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SUMMARY OF THE THESIS 

             

 Removing pollutants from industrial process water and wastewater is becoming an 

important area of research as the amount and quality of fresh water available in 

certain regions of the world is continuously decreasing.  

There is an increasing concern about the quality and quantity of the freshwater and 

groundwater resources for life supporting and environmental needs. Disposal of 

wastewater streams containing highly toxic organic pollutants generated by many 

industrial processes is a major environmental problem. Pharmaceutical compounds 

are among the group of emerging pollutants as their toxic effect even at very low 

concentration has raised a big concern. Persistent pharmaceuticals residues are 

considered as an emerging environmental problem in the recent years due to their 

harmful effects, such as chronic and reproduction toxicities for human and aquatic 

systems. Clofibric acid (CFA) is an emerging pharmaceutical pollutant which is 

pharmacologically active metabolite of the lipid lowering drug, clofibrate which 

has shown high persistency when introduced in the water. Numerous studies have 

demonstrated the occurrence of CFA in surface, groundwater and even drinking 

water.  

Wastewater discharged from various industrial processes has become a great 

concern as several organic contaminants in the wastewater are resistant to natural 

degradation and toxic to animal and human beings. Wastewater contaminated with 

phenol has drawn much more attention, as it is a basic structural unit for a variety 

of synthetic organic compounds. Wastewater originated from many industries 

contains phenol and substituted phenols. Phenols are harmful to organisms and 

many of them have been classified as hazardous pollutants because of their 
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potential harm to human health. The increasing organic pollution in water sources 

in last decades promoted the development of new catalytic oxidation technologies 

for the removal of organic pollutants at the point of origin is highly interesting.  

The removal of these types of persistent organic compounds from real and urban 

wastewater cannot be achieved by conventional wastewater treatment.  

Thus, the oxidative degradation of these types of recalcitrant organic pollutants by 

heterogeneous catalysis is considered to be one of the most effective techniques for 

water remediation. 

 Advanced oxidation processes (AOPs) have been assigned an outstanding priority 

over other wastewater treatment methods, due to their ability to mineralize organic 

pollutants.  

AOPs are based on generation of highly reactive oxygen species such as hydroxyl 

radicals (
•
OH) which can effectively attack a wide range of organic compounds. 

Even though this technology is considered to be powerful regarding contaminant 

degradation and mineralization, it faces several practical limitations in a large 

scale. Catalytic ozonation is proved as an effective technology for the removal of 

organics from wastewater. Also, among the various approaches of generation of 

hydroxyl radicals, the Fenton reaction is one of the most efficient processes to 

eliminate toxic compounds present in the wastewater.  

The aim of this study was to propose new catalytic materials and effective method 

for the degradation and mineralization of organic pollutants at ambient conditions 

to extend the applicability of AOPs, whereby the catalytic system plays a key role.  

The main objective of this research work is the improvement in the advanced 

oxidation processes for the treatment of industrial wastewater (e.g., 

pharmaceuticals, recalcitrant organic compounds, etc.) based on ozonation and 

Fenton-like process. The heterogeneous Fenton-like reactions were performed 

using commercial H2O2 and also in-situ generated H2O2 from formic acid and 
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oxygen. The improvements to be introduced in this study are based on the design 

of new catalytic system and implemented in this process to enhance their 

performances.  

 Herein, various families of catalysts like hydrotalcite and spinel-type, 

Lepidocrocite, FeOOH-derived catalyst, Pd-immobilized hydrophilic and 

hydrophobic Fe-ZSM5 zeolite-based catalysts (for a combined approach of 

adsorption/oxidation) and Cu-based catalysts were prepared by different synthesis 

protocols and tested in both type of advanced oxidation processes (catalytic 

ozonation and Fenton-like process) for the degradation and mineralization of 

clofibric acid (CFA) and phenol.  

The physicochemical properties of the prepared catalysts were studied with N2-

physisorption, X-ray Diffraction (XRD), Temperature-Programmed Desorption 

(TPD), X-ray photoelectron spectroscopy (XPS), Attenuated Total reflection 

Infrared Spectroscopy (ATR-IR), Inductively Coupled Plasma Mass Spectrometry 

(ICP) and Point of zero charge (pHPZC).  

The results of this study have shown that, catalysts tested in ozonation and Fenton-

like processes are effective and promising materials for the degradation of clofibric 

acid and phenol. Among hydrotalcite and spinel-type materials, Fe-hydrotalcite 

and Cu-spinel are most stable and active catalysts in catalytic ozonation of CFA. 

Pd/FeOOH is the promissing catalyst for the degradation and mineralization of 

CFA by both types of process (ozonation and Fenton-like process). In Fenton-like 

process within very short reaction time, achieved higher mineralization degree 

(60% in 30-60 min) using 0.5%Pd/FeOOH catalyst. Phenol is also effectively 

degraded by Pd/Fe-ZSM5 catalysts. Hydrophobic zeolite Fe-ZSM5 (236) shows 

higher adsorption of phenol. Pd/Fe-ZSM5 (236) catalysts also show better 

performance in in situ generated hydrogen peroxide Fenton-like process. Among 

all these families of catalysts, Cu-Al oxide catalyst exhibit highest activity and 
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stability for CFA degradation and mineralization, achieving 82% and 96% TOC 

removal in 2h and 6h respectively. In situ ATR-IR study of this catalyst show that, 

strong interaction of ozone with surface acidic sites of catalyst. The reactive active 

species are generated on the catalyst surface by the interaction of ozone in aqueous 

solution, which promotes radicals to initiate catalytic reaction. Our catalytic 

system show the applicability in degradation and mineralization of CFA and 

phenol by catalytic ozonation and Fenton-like process at ambient conditions. 
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General Introduction 

 

 The decrease in fresh water quantity and quality is one of the major social, 

technological, economical, and political problems of these days.  

The demand of fresh water is increasing with the growth in world population, and 

obtaining an adequate supply of clean water has likely been the challenge for many 

countries. Water is mainly constituted by aquatic resources which are not directly 

usable by human beings, such as salted waters of oceans and seas (97.2% of the 

water total mass), and glaciers (2.15%). Only about 0.65% of the water total mass 

can be directly utilized by human. Also, the distribution of water is geographically 

very unequal, and some regions are quasi desert, and an important part of water 

resources are more or less polluted [1]. The availability of freshwater and its use 

are keys of human development and its future sustainability. In fact, there is an 

increasing concern about the quality and quantity of freshwater and groundwater 

resources for life supporting and environmental needs. Human activities like 

agriculture, industry, mining, human waste disposition, population growth, 

urbanization and the climate change has an impact on water quality [2].  

The world health organization (WHO) states that 2.5 billion people live without 

improved sanitization, and 80% of developing countries are discharging untreated 

wastewater to receiving water bodies. Also some alarming data about water 

pollution published by the United Nation Environmental Programme (UNEP) e.g. 

the indiscriminate use of pesticides around the world is estimated to be over 2 

million metric ton; the industrial activities release around 300-400 tons of heavy 

metal, solvents, toxic sludge, and other wastes to water bodies; and every year 

almost 700 new chemicals are introduced into commerce in USA. All these factors 

are destroying the natural ecosystem and the natural cycle of water [3]. 
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  Wastewater originated from many industries likes paper and pulp, resin 

manufacturing, gas and coke manufacturing, tanning, textile, rubber, 

pharmaceutical and petroleum contain phenol and substituted phenols. Decay of 

vegetation also contributes to phenol in water bodies. Phenols are harmful to 

organisms and many of them have been classified as hazardous pollutants because 

of their potential harm to human health. The ingestion of phenols in human body 

causes protein degeneration, tissue erosion and paralysis of central nervous system 

and also damage kidney, liver and pancreas [4, 5]. In addition to this, the oxidation 

of numerous higher molecular weight compounds produce phenol as an 

intermediate compound. Wastewater contaminated with phenol has drawn much 

more attention, as it is a basic structural unit for a variety of synthetic organic 

compounds.    

 The presence of environmental xenobiotics such as pharmaceuticals and personal 

care product in surface and groundwater has become a major cause of concern due 

to their effects on aquatic life and potential impact on human health. Their 

presence has been recently reported as mainly due to an incomplete removal of 

these pollutants in sewage treatment plants (STP). Pharmaceutical compounds such 

as analgesics, antibiotics, β-blockers or lipids regulators have a widespread 

distribution in the environment due to their continuous release [6-8]. A large 

number of pharmaceuticals and personal care products (PPCPs) enter the 

environment every year by the incomplete sewage treatment. PPCPs are now 

recognized as a new class of emerging environmental contaminants and bring 

increasing concern and scientific interests [9-11]. In recent years, there are 

numerous reports about the occurrences of PPCPs in wastewater, surface water, 

groundwater, and drinking water [12-15]. Even though the concentration of 

detected PPCPs in aqueous environment are very low, the potential dangers of 

PPCPs and their metabolites to human and ecological health exist due to many of 
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them for some persistence in the body [16-18]. Pharmaceuticals, like lipid 

regulators appear worldwide in the aquatic environment. Lipid regulators have 

been detected in Europe's natural water systems e.g. in Spain, Switzerland, 

England and in the North Sea [19-24]. Since wastewater treatment plants 

(WWTPs) are not effective enough in their elimination, lipid regulators are 

discharged at high daily mass loads, which contribute to long term negative effects 

on living forms [25-27]. Many drugs posses environmental risks not only because 

of their acute toxicity, but also the development of pathogen resistance and 

endocrine disruption. Multigenerational exposure of aquatic organisms to these 

compounds in aqueous streams is leading to changes that may remain undetected 

and will cause irreversible damage [28].     

Some of these compounds such as clofibric acid (CFA, a blood lipid regulator) 

have shown high persistency when they are introduced in the water. Clofibric acid 

(CFA) is the bioactive metabolite of several lipid regulators (LRs) like clofibrate, 

etofibrate and etofyllineclofibrate, which remains in the environment for a long 

time. For decreasing the level of cholesterol and triglycerides these medicines are 

usually prescribed at daily dosage of 1-2 g pro patient. Most of the ingested 

amount is excreted and appears in wastewater effluents as a CFA sometime up to 

µg/L concentration. The metabolism of CFA in the environment is very slow. Due 

to high persistence, CFA has been detected in drinking waters already at the end of 

twentieth century [29, 31]. 

 Therefore, legislation around the world has become more restrictive concerning 

environmental regulations and health quality standards. The environmental policies 

particularly in the European Union, enforced severe restrictions to the industry in 

order to preserve the water quality and availability. The European Parliament, 

reflecting a new ecological conscience, established a Community framework 

(European Directive 2000/60/CE) for water protection and management, 
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ascertaining different uses and highlighting the necessity to implement solutions 

against its contamination aiming to lessen pollutants progressively. The high 

concentration and complexity of the toxic/recalcitrant substances in industrial 

wastewaters imply the application of new and specific processes for their treatment 

beyond traditional processes.  

 

 

Advanced oxidation processes (AOPs): 

  AOPs were defined by [32] as near ambient temperature and pressure water 

treatment processes which involve the generation of highly reactive radicals 

(especially hydroxyl radicals) in sufficient quantity for water purification. These 

treatment processes are considered as very promising methods for the remediation 

of contaminated ground waters, surface waters, and wastewaters containing non-

biodegradable organic pollutants. The advanced oxidation processes (AOPs) are 

attractive alternatives for destroying toxic organic contaminants and are able to 

mineralize harmful organic contaminants which are based on the generation of 

reactive hydroxyl radicals (•OH) [32-33].  

 The hydroxyl radical is a powerful, non-selective chemical oxidant (Table 1) 

which reacts many times faster than hydrogen peroxide and ozone, resulting in 

reduced treatment costs and system size. 

 AOPs used for the treatment of wastewater are based on: ozone, hydrogen 

peroxide (H2O2), ozone + hydrogen peroxide, photo oxidation (UV +ozone + H2O2, 

UV + H2O2), Photocatalysis (UV + catalysts), vacuum UV, catalytic wet air 

Oxidation (CWAO), electrochemical, electron beam irradiation, microwave, 

ultrasound, supercritical water oxidation, etc. 
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Table 1. Oxidation potential of some oxidizing species 

Oxidizing Agent Oxidation Potential (V) 

Hydroxyl Radicals 

Oxygen (atomic) 

Ozone 

Hydrogen Peroxide 

Hypochloride 

Chlorine 

Chlorine dioxide 

Oxygen (molecular) 

2.80 

2.42 

2.08 

1.78 

1.49 

1.36 

1.27 

1.23 

  

 AOPs can often achieve oxidative destruction of compounds refractory to 

conventional ozone or H2O2 oxidation. In addition, AOPs have the potential to 

completely mineralize organic contaminants to CO2, H2O and mineral salts.  AOPs 

are suited for effective degradation of dissolved organic contaminants such as 

halogenated hydrocarbons, aromatic compound, phenols, pesticides and several 

toxic pollutants, as well as inactivate pathogens in different environmental matrices 

(water, wastewater, soil, air). Therefore, AOPs appears as a promising technology 

for destruction of hazardous organic compounds in water without generating 

secondary pollutant commonly associated with conventional treatment 

technologies. Due to their potential as successful solution for environmental 

pollution problems, AOPs have been attracting the interest of researchers, 

practitioners and enterprises operating in the field of environmental remediation 

technologies. 

In this chapter, the catalytic ozonation and Fenton-like process, which are the main 

topics of this thesis, are introduced in more details. 
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1.1 Ozone in water treatment 

 

 The use of ozone for the destruction of pollutants in water treatment has been 

extensively studied in the last thirty years. Hoigné and Bader analyzed the role of 

hydroxyl radicals in the ozonation processes, in the late seventies and studied the 

use of ozone in treating several natural waters in Switzerland [34, 35]. Hoigné and 

co-workers studied the reactions of ozone with different organic and inorganic 

compounds [36-38]. Bühler et al. and Staehelin et al. studied the decomposition of 

ozone in water using the pulse radiolysis method in 1984 [39, 40]. Stahelin and 

Hoigné described the effect of several promoters and inhibitors of the radical chain 

reactions that take place during ozone decomposition [41]. Ozonation processes 

have also been proposed for the removal of wastewater pollutants [42]. Ozone 

reacts at a high rate with certain organic moieties, and is able to completely remove 

many organic pollutants from water and wastewater. However, since ozone has a 

limited capacity to achieve complete mineralization, a more powerful oxidant must 

be used in order to degrade organic intermediates. The organic pollutants can be 

oxidized with ozone by direct or indirect pathways. The direct oxidation (M + O3) 

of organic pollutants by ozone is a selective reaction with slow reaction rate 

constants. The ozone molecule can directly react with the organic pollutants 

through 1, 3 dipolar cycloaddition, electrophilic, and nucleophilic reaction [43]. 

In water, only the former two reactions have been identified with many organics 

[44]. On the contrary, the nucleophilic reaction has been proposed in only a few 

cases in non-aqueous systems [45].  

The indirect type of ozonation is due to the reactions of free radical species, 

especially the hydroxyl radical (HO
•
), with the organic matter present in water. 

These free radicals come from reaction mechanisms of ozone decomposition in 
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water that can be initiated by the hydroxyl ion or, to be more precise, by the 

hydroperoxide ion. 

Indirect pathway takes place according to the following steps:  

 

(i) Initiation                       O3 + H2O → 2HO
•
 + O2 

                                          O3 + OH
-
 → 

•
O2

-
 + HO2

•
 

(ii) Propagation                 O3 + HO
•
 → HO2

•
 + O2 

                                          O3 + HO2
• 
→ HO

•
 + 2O2 

(iii)Termination                 2HO2
• 
→ H2O2 + O2 

 

Due to its high oxidation efficiency and environmentally friendly, ozone is widely 

used to oxidize the organic pollutants in water, but it reacts slowly with some 

organic compounds such as inactivated aromatics. Ozone does not lead to the 

complete oxidation of organics, which results in the formation of carboxylic acids, 

carbonyl compounds and many others [46]. 

 

 

1.1.1 Catalytic ozonation 

 

 Catalytic ozonation has received increasing attention due to its higher 

effectiveness in the degradation and mineralization of organic pollutants. Organics 

difficult to dissociate by single ozonation can be oxidized by catalytic ozonation at 

ambient temperature and pressure. Catalytic ozonation shows great advantages in 

refractory organics in water, and is expected to be a powerful and valuable 

technology in water treatment.  
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Catalytic ozonation can be classified into two types: One is the homogeneous 

catalytic ozonation, which is the metal ions as the catalysts present in the reaction 

system; the other one is heterogeneous catalytic ozonation, where the main 

catalysts are metal oxide and metal or metal oxide on supports. 

  

Homogeneous catalytic ozonation 

 Homogeneous catalytic ozonation is based on ozone activation by metal ions 

present in aqueous solution. The catalysts usually used are transition metals such as 

Fe(II), Mn(II), Ni(II), Co(II), Cd(II), Cu(II), Ag(I), Cr(III) and Zn(II), to degrade 

the organic pollutants in water [47-52]. During this procedure, a metal ion 

determines not only the reaction rate, but also selectivity and ozone consumption 

[53]. The mechanism of homogeneous catalytic ozonation is based on an ozone 

decomposition reaction followed by the generation of hydroxyl radicals. 

In a possible mechanism to explain the role of homogeneous catalysts, the metal 

ions accelerate the decomposition of ozone to produce the 
•
O2

-
, and then electron 

transfer of 
•
O2

- 
to O3 to gain 

•
O3, HO

•
 [54]. During homogeneous catalytic 

ozonation, an initial complex can be formed between the organic molecule and the 

metal ion, followed by oxidation of the complex by ozone, which leads to the 

formation of hydroxyl radicals [53]. Pines et al. proposed that in the ozonation of 

oxalic acid with Co
2+

, the first step is the formation of the complex Co
2+

-oxalate 

[47]. This is then oxidized by ozone to form Co
3+

-oxalate, and finally the oxidation 

of oxalate and the regeneration of Co
2+

 takes place. Beltrán et al. identified four 

different Co
2+

-oxalate complexes in the reaction, the main one being Co (HC2O4)2, 

[55].  

 Homogeneous catalytic ozonation can improve the efficiency of removal of 

organic pollutants in water, but the disadvantage of this technology is to introduce 
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ions resulting in the secondary pollution and non-possibility to reuse the catalyst, 

which lead to increase the costs of water treatment. 

 

 

Heterogeneous catalytic ozonation 

The major advantage of a heterogeneous over homogeneous catalytic system is the 

ease of catalyst retrieval from the reaction media. However, the stability and 

durability of the catalyst under operating conditions is important. In this case 

heterogeneous catalysts with higher stability and lower loss can improve the 

efficiency of ozone decomposition, and can be recycled and reused without any 

further treatment. Due to these advantages, the heterogeneous catalytic ozonation 

is used widely in water treatment. The efficiency of the catalytic ozonation process 

depends to a great extent on the catalyst and its surface properties as well as the pH 

of the solution that influences the properties of the surface active sites and ozone 

decomposition reactions in aqueous solutions [46]. In heterogeneous catalytic 

ozonation, catalyst is in a solid form while the reaction may proceed in bulk water 

or on the surface of the catalyst. In many cases the formation of hydroxyl radicals 

is expected to be responsible for the catalytic activity.   

The activity of solid catalysts can be possible when at least one of the three 

conditions is fulfilled (Fig. 1):  

 

- ozone is adsorbed on the surface of catalyst 

- organic molecule is adsorbed on the surface of the catalyst, 

- or both, ozone and organic molecule are adsorbed on the catalyst surface. 
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                     Fig.1. Possible cases of ozonation mechanism in water 

 

 

Several solid catalysts have been described in literatures which are effective in 

ozonation of organic molecules in aqueous solutions. Catalysts such as metal 

oxides, metals supported on oxides, minerals and activated carbon have been 

mainly used in ozonation. Catalytic efficiency of metal oxides is depending on 

their physical (surface area, pore size, and surface charge) and chemical properties 

(chemical stability, and active surface sites). So far, several metals oxide (e.g. 

MgO [56], Co3O4 [57, 58], ZnO [59], TiO2 [60], Al2O3 [61], MnO2 [62, 63], 

FeOOH [64, 65]) and metal or metal oxides on supports (e.g. Pr/Al2O3 [66], 

Co/Al2O3 [67], Au/Bi2O3 [68], MnOx/MWCNT [69], TiO2/silica-gel [70], 
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TiO2/Al2O3 [71]) have been reported as effective catalysts in ozonation processes.    

Currently, the supports for heterogeneous systems include Al2O3, TiO2, active 

carbon, and clay and the active components used are Fe, Co, Mn, Cu, Ni and so on 

[72,69,66,73-78]. Metal oxide and supported metal oxide catalysts show excellent 

catalytic activity in degrading organic pollutants in aqueous solution. As per 

previous study, two possible pathways of the heterogeneous catalytic ozonation 

can be speculated [79]: (i) enhancing HO
•
 generation from aqueous ozone and (ii) 

forming surface complexes between the carboxylic groups of the pollutants and the 

surface metal sites of the catalyst, which renders the coordinated pollutants more 

reactive towards molecular ozone. Legube and Vel Leitner proposed a mechanism 

for the ozonation on supported metals in which ozone oxidizes the surface of the 

reduced metal catalyst, thereby generating hydroxyl radicals [80]. The 

decomposition of ozone may take place on the Lewis sites of metal oxides such as 

Al2O3, TiO2 or ZrO2 or on non-dissociated hydroxyl groups on the surface of metal 

oxides. Alternatively, the decomposition of ozone on activated carbons takes place 

on basic centers of the catalyst. Ozone decomposition on the surface of the 

catalysts is usually cited as a factor determining the activity of the catalyst. This is 

also due to the frequently observed high capacity of such catalytic systems to 

generate hydroxyl radicals [53]. Langmuir-Hinshelwood mechanisms suggest that 

the simultaneous adsorption of ozone and the organic compound occurs with the 

formation of products at catalyst surface. Beltrán et al. proposed a Langmuir-

Hinshelwood mechanism in which ozone adsorbs and decomposes on certain 

catalyst sites at the TiO2, yielding oxidizing sites that subsequently react with 

adsorbed oxalate [81]. The primary parameter of metal oxides in determining the 

catalytic properties in aqueous solution is their acidity. The hydroxyl groups 

formed on metal surfaces behave as Brönsted acid sites. Lewis acid and Lewis 

bases are sites located on the metal cation and coordinate with unsaturated oxygen 
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respectively [82]. Ernst et al. proposed that dissolved ozone adsorbs first on the 

catalysts surface, while the adsorption of the organic substances seems to inhibit 

the catalytic effect [83]. Zhang and Ma suggested that catalytic ozonation on 

goethite proceeds via a radical pathway in which unchanged surface hydroxyl 

groups of the catalyst induce the ozone decomposition to generate hydroxyl 

radicals [84]. Yang et al. studied the interaction of ozone with mesoporous alumina 

supported manganese oxide and assessed the presence of Lewis and Brönsted sites 

in the catalyst by means of Fourier transform infrared (FTIR) spectroscopy and in 

situ attenuated total reflection FTIR (ATR-FTIR) Spectroscopy [85]. Their results 

suggest that, surface hydroxyl groups from adsorbed water, which were caused by 

the interaction of the catalyst with ozone initiate catalytic reaction.  

Hundreds of papers concerning catalytic ozonation have found in literature over 

the last 20 years and we still do not have any unified mechanism of the process. 

Nevertheless, the mechanism of action of ozone in catalytic ozonation remains 

unclear.  

 

 

1.2 Fenton process 

Fenton’s reagent (Fe
2+

 and H2O2) as an oxidant in wastewater treatment is viewed 

as an attractive technique, as Fe is nontoxic and widely available and hydrogen 

peroxide is relatively easy to handle and the excess decomposes to environmentally 

safe products.  Compared with other oxidation techniques, Fenton process is 

simple and can be operated at mild conditions (atmospheric pressure and room 

temperature) and mainly for these reasons it has been regarded as the most 

economical alternative. Reaction mechanism involved in Fenton process is 

initiated by the formation of hydroxyl radicals, which are further used for oxidation 
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and destruction of various organic pollutants. Fenton process was developed by H. 

J. Fenton in 1894 and detailed study based on the use of a mixture of H2O2 and 

Fe
2+

 (later called the Fenton’s reagent) for the oxidation and destruction of tartaric 

acid was proposed [86]. The Fenton process can be efficiently applied when the pH 

optimum value of the polluted aqueous medium is about 2.8–3.0. Indeed, in these 

conditions, the Fenton’s reaction can be propagated by the catalytic behavior of the 

Fe
3+

/Fe
2+

 cycle. It was reported that H2O2 was catalytic decomposed by iron salts 

and a complex radical and chain mechanism was involved in the generation of OH 

and HO2 radicals [87]. The above result was further confirmed by Walling by 

proposing the formation of 
.
OH radical in the Fenton process [88]. Recent 

mechanistic studies have demonstrated that the Fenton process is initiated by the 

formation of hydroxyl radicals, in agreement with the classical Fenton’s reaction. 

Metelitsa et al studied the mechanisms of the action of Fenton's reagent in the 

hydroxylation of aromatic compounds [89]. The generally accepted mechanism 

involved in Fenton reaction propose the “in-situ” generation of hydroxyl radicals 

by the interaction of H2O2 with ferrous salts or intermediate organic radicals [91].  

 

Homogeneous Fenton reaction 

The homogeneous Fenton reaction is already in use in industrial wastewater 

purification processes. In this process, mixture of a soluble iron (II) salt and H2O2, 

known as the Fenton’s reagent is directly used for oxidation of organic compounds. 

Barb et al. has proposed the mechanism for decomposition of H2O2 in acidic 

solution in dark condition by Fe
2+

 in absence of organic compound which consist 

of sequence of reactions. According to the reactions summarized, the combination 

of ferrous irons and hydrogen peroxide induces a series of chain reactions initiated 

by the degradation of peroxide to a hydroxyl radical and a hydroxide ion [92]. 
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 (1) Fe (II) + H2O2 →Fe (III) +
 •
OH + OH

- 

 (2) Fe (III) + H2O2 →Fe (II) + HO2
•
+ H

+ 

 (3) HO
•
+ H2O2 →HO2

•
+ H2O

 

 (4) HO
•
+ Fe (II) →Fe (III) + OH

-
 

 (5) Fe (III) + HO2
•→Fe (II) + O2H

+
 

 (6) Fe (II) + HO2
•
+ H

+→Fe (III) + H2O2 

 (7) HO2
•
+ HO2

•→H2O2 + O2 

The Fenton process has been efficiently applied for the oxidation and degradation 

of various organic pollutants. It has been used for treating wastewater [92], for 

discoloring effluents of dye industries [93], and or destroying toxic organic 

compounds, such as 2,4,6-trinitrotoluene (TNT) [94], 2,4 dinitrophenol [95] and 

chlorophenols [96]. In 1968, Bishop et al. studied the catalytic oxidation of 

refractory organics by H2O2 in municipal waste waters. The technical feasibility of 

using hydroxyl radicals for the decomposition of a broad spectrum of organic 

residues in wastewater was determined in experimental study [97]. Since then 

Fenton reagent has been employed successfully to treat different industrial 

wastewaters, including textile [98–101], paper pulp [102, 103], pharmaceutical 

[104-105], dyes [106, 107], cork processing [108–110], olive oil [111, 112] 

wastewaters. Practical efficiency of the Fenton’s reagent strongly depends on 

various factors such as temperature, pH, H2O2, and catalyst concentrations, which 

control the regeneration capacity of Fe
2+

 from Fe
3+

 produced during the process 

and the rate of oxidation of organics by generated 
.
OH radicals. Nevertheless, 

certain drawbacks can be accounted in homogenous Fenton reaction. Some of them 
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pointed out are related to the high cost and risks due to the storage and 

transportation of H2O2, need of important amounts of chemicals for acidifying 

effluents at pH 2–4 before decontamination and/or for neutralizing treated 

solutions before disposal, accumulation of iron sludge that must be removed at the 

end of the treatment and impossibility of overall mineralization due to the 

formation of Fe(III)-carboxylic acid complexes, which cannot be efficiently 

destroyed with bulk 
.
OH [113]. 

Several of these disadvantages can be overcome by heterogeneous processes as 

most of them can be operated in close to neutral pH range and also precipitation of 

Fe (III) in form of sludge may be prevented by the use of solid iron-containing 

catalysts. The use of heterogeneous Fenton reaction can avoid the presence of 

dissolved Fe in solution significantly after treatment as most of the iron remained 

in solid state, either as a mineral or as an adsorbed ion. 

