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Abstract

The finite element method is a valuable tool for simulating complex physical

phenomena. However, any finite element based simulation has an intrinsic amount of

error with respect to the exact solution of the selected physical model. Being aware of

this error is of notorious importance if sensitive engineering decisions are taken on the

basis of the numerical results. Assessing the error in elliptic problems (as structural

statics) is a well known problem. However, assessing the error in structural transient

dynamics is still ongoing research.

The present thesis aims at contributing on error assessment techniques for struc-

tural transient dynamics. First, a new approach is introduced to compute bounds of

the error measured in some quantity of interest. The proposed methodology yields

error bounds with better quality than the already available approaches. Second, an

efficient methodology to compute approximations of the error in the quantity of in-

terest is introduced. The proposed technique uses modal analysis to compute the

solution of the adjoint problem associated with the selected quantity of interest. The

resulting error estimate is very well suited for time-dependent problems, because the

cost of computing the estimate at each time step is very low. Third, a space-time

adaptive strategy is proposed. The local error indicators driving the adaptive pro-

cess are computed using the previously mentioned modal-based error estimate. The

resulting adapted approximations are more accurate than the ones obtained with an

straightforward uniform mesh refinement. That is, the adapted computations lead

to lower errors in the quantity of interest than the non-adapted ones for the same

number of space-time elements. Fourth, a new type of quantities of interest are intro-

duced for error assessment in time-dependent problems. These quantities (referred as

timeline-dependent quantities of interest) are scalar time-dependent outputs of the

transient solution and are better suited to time-dependent problems than the stan-

dard scalar ones. The error in timeline-dependent quantities is efficiently assessed

using the modal-based description of the adjoint solution.

The thesis contributions are enclosed in five papers which are attached to the

thesis document.
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Thesis overview

1 Introduction

1.1 Motivation

Finite element-based simulations have become a fundamental tool in engineering anal-

ysis. These techniques are valuable to simulate physical phenomena when experiments

are too expensive or even impracticable. However, any finite element approximation

has two inherent sources of error, the modeling error and the discretization error.

Consequently, both errors have to be controlled to provide a reliable numerical so-

lution. This is particularly important if sensitive decisions are taken on the basis of

the numerical results.

The modeling error is the difference between reality and the selected mathematical

model. The mathematical model is typically described by a set of partial differential

equations (plus suitable initial and boundary conditions) which are approximated

with numerical tools. The discretization error is the difference between the unknown

exact solution of the mathematical model and the computable numerical approxima-

tion. The present work restricts to assessing the discretization error. Thus, the exact

solution of the mathematical model is taken as the truth solution in the present error

analysis. Assessing the modeling error is out of the scope of this work.

The numerical approximation is associated with a discretization of the computa-

tional domain based on a computational mesh or grid. Consequently, the choice of a

good enough mesh is crucial to have a reliable solution. In practice, the quality of the

computational mesh is bounded by the available computer resources, and therefore,

a compromise between cost and quality has to be found.

A posteriori error assessment techniques allow the user of the finite element soft-
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Thesis overview

ware to be aware of which is the error associated with the selected discretization.

This information is used to accept or reject the numerical approximation on the basis

of the required accuracy for a specific application. Moreover, error assessment tech-

niques provide local error information describing the distribution of the error over the

computational domain. This information is used to build an adapted discretization.

A fine mesh is employed only at the zones with large error contribution, making an

efficient use of the computational resources.

This work focuses in structural transient dynamics. That is, structural problems

under impulsive loads exiting a high frequency spectrum. In this situation, the solu-

tion of the problem is typically approximated using direct time-integration schemes

instead of modal analysis, because the required number of vibration modes to char-

acterize the solution is very high. The applications of structural transient dynamics

include a high variety of elastic wave propagation problems. For instance, vulnera-

bility of structures under explosions or impacts, or applications in geophysics as the

propagation of earthquake waves.

Assessing the error in structural dynamics is particularly relevant because, as com-

pared to the standard elliptic problems, the discretization errors are generated and

propagated less intuitively or predictably. Moreover, the applications of structural

transient dynamics include safety-related issues in buildings and large infrastruc-

tures. Consequently, a quality certification of the numerical solution is important in

this context.

Nowadays, the error assessment and adaptive techniques are well established for

elliptic problems as steady-state linear elasticity and heat transfer. However, these

methodologies are still under development for structural transient dynamics (also re-

ferred as elastodynamics) and other second-order hyperbolic problems. Assessing the

error in structural dynamics is a challenging topic. First, the available error estimates

are expensive in terms of CPU time and memory requirements. Second, computing

sharp error bounds is specially demanding using the available techniques. And third,

the quantities of interest available for assessing the error are not particularly well

suited for time-dependent problems. These difficulties compromise the application

of the current error assessment techniques in practical engineering examples. Conse-

quently, further research is required to overcome these difficulties.
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1. Introduction

1.2 State-of-the-art

Over the last three decades, numerous a posteriori error assessment techniques for

finite element analysis have been proposed. Representative state-of-the-art reviews

and books on this topic are introduced by Ainsworth and Oden (2000, 1997), Ladevèze

and Pelle (2001), Rannacher (2001), Stein (2003), Gratsch and Bathe (2005), and Dı́ez

et al. (2010). These works focus mainly in elliptic problems and do not include the

last advances particular to structural transient dynamics. A detailed review of the

available error assessment techniques for structural transient dynamics is presented

in the appended paper A. The state-of-the-art review presented in this introduction

is a succinct version of the one found in paper A.

A posteriori error assessment techniques aim at assessing a particular error mea-

sure (i.e. a representative scalar value associated with the error) instead of approx-

imating the error field at each point of the computational domain. Approximating

the error field generally requires computing a reference solution using a much finer

discretization, which is unafordable in practice. Two different types of error measures

are considered in the literature leading to two different types of error estimates: 1)

energy-like error estimates and 2) goal-oriented error estimates.

1) Energy-like error estimates (also referred as global error estimates)

The error measure is defined as a global norm of the error (integrated over

the whole computational domain). The standard norm considered for error

assessment in elliptic problems is the norm induced by the bilinear form of

the corresponding weak equations. This specific norm is referred as the energy

norm because it is related with the energy of the underlying physical model. For

instance, the energy norm in steady-state linear elasticity coincides with (the

square root of) the potential elastic energy. Assessing the error energy norm is

particularly straightforward in elliptic problems, because this particular error

measure is closely related with the residual. Representative works assessing the

error energy norm in elliptic problems are the pioneering references on error

assessment by Babuŝka and Rheinboldt (1978), Ladevèze and Leguillon (1983),

and Zienkiewicz and Zhu (1987).

The energy-like error measures for structural transient dynamics do not only

include the potential elastic energy, but also the kinetic energy as well as the

dissipated energy for problems containing a finite amount of damping. Refer-
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ences by Li and Wiberg (1998), Wiberg and Li (1999), Schleupen and Ramm

(2000), and Aubry et al. (1999) propose error estimates assessing the kinetic

and elastic energy of the error. On the other hand, references by Ladevèze

and Waeytens (2009), Waeytens (2010), Ladevèze (2008), and Waeytens et al.

(2012) propose computable bounds of the dissipated energy associated with the

error.

2) Goal-oriented error estimates (also referred as local error estimates)

In the context, the error measure is defined by means of a functional extracting

a single representative scalar value of the solution of the problem. The end-user

of the finite element software can define the functional such that the extracted

value is a quantity of interest of the problem with a relevant physical meaning

(e.g. the average of the solution in a specific local region of the domain). The

error to be assessed is the error in the quantity of interest. That is, the difference

between the quantity of interest associated with the exact solution and the

quantity of interest associated with the finite element approximation. The

techniques assessing the error in the quantity of interest are generally referred

as goal-oriented.

Quantities of interest are error measures more meaningful than the standard

energy-like global norms. However, assessing the error in an arbitrary quantity

of interest requires approximating an auxiliary problem referred as the adjoint

or dual problem. Thus, goal-oriented error estimates are usually more expensive

than energy-like ones.

Goal-oriented error estimates are originally proposed for elliptic problems by

Paraschivoiu et al. (1997), Cirak and Ramm (1998), and Prudhomme and Oden

(1999). These techniques are extended to other problem types. For instance,

estimates for the advection-diffusion-reaction equation are discussed by Parés

et al. (2009). Similar approaches for the Stokes problem are presented by Lars-

son et al. (2010). An extension to parabolic time-dependent problems is intro-

duced by Parés et al. (2008a,b), and Dı́ez and Calderón (2007). Moreover, the

same type of tools are discussed for coupled problems by Larson and Bengzon

(2008), Larson et al. (2008), Fick et al. (2010), Van Der Zee et al. (2011), and

Asner et al. (2012). Finally, goal-oriented error estimates are also proposed for

structural transient dynamics by Waeytens et al. (2012), Bangerth et al. (2010),
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1. Introduction

Schleupen and Ramm (2000), and Fuentes et al. (2006).

The specific techniques for assessing the error in structural transient dynamics are

briefly presented in the following. The interested reader can find the specific details in

the appended paper A. For the sake of presentation, the error assessment techniques

are grouped here in three types: 1) recovery-based estimates, 2) the dual weighted

residual method and 3) the constitutive relation error method. This classification is

based on the different methodologies used to derive the error estimates.

1) Recovery-based error estimates

In the context of steady-state elasticity and other elliptic problems, recovery-

based error estimates provide approximations of the error energy norm and

local error indicators used for mesh adaptivity. The error estimate is derived

as follows. First, the error energy norm is written in terms of the error in

stresses using the complementary energy. The error in stresses is defined as

the difference between the (unknown) exact stresses and the stresses associated

with the finite element solution. Hence, the error estimate is obtained replacing

the unknown exact stress by an enhanced version of the available finite element

stress. The local error contributions are obtained by restricting the integrals

involved in the definition of the complementary energy to the elements of the

computational mesh.

The technique providing the enhanced stress field consists in computing (or

recovering) a continuous stress as a post-process of the discontinuous finite

element stress. There are two main approaches to compute the continuous

stress. Either solving a global problem involving all the degrees of freedom of

the mesh [Zienkiewicz and Zhu (1987)] , or solving local problems involving a

small subset of degrees of freedom [Zienkiewicz and Zhu (1992a,b)].

Recovery-based estimates are applied to structural dynamics to provide local

error information driving mesh adaptivity, see references by Li and Wiberg

(1998), Wiberg and Li (1999), Schleupen and Ramm (2000), and Erhart et al.

(2006). The local error indicators are obtained performing at each time step the

standard recovery techniques designed for steady-state problems. The elastic

energy of the error is assessed using the previously presented stress recovery.

However, the same approach do not holds for assessing the kinetic energy of

the error, because it requires computing an enhanced version of the velocities.
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Note that the finite element velocity is already continuous at the inter-element

boundaries. Consequently, a specific recovery procedure is introduced for the

velocities, see references by Wiberg and Li (1994) and Wiberg et al. (1999) for

details.

The recovery techniques applied to time-dependent problems give approxima-

tions of the space discretization error, but they are not sufficient to assess the

time discretization error. Hence, the recovery techniques allow to adapt only

the space discretization. The time-discretization is adapted by introducing al-

ternative error estimates for the time discretization, see reference by Schleupen

and Ramm (2000) for details.

A complete review on recovery estimates for different problem types is intro-

duced by Wiberg et al. (1997).

2) The dual weighted residual method

The dual residual method provides approximations of the error in the quantity

of interest as well as local error indicators used for mesh adaptivity. The error

estimate is derived in two stages. First, the error in the quantity of interest is

expressed in terms of the exact solution of the adjoint problem and of the weak

residual associated with the numerical approximation. Then, the error estimate

is obtained by replacing the exact solution of the adjoint problem by a suitable

numerical approximation, see the work by Rannacher and Stuttmeier (1997)

for details. The local error indicators are obtained by restricting the integrals

involved in the weak residual to the elements of the computational mesh.

The key ingredient of the dual weighted residual method is computing a suit-

able approximation of the adjoint solution. Here, the word “suitable” means

that the adjoint approximation has to belong to a richer interpolation space

than the one used for approximating the solution of original problem. This is

required to avoid the cancellation of the assessed error by Galerkin orthogonal-

ity. The adjoint approximation is obtained either applying recovery techniques

to a coarse-mesh approximation of the adjoint solution or solving the adjoint

problem using higher order elements. Note that, this latter approach might be

unaffordable in large examples.

The weighted residual method is applied to a high variety of problem types, even

non-linear problems, as is shown in the review papers by Rannacher (2001), and
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Becker and Rannacher (2001). This methodology is originally introduced for

elliptic problems by Rannacher and Stuttmeier (1997). The extension to linear

structural transient dynamics is proposed by Bangerth et al. (2010), Schleupen

and Ramm (2000), Bangerth (1998), Rannacher (2001), Bangerth and Ran-

nacher (1999), and Bangerth and Rannacher (2001). The non-linear dynamic

case is considered by Fuentes et al. (2006). In the context of structural dynam-

ics and other time-dependent problems, the dual weighted residual method is

expensive in terms of CPU time and memory requirements. This is because the

space-time adjoint solution has to be computed and stored as a whole (i.e. at

each mesh vertex and time step) before computing the error estimate.

The rationale of the dual weighted residual method is used to assess the error

in global norms as well. In the context of second order hyperbolic problems,

Eriksson et al. (1996) propose an estimate for the L2 norm of the error at

the final time of the computation. Following a similar approach, Aubry et al.

(1999) propose an estimate of the total error energy (kinetic plus elastic). The

resulting error estimate is completely explicit in the sense that it is computable

as a direct post-process of the residual, without solving any auxiliary problem.

For these particular error measures, the adjoint problem is only an auxiliary

mathematical artifact used to derive the estimate. Consequently, the adjoint

problem is not approximated.

3) Constitutive relation error method

The constitutive relation method furnishes bounds of the error energy norm as

well as the error in the quantity of interest. Computing error bounds with this

methodology requires building a stress-based approximation of the problem

(fulfilling the equilibrium/momentum equations and the Neumann boundary

conditions). The difference between the equilibrated stress and the stress asso-

ciated with the finite element approximation is a computable error in stresses

corresponding to the non-verification of the constitutive relation.

In the context of elliptic problems, the bound of the error energy norm is derived

using the result by Prager and Synge (1947) which states that the complemen-

tary energy of the error in the constitutive relation is an upper bound of the

error energy norm. The error in the quantity of interest is assessed by combin-

ing error bounds for the original and adjoint problems. Hence, a finite element

7
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approximation as well as an equilibrated stress field are required for the adjoint

problem.

The error bounds are computable once the equilibrated stresses are available.

Stress equilibration techniques are proposed by Ladevèze and Leguillon (1983),

Ainsworth and Oden (1997, 2000), and Parés et al. (2006). A comparison of

different stress equilibration procedures is presented by Pled et al. (2011). Con-

stitutive relation error estimates are implicit in the sense that the underlying

stress equilibration technique is based on solving auxiliary local problems. In

many contexts, constitutive relation error are equivalent to other implicit resid-

ual type error estimates, for instance the ones proposed by Ainsworth and Oden

(1997), Ainsworth and Oden (2000), and Parés et al. (2006).

The constitutive relation error method is introduced in the literature originally

for linear elliptic problems by Ladevèze and Leguillon (1983). The method is ex-

tended later to deal with a wide range of problem types. For instance, parabolic

problems are considered by Chamoin and Ladevèze (2008). Non-linear problems

are considered by Ladevèze and Moës (1999), Ladevèze et al. (2000), Ladevèze

and Moës (1997), and Gallimard et al. (2000). The constitutive relation error

method is applied to structural dynamics by Ladevèze (2008), Ladevèze and

Waeytens (2009), Waeytens (2010), and Waeytens et al. (2012).

Computing error bounds in structural transient dynamics using the constitutive

relation method has two main difficulties. First, the standard stress equilibra-

tion techniques designed for steady-state problems have to be repeated at each

time step which is computationally demanding. Second, deriving the error

bounds requires that the formulation of the problem includes some non-zero

amount of damping. That is, the bounding properties are lost in the case of

pure elasticity. In practice, the computed error bounds are very pessimistic for

small values of the viscosity.

1.3 Objectives and document layout

The present thesis aims at contributing in the research field of a posteriori error

assessment for structural dynamics by proposing new error estimates addressing the

following difficulties: 1) the poor quality of the computable error bounds, 2) the

8



1. Introduction

cost of computing goal-oriented error estimates, and 3) the limitation of standard

quantities of interest when dealing with time-dependent problems.

1) Enhancing the quality of goal-oriented error bounds.

Further research is required to improve the quality of the available error bounds

in structural transient dynamics. In the context of elliptic problems, the error

bounds are derived using the result by Prager and Synge (1947) which holds

because the bilinear form of the weak problem is an inner product. In structural

dynamics, the associated bilinear form is not symmetric (hence, not an inner

product), which makes computing error bounds challenging.

References by Parés et al. (2008a,b) derive error bounds for the time-dependent

convection-diffusion-reaction equation. These references propose a methodol-

ogy to deal with a non-symmetric bilinear form. Consequently, an analogous

approach is investigated here for structural dynamics. The alternative error

bounds are presented in section 3.1 and discussed in detail in paper B.

2) Enhancing the efficiency of goal-oriented error estimates

The available goal-oriented error estimates for structural dynamics consider

direct time-integration methods for approximating the solution of the adjoint

problem. The resulting error estimates are expensive in terms of memory re-

quirements because the adjoint solution has to be computed and stored at each

mesh node and time step. Moreover, error estimates generally require perform-

ing post-process operations (i.e stress recovery or equilibration) at each time

step which might be unaffordable in large problems. Modal analysis is investi-

gated as an alternative way to efficiently compute and store the adjoint solution.

The modal-based error estimate is presented in section 3.2 and discussed in de-

tails in paper C. Moreover, the proposed error estimate is used for space-time

adaptivity in section 3.3 and in paper D.

3) Going beyond standard quantities of interest for time-dependent prob-

lems

As previously announced, the quantities of interest available in the literature

for error assessment are expressed in terms of a functional extracting a single

representative scalar value of the solution. A quantity of interest for steady-state

problems is usually the average of the unknown solution in a sub-region of the

9
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computational domain. However, in time dependent problems, the definition of

the quantity of interest must involve not only a spatial sub-domain but also a

time interval of interest. The choice of this time frame is not always obvious

for the end-user. This is because a single scalar value does not provide enough

pieces of information about the whole time-space solution.

The preferred quantities of interest in time-dependent problems are time-depen-

dent scalar functions instead of scalar values. For instance, the history of the

average of the solution in a space sub-region of the computational domain.

These type of quantities are refereed in the following as timeline-dependent

quantities of interest in contrast to the standard scalar quantities. Timeline-

dependent quantities of interest are better suited to time-dependent problems

because they preclude selecting the time frame. The error assessment strategy

for timeline-dependent quantities is to be investigated. The resulting error

estimates are presented in section 3.4 and in paper C.

The remainder of this document is structured in two parts. The first one is an

overview of the thesis work. This includes the formal definition of the equations of

structural dynamics and the error to be assessed, an overview of the main contri-

butions, and the conclusions and further research. The second part consist of five

appended papers where the contributions are discussed in detail. Paper A presents

a comprehensive state-of-the-art review on error assessment for structural transient

dynamics. Paper B discusses alternative error bounds. Paper C presents the modal-

based approximation of the adjoint solution and the error assessment strategy for

timeline-dependent quantities of interest. Paper D introduces an space-time adaptive

strategy based on the modal description of the adjoint solution. Finally, paper E de-

tails the mesh refinement and un-refinement procedure considered in the adaptive

strategy presented in paper D.

2 Problem description

2.1 Governing equations

A visco-elastic body occupies an open bounded domain Ω ⊂ Rd, d ≤ 3, with boundary

∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such that ∂Ω = ΓN∪ΓD

and the considered time interval is I := (0, T ]. Under the assumption of small

10



2. Problem description

perturbations, the evolution of displacements u(x, t) and stresses σ(x, t), for x ∈ Ω

and t ∈ I, is described by the visco-elastodynamic equations

ρ(ü + a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}, (1e)

where an upper dot indicates derivation with respect to time, that is ˙(•) := d
dt

(•), and

n denotes the outward unit normal to ∂Ω. The input data includes the mass density

ρ = ρ(x) > 0, the first Rayleigh coefficient a1 ≥ 0, the body force f = f(x, t) and the

traction g = g(x, t) acting on the Neumann boundary ΓN× I. The initial conditions

for displacements and velocities are u0 = u0(x) and v0 = v0(x) respectively. For the

sake of simplicity and without any loss of generality, Dirichlet conditions (1b) are

taken as homogeneous.

The set of equations (1) is closed with the constitutive law,

σ := C : ε(u + a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh coefficient, the tensor C is the

standard 4th-order elastic Hooke tensor. The strains are given by the kinematic

relation corresponding to small perturbations, ε(w) := 1
2

(∇w + (∇w)T
)
.

Remark 1. The displacement field u defined in equations (1) is the unknown exact

solution which is taken as the truth in the following error assessment analysis.

2.2 Numerical approximation

The input data of any a posteriori error assessment technique is an approximation

of the exact solution of the underlying mathematical problem. In the following, the

numerical approximation of problem (1) is referred as ũ ≈ u. There are two main

alternatives to compute this approximation. Either using finite elements for the space

discretization and finite differences for the time discretization (e.g. the well known

method proposed by Newmark (1959)) or using finite elements for both the space and

time discretizations, see the work by Hughes and Hulbert (1988). Note however, these
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are not the only available approximation techniques. Other approximation methods

are based on finite volumes (Lee et al. (2013)), spectral elements (Komatitsch et al.

(1999)) and boundary elements (Bouchona and Sánchez-Sesma (2007)). A detailed

presentation of the available approximation methods in structural dynamics is out

of the scope of this thesis overview. The reader is referred to the paper A or to

references by Bangerth et al. (2010), and Bathe (1996) for specific details.

Most of the approximation methods are based on separated discretizations for the

space and time domains (i.e. discretizing the whole space-time domain Ω × I with

an unstructured mesh is non-standard). The time domain I is discretized using a

time grid T := {t0, t1, . . . , tN}, where 0 = t0 < t1 < . . . < tN = T are the grid

points. These points define the time intervals In := (tn−1, tn] with time step length

∆tn := tn− tn−1, n = 1, . . . , N . On the other hand, the space domain Ω is discretized

using a finite element mesh. The set of all mesh elements is denoted by P .

Remark 2. In the context of mesh adaptivity for transient problems, the space finite

element mesh P is allowed to be different at each time point tn ∈ T . In that case, the

finite element mesh associated with the time point tn is denoted as Pn. Consequently,

the approximation method has to be able to properly transfer the numerical solution

from one mesh to the other without lose of information. A detailed methodology to

deal with changing meshes is found in the paper D.

Problem (1) is typically discretized in space using standard finite elements. The

finite element mesh P is associated with a functional space, namely VH,p
0 , containing

continuous piecewise polynomial functions of degree p. The upper-script H stands

for the characteristic mesh element size of the elements in P . The discretization of

(the weak version of) problem (1) in the space VH,p
0 leads to a system of Ordinary

Differential Equations (ODE). Solving this system yields the numerical approximation

ũ. The system of ODE is solved either with finite differences, as proposed by Newmark

(1959), or using finite elements, see works by Eriksson et al. (1996), Johnson (1993),

and Hughes and Hulbert (1988).

The approximation ũ has to fulfill particular properties to be a valid input for

the error analysis. Some error estimates (e.g. the ones proposed in the papers B and

C) require only that the approximation ũ is regular enough. This allows computing

the numerical approximation with many different approximation methods. On the

other hand, other error assessment strategies, e.g. the one proposed in appended

paper D, require that the approximation ũ is solved with a specific method. This

12



2. Problem description

is because the error estimate requires the Galerkin orthogonality property associated

with a particular discrete solution.

2.3 Error to be assessed

The discretization error associated with the approximation ũ is defined as e := u− ũ.

A brute-force approach to approximate the unknown error e is computing an overkill

or reference solution of problem (1), namely uovk. This overkill solution is computed

using a much finer discretization than the one for ũ. The overkill discretization is

built by an H- or p-refinement of the finite element mesh P and by adding more

time points into the time partition T . Then, the error is approximated replacing the

exact solution u by the overkill approximation uovk, namely e ≈ uovk− ũ. Note that

computing the overkill solution is unaffordable in large examples. Thus, a posteriori

error assessment techniques aim at assessing the error in a more affordable way.

As previously announced, the error to be assessed is a specific error measure (an

scalar value) instead of the error field e(x, t). The error measure considered here is

a quantity of interest associated with a functional LO(·). A commonly used quantity

of interest in elastodynamics is represented by the linear functional

LO(w) :=

∫ T

0

(fO(t), ẇ(t)) dt+

∫ T

0

(gO(t), ẇ(t))ΓN
dt

+m(vO, ẇ(T )) + a(uO,w(T )),

(3)

where fO, gO, vO and uO are the data characterizing the quantity of interest. The

weighting functions fO and gO allow to define weighted averages of velocities inte-

grated in Ω × I and ΓN × I respectively. The fields vO and uO play the role of

weighting functions defining averages of velocities and strains at the final simulation

time T . In the definition of the quantity of interest (3), the following notations are

used

(v,w) :=

∫

Ω

v ·w dΩ, (v,w)ΓN
:=

∫

ΓN

v ·w dΓ, m(v,w) :=

∫

Ω

ρv ·w dΩ, and

a(v,w) :=

∫

Ω

ε(v) : C : ε(w) dΩ.

The error to be assessed is the error in the quantity of interest, se := s − s̃,

defined as the difference between the exact quantity of interest s := LO(u) and the

computed one s̃ := LO(ũ). In the following, it is assumed that the functional LO(·) is

13
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linear. Thus, se = LO(e). However, non-linear functionals can also be handled after

a linearization, see references by Bangerth et al. (2010), and Fuentes et al. (2006) for

details.

2.4 Adjoint problem

Assessing the error in the quantity of interest requires introducing an auxiliary prob-

lem associated with functional LO(·), referred as adjoint or dual problem. The adjoint

problem allows rewriting the error in the quantity of interest in a more convenient

way for error assessment. The problem defining the exact adjoint solution ud reads:

ρ(üd − a1u̇
d)−∇ · σd(ud) = −fO in Ω× I, (4a)

ud = 0 on ΓD × I, (4b)

σd(ud) · n = −gO on ΓN × I, (4c)

ud = uO at Ω× {T}, (4d)

u̇d = vO at Ω× {T}, (4e)

with the constitutive law

σd(ud) := C : ε(ud − a2u̇
d). (5)

Note that the definition of the adjoint problem (4) depends on the selected quantity

of interest. That is, the external loads and final conditions of the adjoint problem

are determined by the definition of quantity of interest in equation (3).

The adjoint problem (4) has exactly the same structure as the original (1) if

integrated backwards in time starting from the final conditions (4d) and (4e). Thus,

any of the available approximation techniques for elastodynamics can be considered

for approximating the adjoint.

Remark 3 (Illustrative example). The following example illustrates the adjoint prob-

lem given in (4) in a one dimensional example. The spatial computational domain is

Ω = (0, 1) m, the boundaries are ΓN = {0 m} and ΓD = {1 m}, and the time interval

is I = (0, 2] s. The material properties are E = 1 Pa, ν = 0, ρ = 1, kg/m3 and

a1 = a2 = 0 s.

The adjoint problem illustrated in this remark is associated with the quantity of

interest

LO(w) =

∫

I

∫

Ω

α(t)β(x)ẇ(x, t) dx dt, (6)

14
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where α(t) and β(x) are the functions defined in figure 1. Note that the quantity

Figure 1: Definition of α(t) and β(x), (left) and (right) respectively.

of interest (6) corresponds to take gO = vO = uO = 0 and fO = α(t)β(x) in

equation (3) and provides a weighted average of velocities in the space-time region

SO = (xOa , x
O
b )× (tOa , t

O
b ), see figure 2. In this example, the region SO is characterized

by xOa = 0.2 m xOb = 0.3 m, tOa = 1.8 s and tOb = 1.9 s.

The adjoint problem associated with quantity (6) is plotted in figure 2. Note that

the quantity of interest acts as the external loading of the adjoint problem. The quan-

tity of interest generates a perturbation in the space-time region of interest SO which

propagates along the characteristic lines backwards in time. The adjoint solution is

indeed the region of influence of the quantity of interest. That is, any perturbation

taking place where the adjoint solution is zero has no influence in the quantity of

interest.

−10

−5

0

5

10

Figure 2: Illustration of the adjoint problem for the quantity of interest given in
equation (6) (average of velocities in the region SO). Definition of the space-time
domain Ω× I and region of interest SO (left). Adjoint velocities [m/s] (right).
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3 Contributions

This section is an overview of the major thesis contributions. The contributions are

presented stressing out which are the main novelties, the key ideas of the proposed

methods, and numerical examples.

3.1 Goal-oriented error bounds

This section presents computable error bounds for structural dynamics. First, the

strategy proposed by Waeytens (2010) is extended to deal with a linear Kelvin-Voigt

visco-elastic model instead of a Maxwell model. This allows a simpler derivation

of the error bounds allowing to concentrate in the mathematical difficulties. Note

that the proposed approach is general enough to deal with more sophisticated visco-

elastic models. Second, alternative error bounds are proposed improving the estimates

introduced by Waeytens (2010). These contributions are enclosed in the appended

papers A and B. The main rationale is summarized here.

The goal is to compute two scalar values ηL and ηU such that

ηL ≤ LO(e) ≤ ηU. (7)

Computing the error bounds ηL and ηU with the constitutive relation method requires

that the problem contains a finite amount of damping. In the following, it is assumed

that a1 = 0 and a2 > 0 in order to meet this hypothesis. With this choice, all the

damping introduced in the formulation comes from the constitutive relation (2) which

is seen as a particular type of Kelvin-Voigt visco-elastic model.

The key ingredient allowing to compute the error bounds is building admissi-

ble pairs (ũ, σ̃) and (ũd, σ̃d) for the original and the adjoint problems. The ad-

missible pair (ũ, σ̃) for the original problem consists of a Kinematically admissible

(K-admissible) displacement ũ and a Dynamically admissible (D-admissible) stress

tensor σ̃.

The K-admissible displacement ũ fulfills the initial and Dirichlet boundary con-

ditions of the original problem (1). Typically, the K-admissible displacement is the

computed numerical approximation ũ. For that reason, the notation is the same for

both for the K-admissible displacement and the numerical approximation. On the

other hand, the D-admissible stress σ̃ is computed such that it is in dynamic equi-

librium with the inertia force associated with the K-admissible displacement, namely

−ρ¨̃u, the body force f , and boundary traction g appearing in (1).
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The adjoint admissible pair (ũd, σ̃d) fulfills analogous properties but referred to

the adjoint problem. Computing a D-admissible stress requires performing standard

equilibration techniques designed for steady-state elasticity at each time point in the

time grid T . A more detailed definition of the admissible pairs (ũ, σ̃) and (ũd, σ̃d)

and the methodology to compute them is found in the appended paper B.

The admissible pairs define the following errors in stresses

σ̃e := σ̃ − σ(ũ) and σ̃d,e := σ̃d − σ(ũd), (8)

which are a measure of the non-verification of the constitutive relations (2) and (5)

respectively. Note that the stress errors σ̃e and σ̃d,e are computable once the ad-

missible pairs (ũ, σ̃) and (ũd, σ̃d) are available. The norms |||σ̃e|||σ and |||σ̃d,e|||σ are

referred as the constitutive relation error for the original and adjoint problems fol-

lowing the terminology by Ladevèze and Pelle (2001). The space-time stress norm

used to measure the error is

|||τ |||σ :=

(
1

a2

∫

I

∫

Ω

τ : C−1 : τ dΩ dt

)1/2

. (9)

Note that the norm ||| · |||σ is related with the dissipated energy due to the damping

coefficient a2. For this reason, the non-zero viscosity hypothesis has to be fulfilled in

order to compute error bounds with this technique.

The error in the quantity of interest is bounded following two stages. First,

the value LO(e) is bounded in terms of the energy norm of non-computable errors.

Second, the non-computable errors are bounded using the constitutive relation errors

|||σ̃e|||σ and |||σ̃d,e|||σ.

The first approach to bound the error LO(e) is already introduced by Waeytens

(2010). The value LO(e) is bounded in terms of the unknown error e as follows

|LO(e)− k̃1| ≤ |||σ̃d,e|||σ|||e|||, (10)

where k̃1 is a computable value, see paper B for a detailed proof. The norm ||| · ||| is

related with the stress norm ||| · |||σ but taking displacements as argument, namely

|||w||| :=
(
a2

∫

I

∫

Ω

ε(ẇ) : C : ε(ẇ) dΩ dt

)1/2

. (11)

Then, the unknown error energy |||e||| is bounded using the upper bound property of

the consitutive relation error |||σ̃e|||σ

|||e||| ≤ |||σ̃e|||σ, (12)
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see appended paper B. Hence, the computable bounds ηL and ηU are readily obtained

by combining expressions (12) and (10), namely

ζU := |||σ̃d,e|||σ|||σ̃e|||σ + k̃1, (13a)

ζL := −|||σ̃d,e|||σ|||σ̃e|||σ + k̃1. (13b)

The error representation (10) is obtained using the Cauchy-Schwarz inequality

which typically induces a large overestimation of the assessed error. This makes the

error bounds given in (13) not sharp, with an unrealistic and impractical bound gap.

