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5-AZA 5-Aza-2�-deoxycytidine  
5-FU 5-fluororacil  
A 
ADN acido desoxirribonucleico  
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AKT v-akt murine thymoma viral oncogene homolog 1  
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hydrolase, complex V (mitochondrial electron transport), (Calcium2+ + 
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BCL-2 B-cell CLL/lymphoma 2  
BCL-XL BCL-2, BCL2-like 1  
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BRCA1 breast cancer 1, early onset 
�-hCG  beta subunit human chorionic gonadotropin 
C 
CAV1 caveolin 1, caveolae protein 
C-FLIP CASP8 and FADD-like apoptosis regulator  
CG Cytosine/guanine 
CGH hibridación genómica comparada 
CpG Cytosine-phosphate-Guanine 
D 
DNA Deoxyribonucleic acid 
DNMT DNA (cytosine-5-)-methyltransferase  
E 
EGF epidermal growth factor  
EGFR epidermal growth factor receptor 
ERBB v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 
F 
FAM111A family with sequence similarity 111, member A 
FAM84A family with sequence similarity 84, member A 
FAP Familiar Adenomatous Polyposis 
FAS Fas cell surface death receptor  
FOLFIRI irinotecan+5-FU+ leucovorin 
FOLFOX oxaliplatin+5-FU+ leucovorin 
FOLFOXIRI 5-FU+leucovorin+oxaliplatin+irinotecan 
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GC guanine-citosine 
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INTRODUCCIÓN: La resistencia a los tratamientos oncológicos es un factor 

importante que limita la eficacia de los mismos; siendo posiblemente el problema 

clínico más significativo en el tratamiento del paciente oncológico. Pueden definirse 

dos tipos diferentes de resistencia a la quimioterapia: (i), la resistencia intrínseca, que 

se da en pacientes con tumores refractarios ya en el momento del diagnóstico, y (ii) la 

resistencia adquirida, que ocurre como consecuencia de los tratamientos de 

quimioterapia. Además, durante el proceso de adquisición de quimioresistencia el 

tumor puede hacerse resistente a diferentes fármacos, resistencia cruzada, lo que en 

última instancia conduce al fracaso del tratamiento. Los mecanimos de resistencia son 

complejos y de afectación multifactorial. Muchos agentes quimioterapéuticos destruyen 

las células tumorales. Así, la desregulación de los genes implicados en la activación o 

ejecución de dichos mecanismos puede asociarse con procesos de resistencia a la 

quimioterapia. Desregulación que puede darse por diferentes mecanismos, entre los 

que se encuentran los mecanimos epigenéticos. Estos mecanismos pueden 

desregular genes de forma individual por la hipermetilación del ácido 

desoxirribonucleico (ADN) de su promotor y/o global por la hipometilación. Mientras 

que la hipermetilación conlleva el silenciamiento de genes (ej. supresores tumorales), 

la hipometilación global produce la activación de aquellos genes que se requieren para 

las diferentes etapas del proceso de transformación neoplásica. Aunque parezcan 

mecanismos contradictorios, los dos tienen lugar en las células transformadas y les 

confieren ventajas selectivas.  

 

OBJETIVOS GENERALES: 
1. Comprobar si hay cambios en el perfil de metilación del ADN de los promotores 

de genes asociados con la adquisición de resistencia a la quimioterapia. 

Estudios que realizaremos en cáncer colorectal y en tumores germinales 

testiculares.   

2. Evaluar si los cambios en los patrones de metilación juegan un papel en los 

procesos de adquisición de resistencia a dacarbazina y a agentes platinados, 

como el oxaliplatino y el cisplatino. 

3. Evaluar el valor pronóstico y/o predictivo de respuesta a la quimioterapia de los 

nuevos potenciales marcadores identificados.  

 

MATERIALES Y MÉTODOS: El gen estudiado en el primer artículo, O6-methylguanine 

DNA methyltransferase (MGMT), un gen de reparación del ADN, ha sido seleccionado 

en base a previos datos publicados por nuestro grupo. En el segundo estudio, 

analizamos el perfil diferencial de metilación de promotores de genes en un modelo in 



                                                                                             RESUMEN GLOBAL 
 

6�
�

vitro de resistencia adquirida al oxaliplatino. Así lo analizaremos en la línea celular de 

cáncer de colon (LoVo-S) y su línea derivada, diez veces más resistente al oxaliplatino 

(LoVo-R). El análisis será realizado empleando el array de metilación Human DNA 

Methylation 27K IlIumina cuyas sondas, distribuidas estratégicamente por todo el 

genoma, permiten detectar cuantitativamente el estado de metilación de 27.000 

dinucleótidos citosina/guanina (CpG), distribuidos en 14.495 genes. Los genes 

candidatos fueron posteriormente validados por secuenciación genómica del ADN 

modificado por tratamiento con bisulfito, seleccionando  el gen protein kinase C delta 

binding protein (SRBC), un gen supresor tumoral para estudios in vitro y en muestras 

de pacientes. En los tumores primarios de pacientes, el estado de metilación del 

promotor de los genes MGMT y SRBC ha sido analizado mediante una reacción en 

cadena de la polimerasa, especifica de metilación (MSP). El impacto clínico de la 

metilación de estos dos genes en pacientes con cáncer colorectal metastásico se 

evalujó por curvas de Kaplan-Meier, donde se estudio la posible correlación entre 

metilación y tasa de respuesta al tratamiento, tiempo a la progresión y supervivencia 

libre de progresión. Siguiendo la misma metodología, también investigamos el impacto 

clínico de la metilación del gen MGMT en pacientes con cáncer testicular de células 

germinales. Este gen fue seleccionado a partir de estudios epigenéticos diferenciales 

de modelos tumorales generados por implantación ortotópica de tumores primários en 

ratones atímicos (concocidos como patient-derived xenografts u orthoxenografts) y de 

su evaluación in vivo en modelos de resitencia adquirida al cisplatino. De forma 

adicional mediante estudios de hibridación genómica comparada (CGH) de los mismos 

modelos tumorales, seleccionamos un conjunto de genes diferencialmente alterados 

entre tumores sensibles y resistentes al cisplatino. Así, entre estos está incluido el gen 

glucosyl ceramide synthethase (GCS), habiendo sido profundizado en este trabajo su 

importancia en la adquisición de resistencia. 

 
RESULTADOS: Estudio 1: Se incluyeron 68 pacientes con cáncer colorectal 

metastásico y se evaluó la metilación del promotor del gen MGMT. Dos pacientes (2%) 

alcanzaron una respuesta parcial y ocho (12%) consiguieron la estabilización de la 

enfermedad. La tasa de control de enfermedad (respuesta parcial + enfermedad 

estable) se asoció significativamente con la metilación del promotor del gen MGMT.  

 

Estudio 2: Identificamos que la resistencia adquirida al oxaliplatino en líneas celulares 

humanas de cáncer colorectal se asocia con la inactivación del gen SRBC por 

hipermetilación de su promotor. En las dos cohortes independientes de pacientes con 

cáncer colorectal metastásico analizadas (Serie 1: n=131; y Serie 2: n= 58), el 
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promotor del gen SRBC se encontraba metilado en un 30% de los tumores primarios. 

La hipermetilación se asoció con una supervivencia libre de progresión menor, siendo 

especialmente importante en los casos tratados con oxaliplatino para los que no 

estaba indicada la cirugía de las metástasis (p=0,01 y p=0,045 para ambas cohortes 

respectivamente). 

 

Estudio 3: Mediante estudios comparativos en xenografts ortotópicos de tumores 

germinales tersticulares (no seminomas) sensibles vs. resistentes al cisplatino 

generados en ratones atímicos hemos identificado un grupo de genes potencialmente 

asociados con la adquisición de resistencia a esa droga. Así hemos identificado: GCS, 

ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G1 (ATP6V1G1), alpha-1-

microglobulin/bikunin precursor (AMBP), polymerase (DNA directed), epsilon 3, 

accessory subunit (POLE3), pregnancy-associated plasma protein A, pappalysin 1 

(PAPPA) y solute carrier family 31 (copper transporter), member 1 and 2 (CTR1/2). 

Estudios funcionales en líneas celulares humanas de cáncer testicular demuestran la 

importancia del gen GCS en los procesos de adquisición de resistencia al cisplatino. 

Además identificamos al agente químico DL-treo-PDMP, un inhibidor específico de la 

enzima GCS, como un re-sensibilizador de los tumores no seminoma refractarios al 

cisplatino. Siendo un ejemplo de reposicionamiento de un fármaco utilizado para otras 

enfermedades o drug repositioning.  

 

Estudio 4: Identificamos la hipermetilación del gen MGMT asociado con la resistencia 

al cisplatino en xenografts de tumores germinales testiculares del tipo no seminoma. 

Asociación que se confirmó en estudios en líneas celulares. La relevancia clínica fue 

establecida analizando el estado de metilación del MGMT en una serie clínica de 

pacientes con tumores germinales testiculares metastásicos (n=72). Serie que incluye 

casos refractarios a la quimioterapia. La metilación del promotor del gen MGMT se 

asoció con una supervivencia global (p=0,025). Estudios preclínicos en nuestros 

modelos de xenografts demuestran que la inactivación farmacológica del enzima 

MGMT con el inhibidor Oxigeno (O)6- benzilguanina en los tumores resistentes 

resensibilzaba estos tumores nuevamente al cisplatino. Adicionalmente la adición de 

temozolomida mejoraba la respuesta. Nuestra aproximación dá las bases para el 

desarrollo de un ensayo clínico que permita evaluar la utilidad terapeútica de la 

temozolamida en casos refractarios al cisplatino en pacientes con inactivación por 

metilación del gen MGMT. 
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Discusión: El proceso de resistencia a los tratamientos de quimioterapia, ya sea 

endógena o adquirida, es complejo y multifactorial, involucrando tanto eventos 

genéticos y/o epigenéticos. La mayoría de estudios se han centrado en la genética, 

siendo menos los estudios que han investigado la contribución de la epigenética. La 

hipermetilación del promotor de MGMT es uno de los ejemplos mejor conocidos, 

siendo un biomarcador de respuesta al tratamiento con temozolomida en gliomas. 

Para otros tipos tumorales, como el cáncer de colon y los tumores germinales 

testiculares, son pocos los estudios desde este punto de vista, no habiéndose 

identificado biomarcadores epigenéticos de una forma tan clara. En esta tesis 

profundizamos en el aspecto epigenético de la quimioresistencia en estos tumores, 

identificando dos nuevos biomarcadores.  

 

En cáncer colorectal, que representa la segunda causa más común de muerte por 

cáncer, encontramos que la hipermetilación del gen MGMT predice sensibilidad a la 

dacarbazina. Nuestras observaciones apoyan la hipótesis de que tumores colorectales 

metastásicos defectuosos en los mecanismos de reparación del ADN, son más 

susceptibles a este tipo de agentes quimioterapéuticos. Hecho análogo a lo descrito en 

gliomas, en relación a la temozolomida, un análogo de la dacarbazina. Los tumores 

que expresan MGMT tienen un sistema específico para la reparación de aductos de 

O6-metilo, el daño principal provocado por este tipio de agentes quimicos. Los tumores 

con inactivación/no expresión del gen presentan una mayor probabilidad de respuesta. 

Aunque la tasa de respuesta global en este estudio fue  baja, 2%, no nos podemos 

olvidar que son pacientes para los cuales no existe alternativa terapéutica. Este es una 

posible opción terapeútica para el subgrupo de tumores seleccionados en base al 

biomarcador, debido a que los tumores que respondieran a la dacarbazina fueron los 

que presentaban hipermetilación del promotor del gen MGMT. Además, la baja 

respuesta observada podría estar condicionada por el hecho de que los pacientes del 

estudio habían sido previamente tratados con varias líneas de quimioterapia, y 

posiblemente tuvieran comprometida la capacidad hepática, necesaria para activar la 

dacarbazina. En este sentido, el uso de la temozolomida, un agente alquilante análogo 

y que se activa de forma higado- independiente, podría ser una buena opción 

terapeúitca para el desarrollo de un nuevo ensayo clínico, estratificando en base del 

biomarcador. 

 

En un segundo estudio identificamos la metilación del promotor del gen SRBC en 

tumores colorectales asociada con la quimoresistencia al oxaliplatino, uno de los 

fármacos claves del tratamiento de este tipo de cáncer, tanto en adyuvancia como en 
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el cáncer avanzado. Este gen ha sido previamente descrito como un supresor tumoral. 

In vitro las células humanas de colon de cancer resistentes al oxaliplatino tambien 

presentavan hipermetilación del promotor de SRBC, así como su expresión 

disminuida. En estudios en series de pacientes con cáncer colorectal avanzado, 

estadio IV, la metilación predijo una supervivencia libre de progresión más corta. 

Nuestros datos basados en el análisis de series tumorales y en estudios in vitro 

sugieren que la metilación del promotor del gen SRBC sería más importante en la 

adquisición de resistencia al oxaliplatino, que en la resistencia propiamente intrínseca. 

Desde un punto de vista funcional el papel  de SRBC con respecto a la sensibilidad al 

oxaliplatino puede justificarse por su interacción con la proteína breast cancer 1, early 

onset (BRCA1), elemento clave de la maquinaria de reparación del ADN. Esta proteína 

ejerce un papel importante en la reparación del ADN de cadena doble, por lo que su 

deficiencia puede poner en peligro la capacidad de las células cancerosas en reparar 

los daños producidos en el ADN tras la quimioterapia. El platino, y por analogía sus 

derivados como el carboplatino y el oxaliplatino ejercen su acción tras unirse al surco 

mayor del ADN. El papel de la proteína SRBC, en este complejo mecanismo es 

desconocido. SRBC, ha sido identificada también interaccionando con caveolin 1, 

caveolae protein (CAV1), hecho que podría afectar el tráfico vesicular, y por tanto el 

transporte y procesamiento intracelular del fármaco.  

 

Aunque los tumors germinales testiculares son muy sensibles a las terapias basadas 

en el cisplatino (85%), incluyendo los pacientes metastásicos, todavía existe un 

porcentaje de pacientes jovenes con enfermedad diseminada (15%) que no se curan y 

fallecen a consecuencia de la enfermedad. Con nuestro trabajo basado en la 

generación de los únicos modelos u orthoxenografts que existen actualmente para el 

estudio de esta enfermedad hemos identificado dos genes que potencialmente se 

pueden regular farmacológicamente, con el fin de revertir la resistencia al cisplatino: 

GCS y MGMT. GCS es una proteína importante en la síntesis de glucosilceramidas, lo 

que permite a una célula escapar de la muerte inducida por ceramidas. Estudios 

publicados relacionan la alta expresión de esta proteína con el incremento de la 

resistencia celular a la doxorrubicina y a la daunorrubicina. Con nuestra investigación  

relacionamos también su elevada expresión con la aparición de resistencia al 

cisplatino en tumors testiculares tipo no seminoma. Respecto al gen MGMT, lo 

encontramos hipermetilado en los tumores no seminoma, sensibles al cisplatino. 

Ambas proteínas, GCS y MGMT posean inhibidores farmacológicos que se han 

propuesto o se están utilizando en el tratamiento de otras enfermedades/tumores. Los 

inhibidores de la síntesis de los glicoesfingolípidos han surgido como un nuevo 
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enfoque para el tratamiento de enfermedades metabólicas como Gaucher, Niemam-

Pick y la diabetes. Siendo el enzima clave de esta vía la GCS, existen ya inhibidores 

que están o bien en uso clínico o en diferentes fases de desarrollo, incluyendo 

Migustat, DL-treo-PDMP, EXEL-0346, etc. Nuestros resultados preclínicos demuestran 

que DL-treo-PDMP podría ser un importante candidato al desarrollo de un ensayo 

clínico con el objetivo de intentar resensibilizar al cispaltino pacientes con tumores 

testiculares de células germinales refractarios. Otra opción terapeútica sería la 

selección de pacientes refractarios  con hipermetilación/inactivación del gen MGMT, o 

su bloqueo farmacológico con los inhibidores tipo el O6-benzylguanina, seguidos del 

tratamiento con temozolomida más cisplatino. Tanto la O6-benzylguanina como la 

temozolomida han sido ya utilizados en diferentes fases de la clínica. Ambas en 

ensayos clínicos fase I y fase II. La temozolamida también en la clínica para el 

tratamiento de melanoma y glioma. Así, ambos tratamientos propuestos para el cáncer 

de testículo refractario se basarían en estrategias de reposicionamiento de fármacos o 

drug repositioning.  

 
CONCLUSIÓNES: 

1. Existen cambios en el perfil de metilación de los promotores de genes, en los 

modelos estudiados de quimioresistencia a la dacarbazina, oxaliplatino y cisplatino. 

 

2. El estado de metilación de los promotores de los genes MGMT y SRBC influye en 

la quimosensibilidad de los tumores, a diferentes agentes antineoplásicos. 

2.1. La metilación del promotor del gen SRBC se asocia con la adquisición de 

resistencia al oxaliplatino en cáncer colorectal avanzado. 

2.2. La hipermetilación del gen MGMT se asocia con sensibilidad a la dacarbazina 

en pacientes con cáncer colorectal metastásico; y al cisplatino en tumores 

germinales testiculares metástasico tipo no seminoma.  

 

3. El  estado de metilación del promotor del gen SRBC es un buen candidato a 

biomarcador predictivo de resistencia al oxaliplatino, en pacientes con cáncer 

colorectal metastásico, para los cuales no es indicada la resección de las 

metástasis. Por otra parte la metilación del promotor del gen MGMT podría ser 

utilizada como biomarcador predictivo de respuesta a la dacarbazina también en 

cáncer colorectal metastasico y al cisplatino, en cáncer testicular de células 

germinales. 
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4. Los estudios realizados en base a las líneas celulares y a los orthoxenografts de 

tumores germinales testiculares identifica dos genes (GCS y MGMT) como base 

para el desarrollo de nuevas aproximaciones terapéuticas resensibilizantes al 

tratameinto con cisplatino. 
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1. Cancer 
Cancer is a disturbance of one or more cellular activities that are crucial for the 

development and the maintenance of multicellular organisms, namely: growth, 

differentiation, programmed cell death, and tissue integrity. It is a malignant disease 

because frequently cancer cells invade into neighboring tissues and survive in this 

ectopic site. These cells that invade beyond the constraints of the normal tissue, from 

which they originate, enter into the circulation from where they can reach distant 

organs and eventually form secondary tumors, called metastases [1].  

 

To perform a cancer diagnosis several parameters need to be taken in consideration; 

the site of the tumor, the histological type of the cancer, its grade of differentiation and 

its extent of growth and invasion. Attention is also paid to the host cell reaction 

evidenced by the stroma, blood vessels and leukocytes. Because cancers are known 

to metastasize, clinically it is mandatory to search for secondary tumors in the lymph 

nodes and in distant organs [1]. 

 

Qualitative and quantitative criteria are used to stage and grade cancers for therapeutic 

and prognostic purposes. Staging of tumors is done following the volume of the primary 

tumor and its depth of invasion (T stage), the number of lymph nodes with invasion (N 

stage) and the presence of distant metastases (M stage)-TNM system [2].  

 

The above mentioned biological and clinical observations indicate that cancer is a 

disease caused by the accumulation of modified cells, disturbing differentiation and in 

most cases, causing loss of structure and function of the tissue and organ, leading to 

cancer cell invasion and cancer cell survival in an ectopic environment [3]. 

 

In order to get cell and tissue alterations a series of genetic and epigenetic changes 

occur in cancer cells (Figure 1). These genomic alterations occur in oncogenes and in 

tumor suppressor genes. In oncogenes, one allele is activated leading to gain of 

function, while in tumor suppressor genes, both alleles need to be inactivated leading 

to loss of function. Activation mechanisms of oncogenes implicate mutation, gene 

amplification, and promoter activation. Mechanisms of tumor suppressor genes 

inactivation are exemplified by loss of heterozygosity plus silencing of the second allele 

genetically, through mutation; or epigenetically, through deoxyribonucleic acid (DNA) 

methylation [4].  
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These molecular alterations arise mainly as a consequence of individual’s exposure to 

carcinogenic events that can be external factors (e.g. tobacco, infectious organisms, 

chemicals and radiation) or internal (e.g. inherited mutations, hormones, immune 

conditions and mutations that occur from metabolism). These causal factors may act 

together, or in sequence to initiate or promote the development of cancer [5]. 

 

1.1. Colorectal Cancer 
Worldwide, every year, more than 1 million of individuals will develop colorectal cancer. 

In the developed world the disease-specific mortality rate is nearly 33% [6]. Most of the 

tumors are sporadic (Figure 2A); fewer than 5% are hereditary, being Familiar 

Adenomatous Polyposis (FAP) and Hereditary Nonpolyposis Colorectal Cancer 

(HNPCC) the two recognized inherited forms (Figure 2B) [7]. The risk factors for 

developing colorectal cancer include a family history of this type of cancer, 

development of polyps, inflammatory bowel disease (e.g., ulcerative colitis), obesity, 

tobacco and alcohol abuse, high stress, and factors associated with the Western diet 

[8]. 

 

Colorectal cancer development is a multistep process and the vast majority of tumors 

are adenocarcinomas, which arise from preexisting adenomatous polyps that develop 
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in the normal colonic mucosa. This adenoma-carcinoma sequence is well 

characterized, and several molecular events that underlie the initiation and progression 

of colon cancer have been identified (Figure 2)[9, 10]. Traditionally colorectal cancer is 

explained by two pathways: 

 
i. The gatekeeper is responsible for about 85% of sporadic colorectal cancer and 

FAP syndrome. Mutation of the tumor suppressor gene adenomatous polyposis 

coli (APC) is one of the key steps in this pathway. This alteration interferes in 
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the regulation of cell proliferation via �-catenin. Many other tumor suppressor 

genes (eg. deleted in colorectal carcinoma and tumor protein p53 (TP53)) and 

oncogenes (eg. kirsten rat sarcoma viral oncogene homolog (KRAS) and v-myc 

avian myelocytomatosis viral oncogene homolog) are also involved [11]. These 

types of tumors have a molecular profile characterized by specific chromosomal 

amplifications and transformations, aneuploidy, and loss of heterozygosity [12]. 

 

ii. The caretaker pathway is responsible for 15% of sporadic colorectal cancer and 

the hereditary HNPCC syndrome. It is characterized by mutations or epigenetic 

changes of genes that maintain genetic stability like mismatch repair (MMR) 

genes (eg. mutL homolog 1 (MLH1) and mutS homolog 2). The aberrant 

function of these genes, results in microsatellite instability (MSI) phenotype. 

MSI is characterized by somatic alterations in the size of simple repeat 

microsatellite nucleotide sequences, common throughout the genome. As a 

consequence, genes containing simple repeat sequences, such as transforming 

growth factor beta receptor II, epidermal growth factor receptor (EGFR), or 

BCL2-associated X (BAX) [13], are often mutated in these tumors [12]. 

Colorectal malignancies demonstrating MSI have a very heterogeneous 

histological appearance and better prognosis [14].  

 

In fact the two pathways might not be completely separated and additional pathways 

could exist. For example, the serrated, flat and depressed colorectal neoplasms cases 

[15, 16]. Loss of imprinting and histone acetylation, as well as modifier genes, such as 

prostaglandin-endoperoxide synthase 2 and peroxisome proliferator-activated receptor 

gamma, also seem to be involved in the genesis of colorectal cancer [17]. 

 

If colorectal cancer diagnosis is made early when the disease is localized on the bowel 

mucosa, generally it is curable with over 90% probability of survival at 5 years [18]. 

However, a majority of the cases will eventually develop liver metastases, being this 

organ the most common metastasic target (50-60% of cases) [19]. Close to one third of 

patients have liver metastases either at the time of diagnosis (synchronous cases) or 

during the disease course (metachronous cases). Patients with metastasic colorectal 

cancer (stage IV), present a 5-year survival rate of 8% [20]. 

 

1.2. Testicular Germ Cell Cancer 
Testicular cancers, 95% of which are type II germ cell tumors, are the most common 

solid malignancies affecting males between 15 and 35 years, although it accounts for 
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only 2% of all cancers in men [21]. In addition, the worldwide incidence of these tumors 

has more than doubled in the past 40 years [22]. West and North Europe present the 

higher incidence rates in contrast to Asia and Africa. In Spain every year, 400-500 new 

cases are diagnosed [23]. 

 

Germ cell tumors arise from embryonic germ cells that fail to properly differentiate and 

instead, undergo malignant transformation [24]. This type of cancer occur in testis, but 

also in ovary and occasionally in extra-gonadal primary sites [25]. As we can see in 

Table I, they can be divided in five singular types, with different localization, phenotype 

and origin [24, 25]. Although testicular germ cell tumors are represented in three types 

of germ cell tumors (I, II and II), since we focus our posterior studies in testicular germ 

cell type II tumors (seminoma and non-seminoma tumors), from now on we will use 

testicular germ cell tumors, to refer only them. 

 

Seminomas are well circumscribed solid tumors that appear in patients between 30-40 

years old and correspond to 40% of the testicular germ cell tumors [26]. Non-

seminomas tumors appear in patients between 20 and 30 years, representing 50% of 

type II of testicular germ cell tumors. This last type of tumors presents different cell 

types, being classified in several sub-types like: embryonic cell carcinoma, 

choriocarcinoma, yolk sac tumor, and teratoma. Teratomas are considered to be either 

mature or immature, depending on whether adult-type differential cell types or partial 

somatic differentiation, similar to that present in the fetus are found [25].  

 

Testicular germ cell tumors that present one predominant histological pattern are rare 

and normally a mixture of multiple histological types is represented [26]. As we can see 

in Figure 3 this can be due to the capability of pre-germinal cells to be reprogrammed 

[27]. 
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For treatment purposes, two broad categories are recognized: pure seminomas and all 

others, which together are termed non-seminoma. When both elements are present in 

a tumor, treatment is made as if it was a non-seminoma tumor, since this type is more 

aggressive [26]. 

Most of the testicular germ cell tumors are sporadic, although familiar clustering has 

been observed (� 2%), particularly among siblings [28]. Several risk factors have been 

identified, including: positive testicular germ cell tumor family history [29], 

cryptorchidism or testicular dysgenesis [30], Klinefelter syndrome, the presence of a 

contralateral tumor [31] or testicular intraepithelial neoplasia and infertility [25, 32]. 

 

At molecular level little is known about these tumors but many of them have complex 

karyotypes, with hipo or hyper-triploid index [33]. The most common chromosomal 

abnormalities identified are an ishochromosome of the short arm of chromosome 12 in 

90% of cases [34] and the amplification of chromosome 17q in 70% [35]. Other genetic 

alterations that have been described are a deletion of 1.6 mega bases (designated 

gr/gr) in chromosome Y [36], a point mutation in V-kit Hardy-Zuckerman 4 feline 

Table I: The five types of germ cell tumor 

Type Anatomical 
site 

Phenotype Age
 

Originating cell 

I 

Testis/ ovary/ sacral 
region/ 

retroperitoneum/ 
mediastinum/ neck/ 
midline brain/ other 

rare sites 

(Immature) 
teratoma/yolk-sac 

tumor 

Neonates and 
children 

Early PGC/ 
gonocyte 

II 

Testis 
Seminoma 

/non-seminoma 

>15 years 
(median age 35 
and 25 years) 

PGC/ 
gnonocyte 

Ovary Dysgerminoma/non-
seminoma >4 years PGC/ 

gnonocyte 

Dysgenetic gonad Dysgerminoma/non-
seminoma Congenital PGC/ 

gnonocyte 
Anterior mediastinum 

(thymus) 
Seminoma/non-

seminoma Adolescents PGC/ 
gnonocyte 

Midline brain/(pineal 
gland/hypothalamus 

Germinoma/non-
seminoma 

Children 
(median age 13 

years) 

PGC/ 
gonocyte 

III Testis Spermatocytic 
seminoma >50 years Spermatogonium/spermatocyte 

IV Ovary Dermoid cyst Children/adults Oogonia/oocyte 

V Placenta/ 
uterus Hydatidiform mole Fertile period Empty ovum/spermatozoa 

PGS: Primordial Germ Cell 
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sarcoma viral oncogene homolog (KIT) [37], hipomethylation of LINE1 

retrotransposable element 1 [38], over-expression of micro RNA-371-3 [39] and the 

familiar segregation for genes found in the locus Xq27 [40]. Other factors related with 

the increased risk of appearance of testicular germ cell tumors are reduced levels of 

androgen hormone during teenage period [41], pre-birth hypertension or infections with 

Epstein-Bar or cytomegalovirus [42, 43] or even the environment [44]. 

 

Tumors markers like �-fetoprotein (AFP), beta subunit human chorionic gonadotropin 

(�-hCG) and lactate dehydrogenase (LDH) have an established role in the 

management of testicular cancer. AFP is the major serum protein of the fetus. It is not 

found in adults, with exception for some hepatic disorders or in young males with a 

malignant teratoma. �-hCG is a placental hormone. Its detection in males implies the 

presence of testicular germ cell tumors that presents throphoblastic elements. LDH is 

an enzyme that is expressed in cardiac and skeletal muscle as well as in other organs, 

although it is often found in testicular germ cell tumors [45]. 

 

2. Cancer Treatment  
Therapeutic procedures for cancer patients still remain largely empirical. Treatment 

depends upon a variety of individual factors, which may include the specific 

pathological and molecular characteristics of the tumor, its location, extent of disease 

and the health status of the patient. The ultimate objective is to destroy all cancer cells 

whilst inflicting minimal damage on the normal tissue. This can be achieved in a 

number of ways, either directly or indirectly by depriving cancer cells of signals needed 

for cellular proliferation or by stimulation of the immune response [46]. 

 

There are several types of treatment, which may be used alone or in combination, 

either simultaneously or sequentially: surgical removal (resection), radiation exposure 

(radiotherapy) and use of antineoplasic agents. Cancer resection is the first choice, 

being most of times curative for patients with tumors in early stage. The use of 

antineoplasic agents involves molecules of different origin, mainly chemical drugs 

(chemotherapy) and biological agents (e.g. antibodies, small molecules, 

immunotherapy and gene therapy) [46]. Treatment with antineoplasic agents and/or 

radiotherapy can be applied after tumor resection, in order to kill some possible 

remaining cells (adjuvant or postoperative regimen) or as a first approach, in order to 

reduce tumor size with the intent of after proceed to its resection (neoadjuvant 

regimen). After neoadjuvant setting there are some patients that still not fill the surgery 
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criteria. In order to try an improvement of its quality of life it is applied the palliative 

treatment [47]. 

The concepts: response rate, overall survival, progression free survival, and time to 

progression, will be now introduced, since they will be crucial in the next points. They 

will be explained in the chemotherapy treatment context [47].  

 
Response Rate is the percentage of patients whose tumor shrinks or disappears when 

they are under a treatment.  

 

Overall Survival is the percentage of patients who are still alive after a certain period 

of time, since their cancer diagnosis. The overall survival is often stated as a five-year 

survival rate, which is the percentage of people in a study or treatment group that lives 

five years after their diagnosis. It can be also called survival rate. 

 

Progression Free Survival is the time-span from diagnosis until tumor progression 

takes place. In a clinical trial, measuring the progression free survival or time to 

progression is one way to see how well a new treatment works. 

 

Time to Progression is the length of time in which the disease is present but it does 

not get worse. 

 

Because of tumors heterogeneity (site of origin, stage, and other molecular 

characteristics) and different adaptation of tumor cells to therapy with antineoplasic 

agents, evaluation of successful regimens and improvement of the rate response to 

treatment are complicated and sometimes deceptive. Reduction or stabilization of 

tumor mass, decline of symptoms, and decrease levels of specific tumor biomarkers in 

serum, rather than 5-year overall survival, represent the main goals in treating and 

monitoring patients outcome to different treatment regimens [48]. 

 

2.1. Chemotherapy 
Chemotherapy can be defined as the treatment of cancer with chemical drugs. The first 

example of its use in clinical practice involved the treatment of a malignant lymphoma 

with nitrogen mustard [49]. Medical intervention in cancer continues to rely heavily on 

chemotherapy, being used in all clinical settings – from adjuvant treatment to palliation. 

 

The excessively active growth-signaling pathways in cancer cells makes them 

susceptible to a wide range of drugs which target growth-signaling molecules and/or 
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processes involved in cellular replication and gene expression. However, these 

processes also happen in normal cells, particular in the bone marrow constituents and 

those of the intestinal lining, being the drugs effect in cancer cells preferential but not 

exclusive, which results in the undesired side-effects. The relatively wide spectrum of 

activity of cytotoxic drugs makes them a rather harsh and non-specific form of 

treatment that can only be tolerated for short periods. Indeed the effects of the 

treatment may sometimes cause more distress than the disease. These side-effects 

include dry flaky skin, loss of hair, nausea and vomiting, changes in taste and appetite, 

blood clotting problems, fatigue, depressed immune system and possible sterility. Most 

side-effects subside after the treatment is over, but sometimes there is permanent 

damage to the kidneys, heart, lungs or reproductive system. In general, however 

benefits outweigh the disadvantages, chemotherapy is the commonest form of cancer 

therapy [46]. 

 

Chemotherapy drugs can be divided into three major groups on the basis of their mode 

and site of action: genotoxic agents; antimetabolites and mitotic spindle inhibitors 
(Figure 4) [46, 50].  

 
Genotoxic agents either bind to DNA or indirectly damage it by affecting enzymes 

involved in replication, which leads to cell death induction. This class of drugs may be 

subdivided into three different groups. 1) Alkylating agents modify DNA bases leading 
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to mutations and bases cross-linking, interfering with replication and transcription (e.g. 

dacarbazine, temozolomide); 2) intercalating agents, chemicals that bind to DNA, 

interfering with polymerase activity during replication/transcription (e.g. cisplatin and 

oxaliplatin) and 3) enzyme inhibitors, agents that block replication by inhibiting 

enzymes, such as topoisomerases (e.g. etoposide and irinotecan) [46]. 

 
Antimetabolites include: 1) folate antagonists or antifolates are inhibitors of the 

folates, co-enzymes required for methylation and necessary for the formation of 

purines (e.g. methotrexate and pemetrexed); 2) pyrimidine antagonists block pyrimidine 

nucleotide formation or cause premature termination by themselves being incorporated 

into newly synthesized DNA (e.g. 5-fluororacil (5-FU) and gemcitabine); and 3) purine 

antagonists inhibit adenine and guanine synthesis (e.g. 6-mercaptopurine and 6-

thioguanine) [46]. 

 

Mitotic spindle inhibitors disrupt mitosis by affecting the formation/function of spindle 

microtubule fibers required for chromosome alignment. They prevent the 

polymerization of tubulin monomers and act in a cell cycle-dependent manner. They 

also affect normal cells but to a much lesser extent, due to the lower frequency of cell 

division (e.g. plant-derived vinca alkaloids and taxanes) [46]. 

 

Since the projects that came out from this thesis are related with specific genotoxic 

agents, like dacarbazine, temozolomide, oxaliplatin and cisplatin, these drugs will be 

described in a more detail. 

2.1.1. Dacarbazine 

Dacarbazine is a synthetic analog of a naturally occurring purine precursor (Figure 
5A). After intravenous administration this drug is enzymatically activated in the liver. 

The mechanism of action is not well understood, but appears to exert cytotoxic effects 

via its action as an alkylating agent (e.g. DNA damage). Other theories include DNA 

synthesis inhibition by its action as a purine analog. As with other alkylating agents, 

cells in all phases of the cell cycle are susceptible to dacarbazine. It is the most active 

agent used in metastatic melanoma and can be also combined with doxorubicin and 

other agents in the treatment of different sarcomas and Hodgkin’s disease [51, 52]. 

 

2.1.2. Temozolomide 
Temozolomide is a cytotoxic pro-drug and an imidazotetrazinone derivate of 

dacarbazine that, when hydrolyzed, inhibits DNA replication by methylation or 
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alkylation of nucleotide bases (Figure 5B). O6 position from guanine base is the 

preferred target for temozolomide action (70% of adducts) [53]. Clinical response to 

temozolomide is closely linked to the activity of MGMT, a DNA repair protein that 

removes O6-alkylguanine adducts from DNA [54]. Both in vitro and in vivo preclinical 

studies have shown that temozolomide is active against a variety of tumor types. Of 

particular interest is its clinical efficacy in patients with malignant glioma or malignant 

melanoma and its ability to enhance health related quality life [55, 56].  

 

2.1.3. Cisplatin  
Cisplatin (Figure 5C) is a platinum analog that has demonstrated efficacy against 

several tumor types. It is highly effective in the treatment of testicular and ovarian 

cancers and is also employed for treating bladder, cervical, head and neck, 

esophageal, and small cell lung cancer [57]. However tumors such as colorectal cancer 

have intrinsic resistance to it, while others develop resistance after initial treatment [58]. 

 

Once cisplatin has been intravenously administrated to a patient, it is rapidly diffused 

into the tissues and highly bond to plasma proteins [59]. The mechanism by which it 

crosses the cellular membrane is still unclear. At first, it was believed that cisplatin 

entered the cell by passive diffusion [60]. However several transporters, including the 

sodium+, potassium- adenylpyrophosphatase, ATP monophosphatase, triphosphatase, 

SV40 T-antigen, adenosine 5'-triphosphatase, ATP hydrolase, complex V 

(mitochondrial electron transport), (Calcium2+ + Magnesium2+)-ATPase, HCO3�-

ATPase, adenosine triphosphatase (ATPase) and members of solute carrier 

transporters (CTR1 and CTR2) have been implicated in facilitating the entry of this 

compound into the cells [61, 62]. The organic cationic transporters, solute carrier family 

22 proteins had also been shown to participate in cisplatin influx [63]. Thus, cisplatin 

can enter cells by passive or facilitated diffusion and by active transport. 

 

The biochemical mechanism of cisplatin cytotoxicity involves its binding to DNA but 

also to non-DNA targets (e.g. proteins and ribonucleic acid (RNA)) with subsequent 

induction of cell death through apoptosis, necrosis or both. The damage induced upon 

cisplatin binding to genomic DNA may interfere with normal transcription and/or DNA 

replication mechanism [60]. Genomic DNA adducts are more frequent in guanine 

residues, especially the ones located in the major groove of the double helix, since they 

are the most accessible and reactive nucleophilic sites for platinum compounds (mono-

adducts). Beside this it can be produced other types of DNA adducts like: intra- and 

inter-strand cross-links and protein-DNA cross-link [64]. Cisplatin DNA-adducts are 
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usually repaired by nucleotide excision repair, MMR and DNA-dependent protein 

kinase pathways [65]. 

 

Besides lesions in genomic DNA, it is also known that cisplatin forms a high amount of 

adducts with mitochondrial DNA. So it should not be ruled out the possibility that 

mitochondrial DNA may also be an important pharmacological target for cisplatin [66]. 

Hence, of interest is the observation that only 5% of covalently bond cell associated 

cisplatin is found in DNA fraction, whereas 75-85% of the drug binds to protein and 

other cellular constituents. The resulting inactive forms, involving small thiol molecules 

such as glutathione, cysteine or methionine, then participate in cisplatin detoxication 

[67]. What concerns to cisplatin efflux, the adenosine tri-phosphate (ATP) dependent 

glutathione-conjugated efflux pump and copper (Cu) transporters like ATPase, Cu++ 

transporting (ATP7) A and ATP7B have been implicated [63]. 

