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“There must be a beginning of any great matter,
but the continuing unto the end until it be
thoroughly finished yields the true glory”

-Sir Francis Drake

“If everything seems to be under control,
you are just not going fast enough”

-Mario Andretti
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Summary

Summary

The present work is focused on the study of recombinant protein production in high-
cell density fed-batch cultures of E.coli. In particular, the development of a model
capable to predict Rhamnulose-1-Phosphate Aldolase (RhuA) production is the

objective.

Firstly, a qualitative and quantitative study about the variables involved in protein
production has been made. This study has permitted the evaluation of the impact of
the main experimental variables (I/X and biomass concentration at induction and the
specific growth rate) on protein production (in mass and activity units). Using a
Response Surface Methodology (RSM), that is a statistical methodology, it can be
determined the optimal experimental conditions that conduce to a maximum in

protein production, and set the operating working conditions.

Secondly, because a deeper study about the importance of IPTG in inducible E.coli
systems is needed, a model describing inducer uptake has been developed, calibrated
and validated. IPTG uptake model has been developed in two steps: a) using a lacY
deficient strain, non-specific transport mechanisms have been modeled; b) in addition
to non-specific transport mechanisms, lactose permeases (specific transporting
proteins for lactose —and IPTG) contribution has been added. It has been
demonstrated that the model is capable to predict IPTG depletion from culture

medium, not only for the model strain, but also for three different strains.

Thirdly, a coupled model, composed by three different ones (biomass growth, IPTG
uptake and protein production) has been proposed. In this case, a new protein
production model has been presented, using as inputs the time evolution of the
variables involved in the other two models. Protein production rate (expressed in
mass) can be related to the amount of inducer bound to the repressor. The binding
equilibrium depends on the intracellular concentration of IPTG along time, which is an

output of the IPTG uptake model. Otherwise, biomass growth model is able to predict
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biomass concentration and the total volume into the bioreactor from the beginning of

the batch phase.

Finally, the protein production model, coupled with the IPTG uptake model, has been
extended to the production of different proteins (Fructose-6-Phosphate Aldolase and
w-Transaminase) using different expression systems. In this case, the expression
system’s dependent parameters have been identified, and the model has
demonstrated that, estimating those parameters is also capable to predict, properly,

the protein production along time.

To sum up, this work presents a new model, which contributes to the prediction of

protein production in different inducible E.coli expression systems.



Resum

Resum

Aquest treball es centra en I'estudi de la produccié de proteines recombinants en
cultius semi-continus d’alta densitat cel-lular utilitzant E.coli. Particularment, I'objectiu
és el desenvolupament d’'un model que sigui capag de predir I'evolucié amb el temps

de la produccio de I’Aldolasa Ramnulosa-1-Fosfat (RhuA).

Primer, s’ha dut a terme un estudi a nivell qualitatiu i quantitatiu de les variables que
juguen un paper fonamental en la produccié de proteina. Aquest estudi ha permes
I’avaluacié de I'impacte en la produccié de proteina (tant en unitats de massa com
activitat) de les principals variables experimentals (I/X i biomassa en el moment
d’induccid i la velocitat especifica de creixement). La Metodologia de Superficie de
Resposta (MSR) permet la determinacié de les condicions optimes de cultiu per tal de
maximitzar la produccid, a la vegada que permet la determinacio de les condicions de

treball més adequades.

Segon, s’ha desenvolupat, calibrat i validat un model de transport d’IPTG des del medi
de cultiu a l'interior cel-lular. Aquest model aportara un estudi més profund del
sistema d’induccié. Esta dividit en dues etapes: a) amb la utilitzacié d’una soca
deficient en lactosa permeases (les proteines responsables del transport especific de
lactosa -i IPTG) s’han pogut determinar els mecanismes de transport no especifics; b)
la contribucid al transport de les proteines especifiques s’ha afegit als mecanismes no
especifics. S’ha demostrat que el model és capag de predir, no només I'evolucié de la
concentracio d’inductor per a la soca model, sind que ho és també per a tres soques

diferents.

Tercer, s’ha presentat un model acoblat (partint de tres diferents models: creixement
cel-lular, transport d’IPTG i produccié de proteina). El model de produccié de proteina
usa com a variables d’entrada les evolucions temporals de les variables dels altres dos
models. La velocitat de produccié de proteina es pot relacionar amb la quantitat

d’inductor unit al repressor. L'equilibri d’'unié depén de la concentracié intracel-lular
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d’inductor, que és calculada mitjangant el model de transport d’IPTG. Per altra banda,
el model de creixement cel-lular és capag¢ de predir I'evolucié amb el temps de la
concentracio de biomassa i de volum total en el bioreactor, des del principi de I'etapa

discontinua.

Per ultim, el model de producciéd de proteina, juntament amb el de transport
d’inductor, es pot estendre a la produccié d’altres proteines recombinants (Fructosa-6-
Fosfat Aldolasa i w-Transaminasa) usant diferents sistemes d’expressié. Per a fer-ho, és
necessari identificar els parametres que son dependents del sistema d’expressio i
estimar-ne els valors. S’ha comprovat que el model és capag de predir,

acceptablement, I'evolucié amb el temps de la produccid de les noves proteines.

En resum, aquest treball aporta un nou model que contribueix a la prediccié de la

produccid de proteines recombinants usant diferents sistemes d’expressio en E.coli.



Nomenclature

Nomenclature
units description

Fg Lh! alkali flow rate

Fs Lht feeding flow rate

8 -- function describing metabolic burden

[IPTG]e pmol IPTG-L ™ medium extracellular IPTG concentration

[IPTGleo pmol IPTG-L ™ medium extracellular IPTG concentration at induction

[IPTG]; pmol IPTG-L ™ cer intracellular IPTG concentration
equilibrium constant for the repressor-IPTG

Kr-ip16 mM
bond

M molecules-cell™ mRNA molecules of lacl

Mgy ggmcose-h'l-g'lDCW maintenance coefficient

N plasmid-cell™ plasmid copy number

n -- cooperativity of the binding lacl-IPTG

P mgRhuA-g'DCW specific protein in mass

Ping mgRhuA-g'DCW basal specific protein in mass units

dp mgRhuA-g'DCW-h™ specific protein production rate

dpo mgRhuA-g'DCW-h™ initial specific protein production rate

r umol IPTG-h™ L™ edium net transport rate

Rfree molecule-cell™ free repressor

Ripte molecule-cell™ repressor bond to IPTG

S g-L'1 glucose concentration

So gLt glucose concentration at batch beginning

Ss g-L'1 glucose concentration in the feeding solution

t h time

ting h time since induction

U AU-g'lDCW specific protein in activity

Uing AU-mg'RhuA basal specific protein in activity units

Vv L total volume




Nomenclature

Vo L total volume at batch beginning

Veel Leell volume of cells

Vim Lmedium culture medium volume

X gDCW-L'1 biomass concentration

Xo gDCw-L*! biomass concentration at batch beginning
Xind gDCW-L'1 biomass concentration at induction

Yxs gDCW-g™* glucose biomass-substrate yield

(Yxs)ap gDCW-g™* glucose apparent biomass-substrate yield

OlmRNA ht lacl transcription rate

oR ht lacl transcription rate

AmrnA ht mMRNA degradation rate

AR ht lacl degradation rate

M ht punctual specific growth rate

Mix h' fixed specific growth rate during the fed-batch
Mmax h* maximum specific growth rate for M15 strain
TR0 h' time constant for the repressor-IPTG bond




Abbreviations

ATA
AU
cAMP
CAP
DCW
DHA
DHAP
DM
DNA
FruA
FSA
FucA
1/X
IPTG
lac permease
LB
NAD*
NADH
ODGOO
PO,
RhuA
RNA
RSM
TagA
a-GDH

Abbreviations

w-Transaminase

Activity Unit

cyclic molecules of adenosine monophosphate
Catabolite Activator Protein

Dry Cell Weight

Dihydroxyacetone

Dihydroxyacetone Phosphate

Defined minimal Medium
Deoxyribonucleic acid
Fructose-1,6-Biphosphate Aldolase
Fructose-1-Phosphate Aldolase
Fuculose-1-Phosphate Aldolase
inducer to biomass ratio
Isopropyl-B-D-1-thiogalactopyranoside
lactose permease

Lysogeny Broth

oxidized form of Nicotinamide adenine dinucleotide

reduced form of Nicotinamide adenine dinucleotide

Optical Density at A= 600nm
Oxygen saturation
Rhamnulose-1-Phosphate Aldolase
Ribonucleic acid

Response Surface Methodology
Tagatose-1,6-Biphosphate Aldolase

a-Glycerophosphate Dehydrogenase
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1 General Introduction

1 General introduction

1.1 Biotechnology

Biotechnology is defined by the OECD (Organization for Economic Co-operation and
Development) as the application of science and technology to living organisms as well
as parts, products and models thereof, to alter living or non-living materials for the
production of knowledge, goods and services.

Based on its application, it can be divided in different branches: red (for medical
applications), green (for agricultural applications), blue (for marine applications) and

white (for industrial applications) biotechnology.

- White biotechnology deals with finding the equilibrium between market
demand satisfaction and the environmental impact. Competitive economic
industrial processes can be reached using enzymes and microorganisms, with

the possibility of water, energy and raw material savings.

- Green biotechnology deals with the development and using of modified
cultures, allowing the reduction of soil working. This fact can conduct to fuel
savings, pesticide use reductions and give the cultures more resistance to

adverse conditions.

- Red biotechnology deals with the research and development of new medicines,

vaccines and diagnosis.

- Blue biotechnology deals with the exploitation of the marine sources in

industrial, health and alimentation processes.

Focusing on the white biotechnology, some major challenges are the production of
therapeutically interesting proteins and the production of biocatalysts. It is a key
technology wanting the transformation of the scientific knowledge into sustainable

products.
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1.2 Biocatalysis

Biocatalysis can be defined as the process that, using a biologic molecule, is able to

perform a determined chemical reaction with high specificity and selectivity for the

substrate and the final products, respectively. Biocatalysts are increasingly being

introduced in industrial processes to assist in synthetic production of molecules

(Pollard & Woodley, 2007).

Biocatalysis has some advantages and disadvantages if compared to traditional organic

chemical processes (Aehle, 2007; Bommarius & Riebel, 2004; Buchholz, Kasche, &

Bornscheuer, 2005). The main advantages are:

using enzymes for a reaction allow the enhancement of the selectivity and/or
the regioselectivity, and the differentiation between enantiomerically different
substrates;

usually, minor generation of subproducts;

if enzymes are immobilized on a solid support, they can be used repeatedly
because their easy recovery through mechanical methods;

enzymes can be biologically degraded, and then their management as waste is
easy

and enzymes usually present activity at room temperature and pH near the
neutrality. Moreover, they catalyze reactions in aqueous medium, and allow
the development, in environmental friendly conditions, of industrial processes,
far away from the extreme reaction conditions that are usual in chemical

synthesis.

Otherwise, enzymatic processes have some disadvantages in front of the classical

chemical processes:

10

in presence of organic solvents, extreme pH and/or extreme temperature,
enzymes present low stability;

some metals (even at low concentrations) may conduct to enzyme inhibition;
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- presence of other enzymes may conduct to side reactions, reducing the global
process yield

- and economically, development needs, usually, a long time to be implemented
in industrial processes. This long time conducts to the dismissal of the enzyme

process in front of the classical chemical production.

1.2.1 Asymmetric synthesis. Aldolases

Aldolases (EC 4.1.2. ; EC 4.1.3.) are enzymes of liases group that catalyze the aldol
addition, the formation of C-C bound. This C-C formation is made through the
nucleophilic attack of a ketone (or donor compound) to an aldehyde (or acceptor
compound) with high enantioselectivities (Sugiyama et al., 2007). Although the main of
the aldolases present specificity for the donor, they are able to use other acceptor
(chains between 1 and 6 carbons) (Samland & Sprenger, 2006). As a consequence, the
new products have two (or more) new chiral centers (Palomo, Oiarbide, & Garcia,

2002), as shown in Figure 1.

0 0 Q OH

R1JJ\/R2 + RBJI\H(R4) - R 7 =t

Figure 1.1. Typical aldol addition reaction. * are the chiral centers (Palomo, Oiarbide, &
Garcia, 2002)

In organic chemistry, the formation and degradation of C-C bounds is one of the key
reactions, as well as one of the main processes in biological organisms. Long time and
resources are needed for the chemical synthesis of products with determined
stereochemistry, due to the different processes of protection and deprotection of the
functional groups, in order to obtain enantiomerically pure compounds.

One of the main advantages of the aldolases as catalysts is, precisely, their ability in

the synthesis of products with a specific stereochemistry. It is interesting their use in

11
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the obtention of non-conventional sugars as statins (for the cholesterol treatment),
epothilones (for the inhibition of the division of cancer cells), sialic acids (cellular
signal) and amino polyols, precursors of iminocyclitols. Iminocyclitols have an
important role in the inhibition of enzymes as glycosidases and glycolsiltransferases
(Andersen et al., 2000; Liang et al., 2006; Saotome et al., 2000; Wrightet al., 2013). Its
inhibition can represent interesting effects on the carbon hydrates catabolism and on
the recognition cell-cell and cell-virus, and could be applied in therapeutic treatments
as antitumor or anti-infective agents (Ichikawa et al., 2004).

Up to more than 30 aldolases are known (Machajewski & Wong, 2000).There are two
different classifications for the aldolases: in function of their catalytic mechanism and
in function of the donor compound (Fessner, 1998; Samland & Sprenger, 2006;
Takayama, McGarvey, & Wong, 1997; Wymer & Toone, 2000).

Depending on the donor compound, they can use DHAP (dihydroxyacetone
phosphate), pyruvate, phosphoenolpyruvate, acetaldehyde and glycine, as shown in

Figure 1.2.

12
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Donor Acceptor Product(s)

@) @) OH O
/%OR‘I
OH
OH O

R
O
H oK I
COOH COOH R H R COOH

0 OH O
/ILH RJ\H R/ULH

OH

0O
H,N COOH COOH
N A RJ,N(*
NH,

Figure 1.2. overview of the classification of aldolases by their specific donor substrate. (Samland & Sprenger,
2006)

Taking into account the reaction mechanism, the can be classified into 2 different
classes:
- class I: present in plants and superior animals. Allow the deprotonation of the
substrate forming a Schiff base between the substrate and one Lysine residue,
located in the active center (Lorentzen et al., 2005; Takayama et al., 1997).

Figure 1.3 shows the Schiff base formation mechanism.

13
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kI-.|j\|/\1'3'|"'[:f

Figure 1.3. Schiff base formation mechanism for class | aldolases

3 HaN=Lijs,g

- class Il: present in bacteria and fungi. They require as cofactor a divalent cation
(Zn*) to act as Lewis acid for the deprotonation of the substrate (Takayama et

al., 1997). Figure 1.4 shows the activation mechanism for the donor substrate.

e
H OPO,”

OH

Figure 1.4. Donor substrate activation mechanism for class Il aldolases

1.2.2 DHAP dependent aldolases

There are four different enzymes of the family of the DHAP dependent aldolases. They
catalyze in vivo —with stereospecificity- the four possible diastereoisomers of the two
chiral centers generated in the reaction (Fessner et al., 1991). They present specificity
for DHAP as donor substrate, with a generation of complementary stereochemistry in

C3 and C4 carbons, as shown in Figure 1.5.

14
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O OH O OH
ro Mo & Po Mo
y 1 AN
H R FruA FucA R
OH OH
D-freo D -eritro
o O

POQK/OH + H)J\Fﬂ

Q OH RhuA TagA Q OH
PO\)HS/J,L R! PO\)J\_?);\ R
OH OH
L-tfreo L-eritro

Figure 1.5. DHAP dependent aldolases, with the corresponding catalysis products.

These aldolases (Fructose-1,6-biphosphate aldolase (FruA); Tagatose-1,6-diphosphate
aldolase (TagA); Fuculose-1-phosphate aldolase (FucA) and Rhamnulose-1-phosphate
aldolase (RhuA)) have high affinity for the glyceraldehyde-3-phosphate and
L-lactaldehyde, but they can use a great amount of other acceptor substrates (as
aliphatic aldehydes) and this fact make the aldolases important tools in the synthesis
of monosaccharaides and derivates. There are only two Fructose-6-Phosphate aldolase
isoenzymes reported to be able to use dihydroxyacetone (DHA) as donor substrate
(Schurmann & Sprenger, 2001).

TagA and FruA (from rabbit muscle) belong to class I. The free amino group from a
specific Lysine in the active center of the enzyme reacts with DHAP, forming a Schiff
base. This Schiff base is deprotonated and then reacts with the acceptor substrate.
FucA, RhuA and FruA (from microbe) belong to class Il aldolases. In this case, the
cofactor Zn** polarizes the carbonyl group of DHAP, and then reacts with de donor

substrate of the reaction (Schurmann & Sprenger, 2001).

15
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There are, also, aldolases that use DHA instead of DHAP as donor substrate. DHA
dependent aldolases only catalyze the reaction were the obtained product takes
D-treo configurations.

The target main protein in this work is Rhamnulose-1-phosphate Aldolase (RhuA). As
said above, RhuA is a DHAP dependent class Il aldolase, catalyzing the reaction

between DHAP and L-lactaldehyde.

0 0
Y+ HO\)k/DPOf'
OH OH OH
L-Rhamnulose-1-phosphate L-Lactaldehyde DHAP

Figure 1.6. Reversible aldol addition between DHAP and L-lactaldehyde, catalyzed by RhuA.

RhuA has homotetrameric structure (Figure 1.7) with 274 amino acids every subunit
and 30.15 kDa in total (Kroemer, Merkel, & Schulz, 2003; Kroemer & Schulz, 2002).

There are four active centers (one for subunit), constructed surrounding the cofactor
from some residues acting as ligands, 3 hystidine residues and one glutamic acid from
the same subunit, and one threonine residue from the near subunit (Kroemer &

Schulz, 2002).

16
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Figure 1.7. Tridimensional RhuA structure.

1.3 Escherichia coli as host for recombinant protein production

E.coli is a microbe living in the large intestine and in the colon of warm-blooded
animals. It is a Gram-negative bacteria, mobile and facultative anaerobe. This kind of
bacteria presents, usually, easy nutritional requirements, allowing the metabolization
of a wide variety of carbon sources. Its duplication rate is around 1 division every half
an hour (under optimal growth conditions). Generally, E.coli strains are not
pathogenic, but some of them may conduct to diarrhea because the synthesis of the
antigen K, that permit their colonization in the large intestine (Nataro & Kaper, 1998).
Genetically, E.coli presents, as a prokaryote, a circular DNA organization in its
cytoplasm, without any separation membrane between the cytoplasm and the
chromosomes. The genome was observed to contain significant number of
transposable genetic elements, repeat elements, cryptic prophages and bacteriophage
remnants (Blattner et al.,, 1997). For its use in research works and industrial
applications, it is usual to employ different genotypic varieties with certain differences
at genetic level in front of parent strains. The usual varieties in microbiological
applications are derived from E.coli K12 or E.coli B strains. These changes with regard

to parent strains are looking for the optimization of the global production yields. Some

17
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of the genetic modifications are faced to the minimization of side products formation,
which can affect the growth. Others are directed to the shut down of the action of
proteases (that degrade the synthesis products).