Alternative error bounds are proposed leading to a sharper bound gap than the

one associated with the bounds (13). There are two equivalent ways to derive the

alternative bounds. Either introducing auxiliary symmetric error equations, see paper

B, or using an auxiliary error in stresses, see paper A. For the sake of brevity, only

the latter approach is presented in this overview.

The alternative approach requires introducing an auxiliary stress field that stands

for the error with respect to the averaged viscous stress, namely

σe,ν
ave := σν − 1

2

(
σ̃ν + a2C : ε( ˙̃u)

)
, (14)

where σν := a2C : ε(u̇) is the viscous stress associated with the exact solution,

σ̃ν := σ̃ − C : ε(ũ) is the viscous stress associated with the D-admissible field, and

a2C : ε( ˙̃u) is the viscous stress associated with the K-admissible field. Note that

σe,ν
ave is not computable because it includes the exact solution u in the term σν . The

stress σe,ν
ave is introduced as a mathematical artefact allowing to rewrite the error in

the quantity of interest as

|LO(e)− k̃2| ≤ |||σ̃d,e|||σ|||σe,ν
ave|||σ, (15)

where k̃2 is a computable value. The computable bounds for the error in the quantity

of interest are obtained introducing the following upper bound for the unknown value

|||σe,ν
ave|||σ,

|||σe,ν
ave|||σ ≤

1

2
|||σ̃e|||σ. (16)

The detailed proofs of equations (15) and (16) are given in paper A. Using expressions

(15) and (16), the alternative bounds are readily obtained:

ζU :=
1

2
|||σ̃d,e|||σ|||σ̃e|||σ + k̃2, (17a)

ζL := −1

2
|||σ̃d,e|||σ|||σ̃e|||σ + k̃2. (17b)
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The bound corresponding to (17) is ζU − ζL = |||σ̃d,e|||σ|||σ̃e|||σ whereas the bound gap

in (13) is ζU − ζL = 2|||σ̃d,e|||σ|||σ̃e|||σ. Note that the bound gap in equation (17) is the

half of the bound gap corresponding to equation (13). Consequently, the proposed

error bounds (17) provides a sharper error assessment.

The numerical results included in paper B show that the proposed bounds (17)

are indeed sharper than previously available ones (13). The computed bounds are

very pessimistic for materials with a small amount of viscosity even for the new

bounds (17). The numerical tests also reveal that the bound gap is reduced as the

mesh is refined and, consequently, the strategy provides sharp bounds for fine enough

meshes. Nevertheless, in practice, for low viscosity, the meshes providing accurate

bounds are not computationally affordable. Therefore, further research is needed to

explore alternative pertinent bounds for nearly elastic problems.

Remark 4 (Illustrative example). This example illustrates the performance of the

proposed computable bounds in a 2D wave propagation problem. This is a reduced

version of the second numerical example found in paper B. The problem geometry,

see figure 3, is a rectangular plate Ω := (−0.5, 0.5)×(0, 0.5) m2 clamped at the bottom

side, initially at rest (u0 = v0 = 0), which is loaded with the impulsive traction

g(t) =

{
−g(t)e2 on Γg,

0 elsewhere,
(18)

with Γg := [(0.075, 0.125) ∪ (−0.075,−0.125)] × {0.5} m, e2 := (0, 1) and g(t) is the

impulsive time-dependent function defined in figure 3 with parameters gmax = 30 Pa

and tg = 0.005 s. No body force is acting in this example (f = 0). The material

properties of the plate are Young’s modulus E = 8/3 Pa, Poisson’s ratio ν = 1/3,

the density ρ = 1 kg/m3 and the damping coefficients a1 = 0 s−1, a2 = 10−4, 10−2 s.

Note that two different values of the parameter a2 are considered. The final simulation

time is T = 0.25 s. The plain stress hypothesis is considered.

The external loading generates elastic waves propagating along the plate and reach-

ing to the region of interest ΩO. The quantity of interest is an average of the vertical

component of the velocity in this region during a time interval selected such that the

wave is noticeable in ΩO, see figure 4. This quantity is defined as

LO(w) =

∫ T

0

α(t)(λO, ẇ(t)) dt, where λO(x) :=





−e2

meas(ΩO)
x ∈ ΩO

0 elsewhere
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Figure 3: Problem geometry (top), time dependence of external load (left) and time
dependence of the auxiliary function introduced to define the quantity of interest
(right).

and the time dependent function α(t) is defined in figure 3 with parameters εO = 0.01 s

and tO = 0.217 s. Note that the definition of the quantity of interest corresponds to

take fO(x, t) = α(t)λO(x) and gO = uO = vO = 0 in equation (3).
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Figure 4: Time evolution of the average of the vertical velocity in the region ΩO,
namely (λO, u̇(t)), for three values of the viscosity (left y-axis). Time evolution of
the weighting function α(t) used to define the quantity of interest (right y-axis).

In this example, the computed error bounds, ηL and ηU are used to compute bounds

of the exact quantity of interest LO(u), namely η̃L ≤ LO(u) ≤ η̃U with η̃L := ηL +
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LO(ũ) and η̃U := ηU+LO(ũ). Figure 5 shows the effectivity of the computed bounds η̃L

and η̃U with respect the exact quantity of interest s = LO(u) which is computed using

an overkill solution. Note that the bounds are sharper as the value of the viscosity

increases or as the element size decreases. In particular, the quality of the bounds

is very poor for small values of the viscosity. On the other hand, the proposed new

bounds reduce in 50% the bound gap with respect to the previous approach. Note

however that for the smallest values of the viscosity, this reduction is not sufficient to

have bounds applicable in practical engineering examples.
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Figure 5: Convergence of the computed bounds for different values of element size and
for two values of the viscosity-related parameter a2 = 10−4 s (left) and a2 = 10−2 s
(right).

3.2 Modal-based goal-oriented error assessment

This section presents a novel approach to compute the adjoint problem arising in goal-

oriented error assessment. The proposed approximation technique is based on the

well-known modal analysis which is considered to approximate the time-dependence

of the structural dynamic equations in many contexts, see for instance the book by

Bathe (1996).
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The modal-based strategy is particularly well suited for computing the adjoint

problem associated with some particular quantities of interest. Following this ap-

proach, the adjoint solution is computed and stored for each vibration mode instead

of for each time step. Moreover, the use of post-processing techniques in the space do-

main can be readily applied to the (space) description of the modes. This is performed

just once for every relevant mode, with no need of carrying out the post-processing

at each time step. Thus, the cost per time step is low.

The modal-based adjoint approximation aims at providing an efficient goal-oriented

error assessment. The poor quality of the error bounds introduced in section 3.1 and

the cost of computing the D-admissible fields suggest using the modal-based strat-

egy to compute error approximations instead of error bounds. Note however, the

proposed methodology is general enough to compute also error bounds.

The dual weighted residual method is considered here in order to compute approx-

imations of the error in the quantity of interest. Following this approach, the error

in the quantity of interest is expressed in terms of the exact solution of the adjoint

problem as

LO(e) = R(ud), (19)

where R(·) is the weak residual (integrated in space and time) associated with the

approximation ũ, namely

R(w) :=

∫ T

0

[
l (ẇ(t); t)−m

(
¨̃u(t) + a1

˙̃u(t), ẇ(t)
)
− a

(
ũ(t) + a2

˙̃u(t), ẇ(t)
)]

dt

+m
(
v0 − ˙̃u(0+), ẇ(0+)

)
+ a

(
u0 − ũ(0+),w(0+)

)
, with

l (w; t) := (f(t),w) + (g(t),w)ΓN
.

The error representation (19) allows obtaining the error in the quantity of interest

provided that the exact solution of the adjoint problem is available. Conversely, if an

accurate approximation of the adjoint solution is available, say ũd, the error in the

quantity of interest is estimated as

LO(e) ≈ R(ũd) =: s̃e. (20)

The quality of the approximation ũd is critical to obtain accurate estimates of the

error in the scalar quantity of interest. The major novelty of the present approach is

using modal analysis to compute the approximation ũd.

Approximating function ũd with modal analysis requires introducing a semidis-

crete version (discrete in space and exact in time) of the adjoint problem (4). The
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semidiscrete problem reads: find ud,H,p+1(t) ∈ VH,p+1
0 verifying the final conditions

ud,H,p+1(T ) = uO and u̇d,H,p+1(T ) = vO and such that for all t ∈ I

m
(
üd,H,p+1(t)− a1u̇

d,H,p+1(t),w
)

+ a
(
ud,H,p+1(t)− a2u̇

d,H,p+1(t),w
)

= −lO (w; t) , (21)

for all test functions w ∈ VH,p+1
0 , where lO(w; t) :=

(
fO(t),w

)
+
(
gO(t),w

)
ΓN

. The

finite element space VH,p+1
0 , introduced in the definition of the semidiscrete prob-

lem (21) is obtained by increasing the polynomial degree of the space VH,p
0 used to

compute the numerical solution ũ.

Remark 5. The spacial resolution of the adjoint approximation ũd has to be richer

than the one of the numerical approximation ũ. Otherwise, the error is underesti-

mated when plugging the approximation ũd into the residual R(·) by an effect anal-

ogous to the Galerkin orthogonality. For this reason, the functional space used to

define the semidiscrete problem (21) is VH,p+1
0 instead of VH,p

0 .

A modal-based approximation of problem (21) requires introducing the generalized

eigenvalue problem: find (ω̃, q̃) ∈ R× VH,p+1
0 such that

a(q̃,w) = (ω̃)2m(q̃,w) ∀w ∈ VH,p+1
0 . (22)

The i-th eigenpair solution of this problem is referred as (ω̃i, q̃i). Note that the num-

ber of eigenpairs is the number of degrees of freedom in the functional space VH,p+1
0 ,

denoted by Ndof . Typically, the eigenpairs are sorted from low to high frequencies,

namely ω̃1 ≤ ω̃2 · · · ≤ ω̃Ndof
, and eigenvectors are normalized to be orthonormal with

respect the product m(·, ·), i.e.

m(q̃i, q̃j) = δij, 1 ≤ i, j ≤ Ndof. (23)

The complexity of the system of ODEs resulting from (21) is considerably reduced

by expressing the semidiscrete adjoint solution ud,H,p+1(x, t) as a combination of the

eigenvectors q̃i, i = 1, . . . , Ndof, namely

ud,H,p+1(x, t) =

Ndof∑

i=1

q̃i(x)ỹi(t). (24)

Thus, the system of ODEs (21) is transformed into the uncoupled set of scalar ordi-

nary differential equations (which can be solved analytically in many practical cases)
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¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = −l̃i, (25a)

ỹi(T ) = ũi, (25b)

˙̃yi(T ) = ṽi, (25c)

where the r.h.s. terms l̃i, ũi and ṽi are computed using the data characterizing the

quantity of interest (35) and the eigenvector q̃i,

l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN
, ui := m(uO, q̃i) and vi := m(vO, q̃i). (26)

The cost of computing M vibration modes scales as, see reference by Bathe (1996),

O(Ndof ·N2
bw) +O(Ndof ·Nbw ·M) +O(Ndof ·M2),

where Nbw denotes the half-bandwidth of the finite element matrices associated with

the functional space VH,p+1
0 . Thus, the modal-based approach is not computationally

affordable unless the modal description (24) is truncated up to the first M terms,

being M � Ndof . Consequently, the adjoint approximation ũd is defined as the

truncated expansion

ũd(x, t) :=
M∑

i=1

q̃i(x)ỹi(t). (27)

Note that the number of required vibration modes M has to be selected such

that the truncated high frequency modes (for i > M) are negligible in (24). This is

equivalent to assume that for i > M the values of l̃i, ũi and ṽi, as defined in (26), are

close to zero, and consequently ỹi(t) ≈ 0. This is guaranteed if the data fO, gO, uO

and vO are well captured by the expansion of the first M eigenvectors.

The optimal choice to get an efficient response with the modal-based approach

is selecting a quantity of interest defined using only the first vibration mode. For

instance,

LO(w) := m(αvq̃1, ẇ(T )) + a(αuq̃1,w(T )), (28)

corresponding to take fO = gO = 0, vO = αvq̃1 and uO = αuq̃1 in equation (3).

The constants αv and αu are introduced in order to obtain consistent dimensions in

(28). This quantity is a sum of averages of velocities and strains (or stresses) at time

T . It can be interpreted as the projection of function w to the first vibration mode

at time T . This quantity of interest is computationally inexpensive because requires

computing only one vibration mode (M = 1).
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A second choice is defining a quantity using the first M vibration modes, namely

LO(w) =
M∑

i=1

(m(αv,iqi, ẇ(T )) + a(αu,iqi,w(T ))) ,

corresponding to take fO = gO = 0, vO =
∑M

i=1 αv,iq̃i and uO =
∑M

i=1 αu,iq̃i in equa-

tion (3). This quantity of interest represents more meaningful averages of velocities

and strains at the final time T . For instance, a pseudo average of the velocities at

time t = T in a subregion of the computational domain Ω can be defined by properly

selecting the coefficients αv,i and αu,i, see the first numerical example in paper D.

A third suitable quantity of interest is the average of displacements at the final

time of the computation

LO(w) := (λO,w(T )) + (λON ,w(T ))ΓN
, (29)

where the data λO and λON are weighting functions allowing to localize the average

of displacements in some subdomains in Ω and ΓN respectively. The quantity (29)

has to be rewritten in the same form as the generic quantity (3) in order to compute

its associated enhanced approximation ũd using the rationale presented above. Thus,

the quantity (29) is rewritten as

LO(w) = a(ũO,u(T )),

taking fO = 0, gO = 0, vO = 0 and uO = ũO in equation (3), being ũO the solution

of the static problem: find ũO ∈ VH,p+1
0 such that

a(ũO,w) = (λO,w) + (λON ,w)ΓN
∀w ∈ VH,p+1

0 . (30)

This quantity is more meaningful than the previous ones, but it requires computing

several vibration modes (M > 1) in order to properly capture ũO by the expansion

of q̃i, i = 1, . . . ,M .

The numerical examples in paper C show that the proposed modal-based error

estimate is accurate and accounts for both the space and time discretization errors.

As previously announced, assessing the error in the quantity of interest (29) requires

computing M > 1 vibration modes. The results in paper C show that M = 60

vibration modes provide an accurate error assessment in the examples considered

therein.

The modal-based error estimate is the basis of the contributions presented in the

following sections 3.3 and 3.4.
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3.3 Modal-based goal-oriented adaptivity

The proposed adaptive technique is similar to the one discussed by Bangerth and

Rannacher (1999), and Bangerth et al. (2010). The major novelty of the present

approach is using modal analysis to approximate the adjoint solution instead of direct

time-integration methods. The specific details of the technique are found in paper D.

The proposed space-time adaptive strategy aims at finding an optimal time dis-

cretization T and an optimal space discretization Pn at each time point tn ∈ T such

that the assessed error s̃e is under a user-defined tolerance se
tol, namely

|s̃e| ≤ se
tol. (31)

Two main ingredients are required to achieve the optimal space-time discretiza-

tion: 1) a procedure allowing to locally refine and un-refine the space and time dis-

cretizations, and 2) local error information allowing to identify which regions of the

space-time domain have larger (or smaller) error contributions and therefore which

regions have to be refined (or unrefined).

Adding and removing points form the time grid T is trivial because the time

interval I is a one dimensional domain. However, the strategy to refine and un-refine

the space meshes Pn is more involved. Here, a hierarchical tree-based mesh refinement

strategy similar to the ones proposed by Demkowicz et al. (1989), and Yerry and

Shephard (1983) is considered. In this context, the computational meshes Pn, n =

0, . . . , N are obtained recursively splitting the elements of an initial background mesh

denoted as Pbg, see figure 6. The particular refinement and un-refinement technique

adopted here is detailed in paper E.

Figure 6: A hierarchical tree-based technique is used to build the space meshes Pn,
n = 0, . . . , N starting from the background mesh Pbg.

The tree-based data structure enormously facilitates the mesh refinement and

un-refinement operations and also transferring information between different meshes.
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However, this approach introduces hanging or irregular nodes. A constrained finite

element approximation (i.e. Lagrange multipliers) is used to enforce the continuity

of the finite element solution at the hanging nodes, see paper D.

The local information driving the adaptive procedure is given by the modal-based

error estimate s̃e. Note that the value s̃e accounts for both the space and time

discretization errors. Therefore, this single value does not give enough information

allowing to decide whether the space or time discretizations (or both) have to be

refined to reduce error.

In order to properly split the space and time error components, the adaptive

strategy requires that the numerical solution fulfills the discrete version of a space-

time variational problem. With this choice, a weak residual (integrated both in space

and time) associated with the numerical solution is readily introduced. The splitting

procedure uses the fact that the residual vanishes for the functions in the test space,

that is Galerkin orthogonality holds.

Among the possible space-time variational formulations available for transient

elastodynamics, the double field time-continuous Galerkin method considered by

Eriksson et al. (1996), and Bangerth et al. (2010) is the selected numerical solver.

Note, however, that the following rationale can be easily extended to other space-time

variational formulations, for instance, the one proposed by Johnson (1993) or the one

proposed by Hughes and Hulbert (1988), and Hulbert and Hughes (1990).

The selected double-field method introduces the velocity u̇ as a new unknown

of the problem. The numerical approximation is a pair Ũ := [ũu, ũv] consisting of

independent approximations for displacements ũu ≈ u and velocities. That is, the

velocity uv is not strongly enforced to coincide with u̇u. The relation between the

approximated displacements and velocities is imposed weakly and therefore it yields

ũv ≈ u̇ instead of ũv = u̇. The discretization error is defined as a double field function

as well,

E := [eu, ev] := [u− ũu, u̇− ũv],

where eu and ev are the errors in displacements and velocities respectively.

The methodology used to assess the double field error E is completely analogous to

the one used for the single field error e. The only difference is a technical modification

in the definition of the quantity of interest LO(·) and the residual R(·) in order to

27



Thesis overview

take as input a generic double field function W = [wu,wv]. That is

LODF(W) :=

∫ T

0

lO(wv(t); t) dt

+m(vO,wv(T )) + a(uO,wu(T )),

RDF(W) :=

∫ T

0

l(wv(t); t) dt+

−
∫ T

0

m( ˙̃uv(t) + a1ũv(t),wv(t))) dt

−
∫ T

0

a(ũu(t) + a2ũv(t),wv(t)) dt

−
∫ T

0

a( ˙̃uu(t)− ũv(t),wu(t)) dt

+m(v0 − ũv(0
+),wv(0

+)) + a(u0 − ũu(0
+),wu(0

+)).

Note that the definition of the double-field quantity of interest LODF(·) is consis-

tent with the single-field quantity LO(·) in the sense that, for a generic function

w, LO(w) = LODF([w, ẇ]). Note also that the residual RDF(·) has an extra term ac-

counting for the non-verification of the relation between displacements and velocities.

The error in the quantity of interest se
DF := LODF(E) is assessed using an error

representation analogous to equation (20), namely

LODF(E) ≈ RDF(Ũd) =: s̃e
DF, (32)

where Ũd := [ũd, ˙̃ud]. The adjoint solution Ũd is computed with the modal-based

approach using the background mesh Pbg (with element of order p + 1). That is,

ũd(t), ˙̃ud(t) ∈ Vbg,p+1
0 , for t ∈ I, where Vbg,p+1

0 denotes the finite element space

associated with the p + 1 version of the background mesh. The background mesh

Pbg is selected for approximating the adjoint in order to simplify the representation

of Ũd in the adapted meshes Pn, n = 0, . . . , N . As previously announced, having

a p + 1 approximation degree for the adjoint solution Ũd precludes the Galerkin

orthogonality effect and the corresponding underestimation of the error. For the sake

of a simpler notation, the subscript DF is omitted in the following.

Separating the space and time error contributions to s̃e requires introducing the

projection operators ΠH and Π∆t associated with the space and time discretizations.

The space projection ΠH applied to a generic double field function W returns a

function ΠHW which is discrete in space (i.e. a continuous piecewise polynomial)
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but not discrete in time. On the other hand, the time projection Π∆t returns a

function which is discrete in time (a piecewise constant function) but not discrete in

space, see figure 7. A formal definition of the operators ΠH and Π∆t is given in paper

D.

Figure 7: Illustration of the projection operators ΠH and Π∆t. The figure displays
(one field of) the original function W inside the time intervals In = (tn−1, tn] and
In+1 = (tn, tn+1] (top) along with its projections in space and time ΠHW (left) and
Π∆tW (right).

The space and time errors are separated rewriting the value s̃e as

s̃e = R(Ũd)

= R(Ũd)−R(ΠHΠ∆tŨd) (Galerkin orthogonality)

= R(Ũd)−R(ΠHŨd) +R(ΠHŨd)−R(ΠHΠ∆tŨd).

Hence, using the linearity of the residual R(·) one has

s̃e = s̃e
s + s̃e

t, (33)

where s̃e
s := R(Ũd −ΠHŨd) and s̃e

t := R(ΠHŨd −ΠHΠ∆tŨd). The terms se
s and

se
t are associated with the space and time discretization errors respectively. Note
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that se
s tends to zero as the space discretization is refined because ΠHUd tends to

Ud. Similarly, se
t tends to zero as the time discretization is refined because Π∆tUd

tends to Ud. The space and time error components se
s and se

t are used as refinement

indicators because they can be reduced independently by respectively enriching the

space and time discretizations. Note that the Galerkin orthogonality property is used

to separate the space and time error contributions.

The sub-regions of the space-time domain Ω×I having a larger error contribution

are identified by restricting the integrals involved in the values s̃e
s and s̃e

t to the mesh

elements and time steps. This allows to adaptively refine the time grid T and the

finite element meshes Pn, n = 0, . . . , N to meet the desired error in the quantity of

interest se
tol.

Note that changing the space discretization at each time step tn ∈ T is not com-

putationally affordable. This is because remeshing operations, matrix assembly and

data transfer between different meshes are costly operations and cannot, in general,

be performed at each time step. Here, an adaptive strategy organized in time-blocks,

similar to the one proposed by Carey et al. (2010), is adopted in order to reduce the

number of mesh changes.

The blockwise adaptive strategy requires splitting the time interval I into Nbk

time intervals (or time blocks), namely

Ibk
m :=

(
T

Nbk
(m− 1),

T

Nbk
m

]
, m = 1, . . . , Nbk.

The blockwise adaptive strategy consists in taking the same space mesh inside each

time interval Ibk
m , this mesh is denoted as Pbk

m for m = 1, . . . , Nbk, see figure 8. Note

that with this definition the computational meshes Pn associated with the time points

tn ∈ Ibk
m are such that Pn = Pbk

m .

Additionally, the time step length is assumed to be constant inside the intervals

Ibk
m and denoted by ∆tbk

m . Consequently, the time step length ∆tn associated with

times tn ∈ Ibk
m are such that ∆tn = ∆tbk

m , see figure 8.

Following this approach and notation, the adaptive strategy is reformulated as

computing the optimal space meshes Pbk
m and time step lengths ∆tbk

m , for all the time

intervals Ibk
m , m = 1, . . . , Nbk such that the associated numerical solution fulfills (31).

Once the adjoint solution is computed and stored, the main stages of the adaptive

procedure are summarized as follows. The numerical solution is computed sequen-

tially starting from the first time block Ibk
1 until the last one Ibk

Nbk . In each time slab
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Figure 8: The space mesh is assumed to be constant inside the time intervals Ibk
m . In

the same way, the time step length is also assumed to be constant inside each interval
Ibk
m .

Ibk
m , the numerical solution is computed and the corresponding local error contribu-

tions are estimated. The computed solution in Ibk
m is accepted or rejected using the

information given by the local error contributions. The specific acceptability crite-

rion is detailed in paper D. If the solution is accepted, the loop goes to the following

time interval Ibk
m+1. Else, the space or time discretization (or both) associated with

the interval Ibk
m are adapted using the local error information and the solution is

re-computed in Ibk
m . The process of adapting the discretization and computing the

numerical solution is repeated in the interval Ibk
m until the solution is accepted, see

algorithm 1.

The numerical examples in paper D show that the proposed strategy furnishes

adapted solutions fulfilling the user-defined error tolerance. That is, both the as-

sessed and computed errors are below the user-defined error value. Moreover, the

discretizations obtained with the proposed adaptive strategy are more efficient than

the ones obtained with an uniform refinement of all mesh elements and time steps.

The adapted discretizations give more accurate results than the non-adaptive ones

for the same number of space-time elements.

Remark 6 (Illustrative example). This example illustrates the performance of the
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Data:
Problem statement: Problem geometry (Ω, ΓN, ΓD), final time (T ), material
data (E, ν, ρ), loads and initial conditions (f , g, u0, v0).
Problem discretization: background computational mesh (Pbg).
Error control: data defining the quantity of interest (fO, gO, uO, vO) and
number of vibration modes M .
Adaptivity parameters: Number of time blocks (Nbk), prescribed error (se

tol)
and other tuning parameters.
Result: Numerical approximation Ũ; adapted space meshes Pbk

m and time
steps ∆tbk

m , m = 1, . . . , Nbk; and error estimate s̃e fulfilling |s̃e| ≤ se
tol.

// Modal analysis

Generate higher order space Vbg,p+1
0 ;

Compute the eigenpairs (ω̃i, q̃i), i = 1, . . . ,M in the space Vbg,p+1
0 ;

// Adjoint problem (modal solution)

Compute the values l̃i, ũi, ṽi (using fO, gO, uO, vO and q̃i, i = 1, . . . ,M) ;

Compute the time dependent functions ỹi(t) (using l̃i, ũi, ṽi and ω̃i,
i = 1, . . . ,M) ;
// Problem computation, error assessment and adaptivity

Initialize discretization: Pbk
1 = Pbg, ∆tbk

1 = T/Nbk;
for m = 1 . . . Nbk do

repeat
// Compute solution and error estimate

Compute solution Ũ in the time interval Ibk
m and estimate error

contributions;
// Mesh adaptivity

if The solution is not accepted in Ibk
m then

Refine/unrefine the spatial mesh Pbk
m and/or the time step ∆tbk

m ;
end

until The solution is accepted in Ibk
m ;

Set initial discretization for the next time interval: Pbk
m+1 = Pbk

m ,
∆tbk

m+1 = ∆tbk
m ;

end

Algorithm 1: Algorithm for problem approximation with error control and space-
time mesh adaptivity.

proposed space-time adaptive strategy in a 2D wave propagation problem. This ex-

ample is a shorter version than the first numerical example in the appended paper

D. The computational domain Ω is a perforated rectangular plate, Ω := (−0.5, 0.5)×
(0, 0.5)\Ω0 m2, with Ω0 := {(x, y) ∈ R2 : x2 + (y−0.25)2 ≤ 0.0252 } m2, see figure 9.
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The plate is clamped at the bottom side and the horizontal displacement is blocked at

both vertical sides. The plate is initially at rest, u0 = v0 = 0, and loaded with the

time dependent traction

g(t) =

{
−g(t)e2 on Γg,

0 elsewhere,
(34)

with Γg := (−0.025, 0.025) × {0.5} m, e2 := (0, 1) and g(t) is the impulsive time-

dependent function defined in figure 9 with parameters gmax = 30 Pa and tg = 0.005 s.

No body force is acting in this example, f = 0. The material properties of the plate

are Young’s modulus E = 8/3 Pa, Poisson’s ratio ρ = 1/3, the density ρ = 1 kg/m3

and the damping coefficients a1 = 0 d−1, a2 = 10−4 s. The final simulation time is

T = 0.25 s. The plain stress hypothesis is considered.

Figure 9: Definition of the problem geometry (left) and time-dependence of the ex-
ternal load (right).

The quantity of interest considered in this example is a weighted average of the

velocities, namely

LO(W) := m(vO,wv(T )).

The weighting function vO considered here is plotted in figure 10 and defines a pseudo

average of the vertical component of the final velocity near the region of interest

ΩO := {(x, y ∈ R2 : x2 + (y − 0.1)2 < 0.0752)} m2, see figure 9. Note that the

x-component of vO is small compared to its y-component and, moreover, function vO

takes larger values near ΩO. The weighting function vO is exactly represented using

the expansion of the first M = 60 vibration modes of the problem. Thus, the quantity

of interest is well suited for the modal-based error estimate, because only M = 60

vibration modes have to be computed to approximate the adjoint solution.
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Figure 10: Weighting function vO (x- and y-components) defining the quantity of
interest LO(·).

Figure 11 shows several snapshots of an adapted numerical solution obtained with

the proposed methodology imposing a target error se
tol = 5 · 10−5 m/s corresponding

to a 2.1% of the computed quantity s̃ := LO(Ũ) = 2.4242 · 10−2 m/s. The particular

description of all the parameters used in this computation are found in paper D.

The prescribed target error is fulfilled quite sharply with respect to the assessed error.

That is, the assessed error s̃e = −1.5756 · 10−5 m/s fulfills |s̃e| ≤ se
tol, but |s̃e| and se

tol

are of the same order of magnitude. Moreover, the error with respect to an overkill

solution, namely se
ovk := −1.5125 · 10−5 m/s, is also below (in absolute value) the

user-defined value se
tol. Note that the assessed error is a good approximation of the

overkill error. That is, the effectivity of the error estimate, s̃e/se
ovk = 1.041, is near

one. The methodology to compute the overkill solution is also detailed in paper D.

Figure 12 shows the convergence of the estimates. As expected, the use of an

adaptive refinement strategy leads to better approximations for the quantity of interest

with less computational cost. The adapted solutions have a lower error than the

uniform approximations for the same number of space-time cells.

3.4 Error assessment for timeline-quantities of interest

Selecting a scalar quantity of interest in time-dependent problems it is not always

obvious. This is because, in many cases, a single scalar value does not give enough
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Figure 11: Snapshots of the computed solution (magnitude of velocities in m/s) and
the computational mesh at several time points for the adapted solution verifying the
prescribed target error se

tol = 5 · 10−5 m/s.

pieces of information about a space-time solution. The preferred quantities of interest

in time-dependent problems are typically the history (or evolution) of the space-

average of the solution in a subregion of the domain. These quantities are time-

dependent functions instead of single scalar values. This suggests introducing the

so called timeline-dependent quantities of interest for error assessment in transient

35



Thesis overview

5.5 6 6.5 7
−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

3

2

Figure 12: Error convergence for the adapted and uniform computations vs the
number of used space-time cells (N cells). The adaptive solutions are obtained using
three different number of time blocks Nbk.

problems.

Timeline-dependent quantities are associated with a bounded mapping LOTL(·)
taking the space-time solution u(x, t) and returning a time-dependent scalar function

s(t), see figure 13. Note that the functional LOTL(·) is a different mathematical object

than the functional LO(·) associated with the standard quantities of interest, because

LO(·) returns a single scalar value (and not a time-dependent function). A convenient

expression for LOTL(·) is defined as an extension of the functional LO(·) defined in (3),

namely

[LOTL(w)](t) :=

∫ t

0

(fO(τ), ẇ(τ)) dτ+

∫ t

0

(gO(τ), ẇ(τ))ΓN
dτ+(ρvO, ẇ(t))+a(uO,w(t)),

(35)

where the functions fO an gO define weighted space-time averages of the solution

in the interior domain Ω or the Neumann boundary ΓN, respectively, in the time

interval [0, t] for a generic time t ∈ I. On the other hand, functions vO and uO define

weighted space-averages of the velocities and displacements, respectively, at a generic

time point t ∈ I. For the sake of simplicity, the notation LOTL(w; t) := [LOTL(w)](t) is
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introduced.

Figure 13: Illustration of scalar and timeline-dependent quantities of interest. The
functional LO(·) maps the time-space solution u(x, t) into a scalar value sT ∈ R. The
operator LOTL(·) transforms u(x, t) into a time-dependent function s(t).

The error to be assessed is the error in the timeline-dependent quantity of interest,

namely

se(t) := s(t)− s̃(t),

where s(t) := LOTL(u; t) is the exact timeline quantity and s̃(t) := LOTL(ũ; t) is the

computed one. Assessing the time-dependent function se(t) requires introducing an

error representation similar to the one presented in equation (19) for the scalar quan-

tity of interest. Thus, an auxiliary problem, analogous to the adjoint problem (4),

has to be introduced for the timeline quantity LOTL(·).

Note that for a given time t ∈ I, the functional LOTL(·) restricted to this time

instance, namely LO(·) = LOTL(·; t), is a standard quantity of interest taking t as the

final time. The associated adjoint problem is analogous to the one presented in (4)

but replacing the final time T for the particular time instance t ∈ I. That is, the
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adjoint solution ud
t associated with LOTL(·; t) is the solution of

ρ(üd
t − a1u̇

d
t )−∇ · σd

t = −fO in Ω× [0, t], (36a)

ud
t = 0 on ΓD × [0, t], (36b)

σd
t · n = −gO on ΓN × [0, t], (36c)

ud
t = uO at Ω× {t}, (36d)

u̇d
t = vO at Ω× {t}, (36e)

with the constitutive law

σd
t := C : ε(ud

t − a2u̇
d
t ). (37)

The solution of equation (36) is denoted by ud
t emphasizing that there is a different

adjoint solution for each time t. Consequently, equation (36) describes a family of

adjoint problems, one for each time t ∈ I.

For a particular instance of time t ∈ I, the error representation of the value se(t)

is similar to the standard scalar case (20) but taking the adjoint solution ud
t and

restricting the residual R(·) to the time interval [0, t]. That is

se(t) = Rt(u
d
t ), (38)

where

Rt(w) :=

∫ t

0

[
l (ẇ(τ); τ)−m

(
¨̃u(τ) + a1

˙̃u(τ), ẇ(τ)
)
− a

(
ũ(τ) + a2

˙̃u(τ), ẇ(τ)
)]

dτ

+m
(
v0 − ˙̃u(0+), ẇ(0+)

)
+ a

(
u0 − ũ(0+),w(0+)

)
.

