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Abstract

ABSTRACT

The miniaturization trend of the technology has led to power level densities in excess 100
watts/cm”, which are in the order of the heat produced in a nuclear reactor. The need for new
cooling t echniques ha s p ositioned t he thermal managementont hes taget hel asty ears.
Moreover, t he ¢ ngineering of t he t hermal ¢ onduction ope ns a r oute to e nergy ha rvesting
through, for example, thermoelectric generation. As a consequence, control and engineering of
phonons in the nanoscale is essential for tuning desirable physical properties in a device in the

quest to find a suitable compromise between performance and power consumption.

In the present work we study theoretically and experimentally the thickness-dependence of
the thermal properties of silicon membranes with thicknesses ranging from 9 to 2000 nm. We
investigate the dispersion relations and the corresponding modification of the phase velocities of
the acoustic modes using inelastic Brillouin light scattering s pectroscopy. A reduction ofthe
phase/group velocities of the fundamental flexural mode by more than one order of magnitude
compared to bulk values was observed and is theoretically explained. In addition, the lifetime of
the coherent a coustic phonon modes with frequencies up t 0 500 GHz was also studied using
state-of-the-art u Itrafast p ump-probe: asynchronous opt ical s ampling ( ASOPS). W e ha ve
observed that the lifetime of the first-order dilatational mode decreases significantly from ~ 4.7
ns to 5 ps with decreasing membrane thickness from ~ 194 to 8 nm. Finally, the thermal
conductivity of membranes was investigated using three different contactless techniques known
as single-laser Raman t hermometry, t wo-laser R aman t hermometry an d t ransient t hermal
gradient. We have found that the thermal conductivity of the membranes gradually reduces with

their thickness, reaching values as low as 9 Wm 'K for the thinnest membrane.

In order to account for the observed thermal be haviour of the silicon membranes we have

developed different theoretical approaches to explain the size dependence of thermal properties.



Abstract

The simulation o f a coustic di spersion w as ¢ arried out by us ing m odels based on an el astic
continuum approach, Debye and fitting approaches. The size dependence of the lifetimes was
modelled considering intrinsic phonon-phonon processes and extrinsic phonon scatterings. The
thermal ¢ onductivity w as modelled us ing a m odified 2D D ebye a pproach (Huang m odel),

Srivastava-Callaway-Debye model and Fuchs-Sondheimer approach.

Our o bservations h ave si gnificant co nsequences for S i-based t echnology, e stablishing t he
foundation to investigate the thermal properties in others low-dimensional systems. In addition,
this study would provide design guidelines and enable new approaches for thermal management

at nanometric scales.

Vi
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Chapter I

CHAPTER I: INTRODUCTION AND OBJECTIVES

Duet ot hel arge v ariety o fp romisingt echnological ap plications, t he ¢ oncepto f
nanotechnology has become one of the most important and exciting fields encompassing many
disciplines s uch a s phy sics, ¢ hemistry, bi ology, medicine, engineering a mong ot hers. At
nanometric scales, material properties can be dramatically modified in c omparison with their
bulk counterpart. This is, in part, due to the effects of quantum confinement and to the increase
of surface-volume r atio. F or e xample, a s pherical particle with size of 30 nmhas 5% ofits
atoms on its surface; at 10 nm this percentage has increased by 20% while at 5 nm atoms at the
surface acco unt for almost 50% t he t otal number [1]. These factors ¢ an e ither en hance or

degrade elastic, reactive, thermal, optical and electrical characteristics among others.

Great i nnovations in controlled micro and nanofabrication have l ed to the realization of
novel materials, development of processes and unveiling of new phenomena at nanoscale which,
inturn, have spurred technology growth at an astounding pa ce, w hile o ffering us the first

building blocks for the next green-industrial revolution.