 

Heterogeneous Fenton reaction 

 The heterogeneous Fenton reaction (a combination of a solid Fe-based catalyst 

and H2O2) is an interesting alternative for the treatment of wastewaters 

contaminated with organic compounds. Several Iron containing materials like 

zeolites, alumina, iron-modified clays, mesoporous molecular sieves, iron oxides, 

ion-exchange resins, or iron-exchanged Nafion membranes have been studied in 

heterogeneous Fenton reaction for removal of persistent organic compounds 

[114].The use of heterogeneous Fenton type catalysts based on porous supports 

such as zeolites, clays and mesoporous silicas has been widely employed in the 

degradation of organic compounds like phenol and other organic compounds. The 

oxidation of p-coumaric acid and propionic acid was studied using Fe-zeolite and 
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Fe-containing pillared clays [115]. The degradation of phenol as a model 

compound was carried out using iron-exchanged medium-pore ZSM-5 and effect 

of pH on activity and iron leaching was explored [116,117]. Ovejero et al have 

compared the oxidation of aqueous solutions of phenol over different iron- 

containing zeolites and the amount of leached iron was found to be depended on 

the synthesis route, the iron environment in the zeolites and the concentration and 

strength of the acid sites present [118]. Several iron (hydr) oxides, which form 

inherently and exclusively in the nanometer-size range, are ubiquitous in nature 

and are readily synthesized. This fact makes Fe (hydr) oxides as suitable catalysts, 

and thus numerous studies on the applications of these types of catalysts in 

catalysis have been discussed. The use of synthetic and natural Fe hydroxides as 

catalysts in environmental remediation procedures using Fenton-like system has 

been reported [119]. Degradation of quinoline in aqueous media was studied by 

modified goethite surface by thermal treatment with H2 to produce an active 

Fenton-like catalyst. The controlled thermal treatment resulted in Fe
3+

reduction to 

Fe
2+

 on the goethite surface, thereby increasing the catalytic efficiency [120]. 

Oxidation of benzoic acid in the presence of lepidocrocite catalyst and H2O2 has 

also been studied. It was observed that pH of the solution strongly influence the 

oxidation rate of benzoic acid in presence of lepidocrocite catalyst [121]. However, 

the ideal solid Fenton catalyst should not be prone to iron leaching, but most of the 

heterogeneous Fenton catalysts developed up till now still exhibit this problem. 

Iron ions are significantly leached from the catalyst during the reaction, which 

causes a loss in activity with time and generates metal ion pollution. Consequently, 

the development of heterogenous Fenton catalysts with high activity and stability is 

thus a challenging approach. 
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Hydrogen peroxide  

Hydrogen peroxide (H2O2) is an important commodity chemical and its demand is 

growing significantly in the chemical synthesis due to it’s ‘‘green’’ character. H2O2 

is an environmentally friendly oxidizing agent that has many practical applications. 

It is considered as one of the most efficient oxidizing agents by virtue of its high 

active oxygen content (about 47%), only next to molecular oxygen [122]. H2O2 act 

as a versatile oxidant that is effective over the whole pH range with high oxidation 

potential (E
O 

=1.763 V at pH 0, E
O

=0.878 V at pH 14) and water as the only co 

product [123]. It can oxidize a broad variety of inorganic and organic substrates in 

liquid-phase reactions under very mild reaction conditions. Hydrogen peroxide is 

currently presented as an attractive alternative to the industrial use of oxidants such 

as t-BuOOH, N2O, NaClO, chromate or permanganate [124, 125]. It is being used 

as an environmentally friendly alternative to chlorine and chlorine containing 

bleaches and oxidants in the pulp/paper bleaching and water treatment industries. 

H2O2 is also widely used in the treatment of a variety of industrial wastes and 

wastewaters. Currently, hydrogen peroxide is industrially produced via the alkyl 

anthraquinone route. Simplistically, in this process, an alkyl anthraquinone is 

firstly hydrogenated and later oxidized, releasing hydrogen peroxide. The main 

advantage of this system is its capability of producing highly concentrated H2O2. 

However, the transportation and storage of H2O2 in concentrated form (30-35%) is 

associated with safety and economic issues. Thus it is highly interesting to generate 

hydrogen peroxide in-situ from molecular hydrogen and/or other hydrogen source 

with oxygen as a way of resolving its current challenges and potentially reducing 

its price.  
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“In-situ” generation of Hydrogen peroxide 

One-pot combination of the in-situ generation of hydrogen peroxide (H2O2) with 

selective oxidation reactions enhances the environmental and economic 

attractiveness of the use of H2O2 as green oxidant at industrial scale. In-situ 

generated hydrogen peroxide from molecular oxygen and hydrogen can be 

simultaneously used for oxidation without the requirement of intermediate 

purification and/or separation steps. This process shows advantages with reduction 

of the capital and operational costs and the risk related to transportation and 

storage of hydrogen peroxide is minimized. Additionally, a controlled feeding of 

the desired concentrations of hydrogen peroxide in the system can be naturally 

achieved and tuned depending on the oxidation requirements. Considering these 

advantages, it is not surprising that the study of oxidation reactions using in-situ 

generated hydrogen peroxide has always been of great scientific interest, especially 

within the green chemistry movement [126].  

However, use of molecular hydrogen involves some drawbacks related to the risk 

of explosivity of the O2/H2 mixture and the low solubility of the gases in solution; 

in particular hydrogen. The direct generation of hydrogen peroxide is carried out 

using Pd-based heterogeneous catalysts via the catalytic hydrogenation of oxygen 

in presence of strong mineral acids and /or halide ions. The reaction is also carried 

out in aqueous/organic solvent mixtures at low temperature in the range of 0-25
o
C, 

and the overall pressure close to 100 atm, required to obtain selectivity’s and 

kinetics respectively, of practical significance [127]. The in-situ generation of 

H2O2 from the selective reduction of O2 by hydrazine using Pd catalyst was carried 

out in the presence of Br- ions and acidic aqueous medium. The presence of both 

the mineral acid and halide ions is a requirement for the selective oxidation of 

hydrazine to H2O2 [128].  However, hydrazine is classified as toxic and a possible 
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carcinogenic compound. This process also requires addition of halide ions and 

mineral acid creating extremely low pH in order to stabilize hydrogen peroxide. In 

spite of sufficient simplicity in use of this process; it could not be considered as 

environment benign as hydrazine is considered as toxic compound. Substitute to 

previous processes, and avoiding the use of potentially hazardous O2/H2 mixtures, 

toxic and hazardous hydrogen sources like hydrazine or hydroxylamine; use of 

formic acid can be considered as a promising substitute for H2. Direct generation of 

hydrogen peroxide was carried out from formic acid and O2 using heterogeneous 

Pd/Al2O3 catalyst. The decomposition of formic acid to H2 and CO2 at ambient 

conditions introduces formic acid as eligible replacement for pure hydrogen in the 

hydrogen peroxide formation process [129]. Degradation of phenol by semi 

heterogeneous Fenton process using ferrous ion and catalytically "in situ" 

generated hydrogen peroxide from oxygen and formic acid using Pd/γ-Al2O3 

catalyst was performed [130]. This process was also employed using 

heterogeneous Pd-Fe catalytic system with combined approached of simultaneous 

“in situ” generation of hydrogen peroxide from formic acid and O2 and its further 

decomposition in hydroxyl radical to carry out the phenol degradation. High 

degree of mineralization for phenol within a full heterogeneous catalytic system 

under very mild conditions was obtained. The catalytic system involves the 

simultaneous generation of hydrogen peroxide from formic acid and oxygen, the 

formation of hydroxyl radicals and the oxidation of organic compounds [131].The 

combination of simultaneous in situ generation of H2O2 and degradation of organic 

compounds in heterogeneous Fenton and Fenton-like processes has proven to be a 

feasible alternative to present AOPs. 
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 AIM/OBJECTIVES OF THE THESIS WORK 

 

 This research work is aimed to investigate the performance of novel catalytic 

materials in Advanced Oxidation Processes (AOPs) for wastewater treatment. For 

this purpose various families of catalysts were synthesized by different methods 

and their potential catalytic activity have been evaluated in Advanced Oxidation 

Processes (AOPs) such as ozonation and Fenton-like process for treating emerging 

pharmaceutical compounds like clofibric acid (CFA) and recalcitrant compounds 

like phenol. The complete removal of persistent organic contaminants is difficult to 

accomplish by conventional wastewater techniques. Pharmaceutical wastes and/or 

their  metabolites are usually detected in the wastewater effluent at trace levels, but 

even at very low concentrations (ng/L) can induce toxic effects on human health 

and aquatic system.  

The complete removal and mineralization of this type of persistent organic 

compounds needs development of promising technologies to treat industrial 

effluents. Advanced oxidation processes (AOPs) are attractive alternatives for 

destroying toxic organic contaminants. One way to reduce the presence of these 

contaminants in the environment is to decrease their presence in wastewaters from 

the corresponding pharmaceutical industries, i.e. by the "on-site” treatment of plant 

wastewaters by Advanced Oxidation Processes (AOPs).  

 

These chemical oxidation techniques like catalytic ozonation and Fenton-like 

process operate at or near ambient temperature and pressure, and they are based on 

the generation of reactive hydroxyl radicals (
•
OH) that is able to mineralize 

harmful organic contaminants.  
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The concentrations of CFA and phenol were measured by High Pressure Liquid 

Chromatography (HPLC) technique and total organic carbon was analyzed by 

TOC analyzer.  Physicochemical properties of catalysts were characterized by 

various characterization techniques like N2-physisorption, XRD, XPS, ATR-IR, 

ICP and NH3-TPD, and adsorption study of zeolites-based materials was also 

performed. 

 

 

General objectives of the thesis are: 

 

I. Novel and different families of catalysts are synthesized using various 

synthesis protocols. 

II. The efficiency of these catalysts is studied for the degradation and    

mineralization of model organic pollutants of interest existing in industrial and 

urban wastewaters by Advanced Oxidation Processes (AOPs). 

III. Study of degradation mechanism of the target compounds. 

IV. Study of the active species and mechanism of catalytic ozonation with the 

used catalytic materials. 

V. Study the feasibility of the combined approach adsorption (concentration) + 

oxidation by Fenton process with and without in-situ generation of H2O2. 

 

 

The efficiency of these new catalytic materials in catalytic ozonation and Fenton-

like process are compared with single ozonation and conventional Fenton process.  

Separately, the objective of this thesis work is described in different chapters 

specifically, 
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Chapter 3. Performance of new hydrotalcite and spinel type catalyst for the 

degradation and mineralization of clofibric acid (a pharmaceutical compound) by 

catalytic ozonation has been investigated in this chapter. Fe, Ni and Cu containing 

hydrotalcite and CuAl2O4 and CuMgAl2O4 spinel-type materials were synthesized 

by co-precipitation method and characterized using different techniques. The 

catalytic activity of hydrotalcite-like materials is compared with Fe, Cu and Ni 

metals supported on alumina catalysts prepared by impregnation method. The 

stability and activity results of   hydrotalcite/spinel type catalysts based on higher 

calcinations temperature and pretreatment by oxalic acid are discussed. 

 

 Chapter 4. The activity of FeOOH-derived catalysts in both type of Advanced 

Oxidation Processes (AOPs) like catalytic ozonation and Fenton-like process for 

removal of clofibric acid is studied. Commercial FeOOH was calcined at different 

temperatures (200-350
o
C) to obtain different Fe-oxide phases. FeOOH supported 

on γ-alumina and ZrO2 catalysts and 0.5 wt% Pd on FeOOH were prepared by 

impregnation method and further calcined at 200
o
C for 2h. The activity results of 

these catalysts based on Pd impregnation and effect of calcination temperature is 

discussed in both processes. Also parametric study is performed in Fenton-like 

process using Pd/FeOOH catalyst. 

 

Chapter 5. The effect on activity of different Cu-based catalysts (Cu-HT and 

Spinel, Cu-dawsonite and Cu-Al oxide catalyst) for clofibric acid degradation and 

mineralization by catalytic ozonation is described in this chapter. Several factors 

like metal (Cu) loading, acidity and dispersion of Cu particle on catalysts are 

studied by various characterization techniques. Among all Cu-based catalysts, Cu-

Al oxide catalyst exhibit highest activity and stability. To identify surface changes 

on Cu-Al catalyst, in-situ ATR-IR study is performed.  
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Chapter 6. This chapter presents the study of combined approach of 

adsorption/oxidation of phenol by heterogeneous Fenton-like process using Fe-

containing hydrophilic and hydrophobic zeolites. The equilibrium adsorption 

isotherms of phenol is measured at ambient temperature for both types of [Fe-

ZSM5 (26) and Fe-ZSM5 (236)] zeolites. Pd-immobilized on Fe-ZSM5 catalysts 

are synthesized by impregnation method and characterized by different techniques. 

The effect of addition of Pd on Fe-ZSM5 with respect to performance of this 

process is described. The heterogeneous Fenton-like process with in situ generation 

of hydrogen peroxide from formic acid and oxygen is also studied using Pd 

immobilized on hydrophilic and hydrophobic Fe-ZSM5. 
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MATERIALS AND METHODS 

 

I. Catalysts Synthesis 

 

In this work different family of catalysts like hydrotalcite and spinel-type, 

lepidocrocite and FeOOH-derived, Pd-immobilized hydrophilic and hydrophobic 

Fe-ZSM5 and Cu-based catalysts were synthesized by different methods.  

[I] Hydrotalcite/Spinel catalysts: Mg/Al hydrotalcites (HT) were obtained 

according to the standard co-precipitation method. Appropriate amounts of 

Mg(NO3)2.6H2O and Al(NO3)3.9H2O (supplied by Sigma-Aldrich, 99% purity) 

were dissolved in distilled water and added dropwise into a vessel containing  

deionised water. The pH was maintained at 10 by simultaneous addition of a 2M 

NaOH solution. Both solutions were mixed under vigorous stirring and kept for 

ageing at 60
o
C for 24 h. The precipitated solid was filtered and washed several 

times with de-ionized water and dried at 100
o
C to yield the synthesized 

hydrotalcite (-as), and finally calcined in a muffle furnace in a static air atmosphere 

at various temperatures (450
o
C, 600

o
C, 900

o
C, 950

o
C) for 6 h to obtain the 

corresponding mixed oxides (calc). Mg3Fe0.5Al1, Mg3Cu0.5Al1 and Mg3Ni0.5Al1 

hydrotalcites,CuAl2O4 and CuMgAl2O4 spinel-type materials were also prepared 

by the same method adding the appropriate amounts of Fe(NO3)3.9H2O, 

Cu(NO3)2.3H2O and Ni(NO3)2.6H2O with Mg(NO3)2.6H2O and Al(NO3)3.9H2O 

(supplied by Sigma-Aldrich, 99% purity). The powders of the mixed oxide, thus 

obtained, were used as catalysts. Fe, Cu and Ni metals supported on alumina were 
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prepared by impregnation method using the same amount of metal that was present 

in the corresponding calcined hydrotalcites at 450
o
C for 6h. 

[II] FeOOH-derived catalysts: Commercial FeOOH was purchased from Sigma-

Aldrich and further calcined at different temperatures (200-350
o
C), for 2h in 

presence of static air. Catalysts with 0.5 wt% Pd on FeOOH were prepared by 

impregnation method [Pd (NO3)2 by Johnson Matthey] and further calcined at 

200
o
C for 2h in presence of static air. γ-alumina synthesized by sol-gel method and 

commercial ZrO2 (by Saint-Gobain) were used as supports. FeOOH supported on 

γ-alumina and ZrO2 catalysts were also prepared by impregnation method and 

further calcined at 200
o
C for 2h in presence of static air.  

Lepidocrocite (γ -FeOOH) was synthesized at 25
◦
C following a procedure from 

Schwertmann and Cornell [1]. Three hundred milliliters of distilled water were 

introduced into a 500mL glass beaker equipped with a stirrer, a combined pH 

electrode and a burette containing 1M NaOH solution. Then, 12.0 g of FeCl2·4H2O 

(60mM of Fe) were added and the mixture was left in contact with oxygen 

(50ml/min) under stirring. NaOH (about 120 mL) was continuously added during 

the synthesis in order to maintain the pH within the 6.7–6.9 range. After about 3 h, 

the completion of the oxidation reaction was obtained, as revealed by the orange 

color of the suspension. Filtration was done and the solid was dried at ambient 

temperature and further calcined at different temperatures (200- 350
º
C) for 2h in 

presence of static air. 

[III] Cu-based catalysts: Cu-dawsonites with Cu/Al mass ratios 0 (NH4DW), 0.02 

(Cu2DW) and 0.1 (Cu10DW) were synthesized by co-precipitation method at 

constant pH. An aqueous solution (pH adjusted by HNO3 if required) of 

Al(NO3)3.9H2O and Cu(NO3)3.H2O and an aqueous solution of (NH4)2CO3 (2M) 
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were drop-wise added into a beaker under vigorous stirring at 60°C. The pH of the 

slurry was maintained within the range 7.5-8 during the co-precipitation. Then, the 

slurry was aged for 3 h at 60°C under stirring to complete the co-precipitation. 

Afterwards, the precipitate was filtered, washed and dried at 110°C for 12 h. A part 

of Cu10DW was calcined at 500°C for 3 h (denoted as Cu10DW500) and the rest 

was used as-synthesized. A CuO/Al2O3 sample with Cu content of 2 wt% was 

synthesized via conventional impregnation as reference sample. Impregnation of 

alumina (prepared by sol-gel method) with the Cu(NO3)2.3H2O aqueous solution 

was followed by water evaporation by rotary vapor at 50°C and drying at 110 °C 

for 12 h, and the sample was calcined at 500°C for 3 h following protocol by  

Yalfani et al [2]. 

The Cu1–Al1 catalyst was prepared by a co-precipitation method with the 

simultaneous addition of an equimolar (0.05 M) mixture of an aqueous solution of 

Cu(NO3)2·3H2O, Al(NO3)3·9H2O and 0.2 M aqueous K2CO3 in a round bottom 

flask having 5–10 mL of water at room temperature. The obtained precipitate was 

digested for 4–5 h and then filtered and washed with deionized water to remove the 

traces of potassium. The precipitate was dried in an oven at 100°C for 5–8 h and 

further calcined at 400
o
C for 4h [3]. 

[IV] Zeolite-based catalysts: All zeolites were obtained in powder form (from 

Clariant, Germany). Fe-zeolite catalysts [Fe-ZSM5 (26) and Fe-ZSM5 (236)] with 

0.1, 0.5, 1 and 5 wt% Pd were prepared by an impregnation method. Appropriate 

amounts of PdCl2 and Fe-ZSM5 zeolite were mixed together with deionised water. 

The slurry obtained was kept for continuous stirring for a few minutes. After that a 

solution of NaBH4 was added very slowly with continuous stirring to reduce PdCl2. 

The residue was filtered, washed with deionized water and kept for drying 

overnight at 100
°
C. 
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II. Catalysts Characterization 

Selected catalysts were characterized by: 

 

(i) Textural properties 

The BET surface area of the catalysts was determined in a Micromeritics 

physisorption equipment (ASAP 2010 apparatus), from the nitrogen adsorption 

isotherms at 77 K. Prior to the analysis the samples were degasified 5 h at 120°C.  

 

(ii) Powder X-ray Diffraction (XRD) 

XRD patterns were measured using a Bruker-AXS D8-Discover diffractometer 

with parallel incident beam (Gobel mirror) and vertical θ-θ goniometer, a 0.02° 

receiving slit and scintillation counter as a detector. The angular 2θ diffraction 

range was between 5° and 70°. The data were collected with an angular step of 

0.05° at 3s per step. Cu-Kα radiation was obtained from a copper X-ray tube 

operated at 40kV and 40 mA. X-ray patterns were compared to X-ray powder 

references to confirm phase identities using the Joint Committee on Powder 

Diffraction Standards (JCPDS, 2006) files.  

 

(iii) X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectra (XPS) were recorded at a pressure below 10
-9

 mbar 

with a SPECS system equipped with an Al anode XR50 source operating at 150 W 

and a Phoibos MCD-9 detector (pass energy 25 eV). Prior to the analysis, samples 

were reduced in situ at 350°C and atmospheric pressure in a SPECS high pressure 

cell integrated in the system. Binding energies (accuracy ±0.1 eV) were referred to 

the C 1s signal (adventitious carbon).  

(iv) Inductively Coupled Plasma Mass Spectrometry (ICP) 
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Metal concentrations in effluents and metal content in catalysts were analyzed by 

ICP to detect possible leaching. Before the analysis the samples were preserved 

with concentrated nitric acid (1%v/v). 

 

(v) Temperature-Programmed Desorption (TPD) 

NH3 TPD Measurement: The acidity and strength of sites were measured by TPAD 

using a Micromeritics AutoChem (2910, USA) equipped with thermal conductivity 

detector. The samples were degassed at 473 K in He (25 mL min
−1

) for 1 h prior to 

the measurement. The temperature was then decreased to 323 K and then NH3 was 

allowed to adsorb by exposing sample to a gas stream containing 30% NH3 in He 

for 1 h. The NH3 desorption was carried out in He flow (25 mL min
−1

) by 

increasing the temperature up to 973 K with a heating rate of 10 K min
−1

. 

 

(vi) In-situ Attenuated Total reflection Infrared Spectroscopy (ATR-IR)  

ATR samples were prepared using solid suspension of desired amount of catalyst 

in ethanol, further dropped on ZnSe crystal of the ATR accessory using glass 

pipette and dried to form catalyst bed.  The ATR-IR spectra were recorded using a 

Brucker Tensor 27spectrometer with a DTGS detector and a ZnSe horizontal ATR 

cell. Infrared spectra over the 4000-800 cm
-1

 range were obtained by averaging 32 

scans with a resolution of 4 cm
-1

 at room temperature.  

(vii) Point of zero charge (pHPZC) 

The pHPZC was measured using the pH drift method. A 0.01 M NaCl was prepared 

and then 20 ml aliquots were placed into 5 beakers. The pH of the aliquots was 

adjusted between pH 2 and pH 12 by adding HCl or NaOH. Argon was bubbled 
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through the modified solutions at 298 K to remove dissolved carbon dioxide until 

the initial pH values stabilized. A total of 0.12 g of catalyst was added to each 

solution. Catalyst and the solutions were in contact during 24h under stirring. 

Afterwards, the final pH was recorded. The graphs of final pH versus initial pH 

were used to determine the points at which the initial pH was equal to the final pH. 

This point was taken as the pHPZC of the carbon [4]. 

 

(viii)  Adsorption Isotherms  

The equilibrium sorption isotherms were measured at ambient temperature. 

Adsorption isotherms of phenol for 2 types of Fe-ZSM5 zeolites were obtained 

from batch equilibration experiments, whereby 10mL of phenol solutions with 

different concentrations (5–100 mg /L) were prepared from a stock solution (5 g/L) 

in deionized water and added to glass vials with screw caps and PTFE-lined septa 

containing 2g/L of zeolite. The vials were placed on a horizontal shaker for a 

mixing time of 24 h, sufficient to reach the adsorption equilibrium. After the 

equilibration step, the samples were centrifuged and the clear water phase decanted 

and concentration of the freely dissolved phenol (Cfree) was determined by HPLC 

analysis.  

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



64 

 

III. Catalytic Tests 

 

(I) Catalytic ozonation: The ozonation reactions were performed in a 1.5 L glass 

reactor containing a 500 mL aqueous solution of Phenol/CFA (100 mg/L-10 mg/L) 

at ambient conditions (25 ± 2°C) and atmospheric pressure. Higher concentrations 

than those commonly found in wastewaters were used to compare the efficiency of 

the different catalysts tested and to favour the accuracy in the analytical 

determinations. 0.25 g/L - 1.0 g/L catalyst was added and the ozone generated by 

an ozone generator (ANSEROS COM-AD-02) from pure O2 (40 L/h) was passed 

through the solution maintaining a constant production of 1.2 g/h of O3. The 

samples were taken at regular time intervals and quenched using Na2S2O3. Target 

pollutant concentrations were measured by high performance liquid 

chromatography HPLC (Shimadzu LC-2010 equipped with a SPD-M10A Diode 

array UV-vis detector) at wavelength 230and 254nm. A Varian OmniSpher C18 

column and a solution containing an aqueous buffer (Milli-Q H2O 1L, methanol 50 

mL and H3PO4 4mL) and acetonitrile (40:60) was used as mobile phase for CFA 

and acetonitrile and water (60:40) was used as mobile phase for phenol. TOC was 

measured by a Shimadzu 5000-A and Shimadzu TOC-L H544051 00057 TOC 

analyzer.  

 

(II) Fenton-like process: 

(i) Heterogeneous Fenton-like reaction using commercial H2O2 

 Heterogeneous Fenton-like experiments were conducted at ambient temperature. 

 The degradation of phenol/CFA with different catalysts was carried out in a glass 

reactor with a capacity of 250 ml. After adding catalyst (0.5-5g/L) to the reactor 
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with 100 ml of pollutant solution (0.1g/L), the Fenton-like reaction was then 

started by adding definite amount of H
2
O

2 
solution (30 wt %) at free pH and also 

pH was adjusted to 7 during the reaction if necessary by adding diluted NaOH and 

experiments were conducted for 6h. The concentration of H2O2 in suspension 

aliquots was monitored by means of photometric measurements using a solution of 

titanyl sulfate and a UV mini 1240 Shimadzu spectrophotometer or hydrogen 

peroxide indicator strips by semi-quantitative method. The total residual 

concentration of pollutants during the reaction was determined by HPLC analyses. 

Furthermore, total organic carbon (TOC) was measured before starting and at the 

end of the reaction. 

 

(ii) In-situ generated H2O2 in heterogeneous Fenton-like reaction 

 Fenton-like reactions were performed in 100 mL glass reactors at room 

temperature. The volume of the reaction mixture was 50 ml, containing pollutants 

(100 mg/L), formic acid (40 mM) and catalyst (0.5g/L-5g/L). The reaction 

suspension was continuously purged with oxygen (20 ml/min). Oxidation 

experiments were conducted for 6h and samples were periodically withdrawn to be 

analyzed by HPLC (pollutant, formic acid) and TOC analysis.  

 

References  

[1] U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation and 

       Characterization, VCH Publishers Inc., Weinheim, Germany, 1991. 

 [2] M.S. Yalfani, S. Contreras, J. Llorca, F. Medina, Enhanced Cu activity in 

       catalytic ozonation of clofibric acid by incorporation into ammonium 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



66 

 

       dawsonite. Appl. Cat. B: Env. 107 (2011) 9–17. 

[3] R.B Mane, A.M. Hengane, A.A. Ghalwadkar, V. Subramanian, P.H. Mohite, 

      H.S. Potdar, C.V. Rode, Cu:Al nano catalyst for selective hydrogenolysis of  

     glycerol to 1, 2 propanediol, Cat. Lett. 135 (2010) 141–147. 

 [4] M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin,  

      On the characterization of acidic and basic surface sites on carbons by various  

     techniques, Carbon, 37 (1999) 1215-1221. 

 

 

 

                                           

 

 

 

 

 

 

                          

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



67 

 

CHAPTER – 3 

 

Clofibric acid degradation by catalytic ozonation 

using hydrotalcite-derived catalysts 

 

 

 

 The degradation of an aqueous solution of clofibric acid was investigated during catalytic 

ozonation. Mg/Al hydrotalcite (HT) catalysts containing Fe, Cu, and Ni, and spinel-type 

materials CuAl2O4 and CuMgAl2O4 were prepared by co-precipitation method, calcined and 

used for the ozonation reaction of clofibric acid. The combination of ozone and HTs catalysts 

was effective for the removal of total organic carbon (TOC).  MgCuAl HT and CuMgAl2O4 

showed the highest activity, followed by MgFeAl and MgNiAl. The best result of clofibric acid 

mineralization concerning activity and stability was observed over Mg3Fe0.5Al1 HT catalyst 

calcined at 900
o
C with no leaching of Fe, and Cu0.75Mg0.5Al2O4 catalyst after pretreatment with 

2% of oxalic acid calcined at 950
o
C, with which least leaching of Cu metal was detected. With 

these materials, up to 70 and 80% of mineralization degree, respectively, was achieved. These 

materials have shown to be stable after reuse. Also XRD analyses of used catalysts showed 

similar crystallographic structures than fresh materials. The efficiency of the process is mainly 

attained by a heterogeneous radical based mechanism, and not significantly affected by initial 

pH of solution. 
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1. Introduction 

 

      The presence of environmental xenobiotics such as pharmaceuticals and 

personal care products in surface and groundwater has become a major cause of 

concern due to their effects on aquatic life and potential impact on human health. 