Bacteria can use genetic elements able to replicate independent of the chromosomal
DNA: plasmids. Plasmids are usually formed by a circular DNA chain and may have
multiple copies into the cell.

Plasmids have genetic information that differences the cells with and without them.
For example, one of the plasmid groups more extensively studied are the ones
containing antibiotic resistance genes, allowing the host cell to grow in a culture
medium supplemented with antibiotic. Plasmids are used as useful tools in
biotechnological processes because, if they are correctly designed, they may contain
the needed information for product synthesis that can represent up to 50% of the dry

cell weight (Graumann & Premstaller, 2006).

The classical genetic structure of plasmids is:

- Replicon: is the replication origin. It controls the number of copies of the

plasmid into cells (Sgrensen & Mortensen, 2005)

- Resistance marker: it contains the necessary information to give cells antibiotic
resistance (usually ampicillin, kanamycin and chloramphenicol) (Sgrensen &
Mortensen, 2005). However, due to the possibility of contamination of the
product or biomass by antibiotics, which may be unacceptable from a medical
or regulatory standpoint (Baneyx, 1999), it has been proposed to use genes as

complementation of a deletion in chromosomal information (Vidal et al., 2008)

- Regulable promoter: needed for the control of the expression genes. One of
the most commonly used systems are the /lac operon derived, that can be
induced by Isopropyl-B-D-1-thiogalactopyranoside (IPTG) (Donovan, Robinson,
& Glick, 1996; Fernandez-Castané, Caminal, & Lopez-Santin, 2012; Santillan &
Mackey, 2004)

- Sequences: transduction starting and terminators

18
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- Genetic information of the product of interest

E.coli generally produces acetate as side product during its growth (even in aerobic
conditions) when using glucose as carbon source. This acetic acid production inhibits
the cellular growth (Eiteman & Altman, 2006; Kwon, Kim, & Kim, 1996; Sakamoto et
al., 1994). Moreover, logically, its production derives the consumed carbon source
from biomass and recombinant protein production (Eiteman & Altman, 2006). Acetic
acid production takes place when cells are growing at high rate, when there is not
oxygen enough to metabolize the totality of the carbon source (Wolfe, 2005).

Acetate production can be minimized by limiting the glucose-consumption rate, by
controlling the feed rate of the cultivation, when working in in fed-batch mode. This
can be achieved using a fed-batch growth strategy, where the glucose is added
maintaining a fixed specific growth rate (when exponential feeding profile is used)
(Pinsach, de Mas, & Lopez-Santin, 2006).

On the other hand, it can be also minimized using different carbon sources (as glycerol
or fructose) with a tightly regulated assimilation and utilization (Aristidou, San, &
Bennett, 1999; Zhang et al. , 1999)

Genetic engineering can be also used in acetate production reduction. The use of E.coli
B genotypic variations can represent a reduction in acetate production if compared
with E.coli K12 derived strains, even in glucose excess (Choi, Keum, & Lee, 2006;

Noronhaet al., 2000).

E.coli is one of the most commonly used hosts for the expression of heterologous
recombinant proteins, in laboratory work and also in industrial production (Cornelis,
2000). Industry about therapeutic proteins and synthesis of enzymes for the
conduction of biotransformations is acquiring more importance along the years
(Balzeret al., 2013). Genetic and proteomic systems have been developed allowing the
use of E.coli for the production of recombinant proteins (using plasmids). In fact, one
of the pioneer applications of recombinant DNA technology was the manipulation of
E.coli strains for the production of human insulin. However, E.coli has some limitations

in the production of heterologous proteins. It cannot be used in the production of
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larger and more complex proteins containing multiple disulfide bonds and unpaired

thiols, or in general, proteins that require post-translational modifications (Lee, 1996).

There are some advantages of using E.coli as host for recombinant protein production:

rapid expression,

high production yields,

genetic modifications are easy,

inexpensive culture medium preparation,

it can be used for mass production, and it is cost effective

and its genome is widely known.

Otherwise, there are some inconvenients in its use:

proteins containing disulfide bonds are difficult to express,

only for unglycosylated proteins,

endotoxins may be produced with the protein,

cell toxicity because acetate production

if the protein is produced as inclusion bodies, they are inactive and need
refolding.

and, finally, E.coli usually does not secrete the protein produced, needing

disruption processes in the downstream.

Processes producing recombinant proteins are highly dependents on the heterologous

DNA stability into the host cells (Yee & Blanch, 1992). In order to assure the presence

of the plasmids into the host cell, it is needed working with selective markers (e.g.

antibiotic resistance). However, this maintenance of the foreign DNA conduce to

cellular stress, especially when the target protein has high expression rate (Sgrensen &

Mortensen, 2005). The metabolic overcharge because the maintenance of plasmids is

tightly related, obviously, to the number of copies present (Bailey, 1993)

Usually, during the overexpression of the target protein, inhibition in growth is

observed, because the cellular metabolism is redirected to the production. Otherwise,

high heterologous protein production rates can be associated to the inhibition of the
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production of essential components for the cell growth, leading, also, to growth
inhibitions (Hoffmann & Rinas, 2004).

These stress situations could lead in a decrease on the quantity and quality of the
recombinant protein produced. Because this, a deeper study (modeling and
optimization, for example) is needed in order to achieve important improvements in

the global production yields.

1.4 IPTG inducible expression systems

As said before, IPTG is commonly used as inducer in systems based on the lac
promoter.

IPTG is a non-metabolizable analogue of allolactose. As can be seen in Figure 1.8, IPTG

is a 9 carbon sugar of MW = 238.3 g-mol™.

Figure 1.8. IPTG molecular structure.

There is a wide range of possible expression systems for different application. Lactose
operon is one of the most commonly used and one of the most well known. lac operon

in wild type E.coli consists of three genes (lacZ, lacY and lacA) as depicted in Figure 1.9.
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Figure 1.9. Molecular description of the /ac operon.

The products resulting from the transcription of the three genes are:

- lacZ: B-galactosidase. Converts lactose to glucose and galactose.

- lacY: lactose permeases. Proteins responsible for the active transport of lactose

(or its analogues) from the culture medium to the cytoplasm.

- lacA: transacetylase or tiogalactoside transferase. May function as detoxifying

agent for lactose analogs that are harmful for the cell.

Transcription from the promoter is regulated by the lac repressor (Lacl, Protein in
Figure 1.9), produced by lacl gene through its transcription (mRNA) (Horton, Lewis, &
Lu, 1997; Lopezet al., 1998). Inhibition takes place in absence of lactose (or non
metabolizable analogues as IPTG) because Lacl does not allow the transcription from
the lac promoter by binding the operator site. RNA polymerase is not able to bind
properly the promoter, and transcription does not take place. Basal expression levels
can be found because the binding between the repressor and the operator sites is a
chemical equilibrium, thus it is a dynamic equilibrium. As the operator site is not
continuously occupied, RNA polymerase is able to some gene transcription.

Lactose inside cells is converted to allolactose by the action of B-galactosidase.

Allolactose is able to bind the repressor molecules, avoiding their linkage to the
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operator sites. With no repressor bound to the operation region, a high transcription
of the lac genes is observed. In the case of using IPTG, it is directly capable to bind the

repressor, because, as said, it is a non-metabolizable analogue of allolactose.

In absence of glucose in the culture medium, cyclic molecules of adenosine
monophosphate (cAMP) are produced. These molecules can produce a complex with
CAP (Catabolite Activator Protein) —that increases the affinity of the promoter to RNA
polymerase- increasing the transcription (Abeles, Frey, & Jencks, 1992).

Catabolite repression allows E.coli to metabolize glucose prior to lactose when the
culture medium has a mixture of sugars. As the contrary to said above, high glucose
concentrations reduce the production of cAMP meaning that, even in absence of
inducer, high glucose concentration leads to low transcription levels. It has been
published that glucose concentrations below 60 g-L" allow to achieve transcription

levels high enough to have protein overexpression (Pinsach et al., 2008).

Once IPTG enters into the cell, it binds the Lacl repressor molecules, and the
transcription of the genes from the promoter of the lac operon is initiated. As IPTG is
an expensive product, it is important to use the minimal inducer amount necessary to
obtain the higher transcription level by optimizing the process (Hansen, Knudsen, &

Sgrensen, 1998).

1.5 Mathematical modeling

Mathematical modeling in chemical and biotechnological industry is used as a basic
tool for the prediction and monitoring processes. Models are able to give detailed
information, but with great saving in time and cost (Bailey, 1998; Brass, Hoeks, &
Rohner, 1997; Thilakavathi, Basak, & Panda, 2006). Moreover, the exploitation of an
accurate mathematical model can be derived in the optimization of the process and its
control.

A model is a mathematical representation of a process, making a relationship between

the inputs and the outputs of the study system, which objective is its description.
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1.5.1 General model types

One of the firsts steps in modeling is the identification of the different variables of the

process, and how they could be related (using fundamental/basic principles).

Construction of the model depends on its application.

Depending the nature of the model, a distinction can be made:

24

Mechanistic model (or theoretical or fundamental): based on the fundamental
phenomena involved in the process. This kind of models is developed by
applying mass, energy and momentum balances. There are some advantages
using fundamental models: because the application of physico-chemical
principles, it is possible to describe non-linear and dynamic processes; the
model can be extrapolated, due to the application of engineering principles;
the parameters of the model can be obtained bibliographically or by
experimentation. Otherwise, description of these models needs a high effort,

because of their complexity.

Empirical model: sometimes, the process’ complexity does not allow the
understanding of the fundamental or basic phenomena involved. Then, the
knowledge of the system is through experimental work. Empirical models are
useful when, basically, a relationship between inputs and outputs of the system
are going to be defined, without fundamental description of the processes
involved. Examples of empirical model are: polynomial models (Lei, Ding, &
Ding, 2014; Parker & Doyle, 2001); artificial neural network (Aoyama, Doyle, &
Venkatasubramanian, 1995; Pendashteh et al., 2011). However, this kind of
model has limited application (it can be only used into the range of

determination).

Mixed models: are the combinations of mechanistic and empirical models.
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There are 6 different basic steps in modeling processes:

1. Problem analysis: it is needed to study the situation sufficiently to identify

the problem precisely and understand its fundamental questions clearly. This

stage determines the objective

2. Model formulation: abstraction of the system wanted to be modeled. The

tasks in this stage are: gathering the relevant data to gain information about
the system; making the assumptions reasonably; variables and units
determination; establishment of relationships between variables, equations

and functions determination

3. Solve the model: is the implementation of the model. It is usual to employ

algebra, calculus, graphs, and computer software to solve the model. If the
model is too complex and it cannot be solved, it is needed to return to step 2

and reformulate it, usually simplifying the model.

4. Model verification, interpretation and validation: once a solution has been

found, it is needed examining the results, making sure their sense (verification
and interpretation) and the solution must solve original new data (validation),

satisfying the problem’s requirements.

5. Report on the model: it is important for its utility. The report contains some

steps, which parallel the steps of the modeling process.

6. Model maintenance: As the model’s solution is used, it may be necessary or

desirable to make corrections, improvements, or enhancements.

1.5.2 Mathematical models applied to bioprocesses

By definition, bioprocesses deal with biochemical systems, often employing growing
cells. Even the simplest living cell is a system of such complexity that any mathematical
description is a modest approximation (Bailey, 1998).

The use of mathematical tools to provide a rigorous, systematic and quantitative

linkage between microscopic (understood as intracellular processes) phenomena and
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macroscopic process performance was installed into research principles of Chemical
Engineering late 60s, early 70s,
Biochemical Engineering by Aiba, Humphrey and Millis (Aiba, Humphrey, & Millis,
1973). Chemical Engineering principles were used in the biological sphere. This book
marked a change on the tendency of empirical approaches to a new types of model,

where rigorous mathematical reasoning is applied in the understanding of the

processes (Bailey, 1998).

Systems involving living cells were systematically classified in order to give biochemical
engineers a conception of the mathematical description and the experimental

characterization, as shown in Figure 1.10 (Fredrickson, Megee, & Tsuchiya, 1970).

As it can be seen in Figure 1.10, models concerning cell processes can be classified
depending on the basic knowledge of the system (structured or unstructured) and

depending on the assumption or not of differences between cell populations

1 General Introduction
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Figure 1.10. Classifications introduced by Fredrickson for mathematical (and other) representation of cell
population. A: balanced growth approximation; B: “average cell” approximation.
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The four different types of models are going to be explained and illustrated with one
example (each), applied or susceptible to be applied, to recombinant protein

production.

As said, there are two different kinds of model depending on the basic knowledge of

the system concerning cell processes:

- Unstructured models are the simplest for the modeling of a biological process.
They consider the biomass as a unique variable. Growth descriptions are based
on the uptake of substrates and the formation of products. Monod model is
one of the basic unstructured model more widely used (Monod, 1949).
Unstructured models are based on variables easily measured with standard

laboratory equipment (spectrophotometers, kits for analysis, HPLC, ...)

An example of unstructured model of protein production is the work made by Nadri
and collaborators (Nadri et al., 2006). In this case, an E.coli strain was used, containing
a plasmid with bioluminescence and B-galactosidase production. The model Equations

for a fed-batch process are presented below (Equations (1.1) to (1.5)):

ax

T = X — PgeqinX — DX (1.1)
das
— = —@suX —kpX — D(S = Sin) (1.2)
dpP
2 = Pr®puX — Pgeqen P — DP (1.3)
dl
== —DI (1.4)
L=q¢,———®,XP (1.5)
=L (ksts) P .
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where, basically:

X: biomass concentration

S: substrate concentration

P: protein concentration

I: inducer concentration

L: light intensity

u is the specific growth rate, @ 4.4: is the death kinetics, D is the dilution rate,
@s is the substrate yield coefficient, k,, is the maintenance coefficient
associate to the substrate, @p is the protein yield coefficient, ®p is the inducer
effect, ¢, is the luminescence vyield coefficient and kg is the saturation

constant associated to the oxygen

Qualitatively, it can be seen that biomass is considered as a unique solute component.

The model is based on net biomass growth expressed through Equation (1.1), were

terms on the right correspond to growth, death and dilution, respectively. Substrate

and inducer uptake and products production (both protein and luminescence) are

presented in Equations (1.2) to (1.5).

It is a good example of unstructured model, based on substrate uptake and product

formation, using easily determining variables (glucose, protein and luminescence).

Structured models include high detailed knowledge about the biochemical
reactions taking place into the cells. Biomass is considered as multiple
interrelated compartments (Gerlach et al., 2014; Tang, Chen, & Zhang, 2007). It
is usual to divide the cell as: a) active compartment (ribosomes, mRNA,
tRNA,...); b) plasmid DNA; c) codified product in the plasmid DNA; d) structural

and genetic cell material. A deep knowledge about metabolic fluxes is required.

A clear example of structured modeling of protein production is the work carried out

by Toksoy and collaborators (Toksoy Oner et al. , 2003). In this case, a four-

compartment model is presented. It is shown in Figure 1.11, where the four

compartments can be seen, as well as the outline of the biophase structure.
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Figure 1.11. Schematic representation of the four-compartment model

In this case, A is the compartment for the active cell components (ribosomes, mRNA,
tRNA); E contains only the recombinant enzyme protein; G compartment comprises
the recombinant plasmids; and Z contains the structure forming cell material and
chromosomal DNA.

Equations (1.6) to (1.9) show the synthesis rates of the particular cell components.

Equations (1.10) to (1.16) show the mass balances.

Ra = keaXa (550) (1.6)
Ry = kX (o) (1.7)
Ro = kxaXaXe (57) (1.8)
o= kot () (25 () 19
dstA =YaRs —R; —Rg — Rg — uX, (1.10)
% =YzRz — uX; (1.11)
% =YzRs — 1X¢ (1.12)
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% =YzRg — uXg (1.13)
T=(1-¢ux (1.14)
dd_st’ = _Rx (1.15)
% — R, (1.16)

Where X; is the concentration of the components in every compartment, S is the
substrate concentration, S’ is the substrate concentration inside the cell, and Ac is the
concentration of the byproduct (acetic acid), u is the specific growth rate, ky; are
kinetic parameters, K; are also kinetic parameters, ¢ is the segregation coefficient of
the production plasmid (calculated using a probability of a plasmid-free and a plasmid-
carrying daughter cell from a plasmid-carrying cell), y; are the yield coefficients for
macromolecular synthesis and 7 is the acetic acid production yield.

Qualitatively, it can be seen that a high knowledge about the system and the
relationships between the compartments are needed to propose a structured model

describing protein production.

Otherwise, models can be classified depending if the effect of the overexpression on

the cellular population is assumed or not:

- Unsegregated models do not distinguish between different types of cells in the
culture. In protein production these models do not take into account
differences in population because the production of heterologous protein

(Kavanagh & Barton, 2008; Lee & Ramirez, 1992a; Mahadevan & Doyle, 2003).

One of the examples above correspond to an unstructured unsegregated (Nadri et al.,

2006) model.
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- Segregated models for protein production consider that the metabolic burden
due to the production of the recombinant protein makes the cell population to
be in different growth steps. It can make, also, a difference between plasmid
carrying and non-carrying cells. (Andersson, Strandberg, & Enfors, 1996; Fan,
Tuncay, & Ortoleva, 2007; Lopez-Vernaza & Leach, 2013; Zheng, Yao, & Lin,
2005).

In this case, a structured unsegregated (Toksoy Oner et al., 2003) model has been

explained above.

Segregated models provide highly detailed information about cellular physiological
state, but they require a large amount of data. This data is not easily available,

experimentally nor bibliographically.

There is another type of models, based on statistical tools: Response Surface
Methodology (RSM). They explore the relationship between several explanatory
variables and one or more response variables. The main idea is to use a sequence of
designed experiments to obtain an optimal response. As all the statistical models, this

model is an approximation to reality.

Because the goal of the modeling, at the level that is going to be performed in this
work, is the description, prediction and the possible optimization of the process, using
its macroscopic properties for control and automation applications, an unstructured

and unsegregated modeling seems to be the best option.
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2 Objectives

2 Objectives

This work has been developed into the Bioprocess Engineering and Applied
Biocatalysis group, which main objective is researching on recombinant protein
production, and its application to biocatalytic processes. Specifically, this work is
focused on the modeling of the whole process, in order to obtain all the differential
equations needed to describe and predict high cell density cultures of E.coli producing
recombinant proteins.

The model will be calibrated using an M15-derived strain producing an aldolase
(RhuA). This overall model is going to be found through the achievement of different

sub-objectives:

- Qualitative and quantitative studies about how the different variables affect to

protein production and its activity

- Quantitative IPTG uptake model development. This intermediate model will be
capable to predict the inducer uptake from the culture medium to the
intercellular space, and will predict, also, the inner concentration of IPTG for

every time during the induction phase

- Development of the specific protein production (in mass and activity units)
model, able to predict the RhuA production along time. This model needs the

prediction obtained through the IPTG uptake model

- Coupling of three different models: biomass growth, IPTG uptake and protein

production models.

- Extension of the specific protein production model to different strains and
proteins, showing how the model is capable to predict and simulate other
expression systems, and showing which model’ parameters are needed to

change to fit the model.
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3 Materials and Methods

This chapter describes general procedures used in this work. Specific methodologies

will be described in detail in its own chapter.

