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Abstract

The evolution of constraint based geometric models is tightly tied to parametric and feature-
based Computer-Aided Design (CAD) systems. Since the introduction of parametric design
by Pro/Engineer in the 1980’s, most major CAD systems adopted constraint based geometric
models as a core technology. Constraint based geometric models allowed CAD systems to
provide a more powerful data model while offering an intuitive user interface. Later on, the
same models also found application to fields like linkage design, chemical modeling, computer
vision and dynamic geometry.

Constraint based geometric models are unevaluated models. A key problem related to
constraint based geometric models is the geometric constraint based solving problem which,
roughly speaking, can be stated as the problem of evaluating a constraint based model. Among
the different approaches to geometric constraint solving, we are interested in graph-based
Decomposition-Recombination solvers. In the graph-based constructive approach, the geo-
metric problem is first translated into a graph whose vertices represent the set of geometric
elements and whose edges are the constraints. Then the constraint problem is solved by de-
composing the graph into a set of sub-problems, each sub-problem is recursively divided until
reaching basic problems which are solved by a dedicated equational solver. The solution to the
initial problem is computed by merging the solutions to the sub-problems.

The approach used by DR-solvers has been particularly successful when the decomposition
into subproblems and subsequent recombination of solutions to these subproblems can be
described by a plan generated a priori, that is, a plan generated as a preprocessing step without
actually solving the subsystems. The plan output by the DR-planner remains unchanged as
numerical values of parameters change. Such a plan is known as a DR-plan and the unit in
the solver that generates it is the DR-planner. In this setting, the DR-plan is then used to
drive the actual solving process, that is, computing specific coordinates that properly place
geometric objects with respect to each other.

In this thesis we develop a new DR-planner algorithm for graph-constructive two dimensional
DR-solvers. This DR-planner is based on the tree-decomposition of a graph. The triangle- or
tree-decomposition of a graph decomposes a graph into three subgraphs such that subgraphs
pairwise share one vertex. Shared vertices are called hinges. The tree-decomposition of a
geometric constraint graph is in some sense the construction plan that solves the corresponding
problem. The DR-planner algorithm first transforms the input graph into a simpler, planar
graph. After that, an specific planar embedding is computed for the transformed graph where
hinges, if any, can be straightly found. In the work we proof the soundness of the new algorithm.
We also show that the worst case time performance of the resulting algorithm is quadratic on
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the number of vertices of the input graph. The resulting algorithm is easy to implement and
is as efficient as other known solving algorithms.
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CHAPTER 1

Introduction

Whatever you can do, or dream you

can, begin it. Boldness has genius,

power, and magic in it.

(Johann Wolfgang von Goethe)

Geometric models are data structures designed with the aim to represent the physical prop-
erties of objects and are intended to represent a unique solid. The main properties encoded
include geometric and topological characteristics of physical objects.

Computer Aided Design (CAD) systems are software applications built to help industrial
designers in the product design cycle. Because the main activity of CAD systems is related to
manage descriptions of objects, geometric models are at the core of such systems. Geometric
modelling began in the mid 1970’s with two competing approaches, Constructive Solid Ge-
ometry (CSG) and Boundary Representation (Brep). Over time Brep became the dominant
representation for CAD models. Later on constraint-based geometric models were introduced.
The most salient characteristic of a constraint-based geometric model is the ability to describe
a family of physical objects. Because of this characteristic, given a constraint-based model we
can instantiate it by giving values to a well defined set of parameters. The result is an actual
geometric model, usually a Brep, that belongs to the described family.

Parametric CAD/CAM systems capture the design intent by defining functional relationships
between dimensional variables and geometric elements, that is, by applying constraint-based
geometric design. Proengineer, [22], is an example of a commercial CAD system that uses
parametric design. Constraint-based geometric models are at the core of such systems.

A paramount issue found in constraint-based geometric design is the constraint solving
problem which can be roughly summarized as follows:

Given a set of geometric elements and a set of constraints between them, place
each geometric element in such a way that the constraints are fulfilled.

We consider geometric constraint problems in the Euclidean plane consisting of a finite set
of geometric objects and a finite set of constraints defined between them. The geometric
objects are drawn from a fixed set of elements such as points, straight lines, circles and arcs

1



2 Chapter 1 Introduction

of circle. The constraints include topological constraints such as tangency, incidence and
perpendicularity, and metric constraints such as point-point distance, perpendicular point-
straight line distance and line-line angle.

Algorithms that solve geometric constraint problems are named solvers. Among the existing
solving methods we focus on constructive techniques and more specifically on Decomposition-
Recombination solvers. In these techniques the input is a geometric constraint problem repre-
sented as a geometric constraint graph. Then the graph is decomposed yielding as output a
constructive plan, that is, a sequence of basic steps that describe how to build a solution to
the constraint-based geometric problem. Basic steps correspond to elemental operations which
are solved with dedicated algorithms.

1.1 Motivation

Following Hoffmann el al., [45], the desirable properties of solvers include efficiency, simplicity,
domain richness and soundness. The design of solvers that fulfill these properties exhibits some
challenging issues. The research of efficient solvers is paramount since the early nineties. Many
attempts to provide general, powerful and efficient constructive graph-based techniques have
been reported in the literature. In Chapter 3 we overview the main approaches published so
far.

Decomposition-recombination solvers (DR-solvers) apply a divide-and-conquer recursive pat-
tern: first the problem is decomposed into simpler subproblems, the simpler subproblems are
solved and then their solutions are recombined.

Our interest focuses on constructive DR-solvers where the geometric constraint problem is
abstracted as a graph. The constructive DR-solvers output a constructive plan, that is, a
sequence of basic steps that describe how to position geometric objects such that constraints
are fulfilled. These steps are basic geometric operations, for example, ruler-and-compass oper-
ations.

The works of Joan-Arinyo et al., [66–68, 128] defined the tree decomposition of a constraint
graph. We will refer to decomposition trees in Chapter 3. Decomposition trees, despite have
their origins in theoretical work to characterize the domain of certain solvers, see [65,68], allow
to represent construction plans. In some sense if we can obtain a tree decomposition for a
geometric constraint graph we have solved the corresponding geometric constraint problem.

The computation of a tree decomposition of a constraint graph can indirectly be done through
known methods like that of Owen, [99]. However, it is highly desirable to have an algorithm
that allows the direct calculation of the tree decomposition of a constraint graph. The main
objective of this work is to develop a new general, correct and efficient DR-solver based on
computing a tree decomposition of the input graph.

The work presented in this thesis has been developed in the framework of the research
on geometric constraint solving undertaken by Professor Robert Joan-Arinyo and Professor
Sebastià Vila-Marta and the Engineering Computing Group (GIE). The GIE conducts research
in computer graphics, solid modeling, and applications build on top of these technologies.
This research has been partially supported by the Spanish Ministry of Science and FEDER
grants TIN2004-06326-C03-01 and TIN2007-67474-C03-01, and by the Spanish Ministerio de
Economia y Competitividad and FEDER grant TEC2012-35571.
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1.2 Goals

The main goal of this work is to develop a new correct and efficient DR-solver based on
computing a tree decomposition of the input graph. This involves:

• The design of an algorithm to compute a tree decomposition of a 2D geometric constraint
graph. The algorithm should efficiently deal with well-constrained and under constrained
problems.

• To prove the algorithm soundness.

• To analyze the worst case time complexity of the resulting algorithm.

• To gain better insight into the properties of tree decomposable graphs.

1.3 Methodology

Our research follows a method including both analytic processes and empirical experimentation
with the goal of developing a new DR-planner algorithm according to the following steps:

1. Theoretical study of the existing methods in the geometric constraint solving research
area.

2. Preliminary design of a new algorithm as a follow up of the works already developed in
our research group, Joan-Arinyo et al., [68, 114].

3. Design and verification of the algorithm as well as simulation of the algorithm runtime
behavior. The new DR-planner algorithm was tested and the empirical behavior was
documented in [70].

4. Development of a complete proof of correctness for the new algorithm in the sense that
given a tree decomposable non over-constrained graph the new algorithm successfully
decomposes it.

5. An efficient algorithm to identify interlacement of graph bridges was devised and tested.

6. An specific algorithm to figure out a planar embedding of a transformed constraint graph
was developed.

7. An algorithm to compute a decomposition step was devised and its running time was
analyzed.

8. Finally, a full recursive tree-decomposition based DR-planner was developed and its
running time for the worst case was figured out.
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1.4 Main Contributions

The main contributions of this work are the following:

• A new DR-planner based on tree decomposition has been developed. This algorithm de-
composes graphs representing either under-constrained or well-constrained 2D geometric
problems. This DR-planner belongs to the constraint shape recognition class in the sense
of [45].

The algorithm is inspired in the works of Miller and Ramachandran, [93], to compute tri-
connected components of a graph. The algorithm proceeds by exploring the fundamental
circuits of the graph looking for a specific triple of vertices that allows to decompose the
graph. These triples are named hinges. In order to find hinges the graph is transformed
into an equivalent planar graph. The embedding of this planar graph allows to efficiently
obtain the hinges if any.

• We prove that the algorithm is correct in the following sense: if the input graph is a
tree-decomposable graph it is always decomposed, conversely, if the input graph is a non
tree-decomposable graph the algorithm fails.

• We prove that the algorithm worst case time complexity is O(n2) where n is the number
of geometric elements in the problem.

1.4.1 Scientific Publications

The scientific contributions of this thesis are the following,

1. JOAN-ARINYO, R., TARRÉS-PUERTAS, M., AND VILA-MARTA, S. Geometric con-
straint graphs decomposition based on computing graph circuits. In Automated Deduc-
tion in Geometry - 7th International Workshop, ADG 2008, Shanghai, China (2008), pp.
96–101, [69].

2. JOAN-ARINYO, R., TARRÉS-PUERTAS, M., AND VILA-MARTA, S. Treedecom-
position of geometric constraint graphs based on computing graph circuits. In 2009
SIAM/ACM Joint Conference on Geometric and Physical Modeling (New York, NY,
USA, 2009), SPM’09, ACM, pp. 113-122, [70].

3. JOAN-ARINYO, R., TARRÉS-PUERTAS, M., AND VILA-MARTA, S. Decomposition
of geometric constraint graphs based on computing fundamental circuits. Correctness
and complexity. Computer-Aided Design 52 (2014), 1-16, [71].

1.5 Thesis Organization

This thesis is structured in seven chapters. Chapter 1 presents the motivation and objectives
of the undertaken research and briefly introduces the new DR-planner.

Chapter 2 provides the basic background concerning graphs theory needed to follow the rest
of this work.
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Chapter 3 introduces the background to geometric constraint problems and geometric con-
straint solving field, takes a closer look at the geometric constraint solving algorithms and their
analysis, and reviews the state of the art in geometric constraint solving over the last decades.
A comprehensive review of the published literature concerning geometric constraint solving is
included focusing on constructive, graph-based decomposition-recombination solvers.

Chapter 4 is the core of this work and describes the new constructive Decomposition-
Recombination planner developed.

In Chapter 5 we develop the correctness proof of our DR-planner algorithm.
Chapter 6 deals with the implementation details and the evaluation of the worst case effi-

ciency of the new algorithm.
Chapter 7 sums up the contributions in this thesis and highlights open problems for future

research.
Finally we include an Appendix with additional examples that illustrate how the new DR-

planner works





CHAPTER 2

Graph-theoretic Background

If I were again beginning my

studies, I would follow the advice of

Plato and start with mathematics.

(Galileo Galilei)

In this Chapter we recapitulate some basic graph theory concepts that will be used in this
manuscript. Most of the material in this chapter is standard. However, we present the basic
concepts and their notation here. For more information on general graphs theory we refer to
the books of Even, [28], Thulasiraman and Swamy, [123] and Gross et al., [39].

We start with some basic definitions. The analysis of the rest of concepts are grouped into
operations on graphs, connectivity of a graph, trees and fundamental circuits, Depth-First
search algorithm, planar graphs and embeddings, components and bridges, and finally, planar
graphs and bridges.

2.1 Basic Definitions

In this work, a graph G = (V,E) is a finite set V of nodes or vertices and a collection of edges,
E. An edge is an unordered pair (u, v) of distinct vertices u, v ∈ V (G). In general V (G) and
E(G) will denote respectively the set of vertices and edges of the graph G.

A graph can be represented by a diagram in which a vertex is symbolized by a dot and an
edge by a line segment connecting two dots.

Example 2.1. Figure 2.1 shows the graph G = (V,E) where:

V = {a, b, c, d, e, f, g, h, i, j, k}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17}

The edges can also be denoted by the corresponding end vertices, for instance e6 = (d, e) or
e13 = (g, i).

The degree of a vertex v ∈ V (G), denoted by d(v) is the number of edges E(G) incident to
v. An isolated vertex is a vertex with degree zero.

7
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Figure 2.1: Graph example.

Example 2.2. In the graph G in Figure 2.1, for example, d(a) = 4, d(e) = d(i) = d(k) = 2.

Let G = (V,E) be a graph. We say G′ = (V ′, E′) is a subgraph of G if V ′ ⊂ V , E′ ⊂ E and
an edge (vi, vj) ∈ E′ only if vi, vj ∈ V ′.

Let G = (V,E) be a graph and V ′ ⊂ V . Then the subgraph G′ = (V ′, E′) is the vertex-
induced subgraph of G if E′ is a subset of E such that edge (vi, vj) is in E′ if and only if vi and
vj are in V ′. That means that if vi, vj ∈ V ′, then every edge in E having vi and vj as its end
vertices should be in E′.

A path in a graph G = (V,E) is a sequence of vertices v1, v2, . . . , vn of V (G) such that
(vi, vi+1) is an edge in E(G) for 1 ≤ i < n. A path is simple if all vertices on the path are
distinct.

Example 2.3. See for example the simple path j, a, d, e, f in Figure 2.1.

In this work, a circuit is a simple path that contains no repeated vertices except v1 and
vn which are the same. In what follows, we shall denote the set of vertices in a circuit as
C = 〈v1, v2, . . . , vn−1, vn〉 and we shall consider that vertices are circularly sorted. Whether
vertices are sorted clockwise or counterclockwise is irrelevant.

Example 2.4. For example, 〈g, i, h〉 and 〈h, i, g〉 denote the same circuit in the graph in
Figure 2.1.

2.2 Operations on Graphs

In this Section we introduce a few operations between graphs.
Consider two graphs, G1 = (V1, E1) and G2 = (V2, E2). The union of G1 and G2, denoted

as G1 ∪ G2, is the graph G = (V1 ∪ V2, E1 ∪ E2). The intersection of G1 and G2, denoted as
G1 ∩G2, is the graph G = (V1 ∩ V2, E1 ∩ E2).

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. G(V,E) is the ring sum of G1 and G2,
denoted as G1 ⊕G2, when V = (V1 ∪ V2, E = (E1 ∪E2)− (E1 ∩E2)), and all isolated vertices
are dropped from V .
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Figure 2.2: A disconnected graph.

Consider a graph G = (V,E) and v ∈ V . Then vertex removal operation, denoted as
G′ = G− v, computes the vertex induced subgraph of G by V − v.

ConsiderG = (V,E) a graph and e ∈ E. Then edge removal operation, denoted as G′ = G−e,
is the subgraph of G that results after removing from G the edge ei. Note that the end vertices
of e are not removed from G.

The removal of a set of vertices or edges from a graph G is defined as the removal of single
vertices or edges in succession.

2.3 Connectivity of a Graph

Graph connectivity will play an important role in the algorithm proposed in this thesis. Given
a graph G, the first point is to determine the connectivity of G.

A graph G = (V,E) is connected if there exists a path between every pair of vertices in G,
otherwise G is disconnected. The maximal connected subgraphs of a disconnected graph G are
the connected components of G.

Example 2.5. For example, the graph G in Figure 2.2 is disconnected. Its two connected
components are G1 and G2. Vertex sets are V (G1) = {a, b, k, c, d, e, f} and V (G2) = {g, h, i}.

Let G = (V,E) be a connected graph. A vertex v ∈ V (G) is an articulation vertex if
V (G)− {v} is disconnected.

Theorem 2.1. Let G = (V,E) be a connected graph. If v ∈ V (G) is an articulation vertex,
there are two vertices u,w ∈ V (G) with u 6= v and w 6= v such that v is on every path connecting
vertices u and w.

Proof. See the book of Thulasiraman and Swamy, [123].

A non-separable or biconnected graph G = (V,E) has no articulation vertices, otherwise
it is separable. A biconnected component of a connected graph G is a maximal biconnected
subgraph of G. A connected graph can be decomposed into biconnected components. For any
biconnected graph G = (V,E), given a pair of vertices u, v ∈ V (G), with u 6= v, there are, at
least, two disjoint paths connecting u and v.
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g

fd

ecb

a

Figure 2.3: A 0-connected graph.

The connectivity of a graph G = (V,E) is the minimum number k of vertices that must be
removed to disconnect G. If the connectivity of G is k, we write κ(G) = k. For a disconnected
or 0-connected graph G, κ(G) = 0. For a connected graph G, κ(G) ≥ 1. A separable graph
or 1-connected graph G has κ(G) = 1. A 2-connected G has κ(G) = 2. A biconnected graph
has connectivity κ(G) ≥ 2. In a similar way, a graph G with κ(G) ≥ 3 is called triconnected.
Biconnected graphs can be decomposed into triconnected components.

Example 2.6. Figure 2.3 shows a 0-connected graph and Figure 2.4 shows a 1-connected
graph.

A star graph is a connected graph G = (V,E) with one vertex v ∈ V called center with
degree greater than 1 and such that for each vertex vi ∈ V - {v}, the degree is 1.

2.4 Trees and Fundamental Circuits

In this Section we introduce trees and also point out the relationship between trees and circuits.
A graph is said to be acyclic if it has no circuits. A tree of a graph G = (V,E) is a connected

acyclic subgraph of G. A spanning tree T for a graph G is a tree that connects all the vertices
in V (G). The edges of a spanning tree T are called the branches of T . The edges E(G) which
are not in T are called the chords. If |V (G)| = n and |E(G)| = m, the spanning tree T has
n− 1 branches and m− n+ 1 chords. A connected graph always contains a spanning tree.

The co-spanning tree T ∗ of a spanning tree T for a graph G is the subgraph of G whose
vertices are those of G and whose edges are exactly those edges of G that are not in T .

Example 2.7. Figure 2.5 shows a graph G, a spanning tree T and the corresponding co-
spanning tree T ∗.

fa
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h

g
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e

Figure 2.4: A 1-connected graph.
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Figure 2.5: (a) A graph G, (b) A tree T of G and (c) A co-spanning tree T ∗

of T .

Theorem 2.2. Let G = (V,E) a graph with |V | = n and G′ ⊂ G. G′ is a spanning tree of G
if and only if G′ is acyclic, connected, and has n− 1 edges.

Proof. See Thulasiraman and Swamy, [123].

For a given spanning tree, a unique circuit can be obtained by adding to the spanning
tree each of the chords. The set of m − n + 1 circuits obtained in this way is called the
fundamental system relative to the spanning tree. A circuit in the fundamental system is
called a fundamental circuit.

Theorem 2.3 (Fundamental Circuit Theorem). If G = (V,E) is a graph and T a specified
spanning tree, any circuit C in G can be expressed as the ring sum of some fundamental circuits
of G with respect to T . Further, no fundamental circuit is the ring sum of any of the others.

Proof. See Even, [28].

Example 2.8. Consider the graph G and the spanning tree T in Figure 2.5. The fundamental
circuits are the following (See Figure 2.6),

C1 = 〈e, d, a, f〉

C2 = 〈d, c, j〉

C3 = 〈a, d, c, j〉

C4 = 〈j, h, g〉

C5 = 〈g, h, i〉

C6 = 〈c, j, h, b, k〉

C7 = 〈a, d, c, j, h, b〉

Every fundamental circuit contains exactly one chord ci that is not present in any other
fundamental circuit respect to T . For example, C1 contains the chord (e, f).
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Figure 2.7: (a) G, (b) one of its DFS trees and (c) the co-spanning tree.

2.5 Depth-First Search Algorithm

The goal of this Section is to recall the Depth-First Search algorithm, in short DFS. The DFS
algorithm is a technique of scanning a finite undirected graph. It allows to efficiently visit
vertices we want to walk along the edges, from vertex to vertex and visit all vertices. Since
the work of Hopcroft and Tarjan [51, 118] it is widely recognized as a powerful technique for
solving a number of graph problems.

Assume we are given a finite connected graph G = (V,E). Starting in one of the vertices we
want to walk along the edges, from vertex to vertex and visit all the vertices. The start vertex
v is called the root of the DFS. DFS terminates when the search returns to the root and all
the vertices have been visited. When selecting the next vertex to explore, depth-first search
selects a vertex that has never been explored and is connected by an edge to the most recently
explored vertex. DFS partitions the edges of G into edges visited (branches) and edges not
visited (chords). The branches form a spanning tree T of G. The chords form a co-spanning
tree T ∗ of G.

Example 2.9. Figure 2.7 shows a graph G = (V,E). Assuming the vertex d as the root, the
DFS computes a spanning tree T . T ∗ is the corresponding co-spanning tree.

2.6 Planar Graphs and Embeddings

Planar graphs and embeddings are topics widely discussed in the literature. See, for example,
[96, 97]. Since planar graphs play an important role in this work, here we introduce the main
related concepts.

A graph G = (V,E) is planar if there is a mapping from every vertex v ∈ V (G) to a point
in a two-dimensional space, and from every edge e = (v1, v2) ⊆ E to a plane continuous curve
such that the bounding points of each curve are the points mapped from the edge end vertices
and all curves are disjoint except on their bounding points. The resulting projection is called
a plane graph or planar embedding. In this work we consider planar graphs and embeddings,
therefore we will use just the word embedding to refer to a planar embedding.

The complement with respect to the two-dimensional plane of an embedding is a collection
of two-dimensional regions, from now on faces. Every face is homeomorphic to an open,



14 Chapter 2 Graph-theoretic Background

a

b

c

d

e

f

g

f1

f2 f3

fu

Figure 2.8: Planar embedding of a graph.

regularized disc. An embedding of a planar graph has an external or unbounded face. However,
none of the faces of the embedding have particular properties. In general, the embedding of a
planar graph is not unique. We let F (G) denote the set of all faces of G.

