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“Nothing in life is to be feared, it is only to be understood. Now is the time to 
understand more, so that we may fear less.”  

 
 

          Marie Curie 
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BAPTA   1,2-bis(2-aminophenoxy) ethane N,N N’,N’ tetra-acetic acid 

BCL2   B-cell lymphoma 2 

CAF    Caffeic acid 

CAT    Catechol 

CAT HYD   Catechin hydrate  

COX-2   Prostaglandin-endoperoxide synthase 2 

CQ    Clioquinol 

CRIP    Cysteine-rich Intestinal Protein 

DMSO    Dimethyl sulfoxide  

DPPC    1,2-dipalmitoyl-sn -glycero-3-phosphocholine 

DTPA    Diethylene triamine pentaacetic acid 

EDTA    Ethylenediamineteraacetic acid 
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eNOS   Endothelial nitric oxide synthase 

GAL    Gallic acid 
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Resum 
 
 
El zinc, és el metall de transició més important a l’organisme després del ferro. Fa 

aproximadament 75 anys que es van descobrir les primeres evidències en la importància 

del zinc i la seva relació amb el correcte funcionament biològic sobre certs tipus de 

microorganismes. Posteriorment, ara fa varies dècades, es va establir la seva importància 

biològica en humans fins al punt d’ esdevenir un micronutrient essencial per a la vida. Hi 

ha una gran varietat de proteïnes directament dependents de zinc, així com  moltes altres 

on aquest element és de gran importància pel la seva estructura i funcionalitat. La correcta 

regulació i el manteniment d’unes concentracions dintre d’un rang fisiològic és un dels 

punts clau pel bon funcionament de l’organisme. Aquesta regulació ve donada 

principalment mitjançant la coordinació d’elements clau en la homeòstasi del zinc com ara 

transportadors específics pel zinc (importadors i exportadors), la metal·lotioneïna i factors 

de transcripció específics.  Tant l’excés com el dèficit en els nivells de zinc poden causar 

processos patològics, de vegades irreversibles. Així mateix, s’ha observat que aquest 

metall té propietats farmacològiques beneficioses en vers patologies com ara malalties 

immunològiques, síndrome metabòlic, diabetis o certs tipus de càncer, induint la mort 

cel·lular programada (apoptosis) a les cèl·lules tumorals.  

 

La singularitat del zinc, a diferència d’altres metalls com el ferro o el coure, va més enllà 

del seu paper com a cofactor d’un gran nombre d’enzims i proteïnes ja que a més, actua 

com a senyalitzador i transmissor d’informació d’una manera similar a com ho fa el calci o 

altres segons missatgers. Concentracions al rang nanomolar són suficients per activar 

certes vies metabòliques, i per tant pot ser de gran importància conèixer i modular la 

concentració de zinc d’una manera controlada.  És en aquesta nova etapa on més èmfasi 

s’està donant en les investigacions més recents, ja que la senyalització cel·lular pot ser 

utilitzada com una nova eina terapèutica pel tractament de diverses patologies. Gràcies als 

fluorocroms específics pel zinc, aquest metall pot ser fàcilment detectat i quantificat. De 

fet, s’han descobert i dissenyat una gran varietat de fàrmacs sintètics capaços 

d’interaccionar amb el zinc, formant complexos i modulant els nivells de zinc intracel·lular.  

 

Existeixen compostos naturals d’origen vegetal capaços d’interaccionar amb el zinc, tot i 

que encara no se sap del cert quina importància biològica podrien tenir aquests 
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complexos. Es tracta dels compostos fenòlics, més comunament anomenats polifenols, 

metabòlits secundaris de les plantes, distribuïts de manera molt abundant al regne 

vegetal. Es tracta de compostos que es formen com a mecanismes de defensa de les 

plantes en vers factors d’estrès, i que un cop consumits a la dieta aporten beneficis sobre 

la salut. El consum d’aquest compostos fito químics ha estat estudiant durant molt de 

temps, principalment arran de la paradoxa asiàtica i francesa respectivament. La primera 

fou descrita per la evidència que hi havia entre el consum de te verd i la incidència de 

càncer pulmonar als països asiàtics, ja que es tracta d’una de les regions que més 

cigarrets consumeix, però sorprenentment amb més baixa incidència de càncer. Es pensa 

que pot ser degut a l’alt consum de te verd que conté la seva dieta, i que els aporta una 

gran quantitat de polifenols de manera constant. Per altra banda, la paradoxa francesa 

que primer es va descriure per la població de França, però que actualment engloba a la 

majoria de països mediterranis, destaca la baixa incidència de malalties coronàries tot i el 

consum d’una dieta alta en greixos, la falta d’exercici físic y el consum de tabac. 

L’explicació d’aquest fenomen es deu, majoritàriament,  al consum regular de vi que inclou 

la dieta francesa, ja que aquest, conté altes quantitats de polifenols, juntament amb els 

antioxidants continguts a l'oli d'oliva i l'alt consum de fruites i verdures que presents a la 

dieta mediterrània. És en aquest punt on comença la recerca a escala global per tal de 

descobrir els beneficis dels polifenols, i de quina manera actuen. Actualment se sap del 

cert que el polifenols actuen com a grans antioxidants, encara que recentment s’han 

descrit com a compostos que prevenen i milloren els símptomes de malalties cròniques 

com ara la síndrome metabòlica. També actuen com a antivirals, antibacterians, 

antiinflamatoris o inclús anticancerígens. 

 

Actualment s’han descrit més de 8000 compostos fenòlics, que segons la seva estructura 

química s’han classificat en diversos sub-grups: flavonoids, el grup més abundant i més 

estudiat, àcids fenòlics, lignans, estilbens i altres compostos fenòlics. La gran majoria de 

Polifenols són absorbits a l’intestí prim, arribant a plasma sanguini on es distribueixen pels 

diferents òrgans i teixits, de vegades inclús travessant la barrera hematoencefàlica i 

arribant al cervell. Petites concentracions de polifenols, també al rang nanomolar son 

suficients per modular vàries vies metabòliques, fent de la dieta un factor primordial alhora 

de prevenir o tractar alguna patologia de tipus crònic. 
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Estudis previs realitzats al nostre grup de recerca van demostrar que els polifenols eren 

capaços de modular l’expressió de gens centrals en la homeòstasi de zinc. En un 

experiment in vivo amb rates, aquestes foren tractades amb una dosis oral aguda de 

extracte de procianidines de pinyol de raïm (GSPE) on posteriorment es va analitzar el 

teixit hepàtic i es va observar un descens significatiu en l’expressió del gen de la 

metal·lotioneïna (MT). Aquest fenomen va fer pensar que potser hi hauria algun tipus de 

relació més estreta entre els polifenols i el zinc.  

 

En estudis posteriors in vitro fets en una línia cel·lular tumoral d’hepatòcits humans 

(HepG2), aquests se’ls va tractar amb GSPE, així com amb un extracte pur de galat 

d’epigalocatequina (EGCG), compost principal del te verd. Els resultats van mostrar que 

ambdós tractaments exerceixen efectes similars, reduint els nivells intracel·lulars de zinc 

total, disminuint l’expressió de la MT així com el del transportador ZnT1 però incrementant 

els nivells de zinc làbil citoplasmàtic. Un altre experiment in vitro, en aquest cas realitzat 

en una línia cel·lular tumoral de ratolí (Hepa 1-6), les cèl·lules foren tractades amb dos 

compostos purs, quercetina (QCT) i EGCG. Es tracta de dos flavonoids, les propietats 

fisicoquímiques dels quals són força diferents; mentre EGCG és un compost altament 

hidrosoluble, QCT es molt insoluble en aigua. Els resultats van mostrar que EGCG 

segueix exercint efectes similars als observats en cèl·lules HepG2, augmentant el zinc 

làbil, però disminuint el zinc total i l’expressió dels gens MT i ZnT1, mentre que amb 

quercetina es va veure un increment en la concentració de zinc làbil citoplasmàtic de la 

mateixa manera que el EGCG, però també un increment en la concentració de zinc total, 

així com l’expressió gènica de MT i ZnT1. 

 

Aquesta tesis doctoral es va centrar en l’estudi de la relació entre el zinc i els polifenols, 

principalment QCT i EGCG, i de quina manera són capaços d’interaccionar i/o modular de 

manera combinada les diverses vies metabòliques a nivell d’expressió de gens centrals en 

la homeòstasi del zinc, així com determinar si exerceixen una modulació diferencial en 

quant a expressió proteica. Tanmateix, es va voler determinar el mecanisme pel qual els 

polifenols incrementen el zinc làbil citoplasmàtic, així com observar de quina manera són 

capaços d’afectar la viabilitat cel·lular un cop combinats amb el zinc. Tots els experiments 

realitzats in vitro van ser duts a terme amb cèl·lules Hepa 1-6. 
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Observant la capacitat dels polifenols per modular la concentració de zinc làbil 
citoplasmàtic, descrit com a zinc de senyalització, vam proposar determinar si QCT i 

EGCG són capaços d’interactuar amb cations de zinc no només afectant l'homeòstasi del 
zinc, sinó també la senyalització cel·lular en cèl·lules Hepa 1-6. Està àmpliament descrit 
ambdós compostos (polifenols i zinc) exerceixen alguns dels efectes beneficiosos en la 
prevenció i/o tractament de diverses malalties cròniques a través de la modulació de 
múltiples vies metabòliques compartides, com ara Akt, implicada en múltiples processos 
cel·lulars, com la síntesi de proteïnes, supervivència cel·lular, creixement, proliferació, 
angiogènesi, metabolisme de la glucosa, homeòstasi cardiovascular, neuroprotecció o 
apoptosi. Els nostres resultats descriuen com la QCT i EGCG, un cop combinats amb el 
zinc, exerceixen diferents patrons de fosforilació d’Akt en comparació amb els compostos 
individuals, confirmant la funció de senyalització, així com la modulació diferencial de 
certes vies metabòliques a través del complex polifenol-zinc. Els resultats també van 
suggerir que tant QCT com EGCG augmenten les concentracions intracel·lulars de zinc 
làbil d'una manera similar a la dels ionòfors de zinc com ara el Piritione o el Clioquinol; és 
a dir, mitjançant la formació de complexos amb zinc capaços de travessar la membrana 
plasmàtica, que un cop dins de la cèl·lula, es dissocien alliberant els cations de zinc pel 
citoplasma. 
 
Per determinar si els flavonoides actuen com a ionòfors de zinc, transportant els cations a 
través de la membrana plasmàtica, QCT, EGCG, Clioquinol (CQ), tant aïllats com en 
combinació amb zinc, es van afegir a liposomes unilamelelars de dipalmitoil-
fosfatidilcolina/colesterol carregats amb el fluorocrom específic per zinc i impermeable a la 
membrana cel·lular FluoZin-3. Tan sols les combinacions dels quelants combinats amb el 
zinc van provocar un ràpid augment en la fluorescència del FluoZin-3 dintre dels 
liposomes, demostrant l'acció ionòfora de QCT, EGCG, i CQ en un sistemes de 

membranes lipídiques.  
 
Un cop confirmada l'activitat ionòfora de QCT i EGCG, es va presentar un sistema 
liposomal eficaç per a la detecció de l'activitat ionòfora pel zinc dels polifenols més 
rellevants. A més, també es va determinar la força de quelació que tenen aquests 
compostos pel de zinc, en un assaig de competició basat en l'apagament de la 
fluorescència dependent de zinc emesa pel complex zinc-FluoZin-3. Finalment, es va 
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demostrar la correlació entre la capacitat de quelació i l'activitat ionòfora, proporcionant un 

millor coneixement sobre la importància de la conformació estructural envers l’activitat 

biològica. Els assajos desenvolupats poden ser utilitzats com una eina d'alt rendiment per 

l’anàlisi de les diferents famílies de polifenols. 

 

La quercetina, un quelant de metalls i ionòfor de zinc, va mostrar efectes diferencials sobre 

la viabilitat de cel·lular un vegada combinat amb zinc. Els canvis morfològics van suggerir 

que aquesta combinació podria estar induint apoptosi sobre la línia cel·lular tumoral Hepa 

1-6. La fragmentació de l'ADN va ser confirmada mitjançant l'electroforesi en gel. 

 

Per concloure, es podria dir que  els polifenols podrien ser afegits a un nou arsenal de 

fàrmacs per la modulació de l'homeòstasi del zinc, així com la regulació de les vies 

biològiques senyalitzadores dependents d’aquest. 
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Summary 
 
 
Zinc is the most important transition metal after iron in the body. Approximately 75 years 

ago was discovered the first evidence on the significance of zinc and its relation to the 

proper functioning of certain types of biological organisms. Subsequently, several decades 

ago established its biological significance in humans, becoming an essential micronutrient 

for life. There are a variety of proteins directly dependent on zinc, as well as many others 

where this element is of great importance for its structure and functionality. The correct 

regulation and maintenance of concentrations within the physiological range is one of the 

key points for proper functioning of the body. This regulation comes mainly through the 

coordination of essential elements for the zinc homeostasis, such as specific transporters 

(importers and exporters), the metallothionein, and other specific transcription factors. Both 

excess and deficient levels of zinc can cause pathological processes, sometimes with 

irreversible consequences. It was also observed that this metal exerts beneficial 

pharmacological properties against pathological conditions such as immune disorders, 

metabolic syndrome, diabetes, and certain cancers, inducing programmed cell death 

(apoptosis) in tumoral cells. 

 

The distinctiveness of zinc, contrasting other metals such as iron or copper, beyond its role 

as a cofactor of many enzymes and proteins, it can act as a transmitter of information in a 

similar way as does calcium or other second messengers. Concentrations in the 

nanomolar range are enough to activate certain metabolic pathways. Therefore, it would be 

critical to know and to modulate the concentrations of zinc. It is in this new era where more 

emphasis is being given to the latest investigations, since cell signaling could be used as a 

new therapeutic tool for the treatment of various diseases. Due to specific zinc 

fluorophores, it can be easily detected and quantified. In fact, several synthetic drugs have 

been discovered and designed able to interact with zinc, forming complexes and acting 

together, modulating the intracellular zinc amounts.  

 

There are natural plant derived compounds able to interact with zinc, although it remains 

unknown the biological importance of those complexes. Those are the phenolic 

compounds, commonly known as polyphenols, secondary plant metabolites, widely 

abundant and distributed in the plant kingdom. These compounds are formed as a defense 
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mechanism of plants against external stress factors, providing health benefits when 
consumed in the diet. The consumption of this phytochemicals has been studied for a long 

time, mainly since the description of the Asian and French paradox respectively. The first 
one describes how despite the high consumption of tobacco, Asian population have the 
lowest incidences of arteriosclerosis and lung cancer per capita as a result of the high 
consumption of green tea in this region, which contains high amounts of polyphenols. On 
the other hand, the French paradox was first described because of the French population, 
however now encompasses most Mediterranean countries. It denotes the low incidence of 
heart diseases despite the consumption of a high fat diet, lack of physical activity and 
regular consumption of tobacco. One of the features that has been emphasized relates to 
the high consumption of red wine in the French population and the question as to whether 
the phenolic antioxidants from this dietary source contribute to the protection from coronary 
heart disease, beside with the antioxidants consumed in the olive oil and the high intake of 
antioxidant nutrients from fresh fruits and vegetables found in the Mediterranean diet. This 
is where the research began on a global scale in order to discover the activity of 
polyphenols, and their benefits. At the present time, their activity as antioxidants has been 
well established. However, recently studies have described them as preventive and 
improver compounds against chronic diseases such as the metabolic syndrome. Moreover 
it has been strongly suggested their function as antiviral, antibacterial, anti-inflammatory or 
anticancer agents. Nowadays, more than 8000 phenolic compounds have been identified 
and described containing several sub-groups according to their chemical structure, such as 
flavonoids, phenolic acids, lignans, stilbenes and other polyphenols. Most of polyphenols 
are absorbed in the small intestine, reaching blood plasma and distributed to different 
organs and tissues, sometimes even crossing the blood brain barrier. Low concentrations 
of polyphenols, also in the nanomolar range, are enough to modulate several metabolic 
pathways, making the diet a major factor in preventing or treating different chronic 

pathologies. 
 
Previous studies in our research group showed that polyphenols are able to modulate the 
expression of central zinc homeostasis genes. Moreover, in an in vivo experiment, rats 
treated with an oral acute dose of a grape seed procyanidin extract (GSPE), the liver tissue 
of which was later analyzed, presented a significant down-regulation in the gene 
expression of metallothionein (MT). This phenomenon made us think that maybe there 
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would be some deeper relationship between polyphenols and zinc. Further in vitro studies 
in a human hepatoma cell line (HepG2), these were treated with a procyanidin extract 

(GSPE), as well as with epigallocatechin-3-gallate (EGCG), the main green tea flavonoid. 
The results showed that both treatments exert similar effects, reducing the intracellular 
amounts of total zinc, down-regulating the expression of MT and the zinc transporter ZnT1 
but increasing the intracellular labile zinc concentration. In a mouse hepatoma cell line 
(Hepa 1-6), cells were treated with two pure compounds, quercetin (QCT) and EGCG, two 
flavonoids with different physicochemical properties; EGCG is a highly water-soluble 
compound, while QCT is highly insoluble in water. The results showed that EGCG still 
exert similar effects to those observed in HepG2 cells, increasing the labile zinc levels, 
down-regulating the MT and ZnT1 gene expression and reducing the total zinc 
concentrations. On the other hand, QCT increases the intracellular labile zinc 
concentrations, as EGCG, but also increases the total zinc amounts and MT gene 
expression and ZnT1.  
 
This thesis is focused on the study of the relationship between zinc and polyphenols, 
principally QCT and EGCG, and their ability to interact and form complexes in order to 
modulate several metabolic pathways, as well as zinc homeostasis genes and the 
differential effects on protein expression. Conversely, we wanted to determine the 
mechanism by which polyphenols increase the intracellular labile zinc, and how they affect 
cell viability once combined with zinc. All in vitro experiments were carried out with Hepa 1-
6 cell line. Observing the ability of polyphenols to modulate the labile cytoplasmic zinc 
concentration, which has been described as a signaling pool of zinc, we proposed to 
determine whether QCT and EGCG interacts with zinc cations not only affecting zinc 
homeostasis, but also affecting cellular signaling in Hepa 1-6 cell line. It has been widely 
reported how both dietary phenolic compounds and zinc exert their beneficial effects on 

health, preventing and ameliorating several chronic diseases through the modulation of 
multiple and shared metabolic pathways, such as Akt, which is involved in multiple cellular 
processes like protein synthesis, cell survival, growth, proliferation, angiogenesis, glucose 
metabolism, cardiovascular homeostasis, neuroprotection or apoptosis.  
 
Our results described that QCT and EGCG once combined with zinc, exert different Akt 
phosphorylation patterns compared to individual compounds, confirming the signaling 
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function and differential modulation of metabolic pathways by polyphenols-zinc 
complexation. Results also suggested that both QCT and EGCG increase intracellular 

labile zinc concentrations in a similar way to the well known ionophores Pyrithione (Pyr) or 
CQ, i.e. by forming complexes with zinc that are able to traverse the plasma membrane 
and, once inside the cell, dissociate liberating zinc cations to the cytoplasm. 
 
To determine whether flavonoids act as zinc ionophores, transporting zinc cations through 
the plasma membrane, QCT, EGCG, and the ionophore drug Clioquinol (CQ), alone and 
combined with zinc, were added to unilamellar dipalmitoylphosphocholine/cholesterol 
liposomes loaded with membrane-impermeant FluoZin-3, a specific zinc fluorophore. Only 
the combinations of the chelators with zinc triggered a rapid increase of FluoZin-3 
fluorescence within the liposomes, thus demonstrating the ionophore action of QCT, 
EGCG, and CQ on lipid membrane systems.  
 
Once confirmed the ionophore activity of QCT and EGCG, we presented an efficient 
liposomal system for screening the zinc ionophore activity of a selected library consisting 
of the most relevant dietary polyphenols. In addition, the zinc chelation strength of the 
polyphenols was also tested in a competition assay based on the fluorescence quenching 
of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation 
between the chelation capacity and ionophore activity was demonstrated, thus underlining 
the sequestering or ionophoric activity that the phenolic compounds can display, providing 
better knowledge of the importance of the structural conformation versus their biological 
activity. Furthermore, the developed assays can be used as tools for rapid, high-throughput 
screening of families of polyphenols. 
 
Quercetin, a metal chelator and zinc ionophore, exert differential effects on cell viability 

when combined with zinc. Morphological changes suggest that this combination might be 
inducing apoptosis to the mouse hepatoma Hepa 1-6 cell line. DNA fragmentation has 
been confirmed by electrophoresis analysis. 
 
Conclusively, polyphenols could be added to a new arsenal of drugs for the modulation of 
zinc homeostasis and the regulation of zinc dependent biological signaling pathways. 
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1. Zinc 
 

1.1 Zinc History and background 
 
 
Zinc (Zn), belongs to group II B of the transition metal elements, with an atomic number 30 
and atomic weight of 65.39. It was firstly isolated by the German chemist Andreas 
Sigismund Marggraf in 1746, and named by the Swiss-German physician and alchemist 
Theophrastus Bombastus von Hohenheim, more commonly known as Paracelsus. It is the 
most important transition metal after iron, and during the last decades has been classified 
as an essential micronutrient present in all tissues, organs and fluids in the organism 
(Kozlowski et al. 2009). The importance of zinc was first reported in 1869 due to its 
importance in the normal growth of the fungus Aspergillus niger, the common bread mold 

(Raulin 1869). Few years later, in the 1930’s decade, several reports confirmed the 
essentiality of zinc as a nutrient for the normal development of mice and rats (O’Dell & 
Reeves 1989). In 1939 Keilin and Mann established for the first time the importance of zinc 
in the activity of an enzyme. They demonstrated that carbonic anhydrase was a zinc 
protein compound, where Zn formed the active site of the enzyme. This establishes the 
basis of the physiological function of zinc in living organisms (Keilin & Mann 1940). It 
passed more than fifteen years till the discovery of a second zinc dependent enzyme, the 
bovine pancreatic carboxypeptidase (Prasad et al. 1961). Its essentiality was also 
demonstrated for pigs in 1955 (O’Dell & Reeves 1989). Zinc was not recognized to be 
important for human life until 1963 when deficiency of this transition metal was discovered 
as a major contributing factor in nutritional dwarfism syndrome and hypogonadism (Prasad 
et al. 1961). Furthermore, it was demonstrated that the zinc content of whole blood was 
subnormal in cancer patients, with a mean decrease of about 20%, suggesting that zinc 
dishomeostasis could be critical in the correct working of immune system (Addink & Frank 
1968). 
The beginning of a second phase, and a milestone in the biochemistry of zinc, was the 
discovery of zinc fingers (Miller et al. 1985). It extended the role of zinc in biology 
tremendously as it demonstrated that zinc is not only important for protein structure, but for 
organizing protein domains that interact with proteins and other biomolecules, such as 
DNA, RNA, and lipids. The third and most recent level of knowledge in the biological zinc, 
began when it became evident that Zn ions exert roles beyond those as a permanent 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

30 

cofactor in proteins and may function in information transfer as signaling ions in cellular 
regulation in a similar way of calcium ions. This advances only became possible with the 
development of new tools, such as chelating and fluorescent agents when binding zinc, 
and allow measurement of Zn ions in cells with a sensitivity exceeding that of most other 
analytical techniques (Maret 2013). (Fig.1) The chemical properties of zinc different from 
other transition metals, such as copper and iron which display several different oxidation 
states in biological systems, is that zinc exists as a redox inert Zn2+ cation, which does not 
undergo redox reactions at physiological redox potentials (Eide 2011; Laitaoja et al. 2013). 
Additionally, zinc can induce the expression and maintaining the levels of potentially 
radical scavenging proteins such as metallothionein (MT), the major zinc binding protein 
associated with zinc homeostasis (Quesada et al. 2011), DNA protection, oxidative stress, 
and apoptosis (Higashimoto et al. 2009; Tapiero & Tew 2003). It can act through 

stabilization of cell membranes (Powell 2000) or as a structural component of antioxidant 
enzymes (Klotz et al. 2003). Although it has been studied for many decades, the molecular 
bases are still not so clear.  
 
During the past 40 years, zinc role in biological processes has been extensively studied. 
Nevertheless, there is still a long way to go in order to elucidate the effects and molecular 
mechanisms by which this transition metal exert its activity, and also to find the answers 
about its importance in health and disease. 
 

 

Figure 1. Chronology of events in Zinc: 1) the recognition that zinc is essential for all forms of 
life, 2) the detection of zinc in enzymes and other proteins as a basis of its catalytic and 
structural functions and 3) a role of zinc ions in cellular regulation. (Maret 2013)   
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1.2 Sources and metabolism 
 
 
There are three major routes of entry for zinc into the human body; by inhalation, through 
the skin, or by ingestion, which is the main way of zinc uptake via dietary sources 
(Nickolette 2005). Each exposure type affects specific parts of the body and allows the 
uptake of different amounts of zinc (Plum et al. 2010).  
Zinc can be found in several food sources, specially in red meats, sea products, cocoa, 
dairy products and nuts (Dreosti 1993). Lean red meat, whole-grain cereals, pulses, and 
legumes provide the highest concentrations of zinc 25-50 mg/kg (380-760 μmol/kg) raw 
weight. Processed cereals with low extraction rates, polished rice, and lean meat or meat 
with high fat content have a moderate zinc content 10-25 mg/kg (150-380 μmol/kg). Fish, 

green leafy vegetables, fruits, roots and tubers are only modest sources of zinc <10 mg/kg 
(<150 μmol/kg) (20). Inositol hexaphosphates and pentaphosphates (phytic acid), a natural 
zinc chelator, binds zinc and forms poorly soluble complexes that result in reduced zinc 
assimilation. Phytate is present in staple foods includes cereals, corn, and rice, which 
exerts a highly negative effect on zinc absorption (Arsenault & Brown 2003). Sugar, 
alcohol, separated fats and oils have very low zinc content. The dietary intake of Zn is 
estimated at approximately 10–15 mg/day (Table 1), mostly absorbed by the small 
intestine, duodenum and jejunum (Menard & Cousins 1983) by transferrin (Evans 1976), 
cysteine-rich intestinal proteins (Hempe & Cousins 1992) and other Zn transporters.  
 

 

Table 1. Recommended dietary allowance (RDA) for zinc.  (Chien et al. 2006) 

 

As Hempe and Cousins (Hempe & Cousins 1992) have illustrated (Fig.2), the trace mineral 
is probably bound to an intestinal binding protein after entrance into the cell. In the case of 
zinc, this intestinal binding protein has been specifically identified as Cysteine-rich 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

32 

Intestinal Protein (CRIP). The function of this binding protein is to act as both a protective 
mechanism for the cell by binding to free metal in the cytosol and as a specific carrier to 
chaperone the mineral across the cell to the basolateral membrane. If an intestinal binding 
protein fails to bind the trace mineral, it will most likely be bound to a non-specific binding 
protein or in the case of zinc to metallothionein (MT).  The primary function of 
metallothionein is to maintain homeostasis of zinc (Pattison & Cousins 1986). Once the 
bound trace mineral crosses through the cytosol and arrives at the basolateral membrane 
it is removed from the binding protein and transferred across the membrane via a poorly 
understood, but saturable, transport mechanism (Oestreicher & Cousins 1985). The trace 
mineral is then bound to albumin as it enters circulation (Smith et al. 1979). The albumin 
remains bound to the trace element until it reaches the liver and the trace mineral is further 
metabolized before being released for transport to other body tissues (Richards & Cousins 

1976).   Of the total plasma Zn concentration, over 90% is associated with albumin, less 
than 10% with alpha-2 macroglobulin, and a very tiny fraction (< 1%) with amino acids and 
other low molecular weight species (Cousins 1986). As has been shown by Menard et al. 
(1981), as metallothionein levels increase, the absorption of zinc decreases, and as dietary 
zinc concentrations increase, an up-regulation in metallothionein mRNA is also observed. 
 

 

Figure 2. Proposed mechanism for intestinal zinc absorption. (Hempe & Cousins 1992) 

The human body contains between 2-3 grams of zinc, most of them gathered in brain and 
pancreatic cells (Kozlowski et al. 2009). About 95% of total zinc is the intracellular one, 
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distributed between nucleus (30-40%), membrane (10%) and cytoplasm (50%) (Plum et al. 
2010; Vallee & Falchuk 1993). Since the body has no zinc stores in the conventional sense 
and it may not be accumulated in the organism, a permanent consumption is needed. In 
conditions of bone resorption and tissue catabolism, zinc is released and may be re-
utilised to some extent. Human experimental studies with low-zinc diets 2.6-3.6 mg/day 
(40-55 μmol/day) have shown that circulating zinc levels and activities of zinc-containing 
enzymes can be maintained within normal range over several months (Lukaski et al. 1984; 
Milne et al. 1987) which highlights the efficiency of the zinc homeostasis mechanism. 
(Fig.3)  
 

 

Figure 3. Effects of excessive intake of zinc (left side), and deprivation of zinc (right hand 
side). Effects that could not be attributed to a certain organ or affect several organs are 
classified as systemic symptoms. (Plum et al. 2010) 

 
Zinc is lost from the body through the kidneys, skin, and intestine. The endogenous 
intestinal losses can vary from 7 μmol/day (0.5 mg/day) to more than 45 μmol/day 
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(3mg/day), depending on zinc intake (Mills 1989). Urinary and skin losses are of the order 
of 7-10 μmol/day (0.5-0.7 mg/day) each and depend less on normal variations in zinc 
intake (Mills 1989). Starvation and muscle catabolism also could increase zinc losses in 
urine.  Strenuous exercise and elevated ambient temperatures could lead to losses by 
perspiration. There is hardly any cellular process not influenced by zinc. In humans, major 
signs of severe zinc deficiency are growth retardation, hypogonadism in males, skin and 
neurosensory disorders, and impairment of immunity and cognition. Different stages of zinc 
deficiency are thought to affect 30% of the world’s population, a problem with at least the 
scope of that of iron deficiency. Among the groups at risk are the elderly. The World Health 
Organization (WHO) has identified zinc deficiency as the fifth most important risk factor for 
morbidity and mortality in developing countries. It can be concluded that zinc is an 
essential micronutrient which should be maintained under a rigorous homeostasis and is 

required for many biological processes including growth and development, neurological 
function, reproduction, and immunity (Wong & Ho 2012). (Fig.4) 
 

 

Figure 4. Zinc homeostasis fine-tune biological inputs leading to the control of biological 
outputs. (Fukada & Kambe 2011) 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

35 

1.3 Zinc biology  
 
 
Zinc is one of the most abundant and important metals in biology. Using bioinformatics 
tools, it has been recently estimated that human proteome includes about 15% of zinc 
proteins, many more than iron or copper (Andreini et al. 2009; Harding et al. 2010; 
Brylinski & Skolnick 2011). This bioinformatics approach combines the information from 
databases for protein structures (Maret 2013) and for protein domains (Finn et al. 2010) to 
scan gene databases. Three data sets were obtained: metalloproteins with known 
signatures and unknown domains (2406 proteins), metalloproteins with known signatures 
and known domains (2506), and metalloproteins with unknown signatures and known 
domains (2407) (Maret 2013; Bertini & Cavallaro 2010). The total number of identified zinc 
proteins is 3207, but 2430 were identified by at least two methods and 1684 zinc proteins 
were identified by all three methods, thus including signatures, domains and annotations 
(Maret 2013). Identified zinc proteins can be classified and counted as: 397 hydrolases, 
302 ligases, 167 transferases, 43 oxidoreductases, 24 lyases/isomerases, 957 
transcription factors, 221 signaling proteins, 141 transport/storage proteins, 53 proteins 
with structural metal sites, 19 proteins involved in DNA repair, replication, and translation, 
427 zinc finger proteins of undetermined function and 456 proteins of unknown role. 
Moreover, zinc is involved in the stabilization and catalysis of over 300 enzymes and a 
higher number of metalloproteins (Parkin 2004; Vallee & Falchuk 1993). Other zinc 

proteins whose importance emerged more recently include proteins for zinc signaling, 
transport, buffering, and storage. As the molecular mechanisms of cellular zinc 
homeostasis are just beginning to be elucidated, the number of these proteins and thus the 
size of zinc proteomes is likely to be larger than what is currently realized (Maret 2013; 
Eide 2009). 
The main reason for the selection of zinc as a catalytic cofactor lies in its distinctive 
chemical properties, which combine Lewis acid strength, lack of redox reactivity, and fast 
ligand exchange (Andreini et al. 2008). As a reflection of the prevalent use and the 
remarkable versatility of zinc in biological catalysis, zinc enzymes are present in all six 
major classes of enzymes, thus oxidoreductases, transferases, hydrolases, lyases, 
isomerases, and ligases (Vallee & Galdes 1984; Andreini et al. 2008). (Table 2) 
Additionally, zinc ions are also required in many proteins for the right folding of the 
polypeptide chain, such as zinc finger proteins. 
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Table 2. Zinc enzymes comprise all 6 classes of enzymes established by the IUPAC. C, 
catalytic role; s, structural role; ca, coactive role; ?, lacking information to make an 
assignment. (Vallee & Falchuk 1993) 

 
Four main groups have been described for zinc coordination environments in proteins: 
catalytic, cocatalytic (or coactive), structural and protein interface (Auld 2001). (Fig. 5) A 
catalytic role specifies that the metal contribute directly in enzyme catalysis. If the metal is 
removed by chelating or by other agents, the enzyme becomes inactive. This abolition of 
activity is attributed primarily to the fact that zinc itself participates directly in the catalytic 
process; this does not exclude the possibility that there may also be a concomitant 
structural change (e.g., in local conformation and/or that of the ligands). A coactive (or 
cocatalytic) zinc atom enhances or diminishes catalytic function in conjunction with another 
active site zinc atom in the same enzyme, but is not indispensable of itself for either 
enzyme activity or stability. Structural zinc atoms are required solely for structural stability 
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of the protein but do not directly participate in catalysis, and can help stabilize the 
quaternary structure of oligomeric holoenzymes. Alcohol dehydrogenases of vertebrates 
contain both a catalytic and a structural zinc atom. Protein interface zinc sites have an 
impact on the quaternary structure of a protein. They are composed of amino acid ligands 
that reside in the binding surface between two protein subunits or interacting proteins and 
generally have the coordination properties of catalytic or structural zinc binding sites (Maret 
& Li 2009).  
 

 

Figure 5. Three amino acids and a water molecule are the zinc ligands in the catalytic zinc 
site. Enzymes with a coactive zinc site display both catalytic zinc site, Zn1 and a separate 
coactive site Zn2, which modulate but are not essential for catalysis. These 2 Zn atoms can 
bind to 1 amino acid, usually aspartic acid, sharing it as a bridge. Furthermore, one of the 
amino acid ligands of a Zn2 site can additionally form a bridge to another metal, i.e. 
magnesium. In structural zinc, metal is coordinated tetrahedrally to 4 Cys residues that 
prevent access of other ligands to the coordination sphere. Protein interface zinc binding 
sites normally have the coordination properties of catalytic or structural zinc binding sites. 
(Auld 2001) 
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In enzymes, there is almost invariably one coordination site occupied by a water molecule, 
which can easily be displaced to create a catalytically active species for an incoming 
substrate/ inhibitor molecule (Laitaoja et al. 2013). 
 
Catalytic zinc sites are generally composed of a bound water molecule and three 
aminoacids, two of which come from a short amino acid spacer, with His being the most 
common, followed by Glu, Asp, and Cys residues that coordinate the zinc by imidazole and 
carboxyl groups. The zinc dissociation constant for these protein sites is in the nanomolar 
to picomolar range. Normally one catalytic zinc atom per subunit of enzyme is found. Zinc 
is bound to three His in human carbonic anhydrases I and II and It’s bound to two His and 
one Glu in carboxypeptidases A and B. The only exception to the above thus far is alcohol 
dehydrogenase, the catalytic zinc site that uniquely contains just one His as well as two 

Cys. However, in this case, the third zinc ligand at the active site appears to be variable 
and has been deduced to be Cys, Glu, or Asp in different enzymes within the alcohol 
dehydrogenase superfamily. A water molecule is the fourth ligand at all catalytic sites. 
Mechanistically, the water molecule can be ionized, polarized, or displaced. Ionization or 
polarization provides hydroxide ions at neutral pH, while the displacement of the water 
leads to Lewis acid catalysis. 
 
Cocatalytic or coactive zinc sites are found in enzymes containing two or more zinc or 
other transition metals in neighbouring proximity to each other that operate in concert as a 
catalytic unit. The additional zinc (or other metal) site has been named coactive. The 
distance between the metals is determined by type of amino acid (Asp, Glu, His, or a 
carboxylated Lys) that bridges the two metals. Sometimes a water molecule forms a bridge 
between the metal atoms in a cocatalytic site. Asp and His are the most frequent ligands in 
this type of site. The ligands to these sites often come from nearly the whole length of the 
protein and the metals are important not only to catalytic function but to protein folding.  
 
Structural zinc sites contain four protein ligands and no metal bound water. While Cys is 
the most frequent ligand of these sites, any combination of four Cys, His, Glu, and Asp 
residues in principle can form this type of zinc site. Twelve combinations of the 22 
permutations of these four ligands have been observed so far. The role of the structural 
zinc site is to maintain the localized structure of the protein which could in turn influence 
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protein folding or function by supplying residues involved in catalysis that arise from within 
the spacer arms. Structural zinc atoms have been best characterized in three enzymes, 
protein kinase C, aspartate transcarbamylase, and alcohol dehydrogenase (Vallee & 
Falchuk 1993). The structural motif in protein kinase C contains 4 atoms of zinc per mole of 
protein located in the non-catalytic domain of the enzyme. Each zinc atom is fully 
coordinated tetrahedrally to three cysteines and one histidine. In aspartate 
transcarbamylase and alcohol dehydrogenase the structural zinc is fully coordinated 
tetrahedrally to four cysteines (Auld & Bergman 2008). 
 