 

2.1.4. Oxaliplatin 
It has been used as an anticancer medication since 1999, together with 5-FU, for the 

treatment of colorectal cancer [68]. This chemical drug is a third generation platinum 

compound, which acts similarly to cisplatin, but it has activity in cisplatin-refractory 

tumor types [69]. The difference with its analog is the possession of a bulky 

diaminocyclohexane moiety and the presence of an oxaliplatin leaving group (Figure 
5D). Due to this fact, oxaliplatin and cisplatin adducts have biological properties slightly 

different, not showing full cross-resistance and being the first drug more efficient in the 

DNA synthesis inhibition. Differences also have been described in intracellular 

cascades induced by DNA damage [70]. Different from cisplatin, oxaliplatin-DNA 

adducts are not able to activate MMR system and, for this reason, this drug is effective 

in MMR deficient tumors, such as colorectal cancer. Oxaliplatin DNA-adducts are 

mainly repaired by nucleotide excision repair system [69]. 

 

Passive diffusion is believed to be the main mechanism in oxaliplatin cellular uptake 

[70]. Once inside the cell, a variety of mechanisms of action are triggered. Induction of 

DNA lesions, like it happens with cisplatin, seems to be the main cytotoxic effect, 

leading to cell cycle arrest and cell death [71]. However other mechanisms were 

described. For example the synthesis of messenger RNA is blocked by platinum-DNA 

adducts which either bind to transcription factors or inhibit RNA polymerase [72]. 

Furthermore oxaliplatin seems to induce immunogenic signals on the surface of cancer 

cells before apoptosis, triggering interferon gamma production and interaction with toll-

like receptor 4 on the dendritic cells, resulting in the immunogenic death of cancer cells 
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[73]. Oxaliplatin-adducts have been also detected in proteins and other 

macromolecules (e.g. RNA and glutathione) [70]. 

 
2.2. Antineoplasic Agents in Metastasic Colorectal Cancer Therapy 
In general, antineoplasic agents based therapy given to colorectal stage IV patients, 

metastasic patients, pretends an increase in survival and a life quality improvement 

[74]. There are some patients with metastasis that can go under surgery (Figure 6), 

and others that cannot, depending this on metastases number, size, and/or sites of 

involvement [19, 75]. Surgery of liver metastasis for which the margins of the removed 

tissue are free from cancer cells, is related with 30-40% of overall survival at 5 years. 

Important refer that 15% of liver metastasis that cannot be removed at diagnosis time, 

can be removed after neoadjuvant therapy [76].  

 

Over thirthy five years, the only agent available to treat metastasic colorectal cancer 

was 5-FU, followed by 5-FU regimens in combination with leucovorin in the 1990s [77]. 

However, in the last decade, three cytotoxic agents (irinotecan, oxaliplatin, and 

capecitabine) and two biologic agents (bevacizumab and cetuximab) have been 

approved for treatment of metastasic colorectal cancer [77].  

 

Irinotecan was initially introduced as therapy for metastasic colorectal cancer refractory 

patients to 5-FU+leucovorin, being implemented as a second line treatment [78]. 

Clinical trials using irinotecan+5-FU+leucovorin (FOLFIRI) showed an improvement of 

response rate, median overall survival and progression free survival. Thus this 

combination replaced 5-FU+leucovorin as the standard therapy for metastasic 
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colorectal cancer [79]. Lately, the same results were observed when oxaliplatin was 

combined with 5-FU+leucovorin (FOLFOX). Because of this, FOLFOX also became a 

standard of care in metastasic colorectal cancer [79]. Clinical studies comparing the 

application order of the chemotherapy schemes (FOLFIRI+FOLFOX or 

FOLFOX+FOLFIRI) in first and second line treatment did not show significant benefit 

differences [75]. Actually they are being used without any specific order. 

 
On the other hand, triple combination of 5-FU+leucovorin, oxaliplatin, and irinotecan, 

(FOLFOXIRI) was also compared with FOLFIRI in the first-line setting. Although 

FOLFOXIRI conferred significant benefit in progression free survival, overall survival 

and response rate, it was more toxic [80]. Given this fact and the lack of consensus on 

its superiority over standard therapy, this regimen is sparingly used in practice. 

 

In 2005 capecitabine, an oral fluoropirimidine, analogue of 5-FU, was introduced in 

metastasic colorectal cancer treatment. New capecitabine based scheme seemed to 

be as effective as the ones based in 5-FU, previously described [81]. 
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Other agents beside chemotherapeutic drugs were developed for the treatment of 

metastasic colorectal cancer. The synergic role of the biological agents plus the 

traditional chemotherapy is actually accepted, being they used in addition. They are 

biological agents like, cetuximab, panitumumab and bevacizumab. 

 

Cetuximab and panitumumab are monoclonal antibodies that block epidermal growth 

factor (EGF) binding site, inactivating EGFR [18]. EGFR is a trans-membrane receptor 

that belongs to a family of four related proteins (v-erb-b2 avian erythroblastic leukemia 

viral oncogene homolog (ERBB) 2, ERBB3, and ERBB4). After ligand activation, EGFR 

receptor forms a dimer that signals within the cell by autophosphorylation, through 

tyrosine kinase activity. This triggers a series of intracellular pathways that may result 

in cell proliferation, block of apoptosis, invasion and/or angiogenesis [82].These 

biological agents have shown clinical activity, either alone or in combination with 

irinotecan, in pre-treated metastasic colorectal cancer patients, generating interest for 

their use in first-line [83]. Although based in results from different clinical trials the use 

of anti-EGFR agents for metastasic colorectal cancer treatment should be limited to 

those patients with KRAS wild type [84, 85]. Moreover, it should be remembered that, 

also in this case, other mechanisms of escape, such as v-raf murine sarcoma viral 

oncogene homolog B (BRAF) gene mutations, or deregulation of the 

phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3A)/ 

phosphatase and tensin homolog / v-akt murine thymoma viral oncogene homolog 1 

(AKT) pathway, may bypass the EGFR inhibition by these agents [86, 87]. The 

combination of these agents with 5-FU plus irinotecan have been proven to be effective 

at first-line and second-line of metastasic colorectal cancer treatment, contrary to the 

observed in oxaliplatin-based combinations [88] . 

 

Bevacizumab is a humanized monoclonal antibody that binds to and sequesters 

vascular epidermal growth factor avoiding it binding with its receptor and consequent 

inactivation [18]. It has been approved in United States and Europe for the first-line 

treatment of patients with metastasic colorectal cancer [89]. The vascular epidermal 

growth factor receptor pathway plays a crucial role in tumor angiogenesis, and its 

blockage has been intensely pursued as a therapeutic target. Although the absence of 

benefit as a single-agent, it has been evaluated it effect also in combination with the 

standard chemotherapy regimens mentioned above [90]. The first trial showing a 

benefit for the use of bevacizumab in first-line of treatment was the comparison of 

5FU+leucovorin+bevacizumab versus 5FU+leucovorin+placebo. The first combination 

led to an improvement in overall survival and in progression free survival [91]. Further, 
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bevacizumab was approved to be combined with standard schedules established for 

metastasic colorectal cancer treatment. 

 

At the present time, to patients with metastasic colorectal cancer is typically 

administered a first-line chemotherapy regimen that is continued until documented 

disease progression. At progression,� treatment is switched to a regimen with 

demonstrated activity in the refractory disease setting. This pattern of treatment until 

progression and then switching to non-crossresistant therapies continues until the 

patient has received all five active classes of agents. At that point, patients may be 

referred for Phase I clinical trials or provided with symptom-directed care [75]. It has 

been shown that patients that received different lines of treatment, in which there is a 

variability of drugs compounds, present an increase survival [92].  

 

2.3. Metastatasic Non-seminoma Testicular Germ Cell Cancer Therapy  
Nowadays, management of testicular germinal cell tumors is tailored using a universal 

applicable schema that was drawn up by the International Germ Cell Cancer 

Collaborative Group (IGCCCG) [93]. Non-seminoma patients based on this schema are 

divided into good, intermediate and poor prognosis. In the context of non-seminoma, 

AFP, �-hCG, and LDH levels are reliable markers of tumor burden, prognosis, and 

response to treatment [94, 95]. 

 

For 70-75% of non-seminoma patients that at diagnostic time present a clinical early 

stage disease, orchidectomy (resection) alone is curative [96]. Thirty percent of non-

seminoma patients have already metastases at diagnosis. In this type of cancer the 

pattern of metastases is not predictable although the most common sites are 

retroperitoneal lymph nodes, mediastinal and supraclavicular nodes, lungs, brain and 

bone [97]. 

 

Cisplatin based combination chemotherapy, introduced in the 1978 has revolutionized 

the management of metastasic germinal cell tumors exceeding the cure rates the 80%. 

No patient with germ cell cancer, no matter how ill at diagnosis, should be considered 

beyond prospect of cure. Standard therapy for non-seminoma, including the metastasic 

cases, combines cisplatin with etoposide and bleomycin (BEP regimen) [98]. During 

chemotherapy, serum markers are checked regularly and should fall to normal levels 

as disease responds. When negative, surgery is an option to remove residual lesions 

[99]. While first chemotherapy treatment is curative for many, up to 50% in poor 

prognosis category will progress or relapse [99]. 
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In contrast to initial therapy, second line treatment for non-seminoma is less well 

defined and presently there is not a well-established standard therapy. Nevertheless, 

treatment is still curative in approximately a third of the cases. Decision depends on 

different parameters such as the nature of the initial treatment and the subsequent 

response, the localization, and the time since treatment [96, 99]. Salvage conventional 

chemotherapy including ifosfamide, in combination with vinblastine or specially 

paclitaxel [100] associated with surgery of postchemotherapy residual masses when 

they are present is the most used strategy [101]. Moreover twenty to forty percent of 

patients who relapse after adjuvant treatment will achieve long-term survival with the 

use of platinum-containing standard-dose or high-dose salvage chemotherapy with 

autologous stem cell support [102, 103] (Figure 7). Patients who progress during or 

after salvage chemotherapy exhibit an extremely poor prognosis and long-term survival 

is achieved in less than 5% of patients [104, 105]. The identification of new active 

drugs remains a priority in these patients.  

 
Like in many cancer types, target therapy has also been used in non-seminoma 

treatment. Sunitinib, an inhibitor of multiple receptor tyrosine kinases, was the first 

targeted substance to be tested in the treatment of cisplatin resistant non-seminoma, 

although the results were disappointing [106]. 
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2.4. Chemoresistance 
Although chemotherapy drugs often effectively suppress tumor growth in cancer 

patients, a significant proportion of tumors either do not respond (intrinsic or primary 

resistance), or later develop resistance to these chemotherapeutics, after primary 

therapy (acquired or secondary resistance) [107]. This leads to tumor progression, 

disease dissemination and ultimately patient mortality, which remains a major 

challenge for successful cancer treatments [48]. Therefore the identification and 

characterization of cellular genes responsible for chemotherapeutic drug resistance is 

critical for successful prognosis and treatment of cancer. 

 

2.4.1. Potential Mechanisms of Chemoresistance 
The problem of drug resistance is complex and some mechanisms were suggested as 

responsible for its appearance. Resistance can be due to different processes including 

alterations in the drug uptake, drug inactivation, alteration of the target molecules, 

enhanced DNA repair, replicative bypass, altered checkpoints, proliferative signals, and 

reduced cell death response (Figure 8) [107]. 
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2.4.1.1. Drug Uptake  
Access of drugs to their intended site of action is a problem that is encountered and 

must be regarded as a form of resistance. The central portion of large tumors tends to 

have a poor blood supply and drugs will have limited access to this area. Therefore, 

chemotherapy is more effective for smaller tumors and becomes less effective as the 

tumor becomes larger. Treatment of brain tumors also faces problems posed by the 

blood-brain barrier. This is a dynamic network of vessels, which restrict movement of 

molecules into the central nervous system. Many drugs are ineffective because they 

cannot pass through this barrier. Others, which may initially have been able to 

penetrate inside, may later be blocked due to the dynamic nature of this resistance 

[108]. 

 

Other problem that can arise is the ineffective drug delivery to the cellular environment. 

Here resistance is achieved by hindering transport into, or by over-activation of 

transport efflux in the cell [107]. Alterations in transporter and metabolic enzymes are 

associated with differences in drug absorption, distribution, metabolism and excretion, 

and are considered to be the major determinants of inter-individual variability. For 

example, decreased uptake/increased efflux of cisplatin leads to lower intracellular 

concentrations of drug. Most in vitro models of acquired resistance to cisplatin exhibit a 

2- and 4-fold decrease in platinium accumulation [109]. Recent reports describe that 

cisplatin resistant tumors over-express some members of the efflux family ABC-

ATPase transporters, as ATP-binding cassette, sub-family C (CFTR/MRP), member 1 

[110]. The members of this family have been associated with resistance to drugs of 

different origin, as oxaliplatin or temozolomide, leading also to multidrug resistance 

phenotype. 

 

2.4.1.2. Drug Inactivation  
Drug metabolism circumvents the cytotoxic nature of a drug typically by reducing 

availability of free drug to interact with its target. One way is the enhancement of 

hepatic drug elimination, with the decrease of drug concentration in the plasma. 

Another physiological response is the over-expression of drug metabolizing enzymes 

or carrier molecules. For example 5-FU is catabolised and inactivated by the cytosolic 

enzyme dihydropyrimidine dehydrogenase [111]. Over-expression of this protein both 

in vitro and in vivo is linked to 5-FU resistance [112]. Another example is the over-

expression of glucoronidation enzymes UDP glucoronosyltransferase in irinotecan 

resistance [113]. Other mechanisms, as ubiquitinization, also contribute to inactivation 

of drugs by forming conjugates that are excreted [114]. 
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By contrast, under-expression of drug-metabolizing enzymes can also reduce drug 

efficacy in situations where an administered inactive pro-drug has to undergo catalytic 

conversion to an active form. For instance, carboxilesterase lack of activity in the liver 

to convert irinotecan and capecitabine in their active metabolites has been related to 

resistance to these drugs [115, 116]. 

 

Platinium drugs such cisplatin and oxaliplatin are able to form conjugates with the 

antioxidant glutathione synthetase, resulting in the inactivation of these drugs [117]. 

This conjugated form is a substrate for ABC transporter proteins, thus, it is shuttled out 

of the cell [118]. Increased levels of glutathione synthetase have been identified in 

cancer cells resistant to platinum drugs [119]. Glutathione synthetase conjugation is 

catalysed by glutathione S-transferase kappa 1 enzyme family, with increased 

expression of the glutathione S-transferase pi 1 subgroup correlated with resistance to 

cisplatin in ovarian cancer cells and tumors [120]. Furthermore, repression of 

glutathione synthetase has reversed cisplatin resistance in breast cancer cells [121]. 

 

2.4.1.3. Altered Targets 
Mutated drug targets or their over-expression can impact the efficacy of a drug. For 

example, the expression levels of thymidylate synthetase, the primary target molecule 

of 5-FU, regulates chemosensitivity to this drug [122]. It has been described some 

polymorphisms in the correspondent gene: two in the promoter region related to over-

expression of this protein and one 6 base pair deletion in 3’untranslated region, related 

with messenger RNA stabilization. All of them have been associated with resistance to 

5-FU [123, 124]. In another instance, decreased topoisomerase I or II activity due to 

reduced protein or mutations in the correspondent gene confers resistance to 

irinotecan or doxorubicin respectively [125, 126]. Topoisomerases are enzymes that 

regulate the overwinding or underwinding of DNA, for example during replication or 

transcription. 

 

2.4.1.4. Enhanced DNA repair and Replicative bypass 
Many chemotherapeutic regimes attempt to induce massive DNA damage, either 

directly (e.g. dacarbazine) or indirectly (e.g. doxorubicin). If plentiful enough, this 

damage should induce cell death. However, in some instances, the over-expression of 

DNA repair genes can efficiently reverse any acquired damage. For example, platinum 

agents result in bulky DNA adducts and are predominantly repaired by the nucleotide 

excision repair pathway [127]. Although this pathway involves multiple different genes, 
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over-expression of some few rate-limiting players (e.g. excision repair cross-

complementing rodent repair deficiency, complementation group 1 and xeroderma 

pigmentosum, complementation group A) is sufficient to induce platinum resistance. 

These genes are involved in the excision of the damaged strand and its over-

expression is correlated with cisplatin resistance in clinical samples of numerous tumor 

types [128, 129]. 

 

Interestingly, cases of resistance are also reported in repair system deficient cells, like 

for some platinum drugs. Drug tolerance can be achieved without the need for DNA 

repair. For example in order for platinated DNA to be replicated, DNA polymerase must 

skip the platinum adduct, which is most commonly an intrastrand lesion. The classic 

DNA replication polymerases –�, �, and � – cannot bypass the lesion; however, several 

polymerases have been shown to bypass intrastrand crosslinks by translesion 

synthesis –namely, �, �, 	, and 
. Over-expression of DNA polymerase � has been 

shown to lead to cisplatin resistance, while down-regulation using anti-sense RNA 

leads to sensitivity. Polymerase 	 has been shown in MMR deficient cells to play a role 

in DNA tolerance and bypass of lesions. The MMR system is critical for the 

maintenance of genomic stability as it scans newly synthesized DNA, excising single-

base mismatches and insertion-deletion loops. The loss of MMR was linked to DNA 

methylation and MSI phenomena [130]. Cisplatin resistance has been attributed to 

defects in the MMR system arising from hypermethylation of the MLH1 promoter [131]. 

Fascinatingly, cell lines which have been shown to be resistant to cisplatin due to MMR 

defects remain sensitive to oxaliplatin [132]. This observation has been attributed to the 

structural differences between the cisplatin DNA-adduct and the bulky oxaliplatin DNA-

adduct, which are not recognized by the MMR system [133]. Furthermore, the loss of 

MMR coincided with increased translesion synthesis, suggesting the replicative bypass 

as a plausible mechanism which allows these cells to evade death [134]. 

 

2.4.1.5. Altered Checkpoints 
To ensure that genetic integrity is maintained between generations, cells employ an 

elaborate system of checks and balances termed cell cycle checkpoints. In a normal 

system, cells induce apoptosis over proliferation. The master switch between DNA 

damage detection, cell cycle arrest and apoptosis is the TP53 protein [135]. Indeed, its 

importance is illustrated by the observation that TP53 is mutated in up to 50% of 

cancers [136]. However, it appears that TP53 gene mutations do not correlate with 

expression in 30-40% of cases [137]. Conflicting reports also exist about its role in drug 

resistance. For example, opposing outcomes (sensitizing and desensitizing) have been 
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reported on the effect of TP53 mutations in cisplatin [138, 139] and 5-FU in vitro and in 

vivo studies [140, 141]. From a molecular perspective it is also difficult to deduce the 

effects of TP53 on resistance. On one hand a lack of TP53 may prevent a cell from 

inducing apoptosis while on the other hand; wild type or increased expression may 

increase the amount of time for DNA repair during cell cycle arrest. Either way, both 

result in a resistant phenotype. Interestingly, doxorubicin seems to have a more 

predictable outcome. Its sensitivity is dependent upon a wild type TP53 function with 

mutated and null TP53 leading to resistance [142].  

 

2.4.1.6. Proliferative and Survival Signals 
Cancer cells have developed various methods by which they can proliferate regardless 

of their environment. One method includes over-expression of protein kinases, like 

EGFR family proteins. Binding of growth factors such as EGF or tumor growth factor �, 

results in the activation of downstream pro-survival and proliferative pathways, such as 

PIK3CA/AKT, mitogen-activated protein kinase 3 and 1, signal transducer and activator 

of transcription 3 (STAT·3) and STAT5B pathways [143]. Over-expression of EGFR 

and ERBB2 in glioblastomas has been shown to increase resistance to chemotherapy 

in vitro and poor prognosis in the clinical set [144, 145]. Published results show that 

targeting the protein kinase receptors can improve the effectiveness of commonly used 

chemotherapies [146]. As mentioned before, actually in the clinical, some treatment 

schedules already include besides chemotherapy, antibodies that inactivate these 

receptors. For example, the combination of trastuzumab (ERBB2 inhibitor) with 

chemotherapy in previously untreated patients has been shown to prolong time to 

progression, increase response rate and significantly improve survival in comparison 

with chemotherapy alone [147].  

 

Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-kB) is a pro-

inflammatory transcription factor which its aberrant activation has been proposed as an 

important cause of chemoresistance, through the activation of anti-apoptotic genes 

[148]. Different studies have reported an association between NF-kB inhibition and 

oxaliplatin activity [149, 150]. The pharmacological inhibition of NF-kB using specific 

inhibitors such as BAY 11-7082 or SC-514, sensitized human prostate cancer cells; 

parthenolyde, a natural inhibitor, could markedly enhance sensitivity of human lung 

cancer cells; quinacrine, an antimalarial drug, sensitizes human colon carcinoma cells 

and genistein, a natural isoflavonoid, sensitized resistant pancreatic cancer cells all to 

oxaliplatin [149, 151-153]. High levels of this protein were also detectable in multidrug 

resistant cells. The mechanism of this resistance was attributed to the activation of the 
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CCAAT enhancer binding protein family of transcription factors and induction of ATP-

binding cassette, sub-family B (MDR/TAP), member 1 gene expression [154]. What 

concerns the clinical stage, NF-kB serum level have been found elevated in cancer 

patients. Its relation with chemotherapy resistance comes from a study that described 

an NF-kB autocrine production in breast cancer cells that could promote resistance to 

chemotherapy, in contrast to cells that did not express it [155].  

 

Besides, extracellular factors from the microenvironment were also linked to 

chemoresistance. Correlating chemosensitivity and stroma secreted proteins, in 

different tumors and different culture systems, it was found that elevated levels of 

acidic and basic fibroblast growth factors induced a broad-spectrum chemoresistance 

(paclitaxel, doxorubicin and mitomicin). Whereas, the known inhibitor of fibroblast 

growth factors suramin, was able to produce the reversion of this phenomenon [156, 

157].  

 
2.4.1.7. Failure of Cell Death Pathways 
2.4.1.7.1. Apoptosis 

Apoptosis is the death of a cell through a purposeful, mechanistic dismantling of the 

cellular machinery. To trigger apoptosis it is believed that cellular damage has to pass 

a certain threshold level. The malfunction of genes responsible for recognizing cellular 

damage can develop insensitive certain types of cancers to specific chemotherapeutic 

drugs. Upstream factors involved in the cellular response to damage mediate the 

induction of a network that transmits both pro- and anti-apoptotic signals. So, any 

interference that induces anti-apoptotic signal transduction, or abrogates pro-apoptotic 

pathways including transcriptional and translational response can be also a potential 

mechanism of drug resistance [158]. 

  

One apoptotic pathway, named intrinsic pathway, is regulated by mitochondrias, which 

are affected early in the apoptotic process and are known to act as central coordinators 

of cell death [159]. Several factors can induce mitochondrial-mediated apoptosis, 

including chemotherapy, ultra violet light, DNA damage, reactive oxygen species and 

growth factor withdrawal. Important players of this pathway are the B-cell 

CLL/lymphoma 2 (BCL-2) family of proteins. This family includes both pro-apoptotic 

(BCL2-associated agonist of cell death, BCL2-antagonist/killer 1 and BAX) and anti-

apoptotic members (BCL-2, BCL2-like 1 (BCL-XL) and myeloid cell leukemia sequence 

1). Not surprisingly, there is a good correlation between the expression levels of the 

BCL-2 family of proteins and the response to a wide range of chemotherapeutic 
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agents. Specifically, down regulation of the anti-apoptotic members BCL2 and BCL-XL 

increase sensitivity to oxaliplatin, while loss of pro-apoptotic BAX decreases it [160]. In 

the clinical setting, several studies have shown that high BCL-2 expression correlates 

with a poor response to chemotherapy [161, 162]. What concerns to BAX, some clinical 

studies show a correlation between expression and response to chemotherapy, 

although other studies have not found a correlation [163, 164]. 

 

The extrinsic pathway is regulated by cell surface death receptors of TNF-receptor 

family, such as Fas cell surface death receptor [13], tumor necrosis factor receptor 

superfamily (TNFSF10), member 10a and member 10b. Further, activation of proximal 

caspases in these patways leads to activation of downstream effector caspases, most 

importantly caspase 3 and 7. These executioner caspases cleave celular substrates to 

bring about morphological and biochemical changes that characterize apoptosis, 

including chromatin condensation and nuclear fragmentation, membrane blebbing, and 

cell shrinkage. In vitro studies have shown that targeting death receptors with 

recombinant death ligands or agonistic antibodies can induce apoptosis and/or 

enhance chemotherapy-induced apoptosis. In a clinical study from colorectal cancer 

patients, 5-FU treatment led to FAS over-expression, suggesting that this protein is an 

important mediator of response to chemotherapy. Apoptosis mediated by both FAS and 

TNFSF10a/TNFSF10b can also be inhibited by cytoplasmatic factors like CASP8 and 

FADD-like apoptosis regulator (C-FLIP). Inhibition of this protein dramatically sensitizes 

a panel of colon cancer cell lines to 5-FU, oxaliplatin, and capecitabine, suggesting an 

important role of C-FLIP in regulating colon cancer cell chemosensitivity. Interestingly 

C-FLIP has been found to be over-expressed in a high percentage of colonic and 

gastric carcinomas. Despite, it potencial as a predictive response biomarker was not 

studied. Survivin is other player in the inhibition of apoptosis. Over-expression of this 

protein has been shown to inhibit chemotherapy-induced apoptosis in vitro. Clinically, 

low levels of survivin have been correlated with better response to chemotherapy and 

improved prognosis in a range of cancers, suggesting that it may be a useful clinical 

marker [165, 166].  

 

In somatic cells, the ends of chromosome (telomeres) shorten in each cell division. 

However, in tumor cells, telomere length is maintained, mainly thought activation of the 

reverse transcriptase enzyme telomerase. It has been reported that in cervical cancer 

cells sensitive to low doses of cisplatin may die through apoptosis as a consequence of 

cisplatin binding to telomerases and subsequent telomere loss. Therefore a putative 
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resistance mechanism to cisplatin might be related to telomerase hyperactivation and 

inability of the tumor cell to engage apoptosis [167].  

 

2.4.1.7.2. Necrosis 

Necrosis is considered a passive event in which the cell is irreversibly damaged by an 

environmental insult, leading to cell death. Several authors have reported the activation 

of the necrotic pathway in cells treated with oxaliplatin, especially in those harboring 

TP53 mutations [168]. One protein related to this, is the glycogen synthase 3 � the 

inactivation of which induces cell death by caspase-independent necrototic process 

[169]. Its activation has been reported in colon carcinomas resistant to oxaliplatin. DNA 

damage induced by alkylating agents and ligation of death receptors, among others, 

were also described to be related with regulation of necrosis [170]. Oxaliplatin 

effectiveness was also associated with the production of oxygen reactive species, 

which in turn is a contributor to the execution of necrosis [171]. In addition, resistance 

to necrosis is also possible in cells over-treated with alkylating agents. 

 

2.4.1.7.3. Autophagy 

Autophagy is a critical catabolic process required for maintaining cellular homeostasis 

in health and pathological situations. It is typically observed in response to cellular 

stress, hypoxia, DNA damage or endoplasmic reticulum stress. Autophagy is activated 

in many tumors and its inhibition can lead to either increased cell death or increased 

survival, depending on several factors [171]. Its role in promoting chemoresistance or 

chemosensitivity is controversial. For instance, reducible high mobility group box 1 

induces Beclin1 dependent autophagy and promotes tumor resistance to oxaliplatin 

[172]. In the same way down-regulation of autophagy related 5 proteins, enhanced 

sensitivity to oxaliplatin [173, 174].Other authors have reported that oxaliplatin 

treatment activates autophagy in hepatocellular carcinomas, and in cell lines and 

xenografts models of colon cancer, contributing to the tolerance of this drug by 

modulating oxygen reactive species generation, and as a consequence to 

chemoresistance. Contradictory examples are also described. Autophagy induction 

trought RAD001 (a potent activator of autophagy) in papillary thyroid cancer [175] or 

throught inhibition of oncomiR-21 in myeloid leukemia [176], enhanced the therapeutic 

response to cytotoxic chemotherapy.  

 
2.4.1.7.4. Senescence 

Cellular senescence can be induced through a multitude of internal/external pressures 

and in ideal situations acts as a selfprotecting mechanism [177]. It is a growth-arrest 
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program that prevents unlimited cell proliferation being linked to tumour suppression. 

However, if senescence is bypassed, cells can become immortalized and potentially 

undergo a malignant transformation [178]. Although there is little information about the 

conection between senescence and chemoresistance, researchers have already 

described that cancer cell lines can undergo senescence, when exposed to drugs like 

cisplatin, oxaliplatin or doxorubicin [179-181]. The same was reported in some in vivo 

cancer models [182] and also in the clinical. One of the earliest reports of treatment-

induced senescence in patients, came from a neoadjuvant chemotherapy study in 

breast carcinoma in which approximately 42% of resected tumors stained positive for 

senescence markers [183]. This has been verified in later evaluations of lung cancer 

patients receiving neoadjuvant therapy [184] and in human prostate tumors that were 

monotorized before and after chemotherapy treatment with mitoxantrone, revealing an 

increase in senescent markers after treatment [185]. Sidi et al. concluded also that an 

induction of tumor cell senescence following neoadjuvant therapy was associated with 

a poor clinical outcome [186].  

 

3. DNA Methylation  
Epigenetics is the field of research devoted to those mechanisms affecting expression 

patterns without modifying the DNA sequence. This field of research includes studies of 

DNA methylation; histone tails modifications and non-coding RNAs (Figure 9A)[187]. 

These processes are not mutually exclusive and have an added role in the control of 

genome stability [188].  

 

DNA methylation, the addition of a methyl group to the 5-carbon position of cytosine 

residues (5mC), is the most common covalent modification of human DNA (Figure 9B). 

It occurs almost exclusively at cytosine residues that are followed immediately by a 

guanine (so-called CpG dinucleotides) [189]. Cytosine methylation is observed at CpG 

dinucleotides that tend to cluster into islands containing more than 55% guanine-

citosine (GC) content over a 500 base pair region [190]. The human genome contains 

roughly 29,000 CpG islands that are distributed in a non-random pattern, with a 

preference for the promoter and first exon regions of protein coding genes. These CpG 

islands are observed within the promoters of about more or less 72% of human genes 

[13].
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The DNA methylation patterns are a stable and heritable epigenetic trait of mammalian 

genomes. There are three main proteins involved in establishing and maintaining DNA 

methylation marks within mammalian cells: DNA (cytosine-5-)-methyltransferase 

(DNMT) 1, DNMT3A, and DNMT3B [191]. DNMT1 is responsible for restoring 

methylation pattern on hemi-methylated DNA following replication [190]. In contrast 

DNMT3A and DNMT3B are responsible for de novo methylation. All of them appear to 

hold an indispensable function since mutant mice lacking these genes are not viable 

[192, 193]. Compared with other epigenetic mechanisms, DNA methylation was 

generally considered to be a relatively stable epigenetic modification. Actually the idea 

of an active DNA demethylation is taking strength. Ten-eleven translocation 1–3 

proteins have recently been discovered in mammalian cells to be members of a family 

of DNA hydroxylases that possess enzymatic activity toward the methyl mark on the 

5mC. Tet proteins can convert 5mC into 5-hydroxymethylcytosine, 5-formylcytosine, 

and 5-carboxylcytosine through consecutive oxidation reactions. These modified bases 

may represent new epigenetic states in genomic DNA or intermediates in the process 

of DNA demethylation [194].  

 

In normal cells most CpG islands remain unmethylated and are associated with 

transcriptional active genes, predominantly the so called housekeeping, tumor 

suppressor and caretaker genes [195]. However there are certain CpG islands 

normally methylated, including those associated with imprinted and inactive X 

chromosome genes [196]. In general, there is an inverse correlation between promoter 

methylation status and genes expression (Figure 9C) [197]. Compared with their 

normal counterparts, cancer cells exhibit significant changes in DNA methylation 

patterns, which can generally be summarized as global hypomethylation of the genome 

accompanied by focal hypermethylation events [198]. The origin of these changes is 

largely unknown.  

 

Much more is known about how changes in DNA methylation may lead to changes in 

gene expression that are implicated in carcinogenesis. The most emphasized 

implication of aberrant DNA methylation is the inactivation of tumor suppressor genes. 

The clear association between promoter hypermethylation and transcriptional 

inactivation has led to a revision of Knudson’s two-hit hypothesis for tumor suppressor 

inactivation by adding a new pathway to gene inactivation [199]. In this respect, DNA 

methylation is functionally equivalent to genetic events. De novo DNA methylation 

occur early in tumor progression and lead to abnormal function of important cellular 

pathways, including those controlling cell cycle, apoptosis, and cell-to-cell growth 
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signaling [200]. Changes in DNA methylation may have many cellular consequences 

other than those affecting the transcriptional activity of tumor suppressor genes. For 

example methylation of cytosine strongly increases the rate of cytosine>timine 

transition mutations and is thought to be responsible for about one-third of all disease 

causing mutations in germline cells [201]. 

 

There are different models that explain the correlation between hypermethylation and 

gene transcriptional silencing. One of them is based on the fact that methylation of 

specific DNA sequences can prevent the binding of some ubiquitous transcription 

factors [200]. However this model can explain only a minority of cases, where 

methylation causes genes stable transcriptional silencing. An alternative model 

implicates changes in the architecture of the nucleosomal core as the repressive 

element. This model was reinforced by the identification of a family of proteins that 

preferentially bind to methylated CpGs, the methyl CpG binding proteins (MBDs) [202]. 

At least three of the five known members of this family (methyl CpG binding protein 2, 

MBD2 and MBD3) have been shown to be associated with large protein complex 

containing histone deacetylases (HDAC) 1 and 2 and chromatin-remodeling protein 

[203]. The action of these HDAC and chromatin remodeling activities catalyze the 

removal of acetyl groups from the core histones, converting the open, transcriptionally 

competent chromatin structure into a closed structure that can no longer be accessed 

by the basal transcriptional machinery. The linkage between MBDs, histone 

deacetylases and the chromatin remodeling machinery has provided a basis for 

understanding how DNA methylation may mediate a transcriptionally incompetent 

chromatin state [204]. 

 

Besides controlling gene expression, DNA methylation is complicit in suppressing 

parasitic DNA sequences such as transposonable elements and endogenous 

retroviruses [205]. Active transposable elements are highly mutagenic as they tend to 

insert within expressed genes disrupting its normal function and can cause illegitimate 

recombination events and genomic rearrangements [206]. Interestingly, global 

hypomethylation is a hallmark of all stages of tumor cells with a 20%-60% decrease in 

methylated cytosines. This decrease in methylated DNA coincides with the reactivation 

of transposable elements, mitotic recombination (leading to loss of heterozygosity) and 

aneuploidy [198, 200]. 
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3.1.  DNA Methylation and Chemoresistance 
Chemoresistance can be the result of multiple genes expression alteration in different 

cellular pathways. Regulation by DNA methylation can have a large impact on gene 

expression [196]. A number of recent studies suggest a direct role for epigenetic 

inactivation of genes, in determining tumor chemosensitivity [207, 208]. Key genes 

involved in DNA damage response pathways, such as cell cycle control, apoptosis and 

DNA repair signaling can frequently become methylated and epigenetically silenced in 

tumors. This may lead to differences in intrinsic sensitivity of tumors to chemotherapy, 

depending on the specific function of the gene inactivated. Furthermore, it is proposed 

that chemotherapy itself can exert a selective pressure on epigenetically silenced drug 

sensitivity genes present in subpopulations of cells, leading to acquired 

chemoresistance [207].  

 

In contrast to genetic alterations, epigenetic changes can be modified 

pharmacologically and the re-expression of epigenetically silenced genes may result in 

the suppression of tumor growth and in an increased sensitivity to anticancer drug. In 

fact, 5-Aza-2�-deoxycytidine (5-AZA) is already used for the treatment of all subtypes of 

myelodysplastic syndrome [209]. This drug has hypomethylating activity and, possibly, 

exerts its action by reinducing expression of genes silenced by the hypermethylation of 

CpG islands in their promoters [210]. Since the end goal of all chemotherapeutic 

agents is to induce death, loss-of-function in any necessary member of cellular death 

pathway will be manifested as a resistant phenotype. For example the 

hypermethylation of the apoptotic peptidase activating factor 1 promoter silences the 

activity of the gene and, thus, prevents apoptosis. Relief of this repression and 

increasing sensitivity of the cells was observed following treatment with the 

demethylating agent, 5-AZA [211].  

 

In addition, DNA repair capacities can impact drug-sensitivity. Many drugs have their 

effect by causing DNA damage that if left unrepaired, is lethal [110]. An example is the 

hypermethylation of the DNA repair gene MGMT. This enzyme reverses the damage 

induced by DNA alkylating agents (e.g. temozolomide) being a strong prognostic tool 

for determining the treatment response of gliomas, i.e. methylated MGMT confers 

sensitivity to the drugs [54, 212].  

 

Important to refer that it seems that the opposing processes of regional 

hypermethylation and global hypomethylation coexist in the same cells. Both confer a 

selective advantage upon cancer cells by targeting different sets of genes with 
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opposing roles in cellular transformation. Regional hypermethylation targets the 

silencing of genes which suppress tumorigenesis, while global hypomethylation 

probably targets activation of genes which are required for different stages of the 

transformation process [213].  

 

4. Drug Resistance Predictive Biomarkers in Metastasic Colorectal and in Non-
seminoma Cancer  
Tumor chemoresistance is a multifactor process and a reality. A good way to fight 

against it is, apart from the combined treatments with different drugs, the identification 

of molecular markers that allow a personalized treatment, selecting the most suitable 

therapy for each patient. Until now there are a few examples for colorectal and non-

seminoma cancers. At colorectal cancer KRAS mutational status has been established 

as a predictive factor of response to anti-EGFR agents, being the use of these only 

approved in KRAS wild-type tumors [214]. Concerning non-seminoma tumors, the only 

biomarker associated with cisplatin resistance is the presence of the BRAF, V600E 

mutation [215]. What concerns to epigenetic biomarkers, until now nothing is applied in 

the clinics for these two types of tumors. 
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� Although chemotherapeutic drugs are widely used in order to improve the cancer 

outcome, intrinsic and acquired drug resistance remain the most unpredictable factor 

affecting chemotherapy and a major impediment to successful patient’s treatment 

[107]. Understanding the cellular and molecular mechanisms leading to 

chemoresistance may dramatically impact on the way chemotherapeutic drugs are 

designed and used. Then, it would allow selecting the most suitable personalized 

therapy. 

 

� It has become increasingly clear that many chemotherapeutic agents kill susceptible 

cells through the induction of the physiological cell death program. Accordingly, 

deregulation of any gene involved in the activation or execution of the death processes 

may be a major mechanism of chemoresistance [107]. Tumor suppressor and DNA 

repair genes were classified as important mediators of chemotherapeutic response 

[207]. While inactivation of tumor suppressor genes could lead to drug resistance, 

inactivation of DNA repair genes, drug metabolisms, and detoxification genes might 

lead to drug sensitivity. This can be due to different mechanisms like regional 

hypermethylation and/or global hypomethylation [213].  

 

� The possibility that some genes conferring chemoresistance are reversibly switched 

on/off by DNA methylation is particularly important and may have relevant clinical 

implications. A very potent specific inhibitor of DNA methylation, 5-AZA, has been 

widely used as a demethylating agent in vitro, and is used clinically in the treatment of 

acute leukemia and myelodysplasia [216]. 