3.1 Strains and expression systems

Some different E.coli strains and expression systems have been employed in the
overexpression of different recombinant proteins (Rhamnulose-1-Phosphate Aldolase,
Fuculose-1-Phosphate Aldolase, Fructose-6-Phosphate Aldolase and w-Transaminase).
Details about Fructose-6-Phosphate aldolase and w-Transaminase will be explained in
Chapter 7.

Rhamnulose-1-Phosphate Aldolase (RhuA) was expressed as a fusion protein to a
6xhistidine tag at its N-terminal end, using the K-12 E.coli derived strain M15
AglyA[pQEaBrham][pREP4], under the control of the strong promoter T5 (Vidal et al.,
2003; Vidal et al., 2008). The expression system was derived from the commercial
E.coli M15[pREP4] pQE40 (Qiagen).

This strain presents a chromosomal deletion in glyA gene, responsible of the synthesis
of Serine Hydroxymethyltransferase (SHMT) that has a key role in glycine biosynthetic
route. glyA gene, for auxotrophy complementation, was inserted in the pQErham
plasmid under the control of constitutive promoter P3, obtaining the plasmid

pQEaBrham, as shown in Figure 3.1.
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SHMT expression is codified in glyA gene. RhuA is codified by rhaD gene. Moreover,
the sequence that codifies for the 6xhistidine tags (6xHisTag) that merged with N-
terminus of RhuA allows its separation from all other cytoplasm proteins using
Immobilized Metal Affinity Chromatography (IMAC), is also present in the plasmid.

bla gene codifies for B-lactamase, giving the strain antibiotic resistance (ampicillin).

This resistance to antibiotics is useful in the first phase of growing (in complex

3 Materials and Methods

P3 PTS gxHisTag
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Figure 3.1. pQEaprham plasmid

medium, that may contain glycine), allowing keeping the plasmid.

Moreover, pREP4 plasmid is also present into the cells (Figure 3.2). This plasmid
provides kanamycin (neo gene) resistance and expresses the repressor protein (Lacl
repressor), encoded by the /acl gene. There are multiple copies (12) (Pinsach, 2009) of

pPREP4 plasmid into the cells, in order to produce enough quantity of repressor

molecules to regulate recombinant protein production.
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Figure 3.2. pREP4 vector

A new strain (E.coli M15 AglyAAlacY [pQEaPrham][pREP4]) was constructed as
described in literature (Fernandez-Castané et al., 2012). This strain has a deletion in
lacY gene, which codifies for the lactose specific active transport proteins (lac

permeases).

Fuculose-1-Phosphate Aldolase (FucA) producing strains were: E.coli M15
AglyA[pQEaffucAl[pREP4] (which has the same construction as E.coli M15
AglyA[pQEaBrham][pREP4], but containing the gene for FucA production) and E.coli
M15 [pQE-fucA][pREP4] (strain without deletion in chromosomic glyA gene and

without the a3 termination sequence).

Fructose-6-Phosphate Aldolase (FSA) is produced by E.coli BL21(DE3) strain (from now
BL21 (DE3) FSA), as described in literature (Sdnchez-Moreno et al., 2012). mipB gene,
encoding FSA was inserted into a modified expression vector pET22b(+) (Kreimeyer et

al., 2007). This strain was supplied by Prof. Dr. Pere Clapés from IQAC-CSIC, Barcelona.

w-Transaminase (ATA) is produced using E.coli BL21 (DE3) strain (from now BL21 (DE3)
ATA), harboring pLE1-A10-AcATA-D4 plasmid (supplied by c-LEcta) (Casablancas et al.,
2013).

Strains for the production of FSA and ATA are described in detail in Chapter 7.
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3.2 Culture medium and fermentation conditions

The working sequence for all the experiments was always the same. A detailed
explanation is going to be presented in sections 3.2.1 to 3.2.3, but a general picture of
it is described below.

Firstly, a cryobille from the stock stored at -80°C was made grow in rich medium. Once
the strain has grown, it was placed in a shake flask containing defined medium, until it
reached the exponential phase of the growth. At that point, the bioreactor was
inoculated. Once the glucose of the batch is completely consumed, the fed-batch
phase begins, through a predefined addition of nutrients. When the culture reached
the desired biomass concentration, a pulse of inducer (IPTG) was added to the culture,

making possible the overexpression of recombinant protein.

3.2.1 Pre-inoculum

Lysogeny Broth (LB) -containing 10g-L"* of peptone, 5g-L™ of yeast extract and 10g-L"
of NaCl- was used for all pre-inoculum growth. It was sterilized by autoclaving (120°C,

30 min). When necessary, it was supplemented with antibiotic, as shown in Table 3.1.

Table 3.1. Antibiotic supplementation in pre-inoculum cultures

M15 AglyA M15 AglyAAlacY M15 AglyA M15 BL21 BL21
[pPQEaBrham] [pPQEaBrham] [pPQEapfucA] [pQE-fucA] (DE3) (DE3)

[PREP4] [PREP4] [PREP4] [PREP4] FSA ATA
Ampicillin
4 0.1 0.1 0.1 0.1 0.1 --
(g'L?)
Kanamycin
4 0.1 0.1 0.1 0.1 -- 0.05
(g'L?)

From cryostock (-80 °C) in commercial Cryobilles (AES Chemunex), strains were grown
in Falcon tubes containing 10 mL of LB medium and the supplementary antibiotic.
Growths were performed at 37 °C and 150 rpm, reaching 1.8 to 2.1 units of optical

density (ODego) after around 16 hours of incubation.
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3.2.2 Inoculum

A Defined minimum Medium (DM) using glucose as a sole carbon source (Durany et al.,
2004) was employed for inoculum growth. Table 3.2 shows the DM composition used
for the different strains. It can be seen that the composition is mainly the same, with
little differences. All the different components in Table 3.2 were prepared separately,
save K,HPO,4, KH,PO,4, NaCl and (NH4),S0,4, that were prepared as a unique solution,
called macroelements. Sterilization of glucose and macroelements were made by
autoclaving (120°C, 30 min), while all the other components were sterilized by
filtration (0.20 um, Minisart® NY25. Sartorius Stedim). Concentrations of the solutions
prepared were: 600 gL' glucose, 17.91 gL' K;HPO4, 3.59 gL KH,PO., 4.52 gL
(NH4),S04, 2.76 gL™* NaCl, 500 gL MgS04-7H,0, 5 gL FeCls, 100 gL CaCl2-H,0. Trace
elements shown in Table 3.3 were prepared as a unique solution, and sterilized by
filtration (0.20 um, Minisart® NY25. Sartorius Stedim). The necessary quantity of

medium is prepared by mixing the corresponding volume from the stock solutions.

Table 3.2. DM composition for inoculum growth per liter of medium. A: E.coli M15 strains; B: E.coli BL21 (DE3)
FSA strain; C: E.coli BL21 (DE3) ATA strain.

Component (g-L’l) A B C
Glucose 5 5 20
K>HPO, 2.973 2.973 11.9
KH,PO, 0.596 0.596 2.4

NacCl 0.458 0.458 1.8
(NH,),S0, 0.75 0.75 3
MgS0,-7H,0 0.112 0.025 0.1
FeCl; 0.006 0.0025 0.01
CaCl,-2H,0 0.001 -- --
Trace elements solution (mL/L) 0.8 0.44 0.8
Thiamine 0.025 -- -
Ampicillin -- 0.0125 --
Kanamycin -- -- 0.05
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Table 3.3. Trace elements solution concentration by liter of trace element.

Component Concentration (g-L?)
AICl;-6H,0 0.04
ZnS0,4°7H,0 1.74
CoCl,-6H,0 0.16
CuS04-H,0 1.55
H;BO; 0.01
MnCl,-4H,0 1.42
NiCl,-6H,0 0.01
NaMoO, 0.02

5 mL of pre-inoculum were transferred to shake flasks, containing 100 mL of DM
described in Tables 3.2 and 3.3, with same cultivation conditions as pre-inoculum
cultures, until reaching 1.2 ODggo, that ensures the culture to be in the exponential

growth phase.

3.2.3 Bioreactor. Fed-batch operation

Defined minimal Medium was used in bioreactor growth. After batch phase, feeding
medium was necessary to achieve high cell densities. DM composition for batch phase
corresponds to Table 3.4. Feeding composition is shown in Table 3.5. All the
components were prepared as explained in Section 3.2.2.

In order to avoid co-precipitation with magnesium salts, 5 mL of phosphates solution
(500 gL™ K;HPO, and 100 gL™ KH,PO,4) were added manually to the culture every 30
ODggo increment. The solution was autoclaved (120°C, 30 min) for its sterilization.
Stock solution of kanamycin was prepared with a concentration of 100 mg-mL" and
stored at -20°C. Ampicillin (100 mg-mL™) 50% (v/v) ethanol-water stock was prepared
and stored at -20°C. IPTG stock was prepared at 100 mM, and stored at -20°C.
Antifoam (Antifoam 204, Sigma) was added to bioreactor whenever foam formation
was observed. Kanamycin, ampicillin and IPTG stocks were sterilized by filtration (0.20

um, Minisart® NY25. Sartorius Stedim). Antifoam was autoclaved (120°C, 30 min).
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Table 3.4. DM composition for bioreactor batch growth per liter of medium. A: E.coli M15 strains; B: E.coli BL21
(DE3) FSA strain; C: E.coli BL21 (DE3) ATA strain.

Component (g-L’l) A B C
Glucose 20 20 20
K>HPO, 11.9 11.9 11.9
KH,PO, 2.4 2.4 2.4

NacCl 1.8 1.8 1.8
(NH;),S0, 3 3 3
MgS0,-7H,0 0.45 0.1 0.1
FeCl; 0.02 0.01 0.01
CaCl,-2H,0 1.44 - -
Trace elements solution (mL/L) 2.88 0.90 0.8
Thiamine 0.1 - -
Ampicillin -- 0.05 --
Kanamycin -- -- 0.05

Table 3.5. Feeding solution composition per liter of feeding medium. A: E.coli M15 strains; B: E.coli BL21 (DE3)
FSA strain; C: E.coli BL21 (DE3) ATA strain.

Component (g-L’l) A B C
Glucose 478 478 478
MgS0,-7H,0 9.56 9.56 9.56

FeCl; 049 0.49 0.49

CaCl,-2H,0 0.1 0.1 0.1

Trace element solution (mL/L) 63 63 63

Thiamine 0.33 - --

Ampicillin -- 0.05 --
Kanamycin -- -- 0.005

For the batch phase, 80 mL of inoculum were added to 720 mL of DM with
composition shown in Table 3.4. Bacterial growth was carried out in a Biostat® B
bioreactor (Braun Biotech Int.) with 2L jar for E.coli M15 strains (BL21 (DE3) strain

fermentations were performed in a different bioreactor, as explained specifically in
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Chapter 7). The bioreactor is equipped with stirring, temperature, dissolved oxygen
and pH controllers. Temperature was maintained at 37 °C and pH was kept at
7.00£0.05 by adding 15% (v/v) NH40OH solution. Oxygen saturation (pO;) value was
maintained at 60% saturation by adapting the stirring speed between 350 and 1120
rom and supplying 1.5 L-h™ of air (enriched with pure oxygen when necessary). A
reduction in oxygen consumption and an increase in pH can be used as identification
for the batch phase ending. For the glucose limited feeding, a microburette (CRISON,
microBU 2030; 2.5 mL syringe, Hamilton) was used (Ruiz et al., 2009; Vidal et al.,
2005). Feeding was performed in order to maintain constant the specific growth rate
(usix) at a fixed value. Predefined exponential feeding profile based on mass balances
and substrate uptake was used for it (Pinsach et al., 2006). When culture reached the
desired biomass concentration, a pulse of IPTG was added, in order to have the
desired inducer concentration into the reactor

As reported in literature (Pinsach et al., 2006), specific growth rate can be modulated
(predefined exponential addition -open loop-) using a mathematical model based on
mass balances. The volume of feeding solution with S¢ concentration of glucose added
to the culture medium in order to maintain the s in a time interval can be calculated

using the Equation (3.1)

V., (t) = é(’:fﬂ + YLXS> X V(O - (exp(upie - AL) — 1) (3.1)

where:
e Stis the glucose concentration (g-L'l) in the feeding medium
* Mgy is the cellular maintenance coefficient
* Uy is the fixed specific growth rate (h™) wanted to maintain during At
*  Yysis the substrate yield
e tthe moment the feeding is started (h)
e Atistime interval

The scheme of the experimental setup is shown in Figure 3.3.
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Figure 3.3. Scheme of the experimental bioreactor setup

3.3 Analytical methods

3.3.1 Biomass

Cellular concentration was determined by optical density measurements at 600 nm of
wavelength (ODeggy), using a spectrophotometer (Uvicon 941 Plus, Kontrol). ODggo
values were converted to biomass concentration expressed as Dry Cell Weigh (DCW),
with 1 ODggo equivalent to 0.3 gDCW-L™ (Pinsach et al., 2008). This factor has been
assumed to be the same for all the strains, or, in any case, the difference assumed to
be lower than the error associated to measurements.

In order to use the Lambert-Beer Law, that makes possible a relationship between the

absorbance and the quantity of mass, it is necessary to be in the linear region of
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absorbance. This linear region is between 0.1 and 0.8 units of absorbance. Any sample
above 0.8 cannot be related to its real biomass concentration, and it is necessary to
make a dilution. Dilution was made with water, when necessary, to have a value of

absorbance in the linear range.

3.3.2 Glucose

Glucose concentration in culture supernatant was determined enzymatically using an
YSI 2700 (Yellow Spring Instruments) after separation from biomass. Supernatant of
1.5 mL of sample was separated by centrifugation (13400 rpm, 5 min) and filtration

(0.45 pm).

3.3.3 Inducer

IPTG analysis was performed by Liquid Chromatography (Shimadzu) with an UV/Vis
detector, that was operating at 210 nm of wavelength, coupled to a Mass
Spectrometer equipped with ESI (Electro Spray lonization) (Shimadzu) interface and a
single quadrupole. The delivery system was a LC-10AD.

Medium samples (1.5 mL) from the bioreactor were centrifuged (13400 rpm, 5 min)
and the supernatant was filtered (0.45 um), and diluted (with milliQ water) if
necessary in order to have a concentration within the measurement range (between 1
UM and 10 uM).

Mass spectrometry and liquid chromatography conditions are described in literature
(Fernandez et al., 2010). The mobile phase was prepared from milliQ water and formic
acid at pH=3, operating in isocratic mode. It was necessary one hour for the
equilibration of the column (300 x 7.8 mm ICSep ICE-COREGEL 87H3, Transgenomic®)
before the first injection. Flow rate was 0.6 mL-min™and 10 uL of sample (or standard)

were directly injected on the column.
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The flux was diverted using a valve (FCV-20H2, Shimadzu) in order to allow only
inducer peak to reach the spectrometer. A Shimadzu SIL-10AD automatic injector was
used, and data analysis was processed using Lab Solutions 3.04 software.

Both column and autoinjector were kept at room temperature. Retention time for
IPTG was 12.4 min, then the flow was directed to mass spectrometer 11 min after
injection, and diverted after 14.5 min, with 30 min as a total run time.

ESI source and positive/negative ionization mode were used. Nebulizing and drying
were made with nitrogen. The conditions for the MS data acquisition with the ESI
mode were: 1,6 kV probe voltage; 1.5 L-min™ nebulizing gas; 250 °C in the CDL (Curved
Desolvation Line); 200 °C in the heat block; and the acquisition mode was by SCAN,
between 100 and 400 m/z.

3.3.4 Protein

3.3.4.1 Sample preparation

Samples from bioreactor fermentation were diluted with milliQ water to an ODgg of 4
(for comparison purposes) (with a final volume of 1mL). Pellet resulting after
centrifugation (13400 rpm, 5 min) was resuspended with 1mL of lysis buffer (100 mM
Tris-HCI; pH=7.5) —maintaining an ODgg of 4. Cell suspension in lysis buffer was kept in
ice, and sonicated in order to disrupt the cells. Sonication consisted in 4 cycles of 15 s
pulses at 50 W (with 2 min between pulses), using a VC50 (Vibracell®, Sonics &
Material) with microtip probe. Cellular debris was separated from supernatant by
centrifugation (14000 rpm, 10 min, 4°C). Supernatant contained the intracellular

protein produced in the induction phase of the culture growth.

3.3.4.2 Total protein

Total protein concentration was determined by Bradford Method. This method uses
Coomassie® Protein Assay Reagent Kit (Thermo Scientific, US) and Bovine Serum
Albumin (BSA) as standard. To determine the absorbance of the different samples,

Microplate system (Microtiter Plate Flat, SUDELAB 900011) was used. 200 pL of
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Coomassie reagent were placed in the Microplate. 7 pL of sample or standard were
added to the 200 pL of Coomassie reagent. After 15 minutes of reaction, the

absorbance was read with ThermoScientific® Multiskan FC equipment.

3.3.4.3 Specific protein

Once total protein is quantified, it is needed to specify the amount that corresponds to
the target protein. The determination of the percentage of target protein was
determined using NuPAGE® 12% Bis-Tris gels using MES-SDS as running buffer,
following the manufacturer’s manual (Invitrogen, US). Samples were prepared with 5
uL of sample buffer 4X; 3 uL milliQ water; 2 plL reducing agent and 10 pL of the protein
sample. 10 minutes of incubation in the dry bath were necessary to denaturalize the
sample (70°C, 300 rpm). One of the wells of the gels was charged with 5 uL of protein
standard marker, and the others with 15 pL of sample.

After 40 minutes of running at 200 V, gels were rinsed with distilled water, and
covered with gel fixation solution (40% methanol, 10% acetic acid in water) for 1 hour.
After fixing gels, they were rinsed with distilled water and covered with Bio-Safe™
Coomassie (Bio-Rad®) in order to dye the protein bands. After 1 hour dying, gels were
rinsed again with distilled water, and covered with water for 1 or 2 hours.

Percentage of the protein was calculated by densitometry using the specific software

Image Lab© (Bio-Rad Laboratories).

3.3.4.4 Specific activity
=  RhuA

RhuA activity can be determined through the initial NADH disappearance rate in the
aldolase reaction, which is coupled to a second reaction catalyzed by
a-Glycerophosphate Dehydrogenase (a-GDH) (Vidal et al., 2003), as can be seen in

Reactions (a) and (b).

aldolase

Substrate «——— DHAP + L — lactaldehyde (a)
a—GDH
DHAP + NADH —— a — glycerophosphate + NAD* (b)

46



3 Materials and Methods

Reaction (a) is the natural aldolase reaction, where the substrate (rhamnulose-1-
phosphate) is transformed to L-lactaldehyde and DHAP. Rhamnulose-1-phosphate is
prepared in the laboratory (Vidal et al., 2003). In presence of NADH, DHAP is rapidly
reduced to a-glycerophosphate through a-GDH enzyme, while NADH is oxidized to
NAD" as shown in Reaction (b).

The evolution of NADH disappearance was followed by spectrophotometry at 340 nm
wavelength and 25 °C, using a spectrometer UV-VIS Cary (VARIAN). Activity of the
aldolase is proportional to NADH disappearance rate. One unit of activity is defined as
the amount of aldolase capable to convert 1 umol of substrate in DHAP and L-
lactaldehyde per minute.