Each face is bounded by a circuit of mapped vertices that unambiguously describe the face,
that is, the the boundary of a face.

Theorem 2.4 (Euler’s Formula). Let G = (V,E) a connected planar graph with F (G) faces.
Then, |V (G)| − |E(G)| + |F (G)| = 2.

Proof. See Even, [28], p.182.

Example 2.10. Figure 2.8 depicts a planar embedding of a graph with four faces. Face fu =
〈a, b, c, d, e, f, g〉, is the unbounded face and the other faces are f1 = 〈a, b, f〉, f2 = 〈b, e, f, g〉,
and f3 = 〈c, d, e, g〉. Note that |V (G)| = 7, |E(G)| = 9 and |F (G)| = 4 and the Euler’s formula
is accomplished.

2.7 Components and Bridges

Following Even, [28], and Voss et al., [129], in this section we recall the concepts of components
and bridges induced in a graph G = (V,E) by a subset of vertices S ⊂ V (G). Then we explain
how a non-separable graph can be decomposed into one circuit and a set of bridges. This is
achieved by first showing how an arbitrary set of vertices induces a graph decomposition. The
result of this decomposition is a set of graph components. If a number of conditions hold in
the decomposition, then the resulting components are bridges.

Let G = (V,E) be a non-separable graph and let S ⊆ V . Consider the partition of the
set V − S into classes such that two vertices are in the same class if and only if there is a
path connecting them which does not use any vertex of S. Let ≡ denote this relationship and
assume that V (G) − S/ ≡ = {K1, . . . ,Km}. Each class Ki defines a non-singular component
H = (V ′, E′) of G, such that
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Figure 2.9: (a) Graph, (b) Classes, (c) Components and (d) Bridges.

• V ′ ⊃ Ki.

• V ′ includes all the vertices of C which are connected by an edge to a vertex of Ki.

• E′ ⊆ E contains all those edges of E(G) which have at least one end vertex in Ki.

An edge (u, v) ∈ E(G), where both u, v ∈ S defines a singular component denoted H =
({u, v}, {(u, v)}). Therefore a set of vertices S ⊂ V (G) induces a decomposition of G into a
set of singular and non-singular components {H1, . . . ,Hn}. Note that two components share
no edges, and the only vertices they can share are vertices of S.

Now we define the set of bridges of a graph G with respect to a circuit C.

Let C be a circuit of the graph G and consider the set of vertices V (C). Let H be the set of
components induced in G induced by V (C). A bridge, Bi, is a component Hi ∈ H whose edges
do not belong to C. A bridge is said to be singular if the corresponding component is singular,
otherwise it is non-singular. The vertices of a bridge v ∈ V (H) such that v ∈ V (C) are called
attachments and will be denoted as at(H). In what follows, vertices in bridge attachments are
considered sorted according to the circular order defined in the vertices of the circuit which
originated the bridges.

Let C = 〈v1, v2, . . . , vn〉 be the fundamental circuit under consideration and let B be a bridge
with attachments at(B) = {a1, a2, . . . , am} ⊂ V (C) where vertices are sorted according to the
circular order in C. We define the span of a bridge B over a circuit C by sp(B) = {v ∈
V (C)|a1 < v < am}. By span length we mean the number of vertices in the span plus two.

Example 2.11. Consider the graph G = (V,E) given in Figure 2.9(a) and let S = [d, e, g, f ] ∈
V shown in bold. Since V − S = {a, b, c}, there is just one induced class K1 = {a, b, c} shown
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Figure 2.10: (a) Graph. (b) Bridges.

in Figure 2.9(b). The components, shown in Figure 2.9(c), are

H1 = ({a, b, c, e, d, f}, {(a, b), (a, c), (b, c), (b, e), (c, d), (c, f)})

H2 = ({d, e}, {(d, e)})

H3 = ({d, f}, {(d, f)})

H4 = ({e, g}, {(e, g)})

H5 = ({g, f}, {(g, f)})

H6 = ({e, f}, {(e, f)})

H1 is a non-singular component, and Hi, 2 ≤ i ≤ 6, are singular components.
Components H1 and H6 are bridges, shown in Figure 2.9(d) respectively as B1 and B2.

Attachments of B1 are {e, d, f} and attachment of B2 are {e, f}. B2 is a singular bridge. For
example, for the bridge B1, we have that the bridge span is sp(B1) = (d) with a span length
equal to three.

Example 2.12. For example consider now case study graph G and circuit C in bold shown
in Figure 2.10(a). The bridges are shown in Figure 2.10(b).

Theorem 2.5. Let B be a bridge with attachments a1, a2 and a3. There exists a vertex v ∈ B,
that is not an attachment, for which there are three vertex disjoint paths in B: v − a1, v − a2
and v − a3.

Proof. See Even, [28].

Example 2.13. Let us consider the graph in the Example 2.11. The attachments of bridge B1

are {e, d, f}. Vertex a ∈ B1 is not an attachment and we can find the paths {a, b, e}, {a, c, d}
and {a, c, f}.

2.8 Planar Graphs and Bridges

This section is devoted to the relationships between planarity and bridges. First, we introduce
the concept of bridge interlacement. Then we consider the planar embedding of bridges.

Following Even, [28] and Bondy and Murty, [9] we define the concept of bridges interlacement.
Let G = (V,E) be a non-separable graph and C be a circuit in G. Let B1, . . . , Bk be the

bridges of G with respect to C. We say that Bi, Bj interlace if at least one of the following
condition holds:
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Figure 2.11: (a) Bridges interlacement case 1. (b) Bridges case 2.

1. There are four distinct vertices a, b, c, d in increasing order in C such that either a, c
belong to at(Bi) and b, d belong to at(Bj) or a, c belong to at(Bj) and b, d belong to
at(Bi); or

2. at(Bi) and at(Bj) share three distinct vertices.

Figure 2.11 illustrates these two conditions.

Example 2.14. Consider the graph G in Figure 2.12. Let C = 〈b, k, c, d, e, f, a〉 be the
circuit shown in bold. The bridges of the graph G are B1, B2 and B3, with at(B1) = {d, c, b},
at(B2) = {d, a, c, b} and at(B3) = {d, a}. B1 and B2 interlace because they have three common
attachments.

Next follows the relation between embeddings and non-interlacing bridges. For each bridge
Bi, consider the subgraph C ∪ Bi ⊆ G. If any of these graphs C ∪ Bi of G is not planar,
then clearly G is not planar. Now, assume all these subgraphs are planar. In every planar
embedding of G, C outlines a contour which divides the plane into two disjoint parts, one is
bounded (inside) and the other is unbounded (outside). Two bridges that do not interlace can
be embedded in any side of the circuit C. However, if two bridges interlace they cannot be
embedded on the same side of C. Thus, in every planar embedding of G, C partitions the
interlacing bridges into two sets: those which are drawn inside C and those which are drawn
outside. No two bridges in the same set interlace. Notice that choosing the side where the
bridges are embedded does not matter.

Theorem 2.6. If Bi, 1 ≤ i ≤ m, is the set of bridges of a non-separable graph G with respect
to a simple circuit C and the following two conditions are satisfied:

1. For every i, C ∪Bi is planar,

2. No two bridges interlace,

then C∪(
⋃

1≤i≤mBi), has a planar embedding in which all these bridges are inside (or outside)
of C.

Proof. See Even, [28].
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2.9 Chapter Summary

In this Chapter we have presented the main concepts and properties of graph theory that are
the base of ourDR−planner algorithm. The concepts of k-connectivity of a graph, tree, depth-
first search procedure, planar graphs, bridges, bridges interlacement and graph embedding will
be widely used in Chapter 4.



CHAPTER 3

Geometric Constraint Solving Background

It is better to know some of the

questions than all of the answers.

(James Thurber)

In this Chapter we start with an overview of the basic concepts related to geometric con-
straint problems. Then, we survey the current state of the art in geometric constraint solving.

Most of the work of this chapter has been previously published in references [59,63,119].

3.1 Geometric Constraint Problem

Following the works of Joan-Arinyo et al., [61, 63, 68], Hoffmann et al., [49] and Sitharam et
al., [40], we describe in detail the basic concepts related to geometric constraint problems.

3.1.1 The General Geometric Constraint Problem

The general geometric constraint problem consists of a set of geometric elements, a set of
geometric constraints defined between them and a set of parameters, i.e. the symbolic values
of the geometric constraints.

We consider geometric constraint problems in the Euclidean plane consisting of a finite set of
geometric objects and a finite set of constraints defined between them. The geometric objects
are drawn from a fixed set of types such as points, straight lines, circles and arcs of circle. The
constraints include topological constraints such as tangency, incidence and perpendicularity,
and metric constraints such as point-point distance, perpendicular point-straight line distance
and line-line angle.

A geometric constraint problem can be characterized by a tuple (E,O,X,C) where

• E is the geometric space where the problem is embedded. E is usually Euclidean.

• O is the set of specific geometric objects which define the problem. They are chosen from
a fixed repertoire including points, lines, circles and the like.

19
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• X is a possibly empty set of variables whose values must be determined. In general, vari-
ables represent quantities with geometric meaning: distances, angles and so on. When
the quantities are without a geometric meaning, for example, when they quantify tech-
nological aspects or functional capabilities, those variables are called external.

• C is the set of constraints. Constraints can be geometric or equational. Geometric
constraints are relationships between geometric elements chosen from a predefined set,
e.g., distance, angle, tangency, etc. The relationship (the distance, the angle,. . . ) is
represented by a symbolic tag. If the tag represents a fixed value, that will be known in
advance, then the constraint is called valuated. If the tag is a variable in X, then the
constraint is called symbolic. Equational constraints are general equations defined on the
set of variables X and tags T . The set of equational constraints can be empty.

Example 3.1. Figure 3.1 depicts an example of a general geometric constraint problem in 2D
which components are the following:

• The set of geometric elements, O = {A,B,C,D,LAB , LAC , LBC}.

• The set of tags in the constraints, P = {d, h, α}.

• The set of geometric variables, V1 = {x, y}.

• The set of external variables, V2 = {v}.

• The set of geometric constraints with fixed tags, C1 = {dpp(A,B) = d, dpl(C,LAB) =
h,∠(LAB , LBC) = α}.

• The set of geometric constraints with variable tags, that is, symbolic constraints, C2 =
{dpp(A,C) = x, dpp(C,D) = y}.

• The set of equational constraints, C3 = {y = x · v, v = 0.5cos(α)}.

with X = V1 ∪ V2 and C = C1 ∪ C2 ∪ C3.

The meaning of the basic construction names is the usual: point defined by its coordinates,
straight line given by an ordered pair of points. For example, LAB defines a line between two
points A and B. Predicate names are self explanatory. The predicate dpp(A,B) = d specifies
a point-point distance, dpl(C,LAB) = h defines the signed perpendicular distance from a point
to a straight line and, ∠(LAB, LBC) = α denotes the angle between two straight lines.

Solving a given a geometric constraint problem (E,O,X,C) entails two questions:

1. Can be the geometric elements in O placed in E in such a way that the constraints in C
are satisfied? If the answer is positive, then

2. Given an assignment of values to the symbolic constraints and the external variables, is
there an actual placement of the elements in O that satisfies all the constraints in C?
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Figure 3.1: A general geometric constraint solving problem in 2D, where y =
x · v and v = 0.5cos(α).

3.1.2 The Basic Geometric Constraint Problem

A basic geometric constraint problem only considers geometric elements and constraints whose
tags are assigned a value. It excludes external variables, constraints whose tags must be
computed, and equational constraints. Some constraints are assigned a symbolic value; the set
of those symbolic values is named the set of parameters. We denote a GCP as a tuple (O,C,P )
where O is the set of geometric elements, C the set of constraints and P the set of parameters.

Constraints in C are predicates defined over O ∪ P . The geometric elements of O belongs
to a catalog of available geometric elements O. Usually O contains point, lines, circle, etc.
In a similar way the constraints in C are chosen from a catalog of constraints, C, which con-
tains constraints like point-point distance, perpendicular point-line distance, or angle between
straight lines.

3.1.3 Rigidity Characterization

We are interested in describing shapes which are invariant under rigid transformations of
translation and rotations. We will say that these shapes are rigid. Different kinds of rigidity
have been defined, such as minimal or global rigidity. See examples of different definition
for rigidity in the works of Servatius [107], Jackson [54], Laman [81], Hoffmann et al., [46],
Whiteley, [133], Thierry, [122], Sitharam et al., [40], Michelucci et al., [91] and Zhang, [136].

Intuitively, solving a geometric constraint problem can be understood as follows. Let O ∈ O
be a set of geometric elements. Then to place O means to obtain a vector ~r ∈ R

u that allows
to embed each element of O into the Euclidean plane. The vector ~r is named a placement of
O. A placement ~r allows to map a set of abstract geometric elements O to a set of actual
geometric elements embedded in the plane noted as ~r.O.

Example 3.2. Say, for instance, that a set of geometric elements O is composed by O =
{l1, p1, p2} being pi a point and li a line as usual. Assume that a line li is represented by an
equation li : y = aix + bi and a point by the pair of coordinates pi = (xi, yy). Note that to
place l1 ∈ O means to determine a pair of real values a1 and b1 that map l1 to the actual line
y = a1x+ b1 in the plane.
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Figure 3.2: An structurally well-constrained problem.

Therefore a placement ~r of O is a vector in R
6 that allows to place every element of O in

the plane. If ~r = (1, 2, 3, 4, 5, 6) for instance, then ~r.O = {l1 : y = 1x+2, p1 : (3, 4), p2 : (5, 6)}.

Let P = {p1, . . . , pn} be a parameters set. An assignment to P is a vector ~t ∈ R
w where

w = |P |. Note that an assignment ~t maps every formal parameter of P to an actual value
in R. Following placements, an assignment ~t applied to a set of constraints C replaces each
parameter pi in C by its actual value. The resulting constraint set is noted as ~t.C.

An abstract GCP S = (O,C,P ) can be transformed into an actual one by applying an
assignment. The result of applying an assignment, say ~t, to S is the actual GCP ~t.S =
(O,~t.C, P ). In these conditions, we can precisely define the concept of solving a geometric
constraint problem as follows

Definition 3.1. Let ~t.S = (O,~t.C, P ) be an actual GCP. We say that a placement ~r is
a solution of ~t.S if and only if the actual geometric elements of ~r.O satisfy all the actual
constraints in ~t.C. In general, for a given assignment ~t there are a number of placements ~r
which are solution of ~t.S.

However, Definition 3.1 hides many corner cases that should be considered. In fact it is
possible for a given GCP and a particular assignment to get an infinite number of solutions.
Indeed, there are GCP such that for most of the assignments there is an infinite number of
solutions. We can also find GCP such that for most of the assignments there is no solution.

Rigidity theory uses the concept of generically well constrained to denote an abstract problem
which is well defined. In some sense an abstract problem is generically well constrained if it
is well constrained for all the parameter assignments except for those degenerate ones. Thus,
abstract geometric constraint problems can be classified according to the following criteria:

1. A GCP is structurally well constrained when for all of the assignments but a finite number
of them there is a finite non-empty number of solutions.

Example 3.3. Following [59], in Figure 3.2, the height of the triangle, d2, an edge
length, d1 and the angle α constraints define a triangle with a nonempty, finite number
of solutions. Specifically, the figure shows two possible triangles including respectively
vertices C and C ′.

2. A GCP is structurally under-constrained if for all of the assignments except a finite
number of them the number of solutions is infinite.
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Figure 3.3: An structurally under-constrained problem.

Example 3.4. For instance consider the Figure 3.3, [59]. As long as vertex C is on
the arc of circle, the triangle is well defined. Adding one more constraint results in an
structurally well-constrained triangle.

3. A GCP is structurally over-constrained if for all of the assignments but a finite number
of them the problem has no solution. Generally the removal of one or more constraints
results in a well constrained problem. See the works of Hoffman et al., [50], and Jermann
et al., [56].

Example 3.5. See Figure 3.4, [59]. In this case, for most values of d3, the problem has
no solution.

In the rest of the manuscript we will use the term well constrained and under-, over-
constrained to refer to a structurally well (under-, over-) constrained geometric constraint
problem.

For our interest, we capture the notion of structural rigidity following Laman’s Theorem, [81].

Theorem 3.1. Let G = (V,E) be a geometric constraint graph corresponding to a graph
representation of a geometric constraint problem with |V | ≥ 2 such that the geometric elements
are points and the constraints are distances between points. Then G is a generically well-
constrained graph if and only if

1. |E| = 2|V | − 3 and

d1

A B

α

C

d2 d3

Figure 3.4: An structurally over-constrained problem.
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Figure 3.5: A geometric constraint problem.

2. for every set of geometric elements V ′ ⊆ V , the induced subgraph G′ = (V ′, E′) fulfils
that |E′| ≤ 2|V ′| − 3

3.2 Representation of Geometric Constraint Problems

As has been described above, geometric constraint problems include geometric elements and
constraints on them. Several techniques to represent the geometric constraint problems have
been developed. These methods can be roughly classified into equational, logic-based and
graph-based.

Among the various forms see, eg, Hoffmann et al., [6, 49], Joan-Arinyo et al., [61], Soto-
Riera, [113], Vila-Marta, [128] and Jermann et al., [58]. Most of them use a graph-based
approach representation. We summarize the relevant representation methods and we illustrate
the representation of a geometric problem using the example of Figure 3.5, [12].

3.2.1 Equational Representation

Equational techniques translate the problem to a system of equations. For instance, a 2D
point can be modeled by its Cartesian coordinates (x, y) and a point-point distance can be
modeled by the classical equation (x1 − x2)

2 + (y1 − y2)
2 = d2.

Example 3.6. For example, equations for the problem in the case of Figure 3.5 are given in
Figure 3.6. Equations (3.1a) and (3.1b) captures the idea that lines are normalized, a common
hypothesis used in the field of geometric constraint solving to facilitates both reasoning and
geometric calculations.
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axBx + ayBy + ar = 0(3.1a)

a2x + a2y = 1(3.1b)

bxBx + byBy + br = 0(3.1c)

b2x + b2y = 1(3.1d)

(Bx − Cx)
2 + (By − Cy)

2 = d21(3.1e)

(Cx −Xx)
2 + (Cy −Xy)

2 = r2(3.1f)

bxXx + byXy + br = r(3.1g)

ax = −ey(3.1h)

ay = ex(3.1i)

Figure 3.6: Equations for the problem in Figure 3.5.

3.2.2 Logic-Based Representation

In the logic-based representation, the geometric problem is translated into a set of assertions,
axioms and first order predicates which characterize the constraints and the geometric objects.
This approach is especially interesting when the problem includes non-geometric information,
in particular, equations, Soto-Riera, [113].

Example 3.7. Figure 3.7 shows part of a logic-based representation for the problem in Figure
3.5. Notice, for example, that the geometric elements are represented as predicates Points
or Lines, and the axioms such that distancePP (B,C, d1) refers to the distance d1 between
points B and C.

Geoms

Points(A,B,C,D,E,X)
Lines(a, b, d, e)
Circles(c, r)

Constraints

on(A, a), on(A, e),. . .
tangent(b, c),. . .
distancePP(B,C, d1),. . .
center(c,X)
. . .

Figure 3.7: Logic-based representation for the problem in Figure 3.5.
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Figure 3.8: Graph representation of the problem in Figure 3.5.

3.2.3 Graph-Based Representation

In this technique the problem is translated into a graph where nodes represent geometric
elements and edges represent geometric constraints between them. Geometric constraint graphs
are simple graphs.

Example 3.8. Figure 3.8 shows the graph representation corresponding to the geometric
constraints problem in Figure 3.5. Notice that points A and B and straight segments e and a
correspond to the vertices of the graph. Edges of the graph correspond to constraints between
geometric elements. For example, the distance between points B and C corresponds to graph
edge labeled d1.

Example 3.9. Following [49, 68], Figure 3.9 shows a geometric constraint problem and the
associated constraint graph.

Examples of Graph Representation

Mechanisms in the Euclidean plane are interesting examples of geometric constraint problems
which can be abstracted as constraint graphs.

Example 3.10. Figure 3.10 shows a frontal view of the mechanism used for opening and
closing the doors of an elevator, [76]. The mechanism is a ten-bar linkage, consisting of two
interconnected six-bar mechanisms which share one link l1 and the ground. Only one of the
six-bar mechanisms is described here.

The passenger compartment is shown as a dotted rectangle. Link l1 is a flywheel which in
the real mechanism is driven by a motor; since only two points on the flywheel are of interest,
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Figure 3.9: (a) A geometric constraint problem and (b) the associated con-
straint graph.

it is represented here as a line. As link l1 rotates, it moves the push-rod link l2, causing link
l3 to rotate about its grounded joint. Link l4 is connected to link l5, the elevator door, which
is drawn as a black rectangle to aid visualization of the mechanism. The door slides on a
prismatic joint. Link l4 is necessary because the end of link l3 moves in a circular path and
link l5 moves in a straight line.

The six-bar linkage for the other door operates in the same way. Note that the mechanism
is not quite symmetric; since the two push-rods are connected to diametrically opposite points
on the flywheel, the motion of each door is slightly different. The dimensions of the linkage
are chosen to minimize the difference between door motions, and to make the rate at which
the doors move (which varies over the motion) aesthetically pleasing to the passengers.

Figure 3.11 shows the elevator door mechanism with the associated geometric constraints.
The set of geometric constraints are those listed in Figure 3.12 which includes point-point
distance constraint, dpp(), coincidence, on(), point-line distance dpl() and angle between two
straight segments, angle().

The geometric constraint problem can be represented by means of a geometric constraint
graph G = (V,E), where the nodes in V are geometric elements with two degrees of freedom
and the edges in E are geometric constraints such that each of them cancels one degree of
freedom.

Figure 3.13 shows the geometric constraint graph corresponding to the described elevator
door mechanism.

