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Abstract

We are living in a new era, which is characterized by the omnipresence of smart, networked de-

vices. The developing Internet of Things is profoundly transforming both global industry and human

lives. Hardware integration, along with the ability to seamlessly communicate over the internet, has

allowed millions of embedded objects to connect and interact on an unprecedented scale. The ubiq-

uitous presence of embedded computing devices, combined with their sensing and communicating

capabilities, is increasing the amounts of data captured on a massive scale.

As a result of the expanding IoT, the number of connected devices is increasing exponentially and

will soon generate a problem of scalability, related mostly to their energy dependence. Many devices

will be embedded in the environment, in places that are inaccessible or expensive to connect with

wires, making them resource-constrained. Most importantly, battery replacements for thousands of

devices are inconceivable. Maintenance and intervention costs can limit the advance of this new

paradigm. Therefore, one of the challenges in ensuring the massive expansion of wireless sensing

devices is reducing their cost in terms of energy. Clearly, novel methods are required for addressing

this change.

Spatio-temporal correlations are essential in many different fields. Thus, it is quite reasonable

to assume that contextual information can be exploited within this emerging paradigm. Under this

hypothesis, the present study provides a systematic approach to defining Energy Efficiency Policies for

wireless sensor devices, based on the analysis of Spatio-Temporal Correlations.

To this end, the present work is structured in two parts. First, we address the necessity of an accu-

rate energy profiling model for wireless sensing devices. We have formalized a generic consumption

model to profile the energy utilization of low-power embedded devices. The obtained results stress

the importance of understanding the cycles of operation involved in embedded tasks. The second

part of this dissertation demonstrates the applicability of spatio-temporal correlation analysis as a

tool for defining energy efficiency policies. This hypothesis has been investigated from three dif-

ferent perspectives: a) energy harvesting, b) data compression and c) contextual data analysis. The

correct analysis and policy definition from these three perspectives provides important energy and

cost reduction opportunities.

In conclusion, all the studied methods proved to be effective for defining and validating energy

policies. The proposed strategies help designers to parameterize and customize platforms for their

application during the design phases, and hence the time-to-market of new products is reduced while

an optimal tradeoff is ensured among cost, functionality and life expectancy.
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Prologue

THE library of Alexandria, abuzz with conversations, lectures and other activ-

ities on most days, was quiet. It was a hot day; one of the hottest that Alexan-

dria had seen in many years. Scholars, scientists, philosophers, mathematicians,

artists, historians, students, teachers and scribes, had arrived at the library that

morning and then within minutes, decided to shirk work for the day and go to

the seaside for a swim. Only one of the scholars, the head librarian, Eratosthenes,

had been in disagreement with this plan.

The last month had been busy – summer solstice had come and gone and a

trade ship from Cyrene had arrived carrying books by Homer. As was the com-

mand of the king and the rule of the land, each of the books had been confiscated

and then painstakingly copied at the library, so that the originals could have a

new home. The copies were so perfect that the captain of the ship hadn’t realized

that he was being returned something he had never owned.

Eratosthenes, who had a particular fondness for the Odyssey, had orches-

trated the creation of a new section in the library for Homer’s works. He sat

in this room now, by a window overlooking the port, glad that he had the space

to himself.

In a rare moment of indulgence – it wasn’t often that he allowed himself to

reread his own work – he was busy copying something he had written a few

years ago; Chronographies. This was a text so accurate in its history of key events

that Ptolemy III Euergetes, the king of Alexandria and father of Eratosthenes’

primary pupil, Philopator, had read it a few years ago and urged him to accept

the prestigious role of head librarian at the library of Alexandria.



xvi Prologue

Eratosthenes was writing the name of the 37th king of the Egyptian Thebes,

when a voice jolted him out of his concentration. It was a voice full of energy

and curiosity, the voice of a young prince still not sullied by the weight of the

responsibility that would come to him.

‘Master!’ the voice said, ‘I have come back from Syene.’

‘Oh, it’s you, Philopator. Why aren’t you at the sea with the others?’

‘I had to come and talk to you Master. No one else will believe me, not even

my mother!’

‘What are you talking about child? Calm your mind and tell me.’

‘Well, last week, one afternoon, we were on the island in Syene. Mother was

thirsty so she asked me to get her some water from the well. But Master, when I

looked inside the well, there was no shadow. When I told mother and the others,

they said I must be seeing things or that I must have done something to displease

the Gods.’

‘Philopator, how is that possible? You know that everything casts a shadow.

We studied it together, don’t you remember?’

‘I remember, Master, but I saw what I saw. And that day at noon, it was the

21st of June –mother told me that is the day of the solstice– there was no shadow

in the well,’ Philopator paused, ‘Master, you believe me, don’t you?’

Eratosthenes looked at him. He knew that the prince, although wild in his

imaginations, would not make up a tale or utter a lie to a teacher he so respected.

‘Alright, Philopator, I will believe you. I do not know why you saw what

you saw, but I give you my word that I will try to find a reason for this strange

occurrence. Now leave me with my work and go and play with the others. May

the Gods be with you.’

Satisfied that, at last, he had found a patient listener, Philopator ran out, leav-

ing the head librarian in solitude once again.

For the rest of the day, Eratosthenes found that he couldn’t concentrate on

editing the Odyssey anymore. His student, at the age of ten, had posed him a

question that he couldn’t answer and it consumed him.

. . .

A year passed and Eratosthenes found that he couldn’t focus on anything for

too long. Why did the sunlight bound off the water in Syene and not in Alexan-

dria? Why was there always a shadow in Alexandria? Why wasn’t anyone except

Philopator shocked by this?



xvii

On one such day of distractions, the day of the solstice, Eratosthenes found

that he was in the company of young Philopator again. They had come out of

the library for a walk because neither of them had been able to concentrate on

their lesson, the teacher, annoyed that he still hadn’t found an answer to a child’s

question and the student, too hot to study.

After they walked for a while, they arrived at a well. Philopator stopped.

‘Master, I’m thirsty, shall we get some water?’

He had already picked up a stick so he could draw out the water from the

well using the pail that lay by its side. It was midday, the stick had a shadow.

‘Philopator!’ Eratosthenes exclaimed, ‘Stay there, stay exactly as you are, I’ll

be right back.’

He came back after a few minutes, bringing with him his measuring instru-

ments.

‘Look, Philopator, the sun is above us but the stick casts a shadow at an angle.

Right now, the sun is above Syene, on the island you were last year with your

mother, but I am positive that the same stick would cast no shadow there. Come,

let us make haste and return to the library. I think I know now what I must do.’

Philopator’s face had lit up, as though a memory of the past had resurfaced

in his mind. ‘I knew you would find an answer, Master. But what is it that you

have to do?’

Eratosthenes smiled, ‘My dear Philopator, I believe I am going to find out the

size of our beloved Earth.’

. . .

Centuries later, an explorer called Christopher Columbus would refer to the

works of Eratosthenes and choose to ignore the scholar’s calculations of the size

of the Earth. If he hadn’t done so, he might have arrived at the destination he had

originally intended to arrive at – India.

“Journeys Around The Earth” — Sneha Nagesh





Introduction

Historically, spatio-temporal correlations have been very successful in providing in-

sights into nature. Egyptian mythology, inspired by the cycles of nature, saw time in the

present as a series of recurring patterns, whereas the earliest periods of time were linear.

Undoubtedly, the yearly cycle of the Nile was essential to the foundations of Egyptian

Civilization. Notably, it seems to have also been present in the first steps of science when,

in addition to observations of the moon and stars, the periodic flood was used to delimit

the beginning of the year, being essential in the elaboration of the first calendars.

In the 20th century, spatial-temporal correlations have been successfully used in many

fields of physics, from fluid characterization [40] to a better understanding of our uni-

verse’s expansion [54]. Correlations are essential in many branches of science, from

medicine to the economy, and their importance was synthesized by W.R. Tobler in his

expression of the so-called first law of geography: ”everything is related to everything

else, but near things are more related than distant things”[70].

With the arrival of the 21st century, we have seen the rise of more and more integrated

technologies, new wireless communication capabilities and big data analytics: we are

facing a new era enabled by the mobile internet. The vast deployments of the so-called

Internet of Things (IoT) [26] are profoundly transforming global industry. Hardware

miniaturization, communications standardization and analytics are allowing billions of

objects to connect and interact [7].

IoT devices, growing analytics and big data capabilities have the potential for enhanc-

ing industry and service operations in multiple sectors. Unquestionably, the ubiquitous

presence of IoT devices, combined with their sensing and communicating capabilities,

is expanding the opportunity to capture data on an unprecedented scale [31]. Spatio-

temporal correlations can now be exploited on a wider scale and are destined to be key in

lowering maintenance and operational costs for many industries. Moreover, at the same

time, spatio-temporal correlations can be used to seamlessly integrate IoT devices into our

environment and make them more efficient and affordable.

1



2 Chapter 1. Introduction

ONE of the challenges in ensuring the massive expansion of wireless sensing devices is to reduce

their power consumption. If the number of devices keeps increasing as predicted [Dodson2003],

the IoT era will soon suffer from a problem of scalability. Maintenance, interventions and battery

replacements, among others, will become prohibitively expensive as the number of devices increases.

For this reason, new design methodologies should lean toward more Sustainable IoT Devices.

Most of the time, the energy efficiency of IoT devices is driven by new microcontroller designs

and new radio technologies. In recent years, several strategies have been developed to prolong the

lifetime of sensor nodes that exploit the data they capture. These include processing techniques such

as data aggregation [33], distributed or temporal compression [68], as well as battery replenishment

through energy harvesting [79]; but little has been done to help us better understand how to use

contextual information to improve their performance.

In the present work, we focus on the contextual information of sensors, i.e., the position of the

devices, environmental conditions, their relation to other individual sensors in the network and the

characteristics of the physical magnitudes sensed. Our aim is to use this information to develop

energy efficiency strategies. Therefore, the general objective of this dissertation is to demonstrate

that contextual information can be a very valuable tool for reducing the power consumption of a

specific IoT device in a network.

More formally, we aim to demonstrate the value of exploiting spatio-temporal correlations to im-

prove the energy efficiency of a system by adapting its behavior to its specific environment. This

dissertation will show how to accomplish such an improvement in several ways, as is illustrated in

the following sections. Special attention is paid to the tradeoff and constraints imposed by contex-

tual information, which will be highlighted and discussed throughout the present work. However,

specific technological limitations or features are intentionally kept out of the present dissertation.

More specifically, the opportunity to increase efficiency relies on being able to identify and charac-

terize the spatial correlations in the sensor’s environment, particularly in terms of how they relate to

the application of interest. When the observed patterns are combined with the temporal correlations

in the sensor’s activity, they can be used for novel strategies to create efficient energy management

policies. The latter applies to multiple areas of IoT development. In this context, to clarify how

the present work contributes to the overall progress of the state of the art, three main topics are

addressed:
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• Self-powered sensors: Spatio-temporal correlations occur naturally in the behavior of the en-

ergy source. They prove useful in characterizing the energy scavenging opportunities and

coupling them with energy demand.

• Data Compression: Compression has been used traditionally for reducing the amount of data

communicated through the wireless channel, and thus the energy required. The temporal

correlations observed in the acquired data have proven to be essential in achieving efficient

compression.

• Lean sensing: Spatio-temporal correlations uncover underlying information in the acquired

data, which can be smartly exploited to optimize energy consumption while minimizing the

impact on accuracy. They prove essential for the exploration of new strategies that reduce the

amount of data acquired while, at the same time, they maintain an accurate representation of

the context.

Structure and Main Contributions

This thesis is organized in two parts. The first part of the thesis (Chapter 2) is dedicated to the

energy profiling of industrial wireless sensing devices. The second part (Chapters 3, 4 and 5) intro-

duces new developments and presents a discussion of how to apply the proposed methodology in

three different areas of application.

Going more into detail about Chapter 2, a methodology based on a parameterizable model is

presented. The methodology aims to reduce technology adoption and integration risks, as energy

consumption can be estimated precisely without the need for prototyping or building actual de-

vices. Furthermore, the model allows for a better understanding of the energy usage. The proposed

methodology is based on the identification and parameterization of the main sources of energy con-

sumption. Once they are identified, optimal system design and implementation ensures minimized

costs and risk. Moreover a systematic analysis like the one proposed here enables engineers to make

better-informed decisions in the early stages of development.

More specifically, Chapter 2 contributes to the overall progress of the state of the art by:

• Defining a new systematic methodology at the pre-deployment stages, one that is especially

suited to industrial applications. This methodology is intended to allow for a priori definition

of the system architecture and to support design decision

• Introducing a system-level perspective to adjust the energy consumption of applications run-

ning on wireless devices, balancing the cost of communication, processing and data acquisition

subsystems.
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• The methodology is empirically validated against different industrial applications. The pre-

sented experimental results demonstrate the model’s suitability for different scenarios and plat-

forms.

The main contents of this chapter have been compiled for publication under the title “The Power of

Models: Modeling Power Consumption for IoT devices.” [REF]. As far as we know, this is the first article

presenting a formalized model that takes into account the three cornerstones of any industrial wire-

less sensing applications: standard networking technologies, data acquisition and local processing.

. . .

The second part (Chapters 3, 4 and 5) introduces new developments and presents a discussion of

how to apply the proposed methodology in three different areas of application, where the energetic

model presented in Chapter 2 is used as a basis to determine the benefits, drawbacks and trade-

off of several proposed energy efficiency strategies. Spatio-temporal correlations are used to adjust

the model according to energy availability (Chapter 3), data characteristics (Chapter 4) and service

provided (Chapter 5).

The focus of Chapter 3 is twofold. Firstly, the study utilizes the model presented in Chapter 2 and

applies it to two real-world industrial applications: the predictive analysis of rotating machines and

structural health monitoring. The study illustrates the value of the model as a tool for supporting

application design. More specifically, the presented model is used to understand the trade off and

limitations of the sensing devices in relation to the available energy and the desired performance of

the monitoring system. Secondly, as result of the acquired understanding, an appropriate strategy

is proposed for minimizing the energy consumption of the nodes by processing all the data locally.

The study shows the effectiveness of the proposed strategies in their specific scenarios.

Chapter 3 contributes to the overall progress of the state of the art in the following way.

• It presents a new modeling methodology that allows us to dimension the device’s energy needs

according to its requirements for communication, data acquisition and processing. The aim of

this methodology is to gain an a priori understanding of the tolerance margins for a device

that is self-powered by means of a harvester. This approach ensures the right dimensioning of

the system and enables potential cost optimization for product development. Additionally, the

impact of other modes of operation can be evaluated at the prototyping stages.

• By using two real-world case studies as a guide, this chapter illustrates the potential application

adjustments that balance communication costs, processing and data acquisition subsystems,

such that they are all in accordance with the amount of harvested energy.
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• This chapter demonstrates the energy self-sustainability of sensing devices by using low-power

wireless protocols in combination with energy scavengers. We show the utility of performing

an accurate sensitivity analysis during product development.

The main ideas discussed throughout this chapter have been published under the title “When

Scavenger Meets Industrial Wireless” [REF]. This work was later expanded into a more detailed article

under the title “Early Scavenger Dimensioning in Wireless Industrial Monitoring Applications” [REF].

. . .

In Chapter 4, we concentrate on a strategy that reduces data information at the expense of accu-

racy. In this way, radio activity is reduced so that power consumption is eventually reduced as well.

Specifically, lossy compression mechanisms are proposed as a method for diminishing the amount

of data to be communicated. In this case, the model presented in Chapter 2 is utilized to evaluate a

number of selected lossy compression methods from an energetic point of view. An extensive analy-

sis is conducted on their performance in terms of compression efficiency, computational complexity

and energy consumption. Specifically, Chapter 4 contributes to the overall progress of the state of

the art in the following way.

• It provides an in depth performance evaluation of selected lossy compression algorithms for

time series. These include linear and autoregressive models, as well as Fourier and Wavelet

transforms. This chapter performs a quantitative assessment and trade-off analysis of com-

pression as a tool for energy consumption reduction. We also evaluate compression algorithms

for a given reconstruction fidelity, the signal statistics and the hardware characteristics.

• It provides a formal mathematical derivation of underlying processes. They are obtained

through numerical fittings and validated against real datasets in order to gauge computational

complexity, overall energy consumption and signal representation accuracy of the best per-

forming compression algorithms as a function of the most relevant system parameters.

• Notably, this chapter reveals that compression schemes can be inefficient in terms of energy

consumption when accounting for the energy required to compute the compression algorithms.

Consequently, the efficiency of compression should always be pre-evaluated.

This chapter has been published integrally under the title “On the Performance of Lossy Compression

Schemes for Energy Constrained Sensor Networking” [REF]

. . .

In Chapter 5, we propose going one step further by introducing contextual information (ap-

plication dependent) in power consumption optimization, especially for applications where local
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processing (Chapter 3) and data compression (Chapter 4) are not suitable. To this end, the model

presented in Chapter 2 is utilized to evaluate the impact of a number of optimization strategies de-

signed at the application level. They include adaptive sampling and, more specifically, using spatio-

temporal correlations for adapting sensor behavior in order to balance and reduce the power con-

sumption of a sensor network. Specifically, Chapter 5 contributes to the overall progress of the state

of the art in the following way.

• This chapter investigates the impact of new data capturing strategies that are adapted to con-

textual information. For instance, adaptive or dynamic sampling rates are proposed for devel-

oping lean-sensing applications. The work departs from a system-level application analysis in

order to define energy efficient strategies that do not compromise application performance.

• This chapter establishes a basis for introducing contextual information into energy manage-

ment strategies through a real example. Specifically, the observed spatio-temporal correlations

at the system level allow us to define specific metrics for system optimization. The observed

benefits are based on perceptible user experiences and other quality parameters, but they quan-

titatively reduce the power consumption of the overall system. As a guiding real-world ex-

ample, an extensive, large-scale analysis is made on a parking monitoring application in two

different cities.

• Remarkably, this chapter reveals how contextual information can be optimally applied for re-

ducing the energy consumption of IoT devices without compromising overall system behavior,

especially in terms of how it affects the user’s experience.

The topics presented in this chapter constitute the basis of an article entitled “Exploiting contextual

information in low-power sensing”[REF]. An additional discussion about the cost-benefit relationship

in smart city ecosystems has been published in the article “Bootstrapping Smart-Cities through a Self-

Sustainable Model Based on Big Data Flows”[REF].

. . .

Finally, the last part summarizes and discusses the main conclusions of the present work.



Chapter 2

Energy Models for WSN Devices

Creating more energy efficient technologies is still far from those ubiquitous deploy-

ments that were envisaged (the so-called Internet of Things or, more recently, the Indus-

trial Internet), which will enable optimal industrial operation or contribute to improving

social welfare. Viable systems, especially for the industry, are those whose operational

costs enable fast returns on investment, even when deployed at a large scale. Battery life

remains a major obstacle to viability.

Indeed, today it is possible to build a device which features this industrial wireless

performance. However, energy-dimensioning the device in order for it to meet the appli-

cation requirements is not an easy task. In most cases, designs are guided by worst cases

scenarios for hardware energy consumption, without even considering the duty-cycled

behavior of the different subtasks in the target application. For efficient energy manage-

ment, it is essential to understand dependence on the main application parameters and

their interrelations, two factors which severely compromise the reliability required for in-

dustrial applications. This is even more critical in the case of wireless sensors, as the

energy is a scarce resource.

As a natural consequence, this work assumes that to develop extremely low power

devices, a system-wide characterization is fundamental for achieving the specifications at

a reasonable cost. Thus, this chapter proposes a methodology to aid engineers in under-

standing the energy life-cycle within the application, which will enable them to determine

tolerance margins and trade-offs.

7
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2.1 Introduction: Energy Flow in Low-Power Embedded Systems

LOW-POWER Wireless Sensor Networks are made up of tiny sensor devices with communication

capabilities. Sensors may also have a kind of rechargeable battery onboard (hereafter referred to as an

energy buffer) and dedicated circuitry, whose function is to scavenge energy from the surrounding

physical environment. Fig. 2.1 shows a schematic diagram of such a configuration.

WSNAPPLICATION

SYSTEM (S.O.)

WIRELESS 
CONNECTION

SENSING

ACQUISITION
(PHYSICAL PROCESS)

DEV

WIRELESS
SENSOR DEVICE

RADIO

POWER 
MANAGER

BUF

ENERGY
BUFFER

ENERGY 
HARVESTING

SCVE

E

E

Figure 2.1. Generic wireless sensor device model.

This figure shows the three main blocks to consider when addressing the problem of energy

consumption for these specific devices:

• Power manager: captures ambient energy surrounding the device and convert it into usable

electrical energy. In addition, the energy gathered must be properly adapted to feed the follo-

wing blocks [37].

• Energy buffer: a battery or any other device capable of storing and releasing energy [13].

• Embedded device: the end-user. Responsible for all system-application functions and mana-

gement, which require energy for their operation [10].

In this framework, Eq. (2.1) establishes the energy flow model [37] of a networked embedded device:

E
(t=0)
BUF +

t∫

τ=0

PSCV (τ)dτ ≥

t∫

τ=0

PDEV (τ)dτ = EDEV (t) (2.1)

In this general model, the energy initially stored in the buffer EBUF and the additional energy

obtained from the medium ESCV must be greater than the energy that the device requires to operate

EDEV throughout its whole life. A natural constraint follows from energy causality, which dictates

that energy cannot be used before it is available [34]. Therefore, the condition in Eq. (2.1) must hold

strictly ∀t.
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Recently, the topic of neutral design policies is thriving in the WSN research community (see [15]

and citations included). The concept of neutrality accounts for the fact that the energy used over the

long term should be, at most, equal to that harvested (ESCV (t)≥EDEV (t), t→∞). In other words,

the energy initially stored E
(t=0)
BUF in the first part of Eq. (2.1) is negligible after some time running.

This is a general condition for the sensors to be energetically self-sufficient; that is, the devices may

ideally last unattended for an unlimited period of time [36].

In computing, the producer-consumer problem (also known as the bounded-buffer problem) is a

classic problem of multi-process synchronization. The problem involves two processes, the producer

and the consumer, who share a common, fixed-size buffer used as a queue. The producer’s job is

to generate a piece of data, put it into the buffer and start again. At the same time, the consumer

is consuming the data, i.e., removing it from the buffer. The goal is to make sure that the producer

won’t try to add data into the buffer if it’s full and that the consumer won’t try to remove data from

an empty buffer.

Energy flow in a wireless sensor device follows this model closely. However, the consumer’s goal

is not always to dispatch tasks from the queue as fast as possible. Indeed, sometimes the device will

operate with an aggressive configuration, thus maximizing the processing performance and avoiding

buffer overflows [72]. Yet, most of the time, the optimization objective will be more conservative in

order to optimize power consumption. These alternative cost functions determine the energy policies

of the device.

Energy policies demand a perfect understanding of the energy flow, that is, how energy is gen-

erated, stored and consumed. Thus, one of the main objectives of this work is to convert Eq. (2.1)

into a practical model, that is, a model that can be easily simulated and numerically evaluated. This

model should provide concrete answers to abstract problem formulations such as energy causality,

neutrality or sustainability. This chapter focuses on energy drain, while production and storage will

be addressed in Chapter 3. Therefore, in what follows, a system-level model of the device’s power

consumption is developed.
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2.2 Related Work

The use of system-level consumption models to support the design of energy-constrained devices

is a rather scantily studied topic. In the past few years, a vast literature has emerged in the field of

Wireless Sensor Networks, particularly in regard to the energy characterization of their tiny devices.

Most of the work focuses on network activity, i.e., how communication issues affect to the device’s

power consumption, keeping in mind that each sensor within the network is a member of a complex

and interrelated system. Other studies are concerned with the role of processors in energy expen-

diture, or even with specific details about the sensing process itself. But, within this topic, system

level constraints have rarely been addressed. For this reason, the applicability of these approaches is

limited in practical designs.

This section reviews in brief some of the most representative works on these subjects. The aim is

merely to provide a rough outline of how different perspectives approach modeling. However, the

works referred here are important for three main reasons: i) these strategies provide useful insights

into some of the design trade-offs; ii) Some of them are used as constituent elements for creating

the new methodology; iii) selected works provide further reading about specific questions through

included references.

Communication Models

Chen et al. [19] collect and review several studies related with network energy optimization. This

work classifies technologies into time, frequency, and spatial domains. It briefly describes the main

solutions in each domain and provides a better understanding of energy consumption in wireless

communications As mentioned above, design decisions cannot be based only on network considera-

tions when dealing with low-power embedded devices. For these reason, the practical value of these

approaches is somewhat limited.

Due to its influence on the present work, it is worth noting the proposal by Wang et al. [81]. This

paper develops a method for estimating the energy spent during the communication process. Nei-

ther sampling techniques nor the cost of the application itself are considered. However, it presents a

model for the power consumption of networked sensors based on the characterization of the atomic

blocks, i.e., individual components that are involved in communication. The methodology proposed

for building their models has been used as a starting point for the development of the present work.

Processing Models

Regarding processing power, several measurement-based methods can be found in the literature.

Most of these models, like those presented in Nikolaidis et al. [52], Bazzaz et al. [9] and Konstantakos
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et al. [41], use data obtained from a physical target device and associate the instructions with the

corresponding energy cost. The total energy consumption of the application is the aggregate cost of

all executed instructions, which can be calculated by running the application in an emulator. These

works focus on the accurate energy profiling of the CPU and processor peripherals (FLASH, RAM,

ADCs). Yet none of them consider external components that play a fundamental role in today’s

embedded devices, mainly communication components.

The main advantage of measurement-based methods is the highly accurate energy estimate that

they obtain, which is a result of using actual values measured in the target platform. The model

fitting methodology developed in Sec.2.4 takes advantage of this fact and can be considered an in-

heritor of these methods.

Sensing Models

Some recent approaches to modeling scavenging techniques in industrial wireless applications

deal with the sampling energy, although this issue is still far from being addressed in depth. For

instance, Torah et al. [71] assume a dependence between the harvesting pattern and the applica-

tion’s needs, and they draw-up a best-effort policy: an application wakes up the microcontroller and

transmits a packet message when enough energy has been harvested. The sampling contribution is

estimated in order to compute the total energy, but this work provides neither a clear modeling of

the application’s energy requirements nor a detailed network energy consumption analysis.

