traditional B-spline based registration
approach with Cartesian images (as shown in Figure2.2(a)), all samples in
the image contribute equally to find the optimal velocity value at each con-
trol point. In this case, the magnitude of the displacement error at one pixel
is independent from its location. When working with images in polar coor-
dinates as shown in Figure2.2(b), the Cartesian space represented by each
sample is not homogeneous and increases with its distance to the transducer,
as seen in Figure2.2(c). An error of one pixel far from the transducer is
larger in Cartesian units (in the physical space) than an error of one pixel
close to it. Thus, it is necessary to compensate for this difference.

The relation between a displacement error of a sample at two different
locations is proportional to the relation between the Cartesian space between
samples at these locations in the direction perpendicular to the beam. Since
this space is a function of the distance between the samples and the trans-
ducer, an approach weighting each sample contribution depending on its
distance to the transducer is proposed. With this approach, the dissimilarity
terms proposed previously can be re-written as:

U(p) =
N

∑
n=0

∑
xεΩI0

wU(x)
(

In

(
ϕt0(x, tn,p)

)
− I0(x)

)2

(2.8)

for the dissimilarity term comparing each frame with a reference frame, and:

20



C
H

A
PT

E
R

2

2.2. Methodology

(a) (b)
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Figure 2.3: Representation of wU (x) in (a) scan converted and (b) non-scan con-
verted format.

U(p)=
N
∑

n=1
∑

x∈ΩIn−1

wU(x)
(
ln(e2∆n

n−1(x;p)+1)

−∆
n
n−1(x;p)

)
(2.9)

for the dissimilarity term comparing consecutive frames in the B-mode se-
quence. In these equations, wU(x) represents the weight applied to each
sample in the B-mode images. The proposed weighting function was:

wU(x) =
l(x)

L
=

αd(x)
L

, (2.10)

where l(x) is the length of the arch perpendicular to the beam at position x,
L is the number of US beams, α is the angle of the whole field of view in
radians and d(x) is the distance between x and the origin of the field of view,
as represented in Figure 2.3. In the implementation, wU(x) was normalized
so that ∑wU(x) = 1.

For the term comparing the estimated velocities and the velocities from
the TD sequence, the same weighting approach was used:

D(p)=
M
∑

m=0
∑

x∈ΩV0

wD(x)
(

b
(
ϕt0(x, tm;p)

)
·v
(
ϕt0(x, tm;p), tm;p

)
−Vm

(
ϕt0(x, tm;p)

))2
, (2.11)
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where wD(x) is the weight function applied to each sample in the TD data
similar to wU(x) in Equation 2.10.

Finally, to find the minimum of the proposed dissimilarity metric, the L-
BFGS-B (Limited memory Broyden-Fletcher-Goldfarb-Shannon with sim-
ple Bounds) [38] optimizer was chosen, which is a limited memory quasi-
Newton algorithm for solving large nonlinear optimization problems with
simple bounds on the variables.

2.3 Experiments

For the validation of the proposed method, a realistic synthetic dataset in-
cluding simulations of healthy and pathologic hearts was used. The per-
formance of the method using scan converted and non-scan converted ima-
ges was compared. In addition, a comparisong between using a speckle-
statistics-based approach (Equations 2.6 and 2.9), and comparing each frame
in the sequence with a reference frame (Equations 2.5 and 2.8) was per-
formed. Finally, the method was applied to 6 real cases to show that it is
able to estimate a realistic motion field in situations where the use of one
single modality is challenging.

For all the experiments, a grid of 6 B-spline control points in each spatial
dimension was used. In [27], it was demonstrated that increasing the num-
ber of temporal control points resulted in higher accuracy, and that taking
more temporal control points than the number of frames would oversample
the velocity field. For the following experiments, we set the number of tem-
poral control points equal to the number of B-mode frames. In our dataset,
the patient with the least number of B-mode frames at rest had 25 frames.
Therefore, we constrained the maximum number of temporal control points
to 25 for a fair analysis between patients.

2.3.1 Generation of synthetic data

Synthetic B-mode and TD data were generated using a modification of the
pipeline described in [39] and summarized in Figure 2.4. A realistic 3D
volumetric tetrahedral mesh (as shown in Figure 2.5(a)) was built from the
segmentation of a Magnetic Resonance (MR) image acquired from a healthy
volunteer. From this volumetric mesh, one cardiac cycle was simulated at a
frame rate of 90 Hz, starting from end diastole, using the SOFA (Simulation
Open Framework Architecture) [40] simulation framework. This applies
the Bestel-Clement-Sorine electromechanical model [41] to the 3D heart
geometry to simulate cardiac motion.
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Electromechanical 
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Figure 2.4: Schematic of the pipeline for the simulation of cardiac US sequences
in [39].

By modifying the value of the mechanical parameters of the model at a
segmental level, several degrees of ischemia can be simulated. In particular,
the same 9 cases considered in [39] were included in the present study:
one normal case; two cases with ischemia (one mild and one severe) in
the proximal region of the left anterior descending artery (LADprox); two
cases with ischemia (one mild and one severe) in the distal region of the left
anterior descending artery (LADdist); two cases with ischemia (one mild
and one severe) in the region of the right coronary artery (RCA); two cases
with ischemia (one mild and one severe) in the region of the left circumflex
coronary artery (LCX).

The output meshes from the electromechanical simulation were used to
displace a cloud of point scatterers mimicking the acoustic tissue response
of the myocardium. From each scatter map, US radiofrequency lines were
generated by convolving the cloud of scatter points with the point spread
function (PSF) of the imaging system. Note that scatterers do not move
during the simulation of a single frame, so the acquisition is supposed to
be instantaneous. As in [39], COLE [42] was adopted as a fast US sim-
ulation environment due to its high computational efficiency. From each
time variant scatter map, a B-mode and a TD sequences were generated.
In particular, 2D apical four chamber views were considered in this study.
For both modalities, the simulated system implemented a 1D phased array
with 64 elements, each element of width λ/2, height 14 mm and a kerf of
λ/10. The simulated probe had a center frequency ( f0) of 4 MHz, a -6 dB
relative bandwidth of 65% and a sampling frequency of 50 MHz. The scan
angle was 75 degrees, scan depth was 14 cm and the focus was positioned
at 7 cm. Note that all the settings of the synthetic system were chosen to be
the closest to the real setup used in the in-vivo evaluation (see Table 2.2 and
Table 2.3).
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Figure 2.5: (a) A simulated US frame together with the wireframe of the mesh
from the electromechanical model are represented. Example of TD images are
shown in (b) early systole and (c) early diastole. Colors represent the velocity in
mm/s, which is considered positive when directed towards the transducer. Color
image in the Appendix, page xvii.

Simulation of B-mode images

One mesh out of three from the electromechanical simulation was consi-
dered, leading to an imaging frame rate of 30 Hz. From the associated
scatter map, 100 radiofrequency lines were acquired by uniformly sweeping
through the scan angle. As such, after envelope detection, log-compression
and scan conversion, a set of B-mode images were obtained (pixel size =
0.34x0.34 mm2). Figure 2.4(b) and Figure 2.4(c) show an example of point
scatterers and simulated B-mode image, respectively.

Simulation of TD

All meshes from the electromechanical simulation were considered, leading
to a frame rate of 90 Hz. For each frame, 20 scan lines were simulated by
uniformly sweeping through the scan angle. For each scan line, a set of
four radiofrequency lines were simulated with a pulse repetition frequency
(PRF) of 2 KHz. This led to a Nyquist velocity of ∼19 cm/s:

vNyq =
c ·PRF

4 f0
, (2.12)

where c is the sound speed in the tissue (∼1540 m/s) and f0 is the center fre-
quency. Tissue motion between two successive firings in the same direction
was simulated by linearly interpolating the position of the scattering centers
in the considered frame and the following one. For each scan line and each
depth, the tissue velocity was computed from the corresponding package of
four signals by means of a standard phase shift based estimator [43]. After
color rendering of the computed velocity and scan conversion, TD images,
as the ones of Figure 2.5 (b)(c), were obtained.

24



C
H

A
PT

E
R

2

2.3. Experiments

Table 2.1: Summary of the methods compared using the synthetic dataset.

Method Image format B-mode dissimilarity

M1 Non-scan converted (Figure 2.2(b)) US-specific (Eq. 2.9)

M2 Scan converted (Figure 2.2(a)) US-specific (Eq. 2.6)

M3 Non-scan converted (Figure 2.2(b)) Mean squared error (Eq. 2.8)

M4 Scan converted (Figure 2.2(a)) Mean squared error (Eq. 2.5)

2.3.2 Selection of the weighting parameter λ

The weighting parameter λ balances the contribution of each term in the
dissimilarity measure (see Equation 2.4). A high value of λ gives more
importance to D(p), while a low value gives more importance to U(p).

To choose an adequate value of λ , two main aspects have been consi-
dered: (i) the confidence on the value provided by each term, and (ii) the
way each term converges to its minimum. The former was considered to
be equivalent to the confidence on the data provided by each modality. The
latter was related to the slope of the function that is minimized during the
optimization. Thus, an adequate value of λ would balance the magnitude of
the slope of both terms. Considering these two aspects, we set λ as:

λ = γζ , (2.13)

where γ is the ratio between the confidence on the TD data and the B-mode
images, and ζ is the ratio between the slope of the two terms in the dissimi-
larity measure. In our experiments, the confidence ratio was set to 1, thus
assuming the same quality for TD and B-mode images. ζ was approximated
as the magnitude of the initial derivative (with respect to the transformation
parameters) of U(p) divided by the derivative of D(p).

2.3.3 Validation with synthetic data

The proposed method was applied to the previously described synthetic
dataset to evaluate its accuracy in terms of displacement. The possible com-
binations between the dissimilarity measure in Equation 2.5 and the one in
Equation 2.6, and between using Cartesian and polar data were tested, as
summarized in Table 2.1. Figure 2.6 shows the mean error and the stan-
dard deviation of the displacements calculated from the first frame for all
the synthetic patients during one cardiac cycle implementing these different
alternatives.

Results from Figure 2.6 show that using both non-scan converted images
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Figure 2.6: Mean errors (circles) and standard deviations (lines) calculated for the 9
synthetic datasets during one cardiac cycle with the methods summarized in Table
2.1. Color image in the Appendix, page xvii.

and a dissimilarity measure including speckle distribution statistics gives
better performance in average than the other three alternatives evaluated,
reducing the mean error of the displacements estimated with methods M2,
M3 and M4 by 35%, 48% and 10%, respectively. Mean differences between
the method M1 and the methods M2 and M3 were found to be statistically
significant with p < 0.05 using a Student’s t-test, assuming a normal distri-
bution of the errors. Normality assumptions were checked using a Lilliefors
test. Mean differences between methods M1 and M4 were not found to be
statistically significant, obtaining a p-value of 0.15.

Figure 2.7 compares displacement error results obtained with M1 with
respect to the results obtained taking into account only the B-mode images,
using Equation 2.9. The results show that integrating B-mode images and
TD velocities results in a more accurate estimation of the displacement field.
Differences between the mean displacement error obtained by integrating B-
mode and TD data, and the error obtained using only B-mode were found to
be statistically significant with p < 0.05.

2.3.4 Experiments with clinical data

The method was also applied to a set of US images acquired from 6 vol-
unteers (age 30 ± 5.5, males) with a Vivid-Q system (GE Healthcare Mil-
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Figure 2.7: Mean errors (circles) and standard deviations (lines) calculated for the
9 synthetic patients during one cardiac cycle with method M1 (red) and using only
B-mode images (blue). Color image in the Appendix, page xviii.

waukee, WI) and a GE Healthcare M4S probe (1.7/3.4 MHz frequency).
For each case, both B-mode and TD images of the left ventricle were ac-
quired at rest. Afterwards, stress echocardiography was performed with an
ergometric bicycle and images were acquired at maximum effort. Table 2.2
and Table 2.3 show the mean values and standard deviation for the diffe-
rent parameters of the acquired B-mode and TD images, respectively. Our
method integrating both B-mode and TD information for motion estimation
was applied to the acquired images and results were compared to the ones
obtained by using only B-mode images.

Figure 2.8 shows the result of tracking a set of landmarks placed on the
left ventricle along one cardiac cycle using only B-mode images (yellow),
and integrating both B-mode and TD (red) with the proposed method, for
one patient at rest. As it can be observed, most of the differences between
both methods lay on the lateral wall. Figure 2.10 shows the displacements
calculated using the two methods in both beam and azimuth directions. Spa-
tiotemporal color maps were used to visualize the results. An illustration to
understand this kind of map is shown in Figure 2.9. The vertical axis rep-
resents spatial locations along the myocardium (which has been unfolded
inspired from anatomical M-mode echocardiographic images) and the hori-
zontal axis represents time in the cardiac cycle. Positive beam displacement
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t = 0% t = 17% t = 33% t = 50% t = 66% t = 83%

Figure 2.8: The top row shows a set of landmarks placed on the left ventricle and
displaced according to the transformation calculated using only B-mode (yellow),
and using both B-mode and TD together (red) at different times of the cardiac cycle
for one example patient at rest. The bottom row shows the corresponding B-mode
images. Color image with larger size in the Appendix, page xx.

Table 2.2: Comparison between B-mode image information for real cases at rest,
during exercise and for synthetic data.

Rest Exercise Synthetic

Frames/cycle 39±9 14±2 27

Frame rate (Hz) 35±9 34±7 30

Beams 92.3±9.4 85.7±18.9 100

Samples/beam 577±47.9 584.2±64.9 248

Opening angle (◦) 70±7 65±14.1 75

Depth (mm) 133±11 135±15 140

Table 2.3: Comparison between TD image information for real cases at rest, during
exercise and for synthetic data.