Some of these compounds such as clofibric acid (CFA, a blood lipid regulator) 

have shown high persistency when they are introduced in the water [1-3]. Clofibric 

acid is the primary metabolite of clofibrate, a drug used as a lipid regulator which 

remains in the environment for a long time [4]. Due to its polar character, clofibric 

acid does not significantly adsorb in soil and can easily spread in surface and 

groundwater. Its biological effects are not completely understood, but it has been 

associated with endocrine disruption through interference with cholesterol 

synthesis [5]. 1.6 ng/L of CFA in the effluent of a German treatment plant, 270 

ng/L in drinking water samples from the Berlin area, various ng/L in drinking 

water in Lombardy, Italy, and 1 ng/L in different samples taken in the North Sea 

were reported by several authors [6-10]. The conventional techniques like sand 

filtration and coagulation may not operate with an appropriate efficiency to 

eliminate such compounds, in particular for the drinking water treatment [11]. One 

way to reduce these contaminants is to decrease their presence by the "on-site" 

treatment of pharmaceutical plant wastewaters. Advanced oxidation processes 

(AOP) have been found to be effective in the removal of these compounds even in 

low concentrations. Ozone, a powerful oxidizing agent, is effective for the 

mineralization of refractory organic compounds. However, in many cases is not 

able to achieve a complete oxidation of organic compounds. One of the alternatives 

in order to have greater mineralization efficiency is to promote the process via the 

generation of free hydroxyl radicals, which are more powerful than molecular 
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ozone, by means of homogeneous or heterogeneous catalysis [12-14].
 
The activity 

of a heterogeneous catalyst in ozonation depends on its ability to adsorb ozone. 

The adsorption of ozone on the surface is a key factor, because it can be followed 

by the ozone decomposition to hydroxyl radicals. The decomposition of ozone can 

take place on different types of active centers, and basicity and acidity of surface 

plays an important role in the process.
 
The transition metals Co, Fe, Ni, Zn and Cu 

have been widely studied in the form of single or supported metal oxide. Cu as 

CuO was used as a catalyst for ozonation of different types of organic pollutants 

such as herbicides (e.g. alachlor), chlorophenols, nitrophenols and carboxylic acid 

(oxalic acid). It was found to improve TOC removal by promotion of hydroxyl
 

radical formation through the ozone decomposition [15-17].             
 

    Hydrotalcites have been used as catalysts since they contain various transition 

metal cations as the catalytically active species well dispersed on the basic support 

materials and the oxides obtained by calcination possess interesting properties such 

as high surface area and basic properties.  

      It has been reported that the incorporation of Cu into the hydrotalcite structure 

followed by calcination at 600°C leaded to a catalyst with least metal leaching 

during catalytic ozonation of phenol and oxalic acid [18]. Enhanced dispersion of 

Cu atoms through the hydrotalcite matrix can be a reason of such a high activity. 

Also, Co as CoNiAl-hydrotalcite showed higher activity in catalytic ozonation of 

phenol with respect to CoO, Co3O4 and Co supported on CeO2 and Al2O3 [19, 20].        

         In this work we have focused our attention on the use of different types of 

hydrotalcite-derived materials as heterogeneous catalysts combined with ozone for 

carrying out the mineralization of clofibric acid solutions. Catalysts containing Fe, 

Cu and Ni were prepared starting from Mg/Al hydrotalcite and activity and 

stability of catalysts derived from hydrotalcite-like materials have been studied in 

the ozonation of CFA. Spinel-type materials CuAl2O4 and CuMgAl2O4 were also 
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synthesized via co-precipitation with different molar ratios and were characterized 

using different techniques. The effect of metal leaching on the ozonation process 

was studied. The performance of this process was evaluated by the measurement of 

CFA concentration and total organic carbon (TOC). Also, tests with a lower range 

of CFA concentration (closer to values that may be found in pharmaceutical plant 

wastewaters) have been performed to assess the suitability of these catalysts at this 

range. 

 

2. Experimental 

 

  2.1. Catalyst Preparation 

       Mg/Al hydrotalcites (HT) precursor were obtained according to the standard 

co-precipitation method. Appropriate amounts of Mg(NO3)2.6H2O and 

Al(NO3)3.9H2O (supplied by Sigma-Aldrich, 99% purity) were dissolved in 

distilled water and added dropwise into a vessel containing  deionised water. The 

pH was maintained at 10 by simultaneous addition of a 2M NaOH solution. Both 

solutions were mixed under vigorous stirring and kept for ageing at 60
o
C for 24 h. 

The precipitated solid was filtered and washed several times with de-ionized water 

and dried at 100
o
C to yield the synthesized hydrotalcite (-as) and finally calcined in 

a muffle furnace in a static air atmosphere at various temperatures (450
o
C, 600

o
C, 

900
o
C, 950

o
C) for 6 h to obtain the corresponding mixed oxides (calc). 

Mg3Fe0.5Al1, Mg3Cu0.5Al1 and Mg3Ni0.5Al1 hydrotalcite and CuAl2O4 and 

CuMgAl2O4 spinel-type materials were also prepared by the same method adding 

the appropriate amounts of Fe(NO3)3.9H2O, Cu(NO3)2.3H2O and Ni(NO3)2.6H2O 

with Mg(NO3)2.6H2O and Al(NO3)3.9H2O (supplied by Sigma-Aldrich, 99% 

purity). The powders of the mixed oxide, thus obtained, were used as catalysts.  
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Fe, Cu and Ni metals supported on alumina were prepared for comparison by 

impregnation method using the same amount of metal that was present in the 

corresponding calcined hydrotalcites at 450
o
C for 6h. 

 

 2.2. Catalysts Characterization 

      Metal content of the hydrotalcite samples was measured by ICP-OES 

(SPECTRO-ARCOS FHS16). The structure of the catalysts was studied by XRD 

and N2 physisorption method. XRD measurements were made using a Bruker-AXS 

D8-Discover diffractometer with parallel incident beam (Göbel mirror) and vertical 

theta-theta goniometer, XYZ motorized stage mounted on an Eulerian cradle, 

diffracted-beam Soller slits, a 0.02º receiving slit and a scintillation counter as a 

detector. The angular 2 diffraction range was between 5 and 70º. The data were 

collected with an angular step of 0.05º at 3s per step and sample rotation. Cuk 

radiation was obtained from a copper X-ray tube operated at 40 kV and 40 mA 

(=1.541 Å). N2 adsorption was performed using a Micromeritics ASAP 2010 

apparatus at 77 K. Before analysis, the samples were degasified at 120°C for 12 

hours. Total surface area was calculated by the BET method. The point of zero 

charge pHPZC of the catalyst was measured by the so-called pH drift method [21].
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 2.3. Experimental Procedure 

      The ozonation reactions were performed in a 1.5 L glass reactor containing a 

500 mL aqueous solution of CFA (100 mg/L or 25 mg/L) at ambient conditions 

(25 ± 2°C) and atmospheric pressure. Higher concentrations than those commonly 

found in wastewaters were used to compare the efficiency of the different catalysts 

tested and to favour the accuracy in the analytical determinations. To the CFA 

solution, 250 mg catalyst was added and the ozone generated by an ozone 

generator (ANSEROS COM-AD-02) from pure O2 (40 L/h) was passed through 

the solution maintaining a constant production of 1.2 g/h of O3. The samples were 

taken at regular time intervals and quenched using Na2S2O3. CFA concentrations 

were measured by high performance liquid chromatography HPLC (Shimadzu LC-

2010 equipped with a SPD-M10A Diode array UV-vis detector) at wavelength 254 

nm. A Varian OmniSpher C18 column and a solution containing an aqueous buffer 

(Milli-Q H2O 1L, methanol 50 mL and H3PO4 4mL) and acetonitrile (40:60) was 

used as mobile phase. TOC was measured by a Shimadzu 5000-A TOC analyzer.  

 

3. Results and discussion 

 

3.1 Catalysts characterization  

 

 Metal content analysis of the samples shown in Table 1, indicates that 

experimental Mg/Fe/Al, Mg/Cu/Al and Mg/Ni/Al (as-synthesized and calcined) 

weight ratios are similar to the theoretical values.  
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Table 1. ICP characterization data of the as-synthesized and calcined samples. 

Sample HT and Spinel Molar Ratio (theo.) HT Molar Ratio(ICP) 

Mg3Fe0.5Al1 (-as)                     3 : 0.5 : 1 2.8 : 0.49 : 1 

Mg3Fe0.5Al1(calc. 450
o
C) 3 : 0.5 : 1 2.6 : 0.49 : 1 

Mg3Cu0.5Al1 (-as) 3 : 0.5 : 1 2.5 : 0.52 : 1 

Mg3Cu0.5Al1(calc. 450
o
C) 3 : 0.5 : 1            2.5 : 0.7 : 1 

Mg3Ni0.5Al1 (-as) 3 : 0.5 : 1 2.72 : 0.45 : 1 

Mg3Ni0.5Al1(calc.450
o
) 3 : 0.5 : 1 2.97 : 0.49 : 1 

 

Co-precipitation for the hydrotalcite samples was carried out effectively. 

Calcination of the sample up to 450°C caused the removal of NOx, CO2 and H2O.  

XRD patterns and N2-physisorption analysis results of the as-synthesized and 

calcined catalysts are shown in Table 2.  

All calcined hydrotalcite catalysts show higher surface area compared to the 

synthesized ones except Ni2Cu1Al1. After calcination at 450
o
C, periclase phase 

appears which increases the surface area. Synthesized hydrotalcite Ni2Cu1Al1 and 

calcined Cu3Ni0.5All show the highest surface area up to 127m
2
/g and 121m

2
/g, 

respectively. A higher surface area was observed for the spinel-type catalysts 

prepared by co-precipitation method. Surface area decreases with increase in 

calcination temperature suggesting that porous structure originated from the initial 

structure collapsed and the crystallization of spinel phase progress. Hence all 

calcined spinel type materials show very low surface area. Among all the above 

catalysts, Cu0.25Mg0.75Al2O4 possesses the highest surface area (161.5m
2
/g) and 

Cu0.75Mg0.25 Al2O4 the lowest one (15.6m
2
/g). Crystalline phases of the as-

synthesized and calcined catalysts are summarized in Table 2. The as-synthesized 

hydrotalcites clearly show hydrotalcite crystal phase with small amount of tenorite 

in the case of Cu hydrotalcite. It is also well-known that Cu-HT is always mixed 
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with other phases such as tenorite, malachite, or gerhardtite, due to the Jahn-Teller 

effect at the Cu
2+

 ion [22-23]. As it is seen in Table 2, in the Cu-HT samples the 

presence of tenorite has been confirmed. When these materials were calcined at 

450
o
C, disappearance of the HT phase with formation of metal oxide phase 

occurred and hence in this case periclase and bunsenite (in Ni-hydrotalcite) and  

tenorite crystal phases were detected. 

 

Table 2. Crystalline phases and BET surface area of the synthesized and calcined catalysts 

 

 Catalysts 

Synthesized    Calcined 

Crystal phase
c
 BET surface area  

         (m
2
/g) 

    Crystal phase
c 

BET surface area 

(m
2
/g) 

a
Mg3Fe0.5Al1 HT 92.8 Periclase, Hercynite 94.2 

a
Mg3Cu0.5Al1 HT 98.3 Tenorite, Periclase 102.0 

a
Mg3Ni0.5Al1

 HT 105.0 Periclase, Bunsenite 116.0 

a
Cu3Ni0.5Al1

 HT, Tenorite, Bayerite 107.0 Bunsenite, Tenorite 127.0 

a
Ni2Cu1Al1

 HT 121.0 Bunsenite 119.0 

b
Cu1Al2O4

 Tenorite, Bayerite 121.3 Spinel, Tenorite 23.2 

b
Cu0.75Mg0.25 Al2O4

 Tenorite, Bayerite 94.2 Spinel, Tenorite, Corundum 15.6 

b
Cu0.5Mg0.5 Al2O4

 Tenorite, Bayerite 123.2 Spinel, Tenorite 19.5 

b
Cu0.25Mg0.75 Al2O4

 Bayerite 161.5 Spinel 34.1 

a 
Calcination temperature = 450

o
C  

b 
Calcination temperature = 900 

o
C 

c 
HT, hydrotalcite;   periclase, MgO;  tenorite, CuO; bayerite, Al(OH)3; bunsenite, NiO; Spinel, MgAl2O4 or    

  CuAl2O4; corundum, Al2O3;  Hercynite, Fe
2+

Al2O4 

 

In all spinel-type as-synthesized catalysts, tenorite and bayerite were detected as 

main phases. With increasing calcination temperature at 900
o
C, the spinel 

(MgAl2O4 or CuAl2O4) phase appeared together with small amount of tenorite and 

corundum crystal phases. Pure single spinel phase was observed in calcined 

Cu0.25Mg0.75 Al2O4    catalyst. The pH of solution plays an important role in 

understanding the mechanism of ozonation processes, since it affects ozone 
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decomposition but also because of the different reactivity that present the 

molecular and ionic form of compounds in front of ozone. Furthermore it 

determines surface properties of catalyst and properties of analysts being oxidized. 

Therefore, the pHpzc of Mg3Fe0.5Al1 (calcined at 900
o
C) and Cu0.75Mg0.25Al2O4 

(treated with 2% oxalic acid and calcined at 950
o
C) was measured using the pH 

drift method
 
[21], as shown in Fig.1. 

(I)        (II)      

Fig.1. Determination of pHpzc of catalyst (I) Mg3Fe0.5Al1 (calc. 900
o
C) and (II) 

Cu0.75Mg0.25Al2O4 (treat. with 2% oxalic acid and calc. 950
o
C). 

 The pHPZC values for the Mg3Fe0.5Al1 and Cu0.75Mg0.25Al2O4 catalysts are 8.2 and 

8.4, respectively. These catalysts present basic character according to the pHpzc 

measurement results. The reactions in the presence of these catalysts have been 

performed at pH < pHPZC but also at pH > pHPZC and pH = pHPZC.   

 

3.2   Catalytic ozonation of clofibric acid 

 The results of CFA degradation after 2h and 6h by catalytic ozonation using 

different HT catalysts have been summarised in Table 3. 

The reaction using single ozonation resulted in a fast disappearance of CFA in less 

than 15 min. However the ability of the system in TOC removal was not higher 

than 28% and 40% after 2h and 6h, respectively.  
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Table 3. CFA degradation results using single O3 and catalytic ozonation with HTs-based   

               catalysts. 

 

Catalysts 
TOC removal (%) 

2h 6h 

Single ozonation 28.0 40.0 

a
Mg2Al1 53.0 60.0 

b
Mg2Al1 45.6 55.2 

a
Mg3Fe0.5Al1 66.5 78.3 

b
Mg3Fe0.5Al1

 60.0 71.1 

c
Mg3Fe0.5Al1

 57.5 70.8 

d
Mg3Fe0.5Al1

 52.7 62.0 

a
Mg3Cu0.5Al1

 74.1 82.2 

b
Mg3Cu0.5Al1

 65.7 77.2 

c
Mg3Cu0.5Al1

 60.0 72.0 

a
Mg3Ni0.5Al1

 46.1 69.8 

                 b
Mg3Ni0.5Al1 65.7 65.3 

a
Cu3Ni0.5Al1

 79.9 89.6 

b
Cu3Ni0.5Al1

 79.0 89.2 

c
Cu3Ni0.5Al1

 36.4 70.2 

a
Ni2Cu1Al1

 70.4 83.9 

b
Ni2Cu1Al1 80.0 90.7 

c
Ni2Cu1Al1

 42.0 59.0 

 

a
-as synthesized; 

b
Calcination Temperature = 450°C;

 c
Calcination Temperature = 900°C and 

d
Calcination 

Temperature = 600°C. 

 

Degradation of clofibric acid by ozonation in presence of different hydrotalcite 

catalysts was tested and similar to single ozonation, CFA conversion was 

completed in less than 15 min in all cases. Synthesized and calcined MgAl 

hydrotalcite show 60% and 55% TOC removal after 6h of reaction. Using MgFeAl 
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hydrotalcite, a clear promotion of the efficiency of the system was observed due to 

higher TOC removal (66% in 2h and 78% after 6h of reaction) with respect to 

single ozonation.  

 

Table 4. Metal leached to solution during the ozonation tests. 

Catalyst 

                                     Metal Leaching (mg/L) 

                           2h 6h 

Mg    Cu   Ni Fe Mg   Cu Ni Fe 

a
Mg2Al1 9.2    17.9    

 b
Mg2Al1     7.7         13.7    

a
Mg3Fe0.5Al1 16.5   0 28.9   0 

b
Mg3Fe0.5Al1

 16.1   0 32.7   0 

C
Mg3Fe0.5Al1

 2.1   0 2.8   0 

d
Mg3Fe0.5Al1

 5.8   0 8.7   0 

a
Mg3Cu0.5Al1

 7.4 2.1   13.5 2.8   

b
Mg3Cu0.5Al1 32.2 1.8   42.6 2.6   

C
Mg3Cu0.5Al1 5.1 2.1   4.6 1.7   

a
Mg3Ni0.5Al1 15.1  4.5  23.1  5.3  

b
Mg3Ni0.5Al1 15.1  2.3  19.8  3.7  

a
Cu3Ni0.5Al1

  2.9 1.8   4.8 2.4  

b
Cu3Ni0.5Al1

  1.9 1.2   6.5 1.2  

C
Cu3Ni0.5Al1

  2.6 0   3.8 0  

a
Ni2Cu1Al1

  2.2 1.4   2.9 2.6  

b
Ni2Cu1Al1

  1.5 3.9   4.6 4.0  

C
Ni2Cu1Al1

  0 1.1   0 0  

a
-as synthesized; 

b
Calcination Temperature = 450°C;

 c
Calcination Temperature = 900°C  and 

d
Calcination 

Temperature = 600°C. 
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It can be seen that the efficiency in mineralization was greatly enhanced by the 

addition of HT-derived catalysts when compared to single ozonation. The Fe, Cu 

and Ni hydrotalcite calcined at 450
o
C show 71, 77 and 65 % of mineralization in 

6h, respectively.  

The as-synthesized and calcined at 450
o
C Cu3Ni0.5Al1 hydrotalcite achieved 89% of 

TOC removal after 6h. Nevertheless, a high leaching of Cu was observed (4.8 and 

6.5 mg/l (see Table 4) for as-synthesized and calcined catalysts, respectively).                          

When using the as-synthesized and calcined Fe-HTs, no leaching of Fe was 

observed (see Table 4). However, a large leaching of Mg (28.9 mg/L for as-

synthesized and 32.7 mg/L for calcined HT) was observed after 6 h. Using Cu-

based hydrotalcite leads to further improvement in the results, particularly 

concerning TOC removal (89% for synthesized Cu3Ni0.5Al1 and 91% for calcined 

Ni2Cu1Al1) but for both catalysts a high leaching of Cu (4.6 mg/L) and Ni (4.0 

mg/L) was observed after 6h of ozonation. The ozonation test using Mg3Cu0.5Al1 

(synthesized and calcined) hydrotalcite shows high TOC removal (82 % and 77%, 

respectively) but a high leaching of Mg (42.6 mg/L) was also observed. 

To improve the stability of Fe, Cu and Ni based hydrotalcites; they were calcined 

at higher temperature (900
o
C) and tested in the catalytic ozonation of CFA. In this 

case it was observed that there was lower leaching of Mg and Cu as compared to 

450
o
C of calcination temperature. However, and on the contrary of work by 

Shiraga et al. [18] nor improved the mineralization efficiency. 

At the view of the results, it can be seen that Cu and Ni containing HTs show 

better performance in catalytic ozonation but present less stability. Fe containing 

HT was more stable, with good activity in catalytic ozonation of CFA. Among all 

tested HT-catalysts, Mg3Fe0.5Al1 calcined at 900
o
C is the one that presents the best 
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degree of mineralization with the lowest leaching of Mg metal. All catalysts were 

tested for adsorption, showing negligible adsorption of CFA. 

For comparison, 8.7 wt % of Fe, 12.8 wt % of Cu and 3.5 wt % of Ni were also 

supported on alumina by impregnation method using the same amount of metal 

that was present in the corresponding hydrotalcite. Alumina-supporting metal 

catalysts together with reference materials MgO and Al2O3, were tested in 

ozonation reaction for 2h, as shown in table 5.  

Table 5. CFA degradation results using impregnated-Al2O3 catalysts and reference material after   

              2h of reaction. 

Catalysts TOC removal (%) Metal leaching (mg/L) 

Fe//Al2O3 48.2 0.05 

Cu/Al2O3 52.8 5.2 

Ni//Al2O3 52.2 2.0 

MgO 43.9 --- 

Al2O3 43.0 --- 

--- 28.0 --- 

 

These types of materials show 15-25% of improvement when compared to single 

ozonation reaction; however a large metal leaching in case of Cu and Ni catalysts 

is observed. Hence it can be seen that metals incorporated in the structure of a HT 

and further calcined show better activity in catalytic ozonation of CFA than simply 

impregnated on an alumina support. The higher activities of these materials are 

probably due to the stable and highly dispersed active metals species obtained in 

the HT support after calcinations [14].
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3.3. Contribution of homogeneous mechanism due to leached metal 

      In all the tested catalysts it was observed that when calcined at higher 

temperature, leaching of metals decreases but also TOC removal does.  

In order to evidence the effect of dissolved  Mg
2+

, Ni
2+

, Al
3+

 and Cu
2+ 

on the 

performance of CFA degradation by ozone, homogeneous catalytic ozonation 

experiments were performed using dissolved Mg
2+

, Ni
2+

, Al
3+

 and Cu
2+ 

 with a 

concentration in the range of the maximum leached value found, i.e. 43, 5, 3 and 3 

mg/L, respectively.  

 

                                  

Fig. 2. Homogenous contribution of dissolved metals in ozonation reaction of CFA at 2h.  (Al
3+

= 3 mg/L, 

Cu
2+ 

=
 
3 mg/L, Ni

2+ 
= 5

 
mg/L and Mg

2+
= 43 mg/L). 

 

 

The results of these experiments are shown in Fig. 2 indicating a slight 

improvement with respect to single ozonation. Complete degradation of CFA was 

also observed within 15 min.  
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In the presence of 43 mg/L Mg
2+

, TOC removal increased by 15% as compared to 

single ozonation. In homogeneous tests with 5 mg/L Ni and 3mg/L Cu, TOC 

removal increased by a 10%. This means that dissolved metals can moderately 

enhance the ozonation process.  

 

3.4. Improvement of stability  

       In order to improve the stability of the Cu catalysts, spinel-type materials such 

as CuAl2O4 and CuMgAl2O4 with different molar ratios were prepared and calcined 

at 900
o
C to obtain pure spinel phase (as shown in Table 2).  The stability and 

activity of this type of materials in the catalytic ozonation of CFA was tested. 

The results of CFA degradation in 6h by catalytic ozonation using different HT-

derived spinel catalysts have been summarized in Fig. 3. 

The fast disappearance of CFA in less than 15 min was observed, as with HTs 

catalysts. However, a higher efficiency in TOC removal (up to 70-85%) was 

observed using these materials with respect to single ozonation.  
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         Fig. 3. Mineralisation degrees achieved after 6h treatment with spinel-type catalysts. 
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From Fig. 4 and Table 2 it can be seen that all these materials show spinel phase 

with high intensity and tenorite crystal phase with lower intensity.    

Concerning stability of the catalysts, from Table 6 it can be observed that leaching 

of Cu and especially Mg considerably decreased when compared to Cu 

hydrotalcite (see Table 4).    

Therefore, and by obtaining of the spinel phase, there is a great improvement in the 

stability of these materials with respect to Mg (which has shown a remarkable 

effect in homogenous catalytic tests), while presenting a high activity in the 

mineralization of CFA. 

 

 Fig. 4. XRD patterns of HT-derived materials, (a) 2% oxalic treatment on Cu1Al2O4 calcined at 950
o
C, 

(b) calcined Cu1Al2O4, (c) 2% oxalic treatment on Cu0.75Mg0.25Al2O4 calcined at 950
o
C, and (d) calcined 

Cu0.75Mg0.25Al2O4     

 

Best results have been obtained with Cu1Al2O4 and Cu0.75Mg0.25Al2O4 catalysts, 

showing degrees of mineralization up to 83 and 85%, respectively; however, 
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leaching of Cu was found to be 3.5 and 2.2 mg/L, respectively (see Table 4),  

which is still high. 

 

      Table 6.  Leaching results of spinel-type catalysts after 6h reaction.      

Catalyst 
Leached metal (mg/L) 

Cu Mg 

Cu1Al2O4 3.5 - 

Cu0.75Mg0.25 Al2O4 2.2 1.6 

Cu0.5Mg0.5Al2O4 2.4 2.5 

Cu0.25Mg0.75Al2O4 2.4 1.2 

 

 

 

 3.5. Pre-treatment with oxalic acid to diminish the leaching of metals 

     As commented above, amount of Cu leached is still too high, and this could 

involve problems of toxicity in the effluents. One hypothesis is that leached Cu 

could proceed from Cu phases different from the pure spinel one.  In order to 

check this and with the aim to remove the excedent phases, after the calcination of 

Cu0.75Mg0.25Al2O4 and Cu1Al2O4 at 900
o
C a treatment with an aqueous solution of 

2% oxalic acid was performed and afterwards again calcined at 950
o
C. These 

materials were tested as well in the catalytic ozonation reaction for 6h and leaching 

tests were carried out.  
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Table 7. Leaching and TOC removal results of spinel-type catalysts after pre-treatment with 2% 

oxalic acid. 

Catalyst 

% TOC Removal Leached metal (mg/L) 

2h 6h 
2h 6h 

Cu Mg Cu Mg 

Cu1Al2O4 53.3 

 

76.0 

 

1.1  

 

 

 

1.5  

Cu0.75Mg0.25Al2O4 54.4 

 

 

79.0 

 

 

0.7 

 

 

     0.06 

 

 

 

1.3 

 

 

0.1 

 

 

 

 

Cu 
2+

 (1.5 mg/L) 

 

 

 

33.9 

 

 

 

41.8 

 

 

 

 

 

 

  

 

 

 

 

 

From Table 7 it can be observed that leaching of Cu and Mg was minimized 

(maximum values Cu: 1.5 and Mg: 0.1mg/L) after the pretreatment with 2% of 

oxalic acid. Using Cu1Al2O4 and Cu0.75Mg0.25Al2O4 catalysts, mineralization 

degrees of CFA achieved after 6h treatment were 76 and 79%, respectively.  

Again, in order to evidence the effect of dissolved Cu
2+ 

on the performance of CFA 

degradation by ozone, a homogeneous catalytic ozonation experiment was 

performed using dissolved Cu
2+ 

with a concentration of 1.5 mg/L. The result of this 

experiment is shown in Table 7. Complete degradation of CFA was observed 

within 15 min. It can be seen that the presence of dissolved Cu
2+

 in this 

concentration
 
does not effectively enhance the ozonation process with respect to 

single ozonation (Table 3) after 6h reaction; therefore this amount of leached Cu 

does not contribute to the overall percentage of mineralization achieved, which is 

mostly due to the heterogeneous contribution.  

XRD pattern of fresh and used catalysts is shown in Fig. 5. The catalyst structure 

almost remains the same after the reaction. In the case of used catalysts, a 

reduction in crystallinity and decrease in peak intensity was observed. Also, in the 

case of Mg3Fe0.5Al1 catalyst, a partial recovery of initial hydrotalcite structure is 

observed in used catalyst, due to the “memory effect” [24]. 
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Fig. 5. XRD patterns of fresh and spent HT-derived materials, (a) fresh Cu1Al2O4 (treated 2% of oxalic 

acid and calcined 950
o
C), (a1) spent Cu1Al2O4 (treated 2% of oxalic acid and calcined 950

o
C), (b) fresh 

Cu0.75Mg0.25Al2O4 (treated 2% of oxalic acid and calcined 950
o
C) (b1) spent Cu0.75Mg0.25Al2O4 (treated 2% 

of oxalic acid and calcined 950
o
C), (c) fresh Mg3Fe0.5Al1 calc at 900

o
C, and (c1) spent Mg3Fe0.5Al1 calc at 

900
o
C. 

 

Among this set of materials, Mg3Fe0.5Al1 (calcined at 900
o
C) hydrotalcite and 

Cu0.75Mg0.25Al2O4 (treated with 2% oxalic acid and subsequent calcination at 

950
o
C) have shown to be the most stable and active catalysts in the catalytic 

ozonation of CFA.  

The evolutions of TOC with these materials along with single ozonation during 6 h 

reaction are shown in Fig.6. It reveals that the main TOC reduction for each 

reaction occurs during the first 2 hours of treatment. This means that the 

degradation of CFA and readily oxidizable intermediates occurs at the same time. 
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The rest of the reaction time was assigned to the degradation of other oxidizable 

intermediates. 

 

  Fig. 6. TOC removal (%) with calcined Mg3Fe0.5Al1, Cu0.75Mg0.25Al2O4 (2% oxalic acid pre-  

            treatment) and by single ozonation. 