Hence, an estimate for se(t) is obtained injecting an adjoint approximation ũd
t ≈ ud

t

in equation (38), namely

se(t) ≈ Rt(ũ
d
t ) =: s̃e(t). (39)

In practice, it is computationally unaffordable to independently compute the all

the infinite approximations of the solutions ud
t , one for each time t ∈ I, and then

using them in equation (38) to assess se(t). However, for the particular case of

fO and gO constant in time (which accounts for a number of interesting cases), the

different functions ud
t corresponding to different time instances t ∈ I are all equivalent

after a time translation. Thus, if ud
t is properly computed for a particular value of

t, e.g. t = T , the general functions ud
t for t 6= T are easily recovered as a direct

post-process of ud
T ,

ud
t (τ) = ud

T (τ + T − t). (40)
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This fundamental result, proved in paper C, is the crucial observation that allows

assessing the error in the timeline-dependent quantity with an affordable cost.

The adjoint approximations ũd
t used in the error estimate (39) are computed

applying the time shift (40) to the adjoint approximation ũd
T associated with the

final time T ,

ũd
t (τ) := ũd

T (τ + T − t). (41)

Thus, only one adjoint approximation ũd
T has to be computed and the others are sim-

ply recovered with a time shift. The approximation ũd
T is computed with the modal

based-approach described in section 3.2. This choice is specially convenient for as-

sessing the error in the timeline-dependent quantity of interest because it enormously

simplifies the implementation of the time shift (41).

The performance of the error estimate for timeline-dependent quantities is studied

in the paper C in three numerical examples. The results show that the error estimate

is a good approximation of the error in the timeline-dependent quantity of interest.

The quality of the error estimate depends on the number of vibration modes used to

solve the auxiliary adjoint problems.

Remark 7 (Illustrative example). This example illustrates the performance of the

error estimate s̃e(t). The computational domain is the three dimensional structure

plotted in figure 14 which is clamped at the supports and it is loaded with the time-

dependent traction

g(t) =

{
−g(t)e1 on Γg,

0 elsewhere,

where function g(t) is defined in figure 14 and the values gmax = 1 · 103 Pa and

tg = 1 · 10−3 s are considered. The set Γg is the boundary where the load is applied,

see figure 14. The structure is initially at rest (u0 = v0 = 0) and the body force is

zero (f = 0). The material properties are Young’s modulus E = 2 ·1010 Pa, Poisson’s

ratio ν = 0.2, density ρ = 2.4 · 103 kg/m3 and viscosity a1 = a2 = 0. The final time

is T = 0.02 s .

This example focuses in the timeline-dependent quantity of interest

s(t) :=
1

meas(Γg)
(e1,u(t))Γg ,

which is the average of the x-component of the displacement in the boundary Γg at

every time t ∈ I.
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Figure 14: Problem geometry (left) and time description of the external load (right).

The problem is discretized with trilinear hexahedra in space and with the Newmark

method in time with parameters β = 1/4 and γ = 1/2. The approximated quantity of

interest s̃(t) = LO(ũ; t) is computed from the approximate solution ũ obtained with

the coarse finite element mesh plotted in figure 15 and with N = 400 time steps.

The reference quantity of interest s(t) = LO(u; t) is obtained by assuming that the

exact solution u is fairly replaced by an overkill solution obtained using the reference

mesh in figure 15 and N = 1600 time steps. The error in the quantity of interest is

evaluated using the reference solution, namely se(t) = s(t) − s̃(t). Finally, the error

estimate s̃e(t) is computed using up to M = 60 vibration modes for approximating the

adjoints.

Figure 15: Coarse (left) and reference (right) meshes used in this example with 334
and 22016 elements respectively.

Figure 16 shows the computed and reference timeline-dependent quantities, s̃(t)

and s(t), along with the assessed and reference errors, s̃e(t) and se(t). Note that the

quality of the error estimate s̃e(t) increases with the number of vibration modes. For
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M = 60 modes, the error estimate s̃e(t) and the reference error se(t) are in very good

agreement.
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Figure 16: Approximated quantity of interest s̃(t) and reference quantity s(t) (top,
left). Reference and assessed errors, se(t) and s̃e(t), for three different number of vi-
bration modes for approximating the adjoints, M = 10 (top, right), M = 30 (bottom,
left) and M = 60 (bottom, right).

4 Closure

The main contributions as well as the open research lines are summarized in the

following subsections.

4.1 Summary

• Goal-oriented error bounds

A new technique providing goal-oriented error bounds in the framework of linear

structural dynamics is proposed. The novel error bounds are derived in two

alternative and equivalent ways: 1) using symmetrized error equations, or 2)

using an auxiliary error associated with the viscous stress. The first approach

resembles to the one considered for the convection-diffusion-reaction equation,
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and the second approach is analogous to the one considered in steady-state

linear elasticity.

The proposed methodology yields estimates with better quality than the already

available approaches. The bound gap of the novel approach is 50% sharper. The

techniques providing error bounds in structural dynamics (including the pro-

posed methodology) require that the formulation has a finite amount of damp-

ing. Consequently, the computed bounds are very pessimistic for materials with

a small amount of damping. Further research is needed to explore alternative

pertinent bounds for nearly elastic problems.

• Modal-based goal-oriented error assessment

An efficient goal-oriented error estimate for structural transient dynamics is

introduced. The proposed methodology uses modal analysis to compute the

adjoint problem instead of direct time-integration methods. The modal-based

approach is particularly well suited for some quantities of interest and allows

effectively computing and storing the adjoint solution. This is because the ad-

joint solution is computed and stored for each vibration mode instead of for each

time step. Moreover, the modal-based description of the adjoint approximation

facilitates the post-processing techniques applied to enhance its space accuracy.

The post-processing is performed just once for every relevant mode instead of

for each time step. The resulting estimate is well-suited for time-dependent

problems because its cost per time step is very low.

The quality of the modal-based error estimate depends on the number of com-

puted vibration modes. The required number of modes strongly depends on the

definition of the quantity of interest. Consequently, some practical quantities

of interest are proposed requiring only few low-frequency modes.

• Modal-based goal-oriented adaptivity

The proposed adaptive strategy aims at computing an optimal space-time dis-

cretization such that the computed solution has an error in the quantity of

interest below a user-defined tolerance. The major novelty with respect previ-

ous approaches is that the local error information driving the adaptive process

is computed using the modal-based error estimate.
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The numerical examples show that the proposed technique provides adapted

solutions fulfilling the user-defined error tolerance. That is, both the assessed

and computed errors are below the user-defined error value. Moreover, the

discretizations obtained with the proposed adaptive strategy are more efficient

than the ones obtained with an uniform refinement of all mesh elements and

time steps. The adapted discretizations give more accurate results than the

non-adapted ones for the same number of space-time elements.

• Error assessment for timeline-dependent quantities of interest

A new type of quantities of interest for error assessment in structural transient

dynamics are proposed. These quantities (referred as timeline-dependent quan-

tities of interest) are scalar time-dependent outputs of the transient solution

which are better suited to time-dependent problems than the standard scalar

ones.

Assessing the error in the timeline-dependent quantity of interest requires ap-

proximating infinite standard adjoint problems. However, all these problems

are similar and they can be recovered from a common parent problem (asso-

ciated with the a scalar quantity of interest) by means of a simple translation

of the time variable. The time shift is very efficiently performed if the adjoint

solution is approximated with modal analysis, because the time-dependence of

the adjoint solution is known analytically.

The proposed error estimate for timeline-dependent quantities provides accu-

rate approximations of the error accounting for both the space and time dis-

cretization errors. The quality of the error estimate depends on the number of

vibration modes used to solve the auxiliary adjoint problems.

4.2 Open research lines

• Space-time adaptivity for explicit time-integration schemes

The proposed space-time adaptive technique restricts to numerical approxi-

mations obtained with space-time variational methods as the time-continuous

Galerkin method. Therefore, the adaptive technique cannot directly deal with

explicit time-integration schemes using a lumped mass matrix. Explicit schemes

are widely used in structural dynamics and, therefore, the corresponding exten-

sion of the proposed space-time adaptive technique is worth considering. The
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main challenge of this extension is how to separate the effect of lumping the

mass matrix from other error sources.

Note that another difficulty arises in mesh adaptivity for explicit schemes. At

first sight, the use of local mesh refinement in combination of explicit schemes

compromises the efficiency of the overall approximation process. Note that, in

this context, the time step length is determined by the smallest element size of

the computational mesh. Consequently, a local mesh refinement leads to a fine

time step length for the whole computational mesh. However, this difficulty can

be overcome using time-step partitioning techniques allowing to use different

time step lengths in different regions of the domain, see for instance the work

by Casadei and Halleux (2009).

• Modal-based bounds of the error in the quantity of interest

The modal-based description of the adjoint solution is used here to compute

approximations of the error in the quantity of interest. However, modal analysis

can be considered also to compute goal-oriented error bounds. One of the main

advantages of this approach is that the modal description of the adjoint solution

allows to efficiently compute the adjoint D-admissible stress. This is because the

standard stress equilibration techniques are performed for few relevant modes

instead for each time step. Thus, the cost per time step is reduced.

• Error bounds in the timeline-quantity of interest.

Bounds of the error in the timeline-dependent quantity are still to be explored.

The error bounds presented in section 3.1 for standard quantities of interest

can be extended to deal with timeline-dependent quantities. Using the time

translation presented in section 3.4 and using a modal description for the adjoint

solution, the error bounds in the timeline-dependent quantity of interest can be

efficiently computed.

• Enhanced goal-oriented error bounds

The quality of the proposed error bounds is not enough for practical applica-

tions, specially in nearly elastic cases. The proposed bounds can be enhanced

following the rationale presented by Parés (2005) designed for a generic non-

symmetric problem. This approach introduces a continuous approximation of

the error which is used to compute a correction factor improving the quality
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of the error bounds. Consequently, the particularization of this methodology

might lead to improved error bounds in structural transient dynamics.

• Modal-based error assessment and timeline-dependent quantities of

interest for other linear time-dependent problems

The proposed modal-based error estimate as well as the proposed timeline-

dependent quantities of interest can be extended to deal with other linear time-

dependent problems (e.g. parabolic problems as the time-dependent heat equa-

tion).

• Approximating the adjoint solution with other reduced order models

Modal analysis can be seen as a particular reduced order model. More sophis-

ticated reduced order models can be considered to describe the solution of the

adjoint problem, for instance, the Proper Generalized Decomposition (PGD)

introduced by Chinesta et al. (2011). This approach can be applied to deal

with quantities of interest with a parametric definition. That is, the quantity of

interest is defined introducing some free parameters, e.g., the position or shape

of the zone of interest, the time instant of interest, etc. Note that the pro-

posed timeline-dependent quantity of interest is indeed a particular parametric

quantity where the selected parameter is the time instant of interest.

The PGD approach might allow to efficiently pre-compute and store the solution

of the adjoint problem associated with the parametric quantity of interest for

any value of the selected parameters in a given domain.
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Abstract

This paper presents in a unified framework the most representative state-of-the-art tech-
niques on a posteriori error assessment for second order hyperbolic problems, i.e., struc-
tural transient dynamics. For the sake of presentation, the error estimates are grouped in
four types: recovery-based estimates, the dual weighted residual method, the constitutive
relation error method and error estimates for timeline-dependent quantities of interest.
All these methodologies give a comprehensive overview on the available error assessment
techniques in structural dynamics, both for energy-like and goal-oriented estimates.

Keywords: elastodynamics, transient dynamics, goal-oriented error assess-
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1 Introduction

Discretization errors are intrinsic to any Finite Element (FE) solution. Consequently, the
tools assessing and controlling the error or, conversely, the accuracy of the numerical ap-
proximation have deserved the attention of the FE community. These tools are especially
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important if sensitive decisions are taken on the basis of the numerical results. Many a
posteriori error estimators have been developed with application to different problem
types. The application of these techniques to second-order hyperbolic problems (e.g.
structural dynamics or elastodynamics) is particularly relevant because, as compared to
the standard elliptic problems, the discretization errors are generated and propagated
less intuitively or predictively.

The pioneering works on FE error assessment date back to the late 70’s and provide
estimates of the energy norm of the error in steady-state (elliptic) problems (e.g. linear
elasticity or thermal problems), see [1, 2, 3]. Goal-oriented estimates aim at assessing
the error of functional outputs of the solution, that is at measuring the error in some
Quantity of Interest (QoI). They were introduced much later[4, 5, 6, 7]. In the context of
elliptic problems, error estimates are currently pretty well established, both for energy
(also denoted as global) and goal-oriented (often referred as local, because the QoI are
localized in a particular zone), see [8, 9, 10, 11, 12, 13, 14] as state-of-the-art reviews
and books.

The techniques developed for elliptic problems have been extended to other problem
types. For instance, quasi-steady-state non-linear problems are addressed in references
[15, 16, 17, 18], estimates for advection-diffusion-reaction equation are discussed in
[19], similar approaches for the Stokes problem are presented in [20], and extension
to parabolic time-dependent problems is introduced in [21, 22, 23]. Moreover, the same
type of tools for coupled problems have been recently discussed in [24, 25, 26, 27, 28].

In the present paper, attention is devoted to the techniques allowing to assess the error in
structural transient dynamics. In this context, different estimates provide also indicators
driving mesh adaptive procedures, either using energy-like measures [29, 30, 31, 32, 33,
34] or QoI [35, 36, 37, 38]. Estimates providing error bounds are also available both for
energy-like error measures [39, 40, 41] and goal-oriented ones [42, 43, 44, 45, 46, 47, 31].

The strategies assessing the error in structural transient dynamics are based on extending
the standard estimates designed for steady state linear elasticity. This is still an open
problem. The difficulties arise when freezing the time dependence into a series of static
problems, in particular in the treatment of the inertia terms.

This review paper aims at presenting the state-of-the-art techniques on a posteriori error
assessment for second order hyperbolic problems. Four types of error estimates are ana-
lyzed, offering an comprehensive overview: 1) recovery-based estimates, 2) dual weighted
residual method, 3) constitutive relation error and 4) error assessment for timeline-
dependent quantities of interest. The main rationale of each technique is presented fol-
lowing the most representative references. Note that the methodologies presented here
are introduced using diverse notations by different authors. Here, the different estimates
are described within a unified framework for the sake of an easer reading.

The remainder of the text is organized as follows. Section 2 presents the equations of
structural dynamics (both strong and weak versions) and their corresponding approxi-
mations. Section 3 introduces the error to be assessed, the error equations and the error
representations needed for successive sections. Section 4 is devoted to the recovery-based
estimates while section 5 deals with the dual weighted residual method and other ex-
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plicit residual estimates. Section 6 presents the constitutive relation error method and
the corresponding error bounds. Finally, section 7 presents an error estimate for special
quantities of interest called timeline-dependent quantities of interest. The article is closed
with some concluding remarks.

2 Problem statement

2.1 Strong equations

A visco-elastic body occupies an open bounded domain Ω ⊂ Rd, d ≤ 3, with boundary
∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such that ∂Ω = ΓN∪ΓD and
the considered time interval is I := (0, T ]. Under the assumption of small perturbations,
the evolution of displacements u(x, t) and stresses σ(x, t), x ∈ Ω and t ∈ I, is described
by the visco-elastodynamic equations,

ρ(ü+ a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}, (1e)

where an upper dot indicates derivation with respect to time, that is ˙(•) := d
dt
(•), and

n denotes the outward unit normal to ∂Ω. The input data includes the mass density
ρ = ρ(x) > 0, the first Rayleigh coefficient a1 ≥ 0, the body force f = f(x, t) and the
traction g = g(x, t) acting on the Neumann boundary ΓN × I. The initial conditions for
displacements and velocities are u0 = u0(x) and v0 = v0(x) respectively. For the sake
of simplicity and without any loss of generality, Dirichlet conditions (1b) are taken as
homogeneous.

The set of equations (1) is closed with the constitutive law,

σ := C : ε(u+ a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh coefficient, the tensor C is the
standard 4th-order elastic Hooke tensor. The strains are given by the kinematic relation
corresponding to small perturbations, that is ε(w) := 1

2
(∇w +∇Tw).

2.2 Weak and discrete formulations

2.2.1 Newmark-like methods

The definition of the weak form of the problem requires introducing the following func-
tional spaces: the standard Sobolev space associated with static displacement fields

V0 :=
{
w ∈ [H1(Ω)]d : w = 0 on ΓD

}
,
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equipped with the usual functional norm which is denoted by || · ||V0 . The Bochner space
L2(I;V0) associated with V0 of square-integrable functions from I into V0 is also intro-
duced

L2(I;V0) :=

{
v : I → V0, such that

∫ T

0

||v(t)||2V0
dt < +∞

}
.

The solution of the problem, u(x, t), belongs to the space W defined as

W :=
{
w ∈ L2(I;V0) with ẇ ∈ L2(I; [L2(Ω)]d) and ẅ ∈ L2(I;V ′

0)
}
,

where V ′
0 denotes the dual space of V0. Note that in particular this implies that any

w ∈ W is such that w ∈ C0(Ī; [L2(Ω)]d) and ẇ ∈ C0(Ī;V ′
0), see [48]. That is, functions

in W and their time derivatives are continuous in time.

Remark 1. Function u is a transformation between Ω× I and Rd, i.e.

u : Ω× I −→ Rd

(x, t) 7−→ u(x, t).

It can also be seen as a transformation between I and V0, i.e.

u : I −→ V0

t 7−→ u(t).

In the remainder of the paper, both notations are used, for u and other functions, to
denote the same mathematical objects depending on the context.

Thus, the weak form (integrated in space) of problem (1) reads: find u ∈ W verifying
the initial conditions u(0) = u0 and u̇(0) = v0 and such that for all t ∈ I

m(ü(t) + a1u̇(t),w) + a(u(t) + a2u̇(t),w) = l(t;w) ∀w ∈ V0, (3)

where the standard linear and bilinear forms are introduced

a(v,w) :=

∫

Ω

ε(v) : C : ε(w) dΩ , m(v,w) :=

∫

Ω

ρv ·w dΩ,

l(t;w) := (f(t),w) + (g(t),w)ΓN
,

along with the scalar products

(v,w) :=

∫

Ω

v ·w dΩ and (v,w)ΓN
:=

∫

ΓN

v ·w dΓ.

A mesh of characteristic element size H discretizing the spatial domain Ω is introduced
together with its associated finite element space VH

0 ⊂ V0. The degree of the complete
polynomial basis in VH

0 is denoted by p. This allows introducing the spatially-discrete and
time-continuous version of equation (3) (semidiscrete problem), namely: find uH(t) ∈ VH

0

such that for all t ∈ I

m(üH(t) + a1u̇
H(t),w) + a(uH(t) + a2u̇

H(t),w) = l(t;w) ∀w ∈ VH
0 , (4)
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with initial conditions (1d) and (1e). In the case u0 and v0 are not in VH
0 , (1d) and

(1e) have to be replaced by uH(0) = ΠH(u0) and u̇H(0) = ΠH(v0), being ΠH the
interpolation operator mapping functions from the continuous space V0 into the discrete
space VH

0 .

The Newmark method is a numerical time-marching scheme providing an approximation
of the standard system of second order ODEs (4) arising in structural dynamics. A
time-grid discretizing the time interval I is introduced, T := {t0, t1, . . . , tN}, where
0 = t0 < t1 < . . . < tN = T . The time points in T define the time intervals In := (tn−1tn],
n = 1, . . . , N . The length of the time interval In is denoted by ∆tn := tn − tn−1, for
n = 1, . . . , N and the characteristic time step for the time grid is

∆t := max
1≤n≤N

(∆tn).

The Newmark solution consists in displacements, velocities and accelerations at each time
tn, u

H,∆t
n ≈ uH(tn), v

H,∆t
n ≈ u̇H(tn) and aH,∆t

n ≈ üH(tn), respectively, for n = 1, . . . , N ,
such that equation (4) is fulfilled at each time tn ∈ T , that is

m(aH,∆t
n + a1v

H,∆t
n ,w) + a(uH,∆t

n + a2v
H,∆t
n ,w) = ln(w) ∀w ∈ VH

0 . (5)

where ln(w) := l(tn;w).

At each time interval, it is assumed that uH,∆t
n−1 ,v

H,∆t
n−1 , aH,∆t

n−1 are known and that the
following discrete integral expressions hold

uH,∆t
n = uH,∆t

n−1 +∆tnv
H,∆t
n−1 +

1

2
∆t2n

[
(1− 2β)aH,∆t

n−1 + 2βaH,∆t
n

]
,

vH,∆t
n = vH,∆t

n−1 +∆tn

[
(1− γ)aH,∆t

n−1 + γaH,∆t
n

]
.

Thus, the only remaining unknown in equation (5) is aH,∆t
n , which is obtained solving a

linear system of algebraic equations. Similarly, at time t0, the displacements and veloci-
ties are determined by the initial conditions and the acceleration aH,∆t

0 is computed by
considering that

m(aH,∆t
0 + a1Π

H(v0),w) + a(ΠH(u0) + a2Π
H(v0),w) = l0(w) ∀w ∈ VH

0 .

The scalars β and γ are the parameters of the Newmark method taking values in [0, 1]. For
γ = 1/2 the method is second order accurate and there is no numerical damping, whereas
for γ > 1/2 numerical damping is introduced. Moreover, the method is conditionally
stable for β ≥ γ/2 ≥ 1/4. See [49] for specific details.

In the framework of using finite difference based time marching schemes, it is quite
common that error estimation strategies require obtaining a numerical approximation of
problem (1) more regular than the direct numerical solution, with stronger continuity
requirements. This post-processed version of the numerical solution is denoted hereafter
as ũ, see for instance section 6. Note that the Newmark method does not directly provide
a numerical approximation ũ ∈ W , since the it is not even defined in the whole time
interval I (it is only given at times tn of the time grid).
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The first step in order to recover an smooth numerical approximation is to extend the
Newmark approximation into the whole time domain using a simple piecewise linear
interpolation:

uH,∆t(x, t) :=
N∑

n=0

uH,∆t
n (x)θn(t), (6a)

vH,∆t(x, t) :=
N∑

n=0

vH,∆t
n (x)θn(t), (6b)

aH,∆t(x, t) :=
N∑

n=0

aH,∆t
n (x)θn(t), (6c)

where the functions θn(t), for n = 0, . . . , N , are the one-dimensional piecewise linear
shape functions related with the time partition T . Note that, however, one cannot take
ũ = uH,∆t(x, t) since this approximation does not meet the regularity requirements of
the functional space W , uH,∆t(x, t) /∈ W , because its time derivative is not continuous.

Following [9], an admissible approximation ũ ∈ W is easily recovered from the Newmark
solution using the information provided by the numerical accelerations, namely

˙̃u(x, t) :=

∫ t

0

aH,∆t(x, τ) dτ + v0(x), (7a)

ũ(x, t) :=

∫ t

0

˙̃u(x, τ) dτ + u0(x). (7b)

Note that the recovered function ũ belongs to the following discrete space

WH,∆t :=
{
w ∈ C1(Ī;VH

0 ) with w|In ∈ Pq(In;VH
0 ), n = 1, . . . , N

}
,

where Pq(·) represent the space of polynomials of order q in time (where for the par-
ticular expression (7b), the polynomial order is q = 3). Note that by construction the
approximation ũ exactly verifies the initial conditions and that the admissible accelera-
tion coincides with the Newmark solution, ¨̃u = aH,∆t. Note that the displacements uH,∆t

and ũ do not coincide but they converge to the same function as ∆t tends to zero.

2.2.2 Space-time variational formulations

The main objective of a posteriori error estimation techniques is to evaluate the error in
some specific scalar measure (energy-type norms or quantities of interest). The error is
related with the non-verification of the equation to be solved, that is with the residual.
In order to properly define the residual associated with some numerical approximation, a
space-time variational form of the problem is required. Note that the variational format is
employed to derive the error estimate, not necessarily to solve the problem. For instance,
the Newmark method is not using any time variational form. However, there are some a
posteriori error estimation techniques using the full variational formulation both for the
problem approximation and for the error assessment strategy, see [35, 50, 29, 30].
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Among the possible space-time variational formulations available for transient elastody-
namics, four options are considered in the remainder of the paper. They correspond to
the choices made by the authors that designed the error estimation strategies presented
here. The first option is a Single Field (SF) Galerkin method based on the approach in-
troduced by Hughes and Hulbert [51, 52]. The other three options follow a Double Field
(DF) formulation. The second option, based on [35], is a time-Continuous Galerkin ap-
proach using the mass product m(·, ·) to enforce the displacement-velocity consistency,
and it will be referred as CGM. The third option, denoted by CGA, very similar to the
previous one, differs in the fact that displacement-velocity consistency is enforced using
the bilinear form a(·, ·), see [50]. The fourth case is a double field discontinuous Galerkin
method introduced by Johnson [53] and it is denoted by DG.

The SF approach uses the following weak form of problem (1) (the SF reference is omitted
in the notation): find u ∈ W such that

B(u,w) = L(w) ∀w ∈ W , (8)

where

B(v,w) :=

∫

I

m(v̈+a1v̇, ẇ) dt+

∫

I

a(v+a2v̇, ẇ) dt+m(v̇(0+), ẇ(0+))+a(v(0+),w(0+)),

and

L(w) :=

∫

I

l(t; ẇ(t)) dt+m(v0, ẇ(0+)) + a(u0,w(0+)).

The value B(u,u) is the total energy associated with the displacement u, which plays
a role in obtaining error bounds, see section 6. This formulation is used to derive error
estimation strategies but does not provide a practical methodology to compute the nu-
merical approximation of the problem. This is because the weak equation (8) leads to a
fully coupled space-time problem with a prohibitive computational cost.

An usual alternative in transient elastodynamics is using Double field (or mixed) for-
mulations, which introduce the velocity u̇ as new unknown. Thus, the unknown is the
double field function U := [uu,uv] := [u, u̇]. The main advantage of mixed formulations
is that they allow alleviating the continuity requirements on the solution. Instead of
u ∈ W , the solution is U ∈ W0 ×W0 where

W0 := {w ∈ L2(I;V0) with ẇ ∈ L2(I;V ′
0)}.

Note that, in particular, this implies that uu and uv ∈ C0(Ī; [L2(Ω)]d) but their deriva-
tives are not necessarily continuous.

The trial space for the double field time-continuous and time-discontinuous Galerkin
formulations is defined as

Ŵ := {w ∈ L2(I;V0) with w|In ∈ H1(In;V0), n = 1, . . . , N}.

Note that functions in Ŵ may be time-discontinuous. This property is necessary to
decouple the solution in successive time intervals In.
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With these notations, the double field time continuous Galerkin weak form of problem (1)
presented in [35] reads: find U ∈ W0 ×W0 such that for all

BCGM(U,W) = LCGM(W) ∀W ∈ Ŵ × Ŵ , (9)

where BCGM(·, ·) and LCGM(·) are defined as

BCGM(U,W) :=

∫

I

m(u̇v + a1uv,wv) dt+

∫

I

a(uu + a2uv,wv) dt+m(uv(0
+),wv(0

+))

+

∫

I

m(u̇u − uv,wu) dt+m(uu(0
+),wu(0

+)), (10a)

LCGM(W) :=

∫

I

l(t;wv) dt+m(u0,wu(0
+)) +m(v0,wv(0

+)), (10b)

and the general notation W := [wu,wv] is used. Note that the constrain v̇u = vv is
weakly enforced using the mass product defined by m(·, ·) and this is the reason of using
M in the notation for this approach.

A fully discrete solution is obtained replacing the infinite dimensional spaces involved in
the weak form (9) by the discrete spaces

WH,∆t
0 := {v ∈ C0(Ī;VH

0 ) with v|In ∈ Pq(In;VH
0 ), n = 1, . . . , N}, (11a)

ŴH,∆t := {v ∈ L2(I;VH
0 ) with v|In ∈ Pq−1(In;VH

0 ), n = 1, . . . , N}. (11b)

Functions in WH,∆t
0 are continuous, piecewise polynomial both in space and time,

whereas functions in ŴH,∆t are also piecewise polynomials in space and time, continuous
in space but not necessarily continuous in time. It is worth noting that the polynomials
for the time discretization in WH,∆t

0 are one degree higher than the ones in ŴH,∆t.
However, properly accounting for the initial conditions, the dimensions of WH,∆t

0 and

ŴH,∆t coincide due to the continuity requirements of WH,∆t
0 .

The fully discrete equation reads: find Ũ := [ũu, ũv] ∈ WH,∆t
0 ×WH,∆t

0 such that

BCGM(Ũ,W) = LCGM(W) ∀W ∈ ŴH,∆t × ŴH,∆t. (12)

As mentioned before, although problem (12) is integrated over the whole space-time
domain Ω × I, the discontinuities of the test functions allow decoupling the problem
into N problems posed over the time slabs Ω × In, n = 1, . . . , N . To be more precise,
Ũ is computed recursively starting from I1 and going forward in time (from n = 1 to

N). In each time slab, Ũ|In ∈ Pq(In;VH
0 )× Pq(In;VH

0 ) is the solution of (12) where the
function W is restricted to In (with a zero value outside the time slab). The unknown

Ũ|In accounts for the initial conditions given by the solution at the end point of the

previous time-slab, Ũ|In(t+n−1) = Ũ|In−1(t
−
n−1) = [ũu(t

−
n−1), ũv(t

−
n−1)] (or [u0,v0] for the

first slab). In general, this method requires solving for each time step 2q coupled spatial
problems in VH

0 . Recall that the Newmark method requires a single problem in VH
0 at

each time step. However, for q = 1 the block system of algebraic linear equations of
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double size can be pre-processed to make it equivalent to the Newmark method with
parameters β = 1/4 and γ = 1/2, see [35] for a detailed proof.

Eriksson et al. [50] consider an alternative energy consistent weak form analogous to (9),
where the velocity-displacement compatibility and initial conditions for the displace-
ments are enforced using the energy product a(·, ·). The weak formulation reads: find
U ∈ W0 ×W0 such that

BCGA(U,W) = LCGA(W) ∀W ∈ Ŵ × Ŵ . (13)

where

BCGA(U,W) :=

∫

I

m(u̇v + a1uv,wv) dt+

∫

I

a(uu + a2uv,wv) dt+m(uv(0
+),wv(0

+))

+

∫

I

a(u̇u − uv,wu) dt+ a(uu(0
+),wu(0

+)),

LCGA(W) :=

∫

I

l(t;wv) dt+ a(u0,wu(0
+)) +m(v0,wv(0

+)).

It is easily seen that the bilinear form BCGA(·, ·) is energy consistent, namely
BCGA(U,U) = B(u,u). Note that the previous CGM variational formulation does not
fulfill this property, that is BCGM(U,U) 6= B(u,u). This is due to the fact that for CGM
both the initial conditions for the displacements uu(0

+) = u0 and the compatibility con-
dition between velocities and displacements uv = u̇u are enforced in weak form using
the mass product m(·, ·).
The discrete version of problem (13) reads: find Ũ ∈ WH,∆t

0 ×WH,∆t
0 such that

BCGA(Ũ,W) = LCGA(W) ∀W ∈ ŴH,∆t × ŴH,∆t. (14)

Finally, the double field discontinuous Galerkin method introduced by Johnson [53] is
presented. This approach is a variant of the weak problem (13) in which both the trial
and test functions are allowed to be discontinuous at time points in T .

The continuity of the solution is weakly imposed by adding extra terms to the variational
formulation, penalizing the time jumps of the solution at T . The time discontinuous
Galerkin weak form reads: find U ∈ Ŵ × Ŵ such that

BDG(U,W) = LCGA(W) ∀W ∈ Ŵ × Ŵ , (15)

where

BDG(U,W) :=
N∑

n=1

∫

In

(m(u̇v + a1uv,wv) + a(uu + a2uv,wv)) dt+m(uv(0
+),wv(0

+))

+
N∑

n=1

∫

In

a(u̇u − uv,wu) dt+ a(uu(0
+),wu(0

+))

+
N−1∑

n=1

m(uv(t
+
n )− uv(t

−
n ),wv(t

+
n )) +

N−1∑

n=1

a(uv(t
+
n )− uu(t

−
n ),wu(t

+
n )).
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Note that, in order to obtain an energy consistent bilinear form, the jumps of the ve-
locities and displacements at time tn, uv(t

+
n )− uv(t

−
n ) and uu(t

+
n )− uu(t

−
n ) respectively,

are introduced differently in the formulation. The mass bilinear form m(·, ·) is used for
velocities whereas the energy product a(·, ·) is used for displacements, in such a way that
BDG(U,U) = B(u,u).

The discrete version of problem (15) is obtained replacing the space Ŵ by the discrete

space ŴH,∆t defined in equation (11b), namely: find Û := [ûu, ûv] ∈ ŴH,∆t × ŴH,∆t

such that
BDG(Û,W) = LCGA(W) ∀W ∈ ŴH,∆t × ŴH,∆t. (16)

The discrete problem (16) leads to N uncoupled local problems posed over the time
slabs Ω× In, n = 1, . . . , N . As in the previous double field formulations, the solution is
computed recursively starting from I1 and going forward in time. This approach requires
solving, in each time slab, 2(q + 1) coupled spatial problems in VH

0 . Thus, for q = 1 the
dimension of the linear system to be solved in each time slab is four times larger than
the system to be solved with the Newmark method. An efficient resolution strategy for
this problem is presented in [29].