More related with this work, Konstantakos et al. [41] evaluate the cost of capturing the sample

from the processor side. The model is based on the type of executed assembly instructions, as well

as the number of accesses to the memory and the analog-to-digital converter. This way of evaluating

the cost associated with the CPU intervention serves as a model for some parts of the present metho-

dology (Sections 2.3.2 and 2.3.3). However, the power consumption associated with external sensors

is not computed.

In general, the energy consumption by the sensor has been underestimated in the literature. Yet,

this part can contribute substantially to the device’s consumption, as will be demonstrated. This is

particularly true for active sensors (those requiring some external excitation).

System Level Considerations

From a different perspective, Lu and Gungor [44] analyze several system-level design aspects of

wireless embedded systems. This survey identifies the synergies between wireless sensor networks,

nonintrusive monitoring based on electrical signals, and fault diagnosis for industrial systems. The

main scope is to provide a system overview of applications in WSN architecture. This paper also pro-

vides detailed analyses for addressing the real-world challenges in designing and deploying practical
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WSNs. These analyses include wireless-link-quality dynamics, noise and interference, communica-

tion range and reliability. However, the impact of these system-level issues on energy consumption

is not clearly addressed.

. . .

As may be inferred from this brief analysis, developed models usually cover only partial areas

of the design space. But the energy available is a shared resource of the system, so each player

must subsist with their own budget. In general, a systematic study of how energy is distributed in

the whole system has been rarely addressed in the literature. The development of the methodology

proposed in this chapter was in part motivated by the lack of a rigorous and systematic approach, i.e.,

one that incorporates a system-wide view toward modeling the energy use of smart-sensor devices.

The methodology developed in this chapter is built upon several partial solutions gathered from the

literature, while at the same time providing the system-level model with a wider perspective.
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2.3 Subsystem Bottom-Up Modelling

The power required to operate a wireless sensor device can be broken down into three main

blocks: for data sensing or acquisition PACQ, for data handling or processing PPRC , and data com-

munication or networking PNET . Additionally, a small fraction of the available resources is intended

for system management, such as running a real-time operating system (RTOS) or periodic system

wake-ups. The set of all management tasks are collected in this PSY S contribution. These elements

together make up the general expression of a device’s power PDEV , as summarized in Eq. (2.2).

PDEV = PNET + PACQ + PPRC + PSY S (2.2)

Based on the recurrent behavior, most industrial applications can be easily characterized because

they follow a common operational pattern: data is acquired by some sensor of the system, processed

in a controller unit and, finally, some information is sent through a wireless channel. This process

repeats over time, and the role of the duty-cycle is fundamental in the power consumption: the larger

the duty cycle, the lower average power.

Fig. 2.2 sketches out the temporal sequence of a typical monitoring application. The system

wakes-up periodically with elapsed time of TRCD. For each cycle, three steps are executed: i) cap-

ture a set of NS samples separated by some time interval TS ; ii) process or analyze the record 1 of

acquired samples; and iii) report gathered data, update server information or trigger an alarm when

an anomaly is detected. This requires the periodic transmission of radio messages with some charac-

teristic interval TMSG.

In Fig. 2.2, the vertical dimension represents the instantaneous power consumption of the device.

Therefore, shaded areas depict the accumulated energy for each task. ENET stands for the energy

drained for communication tasks, EACQ for acquisition and EPRC for processing. In the background,

the operating system or scheduler execute different synchronization and coordination tasks, which

may include network management. This systematic activity is carried out within TSY S cycles with

an associated energy ESY S . Finally, the dashed line indicates the average power of the device P̄DEV .

The proposed model is based on an atomic characterization of each building block, where the

instantaneous power consumption is integrated over the duration of the corresponding task; the

resulting energy is then averaged out over its characteristic temporal scale or period of repetition. The

next subsections will go into detail on the analysis of each building block.

1A record is defined as the process of waking up, taking a set of samples and leave it in memory ready to be processed.
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Figure 2.2. Characteristic time evolution of energy usage split into different components. The vertical dimension

represents the instantaneous power consumption. Shaded areas depict the accumulated energy for each task. The

dashed line in the figure represents the average power of the device P̄DEV .

2.3.1 Network Models

Point-to-Point Communications

The simplest model for wireless communications consist of an interference-free, single-hop sce-

nario. The Medium Access Control (MAC) layer is idealized, i.e., besides transmission and reception,

it does not introduce further energetic inefficiencies due to collisions and idle times for floor acqui-

sition. In this case, the power consumption can be estimated for each device individually. As any

attempt at transmission is supposed to arrive to the destination, the model does not need to cope

with interferences caused by other devices, congestion or any other collective issues.

Under these assumptions, the average power of the communications block can be expressed by

Eq. (2.3) in terms of the energy required to send a radio message EMSG and the time between conse-

cutive messages T
(i)
MSG. The index i of the summation runs for all messages NMSG on the averaging

period.

P̄NET =

NMSG∑

i=0

EMSG

T
(i)
MSG

(2.3)

The energy per message EMSG is a parameter that depends only on the specific radio technology.

Two key factors play a fundamental role in this contribution: radio power and transmission time.

Radio power tends to be maximized to increase the communications range, although it is legally

limited in each ISM band. In contrast, transmission time is a parameter determined mainly by the

modulation: depending on how a message is spread over time, it results in a complex trade-off

between bit-rate (and thus consumption), range, reliability and immunity to interferences . The study

of the impact of modulation on radio performance is out of the scope of this work. Yet, regarding the
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estimation of power consumption, considering the footprint of modulation on the transmission time

can provide a new degree of freedom in the system design flow.

Regarding the time between messages, T 0
MSG can be considered a constant parameter for periodic

reporting applications. In this case, Eq. (2.3) reduces to a simpler expression given by Eq. (2.4)

P̄NET =
EMSG

T 0
MSG

(2.4)

In a more general case, sensors generate endogenous traffic, each one according to some distri-

bution or stochastic process. The production rate, characterized by a certain probability distribution

(PDF), depends basically on the underlying physical process. In this situation, the time elapsed

between consecutive messages in Eq. (2.3) should be characterized by an appropriate statistical es-

timator (typically the expected value Ê[ ] of the distribution, defined as T̂MSG), leading to Eq. (2.5).

This approximation should be good enough for long-term averaging.

P̄NET ≈
EMSG

Ê [TMSG]

.
=

EMSG

T̂MSG

(2.5)

The energy cost associated with each transmission may in turn depend on multiple factors:

• Retransmissions: some opportunistic approaches just retransmit the same message several

times in order to enhance the probability of delivery success. In this case, the energy cost per

message is simply multiplied by the number of attempts NR in Eq. (2.6).

P̄NET = NR · EMSG/TMSG (2.6)

• Radio power: most radio chips allow some control over transmission power, providing an

additional trade-off between energy cost and distance range 2. Typically, output level is selected

from among a set of discrete values NP , leading to a quantized energy scale in Eq. (2.7).

P̄NET = E
(NP )
MSG/TMSG (2.7)

• Spreading factor: some radio technologies can operate with different spreading factors NSF .

The spreading factor increases the communication range but lowers the bit-rate of the trans-

mission. As the transmission time increases, more energy is required. This behavior can be

easily modeled by some suitable function h, as detailed in the next section.

P̄NET = h(NSF , EMSG)/TMSG (2.8)

2Radio power provides a mechanism for compensating the excessive consumption of nodes with higher radio traffic.

Basically, the distance to the receptor should be lower in areas with more activity, so the transmission power of the device can

be decreased without compromising its reliability. Chapter 4 will delve into this topic.
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Figure 2.3. Example of multi-hop WSN scenario.

Multi-Hop Networks

The above considerations can be generalized to multi-hop networks, where data is routed along

some path and eventually collected by a sink node.

A common configuration of multi-hop WSN is shown in Fig. 2.3. Field readings are gathered by

the sensors placed at a number of WSN islands (at level LK−1) and then routed to the data collector

node (the WSN sink, at level L0) through a data collection tree. In this scenario, sensors located in

the interstitial layers have a dual function. While still generating their local traffic according to some

particular distribution, they become repeaters of data coming from the lower layers. This traffic

arrives with its own distribution, generated from a physical process that is not necessarily the same,

and it may be modified by network activity.

The repeater function of sensors in multi-hop schemes has great impact on a device’s total con-

sumption. First, forwarding messages roughly doubles the consumption of merely transmitting (the

radio must be switched-on while listening to the incoming message and also while forwarding to the

upper layers). Second, since data is aggregated from several child nodes at each layer, the accumu-

lated traffic at each layer grows exponentially. 3

Time-Synchronized Networks

TSCH networks show a low power consumption profile due to the fact that nodes are synchro-

nized and actions occur at specific moments in time slots, enabling nodes to optimize the usage of

their resources. Since the actions that occur at each slot are well known, the energy consumption can

be modeled on a slot-per-slot basis.

3Chapter 4 discusses an important application of compression to alleviate this funnel effect. Specifically, it turns out that

some computational-aggressive compression methods can increase the power consumption locally in the terminal nodes,

but still generate important savings in nodes close to the sink, thus balancing energy consumption between members of the

network.
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Figure 2.4. Example of two TSCH slotframe configurations with a different number of slots N and M , M>N .

The first slot is used for network discovery. Then K Data slots for transmission and reception are common in both

configurations. Configuration A has N−K Sleep slots (unused), while Configuration B has M−K Sleep slots.

In a TSCH network, slots are grouped into slotframes, which repeat over time (see Fig. 2.4 and a

real capture later in Fig. 2.9a). When a device joins a TSCH network, it obtains information about the

duration of each time slot and the number of slots in a slotframe. At each slot, the node can transmit,

receive, or keep its radio off. A scheduling entity is responsible for building the schedule, which will

satisfy the bandwidth and latency needs of the different flows in the network. The schedule allows

for a fine-grained trade-off between latency, bandwidth, redundancy and power consumption.

The overall energy consumption is the sum of the energy consumed in each slot, given that each

type of slot has an energy consumption profile related to the hardware and the activity it is per-

forming (e.g., transmit, receive, sleep, etc.). The model used 4 is based on profiling the energy con-

sumption in each of those slots, counting the number of slots of each type and calculating the total

aggregated energy of the slotframe.

The average power can be obtained by dividing the aggregated energy ESF by the slotframe

period TSF , as indicated by Eq. (2.9). Since slotframes repeat cyclically, this period represents the

characteristic temporal scale of the network.

P̄NET =
ESF

TSF
=

1

TSF

NSLOTS∑

i=1

E
(i)
SLOT (2.9)

In a slot, the actions of different modules (microcontroller, radio, etc.) can be profiled according

to the MAC layer timing defined by the standard (e.g., IEEE 802.15.4e) and summarized in [76].

Then, the hardware datasheets can be used to estimate the energy consumed by each action accor-

ding to the energy state of the components currently being used and the time required by the action.

4This work adopts the model derived in [76] as a tool for estimating the energy consumption of the addressed scenarios.

Note that the aim is to incorporate the previously defined model into the presented methodology. Therefore, this section

describes only the indispensable features required for building a higher level system model.
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The total energy consumed during a slot is then computed as the sum of the individual contributions,

defined mainly by the microcontroller and radio state for each specific action, as shown in Eq. (2.10).

ESLOT =

NACT∑

k=1

E(k)(µC,Radio) (2.10)

In a TSCH network the slotframe length NSLOT determines how often actions repeat, which usu-

ally depends on application requirements. The amount of scheduled cells (i.e.,Transmit or Receive) de-

pends on the traffic requirements of the application and, as the transceivers are often power-hungry,

the communication cost dominates as the traffic on the network increases. Similarly to the spreading-

factor discussion; latency, robustness and energy consumption are compromised.

For the purpose of the presented methodology, the key feature is the impact of the network con-

figuration on the energy consumption of the application. Energy consumption can be reduced by

increasing the length of the slotframe, i.e., by inserting more Sleep slots or by disabling some Active

slots so that they become Sleep slots. A node is only active when in certain timeslots in the slotframe,

which are used to send or receive information. In the rest of the non-active slots the node remains

switched off. If the number of active slots remains constant and the slotframe size increases, the ratio

of sleeping time increases. This means that the average energy spent by the node is smaller, as it is

less active. The same effect is obtained by changing sleep slots to active. However, the reduction of

activity comes at the cost of less bandwidth and increased latency. Reliability is also compromised,

as less redundant links to neighbors are expected.

Consider the example given in Fig. 2.4. The diagram shows two TSCH slotframe configurations

with a different number of slots N and M , and assuming M>N . The first slot is used for network

discovery by means of Enhanced Beacons. Then K Data slots for transmission and reception are com-

mon in both configurations. Configuration A has N−K Sleep slots (unused), while B has M−K Sleep

slots, meaning that a node running in this configuration will be idle for longer periods.

2.3.2 Modeling Data Acquisition.

It would be impossible to come up with a model that captures all of the sensing techniques. Ho-

wever it is reasonable to say that most applications fall under the following two categories: regular

sensing (with a fixed interval) and event-driven sensing (with some stochastic distribution). In reg-

ular sensing, a sensor is woken up at regular intervals to collect one or more samples, and then sent

back to sleep. Of course, when energy is freely available, the sensor can be left on permanently; but

that is not the case for most battery-operated devices, for which duty-cycling the sensor becomes

necessary. In event-driven sensing, a random event triggers a series of samples from the sensor. This

event can be internal to the sensor (e.g., sensing activated randomly in compressed sensing [28] [16]),

or it can be a request for acquired data coming from an external source (e.g., RFID sensors [48]).
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Figure 2.5. Typical energy consumption ESMP breakdown for one sample. It is comprised of the contributions from

both the sensor and the processor(including the ADC conversion). In this figure TC is the total capture time; TS the

sampling period; T
(SNS)
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the sensor setting time, i.e., time required for the sensor to stabilize and start capturing;

T
(CPU)
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is the processor wake-up time; T
(ADC)
ON

the time for the ADC conversion; and finally, T
(CPU)
ON

is the time the

processor requires to read a sample from ADC and to store it in memory.

To quantify the energy consumption of the sensing subsystem in the wireless device, one must

first look at the energy required to capture one sample. Then, the energy consumption of the acqui-

sition component is modeled according to Eq. (2.11).

EACQ =





ESMP ·NS (Regular)

ESMP ·N ′
S · Pr(e) (Event)

(2.11)

In Eq. (2.11), ESMP is the energy of one sample (see Fig. 2.5), NS is the number of samples taken

during one regular sensing interval, Pr(e) is the probability of an event occurring in one sensing

interval, and N ′
S is the number of samples taken following the occurrence of that event.

The model can be generalized to Eq. (2.12) in order to account for more than one regular sensing

interval (with different periods and sampling requirements) and various event types. In this case,

K is the number of sensors sampling on a regular basis, whilst L represents the number of sensors

triggered by events.

EACQ = ESMP ·

[
K∑

k=1

N
(k)
S +

L∑

l=1

N
′(l)
S · Pr(l)(e)

]
(2.12)

2.3.3 Modeling Local Data Processing Energy

The sensing and networking components are common to all applications running on the same

platform and, thus, the same profiling can be reused for further modeling. In contrast, application

developers need to be able to estimate the energy consumption for each specific design, sometimes
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with limited or even null availability of the actual hardware implementation. Early-stage models

should enable the exploration of different alternatives while minimizing the risk.

A method for estimating the energy required by a software task was proposed and validated

originally in [J2]. Starting from a high level description of the algorithm (e.g., Matlab/Octave), the

number of operations to process the original sensed signal is recorded, accounting basically for the

number of arithmetic operations: additions, multiplications, divisions and comparisons –i.e., all the

main actors in signal processing loops. Thus, depending on the selected hardware architecture, these

counters are mapped into the corresponding number of microcontroller clock cycles, and the latter

is subsequently mapped into the corresponding energy expenditure. Please refer to [J2] for further

details.

This method offers accurate results as long as the CPU tasks rely mainly on arithmetic instruc-

tions (as digital signal processing algorithms do). However, it is no longer applicable when the

microcontroller is involved in non-arithmetic based tasks, like dealing with a protocol stack. In that

case, alternative methods based on ISS simulators can be used [9].
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2.4 Fitting Technological Parameters

For the sake of analytical tractability, it is often convenient to make an intermediate fitting step

to find a simple closed-form expression of each of the individual contributions. As this step requires

experimental measurements of the actual platform, it can be skipped in early stage development

(e.g., when the platform is not yet available) or if the required time and resources do not justify

the additional benefit. Even so, as it is based on empirical measurements, fitting can significantly

improve the accuracy of the model, and so it is strongly recommended. The following set of examples

illustrates the fitting procedure for different types of components.

2.4.1 Units and Measurements

Before starting with measurements, it is worth noting a few considerations. First, one mea-

sures current, not power. An appropriate conversion must be applied to use all the above formu-

lations in terms of current. The actual power drained from the buffer is computed according to

PDEV =IDEV ·VBUF , where IDEV is defined as the current measured at the output of the energy

buffer and VBUF the voltage in its terminals (See Fig. 2.1) Moreover, the reference values in the

datasheets of the components (chips, batteries, scavengers, etc.) are typically expressed in intensity

units. But power on the components side is relative to the local voltage. Then, for each individual

component i connected to the power domain j, the power is obtained according to: P
(i,j)
CMP=I

(i)
CMPV

(j).

Obviously all magnitudes must be compared in the same domain. As measurements are easier

at the buffer output, before current reaches the regulators or DC/DC converters, it is recommended

to operate on the buffer side. In fact, for any practical estimation, what actually really matters is the

load from the energy buffer.

The class of regulator determines how to jump from one domain to another. DC/DC converters

basically preserve power (with some losses being parametrized with their efficiency factor η). Then,

to interpret component currents as battery loads, the proper conversion is given by:

DC/DC : POUT=ηPIN ⇒ I
(i)
DEV = I

(i)
CMP

1

η

(
V (j)

VBUF

)

Linear regulators roughly preserve currents, provided that the minimum required voltage dropout

δ is respected (VOUT>VIN + δ). Then, currents measured on the buffer side and the actual currents

on the device side are approximately the same:

Linear : IOUT
∼= IIN ⇒ I

(i)
DEV

∼= I
(i)
CMP ∀V (j) | VBUF > V (j) + δ

While respecting these rules, models can be described in current units instead of power, and

charge units instead of energy (i.e., normalized by the voltage). This allows avoiding continuous

conversions and facilitates experimental measurements. When all the device’s components share the

same power domain, the conversion is almost direct.
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2.4.2 Sampling Characterization
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(b) Empirical charge distribution.

Figure 2.6. Characterization of sensing charge. Fitting to a normal distribution.

To compute the average current of the acquisition block, the charge drawn to get the NS samples

that form a record is divided by the time elapsed between consecutive records TRCD (i.e., the wake-

up period), following Eq. (2.13). In this approximation, ĪQ accounts for the stand-by or quiescent

current of the sensor, while Q̄SNR can be interpreted as the average charge necessary to get one

sample. It is comprised of the contributions from both the sensor and the processor (including the

ADC conversion), which are represented in Fig. 2.5.

ĪACQ
∼=

Q̄SNR ·NS

TRCD
+ ĪQ (2.13)

The value of Q̄SNR can be obtained by fitting a set of experimental samples. To illustrate the

procedure, Fig. 2.6 summarizes an experiment performed to characterize a digital magnetometer

sensor. Fig. 2.6a shows the current measured during the acquisition process, with multiple samples

superimposed to portray the variability between them. The charge of each individual sample is

obtained by integrating the measured current. Fig. 2.6b shows the empirical distribution of a dataset

of ≈ 1000 samples. The average charge per sample can be approximated to the mean value of the

distribution Q̄SNR ≈ µQ. In this case, data is fitted to a normal distribution with µQ ±σQ = 0.0145±

0.0008 [mC].

2.13 makes explicit the impact of duty-cycling in the consumption. While in many situations the

sampling period TS is bound by the underlying physical magnitude and filtering requirements (e.g.,

AC noise filtering in magnetic readings), the time between consecutive records TRCD is scheduled

from the application layer, thus providing a mechanism for adjusting the trade-off between energy

consumption and sensing accuracy. In the next sections, several examples of this trade-off are dis-

cussed.
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2.4.3 Network Profiling

To devise a useful model, it is important to figure out the functional dependence on some control

parameters. The procedure is in essence the same for many types of networks. First, one should

identify a suitable parameter, NX , to gain control over the power consumption. Then, it is neces-

sary to fit the experimental data to the analytical function or polynomial approximation H(NX) in

Eq. (2.14), which is chosen to model the functional dependency on NX (See Eq. (2.8)). The following

examples illustrate the procedure for two different networks.

Q̄NET
∼= H(NX) + Q̄B (2.14)

Long-Range Communications

Semtech is a provider of low-power, wide area, ISM band radio, based on a proprietary protocol

called LoRa ??. In the LoRa approach, base-stations monitor several bands and devices, which are

synchronized, and they can send packets in their own time-slot and wait for the ACK of every packet.

These ACK packets can embed some feedback information, as well as notifications of an incoming

downlink packet. To increase the range, LoRa uses a configurable SpreadingFactor (SF), i.e., the ratio

between clock rate and the symbol rate. This SF parameter can be configured from SF6 to SF12 (64

to 4096 chips/symbol), with an increase in the link budget of 14 dB in the highest SF. This ends

with a reduction in bit-ratio, which affects the time needed to send a payload, and hence the energy

consumed in each transmission. Thus, the spreading-factor is used to extend communication range

or improve immunity to interference, although at the expense of more energy consumption for each

message transmitted.

Fig. 2.7 shows the device current, as measured for radio transmissions with different spreading

factors. In this experiment, the protocol stack is configured with up to 3 retransmissions if mes-

sage delivery fails. For illustrative purposes, the gateway is switched off. Consequently, we can

see in these records the three transmission attempts (pulses with maximum current) and the respec-

tive waiting times for confirmation (small pulses), when radio is switched on to listen for the ACK

messages.

The effect due to the different modulation is noticeable in the figures. Basically, each step in

the spreading-factor scale doubles the time the radio spends in its active state. This suggests that the

charge per message can be parametrized with an exponential function H(N) in the form O(h(N))=2N ,

leading to Eq. (2.15) as a tentative fitting function. In this case, it can be interpreted as the charge in

the basic configuration.

Q̄NET
∼= Q̄MSG · 2NSF + Q̄B (2.15)
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Figure 2.7. Characterization of Cycleo transmissions using different spreading-factors
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Figure 2.8. Fitting Cycleo spreading-factor to Eq. (2.15).

Fig. 2.8 shows the model fitted with a training set of ≈ 100 samples for each modulation. Results

demonstrate that the postulated model is in full agreement with real measurements, always within

the experimental error. Numerical values obtained are QMSG =6.1µC and Q̄B =13.0µC.
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TSCH Networks
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Figure 2.9. Characterization of TSCH radio.

To profile the energy consumed by TSCH networks, Eq. (2.9) should be computed to determine

the charge used in each slotframe with different network setups. Details of the procedure can be

found in [76]. As a complementary approach, the average current required to maintain the network

can be empirically approximated.

To obtain a suitable fitting function, recall from Eq. (2.9) that the average current can be obtained

from the ratio between the total charge of the slotframe QSF and the period of the slotframe TSF .

The charge can be roughly estimated based on the number of active slots and the charge per active

slot QSF ≈ QMSG · NACT , whilst the length of the slotframe is determined by the total number of

slots and the duration of each slot TSF = TSLOT · NSLOTS [75]. With these assumptions, Eq. (2.16)

should be a reasonable approximation for the average current. Here, ĪB represents the background

activity of the µC to control the network (periodic wake-ups, synchronization messages, etc), and it

can be considered constant. Fig. 2.9b shows the empirical fitting of Eq. (2.16), which is obtained for a

GINA platform [49]. The numerical parameters can be found in [J3].

ĪNET
∼=

Q̄MSG ·NACT

TSLOT ·NSLOTS
+ ĪB (2.16)

In Eq. (2.16), the duration of a timeslot TSLOT is a fixed network parameter. Q̄MSG represents the

average charge required per packet and depends basically on the radio technology. This means that,

once the number of active slots NACT in the slotframe are defined, the number of slots NSLOTS in

the frame becomes the control parameter for the network energy, giving a characteristic functional

dependency INET ∝ 1/NSLOTS that is obtained empirically in Fig. 2.9. Eq. (2.16) shows explicitly the

impact of the duty-cycle, parametrized in this case by the period of the slotframe through NSLOTS .
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Figure 2.10. Fitting parameters of FFT computing.

2.4.4 Processing

As outlined in Sec. 2.3.3, a high level implementation of a given algorithm can be used to make a

first estimate of the computation time (more details about this method can be found in [88]). Alterna-

tively, the code can be ported to a device’s specific implementation and simulated with an Instruction

Set Simulator.

Table 2.1 compares both approaches with real measurements obtained from a custom implemen-

tation of the FFT algorithm (Matlab/C). Results show that the time estimated through the number

of MATLAB operations T̂MAT did not differ significantly from that derived with the simulator T̂ISS ,

and the latter is in perfect agreement with the time measured using the algorithm running on the

MSP430 processor TPRC , shown in Fig. 2.10a

Table 2.1. FFT algorithm processing time.

NFFT TPRC [ms] T̂MAT [ms] δTMAT [%] T̂ISS [ms] δTISS [%]

64 14.6 14.3 2.1 14.7 0.4

128 33.5 33.2 0.8 33.5 0.0

256 75.3 75.8 0.6 75.4 0.1

512 167.8 170.2 1.4 168.0 0.1

1024 369.8 377.8 2.1 370.3 0.1

Measured Matlab I.S. Simulator

To come up with a valid model of the algorithm, it is important to identify the functional behavior

that depends on one or more control parameters. For already known algorithms, a natural choice is

the (worst-case) time complexity T (n). On the other hand, if the algorithm is custom designed or its

complexity is unknown, the fitting function can be a generic series expansion when characterizing

compression algorithms, as discussed later in Chapter 4.
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To illustrate this former idea, we use the Fast Fourier Transform (FFT) as a case-study algorithm.

The FFT implementation of the DCT has a well known T (N)=O(f(N))=N log(N) complexity. Ac-

cordingly, the associated processing time should be proportional to this Nlog(N) relation. Consider-

ing Q̄OP to be an estimate of the average cost per arithmetic operation, Eq. (2.17) can fit processing

power consumption with reasonable accuracy, as shown in Fig. 2.10b.