In this sense, the control of the charge and heat transport in low-dimensional semiconductor
structures has become a cornerstone in the development of this next technology revolution. This
is in part motivated by the increasing importance of thermal management as a ¢ onsequence of
the large power d ensities r esulting from the continuous miniaturization of electronics
components. Moreover, the e ngineering of the t hermal conduction opens a route to energy
harvesting t hrough, f or e xample, t hermoelectric generation. A s a consequence, ¢ ontrol a nd
engineering of phonons in the nanoscale is essential for tuning desirable physical properties in a

device in the quest to find a suitable compromise between performance and power consumption.
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Developments arising from c onfinement of electronic charge and light in nanostructures
have been widely researched in the context of information and communication technology. In
contrast, progress in the study of phonons as main actors in heat conductivity, carrier electronic
mobility, detection limits and emission time-scales, among others, has been slower in rate and
smaller v olume. An e xample of the still poor state-of-the-art on this topic it that until now
essential p arameters r emains unknowns such as: the frequency-dependence o fthe Griineisen
parameter, accurate measurements of phonon lifetime and/or phonon mean free path, the
influence of constant [2—5] or frequency-dependent surface roughness parameter [6,7], the limit
of diffusive/ballistic thermal transport and their associated temperature and thickness transition,
to name but afew. One example of t his | imited state-of-the-artis th at only last year an

experimental proof of the effective phonon mean free path in bulk silicon was obtained [8].

The 1 ack of the k nowledge of t hese parametersis due, in part, to substantial challenges
associated with their quantitative experimental determination and the corresponding theoretical
model. In this sense, one set of structures that are attracting increasing attention for thermal
studies is free-standing membranes. These include solids plates (slabs) or rods (bars) connected
to s olid substrate by th e e xtremities. F rom one-atom thick layers, e. g. graphene [9], to high
purity and single-crystal structure, e.g. Si membranes [10], these structures have found use in a
wide v ariety of i nteresting a nd i mportant applications, i ncluding v ery s ensitive f orces [11],
mass [12] and p ressure sensors, low-loss m acromolecule se parators [13], bo lometers

platform [14,15] and optomechanical cavities [16] among others.

In ad dition, as there is no interference from a su bstrate and as they can be fabricated with
precise, controlled and reproducible fabrication processes, these nanoscale objects facilitate the
experimental analysis and comparison with theoretical models and are a text-book example of a

nanoscale sy stem. T heir physical p roperties, e .g. el ectrical an d t hermal p roperties, can be
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dramatically different compared to a thick sample or bulk counterpart, by orders of magnitude.

All these characteristics are of special interest from experimental and theoretical point of view.

1.1 Nanoscale thermal conductivity

The understanding of h eat p ropagation andt hermal pr operties in low-dimensional
nanostructures ha s m otivated i ncreasing r esearch activity an d, u ndoubtedly, the thermal

conductivity, x; is one of the most important and fundamental physical quantities.

The t hermal co nductivity of a m aterial g overns its ability t o t ransport h eat and p lays a
fundamental role in the design and performance of the technological de vices. The dominant
carrier o f the heat energy depends on the type o f material. It can be transported via charge
carriers (electrons), lattice waves ( phonons), electromagnetic waves (photons), or spin waves
(magnons). For non-metal, semiconductor and alloy materials the dominant conduction carrier
is the lattice thermal conduction, i.e., by phonons. A phonon is a pseudo-particle which
represents quantized modes of the vibrational energy of an atom or group of atoms in a lattice.
Considering that phonons are pseudo-particles, it is p ossible to associate to each of them an

energy /iw and a pseudo-momentum p = /g, which obey Bose-Einstein statistics [17].

Similarly to the electron case, the phonon energy can be represented as a dispersion relation,
i.e., a relationship between the phonon frequency and its wavevector. The slope of a dispersion
relation ¢ urves de termines t he phonon g roup v elocity, v, = dw/dg. F or t he bulk case, t he
dispersion relation of phonons with short wavevector can be considered linear and the sl ope
represents the s ound velocity in the material. H owever, when we d ecrease the characteristic
dimensions of the material, this linear dependence no longer holds, and many discrete modes

appear leading to the quantization of the phonon energy. This spatial confinement a ffects the
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phonon group velocity, density of states, specific heat capacity, electron-phonon and phonon-
phonon interactions, etc. [18—23]. Moreover the decrease in dimension sets an upper limit to the
phonon mean free path, because the acoustic wave cannot continue to travel in the media due to

the boundaries.