 

 

3.6. Reuse and recycling of catalyst 

 The two catalysts that have shown to be more active and stable were 

Cu0.75Mg0.25Al2O4 and Mg3Fe0.5Al1, achieving mineralization degrees of 55 and 

58% after 2 hours, and 79 and 70% after 6 hours, respectively. To the best of our 

knowledge, and apart from our previous study of catalytic ozonation of CFA with 
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copper dawsonites [13], there is only one reference [25] dealing with the catalytic 

ozonation of CFA, who achieved a %TOC removal after 2 hours of treatment of 20 

and 40% at pH 3 and 5, respectively. Therefore, these materials are promising 

catalysts for the catalytic ozonation of CFA and related compounds. 

 CFA degradation was tested in the presence of Cu0.75Mg0.25Al2O4 and Mg3Fe0.5Al1 

recovered after a run by filtering, washing and drying, and reused in three 

consecutive runs to assess its stability, as shown in Fig. 7. 

 

A        B   

Fig. 7. Mineralization degrees obtained by recycling of catalysts after 6h treatment. 

(A) Reused catalyst Cu0.75Mg0.25Al2O4 (pre-treated with 2% of oxalic acid and calcined at 950
o
C); (B) 

Reused catalyst Mg3Fe0.5Al1 (calcined at 900ºC). 

 

Like in the case of fresh catalysts, a total disappearance of CFA occurred in less 

than 15 min. It can be seen that catalytic activity of these catalysts was maintained, 

as they show near about 73% and 67% TOC removal, respectively, when reused in 

three consecutive cycles for 6h of ozonation reaction. These results corroborate the 

improvement in the stability of these materials. 
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Fig. 8. TOC removal (%) during the CFA (25mg/L) degradation by catalytic ozonation using calcined 

Mg3Fe0.5Al1 and Cu0.75Mg0.25Al2O4 (2% oxalic acid pre-treatment), and by single ozonation. 

 

The single ozonation and catalytic ozonation with lower concentration of CFA 

(25mg/L) was also studied using these two catalysts, at free pH.  In test with single 

and catalytic ozonation, concentrations below our detection limit (0.1 mg/L) were 

detected after 7 min reaction. Calcined Mg3Fe0.5Al1 and Cu0.75Mg0.25Al2O4 (2% 

oxalic acid pre-treatment) show both 58% in 2h and 73% and 81% TOC removal 

after 6h of reaction (see Figure 8). It can be seen therefore that the efficiency in 

mineralization was maintained or even slightly enhanced at lower concentration 

values of CFA. 
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  3.7. Study of mechanism of the catalytic ozonation process 

 

    As it has been seen in previous results, removal of CFA is accomplished in less 

than 15 min (for an initial CFA concentration of 100 mg/L) in presence or absence 

of a catalyst. Kinetic rate constant of ozone with clofibric acid has been established 

by Rosal and col [25], being 3.5 M
-1

.s
-1

 at pH 1 and 14.3 M
-1

.s
-1

 at pH 5. The main 

action of the catalysts is observed in the enhancement of the mineralization degree, 

i.e. in the degradation of intermediates produced. Although charged surface of the 

catalyst at initial pH of 4 (below the point of zero charge) might favor the 

adsorption of ionizable compounds, when these catalysts were tested for 

adsorption, negligible adsorption of CFA on catalyst surface was observed. 

                   

 

Fig. 9. TOC removal (%) during the CFA degradation by single ozonation and catalytic ozonation (with 

Mg3Fe0.5Al1 calc at 900
o
C) at different pHs and in presence and absence of NaHCO3.  
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Therefore, the contribution of the adsorption of CFA in mineralization is not 

expected to be important. Furthermore, a possible Langmuir-Hinshelwood 

mechanism in which reaction takes place with both species (ozone and CFA) 

adsorbed is rejected.  

Rate constant of OH radicals with CFA has also been determined by [25], being 

5.5.10
9
 M

-1
.s

-1
. The role of hydroxyl radicals during the catalytic ozonation was 

investigated by performing some tests in the presence of a radical scavenger 

(NaHCO3) that does not interfere in TOC analysis. Like the reaction without 

radical scavenger, CFA was totally removed in the presence of NaHCO3 in 15 min. 

However, TOC removal results clearly demonstrate the effect of the radical 

scavenger, as shown in Fig. 9 and 10.  

 

Fig. 10. TOC removal (%) during the CFA degradation by single ozonation and catalytic ozonation (with 

Cu0.75Mg0.25Al2O4 treated with 2% oxalic acid and calcined at 950
o
C) at different pHs and in presence and 

absence of NaHCO3. 
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The ozonation using the most stable and active catalysts Mg3Fe0.5Al1 and 

Cu0.75Mg0.25Al2O4 in the presence of NaHCO3 at free pH (pH of the solution was 

slightly lower than pHPZC), shows a significant decrease in TOC removal. Also a 

reaction of single ozonation at pH 11 was performed, leading to some 

improvement in mineralization (51%) when compared to single ozonation at acidic 

pH but lower than with the addition of the heterogeneous catalysts. 

As in the presence of a radical scavenger the efficiency of the catalysts is 

significantly hindered, we can conclude that one of the main roles of these 

materials in the catalytic ozonation of CFA is likely to contribute to the generation 

of hydroxyl radicals by decomposition of ozone, but the reaction would take place 

in solution, as the interaction of surface sites and CFA is probably limited. When 

introduced in water, metal oxides tend to strongly adsorb H2O molecules, which in 

turn dissociate into H
+
 and OH

-
, forming surface hydroxyl groups with the oxygen 

sites and surface metal, respectively [26]. Surface hydroxyl groups have been 

found to promote OH
·
 generation from aqueous ozone [27-28]. 

       In order to study the effect of pH on the performance of CFA degradation by 

ozonation using these catalysts, the process was carried out at different initial pH 

(pH = pHPZC, pH < pHPZC and pH > pHPZC), as shown in Fig. 9 and 10. For that, the 

pH of a 100 mg/L CFA solution was adjusted at initial pH 8.2-8.4 (pH = pHPZC), 

and 10.7-11.2 (pH > pHPZC) by NaOH. Nevertheless, by starting these reactions, 

the pH dropped to <5 in 5 to 10 minutes, likely due to the formation of large 

amount of acidic intermediates.  

Solutions have not been buffered to avoid the presence of ions that may interfere in 

the process. E.g. phosphate ions have been found to substitute surface hydroxyl 

groups [28, 29]. As for the form of clofibric acid in solution, its pKa is 3.2 [22], 

therefore it dissociates in aqueous solutions even under acidic conditions. 
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The reaction at pH 8.2 and 11.2 using Mg3Fe0.5Al1 (see Figure 9) attained slight 

improvement of the TOC removal (65% and 69%, respectively) with respect to the 

reactions at lower pH 4 (62%). TOC profile of this reaction shows a slower TOC 

elimination during the first 2h as compared to the reaction at pH 4, which coincides 

with a period of decrease of pH  from 8.2 to 5.4 (final pH of the solution was 8.9). 

In the case of Cu0.75Mg0.25Al2O4 similar trend is observed, as shown in figure 10. In 

presence of this catalyst at pH 8.4 and 10.7 a slight increase in TOC removal (67% 

and 71%, respectively) was observed after 4h of reaction when compared to the 

reaction at lower pH 3.9 (63%).  

It is interesting to note that the profiles shown in Fig. 9 and 10 for these two 

catalysts indicate that TOC removal decreases during the first 2h, when a decrease 

in pH was observed, and then rises after increase in pH. As at this range, pH of 

solution is lower than pHPZC of catalysts, the subsequent increase of pH may have 

been produced by the uptake of H
+
 from water to produce –M-OH2

+
 on surface, as 

no buffer was used [30]. 

 

4. Conclusions 

 

   Clofibric acid can be effectively degraded by catalytic ozonation with HT-

derived materials with improved stability and activity.  

The highest activity and stability for CFA ozonation were observed over 

Mg3Fe0.5Al1 and Cu0.75Mg0.5Al2O4, achieving mineralization degrees up to 58% 

and 55%, respectively, for 2h reaction, and 71 % and 79 %, respectively, for 6h 

reaction. Better performance was observed with HT and spinel type materials 

compared to impregnated catalysts, due to the better dispersion of the active phases 
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in the support. Fe-HT was already stable after calcination at 900
o
C and Cu-HT 

attained stability after calcination at 950
o
C and pretreatment with oxalic acid. The 

stability of Mg3Fe0.5Al1 and Cu0.75Mg0.5Al2O4 was confirmed after three 

consecutive runs. Also, XRD analysis of used catalysts showed similar 

crystallographic structures that fresh material. The experiments proved that the 

efficiency of the process in the degradation of CFA is mainly attained by a 

heterogeneous, radical based mechanism. The efficiency of the process is not 

significantly affected by the initial pH of the solution. 
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CHAPTER – 4 

FeOOH and derived phases: Efficient 

heterogeneous catalysts for clofibric acid 

degradation by Advanced Oxidation Processes 

(AOPs) 

 

 
 

 

     In this study the degradation of an aqueous solution of clofibric acid was investigated 

during catalytic ozonation and Fenton-like process with FeOOH–derived catalysts. From 

the different calcination temperatures tested, it has been observed that the most active 

catalyst is the commercial FeOOH calcined at 200ºC, when maghemite and hematite are 

the predominant phases obtained. The best result, at room temperature, for CFA 

mineralization was observed over 0.5 wt% Pd on FeOOH (calcined at 200
º
C) among all 

tested catalysts, achieving 68% and 81% mineralization degree, in 2h and 6h, 

respectively, in catalytic ozonation and 66% and 71% of mineralization degree within 2h 

and 6 hours, respectively for Fenton process. The efficiency of the Fenton-like process is 

enhanced at higher temperature (40-60
º
C), reaching a mineralization degree up to 82% 

in 6h. Furthermore, Pd impregnation on FeOOH increased the catalyst stability. 
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1.  Introduction 

 

 

Hundreds of tons of pharmaceuticals are annually released to the environment 

unmodified or as metabolites. The presence of pharmaceutically active 

compounds (PhACs) and their metabolites in aquatic systems has become a 

concern due to their generally persistent nature and ubiquity in the environments. 

However, at present, the biodegradability and ecotoxicity of many of these 

compounds remain unknown. Clofibric acid (CFA) is one of the most widely and 

routinely reported drug metabolites found in open water. CFA was detected in 

most aquatic systems where pharmaceutical contaminants were monitored [1-6]. 

Clofibric acid has shown high persistency when introduced in water; it is the 

primary metabolite of clofibrate, a drug used as a lipid regulator which remains in 

the environment for a long time [7-10]. Due to its polar character, clofibric acid 

does not significantly adsorb in soil and can easily spread in surface and 

groundwater. Its biological effects are not completely understood, but it has been 

associated with endocrine disruption through interference with cholesterol 

synthesis [11]. CFA is the bioactive metabolite of clofibrate, widely used as blood 

lipid regulating drugs for decreasing the plasmatic concentration of cholesterol 

and triglycerides [10, 12]. This compound has an estimated environmental 

persistence of 21 days [13] and has been found in sewage treatment plant 

effluents, rivers, lakes, North Sea, ground water and drinking water [10, 14-15]. 

To avoid the potential adverse health effects of drugs and their metabolites as 

water pollutants on both human and animals, research efforts are underway to 

develop efficient techniques for achieving their total destruction. One way to 
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reduce these contaminants is to decrease their presence by the "on-site" treatment 

of pharmaceutical plant wastewaters. In recent years, advanced oxidation 

processes (AOP) that make use of various combinations of O3, H2O2, ultrasound, 

electron beam irradiation, and so on are becoming more and more important 

technologies for wastewater treatment. 

AOPs involve the generation of reactive radicals, notably hydroxyl radicals (HO
.
) 

that are highly oxidative and capable of decomposing a wide range and variety of 

organic compounds [16]. Ozonation and Fenton oxidation have both been widely 

used in actual applications and many installations are commissioned to treat waste 

flows in industrial plants. Catalytic ozonation has emerged as a powerful 

technology for the treatment of pollutants in water, even for refractory compounds 

[17-20]. The transition metals Fe, Ni, Zn, Co and Cu have been widely studied in 

the form of single or supported metal oxide. They were found to improve TOC 

removal by promotion of hydroxyl
 

radical formation through the ozone 

decomposition [21-23]. Heterogeneous catalytic ozonation has received increasing 

attention since Chen et al. [24] studied the removal of phenol and ethyl 

acetoacetate in a packed column with ozone and a Fe2O3 catalyst, due to its higher 

effectiveness in the degradation of organic pollutants. Some organic compounds 

that are difficult to degrade by single ozonation can be oxidized by catalytic 

ozonation at ambient temperature and pressure [25]. 

 Concerning the Fenton reaction, the major problem of the homogeneous catalytic 

system is the pH control and the production of toxic wastes that require further 

treatments [26]. Heterogeneous Fenton processes are very interesting because most 

of the iron remains in the solid phase and can be reused [27, 28]. Iron oxides are 

found abundantly in nature and easily synthesized in laboratory. There are some 

iron oxides that exist in nature, e.g. hematite (α -Fe2O3), maghemite (γ-Fe2O3), 
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magnetite (Fe3O4), goethite (α-FeOOH), lepidocrocite (γ-FeOOH) and wustite 

(FeO). Iron oxyhydroxide (FeOOH) materials have been used in heterogeneous 

catalytic ozonation of oxalic acid and phosphate as models for organic and 

inorganic compounds, respectively [29]. Supported and unsupported metals and 

metal oxides are the most commonly tested catalysts for the ozonation of organic 

compounds in water [30].  

FeOOH as heterogeneous catalyst has also been used in Fenton-like advanced 

oxidation processes due to its attractive properties such as wide-operating pH range 

and controllable iron leaching into solution. Goethite (α-FeOOH), Cu-doped 

goethite and supported nanosized α-FeOOH have been studied for the oxidation of 

quinoline and dimethyl phthalate (DMP) by Fenton and photoelectro-Fenton 

processes [26, 31-33]. This study aims to investigate the efficiency of FeOOH 

calcined at different temperatures (to obtain different phases such as maghemite 

and hematite), supported FeOOH on γ -Al2O3 and ZrO2 and lepidocrocite catalysts, 

for the degradation of aqueous solutions of clofibric acid at ambient temperature 

and pressure by two types of heterogeneous advanced oxidation processes: Fenton-

like process and catalytic ozonation. The addition of little amounts of Pd has also 

been studied.  

 

 

2. Experimental 

 

  2.1. Catalyst Preparation 

Commercial FeOOH was purchased from Sigma-Aldrich and further calcined at 

different temperatures (200-350
o
C), for 2h in presence of static air. 
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Catalysts with 0.5 wt% Pd [Pd (NO3)2 by Johnson Matthey] on FeOOH were 

prepared by impregnation method and further calcined at 200
o
C for 2h in presence 

of static air. γ-alumina synthesized by sol-gel method and commercial ZrO2 (by 

Saint-Gobain) were used to prepare supported catalysts. FeOOH supported on γ-

alumina and ZrO2 catalysts were also prepared by impregnation method and further 

calcined at 200
o
C for 2h in presence of static air.  

Lepidocrocite (γ -FeOOH) was synthesized at 25
o
C following a procedure from 

Schwertmann and Cornell [34]. Three hundred milliliters of distilled water were 

introduced into a 500mL glass beaker equipped with a stirrer, a combined pH 

electrode and a burette containing 1M NaOH solution. Then, 12.0 g of FeCl2·4H2O 

(60mM of Fe) were added and the mixture was left in contact with oxygen 

(50ml/min) under stirring. NaOH (about 120 mL) was continuously added during 

the synthesis in order to maintain the pH within the 6.7–6.9 range. After about 3 h, 

the completion of the oxidation reaction was obtained, as revealed by the orange 

color of the suspension. Filtration was done and the solid was dried at ambient 

temperature and further calcined at different temperatures (200- 350
o
C) for 2h in 

presence of static air. 

 

2.2. Catalysts Characterization 

      

  Metal content of the Lepidocrocite (γ -FeOOH) and commercial FeOOH samples 

was measured by ICP-OES (SPECTRO-ARCOS FHS16). The bulk and surface 

properties of the catalysts were studied by XRD, N2 physisorption method and X-

ray photoelectron spectroscopy. XRD measurements were made using a Bruker-

AXS D8-Discover diffractometer with parallel incident beam (Göbel mirror) and 

vertical theta-theta goniometer, XYZ motorized stage mounted on an Eulerian 
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cradle, diffracted-beam Soller slits, a 0.02° receiving slit and a scintillation counter 

as a detector. The angular 2 diffraction range was between 5 and 70°. The data 

were collected with an angular step of 0.05º at 3s per step and sample rotation. Cuk 

radiation was obtained from a copper X-ray tube operated at 40 kV and 40 mA 

(=1.541 A
°
). N2 adsorption was performed using a Micromeritics ASAP 2010 

apparatus at 77 K. Before analysis, the samples were degasified at 120°C for 12 

hours. Total surface area was calculated by the BET method. To investigate the 

surface oxidation state of iron oxide in the samples, XPS analysis was carried out 

using ESCA-3000 (VGScientific Ltd, England) with a base pressure 10
-9

 Pa. AlKα 

source (1486.6 eV), operated at 150 W was used as a X-ray source. The binding 

energy values were charge-corrected to the C1s signal (284.6 eV). Vibrating 

sample magnetometer (VSM), model LakeShore 7307 was used for the magnetic 

measurements of the samples. All the measurements were carried out at room 

temperature. Amount of leached Fe was measured by ICP-OES (SPECTRO-

ARCOS FHS16). 

 

 

 

2.3. Experimental Procedure 

 

2.3.1   I. Fenton-like Reaction 

 

 The degradation of clofibric acid (99%, Across Organics) was carried out at 

ambient conditions (25°C and atmospheric pressure) in a glass reactor with a 

capacity of 250 ml. 100 ml of clofibric acid solution (100 or 25 mg/L) and (0.25-5 

g/L) of H2O2 with (1-3g/L) of catalyst was introduced. Oxidation experiments were 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



103 

 

conducted for 2 and 6h and samples were periodically withdrawn, quenched by 

few drops of sodium thiosulfate solution and further analyzed by HPLC (CFA 

concentration) and TOC analysis. CFA concentrations were measured by high 

performance liquid chromatography HPLC (Shimadzu LC-2010 equipped with a 

SPD-M10A Diode array UV-vis detector) at 230nm wavelength. A Varian 

OmniSpher C18 column and a solution containing an aqueous buffer (Milli-Q H2O 

1L, methanol 50 ml and H3PO4 4ml) and acetonitrile (40:60) was used as mobile 

phase. The reaction intermediates were identified qualitatively by HPLC (1200 

Series) coupled to a 6210 Time of Flight (TOF) mass detector with electrospray 

ion source (ESI) (Agilent Technologies, S.L.) using the same column as mentioned 

above. The mobile phase was a mixture of solutions A and B with a flow rate of 

0.4 mL/min. A was 0.1% formic acid and 5% Milli-Q water in acetonitrile and B 

was 0.1% formic acid in water (pH 3.5). The analyses were performed under a 

linear gradient from 10% A to 100% A at 30 min. remaining steady for further 5 

min. Ion source and TOF parameters are as: drying gas temperature 350°C, 

nebulizer gas flow 10 L/min, nebulizer gas pressure 50 psi, fragmentor voltage 150 

V, capillary voltage 4000 V, skimmer voltage 650 V, octapol voltage 250 V and 

acquisition range 50-1200 m/z. TOC was measured by a Shimadzu 5000-A TOC 

analyzer. H2O2 was semi- quantitatively measured by H2O2 indicator strips. All the 

reactions were performed at darkness. Higher concentrations than those commonly 

found in wastewaters were used to compare the efficiency of the different catalysts 

tested and to favor the accuracy in the analytical determinations.  
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2.3.2   II. Ozonation Tests 

 

The ozonation reactions were performed in a 1.5 L glass reactor containing a 500 

ml aqueous solution of CFA (100 or 25mg/L) at ambient conditions (25 ± 2°C) and 

atmospheric pressure. To the CFA solution, 250 mg catalyst was added and the 

ozone, maintaining a constant production of 1.2 g/h of O3, was continuously 

flowing through the reactor. Ozone was produced from pure O2 (40 L/h), by an 

ozone generator (ANSEROS COM-AD-02). The samples were taken at regular 

time intervals for CFA conversion and mineralization degree by TOC analysis.   

 

 

 

 

3. Results and discussion 

 

3.1. Catalysts characterization  

 

 Table 1shows Fe and Pd metal content analysis (weight % ratios) of the samples. 

The summary of surface properties and XRD patterns of commercial FeOOH and 

synthesized lepidocrocite catalysts before and after heat treatment at different 

temperatures is also presented in Table 2. In case of lepidocrocite catalysts, heating 

at low temperature (200
o
C) increased slightly the surface area. However, the 

surface area was reduced when lepidocrocite was treated at higher temperatures 

(300-350
o
C). 
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Table 1.  ICP characterization data of commercial FeOOH and synthesized lepidocrocite   

                  catalysts. 

   

 

 

 

 

 

 

In case of commercial FeOOH catalysts, after calcination, the surface area was 

reduced drastically (see table 2). Commercial FeOOH showed the highest surface 

area up to 222.9 m
2
/g. From XRD, goethite, maghemite and small amount of 

hematite were the main crystalline phases observed. However, the percentage of 

these phases was calculated using XRD TOPAS software, even considering the 

poor crystallinity of the samples. When FeOOH was calcined at 200
o
C, maghemite 

(γ-Fe2O3, 67%) and hematite (α -Fe2O3, 33%) phases appeared with a decrease in 

surface area. 

 

 

 

 

 

Catalysts 
Weight (%) 

Fe Pd 

Commercial FeOOH 61.0  

Calcined FeOOH (200
o
C) 67.3  

0.5%Pd/FeOOH (Calc. 200
o
C) 64.9 0.3 

Lepidocrocite 59.1  

Lepidocrocite (Calc. 200
o
C) 65.8  
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Table 2. Crystalline phases and BET surface area of the commercial FeOOH; FeOOH calcined 

at different temperatures, impregnated FeOOH and lepidocrocite catalysts. 

 

Goethite (α-FeOOH), lepidocrocite (γ-FeOOH), maghemite (γ-Fe2O3), hematite (α -Fe2O3), baddeleyite 

(ZrO2). 

 

 

 

Surface area decreases with increasing calcination temperature from 200-350
o
C, 

and pore volume increased slightly. When FeOOH was calcined at different 

temperatures, formation of different iron oxide phases occurred. However, when 

Catalysts BET Surface 

Area (m
2
/g) 

Pore Volume 

(cc/g) 

XRD main Phases 

Commercial FeOOH 222.9 0.207 Goethite,hematite, maghemite 

FeOOH (calc. 200
o
C) 184.6 0.209 Maghemite, hematite 

FeOOH (calc. 250
o
C) 158.2 0.212 Hematite  

FeOOH (calc. 300
o
C) 136.3 0.225 Hematite  

FeOOH (calc. 350
o
C) 80.7 0.234 Hematite  

0.5%Pd/FeOOH (-as) 189.3 0.209 
Maghemite,hematite, 

palladium oxide 

0.5%Pd/FeOOH (calc. 200
o
C) 170.7 0.210 

Maghemite, hematite, 

palladium oxide 

γ -Al2O3 324.9 1.179 γ – Al2O3 

ZrO2 115.7 0.163 Zirconium Oxide 

25%FeOOH/ γ -Al2O3 (calc. 200
o
C) 318.0 0.449 Maghemite, hematite 

25%FeOOH/ZrO2 (calc. 200
o
C) 137.2 0.192 Zirconium oxide, baddeleyte 

Lepidocrocite 120.3 0.346 Lepidocrocite 

Lepidocrocite (calc. 200
o
C) 140.4 0.413 Maghemite, hematite 

Lepidocrocite (calc. 250
o
C) 120.9 0.373 Hematite, maghemite 

Lepidocrocite (calc. 300
o
C) 100.2 0.415 Hematite, maghemite 

Lepidocrocite (calc. 350
o
C) 94.2 0.475 Hematite, maghemite 
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the calcination temperature was in the range of 250-350
o
C, the main phase detected 

was hematite. For Pd impregnated on FeOOH catalysts, maghemite, hematite and 

palladium oxide were detected as predominant crystalline phases.  

   In synthesized lepidocrocite sample, pure lepidocrocite phase was observed. 

When lepidocrocite catalyst was calcined at 200
o
C, maghemite (83%) formation 

was observed as the main phase with a small amount of hematite (17%). After 

calcination between 250-350ºC, hematite was the main crystalline phase observed 

together with maghemite. For supported catalysts the results show that the loading 

of FeOOH on alumina support increased its surface area and pore volume. The 

25%FeOOH/γ -Al2O3 sample calcined at 200ºC, shows the highest surface area and 

pore volume, 318.0m
2
/g and 0.449cc/g, respectively. Among all these catalysts, 

lepidocrocite calcined at 350
o
C showed the lowest surface area (94.2m

2
/g). 

  To further study the chemistry of the samples, XPS analysis was carried out. The 

binging energies values obtained were calibrated using C (1s) (285eV) and/or O 

(1s) (530eV) as the reference. The Fe 2p XPS of the FeOOH, calcined and Pd 

impregnated catalyst samples are shown in Fig. 1, displaying characteristic signals 

related to Fe 2p3/2 and Fe 2p1/2, O1s and Pd. Of the two peaks Fe 2p3/2 peak is 

narrower and stronger than Fe 2p1/2 and the area of Fe 2p3/2 peak is greater than that 

of Fe 2p1/2.  
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Fig. 1. XPS Images, A. FeOOH (Fe2p), A1. FeOOH (O1s), B. calcined FeOOH at 200
o
C (Fe2p), B1.  

calcined FeOOH at 200
o
C (O1s) and C calcined 0.5%Pd/FeOOH at 200

o
C (Fe2P), C1. calcined 

0.5%Pd/FeOOH at 200
o
C (01s), C2.  calcined 0.5%Pd/FeOOH at 200

o
C (Pd). 
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 Fig. 1A and 1Al depict the spectrum of commercial FeOOH samples for Fe and 

oxygen revealing the absence of other elements, except Fe, O and C. The observed 

two strong peaks at 711.8 and 725.3 eV are attributed to binding energies of Fe 

2p3/2 and Fe 2p1/2, respectively. The peak at 530.5 eV is attributed to binding 

energies of O 1s. These values are in good agreement with the reported FeOOH 

data. XPS spectra of calcined FeOOH are shown in Fig. 1B and 1B1 in which two 

strong peaks at 711 and 724.5 eV are attributed to binding energies of Fe 2p3/2 and 

Fe 2p1/2 , respectively. The peak at 530.2 eV is attributed to binding energies of O 

1s which are correlated to Fe2O3. High resolution spectra of Fe 2p and O 1s peaks 

show the presence of symmetric peaks, indicating their single oxidation state (Fe
3+

 

and O
2-

). Peak areas of Fe 2p and O 1s, confirm the presence of Fe2O3 (mixture of 

maghemite and hematite). 

 Fig 1C, 1C1 and 1C2 show spectra for Fe, O and Pd of Pd impregnated FeOOH 

calcined catalysts.  Binding energies observed for Fe 2p and O1s are almost similar 

to the ones obtained for calcined FeOOH sample, which correlates to Fe2O3. The 

peak at 340.5 eV is attributed to binding energy of PdO. 

 Hence, after calcinations and Pd impregnation, there is only a slight difference in 

binding energies, therefore Fe oxidation state remains the same (Fe
3+

). 

 

3.2. Degradation of clofibric acid 

 

3.2.1 Catalytic ozonation  

The results of CFA degradation and Fe leaching after 2h and 6h of catalytic 

ozonation using different FeOOH-based catalysts have been summarized in Table 

3. The reaction using single ozonation resulted in a fast disappearance of CFA in 
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less than 15 min (taking into account our detection limit, i.e. 0.1 mg/L). However 

the TOC removal was not higher than 26% and 40% after 2h and 6h, respectively. 

Degradation of clofibric acid by ozonation in presence of different FeOOH-derived 

catalysts was tested and similarly to single ozonation, CFA conversion was 

completed in less than 15 min in all cases. Commercial FeOOH and synthesized 

lepidocrocite show 59% and 58% TOC removal after 6h of ozonation reaction. 

Compared to single ozonation, among all calcined FeOOH catalysts, FeOOH 

calcined at 200
 
ºC (with maghemite and hematite as the main phases from Table 2) 

shows higher TOC removal (55% in 2h and 75% after 6h of reaction). However, 

after 6h of reaction, 3.5 mg/L leaching of Fe was observed. It can be seen that the 

efficiency in mineralization was greatly enhanced by the addition of FeOOH 

catalysts when compared to single ozonation. The FeOOH calcined at 250
 
ºC, 300

 

ºC and 350ºC show 58, 43 and 41% of mineralization in 2h, respectively. 