 

HYPOTESIS: 
Taking all into account, the present Doctoral Thesis has been devoted to provide 

further knowledge about the cross-talk between genes promoters DNA methylation 

status and tumors chemosensitivity, on a more detailed understanding of the influence 

of its changes in resistance to dacarbazine and to platinum agents, such oxaliplatin and 

cisplatin. We also pretend to explore alternative therapies as an attempt for reverse 

tumors chemoresistance the main cause of patients dead. In order to address these 

goals, we studied two cancer models, colorectal and testicular germ cell tumors. For 

each one we defined specific aims. 
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AIMS 
1. Determine if MGMT gene promoter methylation status influences rate response, 

progression free survival and/ or overall survival in metastasic colorectal cancer 

patients, treated with dacarbazine. 

2. Discover genes responsible for oxaliplatin acquired resistance in a colorectal 

cancer in vitro model. 

3. Uncover new predictive biomarkers for oxaliplatin based chemotherapy treated 

metastasic colorectal cancer patients. 

4. Find candidate genes responsible for testicular germ cell tumors cisplatin 

acquired resistance. 

5. Study the influence of MGMT promoter DNA methylation status in non-

seminoma tumors chemoresistat to cisplatin. 

6. Determine the potential role of novel therapeutic approaches for resensitize to 

cisplatin metastatic refractory non-seminoma tumors. 
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DIRECTORS REPORT 
 

To who may concern, we authenticate that the PhD student CÁTIA ALEXANDRA 

MARTINS FREITAS MOUTINHO will present her PhD thesis by scientific publications. 

Her contribution for each publication will be next pointed out. 

 
STUDY I 
“Promoter CpG Island Hypermethylation of the DNA Repair Enzyme MGMT 

Predicts Clinical Response to Dacarbazine in a Phase II Study for Metastatic 

Colorectal Cancer” 

 

Alessio Amatu, Andrea Sartore-Bianchi, Catia Moutinho, Alessandro Belotti, Katia 

Bencardino, Giuseppe Chirico, Andrea Cassingena, Francesca Rusconi, Anna 

Esposito, Michele Nichelatti, Manel Esteller, and Salvatore Siena 

 

Contribution: Cátia Moutinho was the responsible for DNA extraction from paraffin 

embedded tumors and subsequent MGMT methylation analysis. Besides she 

participated in the analysis and interpretation of general data (e.g., statistical analysis, 

biostatistics, computational analysis), in the manuscript writing and revision. 

 
Journal: Clinical Cancer Research. 2013 April 15; 19(8):2265-72. doi: 10.1158/1078-

0432.CCR-12-3518. Epub 2013 Feb 19. Impact Factor: 7.8 

 

STUDY II 
“Epigenetic Inactivation of the BRCA1 Interactor SRBC and Resistance to 

Oxaliplatin in Colorectal Cancer“ 

 

Catia Moutinho, Anna Martinez-Cardús, Cristina Santos, Valentin Navarro-Pérez,  Eva 

Martínez-Balibrea, Eva Musulen, F. Javier Carmona, Andrea Sartore-Bianchi, Andrea 

Cassingena, Salvatore Siena, Elena Elez, Josep Tabernero, Ramon Salazar, Albert 

Abad, and Manel Esteller 

 

Journal: J Natl Cancer Inst. 2014 Jan 1;106(1):djt322. doi: 10.1093/jnci/djt322. Epub 

2013 Nov 22. Impact Factor: 14.7 
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Contribution: In this paper Cátia Moutinho was the responsible of the experimental 

design, and execution, supervised by Dr. Esteller. She also performed the analysis and 

interpretation of the generated data together, with the manuscript writing and revision.  

 

STUDY III 
“Orthoxenografts of Testicular Germ Cell Tumors Enable Identification of 

Glucosylceramide Synthase as a Cisplatin Resensitizing Target” 

 
Josep M. Piulats, August Vidal, Clara Muñoz, Francisco J, Gacía-Rodriguez, Marga 

Nadal, Cátia Moutinho, , María Martínez-Iniesta, Josefina Mora, Agnés Figueras, 

Elisabet Guinó, Veronica Davalos, Laura Padullés, Àlvaro Aytés, David G. Molleví, 

Sara Puertas, Wilmar Castillo, Victor Moreno, Purificación Muñoz, Ferrán Algaba, Jose 

Carlos Fernandez-Checa, Enric Condom, Francesc Viñals, Josep R. Germà, Manel 

Esteller, Gabriel Capella, Albert Morales, Julian Cerón, Xavier García-del-Muro  and 

Alberto Villanueva 

 
Journal: Submitted to Cancer Cell 

 
Contribution: All the functional in vitro studies for GCS were designed and performed 

by Cátia Moutinho, under Dr. Villanueva supervision. She also participated in data 

analysis, scientific discussion and in manuscript writing. 

 

STUDY IV 

“Loss of MGMT Promoter Methylation and Resistance to Cisplatin in Non-

Seminoma Testicular Germ Cell Tumors” 
Cátia Moutinho, Xavier Garcia-del-Muro, Elisabet Guino, August Vidal, Sara Puertas, 

Clara Munoz, Josep M. Piulats, Alberto Villanueva and Manel Esteller  

 

Contribution: Cátia Moutinho was in charge for the experimental design and 

experimental labor. She also performed the analysis and interpretation of the 

generated data, together with the manuscript writing. All the work was supervised by 

Dr. Villanueva and Dr. Esteller. 

 

Journal: In preparation 



  
                                                                                                                           RESULTS 
 

55�
�

 

 

 

 

 
 
Dr. Manel Esteller 
MPh.D. 
Epigenetics of Cancer, Leader 
Cancer Epigenetics and Biology Programme (PEBC) Director 
Bellvitge Biomedical Research Institute (IDIBELL) 
Avda. Gran Via 199�203 
08908 L'Hospitalet de Llobregat, Barcelona, Spain 
[5] +34 932607500 ext. 3176 
(f) +34 932607219 
email: mesteller@idibell.cat�

 

 

 

 

 

 

 

 

Dr. Alberto Villanueva 
Ph.D. 
Chemoresistance and predictive factors to tumor response and stromal 
microenvironment research group, Leader 
Bellvitge Biomedical Research Institute (IDIBELL) 
Avda. Gran Via 199�203 
08908 L'Hospitalet de Llobregat, Barcelona, Spain 
[5] +34 932607500 ext. 3176 
(f) +34 932607219 
email: avillanueva@idibell.cat 



                                                                                                                          RESULTS 
    

56�
�

  



                                                                                                                          RESULTS 
 

57�
�
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Metastatic Colorectal Cancer” 
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Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL); 6Department of 
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RESUMEN 
 

Hipótesis: MGMT es una proteína de reparación del ADN que elimina los aductos 

generados por los diferentes fármacos en la posición O6 de la guanina. 

Aproximadamente el 40 % de los cánceres colorectal tiene una deficiencia en esta 

proteína debido mayoritariamente a su silenciamiento por hipermetilación del promotor 

del gen. Agentes alquilantes tales como la dacarbazina, ejercen su actividad 

antitumoral por la metilación del ADN en la posición O6 de las guaninas. Hecho que se 

asocia con un desfase entre los pares de bases, por lo tanto, la actividad de la 

dacarbazina puede ser más eficiente en tumores colorectal que carecen de MGMT que 

los repare. Hemos llevado a cabo un estudio del estatus de metilación del promotor del 

MGMT en el seno de un estudio clínico fase II (DETECT-01trial, EUDRACT número 

2011-002080-21) donde los pacientes fueron randomizados a ser tratados con 

dacarbazina. Se incluyeron pacientes con cáncer colorectal que han fracasado con las 

terapias estándar (oxaliplatino, irinotecan, fluoropirimidinas; cetuximab, panitumumab y 

bevacizumab, si el KRAS no está mutado). 

 

Diseño experimental: Todos los pacientes tenían tejido tumoral para evaluar, en un 

estudio blindado, la hipermetilación del promotor de MGMT. Los pacientes recibieron 

dacarbazina (250 mg/m2) por vía intravenosa cada día, durante cuatro días 

consecutivos, cada 21 días, hasta progresión de la enfermedad o toxicidad intolerable. 

Se utilizó un diseño de Simon two stage test para determinar si la tasa de respuesta 

global sería de 10 % o más. Los objetivos secundarios incluyeron la asociación de la 

respuesta, progresión libre de enfermedad y la tasa de control de la enfermedad, con 

el estado de metilación del promotor de MGMT. 

 

Resultados: Sesenta y ocho pacientes fueron incluidos en el estudio, desde Mayo de 

2011 hasta Marzo de 2012. Los pacientes recibieron una media de tres ciclos de 

dacarbazina (intervalo 1-12). Grados 3 y 4 de toxicidad incluyeron: fatiga (41%), 

náuseas/vómitos (29%), estreñimiento (25%), disminución del recuento de plaquetas 

(19%), y anemia (18%). En general, dos pacientes (2%) alcanzaron una respuesta 

parcial y ocho pacientes (12%) han obtenido una enfermedad estable. La tasa de 

control de la enfermedad (respuesta parcial + enfermedad estable) se asoció 

significativamente con la hipermetilación del promotor del gen MGMT, en los tumores 

correspondientes. 

 



                                                                                                                          RESULTS 
 

59�
�

Conclusión: Las respuestas clínicas objetivas a la dacarbazina en pacientes con 

cáncer colorectal metastásico se limitan a aquellos tumores que albergaban la 

inactivación epigenética de la enzima de reparación del ADN, MGMT. Sugiriendo 

nuestro estudio la realización de un nuevo estudio clínico estratificando los pacientes a 

ser tratados en función de la metilación de MGMT. 
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ABSTRACT 
 
Purpose: MGMT is a DNA repair protein that removes mutagenic and cytotoxic 

adducts from O6-guanine in DNA. Approximately 40% of colorectal tumors display 

MGMT deficiency due to the promoter hypermethylation leading to silencing of the 

gene. Alkylating agents, such as dacarbazine, exert their antitumor activity by DNA 

methylation at the O6-guanine site, inducing base pair mismatch; therefore, activity of 

dacarbazine could be enhanced in colorectal tumors lacking MGMT. We conducted a 

phase II study with dacarbazine in colorectal tumors who had failed standard therapies 

(oxaliplatin, irinotecan, fluoropyrimidines, and cetuximab or panitumumab if KRAS wild-

type). 

 

Experimental Design: All patients had tumor tissue assessed for MGMT as promoter 

hypermethylation in double-blind for treatment outcome. Patients received dacarbazine 

250 mg/m2 intravenously every day for four consecutive days, every 21 days, until 

progressive disease or intolerable toxicity. We used a Simon two-stage design to 

determine whether the overall response rate would be 10% or more. Secondary 

endpoints included association of response, progression-free survival, and disease 

control rate with MGMT status. 

 

Results: Sixty-eight patients were enrolled from May 2011 to March 2012. Patients 

received a median of three cycles of dacarbazine (range 1–12). Grades 3 and 4 

toxicities included: fatigue (41%), nausea/vomiting (29%), constipation (25%), platelet 

count decrease (19%), and anemia (18%). Overall, two patients 2% achieved partial 

response and eight patients (12%) had stable disease. Disease control rate (partial 

response + stable disease) was significantly associated with MGMT promoter 

hypermethylation in the corresponding tumors. 

 

Conclusion: Objective clinical response to dacarbazine in patients with metastatic 

colorectal cancer is confined to those tumors harboring epigenetic inactivation of the 

DNA repair enzyme MGMT. 
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Introduction 
Globally, nearly 1.25 million patients are diagnosed and more than 600,000 patients die 

from colorectal cancer each year (1). At least 50% of patients develop metastases (2), 

and most of these patients have unresectable tumors (2, 3). 

 

In the last 10 years, thanks to a wider clinical use of a multidisciplinary approach, along 

with the introduction of new cytotoxic drugs and the addition of targeted therapies 

against the angiogenesis (bevacizumab and aflibercept), the EGFR pathway 

(cetuximab and panitumumab), or multiple receptor tyrosine kinases (regorafenib), the 

survival of patients with metastatic colorectal cancer has considerably been 

ameliorated (4–6). Nevertheless, prognosis remains poor and patients carrying KRAS 

mutations (35%–40% of colorectal cancers), which preclude responsiveness to 

cetuximab or panitumumab (6), have limited therapeutic options after failure of 2 lines 

of standard treatments, although a significant percentage of these patients retain a 

good performance status potentially allowing further therapies. There is therefore an 

unmet need of therapeutic options, based on specific molecular alterations that could 

prove their effectiveness also in the wide KRAS-mutated subgroup of colorectal 

cancers. 

 

MGMT is a DNA repair protein that removes mutagenic and cytotoxic adducts from O6-

guanine in DNA. MGMT protects cells against these lesions, transferring the alkyl 

group from the O6-guanine in DNA to an active cysteine within its own sequence. Such 

reaction inactivates one MGMT molecule for each lesion repaired (7). The inactivation 

of tumor suppressor genes by the presence of cytosine methylation encompassing the 

corresponding transcription start site located in a CpG island is gaining "momentum" in 

the management of oncology patients (8) and, in this regard, promoter CpG island 

hypermethylation leads to the transcriptional silencing of MGMT (9). The subsequent 

lack of repair of O6-methylguanine adducts can result in a higher frequency of G:C>A:T 

transitions (10,11). It is known that approximately 40% of colorectal cancers have 

silencing of MGMT. Interestingly, in a retrospective analysis on 244 colorectal cancers 

samples, it has been found that 71% of tumors with G to A mutation in KRAS showed 

MGMT epigenetic inactivation, showing a strong association between the MGMT 

inactivation by promoter hypermethylation and the appearance of G to A mutations at 

KRAS (10). Furthermore, MGMT hypermethylation was also found in 35% of wild-type 

KRAS metastasic colorectal cancers. De Vogel and colleagues (12) found that MGMT 

hypermethylation is associated with G:C>A:T mutations in KRAS, but not in APC, 
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suggesting that MGMT hypermethylation may succeed APC mutations but it precedes 

KRAS mutations in colorectal carcinogenesis.  

 

In cells, loss of MGMT expression leads to compromised DNA repair and may play a 

significant role in cancer progression and response to chemotherapy as it occurs in 

glioma (13–16). The mechanism of action of dacarbazine and temozolomide is DNA 

methylation at the O6-guanine site, inducing base pair mismatch. The methyl group at 

O6-site is removed by MGMT in a one step methyl transfer reaction. Therefore, we 

hypothesized that MGMT inactivation by hypermethylation may confer sensitivity to 

these agents (17). However, discrepant data about the clinical activity of these drugs in 

metastasic colorectal cancer are reported in the literature (18–21). A response rate of 

19%, including one complete response, was reported in 26 fluoropyrimidine-resistant 

patients receiving cisplatin and dacarbazine (19). In another study, 48 patients 

refractory to fluoropyrimidine were treated with dacarbazine, irinotecan, and cisplatin 

obtaining a 33% of response rate (18). Temozolomide is an imidazotetrazine derivative 

of dacarbazine. The combination of lomeguatrib and temozolomide did not show 

activity in unselected metastasic colorectal cancer (20). In a pilot study including 

patients selected by tumor molecular profiling, temozolomide was effective in 2 patients 

with metastasic colorectal cancer exhibiting loss of MGMT expression (22). The latter 

finding was confirmed by a recent report by Shacham-Shmueli and colleagues (23) 

documenting objective response to temozolomide in 2 patients with MGMT-deficient 

metastasic colorectal cancer. On the basis of these findings, we designed a phase II 

trial aimed to assessing the antitumor activity of dacarbazine in patients with 

metastasic colorectal cancer with determined MGMT promoter methylation status and 

refractory to the standard therapies.  

 

Materials and Methods 
Trial design 
The study was designed as a phase II trial (DETECT-01trial, EUDRACT number 2011-

002080-21). Patients were treated with dacarbazine monotherapy until progression or 

unacceptable toxicity for 18 weeks (6 cycles). In case of partial response with clinical 

benefit, treatment was allowed until dose-limiting toxicity. Primary endpoint was to 

assess response rate to dacarbazine according to Response Evaluation Criteria in 

Solid Tumors (RECIST1.1) criteria. Secondary endpoints were to assess: disease 

control rate, progression free survival, identification of KRAS, and MGMT status in 

individual tumor samples as potential molecular biomarkers of response to 

dacarbazine. Written informed consent was obtained from each patient. The study 
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followed the Declaration of Helsinkiand good clinical practice, being approved by Ethic 

Committee of Ospedale Niguarda Ca’ Granda (Milan, Italy).  

 

Patients 
All patients met the following inclusion criteria: age 18 years or more, Eastern 

Cooperative Oncology Group performance status of � 1, histologically confirmed 

metastatic colorectal adenocarcinoma. A paraffin-embedded block from archival tumor 

tissue of primary and/or metastases for MGMT status analysis was requested. All 

patients had measurable disease (by RECIST criteria v1.1), and progressed on 

standard treatment with fluoropyrimidine, oxaliplatin, irinotecan, and cetuximab or 

panitumumab (the latter 2 drugs if KRAS wild-type). An adequate bone marrow, liver, 

and renal function was required. 

 

Treatment schedules 
Dacarbazine 250 mg/m2 intravenously everyday for 4 consecutive days, every 21 days, 

was administered until progression, death, unacceptable toxicity, or patient with drawl 

of consemant. Antiemetic agents and supportive care were provided by treating 

physician as per standard clinical practice. In case of G3 hematologic toxicity (absolute 

neutrophil count <1.5x109/L and platelet count <100x109/L) dacarbazine was delayed 

by 1-week interval until recovery. Prophylactic use of colony-stimulating factors was 

allowed as per standard clinical practice. 

 

Evaluation criteria 
Patients were evaluated for primary overall response rate and secondary endpoint 

(disease control rate and progression free survival) according to RECIST criteria v1.1. 

Tumors were measured every 8 ± 1weeks through week 18 and then every 8 ± 1 

weeks until the tumor progressed. Complete response was defined as disappearance 

of all target lesions. Any pathologic lymph nodes (whether target or non target) must 

have reduction in short axis to 10mm or less. An objective response (partial response) 

was defined as a reduction of at least 30 percent in the sum of all target lesions on 

computed tomography or magnetic resonance imaging scanning. Confirmed objective 

response were those for which a follow-up scan obtained at least 4 weeks later showed 

the persistence of the response. Progressive disease was defined as at least a 20% 

increase in the sum of diameters of target lesions, taking as reference the smallest sum 

on study (this includes the baseline sum if that is the smallest on study). In addition to 

the relative increase of 20%, the sum must also show an absolute increase of at least 5 

mm. Stable disease was defined as shrinkage neither sufficient to qualify for partial 
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response nor sufficient increase to qualify for progressive disease, taking as reference 

the smallest sum diameters while on study. Clinical investigators and radiologists were 

blinded as for MGMT status of the tumors.  

 

Safety assessment 
Safety assessments and blood biochemistry including complete blood counts were 

carried out at baseline and at the beginning of each treatment cycle. Any toxicity was 

assessed using the National Cancer Institute (NCI)-CTCAE version 4.0 and recorded at 

every visit until resolved.  

 

Analysis of MGMT promoter methylation status 
Loss of expression of MGMT was defined as promoter hypermethylation 25% or more 

as previously described (9). Tumor samples from patients’ primary tumor were 

obtained from Pathology Department of the Ospedale Niguarda Ca’ Granda or others 

Pathology Departments as referral. Formalin-fixed paraffin-embedded tumor blocks 

were reviewed for quality and tumor content. A single representative block, from either 

the primary tumor or metastasis, depending on availability, was selected for each case. 

White slides (2 cut of 10 μm, if from a tumor tissue paraffin block, or 3 cuts of 10 μm if 

from a biopsy) were sent to Bellvitge Biomedical Research Institute (IDIBELL; 

Barcelona, Spain) for DNA extraction and evaluation of MGMT promoter methylation 

status in blind as for clinical outcome. Genomic DNA was extracted from paraffin tissue 

samples following manufacturer’s instructions (QIAamp DNA FFPE Tissue Kit). DNA 

was then subjected to bisulfate treatment using EZ DNA methylation kit (Zymo 

Research). Briefly, 1 μg of genomic DNA was denaturated by incubating with 0.2 mol/L 

NaOH. Aliquots of 10 mmol/L hydroquinone and 3 mol/L sodium bisulfate (pH 5.0) were 

added, and the solution was incubated at 50ºC for 16 hours. Treated DNA was purified, 

desulfonated with 0.3 mol/L NaOH, repurified on Zymo-Spin columns, and eluted with 

25 μL water. MGMT promoter methylation status was analyzed by MSP. It was carried 

out in a 15 μL volume containing 1 μL of the sodium bisulfite-modified DNA. The 

characteristics of the MSP reactions and the primer sequence have been previously 

described (14). SW620 human colorectal cell line was used as a positive control for 

hypermethylated alleles of MGMT and DNA from RKO cell line used as a negative 

control (Fig. 1). 
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Statistical analysis 
According to clinical considerations and on the basis of the available literature, the 

efficacy of a treatment in this setting of metastasic colorectal cancer chemorefractory 

patients would be considered poor if the overall response rate is 3% or less, whereas it 

could be considered of clinical usefulness if the overall response rate is 10% or more. 

Assuming �= 0.05 and �=0.20, a Simon Optimal 2-stage design has been then chosen 

to test the null hypothesis that P � 0.03 versus the alternative that P �0.10. According 

to this design, if at least 2 of the first 40 patients would have achieved an objective 

response, enrollment would have been extended by 28 patients. Overall, objective 

response rate of dacarbazine monotherapy would have been deemed unacceptable if 

objective response was 4 or less. The association between MGMT promoter 

methylation status and overall response rate and disease control rate was determined 

by 2-sided Student t-tests or Fisher exact test. Progression free survival was estimated 

by Kaplan–Meier product-limit method followed by log-rank test.  

 

Results 
Patients’ characteristics 
Sixty-eight patients were enrolled in our institution from May 2011 until March 2012. All 

patients had progressed on fluoropyrimidines, oxaliplatin, irinotecan, and cetuximab or 

panitumumab (the latter 2 drugs if KRAS wild-type). Eighty seven per cent of patients 

had received prior bevacizumab and 19% patient had received more than 4 lines of 

treatment. Twenty percent of patients received mitomycin C, 4% raltitrexed, and 12% 

previous experimental agents within clinical trials. Clinical characteristics of patients in 

this trial are reported in Table 1. Reasons for discontinuation of dacarbazine treatment 

included hematologic toxicity (1 patient), progression (61 patients), death (4 patients), 
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and withdrawal of consent (2 patients). Cause of death was recorded as metastasic 

colorectal cancer in all deceased patients. 

 

Table 1. Patients characteristics 

Demographics Value (%) 
Clinical 

Characteristics 
No. Of Patients 

(%) 
Age, years  Tumor KRAS status 

Median  63,5 Wild type 35 (47) 
Range 29-81   

  Mutated 33 (49) 
Sex, No. (%)  G12V 7 

Male 47 (69) G12C 5 
Female 21 (31) G12S 1 

   G12D 7 
  G12A 1 
Clinical 
Charachteristics 

No. Of Patients 
(%) G13D 5 

Performance status  Codon not available 7 
0 37 (54)    
1 31 (46) Tumor MGMT methylation status 
  Hypermethylated 26 (38) 

Tumor grade at diagnosis  Unmethylated 39 (58) 
1 2 (3) Not assessable 3 (4) 
2 43 (63)    
3 9 (13) No. of metastatic sites  

Not available 14 (21) 1 2 (3) 
  2 25 (37) 

No. of prior treatments  3 29 (43) 
2 14 (20) 4 11 (16) 
3 17 (25) 5 1 (1) 
4 23 (35)    
5 5 (7) Patients previously treated with  
6 6 (9) Bevacizumab 59 (87) 
7 2 (3) Mitomycin 17 (25) 
  Experimental drugs 8 (12) 

 
Toxicity 
Adverse events are listed in Supplementary Table S1. Hematologic toxicity was the 

most frequent adverse event reported and general toxicity was consistent with the 

known toxicity profile of dacarbazine. We observed 3 hematologic G4 adverse events 

(2 platelet count decreased and one neutrophil count decreased). Hepatic failure with 

increased bilirubin due to progression of disease was observed in 3 patients with 

extensive metastatic liver involvement. 
 

Analysis of MGMT promoter hypermethylation 
Sixty-five of 68 patients were tested for MGMT promoter CpG island methylation, as 

showed in Table 1. Overall, MGMT hypermethylation was found in 40% (26/65) of the 

colorectal neoplasms DNAs analyzed a similar frequency to the previously reported for 
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this tumor type (9). According to the location of the tumor, MGMT promoter status was 

assessed in 69% (45/65) in primary tumor, in 14% (9/65) in metastatic site, and in 17% 

(11/65) in both primary and metastatic site from the same patient. In the latter case, we 

observed concordance in 10 out of 11 pairs, with only one case showing a 

hypermethylated primary with unmethylated liver metastasis, and the result from liver 

metastasis was considered for the purpose of analysis. Sites of metastases were: liver 

75% (15/20), 5% (1/20) ovary, 10% (2/20) lung, 5% (1/20) spleen, and 5% (1/20) 

cutaneous. MGMT hypermethylation was more frequent (61% and 31%, respectively) 

in tumors carrying KRAS mutation with G>A transition (G12D, G12V, or G13D), as 

previously described   (10, 11), although the difference was not statistically significant 

due to the small size (only 26 patients were evaluable for both analysis; P=0.238).  

 

Antitumor activity of dacarbazine 
Overall response rate was 3%, with 2 partial responses. Stable disease was achieved 

in 8 of 68 patients (12%), accounting for a disease control rate (partial response + 

stable disease) of 15%. Median progression free survival was 57 days. Pre-planned 

analysis of secondary endpoints based on assessments of MGMT methylation and 

KRAS mutation status in individual tumors showed that objective response occurred 

only in patients displaying MGMT-methylated tumors (Fig. 2A and Fig. 3). In addition, 

we observed a significantly higher disease control rate (44.0% vs. 6%, P=0.012) in the 

MGMT-hypermethylated group (Fig. 2). 

 

  

A trend toward better progression free survival [Hazard Ratio (HR) =0.66; 95% 

confidence interval 0.40–1.10; P=0.0982] was also found in the MGMT 

hypermethylated cases (Fig. 4A). A similar tendency was found between reduction of 

tumor volume following dacarbazine treatment and MGMT methylation status: tumor 

shrinkage of any size occurred more frequently in patients displaying MGMT 

hypermethylation (Fisher exact test, P=0.093). In contrast, KRAS status was not 

associated with progression free survival, disease control rate, and overall response 

rate (KRAS mutant vs. KRAS wild-type, P=0.735, 0.999, and 0.492, respectively; Fig. 
4B).  
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Discussion 
In this study, we document that dacarbazine is active after failure of standard therapies 

only in those patients with metastasic colorectal cancer whose tumor is harboring 

epigenetic inactivation of the DNA repair enzyme MGMT. Overall, we observed 2 

objective response, accounting for 3% of overall response rate, and 8 stable diseases, 

accounting for 12% of the cases. The observation of a significant association between 

MGMT promoter hypermethylation and these clinical endpoints supports the hypothesis 

that DNA repair-defective metastasic colorectal cancer tumors are more susceptible to 

this chemotherapeutic agent. However, even in the case of MGMT hypermethylation, 

we observed that a fraction of 44% of patients achieved control of disease (stable 

disease + partial response), thus suggesting that a multiparametric signature including 

the DNA methylation associated silencing of MGMT together with other molecular traits 
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would improve the identification of colorectal cancer tumors with defects in DNA repair, 

susceptible to the action of dacarbazine. 

 

The low response rate observed in the present cohort could be linked to the inclusion 

of heavily pretreated patients (median 4 lines of previous treatments). To interpret this 

clinical result in the context of therapy-resistant metastasic colorectal cancer, one 

should consider that second-line treatment with FOLFIRI or FOLFOX combination 

regimens induces overall response rate of 10% to 12% (24–26) and dramatically 

decreases in subsequent lines (6).  It is also known that dacarbazine is activated in 

liver by CYP450 microsomial N-demethylation with formation of 5-[3-hydroxymethyl-3-

methyl-triazen-lyl]-imidazole-4-carboxamide and 5-[3-methyl-triazen-1-yl]-imidazole-4-

carboxamide (MTIC). Rapid decomposition of MTIC produces the major plasma and 

urine metabolite 5-amino-imidazole-4-carboxamide and the reactive species methane 

diazohydroxide, which produces molecular nitrogen and a methyl cation supposed to 

be the methylating species (27). It is therefore conceivable that the multiple (median 4) 

previous lines of cancer treatment as well as the high (79%) rate of liver involvement in 

the present study population may have exhausted the liver function capacity to activate 

dacarbazine. 

 

It was our hypothesis that anticancer activity of dacarbazine could be enhanced by a 

specific defect in DNA repair system as evaluated by MGMT promoter 

hypermethylation in individual tumors. This epigenetic defect occurs in about 35% to 

40% of metastasic colorectal cancers (9) and it is detected in more than 70% of KRAS-

mutated tumors carrying the G>A transitions subtypes of mutation (10, 11), a subgroup 

of metastasic colorectal cancers with limited therapeutic options. Although the present 

trial was not designed, and thus, powered to assess a significant difference in 

progression free survival between MGMT-hypermethylated/unmethylated groups, we 

observed a trend toward better progression free survival in the MGMT hypermethylated 

group, together with a better disease control rate. The 2 patients displaying objective 

response were indeed carrying MGMT-hypermethylated tumors (Fig. 2A) and one of 

them showed a long-lasting maintenance of response of 6 months, which is uncommon 

in the advanced setting of metastasic colorectal cancer.  

 

In conclusion, present data document that specific DNA repair defects can be 

associated with susceptibility to dacarbazine. The use of an alkylating agent that does 

not require hepatic activation may be preferable in heavily pre-treated patients with 

metastatic liver disease. In this regard, temozolomide is an alkylating agent whose 
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activity is also enhanced in tumors with MGMT loss (17) that is hydrolyzed in cells 

producing the active compound MTIC without requiring liver passage. A phase II trial 

with temozolomide has been designed and it is ongoing at our institution to assess the 

efficacy in patients with MGMT hypermethylated metastasic colorectal cancers after 

failure of standard therapies. 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Table S1. Toxicities. 

Non-hematological 
toxicities 

All Grades Grade 3-4 

No. of patients % No. of patients %

Fatigue 28 41 5 7

Nausea 20 29 5 7

Constipation 17 25 0 0

Blood bilirubin increased 11 16 0 0

Mucositis [217] 3 4 0 0

Flushing 2 3 0 0

Flu like symptoms 1 1 0 0

Dyspepsia 1 3 0 0

Rash 1 3 0 0

Arthralgia 1 3 0 0

       

Hematologic Toxicities 
All Grades Grade 3-4 

No. of patients % No. of patients %

Platelet count decrease 13 19 4 6

Anemia 12 18 1 1

White blood cell decrease 6 9 1 1

Febrile neutropenia 1 1 1 1
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RESUMEN 
 
Antecedentes: Uno de los problemas más importantes en el tratamiento de los 

pacientes de cáncer es la existencia de resistencia primaria (tumores refractarios) y/o 

la resistencia adquirida a los tratamientos de quimioterapia. Esto se asocia a diferentes 

defectos celulares, genéticos y epigenéticos. 

 

Métodos: Para poder identificar posibles diferencias en los perfiles de metilación 

asociados con la adquisición de resistencia al oxalipaltino, líneas celulares pareadas 

sensibles vs. resistentes generadas in vitro se anlizaron con arrays de metilación. El 

gen SRBC, identificado diferencialmente metilado se validó mediante técnicas 

específicas de metilación de promotores y de expresión. Para evaluar el papel 

funcional de la expresión de esta proteína en la sensibilidad al oxaliplatino se 

realizaron experimentos in vitro tanto de sobre-expresión como de inhibición génica. 

La supervivencia libre de progresión de la enfermedad y la supervivencia global en 

pacientes con cáncer colorrectal metastásico se determinaron por curvas de Kaplan-

Meier y con el análisis de regresión de Cox. 

 

Resultados: En nuestro modelo celular se observó que la resistencia adquirida al 

oxaliplatino, depende, al menos en parte, de la metilación del promotor del gen SRBC, 

identificándose su inactivación por metilación con una mayor resistencia. La sobre-

expresión in vitro de este gen o su inactivación conlleva un aumento en la sensibilidad 

o resistencia al oxaliplatino, respectivamente. En las dos cohortes independientes de 

pacientes con cáncer colorectal metastásico (n=131 y n= 58) el promotor del gen 

SRBC se encontraba metilado en un 30% de los tumores primarios. Este hecho se 

asoció con una menor supervivencia libre de progresión (Hazard Ratio (HR)=1,83; 

intervalo de confianza (IC) 95%=1.15-2.92; log-rank P=0.01). Siendo especialmente 

relevante en los casos tratados con oxaliplatino y para los que no estaba indicada la 

cirugía de las metástasis (HR=1.96, IC 95%=1.13-3.40; log-rank P=0.01 y HR=1.90,  

IC=1.01-3.60; log-rank P= 0,045). 

 

Conclusiones: Nuestros resultados proporcionan una base para futuros estudios 

clínicos de validación de la hipermetilación del promotor del gen SRBC, como 

marcador predictivo de resistencia al oxaliplatino en el cáncer colorectal metastásico. 

Así la validación de este potencial marcador en ensayos clínicos estratificando en base 

a la metilación, puede permitir modificar el tratamiento de los pacientes con este 

cambio en su promotor. 
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ABSTRACT 
 
Background: A major problem in cancer chemotherapy is the existence of primary 

resistance and/or the acquisition of secondary resistance. Many cellular defects 

contribute to chemoresistance, but epigenetic changes can also be a cause.  

 

Methods: A DNA methylation microarray was used to identify epigenetic differences in 

oxaliplatin sensitive and resistant colon cancer cells. The candidate gene SRBC was 

validated by single locus DNA methylation and expression techniques. Transfection 

and short-hairpin experiments were used to assess oxaliplatin sensitivity. Progression 

free survival and overall survival in metastasic colorectal cancer patients were explored 

with Kaplan-Meier and Cox regression analyses. All statistical tests were two-sided. 

 

Results: We found that oxaliplatin resistance in colon cancer cells depends on the 

DNA methylation-associated inactivation of the BRCA1 interactor SRBC gene. SRBC 

over-expression or depletion gives rise to sensitivity or resistance to oxaliplatin, 

respectively. SRBC epigenetic inactivation occurred in primary tumors from a discovery 

cohort of colorectal cancer patients (29.8%, 39 of 131), where it predicted shorter 

progression free survival (HR=1.83; 95% confidence interval (CI)=1.15-2.92; log-rank 

P=0.01), particularly in oxaliplatin-treated cases for which metastasis surgery was not 

indicated (HR=1.96; 95% CI=1.13-3.40; log-rank P=0.01). In a validation cohort of 

unresectable colorectal tumors treated with oxaliplatin (n=58), SRBC hypermethylation 

was also associated with shorter progression free survival (HR=1.90; CI=1.01-3.60; 

log-rank P=0.045). 

 

Conclusions: These results provide a basis for future clinical studies to validate SRBC 

hypermethylation as a predictive marker for oxaliplatin resistance in colorectal cancer. 
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INTRODUCTION 
Colorectal cancer is the second most common cause of cancer death in the western 

world (1). In metastasic colorectal cancer, polychemotherapy based on 

fluoropyrimidines plus oxaliplatin or irinotecan are the gold standard treatment, 

combined with biological agents such as cetuximab and panitumumab (2). Oxaliplatin 

forms intra-strand adducts that disrupt DNA replication and transcription (3,4). DNA 

damage induced by oxaliplatin is repaired in part by the nucleotide excision repair 

pathway (5), but the DNA double-strand breaks induced by the drug are also repaired 

by the BRCA1 complex (6-8). In this regard, epigenetic inactivation of the BRCA1 gene 

by promoter CpG island methylation has been associated with increased sensitivity to 

cisplatin and carboplatin in breast and ovarian cancer (9,10). 

 

Genes critical to colorectal tumor biology are frequently inactivated by 

hypermethylation of the CpG dinucleotides located in their 5’-CpG island regulatory 

regions (11-13). We wondered whether this epigenetic alteration was involved in the 

resistance to oxaliplatin in colorectal cancer, where treatment failure due to primary or 

acquired resistance remains a major obstacle to the management of the disease. 

Herein, we demonstrate that the epigenetic inactivation of the BRCA1 interactor SRBC 

gene by promoter CpG island hypermethylation is associated with poor outcome upon 

oxaliplatin treatment. 

 

METHODS 
Cell Lines 
LoVo parental cell line (LoVo-S) and its derived 10-fold oxaliplatin resistant cells (LoVo-

R)(14) were cultured at 37ºC in an atmosphere of 5% (v/v) carbon dioxide in 

Dulbecco’s Modified Eagle’s Medium/Ham’s Nutrient Mixture F12 (DMEM-HAM’s F12) 

medium supplemented with 20% (w/v) fetal bovine serum, 100U penicillin and 100μg/L 

streptomycin (Invitrogen, Carlsbad,CA).The HCT-116, SW48, SW480, SW620, RKO, 

Co115, and HCT-15 colon cancer cell lines were obtained from the American Type 

Culture Collection (Manassas, VA, USA). Cell lines were authenticated by short 

tandem repeat profiling. 

 

Determination of Drug Resistance 
Oxaliplatin (5mg/ml) and 5-FU (50mg/ml) were obtained from TEVA (North Wales, PA, 

USA), and Accord Healthcare SLU (Barcelona, Spain), respectively. Cell viability was 

determined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide 

(MTT) assay. Briefly, 1 x 103 cells were plated onto 96-well plates. Cells were treated 
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for 120 hours with different drugs concentration (oxaliplatin: 0-250μM and 5-FU: 0-

35μM). MTT was added at a final concentration of 0.1%. After 2.5 hours incubations 

(37ºC, 5% carbon dioxide), the MTT metabolic product, formazan was dissolved in 

dimethyl sulfoxide (DMSO) and absorbance was measured at 570 nm. Prism Software 

(La Jolla, CA) was used to calculate drugs half maximal inhibitory concentration (IC50). 

 
DNA Methylation Analyses 
DNA was subjected to bisulfite using EZ DNA methylation kit (Zymo Research, Orange, 

CA) as previously described (15). To perform the genome-wide DNA methylation 

profiling we used the Illumina Infinium HumanMethylation27 BeadChip® (Illumina, ,San 

Diego, CA, USA) microarray following the manufacturer’s instructions (15).The Infinium 

assay quantifies DNA methylation levels at specific cytosine residues adjacent to 

guanine residues (CpG loci), by calculating the ratio (�-value) of intensities between 

locus-specific methylated and unmethylated bead-bound probes. The �-value is a 

continuous variable, ranging from 0 (unmethylated) to 1 (fully methylated). This 

microarray assesses the DNA methylation level of 27,578 CpG sites located at the 

promoter regions of 14 495 protein-coding genes. DNAs were processed on the same 

microarray to avoid batch effects. The array was scanned by a Bead Array Reader 

(Illumina), and intensity data analyzed using Genome Studio software (version 2011.1, 

Illumina). Further details are described in Supplementary Methods. The data is freely 

available at GeneExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/) under GEO 

accession code GSE44446. 

 

We established SRBC CpG island methylation status using three different polymerase 

chain reactions (PCR) based techniques: bisulfite genomic sequencing of multiple 

clones, MSP and pyrosequencing. Further technical details are described in 

Supplementary Methods. The used primer sequences are shown in Supplementary 
Table 1. 
 