Rest Exercise Synthetic

Frames/cycle 105±28 45±7 79

Frame rate (Hz) 116±28 107±22 90

Beams 14±3.1 15.3±2.7 20

Samples/beam 190.5±180.4 194.7±21.4 248

Opening angle (◦) 69±8.4 60.5±12.4 72

Depth (mm) 133±11 135±15 140

Nyquist vel. (cm/s) 18.1±3 31.6±1.5 19

PRF (Hz) 1125±191 1958.3±93.2 2000
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Figure 2.9: Schematic describing a spatiotemporal map. (a) shows a curved line
placed along the myocardium in a B-mode image and (b) shows the correspond-
ing spatiotemporal map. The vertical axis represents spatial locations along the
myocardium and the horizontal axis represents time in the cardiac cycle extracted
between consecutive R-peaks in the ECG. The dotted vertical line indicates end
systole. ED and ES stand for end diastole and end systole, respectively.
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Figure 2.10: Displacements (in mm) estimated using only B-mode images (top
row), using B-mode and TD together (middle row) and the difference between both
approaches (bottom row) for one patient at rest. Color image in the Appendix, page
xviii.
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Figure 2.11: Mean difference between displacements (in mm) estimated using only
B-mode and using both B-mode and TD at rest. Color image in the Appendix, page
xix.

t = 0% t = 17% t = 33% t = 50% t = 66% t = 83%

Figure 2.12: The top row shows a set of landmarks placed on the left ventricle and
displaced according to the transformation calculated using only B-mode (yellow),
and using both B-mode and TD together (red) at different times of the cardiac cycle
during exercise for the patient in Figure 2.8. Green circles indicate where tracking
using B-mode only has problems due to image quality. The bottom row shows the
corresponding B-mode images. Color image with larger size in the Appendix, page
xxi

was defined from apex to base, while positive displacement on the azimuth
direction was defined from lateral wall to septum. One can see that the diffe-
rence between the displacements estimated with the two methods is larger
at the base of the lateral wall.

Figure 2.11 shows the mean displacement differences between the two
methods for the 6 patients analyzed at rest. Results show that the displace-
ment estimated at end systole using only B-mode images is lower, in aver-
age, than the displacement estimated with the proposed method, and with
maximum difference located at the base of the ventricle. These results are
in line with the results obtained for the patient shown in Figure 2.10.

Figure 2.12 shows the result of tracking a set of landmarks placed on
the left ventricle with the two methods for the patient presented in Figure
2.8, using the data acquired during exercise. Figure 2.13 also shows the dis-
placements calculated during exercise for this patient. As it can be observed,
displacement differences between the two approaches are increased with re-
spect to the results obtained at rest. Moreover, the displacement pattern
estimated using only B-mode images in Figure 2.13 does not look physio-
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Figure 2.13: Displacements (in mm) estimated using only B-mode images (top
row), using B-mode and TD together (middle row) and the difference between both
approaches (bottom row) for one patient during exercise. Color image in the Ap-
pendix, page xix.
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Figure 2.14: Mean difference between displacements (in mm) estimated using only
B-mode and using both B-mode and TD during exercise. Color image in the Ap-
pendix, page xix.
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logically realistic.
The mean displacement differences between the two approaches were

finally calculated using the data acquired during exercise for the 6 patients
analyzed, as shown in Figure 2.14. It is possible to see that the magnitude
of the mean difference is increased when compared to the differences from
the data acquired at rest. In addition, most of these differences are located
at the base of the lateral wall.

2.4 Discussion

The proposed method was validated using a synthetic dataset and the alter-
natives shown in Table 2.1 were compared. Results in Figure 2.6 show that
the method M1 performs better, in average, than the other tested alterna-
tives. Furthermore, M1 uses non-scan converted images, so the registration
process is computationally less expensive because the number of samples in
the images before scan conversion is lower. In addition, it is not necessary
to mask the field of view, since all samples in the images provide valuable
information.

From the results in Figure 2.6, one can conclude that, among the gene-
rated synthetic cases, M4 performs better in those cases where ischemia is
simulated close to the Left Anterior Descending (LAD) artery and the Left
Circumflex (LCX). The 2D simulated images include the areas in the sep-
tum and lateral wall that are more affected by the ischemia in the LAD and
LCX regions, respectively. Since local motion in ischemic regions is re-
duced, local changes between consecutive frames are also reduced. Method
M4 uses a dissimilarity measure that compares all frames with a reference
frame, so its performance varies depending on how similar each frame is to
the reference. Therefore, in those cases where motion is reduced, the per-
formance of M4 may improve, producing slightly better results than M1 in
”LADdist-severe” and ”LCX-mild” cases. Method M2 likely fails because
it applies a speckle statistics-based measure to Cartesian B-mode images.
This kind of metric uses the Rayleigh distribution to model the speckles.
However, when working with Cartesian images, many pixels in the image
contain interpolated information, resulting in a speckle patterns whose pro-
perties may differ from the Rayleigh statistics. Finally, M3 performs worse
than the others. The dissimilarity measure used by this method compares
each frame, in non-scan converted format, to a reference frame using a mean
squared error-based approach. In this case, if the tissue structures imaged
in the reference frame fall completely or partially out of the US lines, since
there is no interpolation, this information will be completely lost. Thus, M3
could fall into a local minimum during the optimization process, not being
able to recover an accurate displacement field.
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The proposed method was also applied to 6 healthy volunteers, acquiring
images both at rest and during exercise. Since the quantitative parameters
extracted from echocardiographic sequences [1] are highly conditioned by
the accuracy of the tracking, clinical studies targeting a better understanding
of cardiac function during exercise may benefit from the improvements of
the proposed method. These protocols are currently receiving more atten-
tion to understand the cardiac function contribution to the functional capa-
city during effort and to prevent from any potentially high-risk impairment
[35, 36].

Results from Figure 2.11 show the differences between displacements
estimated using only B-mode and integrating both B-mode and TD at rest.
As it can be seen, the magnitude of the difference in the displacements on
the beam direction is low in average, being higher in the lateral wall with
a maximum of 2.5 mm at end systole. Displacement differences on the
azimuth direction are lower than in the case of displacements on the beam
direction as expected, since TD only gives information on the beam direc-
tion. Most of the differences in the azimuth direction are accumulated at the
base and differences may occur as a consequence of different estimations on
the beam direction. Figure 2.8 and Figure 2.10 show the displacements esti-
mated for one example case using only B-mode and using both B-mode and
TD. These results are in line with the average results previously discussed.

Displacements were also estimated for these 6 volunteers during exer-
cise. In this situation, the quality of the B-mode images acquired is worse
due to the difficulty of the acquisition, as it can be observed in Figure 2.12.
This, added to the reduced number of frames because of higher heart rates,
makes displacement estimation using only B-mode images challenging. In
the present study, the number of frames during exercise was reduced to 41%
of the number of frames acquired at rest. Results from Figure 2.14 show
larger differences between the displacements estimated using only B-mode
and using both B-mode and TD together when compared with the results
obtained at rest. These larger differences are more visible at the base of
the lateral wall, with a maximum error of about 6 mm at end systole. The
basal level (mitral annulus) and the lateral wall are subject to lower image
quality (border of the echocardiographic window, reflections, and position
of the valve with respect to the myocardium). Green circles in Figure 2.12
indicate a region where tracking using B-mode only is prone to large errors.
Our method might also lead to inaccuracies in such challenging cases (radial
motion tends to be overestimated at the apical lateral level). However, due
to the use of TD data, these artifacts are more localized and along the azi-
muth direction only. The example case displayed in Figure 2.13 also shows
large differences in the estimation of displacements in the lateral wall, in
line with the average results.
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A limitation of this study is the number of real cases included, which
is not enough to obtain conclusions about the clinical improvements of the
proposed method. However, the primary objective was to show the feasibil-
ity and the added value of this approach as compared to the ones considering
a single modality.

2.5 Conclusions

A method to integrate B-mode images and TD velocities in a single regis-
tration framework has been proposed. Unlike other methods to integrate
these two modalities [14, 13, 32], B-mode and TD samples are evaluated
independently and they do not have to coincide in time, so temporal/spatial
interpolation is not needed to calculate a single and continuous transforma-
tion.

The improvements of using both modalities together instead of a single
modality were demonstrated. Results from validation with synthetic data
showed that using speckle statistics information and data before scan con-
version outperforms the results obtained by using a classical pixel intensity-
based dissimilarity measure, such as a mean-squared-error approach. Ex-
periments with real cases also showed that integrating both modalities gives
a realistic motion estimation in cases where using only B-mode images is
challenging.
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Although modern ultrasound acquisition systems allow recording of 3D
echocardiographic images, tracking anatomical structures from them is still
challenging. In addition, since these images are typically created from
information obtained across several cardiac cycles, it is not yet possible
to acquire high-quality 3D images from patients presenting varying heart
rhythms. In this chapter, the method proposed in Chapter 2 is extended to
estimate the motion field from multi-plane echocardiographic images of the
left ventricle, which are acquired simultaneously during a single cardiac cy-
cle. The method integrates tri-plane B-mode and tissue Doppler images ac-
quired at different rotation angles around the long axis of the left ventricle. It
uses a diffeomorphic continuous spatiotemporal transformation model with
a spherical data representation for a better interpolation in the circumferen-
tial direction. This framework allows exploiting the spatial relation among
the acquired planes. In addition, higher temporal resolution of the transfor-
mation in the beam direction is achieved by uncoupling the estimation of the
different components of the velocity field. The method was validated using
a realistic synthetic dataset including healthy and ischemic cases, obtaining
errors of 0.14±0.09 mm for displacements, 0.96±1.03 % for longitudinal
strain and 3.94±4.38 % for radial strain estimation. The method was also
demonstrated on a healthy volunteer and two patients with ischemia.

The content of this chapter is adapted from the following publication:

A. R. Porras, M. Alessandrini, O. Mirea, J. D’hooge, A. F. Frangi, and
G. Piella. Integration of multi-plane tissue Doppler and B-mode echocar-
diographic images for left ventricular motion estimation. Submitted to IEEE
Transactions on Medical Imaging.
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3.1 Introduction

Ultrasound (US) imaging is the standard modality used to assess cardiac
motion and deformation. Tissue Doppler (TD) images are normally used in
clinical practice to measure the velocity of moving anatomical structures.
The recorded information corresponds to the velocity component on the
direction of the US beam, so only a velocity field with one-dimensional
information can be reconstructed [5]. Complementarily, B-mode echocar-
diographic images are used to estimate cardiac motion and strain from 2D
images. However, it is necessary to acquire 6 different views to obtain
longitudinal, circumferential and radial components in all the left ventri-
cle segments [23]. Some works have also explored the possibility of using
2D B-mode and TD images acquired interleaved for an improved tracking
[44, 14, 32].

During the last few years, technology improvements have allowed the
acquisition of 3D US images by integrating small volumetric information
acquired during consecutive cardiac cycles. However, the wider field of
view is achieved at a cost of spatial and temporal resolution, so motion es-
timation from 3D US images is challenging. Moreover, since information
from different regions is acquired during different cardiac cycles, 3D US is
not suitable for patients with varying heart rhythms.

Modern US imaging systems allow for the acquisition of a set of 2D
image sequences with different orientations simultaneously [45]. This type
of images have been used to assess cardiac mechanics in different areas of
the left ventricle at the same time. In [46], tri-plane acquisitions were de-
monstrated to be feasible and sensitive to detect coronary artery disease.
In [47], cardiac motion was assessed from tri-plane images and results were
compared with the ones obtained from conventional 2D B-mode US images.
Accuracy was very similar between both methods. However, since tri-plane
US images are acquired simultaneously, the acquisition time is shorter. Tri-
plane TD images were also used in [48] to predict acute response to cardiac
resynchronization therapy. However, motion was computed independently
at each plane and spatial coherence was not considered. Moreover, the
method used only either the B-mode or the TD image sequence. In Chapter
2, it has been shown that integrating both types of information outperforms
the use of each one separately. In the current chapter, this method is ex-
tended to estimate motion in the whole left ventricle, ensuring spatial cohe-
rence of the motion field between the planes where information is available
by using a spherical coordinate system. Furthermore, increased temporal
resolution in the beam direction is achieved by using different temporal re-
solutions in the estimation of the different components of the velocity field,
while keeping the temporal continuity and consistency between them. The
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Figure 3.1: (a) Apical view example of tri-plane US images. (b) Representation of
a 2D point from one view in 3D spherical coordinates. (c) Representation of a 3D
grid of control points in spherical coordinates. (d) Section of the grid from (c) in
the Euclidean space.

method is validated using a realistic synthetic dataset, and its utility to detect
ischemia in real cases is illustrated. Moreover, strain accuracy is evaluated.

3.2 Methodology

In this section, a description of the proposed registration framework is pre-
sented.

3.2.1 Coordinate system

Tri-plane data consist in three sequences of US images acquired interleaved
at different rotation angles around the long axis of the left ventricle (Figure
3.1(a)). Every point from one of the 2D planes can be mapped to a reference
3D space using a rigid transformation:

xE = xcRc, (3.1)

where xc represents the spatial coordinates of a 2D point in the view c, Rc
is the known rotation matrix about the long axis and xE represents the 3D
coordinates of the point in the Euclidean reference space.

As in conventional 2D US imaging, it is possible to acquire TD ima-
ges at different orientations together with the B-mode frames in multi-plane
US imaging. In Chapter 2, a method that integrates 2D B-mode and TD
images through a similarity measure that considers both sequences for an
improved motion estimation was proposed. That method could be used to
estimate motion independently at each of the acquired planes. However,
only in-plane motion would be estimated and spatial coherence between
planes would not be considered. The method from Chapter 2 could also
be extended to 3D by using a 3D+t transformation model and evaluating
only the information available from the 3 planes acquired. Since motion in-
terpolation between planes depends on the topology of the B-spline grid of
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(a) (b) (c) (d) (e)

Figure 3.2: (a) Bull’s eye plot of the left ventricle for the healthy synthetic case,
divided according to American Heart Association’s proposal [49]. Red lines in-
dicate the three planes simulated at (b) 0◦, (c) 60◦, and (d) 120◦. (e) is the 3D
representation of the tri-plane data and the mesh segmented at end-diastole.

control points, we propose to use a spherical coordinate system to model the
transformation. This topology provides an interpolation in the circumferen-
tial direction that adapts better to the left ventricle shape than a traditional
Euclidean topology. The relation between the Euclidean coordinates of one
point xE = (x,y,z) and its spherical coordinates xs = (ρ,α,β ) is:

x = ρ cos(α) cos(β )

y = ρ sin(α) (3.2)

z = ρ cos(α) sin(β ),

where ρ ∈ [0,L] represents the radial distance of the point to the origin of
the field of view for a maximum depth L, α ∈ [0, π

2 ] represents the angle in
the azimuth direction on the 2D plane and β ∈ [−π,π] the rotation angle
in the circumferential direction. The origin of both the Euclidean and the
spherical coordinate systems corresponds to the origin of the field of view.