Table 3.6 shows the concentration of every reagent, as well as of the activity buffer,

for Reactions (a) and (b) depending on the aldolase used.

Table 3.6. Reagents concentration for the activity assays

Reagent Concentration
NADH 0.15 mM

Substrate 2mM
a-GDH 2.5U-mL?

TRIS-KCI 50-100 mM

All reagents were added into a 1mL quartz cuvette, to a final volume of 980 pL. Sample
volume, in this case, was 20 pL.

The calculation of the volumetric activity is described by Equation (3.2).

AAb534_0
&

AU -mL™' = - DyLy, (3.2)
where:
AAbssy is the absorbance variation per minute at 340 nm wavelength (min™)
 &is the NADH molar extinction coefficient (6.22 mM™.cm™)

e V.is the total assay volume (mL)

e V. isthe volume of the aldolase sample (mL)
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e Dy is the dilution factor of the sample (if necessary, when the absorbance read
is over the limits of detection of the hardware)
* L, is the optical path of the cuvette (cm)
Activity assay protocols for FSA and ATA are described in their specific chapter
(Chapter 7).

3.4 Modeling and parameter estimation
In order to simulate and estimate the parameters of the model, as well as to perform
the numerical integration of the different differential equations, commercial specific

softwares were employed. Specifically, MathWorks™Matlab® and PSE® gPROMS®.
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4 Preliminary studies. Fed-batch fermentations for
recombinant protein production

Fed-batch fermentations for recombinant protein production using E.coli as host are
commonly used for its simplicity in manipulation and good results. Fed-batch growth
allows the culture to reach high cell densities before induction, which is important in
terms of production.

Previous work in the research group dealt with recombinant aldolase production in
fed-batch cultures growing at constant specific growth rate, and three variables have
shown to be key in protein production: initial inducer concentration ([IPTG]e0, UM);
fixed specific growth rate during fed-batch (us, h™') and biomass concentration at
induction (Xing, gDCW-L?).

Inducer dosage has been one of the most studied factors. Two different induction
strategies have been proposed: pulse inducer addition and continuous induction.
Continuous induction consists of the modulation of the transcription rate by
continuous inducer feeding in a constant ratio to biomass. This strategy allows
extending the production phase and achieving optimal yields in some systems. On the
other hand, induction by pulse consists of the addition of the necessary dose of IPTG,
able to induce the culture, in one single pulse.

As reported in literature (Pinsach et al., 2008; Ruiz et al., 2009)), continuous induction
applied to aldolase expression system leads to protein activities similar to those
obtained using an optimal pulse induction, but with lower IPTG requirements.
However, because of its simplicity, pulse addition (when the culture reaches the
desired biomass concentration) has been chosen as the induction strategy for this
work. One of the constraints of pulse-induced processes is the metabolic burden
imposed on the host cell by the production of the recombinant protein. In
consequence, there is a decrease of specific growth during the induction phase of the
cultivation related to the amount of IPTG at induction (Ruizet al., 2011).

Specific fixed growth rate depends on the nutrient feeding during the fed-batch phase

of the experiments. Nutrients for culture growth are added through the predefined
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exponential feeding profile presented in Chapter 3 (Materials and Methods, Equation
(3.1)), leading to a constant specific growth rate. This feeding takes into account the
biomass-substrate yield (Yxs) as well as the desired growth rate (psx) (Pinsach et al.,
2006). However, once the induction begins, it can be seen that specific growth rate
decreases due to overexpression of the recombinant protein, and makes necessary to
introduce either manual or automatic control in order to avoid glucose accumulation
in the culture medium. Glucose accumulation (as a result of specific growth rate
decrease) leads to lower protein activities, as reported in literature (Donovan et al.,
1996; Pinsach et al., 2008).

Fed-batch cultivations make possible working at higher cell concentrations than in
batch or continuous reactors (Maresova, Stepanek, & Kyslik, 2001; Shiloach et al.,
1996; Turner, Gregory, & Turner, 1994). However, the high oxygen requirements in
high cell population growth (oxygen limitation can occur), as well as the increase of
viscosity and the changes in surface tension of the growing culture (low mass transfer
rates, hindering nutrients and oxygen transfer), determine the maximum biomass
concentration at induction time in order to allow the culture to grow and produce
recombinant protein.

This chapter will present a qualitative and quantitative study of the importance of
these three variables (inducer concentration, biomass concentration at induction and
fixed specific growth rate) using the E.coli M15 AglyA [pQEafrham][pREP4] strain. It
will contribute to the familiarization with the experimental methodology as well as to
give a global knowledge about protein production in recombinant E.coli cultures.

In previous works of the research group, the interactive effects of the three
parameters mentioned before was studied using a Response Surface Methodology
(RSM) (Fernandez, 2012). With RSM it was possible to obtain equations (one for the
specific protein in mass units (mg RhuA-g'DCW) and another one for specific protein in
activity units (AU-g'DCW)), expliciting the crossing effect of the variables and

obtaining a maximum for specific protein production in mass and in activity.
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4.1 Previous work
Previous knowledge was used to delimitate the ranges of variation for the three

variables, which are presented in Table 4.1.

Table 4.1. experimental ranges for the studied variables at induction time.

Variable Units Range

Inducer concentration ([IPTG].) UM 24-96

Biomass concentration at induction time (Xing) gbcw-L"! 20-40
Specific growth rate () h* 0.06-0.22

IPTG concentrations around a maximum of 96 uM have been identified to be sufficient
for reaching the maximum protein production (Fernandez-Castané et al., 2012;
Pinsach et al., 2006; Sevastsyanovich et al., 2009). The lower value for induction in this
case is 24 uM, following the RSM methodology that fixes it.

E.coli, in fed-batch cultures, can grow up to biomass concentration higher than 100
gDCW-L" (Lee, 1996). However, as said in the introduction of this chapter, oxygen
limitations may compromise protein production. For this reason, the experimental
range of biomass concentration at induction time was set between 20 gDCW-L™ and 40
gDCW-L. The upper limit of the range has been selected for a final expected biomass
concentration close to the maximum compatible with the oxygen transfer capacity of
the system. Induction when biomass concentration is higher than 40 gDCW-L™ leads on
oxygen limitations that will not allow the culture to grow. The lower limit was set to
accomplish the RSM range.

The maximum specific growth rate for this strain is pmax = 0.55 ht (in DM medium), but
in order to avoid acetate accumulation -which clearly inhibits culture growth at specific
growth rates over 0.25 h™ (Ruiz et al., 2009), the effect of growth rate has been
studied in a range between 0.06 h™ and 0.22 h™". Below specific growth rates of 0.06
h™, the process is extremely slow, leading to bad productivities and experiments hard
to follow because their duration.

Subsequently, the experimental space was defined according to the knowledge of the
system, aiming the study of the combined effect of those three variables in protein

production and its activity.
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Experiments performed changing these three different experimental conditions are
presented in Table 4.2. It can be seen that maximum specific protein in mass is
reached when inducer is maximum, biomass minimum and specific growth rate
maximum. These conditions correspond to an extreme of the curve. Specific protein
(in activity) maximum is reached when induction is made at low biomass
concentration, low inducer concentration and specific growth rate maximum, which
represent an extreme of the experimental space.

On the other hand, in terms of maximum total protein production in mass units
(mgRhuA-L?), it is reached at maximum biomass concentration at induction (data not
shown). In the same way, average high values of activity (AU-L™) are found when the
biomass concentration at induction point was 40 gDCW-L™" (data not shown). This
reason makes necessary reaching the maximum possible biomass concentration

before induction if maximum total protein production and activity is wanted.

Table 4.2. Experiments performed at different induction conditions.

Experiment Inducer Biomass Growth rate Specific protein Specific protein
(uMm) (g-LY) (h?) in mass in activity
(mg RhuA-g* DCW) (Au-g*DCw)
1 24 20 0.1 93.0 489.0
2 96 20 0.1 102.6 569.4
3 24 40 0.1 73.6 375.2
4 96 40 0.1 56.8 301.4
5 24 20 0.22 90.9 756.9
6 96 20 0.22 122.0 596.2
7 24 40 0.22 59.2 288.0
8 96 40 0.22 90.8 388.5
9 60 30 0.06 83.9 194.3
10 60 30 0.16 89.3 522.6
11 60 30 0.16 83.6 509.1
12 60 30 0.16 86.6 500.2
13 60 30 0.16 85.1 506.2
14 60 30 0.16 85.2 498.4
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Equation (4.1) showing the effect of the three variables on the specific protein in mass

units was found using RSM (Fernandez, 2012).

Specific RhuA in mass (mg - g~'DCW) =
14727 +032-1—241-X—32479 -u—9.09-1073 -1 - X +
+44-1-u+051-X-pu—428-1073-1240.03- X2 +430.86-u>  (4.1)

Equation (4.2) shows the surface response of specific activity of the protein:

Specific RhuA in activity (AU - g71DCW) =
—-28835+3.03:-1+840-X+757632-u+012-X-1—-1811-1-u—
—112.05-X-u—0.02-1> —0.15- X? — 6338.25 - u? (4.2)

Unfortunately, using I, X and p as variables, the optimal point is found in a corner of

the experimental space.

4.2 Variable change

Even though inducer concentration, biomass concentration at induction and specific
growth rate can be studied individually, there are published evidences that a key
parameter in protein production optimization is the relationship between inducer and
biomass concentrations at induction time (I/X, umol IPTG-g'lDCW) (Pinsach, de Mas, &
Lépez-Santin, 2008; Ruiz et al., 2011). This parameter was not included in Response
Surface Methodology (RSM) previous work, but the resultant equation can be
rewritten allowing the study of I/X effect on protein production and activity. In this
way, a maximum in specific protein in mass as well as in activity is wanted, but using

I/X as study variable instead of inducer concentration.

Equation (4.1) can be rewritten to take into account the effect of the inducer to

biomass ratio (I/X) as shown in Equation (4.3):
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Specific RhuA in mass (mg - g~'DCW) =
14727 +0.32-X -1/, —241-X - 32479 -4 —9.09-1073 - x - I/, - x +

2
+44-X- 1/ p+051-X-p—428-107-(x-1/,)" +0.03-(X)? +
+430.86 - 12 (4.3)

In order to compare the total production depending on biomass concentration at the
end (in mg-L'1 of cultivation), two different scenarios will be simulated: induction at 20
gDCW-L" and at 40 gDCW-L™.

Equation (4.3) has been used to obtain surface and contour plots for specific protein in
mass units. Moreover, profiles corresponding to the specific growth rate where the
maximum is reached were also calculated. The results are presented in Figures 4.1 to
4.6.

On the other hand, as it has been done with specific protein in mass, previous
equation from Alfred Fernandez Doctoral Thesis (Fernandez, 2012) (Equation (4.2)) has

been changed to take into account the effect of I/X, resulting in Equation (4.4):

Specific RhuA in activity (AU - g71DCW) =
—28835+3.03-X -1/, +840-X +757632-p+0.12-X%-1/, -
2
—1811-X -1/ - p—112.05-X - p—0.02- (X -1/,)" -
—0.15 - X2 — 6338.25 - 2 (4.4)

Equation (4.4) has been used to obtain surface and contour plots for specific protein

activity. Moreover, profiles corresponding to the specific growth rate where the

maximum is reached are also presented. Figures 4.7 to 4.12 show the results.
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Figure 4.1. Surface plot of specific protein in mass induced at 20 gDCW-L'1

Figure 4.2. Contour plot of specific protein in mass induced at 20 gDCW-L'1

T T T T
L . s
a =
7
L %
LA - s
L Tos -
N
%5
L —
100 100 100
85 a5
L 85 i
_———__*w -
- I - - p—
85— b
— __-4————_—_'_80 —
H 1 L5 —]
0.16 0.18 0.2 0.22
wih™)

55



zpecific protein production (mg Fhud -g '1DCW]

“Tocw)

gpacific protein production (mg Fhud -g

140

4 Preliminary studies. Fed-batch fermentations for

recombinant protein production

.

ItX

Figure 4.3. Specific protein in mass profile for p= 0.22 h™ induced at 20 gDCW-L'1

ST,
NS .
OO .
L T Y -, -
s \:“;:““\\

VL AR
" “\x:‘{t\“‘
Comapn T, .
VRANRS

0.15

0 0.1
X .
wih)

Figure 4.4. Surface plot of specific protein in mass induced at 40 gDCW-L'1



4 Preliminary studies. Fed-batch fermentations for

It

zpacific protein producton (mg Fhud-g =~ 1 DCW)

4.5

3.5

2.5

0.5

0.1 0.12

105

100

95

90

85

80

75

70

65

60

recombinant protein production

W &0 20—

L
0.16
wih)

0.18 0.2

Figure 4.5. Contour plot of specific protein in mass induced at 40 gDCW-L'1

Figure 4.6. Specific protein in mass profile for p= 0.22 h™induced at 40 gDCW-L'1
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Figure 4.11. Contour plot of specific protein in activity induced at 40 gDCW-L'1

550 T T T T T T T T T

500

450

400 |

350

300

250

200

spacific protein activity (U-g ' DCW)

150 ¢

1 ] ] ] ] 1 ] ]
000 0.5 1 1.5 2 2.5 3 35 4 4.5 5

It

Figure 4.12. Specific protein in activity profile for u= 0.1 h™induced at 40 gDCW-L'1

Figure 4.12 shows, in this case, the profile at u = 0.1 h™, when the activity is maximum.
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Comparing the results obtained in Figures 4.1 to 4.6, it can be seen that specific
protein in mass units is higher when induction is performed at biomass concentration
of 20 gDCW-L" than the obtained when biomass has 40 gDCW-L™ of concentration. In
terms of total protein in mass production, as biomass is twice higher, induction at 40
gDCW-L" is going to reach much more total protein (in fact, 260 mgRhuA-L™* for
induction at 20 gDCW-L™; and 400 mgRhuA-L™ if the induction is at 40 gDCW-L"). This
fact makes interesting to work with the maximum biomass concentration possible at
the end of the batch, taking into account the process limitations.

Moreover, it seems clear that specific production in mass rises with the growth rate.
This fact could be explained due to the up-regulation of the genetic machinery at
higher growth rates, and therefore allowing a higher production of the heterologous
protein (RhuA). Accordingly, the standard specific growth rate can be set to psix = 0.22
h™. Figures 4.1 to 4.6 show that in terms of specific protein in mass, it is important to
work at maximum affordable growth rate. In that case, two different situations can be
found. On one hand, if the induction has been made at 20 gDCW-L'l, there is not a
maximum in the range studied. This means that it is possible that a higher
concentration of IPTG would be needed to achieve the maximum specific protein in
mass units. On the other hand, when the culture is induced at a biomass concentration
of 40 gDCW-L'l, a maximum is reached at I/X ratio of 2.5. Then, in order to optimize
the total amount of protein, it is necessary to work at maximum specific growth rate
possible (avoiding growth inhibitions), inducing at higher possible biomass
concentration (avoiding oxygen and mass transfer limitations) and no more than 2.5
umol IPTG-g*'DCW is needed.

Otherwise, Figures 4.7 to 4.12 show the results in terms of specific protein in activity,
where two different situations can also be found. On one hand, induction at low
biomass concentration needs to work at maximum specific growth rate, and the
maximum is located at I/X ratio of 2 umol.gDCW™. On the other hand, if high biomass
concentration is present in the bioreactor at induction time, the model reaches its
maximum when specific growth rate is as low as possible, leading to bad productivities
and slow processes. Specific activity when biomass concentration at induction is high

takes lower values (increase of 20% when induction takes place at 20 gDCW-L™).
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Moreover, |/X ratio takes a value of around 4 umol.gDCW'l. This fact could seem to be
in contradiction with the maximum found in specific protein in mass, but it can be
attributed to down regulation of the genetic machinery at low growth rates which
allow a better folding of the proteins (Gasser et al., 2008).

Specific growth rate for maximum specific protein in mass is different than for the
maximum specific protein in activity. In this case, it will be necessary to decide a
compromise between total quantity of protein into the fermentor and its activity.
Inducing at high biomass concentration allows obtaining higher amount of protein,
which can be maximized working at high specific growth rate. However, working at low
i will lead to achieve higher protein activity. Then, a compromise in the value of fixed
growth rate is needed to achieve a proper quantity of aldolase with good activity. As it
is more interesting to achieve high activity values instead of the production of inactive
protein, it can be seen that setting the standard experimental conditions to 20
gDCW-L" and 0.22 gy will lead to higher specific activity of the protein, and better
activity productivity. The volumetric specific activity productivity when induced at 20

gDCW-L ! is 550 AU-L-h™, while it is 500 AU-L'*-h™ when induced at 40 gDCW-L™.

4.3 Conclusions

It has been possible to investigate the process variables effect taking into account the
I/X ratio and achieving a significant empirical mathematical model for maximum
specific RhuA production in mass and in activity units.

Not extremely high concentration of inducer is needed to achieve a maximum in
specific protein production (both in activity and mass), which not only depends on
inducer concentration, but also on the specific growth rate and inducer to biomass
concentration ratio. Only 2-4 pmol IPTG-g'DCW are needed.

Otherwise, since IPTG concentration at induction is an important parameter, further

study about its role in inductive expression systems will be needed.
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5 Modeling IPTG transport phenomena in fed-batch high-cell
density cultures of E.coli

Although a maximum in activity production has been found in Chapter 4, it is necessary
to pursue with IPTG transport studies. RSM models use statistics for the determination
of optimal points, but they are not time-dependent. RSM gives an idea about the
optimal experimental conditions, but does not describe the process. Fundamental-
based models want to describe the evolution of the different variables involved in the
process, making a description of it.

As seen in the previous chapter, IPTG dose added to the culture in order to induce the
overexpression of the recombinant protein is a determinant factor in aldolase
production (Donovan et al., 1996; Durany et al., 2004). Correlation between aldolase
production and inducer concentration is complex (Ruiz et al., 2011) and some different
hypothesis can be found in literature. Some of them suggest that the probability of
binding between IPTG and repressor depends on the intracellular concentration of
inducer (Vilar, Guet, & Leibler, 2003), while some others support that induction system
is stochastic (Rao, Wolf, & Arkin, 2002), using every variable independently.

lac operon derived systems (described in General Introduction section), as productive
systems, with additional copies of its constituents (i.e. lacl repressor gene and
operator sites) present in plasmids are usually not described in literature (Vilar & Saiz,
2013) for the global process of protein production, and if described, lac operon
dynamics is modeled with scarce and indirect experimental data. Electrical membrane
potential, as well as interaction between membrane proteins and metabolites have
been proposed in literature to explain the IPTG transport mechanism between the
culture medium and the intracellular space (Cuppoletti & Segel 1975; Garcia et al.
1982). Nevertheless, more recent publications in the field formulate some different
hypothesis about inducer transport: in addition to semipermeable membrane that
allows IPTG diffusion through itself, active transport must be taken into account
because of lactose permeases (which expression is also promoted by IPTG) (Jensen &

Hammer, 1998; Jensen, Westerhoff, & Michelsen, 1993). IPTG could go out from
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intracellular space by the same mechanism as foe entering. However, other authors
consider that effects of active transport from intracellular to extracellular space are
negligible, as well as the effect of diffusion in IPTG transport from culture medium to
the intracellular space (because its minor contribution) (Noel, Pilyugin, & Narang,
2009).