The recent e xperimental andt heoretical reports pointt oa n enhancement of t he
thermoelectricity figure o fm erit, ZT = S°oT/x (where S is the S eebeck co efficient, o the
electrical conductivity x the thermal conductivity and 7 is the temperature), in thin films [24—
28], nanowires [29-33], superlattices [34—37] and suspended phononic crystals [38—40]. This is
primarily ar esult o fthe thermal ¢ onductivity decrease comparedtothe bulk c ounterpart,
without a co rresponding d ecrease in e lectrical properties. The r eduction of't he t hermal
conductivity i n these sy stems h asb een a ssociated with two p rincipal f actors: ( i)t he
modification of the acoustic dispersion relation due to the additional periodicity ( superlattices
and phononic crystal structures) [41—43] or spatial confinement of the phonon modes (thin films
and nanowires) [44-47] and (ii) the shortening of the phonon mean free path due to the diffuse

scattering of phonons at the boundaries [2,48—50].

To model heat transfer in nanostructures, ad vanced theoretical models are required w hich
correctly take into account the frequency dependence of phonon properties. The majority of the
models of the thermal conductivity are derived from the phonon Boltzmann transport equation
(PBTE) un der thes ingle m ode r elaxation-time a pproximation [17]. F or1 ow-dimensional
systems Zou et al. [51] classified the theoretical models into three types. The first one takes the
bulk f ormulation f or the thermal conductivity, i ntroduces t he m odified di spersion relation
caused by the spatial confinement and adds a boundary scattering rate to the total scattering rate
through Mattiessen’s rule [44]. The second one uses the bulk dispersion relation and derives an
exact solution of the PBTE after introducing the diffusive boundaries conditions, according to a

Knudsen flow model [2,48,52]. The third model, proposed by Zou et al. [51], is a combination
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of these two approaches. This model takes the modified expression of the thermal conductivity
including the Knudsen flow model in addition to the modified dispersion relation. More recently
Huang et al. [46] developed one- and two-dimensional expressions for the thermal conductivity
of nanowire and thin films, which include the modified expression of the relaxation time due to

the boundaries.

The experimental m easurement o ft het hermal ¢ onductivity i nvolves t wo st eps: t he
introduction o f thermal en ergy into the sy stem (heating) and the detection of the change of
temperature or related physical properties due to the increase in thermal energy (sensing). Both
heating and sensing can be measured, mainly, by e lectrical, optical and/or the combination of
both methods. In Table 1.1 a summary of main measurements of Si nanostructures performed in

the last ten years is given.