The error estimation techniques described in the forthcoming sections are presented us-
ing the previous variational formulations. Specifically, the recovery estimates described
in section 4 consider the double field discontinuous Galerkin formulation (15), the ex-
plicit estimates and dual weighted residual technique described in section 5 are based
on the double field time-continuous formulations (9) and (13) and finally, the implicit
error estimates presented in section 6 require deriving error representations based on the
standard single-field time-continuous Galerkin method (8).

3 Error measures and error representation

3.1 Errors and error equations

The error associated with a single field numerical approximation ũ ≈ u, for instance the
one introduced in (7), is defined as

e := u− ũ ∈ W . (17)

Function e fulfills the following residual equation: find e ∈ W

B(e,w) = L(w)− B(ũ,w) =: R(w). (18)

Equation (18) is derived replacing the exact solution u by ũ + e into (8) and using the
linearity of forms B(·, ·) and L(·). Note that, the residual R(·) is well defined only if the
numerical approximation ũ is regular enough, that is ũ ∈ W . Thus, error techniques
making use of the residual equation (18), in particular those presented in section 6,
require that ũ ∈ W .

11

65



Paper A

In the case of using a double field formulation as (12) or (14), the numerical solution has

the form Ũ = [ũu, ũv] ∈ WH,∆t
0 ×WH,∆t

0 and the error is defined by

E := [eu, ev] := [u− ũu, u̇− ũv] ∈ W0 ×W0,

where eu and ev are the errors in displacements and velocities respectively. Here, two
different residual equations for the double field error E are derived replacing the exact
solution U by Ũ+E either into equation (9) or (13). That is, the error E ∈ W0 ×W0

is the solution of both

BCGM(E,W) = LCGM(W)− BCGM(Ũ,W) =: RCGM(W) ∀W ∈ W0 ×W0. (19)

and

BCGA(E,W) = LCGA(W)− BCGA(Ũ,W) =: RCGA(W) ∀W ∈ W0 ×W0. (20)

Note that the previous two equations have the same solution, which is precisely E. In
practice, the criterion for selecting either equation (19) or (20) depends on whether the
Galerkin orthogonality property holds or not. This is because in the error estimation
procedures presented in section 5, Galerkin orthogonality is required to properly split
the time and space error contributions.

Thus, if the numerical approximation Ũ is the solution of the discrete problem (12), the
error estimation strategy utilizes equation (19) since, in this case, the following Galerkin
orthogonality property holds,

RCGM(W) = 0 for all W ∈ ŴH,∆t × ŴH,∆t. (21)

Analogously, if the numerical approximation Ũ is solution of the discrete problem (14),
then the error estimation strategy takes equation (20) because

RCGA(W) = 0 for all W ∈ ŴH,∆t × ŴH,∆t.

If the numerical approximation is computed using other techniques, like the Newmark
method, both residual equations could be used for error estimation, but the error esti-
mation technique could not rely on Galerkin orthogonality.

The double field formulation (15) could also be used to derive a residual equation for
the double field error E. However, in the remainder of the paper this formulation is only
used for recovery type estimates (which do not utilize a residual equation).

3.2 Energy measures

As previously mentioned, the bilinear form B(·, ·) induces an energy measure in elasto-
dynamics. For the sake of providing a physical interpretation, the energy norm B(u,u)
reads as follows:

B(u,u) = |||u|||2 + 1

2
||u̇(T )||2m +

1

2
||u(T )||2a +

1

2
||v0||2m +

1

2
||u0||2a, (22)
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where ||v||2m := m(v,v) and ||v||2a := a(v,v) are the squared norms induced by the bilinear
forms m(·, ·) and a(·, ·), respectively, and the space-time norm ||| · ||| is defined as

|||v||| :=
(∫

I

a1||v̇||2m dt+

∫

I

a2||v̇||2a dt

)1/2

. (23)

The terms 1
2
||u̇(T )||2m and 1

2
||u(T )||2a are the kinetic and elastic energy of u at time t = T ,

while the term |||u|||2 stands for the dissipated energy between times t = 0 and t = T due
to the presence of damping in the equations, introduced by a1 and a2.

The different terms in (22) are used in the following to measure the error. For instance, the
recovery estimates presented in section 4 make use of the squared norm || · ||2m+ || · ||2a. Note
that this is the only relevant energy measure of the error in the case of elastodynamics
(for a1 = a2 = 0 the dissipated error is zero, |||e||| = 0). On the contrary, dissipation
is crucial to derive error bounds, as it is shown in section 6. Actually, the techniques
computing upper bounds yield estimates ηener such that |||e||| ≤ ηener.

However, there are norms different than those appearing in (22) which are also used in
the literature. As an example, reference [54] measures the error with an L2 norm of the
displacements at the final simulation time T .

3.3 Quantities of interest and adjoint problem

Information provided by global error estimates (based on global norms) is not sufficient
to make engineering decisions. Alternatively, the end-user often prefers measuring the
error using some specific Quantity of Interest (QoI), which are particular functional
outputs of the solution.

The quantity of interest is defined by a functional LO : W −→ R which extracts a single
representative scalar value of the whole space-time solution. The value LO(u) is the
quantity of interest, which is approximated by LO(ũ) given a numerical approximation
of the solution ũ ≈ u. Goal-oriented error estimation strategies aim at assessing the
quality of LO(ũ), that is, the difference between the exact quantity of interest LO(u)
and the approximated one LO(ũ), LO(u) − LO(ũ). In the remainder of the paper it is
assumed that the functional LO is linear. Thus, LO(u) − LO(ũ) coincides with LO(e).
However, non-linear functionals can also be handled using the same strategies after a
simple linearization, see [35, 47] for details.

The estimation of value LO(e) requires introducing an auxiliary problem associated with
functional LO(·), usually denoted by adjoint or dual problem [31, 47, 42, 43, 44, 45, 46].
The variational form of the adjoint problem consists in finding ud ∈ W such that

B(w,ud) = LO(w) ∀w ∈ W . (24)

The adjoint solution ud characterizes the quantity of interest defined by LO(·). Note
that if ud is available, the computable quantity L(ud) is equal to the quantity of interest
LO(u). In that sense, ud can be seen as the Riesz representation of functional LO(·).
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In practice, LO(·) is selected with the same structure as the functional L(·), namely

LO(w) :=

∫ T

0

(fO(t), ẇ(t)) dt+

∫ T

0

(gO(t), ẇ(t))ΓN
dt+m(vO, ẇ(T )) + a(uO,w(T )),

(25)
where fO, gO, vO and uO are the data characterizing the quantity of interest. The
functions fO and gO extract global or localized averages of velocities in Ω and ΓN,
respectively, over the whole time interval [0, T ]. The fields vO and uO play the role of
weighting functions to compute averages of velocities and strains at the final simulation
time T .

In this case, the associated strong form of the adjoint problem is

ρ(üd − a1u̇
d)−∇ · σd = −fO in Ω× I, (26a)

ud = 0 on ΓD × I, (26b)

σd · n = −gO on ΓN × I, (26c)

ud = uO at Ω× {T}, (26d)

u̇d = vO at Ω× {T}, (26e)

with the constitutive law
σd(ud) := C : ε(ud − a2u̇

d). (27)

Note that the terms affected by a1 and a2 have opposite sign that the ones in the original
problem (1). Consequently, the adjoint problem has exactly the same structure as the
original (1) if integrated backwards in time starting from the final conditions (26d) and
(26e).

Having selected the format of the quantity of interest given in (25) yields the adjoint
problem (24) analogous to the original one (1). Thus, the same computer code available
for solving the original problem (1) can be reused to solve the adjoint problem (26).

Remark 2. Note that the functional LO(·) as defined in (25) does not directly allow to
compute averages of the displacements of u over the time interval I = (0, T ], namely

∫

I

(λ(t),u(t)) dt. (28)

However, it is easy to see that it is possible to express this quantity as

∫

I

(λ(t),u(t)) dt =

∫ T

0

(fO(t), u̇(t)) dt− (fO(0),u0),

for

fO(t) =

∫ T

t

λ(ξ) dξ. (29)

Since the term (fO(0),u0) is constant, assessing the error in the quantity of interest (28)
is equivalent to assess LO(e) where the data characterizing LO(·) are gO = vO = uO = 0
and fO defined in equation (29).
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Similarly, the average of displacements at the final time of the computation

(λO,u(T )) + (λO
N ,u(T ))ΓN

, (30)

where the data λO and λO
N are weighting functions allowing to localize the average of

displacements in some sub-domains in Ω and ΓN respectively, is neither directly included
in (25). In this case, an auxiliary problem is introduced: find uO ∈ V0 solution of the
static problem

a(uO,w) = (λO,w) + (λO
N ,w)ΓN

∀w ∈ V0. (31)

Note that here uO is not given as part of the data λO and λO
N characterizing (30). The

function uO has to be computed as the solution of (31). Taking w = e(T ) in (31) it is
easily seen that assessing the error in the quantity of interest (30) is equivalent to assess
LO(e) where in this case the data characterizing LO(·) are fO = gO = vO = 0 and uO

defined in equation (31).

Remark 3 (Illustrative example). The following example illustrates the adjoint problem
given in (26) for a one dimensional example. The spatial computational domain is Ω =
(0, 1) m, the boundaries are ΓN = {0 m} and ΓD = {1 m}, and the time interval is I =
(0, 2] s. The material properties are E = 1 Pa, ν = 0, ρ = 1, kg/m3 and a1 = a2 = 0 s.

Two different adjoint problems are illustrated in this remark, associated with the quanti-
ties of interest

LO
1 (w) =

∫

I

∫

Ω

α(t)β(x)ẇ(x, t) dx dt and LO
2 (w) =

∫

I

∫

Ω

α(t)β(x)w(x, t) dx dt,

where α(t) and β(x) are the time dependent functions defined in figure 1. Note that

Figure 1: Definition of α(t) and β(x), (left) and (right) respectively.

LO
1 (·) corresponds to take gO = vO = uO = 0 and fO = α(t)β(x) in equation (25) and

provides a weighted average of velocities in the space-time region SO = (xO
a , x

O
b )×(tOa , t

O
b ).

On the other hand, LO
2 (·) corresponds to take λ = α(t)β(x) in (28) and provides a

weighted average of displacement in SO. In this example, the region SO is characterized
by xO

a = 0.2 m xO
b = 0.3 m, tOa = 1.8 s and tOb = 1.9 s.

The adjoint problems associated with quantities LO
1 and LO

2 are plotted in figure 2. Note
that, the adjoint solutions are indeed the region of influence of each quantity of interest.
That is, any perturbation taking place where the adjoint solution is zero has no influence
in the quantity of interest. Note also that, the influence regions are different for quantities
LO
1 and LO

2 even though they provide information of the solution u in the same space-time
region SO.
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Figure 2: Illustration of the adjoint problem for two quantities of interest LO
1 and LO

2

(average of velocities and displacements in the region SO, respectively). Definition of the
space-time domain Ω × I and region of interest SO (left). Adjoint velocities [m/s] for
quantity LO

1 (center). Adjoint velocities [m/s] for quantity LO
2 (right).

The definition of the adjoint problem given in (24) depends on the weak form selected
for the direct problem. Thus, the adjoint problems associated with the double field
formulations CGM and CGA presented in (9) and (13) are introduced in the following.
Note that the regularity restrictions for these problems are weaker than those of the
previous adjoint problem. The adjoin problem associated with the formulation denoted
as DG is not presented because, as previously said, this formulation is only used in the
context of recovery type estimates for energy error measures.

The quantity of interest of a double field function W = [wu,wv] ∈ W0 ×W0 is defined
as

LO
D(W) := LO

u (wu) + LO
v (wv), (32)

where LO
v : W0 −→ R and LO

u : W0 −→ R are linear functionals extracting quan-
tities of interest from velocities and displacements respectively. The variational form
of the adjoint problem associated with a double field quantity LO

D(·) is introduced for
both formulations CGM and CGA given in section 2.2.2. Specifically, if the variational
formulation CGM presented in (9) is considered, then, the adjoint problem reads: find
Ud := [ud

u,u
d
v ] ∈ W0 ×W0 such that

BCGM(W,Ud) = LO
D(W) ∀W ∈ W0 ×W0, (33)

while considering the variational formulation CGA of (13) yields: find Ud ∈ W0 ×W0

such that
BCGA(W,Ud) = LO

D(W) ∀W ∈ W0 ×W0. (34)

As discussed for the single field quantities of interest, in many practical applications it is
important that the adjoint variational problem admits a strong form representation like
the one given in (26). This introduces restrictions to the form of the linear functionals
describing the quantities of interest as given in (32).
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Equation (33) leads to the strong equations (26) for functionals LO
u (·) and LO

v (·) defined
as

LO
u (wu) := m(uO,wu(T )) and (35a)

LO
v (wv) :=

∫ T

0

(fO(t),wv(t)) dt+

∫ T

0

(gO(t),wv(t))ΓN
dt+m(vO,wv(T )), (35b)

while equation (33) leads to the strong problem (26) for

LO
u (wu) := a(uO,wu(T )) and (36a)

LO
v (wv) :=

∫ T

0

(fO(t),wv(t)) dt+

∫ T

0

(gO(t),wv(t))ΓN
dt+m(vO,wv(T )). (36b)

It is worth noting that the quantity of interest associated to the energy consistent double
field formulation CGA is the equivalent to the single field quantity of interest defined in
(25). This is because the definition of LO

D in (36) is such that LO
D([w, ẇ]) = LO(w).

3.4 Error representation with adjoint problem

The adjoint problem allows rewriting the error in the quantity of interest in terms of
residuals, combining the original and adjoint problems. Thus, the error assessment for the
quantity of interest is performed using standard error estimation techniques designed for
global error measures. Different error representations for LO(e), or similarly for LO

D(E)
in the case of a double field formulation, are used for the error assessment strategies
presented here.

Techniques aiming at furnishing bounds for the error in the quantity of interest, like
the ones presented in section 6, consider an error representation based on the adjoint
weak residual, Rd(·), associated with the numerical approximation of the adjoint problem
ũd ≈ ud. This error representation reads

LO(e) = Rd(e) + B(e, ũd) = Rd(e) +R(ũd), (37)

where
Rd(w) := LO(w)− B(w, ũd). (38)

Equation (37) is derived taking w = e into (38) along with the definition of the pri-
mal residual. In equation (37), the error in the quantity of interest is expressed as the
non-computable term Rd(e) plus the computable term R(ũd). Thus, bounds for LO(e)
are obtained finding bounds for Rd(e). Note that, R(ũd) is a computable quantity, not
necessarily equal to zero. Therefore, numerical approximations ũ and ũd are not assumed
to fulfill any Galerkin orthogonality property. That allows using many different compu-
tational methodologies to obtain ũ and ũd. The only requirement is that the numerical
solutions are regular enough, that is ũ, ũd ∈ W and that the bounds for Rd(e) are
available.

On the other hand, the error estimates presented in section 5 utilize a different error
representation. In this case, the error in the quantity of interest is expressed using the
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primal residual and the exact adjoint solution. The following development is analogous
for the CGM and the CGA formulations. For the sake of simplicity, the presentation is
done for CGM but equivalent expressions stand replacing CGM by CGA. One of the
simpler versions of the error representation reads

LO
D(E) = RCGM(U

d). (39)

The previous equation is a direct consequence of the definition of both the residuals and
the adjoint solution.

In the error estimation setup, replacing Ud by an approximated value Ũd, the error rep-
resentation (39) gives an accurate approximation of the error in the quantity of interest.
However, the local error contributions provided by the local restrictions of this residual
expression are often too pessimistic due to the cancellation effect of the contributions of
opposite sign with large absolute values, see [55]. Thus, equation (39) is not used directly
to compute error maps for space-time mesh adaptivity. The error representation (39) is
modified adding and subtracting an arbitrary function WH,∆t ∈ WH,∆t

0 ×WH,∆t
0 in the

argument of the residual,

LO
D(E) = RCGM(U

d −WH,∆t) +RCGM(W
H,∆t). (40)

Then, using Galerkin orthogonality of the residuals it follows

LO
D(E) = RCGM(U

d −WH,∆t). (41)

Globally, the error representation (41) is identical to (39). However, their local restric-
tions are different and, if WH,∆t is properly selected, (41) provides a map of local error
contributions better suited for adaptive purposes. In practice, the function WH,∆t is
taken as the projection onto the test space WH,∆t

0 × WH,∆t
0 of the computed adjoint

approximation Ũd, see section 5 for details.

Note that the estimated error distribution given by representation (41) is valid only if

Galerkin orthogonality holds. In practice it means that, if equation (41) is used, then Ũ
must be the solution of the discrete problem (12).

4 Recovery estimates

In the following, recovery type error estimates in the framework of elastodynamics, see
[29, 30, 31], are applied to the DG formulations. That is, they assess the error with

respect to the solution Û of the discrete problem (16). Recovery type error estimates
provide error indicators for the space and time components of the error, namely ηsn and
ηtn, associated with a point tn of the time discretization T . These indicators are input
data for an adaptive procedure, allowing to select the mesh size and time step and to
design adapted discretizations.
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4.1 Space-time error splitting

For a given time tn ∈ T , the error associated with the DG approximation Û = [ûu, ûv]
is defined as

E(tn) := U(tn)− Û(t−n ) = [u(tn)− ûu(t
−
n ) , u̇(tn)− ûv(t

−
n ) ].

Note that the error E(tn) measures both the space and time discretization errors at time
tn. In order to separate the contribution of the space and time errors, the error E(tn) is
decomposed into

E(tn) = Es(tn) + Et(tn),

where Es(tn) and Et(tn) are defined as

Es(tn) := U(tn)−UH(tn) and Et(tn) := UH(tn)− Û(t−n ). (42)

Note that Es(tn) and Et(tn) are defined introducing function UH = [uH , u̇H ], being uH

the exact (in time) solution of the semidiscrete problem (4), which is unknown. Function
UH tends to the exact solution U as H tends to zero. Consequently, also Es(tn) tends to
zero with H and therefore it is referred as the space discretization error. Similarly, the
term Et(tn) tends to zero as the time step, used in the discretization of equation (4), tends
to zero. Thus, Et(tn) is associated with the error produced by the time discretization.

In order to derive local error indicators, the space and time discretization errors are
measured using the kinetic and elastic energy. Note that the error measure used here
corresponds to the total energy if the viscosity vanishes (a1 = a2 = 0):

||Es(tn)||2m+a := ||esv(tn)||2m + ||esu(tn)||2a and ||Et(tn)||2m+a := ||etv(tn)||2m + ||etu(tn)||2a.

The goal of recovery error estimates is to furnish error indicators ηsn and ηtn such that

ηsn ≈ ||Es(tn)||2m+a and ηtn ≈ ||Et(tn)||2m+a.

The time error indicators ηtn, n = 1, . . . , N are directly used to define the desired size
of the time step at each time tn. On the other hand, the space error indicator ηsn is
decomposed into element contributions

ηsn =

Nel∑

k=1

ηsn,k, (43)

where ηsn,k is an estimate of the contribution of element Ωk to the norm ||Es(tn)||2m+a. The
space error indicators ηsn,k allow defining a desired element size in the zone of element Ωk

at time tn. Thus, combining the information provided by ηtn and ηsn,k, the adapted space
and time discretizations are designed to meet the precision required.

The remainder of this section is devoted to the actual computation of the error indicators
ηsk,n and ηtn.
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4.2 Assessing time discretization errors

The local error indicators ηtn ≈ ||Et(tn)||2m+a are computed in references [29, 30] using the

time-discontinuities of the DG approximation Û, namely

ηtn := ||Û(t+n )− Û(t−n )||m+a = ||ûv(t
+
n )− ûv(t

−
n )||2m + ||ûu(t

+
n )− ûu(t

−
n )||2a.

This definition is suggested by the super-convergent properties of the time-DG formula-
tions, stating that the solution at t−n is much more accurate than the solution at t+n .

References [56, 57, 31] introduce alternative indicators ηtn if the numerical approximation

is a time-continuous function Ũ instead of the DG approximation Û. In that, case
the indicators cannot be computed using the time jumps and, therefore, the following
alternative definition is introduced

ηtn := ||U∗(tn)− Ũ(tn)||2m+a = ||u∗
v(tn)− ũv(t

−
n )||2m + ||u∗

u(tn)− ũu(t
−
n )||2a.

where U∗(tn) is an enhanced (in time) function computed using the numerical approxi-

mation Ũ at previous time steps, see reference [31] for specific details. The post-processed
solution U∗(tn) replaces the exact (in time) approximation UH(tn) in order to obtain an
error estimate.

4.3 Assessing space discretization errors

The natural post-process of the numerical solution for the recovery type error estimators,
is performed for stress fields rather than for the displacements, see [3]. In this context,
energy is measured in terms of stresses using the complementary energy norm || · ||ā
defined as

||σ||2ā := ā(σ,σ) where ā(σ, τ ) :=

∫

Ω

σ : C−1 : τ dΩ.

Thus, value ||Es(tn)||2m+a is rewritten using || · ||ā as

||Es(tn)||2m+a = ||u̇(tn)− u̇H(tn)||2m + ||σ(u(tn))− σ(uH(tn))||2ā. (44)

In the framework of space error indicators, the semi-discrete (exact in time) functions
u̇H(tn) and σ(uH(tn)) are assumed to fairly approximate ûv(tn) and σ(ûu(tn)). This
is equivalent to assume that the time integration error of the numerical approximation
Û(tn) = [ûu(tn), ûv(tn)] is small. This requires reducing the time discretization error be-
fore assessing the space discretization error. Thus, the adaptive strategy aims at reaching
the prescribed time accuracy at each time tn before starting with the space adaptive pro-
cedure.

A computable value for ||Es(tn)||2m+a using equation (44) is obtained recovering approx-
imations of the exact velocities v∗

n ≈ u̇(tn) and stresses σ∗
n ≈ σ(u(tn)) with some

post-process of Û(tn). Introducing these approximations, the space error contributions
ηsn ≈ ||Es(tn)||2m+a, n = 1, . . . , N , are computed as

ηsn := ||v∗
n − ûv(t

−
n )||2m + ||σ∗

n − σ(ûu(t
−
n ))||2ā. (45)
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The error indicator ηsn corresponding to time tn is decomposed into elementary contribu-
tions ηsn,k associated with element Ωk of the mesh. The elementary contributions ηsn,k are
computed restricting the integrals in equation (45) to the elements Ωk. The numerical
methodology providing v∗

n and σ∗
n is detailed below.

The post-processed stress σ∗
n is usually computed using standard stress recovery tech-

niques originally presented for static problems, see [3, 58, 59]. These techniques allow
recovering an enhanced continuous stress field σ∗

n, which is obtained projecting each
component of the space-discontinuous stress field σ(ûu(t

−
n )) into the continuous finite

element functional space used to approximate displacements and velocities, see figure 3.
That is, the enhanced stress σ∗

n is recovered in the space

SH := {τ ∈ [C0(Ω̄)]d(d+1)/2 : τ |Ωk
∈ [Pp(Ωk)]

d(d+1)/2, k = 1, . . . , Nel},
where Pp(Ωk) is the space of polynomials of degree p on the element Ωk. In particular,
the stress field σ∗

n ∈ SH is sought as a linear combination of nodal shape functions,
namely

σ∗
n =

Nnod∑

j=1

σ∗
n(xj)Nj(x),

where Nj(x) is the finite element shape function of degree p associated to the node xj,
being Nnod the total number of nodes. The output of the recovery procedure are the
nodal values of the recovered stress field σ∗

n(xj), j = 1, . . . , Nnod, describing the stress
σ∗

n ∈ SH .

Figure 3: The the discontinuous stress field σ(ûu(t
−
n )) (left) is projected into the contin-

uous space generated by the shape functions furnishing the stress field σ∗
n (right) for all

time steps n = 1, . . . , N (illustrated for p = 1).

Several strategies are studied in the literature for the stress recovery. Two of the
most common techniques are summarized hereafter. First, the pioneering reference by
Zienkiewicz and Zhu [3] proposes to recover the stress field σ∗

n using a global L2-
projection. Specifically, the recovered stress σ∗

n is found solving the global discrete prob-
lem: find σ∗

n ∈ SH such that

(σ∗
n, τ ) = (σ(ûu(t

−
n )), τ ) ∀τ ∈ SH , (46)
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where (·, ·) denotes the L2-product in SH . Problem (46) is equivalent to a linear system
of equations with a global mass matrix, for each component of the stress tensor, and at
each time step tn. If the space mesh changes, then the mass matrix has to be reassem-
bled and inverted at each time step. Hence, this technique is not very well suited in
dynamic problems. In that case, stress recovery techniques involving only local problems
are preferred, as the well known SPR technique also introduced by Zienkiewicz and Zhu
[58, 59].

The SPR technique allows recovering the nodal values of the recovered stress field σ∗
n(xj)

solving local small problems associated to the mesh nodes (nodal patches). The values
σ∗

n(xj) are found using the information provided by the set of Gauss points X ωj inside
the patch ωj := supp(Nj) ⊂ Ω surrounding the j-th node, see figure 4. A local stress field

Sampling points 

Recovery point 

Nodal patch 

Figure 4: Definition of nodal patches and sampling points for stress recovery.

of polynomial degree p̃, σ
ωj
n ∈ [Pp̃(ωj)]

d(d+1)/2, is defined on the patch ωj. The recovered
stresses σ

ωj
n are computed as the least squares fitting of the values of the stress σ(ûu(t

−
n ))

at the sampling points X ωj . Specifically, the stress σ
ωj
n is defined as

σωj
n := arg min

w∈[Pp̃(ωj)]d(d+1)/2

∑

x∈Xωj

(
w(x)− σ(ûu(t

−
n ))(x)

)2
. (47)

The recovered value σ∗
n(xj) is then taken to be the value of the local stress field σ

ωj
n at

point xj, that is σ
∗
n(xj) := σ

ωj
n (xj). In practice, for linear elements, p̃ is taken equal to

2. In any case, p̃ must be such that the dimension of Pp̃(ωj) is lower then the cardinal of
X ωj to guarantee that the least squares projection is well posed.

On the other hand, the technique furnishing the enhanced velocities v∗
n consists, basically,

in increasing the interpolation degree of the computed velocity ûv(t
−
n ), see figure 5. This

type of post-process is used in other contexts, for instance, in assessing the error L2-norm
in static problems [60, 61] or, in building enhanced vibration modes and eigenfrequencies
[62]. In the following, the post-process strategy introduced in [62] is presented.

Let Ωpatch
k denote the patch of elements around Ωk, consisting of all the elements sharing

at least one node with Ωk, and let X k and X patch
k denote the set of nodes of element Ωk

and patch Ωpatch
k respectively, see figure 6.

The post-processed velocity field v∗
n is found using the information provided by the

restriction of ûv(t
−
n ) to Ωpatch

k . Specifically, a velocity field vXk
n ∈ [Pp+1(Ωpatch

k )]d is found
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Figure 5: The recovery techniques for the velocities consist in increasing the interpolation
order of ûv(t

−
n ) (left) furnishing the recovered velocities v∗

n (right).

Averaged
 D.O.F. 

D.O.F. of 

D.O.F. of 

Figure 6: Definition of element patches (left) and illustration of the averaging of discon-
tinuous function v̂n into the continuous function v∗

n (right).

such that it fits the values of ûv(t
−
n ) at X patch

k in a least squares sense and coincides with
ûv(t

−
n ) at X k. That is,

vXk
n = arg min

w∈[Pp+1(Ωpatch
k )]d

∑

x∈Xpatch
k

(
w(x)− ûv(x, t

−
n )
)2

constrained to w(x) = ûv(x, t
−
n ) for x ∈ X k.

(48)

Problem (48) results in d (one for each component of the velocity, all with the same
mass matrix) linear system of equations of size equal to the dimension of Pp+1 for each
element of the computational mesh.

In order to obtain the post-processed velocity field v∗
n, first the contributions of the

restriction of the local recovered functions vXk
n to the corresponding element Ωk are

summed, v̂n :=
∑

k v
Xk
n |Ωk

. Note that v̂n is discontinuous because, for two neighboring

elements Ωk and Ωk′ with a common side Γkk′ := Ω̄k∩ Ω̄k′ , functions v
Xk
n |Ωk

and v
Xk′
n |Ωk′

coincide at the endpoints of Γkk′ but, in general, not in the other points of Γkk′ . In order
to build up a continuous approximation v∗

n, the local contributions are averaged on the
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element sides. Typically vXk
n |Ωk

is represented with the nodal values of a finite element of
degree p+ 1. Therefore, computing v∗

n is simply performed by just averaging the values
of the degrees of freedom associated with the element edges (not vertices), as illustrated
in figure 6.

5 Dual weighted residual & explicit residual esti-

mates

5.1 Dual weighted residual method

This section presents the so-called Dual Weighted Residual (DWR) technique providing
estimates for the error in the quantity of interest. This technique is introduced by Ran-
nacher and Stuttmeier in the context of steady state linear elasticity problems [63], but
it is also applied to linear elastodynamics [35, 31, 36, 14, 37, 38]. In particular, the dual
weighted residual technique is presented here in the context of elastodynamics following
[35].

The dual weighted residual methodology provides a scalar estimate ηdwr for the error in
the quantity of interest

ηdwr ≈ LO
D(E),

where, here, the error E is defined with respect the solution Ũ of the discrete double-field
problem (12). Following [35] the developments are restricted to linear time descriptions,
that is q = 1.

The error estimate ηdwr is obtained replacing the exact adjoint solution Ud by an appro-
priate approximation Ũd in the error representation (39) , namely

ηdwr := RCGM(Ũ
d). (49)

The scalar estimate ηdwr provides a single scalar quantity, which may be used in the
framework of an adaptive procedure as a stopping criterion. That is, to check whether
the computed numerical approximation has reached the desired accuracy. Additionally,
the dual weighted residual method provides local error indicators (typically element by
element) to drive goal-oriented adaptive procedures. This information is used to improve
the space-time discretization in order to reduce the error ηdwr.

Deriving the local error indicators requires rewriting the error representation (41) in
such a way that the contributions of the space and time discretization errors are sep-
arated. This allows to decide whether the space or the time discretizations (or both)
have to be refined. First, in order to separate the space and time errors in the error
representation (41), the projection Π∆tΠHUd of Ud in the space ŴH,∆t × ŴH,∆t is
introduced, where Π∆t is a projection of a time dependent function into the space of
time piecewise constant functions and ΠH is the classical nodal interpolation projecting
space-dependent functions into VH

0 . In practice, Π∆t is defined for a time-dependent
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function w taking the average of w inside each time interval In

Π∆tw|In :=
1

meas(In)

∫

In

w dt.

Note that the error in the projection w − Π∆tw is orthogonal to piecewise constant
functions in time ∫

In

(w −Π∆tw) · v dt = 0 ∀v ∈ [P0(In)]
d. (50)

Thus, taking WH,∆t = Π∆tΠHUd in (41) yields

LO
D(E) = RCGM(U

d −Π∆tΠHUd). (51)

Remark 4. Figure 7 illustrates the projection operators ΠH and Π∆t using the adjoint
velocity ud

v shown in figure 2 associated to the quantity of interest LO
1 (·). The exact

adjoint velocity ud
v ∈ W is continuous both in space and time. Function Π∆tud

v ∈ Ŵ∆t,
with

Ŵ∆t := {v ∈ [L2(I;V0)]
d : v|In ∈ [Pq−1(In;V0)]

d, n = 1, . . . , N},
is piecewise polynomial (constant for q = 1) in time. However, the spacial descrip-

tion of functions in Ŵ∆t is infinite dimensional. Finally, the fully discrete projection
Π∆tΠHud

v ∈ ŴH,∆t is continuous and piecewise polynomial in space, see figure 7.

−10

−5

0

5

10

Figure 7: Space-time discretization defining the spaces Ŵ∆t and ŴH,∆t (outer left).
Adjoint velocity field ud

v associated to the quantity of interest LO
1 (·) (see figure 2) and

its projections Π∆tud
v ∈ Ŵ∆t and Π∆tΠHud

v ∈ ŴH,∆t (right).

The space and time errors are separated adding and subtracting Π∆tUd in equation (51)

LO
D(E) = RCGM(U

d −Π∆tUd) +RCGM(Π
∆t(Ud −ΠHUd)). (52)
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The terms RCGM(U
d −Π∆tUd) and RCGM(Π

∆t(Ud −ΠHUd)) are associated with the
time and space discretization errors respectively. Indeed, RCGM(U

d −Π∆tUd) tends to
zero as the time discretization is refined whereas RCGM(Π

∆t(Ud−ΠHUd)) tends to zero
as the space discretization is refined.

Once the space and time errors are separated, the next step to obtain the local error
contributions is splitting the integrals in RCGM(·) using the space-time cells Ωk × In
associated with the elements Ωk and time intervals In. That is

RCGM(W) =
N∑

n=1

Nel∑

k=1

∫

In

[
(f ,wv)Ωk

+ (g,w)ΓN∩∂Ωk
−m( ˙̃uv,wv)Ωk

− a(ũu,wv)
]
dt

N∑

n=1

Nel∑

k=1

∫

In

(ru,wu)Ωk
dt+

Nel∑

k=1

[
(r0u,wu(0))Ωk

+ (r0v,wv(0))Ωk

]
,

(53)
where

ru := ρ( ˙̃uu − ũv), r0u := ρ(u0 − ũu(0)), r0v := ρ(v0 − ũv(0)).

The residual RCGM(·) is written in equation (53) for the particular case of pure elasticity
(a1 = a2 = 0) following reference [35].