3.2.2 The transformation

To estimate a 3D motion field from tri-plane data, we adapted the trans-
formation model from [27] to spherical coordinates. The transformation
mapping a point at coordinates xs from time t0 to T can be written as:

ϕt0(xs,T,p) = xs +
∫ T

t0
v(ϕt0(xs, t,p), t,p)dt, (3.3)

where v(xs, t,p) is the velocity of the point at spherical coordinates xs and
time t, and p is the transformation parameters vector. The velocity field is
modeled continuously both in space and time using cubic uniform B-spline
kernel functions, similar to [27].
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The typically acquired B-mode images usually have higher spatial reso-
lution than the TD images, while the latter normally have higher temporal
resolution. Therefore, one advantage of using both modalities together is
the increased temporal resolution in the beam direction because of the use
of TD information. In [27], it was shown that using as many control points
as possible in the temporal dimension to model the transformation improved
the accuracy of the results. However, when using more temporal control
points than frames available, the performance of the method decreases due
to data oversampling. In Chapter 2, when integrating 2D B-mode and TD
images for motion estimation, the number of temporal control points was
then constrained to the number of B-mode frames available to avoid over-
sampling in the azimuth direction (since no information from TD is provided
in this direction), even though the temporal resolution of the TD images was
higher. Using a spherical coordinate system to define the transformation
model allows for the separation of the velocity component in the beam di-
rection from the other two spatial directions. This makes possible to model
the different components using different grid resolutions. Therefore, the
velocity of a point xs at a time instant t in the direction d is represented as:

vd(xs, t,pd) = ∑
i, j,k,l

B(
ρ−qd

i

∆d
i

)B(
α−qd

j

∆d
j

)

B(
β −qd

k

∆d
k

)B(
t−qd

l

∆d
l

)pd
i, j,k,l, (3.4)

where ∆d = (∆d
i ,∆

d
j ,∆

d
k ,∆

d
l ) is the spacing between the B-spline con-

trol points modeling the velocity component on the direction d, Qd =
(qd

i ,q
d
j ,q

d
k ,q

d
l ) represents the location of the control points, B(·) is a cu-

bic B-spline kernel function, and pd
i, j,k,l is the B-spline coefficient at index

(i, j,k, l). Since the velocity at β = −π and β = π should be the same for
fixed ρ and α , the B-spline was designed to be cyclic in the circumferential
angle direction β by letting the B-spline polynomials wrap around this di-
rection, similar to the anatomically oriented grid proposed in [50]. Figures
3.1(c) and 3.1(d) illustrate the grid topology represented in spherical and
Euclidean coordinates, respectively.

3.2.3 The dissimilarity measure

Since both B-mode and TD images from each 2D view are integrated, a
global measure including the contribution of both the B-mode and the TD
sequences is proposed based on Equation 2.4 (page 19):
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M(p) =
2

∑
c=0

(
(1−λc)Uc (p)+λcDc (p)

)
, (3.5)

where Uc(p) is a measure for the dissimilarity between each B-mode frame
and the first frame from view c, Dc(p) compares the estimated velocities in
the beam direction with the velocity values provided by the TD images from
view c, and λc is a term balancing the contribution of Uc(p) and Dc(p).

The term Uc(p) was modeled using a mean-squared-error approach:

Uc(p) =
Nc

∑
n=0

∑
xs∈ΩIc

0

(
Ic
n

(
ϕt0(xs, tn,p)

)
− Ic

0(xs)

)2

, (3.6)

where Nc + 1 is the number of B-mode frames from view c, Ic
n(xs) is the

pixel intensity value at B-mode frame n from view c at coordinates xs, and
ΩIc

0
is the spatial domain of the first frame from view c. This dissimilarity

term was chosen under the assumption that tissue intensities are globally
preserved during the cardiac cycle. Although this kind of measure has de-
monstrated to provide good results when working with 3D US data in [27],
another type of dissimilarity could have been used. In particular, in Chapter
2, a measure considering consecutive pairs of frames and including speckle
statistics information was proposed. We discarded this type of measure in
multi-plane images because the temporal resolution of the B-mode images
at each view is lower than in typical 2D B-mode US images and, therefore,
speckles are not well preserved between consecutive frames.

The second term of the proposed global dissimilarity measure was:

Dc(p) =
Mc

∑
m=0

∑
xs∈ΩV c

0

(
b
(

ϕt0(xs, tm,p)
)
·

v
(

ϕt0(xs, tm,p), tm,p
)
−Vm

(
ϕt0(xs, tm,p)

))2

, (3.7)

where Mc + 1 is the number of TD frames from view c, b(xs) is the beam
direction at coordinates xs, Vm(xs) is the velocity value provided by TD
frame at t = tm and location xs, and ΩV c

0
is the spatial domain of the first

frame from view c.
The weighting term λc used for each view c in Equation 3.5 was mod-

eled in terms of confidence (γc) and convergence (ζc), as in Equation 2.13
(page 25):

λc = γcζc. (3.8)
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Figure 3.3: Displacement errors using different grid resolutions. Circles represent
the displacement error averaged for all points in the left ventricle during the cardiac
cycle, lines represent the standard deviation. Crosses represent the mean error at
end systole. The horizontal axis represents each of the experiments performed with
different grid resolutions, labeled as ρ x α .

As in Chapter 2, γc was set to 1, thus assuming the same confidence
for TD and B-mode images. The convergence ratio ζc was approximated
as the magnitude of the initial derivative with respect to the transformation
parameters of Uc(p) divided by the derivative of Dc(p).

To find the transformation parameters that minimize the value of the
proposed dissimilarity measure, the L-BFGS-B (Limited memory Broyden-
Fletcher-Goldfarb-Shannon with simple Bounds) [38] optimizer was cho-
sen, as in Chapter 2.

3.3 Experiments

3.3.1 Synthetic dataset generation

A realistic synthetic dataset was used to validate the proposed method. The
pipeline designed for its generation was similar to the one developed in the
STRAUS poject [39, 51], but adapted to simulate multi-plane images. A
magnetic resonance image acquired from one healthy subject was manually
segmented, thus generating a 3D volumetric mesh. This segmentation was
then used as an input to the SOFA (Simulation Open Framework Architec-
ture) software package [40], which allows simulating one cardiac cycle by
applying the Bestel-Clement-Sorine electro-mechanical model [41]. One
healthy and 4 ischemic cases were simulated by modifying the value of the
mechanical parameters of the model at segmental level. In particular, the
4 ischemic cases were generated to simulate ischemia in the proximal re-
gion of the left anterior descending artery (LADprox), the distal region of
the left anterior descending artery (LADdist), the left circumflex coronary
artery (LCX) and the right coronary artery (RCA).

A cloud of point scatterers mimicking the acoustic tissue response of the
myocardium was displaced using the output meshes of the electro-mechanical
simulation. COLE [42] was used as an US simulation framework to gen-
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Table 3.1: Specifications of the synthetic B-mode and TD images.

B-mode TD

Frames/cycle 14 98

Frame rate (Hz) 14 98

Beams 128 28

Samples/beam 547 197

Opening angle (◦) 70 70

Depth (mm) 160 160

Nyquist velocity (cm/s) − 23.3

PRF (Hz) − 2000

erate the final images. In particular, three 2D US sequences, including
B-mode and TD images, were generated as 4-chambers, 3-chambers, and
2-chambers apical views, with an angle of 60◦ between planes about the
long axis, as represented in Figure 3.2. The specifications of the generated
B-mode and TD image sequences are detailed in Table 3.1.

3.3.2 Validation with synthetic data

To validate the proposed method, it was first necessary to optimize the num-
ber of control points used for each spatiotemporal dimension. To this end, a
set of experiments using different number of control points for the beam (ρ)
and azimuth (α) directions were performed with the healthy synthetic case.
The transformation estimated using the proposed method was applied to the
segmented left ventricle to recover its motion during one cardiac cycle, and
longitudinal and radial displacement errors were calculated at every vertex
in the volumetric mesh. Note that the circumferential component cannot be
recovered with apical long axis views, since it is orthogonal to the imaging
planes. The mean displacement error magnitude and standard deviation for
all points in the left ventricle during the cardiac cycle using different grid re-
solutions is represented in Figure 3.3, together with the mean displacement
error calculated at end systole.

As it can be observed from Figure 3.3, the lowest displacement errors,
both at end systole and averaging the whole cardiac cycle, were obtained
when using 2 control points in the azimuth direction and 4-6 in the beam
direction. These results are similar to the ones obtained in [27] with a Eu-
clidean grid of control points using 3D US images. In our case, we ob-
tained the lowest mean error (0.0668± 0.0386 mm) and end-systolic error
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Figure 3.4: (a) Mean displacement and (b) strain errors and standard deviations for
each synthetic case. The crosses in (b) represent the end-systolic strain errors for
each case. Color image in the Appendix, page xxii.

(0.22 mm) when using 4 control points in the beam direction and 2 in the
azimuth direction, so this setting was used for the rest of the experiments.
In these experiments, as many spatial control points as intersections with
image planes on the circumferential direction were used in the direction of
β . Since 3 planes were acquired, 6 control points were used in that direc-
tion. Finally, as many temporal control points as B-mode frames available
were used to model the velocity component perpendicular to the beam, and
as many temporal control points as TD frames to model the velocity com-
ponent in the beam direction.

Once the number of control points was optimized, we applied the pro-
posed method to the synthetic cases simulating ischemia in different areas
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Figure 3.5: Absolute value of mean displacement errors (mm) averaged for all the
synthetic cases. Color image in the Appendix, page xxiii.

of the left ventricle. After applying the estimated transformation to the seg-
mented volumetric mesh, displacements and strains were calculated. In par-
ticular, for each tetrahedron, the displacement estimated at its vertices was
interpolated at the cell center. Then, the Green-Lagrangian strain tensor was
approximated as:

ε =
1
2
(
∇uT +∇u+∇uT

∇u
)
, (3.9)

where ∇u represents the spatial derivative of the displacement vector. This
approach was chosen to keep the coherence with the way the strain was
approximated in the ground truth meshes. However, it could have been
estimated by calculating the derivative of the continuous displacement field
estimated at each vertex. Directional strains were calculated by projecting
the strain tensor on the longitudinal and radial directions.

Figure 3.4 shows the longitudinal and radial displacement and strain
errors, together with the magnitude of the displacement error (discarding
the circumferential component) during the cardiac cycle for all the syn-
thetic cases. Note that displacements and strains are calculated in the whole
ventricle, not only in the areas where image data are available (i.e., the
imaging planes). The mean displacement error for all the simulated cases
was 0.14± 0.09 mm (−0.03± 0.06 mm in the longitudinal direction and
−0.05±0.14 mm in the radial direction). The mean longitudinal strain er-
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Figure 3.6: Linear regression for longitudinal and radial strain values.
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(a) (b)

Figure 3.7: Example of the 3D interpolation to calculate segmental strain and dis-
placements for one patient. (a) shows the initial segmented points at each plane,
representing each of the segmentations with a different color. (b) represents the 3D
interpolated shape of the left ventricle. Color image in the Appendix, page xxiii.

ror was 0.96± 1.03 % and the mean radial strain error was 3.94± 4.38 %.
Figure 3.5 shows the spatial distribution for the absolute value of the direc-
tional displacement errors averaged for the 5 synthetic cases analyzed. In
general, it can be observed that the maximum errors are located at the base
of the wall, where the spatial resolution of the US images is lower.

Figure 3.6 represents the linear regression analysis of the end-systolic
longitudinal and radial displacements and strains for each segment from the
synthetic cases. A Pearson correlation coefficient of 0.99 was obtained for
both the longitudinal and radial displacements, while values of 0.90 and
0.67 were obtained for the longitudinal and radial strains, respectively. A
Student’s t-test was used to compare the estimated displacements and strains
with the ground truth values under the assumption that they are normally
distributed. Normality assumptions were checked using a Lilliefors test for
directional displacement and strain distributions. The Student’s t-test con-
cluded that the mean of the estimated and ground truth end-systolic displace-
ment values were not significantly different for p < 0.05. In the case of the
longitudinal and radial end-systolic strain values, we found that means were
significantly different. In this case, a bias of −2.24± 0.41% was obtained
for longitudinal strains and −9.56±3.74% for radial strains.

Finally, experiments testing the influence of the orientation of the planes
acquired on the results were also performed. In this case, for each synthetic
case, a dataset where the images were rotated 30◦ in the circumferential
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Table 3.2: Specifications of the B-mode images acquired from real cases.

1 2 3

Frames/cycle 16 19 14

Frame rate (Hz) 11.47 11.71 11.64

Beams 132 132 132

Samples/beam 529 488 407

Opening angle (◦) 74.66 74.66 64.8

Depth (mm) 130 120.24 100

direction with respect to the previous dataset was generated. Differences
between the displacements and strains estimated with both datasets were
lower than the average errors obtained previously. In particular, mean dis-
placement differences of 0.10±0.07 mm (0.01±0.05 mm in the longitudi-
nal direction, and 0.03±0.09 mm in the radial direction) were found. The
mean strain differences between both datasets were 0.11± 0.28 % in the
longitudinal direction and 2.96±2.70 % in the radial direction.

3.3.3 Experiments with real data

The proposed method was also tested on multi-plane image data from three
real subjects. Table 3.2 and Table 3.3 show the specifications of the ima-
ges acquired from every patient. For each case analyzed, the centerline of
the left ventricular wall was delineated from each acquired plane using a
cubic B-spline curve. To delimit the three-dimensional area where displace-
ments and strains were estimated, linear interpolation between the delin-
eated curves was done in the circumferential direction (β ) using spherical
coordinates. Figure 3.7 shows an example of 3D interpolation for one pa-
tient. After image registration, the strain tensor was calculated for all the
points using Equation 3.9. This was then projected on the longitudinal and
radial directions to obtain directional strain values.