Protein interface zinc sites have an impact on the quaternary structure of a protein. They 
are composed of amino acid ligands that reside in the binding surface between two protein 
subunits or interacting proteins and generally have the coordination properties of catalytic 

or structural zinc binding sites. Carbonic anhydrase, or insulin are examples of proteins 
that use zinc to form quaternary structures (Auld 2009; Maret & Li 2009). 
 
There is a functional diversification of the eukaryotic and prokaryotic zinc proteomes. 
Prokaryotes use zinc proteins to perform enzymatic catalysis, whereas in eukaryotes the 
zinc proteome is almost equally involved in performing catalysis and in regulating DNA 
transcription. (Chart 1)  This broad difference in function has a correspondence with the 
organization of the zinc-binding patterns. Indeed, the patterns containing four ligands are 
associated with structural sites where zinc contributes to the stability of protein structures, 
whereas zinc-binding patterns containing three protein ligands are associated with catalytic 
sites, that is, zinc actively participates in the reaction mechanism of the enzyme (Vallee & 
Auld 1990). The number of zinc proteins correlates linearly with the number of genes in a 
particular genome and is higher in eukarya (8.8%) than in bacteria and archaea (5-6%) 
(Andreini et al. 2006). In eukaryotes but not in prokaryotes a big portion of zinc proteins is 
involved in the regulation of gene expression, pointing out that the biological importance of 
zinc increased as increasingly complex cellular, and in particular multicellular, systems 
evolved. Many of these proteins contain one or more so-called zinc fingers, which are 
small protein domains stabilized by a zinc ion playing a structural role (Klug & Schwabe 
1995). 
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Chart 1. Distribution of the roles of zinc proteins in prokaryotes (left) and eukaryotes (right). 
Only the proteins with known function are included, which represent about 90% of the total. 
(Andreini et al. 2006) 
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1.4 Zinc homeostasis 
 
 
As explained heretofore, zinc ions play a unique and essential role of an important number 
of biological processes, including DNA synthesis, gene expression, enzymatic catalysis, 
neurotransmission, and apoptosis (Krizkova et al. 2012). Approximately 90% of 
intracellular zinc ions are tightly bound, mainly by cysteine, histidine, and asparagine 
residues of peptides and proteins, making that zinc pool hard to interact with other 
molecules (Wilson et al. 2012). The rest, about 10% of total zinc, is weakly bound with 
relatively low affinities, forming a reactive Zn pool able to interact with other intracellular 
substances and compartments (Franklin & Costello 2009). Another small fraction of zinc, 
which comprises less than 0,01% of total intracellular zinc amount, is the free zinc pool, 
ranging from picomolar to a few nanomolar concentrations, therefore, maintaining an 
adequate but tightly regulated intracellular zinc level is fundamental to the survival of living 
organisms including humans (Huang & Tepaamorndech 2013). Changes in intracellular 
zinc levels have been associated with tumour growth as zinc is a cofactor of enzymes 
involved in angiogenesis, cell proliferation, and metastasis of cancer, such as matrix 
metalloproteases and carbonic anhydrase. Altered expression of zinc transporters has 
been observed in many cancers and these changes may play causal roles in cancer 
progression. (Taylor et al. 2007; Jeong & Eide 2003) Zinc transporters are involved in 
many other physiological pathways including insulin synthesis and secretion in the 

pancreas, bone development, heart health, cognitive function, and body adiposity (Huang 
& Tepaamorndech 2013). 
 
At least three dozen of proteins are directly involved in the control of human cellular zinc 
homeostasis and in the regulation of the cellular availability and re-distribution of zinc ions 
(Maret 2009). Some of the central functions of those proteins are remove the excess of 
zinc ions to prevent unwanted side reactions, supply the metalloproteins with zinc, 
safeguard zinc ions during the transport through membranes and sense if the 
concentrations are the adequate for the cell. There are two main families of zinc 
transporters of the solute carrier superfamily involved in zinc homeostasis in the body. 
(Fig.6) The SLC30, also known as ZnT family consisting of ten members in mammals 
(ZnT1-ZnT10), mediates Zn efflux from cells or influx into intracellular vesicles from the 
cytosol (Fig.7). Evolutionary and basic sequence relationships among the ZnT genes have 
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been reviewed (Palmiter & Huang 2004). The SLC39 family, more commonly known as Zip 
family, comprise fourteen members in mammals (Zip1- Zip14), which promote zinc influx 
from the extracellular fluid or intracellular vesicles into the cytoplasm (Fig.8) (Fukada et al. 
2011).  
ZnT proteins contribute to the cytoplasmic zinc balance by exporting zinc out to the 
extracellular space or by sequestrating cytoplasmic zinc into intracellular compartments 
when cellular zinc levels are elevated. In contrast, ZIP proteins function to increase 
cytoplasmic zinc concentrations when cellular zinc is depleted (Huang & Tepaamorndech 
2013).  
 

 

Figure 6. Cellular zinc homeostasis is mediated by three main mechanisms. Transport across 
the plasma membrane by importers from the Zip family, and exporters from the ZnT family. 
Zinc binding specific proteins. Transporter mediated sequestration into intracellular 
organelles, including Golgi, endoplasmic reticulum, and lysosomes. Dishomeostasis of zinc 
affects cellular viability, frequently leading to cell death. (Plum et al. 2010) 
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The ZnT family, which include more than 100 members, are found in organisms at all 
phylogenetic levels. This family is divided into three subfamilies (Gaither & Eide 2001). 
Subfamily I contains a large proportion of prokaryotic members, while subfamilies II and III 
contain eukaryotic and prokaryotic members in a similar proportion. Most ZnT proteins 
have six transmembrane domains (TMDs). The biological distribution of those transporters 
exert a specific molecular role and is linked to different pathologies. (Table 3) 
 
ZnT1 predominantly performs regulation of zinc export, in particular, to plasma at base-
lateral surface of enterocytes in the duodenum and jejunum (Sekler et al. 2002). ZnT2 and 
ZnT4 sequesters zinc in cytoplasmic vesicles, ZnT3 performs specific function, 
predominantly in the brain and sequesters zinc in presynaptic glutamate containing 
secretion granules under the influence of potential dependent chloride channel (Zalewski et 

al. 2005). ZnT5 is located in membranes of secretion granule of insulin, pancreas cell 
enriched in zinc. ZnT6 and ZnT7 exert their activity mainly in Golgi apparatus (Huang et al. 
2002; Kirschke & Huang 2003), ZnT8 in endocrine pancreas and ZnT10 in the liver and 
brain (Zalewski et al. 2005)  
 

 

Figure 7. Summary of the structural features of ZnT transporters. A dendrogram showing the 
sequence similarity among ZnT transporters is shown at the left. The generalized domain 
structure of ZnT such as the TM domains, His cluster (HX1–6H), Ser cluster (SX1–6S), Arg 
cluster (RX1–6R), and Lys cluster (KX1–6K) are shown in the right panels. Arabic numbers 
above the domain structure of each protein means the number of His/Ser/Arg/Lys residues in 
the clusters. (Fukada & Kambe 2011) 
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At least 86 members of the Zip family have been described (Cousins et al. 2006). 
Evolutionary and basic sequence relationships of the Zip genes have been reviewed in 
detail (Jeong & Eide 2003). Zip proteins have been divided into two subfamilies: subfamily I 
consists mostly of fungal and plant sequences, and subfamily II, composed of insect, 
nematode, and mammalian sequences (Guerinot 2000). Most Zip proteins are predicted to 
have eight TMDs with extracellular (or intravesicular) amino and carboxy termini (Gaither & 
Eide 2001). ZIP transporters play diverse roles in the physiology of cells and organisms. 
Their genes are expressed in various tissues and cell types, and their proteins are 
localized to distinct subcellular compartments. (Table 4) Recently, bioinformatic analyses 
revealed similarities between LIV-1 transporters subfamily members and prion genes 
(Schmitt-Ulms et al. 2009). It was shown that prion-like protein sequences were present in 
the N-terminal domains of ZIP5, ZIP6, and ZIP10, suggesting that prion proteins may be 

evolutionarily descended from ZIP proteins. 
 

 

Figure 8. Summary of the structural features of ZIP transporters. A dendrogram showing the 
sequence similarity among ZIP transporters is shown on the left. The generalized domain 
structure of ZIP such as the TM domains, His cluster (HX1–6H), metalloprotease like motif, 
and the CPALLY motif are shown on the right panels. Arabic numbers above the domain 
structure of each protein means the number of His residue in the His cluster. (Fukada & 
Kambe 2011) 
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The expression of specific zinc transporters (and the rate of zinc uptake and excretion) is 
responsive to dietary zinc levels and is coupled to regulated expression and action of 
intracellular proteins that associate with zinc, particularly metallothioneins (Haq et al. 
2003). For instance, metallothioneins, whose genes are well-known targets of metal-
responsive transcription factor-1 (MTF-1), acts as zinc storage proteins and thereby plays 
an essential role in cellular zinc homeostasis (Laity & Andrews 2007; Colvin et al. 2010; 
Günther et al. 2012). (Fig. 9) These proteins were first discovered by Margoshes and Valee 
as cadmium-binding proteins isolated from horse kidney in 1957 (Margoshes & Vallee 
1957). Interactions of MTs with zinc ions are influenced by three main conditions: 1) redox 
state of MT; 2) pH of the environment; and 3) the presence of NO. If these conditions 
support the formation of the zinc/metallothionein complex, which is, under the healthy 
physiological state, MTs can serve as “administrators” of Zn2+ ions for transporters, 

enzymes, storage proteins, and transcription factors (Krizkova et al. 2012). 
 

 

Figure 9. Subcellular localization of Zn transporters and MTs. Localization and potential 
functions of Zn transporters from the Slc39/ZIP (blue) and Slc30/ZnT (red) families, MT, and 
metal response element (MRE) binding MTF-1 within the cell. Arrows show the predicted 
direction of Zn mobilization. ER, endoplasmic reticulum. (Fukada et al. 2011) 
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Metallothioneins comprise a family of small (normally less than 10 kDa), cysteine-rich, 
metal-binding proteins found in all eukaryotes. All MTs contain 61-62 amino acids 
organized into single α and β domains (one α and one β domain per MT molecule). The 
high number of cysteine residues (11 in the C-terminal α domain and 9 in the N-terminal β 
domain) are responsible for a high capacity of MTs to coordinate covalent binding of 
divalent metal cations in metal/thiolate clusters (Haq et al. 2003). Metallothioneins can bind 
up to a total of seven zinc or cadmium ions, and up to 12 copper ions, in aggregate 
between the two domains. (Fig.10) 
 

 

Figure 10. Zinc thiolate clusters of mammalian metallothionein. Each molecule is composed 
of two clusters, the NH2- and COOH-terminal regions containing 3 (Zn3) and 4 (Zn4) zinc 
atoms respectively, in each cluster. Each metal is tetrahedrally coordinated to 4 thiolate 
bonds with some of the thiolate ligands sharing the zinc ion. (Vallee & Falchuk 1993) 

 
In mammals have been described four different MT isoforms (MT-1, MT-2, MT-3, and MT-
4). MT-1 and MT-2 are present in practically all mammalian cell types and organs, with the 
highest expression in liver tissue. MT-3 and MT-4 are limited to specific cells and tissues. 
MT-3 was first identified as a molecule that suppressed growth of rat neuronal cells in 
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culture (Uchida et al. 1991) and later as an MT (Palmiter et al. 1992). MT-3 is expressed in 
brain and primarily in glutaminergic neurons, with additional very low amounts reported in 
pancreas and intestine (Ebadi et al. 1995). MT-4 is expressed, exclusively in squamous 
epithelial cells in skin and tongue (Meloni et al. 2006). 
 
Although only four MT proteins have been identified in mammals (including humans), at 
least 11 MT-1 genes have been described in humans (MT1A, B, E, F, G, H, I, J, K, L, and 
X), some of which appear to encode RNAs incapable of directing the production of MT 
protein. The 11 MT-1 genes are clustered within the q13 region of chromosome 16, along 
with one MT-2 gene (also known as MT-2A), one MT-3 gene, and one MT-4 gene. 
In humans, MTs (MT-1 and MT-2) have been described to have aberrant expression in a 
number of human tumors. For those occurring in breast, kidney, lung, salivary gland, ovary, 

testes, leukaemia, urinary bladder, nasopharyngeal tissue, and non-Hodgkin lymphoma, 
an association with increased MT levels has been reported (Cherian et al. 2003; 
Theocharis et al. 2004; Thirumoorthy et al. 2007). On the other hand, decreased levels of 
MT-1 and MT-2 in human liver, prostate, thyroid, central nervous system, and testicular 
tumors have been linked to increased malignancy and poorer prognosis (Pedersen et al. 
2009; Cherian et al. 2003; Meijer et al. 2000; Ferrario et al. 2008). The overall role of MTs 
in tumors, therefore, is not completely clear. (Fig.11) 

 
 

 

Figure 11. Metallothionein/thionein couple as a homeostatic system. Increased available zinc 
induces the synthesis of thionein (T) and leads to the formation of MT. Zn is released from 
MT when the amount available zinc is low. (Krezel & Maret 2008) 
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1.5 Zinc signaling  
 
 
Like in the case of the chelatable iron pool, for which terms such as “labile iron,” 
“intracellular transit iron,” “free iron,” “low molecular weight iron,” “exchangeable iron,” and 
“metabolically active iron” have been used, a similar terminology has been adopted to 
methodically define pools of zinc ions, which are believed to be the responsible for 
signaling effectors (Petrat et al. 2002). 
 
It has been suggested as early as 1984 that Zn ions may have a function in signal 
transduction, comparable to the second messenger Ca2+ (Williams 1984). A second 
messenger is defined as a molecule whose intracellular status is directly altered by 
extracellular stimuli and that can transduce the extracellular stimuli into intracellular 

signaling events (Yamasaki et al. 2007). Only a few years later, it was shown that 
activation of T cells causes an intracellular redistribution of Zn2+, and that this ions activate 
protein kinase C (Csermely et al. 1987; Csermely et al. 1988). Since then, zinc signals 
have been observed in many different cell types, mostly in the form of changes of the free 
cytoplasmic zinc concentration (Haase & Rink 2009).  
From many years, zinc ions have been proposed to act as neurotransmitters (Colvin et al. 
2003; Frederickson 2003). Furthermore, it was suggested that Zn has the ability to mimic 
the actions of hormones, growth factors, and cytokines, which proposes that zinc may act 
on intracellular signaling molecules (Beyersmann & Haase 2001). In fact, zinc is a known 
inhibitor of protein tyrosine phosphatases (Brautigan et al. 1981), with a constant of 
inhibition in the nanomolar range (Maret et al. 1999). In addition, zinc affects the regulation 
of transcription factors, and can induce the expression of some genes, including those 
coding for molecules involved in zinc homeostasis, like zinc transporters and 
metallothioneins (Palmiter & Huang 2004). The gene expression of metallothioneins by 
zinc is regulated by metal response element–binding transcription factor-1 (Lichtlen & 
Schaffner 2001). 
 
Zinc stabilizes structural zinc-binding motifs that influence the protein’s biological activity, 
such as DNA binding and transcriptional activation. Moreover, it can modulate the 
enzymatic activity of signaling proteins, such as the inhibition of protein tyrosine 
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phosphatases (PTPs).  It cans also affect the assembly of signaling complexes through 
binding at interfaces between proteins (Haase & Maret 2010). (Fig.12) 
 

 

Figure 12. Three molecular mechanisms of how low nanomolar concentrations of zinc ions 
reversibly affect cellular signaling are known. (a) Structural stabilization. Zinc ions bind to the 
zinc fingers of the sensor MTF-1, which is translocated to the nucleus and activates gene 
transcription. (b) Regulation of enzymatic activity. Zinc ions inhibit PTPs and affect 
phosphorylation cascades. (c) Assembly of ternary complexes. Two zinc-dependent steps 
are essential for early TCR activation. First, upon contact with the MHC on an antigen-
presenting cell, the kinase Lck is recruited to the complex of the TCR by binding to the co-
stimulatory molecules CD4 or CD8 via a zinc ion at the interface of the two proteins. Second, 
a zinc-dependent dimerization through the interfaces between the SH3 domains brings Lck in 
close proximity, thereby promoting autocatalytic activation. (Haase & Maret 2010) 

 
Several reports have proposed classifying intracellular zinc signals into early Zn signals 
which are non transcription dependent, and late Zn signals, depending on transcriptional 
factors taking place in the cell nucleus (Hirano et al. 2008). (Fig.13) On the one hand, early 
signals take place in cells where Zn levels change rapidly (several minutes) upon 
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extracellular stimulation (Yamasaki et al. 2007). On the other hand, late signals occur 
when Zn levels are for altered several hours after extracellular stimulation, through 
changes in Zn transporters expression. The involvement of zinc signals in biological 
processes is treated in a rather extensive body of literature on the role of zinc in cellular 
proliferation, differentiation, and apoptosis (Murakami & Hirano 2008; Hirano et al. 2008; 
Fukada et al. 2011). 
 

 

Figure 13. Intracellular Zn signaling falls into two types: early Zn signaling (left), in which an 
extracellular stimulus directly induces elevated Zn levels within several minutes by releasing 
Zn from a Zn store such as ER or MTs, and late Zn signaling (right), which is induced several 
hours after stimulation and is dependent on a transcriptional change in Zn transporter 
expression. (Fukada et al. 2011) 

 
The total cellular zinc concentration of a few hundred micromolar is an average value that 
includes all cellular compartments. Significant variations in zinc concentrations of tissues 
have been reported, indicating that zinc is not distributed randomly. A special aspect of the 
cell biology of zinc is the role of zinc ions that are not tightly bound to proteins (labile zinc 
pool) and can be detected with fluorescent indicators such as Zinquin or FluoZin-3.  
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Some cellular compartments, such as secretory vesicles, lysosomes, and vesicles that 
may or may not be identical to lysosomes and have been called “zincosomes,” the 
concentrations of free zinc ions can be relatively higher (millimolar range). Free zinc ions 
are present in synaptic vesicles of zinc-enriched nerve terminals, secretory vesicles of 
somatotrophic cells in the pituitary gland, zymogene granules in pancreatic acinar cells, β-
cells of the islets of Langerhans, Paneth cells of the crypts of Lieberkühn, and secretory 
cells of the tubuloacinar glands of the prostate, the epithelium of parts of the epididymal 
ducts, and osteoblasts (Haase & Maret 2010; Danscher & Stoltenberg 2005). (Fig.14) 
 

 

Figure 14. Cellular localization of ZnT transporters. (A) Localization of ZnT transporters in a 
generalized mammalian cell. (B) Localization of ZnT transporters in an intestinal epithelial 
cell. (C) Localization of ZnT transporters in a secreting mammary epithelial cell. (D) 
Localization of ZnT3 in an axon terminal. (Huang & Tepaamorndech 2013) 
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Pancreas needs elevated amounts of zinc for its normal physiological functions. The 
highest concentrations of zinc is focused in the β-cells, even though is also present in α-
cells and in the zymogen granules of acinar cells (Kristiansen et al. 2001). Zn inhibition 
may be a mechanism to control the activity of secreted pancreatic proteins. The only 
protein ligand involved in binding the inhibitory zinc is glutamate. On the other hand, in the 
islets of Langerhans, β-cells produce insulin and release it via exocytosis in response to 
elevated blood glucose, thus resulting in a stimulus of glucose uptake and decreasing 
plasmatic glucose. (Fig.15) 
 

 

Figure 15. The exocrine pancreas stores zinc in acinar cells and secretes zinc-dependent 
proteases. In the endocrine pancreas (islets), insulin is stored as a crystalline Zn2–insulin 
hexamer in β-cells and secreted together with zinc. Secreted zinc ions inhibit the secretion of 
glucagon from α-cells. In enterocytes, zinc is taken up from the apical side by Zip4 and 
secreted by ZnT-1 at the basolateral membrane into the blood. (Haase & Maret 2010). 

 
Prostate epithelial cells contain high amounts of Zn, being this organ one with the highest 
zinc concentration (9.2 mg/g) (Schroeder et al. 1970). Zinc ions are localized to the 
secretory granules in the lateral lobe and secretory ducts of the epithelial cells. They are 
secreted into the prostatic fluid in a range of millimolar concentration, which is considerably 
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higher than the one found in the blood. One of the functions of the secreted zinc may be to 
provide sufficiently high concentrations for the inhibition of proteolytic enzymes. 
An exchangeable Zn ion in the brain was first documented in 1955 (Fukada et al. 2011). In 
neurons, exocytose stimuli induces zinc release into the surrounding milieu and its uptake 
into the cytoplasm through specific zinc channels on neighbouring cells. Synaptically 
released zinc probably travels to adjacent cells such as postsynaptic neurons and glial 
cells and functions as a modulator and mediator of cell-to-cell signaling (Xie & Smart 1994; 
Hershfinkel et al. 2001; Li et al. 2001). In this context, zinc acts as an autocrine or 
paracrine, cellular signaling factor, in a similar way of a neurotransmitter. (Fig.16) 
 

 

Figure 16. Specialized neurons secrete zinc ions into the synaptic cleft (presynaptic neuron). 
The released zinc ions affect proteins on the cytoplasmic membrane of dendrites 
(postsynaptic neuron) and are translocated into the cytosol where they can affect gene 
transcription, signaling, and assembly of the scaffolding proteins of the postsynaptic density. 
(Haase & Maret 2010) 

 
Zinc is essential for formation of skeletal tissue, and it stimulates osteoblastic bone 
formation and inhibits osteoclastic bone resorption (Yamaguchi & Fukagawa 2005). Bone 
tissue contains about the 29% of total human body zinc, specially in matrix vesicles and 
regulates the onset of mineralization (Wuthier et al. 1992).  
Paneth cells are located at the bases of the crypts of Lieberkühn in the small intestine 
containing significant amounts of granular zinc (Giblin et al. 2006). Paneth cells secrete 
microbicidal peptides called cryptidins, and zinc is thought to be an “adjuvant” to this role. 
Eyes contain particularly high amounts of zinc, specifically gathered in retina (464 μg/g) 
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and choroid (472 μg/g dry) (Grahn et al. 2001; Ugarte & Osborne 2001). Zinc is essential 
for vision, not only for its essential role in vitamin A metabolism, but also for its function in 
neural processing at the first visual synapse in vertebrates, where it’s released from 
photoreceptor terminals (Redenti et al. 2007). Mammary Gland Epithelial Cells are also 
another important tissue where zinc ions play a relevant role. The zinc concentration in 
human milk is 3-5 mg/L, while concentrations in the colostrum are about 5 times higher 
(Underwood 1977). Thus, in a lactating woman, about 0.5-1 mg Zn are secreted daily into 
the milk (Kelleher & Lönnerdal 2005). Modulation of zinc transporters in the cell is believed 
to be a mechanism for controlling zinc secretion, a process in which the hormone prolactin 
is involved. 
 
The zinc physiology of skin reveals another principle, namely the control of extracellular 

zinc by chelation. Psoriasin is secreted from keratinocytes and protects the human skin 
from E. coli infections, where Its antimicrobial activity has been linked to zinc chelation 
(Gläser et al. 2005). Furthermore, it has been demonstrated that zinc homeostasis is 
crucial for the function of immune cells. In addition to its role in the generation and 
effectiveness of immune cells, zinc is also vital for the communication between them by 
soluble factors, such as cytokines (Haase & Rink 2009). 
 
New fluorescent probes and sensors such as Zinquin or FluoZin-3 made possible 
unprecedented temporal and spatial resolution of cellular zinc localization, mobilization, 
compartmentalization, and redistribution. The probes provided evidence of transients of 
cellular zinc ion concentrations in the picomolar to low nanomolar range and secretion of 
zinc ions from several cell types by vesicular exocytosis. Both probes and sensors were 
developed from similar technology in the calcium field and they were instrumental in 
developing the concepts that zinc ions are used for biological control (signaling) when 
fluxes are induced and that they are extensively compartmentalized in the cell.  
 
As seen previously, the concentrations of signaling zinc ions are many orders of magnitude 
lower than the total concentrations of structural and catalytic zinc sites in proteins. 
Therefore, their characterization continues to be a huge challenge, although remarkable 
improvement has been done recently through the applications of novel fluorescent 
chelating agents. 
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1.6 Zinc Chelators: Sequestrant and ionophore agents 
 
 
Several compounds can chelate or interact with zinc ions forming different complexes with 
new chemical and biological properties. Some of them bind zinc ions making them non 
available for the cell acting as sequestrants. In this group we can include sequestering 
agents such as TPEN (N,N,N′,N′-Tetrakis (2-pyridylmethyl) ethylenediamine), a 
membrane-permeable zinc chelator or DTPA (Diethylene triamine pentaacetic acid), a 
hydrophobic and membrane-impermeable chelator which chelate zinc ions making them 
non available for other biological functions, EGTA (Ethylene glicol-bis(2-aminoethylesther)-
N,N,N’,N’ tetra-acetic acid), EDTA (Ethylenediamineteraacetic acid) or BAPTA (1,2-bis(2-
aminophenoxy) ethane N,N N’,N’ tetra-acetic acid). If those complexes cross the cell 
membrane in an independent way of membrane channels or transporters and release the 
metal ions in the cytoplasmic environment, they would not only act as zinc chelators 
(sequestrants), but also as molecules which enhances the zinc transport within the cell, 
also known as zinc ionophores. (Fig.15) Some of the most important studied zinc 
ionophore agents are Pyrithione, Pyrrolidine dithiocarbamate (PDTC), and A23187. Other 
synthetic molecules known to act as zinc ionophores molecules are able to modulate 
intracellular labile zinc concentrations, and some of those are being tested as good 
candidates to treat some carcinogenic processes, such as the drug Clioquinol (Yu et al. 
2009; Ding et al. 2005; Magda et al. 2008; Ding & Lind 2009). 

 
Some studies have associated the ionophore activity involvement of two important cell 
survival signaling pathways; Akt and NF-κB. It has been reported that Clioquinol and 
PDTC, presenting more pronounced effects in the presence of extra zinc, target both Akt 
and NF-κB signaling pathways. Whether zinc ionophores primarily affect Akt and 
subsequently down-regulate NF-κB, or target both pathways simultaneously, requires 
further investigation. Both Akt and NF-kappa B signaling pathways are overexpressed in 
many types of malignant cells, and are being considered as cellular targets for 
chemotherapy. Further studies support the development of zinc ionophores as a novel 
group of anticancer agents. 
 
Natural occurring compounds can also interact with zinc forming complexes. The medical 
properties of naturally occurring compounds such as chromones, coumarins and 
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particularly polyphenols have been well described from many years (Le Nest et al. 2004). 
However, the discovery that the complexes of phenolic natural occurring compounds with 
zinc ions are more effective than the non-complexed single molecules changed the course 
of drug research. Many studies have shown that these new formations could be 
successfully be used in a range of multiple diseases such as diabetes, neurodegenerative 
diseases, some bacterial infections, obesity or even cancers (Grazul & Budzisz 2009). 
Additionally, those complexes may play an important role in the modulation of the 
intracellular zinc homeostasis, which is an essential factor that affects several biological 
functions, such as cell signaling. 
 

 

Figure 18. Natural or synthetic ionophore agents may influence zinc homeostasis providing 
zinc ions within the cell in an independent way of other specific zinc transporters (ZnTs and 
Zips). Zinc ions cannot cross the cell membrane as free molecules. (Dabbagh-Bazarbachi et 
al. 2014) 
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2. Polyphenols 
 

2.1 Overview 
 
 
Polyphenols (PFs) are natural occurring phytochemicals derived from phenylalanine and 
containing an aromatic ring with a reactive hydroxyl group. (Signorelli & Ghidoni 2005) 
They are mainly found in fruits, vegetables, cereals, some beverages and seeds, such as 
grapes, berries, wine, green tea or cocoa. This secondary metabolites of plants constitute 
one of the most extensively group of chemicals found in the plant kingdom and consumed 
in the diet. From several decades, their consumption has been associated with healthy 
benefits, preventing and ameliorating several diseases. One hypothesis for this behaviour 
between plants and animals could be explained by a phenomenon called xenohormesis. 

As the prefix xeno comes from the Greek word meaning stranger or foreigner, 
xenohormesis describes the phenomenon of a “foreign” organism's stress response 
producing chemicals that yield benefits to another organism. (Fig. 19) 
 

 

Figure 19. Xenohormesis hypothesis. The theory predicts that many key mammalian 
enzymes and receptors will have evolved binding pockets that allow modulation by 
molecules produced by other species. (Howitz & Sinclair 2008) 
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The word most often refers to the ability of stressed plants to confer stress tolerance to 
animals that consume them. This singularity was first named by Howitz and Sinclair 
(Howitz & Sinclair 2008; Hooper et al. 2010). Although the toxic properties of xenohormetic 
phytochemicals are harmful to microorganisms or insects, once ingested by humans as 
part of their diet, the same compounds are considered to induce mild cellular stress 
responses (Son et al. 2008; Mattson et al. 2007). Additionally, it has been described that 
after an oral ingestion of this compounds, there is an activation of adaptive stress response 
signaling pathways, leading to an increased expression of genes mostly encoding 
cytoprotective proteins including antioxidant enzymes, phase-2 detoxifying enzymes, 
protein chaperones, growth factors, mitochondrial proteins, etc. (Hooper et al. 2010). As 
xenohormetic phytochemicals can improve our body’s functions by stimulating our cellular 
stress response, they can be applied in drug development and the nutritional enhancement 

of diet (Hooper et al. 2010). 
One of the most important evidence between the regular consumption of polyphenols in 
the diet and the benefits in health was reported in France, with the phenomena called 
“French paradox”. This dietary anomaly was first observed in French population and found 
later in other Mediterranean populations. It has been observed that the Southern French 
had a very low incidence of coronary heart disease despite their high fat diet, low exercise, 
and smoking habits (de Lange et al. 2007; Renaud & de Lorgeril 1992). The exact 
molecular mechanism underlying this prevention still poorly understood. One of the 
features that has been emphasized relates to the high consumption of red wine in the 
French population and the question as to whether the phenolic antioxidants from this 
dietary source (mainly resveratrol) contribute to the protection from coronary heart disease, 
beside with the antioxidants consumed in the olive oil and the high intake of antioxidant 
nutrients from the fresh fruits and vegetables found in the Mediterranean diet (Rice-Evans 
& Miller 1995). Similarly, Hertog et al. (Hertog et al. 1993) observed an inverse association 
of the flavonol intake (mainly quercetin) with the mortality from coronary heart disease in 
the Zutphen Elderly Study (Netherlands). 
On the other hand, another phenomena related to health benefits of phenolic compounds 
is the “Asian paradox”, which is considerable older than the French one. Archaeological 
findings had revealed that infusions of leaves from various wild plants, including the tea 
plant, might have been consumed for more than five thousand years. Some legends from 
China and India suggest that use of tea occurred as far back as 2737 years BC when the 
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Chinese Emperor Shen Nung, found himself with a beverage holding a pleasant aroma 
and refreshing taste after dried leaves accidentally blew into hot boiling water. This ancient 
practice rapidly was associated with curative purposes. Nowadays tea is the most widely 
consumed beverage in the world, second only to water (Yang et al. 2004; Vinson et al. 
2004) with a worldwide per capita consumption of 40 liters per year (Vinson et al. 2004). 
Next to green tea, one of the most highly consumed products in Asia is tobacco. Evidence 
strongly associates cigarette smoking with cardiovascular events, including myocardial 
infarction, stroke, peripheral vascular disease, aggravation of stable angina pectoris, re-
thrombosis after thrombolysis, restenosis after angioplasty, and even sudden death, and 
cancer (Yun et al. 2005; Kilaru et al. 2001). Despite the high consumption of tobacco, 
Asian population, and Japan in particular have among the lowest incidences of 
arteriosclerosis and lung cancer per capita (table 5). It has been postulated that this 

paradox, the “Asian Paradox,” exists as a result of the high consumption of green tea in 
this region, which contains high amounts of flavonols (Dulloo et al. 1999). 
 

 

Table 5. Lifestyle Factors and Mortality from Cardiovascular Disease and Lung Cancer. 
†Percentage of total population who smoked at least one cigarette a day. ‡Data refers to 
estimates of apparent consumption based on cigarette production, imports, and exports 
moving average between 1992 and 2000. §1 kg= approximately 311 cups. CAD, coronary 
artery disease. (Sumpio et al. 2006) 
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In the last years significant number of studies have focused in dietary phenolic compounds 
as natural improvers of health. (Fig.20) More than 8000 dietary polyphenols have been 
identified (Araújo et al. 2011). This growing interest for this compounds resides in the 
accumulating evidence for their ability to trigger several cellular pathways leading to the 
prevention and/or amelioration of pathological conditions acting as Antioxidants (Leopoldini 
et al. 2011), anticarcinogenics (Čipák et al. 2003; Ramos 2008), anti-inflammatories (Bravo 
1998), neuroprotectors (Russo et al. 2012),  antilipidemic and vasorelaxing among others 
(Araújo et al. 2011). There is an emerging view that flavonoids and their in vivo metabolites 
do not act only as conventional antioxidants but may also exert modulatory actions on 
cellular system through direct action on various signaling pathways (Mansuri et al. 2014). 
 

 

Figure 20. Polyphenols have attracted scientific attention as a potential nutritional strategy to 
prevent a broad range of chronic disorders. Based on (Mansuri et al. 2014; Araújo et al. 2011) 
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2.2 Structure and classification of polyphenols  
 
 
In the last decades polyphenols have been extensively studied due to their properties and 
beneficial effects when taken as a dietary supplement against several chronic diseases, 
such as cardiovascular diseases, ageing or cancer (Hu 2007). Since then, more than 8000 
phenolic compounds have been identified and described containing several sub-groups 
according to their chemical structure, such as flavonoids, phenolic acids, lignans, stilbenes 
and other polyphenols (Cheynier, 2005; Harborne & Williams, 2000; Ito et al., 2005).  
 
By far flavonoids are the most abundant polyphenols found in food and the most studied 
sub-group with over 4000 (Bravo 1998). The representative structure of flavonoids (Fig.21) 
contains at least two aromatic rings, bearing one or more hydroxyl groups linked together 

through a carbon bridge (Lotito & Frei 2006; Beecher 2003). According to the position of 
the B ring relative to the C ring, as well as the functional groups (ketones, hydroxyls) and 
presence of a double bond or not in the C ring, flavonoids may be further divided into 7 
subclasses: anthocyanins, chalcones, dihydrochalcones, dihydroflavonols, flavan-3-ols, 
flavanones, flavones, flavonols and isoflavonoids (Ramos 2008). (Table 6) 

 

 

Figure 21. Common Flavonoid Carbon Skeleton Structure. One aromatic ring (A) is connected 
to the second aromatic ring (B) by a carbon bridge, which consists of three carbon atoms. 
When the three-carbon chain is connected to a hydroxyl group from A, the formed structure 
becomes cyclic (C). (Jackson et al. 2011) 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

76 

 

Table 6. Classification, structure, and dietary sources of flavonoids. Based on (Rothwell et al. 
2012) 

 

!

!
FLAVONOIDS!

!
EXAMPLE! STRUCTURE! DIETARY!SOURCE!

Anthocyanins! Delphinidin!

!

1Pommegranate!
1Red!wine!
1Common!bean!
1Black!grape!

Chalcones! Xanthohumol!

!

1Beer!
1Hops!

Dihydrochalcones! Phloretin!

!

1Apple!
1Apricot!

Dihydroflavonols! Dihydroquercetin!
(Taxifolin)!

!

1Mexican!oregano!
1Acai!berry!

Flavanols!
(Flavan131ols)!

(−)1Epigallocatechin!
gallate!(EGCG)!

!

1Green!tea!
1Black!tea!
1Apple!
1Blackberry!
1Hazelnut!
1Pecan!nut!

Flavanones! Naringenin!

!

1Mexican!oregano!
1Grapefruit!
1Orange!
1Tomato!

Flavones! Luteolin!

!

1Olive!
1Mexican!oregano!
1Globe!artichoke!
1Green!pepper!

Flavonols! Quercetin!

!

1Cocoa!
1Onion!
1Elderberry!
1Wine!
1Black!plum!
1Kale!

Isoflavonoids! Genistein!

!

1Soy!
1Red!clover!
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Phenolic acids can be divided into four main types; benzoic acid, cinnamic acid, 
phenylacetic acid and phenylpropanoic acid derivatives (table 7). Benzoic and cinnamic 
acids are predominantly found in dietary sources, while the others are less common. The 
hydroxybenzoic acid content of edible plants is generally low, with the exception of certain 
red fruits, black radish and onions, which can have concentrations of several tens of 
milligrams per kilogram fresh weight (Shahidi & Naczk 1995). The hydroxycinnamic acids 
are more common than hydroxybenzoic acids and consist principally of coumaric, caffeic, 
ferulic and sinapic acids. While fruits and vegetables contain many free phenolic acids, in 
grains and seeds (particularly in the bran or hull) phenolic acids are often in the bound form 
(Groot & Rauen 1998; Adlercreutz & Mazur 2013; Wink 1997).  
 

 

Table 7. Phenolic acids, structures and main dietary sources. Based on (Rothwell et al. 2012) 

 
Lignans are diphenolic compounds that contain a 2,3-dibenzylbutane structure that is 
formed by the dimerization of two cinnamic acid residues (Table 8). Several lignans, such 
as pinoresinol are considered to be phytoestrogens (Meagher et al. 1999). Moreover, some 
studies have reported that lignans can potentially reduce the risk of certain cancers and 
cardiovascular diseases (Milder et al. 2005). One of the richest food source is sesame 
seed, which contains up to 29,331 µg/100g. Brassica vegetables also contain high levels of 
lignans (Milder et al. 2005). 

!

!
PHENOLIC!ACIDS!

!
EXAMPLE! STRUCTURE! DIETARY!SOURCE!

Hydroxybenzoic!acids! Gallic!acid!
!

2Chestnut!
2Black!tea!
2Blackberry!
2Green!chicory!

Hydroxycinnamic!acids! Caffeic!acid!
!

2Coffee!
2Black!chokeberry!
2Plum!

Hydroxyphenylacetic!
acids! Homovanillic!acid!

!

2Green!olive!
2Black!olive!
2Beer!

Hydroxyphenylpropanoic!
acids! Dihydrocaffeic!acid!

!