An alternative format of the residual is derived integrating by parts the term a(ũu,wv)
in (53). Thus, the strong residuals associated with the interior of the elements and the
element boundaries (edges or faces) are introduced

relv := f−ρ ˙̃uv+∇ ·σ(ũu), in Ωk, k = 1, . . . , N el, and rfav :=





−1

2
[[σ(ũu) · n]] on Γint,

g − σ(ũu) · n on ΓN,

being Γint the set of interelement boundaries (mesh edges or faces). The jump [[σ · n]] is
defined on a generic element interface Γl = ∂Ωk ∩ ∂Ωk′ ∈ Γint as [[σ · n]] := σ|Ωk

· nk +
σ|Ωk′ · nk′ where nk and nk′ are the outward unit normals to ∂Ωk and ∂Ωk′ respectively.
Equation (53) is therefore rewritten as

RCGM(W) =
N∑

n=1

Nel∑

k=1

∫

In

[
(ru,wu)Ωk

+ (relv ,wv)Ωk
+ (rfav ,wv)∂Ωk

]

+

Nel∑

k=1

[
(r0u,wu(0))Ωk

+ (r0v,wv(0))Ωk

]
,

(54)

where functions ru, r
el
v , r

fa
v , r

0
u and r0v are the computable strong residuals contributing

to RCGM(·). This new format of the residual is interesting because, when restricted to
elements and time slabs, it provides better space-time local indicators than the original
one (53).

The local (element by element) error contributions associated with the space and time
discretization errors are obtained using the residual decomposition (54) in the error
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representation (52):

LO
D(E) =

Nel∑

k=1

[
(r0u,u

d
u(0)−Π∆tΠHud

u(0))Ωk
+ (r0v,u

d
v(0)−Π∆tΠHud

v(0)
]

+
N∑

n=1

Nel∑

k=1

∫

In

[
(ru −Π∆tru,u

d
u −Π∆tud

u)Ωk
+ (ru,Π

∆tud
u −Π∆tΠHud

u)Ωk

]

+
N∑

n=1

Nel∑

k=1

∫

In

[
(relv −Π∆trelv ,u

d
v −Π∆tud

v)Ωk
+ (relv ,Π

∆tud
v −Π∆tΠHud

v)Ωk

]

+
N∑

n=1

Nel∑

k=1

∫

In

[
(rfav −Π∆trfav ,u

d
v −Π∆tud

v)∂Ωk
+ (rfav ,Π

∆tud
v −Π∆tΠHud

v)∂Ωk

]
,

(55)
where functions Π∆tru, Π

∆trelv and Π∆trfav are introduced into equation (55) using the
orthogonality property (50).

Equation (55) leads to local error contributions which might have opposite signs from
element to element. In practice, the remeshing criteria, which translate the local error
contributions into a desired element size, require that the input local indicators are posi-
tive. The positive error contributions are obtained using the Cauchy–Schwartz inequality
in equation (55), namely

|LO
D(E)| ≤

Nel∑

k=1

ηdwr,i
k +

N∑

n=0

Nel∑

k=1

[
ηdwr,s
n,k + ηdwr,t

n,k

]
, (56)

with

ηdwr,i
k := ||r0u||Ωk

||ud
u(0)−Π∆tΠHud

u(0)||Ωk
+ ||r0v||Ωk

||ud
v(0)−Π∆tΠHud

v(0)||Ωk
, (57a)

ηdwr,t
n,k := ||ru −Π∆tru||Ωk×In ||ud

u −Π∆tud
u||Ωk×In + ||relv −Π∆trelv ||Ωk×In ||ud

v −Π∆tud
v ||Ωk×In

(57b)

+ ||rfav −Π∆trfav ||∂Ωk×In ||ud
v −Π∆tud

v ||∂Ωk×In , (57c)

ηdwr,s
n,k := ||ru||Ωk

||Π∆tud
u −Π∆tΠHud

u||Ωk×In + ||relv ||Ωk×In ||Π∆tud
v −Π∆tΠHud

v ||Ωk×In

(57d)

+ ||rfav ||∂Ωk×In ||Π∆tud
v −Π∆tΠHud

v ||∂Ωk×In , (57e)

where the notation || · ||Ωk
, || · ||Ωk×In and || · ||∂Ωk×In is used to denote the L2 norms in Ωk,

Ωk × In and ∂Ωk × In respectively. Note that 1) ηdwr,i
k is the contribution of element Ωk

to the interpolation error due to the initial conditions, 2) ηdwr,t
n,k is the contribution of the

space-time slab Ωk × In to the time discretization error and 3) ηdwr,s
n,k is the contribution

of the space-time slab Ωk × In to the space discretization error.

The inequality in equation (56) guarantees that the error in the quantity of interest is
controlled if the local errors ηdwr,i

k , ηdwr,s
n,k , ηdwr,t

n,k are small enough. Thus, the local error

indicators ηdwr,i
k , ηdwr,s

n,k , ηdwr,t
n,k are useful to drive goal-oriented adaptive procedures aiming
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at efficiently controlling |LO(e)|. However, these local error indicators cannot be used to
obtain a reliable assessment of LO(e), which is better estimated directly with equation
(49).

Note that the local error contributions in equation (57) are not fully computable. They
involve the norms of the strong residuals which are computable, but they also involve the
unknown exact solution of the adjoint problem, Ud. Computable local error indicators
from equation (57) are obtained following two alternative approaches.

On the one hand, the exact adjoint solution Ud is replaced in (57) by a suitable approx-

imation Ũd as previously done in equation (49). The approximation Ũd must belong to

a richer space than ŴH,∆t×ŴH,∆t in order to preclude Galerkin cancellation. Function
Ũd is computed in [64, 35] as post-process of the numerical adjoint approximation using

recovery techniques. Alternatively, references [35, 47] compute Ũd solving a global prob-
lem in a richer space obtained with H- or p-refinement. This second approach might be
computationally unaffordable in three-dimensional demanding problems.

On the other hand, computable local indicators are obtained introducing a priori error
estimates for the adjoint interpolation errors Ud−Π∆tΠHUd and Ud−Π∆tUd appear-
ing in equation (57). This allows to write the adjoint interpolation error in terms of
higher order derivatives (both in space and time) of Ud. Then, the unknown high order
derivatives of Ud are replaced by a post-process of the computed adjoint approximation,
see [31, 35] for details. The use of a priori interpolation estimates introduces unknown
constants in the final expression of the estimate. However, the local information given
by the computable part of the estimate is used to perform space-time mesh adaptivity.

5.2 An L2-norm explicit estimate

This section briefly summarizes reference [50] deriving explicit estimates for the L2-norm
of the final displacement error, ||eu(T )|| = (eu(T ), eu(T ))

1/2. An analogous rationale holds
for assessing the total energy of the error, ||ev(T )||2m + ||eu(T )||2a, see references [34, 53].

Here, the L2-norm of the error is seen as a particular quantity of interest to be estimated
using the DWR approach presented in section 5.1. The non-linear character of this quan-
tity of interest induces a corresponding functional output LO

D(·) involving the unknown
error eu(T ). This functional output induces an adjoint problem that plays a role in the
derivation of the estimate. However, it is worth mentioning that the estimate is explicit
and it does not require solving any adjoint problem.

The presentation in reference [50] considers the wave equation as model problem (with
a scalar unknown). The equations of structural dynamics (1) are a general framework
(with vectorial unknown) for a second order hyperbolic problem, that are seen as a
generalization of the wave equation. Thus, the concepts introduced in [50] are presented
here in the framework of problem (1) for the sake of a unified exposition.

Following [50], the Dirichlet boundary conditions are defined on the whole boundary,
ΓD = ∂Ω, the density is taken ρ = 1 and the initial conditions are assumed to be exactly
represented by the numerical approximation, that is u0− ũu(0) = 0 and v0− ũv(0) = 0.
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The global L2-norm of the final displacement error, ||eu(T )||, is assessed introducing the
auxiliary quantity of interest

LO
D(W) := (eu(T ),wu(T )). (58)

Note that, with this definition, the error in the quantity of interest is indeed the L2-norm
of the final displacement error,

LO
D(E) = (eu(T ), eu(T )) = ||eu(T )||2.

Assuming thatUd is the solution of the adjoint problem (34) associated with the quantity
of interest (58), the value ||eu(T )|| can be expressed using the error representation (41).
That is

||eu(T )||2 = LO
D(E) = RCGA(U

d −Π∆tΠHUd), (59)

where WH,∆t is replaced in (41) by the projection of the adjoint solution Π∆tΠHUd.
The error representation (59) involves the residual RCGA(·) instead of RCGM(·) because
the numerical approximation Ũ is computed in reference [50] with the discrete CGA
problem (14), and consequently, the orthogonality property holds only for RCGA(·).
The space and time errors are separated adding and subtracting the projection ΠHUd

into equation (59),

LO
D(E) = RCGA(U

d −ΠHUd) +RCGA(Π
H(Ud −Π∆tUd)), (60)

where the terms RCGA(U
d −ΠHUd) and RCGA(Π

H(Ud −Π∆tUd)) are related with the
space and time discretization errors respectively. The space projection operator ΠH is
defined here as the L2-projection in the space VH

0 instead of the usual nodal interpolation,
see reference [50]. This technicality is required to ensure some orthogonality properties.
That is, ΠHw is defined for a generic function w ∈ V0 as the solution of the problem:
find ΠHw ∈ VH

0 such that

(ΠHw,v) = (w,v), ∀v ∈ VH
0 .

The derivation of the explicit error estimate is split into three conceptual steps: 1) equa-
tion (60) is rewritten using the orthogonality properties of the operators ΠH and Π∆t

and integrating by parts in time, 2) the adjoint interpolation errors are expressed in
terms of high order derivatives of the adjoint solution using a priori error estimates
and 3) the resulting high order derivatives are bounded using a stability property of the
adjoint solution. These steps are detailed below.

First, using the orthogonality properties of the operators ΠH and Π∆t, equation (60) is
rewritten as

LO
D(E) =

∫

I

(f −ΠHf , u̇d −ΠHu̇d) dt+

∫

I

(f −Π∆tf ,ΠH(u̇d −Π∆tu̇d)) dt

−
∫

I

a(ũu, u̇
d −ΠHu̇d) dt−

∫

I

a(ũu −Π∆tũu,Π
H(u̇d −Π∆tu̇d)) dt

−
∫

I

a( ˙̃uu − ũv,u
d −ΠHud) dt+

∫

I

a(ũv −Π∆tũv,Π
H(ud −Π∆tud)) dt.

(61)
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Then, integrating by parts the time integrals in the term
∫

I

a(ũu, u̇
d −ΠHu̇d) dt,

equation (61) yields

LO
D(E) =

∫

I

(f −ΠHf , u̇d −ΠHu̇d) dt+

∫

I

(f −Π∆tf ,ΠH(u̇d −Π∆tu̇d)) dt

−
∫

I

a(ũu −Π∆tũu,Π
H(u̇d −Π∆tu̇d)) dt

+

∫

I

a(ũv,u
d −ΠHud) dt+

∫

I

a(ũv −Π∆tũv,Π
H(ud −Π∆tud)) dt

− a(ũu(T ),u
d(T )−ΠHud(T )) + a(ũu(0),u

d(0)−ΠHud(0)).

(62)

Second, previous equation is rewritten using a priori error estimates for the interpolation
errors ud −ΠHud and ud −Π∆tud, see reference [50] for details:

|LO
D(E)| ≤ C1

(
max
t∈I

||üd(t)||
)(∫

I

∆t||f −Π∆tf || dt+
∫

I

∆t||∆H(ũu −Π∆tũu)|| dt
)

+ C2

(
max
t∈I

||u̇d(t)||a
)(∫

I

||H(f −ΠHf)|| dt+
∫

I

∆t||ũv −Π∆tũv||a dt

)

+ C3

(
max
t∈I

||∇ · σd(ud(t))||
)(∫

I

||H2R2(ũv)|| dt+ ||H2R2(ũu(T ))||+ ||H2R2(ũu(0))

(63)
where the discrete laplacian operator ∆H is defined for a generic function w ∈ V0 as :
find ∆Hw ∈ VH

0 such that

(∆Hw,v) = a(w,v), ∀w ∈ VH
0 ,

and the operator R2(·) is defined for a generic function w ∈ VH
0 as

R2(w)|Ωk
:=

1

2Hk

max
x∈∂Ωk

∣∣[[sE(w(x)) · n(x)]]
∣∣ .

Third, the factors in (63) involving the adjoint solution are bounded in terms of the error
||eu(T )|| using the following stability property of the adjoint solution ud associated with
the quantity of interest (58).

Theorem 1. The solution ud of the adjoint problem (34) for quantity defined in (58),
which strong form is

ρüd −∇ · σd(ud) = 0 in Ω× I, (64a)

ud = 0 on ΓD × I, (64b)

σd · n = 0 on ΓN × I, (64c)

−∇ · σ(ud) = eu at Ω× {T}, (64d)

u̇d = 0 at Ω× {T}, (64e)
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fulfills
max
t∈I

(
||üd(t)||2 + ||u̇d(t)||2a + ||∇ · σ(ud(t))||2

)
≤ C||eu(T )||2. (65)

The proof can be found in [50, Lemma 17.3].

Using the stability property (65) and recalling that LO
D(E) = ||eu(T )||2, equation (63)

yields

||eu(T )|| ≤ C

(∫

I

∆t||f −Π∆tf || dt+
∫

I

∆t||∆H(ũu −Π∆tũu)|| dt

+

∫

I

∆t||ũv −Π∆tũv||a dt+

∫

I

||H(f −ΠHf)|| dt

+

∫

I

||H2R2(ũv)|| dt+ ||H2R2(ũu(T ))||+ ||H2R2(ũu(0))||
)
. (66)

Constant C in the previous expression is unknown. Nevertheless the computable part of
the error estimate is split into space-time local contributions providing information on
the relative magnitude of the error generated at each region of the computational domain.
This information can be used for adaptive purposes. The three first terms in the right
hand side of equation (66) are associated with the time discretization error while the four
last terms are associated with the space discretization. The local contributions associated
with these terms are used to adapt the corresponding space or time discretization.

6 Constitutive relation error and implicit estimates

This section aims at computing bounds for the error in the dissipation norm |||e||| and
in the quantity of interest LO(e) using the so-called constitutive relation error estimates
[9]. These estimates require an underlying stress equilibration technique based on solving
local problems. The residual is playing the role of the loading of the local problems, and
therefore the solution is not an explicit post-process of the residual. Thus, these strate-
gies are also denoted as implicit residual type estimates. In many contexts, constitutive
relation error estimates and implicit residual type estimates are fully equivalent.

The goal is to compute scalar values ηener, ηL and ηU such that

|||e||| ≤ ηener and ηL ≤ LO(e) ≤ ηU. (67)

Deriving the error bounds ηener, ηL and ηU using constitutive relation estimates requires
that problem (1) contains some damping (i.e. either a1 or a2 is different from zero). This
means that the bounding properties of the estimate are lost in the limit case of pure
elasticity (a1 = a2 = 0). Non-zero damping allows computing the error bounds (67)
following a rationale analogous to the one used in steady-state problems [9].

The technique providing ηener, ηL and ηU is presented here following reference [46], where
the model problem under consideration corresponds to taking a1 = 0 and a2 > 0 in
equations (1). Thus, in the remaining of this section, the coefficient a1 is assumed to be
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zero and a2 is assumed to be strictly positive. The same rationale holds for other damped
versions of problem (1). For instance, references [44, 42, 45] introduce damping in the
constitutive relation (2) using the linear Maxwell viscous model.

6.1 Computable upper bounds for the dissipation norm

The key ingredient to compute error bounds is building a pair (σ̃, ũ) of a dynamically
admissible (D-admissible) stress and a kinematically admissible (K-admissible) displace-
ment.

On the one hand, the set of K-admissible displacements is defined as

U := {w ∈ W : w = u0 at Ω× {0} and ẇ = v0 at Ω× {0}} .

Functions in U are continuous with continuous time derivative and exactly fulfilling both
the homogeneous Dirichlet condition (1b) and the initial conditions (1d) and (1e). On
the other hand, the space of D-admissible stresses is defined for a given K-admissible
displacement ũ ∈ U as

S(ũ) :=

{
τ ∈ Z :

∫

I

(τ , ε(ẇ)) dt =

∫

I

(
l(t; ẇ)− (ρ¨̃u, ẇ)

)
dt ∀w ∈ W

}
, (68)

where
Z :=

{
τ : [τ ]ij ∈ L2(Ω× I) i, j ≤ d

}
, (69)

and for τ , ε ∈ Z , the standard L2 product in Ω reads

(τ , ε) :=

∫

Ω

τ : ε dΩ.

The stress tensors in S(ũ) are in dynamic equilibrium with respect the external loads
plus the inertia forces associated with ¨̃u. For that reason, the definition of (and the
notation for) the set S(ũ) depends on the K-admissible displacement ũ. A stress tensor
σ̃ ∈ S(ũ) is generally discontinuous between mesh elements, while the traction vector
σ̃ ·n is continuous across element edges (or faces in 3D). The weak form of the dynamic
equilibrium is implicitly stated in the definition of S(ũ) given in (68). The equivalent
strong formulation for D-admissibility enforces point wise equilibrium in the interior of
the elements and traction continuity across the element interfaces. Thus, for a given
finite element mesh, a D-admissible stress σ̃ fulfills

−∇ · σ̃ = f − ρ¨̃u on Ωint × I,

σ̃ · n = g on ΓN × I,

[[σ̃ · n]] = 0 on Γint × I,

where Ωint is the interior of the elements of the mesh and Γint is the set of interelement
faces (or edges in 2D).
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The admissible pair (σ̃, ũ) ∈ S(ũ)× U defines the following stress error

σ̃e := σ̃ − σ(ũ), (70)

which corresponds to the non verification of the constitutive relation (2). The so-called
constitutive relation error (following the terminology by Ladevèze and co-workers) is
then computed as |||σ̃e|||σ where ||| · |||σ is the stress version of the space-time norm ||| · |||
defined in (23), namely

|||τ |||2σ :=
1

a2

∫

I

||τ ||2ā dt.

For the particular case a1 = 0, the displacement and stress norms are related by |||w||| =
|||a2C : ε(ẇ)|||σ.
The constitutive relation error |||σ̃e|||σ is computable once the fields σ̃ and ũ are available.
Note that, |||σ̃e|||σ = 0 if and only if σ̃ = σ and ũ = u. Consequently, |||σ̃e|||σ is adopted
as a pertinent error measure. Moreover, the value |||σ̃e|||σ provides information about the
unknown error e, as shown by the following theorem. For the sake of simplifying, the
operators identifying the elastic and viscous contributions of the constitutive law are
introduced as sE(u) := C : ε(u) and sν(u) := a2C : ε(u̇).

Theorem 2. Given an admissible pair (σ̃, ũ) ∈ S(ũ)× U , the errors e and σ̃e defined
in equations (17) and (70), respectively, fulfill

|||σ̃e|||2σ = ||ė(T )||2m + ||e(T )||2a + |||e|||2 + |||σν − σ̃ν |||2σ, (71)

where σν := sν(u) and σ̃ν := σ̃ − sE(ũ).

For the proof, the reader is referred to [46, Theorem 1].

A direct consequence of theorem 2 is the relation |||σ̃e|||2σ ≥ ||ė(T )||2m + ||e(T )||2a + |||e|||2
and, in particular, the following upper bound

ηener := |||σ̃e|||σ ≥ |||e|||. (72)

Moreover, expression (72) is particularly important because it is used to bound the
quantity of interest.

6.2 Error bounds in the quantity of interest

Bounds of the error in the quantity of interest LO(e) are obtained combining admissible
pairs for both the original and the adjoint problems, (ũ, σ̃) and (ũd, σ̃d). The space of
adjoint kinematically admissible displacements is defined as

Ud :=
{
w ∈ W : w = uO at Ω× {T} and ẇ = vO at Ω× {T}

}
.

The space of adjoint dynamically admissible stress fields is defined for a given ũd ∈ Ud

as

Sd(ũd) :=

{
τ ∈ Z :

∫

I

(τ , ε(ẇ)) dt =

∫

I

(
lO(t; ẇ)− (ρ¨̃ud, ẇ)

)
dt ∀w ∈ W

}
,
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where lO(t;w) := (fO(t),w) + (gO(t),w)ΓN
.

The admissible pair (ũd, σ̃d) ∈ Ud × Sd(ũd) provides the error in stresses associated
with the non verification of the adjoint constitutive relation (27),

σ̃d,e := σ̃d − σd(ũd). (73)

The bounds for LO(e) are computed using the constitutive relation errors σ̃e and σ̃d,e, as
defined in (70) and (73). Actually, σ̃e and σ̃d,e are used to obtain bounds for Rd(e), which
is the non-computable part of the error representation (37). There are three different
approaches to derive upper bounds on the basis of the constitutive relation errors, which
are described in the following.

6.2.1 Error bounds based on the Cauchy-Schwarz inequality

References [42, 43, 44, 45] derive computable bounds using the Cauchy-Schwarz inequal-
ity. The bounds for Rd(e) are obtained noting that if (ũd, σ̃d) is an adjoint admissible
pair, then its associated error σ̃d,e verifies

B̄ν(σ̃d,e, sν(w)) = Rd(w) ∀w ∈ W , (74)

where B̄ν(·, ·) is the bilinear form

B̄ν(τ 1, τ 2) :=
1

a2

∫

I

ā(τ 1, τ 2) dt. (75)

Note that the bilinear form B̄ν(·, ·) induces the stress energy norm ||| · |||σ, that is |||τ |||2σ: =
B̄ν(τ , τ ).

Taking w = e, equation (74) yields

Rd(e) = B̄ν(σ̃d,e, sν(e)).

Being B̄ν symmetric-positive-definite, the Cauchy-Schwarz inequality holds and yields

|Rd(e)| ≤ |||σ̃d,e|||σ|||sν(e)|||σ = |||σ̃d,e|||σ|||e|||.
The factor involving the unknown error e is bounded using the equation (72) leading to
the following computable bound for |Rd(e)|,

|Rd(e)| ≤ |||σ̃d,e|||σ|||σ̃e|||σ.
The computable bounds for the error in the quantity of interest are readily obtained using
the previous result together with the computable part of the error representation (37).
That is,

ζC–S
L ≤ LO(e) ≤ ζC–S

U ,

where

ζC–S
U := |||σ̃d,e|||σ|||σ̃e|||σ +R(ũd), (76a)

ζC–S
L := −|||σ̃d,e|||σ|||σ̃e|||σ +R(ũd). (76b)

The use of the Cauchy-Schwarz inequality is typically inducing a large overestimation of
the quantities assessed. This is because the two vectors σ̃d,e and sν(e) are, in general, far
of being parallel. This makes the error bounds given in (76) not sharp, with an unrealistic
and impractical bound gap.
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6.2.2 Bounds using symmetric error equations

Alternative error bounds, based on different algebraic identities, are often used in the
literature to derive sharper bounds than the ones obtained with the Cauchy-Schwarz
approach. For instance, the parallelogram identity is used in [7, 65, 66] in the context
of linear elasticity and in [21, 22] for transient convection-diffusion-reaction equations.
In the framework of structural dynamics reference [46] proposes a bounding expression,
alternative to the one in equation (76) originally proposed in reference [45].

The derivation of the alternative bounds requires introducing symmetrized equations for
the original and adjoint errors. However, it is worth noting that this is only a mathemat-
ical artifact and, in practice, the error bounds are computed using only the admissible
pairs (ũ, σ̃) and (ũd, σ̃d) without solving any auxiliary symmetrized error equations.

The symmetrized error equations read: find eν ∈ U0 and ed,ν ∈ Ud
0 such that

Bν(eν ,w) = R(w) ∀w ∈ W , (77a)

Bν(ed,ν ,w) = Rd(w) ∀w ∈ W , (77b)

where the spaces U0 and Ud
0 are defined respectively as

U0 := {w ∈ W : w = 0 at Ω× {0} and ẇ = 0 at Ω× {0}} ,
and

Ud
0 := {w ∈ W : w = 0 at Ω× {T} and ẇ = 0 at Ω× {T}} .

Equations (77) resemble the residual equation (18) for the primal error e. Note that the
difference is that the non symmetric bilinear form B(·, ·) is replaced by the symmetric
one Bν(·, ·) defined as

Bν(v,w) := a2

∫

I

a(v̇, ẇ) dt.

It is easily shown that for any scalar value κ 6= 0, see [46], the following algebraic identity
holds:

−1

4
|||κeν − 1

κ
ed,ν |||2 ≤ Rd(e) ≤ 1

4
|||κeν + 1

κ
ed,ν |||2. (78)

Functions κeν ± 1
κ
ed,ν are solutions of the infinite dimensional problems (77). Therefore,

the error bounds proposed in (78) are not computable. However, introducing the con-
stitutive relation errors of the original and adjoint problem, the computable bounds for
|||κeν ± 1

κ
ed,ν ||| are

|||κeν ± 1

κ
ed,ν ||| ≤ |||κσ̃e ± 1

κ
σ̃d,e|||σ. (79)

The final bounds for LO(e) are derived substituting expression (79) in equation (78) and
adding the correction term R(ũd)

ζU :=
1

4
|||κσ̃e +

1

κ
σ̃d,e|||2σ +R(ũd), (80a)

ζL := −1

4
|||κσ̃e − 1

κ
σ̃d,e|||2σ +R(ũd), (80b)
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where ζL and ζU are such that
ζL ≤ LO(e) ≤ ζU.

The error bounds (80) have a similar (but not identical) structure as the ones obtained
using the parallelogram rule in linear elasticity. In both cases, the error in the quantity
of interest is expressed in terms of energy measures of linear combinations of the original
and adjoint errors. The main difference with respect to the parallelogram approach is
that, here, energy-like lower bounds of the error are not used to obtain sharper bounds
for the quantity of interest.

Note that the bounds (80) hold for any non-zero scalar parameter κ. In practice, the
parameter κ is determined such that it minimizes the bound gap, yielding the optimal
value

κ =

( |||σ̃d,e|||σ
|||σ̃e|||σ

)1/2

. (81)

The error bounds ζU, ζL proposed in (80) are sharper than ζC–S
U , ζC–S

L in (76) obtained
using the Cauchy-Schwartz inequality. Indeed, introducing the optimal value of κ given
by (81) into the bound expression (80) yields

ζU =
1

2
|||σ̃d,e|||σ|||σ̃e|||σ +R(ũd) +

1

2
B̄ν(σ̃d,e, σ̃e), (82a)

ζL = −1

2
|||σ̃d,e|||σ|||σ̃e|||σ +R(ũd) +

1

2
B̄ν(σ̃d,e, σ̃e). (82b)

The bound gap, that is the difference between the upper and lower bound, is therefore
ζU − ζL = |||σ̃d,e|||σ|||σ̃e|||σ whereas the bound gap of the bounds in equation (76) is ζC–S

U −
ζC–S
L = 2|||σ̃d,e|||σ|||σ̃e|||σ. Hence, the bound gap in equation (80) is half of the bound gap
corresponding to equation (76) , that is ζU− ζL = 1

2
(ζC–S

U − ζC–S
L ), and provides a sharper

error assessment.

6.2.3 Equivalent alternative approach

The error bounds (82) are derived here using an alternative presentation, without in-
troducing the symmetrized error equations and following a rationale similar to the one
presented in references [67, 68] for steady-state linear elasticity. This alternative approach
requires introducing an auxiliary stress field that stands for the error with respect to the
averaged viscous stress, namely

σe,ν
ave := σν − 1

2
(σ̃ν + sν(ũ)) . (83)

Note that σe,ν
ave is introduced as a mathematical artifact (it is not computable because it

involves the exact solution u) allowing to rewrite the residual Rd(e) as

Rd(e) = B̄ν(σ̃d,e, sν(e)) = B̄ν(σ̃d,e,σe,ν
ave) +

1

2
B̄ν(σ̃d,e, σ̃e). (84)
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Hence, the bounds for Rd(e) are obtained bounding the value B̄ν(σ̃d,e,σe,ν
ave) which is

the only non-computable term in the right hand side of equation (84). The computable
bound for B̄ν(σ̃d,e,σe,ν

ave) is derived by applying the Cauchy-Schwartz inequality

|B̄ν(σ̃d,e, σ̃e
ave)| ≤ |||σ̃d,e|||σ|||σ̃e,ν

ave|||σ, (85)

and then bounding |||σ̃e,ν
ave|||σ. The following theorem proves that the constitutive relation

error σ̃e provides a bound for |||σ̃e,ν
ave|||σ.

Theorem 3. The constitutive relation error σ̃e defined in equation (70) leads to the
following upper bound of the averaged stress error σe,ν

ave defined in equation (83),

1

2
|||σ̃e|||σ ≥ |||σe,ν

ave|||σ. (86)

Proof. Using the relation σe,ν
ave = sν(e)− 1

2
σ̃e, the value |||σe,ν

ave|||2σ is rewritten as

|||σe,ν
ave|||2σ =

1

4
|||σ̃e|||2σ + |||sν(e)|||2σ − B̄ν(sν(e), σ̃e),

=
1

4
|||σ̃e|||2σ + B̄ν(sν(e), sν(e)− σ̃e),

=
1

4
|||σ̃e|||2σ + B̄ν(sν(e),σν − σ̃ν).

The proof is concluded noting that B̄ν(sν(e),σν − σ̃ν) ≤ 0, which directly proves that
(86) holds.

The statement B̄ν(sν(e),σν − σ̃ν) ≤ 0 is proved noting that, for an admissible pair
(ũ, σ̃) ∈ U × S(ũ), the following relation holds

0 =

∫

I

(ρ(ü− ¨̂u), ė) dt+

∫

I

(σ − σ̃, ε(ė)) dt. (87)

Then, injecting the expression

σ − σ̃ = sE(u− ũ) + σν − σ̃ν ,

into equation (87) one has

0 =

∫

I

(ρë, ė) dt+

∫

I

a(e, ė) dt+ B̄ν(sν(e),σν − σ̃ν)

=
1

2

∫

I

d

dt
(ρė, ė) dt+

1

2

∫

I

d

dt
a(e, e) dt+ B̄ν(sν(e),σν − σ̃ν)

=
1

2

[
||ė||2m + ||e||2a

]t=T

t=0
+ B̄ν(sν(e),σν − σ̃ν).

Taking into account that e(0) = ė(0) = 0, one has

B̄ν(sν(e),σν − σ̃ν) = −1

2
||ė(T )||2m − 1

2
||e(T )||2a,

which proves that B̄ν(sν(e),σν − σ̃ν) ≤ 0.

37

91



Paper A

Using equations (85) and (86), the computable bound for |B̄ν(σ̃d,e, σ̃e
ave)| is readily ob-

tained as

|B̄ν(σ̃d,e, σ̃e
ave)| ≤

1

2
|||σ̃d,e|||σ|||σ̃e|||σ. (88)

Using equation (88) together with equations (84) and (37), the result given in equation
(82) is derived in an alternative way, without using the symmetrized error equations.

6.3 Construction of D-admissible fields

This section describes in detail the computation of a D-admissible stress σ̃ ∈ S(ũ), given
a K-admissible field ũ ∈ U . The presentation focuses in the original problem because
the same methodology is used also for the adjoint problem.

The stress σ̃ ∈ S(ũ) is characterized by a series of stresses σ̃n, n = 0, . . . , N at the time
points in T . Each σ̃n is seen as a statically equilibrated stress field for some loading. Thus,
the D-admissible stress σ̃ is eventually computed solving a series of static equilibration
problems following the standard procedures described in [9, 8, 66].

The following theorem demonstrates how the the D-admissible stress σ̃ ∈ S(ũ) can be
computed in terms of the statically equilibrated stresses σ̃n, n = 0, . . . , N .

Theorem 4. Given the external loads f ,g and a K-admissible field ũ ∈ U , then a
D-admissible stress σ̃ ∈ S(ũ) is straightforwardly defined through piecewise linear inter-
polation in time

σ̃(x, t) :=
N∑

n=0

σ̃n(x)θn(t), (89)

provided that: 1) the stress fields σ̃n, n = 0, . . . , N fulfill the static equilibrium condition

(σ̃n, ε(w)) = ln(w)− (ρ¨̃un,w) ∀w ∈ V0, (90)

or equivalently

∇ · σ̃n = fn − ρ¨̃un in Ωint, (91a)

[[σ̃n · n]] = 0 on Γint, (91b)

σ̃n · n = gn on ΓN, (91c)

and 2) the external loads f ,g and the acceleration ¨̃u are piecewise linear in time, i.e.

f(x, t) =
N∑

n=0

fn(x)θn(t), (92a)

g(x, t) =
N∑

n=0

gn(x)θn(t), (92b)

¨̃u(x, t) =
N∑

n=0

¨̃un(x)θn(t). (92c)
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Most of the techniques providing D-admissible stresses, see [9, 8, 66], require as input
an approximation of the stresses, say σH,∆t

n ≈ σ(tn), fulfilling a discrete form of (90),
namely

(ρ¨̃un,w) + (σH,∆t
n , ε(w)) = ln(w) ∀w ∈ VH

0 , (93)

being VH
0 the usual functional space associated with the computational mesh. This

relation guarantees that the local problems are solvable.

Note that equation (93) holds defining the admissible solution ũ as in (7), that is ¨̃un =
aH,∆t
n , and taking discrete stress as σH,∆t

n := C : ε(uH,∆t
n + a2v

H,∆t
n ) (being uH,∆t

n and
vH,∆t
n the Newmark displacements and velocities).