The first case corresponds to a 58 years old male patient who presented a
dilated ischemic cardiomyopathy after a transmural infarction in the lateral
wall of the left ventricle. Visual analysis by clinical experts from the US
images revealed a dilated left ventricle with slight reduction in the global
systolic function. The patient also presented akinesia/dyskinesia in the la-
teral wall. Images from a Delayed Enhancement Magnetic Resonance (DE-
MR) imaging study showed increased intensity in the middle and base of
the lateral wall.

The presented method was applied to the sequence of US multi-plane B-
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Table 3.3: Specifications of the TD images acquired from real cases.

1 2 3

Frames/cycle 126 147 103

Frame rate (Hz) 97.09 98.04 99

Beams 32 32 32

Samples/beam 194 179 150

Opening angle (◦) 74.66 74.66 65

Depth (mm) 130 120.68 100

Nyquist velocity (cm/s) 16 16 16

PRF (Hz) 1000 1000 1000

mode and TD images acquired. The strain curves calculated and averaged
at every segment are shown in Figure 3.8. As it can be observed, reduced
longitudinal strain values at end systole were found in the mid-lateral and
antero-lateral wall because of the presence of ischemia (segments 7, 11 and
12). In this case, the reduction of the longitudinal strain at the base of the
lateral wall is not as significant as in the mid-lateral area. One can also
observe that not all segments contract synchronously, with the presence of
post-systolic strain in the lateral and inferior wall (segments 4, 5 and 6). The
radial strain curves also show a delayed thickening of the antero-lateral area
(segments 1, 6, 7 and 12) with respect to the rest of the segments, reaching to
higher radial strain value after end-systole at the base. Although the longi-
tudinal strain curves obtained in the apical region are normal (ischemia was
not found in the apical segments), the radial curve obtained for segment 13
(apical-anterior) shows an abnormal pattern. This could be due to tethering
to the surrounding regions with abnormal radial strain patterns (segment 7).

The second case corresponds to a 49 years old male presenting scar at
the base of the inferior wall and also ischemia and an aneurysm in the apical
part of the inferior wall, with hypertrophic functional myocardium in the
medial region. A DE-MR study of this patient presented increased intensity
in the inferior wall. Figure 3.9 shows the strain curves obtained from the
analysis of the multi-plane US images acquired for this patient. As it can
be observed, reduced longitudinal contraction was found in the base of the
infero-septal, inferior and infero-lateral wall (segments 3, 4 and 5, respec-
tively), which was expected because of the presence of a scar. A globally
reduced radial strain was also found in the whole inferior wall (segments 3,
4, 5, 9, 10 and 15). In the medial wall regions, high longitudinal contraction
was estimated in segment 10, corresponding to the hypertrophic area of the
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Figure 3.8: (a) Longitudinal and (b) radial strain curves estimated for Case 1 (58
years old patient with ischemia in the infero-lateral wall). For each plot, the first
dotted vertical line indicates aortic valve opening, while the second one indicates
aortic valve closing. Color image in the Appendix, page xxiv.
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Figure 3.9: (a) Longitudinal and (b) radial strain curves estimated for Case 2 (49
years old patient with ischemia in the inferior wall). For each plot, the first dotted
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valve closing. Color image in the Appendix, page xxv.
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Figure 3.10: (a) Longitudinal and (b) radial strain curves estimated for Case 3 (31
years old healthy volunteer). For each plot, the first dotted vertical line indicates
aortic valve opening, while the second one indicates aortic valve closing. Dotted
strain curves indicate areas that are not visible in the B-mode image sequence.
Color image in the Appendix, page xxvi.

inferior wall. Abnormal strain patterns were found in the apical segments.
In particular, segment 14 presented low radial strain and increased contrac-
tion during diastole, being its motion affected by the apical aneurysm. In the
case of segment 15, almost no longitudinal contraction and radial tickening
were found, which was also expected because of the ischemia identified in
the inferior part of the apex.

Finally, a 31 years old healthy female volunteer was also analyzed. Re-
sults are presented in Figure 3.10. In this case, the B-mode image quality
was very low in the medial and apical regions of the tri-plane images at 0
and -60 rotation degrees, being the apical region not visible in these planes
as shown in Figure 3.11. Although radial strain could not be reliably es-
timated in segments 15 and 16, using TD images allowed estimating the
longitudinal strain component. Radial strain patterns obtained at the medial
segments were realistic. However, their magnitude at end systole may be
underestimated because of the of low image quality close to segments 15
and 16 (i.e., segments 9, 10, 11 and 12). As it can be observed, neither
pathological strain patterns nor dyssychrony between segments were found
in this case, in contrast with Cases 1 and 2.

3.4 Discussion

The proposed method allows integrating multi-plane B-mode and TD ima-
ges acquired interleaved for longitudinal and radial estimation of motion in
the left ventricle. In contrast to most methods for motion assessment from
US images, not only grayscale information is considered, but also quantita-
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(a) (b) (c)

Figure 3.11: Multi-plane images of Case 3 at (a) 0, (b) -60, and (c) -120 rotation
degrees (see Figure 3.2(a)).

tive information from TD. Since each type of information (B-mode and TD)
as well as each plane are acquired interleaved and at different spatiotem-
poral resolutions, using a continuous representation both in time and space
allows evaluating each of the data at the time and position it was acquired.
This is in contrast to most approaches integrating different modalities and/or
views [13], [14].

The proposed spherical representation of the transformation has two ad-
vantages on multi-plane images. First, it provides a topology in the circum-
ferential direction that is very similar to the left ventricle’s shape, allowing
a more natural interpolation of information between the planes acquired.
Second, one of the three orthogonal directions defining the spherical coor-
dinate system corresponds to the beam direction. Since modeling a vector
field using product tensor B-splines is equivalent to modeling each com-
ponent of the vector separately, different grids can be used to model each
component of the velocity field (see Equation 3.3 and 3.4). This separa-
tion between components lets us make use of the higher temporal resolution
of TD images (since they provide information only in the beam direction)
without being constrained by the lower temporal resolution of B-mode ima-
ges in that direction, unlike in the method from Chapter 2.

Results from validation with a realistic synthetic dataset are presented in
Figure 3.4, 3.5 and 3.6. In US apical images of the left ventricle, the cardiac
wall is more aligned with the beam direction (as it can be observed from
Figure 3.2), which is the direction in which TD provides information. Since
the temporal sampling of multi-plane TD images is usually higher than B-
mode images (see Tables 3.1, 3.2 and 3.3) and TD provides objective and
quantitative information, the performance in the longitudinal direction was
better compared to the radial direction. Although radial and longitudinal
displacements accuracy is similar (mean errors of −0.05± 0.14 mm and
−0.03± 0.06 mm for radial and longitudinal displacements, respectively),
strain is very affected by small displacement errors and its estimation in
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the radial direction is less accurate than longitudinal strain (mean errors of
3.94±4.38 % and 0.96±1.03 % for radial and longitudinal strain, respec-
tively). Different displacement and strain error magnitudes between the nor-
mal and pathological simulated cases can be explained because the ischemic
simulations present globally reduced motion. Furthermore, displacement
and strain differences in the results obtained by changing the orientation of
the planes acquired were lower than the estimation error, so the method is
robust to image rotations.

The method has also been applied to real data to show its applicability
in a clinical environment. In particular, it has been shown that the mo-
tion estimation performed with the proposed framework can be useful to
assess patients presenting ischemic cardiomyopathy. We also included re-
sults from one healthy volunteer where no pathological strain patterns were
found. This example was also useful to show the benefits of using both B-
mode and TD images together, since it was possible to assess longitudinal
contraction in areas that were not visible in the B-mode image sequence (see
Figure 3.10, segments 15 and 16).

In clinically available 3D US acquisition systems, images are created
by integrating small volumetric information from different cardiac cycles.
In some cases, such as patients with arrhythmia associated to ischemic car-
diomyopathy, it is not possible to recover a useful 3D image because of the
heart rate variability. Using the proposed method would be useful to over-
come this limitation, since all the information comes from the same cardiac
cycle. In addition, the use of information acquired simultaneously at diffe-
rent areas of the left ventricle allows assessing temporal relations between
events that occur at different regions. For example, it can be observed from
Figure 3.8 (a) that segments 4, 5 and 6 reach their maximum longitudinal
contraction when the remainder basal segments already started to relax.

The limitations of the framework are related to the sparse spatial infor-
mation that is available. Although our experiments showed that ventricular
motion can be estimated using tri-plane images, the circumferential compo-
nent cannot be recovered with the presented approach. Moreover, if a small
akinetic/dyskinetic region is present between two planes acquired, it would
not be possible to detect it.

3.5 Conclusions

A continuous registration framework integrating multi-plane B-mode and
TD images acquired interleaved with different orientations and spatiotempo-
ral resolutions has been presented. Higher temporal resolution in the beam
direction was achieved by modeling separately the different components of
the velocity field. The experiments with synthetic data showed that displace-
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ment and strain estimation is accurate and experiments with real patients
illustrated the applicability of the proposed method to clinical cases.
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Scar presence and its characteristics play a fundamental role in several
cardiac pathologies. To accurately define the extent and location of the
scar is essential for a successful ventricular tachycardia ablation procedure.
Nowadays, a set of widely accepted electrical voltage thresholds applied
to local electrograms recorded are used intra-operatively to locate the scar.
Information about cardiac mechanics could be considered to characterize
tissues with different viability properties. In this chapter, a novel method to
estimate endocardial motion from data obtained with an electro-anatomical
mapping system together with the endocardial geometry segmented from
pre-operative 3D magnetic resonance images is proposed, using a statistical
atlas constructed with bilinear models. The method was validated using syn-
thetic data generated from ultrasound images of 9 volunteers and was then
applied to 7 ventricular tachycardia patients. Maximum bipolar voltages,
commonly used to intra-operatively locate scar tissue, were compared to
endocardial wall displacement and strain for all the patients. The results
show that the proposed method allows estimating endocardial motion and
strain, and that areas with low voltage electrograms also present low strain
values.

The content of this chapter is adapted from the following publication:

A. R. Porras, G. Piella, A. Berruezo, C. Hoogendoorn, D. Andreu, J.
Fernandez-Armenta, M. Sitges, and A. F. Frangi. Interventional endocar-
dial motion estimation from electroanatomical mapping data: Application
to scar characterization. IEEE Transactions on Biomedical Engineering,
vol. 60, pp. 1217-1224. 2013.
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4.1 Introduction

Both ischemic (IC) and non-ischemic cardiomyopathy can lead to myocar-
dial necrosis and ventricular tachycardia (VT). Necrosed myocardium is re-
placed by fibrotic tissue constituting myocardial scars. Because of a low
blood supply, areas of fibrosis appear in the myocardium. These fibro-
tic/scarred areas are characterized by low voltage in intracardiac electro-
grams and low contractility. It is currently well established that the un-
derlying cause of VT is the presence of conducting channels, which are
corridors of border zone tissue connecting healthy myocardium and su-
rrounded by dense fibrotic tissue, also called “scar core”. These conducting
channels create a re-entrant circuit where electrical impulse is propagated
slowly. When VT cannot be successfully controlled with antiarrhythmic
drugs, catheter ablation targeted to these slow conduction channels has been
demonstrated to be a good option to treat the tachycardia [52, 53]. There-
fore, intra-operative scar characterization is a key factor for an effective
treatment.

In the last years, the use of Electro-Anatomical Mapping Systems
(EAMS) as an aid in the treatment of this pathology has increased considera-
bly. These systems are used to guide radio-frequency ablation procedures
using a catheter. This catheter is introduced into the left ventricle through
the blood vessels and, by means of an external tracking system, the position
of the catheter tip at every sampled instant is captured.

The catheter also records the local electrogram when it is in contact
with the endocardial wall and then, according to these electrograms, tissues
with different electrical properties are identified. However, this method has
inherent limitations to accurately characterize the tissue, such as the far-field
effect, catheter positioning and orientation, inter-electrode distance and the
mapping resolution. Therefore, there is a mismatch between the scar tissue
characterization based on standard voltage thresholds and based on DE-MR
imaging [54, 55, 56], which is a widely used modality to locate the scar
pre-operatively. As a result, scar characterization solely based on voltage
electrogram criteria highly depends on the electro-physiologist’s expertise.

Mechanical tissue properties could provide additional information to
improve scar characterization. Specifically, deformation information could
help to characterize scar in patients with IC, since scar regions may present
normal displacement due to tethering to normally contracting adjacent re-
gions [57], while deformation will be solely affected by the mechanical pro-
perties and real shortening and lengthening of the myocardium. These are
directly related to the characteristics of local electrical activation.

However, widely used EAMS do not show any endocardial motion in-
formation. In addition, because of the limited number of points that are
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usually acquired, the spatial resolution is too low to reconstruct the endo-
cardial shape with enough accuracy, so data interpretation also depends on
the cardiologist’s experience.

4.1.1 State of the art

Recently, some research groups have been looking into different ways of
using mechanical information obtained intra-operatively to guide catheter
interventions. In [17], a novel technique to combine electrical activation
and motion information from EAMs as part of the NOGA system (Bio-
logics Delivery Systems Group, Cordis Corporation, Irwindale CA, USA)
was presented. An indicator of endocardial contraction (linear local short-
ening) was proposed in [18] and many therapeutic utilities, such as revas-
cularization and applications in gene therapy and cell transplantation, were
discussed.

In [19], a methodology to obtain endocardial motion from EAMS was
proposed, and the possibility of identifying motion patterns to predict sep-
tal flash was shown. In [16], a correlation between both circumferential
shortening derived from NOGA system and the one obtained with US ima-
ges was found. Their results showed the possibility to distinguish between
normal, hyperkinetic and hipokinetic myocardium with an acceptable ac-
curacy, even though an overlap between classes was found. The ability of
electromechanical maps acquired with an EAMS to differentiate between
infarcted and healthy myocardium was tested in [15], based on a reduction
of both electrical and mechanical activity.

However, some studies conclude that the use of mechanical tissue pro-
perties directly estimated from EAMS has restrictions. The ability of left
ventricle electromechanical mapping to distinguish between viable and non-
viable myocardium in patients with IC was evaluated in [58]. According to
their results, the linear local shortening calculated with NOGA did not dif-
ferentiate accurately between viable and non-viable tissue. Moreover, the
study of [55] demonstrated significant spatial heterogeneity of both endo-
cardial voltage and linear local shortening derived from the NOGA system
in normal and viable dysfunctional myocardium.