ĪPRC
∼=

k Q̄OP ·N log(N)

TRCD
+ ĪSY S (2.17)

In Eq. (2.17), k is a constant factor that depends on the algorithm’s implementation. In this case,

it is related to the number of arithmetic operations per FFT point. ĪSY S includes all system related

functionalities of the µC, such as running the operating system, managing periodic interrupts, etc.
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2.5 System Models

2.5.1 Putting the Pieces Together

The next step in the modeling process consists of merging all contributions into one single ex-

pression. Continuing with the examples Eq. (2.18) combines the contributions discussed in sections

2.4.2, 2.4.3 and 2.4.4, keeping technological and application parameters as independent variables.

Constants α, β, γ and δ depend only on the particular sensor, MCU and radio technologies. Re-

calling the meaning of each individual contribution from the fitting process examples, α can be in-

terpreted as the charge per sample Q̄S ; β represents the cost per operation Q̄OP associated with the

specific µC; while γ is an estimator of the average charge per message Q̄MSG. Arranged in this

way, Eq. (2.18) allows a straightforward evaluation of alternative technologies by merely specifying

suitable values for these parameters.

In turn, TMSG, Ni and TRCD are application parameters that may be adjusted in order to meet

the specifications once the specific technology has been established. Recalling Eq. (2.18) from the

previous section, NS stands for the number of samples effectively acquired in each sampling interval;

NA parametrizes the amount of data to be processed; and NX represents any parameter related to

radio activity. TMSG and TRCD weigh the duty-cycle and have a fundamental impact because of the

(1/x) functional dependence.

ĪDEV =
αNS

TRCD
+

β · T (NA)

TRCD
+

γ · H(NX)

TMSG
+ δ (2.18)

This is a good moment for us to look back briefly and recapitulate. Starting from a vague condi-

tion asserted in Eq. (2.2), the benefits drawn from the methodology introduced in this section depend

on being able to make Eq. (2.18) tangible. First, this general expression should be properly interpreted

according to the specific platform (technological parameters) and application (operational parame-

ters). The outcome naturally emerges when exploiting by simulation the analytical model, i.e., the

particular instance derived from Eq. (2.18).

The next sections illustrate this procedure in further detail by means of two case-studies based on

real applications. Subsequently, Chapter 3 carries out a comprehensive analysis under this formula-

tion of self-powered devices (an outstanding topic of current research) and, thus, demonstrates the

effective application of this methodology.
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2.5.2 Case Study I: Periodic Reporting Applications

Network Scenario

As mentioned previously, radio transceivers are evolving towards modulation techniques with

wide spread spectrum. These modulation techniques provide ultra-long range communications

while maintaining low energy consumption, thus being suitable for battery powered devices.

A notable example of this technology is Weightless [84], an industry consortium originally founded

by the UK company NEUL with more than 1,000 members operating under some specific license

agreement. Weightless fosters the development of wide-area communication in white spaces, cover-

ing ranges of up to 10km. Another example of wide-range wireless connectivity for M2M is Sigfox

[66]. Sigfox uses a simple radio technology referred to as Ultra Narrow Band (UNB) and operates

in the license-free ISM frequency band of 868 MHz. Cycleo (now Semtech) is another provider of

low-power, wide area equipment operating in the sub GHz ISM bands, which is based on their pro-

prietary approach called LoRa [65].

All these technologies operate over distances great enough to avoid multi-hop techniques. The

wide range, combined with low data-rate orientation, allows modeling the radio activity of these

devices based on the following assumptions: point-to-point, unidirectional link and retransmission

free. All of these are characterized in Section 2.3.1.

Application Examples
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Figure 2.11. Traffic generated by ≈ 500 parking spot sensors. Data collected over 100 days.

Despite the simplicity of this scenario, it covers a large number of applications. Spread spectrum

technologies are becoming true enablers of the IoT by means of the huge range of applications that

will appear thanks to the long-range paradigm. It is probable that the most representative application

of the wide-area, low bit-rate, low-cost approach is the huge smart-metering market.
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Smart parking systems are another good example for this case study. On-street parking sensors

are small devices used to monitor the availability of individual parking spots. Each device periodi-

cally wakes-up to check the state of the spot. When a car parks over it, its presence is detected, and

the sensor relays the event to the gateway. The bandwidth required for this application is particu-

larly low. The typical interval time between radio messages oscillates between some minutes and

several hours, and the information required per message is very small, as the state can be codified

with 1 bit. For this reason, the smart-parking application is particularly well suited for long-range

radio technologies.

Data generated from a single parking sensor is basically unpredictable, as it depends on mul-

tiple pseudo-random human factors. However, when data coming from a set of similar sensors is

aggregated, a typical Poisson-like distribution emerges. The expected value of this multiple-sensor

spatial-distribution can be used as an estimator of the temporal-distribution of a single sensor 5.

Fig. 2.11 shows an example of distribution found in a real parking application. The histogram

was obtained from the events gathered by a set of sensors belonging to the same sector and recorded

over several days. The solid line represents the fitted Poisson distribution. In this case, the expected

value of the number of messages per day is given by the Poisson mean E[NMSG] = λMSG, and it is

used to estimate the average lapse time between messages T̂MSG = 1/λMSG, as indicated in Eq. (2.8).

Model description

T SYS
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T RCD

NET

T MSG

N S · T S
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Q
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Figure 2.12. Characteristic time evolution of a simple reporting application.

Embedded applications are defined by their repetitive operation, and the first step in modeling

them is to find the patterns of repetition. In this case, a record of NS samples is acquired with a

fixed interval time TRCD, while some information is reported to the data collection center with some

characteristic period T̂MSG (see Fig. 2.12). In this simple approach, the reported information is ag-

gregated in a unique message, and this message is retransmitted a certain number of times, NR, to

5Chapter 5 presents a detailed study of this subject.
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increase the probability of success. It thus follows the SIGFOX approach as an alternative to im-

plementing an acknowledgment scheme on the downlink of LoRa. In this approach, the functional

dependence associated with network retransmission is trivial: H(NR)=NR. In this case, γ is easily

understood as the charge per message Q̄MSG.

Usually, the number of samples acquired (NS) is the same as the number of samples processed

(NP ). This means that the parameter simultaneously affects the energy contributions of both sensing

and processing tasks. However, being that this particular case is just a reporting application, the cost

associated with processing is very low, and the β term can be omitted. Then, Eq. (2.19) combines

Eq. (2.6) and Eq. (2.13) in a basic instance of Eq. (2.18).

ĪDEV =
αN

TRCD
+

γNR

TMSG
+ δ (2.19)

Even more, all data acquired is transmitted for some basic reporting applications. Consequently,

the time between records TRCD and the time between messages TMSG become equal –merging the

first and second terms in Eq. (2.19). This wake-up period simultaneously modulates sampling and

communication contributions, and can therefore be considered a global control parameter. This

model is particularly important for opportunistic approaches such as [71].

Simulation

Fig. 2.13 presents a simulation obtained by applying Eq. (2.19) to different sampling and recor-

ding period configurations, using the specific technological values for LoRa and the magnetic sensor

obtained in Sections 2.4.2 and 2.4.3 (See also Fig. 2.6 and Fig. 2.8). The bars show the contribution to

the overall energy of the network and sampling components, according to the time elapsed between

consecutive messages and the sampling rate. The floor level is associated with system management

(e.g., periodic interrupts of the operating system). Although it is constant, this contribution carries

important weight in this application. The reason for this is that radio activity is very low and its con-

tribution is not dominant, as is often considered in the literature. Processing cost is also represented,

despite being negligible for this particular application.

Asymptotic behavior can be seen in both axes of Fig. 2.13. This is a consequence of the (1/x)

functional dependence of the duty-cycle. If the recording interval is fixed, the overall energy con-

sumption is reduced when radio activity is lower. However, the amount of energy that can be saved

is limited by asymptotic decreasing. At a certain point, increasing the interval between messages

does not significantly reduce the energy consumed. Analogously, as the recording interval increases,

the energy savings decrease.

This graphical representation is useful as a tool for determining which of the control parameters
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Figure 2.13. Simulated consumption of a simple periodic reporting application.

yields the highest energy savings, as well as for figuring out the achievable gains and limits for

optimization.

Validation

A set of experiments have been carried out to validate the model. The employed platform was

composed of a Cortex-M4 32 bit µC, a Telecom Designs TD1202 long-range radio module and a

Honeway HMC5883 compass IC. The RTOS wakes-up periodically with a systick interrupt of 1 ms.

The application was configured for different sampling intervals TRCD and different reporting

period TMSG. Fig. 2.14 compares the experimental results with those predicted by Eq. (2.19). The

plus sign markers in the figures are the actual measured currents, while the vertical bars show the

estimated values. Gray areas account for the statistical deviation in the fitting process of the techno-

logical parameters.

As shown in Fig. 2.14, all estimated values lie within the statistical error. These results demon-

strate that, despite all assumptions made, the accuracy of Eq. (2.13) is still rather acceptable. In fact,

the source of uncertainty is not the systematic error inherent to any model, but errors introduced

in the characterization of individual tasks. These errors can be caused by multiple pseudo-random

factors (such as chip to chip variations in production, changes in the temperature of operation or

any other environmental issues), and therefore must always be taken into account for worst-case

predictions.
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Figure 2.14. Model validation of a simple periodic reporting application. The markers are the actual measured

currents, vertical bars show the estimated values and the gray areas account for the statistical deviation in the fit-

ting process of the technological parameters

2.5.3 Case study II: TSCH Networks

Network Scenario

Industrial Wireless Mesh networks are being consolidated by standardization efforts under the

Time Slotted Channel Hopping (TSCH) scheme. This technique has been adopted by major indus-

trial, low-power wireless standards such as WirelessHART [1], ISA100.11a [35] and, more recently,

as a part of the IEEE802.15.4e standard [2]. As of today, several commercial low-power wireless

networking providers are offering almost 100% reliable MAC layers [27], while at the same time

providing radio duty cycles well below 1%, thereby reducing the power consumption and increas-

ing network lifetime. This is facilitating the introduction of new monitoring and actuating devices

that aim to improve the security, process automation, efficiency and productivity of the industries.

Furthermore, it devises a clear roadmap for the Industrial Internet paradigm. Nowadays, industrial

wireless communication is considered a mature technology.

Application Examples

Multiple industrial monitoring applications can fit into this category by taking advantage of the

reliability of TSCH networks. Notable examples include vibrational analysis of rotary machines,

structural health monitoring through harmonic analysis, accelerometers for monitoring power-line

towers [86], and vibrating wire strain gauges [14] for measuring infrastructures.

Additionally, all these examples involve some kind of frequency analysis that can be performed

by means of the FFT algorithm, which has been chosen for illustrative purposes in this case-study.

Chapter 3 makes use of this model for two representative applications.
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Model Description
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Figure 2.15. Characteristic time evolution of a device associated with a TSCH network. The system wakes up with

TRCD period. Each cycle, it acquires a set of NS samples with sampling period TS and requires TPRC to process it. In

the background, TSCH radio maintains network synchronization and reports health of the system within TSF cycles.

This second example models an application that requires some arithmetic computing. On top,

the processor manages the link to a TSCH network, requiring some communication activity in order

to maintain synchronization with the network. This network management is handled in background

within slot-frames. Fig. 2.15 shows the operational cycle of this type of application. In this figure, the

network’s periodic management is carried out in TSF cycles.

More formally, Eq. (2.20) combines the contributions of (2.13), (2.16) and (2.17), which account for,

respectively: the acquisition, processing and TSCH network management tasks.

ĪDEV =
αN

TRCD
+

βNlog(N)

TRCD
+

γNACT

TSLOTNSLOTS
+ δ (2.20)

The main parameter involved in network consumption is NSLOTS , which is related to the number

of Active and Sleep slots.

Typically, the number of points computed by the FFT NP and the number of samples read by

the ADC NS are the same. So, as in the previous case, this parameter simultaneously affects both

contributions and is denoted simply by N . With N fixed, the duty-cycled behavior of the application

makes the time between records TRCD the fundamental parameter for controlling the average power.

Specifically, as the time between records increases, less power is consumed. Therefore, the time

interval between consecutive records determines the time scale for power averaging.
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Figure 2.16. Simulated consumption of an application using TSCH network

Simulation

Fig. 2.16 presents a simulation obtained by applying Eq. (2.20) to different network and recor-

ding period configurations, considering 256, 512 and 1024 samples per record. The bars indicate

the contribution to the energy consumption of the network, sampling and processing components,

according to the number of slots per slotframe and the recording interval.

Again, asymptotic behavior appears in both axes of Fig. 2.16. While maintaining a fixed interval

time, the overall energy consumption is reduced by increasing the number of slots in a slotframe.

Still, the asymptotic behavior sets a limit to the power savings. At a certain point, increasing the

number of slots in the network does not significantly reduce the energy consumed.

Validation

Experiments were carried out using a GINA platform [49] and running the OpenWSN protocol

stack [83]. The GINA platform comprises several inertial sensors for angular rate and linear acceler-

ation, along with a general purpose microprocessor. Specifically, constants α, β, γ and δ of Eq. (2.20)

have been characterized for the Texas Instruments MSP430f2618 16-bit µC, the Atmel AT86RF231

IEEE802.15.4 radio, and the ST-LIS344ALHTR 3-axis accelerometer sensor.

Fig. 2.17 compares the experimental results with those predicted by Eq. (2.20) for different appli-

cation configurations. The plus sign markers in the figures represent the measured current values.

The vertical bars represent the values estimated by the model, showing the uncertainty introduced

by the fitting process.
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Figure 2.17. Comparison of model predictions and experimental results for different parameter configurations. The

plus sign markers in the figures represent the measured current values. The vertical bars represent the values estimated

by the model, showing the uncertainty introduced by the fitting process.
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Discussion

The present chapter improves on the current state of the art by defining a general methodology

and introducing a new perspective on the energy characterization and dimensioning of low-power,

embedded devices. Using these models, which can be applied to different industrial applications,

engineers are able to foresee the behavior of the different application parameters and their impact on

power consumption, even without a complete implementation of the application. Hence, using this

framework can help engineers study the viability of a new application in terms of power consump-

tion, energy harvesting needs, battery requirements, etc.

Experimental measurements of a system provide only the energy consumed by the entire sys-

tem without adding any knowledge about the distribution of consumption throughout the different

subsystems. This makes it difficult to identify the main contributors to the energy consumption and

the parameters upon which the application depends, thereby limiting the scope of energy optimiza-

tion. The presented model, however, allows to determine the amount of energy consumed by each

of the main subsystems: standard networking technologies, sensing and processing. In this way, it

makes possible to understand the energy balance between them. The results demonstrate that the

contribution of the different components is of the same order of magnitude; and, consequently, all of

them must be taken into account in order to explore the feasible options and fine-tune the application

parameters. This systematic approach has not been tackled by the current literature.

The presented experimental results demonstrate the model’s suitability for different scenarios

and platforms. The validation has been performed using two different applications. After fitting the

technological parameters and comparing them with real measurements, excellent simulation results

were achieved.

Finally, it is important to establish the scope and applicability of the model. A device operating

in a real-world scenario always has a degree of uncertainty associated with environmental condi-

tions. Variations in the PDR are just a representative example, but there are many other issues that

can significantly affect the functionality of the system and therefore its energy consumption (e.g.,

temporal link interruptions, unexpected system restarts, etc.). Under these circumstances, further re-

finements for improving the accuracy of estimates may not be necessary. Instead, the strength of the

model lies in its capability to support better-informed decisions and avoid risks in the early stages of

development.

The full potential of this methodology will be demonstrated throughout the remaining chapters

by applying it to three different hot topics on low-power research.





Chapter 3

Self-Powered Sensor Networks

The use of renewable energy is desirable at every level of society, from industrial and

manufacturing activities to smart cities, public buildings, etc. In particular, the ability

to capture any sort of renewable energy source is an appealing prospect for powering up

the sensing equipment and electronic devices that surround us in our daily life, whether

they be automatic doors, sensor systems for traffic control, intrusion detectors, alarms or

pollution monitors, among many other possibilities.

After having been restricted to scientific research only a few years ago, energy har-

vesting in small form-factor embedded systems is now becoming an essential technology

in the field of autonomous wireless networked systems. Of course, the ultimate desire

is to cut down their maintenance costs with self-sufficient networks that could operate

unattended, thanks to the energy they extract from the environment. Yet, the road to

perpetual wireless communications devices is still full of challenges: ambient energy is

intermittent and scarce, energy storage capacity is limited, and devices are constrained in

size and complexity.

With the promise of self-sustainable, maintenance-free networks comes a fundamen-

tal shift in design principles, especially when compared to traditional battery-operated

devices: whereas minimizing energy consumption is crucial to extending the lifetime of

the latter, the objective for self-powered devices is to manage the harvested energy intelli-

gently in order to ensure long-term, reliable and uninterrupted operation.

39
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3.1 Introduction: Principles of Self-Powered Operation

3.1.1 Energy Neutral Design
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Figure 3.1. Energy harvesting wireless sensor device.

A SELF-POWERED, wireless sensor device is characterized by a sustainable provision of energy.

In the general model presented in Fig. 3.1, the energy scavenged from the medium ESCV (t) must be

greater than the energy required by the device EDEV (t), in accordance with Eq. (3.1) 1. If this con-

dition arises, the energy income and outcome are, at least, compensated. This concept is commonly

referred to in the literature as energy neutral design [15].

ESCV (t) =

∫ t

0

PSCV (τ)dτ ≥

∫ t

0

PDEV (τ)dτ = EDEV (t) (3.1)

A natural constraint follows from energy causality, which dictates that energy cannot be used

before it is harvested [34, 72]. This is equivalent to keeping the expended energy curve (accumulated)

under the harvested curve the whole time (See Fig. 3.2). Formally, causality requires that the Eq. (3.1)

condition must hold for any value of t, as indicated in Eq. (3.2).

ESCV (t) ≥ EDEV (t), ∀t (3.2)

Due to cost and mechanical constraints, it is also a desirable condition the harvested energy not

be oversized, or equivalently, that all the harvested energy should be used by the deadline. That is,

the transmitted energy curve should converge to the harvested curve over the long term in Fig. 3.2.

Eq. (3.3) formalizes this condition:

1Eq. (3.1) emerges from Eq. (2.1) when considering null the initial buffered energy; e.g., when there is no battery at all, or

when the time elapsed from start-up allows us to consider the effect of the initial contents negligible.
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ESCV (t → ∞) ≈ EDEV (t → ∞) (3.3)

Moreover, due to the finite buffer size, any received energy that overflows its capacity is lost,

causing an undesirable waste. The amount of energy buffered at any instant t is basically the diffe-

rence between the harvested energy curve and the demanded energy curve in Fig. 3.2. This difference

should never be larger than the buffer capacity [72], a condition that is reflected in Eq. (3.4).

ESCV (t) ≤ EDEV (t) + EBUF , ∀t (3.4)

This requirement should be tackled with some care. Despite the necessary condition expressed by

Eq. (3.1) for the operation of a device, the instantaneous power supplied by the harvester PSCV (t) is

independent of the energy consumption rate PDEV (t), and may follow completely different patterns

and characteristic periods (as represented in Fig. 3.2, top). Often, the former is conditioned by the

environmental conditions, while the latter is determined by the specific application requirements.

Then, a properly sized energy buffer is required to absorb the temporary asymmetries between gen-

eration and demand. Basically, this temporal storage unit has to accumulate enough energy in favo-

rable periods that it will be delivered in short bursts to the electronics when production is scarce.
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Figure 3.2. Power production and demand, with accumulated energy associated.

Provided that the condition of Eq. (3.4) is guaranteed, dimensioning energy generation and en-

ergy consumption can be addressed independently. Thus, Eq. (3.1) can be reduced to the simpler

condition expressed by Eq. (3.5) in terms of average power, which must be satisfied within the cha-

racteristic operational cycles of the application. The problem of a wireless sensor network’s sustain-
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ability is then elucidated through a clear understanding of the energy generation patterns, the char-

acterization of the operational energy demand and the proper dimensioning of the energy buffer.

P̄SCV ≥ P̄DEV (3.5)

3.1.2 Supply and Demand Balance

Dimensioning of the scavenger depends on the configuration and application requirements of the

wireless sensor devices. Recalling the model described by Eq. (2.18), two different approaches can

be followed to achieve Eq. (3.5)’s condition.

On the one hand, given a particular scavenger characterized by an average power P̄SCV , the

network and application parameters can be tuned to meet Eq. (3.5). To illustrate this idea, in Fig. 3.3a

the average current provided by the scavenger has been represented as a fixed horizontal plane.

Eq. (3.5) is fulfilled for all bars that stay below the plane, that is, configurations for which device

demand is lower than scavenger production. The black solid line delimits the region of parameter

configurations that satisfy the above condition; this is called the self-sustainable region. The application

settings may then be relaxed until the border line is crossed in any of the two directions indicated

by the arrows, i.e., until the Eq. (3.5) condition is achieved. This is a common situation in which

devices have hard mechanical constraints and therefore limited space available for accommodating

the scavenger.

On the other hand, a fixed network and application configuration can be used to draw the upper

bound of P̄DEV and therefore select the right size for the scavenger. In this case, the bar representing

the device’s power is fixed in Fig. 3.3b, but the level of the scavenger plane is moved up until it

reaches the required value above the bar level to satisfy Eq. (3.5).

3.1.3 Source Selection

The classification of energy harvesters can be based on the kind of energy they extract from the

environment to produce electrical energy: mechanical, solar, thermal, electromagnetic, etc. Table

3.1 compiles the main off-the-shelf harvesting technologies with their power generation capabilities.

When dealing with a new project, it would be good practice to first look-up similar tables to check

the order of magnitude of power one can expect.

The availability of the energy source is without a doubt the major criteria for selecting the en-

ergy harvester. Other general properties to be considered include: physical features (power density,

maximum voltage and current), mechanical characteristics (size, shape or weight), environmental

protection, water resistance and temperature range, as well as other operational and maintenance

requirements.
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Figure 3.3. Alternatives to balance device consumption and harvester production. Numerical values from Sec.2.5.3.

Table 3.1. Characteristics of various energy sources. †[79] ‡[53] §[38]

Source Conditions Source Power Harvested Power

Ambient Light† Indoor 0.1 mW/cm2 10 µW/cm2

Outdoor 100 mW/cm2 10 mW/cm2

Motion† Human (0.5m - 1Hz) 4 µW/cm2

Vibration§ Industrial (120Hz - 0.1g) 40 µW/cm3

Thermal †‡ Human ∆T ∼ 5◦K 20 mW/cm2 30− 60 µW/cm2

Industrial ∆T ≥ 20◦K 100 mW/cm2 1− 10 mW/cm2

RF † GSM Base Station 0.3 µW/cm2 0.1 µW/cm2

3.1.4 Energy Buffer Selection

Choosing the capacity of the energy storage device and sizing the buffer can be accomplished by

careful examination of the energy input and output patterns. When the energy income to the system

is available only intermittently, the buffer size is determined by the amount of energy required to

operate the device during scarce scavenging periods. In other applications, energy is more-or-less

freely available at the system input, whereas the energy outcome occurs in spaced-out intervals. In

both cases, the same basic considerations apply when dimensioning the storage device.

Once scavenger and device settings are balanced (following any of the two approaches in section

3.1.2), they may meet the criteria expressed by Eq. (3.5). Under intermittent conditions, the energy

production above the average level during over-production periods PSCV > P̄SCV has to be buffered

in order to power the device when production is scarce PSCV < P̄SCV . This energy is delivered to

the device on demand at the required rate PDEV (t).
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As stated before, storage capacity is sized according to the maximum difference between energy

production and demand curves (See Fig. 3.2). The estimated value may be contrasted with Tab. 3.2,

to infer the physical dimensions required for storage.

Table 3.2. Characteristics of various energy storage technologies. §[25] †[78] ‡[67]

Source Op.Voltage Density Charge Cycles Self.Discharge

[V ] [mWh/cm3] [%/month]

Lithium (primary) § 3.7 1300 – <0.1

Li-Ion† 3 - 3.7 435 2000 0.1 - 1

Ni-MH‡ 1.2 300 300 <30

Thin-Film† 3.7 50 1000 0.1 - 1

Super-Capacitor† 1.2 - 2.5 5 ∞ 100

Multiple technologies for storing electrical energy are available on the market: thin-film solid

state batteries, capacitors, etc. The choice of the appropriate technology is highly dependent on the

application. The following recommendations should be considered:

• As shown in Table 3.2, the energy density of batteries is much higher than that of supercapaci-

tors. In situations where a supercapacitor may not be able to store enough energy, a battery is

required. Sometimes supercapacitors can be an alternative to batteries. For example, when the

ambient energy source is intermittent a supercapacitor may be used. Yet, special care should be

taken with sizing, as the energy must be stored not just for peak power delivery, but to support

the application for longer interruptions. Furthermore, the energy density is limited.

• Instantaneous power delivery is higher for supercapacitors, an interesting feature in applica-

tions with high current peak demands. Among them, the most representative are GSM devices.

Other examples include sensors that require external excitement (e.g., vibrating wire sensors)

and actuators (e.g., small electrical motors).

• Supercapacitors store energy by physical-charge storage, not chemically as in batteries; so, su-

percapacitors have an effectively infinite cycle life. This is a desirable feature for applications

with many charge-discharge cycles. In turn, a battery’s self-discharge is lower, which should

be keep in mind when dealing with long-term cycles of inactivity.

• In some applications, supercapacitors are best used to support batteries, not to replace them. If

the peak power needed exceeds the amount the battery can supply, e.g., for GSM calls, or for

low-power transmission in cold temperatures, then the battery can charge the supercapacitor

at a low rate and the supercapacitor can deliver the high power bursts. This arrangement also

means the battery is never cycled deeply, extending battery life.
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3.2 Related Work

A vast literature has emerged on Energy-Harvesting for Wireless Sensor Networks in the last few

years. The promise of long-term, uninterrupted and self-sustained operation in a wide spectrum of

applications has captured the interest not only of academia, but also the industry.

Energy-harvesting encompasses virtually most of the topics in the discipline of the electrical en-

gineering, including scavenging components, transducers, rectifiers, converters, energy storage, etc.