6.3.1 The hybrid fluxes method

The hybrid fluxes method introduced by Ladevèze in [2] is a classical stress equilibra-
tion technique. It is also denoted in more recent works by EET (Element Equilibration
Technique). This methodology provides stress fields σ̃n, n = 0, . . . , N , fulfilling equa-
tions (90) and (91). The construction of the equilibrated stress field σ̃n is based on some
approximate stress σH,∆t

n that is taken as the input of the procedure. This section is
devoted to present this methodology, stressing the technical details of its application to
compute D-admissible stresses.

Some additional notations are needed to introduce the hybrid fluxes method. The loca-
tion of a generic node of the computational mesh is denoted by xi, i = 1, . . . , Nno, being
Nno the total number of nodes. As introduced before, elements in the mesh are denoted
by Ωk ⊂ Ω, k = 1, . . . , Nel, where Nel is the total number of elements. Element sides
(or faces in 3D) are denoted by Γl ⊂ Ω̄, l = 1, . . . , Nfa, being Nfa their total number
(note that Γl is either an inter-element boundary, that is Γl = ∂Ωk

⋂
∂Ωk′ for some k

and k′ or a boundary element side, that is Γl = ∂Ωk

⋂
∂Ω for some k). Also, some sets

of indices are introduced describing the connectivity of every node xi, element Ωk and
face Γl. The set N (Ωk) is the standard connectivity information containing the indices
of the nodes of element Ωk. The set E(xi) contains the indices of the elements to which
node xi belongs. The set F(xi) contains the indices of the sides/faces to which node xi

belongs. The set F(Ωk) contains the indices of the faces of element Ωk. Finally, the set
N (Γl) contains the indices of the nodes of face Γl. Figure 8 illustrates the definitions of
these sets.

The equilibrated stresses σ̃n at time tn, n = 0, . . . , N , is computed solving local equilib-
rium problems element-by-element. Each local problem consists in finding the restriction
of σ̃n to element Ωk of the mesh, k = 1, . . . , Nel, such that

∇ · σ̃n = fn − ρ¨̃un in Ωk, (94a)

σ̃n · nk = ηkl tn on ∂Γl ⊂ Ωk. (94b)

It is worth noting that the boundary conditions (94b) for the local problem (94) are not
known and they require obtaining the inter-element tractions tn, defined on every Γl, for
l = 1, . . . , Nfa. The coefficient ηkl takes the values 1 or -1, depending on the orientation
of the face Γl with respect to Ωk. It is assumed that the orientation of Γl is given by a
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Figure 8: Illustration of sets N (Ωk), F(Ωk), E(xi), F(xi) and N (Γl).

normal unit vector ñl and then ηkl = ñl ·nk. Moreover, equation(94) is a pure Neumann
problem and therefore is only well posed if the prescribed loads, the body forces and the
tractions in the right-hand-sides of (94a) and (94b), are in equilibrium.

Thus, the inter-element tractions tn must be computed previous to solving the local
problems (94) and they must fulfill local equilibrium, namely

∑

l∈F(Ωk)

∫

Γl

ηkl tn ·w dΓ +

∫

Ωk

(fn − ρ¨̃un) ·w dΩ = 0, (95)

for all w in the space of rigid body motions. This space is defined as (in 3D)
span{(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T , (−y, x, 0)T , (−z, 0, x)T , (0,−z, y)T}.
On the faces on the Neumann boundary, that is for Γl ⊂ ΓN , the tractions have to match
the actual boundary conditions (91c), that is ηkl tn = gn.

At the first sight, obtaining the inter-element tractions tn fulfilling (95) leads to a global
problem and requires solving the unknowns for all the faces Γl, for l = 1, . . . , Nfa, resulting
in a large system of linear equations. In practice, this problem is decoupled into local
computations thanks to the idea introduced in [2], which is based on enforcing locally
(for each element Ωk) the so-called prolongation condition

∫

Ωk

(σ̃n − σH,∆t
n ) ·∇ϕi dΩ = 0 ∀i ∈ N (Ωk), (96)

where ϕi is the shape function associated with node xi. Note that this additional re-
striction is selecting a particular solution for tn and hence of σ̃n. The problem (95) is
decoupled into local computations precisely for this particular solution.
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Assuming that σH,∆t is such that (93) holds, enforcing the prolongation condition (96)
is equivalent to find tn such that

∑

l∈F(Ωk)

∫

Γl

ηkl tnϕi dΓ =

∫

Ωk

(σH,∆t
n ·∇ϕi − (fn − ρ¨̃un)ϕi) dΩ, (97)

for all mesh elements Ωk, k = 1, . . . , Nel and for all nodes i ∈ N (Ωk), pertaining to
element Ωk.

If tn fulfills (97) and (93) holds , then the equilibrium condition (95) is satisfied and σ̃n

can be computed solving the local problems (94). Thus, the tractions tn are obtained
such that they fulfill equation (97).

The following definitions are introduced:

bil :=

∫

Γl

tnϕi dΓ and jki :=

∫

Ωk

(σH,∆t
n ·∇ϕi − (fn − ρ¨̃un)ϕi) dΩ. (98)

Note that bil is nonzero only if l ∈ F(xi) or, conversely, if i ∈ N (Γl). Thus, equation
(97) yields ∑

l∈(F(Ωk)
⋂F(xi))

ηklbil = jki, (99)

for all mesh elements Ωk, k = 1, . . . , Nel and for all nodes i ∈ N (Ωk).

Expression (99) is a linear system of vectorial equations (vectorial, in the sense that bil

and jki are vectors). The number of vectorial equations is equal to the number of elements
Nel times the number of element nodes (i.e. three for linear triangles). The unknowns
are the values bil, for l = 1, . . . , Nfa and i ∈ N (Γl), which are the projections of the
traction tn in the FE functional space (restricted to the faces). The number of unknowns
is Nfa times the number of edge/face nodes (i.e. two for linear triangles). The number
of unknowns is typically larger than the number of equations, and therefore, additional
criteria are required to select one of the solutions.

Remark 5. For the sake of illustration, the equations and unknowns accounting is per-
formed for linear 2D triangles in the case of a Dirichlet problem. The number of equations
in (99) is Neq = 3Nel and the number of unknowns is Nunk = 2Nfa. The number of mesh
faces is expressed in terms of the number of mesh elements as Nfa = 3

2
Nel +

1
2
N∂Ω,

where N∂Ω is the number of faces on the boundary. Thus, the number of unknowns and
equations are such that Nunk = Neq +N∂Ω > Neq.

At first sight, expression (99) leads to a global system of equations, involving the complete
computational domain. However, the global system is decoupled into Nno local systems,
associated with each node of the mesh, xi, and involving only the unknowns bil for
l ∈ F(xi). In other words, the range for i and k in the system of equations (99) is
rewritten as: for i = 1, . . . , Nno and then for all k ∈ E(xi). In that sense, for a given
value of i, stating (99) for all k ∈ E(xi) leads to a system of equations involving only the
unknowns bil for l ∈ F(xi) which do not participate in any other local system associated
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with a different node. For a given xi, i = 1, . . . , Nno, the local problem is a reformulation
of (99) reading ∑

l∈(F(Ωk)
⋂F(xi))

ηklbil = jki, ∀k ∈ E(xi). (100)

All the unknown values bil, for l = 1, . . . , Nfa and i ∈ N (Γl), are determined once the
local problems are solved for all mesh nodes xi, i = 1, . . . , Nno.

The actual resolution of the system (100) depends whether the current node is interior
or on the boundary, and (for higher order elements) if the node coincides with a mesh
vertex or not. See reference [9] for a detailed discussion of all these cases.

For the sake of simplicity, the presentation in detail of one of these local systems is
restricted to the particular case of an interior (not on the boundary) node xi, being
also an element vertex. In this case, the number of equations in system (100) is #E(xi)
(one for each element in E(xi), # denotes the cardinal) and the number of unknowns is
#F(xi) (one for each face in F(xi)). Note that the number of elements in E(xi) coincides
with the number of faces in F(xi) because the node xi is interior. Thus, the local system
(100) has the same number of equations and unknowns. The square matrix associated
with the local system of equations (100) has entries ηkl (thus, equal to ±1 or equal to
0 if k 6∈ E(Γl)) and does not have full rank. The rank deficiency is readily shown by
summing up all the equations of system (100) (summing up in k). Note that for a given
face Γl there are only two adjacent elements, say k̃ and k̃′. Consequently, the resulting
equation is ∑

l∈F(xi)

(ηk̃l + ηk̃′l)bil =
∑

k∈E(xi)

jki,

Note that ηk̃l + ηk̃′l = 0 and therefore problem (100) is solvable only if the right hand
side data fulfills ∑

k∈E(xi)

jki = 0.

The previous requirement is fulfilled if equation (93) holds. In fact, this is a version of
the Galerkin orthogonality property. Under this assumption, system (100) is compatible
but, due to the rank deficiency, it has infinite solutions. A particular solution is found
such that it minimizes the functional

Φi(bil) :=
1

2

∑

l∈F(xi)

(bil − b̄il)
2,

with

b̄il :=
1

2

∫

Γl

(σH,∆t
n |Ωk̃

+ σH,∆t
n |Ωk̃′ ) · ñlϕi dΓ.

Once the quantities bil, for l = 1, . . . , Nfa and i ∈ N (Γl), are available, the tractions tn
are completely determined. In some cases, is it useful to parametrize tractions tn using
nodal values instead of quantities bil. Specifically, the nodal values parametrizing the
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restriction of tn to the face Γl are obtained solving a linear system of equations with the
mass matrix with entries ∫

Γl

ϕiϕj dΓ, i, j ∈ N (Γl),

and the right hand side vector containing the values bil, i ∈ N (Γl). For 2D linear
elements, the system to be solved at each element side has two unknowns and two
equations.

Once the tractions tn are available, the stress field σ̃n is obtained solving the local
problems (94) in each element Ωk. The local Neumann problems (94) can be solved taking
as unknowns either displacements (standard FE approach) or stresses (the so-called dual
formulations). The standard displacement-based approach uses a finite element solver
locally, selecting a reference mesh (created with H or p refinement) discretizing each
element. The local approximate solution undervaluates the energy of the exact solution
and therefore the global upper bound property is not strictly guaranteed. The resulting
estimates are referred as asymptotic [69] because the upper bound property holds only
asymptotically, as the element size of the reference mesh tends to zero (or the degree
of the polynomial tents to infinity). Alternatively, the dual approach (taking stresses as
unknowns) provides directly D-admissible piecewise polynomial solutions for σ̃n. In this
case, the upper bound property is guaranteed and therefore the estimates are denoted
as strict.

The general procedure to compute the stress σ̃n is summarized in algorithm 1.

Data:
• Approximate stress field σH,∆t

n ,
• K-admissible displacement ũn and
• geometrical information of the finite element mesh (nodes, elements and faces)
Result:
• Equilibrated stress σ̃n

// Compute equilibrated interelement tractions

for i = 1, . . . , Nno (loop in nodes xi) do
compute bil, l = 1, . . . ,F(xi) solving local system (100);

end
(Traction tn at Γl, l = 1, . . . , Nfa is characterized from the values bil)
// Compute equilibrated stress

for k = 1, . . . , Nel (loop in elements Ωk) do
compute the equilibrated stress σ̃n solving the local problems (94);

end

Algorithm 1: Computation of equilibrated stresses σ̃n with the hybrid fluxes
method.
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6.3.2 The flux-free method

The flux free method furnishes equilibrated stresses σ̃n, n = 0, . . . , N , fulfilling equa-
tions (90) and (91) without requiring any equilibrated tractions to set the boundary
conditions of the local problems. That is, the local Neumann problems do not require
enforcing any flux on the boundary. This reduces considerably the implementation com-
plexity of the method.

The equilibrated stresses σ̃n, n = 0, . . . , N , are generated as a correction of the computed
stress σH,∆t

n ,
σ̃ff

n := C : ε(ẽn) + σH,∆t
n , (101)

where ẽn is an estimate of the error in displacements, computed solving local flux free
problems [66]. As for the hybrid fluxes method, the computed stress σH,∆t

n has to fulfill
equation (93) to ensure solvability of the local problems.

For the sake of simplicity, the presentation is restricted to linear elements. In this case,
all the nodes xi, i = 1, . . . , Nno, are also mesh vertices. The main rationale of the flux
free method is to define function ẽn as the addition of local estimates ẽin associated with
the mesh vertices, namely

ẽn :=
Nno∑

i=1

ẽin. (102)

Each local estimate ẽin is computed solving a problem defined in the patch ωi := supp(ϕi)
centered at node xi. The local problem is solved with a refined finite element mesh in
the patch ωi. The characteristic element size of this refined mesh is h << H and the
corresponding functional space is denoted by Vh

ωi .

The local estimate ẽin is one solution of the problem: find ẽin ∈ Vh
ωi such that

a(ẽin,w) = Rn(ϕi(w −ΠHw)) ∀w ∈ Vh
ωi , (103)

where the weak residual Rn stands for

Rn(w) := ln(w)− (ρ¨̃un,w)− (σH,∆t
n , ε(w)). (104)

Here, the operator ΠH : V0 → VH
0 is the interpolation operator in VH

0 . Once ẽin are
computed for i = 1, . . . , Nno solving (103), ẽn is recovered using (102) and the stress field
σ̃n follows from (101).

It is worth noting that the flux-free method requires that the residual Rn fulfills Galerkin
orthogonality. It allows introducing the projection ΠHw into the residual Rn(·) which
guarantees the well-possedness (solvability) of the local problems. Note that, if equa-
tion (93) holds, then the residual Rn introduced in (104) fulfills

Rn(w) = 0 ∀w ∈ VH
0 .

The flux-free recovered stresses σ̃n are equilibrated in the asymptotic sense, that is
fulfilling equilibrium equations (91) but referred to a discrete space associated with the
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reference h-mesh. Thus, the estimate provided by σ̃n does not yield a strict upper bound
with respect to the exact error, as indicated in theorem 2. Even though, the flux-free
estimate furnishes an asymptotic upper bound, that is the bounding properties hold
when the element size h of the reference mesh tends to zero. The flux free method leads
to strict bounds if the local problems are solved in stresses with a dual formulation, see
[70] for details.

The procedure to compute the stress field σ̃n with the flux free approach is detailed in
algorithm 2.

Data:
• Approximate stress field σH,∆t

n ,
• K-admissible displacement ũn and
• geometrical information of the finite element mesh (nodes and elements).
Result:
• Equilibrated stress σ̃n.

// Compute flux-free error estimate

initialize error estimate: ẽn = 0;
for i = 1, . . . , Nno (loop in nodes xi) do

compute the local estimates ẽin solving local systems (103);
add the contribution of ẽin to the global flux free estimate: ẽn ← ẽn + ẽin;

end
// Compute equilibrated stress

Post-process ẽn into σ̃n = C : ε(ẽn) + σH,∆t
n ;

Algorithm 2: Computation of the equilibrated stresses σ̃n with the flux-free
method.

7 Error assessment for timeline-dependent quanti-

ties of interest

7.1 Timeline-dependent quantities of interest

Reference [71] introduces a new type of goal-oriented estimates assessing the error
in so-called timeline-dependent quantities of interest. These new quantities are scalar
time-dependent outputs of the solution instead of single scalar values and are specially
well suited to transient problems. Timeline-dependent quantities are associated with a
bounded mapping LO

TL(·) taking a function w in the solution space W and returning a
time-dependent scalar function, that is

LO
TL : W −→ L2(I)

w 7−→ LO
TL(w).
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Note that the functional LO
TL(·) is a different mathematical object than the functional

LO(·) associated with the standard quantities of interest becasue LO
TL(·) returns a time-

dependent scalar function and LO(·) returns a single scalar value, see figure 9.

Figure 9: Illustration of scalar and timeline-dependent quantities of interest. The func-
tional LO maps the time-space solution u into a scalar value sT ∈ R. The operator LO

TL

transforms u into a time-dependent function s(t).

A convenient expression for LO
TL(·) is defined as an extension of the functional LO(·)

defined in (25),

[LO
TL(w)](t) :=

∫ t

0

(fO(τ), ẇ(τ)) dτ +

∫ t

0

(gO(τ), ẇ(τ))ΓN
dτ +(ρvO, ẇ(t))+a(uO,w(t)),

(105)
where the functions fO an gO define weighted averages of the solution in the interior
domain Ω or the Neumann boundary ΓN, respectively, in the time interval [0, t] for a
generic time t ∈ I. On the other hand, functions vO and uO define weighted averages of
the velocities and displacements, respectively, at a generic time point t ∈ I. For the sake
of simplicity, the notation LO

TL(w; t) := [LO
TL(w)](t) is introduced.

The aim of reference [71] is assessing the quality of the computed timeline-dependent
quantity, s̃(t) := LO

TL(ũ; t), with respect to the exact quantity of interest, s(t) :=
LO
TL(u; t). That is, the goal is to assess the error in the quantity of interest which is

now a function of time
se(t) := s(t)− s̃(t).

7.2 Error representation with family of adjoint problems

Assessing the error in the timeline-quantity se(t) requires introducing an error represen-
tation similar to the one presented in section 3.4 for the scalar quantity of interest. Thus,
an auxiliary problem, analogous to the adjoint problem (24), has to be introduced for
the timeline quantity LO

TL(·).
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This auxiliary problem is defined noting that, for a given time t ∈ I, the value s(t) =
LO
TL(u; t) is seen as a scalar quantity of interest taking t as the final time. This scalar

quantity of interest is characterized as LO(·) = LO
TL(·; t). Thus, the adjoint problem

associated with LO
TL(·; t), for a given t ∈ I, is analogous to the one presented in 3.3 and

reads: find ud
t ∈ W |[0,t] such that

Bt(w,ud
t ) = LO

TL(w; t) ∀w ∈ W |[0,t], (106)

where the bilinear form Bt(·, ·) is defined as

Bt(v,w) :=

∫ t

0

(ρ(v̈(τ) + a1v̇(τ)), ẇ(τ)) dτ +

∫ t

0

a(v(τ) + a2v̇(τ), ẇ(τ)) dτ

+ (ρv̇(0+), ẇ(0+)) + a(v(0+),w(0+)),

and the space W |[0,t] denotes the restriction of W to the time interval [0, t].

Note that the solution of equation (106) is denoted by ud
t emphasizing that there is

a different solution for each time t. Consequently, equation (106) describes a family of
problems, one for each time t.

Analogously as for the derivation of the adjoint problem for the scalar quantity of interest
(26), the associated strong form of problem (106), for the functional LO

TL(·) defined
in (105), is readily derived as

ρ(üd
t − a1u̇

d
t )−∇ · σd

t = −fO in Ω× [0, t], (107a)

ud
t = 0 on ΓD × [0, t], (107b)

σd
t · n = −gO on ΓN × [0, t], (107c)

ud
t = uO at Ω× {t}, (107d)

u̇d
t = vO at Ω× {t}, (107e)

with the constitutive law
σd

t := C : ε(ud
t − a2u̇

d
t ). (108)

Recall that the data fO, gO, uO and vO enters in the definition of LO
TL(·; t) as indicated

in (105). Note that for each time t, problem (107) is of the same type as (26) and
therefore has to be integrated backwards in time. Thus, the family of adjoint problems
associated with the timeline-dependent quantity LO

TL is a family of standard problems
in elastodynamics.

For a particular instance of time t, the error representation of the timeline-dependent
quantity of interest se(t) is similar to the standard scalar case but taking the adjoint
solution ud

t related with the particular value t ∈ I, namely

se(t) = Rt(u
d
t ), (109)

where

Rt(w) := Lt(w; t)− Bt(ũ,w) and

Lt(w) :=

∫ t

0

l(τ ; ẇ(τ)) dτ + (ρv0, ẇ(0+)) + a(u0,w(0+)).
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Hence, an estimate for se(t) is obtained injecting an enhanced adjoint approximation ũd
t

in equation (109)
se(t) ≈ Rt(ũ

d
t ) =: s̃e. (110)

Obviously, it is not possible, in practice, to independently compute the infinite solutions
ũd
t (one for each time t ∈ I) and then using them in equation (109) to assess se(t).

However, taking fO and gO constant in time (which accounts for a number of interest-
ing cases), the different functions ud

t corresponding to different time instances are all
equivalent after a time translation. Thus, if ud

t is properly computed for a particular
value of t, for instance t = T , the general functions ud

t for t 6= T are easily recovered as
a direct post-process of ud

T . This fundamental result, shown in the following theorem,
is the crucial observation that allows the error estimation technique to be brought to
fruition.

Theorem 5. For a given t, let ud
t be the solution of the adjoint problem defined

by equations (107). Assume that data fO and gO in (105) are constant in time, i.e.
fO(x, t) = fO(x) and gO(x, t) = gO(x).

Then, ud
t is related with the adjoint solution associated with the final time T , ud

T , via the
time translation

ud
t (τ) = ud

T (τ + T − t). (111)

A proof of this theorem may be found in [71].

Consequently, The adjoint approximations ũd
t used in the error estimate (110) are com-

puted applying the time shift (111) to the adjoint approximation ũd
T associated with the

final time T
ũd
t (τ) := ũd

T (τ + T − t). (112)

Thus, only one adjoint approximation ũd
T has to be computed and the others are simply

recovered by a time shift.

7.3 Modal-based adjoint approximation

The error estimate s̃e(t) is computed once the approximation ũd
T ≈ ud

T is available. This
section is devoted to the actual computation of ũd

T . Note that ud
T coincides with the

adjoint solution ud associated with the scalar quantity of interest LO(·). Consequently,
computing ũd

T is equivalent to compute an approximation ũd ≈ ud.

Function ũd (or equivalently ũd
T ) is obtained using the standard approximation tech-

niques for elastodynamics. However, if ũd has to be used for a timeline estimate s̃e(t),
then, a better option is using modal analysis, see reference [71]. The modal based de-
scription of ũd simplifies the time shift (111) required to assess the error in the timeline
quantity and makes the actual computation of s̃e(t) more efficient.

Approximating function ũd with modal analysis requires introducing a semidiscrete ver-
sion (discrete in space and exact in time) of the adjoint problem (26). The semidiscrete
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problem reads: find ud,H,p+1(t) ∈ VH,p+1
0 verifying the final conditions ud,H,p+1(T ) = uO

and u̇d,H,p+1(T ) = vO and such that for all t ∈ I

m(üd,H,p+1(t)− a1u̇
d,H,p+1(t),w) + a(ud,H,p+1(t)− a2u̇

d,H,p+1(t),w) = −lO(t;w), (113)

for all test function w ∈ VH,p+1
0 , where lO(t;w) := (fO(t),w)+ (gO(t),w)ΓN

and VH,p+1
0

is the functional space obtained with p-refinement of the original functional space VH
0 .

Remark 6. The spacial resolution of the adjoint approximation ũd has to be richer than
the one of the numerical approximation ũ. Otherwise, the error is underestimated when
plugging the approximation ũd into the residual R(·) by an effect analogous to Galerkin
orthogonality. For that reason the functional space used to define the semidiscrete problem
(113) is VH,p+1

0 instead of VH
0 .

A modal-based approximation of the problem (113) is obtained introducing the general-
ized eigenvalue problem: find (ω̃, q̃) ∈ R× VH,p+1

0 such that

a(q̃,w) = (ω̃)2m(q̃,w) ∀w ∈ VH,p+1
0 . (114)

The i-th eigenpair solution of this problem is referred as (ω̃i, q̃i). Note that the number
of eigenpairs is the number of degrees of freedom in the functional space VH,p+1

0 , denoted
by Ndof . Typically, the eigenpairs are sorted from low to high frequencies, namely ω̃1 ≤
ω̃2 · · · ≤ ω̃Ndof

, and eigenvectors are normalized to be orthonormal with respect the
product m(·, ·), i.e.

m(q̃i, q̃j) = δij, 1 ≤ i, j ≤ Ndof. (115)

The complexity of the system of ODEs resulting from (113) is considerably reduced
by expressing the adjoint solution ud,H,p+1(x, t) as a combination of the eigenvectors
q̃i, i = 1, . . . , Ndof, that is

ud,H,p+1(x, t) =

Ndof∑

i=1

q̃i(x)ỹi(t). (116)

Thus, the system of ODEs (113) is transformed into the uncoupled set of scalar ordinary
differential equations

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (117a)

ỹi(T ) = ũi, (117b)

˙̃yi(T ) = ṽi, (117c)

where the r.h.s. terms l̃i, ũi and ṽi are computed using the data characterizing the
quantity of interest (105) and the eigenvector q̃i,

l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN
, ui := m(uO, q̃i) and vi := m(vO, q̃i). (118)

The cost of modal analysis scales as, see references [72, 73, 74],

O(Ndof ·N2
bw) +O(N2

dof ·Nbw) +O(N3
dof),
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where Nbw denotes the half-bandwidth of the finite element matrices associated with
the functional space VH,p+1

0 . Thus, the modal-based approach is not computationally
affordable unless the modal description (116) is truncated up to the first M terms, being
M ≪ Ndof . Consequently, the adjoint approximation ũd is defined as the truncated
expansion

ũd(x, t) :=
M∑

i=1

q̃i(x)ỹi(t). (119)

Note that the number of required vibration modes M has to be selected such that the
truncated high frequency modes (for i > M) are negligible in (116). That is, such that
ũd is a good approximation to ud,H . This is equivalent to assume that for i > M the
values of l̃i, ũi and ṽi, as defined in (118), are close to zero, and consequently ỹi(t) ≈ 0.
This is guaranteed if the data fO, gO, uO and vO are well captured by the expansion of
the first M eigenvectors.

Once ũd (or equivalently ũd
T ) is available, the adjoint family ũd

t is recovered using the
time shift (111). Then, ũd

t is plugged in equation (110) furnishing the timeline error
estimate s̃e(t).

Remark 7. (Illustrative example) This example illustrates the performance of the error
estimate s̃e(t). The computational domain is the three dimensional structure plotted in
figure 10 which is clamped at the supports and it is loaded with the time-dependent traction

g(t) =

{
−g(t)e1 on Γg,

0 elsewhere,

where function g(t) is defined in figure 10 and the values gmax = 1 · 103 Pa and tg =
1 · 10−3 s are considered. The set Γg is the boundary where the load is applied, see figure
10. The structure is initially at rest (u0 = v0 = 0) and the body force is zero (f = 0).
The material properties are Young’s modulus E = 2 · 1010 Pa, Poisson’s ratio ν = 0.2,
density ρ = 2.4 · 103 kg/m3 and viscosity a1 = a2 = 0. The final time is T = 0.02 s .

Figure 10: Problem geometry (left) and time description of the external load (right).

This example focuses in the timeline-dependent quantity of interest

s(t) :=
1

meas(Γg)
(e1,u(t))Γg ,
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which is the average of the x-component of the displacement in the boundary Γg at every
time t ∈ I.

The problem is discretized with trilinear hexahedra in space and with the Newmark method
in time with parameters β = 1/4 and γ = 1/2. The approximated quantity of interest
s̃(t) = LO(ũ; t) is computed from the approximate solution ũ obtained with the coarse
finite element mesh plotted in figure 11 and with N = 400 time steps. The reference
quantity of interest s(t) = LO(u; t) is obtained by assuming that the exact solution u is
fairly replaced by a reference solution obtained using the reference mesh in figure 11 and
N = 1600 time steps. The error in the quantity of interest is evaluated using the reference
solution, namely se(t) = s(t) − s̃(t). Finally, the error estimate s̃e(t) is computed using
up to M = 60 vibration modes for approximating the adjoints.

Figure 11: Coarse (left) and reference (right) meshes used in this example with 334 and
22016 elements respectively.

Figure 12 shows the computed and reference timeline-dependent quantities, s̃(t) and s(t),
along with the assessed and reference errors, s̃e(t) and se(t). Note that the quality of the
error estimate s̃e(t) increases with the number of vibration modes. For M = 60 modes,
the error estimate s̃e(t) and the reference error se(t) are in very good agreement.

8 Closure

The most significant error assessment techniques for structural transient dynamics are
reviewed, namely: recovery-based estimates, dual weighted residuals, constitutive relation
error and error assessment for timeline-dependent quantities of interest.

The recovery-based estimates for transient dynamics are an extension of the recovery
procedures available for steady state linear elasticity. The classical space recovery allows
assessing only the space discretization error. Thus, to carry out adaptive procedures, the
time discretization errors have to be accounted independently. Moreover, the standard
stress recovery techniques are not sufficient to assess the kinetic energy of the error.
Thus, a specific recovery procedure is also introduced for the velocities.

The dual weighted residuals approach produces accurate approximations to the error
in the quantity of interest and also provides local error indicators for mesh adaptivity.
The error estimate is obtained by plugging an enhanced approximation of the adjoint
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Figure 12: Approximated quantity of interest s̃(t) and reference quantity s(t) (top, left).
Reference and assessed errors, se(t) and s̃e(t), for three different number of vibration
modes for approximating the adjoints, M = 10 (top, right), M = 30 (bottom, left) and
M = 60 (bottom, right).

problem into the space-time weak residual associated with the numerical solution. This
technique accounts for both the space and time discretization errors and it is used to
adapt both space and time grids.

The constitutive relation error estimates furnish bounds of the error both in an energy
measure and in the quantity of interest. The extension of this technique to elastodynamics
is based in a key hypothesis: the formulation contains a certain amount of damping. Thus,
the computed bounds degenerate as the value of the damping tends to zero. Computing
the error bounds requires obtaining admissible stress fields for both the original and the
adjoint problems.

Finally, an error estimate for the so-called timeline-dependent quantities of interest is
described. This kind of quantities are scalar time-dependent functions and are specially
well suited to analyze the outcome of transient problems. Although at the first sight this
type of quantities require characterizing a family of adjoint problems, approximating the
adjoint solution with a modal approach constitutes an efficient and affordable tool to
assess them.
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Abstract
This article presents a space-time adaptive strategy for transient elastodynamics. The method aims at computing an
optimal space-time discretization such that the computed solution has an error in the quantity of interest below a
user-defined tolerance. The methodology is based on a goal-oriented error estimate that requires accounting for an
auxiliary adjoint problem. The major novelty of this paper is using modal analysis to obtain a proper approximation
of the adjoint solution. The idea of using a modal-based description was introduced in a previous work for error
estimation purposes. Here this approach is used for the first time in the context of adaptivity. With respect to the
standard direct time-integration methods, the modal solution of the adjoint problem is highly competitive in terms of
computational effort and memory requirements. The performance of the proposed strategy is tested in two numerical
examples. The two examples are selected to be representative of different wave propagation phenomena, one being a
2D bulky continuum and the second a 2D domain representing a structural frame.
Keywords: elastodynamics, adaptivity, goal-oriented error assessment, adjoint problem, quantity of interest, modal
analysis.

1 Introduction

Computing high fidelity numerical approximations re-
quires a fine discretization and leads to a large consump-
tion of computational resources. Adaptivity aims at pro-
viding the optimal discretization (space mesh and time
grid) guaranteeing some user-prescribed accuracy at a
minimum computational cost. Many adaptive techniques
have been developed with application to different prob-
lem types. These tools are particularly important in wave
propagation problems, e.g. linear elastodynamics, because
the features of the solution concentrate at the wave fronts
and therefore a fine mesh is only required at specific re-
gions of the domain.

Over the last three decades, a vast literature has been
produced on adaptivity. Among the the pioneering works,
references [1, 2] propose adaptive techniques for flow prob-
lems using curvature and gradient based error indicators.
This type of heuristic error indicators are used to identify
the parts of the solution requiring a finer mesh size. This
approach is applicable to many problem types because er-
ror indicators do not rely on the problem properties, but
in the geometrical features of the solution. This type of
indicators detect properly the errors associated with inter-

∗Manuscript under review

polation but fail in capturing the error from other sources,
e.g. pollution error.

A more reliable alternative to drive mesh adaptivity are
a posteriori error estimators. They are used to efficiently
control the accuracy of some output of the solution by
means of refining the discretization only where is needed
(in the zones where the error is emanating from). The
available outputs for assessing the accuracy of the ap-
proximation are global norms, e.g. the energy or L2 norm
[3, 4, 5], or quantities of interest [6, 7, 8, 9]. Error esti-
mators considering quantities of interest are referred as
goal-oriented.

Goal-oriented adaptivity is discussed in the literature for
many problem types. For instance, for elliptic problems [6,
7, 10, 11, 12], for the convection-diffusion-reaction equa-
tion [13, 14], for non-linear structural problems [15, 16],
for time-dependent parabolic problems [17, 18, 19] and for
elastodynamics (or other 2nd order hyperbolic problems)
[20, 21, 22, 23].

Goal-oriented adaptivity for elastodynamics is a very chal-
lenging topic and it is still ongoing research. The main
difficulties are 1) solving the associated space-time adjoint
solution accurately to estimate the error in the quantity
of interest, 2) splitting the contributions of the space and
time discretization errors and 3) transferring the solution

1
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from one mesh to another without loss of accuracy.

References [20, 21, 23] are among the few discussing goal-
oriented adaptivity in elastodynamics. The input of the
adaptive procedure is a desired error tolerance in some
quantity of interest. The adjoint solution is computed with
the same time-integration method as the original solution.
This approach might be memory demanding because at
least the original or the adjoint solution has to be stored
as a whole (at each mesh node and time point) prior to
evaluate the error estimate.

The adaptive strategy presented in this article is an alter-
native to the previous approach. Here, the adjoint problem
is approximated using modal analysis, as suggested in ref-
erence [24], to preclude the costly adjoint approximation
and storage. The modal-based adjoint approximation is
particularly efficient for some quantities of interest. This
is because the adjoint solution is stored for a few vibration
modes instead that for all time steps. Moreover, the time
description of the adjoint solution is known analytically
once the vibration frequencies and modes are available.
This simplifies the algorithmic complexity of the adaptive
procedure.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the equations of elastodynamics. Section
3 presents the weak and discrete versions of the problem
using the double field time-continuous Galerkin method.
The modal-based error assessment approach is presented
in section 4. Section 5 presents the space-time adaptive
procedure. Finally, the methodology is illustrated in sec-
tion 6 with two numerical examples. The paper is con-
cluded with some remarks.