Example 3.11. Figure 3.14 (b) shows a crank-connecting rod constraint mechanism that
turns an alternative movement in a rotational motion, [32, 49]. This 2D mechanism can be
abstracted by the geometric constraint problem in Figure 3.14 (a). The linear motion of the
point p5 along the straight line l1 is transformed into a circular motion of the point p4 along
the circle with center on point p3 and radius d3.

The problem is defined by the tuple CR = (E,C, P ) where the set E contains the following
geometric elements:

• Five points, pi for 1 ≤ i ≤ 5,
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Figure 3.10: A frontal view of an elevator door actuator mechanism.
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Figure 3.11: An elevator door actuator mechanism with its associated geo-
metric constraints.
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1. dpp(p1, p4, d5) 21. on(p11, l6)
2. dpp(p1, p11, d13) 22. on(p6, l9)
3. dpp(p2, p6, d2) 23. on(p6, l1)
4. dpp(p2, p11, d3) 24. on(p6, l3)
5. dpp(p2, p4, d6) 25. on(p7, l9)
6. dpp(p2, p3, d7) 26. on(p7, l8)
7. dpp(p3, p5, d4) 27. on(p8, l8)
8. dpp(p5, p6, d8) 28. on(p4, l10)
9. dpp(p6, p7, d9) 29. on(p4, l5)
10. dpp(p6, p11, d1) 30. on(p2, l5)
11. dpp(p7, p8, d10) 31. on(p2, l2)
12. dpp(p9, p10, d11) 32. on(p2, l3)
13. dpp(p11, p10, d12) 33. on(p3, l5)
14. on(p1,l10) 34. on(p3, l4)
15. on(p1, l6) 35. on(p5, l4)
16. on(p10, l6) 36. on(p5, l9)
17. on(p10, l7) 37. dpl(p9, l1, h1)
18. on(p9, l7) 38. dpl(p8, l1, h2)
19. on(p11, l1) 39. angle(l4, l5, a8)
20. on(p11, l2)

Figure 3.12: Geometric constraints for the elevator door mechanism of Figure
3.11.
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Figure 3.13: The Geometric Constraint Graph for the elevator door mecha-
nism in Figure 3.11.
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Figure 3.14: Crank and connecting rod. (a) Abstract geometric problem. (b)
Actual mechanism.

• A straight line l1.

The set of constraints C contains the following elements:

dpp(p1, p2, d1) on(p1, l1)
dpp(p2, p3, d2) on(p2, l1)
dpp(p3, p4, d3) on(p3, l1)
dpp(p4, p5, d4) on(p5, l1)
dpp(p1, p5, d5)

Where dpp(p, q, d) is the predicate asserting that the distance between point p and q is
d, and on(p, l) asserts that point p is on line l. Finally the set of parameters P is
P = {d1, d2, d3, d4, d5}.

Figure 3.15 shows the geometric constraint graph for the crank-connecting rod problem in
Figure 3.14(a).

3.3 Resolution Methods in GCS: An overview

In this section we review basic techniques that are available for solving 2D geometric constraint
problems. A good survey of such techniques can be found in Joan-Arinyo and Hoffmann., [49],
Hoffmann et al, [6, 36], Joan-Arinyo et al., [19, 135], Sitharam, [109], Thierry, [120, 121] and
references therein.

The main methods are algebraic methods, logic-based approach, and graph-based. For 2D
solvers, the graph-based approach has become dominant in CAD.

In practice, there exists hybrid techniques. For example, geometric constraint solving used
in conjunction with equational methods, logic-based and graph based methods. See the works
of Hoffmann [48], Joan Arinyo et al. [62], Gao et al. [37] and Fabre et al. [29].
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Figure 3.15: Geometric constraint graph associated to the crank-connecting
rod problem in Figure 3.14(a).

3.3.1 Equational Methods

Equational methods accept as input a set of algebraic equations and can be further classified
into numerical, symbolic and analysis of systems of equations.

The main advantage of equational solvers are their generality, dimension independence and
the ability to deal with symbolic constraints naturally.

In principle, an equational solver can be fully competent. However, algebraic solvers may
have low efficiency or may have difficulty constructing solutions reliably. When used to pre-
process and study specific constraint problems, however, algebraic techniques can be extremely
useful and very practical.

As a result of mapping the geometric domain problem into an equational one, the geometric
sense of the solutions rendered is lost. Moreover, well constrained problems are mapped to
under-constrained systems of equations because constraints fix the placement for each geomet-
ric element with respect to each other only modulo translation and rotation. Therefore a set
of additional equations must be joined to cancel these remaining degrees of freedom.

Numerical Methods

Numerical methods are among the oldest methods of geometric constraint solving. Numerical
methods provide powerful tools to solve iteratively large systems of equations. In general,
a good approximation of the intended solution should be supplied to guarantee convergence.
This means that if, as it is customary, the starting point is taken from the sketch defined by
the user, then the sketch should be close to the intended solution. The numerical methods
may offer little control over the solution in which the user is interested. To achieve robustness,
numerical iterative methods must be carefully designed and implemented.

The method most widely used is the well-known Newton-Raphson iteration, [72]. It is used
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in the solvers described in [42,87,88]. Newton-Raphson is a local method and converges much
faster than relaxation. The method does not apply to consistently over-constrained systems of
equations unless special provisions are made such as combining it with least-squares techniques.

Borning, [10], Hillary and Braid, [43], and Sutherland, [117], use a relaxation method. This
method is an alternative to the propagation method. Basically, the method perturbs the
values assigned to the variables and minimizes some measure of the global error. In general,
convergence to a solution is slow.

Homotopy or continuation, [5] is a family of methods that guarantee convergence. Moreover,
they are exhaustive and allow to determine all solutions of a constraint problem. However, their
efficiency is worse than that of Newton-Raphson. Lamure and Michelucci, [82], Durand, [26],
and Luo et al., [90], apply this method to geometric constraint solving.

Other, less conventional, methods have also been proposed. For example, in [41], Hel-or et
al., introduced the relaxed parametric design method where the constraints are soft, that is,
they do not have to be met exactly, the problem is modeled as a static stochastic process, and
the resulting system of probabilistic equations is solved using the Kalman filter familiar from
control theory. The Kalman filter was developed to efficiently compute linear estimators and
when applied to nonlinear systems, it does not necessarily finds a solution even if one exists.

Symbolic Methods

Symbolic algebraic methods compute a Gröbner basis for the given system of equations. Algo-
rithms to compute these bases include those by Buchberger, [18], and by Wu-Ritt, [20]. These
methods, essentially, transform the system of polynomial equations into a triangular system
whose solutions are those of the given system. In effect, triangularization reduces solving a
simultaneous, nonlinear system to univariate root finding. Forward or a backward substitution
must be used.

Buchanan et al., [17], describe a solver built on top of the Buchberger’s algorithm. In [74,75],
Kondo improves that work by generating a polynomial that summarizes the changes undergone
by the system of equations.

Analysis of Systems of Equations

Methods based on the analysis of systems of equations determine whether a system is un-
der, over or well-constrained from the system structure. These methods can be extended to
decompose systems of equations into a set of minimal graphs which can be solved indepen-
dently, [94, 115]. They can be used as a preprocessing phase for any other method, reducing
the number of variables and equations that must be solved simultaneously.

Serrano, [106], applies analysis of systems of equations to select from a set of candidate
constraints a well constrained, solvable subsets of equations. Elber et al. [27] use multivariate
rational functions.

3.3.2 Logic-Based Methods

Aldefeld, [4], Bruderlin, [13–16, 16] and Yamaguchi et al., [134], use first order logic to derive
geometric information applying a set of axioms from Hilbert’s geometry. Essentially these
methods yield the geometric loci at which the elements must be.
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Sunde, [116], and Verroust, [126,127], consider two types of sets of constraints: set of points
placed with respect to a local framework, and sets of straight line segments whose directions
are fixed with respect to a local framework. The reasoning is basically performed by means
of rewriting system on the sets of constraints. The problem is solved when all the geometric
elements belong to a unique set. Joan-Arinyo and Soto-Riera, [62], extended these sets of
constraints with a third type consisting of sets containing one point and one straight line such
that the perpendicular point-line is fixed.

Theorem proving is a logic-based approach than can be seen as automatically proving a
geometric theorem. However, automatic geometric theorem proving requires more general
techniques and, therefore, methods which are much more complex than those required by
geometric constraint solving.

Wu Wen Tsün pioneered the Wu-Ritt method, an algebraic-based geometric constraint solv-
ing method. In [130–132], he uses it to prove geometric theorems. The method automatically
finds necessary conditions to obtain non-degenerated solutions.

In [20], Chou applies Wu’s method to prove novel geometric theorems. Chou et al., in [21]
report on a work in automatic geometric theorem proving which allows to interpret, from a
geometric point of view, the proof generated by computation.

3.3.3 Graph-Based Approach

In the graph-based approach, the constraint problem is translated into a graph (or hyper graph)
whose vertices represent the geometric elements and whose edges the constraints upon them.
The solver analyzes the graph and formulates a solution strategy whereby subproblems are
isolated and their solutions suitably combined. A subsequent phase then solves all subproblems
and combines them. The advantage of this type of solver is that the subproblems often are
very small and fall into a few simple categories. The graph-based approach can be further
subdivided into degree of freedom analysis, propagation and constructive approach.

Degree of Freedom Analysis

Degrees of Freedom Analysis assigns degrees of freedom to the geometric elements by labeling
each edge of the graph with the number of degrees of freedom canceled by the associated
constraint. Then the method solves the problem by analyzing the resulting labeled graph. In
2D, a point would have 2 degrees of freedom, a circle 3. Each graph edge is labeled by the
degrees of freedom canceled by the represented constraints. If the incident vertices are points
in 2D, for instance, an incidence constraint cancels 2 and a distance constraint cancels 1 degree
of freedom. This graph is then analyzed for a solution strategy. To date, several approaches
follow next.

Kramer, [77–79] developed a method to solve specific problems concerning the kinematics,
specifically for the simulation of mechanisms. The method applies techniques borrowed from
the process planning field to yield a symbolic solution. Since the set of rules used to generate
the plan preserves geometric sense, the entire method also preserves it. Kramer, [77–79], proves
that this method is correct by showing that the set of rules together with the labeled graph
is a canonical rewriting system. The method runs in time O(nm), where n is the number of
elements geometry and m is the number of constraints in the problem. Since m is typically
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O(n), then the method has quadratic complexity. Bhansali et al., [7], describe a method that
generates automatically segments of the symbolic solution in Kramer’s approach.

Salomons et al., [102], represent objects and constraints using conceptual graphs and apply
geometric and equational reasoning following the lines given by Kramer’s method.

In [52,53], Hsu presents a method with two phases. First, a symbolic solution is generated.
Then, the actual construction is carried out. The method applies geometric reasoning and, if
this fails, numerical computation.

Latham et al., [83], decompose the labeled graph in minimal connected components named
balanced sets. If a balanced set corresponds to one of the predefined specific geometric con-
structions, then it can be solved. Otherwise the underlying equations are solved numeri-
cally. The method also deals with symbolic constraints and identifies over-constrained and
under-constrained problems. Assigning priorities to the constraints allows them to solve over-
constrained problems. A proof of correctness is also given.

Hoffman et al., [44–46], developed a flow-based method for decomposing graphs of geometric
constraint problems. The method generically iterates to obtain a decomposition of the under-
lying algebraic system into small subsystems called minimal dense subgraphs. The method
fully generalizes degree-of-freedom calculations, the approaches based on matching specific
subgraphs patterns, as well as the prior flow-based approaches. However, the decomposition
rendered does not necessarily have geometric sense since minimal dense subgraphs can be of
arbitrary complexity far exceeding problems that yield to classical geometric construction.

Global Propagation Methods

Propagation methods represent the set of algebraic equations with a symmetric graph whose
vertices are variables and equations and whose edges are labeled with the occurrences of the
variables in the equations.

Propagation methods try to orient the edges in the graph in such a way that each equation
vertex is a sink for all the edges incident on in except one. If the process succeeds, then there
is a general incremental solution. That is, the system of equation can be transformed into a
triangular system and solved using back substitution.

Among the techniques to orient a graph we find in the literature degrees of freedom propa-
gation and propagation of known values, [31,103,125]. Propagation methods do not guarantee
finding a solution whenever one exists. They fail when the orientation algorithm finds a loop.
Propagation methods can be combined with numerical methods for equation solving to amelio-
rate circularity, [10, 80,112,116]. Veltkamp and Arbab, [125], apply other techniques to break
loops created while orienting the graph.

Leler, [86], describes propagation methods in depth and proposes augmented rewriting terms,
a tool which consists of a classical rewriting system along with an association of atomic-value
and object-type. This tool has had success in solving certain systems of nonlinear equations.

In [11], Borning et al. describe a local propagation algorithm that can deal with inequalities.

Constructive Approach

The constructive approach generates the solution to a geometric constraint problem as a sym-
bolic sequence of basic construction steps. Each step is a rule taken from a predefined set
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of operations that position a subset of the geometric elements. For example, the operations
may restrict to ruler-and-compass constructions. Clearly, this approach preserves the geomet-
ric sense of each operation involved in the solution. Note that the sequence of construction
steps allows to compactly represent a possibly exponential number of solution instances. How-
ever, the constructive approach cannot solve problems with symbolic constraints or external
variables.

This work focuses on the constructive approach. Thus we will discus it in depth in Sec-
tion 3.4.

3.4 Graph-Constructive Solvers: Overview and Background

We will now turn to a description of constructive techniques to solve geometric constraint
problems. We will first describe the most popular two techniques, decomposition and syn-
thesis. After that, we will describe the tree decomposition technique used by Decomposition-
Recombination solvers.

Constructive solvers have two major components: the analyzer and the constructor. The
analyzer symbolically determines whether a geometric problem defined by constraints is solv-
able. If the answer is positive, the analyzer outputs a sequence of construction steps, known
as construction plan that describes how to place each geometric element in such a way that
all constraints are satisfied. After assigning specific values to the parameters, the constructor
interprets the construction plan and builds an object instance, provided that no numerical
incompatibilities arise, for example, computing the square root of a negative value.

The constructive approach generates the solution to a geometric constraint problem as a
symbolic sequence of basic construction steps. Each step is a rule taken from a predefined
set of operations that position a subset of the geometric elements. The specific construction
plan generated by an analyzer depends on the underlying constructive technique and how it
is implemented. For example, the ruler-and-compass constructive approach is a well-known
technique where each constructive step in the plan corresponds to a basic operation solvable
with a ruler, a compass and a protractor. In practice, this simple approach solves most useful
geometric problems. Clearly, the ruler-and-compass approach preserves the geometric sense of
each operation involved in the solution.

Note that the sequence of construction steps allows to compactly represent a possibly expo-
nential number of solution instances. Generally, the user is only interested in one instance such
that besides fulfilling the geometric constraints, exhibits some additional properties. This solu-
tion instance is the intended solution and selecting the intended solution amounts to selecting
one solution instance among a number of different roots of a nonlinear equation or system of
equations. The problem of selecting a given root is the Root Identification Problem.

However, the constructive approach cannot solve problems with symbolic constraints or
external variables.

The constructive methods are classified depending on the technique used to analyze the
problem. There are two cases, decomposition (top-down approach) and synthesis methods
(bottom-up approach).

The top-down technique recursively splits the problem until it has isolated simpler, basic
problems whose solutions are known. In this category, Todd, [124], defines the r-tree con-
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cept and derives a geometric constraint solving algorithm. Owen, [99], described a top-down
algorithm for computing a decomposition of an arbitrary constraint graph. The algorithm
recursively splits the graph into split components. The algorithm terminates when the graph
cannot be split further. At the end of the analysis the original graph has been decomposed
into a set of basic subgraphs. The algorithm closely follows the triconnected components de-
composition of [51]. In Joan-Arinyo et al., [68], it is proved that the worst case running time
complexity of this algorithm is O(n2).

Inspired by Owen’s work, Fudos and Hoffmann, [35] reported on two graph-based construc-
tive approaches to solve systems of geometric constraints. The top-down method is roughly
equivalent to the method by Owen, [99]. The bottom-up method, named reduction analysis,
begins by computing a set S of basic subgraphs. Then graphs in S are iteratively merged until
a unique graph which contains all the geometric elements in the problem is obtained. Fudos
and Hoffmann claim the algorithm to have a O(n2) runtime complexity in the worst case.

In the bottom-up approach, the solution is built by suitably combining recursively solutions
to subproblems already computed, starting from the constraints in the given set, considering
each constraint as a single element. Constraints may be represented implicitly as a collection
of sets of geometric elements where the elements of each set are placed with respect to a local
framework. Sets are merged; e.g., by application of rewriting rules until all the geometric
elements are included in just one set. The advantage of this representation is that the sets of
constraints capture the relationships between geometric elements compactly.

Fudos et al., in the method described in [12,33–35], use one type of sets of constraints, called
cluster, and one generic rule that merges three clusters which pairwise share two elements. Lee
et al., [84, 85], describe a constructive method that associates with each vertex in the graph
a status which can be defined, half defined or not defined. Inference rules are used to modify
the status of the vertices.

Efficient algorithms with a running time O(n2) , where n is the number of geometric ele-
ments, are known for the methods listed above. However, the constructive approach is not
complete, therefore assessing the competence of solvers in this category is an important issue.
Verroust, [126, 127], partially characterizes the set of relevant problems solved by the solver
described. Joan-Arinyo et al., [65, 66],describe a formalization that unifies the methods re-
ported by Fudos, [34, 35],and Owen, [99]. In [65,68], Joan-Arinyo et al. show that the sets of
problems solved by Fudos’ and Owen’s approaches are the same.

In [48] Hoffmann and Joan-Arinyo describe a technique that extends constructive meth-
ods with the capability of managing functional relationships between geometric and externals
variables. Essentially, the technique combines two methods: one is a constructive constraint
solving method, and the other is a systems of equations analysis method. Joan-Arinyo and
Soto-Riera, [62], further improved the technique and formalized it as a rewriting system. Con-
structive methods work well in 2-space. Several attempts to extend them to 3-space have been
reported. See, for example, Bruderlin , [13], Verroust, [126], and Hoffmann and Vermeer, [47].

Gao et al.,in [38], report on a method that from the constraint graph extracts a binary
connectivity tree, called C-tree, according to a well defined set of rules. For each node in the
C-tree, the left child represents a subproblem which can be solved. Then the subtree rooted
in the right child is recursively visited and merged with the rigid body coming from the left
child. The method is essentially equivalent to those described above.

Following the works of Joan-Arinyo et al., [66, 128], the architecture for our constructive
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Figure 3.16: Architecture data flow diagram.

solver is illustrated in Figure 3.16. Square boxes are functional units and rounded boxes are
data entities. The functional units include the analyzer, the index selector and the constructor.
The data entities are the geometric constraint plan, the parameters assignment and the index
assignment. Given a geometric constraint problem P , the analyzer is responsible for figuring
out whether the solver is able to solve the problem, that is, whether it can find a description
placement for the geometric objects. If the answer is positive, the analyzer outputs the con-
struction plan, that will place the geometric elements in the position such that the constraints
hold. An index selector can be seen generally as a functional unit characterized by its output
which is an index assignment. An index assignment is always associated to a given abstract
plan. Therefore the plan must also be considered an input to the index selector. For an in
depth study of the index and the role it plays in a geometric constraint solving see [32].

Finally, once a set of actual values have been assigned to the constraint parameters, the
constructor builds an instance of a placement for the geometric objects.
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3.4.1 Decomposition-Recombination Solvers

In contemporary CAD systems constructive solvers the volume of items and geometric con-
straints between them is large, so it is used the strategy of divide and conquer resolution. This
strategy consists of three basic steps, see Hoffmann et al., [36], Ait-Aoudia, et al., [1], which
summarized as:

• Divide the problem P into subproblems P1, P2, . . . , pn.

• Solve each subproblem Pi in a recursive way with known algorithms.

• Construct a solution to P by merging solutions of the subproblems P1, P2, . . . , Pn.

Constraint solvers that fit in this description are known as Decomposition-Recombination
solvers (DR-solvers). Our constructive solver follow this pattern, and from now on we will
refer to our solver as a DR-solver. DR-solvers approach has been particularly successful when
the decomposition into sub-problems and the subsequent recombination solutions to these
subproblems can be described by a plan generated a priori, that is, a plan generated as a
preprocessing step without actually solving the subsystems. The output by the DR-planner
remains unchanged as numeric values of parameters change. Such a plan is known as the DR-
plan and the unit in the solver that generates it is the DR-planner. In this setting, the DR-plan
is then used to drive the actual solving process, that is, computing specific coordinates that
properly place geometric objects with respect to each other. Then, the DR-plan specifies a
plan for decomposing a constraint problem into small subproblems and recombining solutions
of these subproblems later.

Our interest focuses on DR-solvers where the geometric constraint problem is abstracted as
a graph and thus, solving the problem generically corresponds to solving the corresponding
graph. Therefore the DR-planner is based on graph analysis whose operation will be purely
combinatorial. We will consider well-constrained problems, loosely speaking, problems where
resulting geometric objects are well defined.

In a pioneering work, Hoffmann et al., [45], classify graph-based DR-planners into two
main categories. Planners in one category, called Constraint Shape Recognition, work by
recognizing specific solvable subgraphs of known shape, most commonly, triangular pat-
terns. DR-planners have been widely used and related literature is profuse. Examples are
[12, 16, 25, 35, 38, 55, 60, 91, 98–100, 105, 127]. DR-planners in the second category are called
Generalized Maximum Matching planners. Planners in this category work in two steps. First
they isolate certain solvable subgraphs by transforming the constraint graph into a bipartite
graph where a maximum generalized matching is found. Then the DR-plan is figured out by
connectivity analysis. To this category belong DR-planners reported in [1, 2, 57,79,83].