Messenger RNA and Protein Expression Analyses 
Messenger RNA extraction, cDNA synthesis, conventional and quantitative real time 

PCR using Hs00376942_m1Taqman Gene Expression assay (Applied Bioystem, 

Madrid, Spain) were performed as previously described (16). Primer sequences are 

shown in Supplementary Table 1. Anti-SRBC (1/1000) from Cell Signaling and anti-�-

actin-HRP antibody (1/20000) from Sigma (St. Louis, MO, USA) were used to develop 

the western blot analysis. 
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SRBC Transfection and Depletion Experiments 
Human shRNAs and cDNA plasmids for SRBC were obtained from Origene (Rockville, 

MD, USA). After E.coli transformation, we preceded to plasmid DNA purification. Forty- 

eight hours after electroporation, cells transfected with shRNAs (TR317747, Origene) 

were grown in medium containing 0.8 or 0.6 μg/mL of puromycin (LoVo-S and HCT-

116). Cells transfected with SRBC cDNA (SC320781, Origene) were grown with DMEM 

medium containing 0.8 or 0.6 mg/mL geneticin (G418, LoVo-R and HCT-15), to 

perform clonal selection. Once selected, clones were picked, grown and tested by 

western blot. 

 

Patients 
In our study we analyzed two independent Caucasian cohorts of stage IV colorectal 

cancer patients (17). In the discovery set 131 metastasic colorectal cancer primary 

tumors that received oxaliplatin plus fluoropirimidines based therapy, were 

retrospectively included. Formalin-fixed paraffin embedded tumors, obtained by 

surgical resection, came from three different hospitals (ICO-Hospitalet, ICO-Badalona 

and Niguarda Ca' Granda). Clinical features of the patients are showed in Table 1. 

From this cohort, 65 patients could undergo surgery to remove metastases. Following 

neoadjuvant regimen, 34 could be operated and 31 received palliative regimen. The 

rest of patients (n=66) showed unresectable metastases and directly underwent to 

palliative regimen. The greatest time of follow-up of this group was near 10 years. The 

validation cohort consisted in 58 stage IV colorectal cancer patients collected in 

Hospital Vall d’Hebron with a follow-up of near 3 years (Table 1). According to 

discovery set results, we selected patients with unresectable metastases, that received 

oxaliplatin plus fluoropirimidines based therapy in a neoadjuvant (n=20) or palliative 

regimen (n=38). The distribution of patients according to the different clinical features 

was similar in both cohorts. Signed informed consent was obtained from each patient 

and Clinical Research Ethical Committee from ICO-Hospitalet provided approval for the 

study. DNA from all cases was obtained from formalin-fixed paraffin-embedded tissue 

sections (10 μm) by xilol deparafination and digestion by proteinase K (Qiagen, 

Manchester, UK). Tumor specimens were composed of at least 70% carcinoma cells. 

DNA extraction was performed using a commercial kit (Qiagen), following 

manufacturer’s instructions. 
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Table1. Clinical features of the discovery and validation cohorts of stage IV colorectal samples included in the study.* 

Characteristic 

DISCOVERY COHORT (n=131) VALIDATION COHORT (n=58) 
SBRC according to methylation status SBRC according to methylation status 

N % 
Unmethylated Methylated  

         OR (95% CI)  
 N % 

Unmethylated Methylated  
 OR (95% CI) 

N % N % N % N % 

Gender                 
Male 85 64.9% 61 71.7% 24 28.3% 1 (referent) 35 60.3% 29 82.8% 6 17.2% 1 (referent) 

Female 46 35.1% 31 67.4% 15 32.6% 1.13 (0.85 - 1.47) 23 39.7% 15 65.2% 8 34.8% 0.60 (0.32 - 1.10) 

Primary tumor      
Colon 102 77.8% 72 70.6% 30 29.4% 1 (referent) 41 70.7% 32 78.1% 9 21.9% 1 (referent) 

Rectum 29 22.2% 20 68.9% 9 31.1% 0.94 (0.47 - 1.25) 17 28.3% 12 70.6% 5 29.4% 0.76 (0.33 - 1.79) 

Metastatic site      
Liver 81 61.8% 52 64.2% 29 35.8% 1 (referent) 47 81.0% 35 74.5% 12 25.5% 1 (referent) 

Lung 9 6.9% 5 55.5% 4 44.5% 0.72 (0.21 - 2.51) 3 5.2% 2 66.7% 1 33.3% 0.70 (0.07 - 7.12) 

Others 18 13.7% 15 83.3% 3 16.7% 2.39 (0.74 - 7.66) 8 13.8% 7 87% 1 13% 2.10 (0.29 - 16.1) 

Unknown 23 17.6% 20 86.9% 3 13.1% - 0 0% 0 0% 0 0% - 

Chemotherapy schedule      
Oxaliplatin / 5-FU 107 81.7% 74 69.2% 33 30.8% 1 (referent) 41 70.7% 32 78.1% 9 21.9% 1 (referent) 

Oxaliplatin / CAPE 10 7.6% 8 80.0% 2 20.0% 1.71 (0.38 - 7.64) 0 0% 0 0% 0 0% - 

Oxaliplatin / 5-FU / BA 13 9.9% 9 69.2% 4 30.8% 1.01 (0.33 - 3.05) 17 29.3% 12 70.6% 5 29.4% 0.76 (0.33 - 1.79) 

Oxaliplatin / CAPE / BA 1 0.8% 1 100% 0 0% - 0 0% 0 0% 0 0% - 

Chemotherapy regimen      
Neoadjuvant 65 49.6% 41 63.1% 24 36.9% 1(referent) 20 34.5% 15 75.0% 5 25.0% 1 (referent) 
Palliative 66 50.4% 51 77.3% 15 22.7% 1.47 (0.95 - 2.27) 38 65.5% 29 76.3% 9 23.7%      1.02 (0.66 - 1.60) 

Surgery of metastasis      
No 97 74.1% 72 74.3% 25 25.7% 1 (referent) 58 100% 44 75.9% 14 24.1% - 

Yes 34 25.9% 20 58.8% 14 41.2% 0.61 (0.34 - 1.07)  0 0% 0 0% 0 0% - 

Abbreviations:  5-FU = 5-fluorouracil; CAPE = capecitabine; BA= Biological agents 
* None of the relationships were statistically significant after using the two-sided Chi-square test, considering  p<0.05 as statistical significant threshold. 
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Statistical Analysis 
In both independent cohorts we analyzed SRBC promoter methylation status and its 

association with response rate, progression free survival, and overall survival. The 

associations between categorical variables were assessed by �2 tests or Fisher exact 

test whenever required. Kaplan–Meier plots and log-rank test were used to estimate 

progression free survival and overall survival. The association between epigenetic 

variant and clinical parameters with progression free survival and overall survival was 

assessed through univariate and multivariable Cox proportional hazards regression 

models. The proportional hazards assumption for a Cox regression model was tested 

under R statistical software (Boston, MA) (cox.zph function). Statistical analysis was 

performed by using SPSS for Windows, (Armonk, NY), and P values less than .05 were 

considered statistically significant. All statistical tests were two-sided. 

 

RESULTS 
Identification of Epigenetics Changes Associated With oxaliplatin Resistance 
Using a DNA Methylation Microarray  
To address in an unbiased manner whether epigenetic changes can be associated with 

oxaliplatin resistance, we adopted a whole genomic approach by comparing the DNA 

methylation status of 27 000 CpG sites (15) of an oxaliplatin-sensitive colon cancer cell 

line (LoVo-S) and an oxaliplatin-resistant clone (LoVo-R) that we derived by exposure 

to increasing concentrations of the drug (14).  

 

This approach yielded only three differentially methylated target genes: SRBC (protein 

kinase C delta binding protein), FAM111A (family with sequence similarity 111, 

member A) and FAM84A (family with sequence similarity 84, member A) 

(Supplementary Figure 1A). The most noteworthy gene with the highest difference in 

DNA methylation was SRBC; thus, it was the logical option to pursue. However, we 

also studied initially the other two genes. For FAM111A, bisulfite genomic sequencing 

of multiple clones showed that indeed the CpG site included in the DNA methylation 

microarray was distinctly methylated in LoVo-S and LoVo-R cells; however, the 

remaining sites of the CpG island were unchanged (Supplementary Figure 1B). Thus, 

we excluded this gene from further experiments. For FAM84A, bisulfite genomic 

sequencing confirmed the differential methylation of the CpG island, but both 

conventional and quantitative real time PCR did not show any difference in gene 

expression (Supplementary Figure 1, D and E). Thus, we also excluded this second 

gene from further analyses. For the main target gene, SRBC, the DNA methylation 

microarray data showed that it had a CpG site located in its 5’-CpG island (�155 base 
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pair position) that was hypermethylated in LoVo-R but unmethylated in LoVo-S 

(Supplementary Figure 1A). Interestingly, SRBC CpG island methylation-associated 

silencing has already been found in cancer (18, 19 ), including colorectal tumors (20). 

From a functional standpoint, it is biologically plausible that SRBC is responsible for the 

different sensitivity to oxaliplatin because its protein interacts with the product of the 

BRCA1 gene (18), which is widely accepted as being a mediator of response to DNA 

damage induced by platinum compounds (21).  

 

To further demonstrate the presence of SRBC 5’-CpG island methylation in resistant 

cells, we undertook bisulfite genomic sequencing analyses. We found CpG island 

hypermethylation in LoVo-R but mostly an unmethylated CpG island in LoVo-S (Figure 
1A). Importantly, SRBC expression was diminished in LoVo-R, showing CpG island 

methylation, whereas it was expressed in the unmethylated LoVo-S at the messenger 

RNA and protein levels (Figure 1B). SRBC re-expression was observed upon 

treatment with the DNA demethylating agent 5-AZA in LoVo-R cells (Figure 1B). 

 

SRBC Epigenetic Inactivation and Oxaliplatin Resistance 
 We next sought to demonstrate that the epigenetic inactivation of this gene functionally 

contributed to oxaliplatin resistance. We restored the expression of SRBC in LoVo-R by 

stably transfecting an exogenous expression vector (Figure 1C). Upon SRBC 

transfection, the cells proved to be statistically significantly more sensitive to the 

antiproliferative activity of oxaliplatin measured by the MTT assay (Figure 1D) than 

were the empty vector-transfected cells (LoVo-R + SRBC 1 and 2: P=0.02 and P< 

0.001, respectively). In sharp contrast, we observed that SRBC stable down-regulation 

by the short hairpin RNA approach in SRBC-expressing and unmethylated sensitive 

cells (LoVo-S) (Figure 1C) had the opposite effect: a considerable enhancement of the 

resistance to the antiproliferative effect mediated by oxaliplatin (Figure 1D) (LoVo-S 

short hairpin SRBC A and B: P=0.04 and P<0 .001, respectively). The observed effects 

were specific for oxaliplatin because the in vitro depletion or enhancement of SRBC 

activity did not change the sensitivity to 5-FU (Figure 1D), other drug commonly used 

in colorectal cancer. 
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We extended our study to seven additional colon cancer cell lines (Co115, HCT-15, 

HCT-116, SW48, SW480, SW620, and RKO), in which we found SRBC promoter CpG 

island hypermethylation (Figure 2A) and the associated loss of expression only in 

HCT-15 cells (Figure 2B). Interestingly, these cells were the only ones showing 

resistance to oxaliplatin (IC50 ± standard deviation = 3.81 ± 0.18 �M); the remaining 

cells were sensitive to the drug (Figure 2C) (IC50 values ranging from 0.30 to 0.83 �M). 

As we did with LoVo-S and LoVo-R, we also sought to demonstrate that SRBC 

epigenetic inactivation functionally contributed to oxaliplatin resistance in these cells. 

We restored the expression of SRBC in the resistant cell line HCT-15 by stably 

transfecting an exogenous expression vector (Supplementary Figure 2A). Upon 

SRBC transfection, the cells proved to be statistically significantly more sensitive to the 

antiproliferative activity of oxaliplatin (HCT15+SRBC: P=0.02) (Supplementary Figure 
2B). The opposite effect was observed with SRBC stable downregulation using the 

short hairpin RNA approach in SRBC-expressing and unmethylated sensitive cells 

(HCT-116): a noteworthy increase in the resistance to the antiproliferative effect 

mediated by oxaliplatin was found (Supplementary Figure 2B) (HCT-116 short hairpin 

SRBC A and B: P<0.001). The described effects were specific for oxaliplatin because 

the in vitro depletion or enhancement of SRBC activity did not change the sensitivity to 

5-FU (Supplementary Figure 2B). Western blot analyses showed that the level of 

expression of the SRBC protein in the transfected clones was similar to that observed 

in unmethylated colon cancer cell lines (Supplementary Figure 2A). 

 

SRBC Hypermethylation and Progression Free Survival in oxaliplatin-Treated 
Cases of Unresectable Colorectal Cancer  
Given these in vitro findings that colon cancer cells with SRBC methylation-associated 

silencing were resistant to oxaliplatin, we wondered whether the same effect could be 

observed in clinical samples. The study of a first clinical cohort of 131 stage IV 

colorectal adenocarcinoma patients (termed discovery cohort) (Table 1), all of whom 

were treated with oxaliplatin in combination with a fluoropyrimidine, showed SRBC 

methylation in 29.8% (n=39 of 131) of the case patients analyzed by both methylation-

specific PCR and pyrosequencing analyses (Figure 3A; Supplementary Figure 3). 

The described occurrence of SRBC hypermethylation in colorectal tumors was identical 

to the one available in the The Cancer Genome Atlas datasets (30.2%; n=70 of 232). 

Considering the whole population of studied advanced colorectal cancer case patients 

(n=131), we observed that SRBC hypermethylation was associated with progression 

free survival (HR=1.83; 95% CI=1.15 to 2.92; log-rank P=0.01) (Figure 3B). For the 
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105 case patients for whom overall survival information was available, SRBC 

hypermethylation was not associated with this variable (Figure 3C). 

 

According to Cox regression multivariable test, surgery of metastases showed to be an 

independent progression free survival (HR=0.43; 95% CI=0.24 to 0.76; log-rank P= 

0.004) and overall survival (HR=0.16; 95% CI=0.04 to 0.52; log-rank P=0.003) 

prognostic factor (Supplementary Figure 4). Taking this into account, our cohort was 

stratified in relation to this clinical feature and was divided into two groups: patients that 

underwent metastases resection (n=34) and patients with unresectable metastases 

(n=97). Subdividing the discovery cohort into these resectable or unresectable groups, 

SRBC hypermethylation did not have any predictive effect in progression free survival 

and overall survival for those case patients that received oxaliplatin as neoadjuvant 

therapy followed by the successful resection of the metastases (Supplementary 
Figure 5). 
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However, the scenario was completely different in the context of patients with 

colorectal adenocarcinomas with unresectable metastases who received oxaliplatin as 

neoadjuvant therapy and were subsequently not eligible for surgery (n=31) or patients 

with tumors that were originally classified as unresectable and were given oxaliplatin as 

palliative chemotherapy (n=66). For these 97 oxaliplatin-treated advanced colorectal 

cancer case patients with unresectable metastases, SRBC CpG island 

hypermethylation was statistically significantly associated with shorter progression free 

survival (HR=1.96; 95% CI=1.13 to 3.40; log-rank P=0.01) (Figure 3D). In this set of 

case patients, for whom overall survival data were available for 79 patients, we also 

observed that SRBC hypermethylation was statistically significantly associated with 

shorter overall survival (HR=2.01; 95% CI=1.13 to 3.40; log-rank P=0.04). These 

interesting results prompted us to study the SRBC methylation status in a second 

independent set of colorectal cancer patients with unresectable metastasis who also 
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received oxaliplatin-based therapy (n=58) (Table 1). In this validation cohort, we 

confirmed that the presence of SRBC hypermethylation was associated with shorter 

progression free survival (HR=1.90; 95% CI=1.01 to 3.60; log-rank P=0.045) (Figure 
4). Thus, the clinical data are similar to the results from the aforementioned cell 

cultures that suggest increased chemoresistance of SRBC hypermethylated colorectal 

tumors to oxaliplatin treatment.  

 
DISCUSSION 
The preexistence (primary resistance) or the de novo development (secondary 

resistance) of cellular mechanisms to escape the antitumoral effects mediated by the 

anticancer compounds probably involve a wide repertoire of genetic and epigenetic 

(22) events. From a genetics perspective in colorectal cancer, it has been described 

that the presence of KRAS mutations and gene amplification of the EGFR or MET 

genesis associated with resistance to overall anti-EGFR therapies (23,24,25). 

However, from an epigenetics perspective, very little is known. In spite of promising 

pharmacoepigenetics biomarkers, such as the example of MGMT hypermethylation 

and good response to temozolamide in gliomas (26), have been described for other 

tumor types, the examples in colorectal neoplasms are scarce, even more so if we just 

focus on resistance biomarkers. Herein, we provide an example to help fill this niche by 

showing that SRBC hypermethylation predicts resistance to the commonly used agent 

oxaliplatin in metastatic colorectal cancer, a disease stage that represents the second 

most common cause of death from cancer (1).  

 

A role of SRBC in mediating different sensitivity to oxaliplatin can be clearly justified by 

its protein interaction with the product of the BRCA1 gene (18). The BRCA1 protein 

exerts an important role in DNA double-strand break repair through homologous 

recombination 2, so its deficiencies can impair the capacity of cancer cells to repair 

DNA cross-links caused by chemotherapy drugs such as platinum derivatives (3–

7).Two independent studies reported greater primary chemotherapy sensitivity to 

platinum based chemotherapy agents in patients with ovarian cancer who were carriers 

of BRCA1 germline mutations (5,6). These observations have also been extended to 

BRCA1 epigenetic silencing in sporadic breast and ovarian tumors, where it also 

predicts a good response to cisplatin and carboplatin (9,10,and 27). However, the 

biology of mammary tumors is very different from colorectal malignancies, and in all 

cases of colon cancer, the BRCA1 promoter has always been found in an 

unmethylated status (28–30). Interestingly, in addition to its BRCA1-related roles, 

SRBC might have other functions related to the observed chemoresistance phenotype, 
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such as its interaction with caveolin 1, which may putatively affect intracellular vesicle 

traffic of the drug (31). 

 

It is worth mentioning two possible avenues of further research. First, there is the 

possibility to detect SRBC hypermethylation by sensitive user-friendly techniques, such 

as methylation-specific PCR and pyrosequencing, which could be useful in the clinical 

setting. Instead of always requiring the use of the surgical tumor sample, stool or 

serum/plasma DNA could be useful alternative biological materials to predict oxaliplatin 

resistance in colorectal cancer patients. In this regard, DNA methylation changes are 

also amenable for the development of new powerful molecular techniques, such as 

those recently referred to as liquid biopsies (32). Second, our observation that 

sensitivity to oxaliplatin can be restored by the re-expression of the SRBC gene could 

represent a revival of the DNA demethylating agents in the therapy of solid tumors. 

With little therapeutic options against metastatic colorectal cancer once it has become 

insensitive to oxaliplatin, DNA methylation inhibitors, such as 5-AZA, could be used to 

resensitize these tumors to the oxaliplatin therapy. This idea has been recently 

explored in non–small cell lung carcinoma patients who had reached the last line of 

chemotherapy. The subsequent administration of 5-AZA was able to rescue previous 

chemosensitivity (33). 

 

Limitations of our study to be addressed in further research include the lack of 

knowledge about the molecular mechanisms linking SRBC activity and DNA damage 

repair triggered by oxaliplatin, the use of non quantitative DNA methylation assays that 

will require transformation to quantitative DNA methylation tests to get specific cut offs 

for a future clinical application, and the extension of our colorectal cancer patient data 

source to stage II and III tumors and samples from other geographical origins.  

 

In conclusion, we have demonstrated that DNA methylation-associated silencing of the 

BRCA1 interactor gene SRBC is associated with the acquisition of chemoresistance to 

the DNA damaging agent oxaliplatin in colorectal cancer both in vitro and in vivo. The 

validation of SRBC hypermethylation as a predictive marker will require further 

prospective studies. If successful, clinical trials would also be necessary to develop 

strategies to overcome or prevent the development of SRBC-mediated epigenetic 

resistance. 
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SUPPLEMENTARY METHODS 
Analysis of the DNA methylation microarray data 
The methyl array data analysis was performed by 

GenomeStudiohttp://www.illumina.com/gsp/genomestudio_software.ilmn) and then 

processed using R (http://www.r-project.org/). All methylation values measured by 

microarray were presented as beta value, ranging from 0 to 1. Normalizations were 

performed using quantile normalization, on data previously adjusted by color balance 

between the two channels and corrected by background level. 

 

We adopted multivariate outlier analysis to analyze our beta methylation data. We use 

the methylation data matrix as a main body made up of the mass none differentially 

methylated (NDM) CpGs “contaminated” with outliers constituting the few differential 

methylated (DM) CpGs. We model the former with a multivariate normal distribution 

and estimate its centre and covariance matrix with the Minimum Covariance 

Determinant estimator, and quantify the departure from the major NDM distribution with 

the robust Mahalanobis distance and a corresponding X2 test p-value. The CpGs with 

small p-values are outliers to the majority of the data, and can be extracted as DM 

CpG. To adjust for the multiple test error, we used a False Discovery Rate (FDR) 

approach, according to Benjamini and Hochberg. 

 

The Infinium HumanMethylation27 Bead Chip interrogates 27,578 CpG sites from 

14,495 genes. The ratio of the average intensity of methylated probes to the average 

intensity of both methylated and unmethylated probes for a specific CpG provides an 

estimate of the fraction of DNA methylated that has been suggested to follow a beta 

distribution due to its potential bimodality. The differential methylation test uses a 

multivariate outlier analysis, assuming multivariate normal distribution, a generalization 

of the one-dimensional (univariate) normal distribution (which is reasonable when 

focusing on a two-group comparison on a single site or region) to higher dimensions. 

 

DNA Methylation Analysis of Single Locus 
We established SRBC CpG island methylation status using three different PCR 

based techniques. We used bisulfite-modified genomic DNA, which induces chemical 

conversion of unmethylated, but not methylated cytosine. First, DNA methylation status 

was analyzed by bisulfite genomic sequencing of the SRBC CpG island using primers 

encompassing the transcription start site. Primer sequences are shown in 

Supplementary Table 1. Both DNA strands were sequenced and at least eight clones 

were analyzed per sequence. The second analysis used methylation-specific PCR 



                                                                                                                          RESULTS                             
 

95�
�

using primers specific for either the methylated or modified unmethylated DNA. Primer 

sequences are shown in Supplementary Table 1. The PCR annealing temperature 

was 59ºC and 36 cycles of PCR were performed. DNA from normal lymphocytes 

treated in vitro with SssI methyltransferase was used as a positive control for 

methylated alleles (IVD). DNA from normal lymphocytes (NL) and normal colon 

mucosa were used as a positive control for unmethylated alleles. Pyrosequencing was 

the third analysis performed. PCR was realized under standard conditions with 

biotinylated primers and the PyroMark Vacuum PrepTool (Biotage, Sweden) was used 

to prepare single-stranded PCR products according to manufacturer’s instructions. 

Primer sequences are shown in Supplementary Table 1. PCR products were 

observed at 2% agarose gels before pyrosequencing. Reactions were performed in a 

PyroMark Q96 System version 2.0.6 (Qiagen) using appropriate reagents and 

protocols, and the methylation value was obtained from the average of the CpG 

dinucleotides included in the sequence analyzed. 
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Supplementary Table 1: Primers Sequences 

�

Primers Sequence 
Annealing 

temperature 
(ºC) 

Product Size
(bp) 

Bisulfite Sequencing Primers 

SRBC_BS_F AGTTTTAGTTGTGATTTAGGTAGG 56 327 

SRBC_BS_R CCCCTCTAATTATCTCTTTACC 

FAM111A_BS_F TGTTTTTTTAGGGGTAAGGGTA 57 268 

FAM111A_BS_R AACAACCTTTTCCCAAAAAA 

FAM84A_BS_F TTTTTTGTGYGTTTTGTTTT 58 103 

FAM84A_BS_R AATTTCTTCTCCATACCCAAAC 

Methylation Specific PCR

SRBC_MSP_UF TTTTTGAAAGTGTTTTGTTTTTT 59 187 

SRBC_MSP_UR TTCCATAACTCACCCTTTACAA 

SRBC_MSP_MF TTGAAAGCGTTTCGTTTTTC 59 189 

SRBC_MSP_MR TCCGTAACTCGCCCTTTAC 

Semi-quantitative PCR 

SRBC_qPCR_F GTTCTGCTCTTCAAGGAGGA 60 154 

SRBC_qPCR_R CTCTGTACCTTCTGCAATCC 

FAM84A_qPCR_F GCGAGTTGCCCACAGGGGAC 60 136 

FAM84A_qPCR_R CGCTCTTGAGGCCCACCAGT 

Pyrosequencing primers   

BioPyro_SRBC_R [Byn]ACCAACAAACTTCCCAAC 60 

Pyro_SRBC_F AGGGYGTGGGGATGTTGGT 

PyroSeq_SRBC primer AAGYGTTTYGTTTTTYGTTGTTTYGYGTYGGGGGTTTGT 
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RESUMEN 
Para investigar la base genética de la resistencia al cisplatino, hemos desarrollado un 

modelo de ratón representativo de tumores testiculares germinales del tipo no 

seminoma, sensibles/resistentes al cisplatino. Los tumores humanos han sido 

ortotópicamente trasplantados al ratón, orthoxenografts. Aplicando un enfoque 

genético global, se identificaron cambios recurrentes en todos los tumores refractarios 

(ganancias: 9q22.11 - q33.3, 9q32 - q33.1, 15q23 - q24.1 y 15q26.3, pérdida: Xp22.3). 

Clínicamente, la presencia de las ganancias de 9q32 - q33.1 se asoció con una peor 

supervivencia global en una serie de tumores de células germinales metastásicos, que 

incluían pacientes con resistencia al cisplatino. Perfiles de expresión génica de la 

región 9q32 - q33.1 y estudios funcionales in vitro e in vivo destacan la relevancia de 

GCS, ATP6V1G1, POLE3, PAPPA y CTR1/2 como genes de resistencia relacionados 

al cisplatino y candidatos prometedores para las terapias de resensibilización-dirigida. 

Como prueba de concepto, se presentan fuertes evidencias preclínicas que la 

inhibición de GCS con DL-treo-PDMP en modelos orthoxenograft resistentes al 

cisplatino resensibiliza los tumores al cisplatino, proporcionando de este modo una 

justificación para el reposicionamiento de este inhibidor en el desarrollo de futuros 

ensayos clínicos. 
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SUMMARY 
To investigate genetic basis of cisplatin resistance, we have developed in nude mice a 

representative panel of matched orthotopically transplantable subject-derived 

nonseminomatous (NSE) cisplatin-sensitive/resistant tumors, named orthoxenografts. 
Using genome-wide approach, recurrent changes were identified across refractory 

tumors (gains: 9q22.11-q33.3, 9q32-q33.1, 15q23-q24.1 and 15q26.3; loss: Xp22.3). 
Clinically, the presence of 9q32-q33.1 gains was associated with poorer overall survival 

in a series of metastatic germ cell tumors, which included cisplatin-refractory patients. 
Gene expression profiling of 9q32-q33.1 region and functional in vitro, and in vivo RNAi 

knockdown assays of their Caenorhabditis elegans ortholog genes highlights the 

relevance of GCS, ATP6V1G1, POLE3, PAPPA and CTR1/2 as cisplatin resistance-

related genes, making them promising candidates for targeted cisplatin-sensitizing 

therapies. As a proof-of-concept, we present strong preclinical evidences that drug 

inhibition of glucosylceramide synthase (GCS) with DL-threo-PDMP in cisplatin-

resistant orthoxenograft models newly sensitizes tumors to cisplatin, thereby providing 

a drug-repositioning rationale for development of future clinical trials.  
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INTRODUCTION 
Testicular germ cell tumors of adolescent and young adults (TGCTs) are the most 

common malignancy in young men 1-3. They can be classified as seminomas [123], 

which represent around 40% of cases, or nonseminomas (NSEs) (60%). SEs are radio- 

and chemo-sensitive tumors, and are highly curable at all stages. With the exception of 

teratomas, NSEs are highly sensitive to cisplatin-based chemotherapy and, when 

combined with surgery, patients achieve high cure rates 4. In contrast with most 

advanced solid tumors, approximately 80-90% of metastatic GCTs will achieve 

complete cures after standard doses of cisplatin chemotherapy 5,6. Nevertheless, 10-

15% of patients die from cisplatin refractoriness and from the absence of alternative 

effective resensitizing therapies. 

 

Cisplatin resistance has been attributed in GCTs to various mechanisms 2,3, although 

the molecular basis underlying treatment failure in refractory patients is understood 7. 

Perhaps it is this success in treating advanced testicular cancer that has meant that 

few studies of underlying treatment failure in refractory patients have been conducted 8. 

Additionally, the absence of relevant preclinical animal models reproducing human 

testicular GCT properties has made it difficult to identify any underlying resistant 

mechanism and to develop novel therapeutic approaches. Knowing why a curable 

cisplatin-treated tumor becomes resistant could help in the search for improved 

treatments for other tumors that are less successfully treated with cisplatin 8. Here we 

report the perpetuation of serially cisplatin-refractory orthotopic transplantable patient-

derived nonseminomatous tumor grafts in mice, named orthoxenografts, as a system to 

investigate cisplatin refractoriness from a genetic perspective and for the preclinical 

development of novel targeted therapies based on overcoming cisplatin-resistance. 

 
RESULTS 
Establishment and characterization of engrafted NSE tumors  
Fourteen of 40 primary human NSE tumors (35%) were grown as orthotopic implants, 

named orthoxenografts, in nude mice (Supplementary Table S1). Tumors included 

three choriocarcinomas (CHs) (Fig. 1a), four embryonal carcinomas (ECs), three yolk 

sac tumor (YS) and four mixed tumors. Five orthoxenografts were derived from several 

extragonadal tumor locations, and in four cases from patients treated with cisplatin-

based chemotherapy (Supplementary Table S1 and Fig. S1a, b and c). None of the 

22 implanted pure gonadal seminomas (SEs) grew in nude mice. Of the mixed tumors, 

comprising both SE and NSE components, only the NSEs grew in mice. 
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A very close correlation was found between the primary tumor and its paired 

orthoxenograft with respect to histological appearance (Supplementary Table S1), 

and their genetic and epigenetic characteristics. They were kept stable throughout 

serial passages. Immunohistochemical expression of conventional clinical diagnostic 

markers for GCTs was evident, enabling the successful classification of the tumors 

(Fig. 1a; Supplementary Fig. S1a, b and c). The early embryonic markers OCT4 and 

NANOG (Fig. 1b and Supplementary Fig. S1d) were exclusively detected in pure EC, 

and EC of mixed tumors. As described for primary tumors 2,9, we did not detect the 

presence of any gene point mutation and any tumor exhibited a microsatellite instability 

phenotype (MSI) (Supplementary Table S2). Likewise 10,11, there was a good 

correlation respect to  the methylation status of 5’ CpG promoter islands in a group of 

selected genes and this remained stable throughout mouse-to-mouse passages 

(Supplementary Table S3). Orthoxenografts also reproduce in mice the dissemination 

patterns observed in humans (Supplementary Fig. S1e and Supplementary Table 
S1). Finally, as occurred in patients 2,12, the secreted �-hCG and/or AFP could be 

readily detected in mouse serum as follow-up markers (Supplementary Table S1 and 
Fig. 1C). 

 

Orthoxenografts of NSE recapitulate the responses to cisplatin treatment in 
humans  
We studied the pattern of responses to chemotherapy for nine orthoxenografts. Mice 

were treated with low (2 mg/kg) and high (5 mg/kg) doses of cisplatin, and their short- 

and long-term responses were evaluated. All tumors had a good short-term response 

to low doses of cisplatin (Fig. 1c, left panel and Supplementary Fig. S2 and S3), as 

indicated by a significant reduction in tumor weight in eight cases and complete 

response in the tumor TGT21BX (Supplementary Fig. S2a). A good correlation 

between tumor weight and reduction or absence of serum �-hCG and/or AFP levels 

was found, supporting its use as a dynamic surrogate marker of treatment efficacy 

(Fig. 1C, right panel and Supplementary Fig. S2 and S3). Differences among tumor 

weight and serum markers observed in TGT21AX after treatment can be explained by 

the predominance of a teratoma with a few microscopic islands of viable cells 

(Supplementary Fig. S2b and S2c), while those in TGT34X (Supplementary Fig. 
S3c) were due to a high percentage of necrosis. Administration of higher doses of 

cisplatin (5 mg/kg) was associated with a better response in all cases (Fig. 1c; 
Supplementary Fig. S2 and S3). Additionally, there was a complete response in 

tumors TGT21AX (Supplementary Fig. S2b) and TGT34X (Supplementary Fig. 
S3c). 
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To investigate long-term cisplatin responses, a subgroup of the treated mice was kept 

alive post-chemotherapy until tumor regrowth was observed. Tumors regrew in seven 

out nine cases, over a period of 15 to 135 days, independently of the cisplatin dose in 

most instances. However, high doses of cisplatin prevented tumor relapse in TGT34X 

(Supplementary Fig. S3c), whereas in TGT39X both treatments yielded a long and 

sustained response, as was confirmed by constant levels of AFP over a latency period 

of 90 days (Supplementary Fig. S3d). Histological and immunohistological analysis of 

relapsed masses demonstrated the presence of a viable tumor in most cases, and the 

maintenance of cell heterogeneity, as indicated in mixed tumors by the presence of 

different components. As observed in patients 12, cisplatin induced increasing teratoma 

differentiation in TGT21AX (Supplementary Fig. S2c).  

 

In vivo development of representative NSE orthoxenograft models of cisplatin 
refractoriness  
To investigate cisplatin resistance against the same genetic background (sensitive vs. 

resistant) we developed several cisplatin refractory tumor models. Thus, five engrafted 

tumors, which had not been exposed to cisplatin before implantation (TGT1X, TGT12X, 

TGT21BX, TGT34X and TGT38X), were treated with cisplatin. After five iterative cycles 

of treatment in different mice, and applying increasing doses of cisplatin, refractory 

tumors were obtained (Fig. 1d). During the process, a progressive shortened time-lag 

between tumor treatment and tumor regrowth was noted, and the mice to mice 

passage time stabilized after five cycles of treatment in all cases (Fig. 1f). To 

demonstrate cisplatin resistance, we performed paired short-term response assays 

between untreated (TGTX) and resistant (TGTXR) tumors at cycle #5 (Fig. 1d). High 

levels of resistance were observed in all tumors at both cisplatin doses, these being of 

particular note in the case of TGT21BXR and TGT34XR, which were derived from 

highly sensitive tumors. No major differences in the histological (Supplementary Fig. 
S4) and immunohistochemical patterns were observed between original and cisplatin-

resistant tumors. 

 
Recurrent chromosomal imbalances are associated with acquired cisplatin 
resistance  

We investigated whether the acquisition of cisplatin resistance was associated with the 

selection of specific genomic imbalances and genetic alterations against the relatively 

stable genetic background of GCTs. No additional mutations or changes in the MSI 

status in resistant engrafted tumors were detected (Supplementary Table S2). Fine-

scale comparative whole-genome mapping using array-based comparative genomic 
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hybridization (CGH) was performed in four paired untreated parental engrafted tumors 

and their resistant counterparts. Genomic stability of engrafted tumors was confirmed 

by the low number of chromosome changes identified in untreated tumors. As shown in 

Fig. 2a, few additional recurrent genomic changes were consistently detected in 

resistant tumors. Gains at 9q were found in three of four cases, and in two at 9q21.11-

q33.3. There was also a small gain (5.1 Mbp) overlapping the 9q32-q33.1 sub-region in 

another case (Fig. 2b).  Gains at 15q23-q24.1 and 15q26.3 were identified in two 

tumors. All gains were confirmed by FISH analysis (data not shown). The loss of the 

Xp22.33 region was identified in three of four tumors (Supplementary Fig. S5). We 

subsequently focused our attention on studying the 9q short (5.1 Mbp) overlapping 

9q32-q33.1 region, since several genes within this region had been previously found to 

be associated with drug response (Supplementary Table S4).   

 
Amplification at 9q32-q33.1 is associated with an increased risk of death in 
advanced GCT patients  
To evaluate the clinical relevance of the mouse results, we investigated the gains at 

9q32-q33.1 by FISH in a tissue microarray (TMA), comprising a series of tumors from 

75 patients with metastatic GCTs (63 NSEs and 12 SEs) homogeneously treated with 

cisplatin-based chemotherapy in our research center. The series included 24 patients 

(22 NSEs and 2 SEs) refractory to first-line cisplatin-based chemotherapy. 

Amplification at 9q32-q33.1 was identified in 18 of 75 (24%) cases, including 16 NSEs 

(5 CEs, 2 CHs, 1 YS, 2 TEs and 6 mixed tumors) and two pure SEs (Fig. 2c). Those 

results were consistent for tumor sample replicates, as in the different histological 

tumor components in the majority of tumors. Nevertheless, amplified and non-amplified 

areas coexisted in five cases (2 pure CEs and 3 mixed tumors)  (Fig. 2c and 
Supplementary Table S5).  

 

Analysis of overall survival (OS) adjusted for histology (SE and NSE) showed that 

amplification at the 9q32-q33.1 region was associated with a 2.79-fold greater risk of 

death in patients with metastatic GCTs (p = 0.036; hazard ratio (HR) = 2.79; 95% 

confidence interval (CI) = 1.11–7.0) (Table 1 and Fig. 2d, left panel). A higher risk of 

death was revealed when considering only patients with NSE (n = 63) (p = 0.026; HR = 

3.03; 95% CI = 1.18–7.76), but there was no difference in those with SE (p=0.54). OS 

subgroup analyses in NSE patients showed a trend towards good and intermediate 

prognosis; the relationship was statistically significant when we analyzed the two 

groups together (p = 0.014; HR = 5.16; 95% CI = 1.47-18.12). Amplification was also 

associated with shorter progression-free survival (PFS) (p = 0.043; HR = 2.46; 95% CI 
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= 1.07–5.63) (Table 1 and Fig. 2d, right panel); this relationship was significant even 

when the NSE group alone was analyzed (p = 0.024, HR = 2.8, 95% CI = 1.19–6.57). 

There was a trend for tumors harboring the 9q32-q33.1 amplification to have a worse 

cisplatin response. Fifty percent of tumors with the amplification were considered 

resistant to first-line chemotherapy compared with 26.3% of tumors without it (p = 

0.060). Up to 27.8% of tumors with the 9q32-q33.1 amplification did not achieve a 

tumor marker complete response or progressed during first-line treatment (p = 0.007) 

(Supplementary Table S6).  

 
Identification of a group of cisplatin resistance-related genes at 9q32-q33.1  
Next, to find cisplatin resistance-related genes in 9q32-q33.1 region,  the profiling 

expression patterns of the 60 genes and two miRNAs annoted were generated by 

quantitative PCR (qPCR) (Fig. 3 and Supplementary Fig. S6) in the five paired 

(sensitive vs. resistant) engrafted tumors. Thirty-seven genes were expressed in GCTs 

and recurrent changes occurred in eleven of them: eight genes (ATP6V1G1, POLE3, 

EDG2, FLJ31713, GCS, PAPPA, TNC, and ZNF883) were overexpressed in cisplatin-

refractory tumors, while three genes (CTR1, CTR2, and AKNA) were underexpressed. 

These changes were mainly correlated with tumor resistance rather than specifically 

with the presence of amplification. Nevertheless, despite the small number of samples 

analyzed, overexpression and 9q32-q33.1 amplification were correlated with the 

presence of PAPPA, an IGF-binding protein protease (IGFBP) involved in the IGF 

Table 1 Analysis of 9q32-q33.1 amplification in metastatic germ cell tumors  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: WT, No amplification at 9q32-33.1; HR, hazard ratio; CI, confidence interval. 
* P values are from multivariate Cox models adjusted for pathological diagnostic classification.