Relevant Them’.nal'
Reference Type of Dimensions Type of Temperature | conductivity
Nanostructure measurement K] at 300 K
[nm] (W K m—l]
Ma et al. [53]
(2013) Inverse opals 18-38 Electrical, 3® 30-400 0.6-1.3
Grauby et al. )
[54] Nanowires 50 & 200 Electrical, 3o- Room 22-150
2013) SThM temperature
Claudio et al.
[55] Nanostructured 30-40 Electrical, 2-300 1524
Bulk commercial
(2012)
Feser et al.
[56] Nanowires 110-150 | Optical, TDTR Room 12-40
2012) temperature
Marconnet et o
al. [57] Periodic porous 196 Electrical, 3 Room 3.4-112
(2012) nanobridge temperature
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Relevant Themal.
Reference Type of Di . Type of Temperature | conductivity
Nanostructure 1mensions measurement K] at 300 K
[nm] [WK' m"]
Weisse et al.
[58] Porous 300-350 | Optical, TDTR Room 51-142
2012) nanowires temperature
Kim et al.
[59] Free-standing 500 Electrical, Joule Room 326
(2012) phononic crystal heating temperature '
Fang et al. Mesoporous
[60] nanocrystalline 140-340 Electrical, 3o 25-315 0.23-0.32
(2012) thin films
Liuetal. [61] Free-standing Optical, Raman Room
membrane thermometry temperature
2011 b 500 & 700 h 118 & 123
Wang et al.
[62] Nanocrystals 64-550 Electrical, 3m 16-310 8-79
(2011)
Y 1. [38] Free-standing Electrical,
uetal. -
phononic 2225 suspended 80-320 1.5-17
(2010) heater &
nanomesh
detector
Doerk et al. )
[63] Nanowires 30300 | Opticah Raman [ Room 10-81
(2010) thermometry temperature
Tang et al. Electrical,
[39] Holey Si 100 Sﬁzgf;dgd 20-300 1.7-51
(2010) detector
Schmotz et al. . di Optical, R
ree-standin oom
(4] membrane ¢ 340 thermal temperature 136
(2010) transient grating
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Relevant Clnsinal
Reference Type of Di . Type of Temperature | conductivity
Nanostructure 1mensions measurement K] at 300 K
[nm] [WK' m!]
Hochb Electrical,
ochbaum et
Nanowires 20-300 SESpfndgd 20-320 2.5-8.5
at. [30] (2008) dzgtleecrtor
Boukai et al. Electrical,
[29] Nanowires 10 & 20 sﬁzgf;dgd 100-300 0.76 & 5.7
(2008) detector
H L [65] Electrical,
ao et al.
Thin films 50 and 80 suspended Room 32 & 38
(2006) heater & temperature
detector
Ju [66] Electrical, on
Thin films 20-50 substrate heater : nfllm;;rtl . 30-55
(2005) & detector crperature
Liuetat. [4] Free-standing Electrical, Joule
(2005) membranes 30 heating 300-450 30
Liuetal [49] |  Free-Standing Electrical, Joule
(2004 membrane 20 & 100 heating 20-300 22 & 60
Li et al. [45] Electrical,
1etal.
2003 Nanowires 22-115 Sﬁzgt";d;d 20-320 6.7-40.7
detector

Table 1.1 Thermal conductivity measurements in Si nanostructures

The first thermal conductivity models for bulk systems [67—70] were based on the solution
of the phonon B oltzmann t ransport equation (PBTE) under the single m ode r elaxation time
approximation. This approach provides the simplest picture of phonon interactions considering
that each phonon mode has a single relaxation time independent of others modes, i.e., it assumes
that all ot her phonon ha ve their e quilibrium di stribution [17]. The c alculation o f the thermal
conductivity i n s emiconductor m aterial implies t he k nowledge of t hree m ajor frequency-

dependent parameters, i.e., specific heat, Cy, phonon group velocity, v,, and the phonon mean

7
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free path, A. The expression for thermal conductivity from the kinetic theory of gases is given

by

1
KngvaA [1.1]

Taking into consideration the contribution of each mode q with transverse (T) or longitudinal

(L) polarization s, Equation [1.1] becomes:

hZ
K= W Zv;a);rqans(nqs +1) [1.2]
B qs

where 7 is t he r educed P lack’s co nstant, V' the total volume, T the t emperature, Kz isthe
Boltzmann c onstant, @, the phonon f requency, v, the group v elocity, n, the B ose-Einstein
equilibrium phonon distribution function and 7., = A,/v,, the total relaxation time of each mode.
From E quation [1.2] it is c lear that to m odel the lattice th ermal ¢ onductivity w e n eed the
dispersion relation, thet otal relaxationt ime of e ach m ode a nd a num erical s cheme f or
performing t he i ntegration w ithin the Brillouin zone. T he phon on di spersion r elation ¢ an be
calculated through s everal methods. However, the calculation o f the intrinsic relaxation time
and the summation over the Brillouin zone can be very time-consuming and the knowledge of

the anharmonic phonon-phonon scattering strengths is not yet sufficiently-well established [71].

1.2 Phonon confinement

Acoustic phonons play an essential role in almost all the physical properties of a crystal. The
statistics of phonons and their interaction with others particles sets a limit to some properties,
such as: electrical and thermal c onductivity, sound transmission, reflectivity of ionic crystals,

inelastic s cattering o f light, s cattering o f X-Rays a nd ne utrons, 1 inewidth o f qua ntum dot
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emission, m aximum pow er carried by optical fibers and s o on [72,73]. Int his sen se, t he
engineering of new devices able to generate and control phonons becomes an essential issue in

the development of future technologies.