In [44], Hoffmann et al. reported on two new DR-planners that exhibit features of both
categories. The Condensed Algorithm applies repeatedly a flow-based algorithm to find mini-
mal dense solvable subgraphs, [46], that are subsequently extended by adding more geometric
objects one at a time. The Frontier Algorithm and the Modified Frontier Algorithm are
essentially improvements of the Condensed Algorithm. These algorithms have been further
developed for problems considering purely distance constraint systems by Lomonosov, [89] and
by Zhou, [137]. Surveys can be found in [6, 58]. A discussion on geometric constraint solving
progress and research directions can be found in [108].
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More recent research in this area includes the following other aspects such as, obtaining an
optimal and canonical decomposition. Lomonosov, [89] show NP completeness of the optimal
DR-planning problem even for 2D. Then, define a notion of a canonical decomposition into
a complete collection of proper vertex-maximal rigid subgraphs, and completely solve the
canonical decomposition problem for 2D distance constraint systems. First for well-constrained
systems (where a canonical decomposition is unique), then for over-constrained systems, where
it is not unique. Zhou, [137] characterizes rigidity for 2D angle constraint systems. The works
of Sitharam, allow to obtain an optimal parametrization from recombination, [111]. Finally,
we cite works that use DR-plan for other applications, such as overconstrained detection,
Hoffmann et al., [50], solution navigation, Sitharam et al., [109], feature-based, Sitharam et
al., [110] or modeling virus assembly, Sitharam et al., [8].

Our DR-planner follows the approach to divide the geometric constraint problem into sub-
problems based on the tree decomposition method. The tree decomposition of a constraint
graph was introduced by Joan-Arinyo et al., in [68, 70]. This concept is figured out in detail
in next section.

3.5 Tree Decomposition of a Geometric Constraint Graph

Following the work of Joan-Arinyo et al. in [68], this section defines the concepts of decomposi-
tion of a set and tree-decomposition. These concepts are the base of the construction technique
for solving systems of geometric constraints, since the calculation of a tree decomposition di-
rectly defines a constructive plan. Then we present and illustrate the main concepts associated
with the constraint graph decomposition, which are the basis of the constructive method that
we develop.

Recall we consider constraint problems in the Euclidean plane defined by giving a set of
geometric element like points, lines, line segments, circles and circular arcs, along with a
set of relationships, called constraints, like point-point distance, angle between straight lines,
incidence and tangency.

The concept of set decomposition refers to a way of partitioning a given abstract set. Next,
we define the concept of tree decomposition of a graph.

Let S be a set, with at least, three different members, say a, b, c. We say that three subsets
of S, say S1, S2 and S3 is a set decomposition of S if the following properties are fulfilled.

1. S1 ∪ S2 ∪ S3 = S

2. S1 ∩ S2 = {a}

3. S2 ∩ S3 = {b}

4. S1 ∩ S3 = {c}.

Vertices {a, b, c} are called the hinges of the set decomposition.

Example 3.12. Figure 3.17 shows a set and one possible set decomposition.



3.5 Tree Decomposition of a Geometric Constraint Graph 41

S3

S1

S2

S

h

g

a

h

g

c

a

b

d

f

b c

d

f

Figure 3.17: (a) Set S with three or more members. (b) Set decomposition
of S.

The set decomposition of a graph is defined as follows. IfG = (V,E) is a constraint graph, the
subsets V1(G), V2(G) and V3(G) define a set decomposition of G if they are a set decomposition
of V (G) and for every edge e = (v1, v2) with e ∈ E(G), v1, v2 ∈ V (Gi), for some i, 1 ≤ i ≤ 3.
Roughly speaking, a set decomposition of a graph G, is a set decomposition of the set of
vertices V (G) such that the two ends of each edge belong to a given subset of vertices.

Next, we illustrate the concept of set decomposition.

Example 3.13. Figure 3.18 shows a graph G = (V,E) and a non-decomposition set of V due
to the fact that vertices incident to edge (e, b) do not belong to any set in the partition.

Example 3.14. Consider the geometric constraint problem in Figure 3.19. The geometric
elements are: O = {A,B,C, f, d}, the parameters of the constraints are P = {d1, h1, α}, and
the set of constraints is:

r1: dpl(A, e) = h1,
r2: on(B, e),
r3: dpp(A,B) = d1,
r4: ang(d, e) = α,
r5: on(A, d),
r6: on(C, e),
r7: on(C, d),
r8: on(B, f),
r9: on(A, f)

Figure 3.20(a) shows the graph representation of the problem in Figure 3.19, and Fig-
ure 3.20(b) shows the corresponding decomposition.

A naive approach to compute hinges is to perform an exhaustive search of subsets of three
vertices of the constraint graph that allow a set decomposition of the input graph. This
amounts to considering different combinations of three different vertices of V until finding one
tern that allows to split the graph G in three disjoint clusters G1, G2 and G3. The number of
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Algorithm 1 Computing a set decomposition by means of exhaustive search.

INPUT
A constraint graph G = (V,E) with |V | ≥ 3

OUTPUT
A set decomposition of G, if exists

forevery {a, b, c} ⊆ V do

Compute V ′ = V − {a, b, c}
forevery {G′

1, G
′
2, G

′
3} partition of V ′ do

Compute G1 = G′
1 ∪ {a, c}

Compute G2 = G′
2 ∪ {a, b}

Compute G3 = G′
3 ∪ {b, c}

if ∀e ∈ E : V (e) ⊆ G1 or V (e) ⊆ G2 or V (e) ⊆ G3 then

return {G1, G2, G3}
done

done

return ∅

combinations for a graph G is
(

|V |
3

)

. The algorithm for calculating the set decomposition of a
constraint graph by exhaustive searching the hinges is shown in Algorithm 1.

Finally we define the concept of tree decomposition of a graph. Let G = (V,E) be a graph.
We say that a ternary tree T is a tree decomposition of G if

1. V (G) is the root of T ,

2. Each node V ′ ⊂ V (G) of T is the father of exactly three nodes, say V ′
1 , V

′
2 , V

′
3 , which are

a set decomposition of the subgraph of G induced by V ′(G), and

3. Each leaf node contains exactly two vertices {a, b} of V such that edge (a, b) is in E(G).

A graph for which there is a tree decomposition is called tree decomposable. In general, a tree
decomposition of a graph is not unique. If a graph is tree decomposable, then any subgraph
obtained by removing some of its edges is also tree decomposable.

Theorem 3.2. Let G = (V,E) be a tree decomposable graph. For all E′ ⊆ E, the subgraph of
G with the set of edges E′, G′ = (V,E′), is tree decomposable.

Proof. See Joan-Arinyo et al., [49].

Example 3.15. Figure 3.21 represents the tree decomposition of graph in Figure 3.20. Fig-
ure 3.22 shows the representation over the constraints graph of the tree decomposition of
Figure 3.21.

Essentially, the decomposition tree T aim is to calculate a construction plan. A construction
plan specifies precisely how to solve the geometric constraint problem represented by the graph
G.
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{A,B,C, d, e, f}

{A,C, d, e} {A,B, f}

{C, e} {A, d, e} {C, d}{A,B} {B, f} {A, f}

{A, d} {A, e} {d, e}

{B, e}

Figure 3.21: Tree decomposition of graph in Figure 3.20a.
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Figure 3.22: Recursive decomposition of graph G in Figure 3.20a.
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Figure 3.23: Classification of geometric constraint graphs, [67].

3.5.1 Tree Decomposable Graphs

In this section, given a geometric constraint problem represented by a geometric constraint
graph, we describe the relationship between tree decomposable graphs and solving under-
well- constrained problems.

Assume that G = (V,E) denotes the set of geometric constraint graphs. The definitions of
over-, well and under-constrained graphs induce a partition on G. Following the works of Joan-
Arinyo et al., [67], see Figure 3.23, we note that 1) the tree decomposable graphs are a subset of
the graphs which are not over constrained (See Theorem 3.3), 2) the class of tree decomposable
graphs overlaps the set of well constrained graphs and the set of under-constrained graphs,
and 3) the solvable graphs (or full tree decomposable graphs) are those well constrained graphs
which are tree decomposable (See Theorem 3.4).

Theorem 3.3. Let G = (V,E) be a geometric constraint graph. If G is tree decomposable,
then G is not over-constrained.

Proof. See [67].

Theorem 3.4. Let G be a tree decomposable geometric constraint graph and T a tree decom-
position of G. G is well constrained iff T is a full tree decomposition.

Proof. See [67].

3.6 Construction Plan

From the tree decomposition of a graph of geometric constraints we retrieve a construction
plan. To calculate it we perform a postorder tour of the nodes of the tree. Each step positions
a new element and it finishes having positioned all vertices of the graph. We illustrate the
procedure with a couple of examples.

Let G = (V,E) is the graph of an abstract geometric constraint problem, a tree decompo-
sition of G can be seen as a construction plan that solves the problem at hand. Each node
in the tree stands for a rigid object, called cluster, built on the geometric objects included in
the node. Leaf nodes represent elemental placement problems corresponding to two geometric
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α

A
d

ee′

h1

Figure 3.24: Construction of a part of the plan of the tree decomposition in
Figure 3.21.

elements and the constraint defined on them. Examples are: two points at a given distance, a
point and a straight segment at a given distance, two straight segments at a given angle and
so on.

Each internal node in the tree decomposition represents the merging of three solved clusters
into a larger rigid cluster by application of a specific solving rule. The root node includes all
the geometric elements in the problem and represents a solution instance. Next we illustrate
the procedure.

Example 3.16. Consider the Figure 3.21 that represents the tree decomposition of graph in
Figure 3.20a. A postorder route could begin by the leaves, {A, d}, {A, e} and {d, e}. This
would generate a fragment of plan construction as

d = line()

A = pointover(d)

aux1 = linePointAngle(A,α, d)

e = parallel(aux1, h1)

that satisfy the constraints r5, r1 i r4.

In this plan, the operations are geometric operations with ruler and compass. For
example, operation pointover(d) locates the point A on the line d, and the operation
linePointAngle(A,α, d) draws a line through the point A and form an angle α with line
d. Figure 3.24 shows the construction of this part of the plan.

Following the path, we reach the leaves {C,E} and {C, d}, which merged with {A, d}. As a
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Figure 3.25: Peaucellier’s linkage.

result, we obtain the positioning of point C. The portion of the plan that do the calculation
is:

C = intersection(d, e)

Proceeding in analogy with the rest of the path ends obtaining the following plan:

d = line()

A = pointover(d)

aux1 = linePointAngle(A,α, d)

e = parallel(aux1, h1)

C = intersection(d, e)

f = line()

A = pointover(f)

B = pointLineDistance(f, d1)

aux2 = circle(A, d1)

B = intersection(e, aux2)

f = line(B,A)

Example 3.17. Following, [68,135], Figure 3.25 shows a mechanism known as the Peaucellier’s
linkage, that transforms the circular motion of point p3 along circle c1, into the translation of
point p2 along the straight line l3. As a geometric constraint problem, Peaucellier’s linkage
includes six point, pi, 1 ≤ i ≤ 6, and two straight segments l1, l2. The set of geometric
constraints are those listed in Figure 3.26 which includes point-point distance constraint, dpp(),
coincidence, on(), and angle between two straight segments, angle().
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1. dpp(p3, p6, d1)

2. dpp(p3, p5, d2)

3. dpp(p2, p5, d3)

4. dpp(p2, p6, d4)

5. dpp(p4, p6, d5)

6. dpp(p4, p5, d6)

7. dpp(p4, p1, d7)

8. dpp(p3, p1, d7)

9. on(p1, l1)

10. on(p4, l1)

11. on(p1, l2)

12. on(p3, l2)

13. angle(l1, l2, a1)

Figure 3.26: Geometric constraints for Peaucellier’s linkage in Figure 3.25.

p5 p2

p6

p4

l1

l2

p3

p1

Figure 3.27: Geometric Constraint graph for Peaucellier’s linkage in Fig-
ure 3.25.
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1. p1 = pointXY (0, 0)

2. p3 = pointXY (0, d7)

3. l2 = line2P (p1, p3)

4. l1 = lineAP (l2, p1,−a1)

5. x1 = circleCR(p1, d7)

6. p4 = ilc(l1, x1, s1)

7. x2 = circleCR(p3, d2)

8. x3 = circleCR(p4, d6)

9. p5 = icc(x2, x3, s2)

10. x4 = circleCR(p3, d1)

11. x5 = circleCR(p4, d5)

12. p6 = icc(x4, x5, s3)

13. x6 = circleCR(p5, d3)

14. x7 = circleCR(p6, d4)

15. p2 = icc(x6, x7, s4)

Figure 3.28: Construction plan for Peaucellier’s linkage in Figure 3.25.
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Figure 3.27 shows the geometric constraint graph for the problem in Figure 3.25.
Figure 3.28 shows the construction plan generated by the constructive ruler-and-compass

solver reported in for the Peaucellier’s linkage in Figure 3.25. Geometric operations included
in the plan are standard ruler-and-compass operations intersection between lines and points,
construction of straight lines, construction of circles and so on. Function names in the plan
are self explanatory. For example, function line2P defines a straight line through two points,
circleCR defines a circle by its center and radius, and functions ilc(), icc() denote line-circle
intersection and circle-circle intersection, respectively. Parameter si identifies one out of the
two possible intersections. The index in Figure 3.28 is I = {s1, s2, s3, s4}.

3.7 Chapter Summary

In this Chapter we have defined the geometric constraint problem and we have classified it as a
well constrained, over-constrained or under-constrained problem. Then, we reviewed the main
approaches to represent and solve geometric constraint problems. The well constrained concept
has been illustrated with two example: the crank shaft- connecting rod and the elevator door
mechanism.

We focused on the constructive graph-based approach. In general algorithms reported in the
literature solve the constraint problem by decomposing the constraints graph after identifying
subgraphs according to a set of predefined rules or by applying flow propagation techniques.
We described in detail the tree decomposition technique and illustrated the process of obtaining
the constructive plan derived from the tree decomposition.



CHAPTER 4

A new DR-planner

Good code is short, simple, and

symmetrical —the challenge is

figuring out how to get there.

(Sean Parent)

Geometric constraint-based is the base technology in parametric solid modeling and its appli-
cations to Computer-Aided Design Software. Geometric constraint solving is the field devoted
to solve geometric constraint problems. Among the techniques available in the literature one
of the most most widely used is the constructive approach of decomposition-recombination
methods. As we have seen in Chapter 3, in this work we focus on the constructive graph-based
approach. In this chapter we describe a new DR-planner algorithm which computes a con-
struction plan that solves the geometric constraint solving problem as a tree-decomposition
of the geometric constraint graph received as input. The new algorithm first computes a set
of fundamental circuits in the given constraint graph, then splits the graph into a set of sub-
graphs each sharing exactly three vertices with one fundamental circuit. The procedure is
recursively applied to each subgraph until reaching a trivial problem which is solved by an
specific dedicated solver.

Most of the work of this chapter has been previously published in references [69,70].

4.1 Overview

Our approach to solve the geometric constraint solving problem proceeds as shown in Algo-
rithm 2. This approach considers three basic different cases depending on the graph connec-
tivity. For 0 and 1 connected graphs, there is a smooth approach while for biconnected graphs,
the approach is far more difficult, [63]. In what follows we describe our solution for each case.

4.2 Decomposing 0-connected Graphs

We start by introducing some notation. Then, we exemplify the procedure and briefly show
the decomposition algorithm for 0-connected constraint graphs.

51
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Algorithm 2 The general new constructive tree-decomposition based DR-planner.

procedure decomp
INPUT

A well constrained graph G = (V,E) with |V | > 3
OUTPUT

A tree decomposition T of G
if 0− connected(G) then

G1, G2, G3 = 0− con− decomp(G)
else 1− connected(G) then

G1, G2, G3 = 1− con− decomp(G)
else biconnected(G) then

G1, G2, G3 = biconn− decomp(G)
endif

T = tree(decomp(G1), decomp(G2), decomp(G3))

Let G = (V,E) be a 0-connected constraint graph with |V | > 3. Let K = {K1, . . . ,Kn} be
the set of connected components of G. Then |K| ≥ 2 because G is 0-connected. We compute
the hinges in G following this strategy (see Figure 4.1):

1. Choose a non-trivial subset of K ⊃ {K1, . . . ,Km} in such a way that, G1 =
∑m

i=1 Ki has
at least two vertices v1, v2 ∈ V (G1) and v1 6= v2. Note that this subset always exists.

2. Let G2 = K − {K1, . . . ,Km} ∪ v1. Let v3 ∈ V (G2) be an arbitrary vertex of G2.

3. Let G3 be the graph with v2, v3 ∈ V (G3). Then v1, v2, v3 are hinges of G.

Example 4.1. Figure 4.3 shows a 0-connected graph with hinges {c, e, a}.

Example 4.2. Figure 4.2 shows a 0-connected graph with hinges {e, d, a}.

G2

G3

G1

K3

v1

v2

v3

K1

K4

K2

Figure 4.1: Decomposition of 0-connected graphs.
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d
G2

G1

G3

a c b

d

a c b

(a) (b)

Figure 4.2: (a) A 0-connected graph and (b) Hinges {a, c, d} of the set de-
composition G1, G2 and G3.

G1 G2

G3

a d f

b c ge

a d f

e gcb

(a) (b)

Figure 4.3: (a) A 0-connected graph G and (b) Hinges {c, e, a} of the set
decomposition G1, G2 and G3.
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v1

K2

K1

v2

v3
G2

G3

G1

Figure 4.4: Decomposition of 1-connected graphs.

4.3 Decomposing 1-connected Graphs

Not only 0-connected graphs have a trivial decomposition algorithm but also 1-connected
constraint graphs. Note that for the case of 1-connected graphs, there is just one connected
component with one or more articulation vertices.

Let G = (V,E) be a 1-connected constraint graph with |V | > 3. To compute the hinges in
G we proceed as follows (see Figure 4.4),

1. Let v1 be an articulation vertex of V (G). Note that v1 must exist because G is 1-
connected.

2. Let K = {K1, . . . ,Km} be a set of connected components of the graph V (G1) = V (G)−
{v1}. |K| ≥ 2 because v1 is an articulation vertex. Arbitrarily select two connected
components of K, say K1 = (V1, E1) and K2 = (V2, E2). Let v2 ∈ V1 and v3 ∈ V2.

3. Then {v1, v2, v3} are hinges of G.

Example 4.3. Figure 4.5 shows a 1-connected graph with hinges {c, e, g}.

4.4 Decomposing Biconnected Graphs

In this section we describe an algorithm to compute a set decomposition of a biconnected
constraint graph G = (V,E). Furthermore, we focus on decomposing graphs which capture
well-constrained geometric problems. With the aim of improving the algorithm performance,
we consider first the case where the given graph includes vertices with degree two. Then we
shall consider graphs with degree three or higher.

4.4.1 Decomposing Graphs with Degree 2 Vertices

Todd, [124], reported on a method for subdividing a graph G = (V,E) with degree 2 vertices.
In this approach, graphs are subdivided by isolating vertices of degree two from their neighbors.
This subdivision method is rather limited but can be satisfactorily combined with techniques
for decomposition of a graph. Graphs simplification by means of deleting vertices with degree
2 is applied as follows:

1. Let G = (V,E) a graph and v ∈ V a vertex with degree 2 and consider (v, v1) ∈ E and
(v, v2) ∈ E.
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Figure 4.5: (a) A 1-connected graph and (b) Hinges {c, e, g} of the set de-
composition G1, G2 and G3.

2. Then G can be decomposed using v,v1 and v2 as hinges and considering the clusters
G1 = {v, v1},G2 = {v, v2}, G3 = V − {v}.

Todd decomposition method is shown in Figure 4.6. This decomposition technique can be
efficiently implemented if the graph is stored as an adjacency list where the set of vertices with
degree 2 can easily identified.

Example 4.4. Figure 4.7 shows the method applied to the graph G corresponding to the
elevator problem in Figure 3.13 in Chapter 2. Note that the decomposition is reached by
recursively removing degree 2 vertices.

In our approach, there is a preprocessing step, which trivially solves constructions corre-
sponding to geometric elements whose nodes in the constraint graph have degree two, that
is, geometric elements on which just two constraints have been defined. After sequentially
removing degree two vertices, the connectivity of the graph to be further considered is two or
higher.

4.4.2 Decomposing Graphs with Higher Degree Vertices

Now we focus now on decomposing biconnected constraint graphs whose vertices have degree
three or higher. The main idea underlying the algorithm is that if there is a planar embedding

v

G1

G2

G3

v1

v2

Figure 4.6: Decomposition based in a 2-degree vertex.
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Figure 4.7: Decomposition by deleting degree 2 vertices of the Graph G cor-
responding to the elevator problem in Figure 3.13.
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of either the graph G or a graph resulting from a specific transformation of G, where two faces
share three vertices say {a, b, c}, then these vertices are hinges for G that define a set decom-
position of V (G). Moreover, a recursive application of this algorithm yields a decomposition
of a tree decomposable graph. We start by recalling some graph transformations from general
theory of graphs that we will use later on in the algorithm.

4.4.3 The Algorithm

Now follows our algorithm to compute a set decomposition of a biconnected constraint graph
G = (V,E). We need to solve in an efficient way the following problem,

Given a biconnected constraint graph G = (V,E), with a fundamental circuit C,
compute the hinges contained in C, if any.

The new algorithm is based on the decomposition of a graph G = (V,E), according to the
bridges induced in G by a circuit C, and is inspired in the algorithm for finding the triconnected
components of a graph reported by Miller and Ramachandran, [92, 93]. If G = (V,E) is the
geometric constraint graph, the algorithm starts by computing a spanning tree for G using a
depth-first search and, from it, computing the set of induced fundamental circuits. Then, the
algorithm seeks for a fundamental circuit C with a set of hinges that define a set decomposition
of V (G). Then, given a biconnected geometric constraint graph G = (V,E) derived from a
geometric constraint problem, the approach to compute a set decomposition of G is as follows:

1. Compute a spanning tree for the graph G by applying a depth-first search. Then the
associated fundamental circuits {C1, . . . , Cn} are identified. The goal is to find one
fundamental circuit in which the hinges are contained in, as we will show later by means
of Theorem 5.1.

2. Let C ∈ {C1, . . . , Cn} be an arbitrary fundamental circuit. We compute the set of bridges
B = {B1, . . . , Bk} of G with respect to C.