The main problem when evaluating tissue mechanical properties from
EAMS is that catheter position data contains components not related to car-
diac motion, such as respiration motion, catheter sliding over the endocar-
dial wall and measurement errors of the tracking system. In addition, the
amount of acquired points does not provide a reliable shape reconstruction,
since it is too low. Moreover, the points are often very concentrated in a
small region of interest.

We propose to extract the shape of the endocardium from a pre-operative
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Figure 4.1: The basic workflow. Processed EAM data are registered to the seg-
mented endocardial shape. An atlas is used to help reconstructing motion in areas
where there is no motion information.

3D imaging modality and use it together with the temporal and the spatial
information provided by an EAMS to reconstruct the endocardial motion
for one cardiac cycle. To estimate motion in areas without information
from the EAMS, a bilinear statistical atlas [59] of left ventricle endocar-
dial shapes is used. The novelty of the proposed method consists in the
use of prior knowledge of the patient’s endocardial shape, and the applica-
tion of a population-based atlas that encodes separately shape and motion,
which allows estimating the endocardial motion at any point of the endo-
cardium given the ventricle’s shape and some localized motion information.
This method could be used intra-operatively together with an EAMS for
guidance during the intervention.

4.2 Methodology

The proposed method is composed of three stages, as shown in Figure 4.1.
First, EAM data were processed to filter out undesired components in the
position signals. The second step was oriented to project EAM informa-
tion over a patient-specific endocardial shape extracted from any 3D pre-
operative imaging technique. Finally, a statistical model was used to propa-
gate motion in the regions where there is no information from the EAMS.

4.2.1 EAM data description

EAMs usually consist in a list of acquired points, each including both posi-
tion and electrical information. Thus, during the acquisition of a point, an
EAMS records the position of the catheter tip, the electrical signals acquired
with the catheter electrodes, and the superficial ECG signals recorded for a
period of time.
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For this study, we used electro-anatomical data obtained with Carto
(Biosense Webster, Haifa, Israel) EAMS. These maps consist of points with
electrical signals sampled at 1 KHz during 2.5 s and 3D catheter position
signals sampled at 100 Hz.

4.2.2 Position data processing

To compensate most of the artifacts present in the position signals, we
applied a Butterworth band-pass filter [60]. The high-pass threshold used
for each position signal varies depending on the heart beat duration when
it is acquired. Heart rate is calculated from the ECG signals and is set as
high-pass threshold for the filter, since all motion components must have a
higher frequency. The low-pass threshold was set to 20 Hz to minimize the
effect of the noise associated to high frequencies.

Both electrical and position signals are acquired synchronously, although
with different sampling rates. However, since heart rate is not always the
same, there is a lack of motion synchronization among different points away
from the R peak of the electrocardiogram, which is the trigger the system
uses to acquire information. Therefore, we identify one cardiac cycle for
each point by looking for two consecutive R-peaks in the ECG signal. Then,
the position signal during this cycle is extracted and resampled to 200 sam-
ples. Since position information is sampled at 100 Hz, no loss of informa-
tion occurs for beat durations below 2 s.

4.2.3 Points-to-shape registration

Once EAM position signals are filtered and synchronized, endocardial mo-
tion for the points acquired with the EAMS is reconstructed. However, since
these points are usually highly concentrated in a specific region of interest,
it is not possible to accurately reconstruct the entire endocardial shape.
Therefore, we obtained the geometry of the left ventricle endocardium from
MR images by using a model-based segmentation algorithm based on [61],
trained with MR datasets. We used this modality because its acquisition
is included in the clinical protocol for electro-physiology interventions, but
any other imaging modality could be used. The number of points in the
segmented meshes was 880.

An Iterative Closest Point (ICP) [62] based registration algorithm is used
to register the points from EAM data and the shape of the endocardium. For
a better result, a landmark-based rigid registration was done for initialization
before running the ICP algorithm. In this study, we set two landmarks close
to the aorta and one in the apex manually.
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4.2.4 Endocardial motion estimation

Motion signals from EAM data could be directly used to deform the endo-
cardium after registration, interpolating those areas where no motion infor-
mation is provided. However, because of the complexity of heart motion, it
would not be realistic to interpolate motion on the remainder endocardium,
so it is necessary to have some additional knowledge on the behavior of the
endocardium in order to reconstruct its entire motion pattern.

To this end, a bilinear shape model [59] was used. This model codes
separately shape and motion, as illustrated in Figure 4.2, so it is very appro-
priate to estimate motion given the shape of the subject’s endocardium and
some sparse motion information. Using this model, the shape of one sub-
ject’s endocardium at a given phase of the cardiac cycle can be estimated
as:

ys
i = (Wbi)

VTas (4.1)

where ys
i is the vectorized shape of the subject s at the phase i of the car-

diac cycle, as is a parameter vector representing the characteristics of the
subject s, bi is a parameter vector representing the phase i of the cardiac
cycle, W is a constant matrix governing the interaction between the factors,
and the superscript VT denotes the vector transpose operation as explained
in [59]. The bilinear model used in this work has been constructed from
80 patients with different pathologies and dividing the cardiac cycle in 15
different phases.

The objective is to use the endocardial shape segmented from MR ima-
ges to find the subject parameters as. Once these parameter are known, we
use the motion signals obtained from the EAM data to calculate the parame-
ters bi that describe the motion of the endocardium at the different phases
of the cardiac cycle.

Since all shapes were aligned using Procrustes method when construc-
ting the atlas, the segmented endocardial shape had to be re-scaled and
aligned to the shapes used to build the atlas using a rigid-registration. Then,
since the endocardial shape is acquired at end diastole, it can be used to-
gether with the b0 vector representing the end-diastolic phase in the atlas to
solve for as:

as =
(
(Wb0)

VT
)−1

ys
0. (4.2)

Once the subject is instantiated (parameters in as are calculated), it is
necessary to solve for the parameters describing the endocardial motion.
After registering the cloud of points from the processed EAM data to the
endocardial shape, there is a correspondence between the points in the cloud
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Figure 4.2: The structure of the bilinear model. Along the horizontal axis, three
phases from the cardiac cycle are shown. Along the vertical axis, two different
subjects are represented.

and the ones in the shape. Therefore, we have the motion signals of some
sparse points in the endocardium and we can use them to solve for the phase
parameters bi according to the following equation obtained from Equation
4.1:

bi =
(
(W∗VTas)VT

)−1
y∗si . (4.3)

where y∗si contains only the points of the shape with motion information
from the EAM data, and the W∗ matrix contains only the interaction of the
factors for those points included in y∗si .

Once both as and bi parameters have been estimated, Equation 4.1 can
be used to reconstruct the endocardium for every phase of the cardiac cy-
cle. Thus, displacement and strain information can be estimated for one full
cardiac cycle.
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4.2.5 Endocardial strain estimation

Let u be the displacement vector of a point at certain phase of the cardiac cy-
cle, obtained by using end-diastolic position as reference. Then, the Green-
Lagrangian strain tensor ε can be calculated using the following equation:

ε =
1
2
(5uT +5u+5uT5u) (4.4)

where5u denotes the spatial derivative of the displacement vector. To cal-
culate it, the displacement vector is interpolated in every triangle of the seg-
mented mesh from the known displacement vectors of its vertices. Then, the
displacement vector function is spatially derived at the center of the triangle.

The strain tensor was projected in both longitudinal and circumferential
directions to obtain local directional strains. Radial direction vector was de-
fined as the normal vector to each triangle. The longitudinal direction vector
was estimated as perpendicular to radial direction and maximizing its scalar
product with the base-apex vector. Then, the circumferential direction was
calculated as vectorial product of radial and longitudinal direction vectors.
The radial strain cannot be reliably estimated in this case because there is
only endocardial motion information and, therefore, no information about
wall thickening is available.

4.3 Experiments

The proposed method was validated using synthetic data and then applied
to real cases.

4.3.1 Generation of synthetic data

We generated synthetic EAM data based on geometries extracted from 3D+t
US images to validate our method. For this, we used image data from 9
volunteers. The endocardium was segmented from these images using the
method presented in [63] and the Temporal Diffeomorphic Free Form De-
formation (TDFFD) algorithm [27] was used to track endocardial motion.
Then, from the estimated motion, a set of points simulating those acquired
with an EAMS was generated.

The number of points generated for every dataset was chosen as a ran-
dom number between 100 and 300, which is in accordance with the maps
that are normally acquired in an electro-physiology intervention and with
the data we used for the experiments with patient data. In addition, the
location of every generated point was also selected randomly.

Since the points in an EAM are acquired independently, the heart rate
varies when recording different points. Therefore, a random beat duration
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Figure 4.3: On the top image, motion signals extracted from 3D+t US images for
2 different points. On the bottom image, synthetic motion signals generated with
251 samples for the same points. Color image in the Appendix, page xxvii.

between 800 ms and 1.2 s has been assigned to every synthetic point. The
motion signals for every point were created so that their duration is 2.5 s
with a sampling rate of 100 Hz, to mimic the maps obtained from Carto.
For the same reason, all motion signals were set so that they reach their end-
diastolic position at t=2 s, which is the time instant Carto uses to synchronize
all points.

After generating the motion signals, some undesired motion compo-
nents (as the ones recorded when tracking catheter motion) have also been
simulated and added to the motion signals:

1. Respiratory motion was simulated as a sine wave with a random du-
ration between 1.6 s and 4 s, and a random phase.

2. Random position measurements noise was generated by creating ran-
dom displacements at every sample in random directions with a maxi-
mum magnitude of 1 mm, according to the accuracy reported with
Carto [64].
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Finally, ECG synthetic signals were generated for every point, so that
their R-peaks coincided with the end-diastolic position of the generated mo-
tion signals.

An example of synthetic motion signals generated for two different points
in the endocardium is shown in Figure 4.3.

4.3.2 Validation with synthetic data

Five synthetic EAMs were created for each one of the nine volunteers used
for this study. Then, the proposed method was applied to reconstruct endo-
cardial motion during one cardiac cycle.

The ventricle was divided according to the AHA 17-segments model
[49]. Displacement and strain curves were averaged in every segment and
projected into the longitudinal, circumferential and radial directions. Nor-
malized cross-correlation was calculated to compare the displacements and
strains estimated using the proposed method against the curves obtained
from TDFFD registration. Figs. 4.4 and 4.5 show the normalized cross-
correlations obtained for displacement and strain curves respectively, pro-
jected into different directions.

To test whether our method was able to perform similar motion recon-
structions for the same patient, the mean standard deviation between the
curves obtained from the five different synthetic data generated for each pa-
tient was calculated. The distribution of these standard deviations for all
the cases is shown in Figure 4.6 and 4.7 for both displacement and strain
estimation.

4.3.3 Experiments with clinical data

Once the proposed methodology was validated using synthetic data, we
applied it to 7 patients to test whether the endocardial motion reconstruc-
tion allowed identifying the presence of scar.

5 patients presented IC (4 with prior inferior myocardial infarction and
one with anterior myocardial infarction) and 2 patients presented a non-
ischemic cardiomyopathy. All patients were men with a mean age of 65.3
± 11.5 years. The EAMs acquired contained 332 ± 141 points.

All patients underwent a cardiac magnetic resonance examination pre-
viously to the VT ablation procedure using a 3T clinical scanner (Magne-
tom Trio, Siemens Healthcare) equipped with cardiac dedicated software
and a cardiac 12-element phased array coil. Image acquisition was ECG
gated to end-diastole to minimize cardiac motion. Respiratory synchroniza-
tion was performed for every other heart beat using a crossed pair navigator
approach. The 3D slab was acquired in the transaxial direction, with a mi-
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Figure 4.4: Distribution of the normalized cross-correlations between the recon-
structed motion curves obtained from the synthetic data and the ones from the orig-
inal data for every AHA model segment. Circles represent the median, thick lines
represent the first and third quartile and thin lines represent the remainder values.
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Figure 4.5: Distribution of the normalized cross-correlations between the recon-
structed strain curves obtained from the synthetic data and the ones from the orig-
inal data for every AHA model segment. Circles represent the median, thick lines
represent the first and third quartile and thin lines represent the remainder values.
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estimated from the five different experiments performed for the same case. Circles
represent the median, thick lines represent the first and third quartile and thin lines
represent the remainder values.
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nimized field of view and a 256 x 256 pixels matrix size. Slice thickness
was set at 1.4 mm with 20% overlap (0.28 mm) between slices to yield an
isotropic spatial resolution of 1.4 x 1.4 x 1.4 mm and to allow for image
reformatting in the left ventricle short axis orientation for subsequent image
processing.

From each mapped point, one beat was extracted separately and local
activation time and maximum bipolar and unipolar voltages were calculated
from this. After points-to-surface registration, those electrical values were
interpolated in the entire mesh using radial basis functions. Segments with
scar core were defined as those with mean maximum bipolar voltage lower
than 0.5 mV [65]. Segments without scar core were defined as those with
mean maximum bipolar voltage higher than 1 mV [66]. Displacement pro-
jections in longitudinal, circumferential and radial directions, together with
longitudinal and circumferential strains, were also averaged for every seg-
ment.

Mean longitudinal strain values were compared between segments de-
fined as scar core and those defined as healthy with a Student’s t-test, assu-
ming the normal distribution of the values. Normality assumptions were
checked using a Lilliefors test.

Longitudinal strain distributions and a 95% mean confidence interval for
the true difference of the means are shown in Figure 4.8. Mean longitudinal
strains for scar core and healthy segments were significantly different, with
p < 0.05.

Circumferential strain values were also compared between scar core and
healthy segments (Figure 4.9). In this case, mean circumferential strains for
scar core and healthy segments were not found to be significantly different
with p < 0.05.

As an illustrative example, Fig 4.10 shows longitudinal strain at end
systole and both maximum bipolar and unipolar voltages at end diastole for
one ischemic patient.

4.4 Discussion

A method has been presented to estimate endocardial motion from electro-
anatomical mapping data and the endocardial shape obtained from any pre-
operative 3D imaging modality.