The pioneering studies of confined waves were performed by L ord Rayleigh [74] in 1885.
He d emonstrated, t heoretically, the existence of surfaces acoustics waves, S AW, which
propagates al ong t he p lane su rface o fan i sotropic solid half-space. T hese w aves ar e n on-
dispersive, with a velocity slightly smaller than of the bulk shear waves and their amplitudes
decaying ex ponentially from the surface, i.e., these waves are confined in the surface. Years
later, following the results of Lord Rayleigh others scientists developed this topic, particularly
Pochhammer, Love, Sezawa, Stoneley, L amb, among others. F ollowing the Pochhammer and
Rayleigh’s work Horace Lamb [75] described the characteristics of waves propagating in free-

standing plates.

Early experiments to detect optical phonons in confined systems were performed by Fasol in
1988 [76], who u sed R aman scat tering t echniques t o sh ow that t he w ave v ector o f o ptical
phonons of a ten monolayer thick AIAs/GaAs/AlAs superlattice are confined and can only take
values given by ¢, = nn/L,, where L, is the thickness of the layers. This early experiment
demonstrated no ton ly t hat pho nons are confined i n na nostructures bu ta Iso thatt he
measurement of phonon wave vectors are well described by relatively simple continuum models
of phono n ¢ onfinement. Concerningt o m embranes, t echnically an aco ustic cav ity, first
experimental observation of confined acoustic phon ons of n anometre-scale membranes was
reported in 1987 in suspended 20 nm thick Au films [77]. Other works in free-standing
membranes has been reported on 100 and 200 nm in SiN films in 2003 [78] and 30 nm Si films

in 2004 [79].
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1.4 Thesis Outline

In this thesis we report the study of thermal properties in free-standing silicon membranes. In
Chapter 11, an analytical model for wave propagation in isotropic free-standing me mbranes is
developed. There the main concepts of the elastic continuum theory are described. Chapter III
theoretical models of the thermal properties are developed, including phonon lifetime, phonon
density of states, heat capacity and thermal conductivity. Chapter IV the fabrication of the
samples and the different characterization techniques used for the study the phonon-dependent
properties a re d escribed. T he ex perimental r esults an dt heir t heoretical d escription a re
developed in Chapter V. Finally, the c onclusion, the summary of the main results and future

extension of this work are shown in the Chapter VI.

10
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CHAPTER Il: ACOUSTIC WAVES

In this chapter, a semi-analytical model for wave propagation in free-standing membrane is
developed. T he free-standing m embrane consists of a solid pl ate, s lab, c onnected to a solid
substrate by the extremities. The membrane system is treated as a semi-infinite system, i.e., with
infinite e xtensions in x and y directions but with a finite extension in the z component. The
acoustic waves sustained by this system are solutions of the elasticity equation of the material
with st ress-free conditions at t he bound aries at z = +a/2, w here a is th e thickness o ft he
membrane. In addition, the acoustic wave propagation and the phonon dispersion relation in a

layered system are calculated.

2.1 Elastic continuum model

To calculate the dispersion relation the elastic continuum model is often used. In this model,
the discrete nature of the atomic lattice is ignored and the material treated as a continuum. This
model ¢ an be de rived from t he t heory of 1 attice v ibrations by ¢ onsidering t hat the lattice
deformations vary slowly on a scale determined by the range of the inter-atomic forces [80], and

is usually valid provided that the wavelength of elastic waves, A, is significantly larger than the

atomic la ttice co nstant, ay, i.e., AMay > 20. This corresponds to wavelengths approximately

longer than 10 nm, or frequencies smaller than approximately 100 GHz [81].

Within this model, a displacement of the material causes a strain, which can be described in
terms of the strain tensor, S, and is related to the gradient of the displacement, 0U/x;. In the

presence of the strain, the material generates internal forces that return it to its original

11
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positions, i.e., the equilibrium state. These forces are expressed in terms of the stress tensor, 7,

which is related to the S tensor through the elastic constant tensor, C, as:

Ty = Cijlekl [2.1]
where Cy, is a fourth order tensor, which has 81 components, but only 36 of these components
are independent, due to symmetry considerations [69,82—84]. In isotropic materials, waves can
travel equally well in all directions, and the elastic constant tensor can be further simplified to

have two independent components.