3. The bridges ofG are transformed into stars. Now the collapsed graph G′ can be computed.

4. In the graph G′ the bridges B′ are merged according to the procedure of merging stars
bridges. The result is the merged graph G′′.

5. Now, all the bridges in Bi ∈ B′′ are non interlacing star graphs, and star graphs are pla-
nar. As a result, Theorem 2.6 applies. Then we perform a particular planar embedding
of G′′. Therefore, given G′′, we compute a planar graph G′′′. G′′′ divides the plane in a
set of faces F = {f1, . . . , fm}. Each face f ∈ F has a boundary formed by vertices and
edges.

6. We will show on next Chapter 5 that if there are two faces fi, fj ∈ F such that fi ∩ fj =
{va, vb, vc} ⊂ V (G), then {va, vb, vc} are hinges that define a set partition of V (G) and
therefore decompose G into three clusters. Then, we search in the planar graph for two
faces fi, fj ∈ F sharing almost three vertices. In our algorithm we fix the bounded face
fb, defined by the circuit under consideration, as one of the two faces to be checked.
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Algorithm 3 The basic tree-decomposition algorithm for the DR-planner.

procedure biconn-decomp
INPUT

G = (V,E): Biconnected constraint graph with |V | > 3
OUTPUT

{G1, G2, G3}: a set decomposition of G, if one exists
Compute an spanning tree T of G
Compute the set of fundamental circuits C of G according to T
for Ci in C do

Compute the set of bridges B induced in G by Ci

Compute the collapsed graph G′

Compute the merged graph G′′

Compute F , a planar embedding of G′′

hinges = findHinges(F )
Compute the set decomposition G1, G2, G3 induced by hinges
return G1, G2, G3

endfor

return ∅

If the algorithm search of hinges fails for one fundamental circuit, the entire procedure is
repeated until all the fundamental circuits are analyzed. Once one set of hinges if found, we
recursively apply the algorithm to each of the clusters G1, G2, G3 induced by hinges {v1, v2, v3}
to obtain the complete tree decomposition. In case the algorithm fails in finding a fundamental
circuit with a set of hinges, the input graph is not tree decomposable.

Algorithm 3 shows the basic steps in our algorithm to compute one decomposition step by
splitting a graph into three connected components. Notice that the algorithm returns an empty
set if it does not find any triple of vertices such that splits the graph. Clearly this means that
the graph is not tree decomposable.

Example 4.5. The steps of the new algorithm are detailed next together with a set of exam-
ples. To illustrate the entire procedure, we consider the graph G in Figure 4.8 as the input of
the algorithm.

4.4.4 Computing the Set of Fundamental Circuits

In Chapter 2 we provided definitions and methodology for finding fundamental circuits in a
graph G. In this section we illustrate the procedure. We start computing the set of fundamental
circuits of G, as we explained in section 2.5 by applying a depth-first search technique. To
identify a set of fundamental circuits, first a spanning tree T to the constraint graph G is
computed using a depth first spanning tree algorithm, [123].

Example 4.6. Figure 4.8 is the input graph G = (V,E). If the starting arbitrary root is
vertex a, Figure 4.9(a) shows the resulting depth first spanning tree T of G where edges
in T are in bold lines and chords are drawn as dotted lines. Notice that every chord in the
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Figure 4.8: Case study graph.

spanning tree induces a fundamental circuit. Figure 4.9(b) illustrates the procedure to obtain
the fundamental circuits of G according to a spanning tree T of G.

4.4.5 Computing the Set of Bridges

Let G be a biconnected graph and let C be a fundamental circuit of G. For our purposes, given
a constraint graph G = (V,E) and a circuit C ⊆ G, identifying a set of bridges is paramount,
following Chapter 2.7.

Example 4.7. We choose an arbitrary fundamental circuit from the graph G in Figure 4.8,
for example, C1 = 〈b, c, e, f, g〉.

Let S ⊂ G be the graph defined by the vertices and edges corresponding to the fundamental
circuit C1, that is S=({b,c,e,f ,g}, {(b,c),(c,e),(e,f),(f ,g),(g,b)}). S induces on G a set of
components. According to definition of Chapter 2.7, the components H2,H3 of G induced by
S are singular components. Component H1 is a non singular component. The components of
G are the following:

H1 = ({a, b, c, d}, {(a, b), (a, c), (a, d)})

H2 = ({b, f}, {(b, f)})

H3 = ({e, g}, {(e, g)})

Thus, H1,H2, and H3 are also the bridges of G induced by C1. Figure 4.10(b) shows the
induced bridges in graph in Figure 4.10(a).

4.4.6 Computing the Collapsed Graph

In this section we overview the algorithm to compute a collapsed graph. Roughly, the strategy
is to divide the graphs G into a circuit C and the collection B′ of collapsed star bridges induced
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Figure 4.9: (a) Spanning tree of the case study graph and (b) Associated
circuits.
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Figure 4.10: (a) Circuit C1 of the case study graph and (b) Induced bridges
B1, B2, B3.
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Figure 4.11: (a) Bridges. (b) Star Bridges.

by C in G. For every bridge B induced by C in G, there is a corresponding star graph B′

resulting from collapsing the internal vertices of each bridge B to a single vertex.

Consider a graph G = (V,E) and a fundamental circuit C ⊂ V (G) that induces in G the
set of bridges B = {B1, . . . , Bm}. Let Bi = (Vi, Ei) be a bridge in B such that at(Bi) =
{a1, . . . , an} ⊆ Vi. We define the star graph Si = (V,E) associated to bridge Bi as the graph
such that V (Si) = {x, a1, . . . , an}, where x is a new vertex and, E(Si) = {(x, aj), 1 ≤ j ≤ n}.
The collapsed graph of G is the graph resulting from replacing each bridge Bi ∈ B with the
corresponding star bridge s(Bi).

Example 4.8. To illustrate this concept, consider the bridges shown in Figure 4.11(a). The
corresponding star bridges are shown in Figure 4.11(b).

Example 4.9. Consider now the graph shown in Figure 4.12(a) with C = 〈p1, l1, p4, p5, p3, l2〉.
The collapsed graph resulting by replacing every bridge with its star bridge Si is shown in
Figure 4.12(b).

Example 4.10. Finally, we illustrate the procedure applied to the case study graph. The
non-singular bridge B1 and the singular bridges B2 and B3 in Figure 4.13(a) are collapsed in
Figure 4.13(b).

p1
p3p5p4l1 l2

l1

p2

p6

p4p1

p3

p5

l2

(a) (b)

Figure 4.12: (a) Graph (b) Collapsed graph.
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Figure 4.13: (a) Bridges (b) Collapsed Graph.

4.4.7 Computing the Merged Graph

We will further simplify the collapsed graph by merging sets of star bridges that interlace into
larger star bridges. Now follows the concept of merged graph.

Recall that given fundamental circuit C under consideration and given a bridge B with
attachments at(B) = {a1, a2, . . . , am} ⊂ V (C), vertices in at(Bi) are sorted according to the
circular order in C. Let G′ be the collapsed graph resulting from replacing the bridges induced
by the fundamental circuit C in the graph G = (V,E) with the associated star graphs. Let Si

and Sj be two stars in G′ attached to C. Following Chapter 2.8, we say that stars Si and Sj

interlace if one of the following two holds,

1. There are four distinct vertices a, b, c, d in increasing order in C such that either a, c
belong to at(Si) and b, d belong to at(Sj) or a, c belong to at(Sj) and b, d belong to
at(Si); or

2. at(Si) and at(Sj) share three distinct vertices.

Example 4.11. The bridges of the graph G induced by circuit C = 〈a, d, c, k, b〉 in Fig-
ure 4.14(a) are B1 = {d, c, b}, B2 = {d, a, c, b} and B3 = {d, a}. Bridges are represented as
star graphs B′

1, B
′
2 and B′

3. Figure 4.14(b) shows the collapsed graph. B′
1 = {d, c, b} and

B′
2 = {d, a, c, b} interlace because they have three common attachments.

Notice that star graphs Si and Sj in the collapsed graph interlace if and only if bridges Bi,
Bj interlace in graph G.

Example 4.12. Figure 4.15 shows a collapsed graph G and two interlacing bridges S1 and
S2. S1, S2 interlace due to the fact they have three common attachments.
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Figure 4.14: (a) Graph and Bridges B1,B2,B3 and (b) Collapsed graph with
B′

1 and B′

2 sharing 3 attachments.

Example 4.13. Figure 4.16(b) shows the collapsed graph corresponding to bridges of a graph
G. In this example, the analyzed circuit is C = 〈d, a, c, b, f, g, h〉, and the bridges are B1 =
{a, b}, B2 = {d, c} B3 = {b, g} and B4 = {f, h}. B′

1 and B′
2 interlace because their attachments

appear in the circuit in the sequence d, a, c, b. B′
3 and B′

4 interlace because their attachments
appear in the circuit in the sequence b, f, g, h.

Next follows two collapsed graphs with no interlacing star bridges.

Example 4.14. See Figure 4.17. Let G be a collapsed graph and let S1 and S2 two bridges.
S1 and S2 do not interlace.

Example 4.15. Figure 4.18 shows a collapsed graph G and two bridges S1 and S2. S1 and
S2 do not interlace.

Let Si and Sj be two star graphs with centers xi and xj respectively and xi 6= xj. By merging
stars Si and Sj we mean replacing these stars with a new one Sij formed by combining the

v1 v2 v3 v4 v5

S2

S1

Figure 4.15: Collapsed graph example with stars S1 and S2 that interlace.
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Figure 4.16: (a) Graph and (b) Collapsed graph with several interlacing
stars.

attachments of Si and Sj and identifying the centers. Given a collapsed graph G′, the merged
graph G′′ is obtained from G′ by merging all pairs of stars that interlace.

Example 4.16. Following the case study graph, Figure 4.19(b) shows the merged graph of
the collapsed graph in Figure 4.19(a). S2 and S3 interlace.

Since no two star bridges interlace in a merged graph, the merged graph always has a planar
embedding. Note that the merged graph is planar. Recall Theorem 2.6.

4.4.8 Computing the Planar Embedding of the Merged Graph

The next step is to compute a planar embedding for the planar merged graph G′′ induced in
the input graph G by a fundamental circuit.

Many general algorithms to compute planar embedding of planar graphs have been published.
See, for example, [95,96]. However, having in mind the properties of the merged graph and the

v1 v2 v3 v4 v5

S1 S2

Figure 4.17: Collapsed graph example with stars S1 and S2 that do not
interlace.



4.4 Decomposing Biconnected Graphs 65

v1 v2 v3 v4 v5

S1

S2

Figure 4.18: Collapsed graph example with stars S1 and S2 that do not
interlace.

specificity of the embedding we are looking for, we have developed an ad hoc simple algorithm.
Following Chapter 2.6, a planar graph can be drawn in the two-dimensional space with no

two of its edges crossing. Such a drawing of a planar graph is called a plane drawing. Any
plane drawing separates the plane into distinct regions bordered by graph edges called faces.
We want our starting embedding to be defined by embedding the fundamental circuit C under
consideration. In these conditions and according to the Jordan Curve Theorem, [24], the
resulting embedding has two faces, one is bounded, fb , and the other is unbounded, fu. See
Figure 4.20. Now, with the aim of speeding up the search for the hinges, we want the bounded
face fb to be preserved all along the computation. Thus, from a computational point of view,
face fb is not included in the embedding representation.

Let C be the circuit considered in the constraint graph and B be the induced merged graph.
We start the embedding of G by trivially embedding C. We assume that circuit vertices are
circularly labeled with increasing label values and that vertices in the bridges attachments
are accordingly sorted. Moreover, we assume that if the circuit under consideration is C =
〈v1, v2, . . . , vn〉, the attachments of each bridge at(Bi) = {vi1, vi2, . . . , vim} fulfill v1 ≤ vil and
vim ≤ vn . See Figure 4.21. Notice that this assumption entails, at most, a coherent relabeling
of vertices in the circuit and bridges. Then, we proceed to compute the embedding of the
merged graph G′′ by recursively adding each of the non-interlacing star bridges belonging to
G′.

Example 4.17. See for example the planar embedding in Figure 4.21.

Example 4.18. For the case study graph in Figure 4.8, the planar embedding of the merged
graph in Figure 4.19(b) is shown in Figure 4.22. The set of faces is {fu, fb, f1, . . . , f5}.

4.4.9 Computing the Hinges

Let G = (V,E) be the constraint graph, let C be a fundamental circuit in G. Let G′ be the
corresponding merged graph and F the set of faces of a planar embedding of G′. We will show
later on Chapter 5 that if there are two faces fi, fj ∈ F such that fi ∩ fj = {va, vb, vc} ⊂ V (G)
then {va, vb, vc} are hinges that define a set partition of V (G) and therefore decompose G
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Figure 4.19: (a) Collapsed graph. (b) Merged graph.

into three clusters. In our algorithm we fix the bounded face fb defined by the circuit under
consideration, as one of the two faces to be checked.

Example 4.19. In the planar embedding for the case study shown in Figure 4.22, the set
of faces is is {f1, f2, f3, f4, f5, fu, fb}. We can see the faces fb and f3 share vertices {b, d, e},
therefore they are hinges that define in V (G) the set partition V1 = {d, e}, V3 = {a, b, c, d}
and V2 = {b, f, g, e} which induce the graph decomposition into clusters G1, G2, G3 shown in
Figure 4.23.

When at given decomposition step two or more possible different decompositions exist, our
algorithm does not control, so far, which one is chosen. As a matter of fact the specific
decomposition for tree-decomposition based DR-planners are canonical, [34,60]. Thus, if a set
of triple vertices is identified, almost two different decompositions can be performed. In fact,
if there are more than three shared vertices, the problem is underconstrained and any subset
of three shared vertices are hinges.

4.4.10 Tree Decomposition

Next the algorithm is recursively applied to each of the clusters until reaching trivial geometry
placing problem and no further decomposition is needed.

fu

Cfb
v1 v2 v3 v4 vn

Figure 4.20: A circuit embedded in the plane. Face fu is unbounded. Face
fb is bounded.
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v1 v2 v3 v4 v5 v6

x1

B1
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fu

fb

B2

x2 x3 B3

Figure 4.21: Labeling of circuits and bridges.

Example 4.20. Finally, Figure 4.24 shows a collection of set decompositions recursively gener-
ated for the tree decomposable graph of Figure 4.8 and the corresponding tree decomposition.

4.5 Case study

To illustrate how the new DR-planner algorithm works, we now show a complete case study
in which the algorithm obtains a treedecomposition to a more complex geometric constraint
problem. We use a mechanical engineering structure example, a truss, [73]. A truss is one of the
major types of engineering structures which provides a practical and economical solution for
many engineering constructions, specially in the design of bridges and buildings that demand
large spans. A truss is a structure composed of slender members joined together at their end
points. A simple warren truss bridge is one of the most popular bridge designs. For example,
the Continuous Warren box truss bridge with no verticals over Cooper River on I-526 in
Charleston. See Figure 4.25, taken from Google Maps.

In our case of study, we take as an example a compound Warren truss bridge, where the bars
of a large simple truss, called the main truss, have been substituted by simple truss, called
secondary trusses.

d e f g

C

fu

b c

B23

B1

f1 f2 f3 f4 f5

x23

x1

fb

Figure 4.22: Planar embedding for the merged graph given in Figure 4.19b).
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Figure 4.23: Graph and clusters G1, G2 and G3.

Figure 4.26 shows the geometric constraint problem and Figure 4.27(a) shows the corre-
sponding constraint graph G = (V,E) of study. Vertices V (G) are the truss joints and bars
connecting two joints define the set of edges E(V ). Here constraints are distances between
joints.

4.5.1 Computing the Set of Fundamental Circuits

First, we apply a depth-first search to graph G, starting in the arbitrary root a. We obtain
the tree shown in Figure 4.27(b).

The chords are the edges of Figure 4.27(b), not visited in the previous step. Every chord
induces a fundamental circuit. Figure 4.28 shows the resulting DFS tree and the fundamental
circuits (chords) C1, C2, . . . , C9. The fundamental circuits contain the following vertices:

C1 = 〈a, f, g, b, k, j, c, i, h, d, e〉

C2 = 〈a, f, g〉

C3 = 〈f, g, b〉

C4 = 〈k, j, c〉

C5 = 〈b, k, j, c, i, h, d, e〉

C6 = 〈c, i, h, d, e〉

C7 = 〈b, k, j, c, i〉

C8 = 〈c, i, h〉

C9 = 〈i, h, d〉
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Figure 4.24: Collection of set decompositions for the case study graph in
Figure 4.8.
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Figure 4.25: Warren truss bridge over Cooper River in Charleston - South
Carolina (Source: Google Maps).

Figure 4.26: Bridge coplanar compound truss.
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Figure 4.27: (a) Truss constraint graph (b) Spannig tree.
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Figure 4.28: Fundamental circuits in the truss graph associated to the span-
ning tree depicted in Figure 4.27(b).

4.5.2 Computing the Set of Bridges

We proceed to explore circuits to search hinges. We choose an arbitrary fundamental circuit
from the graph G, for example: C5 = 〈b, k, j, c, i, h, d, e〉, see Figure 4.28.

Let S ⊂ G be the graph defined by the vertices and edges corresponding to the fundamental
circuit C5, that is S = ({b, k, j, c, i, h, d, e}, {(b, k), (k, j), (j, c), (c, i), (i, h), (h, d), (d, e), (e, b)}).
The dashed circle in Figure 4.29 shows the class κ1 defined by the circuit C5, depicted in thick
line, in the running truss graph example.

S induces on G a set of components. There is one non-singular component and the rest are
singular components. The set of components is shown in Figure 4.30.

The set of bridges in the truss graph corresponding to the components in Figure 4.30 is
depicted in Figure 4.31 and are the following:

B1 = ({a, f, g, b}, {(a, f), (a, g), (f, g), (f, b), (g, b)})

B2 = ({b, j}, {(b, j)})

B3 = ({k, c}, {(k, c)})

B4 = ({c, e}, {(c, e)})

B5 = ({c, h}, {(c, h)})

B6 = ({i, d}, {(i, d)})

4.5.3 Computing the Collapsed graph

Figure 4.32(a) shows the collapsed graph G′ corresponding to graph G after replacing every
bridge Hi by a star Bi, and where each bridge is identified by its center vertex.
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Figure 4.31: Bridges (thin line) induced in the truss graph by circuit C5.
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Figure 4.33: Planar embedding for the running merged truss graph.

4.5.4 Computing the Merged Graph

We proceed to merge bridges of G′. Bridges B2 and B3 have interlaced attachments and are
merged into B23. In a similar way, bridges B5 and B6 interlace and are merged into B56. The
resulting merged graph of G′, named G′′, is shown in Figure 4.32(b).

4.5.5 Computing the Planar Embedding of the Merged Graph

Next step is to compute a planar graph G′′′. Figure 4.33 shows the planar graph G′′′. This is
the result of the planar embedding of the merged graph G′′.

The set of faces defined by the planar embedding of G′′′ are the following.

fu = {b, x1, e} f1 = {b, x23, c, x4, e, x1}

f2 = {b, k, x23} f3 = {k, j, x23}

f4 = {j, c, x23} f5 = {c, x56, d, e, x4}

f6 = {c, i, x56} f7 = {i, h, x56}

f8 = {h, d, x56}

4.5.6 Computing the Hinges

To compute a set of hinges, we search the set of faces {fu, f1, . . . , f8}. The faces f1 and f5
contains three vertices of the circuit C5. Therefore, the sets {b, c, e}, and {c, d, e} are hinges.
For example, for the set {b, c, e}, the induced graph decomposition into clusters G1, G2, G3 is
shown in Figure 4.34.

4.5.7 Recursive Tree Decomposition Algorithm

Figure 4.35 shows one recursive tree decomposition for G.
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Figure 4.35: Recursive treedecomposition of the truss graph G.
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A1 A2

A3
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Figure 4.36: Behavior of the algorithms A1, A2, A3, and A4 on the dataset
D1.

4.6 Experimental Runtime Behavior

To gain insight on the algorithm behavior and to perform a preliminary assessment of the
algorithm runtime behavior, we implemented it in the SolBCN framework which can be down-
loaded under a GNU General Public License (see [114]). Using the methodology defined in
Joan-Arinyo et al., [64], the tests were conducted on a standard desk computer with a Pentium
IV at 3GHz processor and 1GB of core memory and two datasets were defined and planned as
follows.

1. D1: A set of 1000 randomly generated geometric constraint graphs with sizes ranging
from 3 to 200 vertices. All the graphs were well-constrained but not necessarily tree-
decomposable, that is not necessarily solvable by the tree decomposition approach.

2. D2: A set of 1000 randomly generated of geometric constraint graphs with sizes ranging
from 3 to 200 vertices. All the graphs were under-constrained but not necessarily tree-
decomposable.

We also defined four versions of the decomposition algorithm:

1. A1: this is a brute-force algorithm that performs an exhaustive search for hinges.

2. A2: In this version first vertices of degree two are removed. Then the brute-force algo-
rithm is applied.

3. A3: This version is an improvement of A2 with specific treatment for 0-connected and
1-connected graphs.

4. A4: is the algorithm presented in this work.

Let SGs denote the set of graphs G such that s = |V (G)|. Notice that 3 ≤ s ≤ 200. We
applied each algorithm version to each dataset. For each algorithm and each graph in a data
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Figure 4.37: Behavior of the algorithms A1, A2, A3, and A4 on the dataset
D2.

set, we recorded the algorithm runtime t(G). Then for each graph size s, we averaged the
runtime values as

T (s) =

∑

∀G∈SGs
t(G)

s

The results yielded by these tests are represented in Figure 4.36 for dataset D1 and in Fig-
ure 4.37 for dataset D2.

The new DR-planner algorithm was tested and the empirical behavior was documented
in [70], and show that for both datasets the algorithm A4 introduced in this paper exhibits a
noticeable improved behavior. For graphs G with |V (G)| ≈ 200, the runtime for the algorithm
A4 is of about 200ms what allows interactive use in the SolBCN framework.