In addition to the controversy about transport mechanism, a bistability behavior of the
operon, due to population diversity in function of the induction, has been postulated
(segregated models). Depending on the amount (or concentration) of inducer, fully or
non-fully induced cultures can be found, with different behavior both in IPTG transport
and protein production (Laurent, Charvin, & Guespin-Michel, 2005; Noel et al., 2009).
Moreover, other variables, such as the union between repressor and inducer, and
glucose and lactose permease concentration, can influence in inducer transport
mechanism (Ozbudak et al., 2004; Santillan & Mackey, 2004; Santillan, 2008). Only
indirect evidences (like B-galactosidase activity or fusion of fluorescence proteins with
the lac operon) have been used to contrast all these hypotheses, leading to the
proposition of theoretical models, but the validation of the system (and its equations)
needs direct measurements of the elements involved.

An inducer quantification method has been recently developed, allowing the
obtainment of direct measurements of extracellular IPTG (Fernandez et al., 2010). This
method, based on HPLC-MS (High Performance Liquid Chromatography linked to Mass
Spectrometry) allows the determination of extracellular inducer concentration, and
hence the estimation of the intracellular concentration, making possible modeling the
experimental behavior and validate the different hypotheses.

In this chapter, a validated mathematical model of IPTG uptake, using real
experimental data from fed-batch cultures is reported by the first time. The
experimental system was the production of Rhamnulose-1-Phosphate Aldolase (RhuA).
The mathematical model, describing extracellular IPTG profiles as well as intracellular
inducer accumulation along the time, will be built and calibrated. The model that is
going to be developed will incorporate the effects on IPTG uptake of both active and
passive transport phenomena, related to extracellular and intracellular IPTG

concentrations along time. Moreover, the effect of biomass concentration and the
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specific growth rate at induction point will be studied. The model will be validated
using experimental data of three different strains, two of them producing Fuculose-1-

Phosphate Aldolase (FucA), and one producing Fructose-6-Phophate Aldolase (FSA).

5.1 Model balances

An unsegregated, unsteady, unstructured and based on first principles model has been
proposed to describe inducer transport in IPTG induced fed-batch cultures of E.coli
M15AglyA [pQEaBrham][pREP4] producing RhuA. The selection of the type of model
has been made following the explanation of the General Introduction Chapter. Cells
are considered as single compartment perfectly stirred, meaning that inner

concentration is assumed uniform.

Total volume of cells in the reactor can be calculated using experimental data of the

total volume and experimental biomass concentration along the time:

Yeel  0,0023 447 (L-h™) (5-1)
constant 0.0023 is the specific cell volume in Lce”-g'lDCW, according to literature

(Bennett et al., 2008).

Total biomass in the reactor (XV, gDCW), can be calculated from experimental biomass
concentration (X) and experimental volume (V) data. Resulting values of (XV) are
adjusted to a time-dependent function using splines that allows the evaluation of the
derivative. Total volume in the bioreactor is also adjusted to a time-dependent spline
function.

Culture medium volume can be calculated by difference between V and Vg

AVm _ AV dVecel .1
dt ~ dt dt (L-h™) (5.2)

65



5 Modeling IPTG transport phenomena in fed-batch

high-cell density cultures of E.coli

IPTG evolution can be written following mass balances as:

d[IPTG], —r Vi —[IPTG] 22 i

[ dt | — - dat (MM -h 1) (53)
d[IPTG); T'Vm—[IPTG]i% B

dat - Vel (‘LIM -h ) (54)

Equations (5.3) and (5.4) describe the variation with time of extracellular and
intracellular IPTG concentration ([IPTG]e, [IPTG];, respectively) as a function of the net
transport rate (r) and a dilution term. Net transport rate (r, uM-h*) is the target of the
modeling, because it is necessary to calculate the IPTG profiles.

In order to estimate the parameters of the model, only measured values of [IPTG].
have been used because experimental values of [IPTG]; were not reliable enough due
to the experimental errors associated to sample processing (Fernandez-Castané et al.,

2012).

5.2 IPTG transport rate modeling

Previous studies comparing IPTG transport in a lacY deficient strain (from now lacY
mutant strain) —gene codifying for lactose permease formation- and its parent strain
showed qualitative differences. As it is shown in Figure 5.1 (where ti,qg is time after
induction) -as an example-, parent strain exhibits faster initial transport rate than lacY
mutant strain when all experimental conditions are the same (inducer concentration,
biomass concentration at induction and specific growth rate), indicating significant
differences in transport mechanisms that should be studied separately (Fernandez-
Castané et al., 2012; Fernandez-Castané et al., 2012). Lactose permeases mediate the
specific transport mechanism of IPTG uptake. lacY mutant strain (lactose permeases
deficient) does not have specific active transport mechanism, and the fact that exhibits
a lower initial transport rate could mean that active transport is the main mechanism
of IPTG uptake for the parent strain. Then, the strategy for modeling will be, firstly, to
study the effect of the non-specific transport. This is necessary because specific active

transport is masking all the other transport mechanisms.
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Figure 5.1. [IPTG],. depletion comparison for parent strain and /acY mutant strain. (o) parent strain; (¢ ) lacY

mutant strain; (--) trend curves.

5.2.1 IPTG transport rate model for lacY mutant strain

E.coli M15 AglyAAlacY [pQEarham][pREP4] strain was used to determine the transport
mechanism in absence of lactose permeases.

Four different experiments, using the lacY mutant strain, induced at 10 uM, 20 uM, 54
UM and 200 uM, were conducted. All of them were induced at the standard conditions
explained in Chapter 4: when reached a biomass concentration of 20 gDCW-L" and
fed-batch cultivations were grown at specific growth rate of p=0.22 h™".

The first approximation of modeling was assuming that only diffusion through cellular
membrane takes place in absence of lactose permeases (the specific transport
proteins). However, as it can be seen in Figure 5.2, the calculation of intracellular
concentration (from extracellular experimental data) of IPTG (as difference between
total amount added and the remaining in culture medium) for every experimental
point shows that [IPTG]; can be higher than [IPTG],, indicating that, even in absence of

the specific transport proteins, diffusion can not be the only transport mechanism.
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In fact, in order to allow intracellular IPTG concentration to be higher than
extracellular and to match the experimental extracellular measures, IPTG transport
rate has to take into account some active transport contribution (not related to lactose

permeases) as well as diffusive mechanism.

20 - 30 4 -
18 1 . r} /{"/.\\
16 g 2 BN /7 X
— . b = { N\ >
2 14 b T o6t 27
= - e i R S
) 12 + / O] / \\._’_,.
— = [
o 10 Begl o &5 )
e / _.‘**. :
= 84 - o __ — |
= - * 2 10
a 87 g |
T 4 I
“ 51
29 \ u "
0 'f!: 1 0!
0 1 2 3 4 5 0 1 2 3 4
toa (M) Loa (R)
200 — 250 -
180 4 ¢
} o P~ -
160 - N A 200 —e- — o =
= 140 - [y N Fo = /
= 11y e =2 /
o 1204 Y o 150 /
= | = /
e 100 ‘I e /
2 | 2 /
5 80 ;,l ) 100 j
= | -
o 60 e o /
40 W =8 so /
20 | I/
I , |/
1 C| ) D
0 1 2 3 4 5 0.0 05 1.0 15 20 25

Figure 5.2. (¢ ) experimental [IPTG]. and (o) point by point calculated [IPTG]; for lacY mutant strain fed-batch
cultures. A: [IPTG]. c=10 L1M; B: [IPTG].c=20 LUM; C: [IPTG]c=54 LM; D: [IPTG] =200 M.

Equation 5.5 presents both contributions (diffusion and active transport). Diffusion
rate depends on the difference between extracellular and intracellular inducer

concentration, and also on a specific mass transfer coefficient kea (h™).
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k [IPTG],

r = kea([IPTG], — [IPTG]:) + Ky+[IPTG],

(5.5)

For nonspecific active transport, a Michaelis-like expression has been chosen because
the similarity between transport proteins and enzymes can be extended to the kinetics
of their action (Alberts et al., 2002). In this specific case, assuming that the transport is
nonspecific for lactose (neither IPTG), Ky value is expected to be much higher than
[IPTG]e, and the expression for IPTG transport rate can be rewritten as shown in

Equation (5.6).

r = k.a([IPTG], — [IPTG],) +K [IPTG], (5.6)
where K'= k/Ky.

The model corresponding to Equations (5.1) to (5.4), using Equation (5.6) as IPTG net
transport rate was fitted to experimental data obtained from the experiments
presented above. Every experiment has 10 to 15 extracellular IPTG concentration
measurements, and the model has 2 different parameters to be estimated.

The values found for the two parameters of Equation (5.6) are presented in Table 5.1.
As a result of model fitting and parameter estimation, Figure 5.3 shows the
experimental extracellular measurements, and the predicted evolution of IPTG both

extracellular and intracellular.

Table 5.1. Estimated values for IPTG transport rate in lacY mutant strain

Parameter Value Units
k.a 0.213+2-10° h*
K’ 0.0893+4-10* h*
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Figure 5.3. Model fitting for lacY mutant strain. (*) experimental data, (-)[IPTG]. model prediction, (- -) 10% error
interval, (----)[IPTG]; model prediction. (A) [IPTG]. c=10uM; (B) [IPTG],0=20u.M; (C) [IPTG]¢ c=54uM; (D)
[IPTG].,=200pM.

As it can be seen in Figure 5.3, the model is able to predict properly the IPTG depletion
from medium culture to the intracellular space for lacY mutant strain, within a 10%
error. The error associated to analytical measurements was already estimated to be in
the 10% range (Fernandez et al., 2010), without accounting for other possible errors
associated, for example, to the measure of ODgqo.

In summary, IPTG transport rate for lacY mutant strain can be explained as diffusion

plus nonspecific active transport.
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5.2.2 IPTG transport rate model for parent strain

The starting point for parent strain IPTG uptake modeling is lacY mutant strain fitted
equation (Equation 5.6). As a first approach, a new term will be added to Equation
(5.6) describing the contribution of lactose permeases to IPTG transport.

Inducer transport rate depends on extracellular and intracellular IPTG concentration,
and literature describes the important role of lactose permeases in IPTG uptake
(Laurent, Charvin, & Guespin-Michel, 2005; Noel et al., 2009; Ozbudak et al., 2004;
Santilldan & Mackey, 2004; Santillan, 2008). Some of these models include equations
trying to describe how IPTG induce permeases formation, which, in turn, catalyzes
IPTG transport. In this work, as no experimental data of lactose permeases activity are
available, their concentration was not explicitly included in the model and a simplified

equation based on extracellular and intracellular IPTG concentrations is proposed:

k'[IPTG],

r = k.a([IPTG], — [IPTG];) +K [IPTG], + m

(uM - h™") (5.7)

Equation (5.7) shows that transport rate depends on the same mechanisms as for lacY
mutant strain (diffusion and nonspecific active transport) and specific active transport
due to lactose permeases. This specific active transport depends directly on the
extracellular concentration of inducer, and it is inhibited by the intracellular IPTG
concentration. The square term for intracellular concentration matches with Michaelis
like model with substrate inhibition.

Moreover, because some different biomass concentration and specific growth rate at
induction time can be used, it is necessary to study their effect in transport rate
equation, giving the model wider prediction range. Figure 5.4 shows the experimental
dependence of initial normalized IPTG transport rate with biomass concentration at
induction (Xihq) and with the specific growth rate of the fed-batch phase (usy). It can be
seen that initial transport rate depends linearly with biomass concentration at

induction, while the dependence is exponential with specific growth rate.
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Figure 5.4. Initial transport rate dependence with (A) biomass concentration at induction and (B) fixed specific

growth rate.

With the information in Figure 5.4, Equation (5.7) can be modified to take into account
these new contributions. Linear dependence with biomass concentration can be
attributed to the fact that, the more cells in the culture, the more IPTG can be
transported with direct proportionality. On the other hand, specific growth rate
affects, exponentially, gene transcription rate (lacY gene in this case) and its
expression. Moreover, these contributions will only affect the active transport terms,
because are the ones depending on the cellular concentration and its growth. Diffusion
takes into account biomass concentration evolution with time on an implicit way
(through [IPTG]e and [IPTG]; evolution with time, Equations (5.3) and (5.4).

Equation (5.8) shows the final expression for parent strain IPTG transport rate.

k'[IPTG],

r = k.a([IPTG], — [IPTG);) + K1 Xina (K’[IPTG]e + W

) exp (Kangiz) (5.8)

with Xinq as biomass concentration at induction and psx as the specific growth rate at
induction point.

Nevertheless, parameter K’ from equation (5.6) already includes the effect of Xihq and
Ui, because all the mutant strain experiments were performed at same biomass
concentration at induction (20 g.L™) and at the same fixed specific growth rate (0.22

h™). Then, in fact, K’ must be rewritten as shown in equation (5.9)
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K'=0.0893h™ 1 = K" - K;Xjna - exp(Kyu) = K" - 20K, - exp(0.22K,) (5.9)

were all the terms are constant. Because of that, all of them were included in a sole
parameter in equation (5.6) describing mutant strain transport. This fact changes
equation (5.8), yielding the expression shown in equation (5.10), where the parameter

of the non-specific active transport changes according to equation (5.9)

k'[IPTG],

r= kca([IPTG]e — [IPTG]l) + K1 Xina (K”[IPTG]e + m

Jexp (Kougix)  (5.0)

with K" = 00893
20K, -exp (0.22K3)

(5.11)

5.2.2.1 Induction zones

Parent strain exhibited two different IPTG transport rate behaviors. As already
published (Fernandez-Castané et al.,, 2012), a gradual extracellular inducer
concentration decrease with time is found when the concentration of IPTG at
induction point is below 30 uM, because of low initial transport rates (see Figure 5.5).
On the other hand, when IPTG concentration at induction point is above 60 uM, faster
initial transport rates are observed (one to two orders of magnitude higher) and IPTG
presents an initial rapid depletion from medium culture (as shown in Figure 5.5 as an
example). Some works in literature hypothesize that partial induction leads to a lower
role of lac permeases in transport than at high IPTG concentration because the /ac
operon is induced by the same IPTG (Fernandez-Castané et al., 2012; Hansen et al.,

1998; Jensen & Hammer, 1998; Jensen et al., 1993).
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Figure 5.5. Qualitative comparison between high and low induction zones. () high induction zone normalized
[IPTG]. data; (o) low induction zone normalized [IPTG]. data; (--) trend curves.

Experiments have been conducted under a wide range of conditions across the

experimental spaces. The high induction zone is within the following experimental

space (10 different experiments):

* Inducer concentration: 60uM<[IPTG]e 0<1000uM

* Biomass concentration at induction time: 13gDCWL™< Xnq <47gDCWL™

* Specific growth rate: 0.06h™ < usy <0.22h™

The low induction zone (10 experiments performed) has the following boundaries:

* Inducer concentration: uM<[IPTG]¢ 0<27uM

* Biomass concentration at induction time: 20gDCWL™< X;nq <40gDCWL™

* Specific growth rate: 0.1h" < Uix <0.22h™

The boundary limits for the variables have been selected to be the same as in Chapter

4, but expanding the upper limit of inducer concentration to 1000 uM and the lower
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limit to 8 uM in order to obtain additional experimental information on IPTG transport

at extremely high and low inducer concentrations.

Figures 5.6 and 5.7 show the distribution of the experiments into these defined

experimental spaces. It is not any kind of Experimental Design Distribution, but

experiments have been distributed into the experimental space to get representative

results of the whole range of experimental conditions. As it can be seen, there are

three different axes, showing the experimental boundaries for biomass concentration

at induction, specific growth rate and IPTG concentration at induction point.
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Figure 5.6. Experimental distribution for high induction zone. Nomenclature: [IPTG],g , Xina » Wsix- (inducer

concentration at induction time, biomass concentration at induction time, fed-batch specific growth rate at

induction time)
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Figure 5.7. Experimental distribution for low induction zone. Nomenclature: [IPTGle, Xo, Wsix- (inducer
concentration at induction time, biomass concentration at induction time, fed-batch specific growth rate at
induction time)

Due to the different behavior, k' and Ky estimated values are considered to be
different depending on the induction zone of the experiment. On the other hand, the
effect of biomass concentration as well as the effect of the specific growth rate on
transport rate will be assumed to be the same whatever the induction zone. For this
reason, K; and K, estimated values are going to be the same for both zones. Moreover,
the values of kea found for lacY mutant strain will be fixed according to Table 5.1, but
the value for K’ will be changed to K’ according to equations (5.10) and (5.11). It is
important to say that this change will not increase the number of parameters in the
estimation, while simply the value is being updated. All this assumptions can be used
in a final expression of transport rate, shown in Equation (5.12)

k'[IPTG],

r = 0.213([IPTG], — [IPTG];) + K1 Xing (K”[IPTG]e + W

)exp (Kz.ufix) (5.12)

Values found for the parameters of both zones are shown in Table 5.2. Because there
are common and specific parameters for the two zones, the estimation has been made

at the same time with all the experiments. In function of the induction zone of every
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experiment, the parameters for the specific active transport will be different, and they
can be considered as different parameters. On the other hand, the parameters of
biomass concentration contribution as well as specific growth rate will be the same in

both zones, and they must be estimated at the same time for all the experiments.

Table 5.2. Estimated values for transport rate parameters in parent strain.

Parameter Common Value Value low induction Value high induction Units
zone zone
k’ - 0.800+1-10° 31#1 uM>h™
Km - 4.9-10°+0.8-10° 2.4-10%+2-10° Um?
K1 2.00+3:107 - -- L-g'DCW
K, 21.34+0.3 - - h

with the values of K; and K; from Table 5.2 is possible to calculate the value of K”,

using equation (5.11): K" = 0.0893

= =20-10"° (r7")
20-2.0-exp (0.22-21.3)

Figures 5.8 to 5.11 show the experimental data of [IPTG]., as well as the predicted

values along time for both intracellular and extracellular IPTG concentrations.
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Figure 5.8. High induction model fitting for parent strain. (*) experimental data, (-)[IPTG]. model prediction, (- -)
10% error interval, (----)[IPTG]; model prediction. Experimental conditions: (A) 60uM, 13gDCWL'1, 0.16h™; (B)
60pM, 30gDCWL™, 0.06h™"; (C) 60p.M, 47gDCWL™, 0.16h™"; (D) 70 M, 20gDCWL™, 0.22h™; (E) 100 M, 20gDCWL™,
0.1h™"; (F) 100uM, 20gDCWL™, 0.22h™. Nomenclature: [IPTG]c,0 , Xina » fix

78



[IPTG], (uM)

[lPTGL (=M)

5 Modeling IPTG transport phenomena in fed-batch

high-cell density cultures of E.coli

Lt (M)

[IPTG], (uM)

[IPTG] | (uM)

[IPTG], (uM)

[IPTG], (uM)

I 400
b 300
=
*200 G
—_
=
100
B
0
35
Lo ()
1400 -y 1800
P IO e g
=T
- - 1400
e T S e
1000 s
Q\ Y e o
800 4 ELerEmT— 1000 =
| —
600 -l 800 g
| 80 =
400
! L 400
200 1
D
o

00 05 10 15 20 25 30

t . (h)

ng

Figure 5.9. High induction model fitting for parent strain. (*) experimental data, (-)[IPTG]. model prediction, (- -)

10% error interval, (---)[IPTG]; model prediction. Experimental conditions: (A) 100uM, 4OgDCWL'1, 0.1h'1; B
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Figures 5.8 to 5.11 show that the model fitted, with its estimated parameters, is able
to predict the extracellular IPTG concentration profile after induction within 10% of
error for all the experiments. Figure 5.12 shows the parity plots for the high and low
induction zones. This kind of representation allows taking an overview of the global

fitting, comparing the experimental [IPTG]. with the values predicted by the model.
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Figure 5.12. Parity plot with 10% error. (A) high induction zone. (B) low induction zone.