Nevertheless, a high leaching of Fe was observed (5.2, 4.5 and 1.4 mg/L for 

FeOOH calcined at 250, 300 and 350
o
C catalysts, respectively). The lepidocrocite 

calcined at 200
 
ºC, 250ºC, 300ºC and 350ºC achieved TOC removals of 47%, 43%, 

46% and 50% after 2h of ozonation process.  Catalysts were tested for adsorption, 

showing negligible (5-10 %) adsorption of CFA. 

The 25%FeOOH/γ-Al2O3 catalyst calcined at 200ºC, achieved 48% and 60% TOC 

removal after 2h and 6h reaction, respectively, with low leaching of Fe (1.9 mg/L). 

The ozonation test using 25%FeOOH/ ZrO2 (calcined at 200
o
C) show 40 % and 

59% TOC removal after 2h and 6h reaction, respectively, but a high leaching of Fe 

(4.2. and 6.8 mg/L) was observed. Therefore, supporting FeOOH on γ-Al2O3    

present remarkable results of activity and stability, taking into account that in this 

case a low amount of leaching of Fe is observed.   
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Table 3. Degree of mineralization and metal leaching results using single O3 and catalytic 

ozonation with FeOOH- based catalysts. 

Catalysts 
TOC removal (%) Metal leaching (mg/L) 

2h 6h 2h 6h 

Single ozonation 26.1 40.0   

Commercial FeOOH 41.2 59.3 2.5 4.5 

FeOOH (calc. 200
o
C) 53.8 75.1 2.9 3.5 

FeOOH (calc. 250
o
C) 58.5 71.7 5.25 5.4 

FeOOH (calc. 300
o
C) 43.0 70.7 4.5 6.02 

FeOOH (calc. 350
o
C) 42.1 66.0 1.43 3 

0.5%Pd/FeOOH (-as) 57.4 79.6 1.2 1.5 

0.5%Pd/FeOOH (calc. 200
o
C) 68.0 81.5 1.0 1.2 

25%FeOOH/ γ -Al2O3 (calc. 200
o
C) 48.2 59.5 1.2 1.9 

25%FeOOH/ZrO2 (calc. 200
o
C) 40.0 58.6 4.2 6.8 

Lepidocrocite 41.6 52.7 2.3 3.5 

Lepidocrocite (calc. 200
o
C) 47.2 57.8 2.1 4.6 

Lepidocrocite (calc. 250
o
C) 43.0 52.7 1.5 4.1 

Lepidocrocite (calc. 300
o
C) 46.8 54.3 2.1 3.6 

Lepidocrocite (calc. 350
o
C) 50.2 58.4 2.3 2.9 

Fe = 3.5 mg/L 35.0 45.46   

 

Reaction conditions: 500 ml, [CFA] 0 = 100 mg/L, O3 production= 1.2 g/h, O2 flowrate= 40L/h, 

catalyst = 0.5g/L, Temp. = R.T, pH = free and time =6h. 

 

 

To further improve the catalyst stability, addition of Pd by impregnation has been 

performed. After palladium impregnation, the catalyst was calcined at 200ºC and 

tested in the catalytic ozonation of CFA. Using as-synthesized and calcined 

0.5%Pd/FeOOH catalysts leads to further improvement in stability and activity, 

achieving 80 and 82% of TOC removal after 6h, respectively. Stability was 
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significantly improved, however some Fe leaching (1.5 mg/L for as- and 1.2 mg/L 

for calcined) was observed after 6 h   (see Table 3).  

Among all tested FeOOH-derived catalysts, 0.5%Pd/FeOOH (with predominant 

phases such as maghemite, hematite and palladium oxide, see table 2) is the one 

that leads to the highest degree of mineralization with the lowest leaching of Fe.  

Nevertheless, by starting these reactions, the pH dropped to < 4 in 5 to 10 minutes, 

likely due to the formation of large amount of acidic intermediates. Solutions have 

not been buffered to avoid the presence of ions that may interfere in the process. 

E.g. phosphate ions have been found to substitute surface hydroxyl groups [35, 

36]. As for the form of clofibric acid in solution, its pKa is 3.2 [37], therefore it 

dissociates in aqueous solutions even under acidic conditions. 

 

3.2.1.1. Homogeneous ozonation (leached Fe)  

 The Fe leached during the catalytic ozonation was measured in the final filtered 

solution and the results are shown in table 3. For FeOOH catalysts, after Pd 

impregnation, the leaching of Fe decreased and TOC removal increased.  

In order to evidence the effect of dissolved Fe
3+ 

on the performance of CFA 

degradation by ozone, a homogeneous catalytic ozonation experiment was 

performed using dissolved Fe
3+ 

with a concentration of 3.5 mg/L, which is higher 

than the final amount of Fe leached after the reaction for the 0.5%Pd/FeOOH 

catalyst. The results of these experiments are shown in table 3, indicating a slight 

improvement with respect to single ozonation. Complete degradation of CFA was 

also observed within 15 min, in the same way that for heterogeneous catalysts. In 

homogeneous tests with 3.5 mg/L of Fe, TOC removal increased by a 5% with 

respect to single ozonation. This means that dissolved iron can slightly enhance the 
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ozonation process efficiency. However, the value of TOC removal was lower than 

for the heterogeneous process.  

 

3.2.2 Heterogeneous Fenton-like Process 

The results of CFA degradation, hydrogen peroxide decomposition, TOC removal 

and metal leach after 2h and 6h by heterogeneous Fenton-like process using 

different FeOOH-derived catalysts and at room temperature, have been 

summarized in Table 4. Among all these tested catalysts, 100% CFA conversion 

was obtained with FeOOH  (calcined at 200
o
C) and 0.5%Pd/FeOOH (synthesized 

and calcined) in 6h, but  more remarkable results are obtained at short reaction 

time (2 h), where already 95 and 97% CFA conversion was achieved with FeOOH  

 

Table 4. CFA degradation results in Fenton-like process with FeOOH-based catalysts. 

  
%CFA 

Conversion 

%H2O2  

decomposition 

% TOC 

removal 

Leached metal 

(mg/L) 

 2h 6h 2h 6h 2h 6h 2h    6h 

FeOOH 84 

 

95 

 

40 80 35 39 3.0 4.9 

FeOOH (calc 200
o
C) 95 

 

 

100 

 

 

90 100 57 61 3.5 3.8 

0.5%Pd/FeOOH (-as) 90 

 

 

 

100 

 

 

 

85 100 59 65 2.8 3.1 
0.5%Pd/FeOOH (calc 200

o
C) 

 

98 100 95 100 66 71 2.6 2.9 

25%FeOOH/γ-Al2O3 (calc 200
o
C) 80 90 75 90 48 60 1.9 3.15 

25%FeOOH/ZrO2 (calc 200
o
C) 

 

78 92 70 95 37 44 3.9 6.5 

Lepidocrocite 73 86 65 85 27 32 1.2 1.4 

Lepidocrocite (calc 200
o
C) 81 100 79 95 49 55 1.2 1.7 

Lepidocrocite (calc 250
o
C) 55 67 55 80 46 51 0.3 1.6 

Lepidocrocite (calc 300
o
C) 49 57 60 75 41 45 0.2 0.3 

Lepidocrocite (calc 350
o
C) 63 78 80 90 50 56 0.2 0.6 

Fe = 3.5 mg/L 

 

59 100 40 81 13 24   

 

Reaction conditions: 100 ml, [CFA] 0 = 100 mg/L, H2O2 = 0.5g/L, catalyst = 2g/L, Temp. = R.T, pH = 

free and time = 6h 
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(calcined at 200ºC) without and with Pd, respectively. After calcination at different 

temperatures and Pd impregnated FeOOH catalysts, a clear promotion of the 

efficiency of the system was observed when compared with non-calcined FeOOH 

catalyst. FeOOH calcined at 200ºC (that shows maghemite and hematite as the 

main phases, see Table 2) show higher TOC removal (57% in 2h and 61% after 6h 

of Fenton reaction with 3.5 and 3.8 mg/L of Fe leaching). It can be seen that the 

efficiency in mineralization was enhanced by the impregnation of Pd on FeOOH 

catalysts. The best activity and stability for CFA was especially observed over 

calcined 0.5%Pd/FeOOH, achieving mineralization degrees up to 66 % and 71 % 

for 2h and 6h of Fenton reaction, respectively (see table 4). 

 The catalyst of 25%FeOOH/γ -Al2O3 (calcined at 200ºC) also shows good activity 

in Fenton process, achieving 48% and 60% TOC removal after 2h and 6h reaction, 

respectively, and a lower leaching of Fe was observed (1.9 and 3.1 mg/L). The 

Fenton reaction using 25%FeOOH/ ZrO2 (calcined at 200
o
C) shows 37% and 44% 

TOC removal after 2h and 6h of reaction, respectively, but a high leaching of Fe 

(3.9 and 6.5 mg/L) was produced.     

For lepidocrocite catalysts, after calcination between 200-350ºC, the lepidocrocite 

phase disappears (results from XRD and XPS). Maghemite and hematite were the 

main obtained phases. An increase of the hematite phase, at expenses of the 

maghemite, was observed when the calcination temperature increased (see table 2). 

All these catalysts showed high CFA conversion at room temperature. Total 

conversion of CFA with a mineralization degree of 55% was obtained after 6h of 

reaction for lepidocrocite catalyst calcined at 200ºC. The CFA conversion for 

lepidocrocite and lepidocrocite catalysts calcined at higher temperature was lower. 

However, the TOC removal for all the catalysts was quite similar. Some leaching 
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of Fe was observed after the reaction test. Lepidocrocite and lepidocrocite catalysts 

calcined at 200ºC and 250ºC showed the highest amount of Fe leached (between 

1.4-1.7 mg/L) after 6 h of reaction. Higher calcination temperatures decreased the 

amount of Fe leached (between 0.2-0.6 mg/L).   

 

To evidence the effect of dissolved Fe
3+ 

on the performance of CFA degradation by 

Fenton-like process, a homogeneous catalytic experiment was performed using 

dissolved Fe
3+ 

with a concentration of 3.5 mg/L, working at room temperature. For 

the homogeneous Fenton reaction and after 6 hours of reaction, total CFA 

conversion was observed but with a very low TOC removal (24%). The obtained 

results indicate that these catalysts show higher activity in Fenton-like reactions 

compared to other iron oxide catalysts [34].  It is important to note that FeOOH-

derived materials, mainly containing Pd, are promising catalysts for the 

degradation of clofibric acid by Fenton-like process. A total CFA conversion with 

a TOC removal of 66% was obtained at very mild reaction conditions (2 hours of 

reaction at room temperature). 

 

3.3. Reuse and recycling of 0.5%Pd/FeOOH catalyst 

Calcined 0.5%Pd/FeOOH catalyst has shown best activity and stability in catalytic 

ozonation and in heterogeneous Fenton-like process as well, achieving 

mineralization degrees of 68% and 82%, in catalytic ozonation, and 66% and 71%, 

in heterogeneous Fenton-like process, after 2 and 6 hours, respectively.  

In order to establish the reusability of catalyst for CFA removal, CFA degradation 

was tested in the presence of 0.5%Pd/FeOOH catalyst recovered after a run by 
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filtering, washing and drying, and reused in three consecutive runs of catalytic 

ozonation, to assess its stability, as shown in Fig. 2 (A). 

 

 

A.    B.                                                                                                    

                            

        

 

 

 

 

 

 

    Fig.2. Mineralization degrees obtained by recycling of catalysts after 6h treatment. 

        (A) Reused catalyst 0.5%Pd/FeOOH (calcined at 200
o
C) in ozonation process;  

         (B) Reused catalyst 0.5%Pd/FeOOH (calcined at 200ºC) in Fenton-like reaction.          

 

Like in the case of fresh catalysts, a total disappearance of CFA occurred in less 

than 15 min. It can be seen that the activity of these catalysts was maintained, 

showing around 80% of TOC removal, when reused in three consecutive cycles for 

6h of ozonation reaction. These results corroborate the improvement in the stability 

of these materials.  

 The CFA degradation was also tested in heterogeneous Fenton-like process with 

0.5%Pd/FeOOH (calc 200
o
C) and reused in three consecutive runs, as shown in 

Fig. 2 (B). In Fenton-like reaction also the activity of catalysts was maintained, 

showing mineralization degree around 70%, when reused in three consecutive 

cycles for 6h of Fenton process.  
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3.4. Parametric Study with calcined 0.5%Pd/FeOOH catalyst in Fenton process 

   The performance of 0.5%Pd/FeOOH (calcined at 200
o
C) has been studied in 

Fenton-like reaction for clofibric acid degradation with different parameters, such 

as the effect of pH, H2O2 concentration, catalyst concentration and temperature.  

 

3.4.1 Effect of H2O2 concentration 

In order to study the effect of hydrogen peroxide concentration on the performance 

of CFA degradation by Fenton process, experiments were performed using 2g/L of 

calcined 0.5%Pd/FeOOH catalyst with different hydrogen peroxide concentration 

in the range of 0.25-5g/L at room temperature. The results of these experiments are 

shown in Fig. 3(A). As it can be seen, increasing the hydrogen peroxide 

concentration in the range of 2 and 5g/L did not lead to any improvement of TOC 

results. Instead the %TOC removal decreased around 10 and 15%. This means that 

higher concentration of hydrogen peroxide is not effective for Fenton process. The 

results obtained using 1g/L of hydrogen peroxide concentration are almost similar 

to those obtained with 0.25g/L of hydrogen peroxide. Using higher concentration 

(2-5 g/L) of hydrogen peroxide, a fast decomposition of H2O2 was observed 

leading to a decrease in TOC removal compared to reaction performed at lower 

hydrogen peroxide (0.25-0.5g/L) concentration. These results are likely due to the 

radical scavenger character of hydrogen peroxide. These results indicate that 

0.5g/L of hydrogen peroxide is the optimal concentration in Fenton-like process 

for the CFA degradation achieving 100% CFA conversion and 71 % TOC removal 

in 6h. 
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3.4.2 Effect of temperature 

 

 Figure 3B shows the influence of reaction temperature on conversion and 

mineralization of CFA. In this series, experiments were performed at room 

temperature, 40
o
C and 60

o
C using 2g/L of calcined 0.5%Pd/FeOOH catalyst and 

0.5g/L of hydrogen peroxide. From figure 3B it can be seen that by increasing the 

temperature, %TOC removal increased by 8 to 12% in 6h of Fenton process when 

compared to reaction performed at room temperature. When temperature increases 

up to 60
o
C, an 82% TOC removal is noticed in 6h (Fig. 3B). Thus, it can be 

concluded that a temperature increase enhances the mineralization degree. 

 

3.4.3 Effect of catalyst concentration 

 

In order to study the effect of catalyst loading on the performance of CFA 

degradation by Fenton-like process, experiments were performed using 0.5g/L of 

hydrogen peroxide and different catalyst concentration (1-3g/L) at room 

temperature. TOC profiles of these reactions are shown in fig. 1(C). 

When catalyst concentration decreased (from 2 to 1g/L), the  %TOC removal was 

also decreased, achieving a mineralization degree of 50% in 6h of Fenton-like 

reaction. But a further increase of catalyst concentration (3g/L) did not led to any  
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A.   B.  

C.    D.  

Fig.3. Fenton-like process parametric study with 0.5%Pd/FeOOH catalyst calcined at 200
o
C A. Effect of 

H2O2 concentration; B. Effect of temperature; C. Effect of catalyst concentration; and D. Effect of pH 

(unless specified, free pH, T= 25ºC, concentration of H2O2 500 mg/L and catalyst concentration 2 g/L).       

 

further improvement in TOC results. On the contrary, the %TOC removal 

decreased near about 4-5% when compared to reaction performed using 2g/L of 

catalyst concentration, achieving 71% TOC removal in 6h of Fenton process.  

 

3.4.4 Effect of pH  

Fenton-like process was carried out at different initial pH (pH = 3.3 (free), 7 and 

10) to study the effect of pH on the performance of CFA degradation using 

calcined Pd/FeOOH (2g/L) and hydrogen peroxide (0.5g/L). Fig. 3D shows the 

results of TOC removal. For this study, the pH of a 100 mg/L CFA solution was 
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adjusted at initial pH 7 and 10 with NaOH.  At the start of oxidation, the pH 

dropped to less than <4.5 in ca. 30 minutes, likely due to the formation of acidic 

intermediates. Final pH of solution was 3.6. Therefore in case of pH 10 and pH 7 

the rest of the reaction proceeded at acidic pH. The reactions at initial pH 7 and 10 

show a decrease in TOC removal (58% and 48%, respectively) with respect to the 

reactions at free pH 3.3 (71%). Also, from TOC profiles shown in Fig. 3D it is 

seen that TOC removal rate is enhanced at lower pHs. Comparing to the reactions 

at different pHs, it is clear that 0.5%Pd/FeOOH (calcined at 200
o
C) displays a 

better performance at initial acidic pH (3-3.5). 

   From these results we can conclude that all catalysts show good activity in 

heterogeneous Fenton-like reaction. FeOOH (calcined at 200
o
C) and Pd 

impregnated catalysts show best performance in both processes. For example, 98% 

CFA conversion and 66% mineralization degree were obtained with 

0.5%Pd/FeOOH (calcined at 200
o
C) in 2h of Fenton-like reaction. With the use of 

this catalyst, when the reaction was performed at higher temperature (40-60
o
C) a 

better performance was observed, achieving mineralization degree up to 75% in 2h 

of Fenton-like process. After Pd impregnation on FeOOH, an increase in the 

stability and activity of the catalyst was observed with lower leaching of Fe. 

 

3.5 Tests with lower CFA concentration 

 

  The calcined 0.5%Pd/FeOOH catalyst has shown the best activity and stability in 

both processes. The single ozonation, catalytic ozonation and Fenton-like process 

with lower concentration of CFA (25mg/L) were also studied, using this catalyst at 

free pH.  In tests with single and catalytic ozonation, CFA concentrations below 
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our detection limit (0.1 mg/L) were detected within 15 min reaction and a CFA 

concentration below the detection limit was also observed after 4 h in 

heterogeneous Fenton-like reaction. In catalytic ozonation, 72% and 84% TOC 

removal was achieved after 2 and 6h of reaction, significantly higher than single 

ozonation. A 69% TOC removal was achieved in 2h of Fenton-like reaction (See 

figure 4). Therefore, it can be seen that the efficiency in mineralization was slightly 

enhanced at lower concentration of CFA     

                    

Fig.4 TOC removal (%) during the CFA (25mg/L) degradation by single ozonation, catalytic ozonation 

and heterogeneous Fenton-like process using calcined 0.5%Pd/FeOOH catalyst (catalytic ozonation 

conditions: free pH, T= 25ºC, O3 production= 1.2 g/h, O2 flow rate= 40L/h, catalyst concentration= 

0.5g/L; Fenton-like process conditions: free pH, T= 25ºC, concentration of H2O2 = 500 mg/L and catalyst 

concentration =2 g/L). 

 

Concerning catalytic ozonation, and comparing with others results reported in 

literature, to the best of our knowledge, and apart from our previous study of CFA 

catalytic ozonation with copper dawsonites [18], there is only one reference [38] 
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dealing with the catalytic ozonation of CFA, in which 25-30 % mineralization was 

obtained with TiO2 as catalyst at pH 3-5 range. Therefore, these FeOOH derived 

materials are promising catalysts for the catalytic ozonation of CFA, leading to 68 

and 82% degree of mineralization in 2 and 6h, respectively. 

Concerning heterogeneous Fenton-like process, with electro-Fenton using Fe
2+

 and 

photoelectro-Fenton process using Fe
2+ 

and
 
UVA light, more than 95% of TOC 

removal was obtained in 4-8h [39]. No reference for heterogeneous Fenton process 

for CFA degradation has been found. Therefore, our results are very promising for 

CFA mineralization, since a high % TOC removal (above 60% within 30-60 min.) 

has been obtained in a very short reaction time. 

 

3.6. Proposal of mechanism of oxidation of CFA by catalytic ozonation and 

Fenton-like process. 

The CFA degradation using ozonation and Fenton-like process, in the presence of 

0.5%Pd/FeOOH (calcined at 200
o
C) shows the formation of various intermediates. 

The identification of oxidation by-products was performed by HPLC-MS analysis 

of the samples taken during the catalytic runs performed with 100 mg/L of 

clofibric acid.  

It should be said that all the intermediates were detected at negative ionization 

mode. The compounds denoted by numbers were detected by MS.  

Possible mechanism in catalytic ozonation and Fenton-like process:  

   As shown in scheme 1, CFA degradation can proceed by three different routes 

(scheme 1 A, B, C) which are C1-O bond breaking, C4-Cl bond breaking and 

aromatic ring cleavage. CFA is oxidized to 4-chlorophenol (2) by the breaking of 

the C(1)-O bond, also forming 2-hydroxyisobutyric acid (1), which were identified 

at m/z 126.99 and m/z 103.03, respectively. Further hydroxyl attack on C4 position 
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of 4-chlorophenol yields hydroquinone (4), whereas the oxidation on C2 position 

leads to 4-chlorocatechol (3) detected at m/z 109.02 and m/z 142.99, respectively. 

Through the second route, via attack on C4-Cl, leads to the formation of 4-

hydroxyphenoxy-isobutyric acid (5) found at m/z 196.07, which further oxidized 

by ring-cleavage of CFA results to (6) found at m/z 245.02. This compound 

undergoes ring cleavage to reach oxalic acid (7) identified at m/z 88.98 and 2-

hydroxyisobutyric acid. Hydroxylation of aromatic ring may form 2-(4-chloro-2-

hydroxyphenoxy)-2-methylpropionic acid, which was not detected in catalytic 

ozonation. Subsequent oxidation cleaves the aromatic ring and produces chloro 

carboxylic acids (8) and (9). These compounds were identified at m/z 245.02 and 

178.97, respectively.  

 

      Scheme 1. Suggested reaction pathways for the catalytic ozonation of clofibric acid. 
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Almost similar intermediates identified in catalytic ozonation, were identified in 

Fenton-like reaction, with addition of 2-(4-chloro-2-hydroxyphenoxy)-2-

methylpropionic acid and maleic acid.  

 

        Scheme 2. Suggested reaction pathways for the heterogeneous Fenton-like process of clofibric acid 

 

And similar reaction pathways has been observed, as shown in scheme 2 (A, B, C), 

which are hydroxylation and further aromatic ring cleavage, C1-O bond breaking 
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245.02 and 178.97, respectively. CFA oxidizes to 4-chlorphenol (5) by the 

breaking of the C1-O bond, also forming 2-hydroxyisobutyric acid. Further 

hydroxyl attack on C4 position of 4-chlorophenol yields hydroquinone (6) and 

oxidation on C2 position leads to 4-chlorocatechol (7). 4-hydroxyphenoxy-

isobutyric acid (8) is formed by dechlorination, which further oxidizes by ring 

cleavage resulting to (9). This compound is also further oxidized to form maleic 

acid, which was identified at m/z 115.00, and also to oxalic acid (11) and 2-

hydroxyisobutyric acid, thus completing the oxidative chain. 

 

 

4.  Conclusions 

 

The results of this study indicate that FeOOH and its calcined forms are suitable 

and highly effective catalysts for both type of advanced oxidation treatments 

(catalytic ozonation and Fenton–like process).   

CFA can be effectively degraded by Fenton-like process and catalytic ozonation 

with FeOOH and its derived phases after calcination at various temperatures. 

Catalyst that shows better performance in Fenton and catalytic ozonation is the one 

obtained after calcination at 200
o
C and predominant phases present are maghemite 

and hematite (with higher percentage of maghemite). In Fenton-like process 

maximum TOC removal is achieved within the first period of reaction, 60-65% 

degree of mineralization after 60 minutes of reaction. As for catalytic ozonation, 

68% mineralization degree is reached after 2h reaction. 

   Concerning stability of these materials, 0.66 and 0.29% of Fe leaching was 

observed in catalytic ozonation and Fenton-like processes, respectively, after 6h of 
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reaction. However, stability and activity of these materials are increased after 

addition of a little amount (0.5%) of Pd. Synthesized lepidocrocite catalysts also 

shows good performance in ozonation and Fenton-like reaction. Results obtained 

supporting calcined (200ºC) commercial FeOOH on γ -Al2O3 are remarkable and 

deserve further study. 

     Among all tested catalysts, the highest activity and stability for CFA ozonation 

and Fenton-like process was observed over 0.5%Pd/FeOOH (calcined at 200
o
C), 

achieving mineralization degrees up to 68 and 82% for 2 and 6h respectively, in 

ozonation, and 63 % and 66 % for 1 and 2h, respectively, in Fenton-like reaction.  

A parametric study has also been performed with 0.5%Pd/FeOOH (calcined at 

200
o
C) in Fenton-like reaction for clofibric acid degradation using different 

variables, specifically, pH, H2O2 concentration, catalyst concentration and 

temperature. The reactions performed at 40-60
o
C, showed better results, achieving 

a mineralization degree up to 82% in 6h with Fenton-like process. At acidic pH (3-

3.5) the reaction preceded more efficiently as compared to pH 7 and 10. 

Optimization of the reaction conditions like temperature (60
o
C), free pH, H2O2 

(0.5g/L) and proper loading of the catalyst (2g/L) would lead to the highest 

mineralization degree. 

 

Acknowledgements 

This work was funded by the Spanish Ministry of Science and Innovation 

(MICINN), project CTM2008-02453 and CTQ2012-35789-C02-02. S.S. 

acknowledges Universitat Rovira i Virgili for the PhD grant. Rosa Ras (Scientific 

and Technical Service of URV) is appreciated for the technical assistance in HPLC 

analyses. Authors gratefully acknowledge Dr. K. R. Patil of the Centre of Materials 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



127 

 

Characterization, National Chemical Laboratory, Pune (India) for carrying out XPS 

characterization of catalysts and the related scientific discussions. F. M. would like 

to thank ICREA Academia for funding support. 

 

 

 

References 

[1] R. Salgado, A. Oehmen, J.P. Noronha, M.A.M. Reis, Journal of Hazardous 

      Materials 241-242 (2012) 182-189. 

[2] M. Winkler, J.R. Lawrence, T.R. Neu, Water Research 35 (2001) 3197-3205. 

[3] V. Matamoros, J. Garcia, J.M. Bayona, Water Research 42 (2008) 653-660. 

[4] A. Dordio, A.J. palace Carvalho, D.M. Teixeira, C.B. Dias, A.P. Pinto,  

      Bioresource Technol. 101 (2010) 886-892. 

[5] T.A. Ternes, Water Research 32 (1998) 3245-3260. 

[6] A. Joss, S. Zabczynski, A. Gobel, B. Hoffmann, D. Loffler, C. S. McArdell, T.  

      A. Ternes, A. Thomsen, H. Siegrist, Water Research 40 (2006) 1686-1696. 

[7] F. Gagne, C. Blaise, C. Andre, Ecotoxicology and Environmental Safety 64  

      (2006) 329–336 

[8] B. Halling-Sørensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten  

      Lützhøft, S.E. Jørgensen, Chemosphere 36 (1998) 357-393. 

[9] C. Tixier, H. P. Singer, S. Oellers, S. R. Muller, Environmental  

       Science & Technology 37 (2003)1061-1068. 

[10] H. R. Buser, M. D. Muller, Environmental Science & Technology 32 (1998)  

       188-192. 

 [11] P. Pfluger, D. R. Dietrich, Pharmaceuticals in the Environment. Berlin:  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



128 

 

         Springer 2001 pp. 11-17. 

 [12] A. Tauxe-Wuersch, L.F.D. Alencastro, D. Grandjean, J. Tarradellas, Water  

        Research 39 (2005) 1761-1772. 

[13] J. P. Emblidge, M. E. DeLorenzo, Environmental Research 100 (2006) 216- 

        226. 

[14] Th. Heberer, H. J. Stan, Int. J. Envi. Anal. Chem. 67 (1997) 113-124. 

[15] C. Tixier, H.P. Singer, S. Oellers, S.R. Muller, Envi. Science and  Tech. 37  

        (2003) 342-351. 

[16] J.  H. Ramirez, C. A. Costa, L. M. Maderia, G. Mata,  M. A. Vicente, M.L.  

         Rojas-Cervantes, A. J. Lopez-Peinado, R. M. Martin-Aranda, Appl. Cat. B  

         Env. 71 (2007) 44-56.  

[17] S. Contreras, M. Rodriguez, F. Al Momani, C. Sans, S. Esplugas, Water  

        Research 37 (2003) 3164–3171. 