In addition, due to the commonly low amounts of harvested energy, autonomous networks require

extremely low-power consuming communication and control protocols. Even the integration of such

systems with sensing and identification components requires novel interconnect and packaging ap-

proaches. Energy harvesting is thus a wide-ranging, multi-disciplinary and challenging topic.

In what follows, some of the most active fields related to self-sustainable networks are briefly

reviewed. The approach taken here is to refer the reader to well-established texts published on each

subject. These texts can be used as a starting point for further study.

Energy Harvesting for Wireless Sensor Networks

To begin with, Vullers et al. [79] provide a comprehensive introduction to the topic. This work re-

views different characteristics of several energy harvesting methods and discusses future challenges.

More recently, Kim et al. [39] update the analysis of leading ambient energy-harvesting technolo-

gies (solar, thermal, wireless, and piezoelectric), discussing their applicability in the development of

self-sustaining wireless platforms.

More focused on specific topics, Nasiri et al. [51] present a deep study on how photovoltaic (PV)

cells in indoor scenarios can be dimensioned to fuel low-power electronic devices. Tan and Panda

[69] reproduce an analogous approach by comparing scavenging techniques to capture the energy

from thermal variations with PV-cells. Finally, D’hulst et al. [24] address piezoelectric vibration sca-

venging. This work concerns mainly the analysis and modeling of the vibration scavengers that can

be used to obtain energy from kinetic sources such as motors, pumps, etc.

Buffering

Roundy et al. [63] review the main potential power sources for wireless sensor nodes. Well esta-

blished sources such as batteries are reviewed along with emerging technologies. A comprehensive

analysis of electrical energy storage technologies can be found in Chen et al. [18], and more recently

in Boicea [13].

Regarding buffer management, Jiang et al. [36] present a multi-stage energy transfer system and

discuss the relationships among system components, identifying hardware choices to meet applica-
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tion requirements. The two-stage storage system consists of a supercapacitor (primary buffer) and a

lithium rechargeable battery (secondary buffer). The energy transfer model is similar to the approach

adopted in this work.

Network Management Policies.

Transmission and schedule network policies play a fundamental role in self-powered networks.

A great research effort has been made to cope with different optimization problems. Assuming that

nodes have some knowledge of the arrival processes that describe the harvested energy inflow or the

input data, different cost functions are evaluated (maximizing throughput while keeping the system

alive, maximizing PDR, minimizing retransmissions, etc.). A comprehensive survey about this topic

can be found in Gunduz et al. [34], with further reading to be found in the included references.

Despite dealing with complex mathematical formulations, some of the assumptions made by

most of these works in searching for tractability impose severe conditions on the applicability to real

problems. In particular, adopted models presuppose that all data acquired must be transmitted 2,

and this premise is valid only for very simple applications. In modern systems, most of the process

is carried out locally, and the mapping from acquired data to transmitted information is not trivial.

System-level and Ad-hoc Approaches

The last family of works addresses self-sustainability from a more pragmatic point of view. The

basic idea is to consider a particular application when trying to demonstrate the viability of the

system for some suitable harvesting device.

Torah et al. [71] present a self-powered industrial application based on vibration harvesting. This

work focuses on characterizing the amount of energy that can be obtained from an electric motor, but

it does not outline how this energy is distributed among the application subsystems, and it therefore

neglects to address how this energy spending can be optimized. Waterbury and Wright [82] deal

with the same application and present a similar approach.

. . .

As a general consideration, a system-wide view is lacking, as well as a much-needed discussion on

whether the obtained energy is enough to power a device. This was in part the main motivation

behind addressing this topic through a systematic, well defined energy consumption profile, as pre-

sented in Chapter 2.

2Referred to in Chapter 2 as Simple Reporting Applications
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3.3 Networks Powered by Vibration Sources

This section makes use of the model described in Section 2.5 to demonstrate the feasibility of

self-sustained energy devices in real-world industrial applications. With the aim of illustrating the

methodology, the model is applied to a wireless sensor node featuring vibrational energy scaven-

ging and low-power communications, such as those enabled by TSCH. Even though the section is

presented as a show case, it is important to emphasize that it should be considered as a modeling

guide, and the methodology developed here can be extended to a wide range of applications beyond

this particular instance.

3.3.1 Predictive Maintenance of Rotary Machines

Rotary machines of all sizes are the propelling force behind many industries (refining, chemical,

energy production, etc.). In the constant quest for better efficiency, increased machine speeds and

reduced outages become necessary, which in turn put great emphasis on machinery health. Vibra-

tion monitoring as a part of preventive/predictive maintenance programs has proven to be highly

cost effective. The analysis of motor vibrations has been widely used for early-detection of structural

damage and for monitoring the health of the machinery [50]. The benefits include reduced produc-

tion losses, enhanced efficiency, reliability, longevity of machinery and reduced maintenance costs,

to name just a few.

Monitoring systems get periodic records from sensors installed in the machinery and they try to

detect anomalies in the operation by means of spectral analysis. This type of analysis requires a large

amount of raw data that would eventually collapse wireless communications. For this reason, it is

desirable to compute and analyze the spectrum locally and transmit only those results of particular

relevance. In fact, this is a classic example of an application in which all processing is moved to the

sensor side, and events are only reported when a specific alarm is triggered. In this kind of system,

some sort of periodic health monitoring is required, so as to guarantee that the device remains opera-

tive and carries out its tasks continuously. Taking into account the above considerations, this section

presents a case study based on the following specifications:

• The vibration monitoring application is concerned mainly with the frequency content of the

acceleration signals. As such, an FFT is required to find the dominant harmonics.

• A TSCH network deals with communications. This technology is particularly well suited for

this application, as the same mechanism for managing the network is used as a keep-alive indi-

cator: the fact that network synchronization is maintained implies the device is still operative.

• Finally, vibrational energy is harvested to power the device. Therefore, the same physical mag-

nitude being monitored also provides the source of energy for operating this smart application.
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3.3.2 Experimental Setup

Open
WSNRADIO

MSP430

ACCEL.
B

A
T

T

CYMBET ENERGY
KIT EVAL−09

GINA MOTE
DEVICE

I SCV

Vibrations
Energy

SCAVENGER 
PMG FSH60x2

Charge 
Controller

A

IDEV

A

BASE GINA

RADIO

MCU

Harmonic
Monitoring

Figure 3.4. Experimental setup for vibration energy sources.

Fig. 3.4 shows the experimental setup designed to test this application. The core of the system

is the GINA platform [49], featuring a Texas Instruments MSP430f2618 16-bit microcontroller, Atmel

AT86RF231 IEEE802.15.4 radio, and the STMicroelectronics LIS344ALHTR 3-axis analog accelerome-

ter. The selected vibration scavenger is the Perpetuum PMG FSH60x1. The device is attached to the

case of the motor in a position that maximizes both the vibrations transferred to the sensor as well as

those being scavenged. The energy storage unit is comprised of a lithium polymer battery and the

EnerChip CBC915 Energy Processor. This battery controller unit is integrated into the Cymbet EVAL-

09 Evaluation Kit. All experiments were measured with the NI9203 16-bit analog current acquisition

module, with a resolution of 0.6µA per LSB.

3.3.3 Source Characterization

Mechanical vibrations of several industrial pumps were measured in order to characterize their

amplitude and so the available energy. Several experiments were performed in 24-hour periods to

evaluate the variability over time.

Figs. (3.5a) and (3.5b) show a 1-hour chunk of the spectrograms obtained. In this specific example,

the maximum peak of the spectrum was found at 60Hz. At this frequency, the measured acceleration

amplitude was almost constant in time and was found to have a value of a± σa = 0.098± 0.002 [g].

The position of the main harmonic is particularly important, because the selected harvester should

have its resonator frequency matched with the source. As shown in the pictures, electrical motors

may have other harmonics that are often generated by the power line itself. The information con-
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(c) Amplitude mapped to the current supplied by the harvester.

Figure 3.5. Vibrational energy source characterization.

tained in these secondary harmonics is essential for health analysis, but for harvesting purposes, the

energy contained in the most prominent peak is obviously of greater interest.

As mentioned before, the Perpetuum PMG FSH60x1 harvester was used for the experiments.

Fig. 3.5c shows the mapping between measured acceleration and the current produced by this device.

As highlighted, the output remains above 1.5 mA when attached to a vibration source of 0.1 m/s2.

3.3.4 Application Settings and Adaptive Operation

The current budget obtained in ideal conditions for this application is ĪSCV ≈ 1.5mA (See Fig. 3.5c).

This value is taken as the nominal system reference. On the basis on this expected outcome, Figs. 3.6a

and 3.6b show the suitable subset of parameters for making the application self-sustainable 3.

The information contained in both figures is the same, but with different views. In Fig. 3.6a,

3This example follows the second approach defined in Sec. 3.1.2, as the application settings are configured to meet the

production expected from a given scavenger.
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Figure 3.6. Selection of self-sustainable application settings.

bars represent the device demand for different settings, and the harvested current is depicted as a

flat, equipotential surface. Bars below the plane belong to the self-sustainable region. For strictly

illustrative purposes, the limit of this region has been projected on the harvester surface (black line).

In Fig. 3.6b, bars have been replaced by a colormap to improve readability. In this case, the self-

sustainable region is delimited with a white curve. Given the estimated production of the specific

harvester, the white line separates suitable combinations of parameters that guarantee autonomous

operation in standard conditions.

Harvester Efficiency

In some applications, the incoming energy to the system is only available intermittently (e.g.,

pumps working on-demand). In other cases, the scavenger cannot provide the expected energy

because something changes in the environment (e.g., small modulations in the harmonic frequency).

In both cases, the application should be able to dynamically adapt to the new conditions so as to

remain energetically sustainable. This can be accomplished by selecting a suitable control parameter

and mapping the consumption to the expected energy income.

For vibration scavengers attached to rotary machines, the main cause of lost efficiency is the

mismatch with the vibration frequency. These kinds of devices have a narrow band response, and

any deviation from the resonance frequency reduces the outcome significantly. Other sources of

variability are the quality of the attachment and aging. Despite this, the magnitude of vibrations

is constantly monitored and application settings can conform to new conditions, thus recovering

viability.
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Figure 3.7. Power consumption control through dynamic application settings.

Following with the TSCH example, the number of slots is fixed once the network has been es-

tablished (the length of the slotframe cannot be changed without involving a cascade of changes in

all the nodes). Active slots could be deactivated and converted to Sleep slots, therefore reducing the

throughput of the node. However, this incurs a considerable energetic cost to the network, as it might

trigger rescheduling in other nodes.

A possibly more suitable parameter for regulating power consumption is the time lapse between

records TRCD. In order to dynamically adjust energy consumption to variations of the scavenged

energy, the application needs to keep track of the amplitude of the fundamental vibration harmonics

and estimate the expected input current for the next cycle accordingly.

Fig. 3.7a shows the operational regions for different network settings. To select the interleaving

time, the system maps the analyzed vibration amplitude to get the expected normalized current

(from Fig. 3.5c). This value is used to determine the timeout for the next wake-up by finding the

TRCD in the limit of the region. In the figure, gray areas represent the feasible zones for some selected

network configurations. The system must react to a reduction in the harvested current (horizontal

arrow) by increasing the time elapsed between records until reaching the self-sustainable region

(vertical arrow).

Summarizing, TRCD provides a fine control mechanism for adjusting average power consump-

tion to variations in the scavenged energy. In this case, the penalty for the application’s sustainability

is that more time elapses between successive records and, thus, it compromises the performance of

the monitoring application.
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Motor Duty-cycling

When rotary machines do not operate continuously, the average power obtained is necessarily

lower. Nevertheless, when the motor is halted, continuously monitoring the health through vibra-

tions does not make any sense at all. The problem that arises is the question of when the sensor

device should resume monitoring.

The FFT -analysis provides an easy way to obtain the instantaneous motor status. When the ma-

chine is switched off, the magnitude of the fundamental harmonic experiences a significant diminu-

tion, and the device can reduce its activity until the machine is restarted. In this case, the number

of points for computing the FFT can be reduced while keeping the interval monitoring time fixed.

Obviously, this would compromise the quality of the harmonic analysis in normal operation. But, in

the idle state, the only reason to maintain harmonic tracking is to restore normal operation when the

motor wakes-up again, and for this purpose the quality factor of the harmonic is secondary.

Fig. 3.7b shows how a reduction in the number of points of the FFT allows the device to remain

in a self-sustainable region, even with a significant reduction in the current scavenged. This is an

effective solution that does not compromise the application latency.

3.3.5 Buffer Selection

Duty-cycled operation is managed by temporally buffering overproduction during the active pe-

riods of the energy source (the harvester must be properly sized). The size of the buffering device

depends fundamentally on three key aspects. First, applications settings, which in the end determine

the device’s demand; second, the required autonomous operation, i.e., the longer supply interrup-

tion that can be absorbed; and third, the particular technology chosen (see Table 3.2 for the expected

energy density). Table. 3.3 offers three commercial alternatives for the specific application settings

of Fig. 3.7b. The table contains the expected operational life in the absence of energy production,

provided that the buffer is initially fully recharged, together with the physical dimensions of the de-

vice. In this case, devices have been selected with a small form-factor that is compatible with many

standard embedded devices, but the particular choice may depend on the mechanical constraints.

Table 3.3. Unattended operation limit for different technologies.

Technology Type [Ex.] Capacity Dimensions [mm] Running Time [h]

[mWh] L D H NFFT=256 NFFT=512 NFFT=1024

Li-Ion CR2032 [†] 210 20 3.2 228.3 195.3 150.1

Super-Cap. Axial 25F [§] 25 16 26 27.2 23.3 17.9

Thin-Film 1mAh [‡] 4 25 0.2 4.3 3.7 2.9

† Maxel CLB2032 3V-70mAh Rechargeable Coin-Cell.

‡ Inf.Pow.Sol. Thinergy MEC201-10 Rechargeable Solid-State Cell (Flexible).

§ Maxwell HC-Series BCAP0025 Supercapacitor.



3.4. Networks Powered by Solar Energy 53

3.4 Networks Powered by Solar Energy

This section continues with the model described in section 2.5, using it as a basis for building a

second, real-world application. In this case, a wireless sensor node is used to monitor in real time

the health of a power line transmission tower. This application uses solar energy as a source for

the device, taking advantage of the open-air exposure of the towers. This use case serves as an

example to illustrate the alternative approach defined in Sec. 3.1.2, as now the harvester will be sized

accordingly to the system requirements.

3.4.1 Monitoring Power Line Towers

Tower failures are problematic. They produce unplanned downtimes and energy delivery losses,

which may affect businesses and citizens. The main reasons for transmission tower failure can be

attributed to structural damage due to corrosion, mechanical damage due to impacts and strong

winds, or structural overloading due to ice and snow on the conductor lines. Moreover, minor local

defects can produce structural damage (for example, when the small traversal bars are destroyed or

some other structural elements of the tower are subject to bending). Such damage can also cause a

sudden tower collapse. If the structure begins to deteriorate, corrosion advances exponentially, and

in a few years it can oxidize the tower to the point of failure. Furthermore, if the tower deterioration

advances, the repair time, labor and material cost for repairing the tower increase significantly [62].

But these effects can be mitigated through preventive maintenance at the right time.

The periodic inspection of transmission towers is hence necessary for ensuring the reliability of

electric service to customers. However, due to the spread and large number of towers, and due

to towers often being located in places with difficult access, it is difficult to assess the structural

integrity of the network from the ground. To make a qualitative assessment, it is usually necessary to

conduct aerial inspections, through which experts grade tower conditions. This method is however

very subjective, and evaluating the remaining strength and service life of towers is still difficult and

prohibitively expensive.

Subsequently, ground inspections are only performed on a fixed schedule in very specific areas.

A field engineer drives to a particular tower on a specific date and inspects every element of the

tower. Servicing companies and utilities will inevitably spend valuable time inspecting towers that

would otherwise keep functioning for a long time.

In the present scenario, it is desirable to equip each tower with multiple sensing elements which

provide information about the tower’s structural state of health in real time. The data is transmitted

to a central system, where is evaluated, analyzed and stored for predictive maintenance. The po-

tentially difficult access to the towers requires wireless communications as well as very-low mainte-

nance. But, above all, the need to replace batteries must be avoided.
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Figure 3.8. Experimental setup for solar energy sources.

Fig. 3.8 shows the experimental setup designed for this application. This setup is based on the

same platform as Section 3.3, namely a GINA [49] device connected to a TSCH network. In this case,

the vibration scavenger used in Fig. 3.4 has been replaced by a small photovoltaic cell. The energy

storage unit has been improved by a Maxwell Supercapacitor, used to manage continuous charge

and discharge cycles that result from the solar energy intermittence. The CBC915 charge controller

allows for simultaneous management of lithium batteries and supercapacitors, which simplifies the

tests procedures. This controller unit also allows for switching between different energy-harvesting

sources.

3.4.3 Analyzing the Energy Source

It is a well known fact that solar energy is available intermittently. More concretely, solar irradi-

ation is characterized by a double periodicity: daily cycles (day-night) and seasonal cycles (winter-

summer). This double periodicity can be easily appreciated in Fig. 3.9, where the monthly evolution

of solar irradiation in Los Angeles (California) is presented for the 2001-2010 period. This data is

publicly available, and similar information can be obtained for other locations [3].

Aside from the monthly evolution, the same figure indicates the day-night variations, which are

represented in the vertical direction for each specific month and split into slots of 1 hour. To make

this evolution understandable, data is projected in two orthogonal directions. In the first one, daily

irradiation has been aggregated (the figure below the scale-colormap). This plot shows the monthly

evolution, i.e., the seasonal variations, averaged per day, for the expected energy income.
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Figure 3.9. Solar irradiation in L.A.City over the period 2001-2010 from different views. Top-Left: monthly irradi-

ation colormap. Each point is the average irradiation at the same hour (vertical dimension) over the specific month

(horizontal). Top-Right: projection of all irradiation values, showing the variability in the full period. Bottom-Left:

daily average projection. Each value is the monthly average irradiation (dashed line shows year average).

The second one is a projection of the hourly power of every single month in the period (right

side). This figure captures with a single snapshot the historic daily behavior of solar irradiation.

Obviously, some months have longer days than others, and even the same month can see irradiation

change from one day to another; but the interruption of energy production at night is inevitable.

In light of these patterns, this proposal handles the double periodicity in two different ways:

seasonal variations are absorbed by dynamically adapting the application to the expected energy

income, while daily energy over-production is stored in a super-capacitor for powering the system

at night. The next two sections lay out the procedure in detail.

3.4.4 Harvester Sizing and Adaptive Operation

When the available energy is highly variable (as solar irradiation is) the selection of a suitable

combination of the harvester size and application settings is complex, as the system should be de-

signed to stay alive even in worst case conditions. This becomes especially relevant when the applica-

tion needs to dynamically adapt to new, non-predicted conditions, while still remaining energetically

self-sustainable.

Looking at the historic evolution of the averaged irradiation (Fig. 3.9, bottom), the minimum

expected value for the daily average power is 0.1kW/m2, corresponding to the worst winter period
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on the record 4. Based on this observation, and considering the efficiency of the selected solar panel

technology (typically ηPanel ≈ 15%) and the DC-DC converter (ηdc ≈ 50 − 80%), it can be expected

that the power production per area unit of the system can be estimated in P̂≈0.8 mW/cm2. This

value, once converted according to the Section 2.4.1 rules (with the losses due to DC/DC conversion

accounted for in the efficiency factor ηdc), corresponds to ÎSCV =0.32 mA/cm2 at 2.5V 5.

With this value in mind, the next step is to understand the current requirements of the application.

Fig. 3.10 shows the operational regions for different network configurations (different schedules that

can provide different levels of QoS or bandwidth). Again, the number of active slots is fixed once

the network has been established and, therefore, the time between consecutive measurements TRCD

would serve as a more appropriate control parameter in accordance with energy availability.

At this point, a key aspect to consider is the asymptotic behavior of Eq. (2.18). Even when using

the very high values of TRCD, the offset term due to network maintenance and system background

functionality makes it almost impossible to obtain further energy savings. This is the asymptotic

limit below 0.5mA, which is noticeable in Fig. 3.10. It is important to understand that this value is a

system limit fixed by the technology used. Therefore, it determines the absolute minimum size of the

solar panel, meaning that the harvested current must be above this value in worst case conditions.

This is a good example of the necessity for a system-wide view in the wireless device’s design flow:

a power condition is imposed by radio technology and emerges as a mechanical system constraint

through the size of the solar panel.

Bearing in mind the minimum value needed to operate the network, and recalling that expected

current per unit are is ÎSCV ≈0.3mA/cm2, a small form-factor panel of 2cm2 guarantees a current of

ISCV = 0.6mA in worst case irradiation periods. Beyond this value, the system can keep track of

the variations of the energy scavenged and estimate the current income for the next cycle, in order to

operate in a more aggressive power mode according to the season.

In Fig. 3.10, the gray areas represent the feasible zones that satisfy the condition IDEV ≤ ISCV .

The device is configured in a low-power mode during winter. In this mode, the device analyzes

the state of the tower every 30 seconds, which satisfies the sustainability condition for a current of

ISCV ≥ 0.6mA (in the direction of top-left arrow). In summer periods, when the expected incoming

energy is around 3 times higher, the device can be switched to high performance mode. In this mode,

the device takes a record every 5 seconds, which is also sustainable for currents above ISCV ≥ 1.8mA

(bottom-right arrow).
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Figure 3.10. Dependence of the time between records and the harvester current for different network configurations.

Gray areas represent the feasible zones that satisfy the condition IDEV ≤ ISCV . The device is configured in a low-

power mode during winter. In this mode, the device analyzes the state of the tower every 30 seconds, which satisfies

the sustainability condition for a current of ISCV ≥ 0.6mA (in the direction of top-left arrow). In summer periods,

when the expected incoming energy is around 3 times higher, the device can be switched to high performance mode.

In this mode, the device takes a record every 5 seconds, which is also sustainable for currents above ISCV ≥ 1.8mA

(bottom-right arrow).

3.4.5 Energy Buffer Sizing

Night intermittence is managed by temporally buffering to a super-capacitor the over-production

during the central hours of the day. Super-capacitors support a virtually unlimited number of charge

and discharge cycles, therefore making them particularly suitable for this application (See Table 3.2

and discussion at the end of Section 3.1.4) One of the drawbacks of super-capacitors is their relatively

high self-discharge ratio, but daily replenishment make this effect negligible. In addition, super-

capacitor technologies offer a good trade-off between energy density and peak current, the latter

being desirable for radio transmissions.

For buffering purposes, worst case scenarios occur when the devices operate in high performance

mode, as a higher amount of energy needs to be stored in order to power the system at night. So, in

contrast to the sizing method, it is important in this case to consider the periods when the maximum

amount of harvested energy is expected.

Fig. 3.11 shows the historic irradiation from Fig. 3.9 mapped onto the power generated by a 2cm2

cell (obtained after the DC/DC regulator). In the high performance settings, the average demand

4This value is roughly 10% of the power received with maximum irradiation (See Tab. 3.1)
5Can be compared with the 1.5 mA reference value of the vibration harvester at 0.1 g.
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Figure 3.11. Monthly-Daily-Hourly variations over the 2001-2010 period. Daytime over-production (light gray area)

must be stored to cover device demand during the under-production periods (indicated by the dark gray area).

from the device is close to 4.5 mW . Daytime over-production is depicted with the light gray area

inside the maximum production (black-solid dots). The device demand (dashed-line) must be stored

for use during the under-production periods, indicated by the dark gray area. In this example, the

amount of energy to be buffered is EBuff≈58mWh, which requires a 75F super-capacitor [55].

Specifically, we use the Maxwell BCAP0100 with a capacity of 100F in 17cm3 (L=45mm d=22mm),

used at 75% of its capacity 6.

This result demonstrates how solar harvesting and super-capacitor technologies can be combined

into a reduced form factor that enables reasonably small perpetual devices.

6From Tab. 3.1, an estimated value of at least 12 cm3 is required for 58mWh.
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Discussion

Using the thread of sustainability as the main driver, this chapter makes use of the analytical

model developed in Chapter 2 as a tool for facilitating the application configuration and scavenger

selection at pre-deployment stages. The proposed approach is oriented toward providing concise

answers to the main concerns about energy harvesting. The resulting methodology can be outlined

in six simple steps: i) Find a source of energy in your environment. ii) Measure the magnitude of the

available energy, characterize its cycles and analyze possible patterns. iii) Run a simulation within

the feasible limits of application parameters. iv) Select a suitable harvester that is sized according to

both the energy available and the first estimate of the application’s consumption. v) Fine-tune the

application parameters according to the selected harvester. vi) Select an appropriate buffer.

With the aim of demonstrating its practical usefulness, the presented methodology has been ap-

plied to two real application scenarios. Both case-studies looked at a given industrial wireless net-

work application, and considered their radio technology, as well as sampling and processing re-

quirements, all of which were needed to provide an accurate estimate of energy demands. This

information was then used to determine what scavenger and super-capacitor was required to make

it self-sustainable. Furthermore, the parametrized model was used to properly configure the appli-

cation in order to enable different modes of operation in case of varying conditions.

Additionally, this chapter has prompted an evaluation of the main off-the-shelf technologies re-

lated to: energy-harvesting as energy sources (vibration, thermal and solar harvesters); energy stor-

age (batteries, thin-film batteries and supercapacitors); and energy conditioning (ultra-low power

profile DC/DC converters, regulators and inverters).

In summary, by remaining always within the framework defined in Section2.1, we have solved

the sustainability problem of a wireless sensor on the basis of having a clear understanding of the

energy production patterns, the characterization of the energy demand throughout the device’s ope-

ration, and the proper dimensioning of the energy buffer. This approach ensures the right balance of

the system and enables the potential cost optimization of product development.

More interestingly, this chapter uses these two real-word applications to launch an exploration

of the quality of service concept that is applied to a monitoring application. Specifically, this chap-

ter responds to a recurrent demand by system-developers: continued performance when energy is

scarce. In this case, the performance (interpreted as quality of service) is measured in terms of how

often the system carries out monitoring operations, whereas the constraint is self-sustainability.





Chapter 4

Lossy Compression Methods

The rationale behind data compression is that one can obtain compression in exchange

for some reduction in the energy spent on transmission. The common thinking among

researchers and implementers is that compression is always a good choice, because the

major source of energy consumption in a sensor node comes from the transmission of

the data. This is why temporal compression has been widely investigated in the field of

wireless sensor networks, where energy efficiency is a crucial consideration due to the

constrained nature of the sensor devices.