5.2.2.2 Overall model

Although a model divided into 2 different zones is able to predict the extracellular IPTG
uptake for the experiments shown, a unique model —using a single set of parameters-
would be significantly more useful. This overall model should be able to predict IPTG
behavior in both zones.

In this way, as k' and Ky parameters have different values depending on, solely, the
inducer concentration at induction, a relationship between their value and external
IPTG concentration at induction point can be found. A Hill type sigmoidal equation
(Goutelle et al., 2008) can be used to fit the value of the parameters depending on
IPTG concentration at induction point ([IPTG] ), allowing an overall prediction of IPTG
concentration evolution with time, employing only the value of biomass concentration
at induction, the specific growth rate and the inducer concentration at induction as
input variables, as well as the experimental total volume.

Equation (5.13) corresponds to the general expression for a Hill’s sigmoidal function,

and its parameter values are shown in Table 5.3.

b-([IPTGe)"
a®+([IPTGleo)" (5.13)

y=a-+

where: y is the parameter K; or k’.
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Table 5.3. Estimated values for the Hill function parameters as function of [IPTG],o

Parameter Value for k’ Value for Ky,
a 0.800+1-10° (uM*h™) 4.9-10°+0.8-:10° (uM?)
b 3041 (uM*h™) 2.4-10*+2-10° (pM?)
c 56.5+0.4 (--) 57.840.3 (--)
d 40.30.4 (UM) 40.30.4 (uM)

Figure 5.13 shows how Hill’s sigmoidal is capable to give the right values for both Ky

and k’ parameters as function of extracellular IPTG concentration at induction time.
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Figure 5.13. Hill’s sigmoidal fitting for Ky, and k’ parameters as function of [IPTG]. . (A) Adjust for k’; (B) Adjust

for Ky.
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Then, the final expression for the net transport rate is described in Equations (5.14) to

(5.16)
r = 0.213([IPTG), — [IPTG]) + 2.0+ Xq ( 2.0 - 1075 [IPTG], + % ) exp (213u752) (5.14)
, 29.9-[IPTG]e0°%°
k'=08+ 40.356.54[IPTG]0°%° (5.15)
104 57.8
Ky, = 489.6 + —220 1IPTGleo (5.16)

40.35784[IPTG]e 0> "

According to the presented results, the model is capable to predict both fully induced
(high induction) and partially induced (low induction) cultures. Parameter k’ includes
the lactose permeases transcription and production rates. Moreover, k' values from
Table 5.2 suggest that fully induced cultures present a higher transcription rate than
partially induced ones. This suggestion agrees with qualitative behavior of the lac
operon described in literature (Ferndndez-Castané et al., 2012; Hansen et al., 1998;

Jensen & Hammer, 1998; Jensen et al., 1993; Noel et al., 2009; Ozbudak et al., 2004).

5.3 Model validation

Once the model has been developed, fitted and calibrated, independent data must be
used for its validation. In order to show that the model can be extrapolated, some

different strains have been selected:

e M15 AglyA [pQEofFucA][pREP4]. The same strain with expression of a

different protein (Fuculose 1-Phosphate Aldolase, FucA).

e M15 [pQE-FucA][pREP4]. Parent strain without deletion of glyA gene and

without the a3 termination sequence, expressing FucA.
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e BL21 (DE3) FSA. Different strain producing a different aldolase (Fructose-6-
Phosphate Aldolase, DHA dependent).

Induction concentration for FucA producing strains was 70 uM, while BL21 strain was
induced with 100 uM of IPTG. All the experiments were induced the standard
conditions described in Chapter 4 Chapter 4: when biomass concentration was 20
gDCW-L" and the specific growth rate during the fed-batch was 0.22h™.

Using Equations (5.1) to (5.4) and Equations (5.14) to (5.16) -as IPTG transport rate-,
both extracellular and intracellular inducer concentration along time were predicted,
and the extracellular one was compared with experimental data.

Figure 5.14 shows the result of the simulation, and can be seen that the model is also
able to predict reasonably well the behavior of different strains, producing different
proteins. It is important to take into account that the value of the parameters is the
same as for the M15 strain producing RhuA.

The last case has to be specially emphasized, because corresponds to a strain with
different genetic background than the employed for calibration, and the model,
employing the same parameters’ values, was able to predict properly the experimental

behavior.
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Figure 5.14. Model validation with other strains. () experimental data, (-) [IPTG]. model prediction, (- -) 10%
error interval, (----)[IPTG]; model prediction. (A) M15 AglyA [pQEaBFucA][pREP4]; (B) M15 [pQE-FucA][pREP4]; (C)
BL21 (DE3) FSA.

5.4 Conclusions

The unsegregated, unsteady, unstructured and based on first principles model
proposed in this chapter has been calibrated with experimental data of extracellular
IPTG concentration under real fed-batch fermentations, with a wide range of

operational conditions of biomass, specific growth rate and IPTG concentration at

induction time.

Firstly, the study of a lacY mutant strain showed that, in absence of the specific

transport protein for lactose, not only diffusion takes place in the transport, while
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nonspecific active transport (mediated by other proteins) is needed to match the
experimental data. Moreover, it has been experimentally observed that intracellular
concentration can be higher than extracellular one. This fact cannot be explained if
diffusion was the only transport mechanism.

On the other hand, parent strain showed faster initial IPTG transport rate, which can
be explained adding another term to the net transport rate equation. This new term
corresponds to the contribution of lactose permeases to the transport. Diffusion and
nonspecific transport parameters have been fixed to be the same for both strains.
Moreover, active transport terms are modified depending on the biomass
concentration at induction and the specific growth rate during the fed-batch.

Parent strain shows two different behaviors depending on inducer concentration. The
model is able to describe both behaviors using different values for lactose permeases’
depending parameters.

The model has been validated using three different strains, producing different
proteins with different expression systems. It has been demonstrated that the model
can be extrapolated to other E.coli strains. Nevertheless, it is expected that other

expression systems or strains may need additional calibration.
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As it has been seen in Chapter 4, IPTG dosage is a determinant factor in the
overexpression of recombinant proteins (Donovan et al.,, 1996; Durany et al., 2004).
Then, a model capable to predict its uptake has been developed in Chapter 5.

Although a lot of literature is available on heterologous protein production in E.coli,
every expression system is different depending on the promoter, the interaction
between the host and the expression vector, as well as the characteristics of the
recombinant protein (Goyal, Sahni, & Sahoo, 2009).

Some mathematical models have been developed in an effort to describe systems
employing promoters such as lac and the temperature inducible A for the production
of recombinant proteins in E.coli (Betenbaugh & Dhurjati, 1990; Nancib, Mosrati, &
Boudrant, 1993; Tamerleret al., 2001; Toksoy Oner et al., 2003).

Cultivation conditions and media composition affect parameters such as plasmid copy
number, the maintenance of the recombinant plasmid, the effect of protease activity
on the recombinant protein of interest (Goyal et al., 2009; Lee, 1996; Yee & Blanch,
1992). Then, the production of recombinant protein in E.coli needs to take into
account the study of those different cultivation conditions.

However, models found in literature only use the initial IPTG concentration added to
the culture, because there was not any model of the IPTG uptake using experimental
IPTG data for its calibration. Using only initial IPTG added to the culture medium, it is
not possible to model properly how the repressor and the inducer are being bound.
Specifically, there is a model in literature (Ceroni et al., 2010) that describes the
transcription of the lacl gene, producing repressor molecules. It is a perfect example
of unsegregated and unstructured model: there is not any kind of cellular population
difference, and it is supposed that all the reactions, production and degradation of the
different components take place in the same compartment. Their approach includes
equations for the gene transcription, as well as the expressions for the production of
free repressor (not bound to IPTG) and repressor-IPTG molecules, as a function of the

initial IPTG concentration added to the culture. This model allows the calculation of a

89



6 Modeling recombinant protein production. Overall model:

biomass growth, IPTG uptake and protein production

time evolution of the repressor-IPTG molecules that are going to be used in the protein
production model. Moreover, it is described the production of a green fluorescence
protein, making a relationship between the binding of IPTG and repressor with the
production of recombinant proteins. However, model dependence with IPTG only is
described by the initial dosage, instead of use the intracellular IPTG concentration
along time.

The main aim in this chapter is to develop a model able to predict specific protein in
mass and in activity units as function of time. This model should be able, coupled with
biomass growth model (Ruiz et al., 2011) and IPTG uptake model (Chapter5), to
describe specific protein production (in mass and in activity) in an exponential fed-
batch culture, starting from defined initial conditions. The model should predict cell
growth during non-induced batch and fed-batch growth (volume and concentration of
biomass and substrate along time), as well as growth and protein production after

induction.

6.1 Model development

The proposed model is an extension of the IPTG uptake model presented in Chapter 5.
The new model will also be an unsteady, unsegregated, unstructured and based on
first principles model composed by three compartments as depicted in the scheme
shown in Figure 6.1. In the last compartment, the rate of specific protein production -
expressed either in mass units (P) or activity units (U) per gram of cells- profile is
calculated as a function of the intracellular inducer concentration ([IPTG];) as well as
the repressor-inducer dynamics in the protein model compartment. The inducer
uptake model compartment allows calculating the intracellular inducer profile.
Otherwise, biomass concentration evolution -for non-induced and induced growth- is

the output of the growth model compartment.

90



6 Modeling recombinant protein production. Overall model:

biomass growth, IPTG uptake and protein production

USER’S VARIABLES ENTRY PREDICTED VARIABLES PROFILE

X .
v, Biomass X(t)
‘g crowth model o
0
5f
xmd s IPTG uptake [|PTG]E{t}
[IPTG], model [IPTG; (t)
[IPTG]; (t)
V(t) . P(t)
Protel_n oit)
production a, (t)
Rffee {t)
model N

Figure 6.1. Modeling compartments diagram.

All the differential equations needed for describing the process, corresponding to each
compartment, are presented in Tables 6.1 and 6.2, splitting the model into non-
induced and induced phases. Moreover, the meaning of every variable is also
explained in the text following the equations. The model describing biomass and
substrate concentration evolution for both non-induced and induced growth was
previously validated and reported (Ruiz et al., 2011). In summary, material balances for
a fed-batch growth with predefined exponential feed addition are coupled with a
prediction of the IPTG uptake rate and inducer extracellular and intracellular
concentration along the time (Chapter 5). Once the intracellular IPTG concentration is
predicted, it can be used for the calculation of the amount of repressor that can be
bound to IPTG (Rprg), allowing the transcription of the target protein genes. The
amount of repressor bound to IPTG will permit the estimation of the specific protein

production rate in mass units (qgp), and is necessary in the mass balance for calculating
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the specific protein production. Moreover, the specific activity of the recombinant
protein will be predicted, using an average of the protein activity per mg of aldolase.

Table 6.1 shows the non-induced biomass growth model.

Table 6.1. Model equations for non-induced phase of growth

BIOMASS GROWTH MODEL

Y _F+F (6.1)
dt S B
— L (Hrix X .
E=y (YXS +mgy) XV (6.2)
dx
dv
axX _ oy _ X
Fri uX > (6.4)
dv
as _ (Fs$r=S5) _ (w
i v - (Y_XS + msx) X (6.5)
_ MHmax'S __S
H="g+s €*P (Kis) (6.6)

Non-induced Biomass Growth Model (Ruiz et al., 2011) needs as input the initial batch

biomass concentration (Xo), the initial total volume into the bioreactor (Vy), the initial
substrate concentration (Sp), the fixed specific growth rate for the fed-batch (usy) and
the glucose concentration in the feeding solution (S¢). Using Equations (6.1) to (6.6), a
prediction of biomass growth as well as volume variation and substrate concentration
along time is obtained for batch and fed-batch phases of the culture. Non-induced fed-
batch phase starts when the initial glucose of the batch phase has been completely
consumed. Induced phase starts when the culture reaches the desired biomass

concentration (Xing).

rate (Fs, L-h™) and the added alkali flow rate (Fs, L-h™)(pH control). In this case, in
addition to the equation for volume variation described in literature, the alkali flow

has been added.
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limiting fed-batch operation. It depends on glucose concentration in the feeding
solution (S, g-L™), the fixed specific growth rate (pax, h™), the biomass-substrate yield
(Yxs, gDCW-g™ glucose), the maintenance coefficient (msy, g glucose-g'DCW-h™?), the

biomass concentration (X, gDCW-L") and the total volume (V, L) into the bioreactor.

which depends on the biomass growth evolution, and it is a new equation added to

literature’s work.

as function of generation (growth) and dilution. It depends on the specific growth rate

of the culture (y, h"l), biomass concentration, total volume and its rate of change.

(depending on the feeding flow rate and its concentration) minus the amount that is

being consumed by the culture and the dilution term.

inhibition represented by the exponential term modifying the Monod equation (Aiba
equation). During the batch phase, the specific growth rate changes freely in function
of the substrate concentration, but in the fed-batch phase it is maintained at psy value

by limiting the addition of substrate.

Table 6.2 shows the induced biomass growth model, the IPTG uptake model and the

protein production model.
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Table 6.2. Model equations for induced phase

BIOMASS GROWTH MODEL

av
-1 M) DX
Es‘ Sf ((YXS)ap X V (68)
dx
Fg = KBE (6.9)
dv
X _ . _aX
o = (1 gs) v (6.10)
[IPTGle 0
kg (——22-0.4
dg Sl( Xin, )
= +<UPT£L,O_O4) gs 95(0) =1 (6.11)
52 ind
dv
Fg-Se—SZ2
E:(Sf dt)_( u )X (6.12)
dt 14 (YXS)u.p
_ MHmax'S __5
H="g+s €*P (KL-S) (6.13)
IPTG UPTAKE MODEL
Weel _ 923 LV (6.14)
dt dt
Wy _ AV _ Vel
dt ~ dt dt (6.15)
AVm
dlIpTGl, _ ~7'Vm—[IPTGle—5~
ac . (6.16)
Vel
dliptGl; _ 7Vm~[IPTGli—5~
e = (6.17)
1" k’ [IPTG],
r = kea([IPTG], — [IPTG]) + K1 Xina (1{ [IPTG], + W) exp(Kaktsix) (6.18)
PROTEIN PRODUCTION MODEL
am
=t = AmrnaN — AmpnaM (6.20)
[IPTG]; n
dRfree -1 Yy
% = TrR-o [ free (ﬁ) - RIPTG] - ARRfree + agM (6.21)
[IPTG]; n
dR 1 /
% i [ free (ﬁ) - RIPTG] — ArRipr6 (6.22)
dR
day _ _ Kei(TH) (6.23)
dt 14+Kp,P p )
658.20- 12T Cle
) Xin,
po= (33.80 + TJ(}) exp(3.731ix) (6.24)
4148+ - 20
dv
ar _ . _Far
= o ” (6.25)
du dap
= = Kagp (6.26)
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Induced Biomass Growth Model (Ruiz et al., 2011) takes as starting point the values

obtained from the non-induced model, when biomass reaches the desired

concentration (Xing).

yield ((Yxs)ap, gDCW-g ! glucose) which is different because it contains the maintenance

coefficient.

case, the specific growth rate decreases due to the metabolic burden caused by the
overexpression of recombinant protein (Lee & Ramirez, 1992b). This effect could be

described using a function g, through Equation (6.11).

consequently, on specific growth rate. It depends on the relationship between the
amount of inducer ([IPTG],0) added and the biomass concentration at induction point
(Xina), being 0.4 pmol. gDCW™ the minimum necessary ratio to trigger protein

overexpression (Ruiz et al., 2011).

calculation of the specific growth rate.
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IPTG Uptake Model. IPTG uptake model from Chapter 5 requires as inputs the

prediction of biomass concentration and volume variation with time as well as new

user’s variables: biomass an concentration at inducti ime.
! bles: b d IPTG tration at induction time

i:intracellular, pM) as a function of the IPTG transport rate (r, pM-h™) and a dilution

term.

model can be used to describe transport phenomena in IPTG uptake, only as a function
of [IPTG]e,0, Xina and psx. Then, IPTG transport rate can be described by a diffusion
term, non-specific active transport and specific active transport, taking into account
the effects on transport of the biomass concentration at induction and the fixed

specific growth rate.

Using Equations (6.14) to (6.18) it is possible to calculate the intracellular IPTG
concentration evolution along time, which is a key variable in protein production.
Intracellular IPTG molecules can bind the repressor, making RNA polymerase able to

transcribe the target gene and producing RhuA in this case.
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Protein Production Model has to be able to predict specific protein both in mass and

activity units. This model has two different parts. Firstly, using an adaptation of
Ceroni’s model (Ceroni et al., 2010) (as explained below) it is possible to predict the
evolution with time of the concentration of repressor molecules free or bound to IPTG.
Once the culture is induced, intracellular IPTG molecules could bind the repressor

allowing the transcription of the gene of interest.

into the cell along the time. For its calculation, the transcription rate (Qmgrna, h'l),
PREP4 plasmid (containing lacl gene) copy number (N, plasmid-cell) —that in fact is
the number of copies of the gene - and the degradation rate of Lacl mRNA molecules

(Amrna, h) are needed.

Equation (6.22) predicts the amount of repressor bounded to IPTG (Rpprg,

molecule-cell®) using the same variables than Equation (6.21).

lac operon
ez lmc¥ | oA NI
operator o
xf/:/
_—:_ _ _::_:-"'_
¥ L L
& I-Galaciosidase Permease Transsceiyisss

Scheme 7.1. lac operon with the kinetic and equilibrium parameters.
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For its calculation (see Scheme 6.1 for a general picture of the system), the values
found in literature (Ceroni et al., 2010) for the IPTG-Lacl equilibrium binding constant
(Krprs, mM), the protein degradation rate (Ag, h'l), the protein transcription rate (ag,
h™) and the cooperativity of the binding Lacl-IPTG (n) have been used because they are
dependent of the interaction between IPTG and repressor. Otherwise, the value for
the time constant of Lacl binding to the operator (tro, h™) will be a model-fitting
parameter because it depends on the operator used in the particular expression
system and has to be fitted to experimental data.