2Green!olive!
2Black!olive!
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Table 8. Pinoresinol as a lignan example. Structure and main dietary sources. 

Based on (Rothwell et al. 2012) 

 
Stilbenes contain two phenyl moieties connected by a two-carbon methylene bridge. (Table 
9) Occurrence of stilbenes in the human diet is relatively low. Most stilbenes in plants act 
as antifungal compounds that are synthesized only in response to infection or injury. One 
of the best studied, naturally occurring stilbene is resveratrol (3,4',5-trihydroxystilbene), 
largely found in grapes and red wine. This polyphenol has been widely studied since the 
discovery of the “French paradox”, and several beneficial health effects had been reported 
(Gliemann et al. 2013; Valenzuela 2014; Timmers et al. 2013). 
 

 

Table 9. Resveratrol as a stilbene example. Structure and main dietary sources. 

Based on (Rothwell et al. 2012)  

 
In addition to flavonoids, phenolic acids, lignans or stilbenes, there are some polyphenols 
found in diet that are also considered to be important for human health. They are classified 

as “other polyphenols” and include several compounds with different multiples phenolic 
structural units. The number and characteristics of these phenol structures provide 
exclusive physical, chemical, and biological properties. (Table 10) 

!

!
LIGNANS!

!
EXAMPLE!

!
STRUCTURE! DIETARY!SOURCE!

Lignans! Pinoresinol!
!

-Olive!oil!
-Sesame!seed!
-Brassica!

!

STILBENES( EXAMPLE( STRUCTURE( DIETARY(SOURCE(

Stilbenes! Resveratrol!

!

/Muscadine!grape!
/Lingonberry!
/Cranberry!
/Red!wine!
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Table 10.  Other Polyphenols. Structures and examples. Based on (Rothwell et al. 2012) 

!
!

OTHER!POLYPHENOLS!
!

EXAMPLE! STRUCTURE!

Alkylmethoxyphenols! 40Ethylguaiacol!

!

Alkylphenols! 40Ethylphenol!

!

Curcuminoids! Curcumin!

!

Furanocoumarins! Bergapten!
!

Hydroxybenzaldehydes! Vanillin!

!

Hydroxybenzoketones! 30Methoxyacetophenone!
!

Hydroxycinnamaldehydes! Sinapaldehyde!

!
Hydroxycoumarins! Coumarin!

!
Hydroxyphenylpropenes! Eugenol!

!

Methoxyphenols! Guaiacol!
!

Naphtoquinones! Juglone!

!

Phenolic!terpenes! Thymol!

!

Tyrosols! Oleuropein!

!

Other!polyphenols! Catechol!
!
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2.3 Absorption and metabolism  
 
 
The daily consumption of flavonoids depends on the diet and varies from tenths of 
milligrams to a few grams (Manach et al. 2004). In order to understand the mechanisms of 
action of dietary polyphenols, it is essential to know their release and absorption from food, 
their metabolism and their bioavailability. Bioavailability is the correlation between the 
nutrient that has been digested, absorbed and metabolized (Pandey & Rizvi 2009). Before 
dietary polyphenols can be absorbed from the gut, they must be released from food 
sources by the mechanic digestion (chewing), action of the digestive juices in the 
gastrointestinal tract, and finally the microorganisms of the colon (Hollman & Katan 1997). 
For polyphenols to become bioavailable, the following barriers must be overcome: 
solubility, permeability, metabolism, excretion, target tissue uptake and disposition (Hu 

2007; Scalbert & Williamson 2000).  
 
In the intestinal lumen, flavonoid-O-glycosides are attacked by hydrolases displaying 
multiple enzymatic activities, which results in the release of flavonoid aglycones. The 
aglycones are transported to the human body through the membranes of the intestinal 
epithelium, which covers more than 90% of the intestinal surface (Day et al. 2000). The 
bioavailability of flavonoids is very low. Less than 1% of the consumed flavonoids enter the 
blood circulation (Manach et al. 2005). The hydrolysis of flavonoid glycosides by β-
glucosidase and the following attachment of glucuronic acid occur after the diffusion of the 
glycosides into the cytoplasm of enterocytes, which are the cells of the intestinal epithelium 
(Gee et al. 2000). Furthermore, the portal vein transports these substances to the liver, 
where they are methylated and sulfated with appropriate transferases (Alvarez et al. 2010). 
(Fig.22) 
 
Although the aglycones can be absorbed from the small intestine, dietary polyphenols are 
mainly present in the form of esters, glycosides, or polymers that cannot be absorbed in 
their native form (Hu 2007). In order to be absorbed, these substances need to be 
hydrolyzed by the intestinal enzymes or by the colonic microflora. This process reduces 
the absorption efficiency because aglycones also are affected by degradation producing 
many simple aromatic acids. During the course of absorption, polyphenols are conjugated 
in the small intestine and later in the liver. This phase mainly includes methylation, 
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sulfation, and glucuronidation. The conjugation mechanisms are highly efficient, and 
aglycones are generally either absent in blood or present in very low concentrations after 
consumption of nutritional doses. In the blood, only 5-10% of the flavonoids are not 
modified (Clifford 2004), whereas glucuronides are predominant (Zhang et al. 2007). 
(Fig.23) 
 

 

Figure 22. Metabolism of dietary flavonoids in the gastrointestinal tract. Schematic of 
relevant features concerning to the absorption, metabolism, distribution, and excretion of 
polyphenols. (Spencer 2003) 

 
Plasma concentration reached after polyphenol ingestion varies highly according to the 
nature of the polyphenol and the food source. It is on the order of 0,3-0,75 µmol/L after 
consumption of 80-100 mg quercetin equivalent administered in the form of apples, onions, 
or meals rich in plant products (Graefe et al., 2001; P. C. Hollman et al., 1997; Manach et 
al., 1998). When ingested in the form of green tea (0,1-0,7 µmol/L for an intake of 90-150 
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mg), cocoa (0,25-0,7 µmol/L for an intake of 70-165 mg) (Lee et al. 1995; Unno et al. 1996; 
Rein et al. 2000; Wang et al. 2000), or red wine (0,09 µmol/L for an intake of 35 mg) 
(Donovan et al. 1999), catechin and epicatechin are as effectively absorbed, as is 
quercetin (Manach et al. 2004).  
 
However polyphenol metabolites are not circulating free in the blood. In vitro studies 
incubating quercetin in normal human plasma revealed that quercetin is widely bound to 
plasma proteins (Boulton et al. 1998). Metabolites of quercetin are also extensively bound 
to plasma proteins in rats fed with a quercetin-enriched diet (Manach et al. 1995), where 
albumin is the main responsible protein for that binding. The affinity of polyphenols for 
albumin varies according to their chemical structure (Manach et al. 1998). 
 

Determination of the bioavailability of polyphenols in tissues may be much more important 
than the plasma concentrations (Manach et al. 2004; Hollman & Katan 1997; Hu 2007). It 
has been reported that plasma concentrations are not directly correlated with 
concentrations in target tissues and that the distribution between blood and tissues differs 
between different polyphenols (Manach et al. 2004). Experimental studies have 
demonstrated using single doses of radiolabeled polyphenols (quercetin, epigallocatechin-
3-gallate or resveratrol) given to rats or mice and sacrificed 1-6 hours later, that phenolic 
compounds are mainly located in blood and tissues of the digestive system, such as the 
stomach, intestine, and liver (Ueno et al. 1983; Suganuma et al. 1998; Mullen et al. 2002; 
Vitrac et al. 2003). Conversely, polyphenols have been also detected through HPLC 
analysis in a wide range of tissues in rodents, including endothelial cells (Youdim et al. 
2000), heart, kidney, spleen, pancreas, prostate, uterus, ovary, mammary gland, testes, 
bladder, bone, and skin (Suganuma et al. 1998; Chang et al. 2000; Kim et al. 2000; 
Coldham & Sauer 2000).  
 
Several studies have also proposed that polyphenols could cross the blood-brain barrier 
and arrive into the brain, both as its native or metabolized form (Williams & Spencer 2012). 
For example, (-)-epicatechin and some of its principle metabolites have been detected in 
rodent brain after oral administration (van Praag et al. 2007; Abd El Mohsen et al. 2002) 
and the brain levels of catechin and (-)-epicatechin have been found to increase upon 
repetitive dosing with a grape seed polyphenolic extract (Ferruzzi et al. 2009). Similar 
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observations have been made with EGCG (Lin et al. 2007; Suganuma et al. 1998), 
flavanones (Peng et al. 1998), flavonols (Rangel-Ordóñez et al. 2010), and anthocyanins 
(Talavéra et al. 2005; El Mohsen et al. 2006). 
 

 

Figure 23. Schematic representation of metabolic barriers to polyphenol bioavailability. (Hu 
2007) 

 
Polyphenols and their derivatives are eliminated chiefly in urine and bile. Large, extensively 
conjugated metabolites are more likely to be eliminated in the bile, whereas small 
conjugates such as monosulfates are preferentially excreted in urine. When polyphenols 
are secreted via the biliary route into the duodenum, they are subjected to the action of 
bacterial enzymes, especially ß-glucuronidase in the distal segments of the intestine, after 
which they may be reabsorbed. This enterohepatic recycling may lead to a longer 
presence of polyphenols within the body (Manach et al. 2004). Biliary excretion of 
polyphenols in humans may differ greatly from that in rats because of the existence of the 
gall bladder in humans; however, this has never been examined.  
 
Partial information is available on the amounts of polyphenols that are consumed daily 
throughout the world. These data have been obtained through analysis of the main 
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aglycones (after hydrolysis of their glycosides and esters) in the nutrients most widely 
consumed by humans. 
In 1976 Kühnau (Kühnau 1976) calculated that dietary flavonoid intake in the United States 
of America was 1 gram per day distributed as follows: 16% flavonols, flavones, and 
flavanones; 17% anthocyanins and 20% catechins. Although these figures were obtained 
under poorly detailed conditions, they continue to serve as reference data. In Spain the 
total consumption of catechins and proanthocyanidin dimers and trimers has been 
estimated at 18-31 mg/d, and the main sources are apples, pears, grapes, and red wine 
(Manach et al. 2004). 
 
Another important issue is how phenolic compounds or their metabolites move across 
different biological membranes, assuming that some of these are active or can be 

converted into active parent compounds at target organs. Transport of lipophilic conjugates 
out of the main metabolic organs such as liver and intestine has only been studied 
recently, and available evidence suggests that a variety of organic transporters may be 
involved in the transport of these conjugates in and out of cells (Hu 2007).  
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2.4 Interaction with metals 
 
 
In the last decades, phenolic compounds were known to interact with different metals, and 
because of their distinctive chemical structure, they can easily form complexes through 
metal ion chelation (Hider et al. 2001) in a comparable way of other well-known metal 
chelators such as the anticancer drug Clioquinol, which also exerts a ionophore activity 
(Fig.24). First evidence of those complexes was reported in 1962 between aluminium ions 
and flavonoids. Since then, and specially in the 80’s, scientist have investigated more than 
40 metal-flavonoid complexes (Grazul & Budzisz 2009). 
 
All types of flavonoids possess three main domains able to react with metal ions; the 3,4-
dihydroxy motif located on the B ring, the 3-hydroxy or 5-hydroxy group in the C ring and 
the 4-carbonyl group also found in the C ring. The 3- or 5-hydroxypyran-4-one (sometimes 
the ortho-hydroxyl) groups in the B flavonoid ring also has an important role in chelating 
(Grazul & Budzisz 2009). Furthermore, it is still not clear which element of the ligand plays 
a central role in metal ion chelation. Through IR spectroscopy of the Pd(II)-quercetin 
complex and UO2-rutin complexes, Malesev and Kunti (Malešev & Kuntić 2007) showed 
that the benzoyl moiety is the basic site for metal chelation. Moreover, Cornard and Merlin 
(Cornard & Merlin 2002) proved that the ortho-dihydroxyl system of quercetin is unable to 
bind Al(III) in acidic media. However, they indicated that the Al(III)-quercetin complexes 

possess two binding sides: 3-hydroxychromone, by which the complex is formed, and the 
ortho-hydroxy groups, which are the active groups depending on the medium and pH.  
 

 

Figure 24. Proposed structures and potential metal-binding sites of EGCG (left) and 
Quercetin (central) compared to Clioquinol (right). Based on (Hider et al. 2001) 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

86 

Due to steric reasons, the complexes usually include no more than two flavonoid 
molecules. Many reports have suggested that the flavonoids predominantly form 
complexes with a metal-ligand ratio of 1:2 with good stability constants (Ansari & Sharma 
2009; Chen et al. 2009; Pękal et al. 2011; Dowling et al. 2010; Malešev & Kuntić 2007). 
(Fig.25) However Zhou and co-workers through fluorescence spectroscopy found 3:1 
complexes of quercetin with eight rare-earth metal ions (Zhou 2001). Literature also 
reveals that the binding efficiency of flavonoids to the metal ions is closely associated with 
the nature and state of the transition metal ions. The structure of a flavonoid–metal ion 
complex is dependent upon numerous factors including the coordination number and 
oxidation state of the central metal ion, the number of electron donors in the flavonoid, the 
proximity of the electron donors in the flavonoid, and chelating conditions such as 
temperature and pH (Malešev & Kuntić 2007). Flavonoids act as weak polybasic acids, 

playing an important role in complex formation. The optimal pH for complex formation is 
around 6, although it strongly depends on the metal ion. At pH below 3.0, flavonoids 
remain undissociated, which is unfavourable for complex formation and high pH values are 
known to deprotonate flavonoids and form more complex species (Grazul & Budzisz 2009).  
 
On the other hand, metal chelation is thought to be the most important mechanism of 
flavonoids to exert their antioxidant activity beside with many other biological effects that 
can be altered by those interactions (de Souza & De Giovani 2005). The antioxidant 
activity results from binding metal ions like Fe(II), Fe(III), Cu(I) or Zn(II) which participate in 
free radical-generating reactions. Therefore, they act on two antioxidant pathways; on one 
hand there is a direct reaction with free radicals and on the other hand the chelation of 
metal ions involved in production of reactive oxygen species (Afanas’ev, Dcrozhko, 
Brodskii, Kostyuk, & Potapovitch, 1989; Malešev & Kuntić, 2007; S. A. B. van Acker, van 
Balen, van den Berg, Bast, & van der Vijgh, 1998; S. A. van Acker et al., 1996). 
Experimental data indicated that the chelated compounds were more effective free radical 
scavengers than flavonoids alone. These results suggest that the metal-flavonoid 
complexes, not only exert singular biological properties, but also can enhance the effects 
of both compounds individually.  
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Figure 25. Quercetin–Fe complexes with stoichiometries of 1:1 (a–c), 2:1 (d), 3:2 (e), and 3:1 
(f). Similar structures may be formed with other metal ions such as zinc. (Guo et al. 2007; Ren 
et al. 2008; Tarahovsky et al. 2014) 

 
In fact, one of the mechanisms by which flavonoids exert their antioxidant activity is by 
chelating redox-active transition metals, mainly iron and copper (Thompson et al. 1976) 
which are known to catalyze many biological processes leading to the production of free 
radicals (Mladenka et al. 2010). The essential sites for metal chelation are hydroxyl 
groups, and the most suitable cations for chelation are Fe(II), Fe(III), Cu(II) and Zn(II) 
because of they high charge density, stimulating the interaction with the phenoxide groups 
which have a high negative charge density (Hider et al. 2001). The structure of the formed 
complexes depends on the type of flavonoid and metal ion involved, which in turn can 
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influence its biological interactions that may be different from the single flavonoid (Aherne 
& O’Brien 2000; Afanas’eva et al. 2001; Fernandez et al. 2002; Mira et al. 2002; Payán-
Gómez et al. 2011). Moreover, some of the formed complexes could exert many other 
biological effects, such as molecular signaling, particularly if the metal ion exerts that effect 
by itself. For example the interaction of flavonoids with zinc ions could enhance the effect 
of both molecules lonely.  
 
Further studies have revealed that polyphenols not only interact with metal ions, but they 
deeply modulate expression of MTs, cellular zinc transporters, extracellular zinc carriers, 
and intracellular zinc accumulation which are key factors in zinc homeostasis (Quesada et 
al. 2011). In addition, an increase of Zinquin (fluorescent specific zinc indicator)-detectable 
cytoplasmic levels of zinc in HepG2 cell line was monitored when treated with phenolic 

compounds (Quesada et al. 2011). This increment in intracellular zinc levels have been 
reported to induce apoptosis of tumour cells (Ding et al. 2005; Feng et al. 2008), 
suggesting that zinc ionophores may serve as anticancer agents (Liang et al. 1999).  
 
The enzymatic separation of polyphenols and their metabolites between aqueous and lipid 
phases is by far supporting the aqueous phase because of their hydrophilicity and binding 
to albumin. However, in some lipophilic membrane models, some polyphenols penetrate 
the membrane to various extents (Saija et al. 1995; Castelli et al. 1999; Nakayama et al. 
1998; Movileanu et al. 2000; Ollila et al. 2002). Quercetin showed the deepest interaction, 
probably because of its ability to assume a planar conformation (van Acker et al. 1996). At 
physiologic pH, most polyphenols interact with the polar head groups of phospholipids at 
the membrane surface via the formation of hydrogen bonds that involve the hydroxyl 
groups of the polyphenols (Verstraeten et al. 2003). A high number of hydroxyl groups on 
the polyphenol structure and an increase in pH that leads to deprotonation of the hydroxyl 
groups would thus enhance interactions between the polyphenols and the membrane 
surface. 
 
For instance, transition metal ion complexes of quercetin and genistein significantly alter 
the chemical properties of their corresponding parent flavonoids (Bukhari et al. 2009; Chen 
et al. 2009; Dowling et al. 2010). 
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The complexation of metal ions to flavonoids gives a specific spatial orientation, and this 
could be the responsible for the pharmacological activity. These metal ion complexes 
therefore can exhibit similar characteristics as their parent flavonoids and also display 
unique features distinct from their parent flavonoid due to their structural characteristics 
(Selvaraj et al. 2013). Several recent reports have indicated that the flavonoid–metal ion 
complexes possess more potent biological activities than the parent. Many 
pharmacological effects have been identified for flavonoid-metal ion complexes. (Fig.26) 
 

 

Figure 26. Potential biological activities of flavonoid–metal ion complexes both in vitro and in 

vivo. (Selvaraj et al. 2013)  

Flavonoids exert their antimicrobial activity due to their ability to affect three important 
biological processes that are essential for the survival of bacterial cells. These involve 
blocking of transcription and translation processes, inhibition of cytoplasm and membrane 
functions, and finally inhibition of energy metabolism (Havsteen 2002). In a similar way, 
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metal ion complexes may exert antibacterial activity due to their ability to interact with a 
different set of cellular targets in the microorganism when compared with the single 
flavonoids as a result of a change in their structure as well as binding affinities to the 
various intracellular targets. (Fig.27) The alteration of membrane morphology and fluidity of 
the cells under exposure to flavonoid-metal ion complexes may also play a role in their 
antibacterial activity (Liu et al. 2012).  
 

 

Figure 27. Probable molecular mechanisms for antimicrobial action of flavonoid–metal ion 
complexes. Based on (Malešev & Kuntić 2007; Kopacz et al. n.d.; Bravo & Anacona 2001) 

 
Considerable amount of work has been focused on the interactions of flavonoids and their 
metal ion complexes with DNA. Several in vitro studies using plasmid DNA have been 
widely employed to investigate the propensity of flavonoid-metal ion complexes to bind with 
the DNA double helix. Those complexes such as morin-europium (Woźnicka et al. 2007), 
rutin–iron (Selvaraj et al. 2012b), quercetin-copper (Tan, Wang, et al. 2009a), quercetin-
manganese (Jun et al. 2007),  quercetin-nickel (Tan, Zhu, et al. 2009), and quercetin-zinc 
(Tan, Wang, et al. 2009b) have been reported to show better DNA intercalation when 
compared with their corresponding parent flavonoid. Flavonoids intercalate between the 
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double-stranded DNA through hydrophobic interactions with the nitrogenous bases similar 
to ethidium bromide (Bi et al. 2006). Recent reports have suggested that the isoflavone 
genistein intercalates with the double-stranded DNA in adenine-rich regions compared to 
guanine-rich grooves (Hyz et al. 2011; Chen et al. 2009). Conversely, the larger flavonoid-
metal ion complexes are expected to exhibit a different mode of interaction with the DNA 
(Tan et al. 2009; Selvaraj et al. 2012b; Pereira et al. 2007). Aside from hydrophobic forces, 
the presence of charged transition metal ions in the complexes also favours electrostatic 
interactions with the negatively charged phosphate backbone in the double-stranded DNA. 
However, further studies need to be carried out to derive the structure-activity relationships 
(Selvaraj et al. 2013) 
 
The anticancer activity of flavonoids is has been under research for many decades in order 

to identify the most potent flavonoid or its derivatives against different forms of cancer as 
well as to elucidate their mechanism of action. Recent data have revealed that flavonoids 
show a three to five fold enhancement in the activation of all the proapoptotic factors and 
caspase-mediated pathways in cancer cells (Choi 2007; Havsteen 2002; Kanadaswami et 
al. 2005). An important issue for the antitumor activity of flavonoids is due to their ability to 
directly interact with DNA. They alter gene expression or induce DNA fragmentation, which 
leads to activation of apoptotic pathways. One of the major causes for the transformation 
of a normal cell into a cancer cell is due to unregulated activation of key enzymes involved 
in the cell cycle (Choi 2007). Generally, flavonoids activate the caspase-mediated signal 
transduction pathways, which activate the tumour suppressor protein p53, thus inhibiting 
cell proliferation. 
 
Numerous flavonoid-metal ion complexes have been also found to exhibit anticancer 
properties, which may be mediated through arrest of cell cycle events, modifications in the 
DNA architecture, or alteration of membrane fluidity (Tan et al. 2009; Selvaraj et al. 2012a; 
Etcheverry et al. 2008; Tan, Wang, et al. 2009b). The anticancer potentiality of the 
flavonoid-metal ion complexes in many cases has been found to be greater than the parent 
flavonoids. These improvements may be due to their better DNA intercalation, pro-oxidant 
nature, and alterations in the membrane fluidity (Selvaraj et al. 2013). (Fig.28) Several 
reports have highlighted the efficiency of the flavonoid-metal ion complexes against human 
cervical carcinoma cells (Durgo et al. 2011),  gastric cancer cells (Tan et al. 2009), human 
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hepatocellular liver carcinoma cells (Tan et al. 2009), leukaemia cells (Pereira et al. 2007), 
human colon adenocarcinoma cells (Etcheverry et al. 2008), human hepatoma cells and 
osteoblast cancer cells (Etcheverry et al. 2008).  Quercetin-zinc complexes, using different 
tumour cell lines, described potential antitumor activity. The complex showed significant 
cytotoxicity, and nuclear staining assays revealed that HepG2 cells underwent the typical 
morphologic changes of apoptosis characterized by nuclear shrinkage, chromatin 
condensation, or fragmentation after exposure to the complex (Tan, Wang, et al. 2009b). 
 

 

Figure 28. Proposed signal cascade for anticancer activity of flavonoid–metal ion complexes. 
Based on (Tan, Wang, et al. 2009a; Tan et al. 2009; Etcheverry et al. 2008; Durgo et al. 2011) 

 
Many reports in the literature have suggested the excellent antidiabetic potential of 

flavonoids, especially for the treatment of insulin-dependent diabetes mellitus. The 
antidiabetic efficiency of flavonoids is mainly attributed to their ability to alter the gene 
expression in glycolysis and glycogenesis metabolic pathways. A recent investigation has 
ascribed the antidiabetic activity of flavonoids to their insulin-mimic activity due to the 
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activation of the insulin receptor substrate, thereby stimulating protein phosphatase 
resulting in the conversion of glucose to glycogen (Müller 2000). There are also some 
evidences about the insulin-mimic property of the complex with metal ions, however the 
mechanism is not yet elucidated. Probably the complex might also act on similar targets as 
the parent flavonoids, or maybe it can act promoting the activation of multiple targets 
enhancing the insulin-mimic effect. (Fig.29) 
 

 

Figure 29. Proposed Insulin-mimetic events of flavonoid–metal ion complexes. IRS, insulin 
receptor substrate; PP, protein phosphatase; PKA, protein kinase A; PIP2, phosphatidyl 
inositol pyrophosphate; GLUT, glucose transporter. Based on (Müller 2000; Cazarolli et al. 
2006; Badea et al. 2009) 

 

The anti-inflammatory activities of many flavonoids are widely documented in literature 
(Pan et al. 2010; Dannenberg & Berger 2013; González et al. 2011).  They exert their anti-
inflammatory effect by blocking the inflammation-mediated pathways and stimulating the 
secretion of anti-inflammatory molecules. As with most anti-inflammatory phytochemicals, 
flavonoids are also known to inhibit the plasma protein inflammation cascade system, 
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block the secretion of inflammatory mediators, and reduce vascular permeability (Jung et 
al. 2014). Metal chelation of flavonoids has also been demonstrated to enhance their anti-
inflammatory activity by blocking the inflammation-mediated pathways. Flavonoid-metal ion 
complexes modulates the lipooxygenase pathway, aside from the cyclooxygenase 
pathway to suppress the secretion of pro-inflammatory molecules. (Fig.30) This difference 
may be attributed to structural changes and cellular localization of the complexes 
promoting the activation of different targets. However, this mechanism remains poorly 
explored.  
 

 

Figure 30. Proposed Anti-inflammatory role of flavonoid–metal ion complexes. Based on (Li 
et al. 2009; Pan et al. 2010) 
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 3. The Akt pathway 
 
During the last decade, important advances have been made in our understanding of the 
molecular events underlying cellular responses to extracellular signals. The cell signaling is 
a critically important mechanism for the multicellular organisms including human beings. In 
recent years, there is much emphasis on modulation of signaling pathways especially 
during various diseases. Therefore, there is a new emerging view to prevent such diseases 
by modulating the intracellular signaling pathways through the use of various natural 
compounds. Diet is a lifestyle factor that plays a major role in the primary and secondary 
prevention of several chronic diseases. It has been widely reported how both dietary 
phenolic compounds and zinc exert beneficial effects on health, preventing and 
ameliorating those chronic diseases such as diabetes, hypertension, obesity, 
neurodegenerative diseases or cancer through the modulation of multiple metabolic 
pathways. For example, zinc dyshomeostasis has been related to certain disorders such 
as metabolic syndrome, diabetes and diabetic complications (Shan et al. 2014; Miao et al. 
2013; Li et al. 2013; Jansen et al. 2012). Several studies suggest that zinc 
supplementation could prevent that disorders. (Table 11)  
 

 

Table 11. Evidence for the preventive effect of Zn supplementation on diabetes. MT(ND), no 
detecting pancreatic MT content; 1 (12) weeks, 1 week prior to STZ and continued 12 weeks 
after STZ; inhibiting NF-κB &/or AP1, through inhibition of pancreatic NF-κB and/or AP1 
activation; ALX, alloxan; NOD, non-obese diabetes. (Miao et al. 2013) 
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Some of the insulinomimetic effects of zinc can be explained by the influence of zinc on 
insulin signaling. (Fig.31) One zinc-dependent molecule, insulin-responsive amino 
peptidase (IRAP), which is expressed and characterized in fat and muscle as insulin target 
tissues (Keller et al. 1995), seems to be required for the maintenance of normal glucose 
transporter (GLUT) 4 levels in order to ensure glucose uptake into tissues (Keller 2004).  
 

 

Figure 31. Influence of zinc on the insulin-signaling pathway. PI3K activation triggers the 
phosphorylation of PDK1, a serine kinase that activates the Akt pathway. Akt leads to 
stimulation of GLUT 4 translocation in adipocytes and to inhibition of GSK-3, thereby 
allowing activation of glycogen synthase in adipocytes, translocation of GLUT to the cell 
surface and induction of glucose metabolism. Akt is activated by zinc in a PI3K-dependent 
way and zinc inhibits GSK-3, just like insulin. (Jansen et al. 2009) 

 
In a comparable way, several polyphenols have been described to exert an important 
function against the metabolic syndrome and diabetes, having in some cases, a preventive 
effect (Basu et al. 2013; Sohrab et al. 2013; Munir et al. 2013).  
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One of the most studied flavonoids from green tea, EGCG, has been described to inhibit 
gluconeogenesis in hepatocytes and to stimulate glucose uptake in rat skeletal muscle 
cells by using a PI3K-dependent mechanism that mimics metabolic actions of insulin (Jung 
et al. 2008; Waltner-Law et al. 2002). Also, EGCG directly and acutely stimulates 
production of NO from primary endothelial cells by using a signaling pathway that involves 
low-level generation of H2O2 and possibly other reactive oxygen species that then goes on 
to stimulate a signaling cascade including sequential activation of the src family kinase fyn, 
PI3K, Akt, and eNOS (Kim et al. 2007). Interestingly, this pathway shares features in 
common with insulin signaling pathways regulating activation of eNOS and NO production 
in endothelial cells (Kim et al. 2006). 
   
Same similarities have been reported for several diseases, where both zinc or phenolic 

compounds have been suggested as suitable candidates in order to promote health 
benefits. Even though the molecular mechanisms of action are still hardly known, they 
have similar targets and in some cases they may act through the same metabolic 
pathways. (Fig.32)  
 

 

Figure 32. Polyphenols modulate key pathways that control inflammation, the energy status 
of cells, and cellular stress responses. In many cases, zinc modulates the same pathways 
exerting similar effects. Some interactions activate signaling pathways (arrows) whereas 
others inhibit them (bars). (Howitz & Sinclair 2008; Gruber et al. 2013) 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
I. INTRODUCTION 

!
! !

110 

An example of a shared target for either zinc or polyphenols is the Akt pathways. Protein 
kinase B (PKB), also known as Akt, is a Serine/Threonine Kinase, which plays a key role in 
multiple cellular processes such as protein synthesis, cell survival, growth, proliferation, 
angiogenesis, glucose metabolism, cardiovascular homeostasis, neuroprotection or 
apoptosis (Manning & Cantley 2007; Kloet & Burgering 2011). (Fig.33) It is a highly 
conserved pathway, and its modulation is controlled through multiple receptors (Hemmings 
& Restuccia 2012). Its identification pathway began in the early 1980s trying to identify the 
insulin signaling mechanisms and observing its responsibility in the inactivation of glycogen 
synthase kinase 3 (GSK3) and in the regulation of glycogen synthesis in insulin sensitive 
tissues (Lawlor & Alessi 2001). It also induced the glucose uptake through different 
transporters such as GLUT1, GLUT3 and GLUT4 (Hajduch et al. 1998; Barthel et al. 1999). 
The PI3K/Akt pathway is a critical regulator of cell survival, involved in the regulation of 

specific proteins such as BCL-2 family, which are critical in the maintenance of cell survival 
or the induction of apoptosis, depending on the balance between homo- and heterodimers 
(Datta et al. 1999). 
 
Inhibition of PI3K pathway abolishes cell survival and accelerates apoptosis, whereas an 
activated form of the Akt/PKB, a downstream effector of PI3K, blocked apoptosis (Kennedy 
et al. 1997). PI3Ks are enzymes that transfer phosphate to position 3 of the 
phosphoinositide ring, regulating a variety of cell responses. Based on their primary 
structure and substrate specificity, PI3Ks are divided into three subclasses, but only the 
class I enzymes generate phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 
3,4,5-trisphosphate (3-poly-PtdIns) products in vivo (Jimenez et al. 2002). Active PI3K 
catalyses the production of phosphatidylinositol-3,4,5-triphosphate (PIP3) by 
phosphorylating phosphatidylinositol (PI), phosphatidylinositol- 4-phosphate (PIP), and 
phosphatidylinositol-4,5-bisphosphate (PIP2). PIP3 may then activate phosphoinositi 
dependent protein kinase 1 (PDK1), which plays a central role in many signal transduction 
pathways (Carpenter & Cantley 1996; Simpson & Parsons 2001), activating Akt and the 
PKC isoenzymes p70 S6 kinase and p90 ribosomal S6 kinase (Neri et al. 2002). All 
members of Akt/PKB family have structural homology within their catalytic domain and 
have the similar mechanism of activation. Because of its involvement in various cellular 
functions, the Akt/PKB plays a central role in the signal transduction pathways.  Akt/PKB is 
activated in response to growth factors or insulin, and it is thought to promote growth 
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factor-mediated cell survival and to block apoptosis (Zhang & Liu 2011). As seen, natural 
phenolic compounds are also able to modulate the PKB pathway, as well as changes on 
intracellular zinc concentrations do. The ability of Akt/PKB to promote cell survival is due to 
its kinase activity and depends on the activity of its upstream activator PI3K (Kennedy et 
al. 1997).  
 

 

Figure 33. Akt plays a key role in multiple cellular processes such as protein synthesis, cell 
survival, growth, proliferation, angiogenesis, glucose metabolism, cardiovascular 
homeostasis, neuroprotection or apoptosis. Downstream targets of Akt include Bad, 
Caspase9, Caspase3, FoxO, GLUTs, eNOS, PFK2, PFK1, GSK3 or mTOR. (From 
www.cellsignal.com)  
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The research work carried out in this PhD Thesis is part of a more general research plan 
developed by the Nutrigenomics Research Group of the University Rovira i Virgili, which 
deals with the beneficial effects, and underlying mechanisms of action, of dietary 
polyphenols, mostly for prevention and amelioration of metabolic disorders associated with 
the so called Metabolic Syndrome. These disorders include insulin resistance, obesity, 
atherogenic dyslipidemia, hypertension and pro-inflammatory state, and all of them are 
associated with a higher risk of cardiovascular diseases (CVD) and Type-2 Diabetes 
Mellitus. 
 
Initial in vivo studies of our research group showed that a single oral dose of a grape seed 
procyanidin extract (GSPE) to healthy rats was able to lowers plasma triglyceride levels to 
50% in the postprandial state. Microarray analysis of liver gene expression profile 

associated to this GSPE administration identified some previously undiscovered target 
genes of polyphenols in hepatic cells. Among these where the metallothionein genes, 
whose mRNAs were 3 fold less abundant in the liver of GSPE-treated rats than in 
untreated control animals (Quesada et al. 2007). In another study, at the proteome level, 
zinc exporter ZnT-1 were found to be diminished in the liver of diet-induced obese rats 
chronically treated with procyanidin extracts (Baiges et al. 2010).  
 
Further in vitro research in our group revealed that the green tea flavonoid EGCG was also 
able to down-regulate MT and ZnT1 expression in the human carcinoma cell line HepG2 
(Quesada et al. 2011) whereas another flavonoid, quercetin, was found to up-regulate MT-
1, MT2 and ZnT1 in the mouse hepatic carcinoma  cell line Hepa1-6 (M. Bustos, personal 
communication, 2011, Universitat Rovira i Virgili). EGCG was found to diminish intracellular 
total zinc accumulation, whereas quercetin did just the opposite. However, both EGCG and 
Quercetin enhanced the level of cytoplasmic labile zinc. To explain this fact, it was 
hypothesized that both EGCG and quercetin might by acting as zinc ionophores, i.e., they 
would form complexes with zinc transporting it through the plasma membrane inside the 
cytoplasm.   
 
Given the relevance of polyphenols by one side, and zinc on the other side, in the control 
of different metabolic pathways and intracellular signaling, this thesis was aimed to 
advance in the knowledge of the biological actions of polyphenols on zinc homeostasis and 
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signaling, and on the biological effects of combining polyphenols with zinc. More 
specifically, the purpose of this thesis was to characterize how a water soluble polyphenol, 
namely EGCG, and a hydrophobic polyphenol, namely quercetin, affect zinc signaling in 
cultured hepatic cancer cells. In addition, it was pursued to found out whether these and 
other polyphenol classes are true ionophores.  
 
To fulfil these purposes, the following objectives were successively proposed: 
 
1. Characterize the combined effect of Quercetin and zinc cations on Hepa 1-6 
viability, cytoplasmic labile zinc levels and Akt phosphorylation.  
 
2. Characterize the combined effect of EGCG and zinc cations on Hepa 1-6 viability, 

cytoplasmic labile zinc and Akt phosphorylation.  
 
3. Assess whether EGCG, quercetin and other classes of dietary polyphenols may 
act as true zinc ionophores in a liposomal system. 
 
4. Find out whether combinations of non-toxic quantities of quercetin with non-toxic 
amounts of zinc may induce apoptosis in the hepatic carcinoma cell line Hepa1-6. 
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Zinc, the second most abundant transition metal in humans, is an essential micronutrient 
with structural, catalytic and signaling function and shows antioxidant action in cells. 
Quercetin is one of the most abundant polyphenols found in fruits and vegetables 
distinctive of the Mediterranean Diet. Its consumption is beneficial for prevention of chronic 
diseases such as obesity, hypertension, diabetes, Alzheimer or cancer. Food polyphenols 
are known to act as antioxidants and as signaling molecules, and to form complexes with 
copper and iron thereby affecting their bioavailability.  
 
In this work, we seek to check whether Quercetin interacts with zinc and to evaluate the 
effect of this interaction on intracellular zinc homeostasis and zinc signaling in an in vitro 
model of hepatic tumour cells (Hepa 1-6). Quercetin strongly binds to zinc cations in 
solution as shown by the quenching of zinc dependent Zinquin fluorescence. 

Administration of Quercetin together with supplemental zinc to hepatoma cells results in 
enhanced expression of the zinc-store protein metallothionein and the zinc-export 
transporter ZnT1 (as determined by RT-PCR); total intracellular zinc content (assayed by 
FAAS) and cytoplasmic labile zinc (monitored by Zinquin fluorescence) are increased. 
Western-blot analyses show that low doses of Quercetin greatly enhance zinc-induced 
phosphorylation of Akt and, vice versa, low doses of zinc enhance the phosphorylation of 
Akt induced by Quercetin. These results show that combinations of zinc with Quercetin are 
more effective that the single compounds in modulating intracellular zinc homeostasis and 
signaling. They also suggest that Quercetin may act as zinc ionophore.  
 