[18] M. S. Yalfani, S. Contreras, J. Llorca, F. Medina, Appl. Cat. B: Env. 107  

        (2011) 9-17. 

[19] S. T. Oyama, Catalysis Reviews- Science and Engineering 42 (2000) 279-322. 

[20] A. Goncalves, J. J. M. Orfao, M. F. R. Pereira, Appl. Cat. B: Env. 140-141    

        (2013) 82-91. 

[21] C. Cooper, R. Burch, Water Research, 33 (1999) 3695-3700. 

[22] J. Q, Haiyan Li, H. Liu, H. He, Catalysis Today 90 (2004) 291– 296. 

[23] R. Allmann, H.H. Lohse, N. Jb. Min. 11 (1966) 161-180.  

[24] J. W. Chen, C. Hui, G. Smith, 68th Annual Meeting of American Institute of  

        Chemical Engineers. Los Angeles, 1975. 

[25] Y. Guo, Li Yang, X. Cheng, X. Wang, J. Environ. and Anal. Toxic. 2 (2012)  

        1-7. 

 [26] J. A. Zazo, J. A. Casas, A. F. Mohedano, M. A. Gilarranz, J. J. Rodriguez,  

         Environ. Sci. Technol. 39 (2005) 9295-9302. 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015

http://www.sciencedirect.com/science/article/pii/S0043135499000913


129 

 

 [27] S. Papia, D. Vujevia, N. Koprivanac, D. Ainko, J. Of Hazard. Mater.164  

         (2009) 1137-1145. 

[28] S. Parsons, Advanced oxidation processes for water and wastewater treatment,  

        IWA Publishing, London, 2004 pp XII + 356 pp. 

[29] M. Sui, L. Sheng, K. Lu, F. Tian, Appl. Catal. B: Environ. 96 (2010) 94-100. 

[30] L. Yang, C. Hu, Y. Nie, J. Qu, Appl. Catal. B: Environ. 97 (2010) 340-346. 

[31] I. R. Guimaraes, L. C. A. Oliveria, P. F. Queiroz, T.C. Ramalho, M. Pereira, J.  

       D. Fabris, J. D. Ardisson, Appl. Catal. A: General 347 (2008) 89-93. 

[32] I. R. Guimaraes, A. Giroto, L. C. A. Oliveria, M. C. Guerreiro, J. D. Fabris,  

         Appl. Catal. B: Environ. 91 (2009) 581-586. 

[33] G. Zhang, S. Wang, F. Yang, J. of Phy. Chem, C 116 (2012) 3623-3634. 

[34] U. Schwertmann, R.M. Cornell, Iron Oxides in the Laboratory: Preparation   

        and Characterization, VCH Publishers Inc., Weinheim, Germany, 1991. 

[35] Y. Pi, M. Ernst, J-C. Schrotter, Ozone: Science & Engineering, 25 (2003)  

       393-397. 

[36] P.M. Álvarez, F.J. Beltrán, J.P. Pocostales, F.J. Masa, App. Catal. B: Environ.  

        72 (2007) 322-330. 

[37] F. Cavani, F. Trifiro, A. Vaccari, Catal. Today, 11 (1991) 173. 

[38] R. Rosal, M. S. Gonzalo, A. Rodriguez, E. Garcia- Calvo, J. of Hazardous  

         Materials 169 (2009) 411-418. 

[39] I. Sires, F. Centellas, J. A. Garrido, R. M. Rodriguez, C. Arias, P. L. Cabot, E.  

          Brillas, Appl. Catal. B: Environ. 72 (2007) 373-381. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Pi%2C+Yunzheng)


130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



131 

 

 

CHAPTER – 5 

 

Catalytic ozonation of pharmaceutical contaminants 

over copper-based catalysts: In situ ATR-IR studies 

 

 

Pollution from pharmaceutical compounds in surface and ground waters is an emerging 

environmental concern in many countries. The development of processes, such as advanced 

oxidation processes (AOPs), which are technologies based on the intermediacy of hydroxyl and 

other radicals to oxidize organic compounds, can help to overcome this situation. The current 

study describes the catalytic ozonation of clofibric acid (CFA) under ambient conditions using 

copper oxide catalysts synthesized by different methods. Catalytic ozonation is proved as an 

effective technology for the removal of organics from wastewater. The main aim is to provide 

novel catalytic materials and effective methods for the removal of emerging pharmaceuticals in 

the aqueous solution. Among the various Cu catalysts screened, the nanostructured Cu1-Al1 

oxide catalyst prepared by a co-precipitation method, showed an excellent activity and stability 

in the degradation and mineralization of CFA by catalytic ozonation. In situ attenuated total 

reflection  (ATR-IR) spectroscopy was used to examine the interaction of ozone with catalyst in 

presence of water to investigate the possible catalytic mechanism. The Lewis acid sites of Cu1-

Al1 caused the more chemisorbed water enhancing stronger interaction of ozone fo form surface 

activated species, resulting higher catalytic activity. The experiments related to the influence of 

phosphate and ATR-IR results indicate that the surface hydroxyl groups and Lewis acid sites 

were favorable sites for promoting hydroxyl radicals (
.
OH) generation from aqueous ozone.   
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1. Introduction 

 

The oxidative degradation of emerging organic pollutants by heterogeneous 

catalysis is considered to be one of the most effective techniques for water 

remediation. Persistent pharmaceuticals residues are considered as an emerging 

environmental problem in the recent years due to their harmful effects such as 

chronic and reproduction toxicities for human and aquatic systems. Every year a 

large number of pharmaceuticals and personal care products (PPCPs) enter in the 

environment by the incomplete sewage treatment. PPCPs are now recognized as a 

new class of emerging environmental contaminants and bring increasing concern 

and scientific interest [1-3].  

  Pharmaceuticals like lipid regulators appear worldwide in the aquatic 

environment [4-6]. Lipid regulators have been detected in Europe's natural water 

systems e.g. in Spain [7], Switzerland [8], England [9] and in the Nord Sea [10]. 

Since wastewater treatment plants (WWTPs) are not effective enough in their 

elimination, lipid regulators are discharged at high daily mass loads, which 

contribute to long term negative effects on living forms [11-13]. Clofibric acid 

(CFA) is one of the most widely and routinely reported drug metabolites found in 

open water. CFA was detected in most aquatic systems where pharmaceutical 

contaminants were monitored [14-19]. Clofibric acid has shown high persistency 

when introduced in the water; it is the primary metabolite of clofibrate, a drug 

used as a lipid regulator which remains in the environment for a long time [20-

23]. This compound has an estimated environmental persistence of 21 days and 

has been found in sewage treatment plant effluents, rivers, lakes, North Sea, 

ground water and drinking water [23, 24-26]. To avoid the potential adverse 

health effects of drugs and their metabolites as water pollutants on both human 
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and animals, research efforts are underway to develop efficient techniques for 

achieving their total destruction. One way to reduce these contaminants is to 

decrease their presence by the "on-site" treatment of pharmaceutical plant 

wastewaters.  

   Advanced oxidation processes (AOPs) have been found to be effective in the 

removal of these toxic, organic compounds even in low concentrations. In recent 

years, AOPs that make use of various combinations of O3, H2O2, ultrasound or 

electron beam irradiation, are becoming more and more important technologies for 

wastewater treatment. AOPs involve the generation of reactive radicals, notably 

hydroxyl radicals (HO
.
) that are highly oxidative and capable of decomposing a 

wide range and variety of organic compounds [27]. Ozone is used widely in water 

treatment technology because of its powerful oxidation capacity [28-31]. However, 

as it has been reported in most cases, the ozonation can not completely degrade 

organic compounds and sometime produce toxic intermediates. In such cases, the 

efficiency of oxidation can be improved by employing ozone together with H2O2 or 

UV irradiation to generate free radicals, however they present some drawbacks 

such as residual of H2O2 [32], the shorter life of radicals and higher energy 

consumption of UV lamp [33]. 

Heterogeneous catalytic ozonation has been attracting an increasing interest due to 

its potentially higher effectiveness in the degradation and mineralization of organic 

pollutants and lower negative effect on water quality, it can also be carried out 

under ambient conditions and easily applied in real water treatment without any 

auxiliary thermal or light systems. Organics difficult to be oxidized by single 

ozonation can be oxidized by catalytic ozonation [34-38]. Supported and 

unsupported metals and metal oxides are the most commonly tested catalysts for 

the ozonation of organic compounds in water [39]. Transition metals like Fe, Ni, 
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Zn, Co and Cu have been widely studied in the form of single or supported metal 

oxide. They were found to improve TOC removal by promotion of hydroxyl
 

radical formation through the ozone decomposition [40-42]. In several cases, 

alumina supported metal oxide of Fe, Ag, Co, Ni, Mn and Cu have shown high 

activity for the destruction of pollutants with ozone [43-45]. Cu-dawsonite and 

Cu–hydrotalcite-spinel type catalysts have been used in heterogeneous catalytic 

ozonation of clofibric acid as the model organic compound [46-47]. The activity of 

the catalysts mentioned is based mainly on promotion of catalytic ozone 

decomposition and the enhanced generation of hydroxyl radicals. However, results 

obtained from various studies suggest different ozonation mechanisms. The 

decomposition mechanism of catalytic ozonation in gaseous phase has been 

elucidated with in situ Raman spectroscopy and isotopic substitution [48-49]. The 

main redox steps involved the formation of superoxide or peroxide species on the 

surfaces of metal oxides. Bulanin [50] suggested that ozone dissociates after 

adsorption on strong Lewis sites, yielding a surface oxygen atom, whereas on 

weaker sites, ozone molecules coordinate via one of the terminal oxygen atoms. 

With regard to the bulk aqueous phase, the catalytic ozonation mechanism is still 

controversial because the pathway is so complex, but in the heterogeneous 

catalytic ozonation process, adsorption of ozone and its further decomposition are 

generally believed to lead to surface-bound O radicals and hydroxyl radicals on the 

surfaces of catalysts. Ma and Graham [51] reported that ozone decomposition was 

initiated by hydroxide ions linked to the negatively charged surface of metal oxide 

and that the surface hydroxyl groups formed in situ were active sites for catalytic 

ozonation [50-52]. When introduced into water, metal oxides tend to strongly 

adsorb H2O molecules. The adsorbed H2O dissociates into OH
-
 and H

+
, forming 

surface hydroxyl groups with the surface metal and oxygen sites, respectively [53]. 

Study of mechanism shows that catalytic ozonation with metal oxide can proceed 
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through two pathways (i) enhancing hydroxyl radical generation from aqueous 

ozone [51, 54-55] and (ii) forming surface complexes between the carboxylic 

groups of the pollutants and the surface metal sites of the catalysts, which renders 

the coordinated pollutants more reactive towards molecular ozone was proved by 

kinetic and mechanistic studies [56-58]. The chemisorbed hydroxyl groups 

dominate the properties of the oxide/water interface and interact with O3 and 

organic molecules in the catalytic ozonation. When the surface metal cations are 

stable and they can not form surface complexes with organic pollutants, the surface 

hydroxyl groups may play an important role in the catalytic ozonation.  

In addition, verification of the mechanisms governing catalytic ozonation is 

particularly problematic, as the use of catalysts in aqueous solutions will lead to 

competition between water, ozone, and organic compounds for the catalytic 

(adsorptive) active sites. The process of aqueous ozone decomposition can be 

affected by the ability of the catalyst to adsorb and desorb O3, the activity of the 

oxygen species, and ability to desorb O2 [59]. It is very difficult to prove the 

adsorption of ozone on solid surfaces in an aqueous medium; consequently, no 

comprehensive discussion of this has been reported. All of the adsorptive centers 

relevant to the catalytic processes have a high affinity for water. However, ozone 

might be highly basic, resulting in strong affinity to Lewis acid sites on the surface 

of metal oxides due to its unique structural properties and the high electron density 

on one of the oxygen atoms. Therefore, it is very likely that ozone 

adsorption/decomposition occurs at the active surface sites. Unfortunately, there is 

no direct evidence of ozone adsorption on metal oxides in the presence of water. 

 In situ detections of trace amounts of adsorbed/deposited surface species at the 

solid-liquid interface require sophisticated spectroscopic techniques with very high 

signal-to-noise ratio. Attenuated total reflection IR (ATR-IR) spectroscopy is 
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known to be a powerful method to enhance the S/N ratio and to selectively extract 

information on intermediate species at the catalytic solid-liquid interface which has 

received considerable attention as a tool for process monitoring under reaction 

conditions. ATR-IR spectroscopy has also proven to be one of the most powerful 

spectroscopic techniques available for the characterization of catalytic systems, 

which is an easy to use, fast, and versatile technique for infrared sampling. This 

technique provides key fundamental information about surface bound species in 

catalytic reactions, which would provide information on both reaction mechanisms 

and the nature of the solids used as catalysts.  Therefore, an understanding of 

catalytic performance and surface species present during catalytic ozonation can be 

investigated using in situ ATR-IR spectroscopy. 

    The main aim of our work is to develop novel and stable catalytic materials for 

the removal of organic pollutants. In the present study, we investigate the 

efficiency of different Cu-based catalysts for the degradation and mineralization of 

CFA by means of catalytic ozonation. Moreover, catalytic activity and surface 

changes of catalyst before and after ozonation was studied in detail by in situ ATR-

IR spectroscopy under different experiments to investigate the possible catalytic 

mechanism. The performance of this process was evaluated by the measurement of 

clofibric acid concentration and total organic carbon (TOC). 
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2. Experimental 

 

2.1. Catalyst Preparation 

Three kinds of copper based catalysts were synthesized by different methods. 

[I] Cu-dawsonite catalysts: Cu-dawsonites with Cu/Al mass ratios 0 (NH4DW), 

0.02 (Cu2DW) and 0.1 (Cu10DW) were synthesized by co-precipitation method at 

constant pH. An aqueous solution (pH adjusted by HNO3 if required) of 

Al(NO3)3.9H2O and Cu(NO3)3.H2O and an aqueous solution of (NH4)2CO3 (2M) 

were drop-wise poured into a beaker under vigorous stirring at 60°C. The pH of the 

slurry was maintained within the range 7.5-8 during the co-precipitation. Then, the 

slurry was aged for 3 h at 60°C under stirring to complete the co-precipitation 

operation. Afterwards, the precipitate was filtered, washed and dried at 110°C for 

12 h. A part of Cu10DW was calcined at 500°C for 3 h (denoted as Cu10DW500) 

and the rest was used as-synthesized. A CuO/Al2O3 sample with Cu content of 2 

wt% was synthesized via conventional impregnation as reference sample. 

Impregnation of alumina (prepared by sol-gel method) with the Cu(NO3)2.3H2O 

aqueous solution was followed by water evaporation by rotary vapor at 50°C and 

drying at 110 °C for 12 h, the sample was calcined at 500°C for 3 h [46]. 

[II] Cu-hydrotalcite and Cu-spinel catalysts: Mg/Al hydrotalcite (HT) catalysts 

containing Cu and spinel-type materials CuxMgyAl2O4 and CuxAl2O4 were 

prepared by co-precipitation  method, adding the appropriate amounts of 

Cu(NO3)2.3H2O with Mg(NO3)2.6H2O and Al(NO3)3.9H2O (supplied by Sigma-

Aldrich, 99% purity), and finally calcined at different temperatures for 6 h. The 

powders of the mixed oxide, thus obtained, were used as catalysts [47]. 

 [III] Cu1-Al1 oxide catalyst: The Cu1–Al1 catalyst was prepared by a co-

precipitation method with the simultaneous addition of an equimolar (0.05 M) 
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mixture of an aqueous solution of Cu(NO3)2·3H2O, Al(NO3)3·9H2O and 0.2 M 

aqueous K2CO3 in a round bottom flask having 5–10 mL of water at room 

temperature. The obtained precipitate was digested for 4–5 h and then filtered and 

washed with deionized water to remove the traces of potassium. The precipitate 

was dried in an oven at 100 °C for 5–8 h and further calcined at 400
o
C for 4h [60]. 

 

 

2.2. Catalysts Characterization 

 

  Metal content of the Cu-catalysts was measured by ICP-OES (SPECTRO-

ARCOS FHS16). The structure of the catalysts was studied by XRD and N2 

physisorption method. X-ray powder diffraction patterns were recorded on a 

Rigaku, D-max III VC model, using nickel filtered CuKα radiation.  The samples 

were scanned in the 2θ range of 1.5–80
o
. N2 adsorption was performed using a 

Micromeritics ASAP 2010 apparatus at 77 K. Before analysis, the samples were 

degasified at 120°C for 12 hours. Total surface area was calculated by the BET 

method.  

Temperature programmed desorption (TPD) measurements were carried out on a 

Autosorb 1100 instrument. In order to evaluate acidity of the catalysts, ammonia 

TPD measurements were carried out by: (i) pre-treating the samples from room 

temperature to 673 K under helium flow rate of 65 mL/min. (ii) adsorption of 

ammonia (5%) at 80
o
C (iii) desorption of adsorbed ammonia with a heating rate of 

15 
o
C min

-1 
starting from 80

o
C to 973 K.  

A pyridine-IR spectrum was recorded on PerkinElmer frontier instrument having 

Harrick Diffuse reflectance praying mantis assembly with temperature 

controller under 150 mL/min flow of nitrogen as carrier gas. Catalyst sample ~ 20 

mg was filled in a sample cup and 40 mL of pyridine was injected in 
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N2 flow. Desorption of pyridine was recorded in the temperature range of 30-200 

o
C and spectra was recorded after desorption of pyridine at 90

o
C. 

X-Ray photoelectron spectroscopy (XPS) data were collected on a VG Scientific 

ESCA-3000 spectrometer using a non-monochromatised Mg Kα radiation (1253.6 

eV) at a pressure of about 1 × 10
−9

 Torr ( pass energy of 50 eV, electron take off 

angle 55) and overall resolution ~0.7 eV determined from the full width at half 

maximum of the 4f7/2 core level of the gold surface. The error in the binding energy 

values were within 0.1 eV. The binding energy values were charge-corrected to the 

C1s signal (285.0 eV). 

  In situ ATR-IR spectroscopy was employed to monitor the surface species of the 

catalyst materials under conditions relevant to the ozonation reaction. A catalyst 

material in the powder form (ca.50 mg) was suspended in ethanol and was coated 

over ZnSe internal reflection element (IRE) by slowly dropping the suspension 

with a subsequent drying process. The ZnSe IRE was mounted in an accessory 

(PIKE Technologies, HATR Htd Flow-Thru Cell) and aqueous solution containing 

ozone, CFA, and/or phosphoric acid was passed through the cell. The cell was 

amounted in a an IR spectrometer (Brucker, Tensor 27) with a DTGS detector. 

Infrared spectra over the 800-4000 cm
-1

 range were recorded with a resolution of 4 

cm
-1

 at room temperature. 

 

2.3. Experimental Procedure 

The ozonation reactions were performed in a 1.5 L glass reactor containing a 500 

mL aqueous solution of CFA (10 -100 mg/L) at ambient conditions (25 ± 2°C) and 

atmospheric pressure. Higher concentrations than those commonly found in 

wastewaters were used to compare the efficiency of the different catalysts tested 

and to favour the accuracy in the analytical determinations. To the CFA solution, 
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250 mg catalyst was added and the ozone generated by an ozone generator 

(ANSEROS COM-AD-02) from pure O2 (40 L/h) was passed through the solution 

maintaining a constant production of 1.2 g/h of O3. The samples were taken at 

regular time intervals. CFA concentrations were measured by high performance 

liquid chromatography HPLC (Shimadzu LC-2010 equipped with a SPD-M10A 

Diode array UV-vis detector) at wavelength 254 nm. A Varian OmniSphere C18 

column and a solution containing an aqueous buffer (Milli-Q H2O 1L, methanol 50 

mL and H3PO4 4mL) and acetonitrile (40:60) was used as mobile phase. TOC was 

measured by a Shimadzu 5000-A TOC analyzer.  

3. Results and discussion 

3.1. Catalysts characterization  

Table 1 shows the textural properties, BET specific surface area, pore volume and 

ICP results of  Cu-dawsonite, Cu-hydrotalcite and Cu1-Al1 catalysts. Surface area 

and pore volume of Cu2DW, Cu10DW and Cu10DW (500) was 426, 338, 297 m
2
g

-1
 

and 0.954, 0.632, 0.964 ccg
-1

, respectively, whereas surface area and pore volume 

of Mg3Cu0.5Al1 (900) hydrotalcite was 92 m
2
g

-1
 and 0.035 ccg

-1
 respectively.   

Table 1.  Textural properties of Cu-catalysts.  

  

 

 

 

 

 

 

Catalysts 

BET surface 

area (m
2 

g
-1

) 

Pore volume 

(cc g
-1

) 

Cu Wt% 

(ICP) 

I-Cu2DW 426 0.954 0.35 

I-Cu10DW 338 0.632 1.59 

I-Cu10DW (500) 297 0.964 3.67 

II-Mg3Cu0.5Al1 (900) 92 0.035 11.8 

II-Cu0.75Mg0.25 Al2O4 (900) 15 0.054 12.6 

II-Cu1Al2O4 (900) 13 0.058 13.7 

III-Cu1-Al1(400) 74 0.60 49.5 
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Incorporation of Cu into the dawsonite structure resulted to a decrease in surface 

area. Pore volume of the Cu-dawsonite samples decreases by increasing the Cu 

content. Surface area decreases with higher calcination temperature (900
o
C) 

suggesting that porous structure originated from the initial structure collapsed and 

the crystallization of spinel phase progress. Hence all calcined spinel type 

materials show very low surface area. After calcination, a decrease of surface area 

occurs, suggesting a porosity loss as a result of thermal treatment. Surface area and 

pore volume of calcined Cu1-Al1(400) catalyst was 74 m
2
g

-1
 and 0.60 m

3
g

-1
 

respectively. Among all copper catalysts, Cu2DW possesses the highest surface 

area (426 m
2
/g) whereas spinel Cu1Al2O4 (900) catalyst possesses the lowest 

(13m
2
/g) surface area. 

Table 2.  XRD-crystalline phases of Cu-catalysts. 

 

 

 

 

 

 

 

 

XRD phases of all copper catalysts are shown in Table 2. It can be seen that, in 

copper spinel-type catalysts tenorite and spinel were detected as main phases. 

Mg3Cu0.5Al1 (900) hydrotalcite shows spinel, tenorite and periclase crystalline 

phases.  

Catalysts                   XRD phases 

I-Cu2DW Single dawsonite-like phase (Cu and Al) 

I-Cu10DW 
Single dawsonite-like phase (Cu and Al) 

I-Cu10DW (500) Amorphous phase 

II-Mg3Cu0.5Al1 (900) Spinel, Periclase, Tenorite 

II-Cu0.75Mg0.25 Al2O4 (900) Spinel, Tenorite, Corundum 

II-Cu1Al2O4 (900) Spinel, Tenorite 

III-Cu1-Al1(400) Spinel, Tenorite 
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Fig.1. XRD patterns of I-Cu-dawsonite: [(a) NH4DW, (b) Cu2DW, (c) Cu10DW, (d) 

Cu10DW-500 and (e) CuO/Al2O3; (*) -Al2O3] 

 

 

The spinel (MgAl2O4 or CuAl2O4) phase appeared together with small amount of 

tenorite and corundum crystal phases in Cu0.75Mg0.25Al2O4 (900) catalyst. XRD 

patterns of the Cu-dawsonite catalysts are shown in Figure 1. The patterns of the 

as-synthesized samples are clearly consistent with the characteristic diffractions of 

ammonium dawsonite (NH4Al(CO3)(OH)2, JCPDS 01-076-1923).  

No other phase is distinguished in the patterns suggesting formation of a single 

dawsonite-like phase containing Cu and Al through co-precipitation. The XRD 

pattern of the Cu10DW(500) sample shows disappearance of the dawsonite peaks 

resulting in the formation of an amorphous phase. Fig. 2 shows the XRD patterns 

of the calcined Cu1–Al1 catalyst. The diffraction peaks at 2θ = 35.7° and 38.8° 

confirmed the presence of CuO [(111) JCPDS file no. 80-1268] and CuAl2O4 

[(222) JCPDS file no. 73-1958] phases respectively. 
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                        Fig.2. XRD pattern of calcined Cu1–Al1 catalyst. 

 Among all Cu based catalysts Cu1-Al1 showed excellent activity in this process so 

to further study the surface chemistry of this catalyst, XPS analysis was carried 

out. Binding energies were calibrated using C (1s) (285.0 eV) and O (1s) (530 eV) 

as the reference. The Cu 2p XPS of the calcined Cu1–Al1(400) catalyst are shown 

in Fig. 3a, in which a broad peak is observed in the range of 932–935 eV, which 

was due to the presence of various Cu species. A satellite peak at 940–946 eV was 

indicative of Cu
2+

 in the fully oxidized copper species such as CuO and CuAl2O4 . 

The wide Cu 2p3/2 signals obtained for this catalyst could be fitted satisfactorily to 

two principal peaks after deconvulation as shown in Fig. 3b.The predominant peak 

at 933.6 eV was assigned to Cu
2+

 of CuO, which is obviously due to its formation 

during calcination. Interestingly, another peak at 935 eV in Fig.3b was also due to 

Cu
2+

, but from spinel CuAl2O4.  
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Fig.3 XPS spectra of the (a) calcined Cu1–Al1 catalyst, (b) deconvulated Cu 2p3/2 and (c) O 1s  

         spectra of the calcined sample. 

 

 

 

 

 

 

 

         

    Fig. 4 O1s and Al 2p XPS spectra of the calcined Cu1-Al1catalyst. 
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The O1s and Al 2p XPS spectra of the calcined Cu1-Al1catalyst are shown in Fig.4. 

The peak at 530.3 eV is attributed to binding energy of O 1s which is correlated to 

CuO  and peak at 73.6 eV is attributed to binding energy of Al which is correlated 

to Al2O3. The XPS of  Al was associated with a tailing due to the interference of 

Cu 3p. Figure 5 shows the reduction behavior of calcined Cu1-Al1 catalyst which 

was studied by H2-TPR characterization. The calcined sample showed a single 

broad peak over the region of 180–400°C due to the reduction of CuO.  

 

 

 

 

 

                           

 

    

Fig. 5.  H2-TPR profiles of the calcined Cu1–Al1 catalyst. 

 

 

The ammonia temperature-programmed desorption (NH3-TPD) is one of the most 

conventional methods for characterizing acidity of catalysts. The strength and 

natures of acid sites of our three types of copper based catalysts were determined 

by NH3-TPD.  
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To compare acidity of the calcined Cu0.75Mg0.25Al2O4, Cu1Al2O4 and Cu1–Al1 

catalysts NH3-TPD measurements were performed and shown in Fig. 6. The NH3-

TPD peak for calcined Cu1–Al1 catalyst appeared at 190 and 530 
o
C. A low NH3 

desorption peak is observed for all the samples between 120-300ºC. For 

Cu0.75Mg0.25Al2O4 and Cu1Al2O4 samples, a small desorption peak is observed at 

around 580ºC. 
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Fig. 6 NH3-TPD profiles of the calcined (a) Cu0.75Mg0.25Al2O4, (b) Cu1Al2O4 and (c) Cu1–Al1 catalysts 

 

However for the Cu1–Al1 catalyst an important desorption of NH3 was detected 

between 400-700ºC indicating the presence of strong acid sites (See Fig. 6). 

Furthermore, the amount of NH3 desorbed was significantly higher for Cu1–Al1 

catalyst, revealing that it presents more acidic site when compared to the other two 

catalysts. Therefore, calcined Cu1–Al1 catalyst shows the highest acidity among all 

the three Cu-based catalysts. Pyridine adsorption spectra of the calcined Cu1–Al1 

catalyst are shown in Fig. 7. Sample show the expected bands due to hydrogen-
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bonded pyridine at 1430 cm
-1

 and Lewis acid-bound pyridine at1455, 1588, and 

1623 cm
-1

. The spectra showed a distinct peak at 1546 cm
−1

, which confirms the 

presence of Brønsted acid sites and also peak at 1646cm
- 1

 attributed to pyridine 

bound on Bronsted acid sites. The band at 1496 cm
-1

 is attributed to pyridine 

associated with both Lewis and Bronsted acid sites [61].  

 

Fig. 7 Py-IR of calcined Cu1-Al1catalyst. 

 

 

3.2 Clofibric acid  degradation and mineralization 

 

     The performance of the different Cu-based catalysts in ozonation for the 

degradation of CFA along with Cu leaching after 2h is summarized in Table 3. The 

reaction using single ozonation resulted in a 100% CFA conversion in less than 15 

minutes (taking into account our detection limit, i.e. 0.1-0.5 mg/L). However the 
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ability of the system in TOC removal was not higher than 28 and 40 % after 2 h 

and 6 h, respectively. Similar to single ozonation the  Cu-derived catalysts also 

showed complete  CFA conversion within 15 minutes. These catalysts gave 

increased  efficiency of >50 % for mineralization in 2 h of catalytic ozonation. 