Moreover, as it is possible to calculate the profile of intracellular concentration of IPTG
along time from Equation 6.17, repressor concentration (both free and IPTG bound)
will be calculated using the actual intracellular IPTG concentration and Equations
(6.21) and (6.22) will use [IPTG]; predicted values instead of the initial amount of

inducer proposed in Ceroni’s work.

rate (qp, nghuA-g'lDCW-h'l) exponential decay with time, which is observed in all the
induced growths. It is illustrated for an experimental run in Figure 6.2. Moreover,
specific protein production rate will be a function of the rate of change of repressor

bound to inducer (Riprg) calculated by Equation (6.22).
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Figure 6.2. Example of experimental specific protein production rate exponential decay along time
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a function of the experimental conditions ([IPTG]eo to Xing ratio and psx) of each
cultivation. On one hand, the dependence with growth rate presents an exponential
trend. On the other hand, a dependence with inducer to biomass concentration ratio
([IPTG]e,0/Xing) at induction moment and specific growth rate has been experimentally
found. In fact, [IPTG]e,0/Xina has been previously discussed as key parameter in inducer
transport and protein production in Chapter 4. The dependence on inducer to biomass
concentration ratio at induction time can be explained as shown in Figure 6.3A. Using
the fitting in Figure 6.3 (A) and the exponential dependence with specific growth rate,
initial specific protein production rate can be described using Equation (6.24). Figure
6.3B shows the parity plot for initial specific protein production, in order to check the
goodness of the Equation (6.24).

The value for the parameters is going to be presented in Table 6.4.

mgRhuA-g'DCW), as a function of the specific protein production rate and the dilution

term as a function of the total volume.

using the specific activity per mass unit of aldolase as a measure of the protein quality
(Kq, Activity Units'mg'RhuA). Protein quality varies along time, and data for all
productive fed-batch are presented in Figure 6.4 (experiments presented in Section
6.2), as a function of the inducer to biomass ratio. As can be seen in Figure 6.4, the
value for the protein specific quality varies between 5 and 7 AU-mg'RhuA for the
range of I/X for all the experiments. For modeling purposes, it has been considered a

constant parameter to be fitted.
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Figure 6.4. Experimental protein specific quality distribution in function of the inducer to biomass ratio.

6.2 Model fitting

A set of 15 E.coli fed-batch experiments has been employed to get experimental data
for the recombinant Rhamnulose-1-Phosphate aldolase production process,
monitoring their performance by determining specific protein in mass and in activity
along time. These 15 experiments are a selection from the 20 different experiments
used for the IPTG uptake model. This selection was performed taken into account the
availability of reliable data about aldolase concentration and activity. To give the
model the capacity to predict the evolution with time of specific protein in mass and in
activity units, a wide range of experimental conditions must be used in the fitting
process, expecting any experiment located into the defined space to follow the
prediction of the model. As indicated in Chapter 5, the selected experimental variables
—because they are key in protein production (Ruiz et al., 2011)- were inducer
concentration and biomass concentration at induction time and the specific growth

rate in the fed-batch phase of the culture, The range of operational conditions used in
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this work is the one selected for the IPTG uptake model, and it is reminded in Table
6.3. As explained in Chapter 5, inducer range goes from 8uM (being 4uM the minimum
concentration for RhuA overexpression) (Pinsach, 2009) to 1mM. Biomass
concentration at induction time was up to 47 gDCW-L™, which is the maximum one
allowing a final biomass concentration compatible with the aeration capacity of the
fermentor. Finally, specific growth rate ranged from 0.1 to 0.22 h™, avoiding excessive

acetic acid production (Ruiz et al., 2009).

Table 6.3. Operational conditions range

Operational variable Range

[IPTG]eo (UM) 8 < [IPTG]e o< 1000
Xina (8DCW-L?) 13 < Xing < 47

Hax (h ) 0.1 < up £ 0.22

The model proposed through equations (6.20) to (6.26) has only 4 unknown
parameters that should be fitted. Kp; and Kp, are related to specific protein production
in mass units, K, is needed to describe the specific activity of the protein produced,
and tr.o, the time constant for the linkage between the repressor and the operator,
because it depends directly on the expression system, or, more exactly, on the
operator-repressor bond. Then, depending on the operator used in the expression of
the protein, a new time constant for the union between that operator and the

repressor will be needed.

The values for all the other parameters of the models presented in Tables 6.1 and 6.2

-fixed parameters- are presented in Table 6.4.
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Table 6.4. Values for the fixed parameters of the model. *(Ruiz et al,, 2011); 5 (Chapter 5); " (Pinsach, 2009);
#(Ceroni et al., 2010)

Parameter Value Units
Yys 0.38 gDCW-g 'glucose
Mys <1-10™, taken as zero in the simulations g glucose-g'DCW-h™
Himax. 0.55 h?

Ks 8.38-10° g glucose-L™
Kis 46.9 g glucose-L™
(Yxs)ap 0.47 gDCW-g'glucose

k1 0.50 h?

ks> 5.73-10° umol IPTG-g*DCW

BATCH: 4.3-10°
Ke FED-BATCH: 2:10° L-(gbcw-L™H*
INDUCED PHASE: 4-10°°
kcas 0.213+2:10° ht

K8 2:10” h*

K,& 2.00+3:107 L-g'DCW

K,8 21.320.3 h

s 29.9 - [IPTG],4>%® VR

40.3565 + [IPTG],o°%°
Kn® 489,64 22 100 [IPTG]‘"OSS:_SB MM
40.3%78 + [IPTG],

N 12 plasmid-cell™

Qmrna® 27 h*
Amrna®® 16.26 h*
o 172.8 ht
AR® 1.284 h*
Krapra® 0.289 mM

n% 0.6 -

Some parameter values are reported without associated error, reproduced as

indicated literature.
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After fitting the model to the experimental data, the values found for the four

parameters are those shown in Table 6.5.

Table 6.5. Parameter’s estimated values for specific protein production and specific protein activity model.

Parameter Value Units
Tro 6.30+0.07 h
Kp1 8.01-10%+2:10" cell-molecule™h™
Kp2 1.311-10'+5-10" gDCW-mg'RhuA
Kq 6.1300+2-10™ AU-mg'RhuA

As can be seen in Table 6.5, the estimated specific activity per mg of aldolase, K, value,
is 6.13 AU.mg™, corresponding to the mean of the values of protein quality for all the
experiments (Figure 6.4).

Figures 6.5 to 6.7 show the experimental data of specific protein production in mass
units, as well as the predicted values along time using the model described through
Equations (6.14) to (6.26). Growth model has no been used for the calibration of the
protein production model. For this reason, total volume and biomass concentration
are experimental values and they are adjusted to a time-dependent spline function.
Otherwise, Figures 6.8 to 6.10 show the experimental specific protein in activity units

and its prediction using the model.
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Figure 6.5. Specific protein in mass units model fitting. (*) experimental data, (-)model prediction, (- -) 10% error
interval. Experimental conditions [IPTGle , Xina » Wi, respectively: (A) 8uM, ZOgDCWL‘l, 0.22h™; (B) 10pnM,
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Figure 6.8. Specific protein in activity units model fitting. (*) experimental data, (-)model prediction, (- -) 10%
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Figure 6.9. Specific protein in activity units model fitting. (*) experimental data, (-)model prediction, (- -) 10%
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Figure 6.10. Specific protein in activity units model fitting. (*) experimental data, (-)model prediction, (- -) 10%
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Figures 6.5 to 6.10 show that the model fitted, with its estimated parameters, is able
to reasonably predict both specific protein in mass and specific protein in activity
Moreover, as for the IPTG uptake model, the error is showed as a £10% area.

In order to give an overall idea of the goodness of the fitting, Figure 6.11 shows the

parity plots for specific protein in mass and in activity units.
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Figure 6.11. Parity plots with 10% error. A: specific protein in mass. B: specific protein in activity.

As it can be seen in Figure 6.11, the model is capable to predict, properly, the
experimental specific protein both in activity and mass units for a whole range of

different cultivation conditions, with quite small deviation.

6.3 Model validation

Once the model has been proposed and calibrated, a validation of the whole model
has to be done. According to the compartments depicted in Figure 6.1, the protein
production model has been coupled with the IPTG uptake and the biomass growth
ones in order to have a simulation of the whole behavior of the protein production
process. It is important to remark that this simulation is the result of three different
models.

For validation purposes, a new experiment using different conditions at the beginning
of induction phase than the ones used in the fitting was performed. The experimental
conditions are selected to be within the experimental space used in the model fitting
and they are depicted in Table 6.6. Table 6.6 shows, also, the initial values for the

different variables, in order to make possible their integration.
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Table 6.6. Initial values for the different variables.

Variable Value Units
[IPTG],0 84.14 ny
Xind 21.5 gDCW-L*!
i 0.20 h't
Vo 0.800 L
Xo 0.054 gDCW-L*!
So 21 gLt
M 20 molecules-cell™
Rfree 2700 molecules-cell™
Ripte 0 molecules-cell™
Ping 8.5 nghuA-g'lDCW
Uind 59.3 AU-mg'RhuA
S¢ (feeding concentration) 485 gLt
[IPTG]; 0 ny

The initial values for M and Ryee are calculated at equilibrium. As the culture is grown
since the batch phase (without induction), Lacl mRNA molecules as well as repressor
molecules are being produced, until the equilibrium between the production and
degradation rate are reached. For the calculation of M, Equation (6.20) is needed.
When degradation and formation rates are equals, the variation with time of M is zero.
On the same way, Rfee evolution with time when degradation and production rates are
equals (in addition to the third term that will be zero because there are not IPTG), will
be zero. These values are the ones used as initial point for the induction phase.

Pind and Uingq correspond, respectively, to the basal specific protein in mass units and in
activity units. In this case, these are the experimental values that are close of the mean
of basal protein for all the experiments.

Figure 6.12 shows the experimental data and model prediction values of biomass
concentration, total volume and glucose along time, for the three different growth

phases: batch, fed-batch (non-induced) and induction phase.
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Figure 6.12. Validation experiment. ( A ) experimental total volume; (¢ ) experimental biomass concentration;
(O) experimental glucose concentration; (-) model predicted curves.

As it can be seen, the model is capable to predict properly the evolution of glucose and
biomass concentration, as well as the total volume, along all the experiment.

Figure 6.13 A shows the experimental evolution of the extracellular IPTG
concentration, as well as its model prediction and calculated intracellular inducer
concentration. It can be seen that the prediction of the experimental data of
extracellular IPTG fits properly. Figure 6.13 B shows free and bound repressor
predicted evolutions. Bound repressor evolution with time is used for the calculation

of the specific protein in mass units evolution with time.
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Figure 6.13. Validation experiment. A: (¢ ) experimental extracellular IPTG concentration; (-) model predicted
curves, (- -) 10% error. B: repressor evolution with time after induction.

Finally, Figure 6.14 shows both specific protein in mass and in activity units.

Figures 6.12 to 6.14 show that the overall coupled model is able to predict reasonably
the specific protein in mass as well as in activity units. Not only the protein model,
while the biomass growth model and the IPTG uptake models are predicting the

experimental behavior of the whole experiment.
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Figure 6.14. Validation experiment. Specific protein in mass (A) and in activity (B) evolution with time after
induction. (¢ ) experimental data; (-) predicted evolution, (- -) 10% error.

6.4 Conclusions

Experimental data of specific protein production as mass and activity under productive
fed-batch fermentations have been used for the calibration of the model presented.
Firstly, using the calculated intracellular IPTG concentration from the IPTG uptake
model (from Chapter 5) it has been possible to predict the evolution of repressor
molecules bounded to the inducer, as well as the ones able to bind the operator sites.
At this point, the specific protein in mass units (P) production can be related to the
repressor-IPTG bounding equilibrium, and the model describes properly its evolution
for all the experiments.

Secondly, aldolase’s specific activity (U) can be related to the mass of protein using the
quality of the protein (K, AU-mg'RhuA).

Secondly, once the model for specific protein in mass and activity units has been
developed and calibrated, it is possible to couple it with biomass growth model, as well
as with the IPTG uptake model.

The overall coupled model allows the simulation of the whole experiment needing,

only, the initial values shown in Table 6.6, which can be chosen for every experiment.
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7 Protein production model extension

Although a model of specific protein production (in mass and activity units) for a
unique recombinant protein is important, it is significantly more useful the possibility
of the model to be extended to other expression systems, producing other proteins.
Nowadays, E.coli BL21 (DE3) strains are the most widely used for high-yield expression
of recombinant proteins (Robichon et al. , 2011)

Two different proteins have been selected to be produced in engineered E.coli BL21
(DE3) strain: Fructose-6-phosphate aldolase (FSA) and w-Transaminase (or
Aminotransferase, ATA).

Firstly reported by Sprenger in 2001 (Schurmann & Sprenger, 2001), one of the
important discoveries in the family of aldolases was Fructose-6-phosphate Aldolase.
This aldolase is able to accept DHA (the unphosphorylated form of the
dihydroxyacetone) as a donor. This fact represents an advantage over the expensive
and unstable DHAP (which is used by the well-known DHAP dependents aldolases, for
instance RhuA) (Sanchez-Moreno et al., 2012). Moreover, DHAP-dependent aldolases
require a phosphatase to remove the phosphate group.

One additional advantage of using FSA is its ability to react with four different donors
(DHA, 1-hydroxybutan-2-one, hydroxyacetone and glyceraldehyde) (Castillo et al.,
2010; Schiirmann, Schirmann, & Sprenger, 2002; Sugiyama et al., 2007).

FSA has been used in the synthesis of different polyhydroxylated compounds (such as
iminocyclitols and carbohydrates) (Guérard-Hélaine et al., 2011; Sugiyama et al., 2007).
FSA catalyzes the aldol reaction from D-fructose-6-phosphate to D-glyceraldehyde-3-
phosphate and, as said, the non-phosphorylated DHA. Figure 7.1 shows the basic FSA

catalyzed reaction.
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Figure 7.1. Schematic representation of a FSA catalyzed reaction

On the other hand, transaminases are a group of highly interesting enzymes that
catalyze the transformation of ketones to chiral amines (Constable et al., 2007; Nugent
& El-Shazly, 2010; Panke, Held, & Wubbolts, 2004). w-Transaminase is a PLP (pyridoxal-
5’-phosphate) dependent enzyme that makes possible the transfer of an amine group
from amino-donors (as arylamine or amino acids) to a pro-chiral acceptor ketone. This
reaction yields a second chiral amine and a ketone (Shin & Kim, 2002). Its use is gaining
importance because of its potential for the resolution of racemic amines, and in the
asymmetric synthesis of optically active amines (Casablancas et al., 2013; Koszelewski
et al., 2010; Shin, Kim, & Shin, 2001).

Figure 7.2 shows the reaction catalyzed by ATA.

NH, 0
0 m/l\m R1)J\R2 NH,

R “_\ 3 R
R R
Transaminase

Figure 7.2. reaction catalyzed by ATA
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As indicated, the main objective in this chapter is the extension of the model
presented in Chapter 6 to other expression systems, producing two different proteins

(FSA and ATA).

7.1 Specific material and methods

The work presented in this Chapter was undertaken at The University of Sydney,
(Sydney, Australia) in the Fermentation and Wastewater group’s Laboratories (School
of Chemical and Biomolecular Engineering), under the supervision of Dr. John

Kavanagh.

7.1.1 Strains and expression systems
The strains used (BL21 (DE3) FSA and BL21 (DE3) ATA) were already introduced in
Chapter 3.

Fructose-6-Phosphate Aldolase (FSA) is produced by E.coli BL21 (DE3) strain, as
described in literature (Sanchez-Moreno et al., 2012). The gene mipB, encoding FSA
was inserted into a modified expression vector pET22b(+), presented in Figure 7.3

(Kreimeyer et al., 2007).
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The main parts of the pET-22b(+) vector shown in Figure 7.3 are the bla gene (shown
as Ap in Figure 7.3) that codifies for B-lactamase, giving the strain antibiotic resistance

(ampicillin) and lacl gene, codifying for the Lacl repressor protein. mipB gene is not

7 Protein production model extension
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Figure 7.3. pET22b(+) plasmid

shown, but it has been cloned just after the promoter (black arrow)

w-Transaminase (ATA) is produced using E.coli BL21 (DE3) strain, harboring pLE1-A10-
AcATA-D4 plasmid (supplied by c-LEcta) (Casablancas et al., 2013). Although the details
of the vector cannot be depicted (because it is propriety of the company), it includes

the lacl gene (codifying for the Lacl repressor proteins) and the gene neo, codifying for

kanamycin resistance.
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7.1.2 Fed-batch fermentations

For the new fermentations, using the BL21 (DE3) strains, the methodology is the same
as for the ones made in UAB until the inoculation of the fermentor. In this case, a New
Brunswick BioFlo® Fermentor (Eppendorf) with 3L vessel was used. It was equipped
with temperature, dissolved oxygen and pH control. As for the fermentations with the
M15 strain, temperature was maintained at 37 °C and pH at 7.00+£0.05 by addition of
15% (v/v) NH4OH solution. pO, value vas maintained at 60% of the saturation, adapting
the stirring speed between 300 and 1250 rpm, with 1.5 L-h™ of air. For glucose limiting
feeding, a peristaltic pump installed in the DCU was used. Induction phase was carried

out as indicated in Chapter 3.

7.1.3 Analytical methods

7.1.3.1 Biomass and total protein quantification

Biomass and total protein quantification were carried out as described in Chapter 3.

7.1.3.2 Activity assay

Enzymatic activity tests for every protein were performed as described below:

*= FSA
As for RhuA, FSA activity is determined through the NADH disappearance rate (30 °C
at 340 nm wavelength). In this case, three coupled reactions are needed, as shown in

Reactions (a), (b) and (c).

FSA
Fructose — 6 — Phosphate —— glyceraldehyde — 3 — phosphate + DHA (a)

TPI
glyceraldehyde — 3 — phosphate —— DHAP (b)
—GDH
DHAP + NADH —— o — glycerophosphate + NAD* (c)
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7 Protein production model extension

Reaction (a) is the natural aldolase reaction for FSA, a DHA-dependent enzyme.
Reaction (b) —catalyzed by triosephosphate isomerase (TPl) enzyme- produces the
DHAP necessary for reaction (c).

Table 7.1 shows the reagents concentration for the assay.

Table 7.1. Reagents concentration for FSA enzymatic assay.

Component Concentration
NADH 0.1 mM
Fructose-6-Phosphate 5 mM
TPI/ a-GDH 3UmL?
Imidazole 50 mM

In this case, all reagents are added into a 1mL quartz cuvette, to a final volume of 950
uL. Once the reagents are into the cuvette, as for RhuA activity test, it is read the
absorbance until it shows a stable value. Then, 50 pL of sample is added, the cuvette is
shake and the variation of absorbance is evaluated.

As for RhuA, the volumetric activity can be calculated using Equation (7.1)

- AAbS349 Vi
AU -mL~t = === Drly, (7.1)

where:
AAbssy is the absorbance variation per minute at wavelength 340 nm (min™)
 &is the NADH molar extinction coefficient (6.22 mM™-.cm™)
e V.is the total assay volume (mL)
e V. isthe volume of the aldolase sample (mL)
e Dsis the dilution factor of the sample

* L, is the optical path of the cuvette (cm)
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7 Protein production model extension

= ATA
ATA activity was determined spectrophotometrically at 30 °C and 240 nm wavelength
following the production of acetophenone. Reaction (d) shows the reaction for the

activity assay.

ATA
1 — phenylethylamine + pyruvate —— acetophenone + L — alanine (d)

This reaction needs pyridoxal phosphate as cofactor.

Table 7.2 shows the reagents concentration for the assay.

Table 7.2. reagents concentration for ATA enzymatic assay.