The LDH assay, the determination of total intracellular zinc concentrations and the gene 
expression profile study were conducted with my colleague Dr. Mario Bustos. Only the 
results related to the chelation in solution prove, the MTT viability assay, the intracellular 
labile zinc determination and the effects on Akt phosphorylation belong to this thesis. 
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ABSTRACT 
 

Quercetin is one of the most abundant flavonoids found in dietary fruits and vegetables, 

and plays a relevant role in human health by virtue, in part, of its antioxidant actions, which 

partially derives from its interaction with the redox-active transition metals iron and copper. 

The interaction of Quercetin with the redox-inert zinc and the biological effects of this 

interaction are barely studied. The purpose of this study was to determine whether 

Quercetin chelates zinc cations and affects zinc homeostasis in the mouse liver carcinoma 

Hepa 1-6 cells. We have previously shown that other type of flavonoids, a grape seed 

procyanidin extract and green tea (−)-epigallocatechin-3-gallate (EGCG), interact with zinc 

cations and affect zinc homeostasis in human hepatic carcinoma HepG2 cells. Here we 

first show that Quercetin binds zinc cations in solution with a similar strength to TPEN and 

Clioquinol, a zinc-specific chelators and a zinc-ionophore respectively. Accordingly, 

Quercetin is able to counteract the noxious effects of excess zinc on Hepa 1-6 and vice 

versa. Quercetin added to Hepa 1-6 cells increases the expression of metallothionein 

genes MT1 and MT2, as well as the plasma membrane zinc exporter ZnT1 (SLC30A1). 

Likewise, Quercetin enhances intracellular accumulation of zinc, and also increases the 

tiny fraction of cytoplasmic labile zinc detectable by the zinc-specific fluorophore Zinquin, 

i.e., a pool of interchangeable, metabolically active, or signaling zinc. Both Quercetin and 

zinc are known to modulate phosphorylation of Akt. Here we show that Quercetin activates 

Akt phosphorylation in a dose and zinc-dependent manner. Taken together, our results 

show that Quercetin-zinc complexes modulate cellular zinc homeostasis and signaling and 

strongly suggest that the signaling and metabolic pathways modulated by labile zinc will be 

also target of this flavonoid. Thus, complexation of Quercetin with zinc cations may explain 

some of the beneficial health effects ascribed to Quercetin consumption. 

 

 1. INTRODUCTION 
 

Quercetin is one of the most abundant flavonoids present in fruits and vegetables. The 

richest food sources of Quercetin are onions, oranges, leeks, broccoli, apples, and 

blueberries (Manach, Scalbert et al. 2004). Red wine and tea can also contain a significant 

amount of Quercetin. This molecule has been thoroughly investigated for its abilities to 

express mainly antioxidant properties attributed to its chemical structure (Rice-Evans, 
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Miller et al. 1996; Williams, Spencer et al. 2004). Like other flavonoids, Quercetin also 
behaves as a signaling molecule, modulating multiple cell signaling and metabolic 
pathways and gene expression (Kuo, Huang et al. 2001; Williams, Spencer et al. 2004; 
Scalbert, Johnson et al. 2005; Peluso 2006). Quercetin has strong anti-inflammatory 
(Orsolic, Knezevic et al. 2004) and anti-carcinogenic (Erlund, Freese et al. 2006) capacity. 
It has also been demonstrated that Quercetin possesses anti-fibrotic (Phan, Lim et al. 
2003), anti-coagulative (Bucki, Pastore et al. 2003), anti-bacterial (Cushnie TP 2005), anti-
atherogenic (Perez-Vizcaino, Duarte et al. 2006), anti-hypertensive (Duarte J 2001; Perez-
Vizcaino, Duarte et al. 2006) and anti-proliferative properties (Orsolic, Knezevic et al. 2004; 
Gulati N 2006). Furthermore, Quercetin exerts anti-adipogenic activity activating AMPK 
signaling pathway in 3T3-L1 pre-adipocytes and induces apoptosis in mature adipocytes 
by modulating the ERK and JNK pathways (Ahn, Lee et al. 2008). These effects were 

increased when Quercetin was combined with the non-flavonoid polyphenol resveratrol 
(Park HJ 2008). 
 
Flavonoids have been widely reported to chelate metals, in particular iron and copper 
(Hider, Liu et al. 2001; Quesada, Bustos et al. 2011). Quercetin possesses three possible 
metal chelating sites that can interact with metal ions; the 3,4-dihydroxy group located on 
the B ring and the 3- or 5-hydroxy and 4-carbonyl group in the C ring (Hider, Liu et al. 
2001). The metal-complexing properties of this molecule may contribute to its total 
antioxidant activity. Thus, many studies have been focused on quelation of redox-active 
metals copper and iron, which are known to catalyse many biological processes leading to 
the production of free radicals (Kostyuk, Potapovich et al. 2001; Kostyuk, Potapovich et al. 
2007; Ren, Meng et al. 2008; Pekal A 2011). Although much less studied, it is also known 
that some flavonoids, including Quercetin, can also chelate zinc redox-inert cations (Tan 
2009) and affect zinc absorption by intestinal Caco-2 cells Sreenivasulu 2010.  
 
Zinc is an essential cofactor for hundreds of enzymes. It is involved in protein, nucleic acid, 
carbohydrate, and lipid metabolism, as well as in the control of gene transcription, growth, 
development, and differentiation (Fuchs, Babusiak et al. 2003; Rudolf, Rudolf et al. 2003; 
Frassinetti, Bronzetti et al. 2006). At the molecular level, zinc is almost completely bound to 
proteins or chelated by low molecular weight ligands, leading to a very low concentration 
(in the nanomolar range) of the free ionized species and acts as a second messenger 
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modulating multiple signaling and metabolic pathways (Coyle, Zalewski et al. 1994; 

Beyersmann and Haase 2001; Hirano, Murakami et al. 2008; Murakami and Hirano 2008; 

Maret 2009). The intracellular labile zinc pool is metabolically important, because it 

responds to zinc deprivation or supplementation by decreasing or increasing its content, 

respectively (Zalewski, Forbes et al. 1993). Thus, the cell must maintain a tight regulation 

of this pool of zinc, so a large number of proteins are dedicated to zinc transport and 

buffering. Ten proteins of the ZnT family (SLC30A) and 14 proteins of the ZIP family 

(SLC39A) coordinate zinc transport out of and into the cytosol, respectively (Liuzzi and 

Cousins 2004; Lichten and Cousins 2009).  

 

Zinc homeostasis is also regulated by zinc sensors, such as metal response element 

binding transcription factor-1 (MTF-1) (Andrews 2001; Lichtlen and Schaffner 2001; Laity 

and Andrews 2007), and zinc-binding proteins such as glutathione, and a family of at least 

10 functional metallothionein (MT) proteins in human (only four in rodents). MTs are low-

molecular weight metal-binding proteins. Within the cytoplasm, zinc is bound by metal-free 

apo-metallothionein (apo-MT) to generate Zn-MT. The Zn-MT/apoMT ratio functions at a 

central node in cellular signaling by redistributing cellular zinc, presiding over the 

availability of zinc, and interconverting redox and zinc signals (Krezel, Hao et al. 2007; 

Krezel and Maret 2008). MT also serves as a heavy metal chelator and its transcriptional 

regulation is conferred by MREs (Metal Response Elements), to which MTF-1 binds. The 

induction of MT with transition metals requires phosphorylation of MTF-1 by a kinases 

pathway that includes PI3K (phosphoinositol-3 kinase), PKC (protein kinase C) and JNK 

(c-jun N-terminal kinase) (LaRochelle, Gagne et al. 2001; Saydam, Adams et al. 2002). 

MTF-1 activates other important genes besides those encoding MTs. ZnT1, the main 

exporter of zinc out of the cell, was shown to be another in vivo target gene of MTF-1 

(Cuajungco and Lees 1997). Thus, MTF-1 is a crucial transcriptional regulator for basal 

expression of at least three important genes (MT-1, MT-2 and ZnT1) involved in zinc 

metabolism. 

 

Given that our previous results showed that catechins and proanthocyanidins interact with 

the redox-inactive metal zinc and modulate zinc homeostasis in the human 

hepatocarcinoma HepG2 cells (Quesada, Bustos et al. 2011), the aim of this work was to 

determine the interaction of another type of flavonoid, the flavone Quercetin, with zinc ions 
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and the modulation of different parameters of zinc homeostasis in the mouse hepatoma 
Hepa 1-6 cells. We also aimed to elucidate whether Quercetin-zinc complexes with 
different flavonoid to zinc ratios affect the metabolically active labile pool of zinc and a 
known target of this zinc pool, Akt, also known as Protein kinase B (PKB). Akt is a 
Serine/Threonine Kinase, which plays a key role in multiple cellular processes such as 
protein synthesis, cell survival, growth, proliferation, angiogenesis, glucose metabolism, 
cardiovascular homeostasis, neuroprotection or apoptosis (Kloet & Burgering, 2011; 
Manning & Cantley, 2007). Quercetin has been shown to modulate Akt phosphorylation in 
different cell types (Granado-Serrano, 2006) and zinc-chelators that increase the labile 
pool of zinc such as pyrithione are also known to affect Akt phosphorylation (Maret, 2013 
Haase, 2009). Hence, we aimed to explore how the combination of zinc and Quercetin 
affect Akt phosphorylation. 

  
2. MATERIALS AND METHODS 
 
2.1. Chemicals 
Quercetin, TPEN [N,N,N′,N′-tetrakis(2-phridylmethyl) ethylenediamine], ZnCl2, Zinquin 
ethyl ester, ethanol, dimethyl sulfoxide (DMSO) and Clioquinol  were from Sigma (St. 
Louis, MO).  
 
2.2. Fluorometric assay for zinc chelation by Quercetin  
The zinc-dependent fluorescent emission of Zinquin ethyl ester (ZQEE) and Zinquin acid 
(ZQA), dissolved in phosphate buffered saline (PBS), pH 7.4, was recorded in a Biotek FLx 
800 spectrofluorometer, with 100 μL samples, in COSTAR Corning 96 well, opaque bottom 
plates, with excitation set at 360/40 and emission at 460/40 nm, at 37ºC. Quenching of 
zinc-dependent fluorescence of fluorophore-zinc complexes by Quercetin, TPEN or 
Clioquinol, was monitored 15 min after addition of different amounts of the compounds to 
the solutions containing various amounts of fluorophores and zinc cations, as specified in 
the figures. 
 
2.3. Cell cultures and treatments 
Hepa 1-6 cells (BW7756 ECACC) were grown in Dulbecco´s Modified Eagle Medium 
(DMEM; BioWittaker) supplemented with 10% fetal bovine serum (BioWittaker), 2mM 
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glutamine and 1% non-essential amino acids. This medium contains 3.9 ± 0.3 μM zinc 
determined by flame atomic absorption spectrometry (FAAS). Cells were incubated at 37ºC 
in humidified, 5% CO2-enriched atmosphere and routinely splitted at a 1:5 ratio upon 
reaching 80% confluence. For treatments, cultures at 80% confluence were trypsinized and 
resuspended at a density of 5x105 cells/ml; 1 ml aliquots of resuspended cells were 
seeded per well in 12-well plates (Orange Scientific). Twenty-four hours later, medium was 
replaced with fresh medium containing the different treatment substances or vehicle (final 
0.05 % ethanol, 0.1% DMSO). 
 
2.4. In vitro cytotoxicity assays 

Cytotoxicity of Quercetin and ZnCl2 was assessed in Hepa 1-6 cells treated 24 h with 
different concentration of the substances using the lactate dehydrogenase (LDH) leakage 

assay of plasma membrane integrity as previously described (Puiggros, Llopiz et al. 2005) 
and the methyl tetrazolium (MTT) assay of mitochondrial functionality and cell viability as 
previously described (Stern 2006). 104 cells were seeded per well of 96-well plates in 100 
µL media for MTT assays.  
 
2.5. Quantification of MT and ZnT-1 gene expression 

Total RNA was isolated from Hepa 1-6 cells using RNeasy Mini Kit (Qiagen). To quantify 
relative mRNA levels of specific genes in different RNA samples, cDNAs were generated 
from total RNA using TaqMan Reverse Transcription Reagents (Applied Biosystems) and 
quantitative reverse transcriptase-polymerase chain reactions (RT-PCRs) were performed 
using the TaqMan PCR Core Reagents Kit and Specific TaqMan Gene expression assay 
Probes (Applied Biosystems):  MT-I (Mm00496660_g1), MT-II (Mm00809556_s1) and 
Znt1/Slc30a1 (Mm00437377_m1). Cyclophilin peptidylprolyl isomerase A (cyclophilin A, 
PPIA) (Mm03024003_g1) was used as endogenous control gene for sample input 
normalization in RT-PCR experiments. Quantitative PCR amplification and detection were 
performed using the Applied Biosystems Real Time 7000 PCR System termocycler and 
software. 
 
2.6. Quantification of total intracellular zinc 

To quantify total intracellular zinc, cells were thoroughly washed with PBS and lysed with 
0.01 M NaOH. Aliquots of the cell lysates were used to quantify zinc by FAAS as 
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previously described (Reaves, Fanzo et al. 2000), using a Hitachi Z-8200 Polarized 

Zeeman AA Spectrophotometer. Total zinc amount was normalized per total protein 

content of the cells, determined by the Bradford method. 

 

2.7. Measurements of intracellular labile zinc 

To measure changes in intracellular labile zinc, cells were washed with PBS after 

treatments, incubated 30 minutes at 37ºC in 20 µM Zinquin ethyl ester in PBS; protein 

content and Zinquin fluorescence was determined in cell aliquots. Background 

fluorescence of Zinquin loaded cells was subtracted from readings to derive Zinquin-

dependent fluorescence as described (Coyle, Zalewski et al. 1994).  

For microscopy visualization, cells were attached to glass coverslips, the medium was 

discarded after treatments and the cells washed (three times) with PBS. Coverslips were 

immersed in a solution of Zinquin (20µM) in PBS and incubated for 30 min at 37 ºC. 

Coverslips were inverted on to microscope slides, and images were captured at 1000x 

magnification with a Leica DM 4000B microscope using UV light illumination (λex = 340-

380 nm) and a blue emission filter (λem ≥ 425nm). 

 

2.8. Changes in phosphorylation of Akt /PKB-1 were monitored by Western blotting 

For immunoblotting analysis, Hepa1-6 cell extracts were prepared through cell lysis in 

RIPA buffer (100 nM Tris-Cl pH 7,4, Tween 10%, Na-Deoxycholate 10%, SDS 0,1%). 

BioRad Bradford Assay was performed in order to quantify protein concentration, and 30 

µg of protein were analysed for each sample. Proteins were separated using 10% SDS-

Polyacrylamide Gel Electrophoresis and afterwards transferred into an activated 

polyvinylidene difluoride membranes (PVDF, Amersham Hybond™-P roll). Membranes 

were blocked with 5% non-fat milk powder in TBS-Tween 0.05% for 2 hours. Primary 

antibodies used were: rabbit anti-Phospho-Akt (Ser473) antibody (Cell Signaling 

Technology, Product # 9271); rabbit anti-Akt antibody (Cell Signaling Technology, Product 

# 9272) and rabbit β-Actin antibody (Cell Signaling Technology, Product # 4967). β-Actin 

was used as internal sample control. Anti-rabbit IgG, HRP-linked Antibody was used as 

secondary antibody in all western analysis (#7074). Primary antibodies were incubated 

overnight at 4ºC, while secondary antibody was incubated for 2 hours at room temperature. 

HRP on the membrane was revealed with a chemiluminescent reagent (Amersham ECL 

Prime Western Blotting Detection Reagent, product RPN2232), and images captured with 
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SYNGENE G:BOX Chemi XL 1.4. Imaging System. Relative levels of different proteins 
were obtained analysing the image bands by the Java-based software ImageJ.  
 
2.9. Statistical analysis 

For statistical analysis in cytotoxicity assays, zinc and protein quantification, quantitative 
RT-PCRs, and fluorescence measurements, t-test and one-way ANOVA analyses were 
performed using SPSS software. All data are the result of at least 3 independent 
experiments. Differences were considered significant for P values 0.05. 
  
3. RESULTS 

 
3.1. Quercetin chelates zinc cations in solution 

In order to test if Quercetin interact with zinc cations in solution, we first characterized the 
zinc-dependent fluorescence of membrane impermeable Zinquin Acid (ZQA) and of 
membrane permeable Zinquin Ethyl Ester (ZQEE), which are zinc-specific fluorescent 
chelators widely employed to measure concentrations of labile (free plus loosely bound) 
zinc within cells and in the biological fluids (Zalewski, Truong-Tran et al. 2006). The 
capability of the flavonoid to chelate zinc cations in solution was then measured as the 
quenching of zinc-dependent fluorescence of ZQEE and of ZQA previously complexed with 
zinc. Both zinc-specific fluorophores lose fluorescence when are not bound to zinc, 
indicating that the flavonoid has retrieved zinc cations from the fluorescent fluorophore-zinc 
complex. We found that Quercetin quenched the zinc-dependent Zinquin fluorescence 
rapidly, with an efficacy comparable to that of the zinc-specific chelators Clioquinol and 
TPEN, at a 100:10 Quercetin to Zinquin molar ratio, in the presence of 10, 20 or 40 µM 
ZnCl2 (Fig. 1). These results imply that Quercetin binds zinc cations retrieving them from 
Zinquin-zinc complexes. 
 
 
3.2. Quercetin protects cells from zinc-induced cell death 

We next performed LDH and MTT tests to evaluate the effect of increasing amounts of zinc 
and Quercetin on Hepa 1-6 cells viability. Zinc concentrations above 200 μM resulted in 
significant LDH leakage, reaching 40% upon incubation of cells with 1000 μM zinc (Fig. 
2A), and 14% upon incubation with 600 μM Quercetin during 24 h (Fig. 2B).  The noxious 
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effects of 300 μM zinc were partially reversed by the addition of 300 μM Quercetin (1:1 

Quercetin-zinc ratio), and addition of 600 μM Quercetin (2:1 ratio) completely abolished the 

toxic effect of 300 μM zinc, leaving the cells as untreated cells after the LDH test (Fig. 2C). 

Thus, 300 μM Quercetin, a dose that is not toxic for the cells, was able to decrease the 

toxic effects of excessive zinc and 600 μM Quercetin, a dose that is toxic to Hepa 1-6 cells, 

was able to completely counteract the toxic effects of excess zinc. Vice versa, the toxic 

effects of 600 μM Quercetin are counteracted by the addition of an amount of zinc that is 

toxic in the absence of Quercetin. This result was confirmed by the MTT test (Fig. 3). 800 

μM Quercetin is able to reverse the lethality of zinc present at concentrations as high as 

2500 µM (Fig. 3B) and 3000 μM (Fig. 3C). These results strongly suggest that Quercetin 

and zinc form complexes that render Quercetin anions and zinc cations unavailable for 

cells. 

 

3.3. Quercetin enhances the expression of MT and ZnT1 genes in Hepa 1-6 cells 

Hepa 1-6 cells were cultured and grown 24 hours in a standard culture medium (3.9 ± 0.3 

μM zinc) or in zinc-loaded medium (50 μM added ZnCl2) supplemented with either vehicle 

or 100 μM Quercetin, and monitored changes in gene expression of MT genes and the 

plasma membrane zinc exporter, ZnT1 at various times, using quantitative RT-PCR. The 

results show that both MT genes, the only ones expressed in mouse liver cells, were up-

regulated by 100 μM Quercetin with respect to control cells (Fig. 4A and B), reaching 

maximal values 6 hours after addition of Quercetin. Addition of 50 μM zinc to the culture 

medium resulted in an induction of MTs with a 12 fold induction of MT-I and a 20 fold 

induction of MT-II 6 hours after zinc supplementation.  

 

Afterwards, we monitored changes in the expression profile of ZnT1 gene grown in 

standard culture medium (approximately 4 μM zinc) supplemented with 100 μM Quercetin. 

The results showed that ZnT1 was slightly up regulated by 100μM Quercetin with respect 

to control cells 3 hours after addition of Quercetin (Fig. 4C). In zinc-loaded conditions, 

ZnT1 expression was highly up-regulated reaching maximal values 3 hours after addition 

of zinc. Addition of 100μM Quercetin to the zinc-loaded medium almost doubled the zinc-

induced up-regulation of ZnT1 expression at this time (Fig. 4C). The modification elicited 

by Quercetin in the expression of MTs and ZnT1 in Hepa 1-6 cells strongly suggest that 

zinc cations are made more available by the presence of Quercetin, i.e., that Quercetin 
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increase zinc bioavailability, since MT and ZnT1 expression are known to be up-regulated 

by increments in zinc concentrations. This is in contrast with the above mentioned 

sequestering effect of high concentrations of Quercetin and high concentrations of zinc. 

 

3.4. Quercetin increases intracellular total zinc levels 

To address this point, we measured the total intracellular zinc content in Hepa 1-6 cells 

grown in standard (3.9 ± 0.3 μM zinc) and zinc-loaded (50 μM added zinc) media treated 

with either vehicle or 100 μM Quercetin, at the same times used in gene expression 

experiments (Fig. 5). In basal conditions, 100 μM Quercetin elicited a slight increase in 

total intracellular zinc only after 12 hours treatment. When the cultured medium was 

supplemented with zinc, total zinc accumulation was greatly increased compared with 

untreated cells, as expected. In this zinc-loaded medium, 100 Quercetin slightly inhibited 

total zinc accumulation 6 hours after addition of Quercetin, but eventually, after 24 hours, 

cells accumulated 2 fold as much zinc in Quercetin plus zinc medium than in zinc-only 

medium. Therefore, Quercetin increases the accumulation of zinc in Hepa 1-6. 

 

3.5. Quercetin elevates cytoplasmic labile zinc in Hepa 1-6 cells 

We next measured cytoplasmic labile zinc in standard (3.9 ± 0.3 μM zinc) and zinc-loaded 

(50 μM zinc) medium treated with vehicle, 10 μM or 100 μM Quercetin in Hepa 1-6 cells. 

Both doses of Quercetin tested produced no effect on Zinquin-detectable labile zinc in cells 

cultured in basal medium. When the medium was supplemented with 50μM zinc, 

intracellular labile zinc augmented markedly with respect to control cells, as expected. 

Addition of 10μM Quercetin to this zinc-loaded medium decreased cytoplasmic labile zinc 

temporally, at 6 hours of treatment.  In contrast, 100μM Quercetin highly increased 

cytoplasmic labile zinc at 3, 6 and 12 hours of treatment when combined with 50 μM Zn 

(Fig. 6A).  Microscopic observation of Zinquin-loaded Hepa 1-6 cells was done to visualize 

this effect of Quercetin on cytoplasmic labile zinc in Hepa 1-6 cells grown in basal zinc 

concentration as well as in condition of added zinc (Fig. 6B). As a control, Hepa 1-6 were 

also treated with Clioquinol, a well-known zinc ionophore that increases labile zinc 

concentrations when applied together with additional zinc. Both Quercetin and Clioquinol 

produced a significant elevation of Zinquin-detectable labile zinc, only when combined with 

zinc and only in a subpopulation of the cultured cells, producing a similar pattern of 

intracellular fluorescence. 
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3.6. Quercetin modulates Akt phosphorylation in a zinc-dependent manner in Hepa 
1-6 cells 
Akt plays a central role in diverse cell signaling pathways that rely on Akt phosphorylation. 

Quercetin and other polyphenols are known to modulate Akt phosphorylation (Granado-

Serrrano, 2006), and in this way affect apoptosis and other cell processes. Likewise, zinc, 

as a second messenger, modulates Akt phosphorylation and apoptosis (Maret, 2013 

Haase, 2009), as shown by the use of the classical zinc ionophore Pyrithione. We wonder 

whether Quercetin might affect the effect of zinc treatment on Akt phosphorylation and, 

vice versa, whether the addition of supplemental zinc would affect the effect of Quercetin 

on Akt phosphorylation. Akt signals through phosphorylation of two residues, Ser427 and 

Thr345. As a proof of concept, we choose to analyse the changes in phosphorylation of 

Ser427 by Western blotting. Results show (Fig. 7) that low amounts of QCT (10 µM) by 

themselves do not affect Akt phosphorylation, whereas when combined with 50 µM zinc 

elevates S427P-Akt at 6 and 24 hours of treatment. 100 μM QCT increases Akt 

phosphorylation slightly 24 hours after treatment and drastically (6 fold over basal levels) 

when combined with 50 μM zinc.  Thus, QCT enhances Akt phosphorylation in a way that 

positively correlates with zinc concentrations in the culture medium. Likewise, zinc alone 

triggers a much lower enhancement of Akt phosphorylation than when combined with 

Quercetin. This strongly suggests that the effect of Quercetin on Akt phosphorylation (and 

hence signaling) is mediated by intracellular zinc. 

 

4. DISCUSSION 
 

We evaluated the effect of Quercetin on zinc homeostasis in an in vitro model for hepatic 

carcinoma, the Hepa 1-6 cell line. We have previously demonstrated that a grape seed 

procyanidin extract (GSPE), a mixture of catechins and proanthocyanidins, as well as 

individual catechins and procianidines display an affinity for zinc cations in solution high 

enough to make them dissociate from the zinc-specific chelator, Zinquin (Quesada, Bustos 

et al. 2011).  In this study we tested another type of flavonoid, Quercetin and we compared 

this molecule with a well-known intracellular zinc chelator, TPEN. We have shown here 

that Quercetin also displaced zinc ions from zinc-Zinquin complex with similar affinity as 

TPEN at very low concentrations and at molar ratios of 0.5 μM Quercetin to 20 μM Zinquin 

and 1 μM zinc. Sreenivasulu et al. also showed that Quercetin and tannic acid quenched 
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zinc-induced Zinquin fluorescence in a dose dependent manner (Sreenivasulu, Raghu et 
al. 2010). It was also reported that the stilbene resveratrol, chelates zinc in vitro (Zhang, 
Wu et al. 2009). Our result implies that Quercetin interacts with zinc cations in solution, 
suggesting that it could be able to modulate the metabolically active labile zinc. 
 
If Quercetin indeed interacts with zinc cations forming Quercetin-zinc complexes, it also 
would be able to reduce zinc toxicity in Hepa 1-6 cells. To test this, we assessed the 
viability of Hepa 1-6 cells co-incubated with a toxic dose of zinc and different doses of 
Quercetin, determined by LDH and MTT. We have shown that Quercetin exerted a 
reversion of excess zinc toxicity (300 μM zinc) in Quercetin to zinc ratios (1:1) and (2:1). 
The 2:1 ratio showed major effect in preventing zinc toxicity than 1:1 ratio. This result 
reflects the importance of the Quercetin-zinc complex stoichiometry. We have also recently 

demonstrated that GSPE and EGCG are also able to counteract zinc toxicity in HepG2 
cells (Quesada, Bustos et al. 2011). Our findings are in agreement with Sun et al. who 
have shown that EGCG protected PC-3 cells from damages induced by zinc ions (Sun, He 
et al. 2008).  
 
In order to asses whether the ability of Quercetin to complex with zinc may affect cellular 
zinc homeostasis, we monitored changes in the expression profile of genes involved in 
storage and zinc transport (MT and ZnT1 respectively) and total intracellular zinc 
accumulation in Hepa 1-6 cells grown in standard culture medium (3.9 ± 0.3 μM zinc) and 
in zinc-loaded medium (50 μM additional zinc). The results showed that modulation elicited 
by Quercetin was more effective when the medium was supplemented with excess zinc, 
increasing the expression of MTs and of zinc exporter ZnT1 gene. In this regard, Weng et 
al. reported that Quercetin increase MTs expression in HepG2 cells producing liver 
protection against oxidative stress activating MAPK and PI3K pathways and also 
increasing DNA binding activity of Nrf2 (Weng, Chen et al. 2011). It has been also reported 
that zinc-induced MT gene expression was up-regulated by Quercetin in CaCo-2 cells 
(Sreenivasulu, Raghu et al. 2010). Also the isoflavone genistin was shown to increase MT 
and ZnT1 expression in HepG2 cells (Chung, Kang et al. 2006). However, the effect of 
these flavonoids on zinc accumulation was not reported. The changes elicited by Quercetin 
in the expression of MT and ZnT1 genes in different conditions are consistent with an 
increased availability of zinc and a concerted response of the cellular machinery to get rid 
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of zinc excess. To address this point we measured total intracellular zinc. We found that 
total zinc content was increased with 100µM Quercetin in standard and zinc-loaded 
medium. We have previously demonstrated opposite changes in these parameters with 
other flavonoids, GSPE and EGCG. These compound down-regulated MTs and ZnT1 
expression and also decreased total intracellular zinc accumulation in human hepatic cells, 
HepG2. GSPE and EGCG were used in a flavonoid to zinc ratio of 1:1; in contrast, in this 
study we used a Quercetin to zinc ratio 2:1. In this regard, Sun et al. inferred about the 
importance of the structure and stoichiometry of EGCG-zinc complexes in the 
bioavailability of the flavonoid, demonstrating that EGCG in the presence of zinc was more 
effective than EGCG alone in enhancing the permeability of the cell membrane, whereas 
zinc-EGCG complex had no effect on PC-3 cell membrane permeability (Sun, He et al. 
2008).  

 
We also measured the labile pool of zinc in Hepa 1-6 cells grown in a standard and in a 
zinc-loaded medium supplemented with two doses of Quercetin (10 and 100μM). We found 
no effects of any doses of Quercetin in the standard medium. However, in zinc-loaded 
medium, we found that co-treatments with Quercetin and zinc in a 1:5 (Quercetin:zinc) 
ratio, Zinquin-detectable labile zinc diminished. In contrast, co-treatments in a 2:1 
(Quercetin:zinc) ratio markedly increased this pool of labile zinc. This result also reflects 
the importance of the flavonoid-zinc ratios in the outcomes. The increase of labile zinc 
elicited by Quercetin in the presence of zinc at certain concentration was here shown to be 
similar to that elicited by the zinc chelators drug with ionophoric action Clioquinol, 
suggesting that Quercetin might have, beside a zinc sequestering effect, a zinc ionophoric 
action. It is suggested that the effect of Quercetin on zinc availability will depend of the 
stoichiometry and structure of the zinc-Quercetin complex formed. 
 
We have previously shown that GSPE and EGCG, flavonoids that behave opposite to 
Quercetin in MT and ZnT expression and total zinc content, also augmented the Zinquin-
detectable labile pool of zinc in HepG2 cells. It appears that flavonoids may enhance 
intracellular labile zinc levels independently of their effect on MT and ZnT1 expression and 
total intracellular zinc content. Other zinc chelators have been reported to increase the 
labile pool of zinc. Clioquinol, an antibiotic with anti-amyloid and anti-cancer effects, 
induces autophagy in cultured astrocytes and neurons in a zinc-dependent manner, acting 
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as a zinc ionophore, increasing labile zinc in the cytosol and in autophagic vacuoles (Park 
MH 2011). The glycone isoflavone genistin, enhances the proapoptotic effects of zinc in 
HepG2 cells and up-regulates the expression of MT and ZnT1 concomitantly increasing the 
labile zinc pool detectable by FluoZin-3. Resveratrol, at physiological concentrations (10 
μM), when applied to normal human prostate epithelial cells cultured in 16 or 32 μM zinc, 
arrests cell growth and enhances Zinquin-detectable zinc, while not affecting total zinc nor 
MT expression. 
 
We hypothesize that, depending on flavonoid to zinc ratio, absolute concentrations, the 
chemical structure of the flavonoid, temperature, pH, and the presence of other competing 
metals, different types of flavonoid-zinc complexes will be formed. In our laboratory 
conditions, Quercetin will form membrane-permeable complexes with zinc, which will then 

act as ionophores and therefore transport the metal into the cell. Once within the cell, 
Quercetin might be metabolized and zinc cations added to the labile pool of zinc. Or it 
could also be possible that zinc cations bound to Quercetin may be considered as loosely 
bound zinc without dissociate from Quercetin. Zinquin does not only detect free zinc, but 
also some of the zinc atoms that are bound to metallothionein, and probably also to other 
proteins (Coyle, Zalewski et al. 1994). To support this hypothesis, it was reported that 
Clioquinol acts as a zinc ionophore increasing the labile pool of zinc as mentioned above 
(Park MH 2011). In addition, resveratrol not only interact with zinc cations in solution, but 
also elevated the labile pool of zinc in normal human prostate epithelial cells. The authors 
inferred that the elevation of the labile zinc elicited by resveratrol is due to the cellular 
uptake of resveratrol-zinc complexes, followed by the intracellular dissociation of the 
complexes (Zhang, Wu et al. 2009). 
 
Taken together, it appears that flavonoids may enhance intracellular labile zinc levels 
independently of their effect on MT and ZnT1 expression and total intracellular zinc 
content. However it is dependent of the flavonoid-zinc ratio of the complexes. We inferred 
that the proportion of the different types of flavonoid-zinc complexes would affect the 
bioavailability and biological actions of both the metal and the flavonoid. The labile pool of 
zinc can reversibly bind to regulatory sites in signaling proteins. Consequently, changes of 
the labile zinc concentration can affect cell-signaling pathways and might even act as zinc 
signals. 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
III. RESULTS 

!
! !

138 

Summing up, Quercetin is added to catechins and procianidines as polyphenols with zinc-

chelating properties and, as a result, affects zinc homeostasis. We forward the hypothesis 

that elevation of labile zinc by Quercetin may be a relevant mechanism by which affects 

multiple metabolic and cell signaling pathways that respond to intracellular fluctuations of 

labile zinc. In this work, we have demonstrated that phosphorylation of Akt (and therefore 

Akt signaling) elicited by Quercetin is greatly affected by the concentration of zinc in the 

medium. Further research is necessary to evaluate the mechanisms by which flavonoids 

enhance cytoplasmic labile zinc and the consequences of this enhancement on modulation 

of zinc signaling and metabolic pathways. 
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Figure 1. Quercetin chelates zinc cations in solution. 
The capability of QCT to chelate zinc cations in solution was measured as the quenching 
of zinc-dependent fluorescence of Zinquin-EE (Panel A) and of Zinquin Acid (panel B) 
when complexed with zinc. Both zinc-specific fluorophores lose fluorescence when not 
bound to zinc, indicating that Quercetin retrieved zinc cations from the fluorescent 
fluorophore-zinc complex. (A) Decrease of zinc-dependent fluorescence of 10 µM ZQEE by 
100 µM Quercetin, TPEN or CQ at various concentrations of zinc cations. (B) Decrease of 
zinc-dependent fluorescence of 10 µM ZQ Acid by 100 µM Quercetin, TPEN or CQ at 
various concentrations of zinc cations. 
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Figure 2. Quercetin protects cells from zinc-induced cell death. 
Cell cytotoxicity was measured by the LDH method in cell cultures adding increasing 
amounts of ZnCl2 (A), QCT (B), and both (C). 
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Figure 3. Quercetin promotes a partial reversion of high zinc dose toxicity.  
Cell viability was measured by the MTT assay in cell cultures adding increasing amounts of 
QCT (A) and combining increasing amounts of QCT with 2,5 mM (B) or 3 mM (C) of ZnCl2. 
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Figure 4. Quercetin enhances expression of Mt1, Mt2 and ZnT1 at the mRNA level. 
Quercetin enhances the expression of MTI, MTII and ZnT1 mRNA levels relative to control 
(untreated) cells. Internal standard was PPIA. 
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Figure 5. Quercetin increases total intracellular zinc levels in a zinc-dependent way. 
Cellular zinc was quantified by FAA (Flame Atomic Absorption) and normalized to the 
protein amount of each cell sample. Results are referred to the content of zinc in cells at 
the beginning of the treatment. 
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Figure 6. Quercetin raises cytoplasmic labile zinc levels detectable by Zinquin. 
(A) Evolution of labile Zinquin detectable zinc upon treatment of Hepa 1-6 cells with QCT, 
zinc or a combination of both. ZQ fluoresce of cultured cells at the beginning of treatment is 
assigned as a reference value of 1. (B) Effect of QCT and CQ on the cytoplasmic pool of 
labile zinc in Hepa1-6 cells. Hepa 1-6 cells were first treated with 100 µM QCT or CQ in the 
presence or absence of 50 µM ZnCl2 for 4 hours. Treated medium was then removed, and 
25 µM Zinquin ethyl ester was added. After 30 minutes of incubation at 37ºC in the dark, 
cells were washed and examined under a confocal fluorescence microscope. Control cells 
were treated with vehicle. Scale bars represent 10 µm. 
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Figure 7. Immunoblotting analysis of the effect of Quercetin, zinc or both on Akt 
phosphorylation in Hepa 1-6 cells.   
Hepa 1-6 cells were treated with vehicle, 10 µM QCT, 100 µM QCT, alone and combined 
with 10 or 100 µM ZnCl2, for 6 or 24 hours. Immunoblots of cell extracts were first probed 
with anti-247SerPAkt, and, after stripping off the antibodies, with anti-Akt and anti-β-actin 
antibodies. Results show that QCT modulates Akt phosphorylation in a zinc-dependent 
manner. Low doses of Quercetin greatly enhance zinc-induced phosphorylation of Akt at 6 
hours treatment (A), and vice versa, low doses of zinc enhance the phosphorylation of Akt 
induced by Quercetin at 24 hours treatment (B). Arrows indicates 60 kDa bands of P-Akt. 
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Tea ranks second only to water as a major component of fluid intake worldwide and has 
been considered a health-promoting beverage since ancient times. For the past two 
decades, it has been investigated the potential therapeutic effects of green tea and its most 
abundant catechin, Epigallocatechin-gallate (EGCG), and its importance on the modulation 
of various signal transduction pathways. Since EGCG has been described to interact with 
zinc forming different complexes, as well as to modulate the intracellular zinc homeostasis, 
a new viewpoint has emerged, considering new possibilities of EGCG-zinc complex.  
 
In the present study, we seek to characterize the combined effect of EGCG and zinc 
cations on Hepa 1-6 viability, cytoplasmic labile zinc and Akt phosphorylation. 
Administration of EGCG together with supplemental zinc to hepatoma cells results in a 
decreased expression of the zinc-store protein metallothionein as well as the zinc-export 

transporter ZnT1 (as determined by RT-PCR) and total intracellular zinc content (assayed 
by FAAS). Cytoplasmic labile zinc (monitored by Zinquin fluorescence) was increased. 
EGCG also modulates Akt phosphorylation in a zinc-dependent way, whereas high 
EGCG/zinc ratio inhibits Akt phosphorylation and low EGCG/zinc ratio enhances Akt 
phosphorylation. Moreover, toxic concentrations of EGCG have been demonstrated to 
counteract the toxic effects of excess zinc, and vice versa, toxic amounts of zinc neutralize 
the noxious effect of excess EGCG.  
 