Lossy compression is deemed a viable solution, as the imperfect reconstruction of the

signal is often acceptable. As we shall see in this chapter, this may allow some important

savings. Even more, some compression algorithms inherently entail filter capabilities,

and discarding some (noisy) information can even be desirable.

Most importantly, with some lossy algorithms it is possible to adjust compression

to some (application dependent) maximum error tolerance, allowing additional gains in

terms of compression, but sacrificing some quality in the reconstruction. This trade-off is

seldom quantitatively exploited.

This chapter tries to fill this gap first by evaluating a number of lossy compression

methods selected from the literature, and second by analyzing their performance in terms

of compression efficiency, computational complexity and energy consumption. With this

aim, the overall energy consumption and signal representation accuracy is discussed as a

function of the most relevant signal statistics.
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4.1 Introduction: Compression for Energy Constrained Devices

GIVEN the high amount of energy spent on communications, it is natural to try to reduce radio

energy. Compression seems a self-evident choice, as it directly reduces the size of data to be com-

municated. These assumptions have been widely accepted by the community. Only a few works

in the literature look into the adverse impact of compression, namely the cost of compression itself.

Current processor technologies seem inexpensive in terms of energy, but when the algorithms com-

plexity increases, their contribution should be taken into account. This fact suggests (and the rest of

this chapter aims to demonstrate) that compression should be addressed with some care. Indeed, a

systematic analysis is required in order to evaluate the real impact of compression on overall energy

consumption.

This chapter focuses on the energy saving opportunities offered by lossy temporal compression of

data. With lossy techniques, the original data is compressed by discarding some of the original

information in it. Hence, at the receiver side, the decompressor can reconstruct the original data

only up to a certain level of accuracy. Depending on the application, this small inaccuracy in the

reconstructed signal may be acceptable.

In terms of compression ratio, lossy compression makes it possible to trade some reconstruction

accuracy for some additional gains. Note that these gains correspond to further savings in terms of

transmission needs. Thus, lossy compression provides an additional flexibility, as one can tune the

compression ratio based on energy consumption criteria, even though this means the loss of some

fidelity in the reconstruction.

In the scenario of wireless sensors, compression ratio is still a fundamental performance metric for

compression algorithms. However, the cost function is determined mainly by the energy consump-

tion, and the accuracy of the recovered signal can be interpreted as a constraint. This relationships

create a particular perspective, which will be detailed in the last section of this chapter.

4.1.1 Metrics for Lossy Compression

As a basis for the analysis, as well as to provide a more formal treatment of all this concepts, the

following definitions will be considered in the remainder of this chapter:

D . Compression Ratio η : Given a finite time series x(n)
.
=x1, · · · , xn and its compressed version

x̂(n), η is the ratio between the number of bits used to represent the compressed time series

Nb(x̂) and the number of bits of the original one, Nb(x). With this definition, compression is

achieved if η < 1.

η =
Nb(x̂)

Nb(x)
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D . Reconstruction error ε(n): Given a discrete time series x(n) and its compressed version x̂(n),

the reconstruction error at time n ≥ 1 is defined as the deviation between the original sample

and the recovered one, measured by the Euclidean distance metrics.

ε(n) = |x(n)− x̂(n)|

D . Error Tolerance εT: The maximum permitted error at the receiver end for all terms in the series.

It must satisfy the following condition for all values of n:

εT ≥ ε(n), ∀n

4.1.2 Processing vs. Transmission Energy Tradeoffs

Standard compression algorithms are aimed at reducing storage size, not saving energy. As a

result, compression ratio is their fundamental metric. This work focuses instead on energy savings

as the primary metric. Thus, the relation between compression and energy must be clearly stated. To

this end, it is important to define some useful concepts.

D . Compression Energy EC: The energy used to accomplish the compression task. This contri-

bution accounts for only the CPU operations associated with compression algorithms, with-

out considering the additional costs related to other tasks of the micro-controller. Specifically,

EC(x) is the processor energy for compressing a data series.

D . Transmission Energy ET: The energy consumed for transmission, accounting for the radio

chip characteristics and the protocol overhead. ET (x) is the total energy for transmitting the

original series, x(n), while ET (x̂) is the energy for transmitting the compressed version, x̂(n).

D . Total Energy E: The sum of the energy consumption for compression EC(x) and transmission

of the compressed data ET (x̂). It is equal to ET (x) in the uncompressed case.

E(x, x̂) = EC(x) + ET (x̂)

D . Compression Energy Balance EB: The difference between the cost ET (x) associated with

transmitting x(n) uncompressed and the combined cost E(x̂) of processing and transmitting

x̂(n) compressed. This can be expressed as the difference between the savings in transmission

and the loss in compression.

EB(x, x̂) = ∆E = ET (x)− E(x, x̂) = (ET (x)− ET (x̂))− EC(x)

D . Compression Energy Gain EG: The ratio between the energy spent on transmission with no

compression, ET (x), and the total energy spent on compression and transmission, ECT (x̂).

EG(x, x̂) = ET (x)/ECT (x, x̂)
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A compression method is said to be efficient when its energy balance is positive; that is, the over-

all cost for compression and transmission of the compressed data is strictly smaller than the cost

associated with transmitting data uncompressed. Formally, the efficiency condition is expressed as:

EC(x) + ET (x̂) < ET (x) (4.1)

Taking the inequality on both sides of equation Eq. (4.1), dividing it by ET (x), and then rearranging

the terms leads to:
ET (x)

EC(x)
>

1

1− ET (x̂)/ET (x)
,

Assuming that the transmission energy is proportional to the number of bits to be transmitted,

and that it is parametrized by the transmission energy per bit Eb
T , then ET (x) ∼= Eb

T · Nb(x) and

ET (x̂) ∼= Eb
T ·Nb(x̂). By substituting on the right-hand side of the equation and using the definition

of the compression ratio η, the efficiency condition of Eq. (4.1) can be expressed in terms of η:

ET (x)

EC(x)
>

1

1− η
,

The energy for compression is decomposed into the product of three terms: EI , the energy spent

by the micro-controller per instruction; N b
I , the number of instructions performed by the compression

algorithm per (uncompressed) bit of x(n); and Nb(x), the number of bits composing the input signal

x(n). Using once again ET (x) ∼= Eb
T ·Nb(x), Eq. (4.1.2) can be rewritten as:

Eb
TNb(x)

EIN b
INb(x)

>
1

1− η
,

The above inequality can be rearranged so that the quantities that depend on the selected hard-

ware architecture appear on the left-hand side, leaving those quantities that depend on algorithmic

aspects to remain on the right-hand side, resulting in Eq. (4.2):

Eb
T

EI
>

N b
I

1− η
(4.2)

The right-hand term of Eq. (4.2) explicitly shows two key parameters in order to characterize a

compression algorithm with an energy optimization objective. As expected, the compression ratio η

takes part of this metric. Moreover, the computational complexity of the algorithm also takes part on

the compression efficiency through N b
I , a parameter representing the number of instructions required

to process one bit.

In turn, the left-hand side of Eq. (4.2) captures the balance between radio and processor technolo-

gies for the specific platform. In current low-power wireless devices, the energy cost of transmitting

a single bit is approximately the same as that needed for processing a few hundred operations [58]

[5]. This is an important value to keep in mind, as it provides an effective means for measuring the

allowable complexity of an energetically efficient compression algorithm.
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4.1.3 Generation of Test-Bench Signals

Compression performance depends not only on the selected algorithm, but also on the specific

signal. To fairly compare different algorithms, they must be evaluated over different types of signals

and multiple realizations of each type.

Characterization of Signals

The first matter to address in a systematic study of compression algorithms is the classification of

the input signals. As a general rule, the more aleatory a signal is, the less compressible it is. In lossy

compression, the achievable compression ratio is adjustable, to some extent. Yet, in lossy compres-

sion, the penalty to be paid for randomness is reconstruction accuracy. Therefore, randomness is a

parameter that must be taken into account for signal classification.

Furthermore, temporal correlation may help to reduce the information required for recovering

the original data series. Intuitively, (temporal) similarity is evidence of redundancy. This means

that a suitable technique may be used to remove some information without losing significance. As

detailed in the next section, many compression algorithms take advantage of this fact directly or in-

directly. Not surprisingly, correlation and randomness are closely related. This relationship suggests

that correlation can be a good candidate for signal characterization when dealing with compression

algorithms.

This chapter follows this approach. For this reason, it is very convenient at this point to establish

the following definitions:

D . Autocorrelation ρ: The cross-correlation of a signal with itself. Given a stationary discrete time

series x(n) with n = 1, 2, . . . , N , the autocorrelation is defined as:

ρx(n) =
E [(x(m)− µx)(x(m+ n)− µx)]

σ2
x

where µx and σ2
x are the mean and the variance of x(n), respectively.

D . Correlation Length λ: For a given discrete time series x(n), the correlation length is the small-

est value such that the autocorrelation function of x(n) is smaller than a predetermined thresh-

old ρth. Formally:

λ = argmin
n>0

{ρx(n) < ρth} (4.3)

The novel approach here, which had not previously been tackled by the literature, is to introduce

signal correlations when evaluating compression algorithms and, more specifically, to identify corre-

lation length as a key parameter. The remainder of this chapter aims to demonstrate the suitability

of this approach.
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Generation of Synthetic Stationary Signals

A fair comparison of algorithms requires a test-signal database with multiple realizations for each

target correlation (assuming correlation to be a characteristic parameter of each type of signal). The

number of realizations must be large enough to guarantee statistical significance, and therefore some

systematic approach to build a database is desirable. The approach adopted here is to generate a

set of synthetic signals following the method described in [87]. Following the method proposed in

[23] to enforce the first and second moments in a white random process, the objective is to obtain a

random time series x(n) with given mean µx, variance σ2
x and autocorrelation function ρx(n). The

procedure works as follows:

1. A random Gaussian series G(k) 1 with k = 1, 2, . . . , N is generated in the frequency domain,

where N is the length of the desired time series x(n). Every element of G(k) is an independent

Gaussian random variable with mean µG = 0 and variance σ2
G = 1.

2. The Discrete Fourier Transform (DFT) of the autocorrelation function ρx(n) is computed, Sx(k) =

F [ρx(n)], where F [·] is the DFT operator.

3. The entry-wise product X(k) = G(k) ◦ Sx(k)
1

2 is computed.

4. The correlated and Gaussian time series x(n) is obtained as F−1[X(k)].

Additionally, to emulate the behavior of real world physical signals, some noise can be super-

imposed to the synthetic signals, so as to mimic random perturbations due to limited precision of

the sensing hardware and random fluctuations of the observed physical phenomenon. The noise is

commonly modeled as a zero mean white Gaussian process with standard deviation σN.

4.1.4 Theoretical Bound for Signal Compression

Given a discrete and Gaussian time series x(n), the theoretical lower bound on the transmission

rate Rmin (bits/sample) can be derived from [11]:

Rmin(λ,N, εT ) =
1

N

N∑

i=1

max

{
0,

1

2
log2

(
ζ2i
εT

)}

where εT is the maximum permitted distortion at the receiver, N is the number of input samples

and ζi are the eigenvalues of the covariance matrix Σ(λ) of x(n) for n = 1, . . . , N . Hence, for given

(λ,N, εT ), the compression ratio achievable by any practical scheme is bound as:

η ≥
Rmin(λ,N, εT )

R0
(4.4)

where R0 is the rate expressed in bits/sample in the uncompressed case.

1For an in depth characterization of the Gaussian correlation function, see [4].
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4.2 Related work

A comprehensive survey of practical compression schemes for wireless sensor networks can be

found in Srisooksai et al. [68]. This work classifies a wide selection of existing techniques covering,

for each category: performance, open issues, limitations and suitable applications.

More specifically, much of the existing literature has been devoted to the systematic study of

lossless compression. In general, these works address the potential benefits of lossless compression

in terms of energetic savings, thus providing a useful perception of the trade-offs involved in these

strategies. Van Der Byl et al. [73] examine Huffman, Run Length Encoding (RLE) and Delta Encoding

(DE), comparing the energy spent on compression for these schemes. Liang [42] treats lossy (LTC) as

well as lossless (LEC and Lempel-Ziv-Welch) compression methods, but focuses on their compres-

sion performance. Along the same lines, Barr and Asanović [8] compare several lossless compression

schemes for a StrongArm CPU architecture, showing that data compression in some cases may cause

an increase in the overall energy expenditure, which is a particularly relevant result.

The lesson learned is that lossless compression can provide some energy savings. These are,

however, smaller than one might expect because, for the sensor hardware in use nowadays, the

energy spent on the execution of the compression algorithms may be of the same order of magnitude

as that spent on transmission, thus limiting the applicability to energy-constrained wireless devices.

This engaging consideration was outlined for first time in [8], and it provided the primary motivation

for the present work, thus encouraging us to address the topic in a more systematic way.

Further work has been carried out on lossy compression schemes. Of particular interest for the

present chapter, it is worth noting the algorithms of the following: LTC (Lu et al. [45]), PLAMLiS (Liu

et al. [43]) and Enhanced-PLAMLiS (Pham et al. [56]), all of which are based on Piecewise Linear Ap-

proximation (PLA). Alternative approaches are Adaptive Autoregressive Moving Average (Lu et al.

[45]), which deal with ARMA models; RACE (Chen et al. [17]), which exploits Wavelet-based com-

pression; and a lightweight compression framework based on Differential Pulse Coding Modulation

(DPCM) (Marcelloni and Vecchio [47]).

It is remarkable that no systematic energy comparison had previously been carried out for lossy

schemes. Many important questions were still open. It was not clear whether lossy compression

could be advantageous in terms of energy. Little had been said about the tradeoff between com-

pression ratio and representation accuracy, and how both affect the overall energy expenditure. In

addition, it was unclear whether linear and autoregressive schemes could provide any advantages at

all when compared to more sophisticated techniques such as Fourier- or Wavelet-based transforms,

which have been effectively used to compress audio and video signals, and for which fast and com-

putationally efficient algorithms exist.
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Figure 4.1. General lossy compression diagram.

4.3 Lossy Compression Methods for Energy Constrained Devices

In order to facilitate the description of the compression schemes considered in this section and to

identify their essential features, Fig. 4.1 shows the diagram of a generic lossy compression algorithm.

Following the structure introduced in [80], three fundamental stages are identified:

A Transformation: this stage entails the representation of the input signal into a convenient trans-

formation domain. That is, the time series x(n) is decomposed into a number modes, repre-

sented by N of coefficients {F1, . . . , FN} in the new domain. As an example, FFT, DCT and

Wavelet transform time series are decomposed into the frequency domain.

B Adaptive modeling: This stage is subdivided into three sub-stages:

i A set of coefficients S ≤ N is selected so that these will be sufficient to represent the signal

within a certain target accuracy.

ii A further adaptive modeling phase (models {M1, . . . ,MS}) can be applied to the time

series corresponding to each of the selected coefficients.

iii Finally, a quantizer can be employed to represent the data through a finite number of

levels. This step codifies the level and not the actual value, so that the number of bits for

the representation is lower.

This stage is the main source of the information lost in compression. First, the selection stage

voluntarily discards part of the information; second, modeling introduces some errors in the

representation of each mode; and third, quantization generates additional noise to the signal.

Clearly, it is also where most of the compression is achieved.
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C Entropy coding: the quantized data can be encoded using an entropy coder (EC) to obtain addi-

tional compression. Entropy represents the amount of information present in the data, and

an EC tries to encode the given set of symbols with the minimum number of bits required to

represent them.

As a representative example, JPG image compression [80] matches this model as follows:

- Stage-A: DCT transform to frequency domain.

- Stage-B: Quantization for all coefficients, discarding null coefficients after quantization. Run-

length encoding for the position of null coefficients. DPCM modeling for the DC coefficients.

- Stage-C: Huffman coding (arithmetic coding is also supported).

It should be noted that a specific compression algorithm does not necessary have to implement

all of the above three stages, but some of them can be omitted or only partially taken into account.

For example, one could use the selection and quantization blocks in Stage-B, without any adaptive

modeling. In the wireless sensors domain, the particular combination of algorithms to use depends

on the reconstruction accuracy goal, as well as on the affordable computational complexity.

The next section briefly reviews the lossy signal compression methods that will be characterized

in the last section of this chapter. Due to the contained nature of the sensor devices, the selected

schemes use only some of the above stages. This is the reason for adopting the following classifica-

tion criteria. Section 4.3.1 discusses techniques based on Fourier and Wavelet transforms (Stage-A),

Section 4.3.2 describes adaptive modeling techniques (Stage-B) and, finally, Section 4.3.3 presents

lightweight schemes based on quantization and entropy coding (Stage-C).

4.3.1 Compression Methods Based on Fourier and Wavelet Transforms

Transformation-based techniques achieve compression by sending only selected subsets of the

FFT, DCT or Wavelet transformation coefficients. These algorithms first apply an orthogonal map-

ping of the signal into a suitable domain (Stage-A) and subsequently use the information selection

block of Stage-B. Among them, the methods presented below differ in how the transformation co-

efficients are picked. This is not just a technical detail. Throughout this work, the maximum error

tolerance must be guaranteed as a system (application) level specification. This approach requires

a specific treatment of this family of algorithms, which contrasts with the classic methods in audio

and image compression, where reconstruction accuracy is not a hard constraint but a performance

metric.
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Fast Fourier Transform

The first considered method relies on the simplest way to use Fourier transforms for compression.

Specifically, the input time series x(n) is mapped to its frequency representation X(f) ∈ C through

a Fast Fourier Transform (FFT). As the FFT output domain is the complex plane, it is convenient

to define XR(f)
.
= Re{X(f)} and XI(f)

.
=Im{X(f)} as the real and the imaginary part of X(f),

respectively. Since x(n) is a real-valued time series, X(f) is Hermitian, i.e., X(−f)=X(f). This

symmetry allows the FFT to be stored using the same number of samples N of the original signal.

For N even it is enough to take f∈{f1, . . . , fN/2} for both XR(·) and XI(·); while, if N is odd, the

required selection is f∈{f1, . . . , f⌊N/2⌋+1} for the real part and f∈{f1, . . . , f⌊N/2⌋} for the imaginary

part. The compressed representation X̂(f)
.
= X̂R(f) + jX̂I(f) will also be in the frequency domain

and it is built (for the case of N even) as follows:

1. initialize X̂R(f) = 0 and X̂I(f) = 0, ∀ f ∈ {f1, . . . , fN/2};

2. select the coefficient with max. absolute value from XR and XI , i.e., fmax
.
= argmaxf{|XR,I(f)|}

and M
.
= argmaxi∈{R,I}{|Xi(fmax)|};

3. set X̂M (fmax) = XM (fmax) and then set XM (fmax) = 0;

4. if x̂(n) (the inverse FFT of X̂(f)) meets the error tolerance constraint, then continue; otherwise

repeat from step (2);

5. encode the values and the positions of the harmonics stored in X̂R and X̂I .

Hence, the decompressor at the receiver obtains X̂R(f) and X̂I(f), and it exploits the Hermitian

symmetry to reconstruct X̂(f). Note that the above coefficient selection method resembles a K non-

linear approximation, which is usually implemented by image processing techniques (see, e.g., [29]),

in the sense that it uses the magnitude as a criterion to select the harmonics. For a time series, K

(the number of coefficients to be retained) is dynamically selected depending on the input signal

characteristics.

Also note that many alternative schemes for the selection of the Fourier coefficients are possible.

For instance, one may select the FFT coefficients based on the maximum absolute magnitude of

their complex values and then retain both the real and imaginary part of the selected coefficients.

Nevertheless, differences among the various approaches are insignificant.

Low-Pass Filter Fast Fourier Transform

The Low-Pass Filter (LPF) is a FFT-based lossy algorithm alternative to the generic method. Since

the input time series x(n) is a slowly varying signal in many common cases (i.e., it has a strong tem-

poral correlation), with some high frequency noise superimposed, most of the significant coefficients
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of X(f) reside in the low frequencies. FFT-LPF is initialized to X̂(f) = 0 for all frequencies. Thus,

X(f) is evaluated from f1, incrementally moving toward higher frequencies, f2, f3, . . . . At each ite-

ration i, X(fi) is copied onto X̂(fi) (both the real and imaginary parts), the inverse FFT is computed

taking X̂(f) as input, and the error tolerance constraint is checked on the thus obtained x̂(n). If the

given tolerance is met, the algorithm stops; otherwise it is reiterated for the next frequency fi+1.

Note that this method resembles a K linear approximation scheme in which the selection order

is fixed (LPF). Furthermore, the number of coefficients to be retained, K, is dynamically adjusted in

order to meet a given error tolerance. In general terms, this low-pass approach for the coefficients se-

lection is similar to several audio compression algorithms, in that it retains the harmonics according

to its frequency.

Windowing

The two algorithms discussed above suffer from an edge discontinuity problem. In particular,

when computing an FFT over a window of N samples, if x(1) and x(N) differ substantially the

information about this discontinuity is spread across the whole spectrum in the frequency domain.

Hence, in order to meet the tolerance constraint for all the samples in the window, a high number

of harmonics is selected by the previous algorithms, resulting in poor compression and in a high

number of operations.

To solve this issue, a refined version of the FFT algorithm considers overlapping windows of

N + 2W samples (instead of disjoint windows of length N ), where W is the number of samples

that overlap between subsequent windows. The first FFT is taken over the entire window and the

selection of the coefficients goes on, depending on the selected algorithm (either FFT or FFT-LPF), but

the tolerance constraint is only checked on the N samples in the central part of the window. With this

workaround, it is possible to get rid of the edge discontinuity problem and encode the information

about the N samples of interest with very few coefficients, as will be shown shortly in Section 4.4. As

a drawback, the direct and inverse transforms have to be taken on longer windows, which results in

a higher number of operations.

Discrete Cosine Transform (DCT)

Discrete Cosine Transform (type II) is included in this study mainly for the following three rea-

sons. First, its coefficients are real. Coping with real and imaginary parts is not required, and thus we

save both memory and computation. Second, it has a strong energy compaction property [61]. In other

words, most of DCT’s signal information tends to be concentrated in a few low-frequency compo-

nents. And, third, the DCT of a signal with N samples is equivalent to the DFT of a real signal with

even symmetry and double length; so the DCT does not suffer from the edge discontinuity problem.
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Wavelet Transforms

As an alternative to Fourier schemes, several methods based upon multi-resolution analysis have

been proposed in the literature. RACE [17] is a notable example: it features a compression algorithm

based on the Fast Wavelet Transform (FWT) of the signal (Stage-A), followed by the selection of a

number of coefficients (Stage-B) that are used to represent the input signal within given error bounds.

As for DCT schemes, the compression takes place mainly in the selection step.

In [17], a Haar basis function is used for the wavelet decomposition step. The most remarkable

contribution of RACE is the way in which the wavelet coefficients are selected. Most traditional

compression algorithms follow the FWT methodology by simply picking the largest coefficients. In

other words, the selection step is based on a threshold value: all the coefficients below the threshold

are discarded, whereas those above it are retained. What is different about RACE is that the Haar

wavelet coefficients are arranged into a tree structure. Then, thanks to some special properties of

the Haar functions, the error in the reconstruction of the signal is estimated at each node of the tree,

assuming that this node (i.e., the corresponding coefficient) and all its children in the tree are omitted.

This selection method has two important properties. First, the signal representation error can be

evaluated on-the-fly during the decomposition, and the maximum error tolerance can be kept under

control without having to compute any inverse wavelet transform. Note that in the FFT and DCT me-

thods above, the error tolerance check always entails the computation of an inverse transformation at

the source. Second, compression can be achieved in an incremental way by descending the tree and

adding nodes until the desired precision is reached (of course, the higher the number of coefficients,

the lower the compression performance). These facts are very important for energy-constrained

WSNs and, as presented in Section 4.4, they lead to less energy being allocated to compression when

compared to the DCT and FFT schemes.

4.3.2 Compression Methods Based on Adaptive Modeling

In Adaptive Modeling schemes, some signal model is iteratively updated over time, exploiting the

correlation structure of the signal through linear, polynomial or autoregressive methods. Specifically,

the input time series is collected and processed according to transmission windows of N samples

each. At the end of each time window, the selected modeling method is applied. The result is a set

of model parameters that are transmitted in place of the original data, with the expectation that the

number of model parameters is lower than the number of samples in the original window. Note that

information selection is not used in the adaptive modeling schemes described below, as they do not

employ any transformation stage.
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Figure 4.2. Lightweight Temporal Compression example: first line segment.

Piecewise Linear Approximations

The idea behind Piecewise Linear Approximations (PLA) is to use a sequence of line segments as

models to represent an input time series x(n) over pre-determined time windows of N samples,

with a bounded approximation error. For slowly varying time series (such as most environmental

measures), linear approximations work well enough over short time frames. Further, since a line

segment can be determined by only two end points, PLA leads to quite efficient implementations in

terms of memory and transmission requirements.

Most PLA algorithms use standard least squares fitting to calculate the approximating line seg-

ments (hereafter referred to as x̂(n)). Often, a further simplification is introduced to reduce the

computational complexity, which consists of forcing the end points of each line segment to be points

of the original time series x(n). This makes least squares fitting unnecessary, as the line segments are

fully identified by the extreme points of x(n) in the considered time window. The following schemes

exploit this approach.

Lightweight Temporal Compression (LTC) [64]: the LTC algorithm is an efficient, low complexity

PLA technique. LTC works as follows. Let x(n) be the points of a time series with n = 1, 2, . . . , N .