2 Problem statement

2.1 Governing equations

A visco-elastic body occupies an open bounded domain
Ω ⊂ Rd, d ≤ 3, with boundary ∂Ω. The boundary is di-
vided in two disjoint parts, ΓN and ΓD such that ∂Ω =
ΓN ∪ ΓD and the considered time interval is I := (0, T ].
Under the assumption of small perturbations, the evolu-
tion of displacements u(x, t) and stresses σ(x, t), x ∈ Ω
and t ∈ I, is described by the visco-elastodynamic equa-
tions,

ρ(ü+ a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}, (1e)

where an upper dot indicates derivation with respect to
time, that is ˙(•) := d

dt (•), and n denotes the outward unit
normal to ∂Ω. The input data includes the mass density
ρ = ρ(x) > 0, the first Rayleigh coefficient a1 ≥ 0, the
body force f = f(x, t) and the traction g = g(x, t) acting
on the Neumann boundary ΓN × I. The initial conditions

for displacements and velocities are u0 = u0(x) and v0 =
v0(x) respectively. For the sake of simplicity and without
any loss of generality, Dirichlet conditions (1b) are taken
as homogeneous.

The set of equations (1) is closed with the constitutive
law,

σ := C : ε(u+ a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh co-
efficient, the tensor C is the standard 4th-order elastic
Hooke tensor. The strains are given by the kinematic rela-
tion corresponding to small perturbations, that is ε(w) :=
1
2 (∇w +∇Tw).

2.2 Numerical approximation

In order to properly split the space and time error com-
ponents, the adaptive strategy presented in this paper re-
quires that the numerical solution under consideration ful-
fills the discrete version of a variational formulation. Thus,
a weak residual (integrated both in space and time) asso-
ciated with the numerical solution is readily introduced.
The splitting procedure uses the fact that the residual van-
ishes for the functions in the test space, that is Galerkin
orthogonality holds.

Among the possible space-time variational formulations
available for transient elastodynamics, the double field
time-continuous Galerkin method [25, 20] is the numerical
solver selected. Note however that the rationale of this ar-
ticle can be easily extended to other space-time variational
formulations, for instance, the one proposed by Johnson
[26] or the one proposed by Hulbert and Hughes [27, 28].

The definition of the weak form of the problem requires
introducing the following functional spaces: the standard
Sobolev space associated with static displacement fields

V0 := {w ∈ [H1(Ω)]d : w = 0 on ΓD} (3)

and the Bochner space L2(I;V0) associated with V0 of
square-integrable functions from I into V0. With these
notations, the trial space W for the double field time-
continuous Galerkin method is defined as

W := {w ∈ L2(I;V0) : ẇ ∈ L2(I;V ′
0)}.

Note that, w ∈ W implies that w ∈ C0(Ī; [L2(Ω)]d) and
therefore functions in W are continuous both in space and
time, but they do not necessarily have a continuous time
derivative.

The test space is associated with a partition of the time
interval I defined as T := {t0, t1, . . . , tN}, with 0 = t0 <
t1 < . . . < tN = T . The time points in T define the
time intervals In := (tn−1tn], n = 1, . . . , N . The time step
length for each interval is ∆tn := tn − tn−1, n = 1, . . . , N
and the characteristic time step length for the partition T
is ∆t := max

1≤n≤N
(∆tn).

The test space is defined as

Ŵ := {w ∈ L2(I;V0) : w|In ∈ L2(In;V0) and

ẇ|In ∈ L2(In;V ′
0), n = 1, . . . , N}.
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Functions in Ŵ when restricted to a time interval In have
the same regularity as functions in W . However, functions

in Ŵ are allowed to be discontinuous-in-time at the points
in T . This property is needed to define a time marching
scheme, computing the solution successively in each time
interval.

Using these notations, the space-time weak form of prob-
lem (1) reads: find U = [uu,uv] ∈ W ×W such that

B(U,W) = L(W) ∀W := [wu,wv] ∈ Ŵ × Ŵ , (4)

where the bilinear form B(·, ·) and the linear functional
L(·) are defined as

B(U,W) :=

∫

I

m(u̇v + a1uv,wv) dt

+

∫

I

a(uu + a2uv,wv) dt+m(uv(0),wv(0))

+

∫

I

a(u̇u − uv,wu) dt+ a(uu(0),wu(0)),

L(W) :=

∫

I

l(t;wv) dt

+ a(u0,wu(0)) +m(v0,wv(0)),

where

a(v,w) :=

∫

Ω

ε(v) : C : ε(w) dΩ,

m(v,w) :=

∫

Ω

ρv ·w dΩ,

l(t;w) := (f(t),w) + (g(t),w)ΓN
,

and

(v,w) :=

∫

Ω

v ·w dΩ, (v,w)ΓN :=

∫

ΓN

v ·w dΓ.

The weak problem (4) is a double field formulation, hav-
ing two unknowns, displacements uu and velocities uv,
which are a priori independent. That is, the velocity uv is
not strongly enforced to coincide with u̇u. However, the
relation between displacements and velocities is weakly
imposed by means of the term a(u̇u − uv,wu).

The initial conditions (1d) and (1e) are also weakly im-
posed introducing the terms a(uu(0) − u0,wu(0)) and
m(uv(0)− v0,wv(0)) respectively. The weak problem (4)
is consistent with the original strong problem (1) in the
sense that the solution u of problem (1) fulfills

B([u, u̇],W) = L(W) ∀W ∈ Ŵ × Ŵ .

The fully discrete version of problem (4) requires introduc-
ing a finite element partition of the domain Ω, which in the
framework of mesh adaptivity is allowed to be different at
each time point in T . The finite element mesh discretizing
the spatial domain Ω associated with time tn ∈ T is de-
noted in the following by Pn. The associated finite element
space of continuous, elementwise polynomials of degree p
is referred as VH

0 (Pn) ⊂ V0. The notation emphasizing
the dependence on Pn highlights the fact that the finite

element space depends on the computational mesh. The
upper-script H stands for the characteristic element size
in the mesh and it is included in the notation to indicate
the discrete character of the finite element space. In the
case that different values of p have to be accounted for,
the notation is completed adding p as upper-script, e.g.
the spaces VH,p

0 (Pn) and VH,p+1
0 (Pn) are also used in the

following.

The space meshes Pn are built considering a hierarchical
tree-based mesh refinement strategy [29, 30, 31]. In this
framework, the computational meshes are obtained recur-
sively splitting the elements of an initial background mesh
denoted as Pbg as shown in figure 1. Thus, VH

0 (Pbg) ⊂
VH

0 (Pn) for all the spatial meshes n = 0, . . . , N .

Figure 1: A hierarchical tree-based technique is used to
build the space meshes Pn, n = 0, . . . , N from the back-
ground mesh Pbg.

The tree-based structure enormously facilitates the mesh
refinement and unrefinement operations as well as the
data transfer between different meshes. However, this ap-
proach requires dealing with a conforming approximation
on an irregular spatial meshes involving hanging or irreg-
ular nodes. A constrained finite element approximation is
used to enforce the continuity of the finite element solu-
tion across the edges of the mesh containing hanging nodes
(introducing constraints on the local basis functions). A
detailed description is given in appendix A.

The fully discrete problem is obtained replacing in (4) the

trial and test spaces W and Ŵ by their discrete coun-
terparts. For the sake of simplicity and without loss of
generality, the method is presented here for piecewise lin-
ear (in time) trial functions. Hence, the time dependence
of the approximations for displacements and velocities cor-
responds to a linear interpolation inside the time intervals
In (piecewise linear in I). The space dependence is in-
herited from the spaces VH

0 (Pn). The resulting discrete
space-time functional spaces read

WH,∆t
u := {w ∈ W : w(0) = u0,

w(t) =

N∑

n=0

θn(t)w(tn),

w(tn) ∈ VH
0 (Pn), n = 0, . . . , N},

3
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and

WH,∆t
v := {w ∈ W : w(0) = v0,

w(t) =
N∑

n=0

θn(t)w(tn),

w(tn) ∈ VH
0 (Pn), n = 0, . . . , N},

where θn(t) are the linear shape functions associated with
the time grid T . Note that functions inWH,∆t

u andWH,∆t
v

are continuous piecewise polynomials fulfilling the initial
conditions for displacements and velocities respectively.
Functions w ∈ WH,∆t

u are such that at the points of the
time grid, tn ∈ T , they belong to one of the standard
Finite Element spaces, namely w(tn) ∈ VH

0 (Pn). At an
intermediate time t ∈ In, t 6= tn, function w(t) belongs to
VH

0 (Pn−1) + VH
0 (Pn), that is the space generated by the

superposition of the two meshes Pn and Pn+1, see figure
2. The same holds for functions in WH,∆t

v .

The fully discrete test space ŴH,∆t
is defined as

ŴH,∆t
:= {w ∈ Ŵ : w|In ∈ P0(In;VH

0 (Pn)),

n = 1, . . . , N},

where P0(In;VH
0 (Pn)) denotes the space of constant func-

tions taking values in In and returning a value in VH
0 (Pn).

Functions in ŴH,∆t
are continuous piecewise polynomi-

als in space and piecewise constants in time. Function w ∈
ŴH,∆t

is such that, for a time t ∈ In, w(t) ∈ VH
0 (Pn),

see figure 2. The polynomial dependence in time of func-

tions in ŴH,∆t
is one degree lower (piecewise constants)

than the polynomial dependence in time of the trial space
WH,∆t

u (piecewise linear). In this case, the trial and test
spaces have the same number of degrees of freedom.

Using the discrete trial and test spaces, the fully discrete
problem reads: find Ũ := [ũu, ũv] ∈ WH,∆t

u ×WH,∆t
v such

that

B(Ũ,W) = L(W) ∀W ∈ ŴH,∆t × ŴH,∆t
. (5)

Problem (5) is integrated over the whole space-time
domain Ω × I. However, having selected discontinuous
test functions results in a time marching scheme that
solves successively N problems in the time slabs Ω × In,
n = 1, . . . , N . Note that the step by step computa-
tional methodology resembles the classical time integra-
tion methods based on finite differences (i.e. Crank Nichol-
son, Newmark, etc.). In fact, if the mesh does not change,
then the discrete displacements and velocities ũu and ũv

at times tn, n = 1, . . . , N , coincide with the approximation
given by the Newmark method with parameters β = 1/4
and γ = 1/2, see [20] for a detailed proof. The actual
resolution of problem (5) is detailed in appendix A.

2.3 Discretization error and error equa-
tion

The discretization error associated with Ũ is defined as

E := U− Ũ = [eu, ev] = [u− ũu, u̇− ũv] ∈ W ×W ,

where eu and ev are the errors in displacements and veloc-
ities respectively. The error E fulfills the following residual
equation: find E = [eu, ev] ∈ W ×W such that

B(E,W) = R(W) := L(W)−B(Ũ,W)

∀W ∈ Ŵ × Ŵ , (6)

which is derived replacing the exact solution U by Ũ+E
in (4) and using linearity of the forms B(·, ·) and L(·).
The residual R(·) fulfils the Galerkin orthogonality prop-
erty

R(W) = 0 for all W ∈ ŴH,∆t × ŴH,∆t
. (7)

Although the Galerkin orthogonality property of the resid-
ual R(·) is not necessary to derive an error estimate for the
error in the quantity of interest, it is required in the space-
time adaptive strategy in order to properly split the space
and time error contributions.

3 Goal-oriented modal-based er-
ror assessment

3.1 Quantity of interest and adjoint prob-
lem

The proposed a posteriori error estimation adaptive strat-
egy aims at assessing and controlling the discretization
error E measured using some specific quantity of interest.
The quantity of interest is defined by means of a bounded
lineal functional LO : W × W −→ R which extracts a
single representative scalar value of the whole space-time
solution, namely

LO(W) := LO
u (wu) + LO

v (wv), (8)

where LO
u : W −→ R and LO

v : W −→ R are linear
functionals representing quantities of interest for displace-
ments and velocities respectively.

The estimation of the value se := LO(E) requires in-
troducing an auxiliary problem associated with the func-
tional LO(·), usually denoted by adjoint or dual problem.
The variational form of the adjoint problem reads: find
Ud := [ud

u,u
d
v ] ∈ W ×W such that

B(W,Ud) = LO(W) ∀W ∈ Ŵ × Ŵ . (9)

The adjoint solution characterizes the quantity of interest
LO(·) in the sense that, if Ud is available, then the func-
tional LO(·) coincides with B(·,Ud), and in particular the
computable quantity L(Ud) is equal to the quantity of
interest LO(U).

In practice, the functional LO(·) is selected with the same
structure as L(·), namely

LO
u (wu) := a(uO,wu(T )) and (10a)

4
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Figure 2: Illustration of two generic functions, w1 ∈ WH,∆t
u (left) and w2 ∈ ŴH,∆t

(right), inside the time interval
(tn−1, tn+1] when the time points tn−1, tn and tn+1 have different computational meshes. The active nodes in meshes
Pn−1, Pn and Pn+1 are marked with circles (◦) on the x-t plane.

LO
v (wv) :=

∫ T

0

(fO(t),wv(t)) dt

+

∫ T

0

(gO(t),wv(t))ΓN
dt+m(vO,wv(T )), (10b)

where fO, gO, vO and uO are the data characterizing
the quantity of interest. The functions fO and gO extract
global or localized averages of velocities in Ω and ΓN, re-
spectively, integrated over the whole time interval [0, T ].
The fields vO and uO play the role of weighting functions
to compute averages of velocities and strains at the final
simulation time T .

For the description of LO(·) given in (10), the weak adjoint
problem (9) is equivalent to the following strong equation
for the adjoint displacement ud,

ρ(üd − a1u̇
d)−∇ · σd(ud) = −fO in Ω× I, (11a)

ud = 0 on ΓD × I, (11b)

σd(ud) · n = −gO on ΓN × I, (11c)

ud = uO at Ω× {T}, (11d)

u̇d = vO at Ω× {T}, (11e)

with the constitutive law

σd(ud) := C : ε(ud − a2u̇
d). (12)

The strong problem (11) has the same structure as the
original one (1) except that the terms affected by a1 and
a2 have opposite sign and the conditions (11d) and (11e)
are stated for t = T instead that for t = 0 (final conditions
instead of initial). Thus, the adjoint problem is solvable
and stable if integrated backwards in time. The change of
sign in the time direction brings the adjoint problem back
to the same features and properties as the direct one.

3.2 Error representation

The adjoint problem allows rewriting the error in the
quantity of interest in terms of residuals, combining the
original and adjoint problems. Indeed, taking W = Ud in

the error equation (6) and using the definition of the ad-
joint problem, the following representation for se is found

se := R(Ud). (13)

This error representation is useful because states that the
error in the quantity of interest can be exactly computed if
the adjoint solution Ud is available. Moreover, in an error
estimation setup where the exact adjoint solution is not
known, replacing Ud by a computable approximation Ũd

in (13) gives an accurate approximation of the error in the
quantity of interest

se ≈ R(Ũd) =: s̃e. (14)

The scalar estimate s̃e provides a single scalar quantity
accounting both for the total error associated with the
space and time discretizations and therefore, it does not
directly provide enough information to adapt separately
the space and time discretizations.

The error representation (13) is rewritten in such a way
that the contributions of the space and time discretization
errors are separated. This is achieved by introducing pro-
jection operators ΠH and Π∆t associated with the space
and time discretizations.

The spatial projectionΠH is defined for a function inW ∈
Ŵ×Ŵ and provides a function which is discrete in space.
The spatial discretization (the mesh) varies along the time
but it is constant in a time interval In. Thus, the operator
ΠH is defined for t ∈ In, n = 1, . . . , N , as

[ΠHW](t) := [πH
n wu(t),π

H
n wv(t)],

being πH
n the standard interpolation operator from V0

into VH
0 (Pn). On the other hand, the projection in time

operator Π∆t maps the time-dependent function W ∈
Ŵ × Ŵ into a piecewise constant in time function. This
projection is defined by taking the average of its displace-
ment and velocity components inside each time interval
In

[Π∆tW]|In := [π∆t
n wu,π

H
n wv],

where

π∆t
n w :=

1

meas(In)

∫

In

w dt.
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Remark 1. Figure 3 illustrates the projection operators

ΠH and Π∆t using a generic function W ∈ Ŵ × Ŵ.

Function ΠHW belongs to the space ŴH × ŴH
, where

ŴH
:= {w ∈ Ŵ : w|In ∈ L2(In;VH

0 (Pn)), and

ẇ|In ∈ L2(In; (VH
0 (Pn))

′) n = 1, . . . , N}.

Note that ΠHW is discrete in space: for each particular
time t ∈ I, function [ΠHW](t) belongs to one of the dis-
crete finite elements spaces VH

0 (Pn)×VH
0 (Pn). However,

the time description of ΠHW is infinite dimensional: for
a given x ∈ Ω, ΠHW(x, ·) ∈ L2(I)× L2(I).

On the other hand, the function Π∆tW belong to Ŵ∆t ×
Ŵ∆t

, where

Ŵ∆t
:= {w ∈ Ŵ : w|In ∈ P0(In;V0),

n = 1, . . . , N}.

Note that Π∆tW is piecewise constant in time, but
its spatial description is infinite dimensional, namely
Π∆tW(·, t) ∈ V0 × V0.

Once the space and time projections are introduced, the
space and time errors are separated adding the value
R(ΠHUd)−R(ΠHUd)+R(ΠHΠ∆tUd) in the right hand
side of (13) (the latter term vanishes due to the Galerkin

orthogonality property because ΠHΠ∆tUd ∈ ŴH,∆t ×
ŴH,∆t

). That is,

se = R(Ud −ΠHUd)︸ ︷︷ ︸
=: ses

+R(ΠH(Ud −Π∆tUd))︸ ︷︷ ︸
=: set

. (15)

The terms ses and set are associated with the space and time
discretization errors respectively. Note that ses tends to
zero as the space discretization is refined because ΠHUd

tends to Ud. Similarly, set tends to zero with ∆t because
Π∆tUd tends toUd. The space and time error components
ses and set are used as refinement indicators because they
can be reduced independently by respectively enriching
the space and time discretizations.

The space and time splitting is straightforwardly trans-
formed to the estimated version of the error s̃e, replacing
Ud by the computable approximation Ũd in equation (15),
namely

s̃e = s̃es + s̃et , (16)

where s̃es := R(Ũd − ΠHŨd) and s̃et := R(ΠHŨd −
ΠHΠ∆tŨd) are the computable space and time error con-
tributions.

3.3 Modal-based adjoint approximation

The error estimate s̃e is computable once the adjoint ap-
proximation Ũd is available. Typically, the adjoint approx-
imation is computed using the same code used for the orig-
inal problem (1), i.e. using direct time-integration meth-
ods, see reference [20]. An alternative approach proposed

in [24] considers modal analysis to compute the adjoint
approximation. The modal-based strategy is particularly
well suited for some particular quantities of interest and
allows effectively computing and storing the adjoint prob-
lem. In that case, the adjoint solution is stored for each
vibration mode instead of for each time step.

Modal analysis requires introducing the semidiscrete equa-
tion (discrete in space but exact in time) associated with
the adjoint problem (11). Consequently, a discrete ver-
sion of the functional space V0 is required. The semidis-
crete problem is defined using the finite element space
VH,p+1

0 (Pbg), that stands for the finite element space as-
sociated with the mesh Pbg of degree of interpolation p+1

(a p-refined version of VH
0 (Pbg)). Having a p + 1 degree

approximation of the adjoint solution, Ũd, precludes the
Galerkin orthogonality effect and the corresponding un-
derestimation of the error, see [24]. Recall that, along the
adaptive process, the background mesh is used as the base
to build up all the adapted meshes by local refinement.
Thus, the representation of Ũd in the adapted mesh is
simplified if Ũd is in VH,p+1

0 (Pbg) .

With these definitions, the semidiscrete problem reads:
find ud,H,p+1(t) ∈ VH,p+1

0 (Pbg) verifying the final condi-
tions ud,H,p+1(T ) = uO and u̇d,H,p+1(T ) = vO and such
that for all t ∈ I

m(üd,H,p+1(t)− a1u̇
d,H,p+1,w)

+ a(ud,H,p+1(t)− a2u̇
d,H,p+1(t),w) =

− lO(t;w) ∀w ∈ VH,p+1
0 (Pbg), (17)

where lO(t;w) := (fO(t),w) + (gO(t),w)ΓN
.

Equation (17) leads to an algebraic system of second or-
der ordinary differential equations which is conveniently
rewritten using the eigenvalues and eigenfunctions of the
problem: find (ω̃, q̃) ∈ R× VH,p+1

0 (Pbg) such that

a(q̃,w) = ω̃2m(q̃,w) ∀w ∈ VH,p+1
0 (Pbg). (18)

Note that the number of eigenpairs solution of this prob-
lem is the number of degrees of freedom in the finite el-
ement space VH,p+1

0 (Pbg), denoted by Ndof . The eigen-
pairs are sorted from low to high frequencies, namely
ω̃1 ≤ ω̃2 · · · ≤ ω̃Ndof

, and the eigenfunctions are normal-
ized to be orthonormal with respect the mass product, i.e.

m(q̃i, q̃j) = δij , 1 ≤ i, j ≤ Ndof. (19)

The semidiscrete approximation ud,H,p+1 is expressed as
a linear combination of the eigenfunctions q̃i

ud,H,p+1(x, t) =

Ndof∑

i=1

q̃i(x)ỹi(t). (20)

Thus, the new unknowns of the problem are the time-
dependent coefficients ỹi(t), i = 1, . . . , Ndof . The repre-
sentation in terms of the unknowns ỹi(t) given in (20)
allows uncoupling the system (17) into a set of ordinary

6
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Figure 3: Illustration of the projection operators ΠH and Π∆t. The figure displays (one field of) the original function

W ∈ Ŵ × Ŵ inside the time intervals In = (tn−1, tn] and In+1 = (tn, tn+1] (top) along with its projections in space

and time ΠHW ∈ ŴH × ŴH
(left) and Π∆tW ∈ Ŵ∆t × Ŵ∆t

(right).

differential equations, namely

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (21a)

yHi (T ) = ũi, (21b)

ẏHi (T ) = ṽi, (21c)

where the r.h.s. terms li, ui and vi are computed using the
data characterizing the quantity of interest (10) and the
eigenfunction q̃i

l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN ,

ũi := m(uO, q̃i) and ṽi := m(vO, q̃i). (22)

The time dependent coefficients ỹi(t), i = 1, . . . , Ndof ,
may be computed analytically for many particular cases
of the forcing data. The particular solution for constant-
in-time data is given in [24]. Therefore the value of the
adjoint solution ud,H,p+1 at any time t ∈ I is easily re-
constructed from the computed eigenfunctions q̃i and the
analyticaly computed time-dependent functions ỹi(t) us-
ing expression (20).

In practice, it is not feasible to compute all the eigenpairs
(ω̃i, q̃i), i = 1, . . . , Ndof and consequently the modal ex-
pansion (20) has to be truncatied to the first M ≪ Ndof

terms, namely

ũd(x, t) :=

M∑

i=1

q̃i(x)ỹi(t). (23)

The number of required vibration modes M has to be se-
lected such that the truncated high frequency modes (for
i > M) are negligible. That is, M is such that ũd is a good
approximation to ud,H,p+1. This is equivalent to assume
that for i > M the values of l̃i, ũi and ṽi, as defined in
(22), are close to zero, and consequently ỹi(t) ≈ 0. This is

guaranteed if the data fO, gO, uO and vO are well cap-
tured by the expansion of the first M eigenvectors. Conse-
quently, a quantity of interest can be easily treaded with
the modal-based approach if its associated data fO, gO,
uO and vO are well captured by the expansion of the first
M eigenfunctions.

Once the computable adjoint approximation ũd is avail-
able, the double field approximation Ũd used in the er-
ror estimate s̃e given in (14) is readily defined as Ũd :=
[ũd, ˙̃ud].

4 Space-time Adaptivity

4.1 Adaptivity framework

The space-time adaptive strategy aims at finding a time
discretization T and a space discretization Pn at each time
point tn ∈ T such that 1) they keep the error se below a
user-prescribed tolerance setol and 2) they are optimal in
the sense that they minimize the computational cost. In
practice, the accuracy prescription is enforced for the es-
timated error and the property which is actually achieved
is

|s̃e| ≤ setol. (24)

Changing the space discretization at each time step tn ∈ T
is not computationally affordable. This is because remesh-
ing operations, matrix assembly and data transfer between
different meshes are costly operations and cannot, in gen-
eral, be performed at each time step. Here, an adaptive
strategy organized in time-blocks, similar to the one pro-
posed in reference [19], is adopted in order to reduce the
number of mesh changes.

The blockwise adaptive strategy consist in splitting the
time interval I into Nbk time intervals (or time blocks)

7
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The time interval I is split into Nbk time intervals (or
time blocks)

Ibkm :=

(
T

Nbk
(m− 1),

T

Nbk
m

]
, m = 1, . . . , Nbk.

The blockwise adaptive strategy consists taking the same
space mesh inside each time interval Ibkm , this mesh is de-
noted as Pbk

m for m = 1, . . . , Nbk, see figure 4. Note that
with this definition the computational meshes Pn associ-
ated with the time points tn ∈ Ibkm are such that Pn = Pbk

m .
A generic element of the mesh Pbk

m is denoted by Ωm
k ,

k = 1, . . . , N el
m, where N el

m is the number of elements in
Pbk
m .

Additionally, the time step length is assumed to be con-
stant inside the intervals Ibkm and denoted by ∆tbkm . Con-
sequently, the time step length ∆tn associated with times
tn ∈ Ibkm are such that ∆tn = ∆tbkm , see figure 4.

Figure 4: The space mesh is assumed to be constant inside
the time intervals Ibkm . Analogously, the time step length
is taken constant inside each interval Ibkm .

Following this approach and notation, the adaptive strat-
egy is reformulated as computing the optimal space
meshes Pbk

m and time step lengths ∆tbkm , for all the time
intervals Ibkm , m = 1, . . . , Nbk such that the associated
numerical solution fulfills (24).

Once the adjoint solution is computed and stored in the
p + 1 version of the background mesh (keeping the same
geometry and topology but increasing the degree of poly-
nomials from p to p+ 1), the main stages of the adaptive
procedure are summarized as follows. The numerical solu-
tion is computed sequentially starting from the first time
block Ibk1 until the last one IbkNbk . In each time slab Ibkm ,
the numerical solution is computed and the corresponding
local error contributions are estimated. The computed so-
lution in Ibkm is accepted or rejected using the information
given by the local error contributions. The specific accept-
ability criterion is detailed later. If the solution is accepted,
the loop goes to the following time interval Ibkm+1. Else, the
space or time discretization (or both) associated with the
interval Ibkm are adapted using the local error information
and the solution is re-computed in Ibkm . The process of
adapting the discretization and computing the numerical

solution is repeated in the interval Ibkm until the solution
is accepted.

The forthcoming subsections describe in detail 1) the local
error contributions driving the adaptive process, 2) the cri-
terion used to accept or reject the solution in each interval
Ibkm and 3) how to adapt the space and time discretizations
when required.

4.2 Local error contributions

The space and time error estimates s̃es and s̃et are decom-
posed into contributions associated with the time blocks
Ibkm , m = 1, . . . , Nbk, namely

ηsm := RIbk
m
(Ũd −ΠHŨd), and

ηtm := RIbk
m
(ΠH(Ũd −Π∆tŨd))

such that

s̃es =
Nbk∑

m=1

ηsm and s̃et =
Nbk∑

m=1

ηtm.

The local residual RIbk
m
(·) is the restriction of the residual

R(·) to the time interval Ibkm ,

RIbk
m
(W) :=

∫

Ibk
m

[(f ,wv) + (g,wv)ΓN
] dt

−
∫

Ibk
m

m( ˙̃uv + a1ũv,wv) dt

+

∫

Ibk
m

a(ũu + a2ũv,wv) dt

−
∫

Ibk
m

a( ˙̃uu − ũv,wu) dt.

The indicator ηtm is used to decide if the time discretization
inside Ibkm has to be modified. The criteria on wether the
time grid has to be modified and how it has to be modified
are presented in section 4.3.

The value of ηsm is the indicator used to decide if the
space mesh Pbk

m in the time interval Ibkm has to be fur-
ther adapted. Again, the detailed criteria are introduced
in section 4.3. In the case the mesh is to be adapted, the
required local error indicators are obtained by restricting
the space integrals involved in ηsm to the elements Ωm

k .
That is,

ηsm,k := RΩm
k ×Ibk

m
(Ũd −ΠHŨd),

where

RΩm
k ×Ibk

m
(W) :=

∫

Ibk
m

[
(f ,wv)Ωm

k
+ (g,wv)∂Ωm

k ∩ΓN

]
dt

−
∫

Ibk
m

m( ˙̃uv + a1ũv,wv)Ωm
k

dt

+

∫

Ibk
m

a(ũu + a2ũv,wv)Ωm
k

dt

−
∫

Ibk
m

a( ˙̃uu − ũv,wu)Ωm
k

dt.

8
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Note that the error estimate s̃e is expressed as the sum of
the local error contributions defined above

s̃e =

Nbk∑

m=1

(Nel
m∑

k=1

ηsm,k

)
+

Nbk∑

m=1

ηtm.

4.3 Acceptability and remeshing criteria

Following references [20, 19], the total target error setol is
split into two error targets, αss

e
tol and αts

e
tol, associated

with the space and time errors. The coefficients αs and αt

are two user-defined positive values such that αs +αt = 1
used to balance the space and time contributions to the
total error. This leaves a free parameter to be tuned by the
user, who must decide the amount of the total error setol
assigned to the space and time discretizations. Discussing
the optimal values for αs and αt is beyond the scope of
this paper.

Thus, in order to achieve the accuracy prescription stated
in (24), the adaptive strategy is designed aiming at finding
a numerical solution such that

|s̃es | ≤ αss
e
tol and |s̃et | ≤ αts

e
tol. (25)

Note that (25) guarantees that equation (24) holds, be-
cause

|s̃e| = |s̃es + s̃et | ≤ |s̃es |+ |s̃et | ≤ αss
e
tol + αts

e
tol = setol.

The conditions (25) are more restrictive than (24). This
is because in (24) s̃es and s̃es with different sign may can-
cel each other. The error compensation is not accounted
for in (25) and therefore the resulting criterion is more
demanding.

The error contributions are assumed to be uniformly dis-
tributed in time. That is, the space and time error tol-
erances, αss

e
tol and αts

e
tol, are divided into equal contri-

butions associated with each time block Ibkm . Thus, the
solution is considered to be acceptable if

|ηsm| ≤ αss
e
tol

Nbk
, (26a)

|ηtm| ≤ αts
e
tol

Nbk
. (26b)

If the restrictions (26) hold, then the inequalities (25) are
fulfilled, because

|s̃es | =
∣∣∣
Nbk∑

m=1

ηsm

∣∣∣ ≤
Nbk∑

m=1

|ηsm| ≤ αss
e
tol and

|s̃et | =
∣∣∣
Nbk∑

m=1

ηtm

∣∣∣ ≤
Nbk∑

m=1

|ηtm| ≤ αts
e
tol.

(27)

Similarly as when splitting the space and time contribu-
tions, criteria (26) are stronger than (25). This is more
relevant for large values of Nbk, because the effect of the
triangular inequalities in the equations (27) is more im-
portant. Thus, the adapted numerical solution might be
very conservative if the number of blocks Nbk is large.

An additional condition is added to (26) in order to allow
unrefinement (mesh coarsening). Note that the conditions
(26) indicate only if the solution is acceptable and, if not, if
the mesh has to be refined. They do not provide a criterion
to unrefine the discretization when the error indicators ηsm
and ηtm are small enough. Following reference [20], a lower
bound based acceptability criterion is added to (26):

βs
αss

e
tol

Nbk
≤ |ηsm| , (28a)

βt
αts

e
tol

Nbk
≤

∣∣ηtm
∣∣ , (28b)

where the coefficients βs and βt are two user-defined val-
ues such that βs, βt ∈ [0, 1). If the solution does not fulfill
condition (28b), then the time discretization is modified
(in this case unrefined). If (28a) is violated, then the space
mesh is modified and it is expected to be globally coars-
ened. However, the space mesh adaption is performed lo-
cally and may result in refining some parts of the domain
while others are unrefined. The space remeshing criterion
is described below. The coarsening criterion (28) is only
checked once for each time block. This is because the need
of unrefining the space or the time grid is expected to be
detected with the first discretization. Moreover, checking
for unrefining at each adaptive step may result in an un-
stable scheme.

As previously said, conditions (26) and (28) are the criteria
allowing to decide if the numerical solution is accepted or
rejected inside the interval Ibkm . If conditions (26) and (28)
hold (or only (26) after the first adaptive iteration), then
the solution is accepted. Otherwise, the space and/or time
discretizations are modified.

The time adaptivity is carried out, depending on the value
of ηtm, by either refining the discretization by halving the
time step ∆tbkm (if (26b) is violated) or doubling it (if (28b)
is violated). If both (26b) and (28b) hold, the time dis-
cretization is unchanged.