Copper dawsonite (I), Cu2DW, Cu10DW and Cu10DW(500) catalysts showed  CFA 

mineralization  of 55, 67 and 58 % respectively in 2 h Among these three catalysts 

calcined Cu10DW (500) catalyst  showed decrease  in efficiency as well as 

increased Cu leaching of 3.37  mg/L compared with the non-calcined catalysts 

(Cu2DW, Cu10DW).  From the above results, it can bee seen that an increase of Cu 

content in the dawsonite yields to improvement of TOC removal. 

Copper hydrotalcite and spinel-type (II) catalysts also show good activity in 

catalytic ozonation of clofibric acid. The degree of mineralzation achieved over  

Mg3Cu0.5Al1 hydrotalcite and spinel catalysts Cu0.75Mg0.25Al2O4, Cu1Al2O4, 

(calcined at 900
o
C) is  60, 55 and 50 % respectively, with 2.1, 1.6 and 2.4mg/L of 

Cu leaching, respectively (see Table 3). Amount of Cu leached observed is too 

high, and this could involve problems of toxicity in the effluents. In order to solve 

this and with the aim to remove the excedent phases (e.g. tenorite phase), a 

treatment with an aqueous solution of 2% oxalic acid and calcined at 900ºC, was 

performed and  catalysts were tested as well in the catalytic ozonation reaction and 

leaching tests were carried out. 

 

 

 

 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



149 

 

     Table 3. CFA (100mg/L) degradation results using different Cu-based catalysts after 2h  

          single and catalytic ozonation 

 

 

 

 

 

 

 

 

 

 

        Reaction conditions: 500 ml, [CFA]0=100mg/L, O3 = 1.2 g/h, O2 = 40L/h, catalyst = 0.5g/L, Temp. =   

         R.T., pH = free and time =2h 

  

After pretreatment with oxalic acid and removal of the excedent phases, these 

spinel type catalysts lead to further improvement in the results Cu leaching (1.1 

mg/L- Cu1Al2O4 and 0.7mg/L- Cu 0.75Mg 0.25Al2O4) and achieving 53% and 54% of 

mineralization respectively. 

At the view of the results, best outcomes have been obtained over Cu1-Al1 (III) 

catalyst, achieving 82% mineralization in 2h of ozonation without any leaching of 

Cu (see Table 3). Fuerther increase in ozonation reaction time of 6 h  also showed 

increase in  mineralization of 96% over the same. All catalysts were tested for 

adsorption, showing negligible adsorption of CFA (results not shown). 

 Cu1-Al1 (III) catalyst showed an excellent activity and stability (showing no 

detectable leaching of Cu and mainting activity with repeated use) for CFA 

Catalysts %TOC Removal Leaching (mg/L) Cu 

 O3 28.1 - 

I-Cu2DW 55.2 0.52 

I-Cu10DW 67.3 1.29 

I-Cu10DW (500) 57.9 3.37 

II-Mg3Cu0.5Al1 (900) 60.0 2.1 

II-Cu0.75Mg0.25 Al2O4 (900) 55.3 1.6 

II-Cu1Al2O4 (900) 50.0 2.4 

II-Cu0.75Mg0.25 Al2O4 (2%OA, 900) 54.4 0.7 

II-Cu1Al2O4 (2%OA,900) 53.3 1.1 

III-Cu1-Al1 81.7 - 

Cu
2+

 (3.5 mg/L) 38.3 - 
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degradation and mineralization. The highest activity and stability of the Cu1-

Al1catalyst is probably due to the stable and highly dispersed active metal species 

(XRD show lower crystallinity, suggesting higher dispersion of Cu phases). Cu1-

Al1possess higher Cu content compared to CuDW and Cu-HT-spinel type catalysts 

and also, higher surface area when compared to spinel catalysts (See Table 3). 

Distinct and highly efficient spinel CuAl2O4 and CuO phase formation (as 

confirmed by XRD and XPS) was obtained even at low calcinations temperature 

(400
o
C) due to Cu1-Al1 formulation prepared by the simultaneous co-precipitation 

technique. Also, NH3-TPD results show higher acidity for Cu1-Al1 catalyst when 

compared to the other copper catalysts, which may play crucial role in the catalytic 

performance, as we will see in later section.  

 

3.3 Contribution of homogeneous mechanism due to leached Cu 

Using Cu1-Al1 catalyst for CFA degradation no leaching of Cu was observed, but 

with Cu- dawsonite and Cu HT and spinel type catalysts, up to 3.3 and 2.4 mg/L of 

Cu leaching was observed, respectively (See Table 3). In order to evidence the 

effect of dissolved Cu
2+ 

on the performance of CFA degradation by ozone, 

homogeneous catalytic ozonation experiment was performed with a concentration 

in the range of the maximum leached value found, i.e. dissolved Cu
2+ 

with a 

concentration of 3.5 mg/L. The results of this experiment are shown in table 1, 

indicating a slight improvement in mineralization with respect to single ozonation. 

Complete degradation of CFA was also observed within 15 min. In homogeneous 

tests with 3.5 mg/L of Cu, TOC removal increased by a 10%. This means that 

dissolved copper can moderately enhance the ozonation process. 
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3.3. Reuse and recycling of Cu1-Al1 catalyst 

Calcined Cu1-Al1 catalyst has shown best activity and stability in catalytic 

ozonation, achieving mineralization degrees of 82% and 96% after 2 and 6 hours, 

respectively.   

 In order to establish the reusability of catalyst, CFA degradation was tested in the 

presence of Cu1-Al1 catalyst recovered after a run by filtering, washing and drying, 

and reused in three consecutive runs of catalytic ozonation, to assess its stability, as 

shown in Fig. 8.  

                     

         Fig. 8 Mineralization degrees obtained by recycling of Cu1-Al1catalyst after 2h treatment. 

 

Like in the case of fresh catalysts, a total disappearance of CFA occurred in less 

than 15 min. It can be seen that catalytic activity of this material was maintained, 

near about 78% and 76% TOC removal, after 2
nd

 and 3
rd

 recyle for 2h of ozonation 

reaction. These results confirm the best stability of this catalyst. 
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3.4 Tests with lower CFA concentration and  different initial pH 

 

 The efficiency of  Cu1-Al1 catalyst has also been demonstrated at low 

concentrations of CFA. Figure 9 shows the percentage of mineralization after 2h of 

single and catalytic ozonation process with Cu1-Al1 (III) catalyst, reactions 

performed with different CFA initial concentrations (10, 25 and 50 mg/L) at free 

pH and with 100 mg/L of CFA at different pH (7 and 10).   

 

Fig.9 Degree of mineralization obtained in 2h ozonation with different concentration of  CFA     

and initial pH using Cu1-Al1catalyst. 

 

In test with single and catalytic ozonation, CFA concentrations below our detection 

limit (0.1 mg/L) were detected within 15 min reaction. It was seen that Cu1-Al1 

catalyst also shows good activity with lower concentration of CFA. And the 

efficiency in mineralization was maintained at lower concentration values of CFA. 

When catalytic ozonation experiments were performed using 10 mg/L, 25 mg/L 
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and 50 mg/L of initial CFA concentration, resulted in a fast disappearance of CFA 

in less than 15 min.,  achieving 76%, 77% and 79% degree of mineralization in 2h. 

Effect of pH was also studied in catalytic ozonation with 100 mg/L of CFA at 

initial pH 7 and 10 (not buffered). Total conversion of CFA was observed within 

10 minutes of reaction with an enhancement in TOC removal, achieving 85 and 

87% degree of mineralization at pH 7 and 10, respectively in 2h ozonation when 

compare to reaction at free pH (See Table 3 and Figure 9). It can be seen that the 

efficiency in mineralization was slightly enhanced at initial pH 7 and 10.  

 

3.5 The investigation of active sites by in situ ATR-IR 

 

 The Cu1-Al1 oxide catalyst, prepared by co-precipitation method, exhibit excellent 

activity for the degradation and mineralization of CFA in catalytic ozonation 

without detectable leaching of copper. In order to identify surface active species 

formed during the reaction on this Cu1-Al1 catalyst and the interaction with ozone, 

in situ ATR-IR spectroscopy was used to study the changes in the surface species 

present on the catalyst. For that, several experiments were carried out in presence 

of water, D2O, phosphate and in the absence and presence of ozone. According to 

the literature [62-63] it is assumed that ozone easily interacts with surface species 

which are generated from dissociative adsorption of H2O on Lewis acid sites. Then 

the production of reactive oxygen species is initiated, leading to the degradation of 

pollutants. On the basis of the mechanism of gas ozone destruction, both Bronsted 

and Lewis acid sites on the catalyst surface are thought to be catalytic centers [58]. 

The presence of comparatively strong Lewis acid sites on alumina [64, 65] leads to 

the adsorption of Lewis bases such as water and ozone. In situ ATR-IR 

spectroscopy experiments were carried out under different conditions as depicted 
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in Fig. 10 and 11. In situ ATR-IR spectra of H2O, Cu1-Al1 with H2O and Cu1-Al1 

treated with ozone in presence of H2O was measured without any subtraction of 

H2O spectra, as shown in Fig. 10. H2O vibrates at a stretching frequency of around 

3390 cm
-1 

and a bending frequency of 1648 cm
-1

, as shown in Fig. 10 (a). 

However, after the addition of aqueous ozone on the layer of catalyst, a new peak 

appeared around 1361cm
-1

 [See Fig. 10(c)]. In treatment of alumina with ozone, 

this type of peak was observed also by Roscoe and Abbatt [66]. They verified in 

detail that this peak belonged to surface oxide species formed by interaction of 

ozone with Lewis acid sites on catalyst surface. The similar surface oxide species 

was also found in the ozonated MnOx/Al2O3 by FTIR [67-68]. This suggests that 

the peak likely belong to surface oxide species formed on catalyst after exposure to 

aqueous ozone. Meanwhile, it was observed that with the addition of aqueous 

ozone over the catalyst surface, the intensities of peaks at 1648 and 3390 cm
-1

 

increased for all repeated experiments, suggesting that new surface hydroxyl 

groups are formed. Furthermore, in situ ATR-IR experiments were carried out in 

D2O to investigate the interaction between the surface acidic sites of catalyst and 

water molecules. In this experiment, D2O was used as solvent instead of H2O to 

separate from the bulk OH of the catalyst. 
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Fig. 10 In situ ATR-IR spectra of (a) H2O (b) Cu1-Al1 + H2O (c) Cu1-Al1 + H2O +O3 

                  

 

As shown in Fig.11, the stretching vibration of the hydrogen-bonded (Me) O–D of 

Cu1-Al1 is located at 2485 cm
−1

, while the peak at 1208 cm
−1

 was assigned to the 

vibrations of hydrogen-bonded D2O. The peak appearing at around 1469cm
−1

 

might also belong to the vibration of hydrogen-bonded D2O of ((Me)O-D) [39, 58]. 

When D2O and ozone was passed on catalyst surface, this peak at 1469cm
−1

 (See 

Fig. 11 b and c) indicates that the significant acidity of this catalyst may result in 

more chemisorbed water on the surface of this Cu1-Al1 catalyst.  
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Fig. 11 In situ ATR-IR spectra of (a) D2O (b) Cu1-Al1 + D2O (c) Cu1-Al1 + D2O +O3 

 

      

    To have more clean/clear spectra and clarify the formation of activated species 

(1361 cm
-1 

in presence of H2O) on catalyst surface and acidic sites of this catalyst 

(which may promote chemisorption of water molecule), experiments were carried 

out in presence of H2O and D2O. After analysis, reference spectra of H2O and D2O 

have been subtracted from the spectra obtained with addition of aqueous ozone on 

catalyst surface as shown in Fig. 12A and 12B. When aqueous ozone was passed 

on catalyst surface, similar spectral band appeared at 1361cm
-1

 [See Fig 12b and 

Fig. 10 (c)] like experiment without subtraction of H2O. Several experiments were 

performed by passing aqueous ozone on catalyst surface and in all experiments  
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Fig.12 ATR-IR spectra of Cu1-Al1 with ozone (A) in presence of H2O and (B) in 

presence of D2O and ATR-IR spectra of CFA. 

 

a peak appear at 1361cm
-1

, suggesting formation of surface activated species. After 

that, water (without ozone) was passed on catalyst surface and spectra was 

measured, peak at 1361cm
-1

 remained with lower intensity, showing presence of 

this activated species on catalyst surface even after 10 cycle of washing, which 

indicate that this activated species is stable on catalyst surface. The reference 
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spectrum of CFA was measured by passing CFA solution on catalyst surface, and 

an intense peak of acid around 1500 cm
-1

was observed (See Fig.12). When CFA 

was passed on catalyst surface after aqueous ozone, the spectral feature band at 

1361 cm
-1

 disappeared, as can be seen in Fig. 12A (c). Moreover, all peak 

intensities of CFA and particularly peak at 1500 cm
-1

 from the acidic groups 

decreased when compare to reference spectra of CFA. These results indicate stable 

activated species on catalyst surface and hydroxyl groups play important role in the 

degradation of clofibric acid in ozonation process. Also in situ ATR-IR 

experiments were carried out in presence of D2O. Initially, aqueous ozone (with 

D2O) was passed on catalyst surface, and spectra was subtracted with D2O 

spectrum, and new peak appears at 1469cm
−1

 (See Fig. 12B b), might be due to the 

presence of chemisorbed water on stronger acidic sites of this Cu1-Al1 catalyst. 

This indicates that interaction of catalyst with aqueous ozone brought more 

chemisorbed water on the surface of catalyst. There is also the formation of 

activated species on catalyst surface but which is difficult to identify in this 

spectral range due to the band shift to the lower wavelength region. 

 In situ ATR-IR experiments in presence of H2O and D2O indicated a greater 

interaction of aqueous ozone with surface hydroxyl groups, resulting in the 

formation of surface active species on catalyst surface which would enhance ozone 

decomposition thus promoting hydroxyl radical generation.  

Phosphate is a harder base than water. Therefore, it can be strongly bonded with 

surface Lewis acid site of catalyst [34, 62] and its presence would inhibit the 

adsorption of water on the Lewis acid sites of the catalyst. For this reason, the 

effect of phosphate was investigated in the interaction of Cu1-Al1with water and 

ozone. Fig. 13a shows the spectra of phosphate on catalyst layer and spectral band 

appeared at 1080cm
−1

, belonging to phosphate vibration. Figure 13b show spectra 

of aqueous ozone on catalyst surface, presenting absorption peak at 1361 cm
-1 

of 
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reactive activated species, as commented before. When phosphate solution was 

passed through the ozonated surface, the spectral feature band at 1361 cm
-1 

disappeared (Fig. 13c). This might be due to the fact that phosphate in the solution 

can avoid the formation of surface active species and inhibit interaction of ozone 

with surface hydroxyl group which can prevent the formation of surface active 

species on catalyst surface. Therefore, the formation of surface active species 

depended on the presence of surface Lewis acidic sites of catalysts.  

       

Fig. 13 In situ ATR-IR spectra of (a) Phosphate (30mM), (b) Cu1-Al1 treated with O3 and (C) Cu1-Al1   

treated with ozone and phosphate (30mM) solution (The spectrum of H2O has been subtracted from all 

spectra) 

                          

Fig 14a and b shows catalytic activity tests in presence and absence of phosphate. 

TOC removal was greatly suppressed when catalytic ozonation experiment was 
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performed in the presence of 5 mM phosphate as (See Fig. 14b), achieving yield 

similar to those obtained by single ozonation. The results indicate that in presence 

of phosphate, catalytic role of Cu1-Al1 was almost completely suppressed.  

 

                    

Fig.14 Effect of phosphate on the reaction activity of Cu1-Al1 (a) without phosphate and (b) with 5mM 

phosphate    ( Reaction conditions: 500 ml, [CFA]0=100mg/L, O3 = 1.2 g/h, O2 = 40L/h, catalyst = 0.5g/L, 

Temp. = R.T., pH = free and time =2h) 

 

 The highest activity and stability of calcined Cu1-Al1 for CFA degradation and 

mineralization could be due to the presence of higher Lewis acidic sites (See Fig. 

7) as compared to the other Cu-catalysts, as shown by ammonia TPD results. Also 

higher Cu loading in Cu1-Al1 and high dispersion of Cu species on the surface of 

this catalyst could also be a reason for this high activity. 

 

Ozone is a dipole molecule; it has both nucleophilic and electrophilic sites [69]. 

Ozone molecule may combine with the H (electrophilic) and O (nucleophilic) 
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b 
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atoms of surface hydroxyl group of catalyst during their interaction.  So this 

combination would enhance ozone decomposition, thus promoting radicals 

generation. These results suggest that surface activated species are generated by 

the strong interaction of aqueous ozone with the surface hydrogen-bonded MeO–H 

and H2O in aqueous phase catalytic ozonation, while the surface Lewis acidic sites 

are reactive sites for the surface hydroxylation of catalysts in water, which agreed 

with the above results. So it can be said that surface hydroxyl groups play 

important role in the catalytic system.  

 

 

 

4.  Conclusions 

 

   Clofibric acid can be effectively degraded by catalytic ozonation with Cu-based 

catalysts with improved stability and activity. The results of this study indicate that 

copper hydrotalcite and Cu-spinel, copper dawsonite and Cu1-Al1 oxide catalysts 

are suitable and highly active catalysts for the degradation and mineralization of 

CFA.  Among all tested Cu-based catalysts, Cu1-Al1exhibited excellent activity, in 

which distinct spinel CuAl2O4 phase formation was observed even at low 

calcination temperature (at 400
o
C). In the presence of Cu1-Al1 oxide catalyst, 

mineralization efficiency of CFA was 82 and 96 % after 2 and 6h of ozonation, 

respectively, without any leaching of Cu. Moreover, after being reused three times, 

Cu1-Al1still showed excellent activity, achieving 76 % mineralization after 2h of 

ozonation. These results suggested that Cu1-Al1oxide catalyst possessed a high 

activity and reusability in ozonation.   
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In situ ATR-IR studies verified that the dissociative chemisorptions of water 

occurring at the surface Lewis acidic sites of the catalyst, causes strong interaction 

between aqueous ozone and Cu1-Al1, and initiate the catalytic reaction. The 

stronger acidic sites of catalyst caused a higher amount of chemisorbed water 

enhancing the interaction with ozone, resulting in higher catalytic reactivity in 

ozonation process. The observations revealed that higher surface acidic sites and 

surface hydroxyl groups of Cu1-Al1 oxide catalyst were important reactive centre 

in promoting 
.
OH generation from aqueous ozone for catalytic ozonation of CFA. 
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CHAPTER – 6 

Pd/Fe-Zeolite based catalysts for adsorption/oxidation 

processes in removal of organic contaminants by 

heterogeneous Fenton-like process 

 

 

Two types of iron-containing zeolites, Fe-ZSM5 (26) and Fe-ZSM5 (236) were studied as 

catalysts for adsorption and oxidation of phenol by Fenton-like process at ambient conditions 

and at nearly neutral pH, with and without in-situ generation of H2O2. Adsorption of phenol is 

more favorable on hydrophobic Fe-ZSM5 (236) zeolite, indicating higher surface 

hydrophobicity, proved to be excellent adsorbents for phenol from aqueous solution. In this study 

the degradation of an aqueous solution of phenol was investigated during Fenton-like process 

using Pd immobilized on Fe-ZSM5 catalysts. Batch experiments indicate that both types of Fe-

zeolites are active in the heterogeneous Fenton-like oxidation of phenol at neutral pH. The best 

result for phenol conversion and mineralization was observed over both hydrophilic and 

hydrophobic 0.1 wt% Pd/Fe-ZSM5 using commercial H2O2, achieving total conversion of phenol 

in 2h and 60-63% mineralization degree in 6h. Experiments showed that Pd immobilization on 

Fe-ZSM5has a positive effect on phenol degradation. Pd/Fe-ZSM5 (236) with high 

hydrophobicity can be suitable catalysts in Fenton-like process for phenol degradation by in-situ 

generated hydrogen peroxide. 

 This study shows that Fe-containing zeolites are promising catalysts for a combined approach 

of adsorption/oxidation degradation of phenol by commercial H2O2. Also stronger adsorptive 

enrichment of phenol in case of hydrophobic Pd/Fe-ZSM5 shows better activity for Fenton-like 

process by “in-situ” generated hydrogen peroxide. 
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1. Introduction 

       

  Wastewater discharged from various industrial processes has become a great 

concern as several organic contaminants in the wastewater are resistant to natural 

degradation and toxic to animal and human beings. Phenolic compounds removal 

is a very active research field due to the occurrence and toxicity of phenolic 

pollutants in industrial wastewaters. As phenol is a basic structural unit for a 

variety of synthetic organic compounds, waste water contaminated with phenol has 

got much attention. Wastewater originating from many industries likes paper and 

pulp, resin manufacturing, gas and coke manufacturing, tanning, textile, rubber, 

pharmaceutical and petroleum contain phenol and substituted phenols. Decay of 

vegetation also contributes to phenol in water bodies. Phenols are harmful to 

organisms and many of them have been classified as hazardous pollutants because 

of their potential harm to human health. The ingestion of phenols in human body 

causes protein degeneration, tissue erosion and paralysis of central nervous system 

and also damage kidney, liver and pancreas [1, 2]. In addition to this, the oxidation 

of numerous higher molecular weight compounds produce phenol as an 

intermediate compound. These characteristics make phenol a widely used model 

pollutant in the study of wastewater treatment technologies [3-7]. The effective 

removal of such pollutants, from the safety aspect, is a challenging task given the 

increasingly stringent environmental laws and regulations. 

To prevent the deterioration of water quality and reduce the risks posed to public 

health, it is imperative to treat wastewater before discharging to the environment 

[8, 9]. Advanced Oxidation Processes (AOPs) have attracted great interest in 

wastewater treatment due its ability in complete degradation of organic pollutants 

over physical processes like adsorption and flocculation. The development of new 
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catalytic oxidation technologies for the removal of these compounds at the point of 

origin are thus highly interesting [10-11]. The efficiency and simplicity of AOPs is 

based on the generation of very reactive species (mainly hydroxyl radicals), which 

are able to oxidize a broad range of recalcitrant organic pollutants to stable 

inorganic (H2O and CO2) or at least more biodegradable and less harmful 

compounds [12, 13]. H2O2 is one of the most widely-used oxidants to generate 

hydroxyl radicals in water. The generation of hydroxyl radicals from H2O2 can 

generally be carried out by ultrasound, ultraviolet radiation, or appropriate 

catalysts [14]. Among the various approaches of generation of hydroxyl radicals, 

the Fenton reaction (dissolved Fe
2+ 

+ H2O2) is one of the most efficient processes 

to eliminate toxic compounds present in the wastewater [15] and has been proven 

as a cost-effective technique [10]. Compared to homogeneous analogs, solid 

Fenton type catalysts are more attractive due to the ease of handling, the possibility 

to overcome pH limitation, the absence of iron complexing by oxidation 

intermediates and removal and recovery of catalysts [16]. The efficiency of 

catalyst is dependent on a number of factors including its surface area, morphology 

and surface chemistry. Activated carbon [17], clays [18], resins or mesoporous 

materials [19], solid iron-oxide minerals or zero-valent iron [20–22] and several 

solid supports such as zeolites [23, 24] have been studied for immobilization of 

iron species in heterogeneous Fenton-like catalysts.  

Furthermore, in situ production of hydrogen peroxide is an interesting alternative 

in order to achieve an improved degree of utilization of H2O2 for contaminant 

degradation compared to its parasitic decomposition and also lowering the relevant 

cost of hydrogen peroxide transportation, storage and handling. Fenton-like 

process has shown good performance with catalytic in-situ generated H2O2. In Fe-

Pd bimetallic catalytic system, palladium is able to decompose formic acid with 
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simultaneous generation of H2O2 in presence of O2 and this hydrogen peroxide is 

further decomposed by an iron catalyst to form hydroxyl radicals leading to the 

oxidation of organic pollutants [14, 25].  

 Among the above-mentioned solid supports, zeolites have been extensively 

studied as Fenton-like catalyst supports for oxidation of relatively small molecules 

such as phenol or MTBE [15, 26–31]. On the other hand zeolites are receiving 

increasing attention as alternative adsorbents for removal of organic compounds 

from water [24, 27, 32, 33]. Thus, they are suitable for the combination of 

adsorption/oxidation of organic contaminants. Fe-ZSM5 has been shown to be a 

promising heterogeneous solid-phase catalyst in total oxidation of a series of low 

molecular weight (MW) organic substrates by hydrogen peroxide [34–36]. 

Mineralization degree of phenol, 1,1-dimethylhydrazine and ethanol, as well as 

extent of H2O2 utilization was higher in such a heterogeneous system compared 

with the homogeneous Fenton system due to effective adsorption of organic 

substrate on zeolite surface [37].  

Pd-Fe-zeolite and Pd-Ce-zeolite composite catalysts have been studied in CO 

oxidation and CO electro-oxidation [38-39]. Chlorophenol degradation has been 

studied by heterogeneous Fenton-like oxidation reaction involving in situ 

generation of H2O2  

using an alumina-supported Pd-Fe catalyst [40]. Also in case of commercial H2O2, 

the enhancement in production of hydroxyl radicals by the addition of platinum or 

palladium has been observed in Fenton reaction for DNA degradation [41]. 

Platinum and palladium are classified with iron as transition metals and are known 

to participate in redox reactions; it is possible that they also can function in a 

Fenton-like reaction. 
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       In this work, we studied the application of adsorption/oxidation process by 

means of heterogeneous Fenton-like oxidation (Pd-immobilized on Fe-zeolites + 

H2O2) for phenol oxidation at ambient conditions and at nearly neutral pH. Also, 

we tried to combine both approaches, i.e. (i) in-situ generation of H2O2 on Pd and 

(ii) contaminant enrichment and catalytic oxidation on Fe-zeolites. Thus, we 

prepared Pd/Fe-ZSM5 catalysts and studied the degradation of phenol (as a model 

pollutant) by commercial H2O2 and in-situ generated H2O2 from formic acid and 

O2. The efficiency of the system was evaluated by the measurement of phenol and 

formic acid concentration and total organic carbon (TOC). The effect of factors 

such as pH, H2O2 concentration and Pd loading in Fe-ZSM5 catalyst has been 

studied. 

 

 

2. Experimental 

 

  2.1. Preparation and characterization of Pd/Fe-ZSM5 catalysts 

   All zeolites were obtained in powder form (from Clariant, Germany). Fe-zeolite 

catalysts [Fe-ZSM5 (26) and Fe-ZSM5 (236)] with 0.1, 0.5, 1 and 5 wt% Pd were 

prepared by an impregnation method. Appropriate amounts of PdCl2 and Fe-ZSM5 

zeolite were mixed together with deionised water. The slurry obtained was kept for 

continuous stirring for a few minutes. After that a solution of NaBH4 was added 

very slowly with continuous stirring to reduce PdCl2. The residue was filtered, 

washed with deionized water and kept for drying overnight at 100
°
C.  
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X-ray fluorescence (XRF) analysis was performed in order to quantify the Pd 

content of Pd immobilized on hydrophilic Fe-ZSM5 (26). N2 adsorption was 

performed using a Micromeritics ASAP 2010 apparatus at 77 K. Before analysis, 

the samples were degasified at 120°C for 12 hours. Total surface area was 

calculated by the BET method.  

 

2.2. Batch Adsorption Isotherms  

     The equilibrium sorption isotherms were measured at ambient temperature. 

Adsorption isotherms of phenol for 2 types of Fe-ZSM5 zeolites (listed in Table 1) 

were obtained from batch equilibration experiments, whereby 10mL of phenol 

solutions with different concentrations (5–100 mg /L) were prepared from a stock 

solution (5 g/L) in deionized water and added to glass vials with screw caps and 

PTFE-lined septa containing 2g/L of zeolite. The vials were placed on a horizontal 

shaker for a mixing time of 24 h, sufficient to reach the adsorption equilibrium. 

After the equilibration step, the samples were centrifuged and the clear water phase 

decanted and concentration of the freely dissolved phenol (Cfree) was determined 

by HPLC analysis.  

 

Table 1.  Characteristic properties of zeolites used as adsorbent. 