4.7 Chapter Summary

We have described a new decomposition-recombination planning method for geometric con-
straint solving based on tree-decomposition. Compared to other decomposition-recombination
methods, the tree-decomposition based DR-planner algorithm proceeds in a clear and simple
way to recursively split the input graph of geometric constraints to three subgraphs such that
pairwise share one vertex. We distinguish between 0-connected, 1-connected and biconnected
input graphs. For the case of 0-connected and 1-connected, a simple approach allows to find
the hinges that decompose the input graph into three subgraphs.

For the case of biconnected graphs, hinges are found in a particular embedding of the graph
considering one fundamental circuit after a set of transformations. The search for hinges in
the embedding is done by fixing one of the faces of the embedding, the bounded face fb, and
checking whether there is a face in the embedding which shares three vertices with face fb. If
such a face exists, the common vertices are a triple of hinges that split the input graph into
three subgraphs. If the search for hinges fails, a new fundamental circuit is selected and the
process is applied again. If after visiting all the fundamental circuits no triple of hinges is
found, the input graph is not tree-decomposable. Once the hinges are found, the input graph
is split into three subgraphs and the process is recursively applied to each subgraph until the
resulting subgraphs are trivial.
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Sections 1 through 3 in Appendix 7 include case studies to further illustrate our approach.



CHAPTER 5

Correctness Proof

Honesty’s the best policy.

(Miguel de Cervantes)

In this chapter we prove that the new tree-decomposition algorithm for the DR-planner,
presented in Chapter 4 is correct in the sense that if a graph is decomposable, the algorithm
computes a set of hinges.

We present correctness-preserving transformations that can be applied to the geometric
constraint graph in the presented tree-decomposition DR-planner algorithm. We determine
first that every set of hinges in the graph G is contained in one of the fundamental circuits
of G. Then we show that during the conversion of the input graph G = (V,E) to a collapsed
graph and finally to a merged graph, the hinges remain unaltered. Next we demonstrate that
the resulting merged graph is planar. Finally we prove the main result, a merged graph is tree
decomposable if and only if there is a planar embedding with two faces which share three or
more vertices.

Most of the work of this chapter has been previously published in reference [71].

5.1 Hinges and Fundamental Circuits

The strategy of the algorithm introduced in Chapter 4 relies on the fact that given a span-
ning tree for a biconnected, tree decomposable constraint graph, every set of hinges is always
included in some fundamental circuit of the graph. Thus, we go ahead analyzing the relation
between hinges and fundamental circuits in biconnected graphs. We prove that if a graph G
is decomposable, there is always a fundamental circuit of G containing a set of hinges.

In what follows, if {a, b, c} are hinges to a biconnected decomposable graph G = (V,E) we
will denote by Gab, Gbc and Gca the graphs resulting from the set decomposition of G such
that V (Gab) ∩ V (Gbc) = b, V (Gbc) ∩ V (Gca) = c and V (Gca) ∩ V (Gab) = a.

We start by proving Lemma 5.1,

Lemma 5.1. Let G = (V,E) be a biconnected, tree decomposable graph with hinges {a, b, c}
and clusters Gab, Gbc and Gca. Let C be a circuit in G. Then one of the following two holds

79
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Figure 5.1: Circuits in a tree decomposition of a biconnected graph. (a) The
circuit shares vertices with the three subgraphs in the set decomposition.
(b) A circuit cannot intersect just two subgraphs in a set decomposition.

1. Circuit C shares vertices with clusters Gab, Gbc and Gca. Furthermore {a, b, c} ⊆ V (C).

2. V (C) is a subset of either V (Gab) or V (Gbc) or V (Gca).

Proof. For the first case just apply the definition of tree decomposition of a graph. See Fig-
ure 5.1(a).

For the second case assume, without loss of generality, that C is a circuit of G such that it
shares vertices with V (Gab) and V (Gbc) but it has no vertices in common with V (Gca). See
Figure 5.1(b). For a contradiction let u, v be two vertices in V (C), u 6= v, such that u ∈ V (Gab)
and v ∈ V (Gbc). Since C is a circuit, there are two distinct paths in C, say puv and p′uv, such
that connect vertices u and v. Both paths must include the hinge {b} = V (Gab) ∩ V (Gbc).
Therefore C is not a circuit.

Theorem 5.1 states that if a circuit C shares vertices with clusters Gab, Gbc and Gca, then
C is a fundamental circuit of G.

Theorem 5.1. Let G = (V,E) be a biconnected tree decomposable graph with hinges {a, b, c} ∈
V and let T be a spanning tree to G. Then, there is a fundamental circuit, say C, such that
{a, b, c} ⊆ V (C).

Proof. Assume that G = (V,E) is a tree decomposable, biconnected graph with hinges {a, b, c}
that split G into clusters Gab, Gbc and Gca. Let {C1, . . . , Cn} be the set of fundamental circuits
of G with respect to a spanning tree T .

For a contradiction assume that there is no fundamental circuit Ci ∈ {C1, . . . , Cn} such that
{a, b} ⊆ V (Ci) ∩ V (Gab) and {b, c} ⊆ V (Ci) ∩ V (Gcb) and {c, a} ⊆ V (Ci) ∩ V (Gca). Then,
according to Lemma 5.1, each fundamental circuit Ci is a subset of either Gab or Gbc or Gca.
Consequently, the ring sum of fundamental circuits in cluster Gxy results in circuits which are
subgraphs of cluster Gxy.

Since G is biconnected, there are two vertex disjoint paths that connect any pair of vertices
in V (G). Thus there is a circuit, say C ′, such that connects the three hinges {a, b, c}, has non
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empty intersection with clusters Gab, Gbc and Gca and, by hypothesis is not a fundamental
circuit. Therefore, C ′ can be expressed as the ring sum of some fundamental circuits of G
induced by the spanning tree T . This fact contradicts the assumption.

From this we may conclude that given a graph G and the set of all the fundamental circuits
S = {C1, . . . , Cm} of G with respect to a spanning tree T , there is a circuit C ∈ S that contains
the three hinges {a, b, c}.

Therefore the decomposition algorithms starts by computing a spanning tree T and the set
of fundamental circuits C induced in the graph G = (V,E) by T .

5.2 The Algorithm Preserves Hinges

As explained in Chapter 4, the algorithm iterates over the set of fundamental circuits already
computed searching for a planar embedding with two faces sharing three vertices in V (G). For
each fundamental circuit, the decomposition algorithm computes the bridges, the collapsed
graph and the merged graph. Here we prove that in all those steps the algorithm preserve the
hinges of the original graph.

Definition 5.1. Assume that G = (V,E) is a biconnected, tree decomposable planar graph
with hinges {a, b, c} on the fundamental circuit C ⊂ V . Hinges define in C three circuit
segments, say Cab, Cbc and Cca where each Cuv with u, v ∈ {a, b, c}, defines a path that
connects vertices u and v along the circuit C which does not include the third hinge. See
Figure 5.2. Note that here and in the following, when we refer to a circuit segment Cuv, with
u, v ∈ {a, b, c} , we assume that u 6= v and that Cuv and Cvu are the same circuit segment.

Recall that, as described in Chapter 4, bridges are the components induced in G by V (C),
after a precise detailed step. We first prove by Lemma 5.2 that each bridge is attached to just
one circuit segment induced by the hinges in the fundamental circuit under consideration.

Lemma 5.2. Let G = (V,E) be a biconnected tree decomposable graph, C ⊆ G be a funda-
mental circuit and let B = {B1, . . . , Bk} be the set of bridges induced by C in G. Assume that
{a, b, c} ⊆ V (C) are three distinct vertices which induce in C the segments Cab, Cbc and Cca.
Then, {a, b, c} are hinges of G if and only if the attachments of each bridge Bi ∈ B belong to
either Cab or Cbc or Cca.

Proof. For the if part assume that {a, b, c} are hinges of G, v,w are two different vertices in
at(Bi) and there are two different segments of C, say Cab and Cca, such that v ∈ Cab and
w ∈ Cca. See Figure 5.2. Since Bi is connected, there is a path in Bi connecting vertices v and
w. Thus {a, b, c} are not hinges of G.

For the only if part assume that ∀Bi ∈ B, there are x, y ∈ {a, b, c} such that at(Bi) ⊆ Cxy.
Now we can define the subgraphs Gxy = Cxy ∪{Bi ∈ B|at(Bi) ⊆ Cxy} for x, y ∈ {a, b, c}. Note
that

⋃

x,y∈{a,b,c}Gxy and Gab ∩ Gca = a, Gab ∩ Gbc = b and Gbc ∩ Gca = c. Thus Gxy is a set
decomposition of G and {a, b, c} is a set of hinges.

Lemma 5.3 states that collapsing bridges does not change the connectivity of their attach-
ments. The proof that follows first establishes that two bridges interlace only if bridges belong
to the same circuit segment. Then, we show that the process of collapsing bridges neither
create nor update hinges.
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a

Bi

c

wb

v
Cca

Cbc

Cab

Figure 5.2: Cab, Cbc and Cca are circuit segments induced by hinges {a, b, c}.
Bridges share attachments with just one circuit segment induced in the
fundamental circuit by the hinges. The illustrated case is not possible.

Lemma 5.3. Let G = (V,E) be a biconnected, tree decomposable graph, let C be a fundamental
circuit of G and let B = {B1, . . . , Bk} be the set of bridges induced by V (C). Let G′ be the
collapsed graph resulting from replacing each Bi ∈ B with the corresponding star bridge. Then,
vertices {a, b, c} are hinges of G if and only if they are hinges of G′.

Proof. Just notice that vertices in the circuit C and bridges attachments are not involved in
the replacement of a bridge with a star graph. Therefore vertices in C and bridges attachments
are neither created nor removed.

According to Lemma 5.2, for each bridge Bi there is a fundamental circuit segment, say Cuv,
induced in C by hinges {a, b, c} of V (G) such that at(Bi) ⊆ V (Cuv). We consider two different
situations depending on whether the bridge Bi is or is not singular. First assume that Bi is
not singular. Bi is transformed into a star bridge Bi by merging those vertices which do not
belong to at(Bi) into a single vertex. Clearly, the fundamental circuit segment to which the
bridge is attached does not change. Assume now that Bi is a singular bridge. The star bridge
is computed by breaking the unique bridge edge into two edges and including a new dummy
vertex which does not belong to at(Bi). Again, the fundamental circuit segment to which the
bridge is attached remains unchanged.

Next we proceed to prove that computing the merged graph also preserves hinges. Let us
start proving by Lemma 5.4 that two bridges in the collapsed graph interlace only if they are
attached to the same fundamental circuit segment.

Lemma 5.4. Let G = (V,E) be a biconnected tree decomposable graph. Let a, b, c ∈ V be
the hinges that define in the fundamental circuit C the circuit segments Cab, Cbc,Cca. Let
B = {B1, . . . , Bk} be the set of bridges induced by C in G and s(B) = {s(B1), . . . , s(Bk)} the
set of corresponding star bridges. If two star bridges s(Bi), s(Bj) ∈ s(B) interlace, then there
is a circuit segment Cuv such that at(s(Bi)) ⊆ V (Cuv) and at(s(Bj)) ⊆ V (Cuv).

Proof. Consider that each bridge Bi is transformed into a star bridge s(Bi) preserving attach-
ments, that is, at(Bi) = at(s(Bi)). Now apply Lemma 5.2.
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As shown by Lemma 5.5, in the process of merging bridges in the collapsed graph hinges are
preserved.

Lemma 5.5. Merging star bridges preserves hinges.

Proof. Assume that the fundamental circuit is C and the hinges are {a, b, c}. By Lemma 5.4,
merging star bridges only merges bridges whose attachments belong to the same fundamental
circuit segment either Cab, Cbc or Cca. Therefore {a, b, c} are hinges for the merged graph.

Therefore, we have the following result stated in Theorem 5.2.

Theorem 5.2. Let G = (V,E) be a biconnected tree decomposable graph with {a, b, c} vertices
on the fundamental circuit C of G. Then {a, b, c} are hinges to the collapsed graph and to the
merged graph induced by the fundamental circuit C in G if and only if {a, b, c} are hinges to
the graph G = (V,E).

Proof. Apply Lemma 5.3 and Lemma 5.5.

5.3 The Merged Graph is Planar

The goal now is to show that the resulting merged graph is planar.

Lemma 5.6 and Lemma 5.7 show respectively that the merged graph is planar and that each
of the clusters of a set decomposition of a planar graph are also planar graphs.

Lemma 5.6. Let G = (V,E) be a biconnected, tree decomposable graph and let C be a funda-
mental circuit with hinges {a, b, c}. Let G′ and G′′ respectively the collapsed and the merged
graphs induced by hinges {a, b, c} in C. Then G′′ is planar.

Proof. See Even, [28].

Lemma 5.7. Let G be a biconnected decomposable planar graph with hinges {a, b, c} that split
G into clusters Gab, Gbc and Gca. Then graphs Gab, Gbc and Gca are planar.

Proof. Clearly, subgraphs of a planar graph are planar. See Even, [28].

Let G = (V,E) be a planar graph and let D be a planar embedding of G. Each face fi ∈ D
is bounded by a circuit of G and there is one unbounded face in D, called the external face.
Recall that the embedding D is not unique. Now follows Theorem 5.3.

Theorem 5.3. Let G = (V,E) be a planar graph and let D be an embedding of G. For every
face f in D, there exists a planar realization, say D′, of the same graph, which has the same
set of faces and such that the face F is the external face in D′.

Proof. See Even, [28].
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5.4 Decomposability

Now we proceed to prove the correctness of the last step of the decomposition algorithm by
Theorem 5.4. Let G = (V,E) be the input graph of the decomposition algorithm and let G′ be
the corresponding merged graph. The goal of this step is to find one embedding D of G′ and
two faces fi, fj ∈ D such that share three or more vertices. We will show that if the number of
shared vertices is three, they are the hinges of the tree decomposition of G. If there are more
than three shared vertices, the problem is underconstrained and any subset of three shared
vertices are hinges.

Theorem 5.4. Let G = (V,E) be a biconnected planar graph. G is tree decomposable with
hinges {a, b, c} ⊆ V if and only if there is a planar embedding D with two faces fi, fj ∈ D such
that {a, b, c} ⊆ boundary(fi) ∩ boundary(fj).

Proof. We first prove that if {a, b, c} are hinges that decompose the graph G, there is a planar
embedding D of G with two faces of D whose boundaries share the hinges.
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(a) (b) (c)

Figure 5.3: (a) Planar embedding of a fundamental circuit with hinges
{a, b, c}. (b) Cluster G′

ab with just two vertices. (c) Regions defined by
a path in cluster G′

ab connecting hinges a and b.

Let G = (V,E) be a biconnected tree decomposable planar graph with hinges {a, b, c}. Let
G′ be the graph resulting from collapsing and merging G where hinges {a, b, c} induces the
clusters G′

ab, G
′
bc and G′

ca. Since according to Lemma 5.6 and Lemma 5.7, G’ is a planar graph,
subgraphsG′

ab, G
′
bc and G′

ca are also planar. Now by Theorem 5.1 there is a fundamental circuit
C of G′ such which includes hinges {a, b, c}. Since a circuit is planar, C can be embedded in
the plane defining two faces. One face is bounded, say fb and the other face is unbounded, say
fu, as illustrated in Figure 5.3(a). Let us denote this embedding by D.

We build an embedding of G′ with all faces drawn within the bounded face fb of D as follows.
Consider the cluster G′

ab. Depending on the cardinality of V (G′
ab), there are two possible

different situations. If |V (G′
ab)| = 2, then the cluster is coincident with the fundamental

circuit segment Cab and the set of faces in the current embedding D remains unchanged. See
Figure 5.3(b).

Assume now that |V (G′
ab)| ≥ 3. The cluster G′

ab is planar thus it can be embedded within
the bounded face fb in D starting the embedding from vertices and edges in the fundamental
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circuit segment Cab. Biconnectivity guarantees that there is another path, say Pab, such that
connects vertex a with vertex b, bounds the embedding and splits face fb into two faces, R1

and R2. See Figure 5.3(c).
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Figure 5.4: (a) Planar embedding of cluster G′

ab. (b) Final embedding in-
cluding clusters G′

ab, G
′

bc and G′

ca.

According to Lemma 5.4, bridges included in a cluster are such that G′
ab ∩ Cbc = {b},

G′
ab ∩ Cca = {a} and G′

bc ∩ Cca = {c}. Therefore, by Theorem 5.3, there is an embedding of
G′

ab within the face labeled R1 such that the embedding exactly shares vertex a with circuit
Cca and vertex b with circuit Cbc. See Figure 5.4(a). Similarly, graphs G′

bc and G′
ca can be

embedded in face R2 resulting in an internal face, labeled fb in Figure 5.4(b), which always
shares with the unbounded face fu hinges {a, b, c}. Then, by Theorem 5.2, {a, b, c} are hinges
for the given graph G = (V,E). The fact that replacing the embedding of each cluster G′

xy,
say D′

xy, with the embedding of the corresponding subgraph Gxy ⊂ G that originated it affects
just faces and vertices in D′

xy, completes the proof.

a
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u u

v vGab Gab

Figure 5.5: Planar embedding where faces fi and fj share vertices {a, b, c}.

For the only part, assume now that there is a planar embedding D of a graph G = (V,E)
and two faces fi, fj ∈ D which shares vertices {a, b, c}, as illustrated in Figure 5.5(a). Then
the set of vertices {a, b, c} induce a partition of V (G) into three subsets Vab, Vbc and Vca such
that any path connecting vertex v ∈ Vxy with any vertex z not in Vxy must include either
vertex x or vertex y. For a contradiction, assume that there is a path between a vertex v ∈ Vab

and a vertex in Vbc which does not include the vertex b common to Vab and Vbc. There are two
different situations illustrate in Figure 5.5(b). Consider first the case where at least one of the
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vertices connected by the path does not belong to the face fj, say vertices v and w in 5.5(b).
Then the graph is no longer planar as assumed from the beginning. Now consider the case
where the path connect two vertices, say u and w shared by the face fj and the sets Vab and
Vbc respectively. Then faces fi and fj no longer share the vertex b and the sets Vab, Vbc and
Vca do not define a partition of V (G).

Thus we have proved the following result.

Corollary 5.1. Algorithm 3 in Chapter 4 computes a set decomposition of a biconnected
graph, if one exists.

5.5 Chapter Summary

The new DR-planner tree-decomposition algorithm described is correct. First, we show that
transforming the input graph into the merged graph preserves hinges. Then, we proved the
resulting merged graph is planar. Finally, we proved the main result, a merged graph is tree
decomposable if and only if there is a planar embedding with two faces which share three or
more vertices.



CHAPTER 6

Complexity

Success consists of going from

failure to failure without loss of

enthusiasm.

(Winston Churchill)

In Chapter 4 we presented a new direct decomposition algorithm for geometric constraint
graphs related to well-constrained geometric constraint solving problems. The algorithm was
described in rather abstract steps. In this chapter some of those steps are further developed
to allow reasoning about their complexity. Given an input graph G = (V,E) we will use
the number of vertices |V | as the unit to measure complexity. However, according to Laman
Theorem 3.1, the relation between the number of edges and vertices in well-constrained graphs
is linear and thus, from an asymptotic standpoint, the number of vertices and the number of
edges both are equivalent measures.

We prove first that given a well-constrained biconnected input graph G = (V,E), the worst
time complexity of our basic tree decomposition step DR-planner algorithm is O(|V |2). Then
we analyze the running time for the whole recursive DR-planner and prove that the worst time
complexity is O(|V |2). We apply the usual unit-cost operations, unbounded memory random
access machine computational model which have unit cost for read and write access to all of
its memory cells, [104].

Most of the work of this chapter has been previously published in reference [71].

6.1 Graph-connectivity

The first step of the new Algorithm 2 given in Chapter 4 is to determine the connectivity of
the input graph, that is, whether it is either 0-connected, 1-connected or a biconnected graphs.
Then the graph is decomposed using a specific algorithm according to its connectivity. To
classify an input graph G into some of the classes we proceed as shown in Algorithm 2 of
Chapter 4.

To determine the connectivity of a graph G we compute the associated forest of depth first
trees. If the forest contains several trees, then G is a 0-connected graph. If the forest contains

87
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Algorithm 4 Decomposition of 0-connected graphs.

procedure 0-con-decomp
INPUT

0-connected constraint graph G = (V,E) with |V | ≥ 3
OUTPUT

A set decomposition of G
Let T be a connected component of G
if |V (T )| > 1 then

Let v1, v2 ∈ V (T )
Let v3 ∈ V − V (T )
G1 = V (T ); G2 = (V − V (T )) ∪ {v1}; G3 = {v2, v3}

else

/* T is a component with one vertex */
Let v1, v2 ∈ V − V (T )
Let v3 ∈ V (T )
G1 = V − V (T ); G2 = {v1, v3}; G3 = {v2, v3}

endif

return {G1, G2, G3}

just one tree, then G is either 1-connected or biconnected. Finally 1-connected graphs are
distinguished from biconnected graphs by searching for an articulation vertex in the tree, [51].
If found, G is 1-connected otherwise G is biconnected.

We start by introducing Lemma 6.1 concerning the run time complexity of the classification
procedure described above.

Lemma 6.1. Let G = (V,E) a graph. To classify G as a 0-connected, 1-connected or bicon-
nected can be done in O(|V |) worst case asymptotic time.

Proof. The forest of G can be computed in O(|V |) by applying a DFS traversal of G. An
articulation vertex, if any, can be computed in O(|V |) using the algorithm described in [51].

In what follows we study the complexity of the algorithm for each graph class.

6.2 Complexity of Decomposition of 0-connected Graphs

To find a tree-decomposition of a 0-connected graph, all what we have to do is to properly
group connected components in the given graph into three subgraphs pairwise sharing one
vertex. See Algorithm 4. The complexity of this algorithm is stated in Lemma 6.2.

Lemma 6.2. Let G = (V,E) be a 0-connected graph with |V | ≥ 3. The worst case asymptotic
time complexity of computing the decomposition of G is O(|V |).