If either (26a) or (28a) are not fulfilled, the space mesh is
to be modified. Then, local criterion is required to decide
which elements have to be refined or unrefined, depending
on the value of the local indicators ηsm,k, k = 1, . . . , N el

m

(for a given m = 1, . . . , Nbk). Similarly as for the time
discretization, the elements to be refined are subdivided
(the element size divided by two) while the elements to
be coarsened are collapsed with the neighboring elements,
doubling the element size. In order to set up a space
remeshing criterion, the optimal mesh is assumed to yield
a uniform error distribution. Thus, the local versions (re-
stricted to the contributions associated with element Ωm

k )
of the conditions (26a) and (28a) read

γmβs
αss

e
tol

NbkN el
m

≤
∣∣ηsm,k

∣∣ ≤ γm
αss

e
tol

NbkN el
m

, (29)

where

γm :=

∑Nel
m

k=1 |ηsm,k|∣∣∣
∑Nel

m

k=1 η
s
m,k

∣∣∣
≥ 1.

The coefficient γm is introduced in order to mitigate the
cancellation effect, see reference [32]. It is worth noting
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that introducing the factor γm does not introduce a dis-
tortion in the criterion: if all the local element error con-
tributions fulfill (29), then equation (28a) holds. This is
shown by noting that

|ηsm| =
∣∣∣
Nel

m∑

k=1

ηsm,k

∣∣∣ = 1

γm

(Nel
m∑

k=1

|ηsm,k|
)

and therefore

βs
αss

e
tol

Nbk
=

1

γm

(Nel
m∑

k=1

γmβs
αss

e
tol

NbkN el
m

)
≤ 1

γm

(Nel
m∑

k=1

|ηsm,k|
)
= |ηsm|

and

αss
e
tol

Nbk
=

1

γm

(Nel
m∑

k=1

γm
αss

e
tol

NbkN el
m

)
≥ 1

γm

(Nel
m∑

k=1

|ηsm,k|
)
= |ηsm|.

The complete space-time adaptive strategy is summarized
in algorithm 1.

5 Numerical Examples

5.1 Example 1: perforated plate under
impulse loading

This example illustrates the performance of the proposed
space-time adaptive strategy in a 2D wave propagation
problem. The computational domain Ω is a perforated
rectangular plate, Ω := (−0.5, 0.5)× (0, 0.5) \Ω0 m2, with
Ω0 := {(x, y) ∈ R2 : x2 + (y − 0.25)2 ≤ 0.0252 } m2, see
figure 5. The plate is clamped at the bottom side and the
horizontal displacement is blocked at both vertical sides.
The plate is initially at rest, u0 = v0 = 0, and loaded with
the time dependent traction

g(t) =

{
−g(t)e2 on Γg,

0 elsewhere,
(30)

where Γg := (−0.025, 0.025) × {0.5} m, e2 := (0, 1) and
g(t) is the impulsive time-dependent function defined in
figure 5 with parameters gmax = 30 Pa and tg = 0.005
s. No body force is acting in this example, f = 0. The
material properties of the plate are Young’s modulus E =
8/3 Pa, Poisson’s ratio ρ = 1/3, the density ρ = 1 kg/m3

and the damping coefficients a1 = 0 s−1, a2 = 10−4 s. The
final simulation time is T = 0.25 s.

The background mesh Pbg for the quadtree remeshing
strategy is plotted in figure 6. Note that only half of the
domain is discretized due to the problem’s symmetry by
introducing proper symmetry boundary conditions. The
finite element spaces VH,1

0 (Pn), n = 1, . . . , N , used for

Data:
Problem statement: Problem geometry (Ω, ΓN, ΓD),
final time (T ), material data (E, ν, ρ), loads and
initial conditions (f , g, u0, v0).
Problem discretization: background computational
mesh (Pbg).
Error control: data defining the quantity of interest
(fO, gO, uO, vO) and number of vibration modes
M .
Adaptivty parameters: Number of time blocks

(Nbk), prescribed error (setol), error splitting
coefficients (αs, αt), unrefinement parameters
(βs, βt).

Result: Numerical approximation Ũ and error
estimate s̃e fulfilling |s̃e| ≤ setol.

// Modal analysis

Generate higher order space VH,p+1
0 (Pbg);

Compute the eigenpairs (ω̃i, q̃i), i = 1, . . . ,M in the

space VH,p+1
0 (Pbg);

// Adjoint problem (modal solution)

Compute the values l̃i, ũi, ṽi (using fO, gO, uO, vO

and q̃i, i = 1, . . . ,M) ;
Compute the time dependent functions ỹi(t) (using
l̃i, ũi, ṽi and ω̃i, i = 1, . . . ,M) ;
// Problem computation, error assessment

and adaptivity

Initialize discretization: Pbk
1 = Pbg, ∆tbk1 = T/Nbk;

for m = 1 . . . Nbk do
repeat

// Compute solution and error

estimate

Compute solution Ũ in the time interval Ibkm
and the error indicators ηsm, ηsm,k and ηtm;

// Mesh adaptivity

if The acceptability criteria for ηsm or ηtm
are not fulfilled then

Refine/unrefine the spatial mesh Pbk
m

(using ηsm,k) and/or the time step ∆tbkm
(using ηtm);

end

until The acceptability criteria for ηsm and ηtm
are fulfilled ;
Set initial discretization for the next time
interval: Pbk

m+1 = Pbk
m , ∆tbkm+1 = ∆tbkm ;

end

Algorithm 1: Algorithm for problem approximation
with error control and space-time mesh adaptivity.

solving the direct problem are build using bilinear ele-
ments (quadrilaterals with 4 nodes, i.e. p = 1) while the

finite element space for the adjoint, VH,2
0 (Pn), is build us-

ing serendipity elements (quadrilaterals with 8 nodes, i.e.
p = 2).

The quantity of interest considered in this example is a
weighted average of the vertical velocities in the region

ΩO := {(x, y ∈ R2 : x2 + (y − 0.1)2 < 0.0752)} m2,
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Figure 5: Example 1: Definition of the problem geometry
(top) and time-dependence of the external load (bottom).

Figure 6: Example 1: Background mesh Pbg with 2452
elements for the quadtree remeshing strategy and for the
adjoint problem approximation. Only half of the domain
is discretized due to the problem’s symmetry.

see figure 5. Specifically, the quantity of interest is defined
as

LO(W) := m(vO,wv(T )),

corresponding to fO = gO = uO = 0 in (8). The
weighting function vO with local support in ΩO is vO =
[0, vaux(

√
x2 + (y − 0.1)2)] for

vaux(r) =





10

3πR2ρ

(
2
( r

R
− 1

)3

+ 3
( r

R
− 1

)2
)

for 0 ≤ r ≤ R,

0 for R < r,

R = 0.075 being the radius of the region of interest. Note
that since the x-component of vO is zero, the quantity
of interest gives an average of the vertical velocity in the
region of interest ΩO and at time t = T .

The adjoint problem associated to the quantity of interest
is approximated using a truncated modal based approxi-

mation where only the first 60 vibration modes are kept.
This corresponds to slightly modify the quantity of inter-
est of the problem. In the following, the function vO in
the exact quantity of interest LO(W) = m(vO,wv(T )) is
replaced by its projection onto the first M = 60 vibration
modes q̃i, i = 1, . . . ,M , namely

vO,M (x) :=

M∑

i=1

viq̃i(x), where vi := m(vO, q̃i).

Figure 7 shows that the truncated discrete approximation
vO,M provides a fairly good approximation of the exact
weighting function vO. It is worth noting that the quantity
of interest is no longer strictly measuring only the vertical
velocity of the solution and has no longer a local support.
However, as can bee seen, the influence of the horizontal
velocity and the average outside ΩO are small.

The exact solution U (and therefore the exact quantity of
interest s) are unknown in this example. The exact so-
lution is replaced here by an overkill approximation of
the problem, namely Uovk, computed with a finite ele-
ments mesh with N el = 627712 elements and N = 1600
time steps. The overkill discretization is finest discretiza-
tion considered in this example. The exact value of the
quantity of interest is approximated using the overkill ap-
proximation, s ≈ sovk := LO(Uovk) = 2.4227 · 10−2 m/s.

The behavior of the adaptive strategy is first analyzed for
a prescribed target error setol = 5 · 10−5 m/s. The user-
prescribed parameters for the simulation are set to Nbk =
20 for the number of space-time blocks, αs = 0.9 and αt =
0.1 for the coefficients used to split the total error budget
into space and time and βs = 0.5 and βt = 0.1 for the
lower bound factors.

Figure 8 shows several snapshots of an adapted numeri-
cal solution obtained with the proposed methodology. The
quantity of interest associated with the numerical solution
is s̃ := LO(Ũ) = 2.4242 · 10−2 m/s with an assessed error
of s̃e = −1.5756 · 10−5 m/s. Thus the prescribed target
error setol = 5 · 10−5 m/s is fulfilled quite sharply, that
is, |s̃e| ≤ setol, and |s̃e| and setol are of the same order of
magnitude. Moreover, the error with respect the overkill
solution, namely seovk := sovk − s̃ = −1.5125 · 10−5 m/s, is
also below (in absolute value) the user-defined value setol.
Note that the assessed error is a good approximation of the
overkill error. That is, the effectivity of the error estimate,
s̃e/seovk = 1.041, is fairly close to the unity.

Figure 9 shows the history of the number of elements and
the time step length along the adapted computation. Note
that the number of elements increases with time as the
elastic waves spread along the plate and therefore a larger
area has to be refined. The time step is refined only when
the external load is acting at the beginning of the com-
putation. Additionally, figure 9 also shows the number of
iterations performed in each space-time block until reach-
ing convergence. As can be seen, convergence is reach for
the whole computation with at most four iterations per
block.

The performance of the space-time adaptive strategy
is also tested versus a uniform refinement. Three non-

11
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Figure 7: Example 1: Exact (top) and truncated (bottom) weighting functions vO defining the quantity of interest
LO(·).

Figure 8: Example 1: Snapshots of the computed solution (magnitude of velocities in m/s) and the computational
mesh at several time points for the adapted solution verifying the prescribed target error setol = 5 · 10−5 m/s.
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Figure 9: Example 1: History of the number of elements
(top) and of the time step (middle). Number of iterations
to achieve convergence in each block (bottom).

adapted (uniform) approximations are computed using
three different space meshes and three different number
of time steps N , see table 1. The initial space mesh corre-
sponds to the background mesh showed in figure 6 which
is recursively refined to obtain the other spatial meshes
(each quadrilateral element is recursively subdivided into
four new ones). The ratio H/∆t, or equivalently the ratio

N/(N el)
1
2 , is kept constant in the three uniform approxi-

mations. This is to ensure that the space and time errors
are reduced at the same ratio taking into account that
the space discretization error scales as H2 and the time
discretization error as ∆t2, see [32] and [20].

Table 1: Example 1: Space and time discretizations for the
three uniform solutions.

N el # nodes N

1 2452 2547 100
2 9808 9997 200
3 39232 39609 400

On the other hand, the space-time adaptive computations
are performed prescribing similar total target errors as
the errors obtained using uniform refinements. Specifically,
four different simulations are performed setting setol = 1 ·
10−3, 5 · 10−4, 1 · 10−4 and 5 · 10−5 m/s combined with
three different values for the number of blocks, Nbk =

5, 10 and 20. The additional parameters of the adaptive
procedure are αs = 0.9, βs = 0.5 and αt = βt = 0.1. The
computational complexity of the simulations is measured
here using the number of space-time elements (or cells),
namely

N cells :=
Nbk∑

m=1

N el
m

T

Nbk∆tbkm
,

corresponding to sum up the number of space-time ele-
ments used inside each time interval Ibkm , m = 1, . . . , Nbk.
Note that if a single space mesh is considered in the whole
simulation time, then the number of space-time cells N cells

coincides with N cells = N elN .

5.5 6 6.5 7
−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

3

2

Figure 10: Example 1: Error convergence for the adapted
and uniform computations. The adapted solutions are ob-
tained using three different values of the number of time
blocks Nbk.

Figure 10 shows the convergence of the estimates. The
estimates obtained for the uniform refinement meet the
expected a-priori convergence rate of −2/3. This expected
convergence rate is obtained considering the a-priori es-
timates of the error se ∝ H2 + (∆t)2, the relation
N cells ∝ (H2∆t)−1 and noting that if the ratio H/∆t is
constant, then H and ∆t can be written as H = κH⋆

and ∆t = κ∆t⋆, where H⋆ and ∆t⋆ are the element and
step length of the coarsest uniform discretization and κ
is a refinement factor. It is then straightforward that,
se ∝ (N cells)−2/3 since (H2∆t)2/3 = C(H2 + (∆t)2) ∝ se

for C = ((H∗)2∆t∗)2/3)/((H∗)2 +(∆t∗)2). From figure 10
and table 2 it can be seen that besides converging at the
correct convergence rate, the estimates are really accurate
since their effectivities are very close to 1.

As expected, the use of an adaptive refinement strategy
leads to better approximations for the quantity of interest
with less computational cost. The adapted solutions have a
lower error than the uniform approximations for the same
number of space-time cells.
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Table 2: Example 1: Performance of the estimate for both the uniform and adaptive strategies. The overkill value of
the quantity of interest is sovk = 2.4227 · 10−2 m/s obtained with N cell = 1004339200 space-time elements.

setol [m/s] N cell s̃ [m/s] s̃e [m/s] seovk [m/s] s̃e/seovk
u
n
if
or
m – 245200 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000

– 1961600 2.4299·10−2 -7.1606·10−5 -7.2345·10−5 0.989
– 15692800 2.4244·10−2 -1.7813·10−5 -1.7659·10−5 1.008

N
b
k
=

5 1·10−3 220680 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000
5·10−4 499920 2.4391·10−2 -1.6337·10−4 -1.6403·10−4 0.996
1·10−4 2211720 2.4261·10−2 -3.3703·10−5 -3.4096·10−5 0.988
5·10−5 5511720 2.4236·10−2 -1.0823·10−5 -8.9160·10−6 1.213

N
b
k
=

10 1·10−3 245200 2.4498·10−2 -2.7186·10−4 -2.7180·10−4 1.000
5·10−4 391280 2.4313·10−2 -8.6724·10−5 -8.6226·10−5 1.005
1·10−4 5158120 2.4251·10−2 -2.4351·10−5 -2.4455·10−5 0.995
5·10−5 7074440 2.4244·10−2 -1.5773·10−5 -1.7111·10−5 0.921

N
b
k
=

20 1·10−3 279900 2.4439·10−2 -2.1096·10−4 -2.1219·10−4 0.994
5·10−4 462735 2.4351·10−2 -1.2062·10−4 -1.2446·10−4 0.969
1·10−4 6732720 2.4261·10−2 -3.6194·10−5 -3.4268·10−5 1.056
5·10−5 9080750 2.4242·10−2 -1.5756·10−5 -1.5125·10−5 1.041

5.2 Example 2: 2D structure

Consider the structure given in figure 11. The structure is
initially at rest (u0 = v0 = 0), clamped at the supports
and subjected to the time-dependent traction

g =

{
g(t)e1 on Γg,

0 elsewhere.

The set Γg is the region of the Neumann boundary where
the load is applied, vector e1 := (1, 0) is the first cartesian
unit vector and function g(t) describes the time evolution
of g given in figure 11. The traction g is the only external
loading in this example (that is f = 0). Other material and
geometric parameters univocally defining the problem are
reported in table 3.

Table 3: Example 2: Problem parameterization

Geometry (data in m)

P1 := (0.55, 0.00)
P2 := (0.45, 0.45)
P3 := (0.45, 0.55)
P4 := (0.45, 1.45)
P5 := (0.55, 1.55)
P6 := (−0.55, 1.55)
P7 := (−0.45, 1.45)
Γg := {−0.55} × (1.45, 1.55)

Physical properties

E = 2 · 1011 Pa
ν = 0.2
ρ = 8 · 103 kg/m3

a1 = 0 s−1

a2 = 1 · 10−5 s
T = 2 · 10−3 s

External load

gmax = 108 Pa
tg = 2 · 10−4 s

P1

P2

P3

P5

P4

P6

P7

Figure 11: Example 2: Problem statement (top) and time
dependent loading at Γg (bottom).

This example focusses in the quantity of interest

LO(W) :=
1

meas(Γg)
(e1,wu(T ))Γg

, (31)

which is the average of the final displacement in the bound-
ary Γg where the external load is applied. Note that this
quantity is not accounted in the generic quantity of inter-
est given in equation (10). Consequently, quantity (31) is
rewritten as

LO(W) = a(uO,wu(T )),
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where uO is the exact solution of the static linear elasticity
problem: find uO ∈ V0 such that

a(uO,w) =
1

meas(Γg)
(e1,w)Γg

, ∀w ∈ V0. (32)

After this reformulation, the quantity of interest is a par-
ticular case of the ones included in (10) and therefore
the associated adjoint problem has the same structure as
the original one. In particular, the function uO is the fi-
nal displacement condition for the adjoint problem. The
other forcing data for the adjoint are zero in this case,
namely vO = fO = gO = 0. Note that function uO is
solution of an infinite dimensional problem and therefore
it is unknown. In this example, the unknown function uO

is replaced by the computable one ũO obtained by solving
problem (32) in the discrete space VH,p+1

0 (Pbg) associated
with the background mesh of the adaptive process. Three
different background meshes are used in this example, see
figure 12.

The quantity of interest (31) is well suited for the modal
based approach becasue the weighting function ũO is well
captured by the expansion of few eigenvectors. This en-
sures that the adjoint solution is also properly represented
using few vibration modes. The projection of ũO into the
expansion of the first M eigenvectors is defined as

ũO,M :=
M∑

i=1

ũiq̃i,

where ũi := m(ũO, q̃i), i = 1, . . . ,M . Thus, the relative
error in the projection is

εM :=
||ũO − ũO,M ||m

||ũO||m
,

where ||·||m := (m(·, ·))1/2. Figure 13 shows the error εM as
a function of the number of eigenvectors M . Note that the
error εM rapidly decreases as M increases. The number
of eigenvectors considered in this example is M = 60 and
the associated projection error is ε60 = 5.94 · 10−5.

The exact value of the quantity of interest is unknown in
this example. An overkill approximation of the quantity of
interest, sovk := 1.2086 ·10−3 m, is computed using a finite
element mesh of N el = 204800 elements and N = 6400
time steps. This discretization is the richest one considered
in this example.

Figures 14 and 15 show snapshots of the computed solu-
tion and the computational mesh at several time points.
This particular solution is obtained using the background
mesh number 2, takingNbk = 10 time blocks and prescrib-
ing the error to the value setol = 5·10−6 m. The coefficients
used to split the total error budget into space and time are
αs = 0.9 and αt = 0.1 and the unrefinement factors are
taken as βs = 0.5 and βt = 0.1. The computed quantity
of interest is s̃ = 1.2069 · 10−3 m and the assessed error is
s̃e = 8.8942 · 10−7 m. Note that the restriction |s̃e| ≤ seuser
is also fulfilled in this example. Moreover, the error with
respect the overkill solution, seovk = 1.7516 ·10−6 m, is also
below the user-defined value setol.

Background mesh 1

Background mesh 2

Background mesh 3

Figure 12: Example 2: Background meshes used in this
example. The number of elements in each of them is 800,
3200 and 12800 respectively.

Figure 16 shows the history of number of elements in the
computational mesh and the time step length for this par-
ticular computation. Note that the number of mesh ele-
ments increases in time because the stress waves spread
in the structure. Note also that the time step length is
smaller at the beginning of the computation due to the
effect of the external load acting at the initial simulation
time. Figure 16 also shows the number of iterations un-
til achieve convergence in each time block. Note that the
number of iterations is always equal or less than four.

The performance of the adaptive strategy is compared
with respect to uniform mesh refinement. To this end,
the uniform refined computations are obtained using the
meshes plotted in figure 12 and three different number
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Figure 14: Example 2: Snapshots of the computed solution (magnitude of velocities in m/s) at several time points.

10 20 30 40 50 60

−4

−3.5

−3
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Figure 13: Example 2: Error in projecting the weighting
function ũ into the expansion of the first M eigenvectors
q̃1, . . . , q̃M . The eigenvectors q̃i and the weighting func-
tion ũO are computed in the space VH,p+1

0 (Pbg) associated
with the background mesh number 2 plotted in figure 12.

of time steps N , see table 4. Note that the ratio H/∆t
is also kept constant in this example to ensure that the
space and time errors are reduced at the same rate. On
the other hand, the adapted solutions are obtained us-
ing Nbk = 10 and four different values of the prescriber
error, setol = 5 · 10−5, 1 · 10−5, 5 · 10−6 and 1 · 10−6 m.
The dependence of the results on the chosen background
mesh is studied by computing the adaptive solutions using
the three background meshes plotted in figure 12. Twelve

adaptive solutions are computed all together (one for each
value of the prescribed error and one for each background
mesh).

Table 4: Example 2: Space and time discretizations for the
three uniform solutions.

N el # nodes N

1 200 300 200
2 800 1000 400
3 3200 3600 800
4 12800 13600 1600

Table 5 and figure 17 and give the results for the adaptive
and non-adaptive solutions. The convergence curves in fig-
ure 17 shows that the adapted solutions achieve a smaller
error than the non-adapted solutions for the same number
of space-time elements N cells. The effectivity of the error
estimate, namely s̃e/se, is also shown in figure 17. Note
that the computed effectivity (i.e. the quality of the er-
ror estimate) is better the finer is the background mesh.
This is because the adjoint problem and the extractor ũO

are computed using the background mesh. Thus, the finer
the background mesh, the better the quality of the adjoint
and, therefore, the better the quality of the error estimate.
Note that the computed effectivities in this example are
slightly worse than the ones obtained in the first numeri-
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Figure 15: Example 2: Snapshots of the computational mesh at several time points.

cal example. Even though, the adaptive computations give
more accurate results than the non-adapted solutions for
the same number of space-time elements.

6 Closure

This article presents a goal-oriented space-time adaptive
methodology for linear elastodynamics. The strategy aims
at computing an optimal space-time discretization such
that the numerical solution has an error in the quantity
of interest below some user-defined tolerance. The space-
time adaptation is driven by a goal-oriented error estimate
that requires approximating an auxiliary adjoint problem.

The major novelty of this work is computing the adjoint
solution with modal analysis instead of the standard di-
rect time-integration methods. The modal-based approach
is particularly efficient for some quantities of interest, be-
cause it allows to efficiently compute and store the adjoint
solution.

The numerical examples show that the proposed strategy
furnishes adapted solutions fulfilling the user-defined er-
ror tolerance. That is, both the assessed and computed
errors are below the user-defined error value. Moreover,
the discretizations obtained with the proposed adaptive
strategy are more efficient than the ones obtained with a
uniform refinement of all mesh elements and time steps.

The adaptive discretizations provide more accurate results
than uniform remeshing, for the same number of space-
time elements.

The proposed error estimate accounts for both the space
and time discretization errors. The global error estimate is
split into two contributions corresponding to the space and
time errors using the Galerkin orthogonality property of
the residual. This applies for space-time finite elements like
time-continuous Galerkin methods. The extension of the
approach to tackle other time-integration schemes, e.g. the
ones based on finite differences and/or explicit methods
with lumped mass matrix, requires further investigation.
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A Linear system to be solved at
each time step

This appendix details how the time-continuous Galerkin
approximation is computed when the space mesh changes

17

189



Paper D

Table 5: Example 2: Performance of the estimate for both the uniform and adaptive strategies (for four different
background meshes). The overkill value for the quantity of interest sovk = 1.2086 · 10−3 m is obtained using a uniform
spatial mesh of N cell = 1310720000 space-time elements.

setol [m] N cell s̃ [m] s̃e [m] seovk [m] s̃e/seovk

u
n
if
or
m – 40000 1.1914·10−3 1.4558·10−5 1.7262·10−5 0.843

– 320000 1.2037·10−3 3.6897·10−6 4.8973·10−6 0.753
– 2560000 1.2068·10−3 1.3679·10−6 1.8601·10−6 0.735
– 20480000 1.2079·10−3 5.6641·10−7 7.0564·10−7 0.802

b
g.

m
es
h
1 5·10−5 28696 1.2048·10−3 1.4506·10−6 3.8845·10−6 0.373

1·10−5 86181 1.2068·10−3 3.0110·10−7 1.8337·10−6 0.164
5·10−6 153536 1.2067·10−3 4.2316·10−7 1.9152·10−6 0.220
1·10−6 239936 1.2067·10−3 5.8772·10−7 1.9421·10−6 0.302

b
g.

m
es
h
2 5·10−5 90400 1.2025·10−3 4.9028·10−6 6.1079·10−6 0.802

1·10−5 113004 1.2066·10−3 1.0330·10−6 2.0820·10−6 0.496
5·10−6 174672 1.2069·10−3 8.8942·10−7 1.7516·10−6 0.507
1·10−6 1212673 1.2079·10−3 1.5956·10−7 7.4439·10−7 0.214

b
g.

m
es
h
3 5·10−5 368000 1.2056·10−3 2.5760·10−6 3.0675·10−6 0.839

1·10−5 380800 1.2063·10−3 1.8447·10−6 2.3364·10−6 0.789
5·10−6 435724 1.2071·10−3 1.3130·10−6 1.5426·10−6 0.851
1·10−6 3024438 1.2083·10−3 1.5152·10−7 3.7024·10−7 0.409

b
g.

m
es
h
4 5·10−5 1472000 1.2065·10−3 1.9816·10−6 2.1207·10−6 0.934

1·10−5 1523200 1.2073·10−3 1.1698·10−6 1.3089·10−6 0.893
5·10−6 1676800 1.2077·10−3 7.8304·10−7 9.2219·10−7 0.849
1·10−6 4461564 1.2084·10−3 1.8781·10−7 2.2230·10−7 0.844

between times slabs.

Recall that the numerical approximation Ũ solution of
the discrete problem (5) is computed sequentially starting
from the first time slab I1 until the last one IN . Specif-
ically, assuming that the solution at the time-slab In−1

is known, the approximation Ũ restricted to the slab In
is found solving the problem: find Ũ|In ∈ WH,∆t

u |In ×
WH,∆t

v |In such that

∫

In

[
m( ˙̃uv + a1ũv,wv) + a(ũu + a2ũv,wv)

]
dt

=

∫

In

l(t;wv) dt, ∀wv ∈ VH
0 (Pn), (33a)

∫

In

a( ˙̃uu − ũv,wu) dt = 0, ∀wu ∈ VH
0 (Pn), (33b)

Ũ(t+n−1) = Ũ(tn−1), (33c)

where, for n > 1, Ũ(tn−1) is the solution at the end of

the previous interval In−1 and, for n = 1, Ũ(tn−1 = t0) is

defined using the initial conditions, Ũ(t0) = [u0,v0].

From the definition of the discrete spaces WH,∆t
u and

WH,∆t
v , the numerical displacements and velocities ũu and

ũv inside the interval In are expressed as a combination
of the values at times tn−1 and tn, namely

ũu|In = ũu(tn−1)θn−1(t) + ũu(tn)θn(t), (34a)

ũv|In = ũv(tn−1)θn−1(t) + ũv(tn)θn(t). (34b)

Thus, using the initial conditions for the interval (33c),
the values ũu(tn−1) and ũv(tn−1) ∈ VH

0 (Pn−1) are known
and the only unknowns to be determined are ũu(tn) and
ũv(tn) ∈ VH

0 (Pn). These unknowns are found inserting
the representation (34) in equation (33) and noting that
the following properties of the time-shape functions hold,

∫

In

θn−1(t) dt =

∫

In

θn(t) dt =
∆tn
2

and

−
∫

In

θ̇n−1(t) dt =

∫

In

θ̇n(t) dt = 1.

Specifically, [ũu(tn), ũv(tn)] ∈ VH
0 (Pn) × VH

0 (Pn) is such
that

m(ũv(tn),wv) +
∆tn
2

c(ũv(tn),wv) +
∆tn
2

a(ũu(tn),wv)

= lv,n(wv), ∀wv ∈ VH
0 (Pn), (35a)

and

a(ũu(tn),wu)−
∆tn
2

a(ũv(tn),wu)

= lu,n(wu), ∀wu ∈ VH
0 (Pn), (35b)

18

190



Goal-oriented space-time adaptivity for transient dynamics using a
modal description of the adjoint solution

0 0.5 1 1.5 2
x 10−3

0

2

4

6 x 10
3

0 0.5 1 1.5 2
x 10−3

0

2

4

6 x 10
−5

0 0.5 1 1.5 2
x 10−3

0

1

2

3

4

5

Figure 16: Example 2: Evolution along the adaptive pro-
cess of the number of elements (top) and the time step
(center). Number of remeshing iterations to achieve con-
vergence in each block (bottom).

where

lv,n(w) :=

∫

In

l(t;w) dt+m(ũv(tn−1),w)

− ∆tn
2

c(ũv(tn−1),w)− ∆tn
2

a(ũu(tn−1),w),

lu,n(w) := a(ũu(tn−1),w) +
∆tn
2

a(ũv(tn−1),w),

c(v,w) := m(a1v,w) + a(a2v,w).

Note that since the values ũu(tn−1) and ũv(tn−1) are
known, the terms associated with this values are placed
in the right hand side of the equations.

The computation of the terms appearing in the left hand
side of (35) entails no difficulty since all the spatial func-
tions belong to VH

0 (Pn). On the contrary, if different spa-
tial computational meshes are used at times tn−1 and
tn, the computation of the nodal force vectors associated
with lu,n(·) and lv,n(·) involves computing mass and en-
ergy products of functions defined in the mesh at time
tn−1 and functions defined in the mesh at time tn, e.g.
m(ũv(tn−1),wv).

The use of different spatial meshes is efficiently handled
by solving the discrete problem (35) using the auxiliary
union mesh Pn−1,n containing in each zone of the domain

5 5.5 6 6.5 7
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0
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Figure 17: Example 2: Error convergence for the adapted
and uniform computations (top) and computed effectivity
of the error estiamte (bottom). The adapted solutions are
obtained using three background meshes.

the finer elements either in Pn−1 or Pn, see figure 18,
namely

Pn−1,n := {ω = △∩△′ for △ ∈ Pn−1, △′ ∈ Pn}.

Note that, any function belonging either to VH
0 (Pn−1)

or VH
0 (Pn) can be represented in the finite element space

associated to Pn−1,n, namely VH
0 (Pn−1,n), without lose of

information. Thus, the products involving functions in dif-
ferent meshes are efficiently computed after projecting the
functions in the space VH

0 (Pn−1,n). However, discretizing
problem (35) using the mesh Pn−1,n requires introduc-
ing additional constrains to enforce that the computed
fields ũu(tn) and ũv(tn) belong to VH

0 (Pn) and not to
VH

0 (Pn−1,n). That is, problem (35) leads to the following
system of equations when discretized in the auxiliary finite
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Pn−1

Pn

Pn−1,n

Figure 18: Illustration of the computational meshes Pn−1,
Pn and their union Pn−1,n.

element mesh Pn−1,n:




Kn −∆tn
2 Kn AT

n 0
∆tn
2 Kn Mn + ∆tn

2 Cn 0 AT
n

An 0 0 0
0 An 0 0







Uu,n

Uv,n

λu,n

λv,n


 =




Fu,n

Fv,n

0
0




(36)
where

Fu,n := KnUu,n−1 +
∆tn
2

KnUv,n−1,

Fv,n := (Mn − ∆tn
2

Cn)Uv,n−1

− ∆tn
2

KnUu,n−1 +

∫

In

F(t) dt,

and Cn := a1Mn + a2Kn. The matrices Mn and Kn and
the vector F(t) are the discrete counterparts of the bilinear
forms m(·, ·) and a(·, ·) and the linear form l(t; ·) in the
space VH

0 (Pn−1,n) and the vectors Uu,n, Uv,n, Uu,n−1

and Uv,n−1 contain the degrees of freedom of functions
ũu(tn), ũv(tn), ũu(tn−1) and ũv(tn−1) expressed in the
discrete space VH

0 (Pn−1,n). Note that the linear constrains
AnUu,n = 0 and AnUv,n = 0 are introduced in order to
ensure that the computed fields ũu(tn) and ũu(tn) belong
to VH

0 (Pn) and also to impose continuity of the solution
at the hanging nodes, see figure 19. The vectors λu,n and
λv,n are the associated Lagrange multipliers.

Figure 19: The numerical solution is constrained at the
nodes of the mesh Pn−1,n corresponding to hanging nodes
in the mesh Pn and also at the nodes of Pn−1,n which
disappear in mesh Pn.

Note that system (36) is at the first sight of double size
than the one associated with the Newmark method. How-
ever, system (36) can be rewritten in a more convenient
way by subtracting to the second row of the matrix in (36)
the first row multiplied by ∆tn

2 . That is,




Kn −∆tn
2 Kn AT

n 0

0 Mn + ∆tn
2 Cn +

∆t2n
4 Kn −∆tn

2 AT
n AT

n

An 0 0 0
0 An 0 0




·




Uu,n

Uv,n

λu,n

λv,n


 =




Fu,n

Fv,n − ∆tn
2 Fu,n

0
0


 .

This reformulation allows to compute the velocities sepa-
rately from the displacements solving a system of the same
size as the usual system arising in the Newmark method,
namely,

[
Mn + ∆tn

2 Cn +
∆t2n
4 Kn AT

n

An 0

] [
Uv,n

λ∗
n

]

=

[
Fv,n − ∆tn

2 Fu,n

0

]
,

with λ∗
n := λv,n − ∆tn

2 λu,n. Once the velocities Uv,n are
known, the displacements are obtained solving the system

[
Kn AT

n

An 0

] [
Uu,n

λu,n

]
=

[
Fu,n + ∆tn

2 KnUv,n

0

]
. (37)
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