The LTC algorithm starts with n = 1 and fixes the first point of the approximating line segment to

x(1). The second point x(2) is transformed into a vertical line segment that determines the set of all

acceptable lines Ω1,2 with starting point x(1). This vertical segment is centered at x(2) and covers all

values meeting a maximum tolerance εT , i.e., those that lay within the interval [x(2)− εT , x(2) + εT ]

(see Fig. 4.2a). The set of acceptable lines for n = 3, Ω1,2,3, is obtained by the intersection of Ω1,2

with the set of lines that have starting point x(1) and that are acceptable for x(3) (dashed lines in

Fig. 4.2b). The procedure is iterated by adding one point at a time until, at a given step s, some x(i)

is not contained in Ω1,2,...,S . Thus, the algorithm sets x(1) and x(s − 1) as the starting and ending

points of the approximating line segment for n = 1, 2, . . . , s− 1 (solid line in Fig. 4.2b). It then starts

over with x(s− 1), considering it to be the first point of the next approximating line segment. In this

example, s = 4.
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PLAMLiS [43]: Similarly to LTC, Piecewise Linear Approximation with Minimum number of Line Seg-

ments represents the input data series x(n) through a sequence of line segments. Here, the linear

fitting problem is converted into a set-covering problem, trying to find the minimum number of seg-

ments that cover the entire set of values over a given time window. This problem is solved through

a Greedy algorithm as explained in [43]. This algorithm is outperformed in terms of complexity by

E-PLAMLiS.

n
1 2 3 4 5 6 7

x(n)

(a) First segment.

n
1 2 3 4 5 6 7

x(n)

(b) Partition in two segments.

Figure 4.3. Enhanced PLAMLiS example: first segment splitting.

Enhanced PLAMLiS [56]: This is a top-down recursive segmentation algorithm with smaller com-

putational costs in comparison to PLAMLiS. Consider the input time series x(n) and a time window

n = 1, 2, . . . , N . The algorithm starts by taking a first segment (x(1), x(N)) (Fig. 4.3a). If the maxi-

mum allowed tolerance εT is met for all points along this segment, the algorithm ends. Otherwise,

the segment is split into two segments at the point x(i), 1 < i < N , where the error is maximum, and

it obtains the two segments (x(1), x(i)) and (x(i), x(N)) (i = 4 in Fig. 4.3b). The same procedure is

recursively applied to the resulting segments until the maximum error tolerance is met for all points.

Polynomial Regression

The above methods can be modified by relaxing the constraint that the endpoints of the segments

x(i) and x(j) (j > i) must be actual points of x(n). In this case, polynomials of given order p ≥ 1

are used as the approximating functions, whose coefficients are found through standard regression

methods based on least squares fitting [57]. Specifically, the Polynomial Regression (PR) algorithm

starts with a window of p samples (since a p-order polynomial exactly interpolates p points), for

which the best fitting polynomial coefficients are obtained. Thus, the algorithm keeps increasing the

window length of one sample at a time, computing the new coefficients, and it stops when the target

error tolerance is no longer met.

Intuitively, there is very low computational complexity involved in tracing a line between two

fixed points, as done by LTC and PLAMLiS, while least squares fitting may have a significant cost.

Then, polynomial regression can obtain better results in terms of approximation at the cost of higher

computational complexity, which increases with the polynomial order.
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Autoregressive Methods

Autoregressive (AR) models in their multiple flavors (AR, ARMA, ARIMA, etc.) have been

widely used for time series modeling and forecasting in fields like macro-economics or market analy-

sis. The basic idea is to obtain a model based on the history of the sampled data, i.e., on its correlation

structure. When used for signal compression, AR obtains a model from the input data and sends this

model to the receiver in place of the actual time series. The reconstructed model is thus used at the

data collection point (the sink) for data prediction until it is updated by the encoder device. Specifi-

cally, each node locally verifies the accuracy of the predicted data values with respect to the collected

samples. If the accuracy is within a prescribed error tolerance, the node assumes that the current

model will be sufficient for the sink to rebuild the data within the given error tolerance (Fig. 4.4a).

Otherwise, the parameters from the current model are encoded, and a new model is built as a re-

placement for the old one (Fig. 4.4b). As stated above, the model parameters are sent to the sink at

the end of each transmission window in place of the original data.

1 2 3 4 5 6 7

x(n)

n

(a) First model.

1 2 3 4 5 6 7

x(n)

n

(b) Model update.

Figure 4.4. Autoregressive Models.

Adaptive Autoregressive Moving Average (A-ARMA) [45]: the basic idea of A-ARMA [45] is that of

having each sensor node compute an ARMA model based on N ′ < N consecutive samples. In order

to reduce the complexity in the model estimation process, adaptive ARMA employs low-order mo-

dels, whereby the validity of the model being used is checked through a moving window technique.

Specifically, a sensor node builds an ARMA model M (0)=ARMA(p, q,N ′, 0) considering N ′ samples

starting from the first sample (sample 0) of the current transmission window (p and q are the or-

ders related to the autoregressive and moving average components of the ARMA filter). Hence, this

model is updated considering N ′ subsequent samples at a time until the prescribed error tolerance is

met, at which point a new ARMA model is built and the update/check procedure is iterated for this

one. At the end of the transmission window of N samples, the parameters of all the ARMA models

that have been obtained to describe the input time series (within the prescribed error tolerance) are

sent to the sink in place of the original data, as discussed above.
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Modified Adaptive Autoregressive (MA-AR): according to A-ARMA, the model is updated over

fixed-size windows of N ′ samples. A drawback of this is that the estimation over fixed-size windows

can lead to poor results when used for forecasting, especially for highly noisy environments. MA-

AR allows the estimation to be performed on time windows whose size is adapted according to the

signal statistics. A more detailed discussion of ARMA methods can be found in [87].

4.3.3 Compression Methods Based on Entropy Coding

This work adopts the algorithm proposed in [47] (MV) as the representative of Stage-C. This

algorithm consists of three steps: (a) Differential Pulse-Modulation Coding (DPCM), (b) quantization

and (c) Huffman entropy encoding.

After de-noising, step (a) employs a simple differential encoding model (DPCM), which operates

on the differences between consecutive input samples. The rationale behind this differential scheme

is that WSN signals are usually smooth and slow time-varying. Hence, the difference between sam-

ples is expected to be small, leading to a small amount of information to be encoded. This technique

is broadly used, as in the already mentioned codification of JPG coefficients.

In the quantization block (b), the difference between subsequent samples is quantized. As stated

before, this is the step of the algorithm where most of the compression performance is achieved. In-

deed, given the small expected value of the DPCM differences, a quantizer with only a small number

of levels can be used without to much impact on the signal representation’s accuracy.

In the performance evaluation, the maximum error tolerance is bound for each sample, setting it

as a constant input parameter common for all algorithms analyzed. Therefore, the DPCM algorithm

has been adapted to consider this. Specifically, a first pass is performed to find the maximum diffe-

rence at the output of the DPCM. Based on this, the number of levels of the quantizer is selected so

that the quantization error remains smaller than a target error tolerance; this returns the quantizer

for the given input signal. After this, a second pass is executed using the selected quantizer to obtain

the final encoded symbols. Note that this is slightly different from [47], where optimal quantizers are

calculated offline through a dedicated optimization stage that follows different optimization criteria.

While the latter approach is also valuable, it does not allow for precise control of the maximum error

tolerance and a fair comparison with the other compression schemes.

Finally, the entropy encoding step (c) exploits the fact that the quantization levels have different

probabilities. Hence, a Huffman encoder is designed to assign the shorter binary codewords to the

most probable levels. This dictionary can be sent together with the compressed data frame, or it can

be statistically precomputed and shared between the communicating entities.
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4.4 Performance Analysis

The goal of this section is to quantify the energy gains that may be obtained through the use

of compression and to evaluate the impact on reconstruction accuracy. Even more interesting, the

ultimate aim would be to predict the reconstruction error for a given energy constraint. More specifi-

cally, when the total energy is bounded, the compression ratio can be adjusted to meet specifications.

Yet, this implies sacrificing some reconstruction accuracy, which would be desirable to predict in

advance. With this focus in mind, this section deals with the following particular objectives:

• To provide a thorough performance comparison of the compression methods of Section 4.3.

The selected performance metrics are: 1) compression ratio, 2) computational and transmission

energy and 3) reconstruction error at the receiver.

• To explore and quantify the impact on the compression performance of the statistical properties

of the input signals.

• To assess whether or not data compression leads to energy savings in single- and multi-hop

networks, establish the conditions required, and obtain quantitative measurements of possible

benefits as a function of compression ratio and energy consumption of the device hardware.

Toward the above objectives, a first set results is obtained by simulation using synthetic signals

with a well characterized correlation length. These signals make it possible to provide a fine grained

description of the performance of the selected techniques, so as to look comprehensively at the entire

range of variation in the temporal correlation statistics. Real datasets are then used to validate the

obtained fitting results.

This section focuses on single- and multi-hop WSNs, where the interference due to channel access

is negligible or absent. In this case, the energy expenditure at the MAC is only confined to transmis-

sion and reception energy by also keeping into account the protocol overhead at the MAC in terms of

packet headers. However, further energetic inefficiencies due to channel contentions are neglected,

as well as waiting times due to floor acquisition.

4.4.1 Experimental Setup

The platform selected for this study is based on the TI MSP430 [12] micro-controller. A specific

16-bit floating point package for this architecture was used in arithmetic operations and data rep-

resentation. The number of clock cycles needed for the floating point operations running on this

architecture are given in Table 5.8 of [12]. In the active state, the MSP430 is powered by a current of

330 µA at 2.2 V, and it has a clock rate of 1 MHz. The resulting energy consumption per CPU cycle is

EI = 0.726 nJ.
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The platform includes the TI CC2420 RF transceiver [20], an IEEE 802.15.4 [2] compliant radio. For

commercial radio transceivers, the current consumption associated with the transmission activity

is typically selected from a finite set of values (See section 2.3.1 and, in particular, Eq. (2.7)). The

CC2420 has 8 levels, varying from a minimum of 8.5 mA to a maximum of 17.4 mA, with a supply

voltage of 3.3 V for an effective data rate of 250 kbps (see [20]). Thus, given the current power level

ℓ ∈ {1, . . . , 8}, the cost associated with the transmission of a bit, E′
T [ℓ], ranges from 112 nJ to 230 nJ,

respectively. Note that the current level, and consequently the output power of the radio transceiver,

has to be chosen according to the considered scenario, which includes the transmission distance, the

channel noise level, the type of environment (e.g., free space, indoor, presence of obstacles), etc.

The results obtained for this specific architecture can be promptly generalized to different CPUs

and radios. As explained in Section 2.5.1, this is made possible by separating algorithm-dependent

and hardware-dependent terms in the calculation of the overall energy consumption. For this plat-

form, the energy required corresponds to the energy spent by the micro-processor during 154 and

316 clock cycles, depending on the radio power selected. It is interesting to compare this value with

results found for the Strong-ARM architecture [8].

4.4.2 Simulation Setup

For every compression method, the number of operations to process the original time series x(n)

is recorded, accounting for the number of additions, multiplications, divisions and comparisons. For

selected hardware architecture, the number of operations is mapped into the corresponding number

of clock cycles, and the latter is subsequently mapped into the energy expenditure. The computation

only accounts for the CPU operations that are related to compression algorithms.

Regarding communication costs, only the transmission energy is taken into consideration while

neglecting the cost of switching the radio transceiver on and off and the energy spent at the destina-

tion to receive the data. The former are fixed costs that would also be incurred without compression,

while the latter can be ignored if the receiver is not a power-constrained device. Moreover, link-level

retransmissions due to channel errors or multi-user interference are not considered.

The set of test signals is generated by following the method described in Section 4.1.3. Specifically,

the method makes use of a Gaussian correlation function [4], i.e., ρx(n) = exp{−an2}, where a is

chosen in order to get the desired correlation length λ, as follows:

a = −
log(ρth)

(λ)2

Without loss of generality, synthetic signals are generated with µx = 0 and σ2
x = 1. In fact, applying

an offset to the generated signals and a scale factor does not change the resulting correlation. Further

details of the Gaussian correlation function can be found in [4].
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In this section, all results are obtained with the following simulation settings:

• The length of the time series is N = 500 samples (time slots) at a time, progressively taken from

a longer realization of the signal, so as to avoid artifacts related to the generation technique. For

a fair comparison, the same realization of the input time series x(n) has been used for: all the

compression methods considered, each simulation run and the value of the correlation length.

• The correlation length of synthetic signals is set to λ ∈ {1, 10, 20, 50, . . . , 500} samples, where

after 20, λ varies in steps of 30, with ρth = 0.05 (See Eq. (4.3)).

• A Gaussian noise with standard deviation σN = 0.04 has been added to the signal to emulate

random noise in the sensing process.

• For reconstruction accuracy, the absolute error tolerance has been set to εT = ξσN , with ξ ≥ 0.

Moreover, all the compression algorithms have been configured with the same error tolerance,

so that the energy compression and consumption figures we obtain are for the same reconstruc-

tion fidelity at the receiver.

• Each point is obtained by averaging the outcomes of 104 simulation runs.

4.4.3 Compression Ratio Performance

This section analyzes the performance in terms of compression and compression energy (the lat-

ter directly related to computational complexity) for the lossy compression methods presented in

Section 4.3. This section should allow discarding some methods that are prohibitively expensive in

terms of computation, and hence they are not suited for low-power wireless applications. The next

section will go in depth into the analysis of those methods that prove to be more efficient.

Adaptive Modeling Methods

The first set of tests compares the performance of the following compression methods:

• Modified Adaptive Autoregressive (M-AAR) for two orders, p = {2, 4};

• Polynomial Regression (PR) for two orders, p = {2, 4};

• Piecewise Linear Approximation (PLAMLiS) and its Enhanced version (E-PLAMLiS);

• Lightweight Temporal Compression (LTC)

• Modified DPCM algorithm (DPCM).
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Figure 4.5. Compression performance for the Adaptive Modeling methods for fixed εT = 4σn.

Fig. 4.5a shows the Compression Ratio achieved by the six compression methods as a function of

the correlation length λ. The lower bound on the compression ratio η is also plotted for comparison

(see Section 4.1.4). The high correlation between λ and η, shown in this plot, indicates that λ is in fact

capturing the information, and confirms that it is the right choice for parameterizing the performance

of all compression schemes.

These results reveal that for small values of λ the compression performance is poor for all com-

pression schemes, whereas it improves for increasing correlation length and, finally, it reaches a

floor value for sufficiently large λ. Also, the compression performance differs among the different

methods, with PR giving the best results. This reflects the fact that, differently from all the other

methods, PR approximates x(n) without requiring its fitting curves to pass through the points of the

given input signal. This entails some inherent filtering, which is embedded in this scheme and makes

it more robust against small and random perturbations.

Fig. 4.5b shows the relation between the energy consumption for compression EC and the com-

pression ratio η. For increasing values of λ, the compression ratio becomes better for all schemes, but

their energy expenditure differs substantially. Notably, the excellent compression capabilities of PR

are counterbalanced by its demanding requirements in terms of energy. M-AAR and PLAMLiS also

require quite a large amount of processing energy, although this is almost one order of magnitude

smaller than that of PR. Finally, LTC and E-PLAMLiS have the smallest energy consumption among

all schemes.

It is interesting to discuss the dependence of the energy spent on compression (which is directly

related to the computational complexity) of λ. LTC encodes the input signal x(n) incrementally,

starting from the first sample and adding one sample at a time. Thus, the number of operations

that it performs depends only weakly on the correlation length. In turn, the energy that it spends
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on compression is almost constant with varying λ. E-PLAMLiS takes advantage of the increasing

correlation length: as the temporal correlation increases, this method has to perform fewer “divide

and reiterate” steps, so the number of operations required gets smaller and, consequently, the energy

spent on compression is also reduced. DPCM performs almost the same number of operations for

different correlation lengths, except for very small values of λ. This occurs because, in order to meet

the error constraint for uncorrelated signals (λ ≈ 1), the quantization step has to use a high number

of levels (DPCM signals have wider ranges); and with an increasing number of levels, the entropy

encoder assigns an exponentially increasing number of bits to some symbols. As a consequence, the

number of operations related to the assignment of these codewords increases.

For the remaining methods, the complexity grows with λ. For PLAMLiS, this is due to the first

step of the algorithm, where for each point the longest segment that meets the given error tolerance

has to be found (see Section 4.3). When x(n) is highly correlated, these segments become longer and

PLAMLiS has to check the tolerance constraint a large number of times for each of the N samples

of x(n). For M-AAR and PR, every time a new sample is added to a model (autoregressive for the

former and polynomial for the latter), this model must be updated and the error tolerance constraint

has to be checked. These tasks have a complexity that grows with the square of the length of the

current model. Increasing the correlation length of the input time series also increases the length of

the models, leading to better compression ratios but, in turn, higher energy consumption.

Fourier- and Wavelet-based Methods

The second set of results compares the performance of the Fourier- and Wavelet-based compression

schemes of Section 4.3, considering the same simulation setup as above.

Fig. 4.6a shows that the compression performance of Fourier-based methods still improves with

increasing λ. The methods that perform best are FFT Windowed, FFT-LPF Windowed and DCT-LPF,

all of which achieve optimal compression ratios. Notably, η is around 10−2 for λ ≥ 300 (A com-

pression factor of more than 100 X). Conversely, FFT and FFT-LPF need to encode more coefficients

to meet the prescribed error tolerance constraint, due to their edge discontinuity problem, and thus

their compression ratio is worse. RACE is outperformed by other DCT-based solutions in terms of

compression performance at all correlation lengths. As will be discussed shortly, this scheme may be

interesting for its lightweight character in terms of energy consumption requirements.

The energy cost for compression is reported in Fig. 4.6b, where λ is varied as an independent

parameter. The compression costs for all the FFT/DCT schemes consist of a fixed contribution, which

represents the energy needed to evaluate the FFT/DCT of the input signal x(n). Thus, there is a

second contribution which depends on the number of transformation coefficients that are picked.

Specifically, a decreasing λ means that the signal is less correlated and, in this case, more coefficients

are to be considered in order to meet a given error tolerance. Further, for each of them, an inverse
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Figure 4.6. Compression performance for the Fourier-based methods for fixed ε = 4σn.

transform has to be evaluated to check whether an additional coefficient is required. This leads to an

increasing computational cost for decreasing λ.

Instead, RACE performs only an initial Wavelet decomposition. Then it subsequently checks the

reconstruction error –thanks to the coefficient selection phase along the constructed tree– without

having to compute an inverse transform at each step. Hence, its energy consumption remains nearly

constant for different correlation lengths λ, making the consumption significantly lower than that of

the FFT and DCT schemes.

Summarizing the results, FFT-based methods achieve the best compression ratio performance

among all the schemes in Figs. 4.5b and 4.6b (DCT-LPF is the best performing algorithm), whereas

PLA schemes give the best energy consumption performance for compression (LTC is the best among

them).

Applicability to real-world signals.

Correlation length λ is still somehow an abstract parameter. It is interesting to evaluate the corre-

lation length of different real-world signals in order to get an idea of the typical orders of magnitude

involved. Table 4.1 shows the typical sampling rate and the correlation length for selected real-world

signals. Luminosity and temperature data are taken from the database used in [60]; readings from

load sensors are taken from a structural-monitoring WSN installed by WorldSensing in the Palau

Sant Jordi of Barcelona (ES); and seismic data is obtained from the measurements in [74]. The high

quality (HQ) musical sample and speech data are, respectively, from an excerpt of classical music by

Mozart and a sample of speech from an adult female; these datasets are available at [30]. The low

quality (LQ) musical sample is from the Händel’s Messiah: Hallelujah Chorus.

This work focuses on compression schemes that are signal-agnostic and, as such, try to approxi-
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Signal type Sampling rate [Hz] Typical λ [samples]

Indoor temperature 1/60 563

Humidity 1/600 355

Load sensors 1/5 402

Outdoor temperature 10 135

Luminosity 1/300 100

Music (HQ) 44.1 k 33

Music (LQ) 8192 4

Speech 8192 8

Seismic 150 3

Table 4.1. Typical correlation length λ for selected real-world signals.

mate the signals on the fly through some modeling technique. However, these techniques are effec-

tive only for slowly varying signals with, say, correlation lengths larger than 50 samples. Typically,

this is the case for many signals monitored by WSNs gathering climatic/environmental data or struc-

tural health (first section of Table 4.1). Audio signals, such as music and voice, seismic signals, or

signals related to online traffic monitoring show abrupt variations with high non-stationarity. For

this reason, these signals are characterized by very short correlation lengths, usually smaller than 10

samples (second half of Table 4.1).

While the techniques presented here can be used for the compression of these specific signals,

dedicated algorithms are expected to lead to better results (JPG, MP3, MPG, etc.). However, these

highly-customized algorithms are not suitable for the typical WSN approach, which is characterized

by the low-energy requirements of the devices and the broad range of applications.

4.4.4 Energy Performance of Compression Algorithms

This section examines the selected compression methods by considering the total energy E for a

single- and multi-hop scenarios. ECT accounts for compression EC and transmission ET . So now

both the compression ratio η (for transmission energy) and computational complexity (for transmis-

sion energy) affect to the performance, and hence should be evaluated together.

Single-hop Performance

Fig. 4.7a shows the performance in terms of compression ratio η vs. total energy consumption E

for a set of compression methods when applied to a single-hop scenario. PLAMLiS was not conside-

red, as its performance is always dominated by E-PLAMLiS, and we show the performance of only

the best Fourier-based schemes. The cross marks the case where no compression is applied to the

signal, which is sent entirely to the gathering node. Note that energy savings can only be obtained

for those cases where the total energy lies to the left of the raw transmission (Vertical dashed line).
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Figure 4.7. Energy efficiency. Comparison of lossy compression schemes for a single-hop scenario.

For the following results, the transmission power of the radio transceiver is set to the maximum

level, in order to show the best achievable performance when data compression is applied. Despite

adopting the maximum power level, the computational energy is notably comparable to that spent

on transmission; thus, only LTC and Enhanced PLAMLiS can achieve some energy savings. All the

other compression methods entail a high number of operations and, in turn, perform worse than the

no compression case in terms of overall energy expenditure.

This remarkable result is a consequence of the fact that –among the selected technologies– only a

few hundred CPU instructions can be executed to compress a single bit of information while being

energetically efficient (See Section 4.4.1). Obviously, the ratio between radio and processor consump-

tion in Eq. (4.2) can be quite different among platforms, especially for other radio technologies; but

the obtained results indicate that this ratio should be carefully evaluated.

Fig. 4.7b shows the total energy gain, defined as the ratio between the energy spent on transmis-

sion (in the case with no compression) and the total energy spent on compression and transmission

using the selected compression techniques (see Section 4.1.2). The method that offers the highest

energy gain is LTC, although other methods such as DCT-LPF can achieve better compression per-

formance (see Fig. 4.7a). Note that in this scenario the total energy is highly influenced by the com-

putational cost (even for the maximum output power for the radio). Thus, the most lightweight

methods, such as LTC and enhanced PLAMLiS, perform best.

Table 4.2 qualitatively summarizes the performance of the considered signal compression algo-

rithms, classifying them in terms of compression capabilities, energy requirements (directly related

to their computational complexity) and dependence on the temporal correlation length λ. The third

column shows the minimum λ required for an algorithm to be efficient (See Fig. 4.7b). It is interesting

to compare this value with the typical λ of real world signals in Table 4.1.



4.4. Performance Analysis 85

Table 4.2. Summary of performance for the considered compression methods.

Compression Compression Energy Energy Complexity

Method capabilities Requirements Efficiency† versus λ

PLAMLiS average high × increasing

E-PLAMLiS average low 10 decreasing

LTC average low 50 decreasing

PR very high very high × increasing

M-AAR low high × increasing

MV low moderate × decreasing

FFT low very high × decreasing

FFT-LPF low very high × decreasing

FFT Win high high × decreasing

FFT-LPF Win very high high × decreasing

DCT high high × decreasing

DCT-LPF very high high × decreasing

RACE average/high moderate × constant

† Minimum required correlation length λ

Multi-hop Performance

In a multi-hop scenario, the situation can be quite different. The extra processing cost required

for more compression can be balanced because a shorter message is relayed several times to reach

the data gathering point. This section investigates whether further gains are possible when the com-

pressed information has to travel multiple hops.

In this case, both transmission and reception energy are accounted for at each intermediate relay

node. This implies that, for an intermediate node, the amount of energy saved is roughly twice that

of a terminal sensor. Additionally, nodes close to the sink tend to aggregate the traffic of multiple

children, so energy savings for these nodes are especially important for the network’s survival.

In the following, only LTC and DCT-LPF are discussed, as these are the two methods that perform

best in terms of complexity and compression efficiency, respectively. Obviously, the study can be

extended to any other method.

In Fig. 4.8a, the results for DCT-LPF are shown with black filled markers, whereas white filled

markers are used for LTC. The correlation length of the input signal is set to λ ∈ {300, 500}. The type

of marker indicates the correlation length of the input signal, specifically: (�,�) for λ = 300, (◦, •)

for λ = 500. The error tolerance is set to ε = 4σn. Additionally, the figure shows the possible gains for

the maximum and the minimum transmission power levels (see Section 2.3.1), so as to respectively

obtain the upper and lower bounds on the achievable performance (solid lines are used to indicate

maximum transmission power, dashed lines to indicate minimum transmission power).
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Figure 4.8. Energy efficiency. Comparison of selected lossy compression schemes for a multi-hop scenario.

As might be expected, the energy gain increases with the number of hops. This is because, al-

though the energy spent on the compression at the source node is comparable to that spent on the

transmission, the compression energy cost is incurred only at the source node; while each additional

relay node has to deal only with compressed data. Note that DCT-LPF is not energy efficient in

single-hop scenarios, but it can actually provide some energy gains when the number of hops is

large enough (e.g., larger than 2), and the transmission power is set to the maximum level. For the

minimum transmission power, DCT-LPF starts being energy efficient only after 5− 6 hops.

In fact, DCT-LPF performs better in terms of compression ratio than LTC, which is more efficient

in terms of complexity. As the compression energy is a fixed cost and the gain increases progres-

sively with the number of hops, more aggressive compressing implies that at some point the extra

processing cost may be compensated with a reduction in the (re)transmission energy, which is as-

sociated to a better compression ratio. However, for this particular technology, this balance occurs

above 40 hops, an unrealistic value in practical networks.

Fig. 4.8b shows the maximum achievable energy gain versus the distance between hops. Given

the distance, the transmission power is selected according to the Friis path loss formula (with path

loss exponent α=3.5, which is typical for WSNs [46]). This is done by considering the transmission

power levels and the receiver sensitivity Pth= − 95 dBm of the CC2420 transceiver [20]. For each

value of the distance, the energy gain is evaluated using the minimum transmission level that leads

to a received power above Pth. As shown in Fig. 4.8b, the energy gain increases with the distance, as

the transmission power becomes progressively higher than that needed for compression. This effect

becomes more pronounced when the number of hops is increased, as the relay nodes only have to

forward the data (no processing), thus benefiting from the smaller number of bits to be received and

transmitted.