The determination of total intracellular zinc concentrations and the gene expression profile 
study were conducted with my colleague Dr. Mario Bustos. Only the results related to the 
chelation in solution prove, the MTT viability assay, the intracellular labile zinc 
determination and the effects on Akt phosphorylation belong to this thesis. 
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ABSTRACT 
 

(−)-epigallocatechin-3-gallate (EGCG) is one of the most consumed flavonoids by humans 

since it is present in green tea, and plays a relevant role in human health by virtue of its 

antioxidant action, which partially derives from its interaction with the redox-active 

transition metals iron and copper, and also modulates diverse intracellular signaling and 

metabolic pathways. The interaction of EGCG with the redox-inert zinc, and the biological 

effects of this interaction are barely studied. Previously, we have shown that a grape seed 

procyanidin extract (GSPE) and EGCG interact with zinc cations and affect zinc 

homeostasis in human hepatic carcinoma HepG2 cells. The purpose of this study was to 

determine how EGCG affects zinc homeostasis and zinc signaling in mouse liver 

carcinoma Hepa 1-6 cells. Here we first confirm that EGCG binds zinc cations in solution 

with a similar strength to TPEN, a zinc-specific chelator. Accordingly, EGCG is able to 

counteract the noxious effects of excess zinc on Hepa 1-6 cells, and vice versa, zinc 

neutralizes the toxicity of excess EGCG. As it happens in HepG2 cells, EGCG added to 

Hepa 1-6 cells decreases the expression of metallothionein genes MT1 and MT2 and of 

the plasma membrane zinc exporter ZnT1 (SLC30A1). Likewise, EGCG decreases the 

intracellular accumulation of zinc, although it also increases the tiny fraction of cytoplasmic 

labile zinc detectable by the zinc-specific fluorophore Zinquin, i.e., the pool of 

interchangeable, metabolically active, or signaling zinc. Both EGCG and zinc are known to 

modulate phosphorylation of Akt, a key factor in diverse signaling intracellular pathways. 

Here we show that EGCG activates Akt phosphorylation in a dose and zinc-dependent 

manner. Taken together, our results describe how EGCG-zinc complexes modulate cellular 

zinc homeostasis and signaling, and strongly suggest that the signaling and metabolic 

pathways modulated by labile zinc will also be targets of this polyphenol. Thus, 

complexation of EGCG with zinc cations may explain some of the beneficial health effects 

ascribed to EGCG consumption. 

 

 1. INTRODUCTION 
 

EGCG is one of the most abundant flavonoids present in fruits and vegetables. The richest 

source of EGCG is green tea (Manach, Scalbert et al. 2004). Human studies suggest that 

green tea may contribute to a reduction in the risk of cardiovascular disease and some 
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forms of cancer, as well as to the promotion of oral health and other physiological functions 
such as anti-hypertensive effect, body weight control, antibacterial and antiviral activity, 
solar ultraviolet protection, bone mineral density increase, anti-fibrotic properties, and 
neuroprotective power (J Am Coll Nutr. 2006). EGCG has a strong anti-inflammatory 
(Orsolic, Knezevic et al. 2004) and anti-carcinogenic (Erlund, Freese et al. 2006) capacity. 
It also demonstrates anti-fibrotics (Phan, Lim et al. 2003), anti-coagulatives (Bucki, Pastore 
et al. 2003), anti-bacterial (Cushnie TP 2005), anti-atherogenic (Perez-Vizcaino, Duarte et 
al. 2006), anti-hypertensive (Duarte J 2001; Perez-Vizcaino, Duarte et al. 2006) and anti-
proliferative properties (Orsolic, Knezevic et al. 2004; Gulati N 2006). Furthermore, EGCG 
exerts anti-adipogenic activity triggering the AMPK signaling pathway in 3T3-L1 pre-
adipocytes. Moreover, it induces apoptosis in mature adipocytes by modulating the ERK 
and JNK pathways (Ahn, Lee et al. 2008). The beneficial effects of polyphenols in general 

and flavonoids in particular have been largely attributed to their well-known antioxidant 
activity (Bagchi et al., 2003; Cos et al., 2003; Dragsted, 2003; Shi et al., 2003; Ariga, 2004; 
Cos et al., 2004) (Rice-Evans, Miller et al. 1996; Williams, Spencer et al. 2004). Flavonoids 
exert their antioxidant activity by three mechanisms: (a) direct scavenging of reactive 
oxygen species (ROS), such as superoxide radical anion, hydroperoxyl radical, hydrogen 
peroxide, and hydroxyl radical; and reactive nitrogen species, such as peroxinitrite; (b) by 
chelating redox-active transition metals as iron and copper, that may act as powerful 
generators of ROS; and (c) by inhibition of ROS producing enzymes, in particular xanthine 
oxidase, NADPH oxidase and lipoxygenases (Premysl, 2010). By the first two 
mechanisms, flavonoids act as potent inhibitors of LDL peroxidation triggered by different 
pro-oxidant systems, both in vitro and in vivo, and hence are active against genesis and 
progression of inflammation and atherosclerosis (Plumb, 1998; Aviram and Fuhrman, 
2002; da Silva Porto et al., 2003; Aviram et al., 2004).  
 
Yet, the bioactivity of flavonoids is not limited to their direct antioxidant actions. They also 
behave as signaling molecules, modulating multiple cell signaling and metabolic pathways 
and gene expression (Kuo, Huang et al. 2001; Williams, Spencer et al. 2004; Scalbert, 
Johnson et al. 2005; Peluso 2006).  Several flavonoids have been shown to interact with 
specific plasma membrane receptors, cytoplasmic signal transduction factors and nuclear 
receptors, serving themselves as signaling agents and eventually modulating gene 
expression at the transcriptional level. Actions of flavonoids on phosphoinositide 3-kinase 
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(PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), 

and mitogen activated protein kinase (MAP kinase) signaling cascades are well 

characterized (Williams et al., 2004b). Moreover, recent studies show that flavonoids can 

directly act on some protein kinases, including Akt/PKB, Fyn, Janus kinase 1 (JAK1), 

mitogen-activated protein kinase kinase 1 (MEK1), PI3K, mitogen-activated protein (MAP) 

kinase kinase 4 (MKK4), Raf1, and ζ chain-associated 70-kDa protein (ZAP-70) kinase, 

and then alter their phosphorylation state to regulate multiple cell signaling pathways in 

carcinogenesis processes (Hou, 2010). 

 

Flavonoids, including EGCG have been widely reported to chelate metals (Hider, Liu et al. 

2001; Quesada, Bustos et al. 2011). EGCG possesses four possible metal chelating sites 

that can interact with metal ions; the 3,4-dihydroxy group located on the B ring and the 3- 

or 5-hydroxy and 4-carbonyl group in the C ring (Hider, Liu et al. 2001). The metal-

complexing properties of this molecule may contribute to its total antioxidant activity. Thus, 

many studies have been focused on quelation of redox-active metals such as copper and 

iron, which are known to catalyze many biological processes leading to the production of 

free radicals (Kostyuk, Potapovich et al. 2001; Kostyuk, Potapovich et al. 2007; Ren, Meng 

et al. 2008; Pekal A 2011). Although much less studied, it is known that flavonoids can also 

chelate the redox-inert zinc cations and affect some aspects of zinc homeostasis. In spite 

of Zn(II) being a redox-inert cation, many reports have studied Zn complexes to evaluate 

the antioxidant activity of the flavonoid. For instance, Bodini et al. have reported that the 

complexation of catechin with Zn(II) ions favours the antioxidant activity of catechin 

decreasing the oxidation potentials (Bodini et al., 2001). Le Nest et al. have also studied 

the formation of complexes between Quercetin and catechin with Zn(II) in two media at 

neutral pH in the absence of oxygen and its influence on their antioxidant properties (Le 

Nest, 2003). In addition, Sun Sh. et al. described that complexation of Zn(II) with EGCG 

influences the rate of absorption of EGCG by prostate cancer (PC-3) cells (Sun et al., 

2008). Likewise, Kuo et al. found that diverse flavonoids may affect the expression of 

metallothionein in human intestinal CaCo cells (Kuo et al., 1998; Kuo and Leavitt, 1999; 

Kuo et al., 2001) an effect that was then attributed to the antioxidant action of the 

flavonoids, and not to a direct interaction of the flavonoids with metals. 
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Zinc is an essential cofactor for hundreds of enzymes. It is involved in protein, nucleic acid, 

carbohydrate, and lipid metabolism, as well as in the control of gene transcription, cell 

growth, development, and differentiation (Fuchs, Babusiak et al. 2003; Rudolf, Rudolf et al. 

2003; Frassinetti, Bronzetti et al. 2006). At the molecular level, zinc is almost completely 

bound to proteins or chelated by low molecular weight ligands, leading to a very low 

concentration (in the nanomolar range) of the free ionized species and acts as a second 

messenger modulating multiple signaling and metabolic pathways (Coyle, Zalewski et al. 

1994; Beyersmann and Haase 2001; Hirano, Murakami et al. 2008; Murakami and Hirano 

2008; Maret 2009). The intracellular labile zinc pool is metabolically important, because it 

responds to zinc deprivation or supplementation by decreasing or increasing its content, 

respectively (Zalewski, Forbes et al. 1993). Thus, the cell must maintain a tight regulation 

of this pool of zinc, so a large number of proteins are dedicated to zinc transport and 

buffering. Ten proteins of the ZnT family (SLC30A) and 14 proteins of the ZIP family 

(SLC39A) coordinate zinc transport out of and into the cytosol, respectively (Liuzzi and 

Cousins 2004; Lichten and Cousins 2009), The transcription factor MTF-1 (Metal 

Response Element Binding Transcription Factor-1) co-ordinately up-regulates the 

transcription of zinc exporter ZnT1, glutathione, and a family of at least 10 functional 

human metallothionein (MT) proteins, and the four MT genes in mouse and rat in response 

to increments of cytoplasmic zinc (Andrews 2001; Lichtlen and Schaffner 2001; Laity and 

Andrews 2007). MTs are low-molecular weight metal-binding proteins. Within the 

cytoplasm, zinc is bound by metal-free apo-metallothionein (apo-MT) to generate Zn-MT. 

The Zn-MT/apo-MT ratio functions at a central node in cellular signaling by redistributing 

cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc 

signals (Krezel, Hao et al. 2007; Krezel and Maret 2008). MT also serves as a heavy metal 

chelator and its transcriptional regulation is conferred by MREs (Metal Response 

Elements), to which MTF-1 binds. The induction of MT with transition metals requires 

phosphorylation of MTF-1 by a kinases pathway that includes PI3K (phosphoinositol-3 

kinase), PKC (protein kinase C) and JNK (c-jun N-terminal kinase) (LaRochelle, Gagne et 

al. 2001; Saydam, Adams et al. 2002). MTF-1 activates other important genes besides 

those encoding MTs. ZnT1, the main exporter of zinc out of the cell, was shown to be 

another in vivo target gene of MTF-1 (Cuajungco and Lees 1997).  
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Given that our previous results showed that proanthocyanidins interact with the redox-
inactive zinc metal and modulate zinc homeostasis in the human hepatocarcinoma HepG2 
cells (Quesada, Bustos et al. 2011), resulting in an increment of cytoplasmic Zinquin-
detectable labile zinc, the aim of this work was to determine the interaction of the flavonoid 
Epigallocatechin-gallate with zinc cations and the modulation of different parameters of 
zinc homeostasis in mouse hepatic carcinoma cells Hepa 1-6. We also aimed to elucidate 
whether EGCG-zinc complexes with different flavonoid to zinc ratios affect the 
metabolically active labile pool of zinc, and concomitantly modulate the phosphorylation of 
Akt, a signaling molecule with a central role in various signaling pathways a processes 
such as thus leading to apoptosis, in a dependent or modulated way by zinc 
concentrations. 
 

2. MATERIALS AND METHODS 
 
2.1. Chemicals 
EGCG, TPEN [N,N,N′,N′-tetrakis(2-phridylmethyl) ethylenediamine], ZnCl2, Zinquin ethyl 
ester, ethanol, dimethyl sulfoxide (DMSO) and Clioquinol, were from Sigma (St. Louis, 
MO).  
 
2.2. Fluorometric assay for chelation of zinc by EGCG 
The zinc-dependent fluorescent emission of Zinquin ethyl ester (ZQEE) and Zinquin acid 
(ZQA) dissolved in phosphate buffered saline (PBS), pH 7.4, was recorded in a Biotek FLx 
800 spectrofluorometer, with 100 μL samples, in COSTAR Corning 96 well, opaque bottom 
plates, at 37ºC, with excitation set at 360/40 and emission at 460/40 nm for ZQEE and 
ZQA. Quenching of zinc-dependent fluorescence of fluorophore-zinc complexes by EGCG, 
TPEN or Clioquinol, was monitored 15 min after addition of different amounts of the 
compounds to the solutions containing various amounts of fluorophores and zinc cations, 
as specified in the figures. 
 
2.3. Cell cultures and treatments 
Hepa 1-6 cells (BW7756 ECACC) were grown in Dulbecco´s Modified Eagle Medium 
(DMEM; BioWittaker) supplemented with 10% fetal bovine serum (BioWittaker), 2mM 
glutamine and 1% non-essential amino acids. This medium contains 3.9 ± 0.3 μM zinc 
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determined by flame atomic absorption spectrometry (FAAS). Cells were incubated at 37ºC 
in humidified, 5% CO2-enriched atmosphere and routinely splitted at a 1:5 ratio upon 
reaching 80% confluence. For treatments, cultures at 80% confluence were trypsinized and 
resuspended at a density of 5x105 cells/ml; 1 ml aliquots of suspended cells were seeded 
per well in 12-well plates (Orange Scientific). Twenty-four hours later, medium was 
replaced with fresh medium containing the different treatment substances or vehicle (final 
0.05 % ethanol, 0.1% DMSO). 
 
2.4. In vitro cytotoxicity assays 

Cytotoxicity of EGCG and ZnCl2 was assessed in Hepa 1-6 cells treated 24 h with different 
concentration of the test substances using the lactate dehydrogenase (LDH) leakage 
assay of plasma membrane integrity as previously described (Puiggros, Llopiz et al. 2005) 

and the methyl tetrazolium (MTT) assay of mitochondrial functionality and cell viability as 
previously described (Stern 2006). 104 cells were seeded per well of 96-well plates in 100 
µL media for MTT assays.  
 
2.5. Quantification of MT and ZnT-1 gene expression 

Total RNA was isolated from Hepa 1-6 cells using RNeasy Mini Kit (Qiagen). To quantify 
relative mRNA levels of specific genes in different RNA samples, cDNAs were generated 
from total RNA using TaqMan Reverse Transcription Reagents (Applied Biosystems) and 
quantitative reverse transcriptase-polymerase chain reactions (RT-PCRs) were performed 
using the TaqMan PCR Core Reagents Kit and Specific TaqMan Gene expression assay 
Probes (Applied Biosystems):  MT-I (Mm00496660_g1), MT-II (Mm00809556_s1) and 
Znt1/Slc30a1 (Mm00437377_m1). Cyclophilin peptidylprolyl isomerase A (cyclophilin A, 
PPIA) (Mm03024003_g1) was used as endogenous control gene for sample input 
normalization in RT-PCR experiments. Quantitative PCR amplification and detection were 
performed using the Applied Biosystems Real Time 7000 PCR System termocycler and 
software. 
 
2.6. Measurements of total intracellular zinc  

To quantify total intracellular zinc, cells were thoroughly washed with PBS and lysed with 
0.01 M NaOH. Aliquots of the cell lysates were used to quantify zinc by FAAS as 
previously described (Reaves, Fanzo et al. 2000), using an Hitachi Z-8200 Polarized 
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Zeeman AA Spectrophotometer. Total zinc amount was normalized per total protein 
content of the cells, determined by the Bradford method. 
 
2.7. Measurements of intracellular labile zinc 

To measure changes in intracellular labile zinc, cells were washed with PBS after 
treatments, incubated 30 minutes at 37ºC in 20 µM Zinquin ethyl ester in PBS; protein 
content and Zinquin fluorescence was determined in cell aliquots. Background 
fluorescence of Zinquin unloaded cells was subtracted from readings to derive Zinquin-
dependent fluorescence as described (Coyle, Zalewski et al. 1994).  
For microscopy visualization, cells were attached to glass coverslips, the medium was 
discarded after treatments and the cells were washed (three times) with PBS. Coverslips 
were immersed in a solution of Zinquin (20µM) in PBS and incubated for 30 min at 37 ºC. 

Coverslips were inverted on to microscope slides, and images were captured at 1000x 
magnification with a Leica DM 4000B microscope using UV light illumination (λex = 340-
380 nm) and a blue emission filer (λem ≥ 425nm). 
 
2.8. Changes in phosphorylation of Akt /PKB-1 were monitored by Western blotting 

For Immunoblotting analysis, Hepa1-6 cell extracts were prepared through cell lysis in 
RIPA buffer (100 nM Tris-Cl pH 7,4, Tween 10%, Na-Deoxycholate 10%, SDS 0,1%). 
BioRad Bradford Assay was performed in order to quantify protein concentration, and 30 
µg of protein were analyzed for each sample. Proteins were separated using 10% SDS-
Polyacrylamide Gel Electrophoresis and afterwards transferred into an activated 
polyvinylidene difluoride membranes (PVDF, Amersham Hybond™-P roll). Membranes 
were blocked with 5% non-fat milk powder in TBS-Tween 0.05% for 2 hours. Primary 
antibodies used were: rabbit anti-Phospho-Akt (Ser473) antibody (Cell Signaling 
Technology, Product # 9271); rabbit anti-Akt antibody (Cell Signaling Technology, Product 
# 9272) and rabbit β-Actin antibody (Cell Signaling Technology, Product # 4967); β-Actin 
was used as internal sample control. Anti-rabbit IgG, HRP-linked Antibody was used as 
secondary antibody in all western analysis (Cell Signaling Technology, Product #7074). 
Primary antibodies were incubated overnight at 4ºC, while secondary antibody was 
incubated for 2 hours at room temperature. HRP on the membrane was revealed with a 
chemiluminescent reagent (Amersham ECL Prime Western Blotting Detection Reagent, 
product RPN2232), and images captured with SYNGENE G:BOX Chemi XL 1.4. Imaging 
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System. Relative levels of different proteins were obtained analysing the image bands by 
the Java-based software ImageJ. 
 
2.9. Statistical analysis 

For statistical analysis in cytotoxicity assays, zinc and protein quantification, quantitative 
RT-PCRs, and fluorescence measurements, t-test and one-way ANOVA analyses were 
performed using SPSS software. All data are the result of at least 3 independent 
experiments. Differences were considered significant for P values 0.05. 
 
 3. RESULTS 

 
3.1. EGCG interacts with zinc cations in solution 

In order to test if EGCG interact with zinc cations in solution, we first characterized the 
zinc-dependent fluorescence of membrane impermeable Zinquin Acid (ZQA) and of 
membrane permeable Zinquin Ethyl Ester (ZQEE), which are zinc-specific fluorescent 
chelators widely employed to measure concentrations of labile (free plus loosely bound) 
zinc within cells and in the biological fluids (Zalewski, Truong-Tran et al. 2006). The 
capability of the flavonoid to chelate zinc cations in solution was then measured as the 
quenching of zinc-dependent fluorescence of ZQEE and of ZQA previously complexed with 
zinc. Both zinc-specific fluorophores lose fluorescence when are not bound to zinc, 
indicating that the flavonoid has retrieved zinc cations from the fluorescent fluorophore-zinc 
complex. We found that EGCG quenched the zinc-dependent Zinquin fluorescence rapidly, 
with a comparable efficacy as the zinc-specific chelators Clioquinol and TPEN, at EGCG to 
Zinquin ratios of 0.5:20 in the presence of 1 µM ZnCl2  (Fig. 1). These results imply that 
EGCG bind zinc cations from Zinquin-zinc complexes. 
 
3.2. EGCG prevents zinc toxicity in Hepa 1-6 cells 

We next performed MTT viability assays in order to evaluate the effect of increasing 
amounts of zinc and EGCG on Hepa 1-6 cells. Zinc concentrations above 300 μM resulted 
in significant cell death, reaching 50% upon incubation of cells with 400 μM zinc (Fig. 2A). 
Likewise, 50% cell mortality after 24 h was caused by addition of 400 μM EGCG (Fig. 2B).  
Strikingly, addition of 400 μM EGCG and 400 μM Zn (1:1 ratio) resulted nearby a 100% 
viability of cells, implying that the noxious effect of both zinc and EGCG when in excess get 
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neutralized (Fig. 2C and D). This strongly suggests that chelation of zinc ions by EGCG 

renders a relevant amount of zinc cations in the culture medium not available for the cells. 

 

3.3. EGCG reduces the expression of MT and the zinc transporter ZnT1 genes in 

Hepa 1-6 cells 

Afterward, Hepa 1-6 cells were cultured and grown 24 hours in standard culture medium 

(3.9 ± 0.3 μM zinc) or in zinc overload medium (50 μM zinc) supplemented with either 

vehicle or 100 μM EGCG, and changes in gene expression of MT genes and the plasma 

membrane zinc exporter, ZnT1 were monitored at various times, using quantitative RT-

PCR. The results show that both MT genes tested were down-regulated by 100 μM EGCG 

with respect to control cells (Fig. 3A and B). Addition of 50 μM zinc to the culture medium, 

resulted in a maximal induction of MTs with a 12 fold induction of MT-I 3 hours after 

addition of zinc and a 20 fold induction of MT-II 6 hours after addition zinc. Thereafter, we 

monitored changes in the expression profile of ZnT1 gene grown in standard culture 

medium (5 μM zinc) supplemented with 100 μM EGCG. The results show that ZnT1 was 

down-regulated by 100μM EGCG with respect to control cells 3 hours after addition of 

EGCG (Fig. 3C). In zinc overload conditions, ZnT1 expression was up-regulated reaching 

maximal values, 4 hours after addition of zinc. Addition of 100μM EGCG to the zinc 

overloaded medium down-regulated ZnT1 expression at the same time (Fig. 3C). The 

modification elicited by EGCG in the expression of MTs and ZnT1 in Hepa 1-6 cells 

suggest that zinc becomes less available for cells in the presence of EGCG, a consistent 

result with the previously described reduction of zinc toxicity induced by EGCG. 

 

3.4. EGCG decreases total intracellular zinc 

To address this point, we measured the total intracellular zinc content in Hepa 1-6 cells 

grown in standard (3.9 ± 0.3 μM zinc) and zinc overload medium (50 μM additional zinc) 

supplemented with either vehicle, or 100 μM EGCG, at the same times used in gene 

expression (Fig. 4). In basal zinc conditions, 100 μM EGCG elicited a significant decrement 

in total intracellular zinc 3 hours after treatment. When the cultured medium was 

supplemented with 50 µM zinc, cell accumulated more zinc than when no addition zinc was 

added to the medium. The addition of EGCG resulted, as expected, in an important 

reduction of total zinc intracellular accumulation at all time points compared with cells 

treated with only 50 µM zinc. 
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3.5. EGCG elevates cytoplasmic labile zinc in Hepa 1-6 cells 

We next measured cytoplasmic labile zinc in standard (3.9 ± 0.3 μM zinc) and zinc 
overload (50 μM zinc) medium treated with either vehicle, 10 μM and 100 μM EGCG in 
Hepa 1-6 cells, incubated with 20μM Zinquin ethyl ester. Both doses of EGCG tested 
produced no effect in basal medium. When the medium was supplemented with 50μM 
zinc, intracellular labile zinc augmented markedly with respect to control cells, as expected. 
Addition of 10μM EGCG to this zinc-overload medium decreased cytoplasmic labile zinc at 
3 and 6 hours of treatment. In contrast, 100μ M EGCG highly increased cytoplasmic labile 
zinc at 3, 6 and 12 hours of treatment (Fig. 5A).  Microscopic observation of Zinquin-loaded 
Hepa 1-6 cells were done to visualize this effect of 100 μM EGCG on cytoplasmic labile 
zinc in Hepa 1-6 cells grown in basal zinc concentrations as well as in conditions of 50 μM 
added zinc (Fig. 5B). In this experiment, we also used Clioquinol as a reference drug, 

which a known anticancer agent with zinc-ionophoric effect. EGCG behaves in a similar 
way to Clioquinol in the sense that it produced an increase in the cytoplasmic pool of labile 
zinc in Hepa 1-6 cells only when it was applied to the cells together with additional zinc. 
 
3.6. EGCG modulates phosphorylation of Akt in a zinc-dependent way 

Several reports have shown that Akt phosphorylation may be modulated by labile zinc in 
response to zinc chelators such as TPEN or to zinc ionophores such as Pyrithione. On the 
other hand, Akt has shown to be targeted by several polyphenols in different cell lines. 
Hence, it is expected that combination of zinc with EGCG will affect Akt phosphorylation, 
and signaling, in a way that is different from that is different of that caused by EGCG alone 
or by zinc alone. To test this, we treated Hepa 1-6 with the same amounts of EGCG and 
zinc used to test the combined effect of these substances on Zinquin-detectable labile zinc, 
and analyzed the ratio of phosphorylated Akt versus total Akt by Western analysis (Fig. 6). 
The results show that EGCG alone at low concentration, is not able to modulate Akt 
phosphorylation; zinc alone at 50 µM, enhances Akt phosphorylation by 50% upon 6 hours 
of treatment. When 10 µM EGCG is combined with 50 µM Zn, Akt phosphorylation is 
enhanced up to 200 % of control levels. In contrast, high (100 µM) EGCG concentrations 
inhibit Akt phosphorylation, and addition of 50 µM zinc is not able to reverse this effect. 
Consequently, the amount of EGCG and the ratio EGCG/zinc dictates different 
phosphorylation states of Akt. When compared with the amount of Zinquin-detectable labile 
zinc that results from these same treatments it look like Akt phosphorylation correlates 
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inversely with the level of labile zinc. Phosphorylation of Akt also correlates directly with the 
amount of total intracellular zinc. The meaning of these correlation remains to be 
elucidated. 
  
4. DISCUSSION 
 
We evaluated the effect of EGCG on zinc homeostasis in an in vitro cell line that serves as 
a model for hepatic carcinoma cells. We have previously demonstrated that a grape seed 
procyanidin extract (GSPE), a mixture of catechins and proanthocyanidins display an 
affinity for zinc cations in solution high enough to make them dissociate from the zinc-
specific chelators Zinquin (Quesada, Bustos et al. 2011). In this study we tested another 
type of flavonoid, EGCG and we compared this molecule with the well-known zinc chelator 

TPEN. We have shown here that EGCG also displaced zinc ions from zinc-Zinquin 
complex with similar affinity as TPEN at very low concentrations and at molar ratios of 0.5 
μM EGCG to 20 μM Zinquin and 1 μM zinc. Sreenivasulu et al. also showed that Quercetin 
and tannic acid quenched zinc-induced Zinquin fluorescence in a test tube in a dose 
dependent manner (Sreenivasulu, Raghu et al. 2010). It was also reported that the stilbene 
resveratrol, chelates zinc in vitro (Zhang, Wu et al. 2009). Our result implies that EGCG 
interacts with zinc cations in solution and strongly suggest that it could be able to modulate 
the metabolically active labile zinc. If EGCG indeed interacts with zinc cations forming 
EGCG-zinc complexes, it also would be able to reduce zinc toxicity in Hepa 1-6 cells. To 
test this, we assessed the viability of Hepa 1-6 cells co-incubated with a toxic dose of zinc 
and different doses of EGCG, determined by the MTT assay for mitochondrial viability. We 
have shown that EGCG exerted a reversion of excess zinc toxicity (400 μM zinc) in EGCG 
to zinc ratios (1:1). Our findings are in agreement with Sun et al. who have shown that 
EGCG protected PC-3 cells from damages induced by zinc ions (Sun, He et al. 2008).  
 
In order to asses whether the ability of EGCG to complex with zinc may affect cellular zinc 
homeostasis, we monitored changes in the expression profile of genes involved in storage 
and export of zinc (MT and ZnT1 respectively) and total intracellular zinc accumulation in 
Hepa 1-6 cells grown in standard culture medium (3.9 ± 0.3 μM zinc) and in zinc-loaded 
medium (50 μM zinc). The results show that repression of these genes elicited by EGCG 
was more effective when the medium was supplemented with excess zinc decreasing the 
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expression of MT and the zinc transporter ZnT1 genes with a concomitant decrease in zinc 
accumulation in Hepa 1-6 cells. This results contrast with others reported for other 
flavonoid, Quercetin. In this regard, Weng et al. reported that the flavonoid Quercetin 
increase MTs expression in HepG2 cells, promoting a liver protection against oxidative 
stress thus activating MAPK and PI3K pathways and also increasing DNA binding activity 
of Nrf2 (Weng, Chen et al. 2011). It was also reported that zinc-induced MT gene 
expression was up-regulated by Quercetin in CaCo-2 cells (Sreenivasulu, Raghu et al. 
2010). The isoflavone genistin was shown to increase MT and ZnT1 expression in HepG2 
cells (Chung, Kang et al. 2006). However, the effect of these flavonoids on zinc 
accumulation was not reported. The changes elicited by EGCG in the expression of MT 
and ZnT1 genes in different conditions are consistent with a decreased availability of zinc, 
and reversion of toxicity of high amounts of zinc. To address this point we measured total 

intracellular zinc. We found that total zinc content was decreased with 100 µM EGCG in a 
standard and in a zinc-loaded medium. In this regard, Sun et al. inferred about the 
importance of the structure and stoichiometry of EGCG-zinc complexes in the 
bioavailability of the flavonoid, demonstrating that EGCG in the presence of zinc was more 
effective than EGCG alone in enhancing the permeability of the cell membrane, whereas 
zinc-EGCG complex had no effect on PC-3 cell membrane permeability (Sun, He et al. 
2008).  
 
We next measured the labile pool of zinc in Hepa 1-6 cells grown in standard and in zinc-
loaded medium supplemented with two doses of EGCG (10 and 100μM). We found no 
effects of any doses of EGCG in basal medium. However, in zinc-loaded medium, we 
found that co-treatments with EGCG and zinc in a 1:5 (EGCG:zinc) ratio, Zinquin-
detectable labile zinc diminished. In contrast, co-treatments in a 2:1 (EGCG:zinc)  ratio 
markedly increased this pool of labile zinc. This result reflects the importance of the 
flavonoid-zinc ratios in the outcomes of biological effects of EGCG.  
 
Other zinc chelators have been reported to increase the labile pool of zinc. Clioquinol, a 
drug with anti-amyloid and anti-tumour effects, induces autophagy in cultured astrocytes 
and neurons in a zinc-dependent manner, acting as a zinc ionophore agent, increasing 
labile zinc in the cytosol and in autophagic vacuoles (Park MH 2011). The glycone 
isoflavone genistin enhances the proapoptotic effects of zinc in HepG2 cells and up-
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regulate the expression of MT and ZnT1 concomitantly increasing the labile zinc pool 
detectable by FluoZin-3. Resveratrol, at physiological concentrations (10 μM), when 
applied to normal human prostate epithelial cells cultured in 16 or 32 μM zinc, arrests cell 
growth and enhances Zinquin-detectable zinc, while not affecting total zinc nor MT 
expression. 
 
It may be postulated that, depending on flavonoid to zinc ratio, absolute concentrations, the 
chemical structure of the flavonoid, temperature, pH, and the presence of other competing 
metals, different types of flavonoid-zinc complexes will be formed. In our laboratory 
conditions, EGCG would form membrane-permeable complexes with zinc that will then act 
as ionophores and therefore transport the metal into the cell. Once within the cell, EGCG 
might be metabolized and zinc cations added to the labile pool of zinc. It could also be 

possible that zinc cations bound to EGCG may be considered as loosely bound zinc 
without dissociating from EGCG. Zinquin does not only detect free zinc, but also some of 
the zinc atoms that are bound to metallothionein, and also to other proteins (Coyle, 
Zalewski et al. 1994). To support this hypothesis, it was reported that Clioquinol acts as a 
zinc ionophore, enhancing the labile pool of zinc as mentioned above (Park MH 2011). In 
addition, resveratrol not only interact with zinc cations in solution, but also elevated the 
labile pool of zinc in normal human prostate epithelial cells. The authors inferred that the 
elevation of the labile zinc elicited by resveratrol is due to the cellular uptake of resveratrol-
zinc complexes, followed by the intracellular dissociation of the complexes (Zhang, Wu et 
al. 2009). 
 
The labile pool of zinc can reversibly bind to regulatory sites in signaling proteins. 
Consequently, changes of the labile concentration can affect cell-signaling pathways and 
might even act as zinc signals. To test this possibility, we have here tested whether the 
changes elicited by EGCG-zinc complexes correlate with changes in phosphorylation state 
of Akt, reported to be regulated by labile zinc on the one side, and by different polyphenols 
on other reports. We have here shown that EGCG modulates Akt phosphorylation in a 
zinc-dependent way. Whereas high (100/50) EGCG/zinc ratios inhibit Akt phosphorylation, 
whereas low (10/50) EGCG/zinc ratios enhance Akt phosphorylation. 
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To sum up, EGCG is added to polyphenols with zinc-chelating properties and, as a result, 

affects zinc homeostasis. We forward the hypothesis that elevation of labile zinc by EGCG 

may be a relevant mechanism by which EGCG affects multiple metabolic and cell signaling 

pathways that respond to intracellular fluctuations of labile zinc. Further research is needed 

to assess the mechanisms by which flavonoids enhance cytoplasmic labile zinc and the 

consequences of this enhancement on modulation of zinc signaling and metabolic 

pathways. 
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Figure 1. EGCG chelates zinc cations in solution. 

Decrease of zinc-dependent fluorescence of 10 µM ZQ Acid (A) and 10 µM ZQEE (B) by 

100 µM EGCG, TPEN or CQ at increasing concentrations of zinc cations.  
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Figure 2. EGCG protects cells from zinc-induced cell death.  

Cell viability was measured by the MTT assay in cultures added increasing concentrations 
of zinc cations (A) or increasing concentrations of EGCG (B), and after combining 400 µM 
zinc cations with increasing amounts of EGCG (C) or vice versa, 400 µM EGCG with 
increasing amounts of zinc cations (D). For statistical analysis t-test and one-way ANOVA 
were performed using SPSS software. All data are the result of at least 3 independent 
experiments. Differences were considered significant for P values 0.05. 
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Figure 3. EGCG reduces the expression of Mt1, Mt2 and ZnT.   

EGCG enhances the expression of MTI, MTII and ZnT1mRNA levels relative to control 

(untreated) cells. Internal standard gene for RT-PCR reactions was PPIA. 
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Figure 4. EGCG decreases total intracellular zinc levels. 

Cellular zinc was quantified by FAA (Flame Atomic Absorption) and normalized to the 

protein amount of each cell sample. Results are referred to the content of zinc in cells at 

the beginning of the treatment. 
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Figure 5. EGCG modulates cytoplasmic labile zinc levels detectable by Zinquin. 

Kinetics of variation in ZQ-detectable cytoplasmic zinc in Hepa 1-6 upon treatments with 

vehicle, 50 µM ZnCl2, 10 and 100 µM EGCG alone or combined with 50 µM Zn (A). 

Micrographs of Hepa 1-6 loaded with 25 µM ZQEE after 4 h treatments with vehicle, 50 µM 

ZnCl2, 100 µM EGCG or 100 µM Clioquinol, or pairwise combination of Zinc with the 

chelators (B). Quantification of labile zinc measured as Zinquin fluorescence in the 

samples of panel B (C). Scale bar indicates 10 µm. 
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Figure 6. EGCG modulates Akt phosphorylation in a zinc-dependent manner. 

Hepa 1-6 cells were treated with vehicle, 10 µM EGCG, 100 µM EGCG, alone and 

combined with 10 or 100 µM ZnCl2, for 6 or 24 hours. Immunoblots of cell extracts were 

first probed with anti-247SerPAkt, and, after stripping off the antibodies, with anti-Akt and 

anti-β-actin antibodies. Results at 6 hours treatment (A) and 24 hours treatment (B) show 

that high EGCG/zinc ratios inhibit Akt phosphorylation, whilst low EGCG/zinc ration 

enhance Akt phosphorylation. Arrows indicates 60 kDa bands of P-Akt. 
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Zinc is an essential micronutrient with structural and catalytic functions in all cells. Labile 
zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins, modulates the 
activity of numerous signaling and metabolic pathways. Dietary consumption of plant 
polyphenols such as Quercetin (QCT) and epigallocatechin gallate (EGCG) is beneficial for 
prevention and cure of obesity, hypertension, diabetes, and cancer. Remarkably, the 
activity of numerous enzymes targeted by polyphenols is dependent on zinc levels.  
 
We have previously reported that EGCG chelates zinc and that, in human 
hepatocarcinoma cells, decreases the expression of the zinc-storage protein 
metallothionein concomitantly decreasing total intracellular zinc whilst increasing Zinquin-
detectable labile zinc. We hypothesized that EGCG and other polyphenols might be acting 
as zinc ionophores. To prove this hypothesis, in this work we first quantified the capacity of 

QCT and EGCG to chelate zinc cations by measuring their capacity to quench the 
fluorescence of FluoZin-3-Zinc complexes. Both polyphenols showed a chelating strength 
similar to that of Clioquinol (CQ), a zinc-ionophore drug with antitumor activity. Secondly, 
we confirmed that treatments of mouse hepatoma (Hepa 1-6) cells with QCT, EGCG or 
CQ, results in a rapid and dose-dependent rise of FluoZin-3 AM-detectable labile zinc 
when the chelators are combined with zinc cations.  
 