Component Concentration
Phosphate buffer 45 mM
Phenylethylamine 9.9 mM

Pyruvate 9.9 mM
Pyridoxal phosphate 0.09 mM
Dimethyl sulfoxide 1.125% (v/v)

In this case, all reagents are added into a 1mL quartz cuvette, to a final volume of 900
uL. Once the reagents are into the cuvette, as for RhuA activity test, it is read the
absorbance until it shows a stable value. Then, 100 uL of sample is added, the cuvette
is shake and the variation of absorbance is evaluated.

Volumetric activity can be calculated using Equation (7.1), but in this case, the increase
of absorption caused by the production of acetophenone will be followed. Moreover,

it is needed to use the acetophenone extinction coefficient (0.28mM™-cm).

7.2 Specific protein model

The equations describing the specific protein in mass and in activity have been
developed and validated in Chapter 6, but for its extension, it is necessary to
determine which parameters are going to be different, that means, which ones are

expression system’s dependent.
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7 Protein production model extension

Equations are reproduced in Table 7.3

Table 7.3. Specific protein production and activity model equations.

PROTEIN PRODUCTION MODEL

am
o AmrnaN — AmrnaM (7.2)
[IPTG]; n
dRfree _ 1 /1000
ac ~ ORM = AgRpree = TR0 [Rfree (m — Ripre (7.3)
[IPTG]; n
dRipre _ _1 /1000\ _ _
dt  tr-o [ free ( KRo1pTG ) RIPTG] ArRipTC (7.4)
dR
day __ Kes(TE) s
dt 1+Kp,P p .
av
ap P
w = (7.6)
du dp
ac - at (7.7)

E.coli BL21 (DE3) strain carries Lacl repression system in its genome (Jeong et al., 2009;
Lebedevaet al., 1994; Xuet al., 2012). Moreover, as explained above, plasmids inserted
in cells carry, also, the gene responsible for the production of Lacl molecules. As these
other expression systems use the same repressor as the M15 strain producing RhuA,
the value of the parameters describing the interaction between IPTG and repressor
molecules (Kr.pre, N) and the ones describing the Lacl production and degradation
(atmrna, Amrna, OR, AR) Will be the same for the three strains.

However, the number of copies of lacl gene for both BL21 (DE3) strains, as well as the
number of plasmids into the cells, is unknown. For this reason, the parameter N
(number of copies of lacl gene) will be a parameter to be fitted.

Moreover, Tz o (time constant for the linkage between the repressor and the operator)
is dependent on the expression system, and it is one more parameter to be changed.
Finally, the parameters related to specific protein production (Kp; and Kp;) as well as
the parameter that describes the specific activity of the protein produced (Kq) will be
different depending on the protein produced.

Thus, there are 5 parameters to be estimated in order to extend the model validated

for RhuA production to FSA and ATA, using E.coli BL21 (DE3) as host.
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7 Protein production model extension

Otherwise, as Equations (7.3) and (7.4) show, it is needed the prediction of the
intracellular IPTG concentration along time for the calculation of the free and the
bound repressor molecules. This prediction can be made using the IPTG uptake model

presented in Chapter 5 and used in Chapter 6. It is reproduced in Table 7.4

Table 7.4. IPTG uptake model equations

IPTG UPTAKE MODEL

Weel _ 023 24V (7.8)
dt dt
aVm — d_V _ aVcel
dt ~ dt dt (7.9)
dVm
dlIpTGl, _ ~7'Vm—[IPTGle—5~
——= - (7.10)
d[IPTG); TVm—[IPTG] Weel
i _ V= T
— = ™ (7.11)
" ki1[IPTG],
r = kea([IPTG], — [IPTG],) + K1 Xina (1{ [IPTG], + W) exp(Kaktsix) (7.12)

In this case, the BL21 (DE3) FSA strain was already been used for the validation of the
IPTG uptake model (Chapter 5). It can be assumed that BL21 (DE3) ATA strain will
conserve the same transport mechanisms as BL21 (DE3) FSA , thus the IPTG uptake
model has been considered to be applicable to both strains.

For the fitting of the protein production sub-model to the new experiments,
experimental data of total volume as well as biomass concentration have been used
(as was made for the fitting of the IPTG uptake model in Chapter 5 and protein
production and activity model in Chapter 6).

Three different experiments for every strain, with different cultivation conditions were

conducted.

7.3 BL21 (DE3) FSA model fitting
Three different experiments with different cultivation conditions were conducted. The

experimental conditions are shown in Table 7.5.
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7 Protein production model extension

Table 7.5. Experimental conditions for BL21 (DE3) FSA strain

FSA1 FSA2 FSA3

[IPTG]eo (1M) 100 70 100
Xina (8DCW-L?) 10.5 12.5 216
Hex (h™) 0.15 0.2 0.22

As it is depicted in Table 7.5, fed-batch production cultures have been performed
under experimental conditions inside the experimental space employed for model
calibration.

The result of the estimation of the different parameters is shown in Table 7.6.

Table 7.6. Parameter’s estimated values for specific protein production and specific protein activity model.

Parameter Value Units
N 4245 number of copies
Tro 16+1 h
Kpy 0.0700+8-10™ cell-molecule™h™
Kp2 0.2340.09 gDCW-mg'RhuA
Kq 5.720+1-10° AU-mg'RhuA

As it is shown in Table 7.6, the value for the parameter N is much higher than the value
used for the M15 strain, that means that a large number of copies of lacl gene are
present into cells. It can be related to a large number of copies of the corresponding
plasmid. tro is higher than for the M15 strain. This fact means that the dynamic
equilibrium is slower. Kp; and Kp, take values similar to M15 strain. This means that
protein production dynamics are similar.

Figure 7.4 presents the results of the fitting and it can be seen that the model is able to
predict properly specific protein both in mass and activity for an E.coli BL21 (DE3)

strain, producing Fructose-6-Phosphate Aldolase.

126



7 Protein production model extension

80 - 500
Q Z
o 3]
o o
% 5y
w o)
o <
E o
o
A
0 T | T T T T 0 T T T T T T L §
00 02 04 06 08 10 12 14 18 00 02 04 06 08 10 12 14 18
tma (h) tu\d (h)
80 450
70 400 — 9
§ 601 350
(8]
,.O 50.4 g 300 -
> 2
40 ‘> 250 -
&5 >
w J 2
o 30 < 200
E =)
o 20 150 =
10 100
Cc
0 — 50 +—————————
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 18
L (h) tog ()
500 -
g =
8 <
3 >
w o)
> <
£ o |
o
E F
0 T ' ' T T 0 1] T T T '
0.0 05 1.0 15 20 25 0.0 05 1.0 15 20 25
tmd (h) tlm‘l (h)

Figure 7.4. Specific protein in mass and activity model fitting. (¢ ) experimental data, (-) model fitting, (- -) 10%
error area. A: FSA1 specific protein in mass; B: FSA1 specific protein in activity; C: FSA2 specific protein in mass; D:
FSA2 specific protein in activity; E: FSA3 specific protein in mass; F: FSA3 specific protein in activity.
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7.4 BL21 (DE3) ATA model fitting

Three different experiments with different cultivation conditions were conducted. The

different experimental conditions are shown in Table 7.7.

Table 7.7. Experimental conditions for BL21 (DE3) ATA strain

ATA1l ATA2 ATA3

[IPTG]eo (1M) 100 100 70
Xina (BDCW-L?) 10.8 15.3 20.8
Hex (h™) 0.22 0.22 0.15

As it is depicted in Table 7.7, again, fed-batch experiments performed for data
acquisition are into the experimental space used in the calibration of the model in
Chapter 6.

The result of the estimation of the different parameters is shown in Table 7.8.

Table 7.8. Parameter’s estimated values for specific protein production and specific protein activity model.

Parameter Value Units
N 4614 number of copies
Tro 17319 h
Kpy 0.5+0.2 cell-molecule™h™
Kp2 0.4%0.2 gDCW-mg'RhuA
Kq 5.160+1-10° AU-mg'RhuA

Table 7.8 shows, as Table 7.7 makes, that the number of copies of lacl gene (that
means number of copies of plasmid) is much higher than the number of copies present
in M15 strains used previously in this work. Nevertheless, the number is similar to the
one estimated for BL21 (DE3) FSA strain. This fact, taking into account that the number
of copies of the gene present in the genome is the same for both BL21 (DE3) strains,
means that the number of copies of plasmid in both strains is similar. tro is much
higher than for the M15 strain. This fact means that the dynamic equilibrium is much
slower. Kp; and Kp, take values are higher than the ones for M15 strain. This means, on
the one hand, that production is faster, and on the other, that there is a higher

saturation.
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Figure 7.5 shows that the model is able to predict properly specific protein both in

mass and in activity units for a E.coli BL21 (DE3) strain, producing an w-transaminase.

Although Figures 7.4 and 7.5 show the goodness of the fitting, as made in Chapters 5
and 6, a good way to see how good is the model is using parity plots. Figure 7.6 shows
the parity plots for the specific protein in mass and specific activity for both strains,

showing the goodness of the model fitted.
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Figure 7.6. Parity plots with 10% error. A: specific FSA in mass; B: specific FSA in activity; C: specific ATA in mass;
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7.5 Conclusions

The model of specific protein production in mass units and in activity units developed,
calibrated and validated for the production of Rhamnulose-1-phosphate Aldolase can
be used for the production of different proteins -Fructose-6-phosphate Aldolase and
one Aminotransferase- using a BL21 strain with different expression systems.

It is needed to identify the system-dependent’ parameters. In this case, 5 of the
parameters of the model are dependents on the expression system (depending on the
strain: N, tr.0; depending on the protein produced: Kp1; Kpy; Kq).

The number of copies of lacl gene (N) (codifying for the lac repressor) is similar for
both strains, meaning that they have a similar number of plasmid copies.

Tr-o for both expression systems is higher than for M15 strain, meaning a slower
binding equilibrium between repressor and operator.

Higher Kp; means a higher protein production rate, and higher Kp, is related with a
higher saturation because protein production.

Kq value depends on the way the activity is defined.

As a final conclusion, it is possible to simulate and predict the production of several
recombinant proteins in different E.coli strains and plasmids, demonstrating that the
overall model developed can constitute a powerful tool for optimization and control of

production processes.
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8 General Conclusions and future perspectives

In this work, a coupled model capable to predict specific protein in mass and in activity
units for fed-batch cultures of recombinant E.coli producing Rhamnulose-1-Phosphate

aldolase has been developed, calibrated and validated.

The determination of the key experimental variables in heterologous protein
production, and a preliminary study about their effect on specific protein in mass and
activity units, has been carried on. Inducer, biomass concentration at induction and
the specific growth rate are the control variables. It has been seen that working at low
biomass concentration at induction allows obtaining high values of specific activity,
and that low specific growth rates lead to low productivities. Concerning inducer
concentration, it has been demonstrated that a low concentration is enough provided
the inducer to biomass ratio is in the range 2-4 pmol IPTG-g" DCW. These three

variables have been shown to be key in the model development.

The coupled model for protein production has three different sub-models calibrated

individually:

Biomass growth model: this model was proposed by Ruiz (Ruiz, Gonzalez, de

Mas, & Lépez-Santin, 2011).

Inducer uptake model: a quantitative study about inducer transport has been

carried out. A model has been developed, calibrated and validated using
experimental data. Net transport rate mechanism has been described as
diffusion plus active transport. This active transport can be mediated by the
specific transporting proteins (lactose permesases, specific active transport)

and by other transport proteins (non-specific active transport).

- Protein production model: the part of the model corresponding to specific

protein in mass and in activity units has been developed and calibrated. The

model is based on the interaction between inducer and repressor.
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The overall model is able to predict, properly, all the experimental data obtained in the
fermentation: total volume, glucose concentration, biomass concentration,
extracellular IPTG concentration, specific protein in mass and specific activity. The
model is able, too, to predict intermediate variables that have not been measured:
intracellular IPTG concentration, amount of free repressor and amount of repressor
bound to IPTG.

The model has been extended to simulate and predict the production of different
proteins expressed by different E.coli strains. For the extension of the model has been
necessary to evaluate, the number of lacl gene copies (N) and the time constant for
the linkage between the repressor and the operator (tr.0) that are strain dependent,

and Kp1, Kp2 and Kq that will change depending on the protein produced.

As final conclusion, it is possible to make a simulation and a prediction of different
heterologous proteins produced in different E.coli strains, using different plasmids
through an overall model. This kind of models represents an important tool for process

optimization and control.

The obtained results of this work make possible further studies. The future
perspectives include:

* Calibration of the biomass growth model to the BL21 strains

* Optimization of the volumetric productivity using the overall model

* Application of the model for control purposes.

* Coupling a metabolic model to the overall model, in order to give a more

detailed explanation of the whole process
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10 Appendix

10.1 Growth profiles

10 Appendix

The following figures show the time evolution of biomass and glucose concentration,

as well as the total volume for all the experiments used in this work.
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Figure 10.1. lac Y mutant strain. [IPTG] = 10 uM; Xjng = 20 gDCW-L'l; Msix = 0.22 ht. ( A ) experimental total
volume; (¢ ) experimental biomass concentration; (0) experimental glucose concentration.
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Figure 10.2. lac Y mutant strain. [IPTG].,o = 20 uM; Xi,q = 20 gDCW-L'l; Hsix = 0.22 h. ( A ) experimental total
volume; (¢ ) experimental biomass concentration; (0) experimental glucose concentration.
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Figure 10.3. lac Y mutant strain. [IPTG].o = 54 uM; Xi,q = 20 gDCW-L'l; Hsix = 0.22 h. ( A ) experimental total
volume; (¢ ) experimental biomass concentration; (O) experimental glucose concentration.
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Figure 10.4. lac Y mutant strain. [IPTG],o = 200 pM; X, = 20 gDCW-L‘l; Msix = 0.22 h. ( A ) experimental total
volume; (¢ ) experimental biomass concentration; (0) experimental glucose concentration.
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Figure 10.5. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG] = 8 UM; Xing = 20 gDCW-L-l; Msix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.6. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG], = 10 uM; Xinq = 20 gDCW-L‘l; Msix = 0.1 h™.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW-L™), glucose (gL™)

concentration.
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Figure 10.7. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]e = 10 pM; Xi,q = 20 gDCW-L'l; Msix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; (0) experimental glucose

concentration.
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Figure 10.8. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG], = 10 uM; Xi,q = 40 gDCW-L-l; Max = 0.1 h.
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Figure 10.9. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]e = 15 uM; Xinq = 30 gDCW-L'l; Msix = 0.16 ht.

concentration.
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Figure 10.10. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG],o = 20 uM; Xi,q = 20 gDCW-L-l; Msix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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Figure 10.12. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]. o = 24 pM; Xinq = 40 gDCW-L'l; Msix = 0.1 ht.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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Figure 10.13. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG], = 24 pM; Xi,q = 40 gDCW-L-l; Msix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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Figure 10.14. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]¢ o = 27 uM; Xing = 20 gDCW-L'l; Msix = 0.1 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW-L™"), glucose (gL™)

concentration.
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Figure 10.15. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG], = 60 uM; X, = 13 gDCW-L-l; Msix = 0.16 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.16. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG], = 60 uM; Xi,q = 30 gDCW-L-l; Hsix = 0.06 h.
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Figure 10.17. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG],o = 60 uM; Xi,q = 47 gDCW-L-l; Msix = 0.16 h.

concentration.
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( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.18. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG],o = 70 uM; Xinq = 20 gDCW-L-l; My = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW:-L™), glucose (gL™)

concentration.
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Figure 10.19. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG].o = 100 uM; X, = 20 gDCW-L-l; Mix = 0.1 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.20. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]. o = 100 uM; Xing = 20 gDCW-L'l; Msix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW:-L™), glucose (gL™)

Figure 10.21. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG].o = 100 uM; Xi,q = 40 gDCW-L-l; Mix = 0.1 h.

concentration.
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( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.22. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]. o = 100 uM; Xing = 40 gDCW-L'l; Msix = 0.22 ht.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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Figure 10.23. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG]. o = 200 uM; Xing = 20 gDCW-L'l; Msix = 0.22 ht.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose
concentration.
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Figure 10.24. M15 AglyA[pQEaBrham][pREP4] strain. [IPTG],o = 1000 uM; Xinq = 20 gDCW-L‘l; Hsix = 0.22 h.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW:-L™), glucose (gL™)

Figure 10.25. M15 AglyA[pQEaBfucA][pREP4] strain. [IPTG] o = 70 uM; Xing = 20 gDCW-L-l; Msix = 0.22 h.

concentration.
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( A ) experimental total volume; (* ) experimental biomass concentration; (O) experimental glucose

concentration.
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Figure 10.26. M15 [pQE-FucA][pREP4] strain. [IPTG].o = 70 uM; Xing = 20 gDCW-L'l; Msix = 0.22 ht.

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

X (gDCW-L™"), glucose (gL™)

concentration.
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Figure 10.27. BL21 (DE3) FSA strain. [IPTG]. o = 100uM; X;nq = 10.5 gDCW-L™; pg, = 0.15 h™,

total volume (L)

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.28. BL21 (DE3) FSA strain. [IPTG],o = 70uM; Xing = 12.5 gDCW-L'l; Msix = 0.2 h™.

total volume (L)

( A ) experimental total volume; (* ) experimental biomass concentration; (0) experimental glucose

X (gDCW:-L™), glucose (gL™)

concentration.
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Figure 10.29. BL21 (DE3) FSA strain. [IPTG],o = 100uM; Xing = 21.6 gDCW-L'l; Msix = 0.22 h'.

total volume (L)

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.30. BL21 (DE3) ATA strain. [IPTG].,o = 100uM; Xing = 10.8 gDCW-L™; g, = 0.22 h™,

total volume (L)

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.
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Figure 10.31. BL21 (DE3) ATA strain. [IPTG].,, = 100 pM;

Xing = 15.3 gDCW-L'; ps = 0.2 h ™

total volume (L)

( A ) experimental total volume; (* ) experimental biomass concentration; () experimental glucose

concentration.



10 Appendix

BATCH FED-BATCH INDUCTION
40
A 11
/
A
—~ Ae
dE 5 g L
‘é’ } . 1.0
o AT e —
g < 5
35 77 i )
> o A Los §
- 20 4 Ny e
- o
Vg ~ / ® >
- ~ ( ©
2 M o m g —a 7 S
Q) T s - 0.8
C) ~
—~ 10 4 v s
= P -
N N
P
4—"”"’ N
0 o=——— : . 8 —O——Imo00—
0 5 10 15 20 25

total time (h)

Figure 10.32. BL21 (DE3) ATA strain. [IPTG]. o = 70uM; X;ng = 20.8 gDCW-L™; pg, = 0.15 h™.

( A ) experimental total volume; (* ) experimental biomass concentration; (O) experimental glucose
concentration.

10.2 List of publications

Calleja, D., Fernandez-Castaiié, A., Pasini, M., de Mas, C., Lopez-Santin, J. (2014).
Quantitative modeling if inducer transport in fed-batch cultures of Escherichia coli.
Biochemical Engineering Journal, 91, 201-219.

Under preparation: (tentative titles)

Calleja, D., de Mas, C., Lopez-Santin, J., Overall modeling for recombinant protein
production in high-cell density cultures of E.coli.

Calleja, D., de Mas, C., Lopez-Santin, J., Protein production modeling using different
E.coli expression systems.

163



	dcm1de1
	dcm2
	dcm3
	dcm4