 Zeolite/adsorbent        SiO2/Al2O3        BET area         Total pore                   Fe (Wt %) 

                                                                 m
2 

g
-1

           volume cm
3 

g
-1

 

  Fe-ZSM5 (26)                26                    368                 0.18                                2.20 

  Fe-ZSM5 (236)              236                  385                  0.21                               0.75 
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2.3. Extraction of adsorbed phenol 

To determine total residual phenol during heterogeneous Fenton-like oxidation 

experiments, an extraction step of adding acetonitrile as co-solvent was performed, 

thus transferring all adsorbed phenol into the solution phase. Firstly, extraction 

tests using various amounts of acetonitrile were performed in order to achieve 

complete extraction of phenol. Suspensions containing phenol (100 mg/L) and 

2g/L of hydrophilic Fe-ZSM5 (26) and/or hydrophobic Fe-ZSM5 (236), were 

equilibrated for 24 h and then subjected to various extraction procedures. These 

included addition of various amounts of acetonitrile, followed by shaking at room 

temperature, respectively, for various times. Based upon the results of these 

experiments, addition of 60 vol. % acetonitrile and shaking for 3-4 h was selected 

as standard procedure allowing total recovery of phenol.  

 

2.4. Catalytic activity tests for phenol degradation  

 I. Heterogeneous Fenton-like reaction using commercial H2O2 

     Heterogeneous Fenton-like experiments were conducted at ambient 

temperature. The degradation of phenol (100 mg/L) with Pd/Fe-ZSM5 catalysts 

was carried out in a glass reactor with a capacity of 250 ml. After adding catalyst 

(5g/L) to the reactor with 100 ml of phenol solution (0.1g/L), adsorption was 

allowed to come to equilibrium for overnight. Afterwards, the concentration of the 

freely dissolved fraction of organic compound was determined by HPLC analysis. 

The Fenton-like reaction was then started by adding definite amount of H
2
O

2 

solution (30 wt %). The pH was adjusted to 7 and readjusted during the reaction if 

necessary by adding diluted NaOH and experiments were conducted for 6h. The 
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concentration of H2O2 in suspension aliquots was monitored by means of 

photometric measurements using a solution of titanyl sulfate and a UV mini 1240 

Shimadzu spectrophotometer [42]. In order to determine residual concentrations of 

phenol during the reaction, 1 mL of suspension was sampled and spiked with little 

drop of sodium thiosulfate in order to stop the reaction (complete consumption of 

H2O2). The total residual concentration of phenol during the reaction was 

determined by solvent extraction of aliquots suspension and HPLC analyses were 

then performed as described above. Furthermore, total organic carbon (TOC) was 

measured before starting and at the end of the reaction. 

  

II. In-situ generated H2O2 in heterogeneous Fenton-like reaction 

 Phenol degradation reactions were performed in 100 mL glass reactors at room 

temperature. The volume of the reaction mixture was 50 ml, containing phenol 

(100 mg/L), formic acid (40 mM) and catalyst (5g/L). The reaction suspension was 

continuously purged with oxygen (20 ml/min). Oxidation experiments were 

conducted for 6h and samples were periodically withdrawn to be analyzed by 

HPLC (phenol, formic acid) and TOC analysis. Suspension samples were mixed 

with 60% acetonitrile and shaken for 3-4 h in order to completely extract the 

adsorbed phenol fraction from the zeolite prior to HPLC analysis. 

    Furthermore, in order to test the recyclability of the Pd/Fe-ZSM5 (26) catalyst 

using commercial H2O2, three sequential cycles of adsorption/oxidation were 

conducted.  
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3. Results and discussion 

 

Pd content of Pd immobilized on hydrophilic Fe-ZSM5 (26) was analyzed by X-

ray fluorescence (XRF) analysis, as shown in Table 2, indicating that experimental 

Pd weight % are similar to the theoretical values. The main characteristic 

properties of the hydrophilic Fe-ZSM5 (26) and hydrophobic Fe-ZSM5 (236) 

zeolites are summarized in Table 1. Iron contents of the Fe-ZSM5 (26) and Fe-

ZSM5 (236) were 2.2 % and 0.75 %, respectively. 

                                   Table 2. XRF analysis of Pd/Fe-ZSM5 (26) catalysts  

 

 

 

 

 

3.1 Adsorption isotherm of phenol 

Bath adsorption experiments were carried out in order to identify the zeolite with 

the best adsorption properties for phenol. Adsorption isotherm were obtained by 

plotting equilibrium adsorption loading at equilibrium (log qe, mg/g) vs. aqueous 

phase phenol concentration (log Ce, mg/L). Figure 1S and 2S show the adsorption 

isotherm of phenol on hydrophilic Fe-ZSM5 (26) and hydrophobic Fe-ZSM5 (236) 

at ambient conditions, respectively. The adsorption properties of these two zeolites 

were characterized by application of appropriate isotherm models. The Freundlich 

Catalysts Pd content (Wt. %) 

0.1%Pd/Fe-ZSM5 (26) 0.11 

0.5%Pd/Fe-ZSM5 (26) 0.45 

1%Pd/Fe-ZSM5 (26)   0.82 

5%Pd/Fe-ZSM5 (26) 4.74 
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[Eq. (1)] model was used to fit the adsorption isotherm of phenol on Fe-ZSM (26) 

and Fe-ZSM5 (236).  

                qe = KF ce
1/n

                     (1) 

Where KF [(mg/kg)/ (mg/L)
 1/n

] and 1/n are Freundlich parameters, and qe and ce 

are the equilibrium concentration of the adsorbate in the solid phase (mg/kg) and 

liquid phase (mg/L), respectively. Application of the Freundlich model gives a 

better fit for Fe-ZSM5 (26) than hydrophilic Fe-ZSM (236) as shown in Fig. 1. 

 

Fig.1. Adsorption isotherm for phenol adsorbed on hydrophilic Fe-ZSM5 (26) and hydrophobicFe-ZSM5 

(236) with Freundlich model fit. 

 

 

 

The isotherm parameters are KF = 58.88 (mg/kg)/(mg/L)
1/n

, n = 1.53 and R
2
 = 0.93 

for phenol adsorption into Fe-ZSM5 (26), and KF = 890.43 (mg/kg)/(mg/L)
1/n

, n = 

1.33 and R
2
 = 0.95 for adsorption into Fe-ZSM5 (236). Isotherms for phenol 

y = 0.6496x + 1.7753 
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showed that the sorption affinity was higher for Fe-ZSM5 (236) than for Fe-ZSM5 

(26), as the former is the hydrophobic zeolite with the highest SiO2/Al2O3 ratio 

(Table 1). Thus, sorption-desorption process can be considered to be close to 

equilibrium during the course of reaction. Nevertheless, within the concentration 

range studied, the isotherms of phenol adsorption on Fe-ZSM5 (26) and Fe-ZSM5 

(236) can be reasonably well described by the Freundlich model.  

 

3.2 Catalytic activity for phenol degradation in batch experiments 

Phenol was adsorbed by the zeolites resulting in an adsorption degree of 10-15 % 

on hydrophilic Fe-ZSM5 (26) and 35% over hydrophobic Fe-ZSM5 (236). 

Heterogeneous Fenton-like reactions were carried out for the degradation of phenol 

in presence of both types of Pd immobilized zeolites [Pd/Fe-ZSM5 (26) and Pd/Fe-

ZSM5 (236)] using commercial H2O2 and also in situ generated H2O2 from formic 

acid and oxygen. Both types of catalysts are able to produce reactive species from 

H2O2 at nearly neutral pH, facilitating the degradation of organic contaminants.  

 

I. Pd immobilized on the hydrophilic Fe-ZSM5 (26) catalysts: 

3.2.1. Heterogeneous Fenton-like reaction using commercial H2O2 and Pd/Fe-

ZSM5 (26) catalysts  

   3.2.1.1 Phenol degradation and H2O2 decomposition 

  The results of phenol degradation and hydrogen peroxide decomposition obtained 

during 6 h of reaction using Fe-ZSM5, Fe-ZSM5 reduced by NaBH4, (to check 

effect of reduction step performed with the Pd-containing catalysts) and Pd/Fe-
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ZSM5 catalysts with 0.1%, 0.5%, 1.0% and 5 % Pd at ambient conditions, are 

shown in Fig.2 and 3. 

 

Fig.2. Phenol degradation by heterogeneous Fenton using Pd/Fe-ZSM5 (26) 

(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5g/L, pH =7, overnight equilibrium) 

 Among all these Pd immobilized hydrophilic Fe-ZSM5 (26)  tested catalysts, 0.1 

% Pd/Fe-ZSM5 (26) catalyst shows better performance in phenol degradation and 

H2O2 decomposition, achieving 100% phenol conversion in 4h and 100% H2O2 

decomposition in 6h of Fenton-like process. 100 % phenol conversion and 94 % 

H2O2 decomposition was obtained with Fe-ZSM5 (reduced by NaBH4) in 6h, 

compared to Fe-ZSM5 (89% phenol conversion with 84 % H2O2 decomposition in 

6h). Remarkable results are obtained at short reaction time (2 h), where already 

90% phenol conversion was obtained with 0.1%Pd/Fe-ZSM5 (26). After little 

addition of Pd (0.1%) on Fe-ZSM5 (26) catalysts, a clear promotion of the 

efficiency in phenol conversion was observed (See Fig. 2). Therefore, among all 

these catalysts, 0.1 % Pd/Fe-ZSM5 shows better activity in phenol degradation, 

also achieving about 60% TOC removal after 6 h of reaction.  
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Fig.3. H2O2 decomposition by heterogeneous Fenton using Pd/Fe-ZSM5 (26) 

(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5g/L, pH =7, overnight equilibrium) 

These results suggest that Pd impregnation and NaBH4 reduction accelerate H2O2 

decomposition (See Fig. 3.). Also it has been observed that an increase in the Pd 

content from 0.1 to 5 % results in decrease in phenol conversion (See Fig.2.). A 

possible reason may be the blockage of the zeolite surface resulting in to an 

incomplete oxidation of phenol. To check the repeability of this catalyst for phenol 

degradation reaction, several repeatation experiments were performed. This 

catalyst show nearly similar performance for phenol degradation and H2O2 

decomposition in all repeated experiments. 
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3.2.1.2 Reuse and recycle of 0.1%Pd/Fe-ZSM5 (26) in phenol adsorption/oxidation  

            cycles by heterogeneous Fenton-like process 

 

To check the effect of 0.1% Pd in catalytic system for phenol degradation and in 

order to establish the reusability of this catalyst for phenol degradation, 

heterogeneous Fenton-like reaction was performed  in the presence of 0.1%Pd/Fe-

ZSM5 catalyst recovered after a run by filtering, washing and drying, and reused in 

three consecutive runs, to assess its stability, as shown in Fig. 4.  

 

A    B  

Fig. 4.  Recycle and reuse of 0.1%Pd/Fe-ZSM5 (26) catalyst in phenol adsorption/oxidation cycles 
(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5g/L, pH =7, overnight equilibrium 

(A) Phenol conversion    (B) H2O2 decomposition. 

 

 

When compared to fresh catalysts, during reuse and recycle process, activity of this 

catalyst decreased in phenol degradation and H2O2 decomposition (See Fig. 4A and 

4B).  In case of phenol degradation performance, after three consecutive cycles is 

similar to Fe-ZSM5 (without Pd) . These results shows that little amount of Pd can 

help for decomposition of H2O2 at iron sites on the zeolite by a Fenton-like 

process. 
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3.2.1.3 Effect of pH  

 Fenton-like process was carried out at different pH (pH = 7 and 5) to study its 

effect on the performance of phenol degradation using 0.1%Pd/Fe-ZSM5 (5g/L) 

and hydrogen peroxide (5g/L). For this study, the pH of a 100 mg/L phenol 

solution was adjusted during the reaction at pH 7 and 5. Fig. 5A and 5B shows the 

results of phenol conversion and H2O2 decomposition.   

A  B  

Fig. 5.  Phenol degradation with 0.1%Pd/Fe-ZSM5 (26) at pH 5 and 7 

(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5g/L, pH = 5 and 7, overnight equilibrium) 

(A)Phenol conversion      (B) H2O2 decomposition. 

 

The reaction at pH 5 shows great increase in phenol conversion,  achieving 100% 

phenol conversion within 1 h of reaction and 100 % H2O2 decomposition within 4 

h of reaction with respect to the reactions at pH 7. Comparing the reactions at pH 7 

and 5, it is clear that 0.1%Pd/Fe-ZSM5 displays a better performance for phenol 

degradation at acidic pH (5). 
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3.2.1.4 Effect of H2O2 concentration 

In order to study the effect of hydrogen peroxide concentration on the performance 

of phenol degradation by Fenton-like process, experiments were performed using 

5g/L of catalyst with 5g/L and 10g/L of hydrogen peroxide concentration at room 

temperature.  

A    B  

Fig. 6. Phenol degradation with 0.1%Pd/Fe-ZSM5 (26) at different H2O2 concentaration 

(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5 and 10 g/L, pH =7, overnight equilibrium) 

 

(A) Phenol Conversion  (B) H2O2 decomposition 

 

The results of these experiments for phenol degradation and H2O2 decomposition 

are shown in Fig. 6A and 6B. As it can be seen, increasing the hydrogen peroxide 

concentration up to 10g/L involves a faster degradation of phenol and 

decomposition of H2O2, achieving 100% phenol conversion within 40 min. with 

100% H2O2 decomposition in 2h of Fenton-like process. 
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3.2.1. 5 Heterogeneous Fenton-like process using 0.1%Pd/Fe-ZSM5 (26) with 

             continuous addition of H2O2 for 2h during the reaction 

 

 0.1%Pd/Fe-ZSM5 (26) catalyst shows better performance with high concentration 

of   H2O2 for phenol degradation. To check the efficiency of this catalyst in phenol 

degradation, experiments were performed using continuous drop wise addition of 

hydrogen peroxide during the reaction for 2h (with a total addition of 1.6g/L) at 

ambient conditions. The results of these experiments for phenol degradation and 

H2O2 decomposition are shown in Fig. 7A and 7B.  

 

A  B  

Fig. 7. Heterogeneous Fenton-like process using 0.1%Pd/Fe-ZSM5 (26) with continuous addition of H2O2 

for 2h during the reaction. (Phenol = 100 mg/L, H2O2 = 5 g/L [continuous addition of H2O2 

(1.6g/L) for 2h], Catalyst = 5g/L, pH = 7) 

(A) Phenol conversion     (B) H2O2 decomposition 

 

100 % phenol conversion was obtained at 4h of Fenton-like reaction in both 

reactions. From Fig. 7A it can be seen that activity of this catalyst remains same 

for phenol degradation when the addition of H2O2 was performed continuously for 

2h during the reaction. Therefore, continuous addition of hydrogen peroxide does 
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not show any enhancement in phenol degradation when compared with reaction 

performed using 5g/L H2O2 at the beginning of reaction. 

 From all above results it can be said that Pd/Fe-ZSM5 (26) catalysts show good 

activity for phenol degradation in heterogeneous Fenton-like reaction. Fe-ZSM5 

(reduced by NaBH4) and 0.1%Pd immobilized Fe-ZSM5 catalysts show best 

performance in this process. This suggests that Pd immobilized on Fe-zeolite is an 

active catalyst in heterogeneous Fenton-like process using commercial hydrogen 

peroxide. Pd enhanced the decomposition rate of H2O2 in this process. Palladium in 

presence of a Fenton system can augment the production of hydroxyl radicals [41]. 

 

3.2.2. Heterogeneous Fenton-like reaction using in situ generated H2O2 from    

         formic acid and O2 using Pd/Fe-ZSM5 (26)      

Phenol degradation experiments were performed using these catalysts with in situ 

generated hydrogen peroxide from formic acid and oxygen. Figs. 8A and 8B show 

the phenol degradation and formic acid decomposition obtained during 6 h of 

Fenton-like process using Pd/Fe-ZSM5 catalysts with 0.1 to 5 % Pd. Among these 

catalysts, 5% Pd/Fe-ZSM5 shows best activity in the reaction system with “in-situ” 

generation of hydrogen peroxide from formic acid and O2, achieving formic acid 

and phenol conversion degrees of up to 45 and 40 %, respectively, in 6 h of 

reaction. In case of Fe-ZSM5 (without Pd), negligible phenol conversion and 

formic acid decomposition was observed. 
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A   B  

Fig. 8. Phenol degradation by heterogeneous Fenton-like process by in-situ generated H2O2 using 

Pd/Fe-ZSM5 (26).  (A) Phenol degradation    (B) FA decomposition 

         [Phenol (C0= 100 mg/L) in a system containing formic acid (C0 = 40 mM) and 5g/L Pd/Fe-ZSM5 (26) 

          catalysts with different Pd contents under continuous purging with O2 (20 ml/min), pH =2.5.]                                        

An increase in the Pd content from 0.1 to 5 % results in faster decomposition of 

formic acid accelerating the generation of hydrogen peroxide. Hence the rate of 

phenol conversion is enhanced. These results suggest that the Pd immobilized on 

the Fe-zeolite is able to decompose formic acid to generate hydrogen peroxide, 

which is further decomposed to form hydroxyl radicals at the iron sites of the Fe-

containing zeolite.  

 

II. Pd immobilized on the hydrophobic Fe-ZSM5 (236) catalysts: 

3.2.3. Heterogeneous Fenton-like reaction using commercial H2O2 

 It was observed that the SiO2/Al2O3 molar ratio is a decisive factor for the 

adsorption properties, at least in the case of Fe-ZSM5 zeolites (See Fig.1 and 

Table1). 

 Fe-ZSM5 zeolite with higher SiO2/Al2O3 ratios was found to provide better 

adsorption for phenol. Hydrophobic Fe-ZSM5 (with a molar ratio of SiO2/Al2O3 = 
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236 and 0.75 wt% Fe) shows higher phenol adsorption capacity (35%) compared to 

Fe-ZSM5 (26).  

  To design a combined adsorption/oxidation method, Fe-ZSM5 (236) zeolite with 

little amount of Pd (0.1%) can be a suitable material for the degradation of phenol 

in heterogeneous Fenton-like reactions. With this purpose 0.1% Pd/Fe-ZSM5 (236) 

catalyst was synthesized and tested in heterogeneous Fenton-like process. To 

compare with Fe-ZSM5 (26), hydrophobic zeolite without Fe i.e. ZSM5 (236), Fe- 

ZSM5 (236) and Fe-ZSM5 (236) (reduced by NaBH4) were also tested in 

heterogeneous Fenton-like process for phenol degradation.  

 The results of phenol degradation and hydrogen peroxide decomposition obtained 

during 6 h Fenton-like process at ambient conditions using ZSM5(236), Fe-

ZSM5(236) (reduced by NaBH4) and 0.1 %Pd/Fe-ZSM5(236) catalysts are shown 

in Fig. 9 and Table 3.  

 

Table 3. H2O2 decomposition in heterogeneous     Fig.9. Phenol degradation by heterogeneous                                                                                                                                                                                                                               

Fenton-like process with Pd/Fe-ZSM5 (236)           Fenton- like process using Pd/Fe-ZSM5 (236) 

             
                

(Phenol = 0.1g/L, H2O2 = 5g/L, catalyst = 5g/L, pH =7, overnight equilibrium) 
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Among all these tested catalysts, 0.1%Pd/Fe-ZSM5 (236) shows best performance 

in phenol degradation and H2O2 decomposition, achieving 100% phenol 

conversion in 4h and 100% H2O2 decomposition with 63% TOC removal in 6h of 

Fenton-like process. 100 % phenol conversion and 96 % H2O2 decomposition was 

obtained with Fe-ZSM5 (236) (reduced by NaBH4) in 6h. When reaction was 

performed with ZSM (236) (without Fe) there is no catalytic activity for phenol 

degradation and negligible H2O2 decomposition was observed, suggesting that Fe is 

the main active site for H2O2 decomposition and Pd immobilization on the Fe-

zeolites enhanced the decomposition rate of H2O2 to generate hydroxyl radicals for 

phenol degradation. 0.1%Pd/Fe-ZSM5 (26) and 0.1%Pd/Fe-ZSM5 (236) shows 

similar activity in phenol degradation and H2O2 decomposition. 100 % phenol 

degradation in 4h and total H2O2 decomposition in 6h was obtained by both 

catalysts. Also 60 – 63% TOC removal in 6h was obtained with both catalysts. But 

it has to be taken into account that Fe-ZSM5 (236) contains lower (0.75%) Fe 

content when compared to Fe-ZSM5 (26) (See Table 1). 

 

3.2.2. Heterogeneous Fenton-like reaction using in situ generated H2O2   from  

          formic acid and O2 using Pd/Fe-ZSM5 (236) 

 

Pd-Fe-ZSM5 (236) catalysts were also tested in heterogeneous Fenton-like reaction 

in which H2O2 was generated in situ from formic acid and oxygen. 

 Fig. 10A and 10B. represent phenol degradation and formic acid decomposition 

obtained during 6 h of reaction using Pd/Fe-ZSM5 catalysts with 0.1 to 5 % Pd. 

Among all these catalysts 0.5% Pd/Fe-ZSM5 shows best activity in the reaction 

system with “in-situ” generation of hydrogen peroxide from formic acid and O2, 

achieving formic acid decomposition and phenol conversion degrees of up to 58 % 
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and 65 %, respectively, in 6 h of reaction. In case of Fe-ZSM5 (without Pd) there is 

no reaction, observing negligible phenol conversion and no formic acid 

decomposition.When we compare these results with those obtained from Pd/Fe-

ZSM (26), Pd-immobilized Fe-ZSM (236) shows better performance (See Fig.8 

and 10). These results suggest that Pd immobilized on the hydrophobic Fe-zeolites 

(236) shows faster decomposition of formic acid to generate hydrogen peroxide, 

which is further decomposed to form hydroxyl radicals.  

Hydrophobic Fe-ZSM5 zeolites are excellent adsorbents for phenol from aqueous 

solution. Stronger adsorptive enrichment of phenol in case of hydrophobic Pd/Fe-

ZSM5 has a positive effect on phenol degradation. Pd/Fe-ZSM5 (236) can 

therefore be regarded as promising materials for the removal of phenol, since they 

allow the combination of efficient adsorption and oxidative degradation of phenol 

by in situ generated H2O2 from formic acid and O2. 

  

A     B  

Fig.10. Heterogeneous Fenton-like process by in-situ generated H2O2 using Pd/Fe-ZSM5 (236) 

(A) Phenol conversion   (B) Formic acid decomposition 

[Phenol (C0=100 mg/L) in a system containing formic acid (C0 =40 mM) and 5 g/L Pd/Fe-ZSM5 (236) catalysts 

with different Pd content under continuous purging with O2 (20 mL/min), pH =2.5.] 
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Results obtained deserve further work to optimize operating conditions (such as 

initial formic acid concentration or temperature) to improve performance of this 

process. 

         

 

 

 

4. Conclusions 

 Adsorption isotherms of phenol on hydrophilic and hydrophobic Fe-ZSM5 were 

studied, showing that Fe-ZSM5 (236) has higher adsorption capacity for phenol. 

Stronger adsorptive enrichment of phenol in case of hydrophobic Pd/Fe-ZSM5 has 

shown a positive effect in (H2O2 decomposition) and phenol degradation. 

 The results of this study indicate that phenol can be effectively degraded by 

Fenton-like process using commercial H2O2 by Pd/Fe-ZSM5 (26) and Pd/Fe-ZSM5 

(236) catalysts.  Therefore, Pd-immobilized Fe- containing ZSM5 zeolites are 

promising materials for the treatment of phenol by means of adsorption/oxidation 

processes at near-neutral pH and ambient conditions. The experimental results 

show that addition of little amount of Pd on Fe-zeolites has shown a positive effect 

on this catalytic system, attaining higher phenol degradation in heterogeneous 

Fenton-like process. Under similar reaction conditions, Pd/Fe-ZSM5 (236) showed 

a higher catalytic activity for formic acid decomposition and phenol degradation as 

compared to Pd/Fe-ZSM5 (26) by adsorption/oxidation heterogeneous Fenton-like 
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process with in-situ generated H2O2. This opens up possible applications for 

adsorptive removal of contaminants by zeolite adsorbents which can be 

regenerated with formic acid based on a fully heterogeneous catalytic process of 

H2O2 formation and activation. 
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GENERAL CONCLUSIONS 

    

 In accordance with the general and specific objectives of the present study, this 

research work has been successfully applied to the development of different 

catalytic materials. The obtained results in the present research work are very 

promising and validate the suitability of the proposed novel catalytic materials in 

terms of oxidation of target persistent organic pollutants by both types of AOPs, 

catalytic ozonation and Fenton-like process.  

The most significant results obtained from this research work have been compiled 

as below: 

1. Clofibric acid is effectively degraded by catalytic ozonation with HT- derived   

    materials with improved stability and activity. Mg3Fe0.5Al1 and Cu0.75Mg0.5Al2O4   

   were found to be highly active and stable catalysts for CFA ozonation, achieving    

   mineralization degrees up to 58% and 55%, respectively, for 2h. The stability of  

   Mg3Fe0.5Al1 and Cu0.75Mg0.5Al2O4 was confirmed after three consecutive runs.  

   The efficiency of the process in the degradation of CFA is mainly attained by a   

   heterogeneous, radical based mechanism. Higher calcinations temperature and  

   oxalic acid pretreatment of hydrotalcite/spinel type catalysts attained higher  

   stability. 

 

2. The catalytic activity of FeOOH-derived catalysts has been investigated in both  

    type of Advanced Oxidation Processes (AOPs) like catalytic ozonation and 

    Fenton-like process. Catalysts which showed better performance in Fenton and   

   catalytic ozonation is the one obtained after calcination at 200
o
C and   

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT OF NOVEL CATALYTIC MATERIALS FOR REMOVAL OF EMERGING ORGANIC POLLUTANTS BY ADVANCED OXIDATION PROCESSES (AOPs). 
Shailesh subhashrao sable 
Dipòsit Legal: T 60-2015



200 

 

   predominant phases present were maghemite and hematite. 0.5%Pd/Fe-OOH  

   (calcined at 200
o
C) catalyst was found to be the best catalyst for CFA   

   degradation and mineralization by both types of processes. Using this catalyst,  

  high TOC  removal has been obtained within very short period of reaction time  

 (60-65% degree of mineralization within 30- 60 minutes of reaction) in Fenton- 

  like process. Parametric study has been also performed in Fenton-like process  

  with 0.5%Pd/FeOOH catalyst for clofibric acid degradation varying different   

  variables, specifically, pH, H2O2 concentration, catalyst concentration and  

  temperature.  Optimization of the reaction conditions like temperature (60
º
C), free  

  pH, H2O2 (0.5g/L) and proper loading of the catalyst (2g/L) would lead to the   

  highest mineralization degree. Efficiency of this catalyst has also been  

  demonstrated at lower concentrations of CFA. 

 

3. The efficiency of different Cu-based catalysts has been successfully tested in  

   ozonation for the degradation of clofibric acid. Among all catalysts, highest   

   stability and activity was obtained with Cu1-Al1 oxide catalyst, achieving  

   82% and 96 % mineralization after 2 and 6h of ozonation, respectively without   

  any leaching of Cu. Moreover, after being reused three times, Cu1-Al1 still  

  showed excellent activity, achieving 76 % of mineralization after 2h of ozonation.  

  These results suggested that Cu1-Al1 oxide catalyst possessed a high activity and  

   reusability in ozonation. Efficiency of this catalyst has also been demonstrated at   

  low concentration of CFA.  

  In-situ ATR-IR study of this catalyst has been performed to investigate  

  active sites of catalyst. The in-situ ATR-IR results demonstrate the formation  

  of surface active species due to the stronger interaction between ozone and  

  catalyst in aqueous phase, which promotes formation of active radicals.  
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  Dissociative chemisorptions of H2O have occurred at the surface acidic  

   sites of the catalyst, which interacts with ozone to initiate catalytic reaction. 

 

4. Combined approach of adsorption/oxidation for phenol degradation by 

    heterogeneous Fenton-like process using Fe-containing hydrophilic [Fe-ZSM5  

    (26)] and hydrophobic [Fe-ZSM5 (236)] zeolites was studied. Stronger  

    adsorptive enrichment of phenol in case of hydrophobic Pd/Fe-ZSM5 has a  

    positive effect on phenol degradation. Also addition of little amount of Pd on  

    Fe-zeolites has a positive effect on this catalytic system. This study shows that  

    Fe-containing zeolites are promising catalysts for a combined approach of  

    adsorption/oxidation degradation of phenol by commercial H2O2. Also stronger  

    adsorptive enrichment of phenol in case of hydrophobic Pd/Fe- ZSM5 shows   

    better activity for Fenton-like process by “in-situ” generated hydrogen peroxide    

    when compared tohydrophilic Pd/Fe-ZSM5 catalysts. This opens up possible  

    applications for adsorptive removal of contaminants by zeolite adsorbents which  

    can be regenerated with formic acid based on a fully heterogeneous catalytic  

    process of H2O2 formation and activation. 
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