4.4. Performance Analysis 87

4.4.5 Correlation, Compression and Accuracy

This section uses numerical fitting to investigate the relationships between the achievable com-

pression ratio η, the relative error tolerance ξ and the computational complexity NC . Note that until

now η has been understood as a performance metric which depends on the chosen error tolerance

η = η(εT ). This is equivalent to considering the relative error tolerance ξ as an input parameter for

the compression algorithm, since εT = ξσN . The idea now is to interchange the mathematical rela-

tionship between η and ξ by conversely thinking of ξ as a function of η, which is now considered an

input parameter, ξ = ξ(η).

This mathematical rearrangement has important implications. In energy-constrained devices, the

scarce resource is energy. Then, the most immediate consequence is generally that the amount of

energy is upper-bounded; i.e., a system has an energy budget for its entire operational life. From this

new perspective we can see that once the energy available is fixed and, thus, the required compres-

sion ratio as well, the expected reconstruction error can be evaluated as ε = ε(η). Note that, in this

expression, the compression ratio required for a given energy constraint is a function of the energy

bound η = η(E). This essentially means reinterpreting lossy compression as a Quality-of-Service (QoS)

technique, in which the quality metrics are given by the reconstruction accuracy ε. The constraint, in

this case, is driven by the available energy E .

Reconstruction Accuracy

Quantitatively, the relative error tolerance ξ has been related to the compression ratio η for the

best compression methods, namely LTC and DCT-LPF, through the following polynomials:

ξλ(η) =





p1η
2 + p2η + p3
η + q1

LTC

p1η
4 + p2η

3 + p3η
2 + p4η + p5

η + q1
DCT-LPF ,

(4.5)

where the fitting parameters p1, ..., p5, and q1 are computed for each specific correlation length λ. The

relationships were found through numerical fitting, which involved running extensive simulations

with synthetic signals. The numerical values of the fitted parameters and details about the process

can be found in [J2].

Fitting results have been validated against real world-signals, which were obtained from the en-

vironmental monitoring WSN testbed, deployed on the ground floor of the Department of Informa-

tion Engineering (DEI) at the University of Padova, Italy [21]. This dataset consists of measures of

temperature and humidity, sensed over a 6-day period at a sampling interval of 1 minute. Measured

correlation lengths are λ(T ) = 563 and λ(H) = 355 for temperature and humidity signals, respectively.

The empirical relationships of Eq. (4.5) are shown in Fig. 4.9a and 4.9b through solid and dashed

lines, whereas the markers indicate the performance obtained by applying LTC and DCT-LPF to the
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Figure 4.9. Fitting functions ξ(n⋆, η) vs. experimental results.

considered real datasets. As can be noted from these plots, although the numerical fitting was ob-

tained for synthetic signals, Eq. (4.5) closely represents the actual tradeoffs. Moreover, this implicitly

provides additional verification of the synthetic generation method.

Regarding the relations found, decreasing λ seems to have a low effect, as the curves relating ξ

to η remain nearly unchanged in terms of functional shape and are merely shifted toward the right.

Finally, the dependence on λ is particularly pronounced at small values of λ, whereas the curves tend

to converge for increasing correlation lengths (larger than 110 in the figure).

Computational Cost

Regarding the computational energy cost, observations indicated that the number of CPU opera-

tions for compressing the time series scales linearly with η for both LTC and DCT-LPF (See Fig. 4.5b

and Fig. 4.6b). Hence, assuming that the number of cycles per compressed bit N
(b)
I exhibits a lin-

ear dependence on both λ and η, it can be expressed through a polynomial as follows (the fitting

coefficients are shown in Table 4.3):

N
(b)
I (λ, η) = αη + γλ+ β .

Note that the dependence on λ is much weaker than that on η. Thus, for practical purposes, it

can be neglected without any important loss of accuracy. In fact, DCT-LPF appears to show a one-

to-one mapping (in a statistical sense) between any target compression ratio and the number of DCT

coefficients that are required to achieve this target performance. The computational complexity is

directly related to this number of coefficients.
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Fitting coefficients

Method α β γ

LTC 16.1 105.4 3.1 · 10−16

DCT-LPF 48.1 · 103 82.3 −2 · 10−13

Table 4.3. Fitting coefficients for N
(b)
I

(λ, η).
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Figure 4.10. Fitting functions N
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(η) vs. experimental results for LTC and LPF-DCT.

For LTC, the dominating term in the total number of operations performed is η, as this term is

directly related to the number of segments that are to be processed. With these considerations, the

remainder of this section uses the simplified relationship:

N
(b)
I (η) = αη + β . (4.6)

The accuracy of Eq. (4.6) is verified in Fig. 4.10, which shows empirical approximations against

the results obtained for the real world signals described above.

Technology Trade-offs

The above empirical expressions are used to generalize the results to any processing and transmis-

sion technology by separating out technology dependent and algorithm-dependent terms. Eq. (4.7)

is obtained by introducing the numerical fitting Eq. (4.6) in Eq. (4.2). Constants α and β are the al-

gorithmic dependent fitting parameters indicated in Table 4.3. So this inequality is notably only a

function of η, once the compression algorithm has been selected.
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Eb
T

EI
>

N
(b)
I (η)

1− η
=

αη + β

1− η
, (4.7)

Eq. (4.7) can be used to assess whether a compression scheme is suitable for a specific device’s

architecture. As an example, Fig. 4.11 shows the impact on compression efficiency of different pro-

cessor technologies and radio settings. The TI MSP430, in particular, with a featured consumption

of 380µA/Mhz (EI=1.25nJ at 3.3V ), is compared with a Wonder Gecko EFM32WK Cortex-M4, rat-

ing a consumption of 230µA/Mhz (EI=0.76nJ at 3.3V ). Regarding the radio, the selected CC2420

transceiver has been configured at full speed 250kbps (Eb
T=230nJ at 3.3V), and low speed 20kbps

(Eb
T=2875nJ at 3.3V).

Fig. 4.11a shows the results for the reference platform used in this chapter (MSP430 processor

and radio 250kbps). The technological energy ratio for this platform is Eb
T /EI≃210. The numerical

evaluation of Eq. (4.7) for DCT-LPF reveals that this compression scheme is inefficient for any value

of η, i.e., the overall energy expenditure due to transmission plus compression is higher than the

energy spent in cases where compression is not applied. (In Fig. 4.11a, DCT-LPF does not enter in

the efficient region for any value of λ). Instead, LTC provides energy savings for η ≤ 0.45 (See also

Fig. 4.7a).

These results can be generalized to any other device technology, by comparing Eq. (4.7) against

the corresponding ratio Eb
T /EI and checking whether the inequality holds. The same radio configu-

ration is used in Fig. 4.11b, but compression is computed in a more efficient processor. As the radio is

unchanged, the raw transmission cost is the same (vertical dashed line). However, using a processor

that demands less power enables some additional algorithms to be efficient as well.

The scenario is completely different in Fig. 4.11c and Fig. 4.11d, where a lower bit rate is used,

meaning that transmission time is much longer. In this case, the technological ratio between pro-

cessing and transmission is one order of magnitude better, and it makes local processing much more

attractive by allowing several new algorithms to enter in the efficiency region.

Reconstruction Accuracy Trade-Offs

On the basis of the above results, the reconstruction accuracy for a given energy bound can be

estimated as follows. From Section 4.1.2, the energy for compression is given by:

EC = Nb(x)N
(b)
I (η)EI ,

where the number of instructions per uncompressed bit (which is in fact characteristic of each specific

algorithm) has now been expressed as a function of the compression ratio N
(b)
I =N

(b)
I (η). Regarding

the transmission energy, it can be expressed in terms of the compression ratio as:

ET = Nb(x) η E
(b)
T ,
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Figure 4.11. Energy efficiency. Comparison of lossy compression schemes for different technologies.

The total energy is obtained from the contribution of both terms, as expressed in Eq. (4.8)

E = Nb(x) ·
(
EIN

(b)
I (η) + E

(b)
T η

)
= f(η) (4.8)

Eq. (4.8) expresses the overall energy as an explicit function of the compression ratio E=f(η). This

equation can be inverted using the value of N
(b)
I (η) from Eq. (4.6), which leads to the desired relation

η=η(E). Once the specific value of the required compression ratio is obtained from the energy bound

η̂= f−1(Ê), the expected reconstruction error can finally be obtained using the function ξ(λ, η).

ǫT (λ) = ξ(η̂, λ) · σN (4.9)

To evaluate Eq. (4.9), the numerical value of ξλ(η̂) is obtained from Eq. (4.5). Note that the corre-

lation length λ must be fixed for this last evaluation. Furthermore, the effect of λ can be significant

for low values of λ (see Fig. 4.10).

Fig. 4.12 shows an example of how this methodology can be applied. In this example, the system

continuously acquires records of 500 samples at a rate of NRCD records per second. The question
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Figure 4.12. Reconstruction accuracy, measured as a function of the maximum achievable sampling rate.

arises about what maximum sampling rate is allowed while still meeting specifications. For this

example, the expected life for the system has been fixed to 1 year, and the system is equipped with a

10Ah battery.

The figure shows three regions. The first one is to the left of the vertical dashed line, where

the system can operate while continuously acquiring and transmitting data, without any need for

compression. The second region shows the interval in which compression is possible but is however

not effective. This means that raw transmission of all samples is still feasible and, subsequently,

reconstruction would be perfect. The third region, above η = 0.46, shows application settings in

which raw transmission would not be viable. Above NRCD=1.8 records per second, the system

requires some compression in order to be sustainable. Fig. 4.12 shows the reconstruction error to be

expected when the required compression is applied under such conditions.
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Discussion

This chapter presents an in depth analysis of the potential advantages offered by lossy compres-

sion algorithms for time-varying signals. It does so by considering recently proposed and lightweight

schemes such as Lightweight Temporal Compression (LTC), as well as the more sophisticated FFT- or

DCT-based techniques. This analysis examines the relationships between computational complexity,

overall energy consumption and signal representation accuracy.

In a scenario where reconstruction fidelity and signal statistics play a fundamental role, a metho-

dology is designed to assess whether signal compression actually helps in the reduction of the overall

energy consumption, which itself depends on the compression algorithm, the chosen reconstruction

fidelity, the signal statistics and the hardware characteristics.

The results reveal that compression schemes can be inefficient in terms of energy consumption

when they account for the energy required by the compression computation. Instead, tiny linear

methods such as LTC lead to substantial savings in terms of energy expenditure, while at the same

time leading to satisfactory compression ratios, reduced network delay and increased reliability per-

formance.

Previous considerations have taught us that signal compression may in fact provide some energy

savings. However, its usage should be carefully evaluated. Processing and transmission costs can

be of the same order of magnitude and, depending on the specific algorithm, the former may even

dominate the latter. Furthermore, the answer to the question of energy efficiency is closely related to

the current technology in use which may change from platform to platform. Even more disturbing,

the answer is related not only to the particular algorithm and platform used, but to the characteristics

of the specific signal being compressed.

In the last section of this chapter, lossy compression is analyzed from an alternative point of

view. In this new approach, compression ratio is not seen as a performance metric, but as a control

parameter for adjusting the power consumption of the system. Even more, with the aid of numerical

fitting methods, the reconstruction error is estimated from the compression ratio. Therefore, this

method makes it possible to predict reconstruction fidelity as a function of energy consumption.





Chapter 5

Lean Sensing

Event-driven applications are used to monitor the occurrence of certain events. In

general, events are inherently stochastic, and the main function of the system is precisely

to detect and report the occurrence of such events. Strategies like data compression (in

which events are essentially binary entities) or local processing (where detected events

must be reported) are not suitable for these kinds of applications.

But, what does randomness mean? Let us focus on one familiar example. The occu-

pancy of a parking spot at a given instant is unpredictable, as are human beings. Howe-

ver, when the state of a set of related spots is aggregated, a correlation structure emerges.

What is more, past occurrences reveal a high degree of auto-similarity (as with human

behavior) when studied within the proper temporal scale.

Throughout this chapter, we propose introducing contextual information in order to

optimize power consumption in those applications to which classical policies are not appli-

cable. The discussed techniques include customizing the sample to temporal correlations

(i.e, to adapt sensor behavior to the expected activity) and inferring the system-state based

on spatial correlations (i.e., reconstructing the state of some specific locations from the in-

formation already gathered on the surroundings when their data is not available).

Thus, the aim of this chapter is to evaluate the impact that a number of system-level

optimization strategies have on power consumption. Furthermore, the ultimate objective

is to evaluate for these methods the trade-off between power consumption and the ac-

curacy of the monitoring service provided, for both single devices and overall system

performance.

95
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5.1 Introduction

THIS chapter will use the smart parking application described in Section 2.5.2 to introduce alter-

native optimizations methods based on the contextual information of the system. In this chapter,

system is understood to be a set of spatially-related sensors working together to provide a monitor-

ing tool (based mainly on temporal aggregated information). The main objective of these techniques

is precisely to harness the (co-)relations found within the data.

For this purpose, it is first necessary to introduce the particular characteristics of this application

and how the monitoring service is provided, in order to extract the real requirements of the applica-

tion from the user’s point of view, i.e., the usage experience. This perspective can be different from

the technical view of an engineer. Second, the intrinsic structure of parking patterns is described.

Finally, the chapter concludes with an analysis of some energy optimization strategies drawn from

the learned structure. These strategies are evaluated on the basis of system-level metrics, i.e., metrics

defined to quantify the quality of the monitoring service.

This chapter will use real-world datasets from two different cities, each having several hundred

sensors deployed. These two actual case-studies are not only application examples, but they settled

the foundations for the pursuit of the presented methodology. The development starts with the

adoption of a system-level perspective, i.e, a perspective of the monitoring service that is designed to

identify and visualize application patterns. Then, this perspective should help us better understand

the application itself, with the confidence that the patterns found can be used to optimize the energy

efficiency.

5.1.1 Scenario

Most of us have suffered the experience of driving into a town looking for somewhere to park.

This is a very familiar problem that citizens around the world must bear every day. As a result,

we have developed some (sometimes rather efficient) strategies for dealing with it. These strategies

are usually based on previous experience and probably on some intuitions we may have into an

underlying structure.

In theory, the state of an individual parking bay can be considered a stochastic process [6]; thus,

the occupancy of an individual parking bay is basically random. However, we intuitively understand

that parking availability depends strongly on the quantity and diversity of spaces, time of day, num-

ber of other drivers, specific area regulations and many other undetermined variables which yield

to specific characteristic behaviors. For instance, on a city-level scale and using a central area as an

example, parking demand tends to increase early in the day, hold at a relatively high level through-
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out the mid-day, and then spike in the evenings when drivers pursue leisure activities (restaurants,

cinemas, theaters, etc.).

On-street parking sensors have been utilized in different cities around the world to improve the

efficiency in the use of public parking. Representative examples are San Francisco, Los Angeles,

Moscow, Nice, London, and Barcelona, among many others, where small sensing devices have been

deployed in every parking bay within large monitored areas.

The benefits of these devices are undeniable; they have proven to be very useful in helping cities

better understand parking patterns, and they have become a very valuable tool in optimizing parking

operations as well [22]. Moreover, they help drivers find parking spaces more efficiently by reducing

the hustle and bustle of traffic, and they provide better user experiences.

However there is a common concern about the cost-benefit relationship of this solution in many

cities. The deployment of thousands of sensors involves a large upfront investment by public ad-

ministrations or parking operators, and it imposes additional complexity on the operational side. As

a result, some previous studies have analyzed the cost-benefit relationship of such a solution in cities

like Los Angeles or Indianapolis [22].

Some other studies take a more conceptual approach and have built a model to reduce deploy-

ment costs by providing sensor readings on only a fraction of the parking spots in an area, followed

by the use of extrapolation to calculate city-wide saturation levels [32].

But none of them have centered their efforts on adapting the technology to ensure optimal opera-

tions of the whole network for a given return of investment period. This entails a threefront strategy:

first, optimizing the production cost associated with battery size; second, extending the operational

life by means of more efficient technologies; and third, minimizing unplanned interventions.

5.1.2 System-Level Performance

Great efforts have been made to reduce consumption of every device by compressing the infor-

mation to be distributed or even by not distributing the information at all, but making the right

decisions that are locally based on the information available. Yet sometimes this is inherently not

possible. In event-driven applications, there is no reasonable alternative to transmitting every single

event. On top of that, many events are often barely reported, so compression techniques are useless.

Consider the example of parking sensors. Each device periodically wakes-up to check the state

of the spot. When a car is detected, the sensor communicates the event to the data-collection center

so that system managers can keep track of the state in real time. The minimum amount of infor-

mation is encapsulated in each message, as the state can be codified with a single bit. Therefore, it

is intrinsically incompressible. Furthermore, the event should be reported, as the main function of

these devices is precisely to monitor the occurrence of these events; so it cannot be considered an
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alarm-based application such as those discussed in Chapter 3, because mobility agents may require

some kind of real-time information. Under these circumstances, it seems difficult to find alternatives

for saving energy other than using more efficient technology.

However, little attention has been paid to the application itself and to how the monitoring ser-

vice is provided. Monitoring systems are typically made up of two main layers [77]. The hard in-

frastructure is composed of thousands of networked embedded devices, whose operation (although

interconnected) is in essence independent. Above this hard layer, software and service technologies

enable high-level access and utilization of the real-world data and resources. This is the layer to

which we pay attention here.

In this specific application, it turns out that individual data from a sensor is not really relevant.

Instead, the key information needed is the aggregate of certain regions (streets, blocks, etc. what we

call sectors) and the time-averaged information of these sectors (e.g., hourly occupancy of a street,

etc.). This characteristic will drive us to a set of possibilities that may in fact reduce power consump-

tion while maintaining acceptable accuracy of the information provided.

5.1.3 Performance Indicators

Choosing the right performance indicator is essential for the evaluation of any application, system

or activity while at the same time relying upon a clear understanding of the business model [J1]. In

this case, these performance metrics must be found within the system user’s experience, not from the

viewpoint of the technology provider. Based on WorldSensing’s experience as a provider of Smart

Traffic Management Solutions, several possibilities exist, of which the following can be considered

the most representative indicators:

D Occupancy: System occupancy is not related to the specific state of a particular parking spot,

but to the percentage of time a spot is occupied over a period of time. For traffic manage-

ment, the historical occupancy of the spot provides more information than the current state at

a specific time. Likewise, the mean occupancy of an area provides more information than the

state of a single sensor. Occupancy is the most intuitive and useful indicator for this particular

application.

D Turn-over: Is a direct indicator of the activity in a specific area. A high activity area fosters the

absorption of traffic, while a quiet area can be problematic, especially if the occupancy is high.

Again, activity makes sense over a period of time, not as single events.

One important issue that can be considered transversal to the previous definitions is the idea

of repeatability. Without pattern recurrence, predictive management is not possible. So in the end,

the degree of repeatability sets the limit between predictive management (making decisions before

things occur) and reactive management (making decisions based on what is actually happening).
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5.1.4 Energy Model

This application is a particular case of the simple reporting application described in Section 2.5.2.

In terms of power consumption, the application is determined mainly by two contributions: periodic

sampling and the reporting of physical events. These tasks, based on the repetitive operation, are

parametrized as follows:

• A record of NS samples is acquired with a fixed interval time, TRCD.

• Events occur with a characteristic elapsed time, TMSG.

As explained in Section 2.3.1, when sensors generate endogenous traffic according to some stochas-

tic process distribution, the time elapsed between consecutive messages, TMSG, should be character-

ized by an appropriate statistical estimator (often a simple average is enough). This approximation

is reasonably good for long-term averaging.

Sampling Characterization

For each record composed of NS samples, the total time the sensor remains switched on is given

by T
(ON)
SNS = TS ·NS , where TS is the physical sampling interval (See Fig. 5.1a). In many applications,

the sampling rate is fixed by filter requirements.

The current of the acquisition block can be obtained by averaging the charge to get the NS samples

of the record over the time elapsed between consecutive records TRCD, i.e. the wake-up period. In

Eq. (5.1) Q̄SNR is the average charge to get one sample (see Section 2.4.2) and comprise both the

sensor and the ADC conversion. Ī
(STB)
SNS accounts for the stand-by or quiescent current of the sensor.

ĪACQ
∼=

Q̄SNR ·NS

TRCD
+ Ī

(STB)
SNS (5.1)
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Figure 5.1. Contributions for the energy model characterization.
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Point to Point Communications

The average power of the communications block can be expressed in terms of the charge required

to send a radio message and a characteristic time between consecutive events TMSG. The reported

information is aggregated into a unique message. We assume that this message is retransmitted a

certain number of times (NRTX ) to increase the probability of success (See Fig. 5.1b).

ĪNET ≈
NRTX · Q̄MSG

Ē [TMSG]

.
=

NRTX · Q̄MSG

T̂MSG

(5.2)

Joint Model

Eq. (5.3) combines the two main contributions of these applications: sensing and communica-

tions. As this is essentially a bare reporting application, the cost associated with processing can be

considered negligible. Recalling the meaning of each individual contribution from the fitting in 2.4, α

can be interpreted as the charge per sample Q̄S ; γ is an estimator of the average charge per message

Q̄MSG, while δ basically accounts for OS management consumption and quiescent DC/DC currents.

ĪDEV =
αNS

TRCD
+

γNRTX

T̂MSG

+ δ (5.3)

5.1.5 Operational Cost and Energy Constraints

The classic limitations of industrial wireless monitoring applications have been deeply analyzed

in the literature. They include the power consumption of wireless sensors, the ease of handling

communication interfaces and global coverage, among others. However, including operational costs

in the design flow of IoT devices is still scantily practiced among researchers, although these costs

are especially relevant in critical infrastructures. This has been identified as a key issue in developing

the IoT. Therefore, we will make some remarks here, from an industrial point of view.

Common energy optimization approaches use the same policies independently of the observed

level of activity in a specific area. Even though the battery life of an individual device may be ex-

tended by using the described approaches, some devices will still deplete their power more quickly

than others. Differences in battery usage across the same network become troublesome if we con-

sider that battery replacement interventions must be scheduled. In that regard, it must be taken into

account that each intervention costs money and time. In some scenarios (such as smart cities), it may

actually become an annoyance to citizens. Of course, it may be possible to simply replace all batter-

ies regardless of their power level at each intervention, but that would be unnecessarily wasteful in

terms of both cost and environmental impact. Therefore, we believe that it is very important to not
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only increase battery life, but to also homogenize battery consumption across all devices in order to

facilitate interventions and reduce maintenance costs [C1].

Given the above reasons, this work considers the expected battery life to be a constraint (not a

variable to be maximized), and that the objective of the energy policy should be to ensure that the

minimum expected life-time specification is met. With this aim, Eq. (5.3) can be interpreted as a

parametric function binding together TRCD and TMSG. More specifically, when the expected battery

life is constrained and the conditioned maximum IDEV is thus fixed, this equation defines one-to-one

mapping of the expected activity to the maximum allowed sampling rate.

T
(MAX)
RCD = f(T̂MSG) (5.4)

Fig. 5.2 shows a numerical simulation of Eq. (5.3). The black lines represent the mapping f in

Eq. (5.4), once IDEV has been set so as to achieve the desired uninterrupted operation (TL).
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5.2 Monitoring Service and Data Structure

In this chapter we address Lean Sensing, which aims to improve the cost-benefit from a system

wide perspective taking into account the predictable behavior of the agents involved in the target

application. The first part of this chapter presented the modeling framework for individual agents.

This section aims to provide a global vision of a system composed of hundreds or even thousands of

devices actuating autonomously but sharing a common goal.

The system here described is designed to identify and visualize patterns in a complex, macro-

scale monitored process. Notably, as next section shows, it is also in these patterns where one can

find some keys to support design of efficient energy management strategies.

Throughout this chapter, it is assumed that the monitoring service provided should drive opti-

mization policies. It is then necessary to obtain a clear understanding of how these management

tools operate. An analysis of the smart city ecosystem reveals some generally desirable features [59]:

• Planning is performed not on snapshots but on accurate historical data from dynamic resources

with measurable effects.

• Patterns can be identified, and the real reasons why and what is happening can be identified,

leading to better knowledge of the system.

• Cities can monitor and react in real-time to citizen needs, events and incidents.

It is thus understood that, although the system administration maintains real-time monitoring as

a feature, it is based on a comprehensible representation of historical data. The metrics defined here

and the developed visualization tools are both oriented towards this strategy.

5.2.1 System State: Occupancy

As stated before, occupancy is related to the percentage of time a spot stays occupied. However,

the instantaneous state of a specific spot is not particularly useful. The city is a complex, dynamical

system, and the state of a specific spot can randomly change at any instant. Instead, sector-aggregate

information can be much more valuable for both monitoring as well as planning purposes.

To deal with these concepts more formally, the following definitions will be utilized in the re-

mainder of this chapter:

D . Sensor Occupancy: S is the time ratio a specific spot has been occupied during a time-slot.

It is defined as a multi-dimensional variable, S
(k)
i,j ∈ [0, 1]; where index i=1...NH accounts for

the time-slot during the day (typically the slot is one hour); j=1...ND denotes the day of the

monitored period; and finally, index k refers to the specific sensor.
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Figure 5.3. Monthly average occupancy in a metropolitan sector, from different perspectives. Time-slots of 1 hour.

D . System Occupancy: the system occupancy state is obtained by averaging considered sensors

in each time slot, NS being the total number of sensors that are aggregated. This concept can

be applied to the whole system, to a sector or to any subset of sensors.

Si,j =
1

NS

NS∑

k=1

S
(k)
i,j (5.5)

D . Occupancy Reconstruction Error: the difference between the system occupancy state, which is

built upon a complete knowledge of the system, and the state inferred with partial information.

Specifically, the reconstruction error is defined in Eq. (5.6), Ŝ being the system occupancy state

estimated from incomplete information.

ǫS =
1

NH ·ND

NH∑

i=1

ND∑

j=1

|Si,j − Ŝi,j | (5.6)

Fig. 5.3 shows the system occupancy state registered in a metropolitan area during one month

(February). The colormap represents the average occupancy of nearly 500 monitored spots. In this

figure, S̄ is displayed hourly in the vertical direction and daily in the horizontal.