  
Overall Survival Progression-Free Survival 

  
n 

 
% HR 95% CI P HR

 
95% CI 

 
P       

Chromosome copy number at 9q31-q32.1 
(n=75) 

  

        

 WT  
57 

 
76 1  0.036 *  1   

0.043 * 
 Amplification 18 24 2.79 (1.11 - 7.0)   2.46 (1.07 - 5.63)  
      
Stratified analysis        
  

Pathological classification        

  Nonseminoma (n=63)         
   WT 47 74.6 1  0.026  1  0.024 
   Amplification 16 25.4 3.03 (1.18 - 7.76)   2.8 (1.19 - 6.57)  
      
  Seminoma (n=12)         
   WT 10 83.3 1     (0 - Inf) 0.54  1 (0 - Inf) 0.38 
   Amplification 2 16.7 0    0   
      
 IGCCCG classification        
  NSE with good prognosis (n=33)        
   WT 27 81.8 1  0.096  1  0.22 
   Amplification 6 18.2 5.89 (0.82 - 42.52)   3.29 (0.55 - 19.71)  
        
  NSE with intermediate prognosis (n=14)        
   WT 10 71.4 1  0.15  1  0.28 
   Amplification 4 28.6 3.41 (0.68 - 17.02)   2.33 (0.52 - 10.44)  
        
  NSE with bad prognosis (n=16)        
   WT 10 62.5 1  0.88  1  0.30 
   Amplification 6 37.5 0.9 (0.21 - 3.79)   2 (0.55 - 7.21)  
      
  Grouping NSE according to good and intermediate 

prognosis (n=47)
       

   WT 37 78.7 1  0.014  1   
   Amplification 10 21.3 5.16 (1.47 - 18.12)   3.28 (1.03 - 10.37) 0.056 
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release process, and POLE3, also known as CHRAC17, a histone-fold protein, which forms part of the CHRAC chromatic-remodeling complex. 
Although changes in the expression levels of miRNA4688 and miRNA455 were observed among the different resistant tumors (Supplementary 
Fig. S7a), we did not found a clear association with resistance or with amplification.  
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Knockdown of Caenorhabditis elegans ortholog genes, GCS, ATP6V1G1, AMBP 
and CTR1/CTR2, by RNAi impaired worm cisplatin response  
We investigated the individual contribution of the 9q32-q33.1 genes to cisplatin 

resistance/sensitivity in the nematode Caenorhabditis elegans by RNAi their 

corresponding ortholog genes. We identified C. elegans ortholog genes in 15 of the 37 

genes expressed in engrafted tumors; 12 genes were selected on the basis of our 

previous qPCR results to be knocked down by feeding RNAi (Fig. 4a). Cisplatin-

induced toxicity was subsequently evaluated in these worms by measuring the track 

locomotor activity over 24 hours of cisplatin exposure (Fig. 4b, 4c and Supplementary 
Fig. S8). We observed a clear correlation with sensitivity/resistance to cisplatin with 

ctg-1 and ctg-3 (GCS orthologs) and F27C1.2 (CTR1/CTR2 ortholog). In the case of 

ctg genes, the functional redundancy was overcome by doing ctg-3 RNAi in the ctg-

1(ok1045) mutant background. mig-6 (AMBP ortholog) and vha-10 (ATP6V1G1 

ortholog) also contribute to cisplatin resistance,  but not other genes as gpc-1 (GNG10 

ortholog) or ten-1 (TNC ortholog)(Supplementary Fig S8). Although, the role of mig-6 

and vha-10 genes under cisplatin exposure may need further exploration since their 

RNAi inactivation by itself produces an effect on locomotor activity in the absence of 

cisplatin. Functional redundancy probably explains the absence of association with 

cisplatin response for nfyb-1 (POLE3/CHARC17 ortholog) 13 in C. elegans, while we did 

not identity a specific worm ortholog for PAPPA gene. 

 

Next, by the absence of an ortholog gene or by the difficult to study in worms its role in 

cisplatin response, the expression changes of candidate genes POLE3, PAPPA, 

ATP6V1G1, AKNA and AMBP were determined by qPCR in a set of three paired 

sensitive vs. cisplatin-derived resistant testicular germ cell tumor cell lines (SuSaS vs 

SuSaR, 833KS vs 833KR and GC27S vs GC27R), confirming their association with 

cisplatin resistance for the majority of them (Supplementary Fig S7b).  
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DL-threo-PDMP, a competitive inhibitor of GCS, re-sensitizes refractory NSE 
orthoxenografts to cisplatin  
Our study enabled six candidate (GCS, POLE3, PAPPA, ATP6V1G1, AMBP and 

CTR1/2) targets to be identified that are of use for developing novel therapeutic 

approaches for overcoming cisplatin resistance. As a proof-of-concept we decide to 

deep into the therapeutic value of one of these genes/proteins at the preclinical level. 

GCS was chosen on the grounds that: (i) it increased mRNA expression in all cisplatin 

refractory orthoxenografts; (ii) it increased GCS enzymatic activity (2.5-3-fold induction) 

occurs in 4 out 5 cisplatin-refractory orthoxenografts (Fig. 5a); (iii) its knockdown by 

RNAi in worms confers cisplatin sensitivity; (iv) its central role in the pathway of 

sphyngolipid synthesis; and (v) specific inhibitors of it are available, some of which are 

currently in clinical use for other pathologies.  

 

NSE testicular germ cell line SuSAS and its paired cisplatin resistant SuSaR were used 

as cellular models to deep into the functional relationship among GCS 

expression/activity and cisplatin resistance. Significant differences among protein 

expression and activity levels measuring glycosilceramide formation were observed for 

both cell lines (Fig. 4d). At low doses of cisplatin (5 μM) SuSaR cells exhibit increased 

GCS activity through the time (Fig. 4d). Transfected SuSaS cells overexpressing GCS 

has a significant cisplatin-resistance increase (5-fold) (Fig. 4e); while shRNAi 

knockdown of the endogenously overexpressed GSC gene (70% of inhibition) in 

SuSaR cells correlates with a partially (57.6%) cisplatin resensitization (Fig. 4e). 

Likewise, the treatment of SuSaR cells with the specific GCS inhibitor DL-thhreo-PDMP 

(PDMP) (Fig. 4f) mimics this cisplatin sensitization (44.8%). Effect mediated by a 

significant increase in the intracellular levels of ceramide for combined cisplatin+PDMP 

treatment (Fig. 4f). Thus, we demonstrate that impaired GCS expression/activity in 

vitro resensitizes cisplatin-resistant NSE cell line newly to cisplatin treatment. 

 

Engrafted animals with cisplatin-refractory TGT1XR and TGT38XR orthoxenografts, 

which exhibit increase GCS expression and enzyme activity (Fig. 5a), were treated 

daily with PDMP, a competitive inhibitor of GCS  for 21 days (Fig. 5b). As a single 

agent PDMP did not produce a significant response with respect to the vehicle-treated 

animals, and no significant differences were observed among individual PDMP and 

cisplatin treatments. Nevertheless, both tumors experienced significant tumor weight 

reductions (TGT38XR, 73.5% and TGT1XR, 42.8%) for combined PDMP+cisplatin 

treatment (Fig. 5b).  
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Glucosylceramide synthase activity also associated with acquired cisplatin 
resistance in orthoxenografts of epithelial ovarian cancer  
Finally, we investigate whether the identified association among GCS and cisplatin 

resistance was specific of germ cell tumors, or it happens in other cisplatin treated 

tumors. Thus, GCS expression/ activity were determined in six paired cases of 

sensitive and cisplatin-resistant orthoxenografts of epithelial ovarian cancer (EOC). In 5 

out 6 (83.3%) serous tumors a median increase of 52.5% ± 9.4 GCS activity and 

RNA/protein levels (data not shown) were also observed in the resistant 

orthoxenografts respect to its paired sensitive tumors (Fig. 5c). Furthermore, PDMP 

treatment of OVA17XR, having high levels of GCS activity, has a cisplatin resensitizing 

effect (Fig. 5d) (tumor weight reduction of 76,5% in combined cisplatin+PDMP 

treatment). Together, the GCS inhibitor PDMP resensitizes cisplatin-refractory 

orthoxenografts to cisplatin treatment, providing a promising therapeutic opportunity for 

GCT refractory cases, and a strong preclinical rationale for further clinical trials.  

 
DISCUSSION 
In this paper we report the generation of a unique series of orthotopically engrafted 

nonseminomatous tumor, named orthoxenografts, including several paired cisplatin-

sensitive/resistant tumors and endogenous refractory cases. Preclinical models 

enabled several cisplatin resistance-related chromosomal regions to be identified, as 

the development of novel therapeutic approaches to overcome cisplatin refractoriness. 

We then focused on the recurrent gained 9q32-q33.1 region, demonstrating that its 

presence in metastatic GCTs was associated with poorer overall survival. Combined 

differential expression profiling studies, and functional RNAi gene knockdown in C. 

elegans and in vitro cell lines we identified and validate a group of cisplatin resistance-

related genes.  Finally, as proof-of-concept we preclinically validated the PDMP as a 

therapeutic strategy that resensitizes to cisplatin treatment producing a change that 

overcomes cisplatin refractoriness.  

 

Rao et al 14, analyzing human refractory GCTs samples, provided the first evidence of 

chromosomal amplification associated with cisplatin resistance by comparing unpaired 

tumors obtained from relapse-free patients with chemotherapy-resistant tumors. Our 

approach of comparing against the same genetic background (paired sensitive vs. 

cisplatin-refractory tumor cases) identified fewer recurrent changes across the different 

refractory tumors. The genetic concurrence observed among pure primary refractory 

tumors analyzed Rao et al 14 and our refractory-derived orthoxenografts by the 



                                                                                                                           RESULTS 
 

119�
�

identification of 9q and 15q amplified regions strongly reinforced their relevance as 

models for studying the genetic basis of cisplatin refractoriness. 

 

Until now, the presence of the b-raf (V600E) mutation in some refractory NSE has been 

the only molecular marker associated with cisplatin resistance 15 in GCT. Here we have 

demonstrated that the presence of the 9q32-q33.1 amplification was associated with 

increased risk of progression and death in one of the largest cohort of patients with 

metastatic GCTs, of whom, 32% are truly refractory to cisplatin treatment. Thus, their 

presence as early high-risk patients marker  may be especially important in the good 

prognostic group and may allow clinicians to include them under more aggressive 

protocols, or to offer alternative drug treatments. Although it is a single retrospective 

analysis it is important to note its relevance, given how difficult is to obtain 

representative GCT series that include patients with a poor prognosis, and refractory 

tumors. 

 

Differential expression profiling of the 9q32-q33.1 region among orthoxenografts 

highlights the complexity of the mechanism for developing cisplatin tumor resistance. 

We found two groups of genes coexisting in refractory tumors: (i) those whose 

expression changes correlate with 9q32-q33.1 gain status (PAPPA, POLE3, and 

AKNA), and mainly (ii) those that do not, and are associated solely with cisplatin 

refractoriness (GCS, EDG2, ZNF883, FLJ31713, TNC, ATP6V1G1, CTR1, and CTR2). 

Together, functional results of RNAi experiments in C. elegans and in paired 

sensitive/resistant cell lines strongly suggest that targeting GCS, ATP6V1G, CTR1/2, 

PAPPA or POLE3 should be useful strategies for treating unresponsiveness in cisplatin 

tumors. Targeting GCS, due is central role in the glycosphingolipid synthesis pathway, 

has emerged as a novel approach for treating metabolic diseases such as Gaucher, 

Niemam-Pick and diabetes. In this context, several GCS inhibitors are in clinical use or 

under development, including Miglustat, PDMP and EXEL-0346 among others 16-19. In 

the present work we deep into the relevance of targeting GCS as a novel approach to 

resensitize tumors to cisplatin. Here we demonstrate the relevance of the over-

expression/increased GCS activity as a biological mechanism that mediate tumor cell 

protection against cisplatin exposure, and they denoted the significance of sphingolipid 

metabolism through cisplatin-induced tumor cell death. Thus, we hypothesize that 

PDMP or other GCS inhibitors blocking the conversion of ceramide to 

glucosylceramide should open an important therapeutic window in patients with 

refractory tumors by fuel ceramide pools after cisplatin treatment strengthen the cell-

death pathways. In this way, our preclinical results in advanced refractory cisplatin 
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orthoxenografts of GCTs and EOC tumor models demonstrate that PDMP resensitizes 

to cisplatin treatment, providing a firm preclinical rationale of drug repositioning and for 

developing further clinical trials in the field. 

 

In summary, we report the generation of cisplatin-refractory orthoxenografts of germ 

cell tumors as preclinical models and demonstrate their proficiency identifying cisplatin-

resistance genes. As a proof-of-concept, we present strong preclinical evidence that 

they are outstanding tools to provide the rationale for the design of future trials for the 

treatment of patients with cisplatin resistant/refractory tumors.  

 
 
MATERIAL AND METHODS 
Material Methods are in Supplementary Material 
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SUPPLEMENTARY INFORMATION 
 
MATERIAL AND METHODS 
Human primary testicular germ cell tumors implantation and perpetuation in 
nude mice as orthoxenografts 
Primary tumor samples were obtained after surgical resection (Hospital Universitari de 

Bellvitge and Fundació Puigvert, Barcelona (Spain and placed at room temperature in 

DMEM medium supplemented with 10% fetal bovine serum and penicillin/streptomycin. 

Fresh surgical specimens of 62 human GCTs were implanted in nude mice. Twenty-

two tumors were classified as pure SEs, 21 as pure NSEs, and 19 as mixed tumors 

containing different proportions of SE and NSE components. NSE includes pure 

histologies (yolk sac tumor, YS; choriocarcinoma, CH; embryonal carcinoma, EC), and 

mixed tumors containing one or more histological subtypes. Animals were housed in a 

sterile environment, cages and water were autoclaved and bedding and food was �-ray 

sterilized. Tumors were implanted in the testis of five-week old male nu/nu Swiss mice 

(Charles River, France) weighting 18-22 g. After anesthesia by isofluorane inhalation, a 

median laparatomy was performed and the testes were mobilized. Tumor pieces were 

anchored to the testis surface with prolene 7.0 sutures. After implantation, mice were 

inspected twice a week, and if no tumor growth was apparent, mice were sacrificed six 

months after implantation. Serial tumor passaging was performed in two to five 

animals. Time lags varied for each tumor, depending upon their growth kinetics 

(Supplementary Table S1). Four orthoxenografts were derived from patients 

previously treated with cisplatin-based chemotherapy. All patients gave written consent 

to participate in the study. The Ethics Committee of the hospitals approved the study 

protocol, and the animal experimental design was approved by the IDIBELL animal 

facility committee.  

 
Immunohistochemistry tumor characterization 
Tissues taken for histological studies were fixed in 10% buffered formalin and 3-μm 

slices of paraffin-embedded tissues were used for immunohistochemistry (IHQ) 

studies. Primary antibodies were monoclonal antibodies for TP53 (clone BP53-12-1, 

dilution 1:1000, Biogenex); PLAP (clone PL8-F8, dilution 1:30, Biogenex); EMA (clone 

E29, dilution 1:100, Dako); Vimentin (clone V9, dilution 1:2000, Dako); CD-30 (clone 

Ber-H2, dilution 1:20, Dako); EGFR (clone 31G7, dilution 1:50, Zymed); Ki-67 (clone 

BGX-297, dilution 1:40, Biogenex); Cam 5.2 (dilution 1:100, Becton Dickinson) and 

polyclonal antibodies for �-hCG (dilution 1:5000, Dako); CD117 (dilution 1:50, Dako); 

AFP (dilution 1:3, Dako); OCT3/4 (dilution 1:300, Santa Cruz) and NANOG (dilution 
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1:50, RD). Reactions were visualized using the EnVision anti-mouse antibody system, 

and developed using the DAB-Plus Kit (Dako, Copenhagen, Denmark). Slides were 

counterstained with Harry’s modified hematoxylin. 

  

Determination of mouse serum levels of tumor markers 
Serum concentrations of alpha-fetoprotein (AFP) and the �-subunit of human chorionic 

gonadotropin (�-hCG) concentrations were measured as subrogate tumor growth 

markers in the serum of nude mice using commercially available two-site enzyme 

chemiluminometric assays automated on the Immulite	 2000 analyzer 1,2. 

 

Genetic characterization of engrafted NSE tumors 
DNA was extracted following standard phenol-chloroform protocols, while total RNA 

was extracted using TRIZOL reagent following the manufacturers’ instructions 

(Invitrogen). Nude mouse tissues were included in all PCR experiments to avoid mouse 

DNA and RNA contamination.  

 

Presence of point mutations: Mutations in TP53 (exons 4-10); K-ras (codon 12 and 13), 

b-raf (exons 11 and 15), EGFR (exons 18, 19, 20 and 21), c-Kit (exons 9, 11, 13 and 

17), PDGFR� (exons 12 and 14), PDGFR� (exon 12) and PI3KCA (exons 9 and 20) 

were analyzed. All exons were amplified in independent PCR reactions using human 

intronic primers to avoid amplification of mouse DNA. PCR reactions were carried out 

using 100-200 ng of genomic DNA in a mixture containing PCR buffer, 100 mM 

deoxynucleotide triphosphates, 0.5 μM of each primer and 1 unit of Taq DNA 

polymerase (Invitrogen). RNA was reverse-transcribed to cDNA using pd(N)6 and the 

M-MLV retrotranscriptase kit (Invitrogen) and the entire coding Smad4 region was 

analyzed in five overlapping reactions. Primer sequences and PCR conditions are 

available on request. The presence of gene mutations was detected by direct 

sequence and/or single-strand chain polymorphism (SSCP). Homozygous deletions or 

microdeletions in p15, p16 and Smad4 were evaluated in agarose gels and were 

defined by the absence of PCR product in three independent experiments. 

 

5’ CpG promoter methylation studies: The DNA bisulfite reaction was carried out on 2 

μg of restriction-digested DNA for 16 h at 55ºC. 5’ CpG promoter islands of APC, 

MGMT, DAPK, CDH1 and RASSF1 were analyzed by the methylation-specific 

polymerase chain reaction (MSP) 3-5. Primers and PCR conditions are available on 

request. MSP results were confirmed after sequencing individual clones using the 

TOPO system (Invitrogen).  
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Microsatellite instability (MSI) analysis: Genetic instability was analyzed using 

Bethesda’s set of five microsatellite markers (D2S123, BAT25, BAT26, D5S346 and 

BAT40).  

 

Primary response of engrafted NSEs to cisplatin treatments  

Small fragments of engrafted tumors were reimplanted in the testicles of 30 nude mice, 

as described above. When palpable intra-abdominal masses and increased levels of 

serum tumor marks had both been detected, usually 7–30 days after implantation, mice 

were randomized into three groups: (i) control group (n = 10), treated with vehicle; (ii) 

low-dose treatment group (n = 20) (2 mg/kg of cisplatin); and (iii) high-dose treatment 

group (n = 20) (5 mg/kg of cisplatin). Each treatment group was randomly divided into a 

short-term response group (n = 10), defined by tumor weight at the time of sacrifice of 

the control group, and a long-term response group (n = 10), defined by recurrent tumor 

mass regrowth post-chemotherapy. Cisplatin was intravenously administered (i.v.) 

once a week for three consecutive weeks (days 0, 7 and 14). Animals were sacrificed 

seven days after the final dose (day 21) to examine their short-term response.  

 
Generation in mice of refractory engrafted NSE to cisplatin treatment  
Five engrafted tumors, TGT1, TGT12, TGT21B, TGT34 and TGT38, from patients 

without prior exposure to cisplatin, were allowed to grow until intra-abdominal palpable 

masses were noted. Animals were administered with cisplatin i.v. at a dose of 2 mg/kg 

for 3 consecutive weeks (days 0, 7 and 14) (cycle#1 of treatment). Post-cisplatin 

relapse tumors were harvested, prepared as previously described, and engrafted in 

new animals. This process was repeated up to five times by treating tumor-bearing 

mice with stepwise increasing doses of cisplatin: cycle#2, 3 mg/kg; cycle#3, 3.5 mg/kg; 

cycle#4, 4 mg/kg; and cycle#5, 5 mg/kg (Fig 2d), as recently we described for ovarian 

tumors 6. Dynamic CDDP responses were evaluated after assessing �-hCG and/or 

AFP serum levels, as described above.  

 
Whole genome analysis by NimbleGen CGH arrays 
The CGH oligonucleotide array was carried out by NimbleGen Systems, Inc., at their 

facility in Wisconsin [13]. Array design descriptions were: 2006-07-

27_HG18_WG_CGH, single array CGH design for whole human genome (hg18; NCBI 

Build 36). Methods of DNA labeling array construction, hybridization, array 

normalization and data analysis have been described in detail by Seltzer et al. 7.  
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FISH analysis 
FISH was done by standard methods. We used the UCSC genome browser to select 

three bacterial artificial chromosomes (BACs) from the K32 BAC library (kindly 

provided by Dr L. Pérez-Jurado). BAC RP11-582I20 is contained in the amplified 9q32-

9q33.1 region while RP11-616C16 flanks it at its distal end. FISH results were 

analyzed under an Olympus BX60 microscope and images were captured with a 

Cytovision (Applied Imaging) workstation. One hundred non-overlapping nuclei were 

scored for each sample. 

 
Quantification of gene and miRNA expression  
Total RNA was extracted using Trizol (Invitrogen, San Diego, CA), following the 

manufacturer’s instructions, and reverse-transcribed to cDNA. Quantitative RNA and 

miRNA analyses was performed as described. Quantitative real-time RT-PCR analyses 

were performed using the Light-Cycler 2.0 Roche System and LightCycler FastStart 

DNA Master SyBR Green I kit (Roche). All the primers were designed specifically to 

amplify human RNA.  Primer sequences and PCR conditions are available on request. 

Experiments were performed in triplicate using three independent RT reactions. Gene 

expression was normalized with respect to �-actin.  

 

For miRNA, RNA samples were DNase-treated with Turbo DNA-free (Ambion, Austin, 

TX), and determined as described 8. Reactions were performed in triplicate and 

incubated in an Applied Biosystems 7900HT Fast Real-Time PCR system in 384-well 

plates. All data were normalized with endogenous controls: PPIA, HPRT1 and RPLPO. 

The relative miRNA levels were calculated using the formula 2-

Ct   9. 

 
Patients and Samples  
Eighty-eight consecutive patients diagnosed with metastatic germ cell tumors and 

treated at the Institut Català d’Oncologia between 1989 and 2004 were initially included 

in this study 10. Thirteen cases were not evaluated because of the lack of paraffin-

embedded tissue blocks. Patient demographics and clinical characteristics of the 75 

patients finally evaluated are listed in Supplementary Table S7. Sixty-three patients 

(84%) had NSE tumors and 12 (16%) had SE tumors. Four patients presented with 

mediastinal extragonadal disease. Sixty per cent of the patients were classed as 

having a good prognosis, 19% as having an intermediate prognosis and 21% as being 

of poor prognosis according to the IGCCCG categorization. Twenty-four patients were 

considered resistant, defined by progression or relapse despite adequate first-line 

chemotherapy treatment. Cases with mature teratoma only in the resected post-
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chemotherapy mass and without posterior tumor relapse were considered sensitive. 

Tumor samples from primary tumors and/or resected metastases obtained before 

chemotherapy were included in a newly generated TMA, as described 10.  

 

Cell culture, transfection and in vitro shRNAi knockdown experiments 
The human NSE cell lines SuSaS (from teratocarcinoma origen), GC27S (from 

embryonic carcinoma origen) and 833KS (“S” for sensitive to CDDP) and their matched 

SuSaR, GC27R and 833KR (“R” for CDDP-resistant derived cell line) were growth for 

different experiments as described 11, 12. For overexpression experiments, SuSaS cells 

were transfected with plasmid pCMV6-XL5-GCS containing the whole GCS human 

cDNA from Origene (SC118052; Rockville, USA). Knockdown expereriments were 

realized in SuSaR with four pre-designed small hairpin RNAs (shRNA) for the human 

GCS gene from Qiagen (KH02376P; Manchester, UK) that were transfected with the 

jetPrime transfection kit (Polyplus, Strasbourg), following manufacturer instructions. 

GCS expression levels was analyzed by Western blot at 24, 48, 72 and 96 hours post-

transfection  by anti-GCS (1/1000)(ProteinTech, Chicago, USA) using as a control the 

anti-�-actin-HRP antibody (1/20000)(Sigma, St. Louis, USA). The chosen time to 

perform the experiments was 48 hours.  
 
In vitro determination of drug resistance assays 
Cisplatin (1mg/ml) dissolved in NaCl (TEVA, North Wales, USA), and DL-threo-PDMP 

(Sigma, St. Louis, USA) in dimethyl sulfoxide (DMSO) at a final concentration of 59 mM 

were assessed. Cell viability was determined by MTT assay. Briefly, 1 x 103 cells were 

plated onto 96-well plates, after 4 hours of transfection, fresh medium was added and 

cells were treated for 48 hours with different drugs concentration ranged from 0 to 20 

μg/ml doses. MTT was added at a final concentration of 0.1% and after 2.5 hours of 

incubation (37ºC, 5% CO2), metabolic product formazan was dissolved in DMSO and 

the absorbance measured at 570 nm. Prism Software (La Jolla, USA) was used to 

calculate drugs half maximal inhibitory concentration (IC50).  

 

C. elegans gene knockdown by RNAi and cisplatin-response assay 
The C. elegans N2 strain (wild type), and the rrf-3 (pk1436) and cgt-1 (ok1045) mutant 

strains were provided by the Caenorhabditis Genetic Centre (CGC). The bacterial RNAi 

clones used were obtained from the ORFeome-based RNAi library 13 and the JA library 
14. RNAi feeding was done as described 15, 16. Synchronized worm populations in the L1 

state were cultured in NGM plates containing 50 μg/ml ampicillin and 3 mM IPTG and 

seeded with thick bacterial lawns of each selected bacterial RNAi clone. Then, at the 



                                                                                                                           RESULTS 
 

129�
�

young-adult stage, they were transferred to a 96-well plate with S-medium containing 

50 μg/ml ampicillin, 3 mM IPTG and 750 μg/ml cisplatin fresh made (Sigma). Cisplatin-

induced toxicity was evaluated by measuring worm locomotor activity over a 24-h 

period by an automated tracking system (wmicrotracker) 17, 18. All assays were 

performed at 20ºC in triplicate, tracking 20 worms per well each time in each of five 

replicates. For the genes tested, the efficiency of worm RNAi was confirmed by qPCR 

(data not shown). 

 
Determination of GCS activity and determination of ceramide levels 
Tumor samples were homogenized in lysis buffer (Tris-HCl 10 mM, EDTA 1mM, 0.1% 

Triton X-100 at ph 7.4) and centrifuged at 600g for 5 minutes. GCS activity was 

determined from NBD-C6-ceramide and UDP-glucose, the conversion product 

separated by TLC with chloroform/methanol/32% ammonia (70:30:5, v/v), and 

quantified by densitometry (Préférence/DVS, Sebia) as described before previously 19. 

Briefly, for each assay 200 μg of protein extract was suspended in reaction buffer (5 

mM MgCl2, 5 mM MnCl2, and 1 mM EDTA in 50 mM HEPES, pH 7.2) and the 

substrate mixture containing 10 μM NBD-C6-ceramide and 250 μM UDP-glucose. After 

a 30 min incubation at 37°C, reactions were terminated by adding 2.5 ml of 

chloroform/methanol (2:1, v/v), the samples were centrifugated (1000 x g, 5 min), the 

lower phases dried under nitrogen and subjected to TLC by using 

chloroform/methanol/32% ammonia (70:30:5, v/v) as the mobile phase. 

 

Ceramide was quantified after labeling of cells to isotopic equilibrium with [14C]palmitic 

acid (2 μCi/ml) (Amersham, Piscataway, NJ) for 24h. Ceramide was resolved in LK6D 

gel 60A TLC plates using chloroform/acetic acid (90:10). 

 
Statistical analysis  
For the clinicopathological features, P values were calculated using the X2 test. 

Survival curves were estimated using the Kaplan-Meier method, and differences 

between individual curves were evaluated by multivariate Cox proportional hazards 

regression modeling. Analyses were adjusted for pathological diagnostic classification. 

Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Likelihood 

ratio tests were used to assess the prognostic value of genomic amplification of 9q32-

q33.1 by FISH in the TMA of metastatic GCTs. Values of P<0.05 were considered 

significant. 
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Supplementary Table S1 Summary of characteristics of primary nonseminoma (NSE) tumors growing as xenografts in nude mice.  

a Tumor histology: YS, yolk sac; EC, embryonal carcinoma; CH, choriocarcinoma; TE, teratoma; SE, seminoma. 
b Stage at first diagnosis (Stage II to IV based on International Germ Cell Cancer Collaborative Group (IGCCCG)). 
c Primary tumor was simultaneously implanted in the testicles and subcutaneous tissues of nude mice. The tumor was considered perpetuated after at least six consecutive passages in nude mice. 
d Time-lag between passages was calculated on the basis of the first six passages, for a median of 15 mice implanted with each tumor. 

 e Levels of alpha-fetoprotein (AFP) and/or �-subunit of human chorionic gonadotropin (�-hCG) were analyzed as tumor growth markers in the nude mouse serum. 
f Synchronous lung micrometastases were detected when nude mice were sacrificed. 
g Liver macrometastases, peritoneal implants and lymph node affection were observed when nude mice were sacrificed. 
h Orchiectomy was performed to confirm the dissemination patterns when palpable intra-abdominal masses were detected in 5 to 10 mice for each tumor. Animals were sacrificed 6-8 months after surgery, or when 
they lost weight: h1, metachronic lung metastasis; h2, metachronic peritoneal implants; h3, metachronic liver metastases; h4, metachronic lymph node. 
J Xenografted tumors TGT38X and TGT44X characteristics were previously described 20,21. 
None, absence of metastasis; ND, not determined.  

 
Human Primary Tumor 

  Orthoxenografts 
 
Primary tumor 
location 
 

 
 
Tumor 

 
 
 
Histology a 

 
 

Stage b  

 
CDDP-
treated 

 
 

Histology 

Xenograft perpetuated c Time-lag 
between 

passages 
(days) d 

  
Mouse serum 

markers e 

Pattern of distal 
dissemination  

Orthotopic 
growth 

Subcutaneous 
growth 

 
Testicle TGT1X 

 
YS Stage I No  YS Yes No 69  ± 17 AFP Lung f, h1 

 TGT11X 
 

YS, EC, CH, TE Stage I No  YS, EC, CH No 
 

No ND ND ND 

 TGT12X 
 

EC Good prognosis No  EC Yes No 97 ± 25 �-hCG, AFP None 

 TGT14X 
 

EC 
SE  

Stage I No  EC Yes No 56 ± 17 �-hCG Peritoneal implants g, h2 
Lymph node affection g, h4 

 TGT21AX 
 

YS, EC, CH, TE 
SE  

Stage I No  YS, EC, CH 
 

Yes Yes 49 ± 11 �-hCG, AFP None 

 TGT21BX 
 
YS, EC, CH, TE 

SE 
Stage I No  YS, EC, CH 

 
Yes 

 
Yes 64 ± 14 �-hCG, AFP None 

 TGT34X 
 

EC Bad prognosis No  EC Yes No 51 ± 8 �-hCG, AFP Lymph node affection g,h4 

 TGT38X J 
 

CH Bad prognosis No  CH Yes 
 

No 20 ± 6 �-hCG Lung f, h1 

 TGT40X 
 

YS, TE Stage I No  YS Yes No 42 ± 8 AFP None 

 
Lymph node TGT39X 

 
YS, EC, TE  Bad prognosis Yes  YS, EC 

 
Yes No 

 
59 ± 13  

�-hCG, AFP 
 

Liver g, h3 
Peritoneal implants g,h2 

 TGT41X 
 

CH Refractory No  CH Yes No 18 ± 4 �-hCG 
 

ND  

 TGT44X J 
 

YS, TE 
 

Refractory Yes  YS Yes No 50 ± 8 AFP ND 
 

 
Lung  
metastasis 

TGT17X 
 

CH Refractory Yes  CH Yes No 24 ± 5 �-hCG 
 

Lung f ,h1 

  
 
Brain 
metastasis 

 
TGT42X 

 
EC 

 
Refractory 

 
Yes 

  
EC 

 
Yes 

 
No 

 
62 ± 10 

 
�-hCG, AFP 

 

 
ND 
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Supplementary Table S2 Genetic analyses of paired primary tumors, xenografted NSE, and xenografted tumors with acquired resistance to CDDP. 
 

 

a We analyzed: codons 12 and 13 of K-ras; exons 11 and 15 of b-raf; exons 18, 19, 20 and 21 of EGFR; exons 9 and 20 of PI3KCA; exons 4 to 10 of TP53; exons 9, 11, 13 and 
17 of c-Kit ; exons 12 and 14 of PDGFR�; exon 12 of PDGFR�; and whole p15, p16 and Smad4. 
b Microsatellite instability (MSI) status was determined by the Bethesda panel including D2S123, BAT25, BAT26, D5S346 and BAT40 markers. 
c Xenografted tumors with acquired CDDP resistance were analyzed at cycles #3 and #5 of chemotherapy treatment. 
wt, presence of wild-type sequence; -, absence of microsatellite instability.

   Tumors with acquired resistance c 

 
TGT1X TGT11X 

 
TGT12X TGT14X TGT17X TGT21AX TGT21BX TGT34X TGT38X 

 
TGT39X TGT41X TGT1XR TGT12XR TGT21BXR TGT34XR 

 
TGT38XR 

 
 
Point mutations a               

 
K-ras wt wt 

 
wt wt wt wt wt wt wt

 
wt wt  wt wt wt wt

 
wt 

 
b-raf 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
EGFR 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
PI3KCA 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
TP53 

 
wt

 
wt 

 
wt 

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

  
wt

 
wt

 
wt

 
wt

 
wt 

 
p15 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
p16 

 
wt

 
wt 

 
wt 

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

  
wt

 
wt

 
wt

 
wt

 
wt 

 
Smad4 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
c-Kit 

 
wt

 
wt 

 
wt 

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

  
wt

 
wt

 
wt

 
wt

 
wt 

 
PDGFR-� 

 
wt

 
wt 

 
wt 

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

 
wt

  
wt

 
wt

 
wt

 
wt

 
wt 

 
PDGFR-� 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

 
wt 

  
wt 

 
wt 

 
wt 

 
wt 

 
wt 

    
MSI b - - - - - - - - - - - - - - - -     
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Supplementary Table S3 Epigenetic analyses of paired primary and xenografted NSE 
tumors.  

 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

          Histology         YS     EC  EC  CH    MX    MX    EC    CH   MX    CH 

 

Methylation status of 5’ CpG promoter islands determined by MSP analysis (     methylated; 

     unmethylated). APC, adenomatous polyposis coli, RASSF1A, TMS, PYCARD (PYD and 

CARD domain-containing), MGMT, O-6-methylguanine-DNA methyltransferase, DAPK, 

death-associated protein kinase and CDH1, type 1, E-cadherin. P, primary human tumor; X, 

xenografted tumor at third and fifth mouse passages; YS, yolk sac; EC, embryonal 

carcinoma; CH, choriocarcinoma; MX, mixed tumor.  
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2 

TG
T1

4 

TG
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7 

TG
T2
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TG
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1B
 

TG
T3
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TG
T3
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TG
T3
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Supplementary Table S4 

Sixty genes located at 9q32-q33.1, a region of 5.1 M bp. Build 36.3 from NCI. 