Proof. Assume that G is represented using an adjacency list. In this case the decomposition
algorithm requires to compute the set K = {K1, . . . ,Km} of connected components of G and
then select a proper subset of K with at least two vertices. This can be done in linear time
and thus its complexity is O(|V |).
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Algorithm 5 Decomposition of 1-connected graphs.

procedure 1-con-decomp
INPUT

A 1-connected constraint graph G = (V,E) with |V | ≥ 3
OUTPUT

A set decomposition of G
Select one articulation vertex v1 ∈ V

Let G1 = G− v1
Let K1,K2 ⊂ G1 two arbitrary connected components
Let v2 ∈ V (K1) and v3 ∈ V (K2)
G1 = V1 ∪ {v1}, G2 = V2 ∪ {v1}, G3 = {v2, v3}

return {G1, G2, G3}

6.3 Complexity of Decomposition of 1-connected Graphs

A procedure to compute the tree-decomposition of a 1-connected graph is given in Algorithm 5.
As shown by Lemma 6.3, the worst case running time is O(|V |).

Lemma 6.3. Let G = (V,E) be a 1-connected graph. The worst case asymptotic time cost of
computing the decomposition of G is O(|V |).

Proof. Assume G is represented using an adjacency list. When G is 1-connected, in V (G)
there is at least an articulation vertex. Following Hopcroft and Tarjan, [51], the asymptotic
cost of computing one articulation vertex is O(|V |). Assume that v1 ∈ V is an articulation
vertex, then removing v1 breaks the graph G into several subgraphs K = {K1, . . . ,Km}.
Choose some subgraph, say K1, and choose an arbitrary vertex v2 ∈ K1 and some other vertex
v3 ∈ K2∪· · ·∪Km. Then v1, v2 and v3 are hinges of G. Then the overall worst case asymptotic
cost of this decomposition is O(|V |).

6.4 Complexity of Decomposition by Deleting degree 2 vertices

Subgraphs in biconnected graphs with degree 2 vertices can be solved in a direct specific way
applying the Todd method described in Chapter 4.4.1.

The cost of deleting the degree 2 vertices of a graph G is asserted in Lemma 6.4.

Lemma 6.4. Let G = (V,E) be a graph. The cost of deleting vertices with degree 2 from a
graph is O(|V |).

Proof. See Todd, [124].

6.5 Complexity of Decomposition of Biconnected Graphs

When the graph at hand is biconnected, we compute a basic tree-decomposition with the
Algorithm 3 introduced in Chapter 4. We first figure out the associated worst running time
for each step in the algorithm.
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6.5.1 The Set of Fundamental Circuits

Given a biconnected graph G = (V,E) with |V | = n and |E| = m. The problem of computing
the set of fundamental circuits amounts to computing first an spanning tree of G then identify-
ing the associated fundamental circuits in it. Lemma 6.5 refers to the complexity of computing
the set of fundamental circuits.

Lemma 6.5. Let G = (V,E) be a biconnected graph. The cost of compute a spanning tree T
to G and then compute the set of associated fundamental circuits to G is O(|V |).

Proof. Both the spanning tree T and the set of fundamental circuits are computed by applying
a depth-first search algorithm. The spanning tree T is computed in a worst case time given
by O(|V | + |E|), [101]. Identifying the fundamental circuits as cycles in T amounts to, at
most, visiting all edges in E, therefore, the running time is O(|E|). Since for well-constrained
and under-constrained graphs, the Laman relation can be written as |E| ≤ 2|V | − 3, [81], we
conclude that the worst case running time for computing the spanning tree and fundamental
circuits is O(|V |).

6.5.2 The Set of Bridges Implementation

Algorithm 6 used to compute the set of bridges is a depth-first search slightly modified to
account for halting recursive calls when reaching bridge attachments. In the procedure given
in Algorithm 6, e denotes an edge in E(G) bounded by vertices e.v, e.w ∈ V (G). Usual notation
for LIFO and FIFO data structures has been used.

Lemma 6.6 gives an upper bound for the cost of computing the bridges.

Lemma 6.6. Let G = (V,E) be a biconnected well-constrained graph and let C be a funda-
mental circuit of G. The cost of computing the bridges induced by C in G is O(|V |).

Proof. Algorithm 6 has two steps. In the first one the set of singular bridges, that is, those
bridges which include just one edge incident on two vertices in V (C) is computed. Trivially, the
running time is O(|V (C)|). The second step of the algorithm is a depth-first search approach
modified to account for halting the backtracking when a vertex in V (C) is reached. Therefore
the overall cost worst running time is O(|V |).

6.5.3 The Collapsed Graph

The goal of this stage is to compute the collapsed graph. For each bridge we check whether
it is singular or not and we convert it to a star graph. If the bridge is singular we add a new
vertex and two edges otherwise we consider only the attachments of the bridge and add a new
vertex and the connecting edges. Algorithm 7 shows the procedure.

Lemma 6.7 shows the worst running time for the Algorithm 7.

Lemma 6.7. Let G = (V,E) be a biconnected well-constrained graph and let C be a funda-
mental circuit of G. Let B = {B1, . . . , Bk} be the set of bridges induced by C. The cost of
computing the collapsed graph G′ of G is O(|V |).
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Algorithm 6 Computing the set of bridges.

INPUT:
G = (V,E): Biconnected constraint graph with |V | > 3
C: Fundamental circuit of G

OUTPUT:
B: The set of bridges induced by C in G

B = Set of singular bridges
Remove from E(G) the set of edges in B
S = emptystack
Label vertices in V (G) as not visited
for each vertex v in V (G)− V (C) not visited do

Label v as visited
Bi = emptyset
for all edges e in E(G)− E(C) adjacent to v do

S.push(e)
endfor

while not S.empty() do
e = S.pop()
Bi = Bi ∪ ({e.v, e.w}, e)
for all edges a in E(G) − E(C) adjacent to e.w and

a.w not visited and a not in E(C) do
S.push(a)

endfor

endwhile

B = B ∪Bi

endfor

return B

Proof. Collapsed bridges B′ are computed by collapsing each bridge in B. Clearly the worst
running time needed to collapse the bridges in B is O(|B|). The number of attachments in a
singular bridge is two and for a non-singular bridge the number is two plus, at least, one internal
bridge attachment. That is, for each bridge Bi ∈ B, we have |V (Bi)| ≥ 2. Hence the total
number of bridges is |B| ≤ |V (G)/2|. Computing the collapsed graph entails visiting once each
vertex in V (G)− V (C). Since |B| ≤ |V (G)/2| and since the total number of visited vertices is
|V (G) − V (C)| < |V (G)|, the total running time needed to collapse bridges is O(|V |).

6.5.4 The Merged Graph

To compute the merged graph we need to identify in the collapsed graph clusters of star bridges
which interlace and actually merge them into one single graph.

A naive quadratic approach to identify clusters of star bridges which interlace would consist
on visiting each star and checking for interlacements with other stars. The approach we have
adopted is based on the scan-line algorithm, [30] described by Miller and Ramachandran, [92],
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Algorithm 7 Algorithm to compute the collapsed graph.

INPUT
G = (V,E): Biconnected constraint graph with |V | > 3,
B the set of bridges induced by C

OUTPUT
Collapsed Graph G′ of G

C = ∅
foreach Bi ∈ B do

if singular(Bi) then
V (Bi) = at(Bi) ∪ {x}
E(Bi) = ((x, F irst(at(Bi))) ∪ (x,Last(at(Bi))))

else

V (Bi) = at(Bi) ∪ {x}
E(Bi) = ∅
foreach ati ∈ at(Bi) do

E(Bi) = (x, ati) ∪E(Bi)
endfor

C = C ∪ (V (Bi), E(Bi))
endfor

return C

to find the merging of a set of star graphs. The approach performs a single traversal of the
vertices in the fundamental circuit under consideration resulting in a linear procedure. Miller
and Ramachandran reported in [92] a scan-line linear algorithm to find the merging of a set of
star graphs. As described, we understand that as the algorithm scans the set of sorted edges,
stars stored in the stack must be sorted from bottom to top according to decreasing indexes of
the last attachment of each star graph. This ordering defines an invariant the algorithm must
preserve. As far as each vertex in the circuit C is an attachment for at most one star edge, the
order defined on the set of vertices and the one defined on the set of edges are coincident and
just scanning edges automatically preserves the stack invariant. However, when two or more
edges belonging to different stars in the input graph share as attachment a vertex in the circuit
C, the stack may store stars which do not interlace with the star the edge at hand belongs to.
In this scenario, the stack invariant no longer holds if the star is directly pushed on the stack.

Example 6.1. To illustrate the situation consider the graph example in Figure 6.1. The set
of sorted edges is {e0, e4, e2, e6, e5, e3, e1, e7}. After visiting edges e0 and e4, the stack stores
from bottom to top star bridges B0 and B2. When considering edge e2, we found that star
bridge B1 does not interlace with any star in the stack. If star bridge B1 is pushed onto the
stack, the stack invariant no longer holds and the algorithm fails.

To deal with problems where star bridges attachments are common to more than one star
bridge in the input graph, we have generalized the approach reported in [92]. Our method is
outlined in Algorithm 8-Algorithm 10.
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Algorithm 8 Main algorithm to compute the the merging of a collapsed graph.

INPUT:
CG: Collapsed graph as a set of star bridges

OUTPUT:
MG: The merged graph as a set of merged bridges

Merge all star bridges in graph CG with the same span
MG = emptyset
S = emptystack
L=sortEdges(E(CG))
e=L.front
B=star bridge to which e belongs to
S.push(B)
for each vertex edge e in L do

if e is the last edge of a bridge then

MG = MG ∪ S.pop()
elif e is an internal edge of a bridge then

DispatchInternalEdge(e)
elif e is the first edge of a bridge then

DispatchF irstEdge(e)
endif

endfor

Remove multiple edges in MG
return MG

The algorithm uses the following data structures: two bucket-sorted tables to store respec-
tively bridges and edges, and a stack to dynamically manage the set of bridges currently under
consideration. Additionally, we use a stack of bridges for housekeeping. So far no attempt has
been made to minimize the amount of storage used by the algorithm. Function isTheFirst-
Bridge(bridge,B) in the Algorithm 10 returns true if and only if the last edge of the popped
bridge, bridge, is no smaller than the last edge of the current bridge, B. See [92].

The main Algorithm 8, first merges bridges with same span. Next, edges are sorted in
increasing order of their attachment in V (C). Edges with the same attachment are sorted in
increasing order of the last edge of the bridge they belong to with ties broken by ordering in
decreasing order of the first edge of bridges they belong to, [92]. Since no two bridges have the
same span, ties are always broken. Then the bridge to which the first edge in the sorted edges
belongs to is pushed on the stack. The remaining edges are sequentially visited and dispatched
according to whether the edge is the last edge, an internal edge or the first edge in the bridge
they belong to.

The algorithm leverages from merging at the beginning bridges with the same span in three
ways. First bridges leading to faces in the final planar embedding whose attachments do not
contribute to the set of hinges are removed.

Example 6.2. Consider a circuit C with bridges Bi and Bj such that sp(Bi) = sp(Bj) and
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Figure 6.1: Graph Example.

Bj ⊂ Bi as depicted in Figure 6.2(a). Clearly, vertices common to at(Bi) and V (C) are just
the first and last vertices in at(Bi) which are coincident respectively with the first and last
vertices in at(Bj). Therefore the contribution of bridge Bi to the set of hinges is subsumed by
Bj and there is no need for further considering Bi.

Then it is easy to see that if two bridges, say Bi and Bj , share three attachments and at
least one of them has more than three vertices, the first part of the interlacing definition given
in Chapter 2.8 holds. Thus, the second part of the definition concerning bridges which share
three attachments is introduced just to consider the case where bridges Bi and Bj have both
exactly three attachments common to both bridges.

See Figure 6.2(b). From the point of view of how bridges Bi and Bj contribute to the
existence of hinges, clearly we only need to consider one of them. Thus merging them does
not result in the loose of any hinge. Besides, the merging of these bridges frees our merging
algorithm from the need of checking for the second part of the interlacing definition.

Finally, if sp(Bi) = sp(Bj) and Bi or Bj or both have four or more attachments, then either
at(Bi) = at(Bj) and one of the bridges can be removed or Bi and Bj interlace and can trivially
be merged.

Now the complexity for the computation of the merged graph is stated by Lemma 6.8.

v8 v9 v10v7v6v5v4v3v2v1v0
C

(a)

v8 v9 v10v7v6v5v4v3v2v1v0
C

(b)

Bi

Bj

Bi

Bj

fj1 fj2

Figure 6.2: (a) Bridge Bj subsumes the contribution to hinges of bridge Bi.
(b) Bridges with exactly three attachments which are common to both
bridges.
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Lemma 6.8. Let G = (V,E) be a collapsed graph with a set of n bridges B = {B1, . . . , Bn}.
The computation of the merged graph is O(|V |).

Proof. The set of merged bridges {B′′
1 , . . . , B

′′
n} is computed by applying to the set of collapsed

bridges B′ the sequential scan-line Algorithm 8. This algorithm merges a set of star subgraphs
where interlacing occurs and is implemented in linear time with respect to the total number
of stars attachments. In our case, the graph is derived from a well-constrained Laman graph
therefore the number of attachments is at most |V (G)| and the worst running time is O(|V |).

6.5.5 The Merged Graph Embedding Implementation

The next stage is to compute a planar embedding for the planar merged graph G′′ induced in
the input graph G by a fundamental circuit C = 〈v1, v2, . . . , vn〉.

Many general algorithms to compute embedding of planar graphs have been published. See,
for example, [95, 96]. However we are interested in finding a specific embedding. According
to the Jordan Curve Theorem, [24], embedding the circuit C in the plane results in a planar
embedding with two faces, one bounded face, fb and one unbounded face, fu. We want our
embedding to preserve the bounded face fb.

v8 v9 v10v7v6v5v4v3v2v1v0 v11
C

x1 x2 x3

x4

x6

x5

B3

B2

B1

fu

fb

B6 B4 B5

Figure 6.3: Labeling of circuit and bridges attachments.

We assume that circuit vertices V (C) are circularly labeled with increasing label values and
that bridges attachments are accordingly sorted. Moreover, we assume if the circuit under con-
sideration is C =< v1, v2, . . . , vn >, the attachments of each bridge at(Bi) = {vi1, vi2, . . . , vim}
fulfill v1 ≤ vi1 and vim ≤ vn. See Figure 6.3. Notice that this assumption entails, at most,
a coherent relabeling of vertices in the circuit and bridges. Our algorithm first sorts edges in
the merged graph in increasing order of their attachments in circuit C. Notice that given a
vertex v ∈ V (C), the number of edges incident on v which are internal to some bridge is at
most one. Otherwise, the merged graph would have at least two interlacing star bridges. See
Algorithm 11, where L = L+ outList+ xList+ inList must be understood as a list append.

Then, for each face in the planar embedding, the scan-line sequential Algorithm 12 extracts
the set of vertices that the face shares with the circuit vertices V(C).

The algorithm is based on two observations. Fist notice that any edge incident on a vertex
v ∈ V (C) is either the first edge of a bridge, an internal edge or, the last edge of a bridge.
If the edge is the first one a new face in the embedding is found. If the edge is internal to a
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bridge then a face has been completed and a new one has been found. Finally, if the edge is
the final edge of a bridge, a face has been completed.

Now note that, given a face of the planar embedding, we want to identify the set of vertices
common to the face at hand and the face bounded by the circuit C. Consider two bridges, say
Bi and Bj, with spans sp(Bi) and sp(Bj) such that sp(Bj) ⊆ sp(Bi). Clearly, faces generated
by bridge Bi cannot include vertices in sp(Bj). For example, in the merged graph shown in
Figure 6.3, faces derived from bridge B1 can not include vertex v3. To formalize this idea,
we define the concept of covered vertex as follows. We say that a vertex v ∈ V (C) is covered
by the bridge B in the merged graph if v ∈ sp(B). To capture the covering property, the
algorithm associates with each vertex v ∈ V (C) a label which initially identifies the vertex v
and that takes value ′x′ whenever vertex v is covered by a bridge.

Example 6.3. As a general example, consider the set of bridges B1, . . . , B6 in Figure 6.3.
The algorithm described would report the set of faces f1 = {v2, v3, v4}, f2 = {v1, v2, x, v4},
f3 = {v4, v5}, f4 = {v5, v6}, f5 = {v5, v6, v7}, f6 = {v8, v9}, f7 = {v9, v10}, f8 = {v9, v10} and
f9 = {v10, v11}. The unbounded face if fu = {v1, x, x, x, x, x, v7, v8, v9, x, v11}.

Finally Lemma 6.9 gives the cost of computing the embedding of the merged graph.

Lemma 6.9. Let G = (V,E) be a merged graph. The cost of embedding the merged graph is
O(|V |).

Proof. Computing the planar embedding includes two steps. First the set of edges is sorted
by Algorithm 11. Each vertex in the circuit V (C) is visited once and the algorithm can be
implemented in linear time with a bucket sort. Then each face in the planar embedding is
extracted by the Algorithm 12 as the set of vertices the face shares with V (C). Edges in the
merged graph which are either the first or the last edge in a bridge are visited once while each
edge internal to a bridge is visited twice. Since the merged graph is planar, the Euler relation
|V | + f − |E| = 2, where f is the number of faces, holds [28]. The number of faces in f is
fixed once |V | and |E| are fixed. Therefore the worst running time for computing the planar
embedding is O(|V |).

6.5.6 Computing the Hinges

Algorithm 13 shows the methodology to find the hinges for the given graph G by searching in
the planar embedding of the merged graph G′′′.

The complexity of this algorithm is stated in Lemma 6.10.

Lemma 6.10. Let G = (V,E) be a biconnected graph, let C be a fundamental circuit of G and
let G′′ be the merged graph of G induced by C. The cost of find hinges in the plane merged
graph D of G′′ is O(|V |).

Proof. Given a plane merged graph D associated to one fundamental circuit C of G, the cost
of exploring the faces of the embedding D to find the hinges is to perform a search for each face
to find a face F ∈ D with 3 circuit vertices belonging to F ∩Fb as shown in Algorithm 13. That
cost is linear to the number of faces. And according to the Euler relation |V | + f − |E| = 2,
the cost of exploring the faces is linear to the number of vertices of G.
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6.5.7 The Basic Tree-decomposition Algorithm

Lemma 6.11. Given a well-constrained biconnected graph G = (V,E), the basic tree-
decomposition step algorithm is O(|V |2).

Proof. The basic tree-decomposition step Algorithm 3 in Chapter 4, loops over the set of
fundamental circuits in the worst case. Then, for each circuit, the algorithm loops over the set
of faces in the planar embedding. The number of vertices bounding a face is |V |. Therefore,
the worst case running time is O(|V |2).

6.6 The Tree-decomposition DR-Planner Algorithm Running Time

Our DR-planner computes the decomposition plan by recursively applying basic tree-
decomposition steps. We have the following result.

Theorem 6.1. Given a tree-decomposable biconnected graph, G = (V,E), the DR-planner
based on tree-decomposition Algorithm 2 in Chapter 4 computes a tree-decomposition in
O(|V |2).

Proof. Clearly, if the constraint graph G = (V,E) is such that |V | = 3, the total amount of
work is constant, say T (3).

Consider now biconnected graphs with |V | > 3. At each decomposition step our DR-planner
divides the constraint graph G = (V,E) into three subgraphs, G1 = (V1, E1), G2 = (V2, E2)
and G3 = (V3, E3). Under the assumption that the biconnected constraint graph is well-
constrained, the number of vertices in each subgraph, say |Vi|, is roughly |V |/3. We have
shown that the amount of work done outside the recursive calls is O(|V |2). Therefore the
total amount of work done by our recursive DR-planner can be expressed as a function of the
cardinality of the set of vertices, |V |, as

T (|V |) = 3T (
|V |

3
) +O(|V |2)

Assume that the number of decomposition steps is m. Thus, we can expand out the recurrence
relation yielding

T (|V |) = |V |2 +
|V |2

3
+

|V |2

32
+

|V |2

33
+ · · ·+

|V |2

3m−1
+ T (3)

Where T (3) is the work needed to decompose the basic constraint graph G = (V,E) with
|V | = 3. Then

T (|V |) = |V |2 +
m−1
∑

i=0

1

3i
+ T (3)

Therefore, in terms of Big O notation, we have T (|V |) = O(|V |2). Since this recurrence relation
follows the pattern T (n) = aT (n/b) + nc, where a = 3, b = 3 and c = 2. Hence we have that
c > logb(a)+ ǫ, with ǫ > 0, and according to the generalization of the the Master Theorem [23]
proposed by Akra and Bazzi in [3], it is straightforward to confirm that the work done by our
recursive DR− planner is T (|V |) = O(|V |2).
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6.7 Chapter Summary

Our approach based on the tree-decomposition of a constraint graph G has a worse case
O(|V |2) computation cost. This result assures that the algorithm is competitive with the
existing decomposition algorithms in these area.
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Algorithm 9 Dispatching an edge internal to a star bridge.

INPUT
e: edge under consideration

OUTPUT
Updates the bucket-sorted table of edges
Updates the bucket-sorted table of current merged bridges

B=star bridge to which e belongs to
tomerge = emptyset
Saux=emptystack
bridge = S.pop()
while bridge 6= B do

if not interlace(bridge,B) then
Saux.push(bridge)

else

tomerge = tomerge ∪ {bridge}
endif

bridge = S.pop()
endwhile

if tomerge 6= ∅ then

mergedbridge=mergeBridges(tomerge)
S.push(mergedbridge)
for each bridge in tomerge do

Remove bridge from bucket-sorted bridges table
endfor

Include mergedbridge in bucket-sorted bridges table
Update edges in the bucket-sorted according to edges in mergedbridge

else

S.push(B)
endif

while not Saux.empty() do
S.push(Saux.pop())

endwhile
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Algorithm 10 Dispatching the first edge of a star bridge.