To make the historical evolution more understandable, data is projected in two orthogonal di-

rections. First, hourly occupancy has been averaged over each day in the figure below. Then, this

plot represents the daily mean evolution of the full period. Additionally, maximum and minimum

daily occupancy have been represented. The second one, on the right-hand side of the scale map, is

a projection of the hourly occupancy of every single month in the period. This figure captures with
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a single snapshot the historical hourly behavior, showing the variability of daily patterns during the

period being studied.

Taking this view can help to understand several patterns of citizen behavior: occupancy is much

higher during daytime hours and is almost zero at night (sensors are deployed in a commercial

area); weekend specific patterns are noticeable, and they are appreciably different from the rest of

the week; finally, lower occupancy was registered in the first week of the period, most likely due to

adverse weather conditions. These are some examples of the kind of information typically required

for intelligent traffic management.

5.2.2 System Activity and Turn-Overs

The activity (i.e., the number of events that happened in a given slot of time) and the number

of turn-overs (which is directly related to the former) are essential indicators for mobility agents.

Intuitively, activity provides an estimate of the flux of traffic that can be adsorbed. For instance, in

parking guidance systems, drivers can be redirected to areas whose activity is expected to be higher.

Even more, activity can be used for adjusting prices and bounding minimum and maxim parking-

times in paid parking areas.

Due to its relevance, activity should be well defined and precisely quantified. So this chapter

formally complies with the following definitions:

D . Sensor Activity: the sensor activity R is the number of events occurring in one spot during

a specific time-slot. R
(k)
i,j is defined in a similar way as the occupancy. The index i=1...NH

designates the time-slot, j=1...ND indicates the day, and k is the sensor index (See Fig. 5.4).

D . System Activity: the average activity of a set of sensors in each time-slot:

Ri,j =
1

NS

NS∑

k=1

R
(k)
i,j (5.7)

D . Activity Reconstruction Error: the error made while estimating the system activity with in-

complete information R̂.

ǫR =
1

NH ·ND

NH∑

i=1

ND∑

j=1

|Ri,j − R̂i,j | (5.8)

Fig. 5.4 shows the activity recorded in the commercial area of a small town. The displayed subset

belongs to the first 28 days of December. The structure of the data is made clear from the picture. The

daily pattern indicates higher activity during the morning and afternoon, yet it is very low at night.

In addition, week and weekend days can be clearly differentiated. The historical data shows that,

in general, activity increases throughout the week as the weekend approaches. However, special

behavior is observed on holidays (around December, 25th).
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Figure 5.4. Monthly average activity in a small city, from different views.

In this application, for which all events detected are directly reported, In this application (for

which all events detected are directly reported), the activity is not only related to physical detection,

but to the number of radio messages generated. Thus, besides the fact that activity is an important

system performance indicator, it has a direct impact on power consumption.

5.2.3 Temporal Stability

In light of the above figures, the question then arises as to how the knowledge of this data struc-

ture could be used in some efficient way. The next section exploits some possible applications. Ho-

wever, before doing so, it is necessary to address the issue of repeatability. Repeatability is two-fold.

On the one hand, it is essential for predictive management, as it enables making decisions based

on past behavior. On the other hand, it provides the key to optimization policies: any engineering

decision devised on the basis of patterns observed in past data should still be valid when projected

onto the future.

Fig. 5.5 can help clear up doubts about this fundamental question. This figure shows sensor

activity averaged over a long period, with the particularity that sensors have been sorted by their

activity. This arrangement reveals three different regions corresponding to sensors with low, medium

and high activity, and which are separated by two phase transitions. Most importantly, the behavior

of three successive months has been superimposed (depicted by three different tones of gray). The

self-replicated trend demonstrates an intuitive fact: when a spot has been very active in the past,

it remains active. Spot activity is highly dependent on the city environment (commercial parking,
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ATM, passing area, etc.). However, in this sense the environment is basically static. Thus, the activity

of each spot is expected to be stationary.

This important result ensures the stability of activity as a classification criteria, and thus guaran-

tees that any design workaround that is tailored to a specific class of spots will be valid for the future,

provided that the classification criteria is based on activity.

Fig. 5.5 reveals another suggestive pattern. Subplots 5.5a and 5.5b are recorded in two very differ-

ent environments (a metropolis and a small town). Yet, the distribution is notably almost identical.

This result suggests that there are some fundamental patterns underlying the system, independently

of the city, and that developed policies may be valid for (quite) different deployments.
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Figure 5.5. Time evolution of the activity, with individual sensors sorted by activity and their histogram.
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5.3 Performance Analysis of Energy Management Policies

Once analyzed the particular characteristics of this application, i.e., how the monitoring service

is provided and the intrinsic structure of parking patterns, this section concludes with an analysis

of several optimization strategies. These strategies are evaluated on the basis of the energy model

described in Section 5.1.4, with the main focus of quantifying their impact on the service provided

under system-level metrics.

5.3.1 Experimental Setup

The platform selected for this study was a variant of the use case described in Section 2.5.2. The

main components were the Cortex-M4 32 bit processor, running with an RTOS systick interrupt of

1 ms, and the Honeway HMC5883 magnetometer characterized in Section 2.4.2. This platform was

equipped with the Telecom Designs TD1202 long-range radio module.

For the energy model described in Section 5.1.4, the following settings were used: the device took

T
(ON)
SNS =60s to determine the state of the spot, requiring a record of NS=7500 samples acquired at

TS = 8ms; Lithium batteries had a total capacity of 30Ah, with a self-discharge ratio of 1%; finally,

the radio module used a non-secure protocol with NX = 3 (re)transmission attempts.

The dataset for this chapter was provided by WorldSensing. Data were gathered over three

months from about 1000 outdoor devices, deployed in two different scenarios. Unless stated other-

wise, the first month is used for developing, whereas the last two months are used for validation.

5.3.2 Temporal Decimation: Fixed Recording Interval

Classic sampling methods may not be the best choice for systems in which not all sensors expe-

rience the same activity. On the one hand, if a fast sampling rate is selected, most of the sensors will

deplete their batteries before the scheduled intervention time. On the other hand, if a slow sampling

rate is selected in order to assure that all sensors meet the specifications, the monitoring may be too

inaccurate. Then, the first issue to address is to quantify the accuracy as a function of the sampling

rate, in terms of a suitable metric.

Fig. 5.6 shows the relation between the occupancy reconstruction error ǫ
(k)
R of each single sensor

and the activity S(k) (measured as the average interval time between events, T̄MSG, for each sen-

sor). The figure shows three sets of points, each corresponding to a fixed interval time of TRCD =

{5, 10, 15} minutes, respectively. Additionally, Eq. (5.3), configured with the settings from Section

5.3.1, has been used to delimit the maximum number of messages allowed for each recording inter-

val. The results can be summarized as follows:
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Figure 5.6. Reconstruction accuracy vs. activity, for different recording intervals.

• TRCD=15mins: Eq. (5.4) is satisfied for TMSG ≈ 34mins. This means these settings guarantee

that almost all of the analyzed sensors will arrive at the end of their planned life, i.e., the battery

life can be guaranteed for the whole system at this sampling rate. Obviously, this set has the

highest reconstruction error (inverted triangles).

• TRCD=10mins: The limit value given by Eq. (5.4) for this case is TMSG ≈ 51mins. While most

of the sensors are still within specifications (white circles), this value means that some of them

will probably deplete their batteries before the end of their expected life (dark circles).

• TRCD=5mins (triangles): Operating with these settings means that none of the sensors will

fulfill their expected life, independently of TMSG. However, as expected, this set has the lowest

reconstruction error.

Notably, the activity of the sensor clearly affects the reconstruction error of the occupancy (trends

are represented with solid lines in the figure). This is something that is perhaps not obvious, but can

be understood as follows: if a sensor is very active (because it is changing the state quite quickly)

and the sampling rate is low, then the error introduced can be relatively high, as each change in the

state can potentially induce some error. In other words, the sampling rate is too slow in comparison

to the time the sensor remains in the same state.

5.3.3 Temporal Decimation: Adaptive Recording Interval

The recording interval settings can be adjusted from an alternative point of view. In this new

approach, the sampling rate is no longer a system feature, but a control parameter for adjusting the

power consumption of the system.
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Specifically, as the time between records increases, less power is consumed. Then, by stretching

the record interval it is possible to balance the extra power consumption associated to higher activity.

Section 5.2.3 provides the key for this adaptive technique. As stated previously, system activity

can be considered constant for each specific sensor, in a statistical sense. Then, the recording interval

TRCD can be customized for each sensor so that the expected life can be guaranteed. Fig. 5.7 shows

a scatter-plot representing the expected life of each sensor. The TRCD ↔TMSG mapping, given by

Eq. (5.4), is estimated after a one-month learning stage, but the sensors are displayed at their actual

measured TMSG.

The main benefit of this customized sampling is that it homogenizes the expected life of sen-

sors by balancing the power consumption, and thus it minimizes premature battery death or non-

scheduled interventions.

Obviously, some fluctuations exist due to the uncertainty assumed when using a learning stage.

However, with the exception of a few devices, the great majority of them can fulfill the expected

life-time specification, at least according to everything that concerns the battery capacity
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Figure 5.7. Activity vs. adaptive record interval, for two different targets.

The reconstruction error of each sensor can be evaluated for different recording intervals, which

in turn are determined by the activity of the sensor (when energy is bounded). Fig. 5.8 shows the

reconstruction error for each individual sensor, displayed as a function of the record interval. The

results show devices running with adaptive sampling rate (triangles), superimposed to results ex-

pected for a fixed sampling rate: the gray circles indicate the error averaged for all sensors; the small

black dots mark the value of each sensor (illustrating the variability in the system); and the black,

solid line is the trend of the averaged errors.
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Obviously, sensors with slower rates are expected to be less accurate, at least individually. Even

more, when using adaptive sampling intervals that are above TRCD = 8mins, the reconstruction

error appears over the averaged trend of fixed settings (reflecting the fact that reconstruction error

increases as the devices are more active, already observed in 5.6). A natural question arises as to how

the error of these active devices affects to the reconstruction error of the whole system, and whether

the negative effect of this small set could be compensated with the improved accuracy of less active

devices that together form a larger set.
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Figure 5.8. Reconstruction Accuracy vs. Recording Interval (Sensor view).

To answer this question, Fig. 5.9 shows the system reconstruction error ǫR vs. the record interval

TRCD. As expected, the system error is much lower than the individual contributions, as errors are

statistically compensated.

The gray circles show the error when using a fixed sampling rate, and the dashed line indicates

the trend when the (fixed) TRCD is progressively longer. The black cross marks the reconstruction

error of the adaptive sampling rate solution, placed at the averaged TRCD of all sensors. Notably,

the cross lies below the trend, which indicates that the better accuracy of most of the sensors in fact

compensate for the worse accuracy of the small set of most active devices 1.

Moreover, the size of the circles in Fig. 5.9 is proportional to the number of sensors running with a

fixed sampling rate whose expected life is shorter than required by specifications. The reconstruction

error of the adaptive approach is approximately equal to the fixed one configured at TRCD = 8mins;

but with these settings, the latter causes 53% of the devices to have problems at the end of their

service life

1This asymmetry was seen in Fig. 5.5.
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5.3.4 Reconstruction under Failure: Spatial Correlations

Independently of the followed approach, there is a certain risk of device failure before a sched-

uled intervention. Fig. 5.9 shows the ratio of potentially problematic devices when using a fixed

record interval. However, even when using a customized record interval, some deviations from the

predicted behavior may possibly occur in the learning stage, which itself may result in a prema-

ture death. Obviously, in addition to the battery life, the problem of physical device failure is always

present. Therefore, this section aims to evaluate the accuracy of the system state reconstruction when

the information is incomplete, whatever the reason for the failure.
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Fig. 5.10 shows the results of different strategies for rebuilding the system occupancy state when

the data associated to a set of devices is not available. Reconstruction error is plotted against the

number of unavailable sensors from a total number of about 400. In this figure, each dot represents a

period of 14 days. There are six dots for each coordinate value, corresponding to six 14-day periods

over the three months. This particular arrangement is intended to verify that the temporal behavior

is stable.

The figure shows three different sets of points, depending on the strategy taken:

• Bypass Method: (Shown in light gray.) Unavailable devices are simply omitted, and the state

is built from the remaining sensors.

• Temporal Self-Similarity Method: (Shown in black.) Missing devices are modeled from their

own past pattern, taking advantage of the sensor’s self-similarity The obtained model is used

to build the system state.

• Spatial Similarity Method: (Shown in dark gray.) Missing sensors are replaced by the nearest

neighbor, making use of the spatial similarity.

Discussion

Following a real-world application as a case study, this chapter explores different alternatives for

efficient energy management of wireless sensors, especially for those applications in which classical

strategies such as data compression or local processing are not well suited.

This prospecting is carried out on two fronts. First, the monitoring service is understood as a

service provided by multiple sensors with a common target: a system monitoring application. This

view enables the introduction of system-level metrics, which in turn allows relaxing some specifica-

tions of individual sensors. Second, by introducing contextual information (i.e., the knowledge of

the sensors temporal evolution and the surrounding state), the performance of individual sensors is

improved.

As an application example, this chapter introduces an adaptive sampling rate method based on an

historical evolution analysis of data. This method is designed to optimize energy usage by balancing

the expected battery life among sensors. As discussed, this homogenization has a great impact on

operational costs in that it minimizes non-scheduled interventions.

Nowadays, data is being acquired on an unprecedented scale, and the huge amount of infor-

mation requires new methods of analysis and visualization. This chapter expands upon this new

paradigm, in which spatio-temporal correlations are destined to play a central role.



Conclusions

The present study provides a systematic approach to defining energy efficiency policies for wire-

less devices based on an analysis of spatio-temporal correlations. This dissertation begins with and

elaborates upon the hypothesis that exploiting spatio-temporal correlations leads to optimal strate-

gies for ensuring highly efficient wireless sensor networks. To validate the formulated hypothesis,

we have followed a deductive-inductive methodology by first introducing a generic energy profiling

method. Second, we validate different spatio-temporal strategies through this method.

More specifically, the first result presented in this dissertation represents the basis of our thesis

and consists of defining an accurate energy profiling model for wireless sensor devices. Interestingly,

we found that such a model was lacking in the literature, even though it is essential in quantitatively

validating the impact of different strategies for energy optimization. Hence, we have formalized

a generic energy consumption methodology to profile the energy utilization of low-power, wireless

embedded devices. The methodology aims to reduce technology adoption/integration risks by keep-

ing in mind that energy consumption can be estimated precisely without any need for prototyping

or building actual devices, as has been demonstrated by the presented work.

Throughout the first part of this thesis, we have established a generic framework based on energy

flows for quantitatively determining the energy needs of specific WSN devices. More specifically, the

proposed framework is built on three cornerstones: a) energy production characterization, b) a clear

understanding of the device’s energy usage; and c) an efficient temporary energy buffer management

for coupling production with consumption patterns.

Importantly, the formulation of the model has revealed the existence of energy consumption cy-

cles during WSN device operation, and it has shown that they can be a fundamental part of the

energy consumption optimization strategies. The obtained results stress the importance of under-

standing the cycles of operation involved in embedded tasks, which inherently show repetitive be-

havior. As far as we know, ours is the first model that formalizes this idea and which has proven to

be successful in different applications, as is demonstrated in the second part of this dissertation.

The second part of the thesis follows an inductive approach to demonstrating the applicability

of spatio-temporal correlations under different scenarios, which we have found to be a valuable

tool for defining energy efficiency policies. The main issue at hand is how to take advantage of the

spatio-temporal correlations and quantitatively validate their impact using the proposed model from

different angles.
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The observed spatio-temporal correlations have been used to define energy efficiency policies,

and their usefulness has been validated by the proposed model. Therefore, we can conclude that the

main contribution of this work is that it demonstrates the following: spatio-temporal correlations

play a central role in defining energy management policies, and thus they are essential in a generalist

approach to addressing the problem of energy efficiency. This can be seen from the four different

perspectives presented below.

From the specific applications perspective:

We have conducted this research by analyzing examples of several industrial applications. Each

chapter deals with a real-world problem, which is analyzed and discussed in light of the energy

efficiency model and the observed spatio-temporal correlations. Overall, the proposed methodology

demonstrates its effectiveness in each of the different applications shown below.

• Self-Sustainable Devices (Chapter 3): Self-sufficient networks are destined to definitively cut

down maintenance costs with devices that could operate unattended, thanks to the energy they

extract from the environment. In this chapter, we have demonstrated that self-sustainability

using off-the-shelf technologies is a reality today. Additionally, we have been able to quantify

the conditions required for uninterrupted operation.

• Data Compression (Chapter 4): Compression is currently used for multiple purposes in em-

bedded devices. Regardless of the suitability for energy savings, it can be very useful in reduc-

ing communication bandwidth and temporal storage space. In this chapter, we have exhaus-

tively evaluated the performance of compression algorithms. Focusing on low-power applica-

tions, we have demonstrated that even though they may provide some energy savings, their

usage should be carefully evaluated. Processing and transmission costs can be of the same or-

der of magnitude and, depending on the specific algorithm and technology, the former may

even dominate the latter.

• Lean Sensing (Chapter 5): Wireless sensors are only the hardware layer of today’s complex,

wide-area, monitoring systems. From a macro-scale point of view, information should be fil-

tered, aggregated and correctly visualized to make it understandable. This step provides im-

portant energy and cost reduction opportunities, as we have demonstrated.

As an important result, we can conclude that the proposed generic framework proves to be valid

for each of the proposed scenarios. In other words, this framework provides precise answers to

concrete problems.
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From the application domain perspective:

Taking a second point of view, this work has addressed low-power management strategies and

demonstrated the usefulness of the proposed framework when considering the context. More specif-

ically, the work has emphasized the importance of understanding contextual information obtained

from spatio-temporal correlations. As a result we have proposed and evaluated different context-

based strategies:

• Event Detection (Chapter 3): These applications are concerned mainly with detecting when

certain events occur and generating alarms when they do. The distinctive characteristic is that

all data processing is computed locally. Power reduction is achieved by eliminating radio trans-

missions.

• Periodic Sampling and Reporting (Chapter 4): These applications periodically sample and

report all data acquired. Indeed, the imperfect reconstruction of the signal is often acceptable.

Power reduction is achieved by reducing the amount of information to be transmitted by means

of lossy data compression.

• Periodic Sampling, Event Reporting (Chapter 5): These applications periodically take sam-

ples, but they only generate a report if an event has been detected. Power can be reduced by

relaxing the amount of data aggregated by the provided monitoring service.

As a general result, we can conclude that the different applications defined above can also be

analyzed from a contextual perspective. The defined energy efficiency framework also applies here.

More specifically for each of the contexts, we have proposed and validated an optimal strategy for

efficient energy consumption by following the proposed framework.

From the quality of service perspective:

Throughout this dissertation, the main topics have been addressed with a common optimization

objective. Indeed, we took special care to present applications as a tradeoff between the initial energy

budget, the expected lifetime and the achievable quality of service:

• Alarm-Based Applications (Chapter 5): In this case, the monitoring service is failure detection,

and the quality of service is measured by how often a periodic test can be performed.

• Periodic Reporting Applications (Chapter 4): For these applications, the service is the periodic

information that is reported, and the quality tradeoff compromised is the accuracy of data

reported.

• Event Reporting Applications (Chapter 3): For this application, the service is aggregated in-

formation visualization, and the quality is measured as the accuracy of these representations.
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Again, this perspective allows us to conclude that the proposed framework is both valid and

valuable in determining the tradeoff between service level agreements (quality of service) and the

energy budget (which, in the end, determines the cost). This is very well aligned with industrial

needs and service provisioning.

From the data perspective:

In a natural and progressive way, the spatio-temporal correlations have revealed hidden relation-

ships within the application data, relationships that are not always clear or obvious. From a pure

data analysis perspective, this has proven to be successful in leading to a better understanding of

optimization strategies. Moreover, we have explored some visualization techniques in order to try

to extract the patterns of a given data set. The observed correlations were essential in the following.

• Energy Source (Chapter 3): Energy harvesting is the most promising approach to addressing

the limited lifetime of wireless devices. Patterns are inherently present in environmental energy

sources. A clear understanding of these patterns proved to be essential in adjusting device

power models according to energy availability.

• Data Source (Chapter 4): Limiting the amount of information to be communicated appears

to be a natural choice for reducing radio energy, especially in those systems upon which this

contribution carries significant weight. Self-correlations in the acquired data proved essential

in the compressibility of physical information.

• Information Source (Chapter 5): Complex systems require aggregation and filtering tech-

niques in order to be understood. Correlations emerge in the system analytics, as they are

intrinsically related to aggregation. Thus, correlations can be used as a tool for interpreting a

complex system while at the same time they are also useful in designing suitable policies based

on this knowledge.

In summary, as we have discussed during the course of this dissertation, spatio-temporal corre-

lations naturally appear in WSN data, and they can be successfully applied for optimizing the energy

consumption of wireless devices. In general, we have proven that spatio-temporal correlations con-

stitute a key element in optimally managing power consumption in low-power embedded devices.

. . .

Mark Weiser envisioned an “ubiquitous computing” world [85]. Nowadays, the Internet of things

is a reality, fulfilling the prophecy of Weiser’s vision. In this word, a huge amount of information is

ready for new methods of analysis and visualization. This work expands upon the knowledge of

that can be gained within this new paradigm, in which we have demonstrated that spatio-temporal

correlations are destined to play a central role.
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Epilogue

‘THAT Hooker telescope of yours is quite spectacular. I can imagine how

much fun young Humason and you have with it. Your tour was full of such

lovely details too, just like your papers.’

Edwin Hubble laughed. ‘Come, come, Albert. This flattery doesn’t suit you.

It would be an honour, if you would tell me what you really think of my work.’

He emphasized the word ‘really’.

It was a pleasant afternoon in January in 1931. Mount Wilson Observatory

was playing host to a group of special guests. One of these guests, the most

special one in the eyes of Hubble, was his respected colleague, the renowned

scientist, Albert Einstein. The tour was done and the two scientists had some

time alone. They had exchanged letters in the last decade or so but Hubble felt

that many things had been left unsaid in the written word.

‘Well, you must know this already. But I did tell de Sitter long ago that the

possibilities of an “expanding” universe seemed quite senseless to me. I know

you have proof but I still find it hard to make my peace with it,’ said Einstein.

Hubble was quiet. He put his coffee mug on the desk and walked to the

windows of his office.

‘Look, Albert. We are over five thousand feet high. It’s such a nice day, that

even the Santa Catalina Island is visible. It was a day like this, a beautiful Cali-

fornian day with each star refusing to compromise on showcasing its brilliance,

when I first discovered that the redshift of distant galaxies increased as a linear

function of their distance. Of course I couldn’t believe it either. Our magnifi-

cent universe was expanding? It was a mad thought much bigger than any of us.

How was I going to change people’s minds about what they thought they already

knew? How was I going to tell people that the universe wasn’t as static as they

had imagined? But despite these doubts, I was thrilled. It boggled my mind and

ignited my imagination. I can tell you now that I am convinced, our magnificent

universe is expanding.’

‘Einstein took a sip of his coffee. We have to be a bit mad as scientists. I don’t

blame you.’



‘Some would say that my madness was consistent with yours,’ said Hubble.

‘Well, all of your madness except the bit that came up with the lambda. Many

people didn’t believe my discovery because it didn’t fit with your equations of

relativity. The existence of your cosmological constant, lambda suggested the

universe was static.’

‘If you recall, that crazy Belgian Catholic priest, Lemaı̂tre had proposed the

same concept of the expanding universe. And his work actually fit quite well

into my theories of relativity.’

‘Why then, were you so critical of a non static universe? You must have been

aware that the only way people would believe Lemaı̂tre’s and my theories was if

you got rid of the Cosmological Constant from your field equations of relativity.’

‘I must admit that your proof of the redshift of distant nebulae has smashed

my old construction like a hammer blow,’ replied Einstein. Hubble’s eyebrows

shot up with expectation. Einstein went on, ‘When I first came up with the gen-

eral theory of relativity, I was amazed, if I may say so myself, by their simplicity

and beauty. But assuming the universe was not static; my equations were telling

me that the universe would collapse into itself or keep expanding. I will admit

that the constant lambda was necessary for the purpose of making possible a

quasi-static distribution of matter.’

Hubble smiled his first smile that afternoon. ‘Am I hearing what I think I’m

hearing?’

‘You will hear what you wish to hear, my dear Edwin. I have been thinking

for a while now that the constant has to go. Everything points in the direction of

an expanding universe. I will just have to admit to the world that I made an error

in my calculations. I won’t deny that I’m a little pleased to have my symmetric

equations of relativity back. You have my congratulations and my thanks for

your persistence. I still need to think about eliminating the constant completely

but I feel I’m moving closer in that direction.’ He looked at his pocket watch.

‘And now, i’s time to go. Thank you for a delightful time. I’m sure we will see

each other again.’

The two men shook hands and walked out of the door together. The rest of the

group was at the end of the corridor. Just as they arrived towards them, Hubble

said in a quiet tone to Einstein, ‘I know what you always say, Albert, that anyone

who has never made a mistake has never tried anything new. Your instinct is

other worldly. As a universe, we might be expanding, and you will be right to
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dismiss your constant so we can share this discovery with the world and they

will believe us... but... ’

‘But, you wouldn’t be surprised if the cosmological constant came back again

one day?’ Einstein laughed. ‘You certainly have a charming sense of humour,

Edwin. But who is to say? You never know what can happen in this world, or

where we are going.’

. . .

Hubble’s theories supported the scientist Lemaı̂tre in his claim that the uni-

verse is the ‘ashes and smoke of bright but very rapid fireworks;’ a spark that

ignited the ‘Big Bang Theory’.

In 1998, many years after Einstein’s visit to Hubble at Mount Wilson and his

dismissal of the constant ‘lambda’ from his equations of relativity, two indepen-

dent teams of astronomers, the Supernova Cosmology Project and the High-z

Supernova Search Team, announced a remarkable discovery — the rate at which

the universe is expanding is accelerating. This discovery suggested the existence

of ‘dark energy’ in the universe, something that could only be proven by re-

introducing Einstein’s lambda back into his equations. Some might say that the

cosmological constant had come back.

“Conversations About A Constant” — Sneha Nagesh
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