112675875 112840186 EDG2 9q31.3 
endothelial differentiation, lysophosphatidic acid G-protein-coupled 
receptor, 2 

113129584 113130534 OR2K2 9q31.3 olfactory receptor, family 2, subfamily K, member 2 
113162794 113286846 KIAA0368 9q31.3 KIAA0368 
113327260 113379945 ZNF483 9q31.3 zinc finger protein 483 
113365073 113401532 LTB4DH 9q31.3 leukotriene B4 12-hydroxydehydrogenase 
113404932 113415654 C9orf29 9q31.3 chromosome 9 open reading frame 29 
113433453 113456452 bA16L21.2.1 9q31.3 DNAJ-like protein 
113433487 113472330 LOC552891 9q31.3 hypothetical protein LOC552891 
113463682 113472347 GNG10 9q31.3 guanine nucleotide binding protein (G protein), gamma 10 
113488722 113585600 C9orf84 9q31.3 chromosome 9 open reading frame 84 
113699027 113735260 GCS 9q31 UDP-glucose ceramide glucosyltransferase 
113842882 113977377 SUSD1 9q31.3-q33.1 sushi domain containing 1 
113975623 113976072 LOC100129332 9q32 hypothetical LOC100129332 
114020536 114135733 ROD1 9q32 ROD1 regulator of differentiation 1 (S. pombe) 
114083089 114083509 EPF5 9q32 EPF5 pseudogene 
114164716 114165217 LOC644996 9q32 similar to 60S ribosomal protein L32 
114182172 114274505 HSDL2 9q32 hydroxysteroid dehydrogenase like 2 
114286618 114294681 LOC100133204 9q32 similar to chromosome 9 open reading frame 147 
114289069 114462527 KIAA1958 9q32 KIAA1958 
114488607 114520208 C9orf80 9q32 chromosome 9 open reading frame 80 
114552955 114677088 SNX30 9q32 sorting nexin family member 30 
114681021 114692866 SLC46A2 9q32 solute carrier family 46, member 2 
114761235 114764362 LOC100129193 9q32 similar to hCG1795014 
114799221 114814293 LOC169834 9q32 hypothetical protein LOC169834 
114843995 114858817 ZFP37 9q32 zinc finger protein 37 homolog (mouse) 
114906824 114913864 LOC100128385 9q32 hypothetical protein LOC100128385 
114914042 114921947 C9orf109 9q32 chromosome 9 open reading frame 109 
114953059 114966243 SLC31A2 (CTR2) 9q31-q32 solute carrier family 31 (copper transporters), member 2 
114967621 115023462 FKBP15 9q32 FK506 binding protein 15, 133kDa 
115023689 115066593 SLC31A1 (CTR1) 9q31-q32 solute carrier family 31 (copper transporters), member 1 
115069109 115077690 CDC26 9q32 cell division cycle 26 homolog (S. cerevisiae) 
115077795 115094877 PRPF4 9q31-q33 PRP4 pre-mRNA processing factor 4 homolog (yeast) 
115099194 115101141 RNF183 9q32 ring finger protein 183 
115117751 115142388 WDR31 9q32 WD repeat domain 31 
115151633 115173334 BSPRY 9q32 B-box and SPRY domain containing 
115175519 115178162 HDHD3 9q32 haloacid dehalogenase-like hydrolase domain containing 3 
115188413 115203391 ALAD 9q33.1 aminolevulinate, delta-, dehydratase 
115209342 115212773 POLE3 (CHRAC17) 9q33 polymerase (DNA directed), epsilon 3 (p17 subunit) 
115212843 115231703 C9orf43 9q32 chromosome 9 open reading frame 43 
115246832 115399839 RGS3 9q32 regulator of G-protein signaling 3 
115418339 115418830 FLJ31713 9q32 hypothetical protein FLJ31713 
115652788 115672935 LOC100132609 9q32 hypothetical LOC100132609 
115678383 115858696 ZNF618 9q32 zinc finger protein 618 
115862228 115880536 AMBP 9q32-q33 alpha-1-microglobulin/bikunin precursor 
115893739 115901158 KIF12 9q32 kinesin family member 12 
115958052 116112796 COL27A1 9q32 collagen, type XXVII, alpha 1 
116011534 116011629 MIRN455 9q32 microRNA 455 
116125157 116128578 ORM1 9q31-q32 orosomucoid 1 
116131890 116135357 ORM2 9q32 orosomucoid 2 
116136250 116196506 AKNA 9q32 AT-hook transcription factor 
116204181 116307551 DFNB31 9q32-q34 deafness, autosomal recessive 31 
116293663 116293843 LOC100131877 9q32 hypothetical LOC100131877 
116389815 116400973 ATP6V1G1 9q32 ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G1 
116413527 116448524 C9orf91 9q32 chromosome 9 open reading frame 91 
116456401 116548297 LOC100129633 9q32 similar to hCG1651427 
116591421 116608229 TNFSF15 9q32 tumor necrosis factor (ligand) superfamily, member 15 
116647695 116650692 LOC645266 9q32 similar to PRP4 pre-mRNA processing factor 4 homolog B 
116704945 116732591 TNFSF8 9q33 tumor necrosis factor (ligand) superfamily, member 8 
116822626 116920307 TNC 9q33 tenascin C (hexabrachion) 
116943918 117204744 DEC1 9q32 deleted in esophageal cancer 1 
117955892 118204421 PAPPA 9q33.2 pregnancy-associated plasma protein A, pappalysin 1 
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Twenty-six genes located at 15q23-q24.1, a region of 1.7 M bp. Build 36.3 from NCI 
 

69220842 69862776 THSD4 15q23 thrombospondin, type I, domain containing 4 
69889948 69897654 NR2E3 15q22.32 nuclear receptor subfamily 2, group E, member 3 
69898125 69907176 LOC100132473 15q23 hypothetical protein LOC100132473 
69905405 70197476 MYO9A 15q22-q23 myosin IXA 
70197808 70220358 SENP8 15q23 SUMO/sentrin specific peptidase family member 8 
70239202 70277180 GRAMD2 15q23 GRAM domain containing 2 
70278424 70310738 PKM2 15q22 pyruvate kinase, muscle 
70320576 70350682 PARP6 15q23 poly (ADP-ribose) polymerase family, member 6 
70364123 70399579 BRUNOL6 15q24 bruno-like 6, RNA binding protein (Drosophila) 
70422832 70455457 HEXA 15q23-q24 hexosaminidase A (alpha polypeptide) 
70455567 70456379 C15orf34 15q24.1 chromosome 15 open reading frame 34 
70458553 70464260 LOC400389 15q24.1 hypothetical gene supported by AK026491; NM_000976 
70477722 70487762 TMEM202 15q24.1 transmembrane protein 202 
70530158 70530833 LOC100130579 15q24.1 hypothetical protein LOC100130579 

70553721 70662877 ARIH1 15q24 
ariadne homolog, ubiquitin-conjugating enzyme E2 binding protein, 1 
(Drosophila) 

70666611 70666707 MIRN630 15q24.1 microRNA 630 
70684573 70691719 LOC646665 15q24.1 golgi autoantigen, golgin subfamily a, 6 pseudogene 
70687876 70716282 LOC100129119 15q24.1 hypothetical protein LOC100129119 
70716473 70730171 LOC646670 15q24.1 similar to COMM domain containing 4 
70734092 70746791 GOLGA 15q24.1 golgin-like protein 
70755176 70765543 HIGD2BP 15q24.1 HIG1 domain family, member 2B pseudogene 
70765588 70817869 BBS4 15q22.3-q23 Bardet-Biedl syndrome 4 
70830763 70863114 ADPGK 15q24.1 ADP-dependent glucokinase 
70978467 70979746 LOC729686 15q24.1 similar to nucleophosmin 1 isoform 1 
71131928 71384599 NEO1 15q22.3-q23 neogenin homolog 1 (chicken) 
71400988 71448230 HCN4 15q24-q25 hyperpolarization activated cyclic nucleotide-gated potassium channel 4  

 
Six genes located at 15q26.3, a small region of 0.5 M bp. Build 36.3 from NCI 

  
 
Twenty five genes are located at Xp22.33, a region of 2.7 M bp. Build 36.3 from NCI.  
 

97956185 98071524 
 
MEF2Ax 15q26 myocyte enhancer factor 2A 

98070287 98074525 LOC100129079 15q26.3 hypothetical protein LOC100129079 
98085133 98091149 LYSMD4 15q26.3 LysM, putative peptidoglycan-binding, domain containing 4 
98116151 98151146 LOC644800 15q26.3 similar to Golgi autoantigen, golgin subfamily a, 2 
98147884 98164655 C15orf51 15q26.3 chromosome 15 open reading frame 51 
98164259 98165704 LOC400464 15q26.3 similar to FLJ43276 protein 

110310 112812 CXYorf11 Xp22.33; Yp11.32 chromosome X and Y open reading frame 11 
132991 160020 PLCXD1 Xp22.33; Yp11.32 phosphatidylinositol-specific phospholipase C, X domain containing 1 
161426 170887 GTPBP6 Xp22.33; Yp11.32 GTP binding protein 6 (putative) 
214970 267627 PPP2R3B Xp22.33; Yp11.3 protein phosphatase 2 (formerly 2A), regulatory subunit B'', beta 
505079 540146 SHOX Xpter-p22.32;Yp11.3 short stature homeobox 
834110 840111 LOC100132775 Xp22.33 hypothetical LOC100132775 
877093 889906 LOC100132256 Xp22.33 hypothetical LOC100132256 
889945 890836 LOC442442 Xp22.33;Yp11.32 60S ribosomal protein L14-like 

1274894 1291529 CRLF2 Xp22.3; Yp11.3 cytokine receptor-like factor 2 
1305011 1306462 LOC100132270 Xp22.33 hypothetical LOC100132270 

1347701 1388827 CSF2RA Xp22.32 and Yp11.3 
colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-
macrophage) 

1415509 1461582 IL3RA Xp22.3 or Yp11.3 interleukin 3 receptor, alpha (low affinity) 

1465045 1470998 SLC25A6 Xp22.32 and Yp11.3 
solute carrier family 25 (mitochondrial carrier; adenine nucleotide 
translocator), member 6 

1472923 1473639 LOC729629 Xp22.33 hypothetical protein LOC729629 
1480380 1492584 CXYorf2 Xp22.33; Yp11.3 chromosome X and Y open reading frame 2 
1482032 1531844 ASMTL Xp22.3; Yp11.3 acetylserotonin O-methyltransferase-like 
1541465 1616000 P2RY8 Xp22.33; Yp11.3 purinergic receptor P2Y, G-protein coupled, 8 
1670486 1681413 SFRS17A Xp22.32; Ypter-p11.2 splicing factor, arginine/serine-rich 17A 
1674348 1721974 ASMT Xp22.3 or Yp11.3 acetylserotonin O-methyltransferase 
2147547 2428975 DHRSX Xp22.33; Yp11.2 dehydrogenase/reductase (SDR family) X-linked 
2414455 2429008 ZBED1 Xp22.33;Yp11 zinc finger, BED-type containing 1 
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2521398 2544212 LOC100130595 Xp22.33 similar to hCG1653094 
2546623 2566764 LOC401577 Xp22.33:Yp11.31 hypothetical protein LOC401577 
2619228 2669350 CD99 Xp22.32; Yp11.3 CD99 molecule 
2680115 2743968 XG Xp22.33 Xg blood group 
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Supplementary Table S5 Tumors with amplification at 9q32-q33.1 in metastatic 
GCTs. 

 
Patient 

 
Histology a Status of 9q32-q33.1 b Cisplatin response 

 
# 1 

 
CE High amplification Resistant 

  
#2 CE High amplification Sensitive 

 CE Low amplification  
 CE NA  
  

#3 SE NA Resistant 
 CE High amplification 
  

#4 YS High amplification Resistant 
 CE High amplification  
 CH High amplification  
 SE High amplification 
  

#5 SE High amplification Sensitive 
 CH High amplification  
 TE Low amplification  
  

#6 CH Low amplification Resistant 
  

#7 CH High amplification Resistant 
 CH Low amplification  
  

#8 CE Low amplification Resistant 
 YS NA  
 TE High amplification  
  

#9 SE High amplification Sensitive 
  

#10 CE High amplification Sensitive 
  

#11 YS Low amplification Resistant 
  

#12 SE Low amplification  
  

#13 TE Low amplification Resistant 
  

#14 TE Low amplification Sensitive 
  

#15 CE High amplification Sensitive 
 CE NA  
  

#16 CE Low amplification Sensitive 
  

#17 CE High amplification Sensitive 
 CE NA  
 TE/CE NA  
 CH NA  
  

#18 CE Low amplification Resistant 
 TE Low amplification  
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Supplementary Table S6 Patients classified with respect to 9q32-q33.1 amplification status.  
 

a IGCCCG International Germ Cell Cancer Collaborative Group.  
b EP, etoposide/cisplatin; BEP, bleomycin/etoposide/cisplatin; BOMP/EPI, 
bleomycin/vincristine/methotrexate/ 
  cisplatin-etoposide/cisplatin/ifosfamide 
c CR, complete remission characterized by tumor mass reduction by CT scan and negative value of serum 

tumor marks; PR-, partial remission characterized by normalization of CT scan and negative value of 
serum tumor markers; PR+, partial remission characterized by reduction of tumor mass by CT scan and 
positive value of serum tumor markers; SD, stable disease; PD, progressive disease. 

d Patients who achieved durable complete response with first-line cisplatin-based chemotherapy were 
considered sensitive. Patients who had either a poor response or relapsed after first-line chemotherapy 
were considered resistant to cisplatin. 

e  Amplification at 9q determined by FISH using two different probes (see Material and Methods). 

  
9q32-q33.1 status e 

 
  

Non-amplification 
(N = 57) 

 Amplification 
(N = 18) 

 
 

 
 

Number % Number 
 

% 
 

P 
 
Age, years       

0.25 
Median 27.6  29.1  
Range (15 - 56)  (16 - 53)     

Histology     0.52 
Seminoma 10 17.5  2 11.1  
Nonseminoma 47 82.5  16 88.9     

Localization       0.96 
Testis 54 94.7  17 94.4  
Mediastinum 3 5.3  1 5.6     

IGCCCG stage at diagnosis of metastasis a      0.26 
Good 37 64.9  8 44.4  
Intermediate 10 17.5  4 22.2  
Bad 10 17.5  6 33.3     

First line of chemotherapy treatment b      0.83 
EP 9 15.8  2 11.1  
BEP 35 61.4  10 55.6  
Taxol-BEP 2 3.5  1 5.6  
BOMP/EPI 11 19.3  5 27.8     

Response to first line of chemotherapy treatment c      0.007 
Good response (CR, PR-) 54 94.7  13 72.2  
Poor response (PR+, SD, PD) 3 5.3  5 27.8  
   

Sensitivity to cisplatin d      0.060 
Sensitive 42 73.7  9 50.0  
Resistant 15 26.3  9 50.0 
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Supplementary Table S7 Clinicopathological characteristics of patients, by response to cisplatin.   
 

a IGCCCG International Germ Cell Cancer Collaborative Group.  
b EP, etoposide/cisplatin; BEP, bleomycin/etoposide/cisplatin; BOMP/EPI, bleomycin/vincristine/methotrexate/ 
  cisplatin-etoposide/cisplatin/ifosfamide. 
c CR, complete remission characterized by tumor mass reduction by CT scan and negative valor of serum tumor 

marks; PR-, partial remission characterized by normalization of CT scan and negative valor of serum tumor 
markers; PR+, partial remission characterized by reduction of tumor mass by CT scan and positive  valor of 
serum tumor markers; SD, stable disease; PD, progressive disease). 

d Relapse >24 months after first diagnosis. 
 

 
Sensitive (N = 51)  Resistant  (N = 24) 

 
Characteristic No. %  

 
No. 

 
%  

 
Age, years      

Median 27.9  28.1 
Range (16 – 56 )  (15 - 53) 
  

Histology      
Seminoma 10 19.6  2 8.3 
Nonseminoma 41 80.4  22 91.7 
   

Localization       
Testis 51 100  20 83.3 
Mediastinum 0 0  4 16.7 
      

IGCCCG stage at diagnosis of metastasis a      
Good 38 74.5  7 29.2 
Intermediate 7 13.7  7 29.2 
Bad 6 11.8  10 41.7 
   

First line of chemotherapy treatment b      
EP 9 17.6  2 8.3 
BEP 33 64.7  12 50.0 
Taxol-BEP 2 3.9  1 4.2 
BOMP/EPI 7 13.7  9 37.5 
   

Response to first line of chemotherapy treatment c      
Good response (CR, PR-) 51 100  16 66.7 
Poor response (PR+, SD, PD) 0 0  8 33.3 
   

Late relapsed     
Non 0   22 91.7 
Yes 0   2 8.3 
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Seminoma Testicular Germ Cell Tumors” 
Cátia Moutinho 1, Xavier Garcia-del-Muro 2, Elisabet Guino 3, August Vidal 4,5, Sara 

Puertas 6, Clara Munoz 6, Josep M. Piulats 6,2,, Alberto Villanueva 6,5 and Manel 

Esteller1,7,8  

 
1 Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute 

(IDIBELL) 

2 Department of Medical Oncology, Catalan Institute of Oncology – IDIBELL. 

3 Bioinformatic Unit, Catalan Institute of Oncology – IDIBELL. 

4 Department of Pathology, Hospital Universitari de Bellvitge – IDIBELL. 

5 XenOPAT S.L., Business Bioincubator, Bellvitge Health Science Campus, 08907 L’Hospitalet 

de Llobregat, Barcelona, Spain. 

6Translational Research Laboratory, Catalan Institute of Oncology - Bellvitge Biomedical 

Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Barcelona, Spain. 

7Department of Physiological Sciences II, School of Medicine, University of Barcelona; and 

8Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain 

 

In Preparation 



                                                                                                                          RESULTS                             

150�
�

RESUMEN 
Para explorar si los cambios de metilación en el promotor del gen MGMT tienen un 

papel en la resistencia al cisplatino, primero estudiamos el estado de metilación en 

células humanas de cáncer testicular de células germinales del tipo no seminoma, 

resistentes y sensibles al cisplatino. En segundo lugar estudiamos su estado de 

metilación en orthoxenografts emparejados y finalmente en tumores primarios 

humanos, de pacientes metastasicos tratados con quimioterapia basada en cisplatino. 

En general, se encontró que la hipermetilación del promotor de MGMT se relaciona 

con la sensibilidad al cisplatino. La resistencia está presente cuando el promotor 

MGMT está hipermetilado y consecuentemente el gen no es expresado. Clínicamente, 

la presencia de MGMT hipermetilado se relaciona con una mejor supervivencia global 

(p=0,025) en los pacientes con cáncer testicular de células germinales metastásico. La 

inhibición de la enzima MGMT con O6-benzilguanina in vitro e in vivo aumenta la 

sensibilidad al cisplatino y a la temozolomida, siendo este un posible enfoque 

quimioterapéutico para resensibilizar tumores humanos resistentes del tipo no 

seminoma.�
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SUMMARY 
To explore if MGMT promoter methylation changes have a role in cisplatin 

chemoresistance, first we study it methylation status in cisplatin sensitive and paired 

resistant human non-seminoma cancer cell lines. Secondly in xenograft paired tumors 

and after in human non-seminoma primary tumors, from metastasic patients treated 

with cisplatin-based chemotherapy. In general we found that cisplatin sensitive 

samples are related with MGMT promoter hypermethylation associated with its loss of 

expression. Resistance is present when MGMT promoter is not methylated and 

expressed. Clinically, the presence of MGMT promoter methylation is related with 

better overall survival (p=0.025) in metastasic patients with testicular germ cell cancer. 

Inhibition of MGMT with O6-benzylguanine in vitro or in vivo increases the sensitivity to 

cisplatin and temozolomide, being this a possible chemotherapeutic approach to re-

sensibilize human non-seminoma refractory tumors. 
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INTRODUCTION 
Testicular cancer is the most commonly diagnosed malignancy among young men 

aged 15 to 40 years, and its incidence has doubled in the past 40 years. An annual 

increase of 3–6% is reported for Caucasian populations. Testicular germ cell tumors 

represent over 95% of the testicular cancers and histopathologically are classified into 

two major groups of seminomas or non-seminomas [1]. Patients with testicular germ 

cell tumors, even those with advanced metastatic disease, are often successfully 

treated with cisplatin-based chemotherapeutic regimens [2,3]. However, 15–20% of 

patients is refractory to this treatment and succumbs to progressive disease [4]. Some 

non-seminoma patients, who initially respond to treatment can exhibit a late relapse 

and have a poor prognosis [3, 4].  

 

MGMT is a DNA repair protein that removes mutagenic and cytotoxic adducts from O6-

guanine in DNA [5, 6].  Alkylation of DNA at the O6 position of guanine is an important 

step in the formation of mutations in cancer, primarily due to the tendency of the O6-

methylguanine to pair with thymine during replication, resulting in the conversion of 

G>C to A>T pairs in DNA [7]. Furthermore, the O6-alkylguanine-DNA adduct may 

crosslink with the opposite cytosine residues, blocking DNA replication [8]. The MGMT 

protein rapidly reverses the formation of adducts at the O6 position of guanine via 

transfer of the alkyl adduct to a cysteine residue within the protein, in a reaction that 

inactivates one MGMT molecule for each lesion repaired [5]. This averts the formation 

of lethal cross-links and other mutagenic effects. Loss of MGMT function is most 

frequently due to epigenetic changes, specifically gene promoter region methylation [9]. 

MGMT has important implications in cancer treatment since its expression correlates 

inversely with sensitivity to alkylating drugs, being MGMT activity a major mechanism 

of chemotherapy resistance [10]. 

 

Taking the previous into account, we aim to discover if changes in MGMT promoter 

methylation status can be responsible for cisplatin intrinsic or acquired resistance in 

testicular germ cell tumors, especially in non-seminomas.  

 

MATERIAL and METHODS 
Cell Lines and Drugs Treatment 
Human non-seminoma cancer cell lines (SUSA-S and SUSA-R) were cultured in 

Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 20% (w/v) 

fetal bovine serum, 100U/penicillin and 100μg/L streptomycin (Invitrogen, Carlsbad, 

CA), at 37ºC in an atmosphere of 5% (v/v) dioxide carbon in air. Cell lines were 
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authenticated by short tandem repeat profiling. Cisplatin (50mg/L) was obtained from 

TEVA (North Wales, PA), temozolomide and O6-benzylguanine were obtained from 

Sigma (St. Lois, MO). Temozolomide was diluted in dimethyl sulfoxide (20mg/ml) and 

O6-benzylguanine diluted in methanol (80μM).  

 
Xenograft Tumors and Drugs Treatment 
All analysed non-seminoma xenograft tumors were generated in a previous work [11]. 

Two acquired and two intrinsic xenograft cisplatin resistant tumors were unfrozed in 

DMEM medium supplemented with 10% fetal bovine serum and penicillin/streptomycin, 

at room temperature. Animals were housed in a sterile environment, cages and water 

were autoclaved and bedding and food was X-ray sterilized. Tumors were implanted in 

the testis of five-week old male nu/nu Swiss mice (Charles River, France) weighting 18-

22 g. After anesthesia by isofluorane inhalation, a median laparatomy was performed 

and the testes were mobilized. Tumor pieces were anchored to the testis surface with 

prolene 7.0 sutures. After implantation, mice were inspected twice a week, and if no 

tumor growth was apparent, mice were sacrificed six months after implantation. Then 

for each tumor, mice were randomized into eight groups: control group, cisplatin, O6-

benzylganine, temozolomide, cisplatin+O6-benzylguanine, cisplatin temozolomide, 

temozolomide+O6-benzylguanine, cisplatin+O6-benzylguanine+temozolomide. O6-

benzylguanine and cisplatin were intravenously administered (i.v.). Temozolomide was 

given by oral administration. The different drugs were given once a week for three 

consecutive weeks (days 0, 7and 14). O6-benzylguanine was administrated always one 

hour before cisplatin and temozolomide. Animals were sacrificed seven days after the 

final dose (day 21).  

 

All patients gave written consent to participate in the study. The Ethics Committee of 

the hospitals approved the study protocol, and the animal experimental design was 

approved by the IDIBELL animal facility committee. 

 
Patients and Clinical Samples 
We analyzed 72 testicular germ cell tumors from metastasic patients treated with 

cisplatin based therapy. Formalin-fixed paraffin-embedded tumors obtained by surgical 

resection came from ICO-Hospitalet hospital. Clinical features of the patients are 

showed in Table I. Signed informed consent was obtained from each patient, and the 

Clinical Research Ethical Committee from ICO-Hospitalet provided approval for the 

study. DNA extraction was performed using a commercial kit (Qiagen) following the 

manufacturer’s instructions. 
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Table1.  Clinicalpathological features of patients, by MGMT DNA promoter methylation status  
           
    MGMT methylation status       
 N  %  Unmethylated (U)  Methylated (M) OR (95% CI) P****    
    N %  N %      
Histology          0.413    
  Seminoma 15 20.8  5 27.8  10 18.5  1.00    
  Non-seminoma 57 79.2  13 72.2  44 81.5  1.69    
            
Localisation            
  Testis 72 100%  18 25%  54 75%      
            
IGCCCGa stage at diagnosis of the metastasis    0.923    
  Good 49 68.1  12 66.7  37 68.5  1.00    
  Intermediate 13 18.1  3 16.7  10 18.5  1.08    
  Bad 10 13.9  3 16.7  7 13  0.76    
            
First Line of Chemotherapy          0.430    
  Epb 14 19.4  5 27.8  9 16.7  1.00    
  BEPc 44 61.1  8 44.4  36 66.7  2.50    
  Taxol-BEP 3 4.2  1 5.6  2 3.7  1.11    
  BOMP/EPId 11 15.3  4 22.2  7 13  0.97    
            
Response to First Line of Chemotherapy *     1.00    
  Good (CRe, PRf-) 60 93.8  15 93.8  45 93.75  1.00    
  Poor (PRg+, SDh, PDi) 4 6.25  1 6.25  3 6.25  1.00    

             
Sensitivity to Cisplatin**             
  Sensitive 56 77.8  12 66.7  44 81.5  1.00 0.204    
  Resistant 16 22.2  6 33.3  10 18.5  0.45    
            
Late relapse***          0.368    
  Yes 1 6.7  0 0.0  1 10.0  1    
  No 14 93.3  5 100.0  9 90.0  0    
            
aIGCCCG International Germ Cell Cancer Collaborative Group; bEP-etoposide/cisplatin; cBEP-bleomycin/etoposide/cisplatin; dBOMP/EPI- bleomycin/vincristine/methotrexate/ cisplatin-
etoposide/cisplatin/ifosfamide; eCR, complete remission characterized by tumor mass reduction by CT scan and negative valor of serum tumor marks; fPR- partial remission characterized by 
normalization of CT scan and negative valor of serum tumor markers; g-PR+, partial remission characterized by reduction of tumor mass by CT scan and positive valor of serum tumor markers; hSD, 
stable disease;iPD, progressive disease. 
*Information available for only 64 patients. **Patients who achieved durable complete response with first-line cisplatin-based chemotherapy. Patients who had either a poor response or relapsed after 
first-line chemotherapy; *** Relapse >24 months after first diagnosis; **** P-value was assessed according Chi-Square test; p<0.05 as statistical significant. 
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Genomic DNA Extraction and Bisulfite Conversion 
Genomic DNA was extracted from human cancer cell lines using DNAsol method, 

according the manufactures protocol. For frozen and paraffin tissue samples, were 

used commercial DNA extraction kits, following manufacturer’s instructions (QIAamp 

DNA Mini Kit and QIAamp DNA FFPE Tissue Kit). DNA was subjected to bisulfite using 

EZ DNA methylation kit (Zymo Research, Orange, CA) as described previously [12]. 

Briefly 1ug of genomic DNA was denaturated by incubating with 0.2 M NaOH. Aliquots 

of 10 mM hydroquinone and 3M sodium bisulfate (pH 5.0) were added, and the solution 

was incubated at 50ºC for 16h. Treated DNA was purified on a Zymo-Spin I column, 

desulfonated with 0.3 M NaOH, repurified on a Zymo-Spin column and resuspended in 

25 μl water. Following bisulfate treatment, all DNA were stored at -20ºC. 

 

Genomic DNA Bisulfite Sequencing and MSP 
The DNA methylation status of MGMT promoter was analyzed by bisulfite sequencing 

and by MSP. Both were performed in a 25μl volume containing 1μl of the sodium 

bisulfite modified DNA. For bisulfite sequencing both strands were sequenced and at 

least 20 clones were analyzed per sequence. The characteristics of the MSP reactions 

and the primer sequence have been described previously [10]. SW620 human cancer 

cell line DNA was used as a positive control for methylated alleles of MGMT, and DNA 

from normal lymphocytes used as a negative control, as previously described [13]. 

 

Cell viability and Proliferation Assays  
Cell viability and proliferation was determined by the MTT assay. Briefly, 1 x 103 cells 

were plated onto 96-well plates. At different time points (24, 48, 72, 96 and 120 hours), 

MTT (5mg/ml in phosphate-buffered saline-PBS) was added at 0.1% final 

concentration. After 3 hours incubation (37ºC, 5% dioxide carbon), the MTT metabolic 

product, formazan, was dissolved in dimethyl sulfoxide and absorbance at 570 nm was 

measured. Prism Software was used to calculate drugs IC50. Cell viability and 

proliferation assays were made for 120 hours. All the other treatments were made for 

48 hours.  

 

Cell Cycle Analysis 

After 48 hours of the respective treatment, floating and attached cells were collected, 

and washed with phosphate-buffered saline solution. The cell cycle was assessed with 

propidium iodide-stained cells (distribution of cells in G0/G1, S and G2/M phases) by 

flow cytometry. Approximately 2x106 cells were fixed in ice-cold 70% ethanol overnight 
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at -20ºC. Cells were subsequently washed and resuspended in phosphate-buffered 

saline solution. After 30 minutes, DNA was stained with 25 mg/mL propidium iodide 

(Sigma, St Louis, MO) in a reaction solution containing 50 mg/mL RNAse A (Sigma, St 

Louis, MO) for 30 minutes at 37ºC in the dark. Fluorescence emitted from the 

propidium iodide–DNA was measured for individual cells using a FACS flow cytometer 

(FACSCalibur; BD Bioscience). 

 

Apoptosis and Necrosis Determination 
First we perform a western blot for PARP protein (explained in the next point), we 

determine caspase-3 and -7 activities using the Caspase-Glo® 3/7 Assay (Promega, 

Madison, WI) and we determine the possibility of chromatin cleavage using DNA ladder 

kit as manufacturer’s instructions. For determine necrosis we used the 

Apoptotic/Necrotic/Healthy Cells Detection Kit (Pomokine,�Heidelberg, Germany). Cells 

were grew directly on a coverslip, washed twice with 1X Binding Buffer and stained 

with a mix of 3 fluorocromes ( FITC-Annexin V+ Ethidium Homodimer III+ Hoechst 

33342) over 15 minutes. Cells were then fixed with 2% formaldehyde, washed 2 times 

and mounted each coverslip onto a slide with mowiol (Sigma, St Louis, MO). Finally we 

observed cells under a fluorescence microscope (DMI6000, acquisition software LEICA 

application suite advanced fluorescence (LAS AF). Data were analyzed using FlowJo 

software.  

 

Western Blot 
A standard protocol was used to extract cells total protein. Anti-MGMT (1/1000) was 

acquired from Cell Signaling (Boston, MA), Anti-PARP (1/2000) from BD Pharmigen 

(San Diego,CA) and H2AX.P (1/1000) from Abcam (Cambridge, UK). An anti-�-actin-

HRP antibody (1/20000) was purchased from Sigma (Sigma, St Louis, MO). 

 
Immunoflurescence 
Cells were cultured directly on coverslips and fixed with 4% paraformaldehyde in 

phosphate-buffered saline solution for 20 minutes at room temperature. Cells were 

permeabilized with 0.1% Triton X-100 in phosphate-buffered saline solution for 5 

minutes and blocked with 1% bovine serum albumin for 1 hour. Double immunostaining 

with primary antibodies for � tubulin (1/1000, Abcam; Cambridge, UK) and pericentrin 

(1/1000, Abcam; Cambridge, UK) were performed by simultaneous incubation for 1 

hour. We also used H2AX.P in an independent experiment (1/1000; Abcam; 

Cambridge, UK). Finally, 1/1000 dilutions of appropriate fluorescent-labeled secondary 

antibodies from Invitrogen (Carlsbad, CA) (anti-rabbit IgG, A11011; anti-mouse IgG, 
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A21235) were used. The coverslips were mounted on glass slides using mowiol 

(Sigma) with DAPI. Multi-color immunofluorescence imaging was then performed on a 

(DMI6000, acquisition software LEICA application suite advanced fluorescence (LAS 

AF; Leica Microsystems, Germany).Data were analysed by Fiji program. For determine 

the amount of multipolar mitotic spindles, 100 mitotic spindles were counted for each 

condition. The counting was repeated 3 independent times. 

 

Statistical Analysis 
Survival curves were estimated using the Kaplan-Meier method, and differences 

between individual curves were evaluated by multivariate Cox proportional hazards 

regression modeling. Hazard Ratio and 95% confidence intervals were calculated.  

Values of P<0.05 were considered significant. 

 

RESULTS  
MGMT Epigenetic Silencing and Cisplatin Sensitivity 
In order to analyze if changes in MGMT promoter methylation status can modulate 

cisplatin sensitivity in non-seminoma testicular germ cell tumors, we studied one pair of 

human cancer cells lines composed by a sensitive (SUSA-S; IC50=75.3 ng/mL) and a 

resistant derivate (SUSA-R; IC50=596.2 ng/mL) to cisplatin. Bisulfite sequencing 

methylation profiles revealed a loss of CpG methylation in the resistant cell line, in 

comparison with sensitive counterpart (28% vs. 3%) (Fig. 1A).This fact was associated 

with a significant increase in MGMT protein level in the resistant cell line (Fig. 1B).  

 

Inhibition of MGMT Changes Sensitivity to Cisplatin and to Temozolomide 
Considering the increased level of MGMT in resistant cells, we decided to evaluate the 

effect of its inactivation in the modulation of cisplatin sensitivity. Inhibition of MGMT 

upon O6-benzylguanine treatment lead to a decrease in cisplatin IC50 in SUSA cancer 

cells (2 fold), becoming them more sensitive when compared with the vehicle treatment 
(Table II and Fig. 2A). Based on previously publications, where cells lacking MGMT 

were sensitive to temozolomide, we add this chemotherapeutic drug to our cells 

treatments. Furthermore, addition of O6-benzylguanine in cell culture significantly 

sensitizes cells to cisplatin and/or temozolomide drugs (Fig. 2B). 
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Table II: IC50 for SUSA cell lines 

Cell Lines IC50 

Drugs SUSA_S SUSA_R 

CDDP (ng/ml)  75,3 598,2 

TMZ (μg/ml)  55.9 204.1 

CDDP (ng/ml)+ MeTOH  68,3 595,7 

CDDP(ng/ml)+ O6-BG (μM) 23,4 282,7 

 
MGMT Inhibition and Co-treatment with Cisplatin and/or Temozolomide Leads to 
Cell Death, Necrosis and Mitotic Cell Arrest 
In order to elucidate the causes of the decrease in proliferation rates, we performed 

flow cytometry analyses in SUSA treated cells, to detect possible alterations in cell 

cycle. A significant increase in the sub-diploid population was detected upon 

temozolomide+O6-benzylguanine (5% vs. 52% and 30%) and cisplatin+O6-

benzylganine+temozolomide (5% vs. 44% and 49%) treatments (Fig. 3A). To evaluate 

the possible mechanism responsible for this cellular death, we analyzed apoptotic 

markers including PARP cleavage, caspase 3/7 activity, DNA degradation and Anexin  

V; however, none of them revealed the presence of a apoptotic process (Supp. Fig. 
1A, 1B, 1C and 2). Therefore, we proceeded to study necrosis. We performed a 

double cellular immunostaining using Anexin V and ethidium homodimer III. Co-

treatment of cisplatin with O6-benzylguanine increased the percentage of necrotic cells, 

more evident with the addition of temozolomide (Supp. Fig. 2).  

 

In addition to the increase of the sub-diploid peak, we also observed an arrest in G2-M 

in all cellular treatments, with exception for cells treated only with O6-benzylguanine 

(Fig. 3 B). Considering that a mechanism that leads to G2-M cell cycle arrest is the 

mitotic catastrophe, we decided to analyze this phenomenon by immunocytochemistry. 

A significant increase in prometaphase and metaphase upon cisplatin or/and 

temozolomide treatment was observed. Moreover, these cells presented a high amount 

of mitotic multipolar spindles (Fig. 3C and 3D). The presence of double strand breaks 

was also evaluated and the highest values were found in the triple treatment 

cisplatin+O6-benzylguanine+temozolomide (Sup. Fig. 3A and 3B). 
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Changes of MGMT Promoter Methylation Status in Generated Cisplatin Resistant 
Non-seminoma Xenograft Tumors 
In view of the previous in vitro results we evaluated the role of the epigenetic regulation 

of MGMT in cisplatin resistant non-seminoma orthoxenograft tumors. Analogous to the 

profiles observed in the cell lines, we detected a loss of methylation in 4 out of 6 of the 

cisplatin resistant generated non-seminoma xenografts, when compared with the 

original tumors (Fig.4A and Table III). We also studied a set of human intrinsic non-

seminoma cisplatin resistant tumors, where MGMT promoter was mainly unmethylated 

(4 out of 6) (Fig.4A and Table III).The loss of CpG methylation in resistant tumors 

resulted in the re-expression of MGMT protein (Fig. 4B). Because previously it was 

described an association between MGMT and MLH1 promoters hypermethylation in 

temozolomide resistant cases [14], we also studied this second DNA repair gene in our 

cases. We only detected 2 out of 6 

methylated tumors in the human 

non-seminoma cisplatin intrinsic 

resistant tumors, those tumors that 

were also methylated for MGMT 

(Supp.Table I).  
 

MGMT Promoter Methylation 
Status as a Prognostic 
Biomarker in Human Testicular 
Germ Cell Tumors Patients   
We analyzed MGMT promoter 

methylation in 72 testicular germ 

cell tumor patients and we 

observed a positive correlation 

between MGMT promoter 

hypermethylation and high overall 

survival (p=0.025) (Fig. 4D). 

These results suggest MGMT 

promoter methylation status as a 

prognosis marker in this type of 

tumors.  

 

Table III: Methylation status of MGMT promoters 

 

 Sensitivity 
to cisplatin 

MGMT 
methylation 

status 

 

Cispaltin generated 
refractory xenograft 
tumors  

P1 *  
Sensitive  methylated

Resistant unmethylated 

P2  
Sensitive  unmethylated 

Resistant  unmethylated 

P3  

A -Sensitive methylated 

B-Sensitive methylated 

B-Resistant  unmethylated 

P4  
Sensitive  unmethylated 

Resistant  unmethylated 

P5*  
Sensitive  methylated 

Resistant  unmethylated 

P6  
Sensitive  methylated 

Resistant  unmethylated 

Primary human 
endogenously cisplatin 

resistant tumors 

R1*  Resistant  methylated 

R2  Resistant unmethylated 

R3  Resistant unmethylated 

R4*  
A- Resistant methylated 

B- Resistant  methylated 

R5  Resistant unmethylated 

R6  Resistant unmethylated 
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New Chemotherapy Proposal for Human Non-seminoma Refractory Cisplatin 
Tumors 
Once confirmed the clinical relevance of MGMT DNA promoter methylation in 

sensitivity to cisplatin agent, we proceeded to test the use of O6-bezylguanine to inhibit 

MGMT expression in 3 cisplatin refractory non-seminoma xenograft models: 2 

generated cisplatin resistant xenógrafts and 1 non-seminoma cisplatin intrinsically 

resistant. The inhibition of MGMT was confirmed by western blot (Supp. Fig. 5A).The 

triple combination cisplatin+O6-benzylguanine+temozolomide resulted in a high 

decrease of tumor growth (Fig. 4C and Supp. Fig. 5B). Additionally, the tumor with 

MGMT hypermethylation (tumor R4) showed a high sensitivity also to temozolomide 

alone (Supp. Fig. 5B). However, the tumors treated only with temozolomide re-growth 

faster than those tripled treated (cisplatin+O6-benzylguanine+temozolomide). 

 

DISCUSSION 
Chemoresistance to conventional chemical drugs is a well recognized issue that 

hampers many of the clinical expectations to improve the survival of oncology patients. 

Intrinsic and/or acquired resistance appears due to cellular mechanisms that permit 

cells to escape the chemical antitumoral effects. This involves a wide “repertoire” of 

genetic and epigenetic events. What concerns to the epigenetic events, little is known 

about its influence in non-seminoma tumors resistance to cisplatin. In testicular germ 

cell tumors MGMT was described to be frequently inactivated by promoter 

hypermethylation [15-17], especially in the cisplatin sensitive ones [18]. In non-

seminoma tumors we found the same that in the previous study. MGMT promoter 

methylation was present in sensitive tumors. 

 

MGMT is a tumor suppressor gene that encodes O6-methylguanine-DNA 

methyltransferase and plays an important role in DNA repair, removing DNA adducts 

formed by alkylating agents. So, cells that express this protein present a defense 

system against alkylating agents, being more difficult to kill them, in comparison with 

MGMT knock-out cells. This was initially described in human gliomas in relation to 

temozolomide. Although in this type of tumor there is an exception. If besides MGMT 

methylation, MLH1 methylation is also present, the patients are resistant to 

temozolomide [14]. We also found the same in two non-seminoma tumors.  

 

A possible way of revert resistance to temozolomide is the use of a MGMT inhibitor that 

competes for the same target (O6-methyl adducts). O6-benzylganine is a potent, 

specific and irreversible blocker of MGMT that enhances the cytotoxic action of 
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alkylating agents (e.g. cisplatin, temozolomide) [19]. However the clinical trials are not 

very clear in the benefit for the use of this compound [20, 21], with our study we afford 

scientific data that indicate the possibility O6-benzylguanine be applied as a treatment 

option to revert non-seminoma resistant cisplatin tumors. Besides, the combined used 

of temozolomide can also increase the cure rate in non-seminoma refractory tumors.  

 

In preclinical studies temozolomide has demonstrated antitumor activity against human 

non-seminoma cell lines [22], being one reason for testing this in the clinics. However 

three clinical phase II studies were already performed without positive outcome [23-26]. 

Based on our results we think that the major limitation to the successful treatment of 

these patients was the absence of information about MGMT promoter methylation, as a 

major issue to include patients in those studies. Therefore, a further rationale for testing 

this new agent again is first study of MGMT promoter methylation and then decide if 

the chemotherapy schedule should include an MGMT inhibitor, like O6-benzylganine 

drug. Other reason for testing temozolomide and when needed a MGMT inhibitor, is 

that these chemical agents have clinical activity against brain tumors [27]. Brain 

metastases occur in 8-15% of patients with testicular tumors, almost always associated 

with relapse at other sites or as a terminal event [23, 28]. Temozolomide may provide 

in this way a more effective treatment for testis tumors which have metastasized to the 

brain. 