Finally, in order to confirm that polyphenols are able to transport zinc across the plasma 
membrane independently of zinc transporters, we added QCT, EGCG or CQ, alone and 
combined with zinc, to unilamellar DPPC/cholesterol liposomes loaded with cell-
impermeant FluoZin-3. Only the combinations of the chelators with zinc triggered a rapid 
increase of FluoZin-3 fluorescence, thus clearly demonstrating the ionophoric action of 
QCT, EGCG and CQ. This report establishes for the first time that dietary polyphenols 
display ionophore activity. This activity may underlay the raising of labile zinc levels 
triggered in cells by polyphenols and, thus, many of their biological actions. 
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Zinc Ionophore Activity of Quercetin and Epigallocatechin-gallate:
From Hepa 1‑6 Cells to a Liposome Model
Husam Dabbagh-Bazarbachi,†,⊥ Gael Clergeaud,‡,⊥ Isabel M. Quesada,§ Mayreli Ortiz,‡

Ciara K. O’Sullivan,*,‡,∥ and Juan B. Fernańdez-Larrea*,†

†Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, and ‡Nanobiotechnology & Bioanalysis Group,
Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain
§Vascular Biology Laboratory, IMBECU-CONICET, Facultad de Ciencias Med́icas, Universidad Nacional de Cuyo, 5500 Mendoza,
Argentina
∥Institucio ́ Catalana de Recerca i Estudis Avanca̧ts, 08010 Barcelona, Spain

ABSTRACT: Labile zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins and easily interchangeable,
modulates the activity of numerous signaling and metabolic pathways. Dietary plant polyphenols such as the flavonoids quercetin
(QCT) and epigallocatechin-gallate act as antioxidants and as signaling molecules. Remarkably, the activities of numerous
enzymes that are targeted by polyphenols are dependent on zinc. We have previously shown that these polyphenols chelate zinc
cations and hypothesized that these flavonoids might be also acting as zinc ionophores, transporting zinc cations through the
plasma membrane. To prove this hypothesis, herein, we have demonstrated the capacity of QCT and epigallocatechin-gallate to
rapidly increase labile zinc in mouse hepatocarcinoma Hepa 1-6 cells as well as, for the first time, in liposomes. In order to
confirm that the polyphenols transport zinc cations across the plasma membrane independently of plasma membrane zinc
transporters, QCT, epigallocatechin-gallate, or clioquinol (CQ), alone and combined with zinc, were added to unilamellar
dipalmitoylphosphocholine/cholesterol liposomes loaded with membrane-impermeant FluoZin-3. Only the combinations of the
chelators with zinc triggered a rapid increase of FluoZin-3 fluorescence within the liposomes, thus demonstrating the ionophore
action of QCT, epigallocatechin-gallate, and CQ on lipid membrane systems. The ionophore activity of dietary polyphenols may
underlay the raising of labile zinc levels triggered in cells by polyphenols and thus many of their biological actions.
KEYWORDS: clioquinol, epigallocatechin-gallate, flavonoids, liposomes, quercetin, zinc ionophores

1. INTRODUCTION

Quercetin (QCT), a water-insoluble flavonoid present in
onions, nuts, and many other vegetables, and epigallocate-
chin-3-gallate (EGCG), a water-soluble flavonoid present in
green tea, are among the most consumed and most studied
polyphenols present in the human diet.1 Flavonoids are
considered bioactive micronutrients whose regular consump-
tion, either as food components, or as dietary supplements and
nutraceuticals,2 entails benefits for human health, including
prevention and amelioration of cancers,3 diabetes, and
cardiovascular4 and neurodegenerative5 diseases. Many of the
health benefits of flavonoids have historically been ascribed to
their antioxidant activity, which they exert directly by
scavenging reactive oxygen species (ROS) and by chelating
the redox-active transition metals iron and copper, which may
act as ROS generators in biological systems.6 Flavonoids also
act as antioxidants indirectly by inhibiting redox-sensitive
transcription factors and pro-oxidant enzymes as well as
through induction of phase II and antioxidant enzymes.7

However, it is currently believed that the levels of polyphenols
achieved through ingestion are not enough to justify their wide
array of biological actions. Beyond their antioxidant actions,
flavonoids are also known to act as signaling molecules that,
either directly or indirectly, interact with proteins and nucleic
acids, thus modulating multiple cell signaling pathways, gene

transcription, metabolic fluxes, and cell fate including
apoptosis.8,9

Diverse polyphenols have been shown able to form
complexes with the redox-inactive transition metal zinc.10

Zinc is an essential micronutrient for humans, the deficiency of
which causes multiple dysfunctions, including alterations of
glucidic and lipidic metabolisms.11 Within cells, the vast
majority of zinc cations (in concentrations usually ranging
from 100 to 300 μM for most cells) are tightly bound to
proteins, functioning as a catalytic or structural component of
an estimated 3000 mammalian proteins involved in virtually all
cellular processes.12 A minor fraction of intracellular zinc,
termed labile zinc, exists in its free ionic form (picomolar
concentrations) or loosely bound to proteins (in nanomolar
concentrations). This pool of zinc is detectable by specific
fluorophores with very high affinities for zinc cations at neutral
pH such as Zinquin and FluoZin-3. Zinc ionophores such as
pyrithione and clioquinol (CQ) have been used to increment
labile zinc within cells and determine the fundamental roles that
this zinc pool plays in cellular biology. Thus, free and labile zinc
acts as second messenger molecule, which modulates the
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activity of many enzymes and thus signaling and metabolic
pathways and cellular processes, including cell fate and
apoptosis.13,14 While many enzymes are inhibited by small
elevations of zinc concentrations, others are activated.15,16

Mammalian cells tightly control the subcellular distribution of
zinc cations and the levels of labile zinc through the
coordinated action of dedicated transmembrane zinc trans-
porters and zinc-chelating metallothioneins.
Zinc from the extracellular milieu and from intracellular

compartments enters the cytoplasm through 14 specialized
transmembrane proteins of the ZIP/SLC39 family, whereas
cytoplasmic extrusion of zinc toward organelles or the
extracellular environment is performed by 10 transporters of
the ZnT/SLC30 family, being ZnT1, located at the plasma
membrane, the main regulator of cellular zinc efflux and export
of excess zinc in most cells.17 Within the cytoplasm, zinc may
bind to metal free apo-metallothionein (apo-MT) to generate
Zn−MT complexes. The apo-MT/Zn−MT ratio controls free
and labile zinc concentrations. MT also serves as a ROS
scavenger and heavy metal chelator, and the transcription of
MT responds, in addition to zinc, to stress stimuli such as ROS,
heavy metals, and proinflammatory cytokines.18 In response to
elevations of intracellular zinc, the zinc-sensor transcription
factor MTF1 coordinately upregulates the expression of MT
and ZnT1,19 thus keeping zinc levels within a functional range.
Excessively high levels of labile zinc are associated with cellular
death through apoptosis.20 Dysfunctions of MT and zinc
transporters are promoting factors in cardiovascular diseases,21

diabetes,22 Alzheimer’s disease,23 and cancer.24

Several studies have shown that flavonoids affect zinc
metabolism. For instance, rats fed during long periods with
bicalain and rutin showed reduced hepatic levels of total zinc, as
well as iron and copper, implying that flavonoids may sequester
these metals and render them unavailable for absorption in a
similar way as phytate.25 Consistent with this, feeding obese
rats with proanthocyanidins reverse dyslipidemia and lower
protein levels of ZnT1 in the liver, reflecting lower levels of
hepatic zinc.26 Early in vitro studies showed that, in human
intestinal Caco-2 cells, genistein enhanced the expression of
MT, here regarded as an antioxidant enzyme,27 while QCT
increased the copper-induced expression of MT.28 More
recently, QCT was shown to enhance zinc uptake by Caco-2
cells, increasing total zinc accumulation and MT expression.29

In contrast, grape seed flavonoids, produced a reduction in
apical zinc uptake in Caco-2 cells, similar to that produced by
phytate, whereas EGCG did not alter zinc absorption.30 In
prostate cancer cells, EGCG accelerated the accumulation of
total zinc in the cytosol and mitochondria.31 Two reports have
shown that polyphenols may produce an increase of intra-
cellular labile zinc. A water-soluble glycoside of the isoflavone
genistin enhanced MT expression in human hepatocarcinoma
HepG2 cells concomitantly increasing labile zinc and cellular
death.32 Furthermore, the stilbene resveratrol was shown to
enhance total and labile zinc in normal human prostate
epithelial cells, while not significantly affecting MT expression,
and this was accompanied by increased cellular death. These
authors suggested that the increment of labile zinc elicited by
resveratrol might be due to the uptake of resveratrol−zinc
complexes, followed by the dissociation of the complexes in the
cytoplasm.33

Conversely, zinc may affect the bioactivity of flavonoids, as
detailed in a few reports, including one that outlines the
stimulating effect of zinc on the apoptotic effect of genistein in

osteoclastic cells.34 Zinc also yields EGCG effective in
protecting cultured rat hepatocytes against hepatotoxin-induced
cell injury35 and enhances the antiproliferative, proapoptotic
effects of EGCG on various lines of prostate cancer cells.36 Zinc
was also shown to affect the uptake of EGCG by prostate
carcinoma cells, where Zn−EGCG chelates were less
internalized by cells than EGCG alone, while mixtures of
EGCG with zinc enhanced the transport of EGCG into the
cells. These authors also showed that zinc enhances the
incorporation of EGCG into liposomes.37

We have previously reported that the water-soluble flavonoid
EGCG and the water-insoluble flavonoid QCT profoundly alter
zinc homeostasis in cultured human and mouse hepatocarci-
noma cells. Whereas EGCG reduced the levels of total
intracellular zinc and the expression of MT and ZnT1,38

QCT enhanced total zinc accumulation as well as MT and
ZnT1 expression (M. Bustos, personal communication, 2011,
Universitat Rovira i Virgili). However, both QCT and EGCG
dose-dependently prevented zinc-induced toxicity, suggesting
that most zinc cations in the culture medium are rendered
unavailable to cells due to their chelation by flavonoids and the
formation of flavonoid−zinc concatemers, as shown for iron
and copper complexed with diverse polyphenols.39 In addition,
both polyphenols enhanced cytoplasmic levels of Zinquin-
detectable labile zinc, suggesting that a fraction of the flavonoid
molecules in the culture medium formed complexes with zinc
that cross the plasma membrane; that is, the flavonoids may
also act as zinc ionophores, transporting zinc cations across the
plasma membrane independently from zinc transporters.
The aim of this work was to evaluate the capacity of QCT

and EGCG to act as zinc ionophores. Clioquinol (CQ) was also
tested in this study as it is a synthetic antitumor drug recently
reported to induce apoptosis in diverse cells lines by enhancing
intracellular labile zinc and therefore inferred to act as a water-
soluble zinc ionophore.40 We evaluated the ability of QCT,
EGCG, and CQ to chelate zinc cations and the subsequent
formation of a complex with FluoZin-3, a fluorophore that
displays a very high affinity for zinc cations (Kd = 15 nM).41

The uptake of zinc by mouse hepatocarcinoma cells was
measured fluorescently using FluoZin-3 in the presence and
absence of QCT, EGCG, and CQ. This study was repeated
using unilamellar liposomes with encapsulated FluoZin-3 to
investigate whether the transport of the zinc cations across the
cytoplasmic membrane to form a complex with FluoZin-3 was
indeed enhanced by the presence of QCT, EGCG, or CQ or
was simply due to the activity of cellular zinc transporters.

2. MATERIALS AND METHODS
2.1. Chemicals. The lipid 1,2-dipalmitoyl-sn-glycero-3-phospho-

choline (DPPC), cholesterol, zinc chloride (ZnCl2), QCT, EGCG,
CQ, dimethyl sulfoxide (DMSO), ethanol, and phosphate-buffered
saline (0.01 M PBS, pH 7.4) were bought from Sigma−Aldrich. Cell-
impermeant FluoZin-3 tetrapotassium salt and cell permeant FluoZin-
3 AM were bought from Molecular Probes. A Simplicity 185 Millipore
water system was used to obtain Milli-Q water (18.2 mΩ·cm−1) for the
preparation of buffers and liposomes. The compounds QCT, EGCG,
and CQ were dissolved as 100 μM solutions in 100% DMSO,
aliquoted, and stored at −20 °C. ZnCl2 was stored as 1 M solution in
ethanol/PBS (50%/50% v/v). FluoZin-3 indicators were used at 10
μM in 100% DMSO.

2.2. Cell Cultures and Treatments. The mouse hepatoma cell
line Hepa 1-6 was obtained from the European Collection of Cell
Cultures (BW7756 ECACC) and propagated in Dulbecco’s Modified
Eagle medium (DMEM; BioWittaker) supplemented with 10% fetal
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bovine serum (BioWittaker), 2 mM glutamine in 0.85% NaCl, 1000
U/mL penicillin/streptomycin, and 1.25 M HEPES. This medium
contains 4.9 ± 0.2 μM zinc, as determined by flame atomic absorption
spectroscopy (FAAS). Cells were cultured at 37 °C in a humidified,
5% CO2-enriched atmosphere and routinely split every 3−4 days at a
1:5 ratio upon reaching approximately 80% confluence. For treat-
ments, cells at 80% confluence were detached with Accutase (Sigma−
Aldrich) and resuspended at a density of 5 × 105 cells/mL; 500 μL of
this cell suspension (25 × 104 cells) was then seeded per well in 24-
well plates (Orange Scientific). Twenty four hours after plating,
medium was removed, and the cells were treated by adding 100 μL of
fresh medium containing either 50 μM ZnCl2, 100 μM QCT, 100 μM
EGCG, 100 μM CQ, or the combination of 50 μM ZnCl2 with each
chelator for 1 and 4 h, respectively. As a control experiment, untreated
cells were incubated just with medium and vehicle (final 0.1% DMSO
and 0.05% ethanol).
2.3. Measurements of Cytoplasmic Labile Zinc in Hepa 1-6

Cells. The intracellular levels of free and labile zinc cations were
measured as the fluorescence emission of cells upon loading them with
the membrane-permeant zinc specific detector FluoZin-3, using
fluorescence microscopy as described.42 Briefly, following cell
treatment (Section 2.2), culture media were replaced with a fresh
one containing 1.5 μM FluoZin-3 (AM, cell permeant) and incubated
for 30 min at 37 °C. This medium was then removed, and the cells
were washed three times with PBS, and the zinc-dependent FluoZin-3
fluorescence within cells was measured using a Nikon Eclipse TE2000-
S microscope, with excitation set at 494 nm and emission at 516 nm.
Fluorescent intensities were quantified using the NIS-Elements AR
software (Nikon Instruments) and the software ImageJ, a Java-based
image processing program developed at the NIH (National Institutes
of Health).43

2.4. Liposomes as Cell Membrane Models. Homogeneous
populations of liposomes were prepared using a previously reported
method.44 FluoZin-3 in a final concentration of 3 μM was mixed with
5 mL of PBS (0.01 M, pH 7.4) in a glass reactor protected from light-
induced degradation, under stirring conditions and a blanket of argon
gas. After 15 min, a mixture of DPPC and cholesterol (9:1 molar ratio)
was added and maintained under stirring conditions and argon at 25
°C for another 15 min. The homogeneous mixture was then treated
with a rapid pH jump from pH 7.4 to pH 11 and then back to pH 7.4
within a 3 s frame, followed by an equilibration step of 25 min where
lipid clusters curl into FluoZin-3 encapsulating liposomes. The
resulting FluoZin-3-loaded liposomes were purified using a Sephadex
G-100 size-separation column and used immediately.
Liposomes with encapsulated FluoZin-3 were separately incubated

with 10 μM QCT, EGCG, or CQ, in the presence and absence of 10
μM ZnCl2. All the solutions were allowed to incubate at 25 °C for 30
min before measuring their fluorescence. For the kinetic experiment,
liposomes loaded with FluoZin-3 were added to three different
cuvettes, the fluorescence was measured for 15 min, followed by
addition of ZnCl2 (final 10 μM) to each cuvette, and the fluorescence
emission was measured for another 15 min. Finally, QCT, EGCG, or
CQ was added (final 10 μM) to each sample, and fluorescence
emission was monitored over the duration of 1 h until the fluorescent
intensity reached a plateau.

3. RESULTS
3.1. QCT, EGCG, and CQ Increase the Cytoplasmic

Labile Zinc in Hepa 1-6 Cells. The increase of cytoplasmic
labile zinc is modulated by the cellular zinc transporters, where
the zinc ions are transported to the cytoplasm through specific
channels of the ZIP family, bound to ionophore molecules that
independently cross the lipid bilayer, or liberated from zinc-
binding proteins such as metallothioneins (Figure 1).
In order to assess the effect of QCT, EGCG, CQ and zinc on

cytoplasmic labile zinc, Hepa 1-6 cells were treated for 1 and 4
h with the chelators and supplemental zinc, and variations in
the intracellular levels of labile zinc were measured as changes

in the FluoZin-3 fluorescence intensity as described in Section
2.3. Figure 2 shows the fluorescent images of the Hepa 1-6 cells
after 1 and 4 h of treatment. No significant increase in
fluorescence was obtained when QCT or EGCG were added to
the culture medium without additional zinc. Only CQ
insignificantly enhanced the fluorescence in these conditions,
that is, with basal zinc concentration in the culture medium,
which is roughly 5 μM.
However, when 50 μM ZnCl2 was added, both QCT and

EGCG doubled the amount of FluoZin-3-detectable zinc after 1
h, and CQ increased this pool of zinc 10-fold with respect to
the control (50 μM ZnCl2 in the absence of any of QCT,
EGCG, or CQ) (Figure 3), suggesting a slower ionophore
action of the flavonoids as compared to CQ. After 4 h
treatment with additional 50 μM ZnCl2, all treatments triggered
a significant increase in fluorescence intensity. In the case of the
control, the increase of the cytoplasmic labile zinc is associated
with the plasma membrane ZIP transporters, whereby zinc ions
are transported into the cell. QCT doubled the amount of labile
zinc attained with only 50 μM zinc, EGCG quadrupled this
value, and CQ increased it 7-fold.
A closer view of intracellular distribution of FluoZin-3

fluorescence (Figure 4) after 4 h of treatment shows a similar
punctuated pattern of labile zinc for CQ, EGCG, and QCT,
suggesting similar ways of action for the three compounds.

3.2. Zinc Ionophore Activity of QCT, EGCG, and CQ
Using Liposomes as Membrane Models. Increases of
cytoplasmic labile zinc levels triggered by CQ and pyrithione in
a variety of cell lines have been attributed to their ionophore
activity, that is, to the capacity of CQ−zinc and pyrithione−
zinc complexes to cross the plasma membrane. To our
knowledge, however, the classification of CQ and pyrithione
as zinc ionophores is based on their functional effect in cells,
that is, the rapid increase in Zinquin-detectable or Fluozin-3-
detectable intracellular zinc, but no direct biochemical assay has

Figure 1. Schematic representation of zinc homeostasis. Intracellular
labile zinc is modulated by the coordinated activity of a large family of
zinc transporters (ZnT and ZIP) and zinc-binding proteins, such as
metallothionein or ionophore molecules.
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been performed to discard the involvement of plasma
membrane zinc importers or the origin of labile zinc from
intracellular components on this effect. Furthermore, there is
no report confirming that polyphenols are able to transport zinc

across the plasma membrane independently of cell transport
mechanisms, such as zinc transporters or endocytosis. To
directly prove the ionophore action of the flavonoids and CQ,
we tested their capacity to transport zinc cations across the lipid
bilayer of protein-free liposomes as a model system that mimics
a cell membrane devoid of protein and polysaccharide fractions.
Taking advantage of our previously reported method for the
rapid preparation of liposomes,44 3 μM concentration of cell-
impermeant FluoZin-3 was encapsulated within unilamellar
liposomes composed of DPPC/cholesterol in a 9:1 molar ratio.
The resulting FluoZin-3-loaded liposomes were purified by
passing the sample through a Sephadex G-100 size-separation
column to remove the unencapsulated FluoZin-3 molecules.
Dynamic light scattering (DLS) and ζ potential analysis were
performed to clearly confirm the presence of stable liposomes
within a size range 1−2 μm and surface charge around zero
(Table 1).
The zinc ionophore activity of polyphenols was then tested

as their capacity to transport zinc cations into the liposome
cavity, interacting with the encapsulated zinc-dependent
FluoZin-3 and consequently increasing the fluorescence signal
within the liposomes (Figure 5). ZnCl2 (10 μM) was added to
the liposomal suspension in the absence and presence of 10 μM
QCT, EGCG, and CQ, respectively, and zinc-dependent
fluorescence intensity was measured over time. Following the
addition of QCT, EGCG, or CQ, the Zn−polyphenol chelation
complex is formed and transported across the bilayer, followed
by interaction with the encapsulated FluoZin-3 probe, resulting
in a significant and immediate increase in the fluorescence
intensity.
Following the addition of 10 μM ZnCl2 to the liposomes, a

very small increase in the fluorescence appears due to the
presence of a few free FluoZin-3 molecules that were not
removed during the purification process and represent the
background fluorescent signal. Even so, the fluorescent signal
remains very low as zinc ions alone cannot cross the liposome
membrane. The results from the kinetic experiment demon-

Figure 2. Effect of QCT, EGCG, and CQ on the cytoplasmic pool of labile zinc in Hepa 1-6 cells. Hepa 1-6 cells were first treated with 100 μM
QCT, EGCG, or CQ, in the presence or absence of 50 μM ZnCl2 for 1 and 4 h. The medium was then removed, and 3 μM FluoZin-3 (AM, cell
permeant) was added. After 30 min incubation, cells were washed and examined using a confocal fluorescence microscope. Control cells were treated
with vehicle (final 0.05% ethanol, 0.1% DMSO). Scale bars are 50 μm.

Figure 3. Intensity of FluoZin-3 fluorescence signal from images in
Figure 2 was quantified using quanta program and considering an
equal number of cells in each field. All values are mean ± SEM of three
independent experiments. Significant differences between treatments
were determined using one-way ANOVA (Tukey test). *P ≤ 0.05;
**P ≤ 0.01.
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strate that QCT, EGCG, and CQ present different ionophore
properties. CQ showed the strongest ionophore activity,
producing a 35-fold increase in the zinc-dependent FluoZin-3
fluorescence intensity. Moreover, the maximum fluorescence is
achieved rapidly after reaching the equilibrium in less than 15
min. QCT and EGCG also display a high ionophore activity in
the system, although to a lesser extent as compared to the
strong ionophore CQ, with 8- and 16-fold increases in
fluorescence signal observed for QCT and EGCG, respectively.
It can also be observed that both QCT and EGCG required
more time (>60 min) to achieve the plateau phase, displaying
slower chelation and transport kinetics (Figure 6).

Confocal microscopy analysis was also performed in order to
visualize and corroborate that the fluorescence produced by the
interaction between zinc and FluoZin-3 was atributable to
fluorescence in the inner part of the liposomes. As can be seen
in Figure 7, fluorescence is only observed when the
combination of ZnCl2 with QCT, EGCG, or CQ is present,
and the fluorescent signal comes from the inside part of the
liposomes and not from the lipid membrane or the background

Figure 4. Subcellular localization of FluoZin-3 detectable zinc in Hepa 1-6 cells after 4 h treatment in the same samples as in Figure 2 showed at a
greater magnification. Scale bars are 10 μm.

Table 1. Dynamic Light Scattering and ζ Potential
Measurements of Liposomes Loaded with FluoZin-3 before
and after Treatments with 10 μM Quercetin (QCT10), 10
μM Epigallocatechin-3-gallate (EGCG10), or 10 μM
Clioquinol (CQ10) in the Presence and Absence of 10 μM
Zinc Chloride (Zn10)a

sample
size average

(μm)
ζ potential
(mV)

FluoZin-3-loaded liposomes 1.4 ± 0.3 −4.7 ± 2.5
FluoZin-3-loaded liposomes + Zn10 1.1 ± 0.7 −5.0 ± 5.9
FluoZin-3-loaded liposomes + QCT10 1.2 ± 0.5 −1.9 ± 4.1
FluoZin-3-loaded liposomes + EGCG10 1.5 ± 0.4 −6.9 ± 7.6
FluoZin-3-loaded liposomes + CQ10 1.4 ± 0.2 −3.0 ± 3.7
FluoZin-3-loaded liposomes + Zn10 +
QCT10

1.8 ± 0.2 −1.2 ± 2.5

FluoZin-3-loaded liposomes + Zn10 +
EGCG10

1.6 ± 0.3 −3.5 ± 3.2

FluoZin-3-loaded liposomes + Zn10 +
CQ10

1.4 ± 0.2 −9.0 ± 2.7

aFinal concentrations of solvents in the samples were 0.05% ethanol
and 0.1% DMSO. Standard deviations were calculated from the mean
data of a series of experiments (n ≥ 3).

Figure 5. Schematic design of the FluoZin-3-loaded liposomes and the ionophore-like effect interpretation.

Figure 6. Effect of QCT, EGCG, and CQ on the uptake of zinc
cations by liposomes. Zinc-dependent fluorescence emission of
FluoZin-3 encapsulated within liposomes treated with zinc cations,
polyphenols, and CQ. The fluorescence emission (λex = 494 nm; λ em
= 516 nm) of purified FluoZin-3-loaded liposomes was recorded
continuously. Background fluorescence (0−15 min) was negligible (I).
Upon the addition of 10 μM ZnCl2 to the liposomal suspensions (II),
a small fluorescence signal was detected, presumably due to the
presence of trace amounts of unencapsulated FluoZin-3 in the
liposomal solutions. At time point 30 min, 10 μM quercetin (QCT10),
epigallocatechin-3-gallate (EGCG10), clioquinol (CQ10), or vehicle
(control, final 0.1% DMSO) were added to the liposomal solutions,
and the fluorescence was monitored for one additional hour (III).
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solution. To further support this, stability studies were carried
out in order to check whether the QCT, EGCG, or CQ can
destabilize and break the lipid vesicles. All the liposomes were
characterized using transmission electron microscopy (TEM),
DLS, and ζ potential to check that their stability was
maintained following exposure.
As shown in Figure 8, TEM images of the liposomes before

and after treatments clearly demonstrate that liposome stability
was not affected with the morphology and mean size (1−2 μm)
being maintained. Moreover, the DLS and ζ potential results
presented in Table 1, confirmed that the size of the liposomes
and their surface charge were not significantly affected by the
addition of zinc and/or the ionophores, thus demonstrating
that FluoZin-3-loaded liposomes were not destabilized and
their around-zero charge, due to the zwitterionic nature of main
lipid component DPPC, was maintained, thus confirming that
the fluorescence signal is due to transport of the Zn−QCT/
EGCG/CQ complex across the lipid membrane.

4. DISCUSSION
The consequences that zinc chelation by flavonoids may have
on zinc availability to the cells may in principle be dual:
sequestering or ionophore, as shown for other well-charac-
terized zinc-binding compounds.45 On the one hand, the
formation of zinc−flavonoid complexes may render zinc
unavailable for cells, as do other dietary phytochemicals such
as phytatesc46 and zinc-chelator drugs such as TPEN that
induce zinc deficiency in vitro and in vivo.47 Metal chelating

therapy using CQ has been proposed for neurodegenerative
disorders that course with high levels of metal accumulation
such as Alzheimer’s and Parkinson.48 On the other hand,
flavonoids may form water-insoluble membrane-permeant
complexes with zinc that cross the plasma membrane, and
thereby act as zinc ionophores. The ionophore effect of zinc-
binding compounds has been characterized for pyrithione and
CQ. Both drugs chelate zinc cations and, when applied to cells,
trigger a rapid increase of the intracellular pool of zinc that is
detectable with different fluorophores such as Zinquin or
FluoZin-3. Thereafter, it is assumed that these chelators form
membrane-permeable complexes that are transported into the
cell and that, once within the cell, chelator−zinc complexes
dissociate into the single compounds due to the low
concentration of intracellular free and labile zinc, thus providing
labile zinc cations. Although FluoZin-3 has been widely
accepted as a fluorophore that specifically interacts with
zinc,49−52 a recent report has indicated that this marker may
in fact suffer from a lack of specificity.53 However, this has no
impact on the proof-of-concept study reported here as zinc is
the only ion present and studied and thus no interfering effect
from other ions will occur. We have shown here that treatment
of Hepa1-6 cells with zinc together with QCT, EGCG, or CQ
elicits a rapid and drastic increase in FluoZin-3-detectable
intracellular zinc. The same effect was previously observed
using Zinquin upon treatments of HepG2 cells with
combinations of zinc and EGCG or zinc and QCT.38 In
these cells, the upregulation of MT and ZnT1 by zinc was

Figure 7. Effect of QCT, EGCG, and CQ on the uptake of zinc cations by liposomes. Three-dimensional confocal microscopy images of zinc-
dependent fluorescence emission of FluoZin-3 loaded within liposomes treated with zinc cations, polyphenols, and CQ.

Figure 8. Effect of QCT, EGCG, and CQ on the uptake of zinc cations by liposomes. Transmission electron micrographs of liposomes with
encapsulated FluoZin-3 after treatment with ZnCl2, QCT, EGCG, and CQ.
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enhanced by QCT. In contrast, EGCG decreased the
intracellular zinc accumulation. Similar to QCT, the stilbene
resveratrol efficiently chelates zinc in solution and enhances
total and Zinquin-detectable cytoplasmic zinc in cultured
human prostate epithelial cells, and this correlated with the
antiproliferative action of resveratrol on cells.33

While an increasing effort has been made to understand the
interaction of flavonoids with lipid bilayers,54 no report has
been published reporting the use of liposomes to demonstrate
the zinc ionophore activity of polyphenols. Liposomes have
been widely used as the simplest cell membrane systems in
order to study the ionophore activity of molecules across the
lipidic bilayer.55 We have herein used a liposomal system to
prove that zinc can transverse lipid bilayers when combined
with flavonoids. It is not necessary to evoke the intervention of
zinc transporters in the plasma membrane or the mobilization
of zinc from intracellular compartments to account for the
elevation of intracellular zinc levels in cells treated with
flavonoids. The flavonoid-dependent transport of zinc cations
into the liposomal cavity also implies that polyphenols may
cross biological membranes when conjugated with metal
cations. The mechanisms by which polyphenols enter the
cells are largely unknown, but our results imply that
complexation with metals may increase the bioavailability of
polyphenols to cells.
There are several reports that strongly suggest that the

demonstrated zinc ionophore effect on polyphenols will be
observed in real physiological conditions if studied in vivo. Lee
et al.56 in 2002 has reported that a minor part of the EGCG
found in plasma conserved its native form, and it has also been
reported that the polyphenol metabolites still maintain their
ability to chelate and form complexes with metal ions30 and
furthermore that nanomolar concentrations of polyphenols or
their metabolites are able to modulate some metabolic
pathways,5,57,58 as does labile zinc in a picomolar to nanomolar
concentration range.14 While all these reports point toward the
same ionophore effect being observed under physiological
conditions, in a recent report by Oyama et al.,59 the authors
suggest the dual effect of CQ depending on the extracellular
zinc concentration, where the known ionophore effect of CQ
was only observed when extracellular zinc was available, and
when zinc was not available in the extracellular environment,
CQ could cross the membrane and chelate the intracellular zinc
ions. To this end, ongoing work is looking at extending the
proof-of-concept reported and demonstrated here with both
liposomes and cellular models to true physiological conditions
exploring the interactions between a range of polyphenols and
polyphenol metabolites and zinc in a lower concentration range
of picomolar to micromolar.
In conclusion, we have demonstrated that QCT, EGCG, and

CQ rapidly increase intracellular labile zinc in Hepa 1-6 cells
and that they function as ionophores for zinc in a liposomal
system. Thus, natural flavonoids can be added to an arsenal of
drugs that may be used to modulate zinc homeostasis and
regulate zinc-dependent biological pathways.
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The manuscript by Dabbagh-Bazarbachi et al. describes novel results regarding the zinc 

ionophore activity of Polyphenols and the cancer drug Clioquinol. The authors tested their 

hypothesis in 2 models, i.e. cell culture and liposomes using the zinc indicator FluoZin-3. 

As many long-standing concepts trying to explain the effects of Polyphenols on human 

health and disease are currently discarded, the idea of Polyphenols acting as metal ion 

ionophores clearly is of scientific interest. However, prior publication the authors need to 

take some time to address the following questions: 

 

1- From a physiological and nutritional point of view, before reaching the bloodstream and 

further target tissues (i.e. Hepa 1-6 cells), polyphenols in general and quercetin and EGCG 

in particular, are metabolized by phase II enzymes in enterocytes or hepatocytes or reach 

the colon where these compounds are substrate of bacterial microbiota and converted to 

phenolic acids, before absorption. Thus, the active metabolite developing the biological 

action at hepatic level being different from native polyphenol ingested. Authors need to 

clarify this issue, and indicate if it is possible that these polyphenols would reach Hepa 1-6 

cells in the tested concentrations of this study or mainly their metabolites and in which 

physiological concentration, and thus develop the reported activity. Another question 

raised about this is if the metabolites of these polyphenols still retain the ionophore activity.  

 
We find the proposed discussion addressed to a future prospective of the biological in vivo 

activity, since it differs from the proof-of-concept reported herein. In our work we have 

demonstrated the zinc ionophore effect of the pure form of quercetin and EGCG under 

specific experimental conditions optimized for the “in vitro” set up. Even though Lee et al. 

showed that a minor part of the EGCG found in plasma conserved its native form (Lee et 

al. 2002), additional research is necessary to assess and understand if the metabolized 

forms of the polyphenols still exert the ionophore effect. In addition, it has been already 

reported that those metabolites still maintain their ability to chelate and form complexes 

with metal ions (Kim et al. 2011). Furthermore, physiological concentrations should also be 

tested in order to evaluate if at those concentrations the ionophore-like effect is 

maintained. However, taking into account that nanomolar concentrations of polyphenols 

are able to modulate some metabolic pathways (Williams & Spencer 2012), as well as 

labile zinc within concentrations ranged from pico- to nanomolar does (Maret 2011), we 
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believe that very small variations in both concentrations may produce important biological 

changes. As a concluding remark, we consider that this, together with the use of other cell 

lines, should be part of a deeper work in a future study. 

 

2- Why these concentrations of Zn and polyphenols were chosen? (Nutritional expected 

values?). It must be clearly indicated. 

 
The aim of our study was to evaluate the capacity of two of the most abundant 

polyphenols, quercetin and EGCG, to act as zinc ionophores, and therefore modulate the 

levels of zinc within the cells. Previous studies in our group demonstrated that specific 

doses of polyphenols and zinc, 100 µM and 50 µM respectively, were able to act 

modulating some of the central genes involved in zinc homeostasis (MT and ZnT1 genes), 

as well as increase the amount of cytoplasmic labile zinc. These effects were observed 

both in vitro, using Hepa1-6 (mouse cell line) and HepG2 (human cell line), and in vivo 

using C57BL/6J mice. In the present work, we have chosen these concentrations of 

polyphenols and zinc supported by our past studies as well as by most of the published 

literature, in where between 10 to 100 µM EGCG is used to elucidate its mechanism of 

action in vitro (Lee et al. 2002; Chow et al. 2001). 

 
3- Considering that 100 µM PFs are far beyond in vivo concentrations, the authors should 

comment on the biological relevance of their results; especially in light of their comment 

that "natural flavonoids can be added to an arsenal of drugs that may be used to modulate 

zinc homeostasis and regulate zinc-dependent biological pathways". How and where do 

the authors expect this interaction/synergistic effects to occur? Possibly the intestine, but 

also other organs? Please, explain. 

 
In our proof-of-concept work, we have shown the zinc ionophore effect of the pure form of 

quercetin and EGCG under specific experimental conditions optimized for the in vitro set 

up. However, in vivo after an oral ingestion of polyphenols, the main part found in plasma 

and in different tissues or organs is not the pure compound, but in its metabolized and/or 

conjugated form. Therefore there is a need to study, first if those metabolites, such as 

phenolic acids, glucuronidated, sulfated or methylated forms are able to keep their 
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ionophore-like effect, and second, if this effect can be maintained at physiological 

concentrations of both compounds (nanomolar concentrations). In addition, it was reported 

that several pathways can be activated with only a few nanomolar concentrations of 

polyphenols or their metabolites (van Praag et al. 2007; Vauzour et al. 2010), therefore, 

supporting that even very few concentration of polyphenols could exert a biological effect. 
We expect that the effect does not occur only in the intestine, but also in different tissues 

and organs of the body, as even certain polyphenols were able to enter the brain across 

the blood-brain barrier (BBB) (Williams & Spencer 2012).  

 
4- Recently, considerable doubt regarding the specificity of labile metal ion fluorescent 

indicators (including FluoZin-3) has been raised (e.g. Figueroa et al. Metallomics 2014, 6). 

This aspect ought to be discussed by the authors. 

 
Although Fluozin-3 has been widely accepted as a fluorophore that specifically interacts 

with zinc (Wessels et al. 2013; Muylle et al. 2006; Chevallet et al. 2014), a recent report 

has indicated that this marker may in fact suffer from a lack of specificity (Figueroa et al. 

2014). However, this has no impact on the proof-of-concept study reported here as zinc is 

the only ion present and studied, and thus no interfering effect from other ions will occur. 

 
5- Furthermore, additional information on the binding affinities of tested PFs, Clioquinol 

and FluoZin-3 are needed in order to better understand why/how PF or Clioquinol-chelated 

zinc can be detected by FluoZin-3. 

 
In order to quantify the relative capacity of QCT, EGCG and CQ to bind zinc cations in 

aqueous solutions at physiological pH, we measured their capacity to retrieve zinc cations 

from FluoZin-3-zinc complexes (Kd = 15 nM), by monitoring the quenching of zinc-

dependent fluorescence emitted by FluoZin-3-zinc complexes upon addition of the 

polyphenols to the solution. We found that QCT, EGCG and CQ reduced the zinc-

dependent FluoZin-3 maximum fluorescence for each zinc concentration (Figure 1). These 

results imply that our compounds bind zinc cations from FluoZin-3-zinc complexes. 
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6- It appears from the literature that the ratio of chelator and zinc matters for the 
observable biological effects. Thus, it would be interesting to know how the tested chelator 
to zinc ratio of 2:1 has been selected and whether it has influenced the obtained results. 