Displacement and strain were estimated from synthetic data generated
from 3D+t US images. Normalized cross-correlations between the esti-
mated values and the ground truth were good in average. However, the
obtained results were not homogeneous in all directions where displace-
ment/strain were projected.
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first and third quartile, and the whiskers extend to the most extreme data values. On
the right, 95% mean confidence interval for the true difference of mean longitudinal
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Figure 4.10: Comparison of longitudinal strain at end systole (left), maximum bipo-
lar (center) and maximum unipolar (right) voltages interpolated at the end-diastolic
phase for one ischemic patient. On the top row, a view of the left ventricle from
the lateral wall. On the bottom row, a view from the septal wall. Red color repre-
sents tissue classified as scar core. Blue color represents tissue classified as healthy.
Black oval lines represent the areas where scar core is present according to bipolar
thresholds. Color image in the Appendix, page xxviii.
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When looking at longitudinal displacements, the correlation was over
95% in most of the cases, being its behavior slightly worse in the apex (seg-
ment 17).

Regarding radial displacements, the results are similar to longitudinal
displacement in the basal and medial segments. In the apical segments (seg-
ments 13 to 17), normalized cross-correlation can vary from 50% to 95%. It
may be due to the fact that the apical region was not completely present in
the US images used to generate the synthetic EAMs. This may have affected
the performance of the TDFFD algorithm in this area, thus compromising
the reliability of the ground truth in the apical segments.

Although the normalized cross-correlation for circumferential displace-
ments is high in average (close to 90%), its variation is higher than in the
other two directions. This may be explained because the bilinear atlas was
built from CT images, which do not capture circumferential motion reliably.
This problem can be alleviated by using another atlas constructed from US
or tagged-MR images, which do capture circumferential motion, but at a
cost of anatomical detail.

For longitudinal and circumferential strains, normalized cross-
correlations present a similar behavior than in the case of the displacements,
but with lower magnitudes. This is in accordance with the expected results,
since the strain is a differential measure based in the displacement field.

The repeatability of the method was also tested by generating diffe-
rent synthetic EAM datasets on the same subject’s geometry and checking
whether the same motion reconstruction was obtained for all of them. The
mean standard deviations of the estimated displacement and strain signals
were calculated. Standard deviations for motion were always found to be
below 0.6 mm. It can be considered a satisfactory result, taking into ac-
count that the random tracking error introduced had a magnitude of 1 mm
[64]. Regarding strain, the mean standard deviation in both longitudinal and
circumferential directions was also below 3%.

The results obtained for the studied patients show how the estimation
of longitudinal strain can help to distinguish scar core regions from healthy
areas according to maximum bipolar voltages, despite some overlapping
between ranges. This is in agreement with other studies, where longitudinal
strain is also used to delineate the scar [67, 68].

In the example shown in Figure 4.10, it can be observed how the pre-
sence of low longitudinal strain values in end systole is related to low bipo-
lar and unipolar voltages, although with some mismatches as found in the
results presented in Figure 4.8.

On the other hand, the estimated circumferential strain does not seem to
discriminate well. One possible reason is that, as it was concluded before
from the experiments with synthetic data, some errors are introduced in the
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circumferential direction. Hence, The circumferential strain estimated is not
as reliable as the longitudinal strain. Moreover, possible errors introduced
when recording local electrograms have to be considered, since electrical
parameters derived from them are used to classify tissue as scar core or
healthy.

Finally, it is worth mentioning that the proposed method could be used
intra-operatively, as both registration and recalculation of the bilinear equa-
tions after the acquisition of every new electro-anatomical point can be done
in a fraction of a second for the size of the model we are using. Furthermore,
since the solution of the equations at every time instant is independent from
the others, the method can be parallelized. In this particular case, each linear
system of equations took less than one second to solve on an Intel Core i7
CPU 3 GHz with 6 GB of RAM, using a C++ implementation.

4.5 Conclusions

A novel method to estimate endocardial motion intra-operatively from
electro-anatomical data has been proposed in this chapter. Validation against
synthetic data shows that the proposed method is reliable and repeatable.
Moreover, the results of its application to real cases show that the use of
the estimated mechanical information can help to characterize endocardial
tissue intra-operatively, which is of great importance for electro-physiology
interventions such as catheter ablation.
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Merging multimodal information about myocardial scar tissue can help
electrophysiologists to find the most appropriate target during catheter abla-
tion of ventricular arrhythmias. In this chapter, a framework is presented
to analyze and combine information from DE-MR imaging and electro-
anatomical mapping data. Using this information, electrical, mechanical
and image-based characterization of the myocardium is performed. The pre-
sented framework allows the left ventricle to be segmented from DE-MR
images and the scar to be characterized prior to the intervention based on
image information. It allows the electro-anatomical maps obtained during
the intervention from a navigation system to be merged together with the
anatomy and scar information extracted from DE-MR. It also allows for
the estimation of endocardial motion and deformation to assess cardiac me-
chanics. Therefore, electrical, mechanical and image-based characterization
of the myocardium can be performed. The feasibility of this approach was
demonstrated on three patients with ventricular tachycardia associated to
ischemic cardiomyopathy by integrating images from DE-MR and electro-
anatomical mapping data in a common framework for intra-operative my-
ocardial tissue characterization. The proposed framework has the poten-
tial to guide and monitor delivery of radiofrequency ablation of ventricular
tachycardia. It is also helpful for research purposes, facilitating the study of
the relationship between electrical and mechanical properties of the tissue,
as well as with tissue viability from DE-MR.

The content of this chapter is adapted from the following publication:

A. R. Porras, G. Piella, A. Berruezo, J. Fernandez-Armenta, and A.
F. Frangi. Pre to Intraoperative Data Fusion Framework for Multimodal
Characterization of Myocardial Scar Tissue. IEEE Journal of Translational
Engineering in Health and Medicine, vol. 2, pp. 1-11. 2014.
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5.1. Introduction

5.1 Introduction

Catheter ablation is a procedure used to treat some types of arrhythmia,
when drug therapies are not effective. One type of arrhythmia that is usually
treated with this procedure is Ventricular Tachycardia (VT) associated with
Ischemic Cardiomyopathy (IC).

After a myocardial infarction, myocardial cells die because of the lack
of oxygen supply, creating fibrotic areas where electrical impulses are not
propagated. Around and through these areas of dense fibrosis, other areas
with low-density fibrosis where the impulse is propagated with a low velo-
city appear. Sometimes, these areas of slow conduction represent corridors
with at least two connections with healthy muscle, being the substrate for
reentrant VTs. These slow conduction corridors or conducting channels are
the target for VT ablation [52, 53].

Different information sources have been used during the last years to
identify the conducting channels that are responsible for reentrant VTs. DE-
MR imaging is used to find the ablation target prior to the intervention, while
EAMS are used intra-operatively. In clinical practice, these two information
sources are used separately to characterize cardiac tissue based on different
properties. In this chapter of the thesis, a new framework that allows the in-
tegration of images from DE-MR, electrical measurements and mechanical
properties estimated using an EAMS is presented.

5.2 Background

Recently, many approaches have been developed to characterize scar tissue
from different information sources. In this section, a short review of me-
thods for scar characterization from DE-MR images, electrical and mecha-
nical information obtained from an EAMS is presented.

5.2.1 Pre-operative scar characterization

DE-MR imaging has become the standard modality to localize and quan-
tify areas of scar, viable and healthy myocardial tissue pre-operatively [69,
70, 71]. The acquired images visualize the uptake of a contrast agent by
the intracellular space after a given time from the administration of the
contrast. Healthy myocardium and scar tissue have different uptake pro-
files and hence, are imaged differently (fibrotic areas appear brighter than
healthy myocardium). DE-MR images could be used for ablation planning
by identifying pre-operatively the target ablation areas during the procedure
[72, 56, 73, 74]. However, the inherent limitations of MR leading to imaging
artifacts can lead to errors when identifying scar tissue [72, 75]. In addition,
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the spatial resolution limits the detection of the border zone channels in the
dense scar tissue, since these channels can be very narrow [73, 76].

Different segmentation methods from DE-MR images have been pro-
posed during recent years [77, 78, 79]. Having the segmentation of the
myocardium, the scar can be localized based on voxel intensities, since
it appears significantly brighter than healthy myocardium. To recover the
anatomical structure of the scar automatically, threshold-based methods have
been proposed [69, 80]. Other approaches imposing geometrical constraints
have been presented to improve the consistency of the results [81, 82].
Cluster-based and support vector machine methods have also been proposed
[77, 83, 84].

5.2.2 Intra-operative electrical characterization

Different EAMS have been developed during recent years to guide catheter
ablation. One such system is Carto (Biosense Webster, Haifa, Israel). It uses
magnetic fields to track the position and orientation of the catheter. When
the catheter is properly positioned, it allows the electrical activity at its tip
to be recorded; then, based on the tracked position of the catheter tip, the
system shows a spatial reconstruction of the mapped cavity, also providing
the electrical signals recorded. It is also possible to use an additional soft-
ware module that allows pre-operative images to be integrated for a better
visualization and interpretation of the acquired information.

During the intervention, it is necessary to accurately locate and char-
acterize the scar tissue to find the conducting channels responsible for the
VT, which are the ablation target. Mapping during stable rhythm allows
the characterization of the arrhythmogenic substrate. After the acquisition,
different electrical parameters are used to identify the ablation target, such as
the maximum bipolar and unipolar voltages, and the local activation time.
Scar core, border zone and healthy tissue can be classified using voltage
thresholds. However, there are no standard thresholds that can be used for
all patients [54], which makes the cardiologist’s expertise a key factor in a
successful intervention. In addition, the data obtained from an EAMS have
several limitations for a precise characterization of the arrhythmogenic sub-
strate (i.e. far-field effect, time-consuming, poor tissue contact).

5.2.3 Intra-operative mechanical characterization from EAM
data

Other types of information, such as myocardial mechanics, can also be con-
sidered to better characterize the scar [18] and, therefore, to improve the
result of the ablation procedure. It is possible to assess cardiac mechanics
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during the intervention by using catheter tracking information to estimate
cardiac contractility, as presented in Chapter 4 and in [16]. NOGA (Biolog-
ics Delivery Systems Group, Cordis Corporation, Irwindale CA, USA) was
developed to estimate cardiac mechanics for tissue viability assessment. A
technique to integrate electrical and motion information was described in
[17] as part of this system and different clinical applications were proposed
in [18]. In Chapter 4, a methodology to estimate 3D endocardial motion and
deformation fields from electro-anatomical data and a pre-operative image
was proposed.

The limitations of the aforementioned methods are related to the accu-
racy of the catheter tracking system and the presence of components in the
recorded motion signals that are not directly related to cardiac motion (i.e.,
motion related to respiration commented in Chapter 4).

5.2.4 Integration of multi-modal information

Even though scar tissue can be characterized from different information
sources, all of them have some limitations. In addition, the results obtained
from different sources are based on different tissue properties, so the shape
and extent of the scar identified using each modality is not necessarily the
same [54, 55, 56].

The information from the different sources could be considered together
for a better characterization of myocardial tissue. In [56, 76], a correlation
between the conducting channels inside the scar detected by DE-MR and
EAMS was found. In [15], it was shown that integrating electrical and me-
chanical information provided better results than using each type of infor-
mation separately. In this chapter, a framework is presented where these
three information sources (i.e., tissue viability from DE-MR, electrical and
motion information from EAM data) are integrated for multi-modal left-
ventricular myocardial tissue characterization.

5.3 Methods and procedures

The presented framework has a modular design, integrating three different
modules to support the process of scar characterization: cardiac segmen-
tation, image-based characterization and electrical/mechanical characteri-
zation from the data recorded with an EAMS. These modules were inte-
grated in GIMIAS (www.gimias.org) [85], which is a workflow-oriented
open-source environment that can be extended through the development of
problem-specific plug-ins. The implementation was done in the C++ lan-
guage.
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Figure 5.1: (a) Layered architecture of GIMIAS. The Plugin layer is on the top
and plugins can interoperate through the elements at the framework layer. The
Third Party layer is at the bottom, to which all modules have access. (b) Presented
pipeline. Both endocardium and epicardium meshes are segmented from DE-MR
images using the cardiac segmentation module. The output meshes are used by the
image-based characterization module to characterize the scar based on voxel inten-
sities. The segmented endocardium is also used, together with electro-anatomical
mapping data, for electrical and mechanical characterization of the left ventricle.
Color image in the Appendix, page xxix.

The layered architecture of GIMIAS is represented in Figure 5.1 (a).
Each of the modules for scar characterization is located at the Plugin Layer
and can be used independently of the others. Meshes, images, signals or
any type of information are attached to the main data tree and are directly
accessible by any other module. Figure 5.1 (b) shows a schematic describing
how the presented modules inter-operate. In the following sections, each of
the modules for scar characterization will be presented.

5.3.1 Cardiac segmentation

The cardiac segmentation module provides algorithms for a semi-automatic
segmentation of 3D+t images of the heart from different modalities. The
underlying methodology is the same for all modalities, which brings a great
advantage when integrating multiple sources of image data.

The method uses a deformable model that encodes statistical informa-
tion about the shape of the heart based on a Point Distribution Model (PDM).
The PDM was built from 134 patients in 15 cardiac phases, totaling 2010
training volumes [86, 87]. The segmentation algorithm has been trained and
evaluated on CT [86], SPECT [88], 3D US [63] and MR [89] datasets.

To segment the left ventricle, the user sets three landmarks in the ima-
ges: one at the center of the aortic valve, one at the center of the mitral
valve and another one at the apex. The software positions and scales the
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average shape in the PDM based on these three landmarks. This PDM con-
tains both the endocardium and the epicardium, and acts as a template that
is adapted to the geometry of each patient’s heart [61]. Manual corrections
can be performed to fix possible errors in the results from the automatic
processing. These corrections can be applied either freely or by imposing
statistical constraints.

5.3.2 Image-based characterization

The second module in the pipeline was designed for scar characterization
from DE-MR images. It needs the model of the left ventricle to be seg-
mented using the cardiac segmentation module as an input. This module
divides the segmented ventricle into a number of layers that can be selected
by the user from the endocardium to the epicardium, obtaining a 3D shell
for each of the layers. One signal intensity map at each layer is obtained
by summing the intensity of all the voxels between neighboring layers, as
explained in [73]. This information is then projected onto each shell.