 

Dolan et al, described that cisplatin, temozolomide and O6-benzylguanine as 

chemotherapeutic drug, cause cellular dead [19]. Although they do not refer which 

dead mechanism is behind that. Our results indicate that the use of these three agents 

lead to mitosis catastrophe and necrosis. Mitotic catastrophe occurs when cells cannot 

carry on mitosis. One of many problems that can lead to this process is the 

accumulation of DNA damage. We believe that inhibiting MGMT action in these cells, 

make them more sensitive to these alkylating agents since cells are not able of repair 

their DNA efficiently. If the repair mechanism fails, O6-methylguanine results in the 

formation of toxic double strand breaks, due to faulty MMR during proliferation, fact that 

we also found. About the other dead mechanism, necrosis normally results from a 

severe cellular insult. It was described that happens as a consequence of extreme 

stress, such as heat, osmotic shock, and mechanical stress, freeze thawing and high 

concentration of hydrogen peroxide. In these conditions, cell death occurs quickly due 

to the direct effect of the stress on the cell, and therefore this cell death process has 

been described as accidental and uncontrolled [29]. We think that this happens in non-

seminoma cell lines, because treating them with DNA damage agents and at the same 
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time block a pathway of DNA repair should be a shock for the cells, not having them 

time to enter in a controlled cell death program, apoptosis.  

 

Despite the high cure rate obtained with combination chemotherapy of testicular germ 

cell tumors, the management of patients with an adverse prognosis at presentation, or 

of those who fail to respond to first-line chemotherapy, remains a therapeutic challenge 

[28]. MGMT methylation is already used as a predictive temozolomide response 

biomarker in glioblastomas [10]. It is worth to mention the possibility to extend this to 

non-seminoma patients. If methylated a possible chemotherapeutic schedule could be 

O6-benzylguanine plus cisplatin and temozolomide. However further studies should be 

performed. 

 

In conclusion, we have demonstrated that the loss of MGMT promoter DNA 

methylation is associated with the acquisition of chemoresistance to the DNA 

damaging agent cisplatin in non-seminoma tumours both in vitro and in vivo. The 

validation of MGMT methylation as a predictive marker will require further prospective 

studies. If successful, clinical trials would also be necessary to develop strategies to 

overcome or prevent the development of MGMT-mediated epigenetic resistance. 
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CHEMORESISTANCE IN COLORECTAL CANCER 
The preexistence or the de novo development of cellular mechanisms to escape the 

antitumoral effects mediated by the anticancer compounds, involves different genetic 

and epigenetic events [220]. From an epigenetics perspective, little is known. 

Regardless of promising pharmacoepigenetics biomarkers, such as the example of 

MGMT hypermethylation and good response to temozolomide in gliomas have been 

described [54], for other tumor types like colorectal neoplasms examples are limited, 

specially if we just center our attention on resistance biomarkers. Herein, in the first 

part of this thesis we provide two examples that help fill this niche. In one hand we 

show that hypermethylation of MGMT predicts sensitivity for dacarbazine and in the 

other, that SRBC hypermethylation predicts resistance to oxaliplatin, both in metastasic 

colorectal cancer, a disease stage that represents the second most common cause of 

death from cancer [221]. 

 
STUDY I: 
“Promoter CpG Island Hypermethylation of the DNA Repair Enzyme MGMT 

Predicts Clinical Response to Dacarbazine in a Phase II Study for Metastatic 

Colorectal Cancer” 

 

Dacarbazine represents an effective chemotherapeutic agent for treatment of 

Hodgkin's lymphoma [222] and was the mainstay of treatment for metastatic melanoma 

until the recent approval of ipilimumab and vemurafenib [223].  

 

MGMT promoter methylation status predicts metastasic colorectal cancer tumors 
response to dacarbazine 
MGMT plays an important role in DNA repair, removing DNA adducts formed by 

alkylating agents. In the present study, MGMT promoter methylation was found in 38% 

of the colorectal tumors analysed, similar to the previously reported for this tumor type 

(35-40%) [224]. 

 

A low response rate to dacarbazine was observed (2 patients met clinical parameters 

with objective response and 8 with stable diseases) in our study. This could be linked 

to the fact that the patients included in this study are heavily pre-treated patients 

(median four lines of chemotherapy). Dacarbazine is activated in liver by CYP450 

microsomial N-demethylation with formation of 5-[3-hydroxymethyl-3-methyl-triazen-l-

yl]-imidazole-4-carboxaliplatinmide and 5-[3-methyl-triazen-1-yl]-imidazole-4-carboxamide 

(MTIC). It is therefore conceivable that the patients included in this study may have 
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exhausted the liver function capacity to activate dacarbazine. In this regard 

temozolomide, other alkylating agent whose activity is also enhanced in tumors with 

MGMT loss and that is hydrolyzed in cells producing the active compound MTIC 

without requiring liver passage, can be a good option for a new clinical trial [225]. In 

fact a new Phase II clinical trial (TEMECT EudraCT Number: 2012-003338-17) is 

already being performed. In this ongoing study, patients in whom standard therapies 

failed should be treated with temozolomide if present MGMT promoter gene 

methylated. Actually temozolomide is mainly used for the treatment of malignant 

glioblastomas and melanomas. In the meanwile of our Phase II clinical trial, others 

described a similar one, with deceptive results. Efficacy of temozolomide for colorectal 

cancer patients with confirmed MGMT promoter DNA methylation was inconclusive. 

However none achieved a complete response response, almost 45% achieved a stable 

disease [226].  

 

When looked in more detail, in our study with dacarbazine, the patients that displayed 

the objective responses were the ones carrying MGMT promoter hypermethylated 

tumors, showing one of them a long-lasting maintenance response (more than six 

months), which is uncommon in the advanced setting of metastasic colorectal cancer. 

Important to reinforce that these patients failed standard chemotherapy schemes and 

any other treatment option is a great achievement. What concerns to progression free 

survival, a trend toward to a better progression free survival, was shown in the first 

cases (p=0.098). 

 

The association between MGMT promoter hypermethylation and these referred clinical 

endpoints supports the hypothesis that DNA-repair defective metastasic colorectal 

cancer tumors are more susceptible to dacarbazine. The same was already described 

for human gliomas, in relation to temozolomide, an analogue of dacarbazine [54]. 

Tumors that express MGMT have a specific system for repair O6-methyl adducts, the 

principal damage caused by alkylating agents. Thus tumors that present MGMT 

inactivation have high probability of response, since the insuficient DNA repair leads to 

point mutations or even chromosomal aberrations and subsequent cellular death [227, 

228]. 

 

MGMT methylation is related with KRAS G>A mutations in metastasic colorectal 
cancer patients  
In this trial despite KRAS mutational status did not influence patient selection, we 

check for a possible correlation between this issue and MGMT promoter methylation 
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status. As previously described we found that MGMT hypermethylation was more 

frequent in tumors carrying KRAS mutation with guanine-adenine transition (G12D, 

G12V or G13D) [229]. MGMT transfers methyl groups from the O6 position of guanine 

in DNA to a cysteine residue in its active site, thereby inactivating MGMT itself [230]. 

Inactivated MGMT molecules are ubiquitinated and degraded by the proteasome [231]. 

If the methyl group is not removed from guanine, this base can pair with thymine during 

DNA replication which leads to transition of guanine-cytosine to adenine-thymine. 

However this difference was not statistically significant due to the sample small size for 

which we had both information (n=26; p=0.238). In contrast to MGMT promoter 

methylation, KRAS mutational status was not associated with response rate, 

progression free survival or overall survival. 

 

STUDY II:  
“Epigenetic Inactivation of the BRCA1 Interactor SRBC and Resistance to 

Oxaliplatin in Colorectal Cancer” 

 
Small methylation differences between oxaliplatin sensitive and resistant paired 
human colon cancer cell lines 
With the use of our first in vitro model, where the resistant cell line was derived from 

the sensitive one, by increasing oxaliplatin concentrations, we try to cut out most part of 

the genetic variability and focus our study only on genes promoter DNA methylation 

changes. After our general approach with 27K Methylation Illumina, only three 

promoter genes were found differentially methylated between oxaliplatin sensitive and 

resistant cell lines: SRBC, family with sequence similarity 111, member A (FAM111A) 

and family with sequence similarity 84, member A (FAM84A). The gene with the 

highest difference in promoter DNA methylation was SRBC. This was the only gene 

later validated. This small methylation difference between sensitive and resistant cell 

lines could be due to the reduced coverage from the 27K plataform or due the 

restricted thresholds that we applied. For example we only chose genes that presented 

differences higher than 75% of methylation between the two samples. With this criteria 

we thought that the probability of the selected genes be implied in chemoresistance 

acquisition, would be greater. Nonetheless this does not discard the importance of 

genes with smaller methylation differences. Other question was that the chosen probes 

were localized between minus 300 or plus 300 base pairs from the transcription start 

site. Promoter genes are canonical defined to be localized between minus 1000 base 

pairs from the transcription start site until the end of the first exon. Based on this, 

maybe we lost other genes that were differentially methylated. Other fact to have in 
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account is that chemoresistance process can appear due to different mechanisms 

beside genes promoter DNA methylation, like genetic alterations or simply due to 

changes in proteins expression (e.g. alterations in non-coding RNAs or histone 

modifications). 

 

SRBC expression is regulated by DNA methylation in colorectal cancer  
The oxaliplatin resistant human colon cancer cell lines (LoVo-R and HCT15) were the 

only presenting SRBC promoter hypermethylation and diminished protein expression. 

This data is in agreement with previous reports, where SRBC promoter 

hypermethylation led to a reduction of messenger RNA and protein expression in 

human colorectal cancer, ovary and gastric cancer cell lines [232]. To be shore that 

promoter hypermethylation was the cause of SRBC inactivation in resistant cells, LoVo-

R cell line was treated with 5-AZA, a demethylating agent. 5-AZA is an analog of 

cytosine that is converted into nucleotide triphosphates in vivo. Thus it is able to 

incorporate into the DNA and influence it structure and stability. Two models have been 

proposed to explain the mechanisms by which 5-AZA reactivates silenced genes by 

demethylating CpG islands in the promoters. First, after being incorporated into DNA, 

5-AZA forms an irreversible and covalent bond with DNMT1, protein which is mainly 

responsible for the maintenance of DNA methylation. This therefore leads to 

demethylation when DNA is replicated [233]. Second, 5-AZA is reported to induce 

DNMT1 degradation trough an ubiquitin-proteosome-dependent pathway that results in 

gene re-expression [234]. Upon treatment these resistant cells re-expressed SRBC. 

The same was reported for other colorectal cancer human cell lines by Xu, et al [235]. 

Before move forward we wondered how was SRBC promoter methylation satus and its 

expression in normal colon mucosa. In normal tissues, SRBC was not methylated and 

was expressed (data not shown). This was in agreement with data published before, 

where in normal breast, lung, stomach and colorectal tissues, SRBC was expressed 

and gene promoter was not methylated [232, 235, 236]. 

 

SRBC promoter methylation plays a role in colorectal cancer resistance to 
oxaliplatin 
In order to demonstrate that the epigenetic inactivation of SRBC gene functionally 

contributed to oxaliplatin resistance, we restored it expression in colorectal cancer 

resistant cells and inhibited it in the sensitive ones. Upon SRBC transfection, resistant 

cells became more sensitive to oxaliplatin, in sharp contrast with sensitive cells that 

after SRBC downregulation by the short hairpin RNA approach, became considerable 

more resistant. The observed effects were specific for oxaliplatin because the in vitro 
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depletion or enhancement of SRBC did not change the sensitivity to 5-FU, other drug 

commonly used in colorectal cancer treatment. Getting or having SRBC promoter 

methylated seems to be an advantage to resistant cells. With HCT15 and HCT-116 

cells we studied intrinsic resistance. Important to note that sensitivity changes to 

oxaliplatin, were higher in LoVo-S and LoVo-R cells than in HCT15 and HCT-116. 

Endogenously HCT15 and HCT-116, beside SRBC methylation differences presented 

already a different genetic background. This fact for shore led to alterations in different 

pathways that in HCT15 can be reinforcing resistance to oxaliplatin. Thus, the simple 

fact of re-introduce or silence SRBC in these cells was not enough to produce so great 

changes in oxaliplatin sensitivity.  

 

A role of SRBC in mediating different sensitivity to oxaliplatin can be clearly justified by 

its protein interaction with the product of the BRCA1 gene [235]. The BRCA1 protein 

exerts an important role in DNA double-strand break repair through homologous 

recombination 2, so its deficiencies can impair the capacity of cancer cells to repair 

DNA cross-links caused by chemotherapy drugs such as platinum derivatives [100, 

237].Two independent studies reported greater primary chemotherapy sensitivity to 

platinum based chemotherapy agents in patients with ovarian cancer who were carriers 

of BRCA1 germline mutation [237, 238]. These observations have also been extended 

to BRCA1 epigenetic silencing in sporadic breast and ovarian tumors, where it also 

predicts a good response to cisplatin and carboplatin [239-241]. However, the biology 

of mammary tumors is very different from colorectal malignancies and in all cases of 

colon cancer, the BRCA1 promoter has always been found in an unmethylated status 

[242]. This makes us hypothesise that SRBC could act as a BRCA1 inhibitor, and due 

to its promoter hypermethylation, BRCA1 stays active and as consequences cells are 

more resistant to oxaliplatin. Yet a better study about the molecular mechanisms linking 

SRBC activity and DNA damage repair triggered by oxaliplatin should be investigated. 

Interestingly, in addition to its BRCA1-related roles, SRBC might have other functions 

related to the observed chemoresistance phenotype, such as its interaction with 

caveolin 1, which may putatively affect intracellular vesicule traffic of the drug [243].  

 

Our in vitro findings let us think that this gene could be a good candidate as a 

predictive biomarker for oxaliplatin-based treated colorectal patients. We choose 

metastasic patients, because they present less therapeutic options. 

 

SRBC Hypermethylation predicts short progression free survival in oxaliplatin 
treated patients with unresectable metastasis 
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In the clinical set we started with a discovery cohort (n= 131), composed by stage IV 

colorectal adenocarcinoma patients, all of whom were treated with oxaliplatin in 

combination with a fluoropyrimidine. In this cohort we found 29.8% of primary tumors 

methylated. A similar percentage (30.2%) was found after analyze a dataset from The 

Cancer Genome Atlas (n=232). However data published before revealed a higher 

percentage (47.5%) [235]. What concerns to the correlation between SRBC 

methylation and clinical endpoints as response rate, progression free survival and 

overall survival, in the discovery cohort we only found a significant association with 

short progression free survival (p=0.01). 

 

According to Cox regression multivariable test, surgery of metastases showed to be an 

independent progression free survival (p=0.004) and overall survival (p=0.003) 

prognostic factor. This was expected, since patients that under go metastasis surgery 

present an advantage when compared with subjects with unresectable metastasis. 

Taking this into account, our discovery cohort was stratified in relation to this clinical 

feature and was divided into two groups: patients that underwent metastases resection 

(n=34) and patients with unresectable metastases (n=97). After subdivide this cohort 

SRBC hypermethylation was only statistically significant associated with shorter 

progression free survival (p=0.01) in patients that received oxaliplatin as neoadjuvant 

therapy and were subsequently not eligible for surgery or patients with metastasis that 

were originally classified as unresectable and were given oxaliplatin as palliative 

chemotherapy. In this last set of patients, for whom overall survival data was available 

(n=79), we also observed that SRBC hypermethylation was significantly associated 

with shorter overall survival (p=0.04). To validate this data we study a second 

independent set of colorectal cancer patients with unresectable metastasis, who also 

received oxaliplatin based therapy (n=58). With this validation cohort, we only 

confirmed that the presence of SRBC hypermethylation was associated with shorter 

progression free survival (p=0.045). Based in our in vitro and clinical data, we think that 

SRBC promoter methylation is more important for oxaliplatin resistance acquisition that 

for intrinsic one. Patients with primary tumors in which SRBC promoter is methylated, 

progress faster when receive oxaliplatin-based chemotherapy. Maybe because tumor 

cells with this alteration present a selective advantage to proliferate under oxaliplatin 

action.  

 

The validation of SRBC promoter DNA methylation as a predictive biomarker requires 

further prospective studies. If successful, clinical trials would also be necessary to 

develop strategies to overcome or prevent the development of SRBC-mediated 
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epigenetic resistance. In this regard, research into DNA demethylating agents that 

might re-sensitize cancer cells to oxaliplatin is reasonable. This can represent a revival 

of the DNA demethylating agents in the therapy of solid tumors. With few therapeutic 

options against metastasic colorectal cancer once it has become insensitive to 

oxaliplatin, DNA methylation inhibitors, such as 5-AZA and 5-aza-2�-deoxycytidine, 

could be used to resensitize these tumors to the oxaliplatin therapy. This idea has been 

recently explored in non–small cell lung carcinoma patients who had reached the last 

line of chemotherapy. The subsequent administration of 5-AZA was able to rescue 

previous chemosensitivity, with low toxicity rates [244]. Other option shows up from a 

recent publication that links SRBC promoter hypermethylation with NF-kB over-

expression. Since in the clinical stage, inhibitors of NF-kB are already applied in 

chemotherapy schemes, first it will be interesting to investigate if NF-kB expression in 

our in vitro model is related with SRBC methylation status. If yes, secondly study the 

possible reversion of oxaliplatin resistance by the use of NF-kB inhibitors. A good 

option for test these new drugs combinations will be the establishment of colorectal 

orthoxenografts. These are mice models where a piece of patient’s tumor is implanted, 

in mice corresponding tumor organ. This allows the perpetuation of the tumor and test 

different chemotherapeutic schedules in order to study tumors response and 

pharmacological behavior.  

 

If in the future SRBC promoter methylation will be accepted as a predictive marker, in 

order to simplify its analyses, DNA methylation in circulating tumor cells or stool, 

approaches less invasive for patients, should be optimized and implemented. These 

detection techniques will be also important in order to do a prospective study and 

monitorise SRBC promoter methylation status in patients under oxaliplatin-based 

treatments.  

 

In general, to patients with unresectable metastasic colorectal cancer is typically 

administered a first-line chemotherapy regimen based in oxaliplatin or in irinotecan. 

Basically the choice remains on established protocols. The Europeans normally apply 

FOLFOX scheme. With chemotherapy selection in mind, it will be worth to study SRBC 

promoter methylation status in a cohort composed by patients that received irinotecan-

based treatment. If SRBC promoter methylation keeps predicting short progression free 

survival exclusively for oxaliplatin treated patients, in the future we can put patients 

which present SRBC promoter methylation directly under a first line irinotecan-based 

chemotherapy. Other point that will be interesting is to investigate SRBC promoter 

methylation in paired primary tumors and metastasis and also in posterior treatment 
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relapse tumors. The extension of our study to stage II, stage III colorectal cancer 

patients, and to different geographical origins patients are also important points for 

further investigation. 

 

Other possible avenue of future research derived from our findings is the possibility to 

extend the observations to other tumor types, beyond colorectal cancer. The described 

existence of SRBC hypermethylation in lung, breast and ovarian carcinomas [235, 236, 

245] might prompt the development of translational assays to determine if the 

epigenetic inactivation of this gene is also associated with lower sensitivity to platinum-

derivatives in these neoplasms.  

 

STUDY OF CHEMORESISTANCE IN TESTICULAR GERM CELL TUMORS 
Although the elevated sensitivity of testicular germ cell tumors to cisplatin-based 

therapies (80%), there is still a subset (15-20%) of young men that will not be cured 

and will die [102]. With our work we afford two potential genes, GCS and MGMT that 

can be pharmacologically regulated in order to reverse cisplatin resistance of these last 

cases, and resensibilize tumors to cisplatin treatment. 

 
STUDY III 
“Orthoxenografts of Testicular Germ Cell Tumors Enable Identification of 

Glucosylceramide Synthase as a Cisplatin Resensitizing Target” 

 
Preclinical inhibition of GCS resensitizes cisplatin refractory germ cell tumors to 
cisplatin 
The genomic high-throughput analyses of our xenograft model, representative from 

paired non-seminoma cisplatin sensitive and refractory human tumors, prompted us 

several genes (GCS, ATP6V1G, CTR1/2, PAPPA or POLE3) with a possible 

implication in cisplatin resistance acquisition. 

 

As a proof-of-concept we evaluated the therapeutic value of GCS. This protein 

transfers a glucose residue from UDP-glucose to ceramide synthesizing 

glucosylceramide, which allows cellular escape from ceramide-induced programmed 

cell death. In vitro over-expression conferred cellular resistance to doxorubicin and 

daunorubicin [246, 247]. Its up-regulation was found in multidrug resistance cancer cell 

lines, in chemoresistant leukemia, and in metastatic breast cancer [247, 248]. We 

choose this gene since its messenger RNA expression and enzymatic activity was 

increased in most part of the engrafted refractory tumors; its knockdown by RNA 
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interference in worms conferred cisplatin sensitivity; and because there are specific 

inhibitors available, some of which are currently in clinical use.  

 

To investigate if over-expression of GCS contributes to cisplatin resistance in non-

seminomas, we decreased its expression in a human non-seminomas cisplatin 

resistant cell line and over-expressed it in a sensitive one. As in study II, the human 

non-seminoma resistant cell line was derived from a sensitive parental one, due to 

cisplatin increasing drug concentrations. Upon GCS inhibition resistant cells became 

more sensitive to the antiproliferative activity of cisplatin, in contrast with sensitive cells 

that after GCS expression, became more resistant. The same effect was found when 

we treated resistant cells with DL-treo-PDMP, an inhibitor of GCS. A possibility 

explanation is the same that happens in breast, ovary, cervical and colon cancer cells, 

where GCS activity triggers MDR1 expression, leading that to drug efflux [249], in our 

case to cisplatin efflux, and like this to appearance of resistant phenotype. Targeting 

glycosphingolipid synthesis has emerged as a novel approach for treating metabolic 

diseases such as Gaucher, Niemam-Pick and diabetes. In this context, GCS inhibitors 

are in clinical use or under development, including Migustat, DL-treo-PDMP, EXEL-

0346, etc. Our preclinical results demonstrate that DL-treo-PDMP resensitize cisplatin 

refractory cells to treatment, providing a firm preclinical rationale for developing further 

Phase II clinical trials, in order to do drug reposition in the field.  

 

Futures strategies exploring cisplatin resistance are guaranteed in our preclinical 

models. For example the study of the influence of the subunit of the vacuolar proton-

translocating ATP6V1G1 which is responsible for acidifying intracellular compartments, 

was found overexpressed in cisplatin-resistant cell lines [250]. Yeast genomic 

screening; have revealed its effect on the sensitivity to DNA-damaging agents such as 

cisplatin [251]. CTR1 and CTR2, Cu2+ influx transporters are also the main cellular 

cisplatin transporters and its under-expression was associated with cisplatin resistance 

[252]. 

 

STUDY IV: 
“Loss of MGMT Promoter Methylation and Resistance to Cisplatin in Non-

Seminoma Testicular Germ Cell Tumors” 

 

MGMT methylation status influences non-seminoma tumors sensitivity to 
cisplatin 
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MGMT DNA promoter methylation was previously related with non-seminoma tumors 

resistance to cisplatin [253]. Nonetheless it was never study on in vitro or in vivo 

models of cisplatin acquired resistance. This prompted us to examine an in vitro model, 

composed by a human non-seminoma cell line sensitive to cisplatin and it derived 

resistant counterpart. Once again we found less MGMT DNA promoter methylation in 

the resistant cell line. Although this difference was not too high (20%) it had a biological 

significance, since it was correlated with protein expression. This is in agreement with 

data published before where it was described that a cisplatin resistant human non-

seminoma cell line presented higher MGMT levels, than the sensitive counterpart [254]. 

To observe if MGMT higher expression was directly related to cisplatin resistance, first 

in the human cell lines, we blocked it with O6-benzylguanine and we found an increase 

on sensitivity to cisplatin. O6-benzylguanie is a potent, specific and irreversible blocker 

of MGMT DNA repair protein and thereby enhances the cytotoxic action of agents that 

produce lesions at the O6 position of guanine [255]. Pera et al, described before that 

human non-seminoma cells with highest levels of MGMT, were also more resistant to 

temozolomide, data that we also found [254]. 

 

MGMT promoter hypermethylation is correlated with better overall survival in 
testicular germ cell cancer metastasic patients, treated with cisplatin-based 
chemoterapy  
We also investigated MGMT methylation profile in a clinical set of metastasic patients 

with testicular germ cell tumors (n=72), where a positive statistical correlation between 

MGMT hypermethylation was related with a higher overall survival (p=0.025). 

Previously MGMT gene was described to be frequently inactivated in testicular germ 

cell tumors by promoter hypermethylation, especially in the sensitive ones [256, 253]. 

The same happens in glioblastomas, as mentioned before. Patients that present 

MGMT promoter hypermethylation are more sensitive to temozolomide, this because 

their cells cannot repair the DNA damage cause by this chemotherapeutic drug, fading 

[54]. This result makes us think that MGMT DNA methylation status could have in the 

future a clinical impact, in the same way that it has for gliomas [54]. However further 

validation studies are required. 

 

Preclinical inhibition of MGMT re-sensitizes cisplatin refractory non-seminoma 
tumors to cisplatin 

Despite the high cure rate obtained with cisplatin-based chemotherapy in testicular 

germ cell tumors, the management of patients with an adverse prognosis at 

presentation, or of those who fail to respond to first-line chemotherapy, remains a 
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therapeutic challenge [257]. Focus on a the possibility of re-sensibilize cisplatin 

resistant tumors, using the xenograft model established before, we proved that MGMT 

inactivation by O6-benzylguanine in resistant tumors over-expressing it, plus additional 

treatment with cisplatin and temozolomide can rescue these tumors. In preclinical 

studies temozolomide has demonstrated antitumor activity against human 

lymphoblastoma, myeloid leukemia, Burkitt’s lymphoma, choriocarcinoma, 

astrocytoma, lung and colorectal human cell lines [258]. The exceptional sensitivity of 

human non-seminoma cell lines to temozolomide was one reason for testing this new 

drug in the clinics [254]. Three clinical phase II studies were made before without 

positive results [259-261]. We think that the major limitation to the successful treatment 

of these patients was the absence of information about MGMT promoter methylation. 

Therefore, a further rationale for testing this new agent again is first study of MGMT 

promoter methylation and then decides if the chemotherapy schedule should include 

an MGMT inhibitor, like O6-benzylguanine drug.  

 

Other reason for testing temozolomide and when needed a MGMT inhibitor, is that this 

chemical agent has clinical activity against brain tumors [258, 262]. Brain metastases 

occur in 8-15% of patients with testicular tumors, almost always associated with 

relapse at other sites or as a terminal event [259]. Temozolomide may provide in this 

way a more effective treatment for testis tumors which have metastasized to the brain. 

 

Testicular germ cell cancer as mentioned before is mainly divided in two histological 

categories: seminoma and non-seminoma. In both studies where we investigate this 

type of cancer we only were able to use in vitro and in vivo representative non-

seminoma models. Until nowadays only two pure human seminomas cell lines were 

established. What concerns to mice models, none was established. Our laboratory tried 

to establish orthoxenographs; nevertheless none of the twenty two implanted pure 

gonadal seminomas grew in nude mice and from the mixed tumors, comprising both 

seminoma and non-seminoma components, only the last grew in mice. 
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Based on the findings of this PhD thesis we can conclude: 

STUDY I 

� In metastasic colorectal cancer, MGMT inactivation by DNA promoter 

methylation is associated with susceptibility to dacarbazine. 

 

STUDY II 

� Oxaliplatin resistance acquisition in colorectal cancer is related with DNA 

hypermethylation-associated silencing of SRBC.  

 
� SRBC promoter hypermethylation is a good candidate as oxaliplatin predictive 

marker for metastasic colorectal cancer patients that did not underwent 

metastases surgery, yet further prospective studies are required.  

 

STUDY III 

� Over-expression of GCS is related with cisplatin acquired resistance, in human 

non-seminoma cancer cell lines. 

 
� GCS inhibition decreases non-seminoma cancer cells resistance to cisplatin. 

 

� Inhibition of GCS with DL-treo-PDMP is a possible line of attack to revert 

cisplatin resistance in refractory non-seminoma tumors. 

 

STUDY IV 

� Non-seminoma cell lines and orthoxenografts tumors made resistant to 

cisplatin, present a re-expression of MGMT. 

 

� Inhibition of MGMT is a possible way to revert non-seminoma tumors cisplatin 

resistance. 

 
� MGMT methylation status is related with better overall survival in metastasic 

testicular germ cell tumors patients. 

 
� A better phase II study design, based on MGMT DNA promoter methylation, 

may offer the possibility to resensitize refractory patients to cisplatin. Thus we 

will detect the right patient for the right drug, on the right time. 
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Predictive Biomarkers and Personalized Medicine

Promoter CpG Island Hypermethylation of the DNA Repair
EnzymeMGMT Predicts Clinical Response to Dacarbazine in
a Phase II Study for Metastatic Colorectal Cancer

Alessio Amatu1, Andrea Sartore-Bianchi1, Catia Moutinho5, Alessandro Belotti1, Katia Bencardino1,
Giuseppe Chirico2, Andrea Cassingena1, Francesca Rusconi1, Anna Esposito3, Michele Nichelatti4,
Manel Esteller5,6,7, and Salvatore Siena1

Abstract
Purpose:O6-methylguanine-DNA-methyltransferase (MGMT) is a DNA repair protein removing muta-

genic and cytotoxic adducts from O6-guanine in DNA. Approximately 40% of colorectal cancers (CRC)

displayMGMTdeficiency due to the promoter hypermethylation leading to silencing of the gene. Alkylating

agents, such as dacarbazine, exert their antitumor activity by DNA methylation at the O6-guanine site,

inducing base pair mismatch; therefore, activity of dacarbazine could be enhanced in CRCs lackingMGMT.

We conducted a phase II study with dacarbazine in CRCs who had failed standard therapies (oxaliplatin,

irinotecan, fluoropyrimidines, and cetuximab or panitumumab if KRAS wild-type).

Experimental Design: All patients had tumor tissue assessed forMGMT as promoter hypermethylation

in double-blind for treatment outcome. Patients received dacarbazine 250 mg/m2 intravenously every day

for four consecutive days, every 21 days, until progressive disease or intolerable toxicity. We used a Simon

two-stage design to determine whether the overall response rate would be 10% or more. Secondary

endpoints included association of response, progression-free survival, and disease control rate withMGMT

status.

Results: Sixty-eight patients were enrolled fromMay 2011 to March 2012. Patients received a median of

three cycles of dacarbazine (range1–12).Grades 3 and4 toxicities included: fatigue (41%), nausea/vomiting

(29%), constipation (25%), platelet count decrease (19%), and anemia (18%). Overall, two patients (3%)

achieved partial response and eight patients (12%) had stable disease. Disease control rate (partial response

þ stable disease) was significantly associatedwithMGMT promoter hypermethylation in the corresponding

tumors.

Conclusion:Objective clinical responses to dacarbazine in patients with metastatic CRC are confined to

those tumors harboring epigenetic inactivation of the DNA repair enzyme MGMT. Clin Cancer Res; 19(8);

2265–72. �2013 AACR.

Introduction
Globally, nearly 1.25 million patients are diagnosed and

more than 600,000 patients die from colorectal cancer

(CRC) each year (2008 estimates; ref. 1). At least 50% of
patients develop metastases (2), and most of these patients
have unresectable tumors (2, 3).

In the last 10 years, thanks to a wider clinical use of a
multidisciplinary approach, along with the introduction of
new cytotoxic drugs and the addition of targeted therapies
against the angiogenesis (bevacizumab and aflibercept), the
EGF receptor (EGFR) pathway (cetuximab and panitumu-
mab), or multiple receptor tyrosine kinases (regorafenib),
the survival of patients with metastatic CRC (mCRC) has
considerably been ameliorated (4–6). Nevertheless, prog-
nosis remains poor and patients carrying KRAS mutations
(35%–40% of CRCs), which preclude responsiveness to
cetuximab or panitumumab (6), have limited therapeutic
options after failure of 2 lines of standard treatments,
although a significant percentage of these patients retain
a good performance status potentially allowing further
therapies. There is therefore an unmet need of therapeutic
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options, based on specific molecular alterations that could
prove their effectiveness also in the wide KRAS-mutated
subgroup of CRCs.

O6-methylguanine-DNA-methyltransferase (MGMT) is
a DNA repair protein that removes mutagenic and cyto-
toxic adducts from O6-guanine in DNA. MGMT protects
cells against these lesions, transferring the alkyl group
from the O6-guanine in DNA to an active cysteine within
its own sequence. Such reaction inactivates one MGMT
molecule for each lesion repaired (7). The inactivation of
tumor suppressor genes by the presence of cytosine
methylation encompassing the corresponding transcrip-
tion start site located in a CpG island is gaining "momen-
tum" in the management of oncology patients (8) and, in
this regard, promoter CpG island hypermethylation leads
to the transcriptional silencing of MGMT (9). The sub-
sequent lack of repair of O6-methylguanine adducts can
result in a higher frequency of G:C > A:T transitions (10,
11). It is known that approximately 40% of CRCs have
silencing of MGMT. Interestingly, in a retrospective
analysis on 244 CRCs samples, it has been found that
71% of tumors with G to A mutation in KRAS showed
MGMT epigenetic inactivation, showing a strong associ-
ation between the MGMT inactivation by promoter
hypermethylation and the appearance of G to A muta-
tions at KRAS (10). Furthermore, MGMT hypermethyla-
tion was also found in 35% of wild-type KRASmCRCs. de
Vogel and colleagues (12) found that MGMT hyper-
methylation is associated with G:C > A:T mutations in
KRAS, but not in adenomatous polyposis coli (APC),
suggesting that MGMT hypermethylation may succeed
APC mutations but it precedes KRAS mutations in colo-
rectal carcinogenesis.

In cells, loss of MGMT expression leads to compro-
mised DNA repair and may play a significant role in
cancer progression and response to chemotherapy as it
occurs in glioma (13–16). The mechanism of action of
dacarbazine and temozolomide is DNA methylation at
the O6-guanine site, inducing base pair mismatch. The
methyl group at O6-site is removed by MGMT in a one-
step methyl transfer reaction. Therefore, we hypothesized
thatMGMT inactivation by hypermethylation may confer
sensitivity to these agents (17). However, discrepant data
about the clinical activity of these drugs in mCRC are
reported in the literature (18–21). A response rate of 19%,
including one complete response, was reported in 26
fluoropyrimidine-resistant patients receiving cisplatin
and dacarbazine (19). In another study, 48 patients
refractory to fluoropyrimidine were treated with dacarba-
zine, irinotecan, and cisplatin obtaining a 33% of
response rate (18). Temozolomide is an imidazotetrazine
derivative of dacarbazine. The combination of lomegua-
trib and temozolomide did not show activity in unselect-
ed mCRC (20). In a pilot study including patients selected
by tumor molecular profiling, temozolomide was effec-
tive in 2 patients with mCRC exhibiting loss of MGMT
expression (22). The latter finding was confirmed by a
recent report by Shacham-Shmueli and colleagues (23)
documenting objective responses to temozolomide in 2
patients with MGMT-deficient mCRC.

On the basis of these findings, we designed a phase II trial
aimed to assessing the antitumor activity of dacarbazine in
patients with mCRC with determined MGMT promoter
methylation status and refractory to the standard therapies.

Materials and Methods
Trial design

The study was designed as a phase II trial (DETECT-01
trial, EUDRACT number 2011-002080-21). Patients were
treated with dacarbazine monotherapy until progression
or unacceptable toxicity for 18 weeks (6 cycles). In case of
partial response with clinical benefit, treatment was
allowed until dose-limiting toxicity. Primary endpoint
was to assess response rate to dacarbazine according to
Response Evaluation Criteria in Solid Tumors (RECIST
1.1) criteria. Secondary endpoints were to assess: disease
control rate (DCR), progression-free survival (PFS), iden-
tification of KRAS, and O6-methylguanine-DNA-methyl-
transferase (MGMT) status in individual tumor samples
as potential molecular biomarkers of response to dacar-
bazine. Written informed consent was obtained from
each patient. The study followed the Declaration of Hel-
sinki and good clinical practice, being approved by Ethic
Committee of Ospedale Niguarda Ca’ Granda (Milan,
Italy).

Patients
All patients met the following inclusion criteria: age 18

years or more, Eastern Cooperative Oncology Group
performance status of � 1, histologically confirmed met-
astatic colorectal adenocarcinoma. A paraffin-embedded

Translational Relevance
O6-methylguanine-DNA-methyltransferase (MGMT)

is a DNA repair protein removing mutagenic and cyto-
toxic adducts from O6-guanine in DNA. Approximately
40% of colorectal cancers (CRC) display MGMT defi-
ciency due to promoter hypermethylation leading to
silencing of the gene. Alkylating agents, such as dacar-
bazine, exert their antitumor activity by DNA methyla-
tion at theO6-guanine site, inducing base pairmismatch;
therefore, activity of dacarbazine could be enhanced in
CRCs lacking MGMT. Although several reports have
shown anecdotal efficacy of dacarbazine in metastatic
CRC, there is a lack of translational evidence of CRC
sensitivity to this drug based onMGMT status. We report
here a phase II clinical study showing for the first time
that dacarbazine activity is confined to CRC harboring
promoter CpG hypermethylation of MGMT. These data
therefore highlight a previously unidentified subgroup
of the patients with CRC who benefit from treatment
with alkylating agents based on a specific epigenetic
alteration in individual tumors.

Amatu et al.
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block from archival tumor tissue of primary and/or
metastases for MGMT status analysis was requested. All
patients had measurable disease (by RECIST criteria
v1.1), and progressed on standard treatment with fluor-
opyrimidine, oxaliplatin, irinotecan, and cetuximab or
panitumumab (the latter 2 drugs if KRAS wild-type). An
adequate bone marrow, liver, and renal function was
required.

Treatment schedules
Dacarbazine 250 mg/m2 intravenously everyday for 4

consecutive days, every 21 days, was administered until
progression, death, unacceptable toxicity, or patient with-
drawal of consent. Antiemetic agents and supportive care
were provided by treating physician as per standard clinical
practice. In case of G3 hematologic toxicity (absolute neu-
trophil count<1.5�109/Landplatelet count<100�109/L)
dacarbazine was delayed by 1-week interval until recovery.
Prophylactic use of colony-stimulating factors was allowed
as per standard clinical practice.

Evaluation criteria
Patients were evaluated for primary overall response rate

(ORR) and secondary endpoint (DCR and PFS) according
to RECIST criteria v1.1. Tumors were measured every 8 � 1
weeks throughweek 18 and then every 8� 1weeks until the
tumor progressed. Complete response was defined as dis-
appearance of all target lesions. Any pathologic lymph
nodes (whether target or nontarget) must have reduction
in short axis to 10mmor less. An objective response (partial
response)was defined as a reduction of at least 30 percent in
the sum of all target lesions on computed tomography or
magnetic resonance imaging scanning. Confirmed objec-
tive responses were those for which a follow-up scan
obtained at least 4 weeks later showed the persistence of
the response. Progressive disease was defined as at least a
20% increase in the sum of diameters of target lesions,
taking as reference the smallest sum on study (this includes
the baseline sum if that is the smallest on study). In addition
to the relative increase of 20%, the sum must also show an
absolute increase of at least 5 mm. Stable disease was
defined as shrinkage neither sufficient to qualify for partial
response nor sufficient increase to qualify for progressive
disease, taking as reference the smallest sum diameters

while on study. Clinical investigators and radiologists were
blinded as for MGMT status of the tumors.

Safety assessment
Safety assessments and blood biochemistry including

complete blood counts were carried out at baseline and
at the beginning of each treatment cycle. Any toxicity
was assessed using the National Cancer Institute (NCI)-
CTCAE version 4.0 and recorded at every visit until resolved.