 
This paper is a proof-of-concept of the ionophore activity. Our research group previously 
hypothesised that the ratio is important in order to obtain this effect, because only some of 
the several complexes formed between PFs and zinc will cross the membrane, the other 
ones will just act as zinc sequestrants, chelating the metal ions and making them 
unavailable to the cell (Personal communication, Isabel M. Quesada 2010, URV, Effects of 
Dietary Catechins and Proanthocyanidins on Zinc Homeostasis in Hepatic Cells). The ratio 
2:1 as well as the concentration, have been selected following the results obtained in other 
studies done in vitro and in vivo under the same conditions, where we observed a 
modulation of the expression of several zinc transporter and homeostasis genes, and also 
an increase of the intracellular labile zinc. (Personal communication, Mario Bustos 2011, 
URV, Efecto de Flavonoides Sobre la Homeostasis de Zinc en Células Hepáticas). It would 
be interesting to continue this experiment with other ratios, and study how this changes 
could affect the results not only in a liposome model, but also in a cellular model or in an in 
vivo study in order to understand better the mechanisms of action of our compounds.   

 
7- More information on the Clioquinol mode of action regarding to zinc uptake and 
intracellular zinc levels is needed (see e.g. Oyama et al. Life Sci 2012, 91); this information 
should also be considered in the discussion. 

 
Although the ionophore effect of Clioquinol is extensively reported (Bareggi & Cornelli 
2012), under specific conditions it can act as a zinc sequestrant. In the report published by 
Oyama et al., they suggest the dual effect of CQ depending on the extracellular zinc 
concentration (Oyama et al. 2012). The known ionophore effect of CQ only appeared when 
extracellular zinc was available, and when zinc was not available in the extracellular 
environment, CQ may cross the membrane and chelate the intracellular zinc ions. Future 
work should be addressed to elucidate if this behaviour could be happening with the 
phenolic compounds. 
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8- How good do the cell culture experiments conducted at 37-Celsius degrees compared to 

the liposome studies done at 25-Celsius degrees? 

 
The liposome studies were carried out to demonstrate the ionophore activity of the 
polyphenols in a simple membrane system. In this case, we wanted to ensure that the 
membrane stability of the liposomes was not affected due to working with temperatures 
close to the main lipid transition temperature. The transition temperature of DPPC lipid is 
approximately 41-Celsius degrees, and is around that temperature where the lipid changes 
its physical state from an ordered gel phase to a disordered liquid crystalline phase, 
increasing the membrane permeabilization and leakage. In addition of working at 25-
Celsius degrees, we have also included the presence of cholesterol in the liposome 
formulation to enhance the membrane stability, to be, therefore, completely confident when 
confirming that zinc molecules are within the liposomes only due to their complexation with 
quercetin, EGCG or Clioquinol. On the other hand, we have also confirmed in previous 
control experiments that the transport mechanism also occurred at physiological 
temperature in the liposomal set up system. We have incubated the liposomes together 
with the polyphenols, with and without zinc, for 30 minutes at 37-Celsius degrees and 
measured the fluorescence (end point). The results were following the same trends as at 
25-Celsius degrees confirming the zinc-ionophore activity of quercetin, EGCG and CQ at 
same optimum cellular temperature. However, the results from the simple liposomal 
system cannot be comparable to what is happening in a complex cellular system. Our 
objective of using liposomes was to demonstrate the ionophore-like effect and not to 
compare the transport kinetics between both systems. 
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Once the zinc ionophore effect of QCT and EGCG was confirmed in a liposome model, this 
study seek to determine the possible ionophore effect of 14 different dietary polyphenols, 
and compare them to Clioquinol and Pyrithione, two different well-described zinc 
ionophores, as well as TPEN, a commercial zinc sequestrant. We also tested their zinc 
chelation strength in order to correlate those two properties with the structure of our 
compounds. 
 
Although displaying quantitative and structural differences, all the 14 dietary polyphenols 
tested, including EGCG and QCT, behave qualitatively as the synthetic pharmacological 
zinc chelators TPEN, pyrithione and clioquinol, forming complexes with zinc cations and 
crossing the lipid bilayers. 
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ABSTRACT 
 
An efficient liposomal system for screening the zinc ionophore activity of a selected library 

consisting of the most relevant dietary polyphenols is presented. The zinc ionophore 

activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 

loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc 

ionophore activity was demonstrated as the capacity of polyphenols to transport zinc 

cations across the liposome membrane and increase the zinc-specific fluorescence of the 

encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the 

polyphenols was also tested in a competition assay based on the fluorescence quenching 

of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation 

between the chelation capacity and ionophore activity is demonstrated, thus underlining 

the sequestering or ionophoric activity that the phenolic compounds can display, thus, 

providing better knowledge of the importance of the structural conformation versus their 

biological activity. Furthermore, the developed assays can be used as tools for rapid, high-

throughput screening of families of polyphenols. 

 

1. INTRODUCTION 
 
Zinc ions have long been known to mimic the actions of hormones, growth factors, 

neurotransmitters and cytokines, and it is believed that zinc may act on intracellular 

signalling molecules [1-3]. In fact, zinc is a known inhibitor of protein tyrosine 

phosphatases [4] with a constant of inhibition in the nanomolar range [5]. In addition, zinc 

affects the regulation of transcription factors, and can induce the expression of some 

genes, including those coding for molecules involved in zinc homeostasis, such as zinc 

transporters and metallothioneins [6]. The gene expression of metallothioneins by zinc is 

regulated by metal response element–binding transcription factor-1 [7]. The chemical 

properties of zinc that differentiate it from other transition metals, such as copper and iron, 

which display several different oxidation states in biological systems, is that zinc exists as 

a redox inert Zn2+ cation, which does not undergo redox reactions at physiological redox 

potentials [8,9]. Additionally, zinc can induce the expression and maintain the levels of 

potentially radical scavenging proteins such as metallothionein (MT), the major zinc 

binding protein associated with zinc homeostasis [10], DNA protection, oxidative stress, 
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and apoptosis [11,12]. Furthermore, it can act through stabilization of cell membranes [13] 
or as a structural component of anti-oxidant enzymes [14]. 
On the other hand, recent studies have focused on dietary phenolic compounds as natural 
improvers of health and more than 8000 dietary polyphenols have been identified [15]. The 
growing interest in these compounds resides in the accumulating evidence regarding their 
ability to trigger several cellular pathways leading to the prevention and/or amelioration of 
pathological conditions, acting as anti-oxidants [16], anti-carcinogenics [17,18], anti-
inflammatories [19], neuroprotectors [20], anti-lipidemic and vaso-relaxing agents [15]. 
In the last decades, it has been demonstrated and understood that phenolic compounds 
interact with different metals, including zinc, and because of their distinctive chemical 
structure, they can easily form complexes through metal ion chelation [21] in a manner 
similar to that of other well-known metal chelators such as the drug clioquinol (CQ) and 
also exerts a ionophore activity comparable to pyrithione (PYR) [22,23]. The first evidence 
of polyphenol-metal complexes was reported in 1962 between aluminium ions and 
flavonoids. Since then, more than 40 metal-flavonoid complexes have been investigated 
[24]. 
 

One of the mechanisms by which flavonoids exert their anti-oxidant activity is via the 
chelation of redox-active transition metals [25], which are known to catalyze many 
biological processes leading to the production of free radicals [26]. The essential sites for 
metal chelation are hydroxyl groups, and the most suitable cations for chelation are Fe(II), 
Fe(III), Cu(II) and Zn(II) as they high charge density, stimulating the interaction with the 
phenoxide groups that have a high negative charge density [21]. The structure of the 
formed complexes depends on the type of flavonoid and metal ion involved, which in turn 
can influence its' biological interactions that may be different from the native flavonoid [27-
31]. Depending on the polyphenol and its' potential binding sites, different structures could 
be formed with different stoichiometries, thus affecting the biological function of the 
complex [32]. Experimental data has indicated that the chelated compounds are more 
effective free radical scavengers than flavonoids alone, suggesting that the Zn-Polyphenol 
complexes not only exert singular biological properties, but can also enhance the effects of 
both compounds individually [33]. Further studies have revealed that polyphenols not only 
interact with metal ions, but also deeply modulate expression of MTs, cellular zinc 
transporters, extracellular zinc carriers, and intracellular zinc accumulation which are key 
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factors in zinc homeostasis [10]. Zinquin is a fluorescent zinc-specific indicator and an 
increase in Zinquin-detectable cytoplasmic levels of zinc in a HepG2 cell line has been 
monitored when treated with phenolic compounds [10]. This increment in intracellular zinc 
levels have been reported to induce apoptosis of tumour cells [34,35], suggesting that zinc 
ionophores may serve as anticancer agents [36]. 
Although the ionophore activity of natural occurring compounds has not been well 
established, there is strong evidence of their interaction and complex formation with zinc 
ions [33], suggesting that they could be potential candidates as zinc ionophore molecules. 
The interaction of quercetin (QCT) and epigallocatechin-3-gallate (EGCG) with zinc, as 
well as their ionophore activity has been confirmed in a liposome model using the specific 
zinc indicator FluoZin-3 [37]. Luteolin (LUT) and naringenin (NAR) interact with zinc ions, 
forming complexes and exerting a biological function acting as strong radical scavengers 
[38,39]. The ability of genistein (GEN) to bind zinc ions has not been well elucidated, 
although its' ability to bind iron is well known and these complexes exert a strong anti-
oxidant role, and this suggests that it could have a similar action with other metals such as 
zinc [40]. There is also evidence of the ability of catechin hydrate (CAT HYD), which is the 
one of the main bioactive components in green tea, to interact and form complexes with 

zinc ions [41,42], exerting an anti-oxidant activity, but also having an essential role in 
treatment of different cancers, such as prostate cancer [43]. Several reports have 
confirmed that rutin (RUT) forms complexes with zinc [44], also acting as a free radical 
scavenger in a much more effective way than the free flavonoid [45]. The anti-inflammatory 
activity of this bioflavonoid is also enhanced when complexed with zinc [28]. Taxifolin 
(TAX) is also able to interact and form complexes with zinc ions, being an effective radical 
scavenger too [46]. Most phenolic acids are good metal chelators, due to their structure 
with several catechol and/or galloyil moieties [47]. To our knowledge, there are no reports 
to date on interactions and complex formation with zinc ions with phloretin (PHLO) or the 
stilbene resveratrol (RSV), although for RSV there are some evidences on complex 
formation with copper, suggesting that maybe similar structures can be formed with other 
metal ions [48]. Catechol (CAT) is one of the simplest naturally occurring polyphenols, and 
also one of the most important moieties in a high variety of polyphenols, responsible for the 
interaction with metal ions. CAT forms complexes with Ruthenium, a rare transition metal, 
suggesting that it could have the same behaviour with other transition metals like zinc [49]. 
Thus, a high proportion of polyphenols present some kind of interaction with zinc or other 
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metal ions, although for the majority of polyphenols the ionophore activity is still 
undescribed. 
The aim of this work was to evaluate the capacity of fourteen different phenolic compounds 
to bind and chelate zinc ions in solution. We focused on fourteen phenolic compounds 
grouped according to their chemical structure, including the flavonoids quercetin (QCT), 
epigallocatechin-3-gallate (EGCG), luteolin (LUT), naringenin (NAR), phloretin (PHLO), 
genistein (GEN), catechin hydrate (CAT HYD), rutin (RUT) and dihydroquercetin or taxifolin 
(TAX); the phenolic acids gallic acid (GAL), tannic acid (TAN) and caffeic acid (CAF); the 
stilbene resveratrol (RSV); and other polyphenols such as catechol (CAT). Two different 
zinc ionophore agents, clioquinol and pyrithione, were used to compare the ionophore 
activity of the selected polyphenols, as well as the zinc sequestrant molecule, TPEN 
(N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine).  
 
Binding/chelation of the zinc ions by the polyphenols was evaluated using a competition 
assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by 
FluoZin-3. In this competition assay the zinc chelation strength of each phenolic compound 
was correlated with the decrease in the fluorescence signal due to the dissociation of the 

zinc-FluoZin-3 complex as zinc cations are sequestered from the fluorophore complex by 
the polyphenol. In addition, we present a simple and rapid liposome assay for 
demonstrating the ionophore activity of common polyphenols and compared them to 
strong, well-established ionophores, such as clioquinol and pyrithione. The correlation 
between the chelation capacity and ionophore activity underlines the different behaviours 
the phenolic compounds can display and the developed assays can be used as tools for 
rapid, high-throughput screening of families of polyphenols. 
 
2. MATERIALS AND METHODS 
 
2.1. Materials 
All the phenolic compounds, pyrithione (PYR), quercetin (QCT), epigallocatechin-3-gallate 
(EGCG), genistein (GEN), taxifolin (TAX), luteolin (LUT), phloretin (PHLO), catechol (CAT), 
naringenin (NAR), rutin (RUT), catechin (CAT HYD), caffeic acid (CAF), tannic acid (TAN), 
gallic acid (GAL), resveratrol (RSV) and clioquinol (CQ) were purchased from Sigma-
Aldrich, as well as the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 
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cholesterol, dimethyl sulfoxide (DMSO), ethanol, zinc chloride (ZnCl2), N,N,N′,N′-
tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and the phosphate buffered saline (0.01M 
PBS, pH 7.4). Cell impermeant FluoZin™-3 tetrapotassium salt was obtained from 

Molecular Probes. A Simplicity 185 Millipore-Water System was used to obtain Milli-Q 
water (18.2 mΩ.cm-1) for the preparation of buffers and liposomes. The compounds PYR, 
QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL, RSV 
and CQ were dissolved as 100 µM solutions in 100 % DMSO and aliquoted of at -20 ºC. 
ZnCl2 was stored as 1 M solution in ethanol/PBS (50/50 % v/v). FluoZin-3 zinc indicator 
was used at 10 µM in 100 % DMSO. 
 
2.2. Measurement of the interaction of the polyphenols with zinc cations in solution  

A competition assay was carried out to test the ability of the polyphenols PYR, QCT, 
EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL, RSV and 
CQ to chelate zinc cations in solution, thus reverting their binding with the zinc specific 
fluorophore FluoZin-3. TPEN was also included as a positive control, to compare with a 
well-recognized zinc chelator [50]. FluoZin-3 tetrapotassium salt was used to demonstrate 
the capacity of the flavonoids and of clioquinol to form complexes with zinc. First, a 
fluorescence titration curve was constructed using a range of zinc concentrations (from 0 to 

1.25 μM) to establish where the fluorescence of 3 μM FluoZin-3 is not saturated by zinc 
cations. The relative capacity of the polyphenols and clioquinol to quench the zinc-
dependent fluorescence of FluoZin-3 at 1 μM zinc concentration was then monitored. The 
final concentration of test substances in the competition reaction with FluoZin-3 was 10 
μM.   
 
Briefly, 3 μM FluoZin-3 was mixed with 1 μM zinc in PBS (0.01 M, pH 7.4) and incubated 
for 15 minutes at room temperature to facilitate formation of the zinc-complex. 
Subsequently, 10 μM (final concentration) of the test substances (PYR, QCT, EGCG, GEN, 
TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL, RSV, CQ or TPEN), were 
added, mixed vigorously and incubated at 37 °C for 30 minutes under shaking conditions, 
protected from light. All fluorescence measurements were performed in an Eclipse 
fluorescence spectrophotometer from Varian coupled with a Cary temperature controller at 
25 °C using quartz cuvettes with 1 cm path length and with a maximum volume of 150 µL. 
The excitation and emission wavelengths used were 494 nm and 516 nm with slits of 5 nm. 
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2.3. Preparation of FluoZin-3 loaded liposomes 

Liposomes were prepared using the curvature-tuned method previously reported [51]. 
Briefly, FluoZin-3 (final concentration 3 μM) was mixed with 2 mL of PBS (0.01 M, pH 7.4) 
in a glass reactor protected from light-induced degradation, under stirring conditions and 
bubbling argon gas. After 15 minutes, a previously homogenized mixture of DPPC and 
cholesterol (9:1 molar ratio) in 3 mL PBS was added and maintained under stirring 
conditions and argon at 25 °C for another 15 minutes. The homogeneous mixture was then 
subjected to a rapid pH jump from pH 7.4 to pH 11, and then back to pH 7.4 within a 3 
seconds frame, followed by an equilibration step of 25 minutes where lipid clusters curl into 
liposomes entrapping the buffer containing the FluoZin-3 molecules. The resulting FluoZin-
3-loaded liposomes were purified to remove any unencapsulated material by size exclusion 
chromatography (SEC) using a Sephadex G-100 column and the size and charge of the 
formed liposomes was determined using dynamic light scattering (DLS) and zeta-potential. 
Prepared liposomes were used immediately. 
 
2.4. Liposome assay to assess zinc ionophore activity 

The zinc ionophore activity of the different polyphenols and clioquinol was demonstrated by 

the increase in zinc-dependent fluorescence of FluoZin-3 loaded liposomes. Freshly 
prepared liposomes loaded with FluoZin-3 were placed in separate vials and their 
fluorescence measured. Subsequently, ZnCl2 was added to each solution to a final 
concentration of 10 μM, the solution was softly vortexed, incubated at 25 ºC for 30 minutes 
and the fluorescence was measured again. Finally, 50 μM of PYR, QCT, EGCG, GEN, 
TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, TAN, GAL, RSV or CQ was added to 
each vial respectively, softly vortexed and allowed to incubate at 25 ºC for 30 minutes 
under shaking conditions before measuring their fluorescence. The evaluation of the 
ionophore behavior of each polyphenol was tested in a time-dependent assay to further 
understand the velocity of the zinc transport. The kinetic experiment was carried out by 
continuously measuring the fluorescence of the FluoZin-3 loaded liposomes over a period 
of time of 70 minutes, with the addition of ZnCl2 (final 10 μM) after 5 minutes and the 
addition of the test substances (50 μM) to each cuvette respectively after 10 minutes. All 
fluorescence measurements were performed in an Eclipse fluorescence 
spectrophotometer from Varian coupled with Cary temperature controller at 25 °C using 
quartz cuvettes with a 1 cm path length and with a maximum volume of 150 µL. The 
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excitation and emission wavelengths used were 494 nm and 516 nm with slits of 5 nm. 
Control experiments were performed by adding to the cuvette FluoZin-3 loaded liposomes 
with 10 μM ZnCl2 and the solvent used to dissolve the ionophores (final DMSO 
concentration 0.1 % v/v) after 10 minutes.  
 
3. RESULTS AND DISCUSSION 
 
3.1 Zinc chelation strength of polyphenols in solution 
Several polyphenols have been widely reported to chelate metals through their 
deprotonated hydroxyl groups, in which the oxygen possesses a high charge density 
offering a strong ligand for metal-binding. As expected, the chelation strength depends on 
the number of hydroxyl ligands, but also on their proximity, thus bi- or poly-dentate ligands 
are stronger scavengers than mono-dentate ligands. A detailed structure of the identified 
chelating groups of each of the polyphenols tested in this work, as well as their 
classification and food source, is presented in Table 1. 
In order to quantify the relative capacity of the phenolic compounds tested in the work 
reported here (QCT, EGCG, GEN, TAX, LUT, PHLO, CAT, NAR, RUT, CAT HYD, CAF, 

TAN, GAL and RSV), in addition to the established ionophore (CQ and PYR) and 
sequestrant (TPEN) agents, to bind zinc cations in aqueous solutions at physiological pH, 
their capacity to retrieve zinc cations from FluoZin-3-zinc complexes was measured, by 
monitoring the decrease in zinc-dependent fluorescence emitted by the FluoZin-3-zinc 
complexes upon addition of the polyphenols to the solution.  
Firstly, an assay was carried out showing that the fluorescence of FluoZin-3 (3 μM) 
increments linearly with increasing amounts of zinc cations up to 1.25 μM Zn2+, where a 
plateau is reached (Figure 1 inset). Therefore, a zinc concentration of 1 μM was selected 
as optimal to demonstrate the decrease in fluorescence of 3 μM FluoZin-3-Zn complexes 
upon addition of the phenolic compounds. As can be seen in Figure 1, all 14 polyphenols, 
together with clioquinol, pyrithione and TPEN, at 10 μM concentrations, resulted in a 
decrease in the zinc-dependent FluoZin-3 fluorescence to some extent, due to 
sequestering of the zinc ions. The highest zinc-chelating strength was observed to be 
produced by TPEN, followed by CQ, with an almost complete decrease of the FluoZin-3 
fluorescent signal. Similarly, PYR caused an almost 80% reduction of the fluorescence 
signal. These observations are anticipated, as they are well-known powerful zinc chelators. 
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Regarding the phenolic compounds, TAN surprisingly also quenched 100 % of the 
fluorescence signal, which can be explained by its' complex molecular structure having 25 
hydroxyl groups, most of them positioned in a powerful bi-dentate configuration (Table 1), 
ready to bind and sequester zinc cations from the fluorescent zinc-FluoZin-3 complex. 
Regarding the rest of the polyphenols, the fluorescence quenching capacity was smaller 
and similar, within a range from 30 to 15%, and in agreement with the number and position 
metal-binding sites of present on each compound. For example, the flavonoids having -OH 
groups positioned together offering a bi-dentate ligand (QCT, EGCG, LUT, GAL, TAX) 
instead of having the -OH groups positioned on different sides of the molecule (NAR, 
PHLO, GEN), were observed to have a higher chelating strength. However, containing 
more hydroxyl groups alone does not result in improved chelation. As it was observed 
there are other important factors affecting the chelating strength, including the three-
dimensional conformation of the potential binding groups, as well as the formed 
stoichiometry between the polyphenols and the metal. Therefore, the structure of the 
studied polyphenols does not always correlate with their chelating efficiency. The very low 
capacity of some of the studied polyphenols to quench the FluoZin-3 fluorescence despite 
containing several -OH groups, as well as some compounds being observed to have a 

high ability to chelate zinc ions, whilst only possessing few hydroxyl groups can thus be 
attributed to their 3-D conformation and stoichiometry. 
 
3.2. Zinc ionophore activity of polyphenols 

Polyphenols are known to interact with lipid bilayers and actively modify their membrane 
fluidity [52-54]. It is believed that the fluidization of the bilayer is due to the intercalation of 
the lipophilic domains of the molecules within the ordered structure of the lipid membranes. 
This interaction strongly depends on several characteristics of the polyphenolic molecule, 
such as its' degree of hydroxylation and their stereochemistry, the polarity and the 3-D 
structural features. However, the transport phenomena of molecules across lipid 
membranes is still not fully understood. The permeabilization of the membrane to low-
molecular-weight molecules by ionophore molecules has been suggested to also be 
dependent on the concentration of monovalent ions thus creating a gradient of ions and 
modifying the membrane potential, thus inducing its' depolarization [55,56]. In addition, 
other several factors may play an important role and modulate the ionophore strength, 
such as the type of ion-ionophore complex formed, the different ratios, the kinetic reaction 

UNIVERSITAT ROVIRA I VIRGILI 
DIETARY POLYPHENOLS DISPLAY ZINC IONOPHORE ACTIVITY AND MODULATE ZINC SIGNALING IN HEPATOCARCINOMA CELLS 
Husam Dabbagh Bazarbachi 
Dipòsit Legal: T 770-2015 



 

 

!
III. RESULTS 

!
! !

214 

of complexation/decomplexation, the ion-ionophore membrane interaction as well as its' 
transmembrane diffusion constant [57]. For example, Yang et. al. reported that the 
behavior of EGCG was modified due to the formation of zinc-EGCG complexes, resulting in 
an enhancement of the incorporation of EGCG into the liposome membrane, which could 
cause the formation of ion passages[58]. 
A wide number of publications have reported the use of liposomes as simple membrane 
systems for the demonstration of ion transport across lipid bilayers [59-61]. However, there 
is only one previous report of the use of a liposomal system to study the ionophore 
properties of phenolic compounds to demonstrate the zinc ionophore activity of QCT and 
EGCG [37], where they also investigated that the flavonoid compounds did not induce the 
release of the liposome load, as was also reported by Ollila et al [62]. 
A simple liposome system with zinc-dependent fluorophore FluoZin-3 encapsulated in the 
inner cavity was used to determine if the polyphenols can transport zinc across the cell 
membrane. Using the liposome also limited the transport pathway to be solely due to 
transmembrane transport as no other transduction mechanisms normally present in cells 
would contribute to the transport of the zinc cations. The zinc ionophore effect was 
extrapolated as a function of the increase in fluorescence due to the capacity of the 

polyphenols to carry zinc cations across the liposome membrane to interact with the 
encapsulated FluoZin-3. Liposomes with a mean size of 1.3 ± 0.2 µm and a net charge of 
0.8 ± 0.2 mV loaded with FluoZin-3 before and after the addition of 10 μM ZnCl2 showed a 
negligible fluorescence signal due to the impermeability of the DPPC:Cholesterol liposome 
membrane at 25 ºC to zinc cations. The subsequent addition of the phenolic compounds, 
caused an increase in the fluorescence signal due to the zinc complexation, transport and 
consequent interaction with FluoZin-3. The well-reported CQ and PYR zinc ionophores, 
resulted in a marked increase in the fluorescence signal, as expected, whilst each of the 
other phenolic compounds studied presented very different ionophore properties (Figure 
2). In the case of EGCG and QCT, both presented a notable zinc ionophore activity, EGCG 
> QCT, as previously reported [37]. In agreement with the results obtained in the chelation 
assay, the fluorescence increment (Δ) observed, can be clearly correlated with their 
chelation strength towards zinc. The polyphenols analyzed can be classified into three 
groups: strong, soft and no zinc ionophore activity. The polyphenols exhibiting a strong 
ionophore activity include EGCG (36-fold Δ), QCT (18-fold Δ), LUT (12-fold Δ), TAN (12-
fold Δ) and GAL (8-fold Δ); those displaying a soft zinc ionophore activity were RUT (4-fold 
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Δ), TAX (4-fold Δ), CAF (3-fold Δ), CAT HYD (2-fold Δ), CAT (2-fold Δ) and GEN (2-fold 
Δ), whilst those resulting in no fluorescence were RSV, PHLO and NAR, indicative of a 
complete lack of zinc ionophore activity. In addition, control experiments demonstrated that 
the addition of a final concentration of 0.1 % DMSO, as present in the tested samples, did 
not affect or destabilize the liposomes, thus keeping the FluoZin-3 within the liposomes 
and not resulting in an increase in fluorescence. Furthermore, TPEN was also tested and 
displayed a soft zinc ionophore activity as it caused a 10-fold increase in the fluorescent 
signal (data not shown). 
An evaluation of the kinetics of the ionophore behavior of each polyphenol was tested in a 
time-dependent assay to further understand the zinc transport strength (Figure 3). The 
results showed that the increase of the zinc-FluoZin-3 fluorescence produced by PYR until 
reaching the maximum fluorescence was instantaneous. CQ also produced a very high 
increase in the fluorescence and rapidly achieved the maximum fluorescence reaching 
equilibrium in less than 15 minutes. Regarding the kinetics of the polyphenols studied, 
almost none of the ionophore active compounds showed a markedly time-dependent 
increase of the fluorescence. Only in the case of EGCG and QCT a plateau was reached 
after ca. 40 and 20 minutes respectively, exhibiting a slower, but efficient, chelation and 

transport kinetics. In addition, control experiments carried out by adding the different 
compounds to the FluoZin-3 loaded liposomes in the absence of ZnCl2 did not show any 
increase in the fluorescence signal (data not shown). 
In order to confirm the stability of all the liposomes immediately after the fluorescent 
experiments, DLS and Zeta potential analysis of the vesicles were carried out and the 
results are presented in Table 2. The DLS results confirmed the presence of stable 
liposomes that had not leaked the fluorophore following exposure to the polyphenols, 
maintaining roughly the same size as compared with the starting FluoZin-3 loaded 
liposomes (1.3 ± 0.2 µm) or the control sample (FluoZin-3 loaded liposomes with 10 µM 
ZnCl2 at final 0.1 % v/v DMSO) (1.1 ± 0.2 µm) in the absence of the tested compounds. 
The surface charge of the liposomes following exposure to the polyphenols also 
demonstrated that the main net charge of the FluoZin-3 loaded liposomes (0.8 ± 2.2 mV) 
was not significantly affected by the zinc-complexes as all measurements indicated 
approximately a zero charge. Both size and charge results confirmed that the liposome 
vesicles were maintained intact and the fluorescence signal was solely due to the transport 
of the zinc-ionophore complex through the lipid bilayer. 
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The compounds analyzed have been demonstrated to interact to different extents with zinc 

cations in solution, as well sequestering zinc from fluorescent zinc-FluoZin-3 complexes, 

forming metal-chelation complexes. In addition, polyphenols were also tested as zinc-

carriers across a liposome membrane, and not all compounds were observed to be zinc 

ionophores. The results from the comparison of both chelating strength capacity and 

ionophore activity are presented in figure 4, highlighting some interesting observations. 

Generally, the compounds with a higher chelating capacity, also presented a high 

ionophore activity. However, some of the polyphenols did not follow this general trend. It is 

important to note that all the ionophore compounds could chelate the molecule, but not all 

the chelators have the ability to act as ionophores. The physicochemical properties of each 

of the polyphenols will directly have an effect on its' ionophore activity, consequently 

defining the compound as metal sequestering agent or ionophore agent. However a 

deeper study is still needed to fully understand their mechanism of action. 

 

4. CONCLUDING REMARKS   
  
It is confirmed that most of the natural occurring phenolic compounds used in this study 

have the ability to directly interact and form new structures (complexes) bound with zinc. In 

many cases these complexes act in a similar way to the control ionophores. We have 

reported a liposome assay that can be used as a tool the for rapid, high-throughput 

screening of families of polyphenols. In addition, this liposome system can be used to 

screen the ionophore activity towards other ions such as Ca, Fe or Mg among others. Zinc-

specific FluZin-3 loaded liposomes were used to screen the zinc-ionophore activity of a 

selected library consisting of the most relevant dietary polyphenols, classified according to 

their zinc-ionophore strength capacity and their chelation efficiency, giving us a better 

knowledge of the importance of the structural conformation versus biological activity. 

Synthetic ionophore molecules are currently being used as potential drugs against several 

chronic diseases including Alzheimer’s and different types of cancer, and as demonstrated, 

one of the mechanisms by which polyphenols exert their beneficial activity is by acting as 

zinc ionophores. Polyphenol-zinc ion complexes are yet to be investigated and more 

extensive studies are needed in order to elucidate their possible clinical potential. 
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Table 1. Summary of the phenolic compounds used within this work and divided according 

to class, food source, chemical structure with the proposed chelating groups highlighted 

and the number of hydroxyl groups present. 

 

  

Compound Class  Dietary source Structure 
# 

Hydroxyl 
groups 

Tannic acid Hydroxybenzoic 
acids 

-Grape 
-
Persimmon 
-Black 
berry 
-Myrobalan 

-Walnut 
-Maple 
-Sumac 
-Tarragon 

 

25 

Quercetin Flavonols 
-Cocoa 
-Onion 
-Elderberry 

-Wine 
-Black plum 
-Kale  

5 

(−)-
Epigallocatechin 
gallate (EGCG) 

Flavanols 
(Flavan-3-ols) 

-Green tea 
-Black tea 
-Apple 

-Blackberry 
-Hazelnut 
-Pecan nut 

 

8 

Resveratrol Stilbenes 

-Muscadine 
grape 
-
Lingonberry 

-Cranberry 
-Red wine 

 
3 

Luteolin Flavones 
-Olive 
-Mexican 
oregano 

-Globe 
artichoke 
-Green 
pepper  

4 

Gallic acid Hydroxybenzoic 
acids 

-Chestnut 
-Black tea 

-Blackberry 
-Green 
chicory  

4 

Dihydroquercetin 
(Taxifolin) Dihydroflavonols -Mexican 

oregano -Acai berry 
 

5 

Catechol Other 
polyphenols 

-Argan oil 
-Coffee 
beverage 

-Cocoa 
 

2 

Genistein Isoflavonoids -Soy -Red clover 
 

3 

Caffeic acid Hydroxycinnamic 
acids 

-Coffee 
-Black 
chokeberry 

-Plum 
 

3 

Phloretin Dihydrochalcones -Apple -Apricot 
 

4 

Rutin Flavonol 
-Buckwheat 
-Black olive 
-Black tea 

-Plum 
-Capers 
-Tomato 

 

11 

Naringenin Flavanones 
-Mexican 
oregano 
-Grapefruit 

-Orange 
-Tomato 

 
3 

Catechin hydrate Flavonol -Cocoa 
-Strawberry 

-Grape 
-Broad bean 

 
5 
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Table 2. Dynamic light scattering and Zeta-potential measurements of the liposomes 
loaded with FluoZin-3, as well as the fluorescence increment (Δ) caused by each 
compound, after the treatment with 10 µM ZnCl2 and polyphenols, clioquinol, pyrithione 
and TPEN at 50 µM (0.1 % DMSO final concentration). Standard deviations were 
calculated from the mean data of a series of experiments (n ≥ 3). 
 

 
 
a Increment of fluorescence is calculated by the signal obtained from the FluoZin-3 loaded liposomes 
in the presence of 10 µM ZnCl2 and the respective compound at 50 µM divided by the signal 
obtained from the FluoZin-3 loaded liposomes with 10 µM ZnCl2. 
b Control contains the FluoZin-3 loaded liposomes with ZnCl2 (10 µM) in the solvent vehicle (0.1 % 
DMSO) 
  

Compound Δ Fluorescencea 
Liposome parameters 

Size (µm) Charge (mV) 

Clioquinol (CQ) 57.2 1.3 ± 0.2 2.4 ± 2.9 
Pyrithione (PYR) 53.6 1.4 ± 0.1 0.8 ± 1.1 
Epigallocatechin-gallate (EGCG) 35.5 1.3 ± 0.1 1.6 ± 2.5 
Quercetin (QCT) 18.1 1.3 ± 0.1 2.1 ± 1.8 
Luteolin (LUT) 12.2 1.4 ± 0.3 1.1 ± 0.8 
Tannic Ac. (TAN) 12.2 1.2 ± 0.1 -2.1 ± 3.6 
TPEN 10.4 1.1 ± 0.2 0.0 ± 2.6 
Gallic Ac. (GAL) 7.5 1.3 ± 0.3 -3.5 ± 2.8 
Rutin (RUT) 4.3 1.6 ± 0.3 -2.0 ± 3.3 

Taxifolin (TAX) 4.3 1.0 ± 0.3 3.6 ± 3.0 
Caffeic Ac. (CAF) 2.5 1.4 ± 0.4 3.6 ± 1.6 
Catechin (CAT Hyd) 2.4 1.2 ± 0.2 3.3 ± 0.6 
Catechol (CAT) 1.9 1.4 ± 0.3 2.1 ± 1.3 
Genistein (GEN) 1.8 1.4 ± 0.4 -2.1 ± 2.2 
Phloretin (PHLO) 1.3 1.4 ± 0.2 2.6 ± 1.1 
Resveratrol (RSV) 1.1 1.3 ± 0.2 -1.5 ± 4.1 
Naringenin (NAR) 1.1 1.3 ± 0.2 4.6 ± 1.2 
Controlb 0.9 1.1 ± 0.2 -2.1 ± 3.1 
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Figure 1. Chelation strength of zinc cations by the polyphenols, clioquinol, pyrithione and 

TPEN in solution. The quenching of the zinc-dependent fluorescence of FluoZin-3 indicates 

the capacity of the compounds at 10 μM to retrieve zinc cations from the zinc-FluoZin-3 

complex formed between 3 μM FluoZin-3 and 1 μM ZnCl2. Inset 3 μM FluoZin-3 calibration 

plot. λex 494nm / λem 516nm. All values are means ± SD of three independent experiments. 
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Figure 2. Liposome assay for the determination of zinc ionophore activity of polyphenols, 
clioquinol and pyrithione. The increase in the zinc-dependent fluorescence of FluoZin-3 
indicates the capacity of the compounds at 50 μM to interact with 10 μM zinc cations, 
transport them across the liposome membrane and present them to 3 μM FluoZin-3 in the 
liposome inner cavity. Control are FluoZin-3 loaded liposomes in the presence of 10 μM 
zinc cations with 0.1% DMSO. FluoZin-3 loaded liposomes in the absence of zinc (Lipo-
FZ3) and in the presence of 10 μM ZnCl2 (Zn10). λex 494nm / λem 516nm. All values are 
means ± SD of three independent experiments.  
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Figure 3. Time-dependent fluorescence emission of FluoZin-3 loaded liposomes before 
(minute 0) and after (minute 5) addition of 10 μM ZnCl2. The fluorescence increased upon 
the addition of the compounds (50 μM) at minute 10, and the fluorescence was monitored 
over the period of an hour. λex 494nm / λem 516nm. Results are representative of at least 
three experiments. In the control sample, only the solvent used to dissolve the ionophores 
(0.1 % DMSO) was added at minute 10 without showing any fluorescent increase. 
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Figure 4. Schematic comparison between zinc chelating strength and ionophore activity. 
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Our previous work confirmed that the administration of quercetin together with additional 
zinc to hepatoma cells boost the gene expression of the zinc-store protein metallothionein 
and the zinc-export transporter ZnT1. Moreover, total intracellular zinc content and 
cytoplasmic labile zinc are increased. Western-blot analyses show that quercetin, greatly 
enhance the zinc-induced phosphorylation of Akt. QCT also was confirmed to act as a zinc 
ionophore, increasing rapidly the intracellular concentrations of labile cytoplasmic zinc.  
 
The aim ofthis work is to evaluate the effects of combined quercetin-zinc administration on 
proliferation and apoptosis the hepatoma cell line model Hepa 1-6. MTT viability assays 
were carried, as well as the avaluation of the nuclar morphology in order to check our 
hypothesis. Additionally, DNA fragmentation was evaluated by electroforesis analisys. 
 