Scar areas can be differentiated from healthy myocardium based on the
distribution of the intensities in the image, since scar tissue appears brighter
in DE-MR images. Moreover, scar core and border zone can also be iden-
tified using thresholds, as previously reported in [56]. Based on this study,
areas with signal intensities higher than 60% of the maximum are classi-
fied as scar core, while areas with signal intensities lower than 40% of the
maximum are classified as healthy tissue. The remainder of the tissue is
considered as border zone. However, since image artifacts may affect the
intensity range in the image, these thresholds may need to be adjusted ma-
nually. Finally, this threshold-based classification can be visualized in 3D
through color-coded maps in every transmural shell. Figure 5.2 shows one
example of segmentation of a left ventricle with scar tissue characterized
based on image intensity levels using the presented framework.

5.3.3 Electrical / Mechanical characterization

The third module in the pipeline allows both electrical and mechanical charac-
terization of the tissue using EAM data and a left ventricle model segmented
using the cardiac segmentation module. In particular, EAMs imported from
the Carto system are used.

This module allows electro-anatomical data to be loaded and used intra-
operatively in a catheter-guided intervention. It is possible to visualize all
the electrical signals recorded, together with the catheter tracking informa-
tion. The maximum bipolar voltage, maximum unipolar voltage and local
activation time at each point are calculated for electrical characterization
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Figure 5.2: Layers extracted from the left ventricle model segmented with the car-
diac segmentation module. Tissue classification based on image intensities is color
coded. Red represents dense scar tissue, green represents viable tissue (border
zone) and purple represents healthy myocardium. Color image in the Appendix,
page xxx.

of the tissue. The trajectory of the catheter (which is in contact with the
endocardium) during the acquisition of the local electrograms can also be
visualized (see Figure 5.3).

The cloud of points acquired during the intervention can be registered
to the endocardial surface extracted from the cardiac segmentation module.
This is done by selecting at least three landmarks in both the surface and
the cloud of points. Then, an Iterative Closest Point (ICP) algorithm [62]
can be used to improve the registration results. If ventricle segmentation is
used intra-operatively to guide the intervention, it is also possible to load
the transformation matrix calculated intra-operatively, getting the same re-
gistration used during the intervention. After registration, all the electrical
parameters on the endocardial surface can be projected and interpolated.
They can also be projected into any of the different layers with scar in-
formation obtained from DE-MR images, allowing the visualization of the
information from both sources on the same surface.

Once the ventricle shape and the points from the EAMS are registered,
it is also possible to estimate endocardial motion and deformation using the
method presented in Chapter 4. This method extracts the catheter trajecto-
ries during one cardiac cycle and synchronizes the motion signals of all the
points acquired. Then, catheter trajectories are projected into the endocar-
dial mesh using a bilinear atlas to help interpolate motion in the areas where
this information is not available. The result is a 3D+t endocardial mesh
where both displacement field and directional strains are also calculated,
providing mechanical information at each time point.
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Figure 5.3: Electrical characterization of the tissue. EAM points are registered to
the left ventricle endocardium. Electrical parameters derived from the recorded
electrograms are interpolated on the mesh. The image shows the maximum bipo-
lar voltage color coded. Purple color represents healthy tissue ( > 1.5 mV ) and
red color represents dense scar (< 0.5 mV ). The information is also represented
using the 17-segments model proposed by the American Heart Association. Bipo-
lar, unipolar electrograms and superficial ECG (lead I) are also shown in the upper
left corner for one selected point. Color image in the Appendix, page xxxi.

Finally, all the information can be visualized into the 17-segments model
proposed by the American Heart Association (AHA) [49]. Curves showing
the evolution of displacement and strain can also be obtained and exported.
As an illustration, Figure 5.3 shows a cloud of EAM points registered to a
left ventricle segmentation, together with the electrical scar characterization.

5.3.4 DE-MR image acquisition protocol

All patients included in the study underwent a DE-MR exam prior to the
ablation procedure (median 2 days, interquartile range 1 - 6 days). A
3-Tesla scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen,
Germany) equipped with advanced cardiac-dedicated software and a car-
diac 12-element phased array coil was used. Patients were instructed to
maintain shallow breathing during the acquisition. Seven minutes after in-
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travenous administration of gadodiamide-DTPA (Omniscan R©, Amersham
Health) at a dose of 0.2 mmol/kg, a whole-heart, high spatial resolution,
DE-MR study was conducted using a free-breathing, navigator-gated, 3D
inversion-recovery, gradient echo technique [90]. The 3D slab was acquired
in the transaxial direction. Slice thickness was 1.4 mm, with no gap between
slices. The field of view (FOV) was set to 360 mm and matrix size was kept
at 256 x 256 pixels to yield an isotropic spatial resolution of 1.4 x 1.4 x 1.4
mm. Image acquisition was ECG-gated to end-diastole to minimize cardiac
motion. A standard delayed-enhanced dataset was obtained by applying a
2D IR-TurboFLASH sequence in sequential 5 mm slices with no gap be-
tween them, to cover both ventricles in the short-axis orientation in addition
to the 2-, 3-, and 4-chamber views.

5.3.5 Electrophysiology and substrate mapping

The electrophysiology study was performed under conscious sedation. A
tetrapolar diagnostic catheter was positioned at the right ventricular apex.
Trans-septal or retro-aortic approaches were used for left ventricular access.
An endocardial high-density 3D electro-anatomical bipolar voltage map of
the left ventricle was obtained during stable sinus rhythm using the Carto
system. Standard voltage thresholds (< 0.5mV for the core and < 1.5mV
for the border zone) were used to define the scar on the EAM. The con-
ducting channels on the EAM were visually identified as: (i) corridors of
border zone (maximum bipolar voltage between 0.5 and 1.5 mV) within
scar core areas or between a scar core area and the mitral annulus [91],
or (ii) late potential channels. The latter were defined as regions with 2 or
more consecutive endocardial electrograms presenting delayed components,
localized in the scar area and connecting with healthy tissue, which are not
possible to visualize using voltage thresholds [92].

5.4 Results

Results from three patients are presented to illustrate the framework’s uti-
lity for catheter ablation planning and treatment. For these three cases, the
left ventricle was segmented from DE-MR prior to the catheter ablation in-
tervention using the cardiac segmentation module. Then, the module for
image-based scar characterization was used to classify the scar core, border
zone and healthy myocardium.

The meshes obtained pre-operatively were used during the intervention
to guide the procedure. The EAMs obtained were then imported into the
module for electrical and mechanical characterization from EAM data. Fi-
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nally, electrical values were projected into the endocardial mesh and ven-
tricular motion was reconstructed.

For each patient, a figure including different measurements obtained by
integrating data using the presented framework is shown: segmentation of
the left ventricle and scar characterization from DE-MR images, maximum
unipolar voltage, maximum bipolar voltage, local activation time recorded
with Carto and projected onto the ventricle shape, and longitudinal strain
estimated at end systole as presented in Chapter 4. In addition, a comparison
between the extension of the scar identified pre-operatively from DE-MR
images and intra-operatively using the bipolar maps was also performed.

5.4.1 Results for Case 1

The first patient analyzed for this study was a 75 year old man with VT as-
sociated with IC. Figure 5.4 shows the results for this patient. In this case, a
scar was identified pre-operatively from DE-MR images in the inferior wall
of the left ventricle. Three areas were identified as conducting channels
and, hence, possible ablation targets. After the electrophysiology study, the
maximum bipolar voltage showed a very homogeneous scar in comparison
with the scar shape obtained from DE-MR images. The scar area defined
using the bipolar voltage map was 39% larger compared to the scar identi-
fied from DE-MR images, while the border zone area was 11% smaller.

The maximum unipolar voltage map showed a shape and extension of
the scar very similar to the one from the maximum bipolar map. The local
activation time showed a conduction delay in the areas around the dense
scar, where electrical impulse was still propagated. As expected, spatially
heterogeneous strain patterns were obtained. In particular, the longitudinal
strain showed no contraction or stretching in the dense scar area while it
reflected contraction in the surrounding areas.

Ablation was performed at the entrance of each one of the conducting
channels identified pre-operatively from DE-MR images, resulting in a non-
inducible arrhythmia and hence, a successful intervention.

5.4.2 Results for Case 2

The results for another patient (male, aged 69, VT with IC) are shown in
Figure 5.5. The DE-MR study showed an infero-septal scar with a wide
longitudinal line of border zone tissue. The bipolar map showed low vol-
tages for the whole scar. The extension of the scar identified with the bipolar
map was 23% larger than the one identified from DE-MR images. In this
case, the bipolar map showed low voltage values for the whole base of the
ventricle, while the scar defined from DE-MR images was only localized in
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Figure 5.4: Information integrated by the framework for a 75-year-old man with
VT associated with IC. In the scar characterization from DE-MR images, red color
represents scar core, purple represents healthy tissue and the rest of the colors repre-
sent border zones according to the signal intensity maps. The electrical information
is represented by the bipolar voltage map, the unipolar voltage map and the local
activation time map. Longitudinal strain calculated at end systole is shown, where
negative values represent contraction and positive values indicate stretching. End-
systolic strain values are represented on the endocardium at end-diastolic phase to
improve visual comparison with the other results. Red spheres represent the abla-
tion targets identified pre-operatively from DE-MR images. Color image in the
Appendix, page xxxii.
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the inferior wall. The border zone area from the bipolar map was 65% larger
compared to results from DE-MR, finding reduced voltage values in a large
area of the ventricle.

The unipolar map showed low voltages for the whole scar, being higher
at the entrance of the line of border zone tissue identified from DE-MR
images. The local activation time presented some heterogeneities at the
entrance of this border zone line, as in the case of the unipolar voltage map.
The longitudinal strain showed reduced contraction in the inferior wall, with
higher contraction at the entrance of the border zone channel identified from
DE-MR images. It is also possible to observe the presence of stretching
areas in the dense scar area.

The points of ablation were situated at the entrance of the corridor of
border zone that was identified from both DE-MR images and the electrical
maps.

5.4.3 Results for Case 3

Figure 5.6 shows the results for the third patient (male, aged 82, VT with
IC). The DE-MR study allowed the identification of a scar in the anterior
wall. The bipolar map showed a dense scar area 57% larger than the area
identified from DE-MR images. On the other hand, the area of border zone
tissue was 33% smaller compared to the results from DE-MR images.

The unipolar map showed very homogeneous low voltage values for
the whole scar. On the other hand, the local activation time showed very
heterogeneous patterns. The longitudinal strain was reduced in the whole
wall, showing some stretching in the apex.

In this case, ablation was performed at the border zone channels iden-
tified from DE-MR images and the local activation time map, as seen from
Figure 5.6.

5.5 Discussion

Three study cases were presented, showing multimodal myocardial tissue
characterization based on different information sources. Results demonstra-
ted the clinical feasibility of the approach and showed that there is a relation
between the shape and extension of the scar identified from the different
sources. However, as expected [55], there are also variations between the
results from the different modalities. In the three cases presented, the exten-
sion of the dense scar area identified using electrical maps was larger than
the dense scar area identified from DE-MR images (range 23% - 57%). It
was possible to identify most of the conducting channels from DE-MR ima-
ges prior to the intervention, although the electrical maps were necessary to
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Figure 5.5: Information integrated by the framework for a 69-year-old man with
VT associated to IC. In the scar characterization from DE-MR images, red color
represents scar core, purple represents healthy tissue and the rest of the colors repre-
sent border zone according to the signal intensity maps. The electrical information
is represented by the bipolar voltage map, the unipolar voltage map and the local
activation time map. Longitudinal strain calculated at end systole is shown, where
negative values represent contraction and positive values indicate stretching. End-
systolic strain values are represented on the endocardium at end-diastolic phase to
improve visual comparison with the other results. Red spheres represent the abla-
tion targets identified pre-operatively from DE-MR images, while gray spheres rep-
resent the ones identified intra-operatively using the electrical maps. Color image
in the Appendix, page xxxiii.
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Figure 5.6: Information integrated by the framework for a 82-year-old man with
VT associated to IC. In the scar characterization from DE-MR images, red color
represents scar core, purple represents healthy tissue and the rest of the colors repre-
sent border zone according to the signal intensity maps. The electrical information
is represented by the bipolar voltage map, the unipolar voltage map and the local
activation time map. Longitudinal strain calculated at end systole is shown, where
negative values represent contraction and positive values indicate stretching. End-
systolic strain values are represented on the endocardium at end-diastolic phase to
improve visual comparison with the other results. Red spheres represent the abla-
tion targets identified pre-operatively from DE-MR images, while gray spheres rep-
resent the ones identified intra-operatively using the electrical maps. Color image
in the Appendix, page xxxiv.
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find all of them, as it can be observed from Figures 5.4-5.6.
Maximum bipolar and unipolar voltage maps showed a similar shape

and extension of the scar. In the case of the second patient, the unipolar
voltage map showed areas with low voltage values that were not identified
by the bipolar voltage map. These differences could be explained because
endocardial bipolar maps give information about subendocardial activation,
while endocardial unipolar voltage maps give transmural information [93].

The local activation time map was able to detect the conducting chan-
nels for the three patients presented, showing delayed activation in compa-
rison to the healthy myocardium. Unipolar and bipolar maps were not able
to distinguish all conducting channels, showing a homogeneous scar core.
Activation maps during sinus rhythm have been recently proposed to better
define the areas of interest during substrate mapping as areas with ventricu-
lar activation after the QRS [92, 94].

The resulting longitudinal strain presented heterogeneous spatial patterns.
For the cases analyzed, stretching areas at end systole were found in the scar
core, with contraction around these areas. Heterogeneities in the scar areas
could be explained by the tethering to adjacent tissue [57], being the con-
traction or stretching due to passive motion. Moreover, the presence of scar
tissue affects the motion of the whole ventricle and thereby its deformation.

The example cases presented showed that the proposed framework is
feasible and potentially useful for the analysis and integration of multi-
modal information for scar characterization. It could be used intra-
operatively for guidance and monitoring of therapy by integrating it with
any EAMS.