INPUT
e: edge under consideration

OUTPUT
Updates the bucket-sorted table of edges
Updates the bucket-sorted table of current merged bridges

B=star bridge to which e belongs to
tomerge = emptyset
Saux = emptystack
bridge = S.pop()
while not isTheF irstBridge(B, bridge) do

if not interlace(bridge,B) then
Saux.push(bridge)

else

tomerge = tomerge ∪ {bridge}
endif

bridge = S.pop()
endwhile

if tomerge 6= ∅ then

mergedbridge=mergeBridges(tomerge)
S.push(mergedbridge)
for each bridge in tomerge do

Remove bridge from bucket-sorted bridges table
endfor

Include mergedbridge in bucket-sorted bridges table
Update edges in the bucket-sorted according to edges in mergedbridge

else

S.push(B)
endif

while not Saux.empty() do
S.push(Saux.pop())

endwhile
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Algorithm 11 Sorting the set of edges of the merged graph implementation.

INPUT
E : Set of edges of the merged graph
V(C): Set of vertices of circuit C

OUTPUT
L: List of sorted edges

L = emptylist
for each vertex v in V(C) do

inList,outList=emptylist
for each edge e incident with v do

if e is the first edge of a star bridge then

Insert e in inList according to increasing values of
the last edge of star bridges

elif e is the last edge of a star bridge then

Insert e in outList according to decresaing values of
the first edge of star bridges

elif e is an internal edge of a star bridge then

xlist=e
endif

endfor

L=L + outList + xList + inList
endfor

return L
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Algorithm 12 Computing the embedding of the merged graph while preserving the face
bounded by the circuit C.

INPUT
L: List of sorted edges in the merged graph

OUTPUT
F : Planar embedding as a list of faces

F = emptylist
S = emptystack
Label each vertex v in V(C) as not covered
for each vertex edge e in L do

if e is the first edge of a bridge then

S.push(e)
elif e is the last edge of a bridge then

ei=S.pop(e)
Define face f as the set of labels associated with vertices

{v ∈ V (C)|ei.c ≤ v ≤ e.c}
F = F ∪ {f}
Label as covered the vertices in the set {v ∈ V (C)|ei.c < v < e.c}
if ei is an internal edge of a bridge then

Label ei as covered
endif

elif e is an internal edge of a bridge then

ei = S.pop(e)
Define face f as the set of labels associated with vertices

{v ∈ V (C)|ei.c ≤ v ≤ e.c}
F = F ∪ {f}
Label as covered the vertices in the set {v ∈ V (C)|ei.c < v < e.c}
if ei is an internal edge of a bridge then

Label ei as covered
endif

S.push(e)
endif

endfor

Define face fu as the set of labels associated with V (C)
F = F ∪ {fu}
return F
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Algorithm 13 Algorithm to find the hinges.

procedure findHinges
INPUT

A set of Faces F = {f1, . . . , fn} ∪ fb, where fb is the face bounded by the circuit
OUTPUT

{v1, v2, v3}: a set of hinges, if one exists
hinges = ∅
for fi in F do

Compute ν = V (fi) ∩ V (fb)
if |ν| ≥ 3 then

hinges= any {v1, v2, v3} ⊆ ν
return hinges

return ∅





CHAPTER 7

Conclusions and Future Research Directions

I’ve been a lucky man in life,

nothing was easy for me.

(Sigmund Freud)

Conclusions

In this thesis we have developed a new strategy to solve geometric constraint problems in the
Euclidean space based on a decomposition-recombination approach known as tree decompo-
sition. Tree decomposition is a graph-based technique that recursively splits the constraint
graph into three subgraphs such that pairwise share one vertex. These shared vertices are
called hinges. The strategy is not general but allows to solve a sizable amount of problems
belonging to the quadratically solvable problems also known as ruler-and-compass solvable
problems, which are usually found in practice in a number of important scenarios, for example
in CAD/CAM and related fields.

In what follows we summarize our contributions and list a set of open challenges we plan to
pursue in the near future.

Research Contributions

We have developed a new graph-based DR-planner that solves geometric constraint problems
in the Euclidean space by tree-decomposing the constraint graph which abstracts the geometric
problem. The DR-planner developed systematically searches for hinges in fundamental circuits
associated to a spanning tree of the constraint graph and consists of two main steps. First the
graph is transformed into a simpler, planar graph. Then the transformed graph is embedded
in the plane where hinges are identified as a set of three vertices shared by the embedding of
the face bounded by a fundamental circuit and any other face in the embedding.

A number of general and efficient algorithms to embed planar graphs in the plane have been
published. However, for the sake of efficiency, we have developed a specific algorithm tailored to
our needs. The implemented algorithm takes advantage of the natural hierarchy induced by the
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set of bridges in the planar graph. Furthermore, it guarantees that the resulting embedding
always includes the face bounded by the fundamental circuit considered. The algorithm is
conceptually simple and easy to implement.

The DR-planner is correct in the following sense. First the graph transformation preserves
the hinges. Second, hinges, if present, always belong to the common boundary of two faces
in a planar embedding of the transformed constraint graph. The fact that one of the faces
involved in the search is always the bounded by the considered fundamental circuit in the
planar embedding facilitates the search.

Because the approach is based in simple concepts, implementation requires simple data
structures. Notice that although the approach computes a graph tree decomposition, no need
for specific geometric construction steps are needed. The approach identifies sets of three
vertices that conceptually decompose the graph at hand thus all what it requires is that
the input graph be structurally either well-constrained or under-constrained. Therefore the
algorithm yields a tree-decomposition even in the case where there are constraints in the
problem which fulfill geometric theorems, for example, three lines pairwise constrained by
angles.

When in a tree-decomposition step the input graph is over-constrained including either
well-constrained or under-constrained subgraphs the algorithm correctly decomposes the input
graph and the over-constrained part goes within one of the resulting clusters. However if the
input graph does not include either well-constrained or under-constrained subgraphs no planar
embeddings exists which includes two faces with three or more common vertices. Therefore no
hinges exist and the algorithm issues the corresponding warning.

The worst case overall performance of the DR-solver built on top of our DR-planner is
quadratic. This does not improve over other tree-decomposition DR-solvers previously re-
ported in the literature. However, we have applied our implementation to tree-decomposable
constraint graphs with up to one thousand nodes and the measured running time is clearly
smaller than quadratic.

Summarizing, the proposed approach is a viable alternative to already developed tree-
decomposition based DR-planners which operate by identifying specific subgraphs in the con-
straint graph. The systematic nature allows a clean and easy implementation.

Future Research Directions

We have in mind two different avenues to explore in the near future: to improve the DR-
planner efficiency and to widen the solver domain, that is to enlarge the set of problems the
DR-planner is able to solve.

We believe that there is room left to improve the practical performance of our DR-planner.
First we have observed that under given circumstances, intermediate data resulting when
considering a fundamental circuit that does not include hinges do not need to be recomputed
when considering other circuits. Identifying a relationship between these intermediate results
would help in avoiding duplicate calculations. To further improve the performance, we plan
to develop a parallel version of our approach. Distributing fundamental circuits is an a priori
plausible strategy.

So far the geometric elements a geometric constraint problem can include are points, straight
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lines, circles and arcs of circle with constant radii. Extending our approach to solve problems
including other geometric elements like parabolas, ellipses or splines would be a great accom-
plishment.
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pp. 63–76.

[67] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana-Pastó, J.
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sous-contraints. PhD thesis, Université de Strasbourg, Sep 2010.
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Case Study Decomposition Examples

1 Case Study Decomposition: A 2D cross section.

To further illustrate how the approach works, we consider now a 2D cross section that will
be used to model a 3D shape by sweeping it along a given trajectory. The 2D cross section
depicted in Figure 1 is adapted from [83].

Our approach only considers constraint problems where geometric elements have two degrees
of freedom. Therefore, circles and arcs have fixed radii and what needs to be placed with respect
to other geometries is just their centers. In these conditions, the 2D cross section includes
14 points and 11 segments. Constraints include point-point distances, perpendicular point-
segment distances and segment-segment angles. They are depicted in Figure 1 as thin lines.
Distance constraints are depicted as straight segments with arrows, arbitrary angle constraints
are depicted as arcs of circle while 90◦ angles are depicted as a pair of perpendicular straight
segments with a common bound.

The constraint graph is shown in Figure 2. Geometric elements are depicted as the graph
vertices. Constraints are translated as graph edges. Since the problem is well-constrained,
with |V | = 25 and |E| = 47, the Laman relation, |E| = 2|V | − 3, holds. It is routine to check
that for each subgraph, |E′ ≤ 2|V ′| − 3 also holds.

As explained in Section 4.4.1 in a preprocessing step, our approach trivially solves construc-
tions corresponding to geometric elements whose nodes in the constraint graph have degree
two, that is, geometric elements on which just two constraints have been defined. After se-
quentially removing degree two vertices, the connectivity of the graph to be further considered
is two or higher. The graph is shown in Figure 3.

Assume that the spanning tree to the constraint graph computed by the algorithm is the
one depicted in Figure 4 starting in arbitrary root p5.

1.1 Computing the Set of Fundamental Circuits

The set of fundamental circuits induced by the spanning tree in Figure 4 is shown in Figure 5.
The fundamental circuits contain the following vertices:
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Figure 1: 2D cross section parametrically defined by geometric constraints.
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Figure 2: Constraint Graph for the 2D cross section in Figure 1.
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Figure 3: Geometric constraint graph for the 2D cross section in Figure 1 af-
ter sequentially solving geometric elements supporting just two constraints.
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l4

p4

l10

l2

l1

p1
l11

p2

p3

p5

l3

p13
p12

Figure 4: Spanning Tree T of G.

C1 = 〈p5, l4, p4, l3, p3, l2, p12, p13, l10, l11, p1, l1, p2〉

C2 = 〈p5, l4, p4〉

C3 = 〈l4, p4, l3〉

C4 = 〈p4, l3, p3〉

C5 = 〈l3, p3, l2〉

C6 = 〈l2, p12, p13, l10, l11, p1, l1, p2〉

C7 = 〈l2, p12, p13, l10, l11, p1, l1〉

C8 = 〈p13, l10, l11, p1〉

C9 = 〈p12, p13, l10〉

C10 = 〈p13, l10, l11〉

C11 = 〈l11, p1, l1〉

1.2 Computing the Set of Bridges

We choose an arbitrary fundamental circuit from the graph G, for example, C6 =
〈l2, p12, p13, l10, l11, p1, l1, p2〉, and compute the set of bridges following the approach in Chap-
ter 4.4.5.

Let S ⊂ G be the graph defined by the vertices and edges correspond-
ing to the fundamental circuit C6, that is S = ({l2, p12, p13, l10, l11, p1, l1, p2},
{(l2, p12), (p12, p13), (p13, l10), (l10, l11), (l11, p1), (p1, l1), (l1, p2)}). The dashed circle in Figure
6 shows the class κ1 defined by the circuit C6, depicted in thick line, in the graph example.

S induces on G a set of components: one non-singular component and the rest are singular
components. The set of components is shown in Figure 7.
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Figure 5: Fundamental circuits in the graph associated to the spanning tree
depicted in Figure 4.
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l1

p12

p1

p13 l10

l11

l2

K1

Figure 6: Classes induced by the circuit C6, (thick line) in the graph.

The set of bridges in the graph corresponding to the components in Figure 7 is depicted in
Figure 8 and are the following,

B1 = ({p2, p5, p4, l4, l3, p3, l2}, {(p5, p2), (p5, l4), (p5, p4), (l4, p4), (l4, l3), (p4, l3), (p4, p3), (p3, l3),
(l3, l2), (p3, l2)}),

B2 = ({p12, l10}, {(p12, l10)})

B3 = ({p1, p13}, {(p1, p13)})

B4 = ({p13, l11}, {(p13, l11)})

B5 = ({l1, l11}, {(l1, l11)})

B6 = ({l1, l2}, {(l1, l2)})

1.3 Computing the Collapsed graph

Following the procedure explained in Chapter 4.4.6, bridges are represented by means of a star
graph. Figure 9 shows the collapsed graph G′ corresponding to graph G after replacing every
bridge Hi by a star Bi, and where each bridge is identified by its center vertex.

1.4 Computing the Merged Graph

We proceed to merge bridges of G′. Bridges B3 and B5 have interlaced attachments and are
merged into B35. Bridges B2, B35, B4 have interlaced and are merged into B2345. The resulting
merged graph of G′, named G′′, is shown in Figure 10.



1 Case Study Decomposition: A 2D cross section. 127

l1

p2

l3

l4

p5

p4

p3

p2 l2
l2p2

l1

l2

p12

l2

l10

p12

p13

p12

p13

l11p1
p1

l1

l11

p1

l1

l11

p13

l11

l10

Figure 7: Components defined by the classes in the graph for the circuit C6.
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Figure 8: Bridges (thin line) induced in the constraint graph by circuit C6.
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l2 p12 p13 l10 l11 p1 l1 p2

x2

x3

x4
x5

x6

x1

Figure 9: Collapsed Graph.

1.5 Computing the Planar Embedding of the Merged Graph

The next step is to compute a planar graph. Figure 11 depicts the planar graph G′′′ as the
result of embedding the merged graph G′′.

The set of faces defined by the planar embedding of G′′′ are the following.

fu = {l2, x1, p2} f1 = {l2, x6, l1, p2}

f2 = {l2, p12, x2345, l1} f3 = {p12, x2345, p13}

f4 = {p13, x2345, l10} f5 = {l10, x2345, l11}

f6 = {l11, x2345, p1} f7 = {p1, x2345, l1}

1.6 Computing the Hinges

To compute a set of hinges, we search the set of faces {fu, f1, . . . , f9}. Up to two faces in the
planar embedding which share three vertices with the bounded face fb can be identified. The
pair of faces (fb, f2) share vertices {l2, p12, l1} and the pair (fb, f1) share the vertices {l2, l1, p2}.
Therefore two different decompositions can be performed.

If we assume that the algorithm identifies first the triple of vertices {l2, p12, l1} corresponding
to the pair of faces (fb, f2), the decomposition step yields the clusters G1, G2, G3 as shown in
Figure 12. Next the algorithm is recursively applied to graphs G1 and G3. Notice that G2

l2 p12 p13 l10 l11 p1 l1 p2

x6

x1

x2345

Figure 10: Merged Graph.
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f2 f3 f4 f5 f6 f7

C
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x2345

x1
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x6
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l2 p12 p13 l10 l11 p1 l1 p2

Figure 11: Planar embedding of the merged graph corresponding to the fun-
damental circuit C6 in Figure 5.
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Figure 12: Clusters G1, G2 and G3 defined by faces fb and f2 in the planar
embedding of the 2D cross section merged graph.
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Figure 13: Graph G.

includes two geometries and one constraint on them therefore is a trivial geometry placing
problem and no further decomposition is needed.

2 Case Study Decomposition: A theoretical example

In this Section we give a geometric constraint graph and the results yielded by our decompo-
sition algorithm. Given a biconnected graph G = (V,E), our algorithm finds hinges (if exist)
and clusters in the graph. Figure 13 shows the constraint graph G = (V,E) of study.

2.1 Computing the Set of Fundamental Circuits

We start computing the set of fundamental circuits of G, as we explained in section 4.4.4.

First, we apply a depth-first search to graph G, starting in the arbitrary root a. We obtain
the tree shown in Figure 14 a).

The chords are the edges of Figure 13, not visited in the previous step. Every chord induces
a fundamental circuit. Figure 14 b) shows the resulting DFS tree and the fundamental circuits
(chords) C1, C2, . . . , C16. The fundamental circuits contain the following vertices:
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Figure 14: Calculation of DFS tree of G.

C1 = 〈a, b, c〉

C2 = 〈b, c, d〉

C3 = 〈d, e, f〉

C4 = 〈e, f, g〉

C5 = 〈g, h, i〉

C6 = 〈h, i, j〉

C7 = 〈j, k, l〉

C8 = 〈k, l,m〉

C9 = 〈m,n, o〉

C10 = 〈n, o, p〉

C11 = 〈d, e, f, g, h, i, j, k, l,m, n, o, p〉

C12 = 〈d, e, f, g, h, i, j〉

C13 = 〈j, k, l,m, n, o, p〉

C14 = 〈a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r〉

C15 = 〈a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q〉

C16 = 〈c, d, e, f, g, h, i, j, k, l,m, n, o, p〉

2.2 Computing the Set of Bridges

We choose an arbitrary fundamental circuit from the graph G, for example, C11 =
〈d, e, f, g, h, i, j, k, l,m, n, o, p〉, and compute the set of bridges following the approach in Chap-
ter 4.4.5. See Figure 14.

Let S ⊂ G be the graph defined by the vertices and edges correspond-
ing to the fundamental circuit C11, that is S = ({d, e, f, g, h, i, j, k, l,m, n, o, p},
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Figure 15: G and fundamental circuit C11.

{(d, e), (e, f), (f, g), (g, h), (h, i), (i, j), (j, k), (k, l), (l,m), (m,n), (n, p), (p, d)}).

S induces on G a set of components. There is one non-singular component and the rest are
singular components. The components of G corresponding to bridges are the following, see
Figure 15:

H1 = ({a, b, c, q, r}, {(a, b), (a, c), (a, q), (a, r)})

H2 = ({l, j}, {(l, j)})

H3 = ({j, h}, {(j, h)})

H4 = ({k,m}, {(k,m)})

H5 = ({m, o}, {(m, o)})

H6 = ({n, p}, {(n, p)})

H7 = ({j, p}, {(j, p)})

H8 = ({d, j}, {(d, j)})

H9 = ({g, i}, {(g, i)})

H10 = ({e, g}, {(e, g)})

H11 = ({d, f}, {(d, f)})

Thus, H1, H2, . . . H11 are also the bridges of G induced by C11.

2.3 Computing the Collapsed Graph

Following the procedure explained in Chapter 4.4.6, bridges are represented by means of a star
graph. Figure 16(a) shows the collapsed graph G′ corresponding to graph G after replacing
every bridge Hi by a star Bi.
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Figure 16: (a) The collapsed graph G′ (b) The merged graph G′′.

2.4 Computing the Merged Graph

We proceed to merge bridges of G′. Bridges B2 and B4 have interlaced attachments and are
merged into B24. In a similar way, bridges B5 and B6 interlace and are merged into B56,
bridges B3,B9 interlace and are merged into B39 and bridges B10,B11 are merged into B1011.
The resulting merged graph of G′, named G′′, is shown in Figure 16(b).

2.5 Computing the Planar Embedding of the Merged Graph

Next we compute a planar graph G′′′. Figure 17 shows the planar graph G′′′ as the result of
embedding the merged graph G′′.

The set of faces defined by the planar embedding of G′′′ are the following.

fu = {d, x1, p} f1 = {d, x8, j, x7, p}

f2 = {d, x1011, g, x39, j} f3 = {d, x1011, e}

f4 = {e, x1011, f} f5 = {f, x1011, g}

f6 = {g, x39, h} f7 = {h, x39, i}

f8 = {i, x39, j} f9 = {j, x7,m, p}

f10 = {j, x24, k} f11 = {k, x24, l}

f12 = {l, x24,m} f13 = {m,x56, n}

f14 = {n, x56, o} f15 = {o, x56, p}
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k

l

i

h

r

p

g

d

j

f

n

m

a
q

b
c

G1

G2

G3
e

o

Figure 18: Graph G and clusters G1, G2 and G3.



3 Case Study Decomposition: A mechanism 135

k

l

j

o

p
n

m

o

p
n

k

l

m
o

n

m

k

l

j

m

l

k

o

k

l

p j
n

m

o

n

p j

Figure 19: Recursive tree-decomposition of G1.

2.6 Computing the Hinges

To compute a set of hinges, we search the set of faces {fu, f1, . . . , f15}. The faces f1, f2
and f9 ∩ fb contains three vertices of the circuit C11. Therefore, the sets {d, j, p}, {d, g, j}
and {j,m, p} are hinges. Therefore two different decompositions can be performed. If we
assume that the algorithm identifies first the triple of vertices {d, j, p}, the induced graph
decomposition into clusters G1, G2, G3 is shown in Figure 18.

2.7 Recursive Tree Decomposition Algorithm

Next the algorithm is recursively applied to graphs G1, G2 and G3. Figure 19 shows a recursive
tree-decomposition for G1 which is similar to G2, G3.

3 Case Study Decomposition: A mechanism

In this Section we give an example of application of the DR-planner algorithm to a geometric
constraint problem. We use a mechanism, the Watt’s linkage.

Figure 20: Watt’s linkage in a car suspension (Source: Wikipedia).
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Figure 21: Watt’s linkage diagram (Source: Wikipedia).

Watt’s linkage is a simple 3-bars linkage that allows to constraint the displacement of a
specific point to an approximate straight line. It has been traditionally used in mechanical
engineering to force the movement of car suspensions. The Figure 20 shows a picture of an
actual car wheels train that uses this linkage.

Watt’s linkage can be described by the linkage diagram shown in Figure 21. Point C corre-
sponds to the point on L1 and L2 and point D corresponds to the point on L3 and L2. Note
that the point P displaces vertically.

The geometric constraint system of Figure 21 is structurally well constrained and can be
represented by a constraints graph like this of Figure 22. Note that, because the graph is well
constrained, it fulfils Laman’s Theorem. The set of constraints is:

1. on(P,L2)

2. on(P2, L1)

3. on(P1, L3)

4. d(P2, C) = d1

5. d(P1,D) = d2

6. on(C,L1)

7. on(D,L3)

8. α(L2, L3)

9. α(L1, L2)

10. d(P,D) = d3

11. d(P,C) = d3

12. on(C,L2)

13. on(D,L2)
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Figure 22: Geometric Constraint graph associated to the Watt’s mechanism.
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Figure 23: (a) Fundamental Circuits. Circuit C1 in bold, (b) Collapsed and
Merged Graph induced by C1 (c) One decomposition step.
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The set of fundamental circuits induced by the spanning tree in Figure 22 is shown in
Figure 23(a). We choose an arbitrary fundamental circuit from the graph G, for example,
C3, and compute the collapsed and merged graph, see Figure 23(b). Figure 23(c) shows one
decomposition step.
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