The results confirmed that Appropriate combinations of zinc and quercetin result in 
morphological changes characteristics of apoptotic processes, as revealed by propidium 
iodide staining. The electroforesis assay confirmed those results, exhibiting disctitive 
apoptotic ladder patters. Polyphenol-zinc complexes may be useful for controlling multiple 
cellular processes such as cancer. 
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ABSTRACT 
 
Zinc is the second most imporant transition metal after iron, found in organs, tissues, 

bones, fluids, and cells. It’s appropriate intracellular homeostasis is essential for the correct 

function and cellular viability. Metal-binding compounds have been shown to exert 

anticancer action and are being evaluated clinically as anticancer agents. The modulation 

of intracellular zinc concentrations through metal sequestrants or metal ionophores are 

known to kill cells via apoptosis. Quercetin, a metal chelator and zinc ionophore, exert 

differential effects on cell viability when combined with zinc. Morphological changes 

suggest that this combination might be inducing apoptosis to the mouse hepatoma Hepa 1-

6 cell line. DNA fragmentation has been confirmed by electrophoresis analysis. The results 

suggest that zinc-quercetin complex could be used together as a new potential anticancer 

agent. 

 

 

1. INTRODUCTION 
 

Apoptosis is an active, energy dependent process of cellular self-destruction characterized 

by a distinct set of morphological and biochemical changes, including apoptotic body 

formation, nuclear condensation, and chromosomal DNA fragmentation 1. It is a controlled 

biological mechanism required for the removal and deletion of unessential or damaged 

cells in response to a harmful agent. Contrasting the cellular “homicide” which occurs 

during necrotic cell death, apoptosis It could be described as a cellular “suicide” 2. It can be 

activated through an intracellular mechanism with a genetically defined developmental 

program, or by extracellular stimuli thru proteins, cytokines, hormones, or drugs.  

 

Zinc (Zn), one of the most important trace elements in the organism, is involved in the 

stabilization and catalysis of over 300 enzymes and a higher number of metalloproteins 3,4. 

Advances in analytical methods for isolating proteins and measuring metals in biological 

material, led to the discovery of other zinc proteins whose importance emerged more 

recently including proteins for zinc signaling, transport, buffering, and storage. As the 

molecular mechanisms of cellular zinc homeostasis are just beginning to be elucidated, the 

number of these proteins and thus the size of zinc proteomes is likely to be larger than 
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what is currently realized 5,6. Four main groups described for zinc coordination 
environments in proteins: catalytic, cocatalytic, structural and protein interface 7. The 
chemical properties of zinc different from other transition metals, such as copper and iron 
which display several different oxidation states in biological systems, is that zinc exists as 
a redox inert Zn2+ cation, which does not undergo redox reactions at physiological redox 
potentials 8,9. Additionally, zinc can induce the expression and maintaining the levels of 
potentially radical scavenging proteins such as metallothionein (MT), the major zinc 
binding protein associated with zinc homeostasis 10, DNA protection, oxidative stress, and 
apoptosis 11,12. It can act through stabilization of cell membranes 13 or as a structural 
component of antioxidant enzymes 14. Although it has been studied for many decades, the 
molecular bases are still not so clear. 
 
Zinc dyshomeostasis can induce cell death. However, the mechanisms involved have not 
been fully elucidated. Studies in prostate cancer cells (PCa) have revealed that an excess 
of zinc mediated by a zinc ionophore agent such as Pyrithione (Pyr) stimulated cell death 
at low micromolar concentrations. Then same effects were observed after using the zinc 
sequestrant N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) 15. Other studies 

have reported that both zinc deficiency and zinc overloading trigger cell death, 
nevertheless acting through different signaling mechanisms and resulting in different 
patterns of cellular death. Zinc chelation resulted in apoptotic cell death, while zinc 
overload led to a mixed death pattern, comprised of both necrosis and apoptosis. 16 
 
Further reports have suggested that zinc-binding molecules may have anticancer effects 
inducing apoptosis acting via different mechanisms 17. The first and more common, occurs 
when cells are deprived of zinc, principally under the action of ROS excess; this 
mechanism involve the formation of a complex with a zinc sequestrant, such as TPEN, 
making zinc ions non available to the cell 16. Another mechanism includes zinc 
transportation into cells through specific Ionophores 18. Zinc becomes cytotoxic if its 
extracellular concentration exceeds the capacity of the Zn homeostatic system. Elevated 
extracellular Zn concentrations lead to the breakdown of the Zn transporting system of the 
plasma membrane. The resulting enhanced intracellular Zn concentration activates the 
apoptotic machinery 19 One of the most important ionophore agents being studied due to 
its anticancer properties is the drug Clioquinol (CQ) 20. 
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Diet is a lifestyle factor that plays a major role in the primary and secondary prevention of 

several chronic diseases. There is an abundance of evidence that regular consumption of 

fruits and vegetables is associated with a reduced risk of chronic and degenerative 

pathologies. In the last decades significant number of studies have focused in dietary 

phenolic compounds as natural improvers of health. More than 8000 dietary polyphenols 

have been identified 21. This growing interest for this compounds resides in the 

accumulating evidence for their ability to trigger several cellular pathways leading to the 

prevention and/or amelioration of pathological conditions acting as Antioxidants 22, 

anticarcinogenics 23,24, anti-inflammatories 25, neuroprotectors 26,  antilipidemic and 

vasorelaxing among others 21. There is an emerging view that flavonoids and their in vivo 

metabolites do not act only as conventional antioxidants but may also exert modulatory 

actions on cellular system through direct action on various signalling pathways 27. 

 

In the last decades, phenolic compounds were known to interact with different metals, and 

because of their distinctive chemical structure, they can easily form complexes through 

metal ion chelation 28 in a comparable way of other well-known metal chelators such as the 

anticancer drug Clioquinol 29–31. Further studies have revealed that polyphenols not only 

interact with metal ions, but they deeply modulate expression of MTs, cellular zinc 

transporters, extracellular zinc carriers, and intracellular zinc accumulation which are key 

factors in zinc homeostasis 10. In addition, an increase of Zinquin (fluorescent specific zinc 

indicator)-detectable cytoplasmic levels of zinc in HepG2 cell line was monitored when 

treated with phenolic compounds 10. This increment in intracellular zinc levels have been 

reported to induce apoptosis of different tumoral cells 30,32. Quercetin (QCT), a water-

insoluble flavonoid present in onions, nuts, and many other vegetables is one of the most 

abundant polyphenols distinctive of the Mediterranean Diet. Previous reports presented 

how QCT profoundly alter zinc homeostasis in cultured human and mouse hepatoma cells, 

enhancing total zinc accumulation as well as MT and ZnT1 expression (M. Bustos, 

personal communication, 2011, Universitat Rovira i Virgili). Lately, QCT has been 

classified as a zinc ionophore molecule, increasing the intracellular labile zinc quantities in 

a comparable way of other zinc ionophores such as Pyr and CQ 33. 

 

In the present study, the combined effect of QCT and zinc on the viability and apoptosis 

induction in Hepa 1-6 cells has been investigated. MTT was used to determine cellular 
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viability, whereas cell death was detected and identified using morphologic studies, 
propidium iodide staining and DNA electrophoresis analyses. 
 
2. MATERIALS AND METHODS 
 
2.1. Materials  
Zinc chloride (ZnCl2), quercetin (QCT), TPEN [N,N,N′,N′-tetrakis(2-phridylmethyl) 
ethylenediamine], dimethyl sulfoxide (DMSO), MTT (Thiazolyl Blue Tetrazolium Bromide), 
ethanol, 2-propanol, propidium iodide (PI) and phosphate buffered saline (0.01M PBS, pH 
7.4) were purchased from Sigma-Aldrich. RNase A (10mg/mL) and Proteinase K 
(recombinant) were purchased from Thermo Scientific. A Simplicity 185 Millipore-Water 
System was used to obtain Milli-Q water (18.2 mΩ.cm-1) for the preparation of buffers. 
QCT was dissolved as 100 µM solutions in 100% DMSO and aliquoted of at -20ºC. ZnCl2 
was stored as 0,5 M solution in ethanol/Milli-Q water (50%/50% v/v).  
 
2.2. Cell cultures and treatments  

The mouse hepatoma cell line Hepa 1-6 was obtained from the European Collection of Cell 

Cultures (BW7756 ECACC) and propagated in Dulbecco's Modified Eagle medium 
(DMEM; BioWittaker) supplemented with 10% fetal bovine serum (BioWittaker), 2 mM 
glutamine in 0.85% NaCl, Penicillin/Streptomycin 1000 U/mL and 1.25 M HEPES. Cells 
were cultured at 37 °C in a humidified, 5% CO2-enriched atmosphere and routinely split 
every 3-4 days at a 1:5 ratio upon reaching approximately 80% confluence.  For 
treatments, cells at 80% confluence were detached with Accutase© (Sigma-Aldrich) and 

resuspended at a density of 5 × 105 cells/mL; 1000 µL of this cell suspension was then 
seeded per well in 12-well plates (Orange Scientific) and 100 µL in 96-well plates (for MTT 
assay). Twenty-four hours after plating, medium was removed and cells were treated by 
adding 1000 μL of fresh medium containing either TPEN, ZnCl2, QCT or the combination of 
ZnCl2 with QCT for 24 hours. As a control treatment, cells were incubated just with medium 
(final 0.1% DMSO and 0.05% ethanol). 
 
2.3. Cell viability assay  
Cell viability was analyzed with a modified tetrazolium assay using MTT reagent following 
the manufacturer's protocol. This method is based on the conversion of MTT to formazan 
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by certain mitochondrial enzymes 34. In brief, after 24 hours treatment, the media was 
removed and 250 µL of fresh media containing MTT was added to all treated cells. Then, 
Hepa 1-6 cells were incubated at 37ºC under dark conditions for 4 hours. After that, the 
MTT containing media was removed and replaced by 225 µL of DMSO-glycine buffer. 
Finally, the plate was shaken vigorously and absorbance at 570 nm and 690 nm was 
detected. 
 
2.4. Propidium iodide staining  

PI binds to DNA by intercalating between the bases with little or no sequence preference 
and with a stoichiometry of one dye per 4-5 base pairs of DNA. PI also binds to RNA, 
requiring treatment with nucleases to distinguish between RNA and DNA staining. When 
bound to nucleic acids, the absorption maximum for PI is 535 nm and the fluorescence 
emission maximum is 617 nm. After the treatments, media was removed and cells were 
washed twice with 1 mL per well of PBS. Cells were then fixed for 1 hour at room 
temperature and washed again with PBS. Finally, 1 mL per well of a PBS solution 
containing PI and RNase A was added to the cells and incubated for 30 min minutes at 
37ºC. Cells were visualized under a Nikon Eclipse TE 2000-S fluorescent microscope. 
 

2.5. DNA laddering assay  

Internucleosomal DNA fragmentation was analyzed by agarose gel electrophoresis. Media 
containing treatments was collected in different 15 mL falcon tubes. Cells were detached 
with 200 µL Accutase per well and added over treated media. Falcon tubes were 
centrifuged at 1000 rpm for 5 minutes. The supernatant was discarded and the pellet 
resuspended with 1 mL lysis (TE/triton) buffer and incubated for 30 minutes on ice. After 
that, pellets were centrifuged again at 14000 G for 5 minutes under cold conditions (4ºC). 
The supernatant was resuspended with 20 µL RNase A and 10 µL Proteinase K and 
incubated at 50ºC for 30 minutes, pellet was discarded. 500 µL of Isopropanol and 150 µL 
of NaCl 5M were added and let DNA precipitation overnight at -20ºC. The mixture was then 

centrifuged at 14000 G for 15 minutes and the supernatant discarded. Finally, 100 µL of 
TE buffer were added. After the determination and quantification of DNA, 5µL of loading 
buffer (0.25% bromophenol blue, 30% glycerol) was added to the samples and loaded on a 
2% agarose gel and run at 80V (Constant V) for about 4 hours. DNA was detected by 
ethidium bromide under UV light. 
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3. RESULTS AND DISCUSSION 
 
3.1. MTT cell viability assay  
In order to test the viability of Hepa 1-6 cells treated with our compounds, an MTT assay 
was performed. Cells were treated for 24 hours with QCT 50, 100, 200, 400 and 500 µM 
(Fig.1A). It was observed how the viability decreased rapidly for QCT concentrations over 
50 µM. For QCT 100 µM it was observed a viability nearby 80%, which means that this 
treatment begins to become harmful for the cells, however is not much aggressive if 
compared to the subsequent treatments which have viability values between 50-60%, 
suggesting that those concentrations exert a significant toxicity to the cells. For ZnCl2 
treatments, the concentrations were the same as for QCT (50-500 µM). Conversely, no 
significant changes in viability were observed till 400 µM, where the viability fell around a 
20%. For the last treatment (Zn 500µM), the viability was lower than 50%, and it was 
considered a toxic amount of zinc under our conditions after 24 hours treatment (Fig.1B). 
Once knowing that QCT can interact with zinc ions, we wanted to test if those interactions 
affect somehow the cell viability. We selected the first value of zinc presenting a minor 
reduction in viability (ZnCl2 400 µM), and combined it with different amounts of QCT 

(Fig.1C). It was observed how the viability drastically fell down with all the combinations to 
levels around 30-40%, which means that in all cases the new treatments were lethal for 
Hepa-16 cells. Non-toxic concentrations of QCT (50 and 100 µM) when combined with a 
non-toxic amount of zinc (400 µM), presented a very significant decrease in cell viability, 
suggesting a combined, maybe synergistic effect on cell viability, different from single 
treatments. In all cases after combination, cell viability decreased to values around 10-20% 
after 48 hours treatment (data not shown), denoting a cell death induction. Subsequently, 
we can confirm that there is a differential effect on cell viability with the interaction of our 
compounds, inducing cell death, however we cannot confirm if that effect is due an 
induction of apoptosis, a regulated and programmed cell death, or by necrosis, an 
unordered and accidental form of cellular dying. 
 
3.2. Propidium iodide nuclear staining  
Since its introduction, the propidium iodide assay has been widely used for the evaluation 
of apoptosis in different cellular models. It is based on the principle that apoptotic cells are 
characterized by DNA fragmentation and, consequently, loss of nuclear DNA content. Use 
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of a fluorophore, such as PI, with the ability to bind and label DNA, makes it a rapid and 
accurate method for the identification of characteristic apoptotic features “in vitro” 35. In our 
study, Hepa 1-6 cells were treated with QCT 100 µM, ZnCl2 400 µM and both in 
combination for 24 hours. For our control reference, non-treated cells containing only 
culture media with the same final concentration of DMSO and Ethanol were used (Fig.2A). 
No significant alterations in nuclear morphology were observed after 24 hours of QCT 100 
µM treatment, reflecting similar results obtained in 3.1, and denoting that under this 
conditions quercetin does not trigger the apoptotic machinery in Hepa 1-6 cell line (Fig.2B). 
Notwithstanding, when cells were treated with zinc 400 µM (Fig.2C), partial nuclei 
condensation and fragmentation were observed in various nucleus, however most of cells 
didn’t show nuclear changes if compared to the control vehicle, which could represent a 
beginning phase of an apoptotic process. When both compounds were administered in 
combination, the obtained results were completely different of the single compounds 
individually (Fig.2D). Several apoptotic conformations (nuclear condensation, giant cell 
formation or fragmentation) were distinguished. This phenomenon is completely consistent 
with the results obtained in the MTT cell viability assay, where cells under a combined 
treatment with zinc and quercetin appear to be extremely damaged, now with evidences 

that the cellular death is owing to an apoptotic process.    
 
3.3. DNA fragmentation  

Biochemically, apoptosis is characterized by double-stranded cleavage at the linker 
regions between nucleosomes, resulting in the formation of multiple DNA fragments that 
are the sizes of integer multiples of a nucleosome length (180-200 bp) 36,37. Because of 
their characteristic patterns revealed by agarose gel electrophoresis, these nucleosome 
DNA ladders are widely used as biochemical markers of apoptosis. In order to confirm the 
previous results, which suggest but not confirm an apoptotic mechanism for cellular death, 
a DNA fragmentation was analyzed through agarose gel electrophoresis (Fig.3). Our non-
treated cells did not exhibit any ladder pattern as expected for a non-fragmented DNA. It is 
well reported that zinc dishomeostasis lead to an apoptotic mediated cell death. Therefore, 
zinc sequestrants could induce apoptosis in many cellular lines 15. However, zinc 
ionophores, a new group of potential anticancer agents that target zinc, may also induce a 
lysosome-mediated apoptosis 38. In this experiment, TPEN, a specific zinc sequestrant, 
was used as a positive control treatment in order to confirm the DNA ladder fragments. At 
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low concentrations of TPEN (2 µM), DNA fragments were not observed, indicating that 
cells can afford the effect of a weak zinc sequestrant without undergoing apoptosis. On the 
other hand, after a 24 hour treatment of TPEN 5 µM, cells underwent apoptosis, displaying 
the typical fragments or ladders of 180 bp as expected. For the QCT 100 µM treatment, 
very weak, almost negligible fragments appeared; suggesting that the decrease in cell 
viability, in some cases to very low values, lead to a cellular death probably mediated 
through an apoptotic process. Since this dose (100 µM) only decreased the viability of 
Hepa 1-6 cells a roughly 20%, the DNA laddering assay seems to be consistent with those 
results. Zinc 400 µM exhibited an evident DNA fragmentation pattern, confirming that the 
cellular decrease of viability and the morphological changes observed by the nuclear 
staining assay were due to apoptosis, discarding other cellular death mechanisms. Again, 
when zinc and quercetin were combined, the laddering was enhanced and the DNA 
fragmentation was more prominent than the single treatments independently. Thus confirm 
us the interaction of Zn and QCT, but also a differential molecular mechanism in cell 
signaling, contributing to maximize the effects on cell death mediated through apoptosis.  
 
4. CONCLUDING REMARKS 

 
Over the last years, metal-binding compounds have played a significant role in the 
development of new therapies against chronic disease such as cancer. The results 
obtained in our studies demonstrate that, in combination, QCT and zinc enhance the 
proapoptotic effects once compared to the single molecules, obtaining a distinctive effect, 
which could be used as a new potential tool in the study of cancer progression.  
 
Even though metal-binding compounds have been considered to be promising anticancer 
agents 39, the cellular mechanisms of their anticancer action remain completely 
uncharacterized. Based on their physical and chemical properties 39, its reasonable to 
assume that individual metal-binding compounds might act through distinctive 
mechanisms. Chelation of zinc by a sequestrant such as TPEN leads to cellular zinc 
deficiency and subsequent apoptotic cell death in a variety of cell studies 40–43. On the 
other hand, the activity of zinc ionophores, increases intracellular zinc concentration 
resulting in cancer cell death 30. Therefore, zinc ionophores are becoming an attractive 
strategy to consider for selectively killing cancer cells. Taking into account that several 
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phenolic compounds act as zinc chelators, forming complexes with zinc ions, they could 
become new potential candidates as anticancer agents. 
 
The complexation of metal ions to flavonoids gives a specific spatial orientation, and this 
could be the responsible for the pharmacological activity. These metal ion complexes 
therefore can display similar characteristics as their parent flavonoids and also present 
unique features distinct from their parent flavonoid due to their structural characteristics 44. 
Several recent reports have indicated that the flavonoid-metal ion complexes possess 
more potent biological activities than the parent. Many pharmacological effects have been 
identified for flavonoid-metal ion complexes 44. 
 
Quercetin, a zinc ionophore 33, has been confirmed to induce, or maximize the apoptotic 
effect when combined with zinc. Other dietary polyphenols with similar ionophore effects 
such as epigallocatechin-3-gallate, should be taken in consider for future studies. These 
results suggest that metal-binding compounds need to be characterized individually to fully 
understand their mechanisms of action during the course of anticancer drug development. 
 

Additional experiments are required in order to elucidate the exact molecular mechanism 
and identify the specific metabolic pathways involved in apoptosis and to fully realize the 
potential of combining flavonoids with zinc. Clarifying the molecular basis about the 
apoptotic process will be essential for understanding and applying the basic knowledge of 
programmed cell death to clinical and therapeutic fields. Additionally, accelerated research 
is required to achieve a clear understanding of other definitive bioassays including protein 
expression and documentation of specific molecular markers to establish the exact 
mechanism for zinc-quercetin interactions on the induction of apoptosis.  
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Figure 1. MTT viability assay in Hepa 1-6 cells treated with QCT (A), ZnCl2 (B) and a 
combination of ZnCl2 400 µM with QCT (C). First bar in A and B represents the viability of 
the vehicle control. In figure C, first bar indicates the viability of cells treated with a single 
dose of ZnCl2 400 µM before the combined treatment. For statistical analysis t-test and 
one-way ANOVA were performed using SPSS software. All data are the result of at least 3 
independent experiments. Differences were considered significant for P values 0.05. 
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Figure 2. Confocal fluorescence microscope images of IP stained Hepa 1-6 cells after 24 
hours treatment. (A) Vehicle control and (B) QCT 100 µM treated cells show a normal 
nuclear pattern. (C) ZnCl2 400 µM treatment shows condensed and partial fragmentation 
nuclei. (D) QCT 100 µM combined with ZnCl2 400 µM present significant evidences of 
nuclear condensation and apoptotic bodies, giant cell formation and fragmentation. Scale 
bars are 50 µm. 
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Figure 3. Effect of Vehicle control (Vehi), TPEN 2 µM (TPN2), TPEN 5 µM (TPN5), QCT 
100 µM (Zn0, Q100), Zn 400 µM (Zn400, Q100) and both Zn and QCT in combination 
(Zn400, Q100) on DNA fragmentation detected by agarose gel electrophoresis. Analysis 
corresponds to 24 hours treatment. Two different molecular-weight size markers (M) were 
used in order to identify the approximate size of the fragments. Three independent 
experiments were carried out with similar results. A representative experiment is shown. 
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Discussion  

 
The results of studies outlined in this thesis provide a current understanding on the 
biological effects of polyphenol-zinc ion complexes and their relevance to human health. It 
is clear, from the literature that many potentially useful biological activities of wide variety of 
polyphenol-zinc ion complexes are yet to be investigated. From the scan of literature, it is 
observed that the greater pharmacological activities of polyphenol-metal ion complexes are 
mainly due to the type of polyphenols forming the complex. Therefore the binding affinity of 
the polyphenol with the metal ion is extremely important in determining its stability in the 
biological systems. This study also adds accumulating observations underlying the 
importance of zinc as an intracellular signaling molecule. Given the fundamental functions 
of zinc in cell biology, it comes as no surprise that perturbations of the homeostatic 
mechanisms that regulate intracellular zinc amounts are involved in many diseases, 
including degenerative diseases, such neurodegeneration (Alzheimer disease, stroke), 
diabetes, cancer, and wound healing. The World Health Organization considers zinc 
deficiency as the 5th leading cause of morbidity and mortality in developing countries (11th 
worldwide). 
 

The control of a fluctuating intracellular pool of zinc at remarkably low concentrations and 
with the participation of many proteins provides a new perspective on the molecular 
functions of zinc in biology in general and for the impact of zinc on human health in 
particular (Rink 2011). Roles of zinc ions in biological phosphorylations and in redox 
signaling are already well documented and are part of the spectrum of actions of zinc in 
cellular proliferation, differentiation, and cell death. Zinc is not just required for the function 

of proteins; it participates in the control of cellular metabolism and paracrine and intracrine 
signaling (Maret 2011). Not only the availability of zinc itself, but the limited cellular zinc 
buffering capacity and the many mutations that affect the functions of proteins involved in 
the cellular control of zinc have major implications for the balance between health and 
disease. The concentration range at which zinc ions occur is critical for explaining the 
global functions of zinc. Zinc is generally considered to be an antioxidant. However, it is 
redox inert and thus can serve such a function only indirectly. The term pro-antioxidant is 
more appropriate (Maret 2008). Whether zinc elicits antioxidant, anti-inflammatory, anti-
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diabetic, or anti-apoptotic effects depends on its concentration. Outside the physiological or 

pharmacological range, under conditions of both zinc overload and zinc deficiency, zinc 
ions have the opposite effect: they become pro-oxidants with pro-inflammatory and 
proapoptotic properties. This intricate balance at a relatively narrow and tightly controlled 
range of concentrations needs to be considered when the physiological significance of 
results from experiments performed with zinc are evaluated and in nutrition when 
supplementation with zinc is considered (Maret & Sandstead 2006). It is fair to conclude 
that the impact of zinc for health and disease will be at least as far-reaching as that of iron. 
 
Polyphenols have been demonstrated to interact and directly bind zinc ions (Grazul & 
Budzisz 2009; Scalbert et al. 1999; Wei & Guo 2014; Tarahovsky et al. 2014), thus 
modulating the intracellular pool of zinc acting as zinc sequestrants or zinc ionophores . As 
explained, controlling the fluctuations of zinc provides several important biological 
outcomes. Since several phenolic compounds have been demonstrated to act as zinc 
ionophores, a new investigation field needs to be explored. Polyphenol rich diets provide 
significant protection against the development and progression of many chronic 
pathological conditions including cancer, diabetes, cardio-vascular problems, 
neurodegenerative diseases or aging. Although several biological effects based on 
epidemiological studies can be scientifically explained, the mechanism of action of some 
effects of polyphenols is not fully understood. A better knowledge of some variables of 
polyphenol bioavailability, such as the kinetics of absorption, accumulation and elimination, 
will facilitate the design of such studies.  
 
The role of polyphenols in human health is still a fertile area of research. Moreover, the 

interaction between dietary polyphenols and several metal ions such as zinc ought to be 
investigated in order to increase our understanding of many novel aspects of its 
physiological and pathophysiological functions. Furthermore, it is noteworthy that several 
polyphenol rich food sources also contain significant amounts of zinc, such as olive oil (La 
Pera et al. 2002; Angioni et al. 2006), red wine (BanoVIć et al. 2009), chocolate (cocoa) 
(da Silva et al. 2006), green tea (Tsushida & Takeo 1977), black grapes, berries, tomatoes, 
nuts and oilseeds (Jorhem & Sundström 1993; Leblanc et al. 2005), providing a new 
understand on their correlation and biological role.  
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Taken together, the results of this Thesis elucidate the chronology of different phases on 

the biological importance of the intracellular zinc modulation. Although it has been reported 
the interaction between metal ions, such as zinc, and several phenolic compounds 
(Leopoldini et al. 2011; Georgiades et al. 2011), herein we confirmed the interaction of 
different dietary polyphenols with zinc ions under physiological conditions; We used 
different zinc fluorophores, in order to test and quantify the relative ability of our 
polyphenols to bind zinc cations in aqueous solutions. Their capacity to retrieve zinc 
cations from the fluorophore-zinc complexes was measured by monitoring the decrease in 
zinc-dependent fluorescence emitted by the fluorophore-zinc complexes upon addition of 
the polyphenols to the solution, confirming that dietary polyphenols are zinc chelators.  
 
Initially, our studies demonstrated that GSPE, as well as a some pure phenolic compounds 
were able to modulate some of the most important genes controlling zinc homeostasis 
such as Metallothionein (MT) and Zinc transporters (ZnT1) in the human carcinoma cell 
line HepG2 (Quesada et al. 2011). Herein, we have elucidated how the water-insoluble 
flavonoid QCT, and EGCG a water-soluble flavonoid affect those genes in different ways, 
therefore modulating the zinc homeostasis system in the hepatic carcinoma Hepa 1-6 cell 
line, reconfirming and giving a better understand of previous reports of our research group.  
 
Dietary polyphenols have been known to modify the activity of various receptor tyrosine 
kinases and particular pathways of signal transduction, thereby altering the expression of 
genes involved in protein synthesis, immunity, cell survival, proliferation, glucose 
metabolism, cardiovascular homeostasis and neuroprotection. Various inhibitory or 
stimulatory actions of polyphenols on these pathways greatly affect cellular functions by 

altering the phosphorylation state of targeted molecules and also modulate various gene 
expressions through activation of various transcription factors. Moreover, dietary 
polyphenols can interfere at the initiation, development and progression of various cancers 
through the modulation of different cellular processes, showing certain common signaling 
events, such as the arrest of cell cycle, induction of apoptosis, activation of caspases, 
inhibition of survival/proliferation signals such as Akt, MAPK and NF-kB or inflammation 
signals such as COX-2, and TNF secretion, as well as suppression of key proteins 
involved in angiogenesis and metastasis (Orlikova & Diederich 2012). It is worth 
mentioning that the cancer chemopreventive effect of dietary phenolic compounds seems 
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to be specific, as carcinogenic cells demonstrate higher sensitivity than normal cells when 

incubated with the phenolic compounds. In addition, differences on protein modulation and 
regulatory events over time have been observed, which also suggests a specific and 
differential manner of gene expression regulation by dietary polyphenols (Granado-Serrano 
et al. 2010). On the other hand, zinc is an essential micronutrient involved in cell 
proliferation and differentiation, remarkably for the regulation of DNA synthesis, genomic 
stability and mitosis (Sharif et al. 2012). On the molecular level, zinc is known to be related 
to activation of more than 300 enzymes and 1000 transcription factors (Wang et al. 2013). 
In many cases, zinc act through similar metabolic pathways of polyphenols, exerting a 
signaling activity. (Fig.1) However, it is remarkably important to understand these shared 
modulation of several metabolic pathways by zinc and dietary polyphenols, which seems to 
be enhanced when both act together mainly due to the modulation of intracellular labile 
zinc, which could trigger the activation of those pathways, and in many cases seems to be 
indispensable since several enzymes are directly dependent on zinc.  
 

!

Figure 1. Major signaling pathways regulated by intracellular and extracellular zinc. The 

physiological roles of these pathways are also presented. BDNF, brain-derived neurotrophic 

factor. All the presented pathways are also regulated by dietary polyphenols. (Hershfinkel et 

al. 2010) 
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After observing that QCT and EGCG rapidly increase intracellular labile zinc in Hepa 1-6 

cells, we have here elucidated that they function as ionophores for zinc in a liposomal 
system. Thus, natural flavonoids can be considered novel agents that may be used to 
modulate zinc homeostasis and regulate zinc-dependent biological pathways (Dabbagh-
Bazarbachi et al. 2014). Furthermore, it has been confirmed that most of the natural 
occurring phenolic compounds have the ability to directly interact and form new structures 
(complexes) bound with zinc, and for the first time, have been classified according to their 
zinc-ionophore strength capacity and their chelation efficiency, giving us a better 
knowledge of the importance of the structural conformation versus biological activity. 
 
The activity of zinc ionophores, increasing intracellular zinc concentration result in several 
cancers cell death (Ding et al. 2005). Therefore, zinc ionophores are becoming an 
attractive strategy to consider for selectively killing cancer cells. Taking into account that 
several phenolic compounds act as zinc chelators, forming complexes with zinc ions, they 
could become new potential anticancer candidates. Quercetin, which interacts with zinc 
ions, modulates Akt phosphorylation and acts as a zinc ionophore has been confirmed to 
induce, or maximize the apoptotic effect when combined with zinc, becoming a good 
candidate to act as an anticancer agent.   
 
In this Thesis we have successfully demonstrated the proof of concept of how dietary 
polyphenols display zinc ionophore activity and modulate zinc signaling in 
hepatocarcinoma cells. Further experiments are needed in order to characterize the 
specific mechanisms of action. This requires more in-depth in vitro studies with different 
cell lines, primary hepatic cell cultures and in vivo experiments. In addition, the liposome 

system designed herein could be used to screen the ionophore activity towards other metal 
ions such as Ca, Fe, Cu or Mg. 
 
There remains a pressing need to develop an absolute understanding of the underlying 
biology of zinc trafficking in terms of its dynamic and quantitative processing in specific 
organelles (Jobe et al. 2011). Thus progress does not come from the flurry of activities 
synthesizing yet another probe but from furthering an understanding of the biological 
issues that are interrogated with specifically designed probes. What is needed are 
experiments, in which zinc ion transients are induced specifically in biologically meaningful 
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ways, progress in the inorganic chemical cell biology of zinc and an understanding of how 

cellular and subcellular zinc ion fluxes are controlled by zinc transporters and 
metallothioneins, which chemical species of zinc are involved in cellular regulation, and 
insights into the molecules and mechanisms that buffer and muffle the zinc ion (Maret 
2014). 
 
To sum up briefly, zinc can be considered an almost omnipresent metal ion, not only as a 
vital element in various physiological processes but also a dietary drug in the prevention 
and management of many diseases. The importance of this element has taken much time 
for recognition, with just a few years since it has been accorded its due status. However, 
zinc is now being extensively investigated for utilization in a wide area ranging from 
therapeutic activity, drug and gene delivery, to nanotechnology with promising outcomes. It 
can be concluded that the role of zinc will be an important research area in the future and, 
with the significant discoveries at hand, well justifies the tag “metal of life” (Kaur et al. 
2014). 
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1. Quercetin interacts with zinc cations to exert a signaling effect on Akt. 

- Quercetin chelates zinc in solution with strength comparable with TPEN and 
Clioquinol, at physiological pH and near physiological concentrations. 

- When applied to the mouse hepatic carcinoma Hepa 1-6 cell line: 
- Toxic amounts of QCT counteract the toxic effects of excess zinc. The other 

way around, toxic amounts of zinc neutralize the toxicity of excess QCT. 
- QCT increases the amount of total intracellular zinc, and does so with intensity 

directly proportional to added zinc. * 
- QCT increases the expression of cytoplasmic zinc-chelating proteins MT-1 and 

MT2 and of plasma membrane zinc-exporter ZnT1 with intensity directly 
proportional to added zinc. *  

- QCT increases the amount of Zinquin-detectable labile zinc in a zinc-
dependent manner, proportionately to the quantity of added zinc, and with less 
strength than Clioquinol. 

- QCT increases Akt phosphorylation in a zinc-dependent way, i.e., it does so 
only when applied together with certain amounts of zinc.  It is inferred that QCT 
affect Akt signaling in a zinc-dependent manner. 

- Zinc alone displays a small effect on Akt phosphorylation in the conditions 
tested. 

 
2. Epigallocatechin-gallate interacts with zinc cations to affect Akt 

phosphorylation. 

- EGCG chelates zinc in solution with strength comparable with TPEN and 
Clioquinol, at physiological pH and near physiological concentrations. 

- When applied to the mouse hepatic carcinoma Hepa 1-6 cell line: 
- Toxic concentrations of EGCG counteract the toxic effects of excess zinc. Vice 

versa, toxic amounts of zinc neutralize the noxious effect of excess EGCG. 
- EGCG decreases the amount of total intracellular zinc. * 
- EGCG decreases the expression of cytoplasmic zinc-chelating proteins MT-1 

and MT2 and of plasma membrane zinc-exporter ZnT, with intensity 
dependent on added zinc. * 
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- EGCG increases the amount of Zinquin-detectable labile zinc in a zinc-

dependent manner, proportionately to the quantity of added zinc, and with less 
strength that Clioquinol. 

- EGCG increases Akt phosphorylation in a zinc-dependent way, i.e., it does so 
only when applied together with certain amounts of zinc.  It is inferred that 
EGCG affect Akt signaling in a zinc-dependent manner. 
 

3. Epigallocatechin-gallate and Quercetin behave as true zinc ionophores in a 

liposomal system. 

- EGCG and QCT enhance the FluoZin-detectable labile zinc when applied to Hepa 
1-6 cells, in a way dependent on extracellular zinc concentration. 

- The entry of zinc cations inside protein-free liposomal vesicles is dependent on the 
addition of EGCG or QCT. 

- It could be deduced that EGCG-zinc complexes and QCT-zinc complexes are 
membrane permeable and go across the lipid bilayer, without the intervention of 
any protein, i.e., by concentration-driven passive transport. 

- It may be concluded that, one inside the liposome, zinc cations bound to EGCG or 
to QCT dissociate and may bound by FluoZin. 

- The ionophoric action of QCT and EGCG in a liposomal system provides an 
explanation for the increment of cytoplasmic labile zinc in Hepa 1-6 cells treated 
with QCT and zinc or with EGCG and zinc. 

- Although not tested directly in this work, the zinc ionophoric behaviour of QCT and 
EGCG implies that QCT and EGCG also enter the liposomal cavity as zinc-
polyphenol complexes, and provides a mechanism for the entrance of this 

polyphenols to cells, i.e., EGCG and QCT may cross lipid bilayers as metal ion 
complexes. 

 
 

4. Polyphenols, in general, act as zinc chelators and as zinc ionophores.  

- Although displaying quantitative differences, and in spite of structural differences, 
all 14 dietary polyphenols tested, including EGCG and QCT, behave qualitatively 
as the synthetic pharmacological zinc chelators TPEN, Pyrithione and Clioquinol, 
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in that of all them form complexes with zinc cations that may cross through lipid 

bilayers. 
- It may be inferred that, vice versa, polyphenols may cross lipid bilayers when they 

form complexes with metal cations. 
 
5. Non-toxic amounts of Quercetin induce apoptosis in Hepa1-6 cells when 

combined with under-toxic amounts of zinc. 

- The combination of QCT with zinc, at low concentrations that individually by 
themselves have no effect on cell viability, result in a drastic decrement of cellular 
viability. 

- The decrease in cell viability is due to an apoptotic process, as manifested by 
nuclear fragmentation and DNA laddering. 

- Triggering of apoptotic process is accompanied by an increment in FluoZin3-
detectable cytoplasmic labile zinc, although the intervention of labile zinc in the 
apoptotic process remains to be elucidated. 

 

 

* These conclusions have already been presented in a previous PhD Thesis of the 

Nutrigenomics Research Group, and are included here because they are part of the 

publications presented in this Thesis. 

 
 
 
General conclusions: 

 
- Chelation of zinc by polyphenols entails both a sequestering and an ionophoric 

action on zinc, exerting a dual effect on zinc bioavailability, metabolism and 
signalling.  

 
- Zinc sequestration by QCT and EGC is concluded to determine their protective 

effect against excess zinc. 
 

- The ionophoric action of QCT is concluded to underlie the triggering of apoptosis in 
liver-carcinoma cells; whether the direct cause is the increment of intracellular 
Quercetin, the increment of labile zinc, of both, remains to be investigated. 
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- Polyphenols can both act as donor and as a receptor of zinc cations, i. e., may 

retrieve zinc bound to enzymes and vice versa. Thus, polyphenols affect the 
function of metal-binding proteins. Zinc-binding proteins are targets of polyphenol 
action. 

 
- The effect of polyphenols on Akt phosphorylation, and hence Akt signaling, are 

modulated by zinc, i.e., by the complexation of polyphenols with zinc, and is 
concluded to depend on the amount and structure of polyphenol-zinc complexes. 
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