The results obtained show the feasibility of the technique in a clinical
setting. They do not constitute, however, a detailed quantitative validation
on the clinical impact of this technique (e.g., in terms of reduction of in-
terventional time or X-ray radiation dose). A prospective study of clinical
impact that includes a randomized population of subjects suffering from
VT and undergoing radiofrequency ablation using this technique and the
standard-of-practice is the natural next step. This work does, however, offer,
as a first step, the preliminary proof-of-concept evidence for such a study.

Furthermore, the presented framework allows annotating both the elec-
trical signals and the visualized meshes. In addition, all the information
used can be exported for subsequent analysis or for research purposes.

A limitation of this framework is that motion and deformation were only
estimated for the endocardium of the left ventricle. The reason is that the
used spatiotemporal atlas only included shape and motion information about
the endocardium of the left ventricle. However, the framework allows incor-
porating information about other cavities. Moreover, this framework could
be extended in multiple ways (including algorithms for predictive analysis,
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automatic detection of conducting channels...).

5.6 Conclusion

A framework for the integrated analysis of DE-MR images, electrical and
mechanical information has been presented. Integrating multi-modal in-
formation can be helpful for interventional guidance and monitoring of ra-
diofrequency ablation procedures where myocardial scar tissue characteri-
zation is required. The three presented example cases show that the rele-
vance of the information extracted from the different sources can vary de-
pending on the patient analyzed (i.e., conducting channels that are visible
in DE-MR images but not in the bipolar and unipolar maps and vice versa).
The framework can also be helpful for research purposes, facilitating the
study of the relation between electrical and mechanical properties of the
tissue, as well as the information obtained from DE-MR images.
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6.1. Conclusions

6.1 Conclusions

The objective of this thesis was to develop methods for the integration of
different types of images and information to characterize cardiac tissue. In
particular:

• In Chapter 2, a method to estimate cardiac motion by integrating B-
mode echocadiography and TD images has been proposed.

• In Chapter 3, an extension of the previous method to estimate cardiac
motion from multi-plane images has been presented.

• In Chapter 4, a method to estimate cardiac motion intra-operatively
using information from an EAMS and a pre-operative image has been
proposed.

• In Chapter 5, a framework integrating tissue viability information
from DE-MR images together with the electrical and motion infor-
mation estimated using EAM data has been presented.

All the presented methods integrate different information sources to im-
prove cardiac tissue characterization with respect to using a single source.
Methods to estimate cardiac motion from image data were proposed in
Chapter 2 and Chapter 3, while the methods presented in Chapter 4 and
Chapter 5 were oriented to interventional planning and guidance, integra-
ting data that are normally used in electrophysiology procedures.

6.2 Overview

In this section, the advances presented in this thesis are summarized, to-
gether with their limitations and future directions of research.

6.2.1 Improved motion estimation from US images

As reported in Chapter 2, many approaches to quantify cardiac motion from
US image sequences have been developed during the last few years. How-
ever, widely used grayscale B-mode US images present some problems (i.e.,
artifacts, reverberations, limited spatiotemporal resolution) that may com-
promise the results obtained from tracking. Although TD images allow an
objective quantification of tissue velocities, they are also affected by the
intrinsic problems of US imaging and they only provide the velocity com-
ponent in the beam direction.
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Since both TD and B-mode echocardiography are tipically acquired in
clinical practice for cardiac motion assessment, a method to use them to-
gether for an impoved cardiac motion estimation has been proposed. Its
advantages are twofold:

1. Two different information sources are used, thus reducing the impact
of the errors that may be present in each of them.

2. The use of a transformation model that is continuous both in space
and time allows using information sources with different spatial and
temporal resolutions without the need of compensating for this diffe-
rence. Hence, it is not necessary to interpolate or discard information,
unlike other methods in the literature [14, 32].

The improvements obtained with the proposed method can be particu-
larly useful in cases where the temporal resolution is important (e.g., stress
echocardiography, cardiac resynchronization therapy...), since TD images
are normally acquired at higher frame rates than B-mode images. In this
thesis, these improvements have been validated using synthetic data and
illustrated using stress echocardiography from real volunteers, which is in-
teresing to understand the relation between cardiac function and functional
capacity during exercise.

Although cardiac motion estimation integrating B-mode and TD ima-
ges showed to be more accurate than using a single modality, its results are
still determined by the quality of the images acquired. In particular, im-
provements are mostly concentrated in the beam direction, so tracking in
the azimuth direction is still compromised by B-mode image quality.

6.2.2 Cardiac motion estimation from multi-plane US images

In Chapter 3, the method presented in Chapter 2 was extended to estimate
cardiac motion in the whole ventricle using multi-plane images. These ima-
ges are acquired interleaved at the same time, so all the information is ac-
quired from the same heart beat. This is an advantage with respect to using
3D volumetric US images, which are reconstructed using information ac-
quired from different cardiac cycles. In addition, multi-plane US images
also allow using quantitative information from TD measurements.

The transformation model was modified so that the low temporal resolu-
tion of the B-mode sequences did not limit the accuracy of the motion field
estimated on the beam direction, where the TD images provide an increased
temporal resolution. This modification is more important when using multi-
plane images than when using 2D US images. In typically acquired 2D US
images, the temporal resolution of the TD image sequence is normally 3
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times higher than the resolution of the B-mode sequences (see Tables 2.2
and 2.3). However, in multi-plane images, this relation is incresed up to 7
times (see Tables 3.2 and 3.3).

The method was validated using a synthetic dataset and its utility to
assess ischemic patients was also illustrated. This is particularly interesting
because this kind of patients often present variable heart rythms and, there-
fore, a high-quality 3D US image cannot be reconstructed with clinically
available US acquisition systems. Although results showed that the method
allows estimating displacement and strain in the longitudinal and radial di-
rections, the circumferential component cannot be estimated, since it corres-
ponds to out-of-plane motion.

6.2.3 Cardiac motion estimation from EAM data

Intra-operative cardiac motion assessment can be useful for guidance pur-
poses. To this end, a method to estimate cardiac motion using catheter po-
sition information recorded during an electrophysiology intervention, to-
gether with a pre-operative image, was proposed in Chapter 4. Because of
the spatially sparse and noisy position information that is available, a cardiac
atlas was used to help the motion estimation process.

The results obtained from the experiments with synthetic data showed
that the proposed method can estimate cardiac motion and strain accurately.
The experiments performed with the real cases showed the added value of
using this method intra-operatively for scar characterization. One advantage
of this approach is that it may help electrophysiologists in decision making
by improving tissue characterization without using additional instruments or
information during the intervention. Furthermore, the method would allow
studying changes in heart motion produced intra-operatively.

A limitation of the method is that the radial strain cannot be estimated,
since only endocardial motion was provided by the EAM data. Furthermore,
it is important to remark that the results highly depend on the quality of
the acquired data. In particular, if points are acquired when the catheter
is not well positioned or if it slides on the endocardial wall, local motion
estimation would be affected and may not be reliable.

6.2.4 Integration of electrical, motion and DE-MR image infor-
mation

In many electrophysiology inteventions, DE-MR image information is used
for interventional planning, while intra-operative electro-anatomical data
are used to assess cardiac electrical activation and make decisions during
the intervention. In Chapter 4, it was shown the the electrical informa-
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tion can be complemented with endocardial motion information estimated
intra-operatively with an EAMS without using any additional device. Since
DE-MR images can also be used intra-operatively for guidance purposes,
a framework integrating tissue viability information from DE-MR, together
with electrical and motion information obtained intra-operatively using an
EAMS was proposed in Chapter 5.

The presented framework provides tissue characterization using infor-
mation of different nature that may be very useful during an electrophysiol-
ogy intervention. It also provides a powerful tool to study how the informa-
tion obtained from the different sources are related.

The benefits of using this framework are constrained by the limitations
of each of the methods used to characterize cardiac tissue from the different
sources (e.g., poor DE-MR image quality leading to segmentation errors,
acquisition errors both in catheter position and electrical signals...). In addi-
tion, possible registration errors between pre-operative and intra-operative
information need to be taken into account.

6.2.5 Outlook and future research avenues

In Chapters 2 and 3, different US image modes (i.e., B-mode and TD) and
different views (i.e., multi-plane US) have been integrated for an improved
cardiac motion estimation. Novel advances in US image aquisition tech-
niques will provide information of higher quality, which would be translated
to more accurate results using the methods proposed in this thesis.

One of the main challenges in cardiac ultrasound imaging is to increase
the temporal resolution of the acquired images. In the proposed approach to
integrate B-mode and TD images for cardiac motion estimation, the tem-
poral resolution was improved in the beam direction (where TD images
provide information). However, it was still constrained by the relatively
low resolution of the B-mode sequence in the azimuth direction. Multi-line
transmit beam forming has proven to provide high quality B-mode images
at high frame rates (about 450 Hz) [95, 96]. The implementation of multi-
line transmit beam forming in comercial ultrasound aquisition systems in
the near future will improve significantly the temporal resolution of the ac-
quired B-mode images. Using sequences with higher number of frames
would translate to results with improved temporal resolution, without modi-
fying the implementation of the methods proposed in this thesis.

The number of frames that is tipically recorded in wide angle acquisi-
tions using commercial systems is not adequate to estimate strain rate reli-
ably [5]. In cases where a high temporal resolution is important (e.g., stress
echocardiography, cardiac resynchronization therapy...), increased number
of frames is achieved by reducing the size of the field of view and making
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different recordings to cover the whole left ventricle. In [97], a preliminary
study showing the feasibility of using multi-line transmit beamforming for
TD image acquisition was presented. In that study, they used this technique
to obtain a wide field of view without reducing the temporal resolution of the
recorded images. This would allow using the proposed methods to exploit
the increased number of frames and estimate the strain rate.

The method proposed to integrate B-mode and TD images could also be
used to integrate other image modalities that are acquired simultaneously. In
paticular, it would be possible use it with phase-contrast MR images [98],
which are acquired together with magnitude images (such as the ones ac-
quired with conventional cine-MR). In this case, it would be necessary to
modify the dissimilarity terms in Eq. 2.4 (page 19) to adapt better to the
properties of the MR image sequences.

Beyond the motion information obtained from US images, other types
of information acquired non-invasively could also be considered for a more
complete characterization of the heart. Images obtained from MR or CT
would provide high-resolution anatomical information compared to the one
that can be extracted from US images. Moreover, improvements in inverse
ECG [99], which consists in estimating the cardiac activity non-invasively
from recorded body surface potentials, would also make possible to add in-
formation about heart’s electrical activation. This information, together with
the motion estimation that can also be obtained non-invasively (as with the
methods proposed in Chapter 2 and Chapter 3), would provide an improved
cardiac characterization with respect to using only image information. In
addition, it would allow analyzing the relation between electrical and me-
chanical events in the heart.

Furthermore, information of different nature, such as electrophysiology
data, catheter position data and DE-MR images, have been integrated in
this thesis to improve cardiac tissue characterization intra-operatively. By
integrating different types of information, a more complete characterization
of the heart was obtained, which may be helpful for decision making during
the intervention.

The spatiotemporal atlas used to estimate cardiac motion in Chapters 4
and 5 only included information about the left ventricle. This could be ex-
tended to consider the right ventricle and the atria, which would allow using
this framework to plan and guide other catheter interventions, such as car-
diac ablation to treat atrial fibrillation. Methods to estimate the quality of
the acquired position signals could also be considered to provide informa-
tion about the confidence in the motion reconstructed.

Novel advances in the acquisition of electro-anatomical maps, such as
fast anatomical mapping using multi-electrode catheters (i.e., Pentaray NAV
catheter, Biosense Webster, Haifa, Israel), reduce considerably the time of
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the intervention. In addition, the improved stability and the synchronous
acquisition of multiple points would improve the quality of the infomation
acquired and, therefore, the performance of the proposed methods. Other
advances reducing the errors in electrical and position measurements from
an EAMS, or increasing DE-MR image quality, would also improve the
accuracy in the results.

In addition, the possibility of using intra-cardiac US images with mo-
dern EAMS improves shape modeling and registration with the points ac-
quired during the intervention [100, 101]. Methods to estimate cardiac mo-
tion from these US acquisitions and to integrate this estimation with the
electro-anatomical data may be explored in the future. Other advances re-
ducing the size of the acquisition devices (i.e., portable US systems) would
also facilitate their use in an environment with limited space, as in an intra-
operative environment. Real-time motion information provided by an ex-
ternal US acquisition system would be very useful to analyze the changes
produced during the procedure and would allow analyzing accurately the
electro-mechanical coupling.
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Appendix: Color figures
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Figure 2.5, page 24: (a) A simulated US frame together with the wireframe of the
mesh from the electromechanical model are represented. Example of TD images
are shown in (b) early systole and (c) early diastole. Colors represent the velocity
in mm/s, which is considered positive when directed towards the transducer.
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Figure 2.6, page 26: Mean errors (circles) and standard deviations (lines) calculated
for the 9 synthetic datasets during one cardiac cycle with the methods summarized
in Table 2.1.
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Figure 2.7, page 27: Mean errors (circles) and standard deviations (lines) calculated
for the 9 synthetic patients during one cardiac cycle with method M1 (red) and
using only B-mode images (blue).
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Figure 2.10, page 29: Displacements (in mm) estimated using only B-mode images
(top row), using B-mode and TD together (middle row) and the difference between
both approaches (bottom row) for one patient at rest.
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Figure 2.11, page 30: Mean difference between displacements (in mm) estimated
using only B-mode and using both B-mode and TD at rest.
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Figure 2.13, page 31: Displacements (in mm) estimated using only B-mode images
(top row), using B-mode and TD together (middle row) and the difference between
both approaches (bottom row) for one patient during exercise.
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Figure 2.14, page 31: Mean difference between displacements (in mm) estimated
using only B-mode and using both B-mode and TD during exercise.
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Figure 3.4, page 46: (a) Mean displacement and (b) strain errors and standard de-
viations for each synthetic case. The crosses in (b) represent the end-systolic strain
errors for each case.
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Figure 3.5, page 47: Absolute value of mean displacement errors (mm) averaged
for all the synthetic cases.

(a) (b)

Figure 3.7, page 49: Example of the 3D interpolation to calculate segmental strain
and displacements for one patient. (a) shows the initial segmented points at each
plane, representing each of the segmentations with a different color. (b) represents
the 3D interpolated shape of the left ventricle.
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