Analysis of MGMT promoter methylation status
Loss of expression of MGMT was defined as promoter

hypermethylation 25% or more as previously described
(9). Tumor samples from patients’ primary tumor were
obtained from Pathology Department of the Ospedale
Niguarda Ca’ Granda or others Pathology Departments as
referral. Formalin-fixed paraffin-embedded tumor blocks
were reviewed for quality and tumor content. A single
representative block, from either the primary tumor or
metastasis, depending on availability, was selected for
each case. White slides (2 cut of 10 mm, if from a tumor
tissue paraffin block, or 3 cuts of 10 mm if from a biopsy)
were sent to Bellvitge Biomedical Research Institute (IDI-
BELL; Barcelona, Spain) for DNA extraction and evalua-
tion ofMGMT promoter methylation status in blind as for
clinical outcome. Genomic DNA was extracted from
paraffin tissue samples following manufacturer’s instruc-
tions (QIAamp DNA FFPE Tissue Kit). DNA was then
subjected to bisulfate treatment using EZ DNA methyla-
tion kit (Zymo Research). Briefly, 1 mg of genomic DNA
was denaturated by incubating with 0.2 mol/L NaOH.
Aliquots of 10 mmol/L hydroquinone and 3 mol/L sodi-
um bisulfate (pH 5.0) were added, and the solution
was incubated at 50�C for 16 hours. Treated DNA was
purified, desulfonated with 0.3 mol/L NaOH, repurified
on Zymo-Spin columns, and eluted with 25 mL water.
MGMT promoter methylation status was analyzed by
methyl-specific polymerase chain reaction (MSP). It was
carried out in a 15 mL volume containing 1 mL of the
sodium bisulfite-modified DNA. The characteristics of the
MSP reactions and the primer sequence have been pre-
viously described (14). SW620 cell line was used as a
positive control for hypermethylated alleles of MGMT
and DNA from RKO cell line used as a negative control
(Fig. 1).

M U M U M U M U M U M U M U M U M U 

H2OT8T7T4T3T2T1SW620RKO

D
N

A
 la

dd
er

Figure 1. Methyl-specific PCR for MGMT promoter. Example of results obtained for 6 metastatic colorectal cancer primary tumors from the study cohort.
Tumors T2 and T7 were methylated and all the others unmethylated. U indicates unmethylated tumors and M methylated tumors. RKO was the human
colorectal cancer cell line used as negative control for methylation and SW620 the human colorectal cancer cell line used as positive one. H2O is the
experiment negative control.
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Statistical analysis
According to clinical considerations and on the basis of

the available literature, the efficacy of a treatment in this
setting of mCRC chemorefractory patients would be con-
sidered poor if the ORR is 3% or less, whereas it could be
considered of clinical usefulness if the ORR is 10% or
more. Assuming a¼ 0.05 and b ¼ 0.20, a Simon Optimal
2-stage design has been then chosen to test the null
hypothesis that P � 0.03 versus the alternative that P �
0.10. According to this design, if at least 2 of the first 40
patients would have achieved an objective response,
enrollment would have been extended by 28 patients.
Overall, objective response rate of dacarbazine mono-
therapy would have been deemed unacceptable if objec-
tive response was 4 or less. The association between
MGMT promoter methylation status and ORR and DCR
was determined by 2-sided Student t-tests or Fisher exact
test. PFS was estimated by Kaplan–Meier product-limit
method followed by log-rank test.

Results
Patients’ characteristics

Sixty-eight patients were enrolled in our institution
from May 2011 until March 2012. All patients had pro-
gressed on fluoropyrimidines, oxaliplatin, irinotecan, and
cetuximab or panitumumab (the latter 2 drugs if KRAS
wild-type). 87% of patients had received prior bevacizu-
mab and 19% patient had received more than 4 lines of
treatment. Twenty percent of patients received mitomycin
C, 4% raltitrexed, and 12% previous experimental agents
within clinical trials. Clinical characteristics of patients
in this trial are reported in Table 1. Reasons for discon-
tinuation of dacarbazine treatment included hematologic
toxicity (1 patient), progression (61 patients), death
(4 patients), and withdrawal of consent (2 patients).
Cause of death was recorded as mCRC in all deceased
patients.

Toxicity
Adverse events are listed in Supplementary Table S1.

Hematologic toxicity was the most frequent adverse event
reported and general toxicity was consistent with the
known toxicity profile of dacarbazine. We observed 3
hematologic G4 adverse events (2 platelet count decreased
and one neutrophil count decreased). Hepatic failure with
increased bilirubin due to progression of disease was
observed in 3 patients with extensive metastatic liver
involvement.

Analysis of MGMT promoter hypermethylation
Sixty-five of 68 patients were tested for MGMT promoter

CpG island methylation, as showed in Table 1. Overall,
MGMT hypermethylation was found in 40% (26/65) of the
colorectal neoplasmsDNAs analyzed, a similar frequency to
the previously reported for this tumor type (9). According to
the location of the tumor, MGMT promoter status was
assessed in 69% (45/65) in primary tumor, in 14% (9/
65) in metastatic site, and in 17% (11/65) in both primary

Table 1. Patients characteristics

Demographics Value (%)

Age
Median 63.5
Range 29–81

Sex
Male 47 (69)
Female 21 (31)

Clinical characteristics No. of patients (%)

Performance status
0 37 (54)
1 31 (46)

Tumor grade at diagnosis
G1 2 (3)
G2 43 (63)
G3 9 (13)
Not available 14 (21)

No. of prior treatments
2 14 (21)
3 18 (26)
4 23 (35)
5 5 (7)
6 6 (9)
7 2 (3)

Tumor KRAS status
Wild-type 35 (51)

Mutated 33 (49)
G12V 7
G12C 5
G12S 1
G12D 7
G12A 1
G13D 5
Codon not available 7

Tumor MGMT methylation status
Hypermethylated 26 (38)
Unmethylated 39 (58)
Not assessable 3 (4)

No. of metastatic sites
1 2 (3)
2 25 (37)
3 29 (43)
4 11 (16)
5 1 (1)

Patients previously treated with:
Bevacizumab 59 (87)
Mitomycin 17 (25)
Experimental drugs (clinical trial) 8 (12)

Amatu et al.
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and metastatic site from the same patient. In the latter case,
we observed concordance in 10 of 11 pairs, with only one
case showing a hypermethylated primary with unmethy-
lated liver metastasis, and the result from liver metastasis
was considered for the purpose of analysis. Sites of metas-
tases were: liver 75% (15/20), 5% (1/20) ovary, 10% (2/20)
lung, 5% (1/20) spleen, and 5% (1/20) cutaneous. MGMT
hypermethylation was more frequent (61% and 31%,
respectively) in tumors carrying KRAS mutation with G >
A transition (G12D, G12V, or G13D), as previously
described (10, 11), although the difference was not statis-
tically significant due to the small size (only 26 patients
were evaluable for both analysis; P ¼ 0.238).

Antitumor activity of dacarbazine
ORRwas 3%, with 2 partial responses. Stable disease was

achieved in 8 of 68 patients (12%), accounting for a DCR
(partial responseþ stable disease) of 15%.Median PFS was
57 days. Preplanned analysis of secondary endpoints based
on assessments of MGMTmethylation and KRAS mutation
status in individual tumors showed that objective responses
occurred only in patients displaying MGMT-methylated
tumors (Fig. 2A and Fig. 3). In addition, we observed a

significantly higher DCR (44.0% vs. 6%, P ¼ 0.012) in the
MGMT-hypermethylated group (Fig. 2). A trend toward
better PFS [HR ¼ 0.66; 95% confidence interval (CI)
0.40–1.10; P ¼ 0.0982)] was also found in the MGMT-
hypermethylated cases (Fig. 4A). A similar tendency was
foundbetween reduction of tumor volume following dacar-
bazine treatment and MGMT methylation status: tumor
shrinkage of any size occurred more frequently in patients
displaying MGMT hypermethylation (Fisher exact test, P ¼
0.093). In contrast, KRAS status was not associated with
PFS, DCR, and ORR (KRAS mutant vs. KRAS wild-type, P¼
0.735, 0.999, and 0.492, respectively; Fig. 4B).

Discussion
In this study, we document that dacarbazine is active after

failure of standard therapies only in those patients with
mCRC whose tumor is harboring epigenetic inactivation of
the DNA repair enzyme MGMT. Overall, we observed 2
objective responses, accounting for 3%ofORR, and 8 stable
diseases, accounting for 12% of the cases. The observation
of a significant associationbetweenMGMTpromoter hyper-
methylation and these clinical endpoints supports the
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hypothesis that DNA repair-defective mCRC tumors are
more susceptible to this chemotherapeutic agent. However,
even in the case of MGMT hypermethylation, we observed
that a fractionof 44%of patients achieved control of disease
(stable disease þ partial response), thus suggesting that a
multiparametric signature including the DNAmethylation-
associated silencing of MGMT together with other molec-
ular traits would improve the identification of CRC tumors
with defects in DNA repair, susceptible to the action of
dacarbazine.

The low response rate observed in the present cohort
could be linked to the inclusion of heavily pretreated
patients (median 4 lines of previous treatments). To inter-
pret this clinical result in the context of therapy-resistant
mCRC, one should consider that second-line treatment
with FOLFIRI or FOLFOX combination regimens induces
ORR of 10% to 12% (24–26) and dramatically decreases in
subsequent lines (6). It is also known that dacarbazine is
activated in liver by CYP450 microsomial N-demethylation
with formation of 5-[3-hydroxymethyl-3-methyl-triazen-l-
yl]-imidazole-4-carboxamide and 5-[3-methyl-triazen-1-
yl]-imidazole-4-carboxamide (MTIC). Rapid decomposi-
tion of MTIC produces the major plasma and urine
metabolite 5-amino-imidazole-4-carboxamide and the
reactive species methane diazohydroxide, which produces
molecular nitrogen and a methyl cation supposed to be
the methylating species (27). It is therefore conceivable that
the multiple (median 4) previous lines of cancer treatment
as well as the high (79%) rate of liver involvement in the
present study population may have exhausted the liver
function capacity to activate dacarbazine.

It was our hypothesis that anticancer activity of dacar-
bazine could be enhanced by a specific defect in DNA

A

B

Figure 3. Computed tomography
scan showing tumor shrinkage
(white arrows) after treatment
with dacarbazine in 2 patients,
one with lung (A) and another
with liver (B) metastases, both
displaying MGMT promoter
hypermethylation in primary
tumor.
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Figure 4. A, Kaplan–Meier PFS survival analysis according to MGMT
status in individual tumors. B, Kaplan–Meier PFS survival analysis
according to KRAS status in individual tumors.
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repair system as evaluated by MGMT promoter hyper-
methylation in individual tumors. This epigenetic defect
occurs in about 35% to 40% of mCRCs (9) and it is
detected in more than 70% of KRAS-mutated tumors
carrying the G > A transitions subtypes of mutation
(10, 11), a subgroup of mCRCs with limited therapeutic
options. Although the present trial was not designed, and
thus, powered to assess a significant difference in PFS
between MGMT-hypermethylated/unmethylated groups,
we observed a trend toward better PFS in the MGMT-
hypermethylated group, together with a better DCR. The
2 patients displaying objective response were indeed
carrying MGMT-hypermethylated tumors (Fig. 2A) and
one of them showed a long-lasting maintenance of
response of 6 months, which is uncommon in the
advanced setting of mCRC.
In conclusion, present data document that specific DNA

repair defects can be associated with susceptibility to dacar-
bazine. The use of an alkylating agent that does not require
hepatic activation may be preferable in heavily pretreated
patients with metastatic liver disease. In this regard, temo-
zolomide is an alkylating agent whose activity is also
enhanced in tumors with MGMT loss (17) that is hydro-
lyzed in cells producing the active compoundMTICwithout
requiring liver passage. A phase II trial with temozolomide
has been designed and it is ongoing at our institution to
assess the efficacy in patients withMGMT hypermethylated
mCRCs after failure of standard therapies.
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Epigenetic Inactivation of the BRCA1 Interactor SRBC and 
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 Background A major problem in cancer chemotherapy is the existence of primary resistance and/or the acquisition of second-
ary resistance. Many cellular defects contribute to chemoresistance, but epigenetic changes can also be a cause.

 Methods A DNA methylation microarray was used to identify epigenetic differences in oxaliplatin-sensitive and -resistant 
colorectal cancer cells. The candidate gene SRBC was validated by single-locus DNA methylation and expression 
techniques. Transfection and short hairpin experiments were used to assess oxaliplatin sensitivity. Progression-
free survival (PFS) and overall survival (OS) in metastasic colorectal cancer patients were explored with Kaplan–
Meier and Cox regression analyses. All statistical tests were two-sided.

 Results We found that oxaliplatin resistance in colorectal cancer cells depends on the DNA methylation–associated inac-
tivation of the BRCA1 interactor SRBC gene. SRBC overexpression or depletion gives rise to sensitivity or resist-
ance to oxaliplatin, respectively. SRBC epigenetic inactivation occurred in primary tumors from a discovery cohort 
of colorectal cancer patients (29.8%; n = 39 of 131), where it predicted shorter PFS (hazard ratio [HR] = 1.83; 95% 
confidence interval [CI] = 1.15 to 2.92; log-rank P = .01), particularly in oxaliplatin-treated case subjects for which 
metastasis surgery was not indicated (HR = 1.96; 95% CI = 1.13 to 3.40; log-rank P = .01). In a validation cohort of 
unresectable colorectal tumors treated with oxaliplatin (n = 58), SRBC hypermethylation was also associated with 
shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; log-rank P = .045).

 Conclusions These results provide a basis for future clinical studies to validate SRBC hypermethylation as a predictive marker 
for oxaliplatin resistance in colorectal cancer.

  JNCI J Natl Cancer Inst (2014) 106(1): djt322 

Colorectal cancer (CRC) is the second most common cause of 
cancer death in the western world (1). In metastatic CRC, poly-
chemotherapy based on fluoropyrimidines plus oxaliplatin or 
irinotecan, combined with biological agents such as cetuximab 
and panitumumab, is the gold-standard treatment (2). Oxaliplatin 
forms intrastrand adducts that disrupt DNA replication and tran-
scription (3,4). DNA damage induced by oxaliplatin is repaired in 
part by the nucleotide excision repair pathway (5), but the DNA 
double-strand breaks induced by the drug are also repaired by the 
BRCA1 complex (6–8). In this regard, epigenetic inactivation of the 
BRCA1 gene by promoter CpG island methylation has been associ-
ated with increased sensitivity to cisplatin and carboplatin in breast 
and ovarian cancer (9,10).

Genes critical to colorectal tumor biology are frequently inacti-
vated by hypermethylation of the CpG dinucleotides located in their 
5’-CpG island regulatory regions (11–13). We wondered whether 
this epigenetic alteration was involved in the resistance to oxalipl-
atin in CRC, where treatment failure due to primary or acquired 

resistance remains a major obstacle to the management of the dis-
ease. Herein, we demonstrate that the epigenetic inactivation of the 
BRCA1 interactor SRBC gene by promoter CpG island hypermeth-
ylation is associated with poor outcome upon oxaliplatin treatment.

Methods
Cell Lines
LoVo parental cell line (LoVo-S) and its derived 10-fold oxali-
platin-resistant cells (LoVo-R)(14) were cultured at 37ºC in an 
atmosphere of 5% (v/v) carbon dioxide in Dulbecco’s Modified 
Eagle’s Medium/Ham’s Nutrient Mixture F12 (DMEM-HAM’s 
F12) medium supplemented with 20% (w/v) fetal bovine serum, 
100 U penicillin, and 100 µg/L streptomycin (Invitrogen, Carlsbad, 
CA).The HCT-116, SW48, SW480, SW620, RKO, Co115, and 
HCT-15 CRC cell lines were obtained from the American Type 
Culture Collection (Manassas, VA). Cell lines were authenticated 
by short tandem repeat profiling.
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Determination of Drug Resistance
Oxaliplatin (5 mg/mL) and 5-fluorouracil (50 mg/mL) were 
obtained from TEVA (North Wales, PA) and Accord Healthcare 
SLU (Barcelona, Spain), respectively. Cell viability was deter-
mined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-
2H-tetrazolium bromide (MTT) assay. Briefly, 1 × 103 cells were 
plated onto 96-well plates. Cells were treated for 120 hours with 
different drug concentrations (oxaliplatin: 0–250 µM; 5-fluoro-
uracil: 0–35  µM). MTT was added at a final concentration of 
0.1%. After 2.5 hours of incubation (37 ºC; 5% carbon dioxide), 
the MTT metabolic product formazan was dissolved in dime-
thyl sulfoxide (DMSO), and absorbance was measured at 570 nm. 
Prism Software (La Jolla, CA) was used to calculate the drugs’ 
half-maximal inhibitory concentration (IC50).

DNA Methylation Analyses
DNA was subjected to bisulfite using EZ DNA methylation kit 
(Zymo Research, Orange, CA) as previously described (15). To per-
form the genome-wide DNA methylation profiling we used the 
Illumina Infinium HumanMethylation27 BeadChip (Illumina, San 
Diego, CA) microarray following the manufacturer’s instructions 
(15).The Infinium assay quantifies DNA methylation levels at spe-
cific cytosine residues adjacent to guanine residues (CpG loci), by 
calculating the ratio (β value) of intensities between locus-specific 
methylated and unmethylated bead-bound probes. The β value is 
a continuous variable, ranging from 0 (unmethylated) to 1 (fully 
methylated). This microarray assesses the DNA methylation level 
of 27 578 CpG sites located at the promoter regions of 14  495 
protein-coding genes. DNAs were processed on the same microar-
ray to avoid batch effects. The array was scanned by a Bead Array 
Reader (Illumina), and intensity data were analyzed using Genome 
Studio software (version 2011.1; Illumina). Further details are 
described in the Supplementary Methods (available online). The 
data is freely avalilable at GeneExpressionOmnibus (http://www.
ncbi.nlm.nih.gov/geo/) under GEO accession code GSE44446.

We established SRBC CpG island methylation status using 
three different polymerase chain reaction (PCR)–based techniques: 
bisulfite genomic sequencing of multiple clones, methylation-specific 
PCR, and pyrosequencing. Further technical details are described 
in the Supplementary Methods (available online).The used primer 
sequences are shown in Supplementary Table 1 (available online).

mRNA and Protein Expression Analyses
mRNA extraction, cDNA synthesis, conventional and quantitative 
real-time PCR (RT-PCR) using Hs00376942_m1Taqman Gene 
Expression assay (Applied Biosystems. Madrid, Spain) were per-
formed as previously described (16). Primer sequences are shown 
in Supplementary Table  1 (available online). Anti-SRBC (1/1000) 
from Cell Signaling and anti-β-actin-HRP antibody (1/20 000) from 
Sigma (St. Louis, MO) were used to develop the western blot analysis.

SRBC Transfection and Depletion Experiments
Human short hairpin RNAs and cDNA plasmids for SRBC were 
obtained from Origene (Rockville, MD). After Escherichia coli trans-
formation, we proceeded to plasmid DNA purification. Forty-eight 
hours after electroporation, cells transfected with short hairpin 
RNAs (TR317747; Origene) were grown in medium containing 

0.8 or 0.6  µg/mL of puromycin (LoVo-S and HCT-116). Cells 
transfected with SRBC cDNA (SC320781; Origene) were grown 
with DMEM containing 0.8 or 0.6 mg/mL of geneticin (G418, 
LoVo-R, and HCT-15) to perform clonal selection. Once selected, 
clones were picked, grown, and tested by Western blot.

Patients
In our study, we analyzed two independent cohorts of white, stage IV 
CRC patients (17). In the discovery set, 131 metastatic CRC primary 
tumors that received oxaliplatin plus fluoropirimidines–based therapy 
were retrospectively included. Formalin-fixed paraffin-embedded 
tumors obtained by surgical resection came from three different hos-
pitals (ICO-Hospitalet, ICO-Badalona, and Niguarda Ca’ Granda). 
Clinical features of the patients are showed in Table  1. From this 
cohort, 65 patients could undergo surgery to remove metastases. 
After neoadjuvant regimen, 34 could be operated, and 31 received 
palliative regimen. The rest of the patients (n = 66) showed unresect-
able metastases and directly underwent palliative regimen. The great-
est time of follow-up of this group was near 10 years. The validation 
cohort consisted of 58 stage IV CRC patients from the Hospital Vall 
d’Hebron with a follow-up of nearly 3 years (Table 1). According to 
discovery set results, we selected patients with unresectable metas-
tases who received oxaliplatin plus fluoropirimidines–based therapy 
in a neoadjuvant (n = 20) or palliative regimen (n = 38). The distri-
bution of patients according to the different clinical features was 
similar in both cohorts. Signed informed consent was obtained from 
each patient, and the Clinical Research Ethical Committee from 
ICO-Hospitalet provided approval for the study. DNA from all case 
patients was obtained from formalin-fixed paraffin-embedded tissue 
sections (10 µm) by xilol deparafination and digestion by proteinase 
K (Qiagen, Manchester, UK). Tumor specimens were composed of 
at least 70% carcinoma cells. DNA extraction was performed using 
a commercial kit (Qiagen) following the manufacturer’s instructions.

Statistical Analysis
In both independent cohorts we analyzed SRBC promoter methyla-
tion status and its association with response rate, progression-free 
survival (PFS), and overall survival (OS). The associations between 
categorical variables were assessed by χ2 tests or Fisher exact test 
whenever required. Kaplan–Meier plots and log-rank test were used 
to estimate PFS and OS. The association between epigenetic vari-
ant and clinical parameters with PFS and OS was assessed through 
univariate and multivariable Cox proportional hazards regression 
models. The proportional hazards assumption for a Cox regression 
model was tested under R statistical software (Boston, MA) (cox.
zph function). Statistical analysis was performed by using SPSS for 
Windows, (Armonk, NY) and P values less than .05 were considered 
statistically significant. All statistical tests were two-sided.

Results
Identification of Epigenetics Changes Associated 
With Oxaliplatin Resistance Using a DNA Methylation 
Microarray
To address in an unbiased manner whether epigenetic changes 
can be associated with oxaliplatin resistance, we adopted a whole 
genomic approach by comparing the DNA methylation status of 
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27 000 CpG sites (15) in an oxaliplatin-sensitive CRC cell line 
(LoVo-S) and an oxaliplatin-resistant clone (LoVo-R) that we 
derived by exposure to increasing concentrations of the drug (14).

This approach yielded only three differentially methyl-
ated target genes: SRBC (protein kinase C delta binding pro-
tein), FAM111A (family with sequence similarity 111, member 
A) and FAM84A (family with sequence similarity 84, member A) 
(Supplementary Figure 1A, available online). The most noteworthy 
gene with the highest difference in DNA methylation was SRBC; 
thus, it was the logical option to pursue. However, we also stud-
ied initially the other two genes. For FAM111A, bisulfite genomic 
sequencing of multiple clones showed that indeed the CpG site 
included in the DNA methylation microarray was distinctly meth-
ylated in LoVo-S and LoVo-R cells; however, the remaining sites of 
the CpG island were unchanged (Supplementary Figure 1B, availa-
ble online). Thus, we excluded this gene from further experiments. 
For FAM84A, bisulfite genomic sequencing confirmed the differ-
ential methylation of the CpG island, but both conventional and 
quantitative RT-PCR did not show any difference in gene expres-
sion (Supplementary Figure 1, D and E, available online). Thus, we 
also excluded this second gene from further analyses. For the main 
target gene, SRBC, the DNA methylation microarray data showed 
that it had a CpG site located in its 5’-CpG island (−155 base-pair 
position) that was hypermethylated in LoVo-R but unmethylated in 
LoVo-S (Supplementary Figure 1A, available online). Interestingly, 

SRBC CpG island methylation-associated silencing has already 
been found in cancer (18,19), including colorectal tumors (20). 
From a functional standpoint, it is biologically plausible that SRBC 
is responsible for the different sensitivity to oxaliplatin because its 
protein interacts with the product of the BRCA1 gene (18), which 
is widely accepted as being a mediator of response to DNA damage 
induced by platinum compounds (21).

To further demonstrate the presence of SRBC 5’-CpG island 
methylation in resistant cells, we undertook bisulfite genomic 
sequencing analyses. We found CpG island hypermethylation 
in LoVo-R but mostly an unmethylated CpG island in LoVo-S 
(Figure  1A). Importantly, SRBC expression was diminished 
in LoVo-R, showing CpG island methylation, whereas it was 
expressed in the unmethylated LoVo-S at the mRNA and protein 
levels (Figure 1B). SRBC re-expression was observed upon treat-
ment with the DNA demethylating agent 5-aza-2’-deoxycytidine 
in LoVo-R cells (Figure 1B).

SRBC Epigenetic Inactivation and Oxaliplatin Resistance
We next sought to demonstrate that the epigenetic inactivation 
of this gene functionally contributed to oxaliplatin resistance. We 
restored the expression of SRBC in LoVo-R by stably transfecting 
an exogenous expression vector (Figure 1C). Upon SRBC transfec-
tion, the cells proved to be statistically significantly more sensitive 
to the antiproliferative activity of oxaliplatin measured by the MTT 

Figure  1. Epigenetic inactivation of SRBC is associated with resist-
ance to oxaliplatin in colon cancer cells. A) Bisulfite genomic sequenc-
ing of eight individual clones in the SRBC promoter CpG island was 
used to determine DNA methylation status. Presence of a methylated 
or unmethylated cytosine is indicated by a black or white square, 
respectively. Black arrows indicate the position of the bisulfite genomic 
sequencing primers. B) SRBC expression determined by semiquanti-
tative real-time polymerase chain reaction analyses (left) and Western 
blot (right). GAPDH and β-actin were used as controls, respectively. 
The oxaliplatin-resistant cell line (LoVo-R) features a hypermethylated 
CpG island that is associated with the downregulation of the SRBC 
transcript and protein, in comparison with the SRBC-unmethylated 

and expressing oxaliplatin-sensitive cells (LoVO-S). Pharmacological 
treatment with the DNA demethylating agent 5-aza-2’-deoxycytidine 
(5-AZA) restores SRBC expression. C) Western blot showing the in vitro 
enhancement (transfection in LoVo-R, left) or depletion (short hairpin 
[sh] RNA approach in LoVo-S, right) of the SRBC protein. D) Cell viability 
determined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazo-
lium bromide assay upon use of oxaliplatin. External intervention by 
inducing SRBC overexpression (in LoVo-R cells) or depletion (in LoVo-S 
cells) gives rise to sensitivity or resistance to oxaliplatin, respectively 
(left panels). 5-Fluorouracil sensitivity is not dependent on SRBC activ-
ity (right panels). The corresponding half-maximal inhibitory concentra-
tion (IC50) values are also shown. SD = standard deviation.
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assay (Figure  1D) than were the empty vector-transfected cells 
(LoVo-R + SRBC 1 and 2: P =  .02 and P < .001, respectively). In 
sharp contrast, we observed that SRBC stable downregulation by 
the short hairpin RNA approach in SRBC-expressing and unmeth-
ylated sensitive cells (LoVo-S) (Figure 1C) had the opposite effect: a 
considerable enhancement of the resistance to the antiproliferative 
effect mediated by oxaliplatin (Figure 1D) (LoVo-S short hairpin 
SRBC A and B: P = .04 and P < .001, respectively). The observed 
effects were specific for oxaliplatin because the in vitro depletion 
or enhancement of SRBC activity did not change the sensitivity to 
5-fluorouracil (Figure 1D), other drug commonly used in CRC.

We extended our study to seven additional CRC cell lines 
(Co115, HCT-15, HCT-116, SW48, SW480, SW620, and RKO), 
in which we found SRBC promoter CpG island hypermeth-
ylation (Figure 2A) and the associated loss of expression only in 
HCT-15 cells (Figure 2B). Interestingly, these cells were the only 
ones showing resistance to oxaliplatin (IC50 ± standard devia-
tion  =  3.81 ± 0.18 µM); the remaining cells were sensitive to the 
drug (Figure 2C) (IC50 values ranging from 0.30 to 0.83 µM). As 

we did with LoVo-S and LoVo-R, we also sought to demonstrate 
that SRBC epigenetic inactivation functionally contributed to 
oxaliplatin resistance in these cells. We restored the expression of 
SRBC in the resistant cell line HCT-15 by stably transfecting an 
exogenous expression vector (Supplementary Figure 2A, available 
online). Upon SRBC transfection, the cells proved to be statisti-
cally significantly more sensitive to the antiproliferative activity of 
oxaliplatin (HCT15 + SRBC: P = .02) (Supplementary Figure 2B, 
available online). The opposite effect was observed with SRBC 
stable downregulation using the short hairpin RNA approach in 
SRBC-expressing and unmethylated sensitive cells (HCT-116): a 
noteworthy increase in the resistance to the antiproliferative effect 
mediated by oxaliplatin was found (Supplementary Figure  2B, 
available online) (HCT-116 short hairpin SRBC A and B: P < .001). 
The described effects were specific for oxaliplatin because the in 
vitro depletion or enhancement of SRBC activity did not change 
the sensitivity to 5-fluorouracil (Supplementary Figure 2B, avail-
able online). Western blot analyses showed that the level of expres-
sion of the SRBC protein in the transfected clones was similar to 

Figure  2. Epigenetic inactivation of SRBC is associated with oxaliplatin 
resistance in colorectal cancer cell lines. A) Bisulfite genomic sequencing 
of eight individual clones in the SRBC promoter CpG island was used to 
determine DNA methylation status. Presence of a methylated or unmethyl-
ated cytosine is indicated by a black or white square, respectively. Black 
arrows indicate the position of the bisulfite genomic sequencing primers. 
HCT-15 cells are the only cells that present SRBC promoter CpG island 
hypermethylation. Normal colon mucosa samples (NC1 and NC2) are 

unmethylated. B) Western blot analyses for SRBC expression show that the 
hypermethylated CpG island in HCT-15 cells is associated with loss of pro-
tein in comparison with the remaining SRBC-unmethylated and -express-
ing colon cancer cell lines. C) Half-maximal inhibitory concentration (IC50) 
values, determined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-
2H-tetrazolium bromide assay assay, upon use of oxaliplatin in the panel 
of colon cancer cell lines. All the studied cells are sensitive to oxaliplatin 
except the SRBC-hypermethylated and -silenced HCT-15 cell line.
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that observed in unmethylated CRC cell lines (Supplementary 
Figure 2A, available online).

SRBC Hypermethylation and PFS in Oxaliplatin-Treated 
Cases of Unresectable Colorectal Cancer
Given these in vitro findings that colon cancer cells with SRBC 
methylation-associated silencing were resistant to oxaliplatin, we 
wondered whether the same effect could be observed in clinical 
samples. The study of a first clinical cohort of 131 stage IV colorec-
tal adenocarcinoma patients (termed “discovery cohort”) (Table 1), 
all of whom were treated with oxaliplatin in combination with a 
fluoropyrimidine, showed SRBC methylation in 29.8% (n  =  39 
of 131) of the case patients analyzed by both methylation-specific 
PCR and pyrosequencing analyses (Figure  3A; Supplementary 
Figure  3, available online). The described occurrence of SRBC 
hypermethylation in colorectal tumors was identical to the one 
available in the The Cancer Genome Atlas datasets (30.2%; n = 70 
of 232). Considering the whole population of studied advanced 
CRC case patients (n = 131), we observed that SRBC hypermethyl-
ation was associated with PFS (HR = 1.83; 95% confidence interval 
[CI] = 1.15 to 2.92; log-rank P = .01) (Figure 3B). For the 105 case 
patients for whom OS information was available, SRBC hyper-
methylation was not associated with this variable (Figure 3C).

According to Cox regression multivariable test, surgery of metas-
tases showed to be an independent PFS (HR = 0.43; 95% CI = 0.24 
to 0.76; log-rank P  =  .004) and OS (HR = 0.16; 95% CI = 0.04 
to 0.52; log-rank P  =  .003) prognostic factor (Supplementary 
Figure 4, available online). Taking this into account, our cohort was 
stratified in relation to this clinical feature and was divided into 
two groups: patients that underwent metastases resection (n = 34) 
and patients with unresectable metastases (n  =  97). Subdividing 
the discovery cohort into these resectable or unresectable groups, 
SRBC hypermethylation did not have any predictive effect in PFS 
and OS for those case patients that received oxaliplatin as neoadju-
vant therapy followed by the successful resection of the metastases 
(Supplementary Figure 5, available online).

However, the scenario was completely different in the context 
of patients with colorectal adenocarcinomas with unresectable 
metastases who received oxaliplatin as neoadjuvant therapy and 
were subsequently not eligible for surgery (n = 31) or patients with 
tumors that were originally classified as unresectable and were 
given oxaliplatin as palliative chemotherapy (n  =  66). For these 
97 oxaliplatin-treated advanced CRC case patients with unresect-
able metastases, SRBC CpG island hypermethylation was statisti-
cally significantly associated with shorter PFS (HR  =  1.96; 95% 
CI  =  1.13 to 3.40; log-rank P  =  .01) (Figure  3D). In this set of 
case patients, for whom OS data were available for 79 patients, we 
also observed that SRBC hypermethylation was statistically signifi-
cantly associated with shorter OS (HR = 2.01; 95% CI = 1.13 to 
3.40; log-rank P =  .04). These interesting results prompted us to 
study the SRBC methylation status in a second independent set of 
CRC patients with unresectable metastasis who also received oxali-
platin-based therapy (n = 58) (Table 1). In this validation cohort, 
we confirmed that the presence of SRBC hypermethylation was 
associated with shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; 
log-rank P  =  .045) (Figure  4). Thus, the clinical data are similar 
to the results from the aforementioned cell cultures that suggest 

increased chemoresistance of SRBC hypermethylated colorectal 
tumors to oxaliplatin treatment.

Discussion
The preexistence (primary resistance) or the de novo development 
(secondary resistance) of cellular mechanisms to escape the anti-
tumoral effects mediated by the anticancer compounds probably 
involve a wide repertoire of genetic and epigenetic (22) events. 
From a genetics perspective in CRC, it has been described that 
the presence of KRAS mutations and gene amplification of the 
EGFR or MET genesis is associated with resistance to overall 
anti-EGFR therapies (23,24,25). However, from an epigenetics 
perspective, very little is known. In spite of promising pharmacoe-
pigenetics biomarkers, such as the example of MGMT hypermeth-
ylation and good response to temozolamide in gliomas (26), have 
been described for other tumor types, the examples in colorectal 
neoplasms are scarce, even more so if we just focus on resistance 
biomarkers. Herein, we provide an example to help fill this niche 
by showing that SRBC hypermethylation predicts resistance to 
the commonly used agent oxaliplatin in metastatic CRC, a disease 
stage that represents the second most common cause of death from 
cancer (1).

A role of SRBC in mediating different sensitivity to oxaliplatin 
can be clearly justified by its protein interaction with the product of 
the BRCA1 gene (18). The BRCA1 protein exerts an important role 
in DNA double-strand break repair through homologous recom-
bination 2, so its deficiencies can impair the capacity of cancer cells 
to repair DNA cross-links caused by chemotherapy drugs such 
as platinum derivatives (3–7).Two independent studies reported 
greater primary chemotherapy sensitivity to platinum-based chem-
otherapy agents in patients with ovarian cancer who were carriers 
of BRCA1 germline mutations (5,6). These observations have also 
been extended to BRCA1 epigenetic silencing in sporadic breast 
and ovarian tumors, where it also predicts a good response to cispl-
atin and carboplatin (9,10,27). However, the biology of mammary 
tumors is very different from colorectal malignancies, and in all 
cases of colon cancer, the BRCA1 promoter has always been found 
in an unmethylated status (28–30). Interestingly, in addition to its 
BRCA1-related roles, SRBC might have other functions related to 
the observed chemoresistance phenotype, such as its interaction 
with caveolin 1, which may putatively affect intracellular vesicle 
traffic of the drug (31).

It is worth mentioning two possible avenues of further research. 
First, there is the possibility to detect SRBC hypermethylation by 
sensitive user-friendly techniques, such as methylation-specific 
PCR and pyrosequencing, which could be useful in the clinical 
setting. Instead of always requiring the use of the surgical tumor 
sample, stool or serum/plasma DNA could be useful alterna-
tive biological materials to predict oxaliplatin resistance in CRC 
patients. In this regard, DNA methylation changes are also ame-
nable for the development of new powerful molecular techniques, 
such as those recently referred to as “liquid biopsies” (32). Second, 
our observation that sensitivity to oxaliplatin can be restored by 
the re-expression of the SRBC gene could represent a revival of 
the DNA demethylating agents in the therapy of solid tumors. 
With little therapeutic options against metastatic CRC once it has 
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Figure 3. SRBC promoter hypermethylation occurs in primary tumors 
from colorectal cancer patients, where it predicts shorter progression-
free survival (PFS) in oxaliplatin-treated case patients. A) Analysis by 
methylation-specific polymerase chain reaction (MSP) of the promoter 
region of SRBC in primary colorectal tumors. The presence of a vis-
ible polymerase chain reaction product in lanes marked U indicates 
unmethylated SRBC sequences; the presence of a product in lanes 
marked M indicates methylated sequences. In vitro methylated DNA 
(IVD) was used as a positive control for methylated SRBC sequences. 
DNA from normal lymphocytes (NL) was used as a negative control 
for methylated SRBC sequences. MSP of SRBC in five colon cancer 
patients demonstrates SRBC promoter hypermethylation in tumors 1, 
3, and 5. B) Kaplan–Meier analysis of PFS among the whole popula-
tion of advanced colorectal cancer cases by SRBC methylation status. 

Numbers of events (progression) are shown from 24 to 240 months in 
unmethylated (U) and methylated (M) groups. C) Kaplan–Meier analy-
sis of overall survival (OS) among the whole population of advanced 
colorectal cancer cases by SRBC methylation status. Numbers of 
events (exitus) are shown from 6 to 36 months in unmethylated (U) 
and methylated (M) groups. D) Kaplan–Meier analysis of PFS among 
the oxaliplatin-treated advanced colorectal cancer case patients with 
unresectable metastases by SRBC methylation status. Numbers of 
events are shown from 24 to 240  months in unmethylated (U) and 
methylated (M) groups. E) Kaplan–Meier analysis of OS among the 
oxaliplatin-treated advanced colorectal cancer case patients with unre-
sectable metastases by SRBC methylation status. Numbers of events 
are shown from 6 to 36 months in unmethylated (U) and methylated 
(M) groups.
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become insensitive to oxaliplatin, DNA methylation inhibitors, 
such as 5-azacytidine and 5-aza-2′-deoxycytidine, could be used to 
resensitize these tumors to the oxaliplatin therapy. This idea has 
been recently explored in non–small cell lung carcinoma patients 
who had reached the last line of chemotherapy. The subsequent 
administration of 5-azacytidine was able to rescue previous chemo-
sensitivity (33).

Limitations of our study to be addressed in further research 
include the lack of knowledge about the molecular mechanisms 
linking SRBC activity and DNA damage repair triggered by oxali-
platin, the use of nonquantitative DNA methylation assays that will 
require transformation to quantitative DNA methylation tests to 
get specific cut offs for a future clinical application, and the exten-
sion of our CRC patient data source to stage II and III tumors and 
samples from other geographical origins.

In conclusion, we have demonstrated that DNA methyla-
tion–associated silencing of the BRCA1 interactor gene SRBC 

is associated with the acquisition of chemoresistance to the 
DNA damaging agent oxaliplatin in CRC both in vitro and in 
vivo. The validation of SRBC hypermethylation as a predictive 
marker will require further prospective studies. If successful, 
clinical trials would also be necessary to develop strategies to 
overcome or prevent the development of SRBC-mediated epi-
genetic resistance.
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else life better even if you never know it.” 
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