As shown in the Figure 2.1, depending on the type of displacement, there are two types of
acoustic waves. First, longitudinal waves (LA) are such that the displacement is parallel to the
propagation direction. S econd, transverse or s hear w aves ( TA) ha ve t heir d isplacement in a

plane parallel to the wavefront and consequently normal to the propagation direction.

,ﬂnglludmal wave 'I'rans!.'cr%:. wave
Propagation Propagation

Figure 2.1 Schematic representation of longitudinal and transversal waves
The elastic continuum model provides an adequate description of elastics waves and can be
used to d escribe ¢ onfinement e ffects inna nostructures w hen the dimensions be come
comparable t o the w avelength. A full d escription of t he p ropagation of a coustic w aves
according to the continuum elasticity model is given in a number of comprehensive textbooks,
by authors such as Auld [82], Nayfeh [69], Sadd [83] and R ose [84]. A detailed analysis and

development of the associated equations is described in Appendix 1.

12
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By describing strain S in terms of the displacement U and the stress T in terms of the strain
component Sj;, the equation of motion can be written purely in terms of the displacement and the

C tensor as:

o’U, 1 0 ouU, aU,
P = |G| o+ [2.2]
ot 2 0x, ox, Ox,

In isotropic materials, waves can travel equally well in all directions, and the elastic constant

tensor can be further simplified to have two independent components:

Tij = A‘Skké‘ij + 2IUSij [2.3]

where A is called Lamé’s constant and u is referred to as the shear modulus. Then the equation

of motion is given by:

azU 2v72 2 2
e =v;,VU+ (v, —v;)V-(VU) [2.4]

where U = (u, v, w) is the amplitude of the displacement vector, v, = [(1 + 2 w)/, ,0]1/2 and vy =
[1/p]"* are the longitudinal and transversal velocities of acoustic waves in a given continuum

medium, respectively.

2.1.1 Boundary conditions and confined waves

The introduction of boundary conditions in infinite media changes the nature of the acoustic
propagation. SAW [74] are solution of the wave equation with stress-free boundary condition
on the surface. These waves are non-dispersive and they have two components corresponding to
bulk shear and longitudinal waves, with a velocity lower than the bulk shear waves. The atomic

displacement forming those waves occurs in the sagittal plane, that is, the plane normal to the

13
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propagation direction and their amplitude decays exponentially from the surface. The motion of

individual atoms is taken to be elliptical.

Following Rayleigh’s w ork o ther s cientist d eveloped t his t opic, p articularly Love a nd
Sezawa. Love found a purely shear waves, SW, with displacement normal to the sagittal plane
existing in a half-space covered with a layer of softer material [85]. Sezawa found that SAW,
with displacement in the sagittal plane, could exist in layered system [86]. Rayleigh, Love and

Sezawa waves all occur in surface-wave-based devices.

Following t he s ame ¢ oncept Lamb described propagating waves i n i sotropic st ress-free
plates, i.e., plate waves [75]. The waves sustained by this type of structures are solutions of the
elasticity equation of material with stress-free conditions at the boundaries at z = +a/2, where a
is the thickness of the plate, with infinite extent in x and y directions. For unsupported plates the
normal ¢ omponents of the stress tensor vanish at the surface. This sy stem has two types of
solutions: solutions with displacements confined to the sagittal xz plane, which are called Lamb
waves and solutions w ith displacements p erpendicular t o the s agittal p lane ar e cal led s hear
waves, SW. Lamb waves can be further divided into two categories of modes. Those with out-
of-plane symmetric and antisymmetric displacements with respect to midplane of the plate are
known as dilatational waves, DW, and flexural waves, FW, respectively.

Direction of Fm,mmm.: Svmmetric waves
IN_ AN NN
1 o \WARVERVERV/

i s A
a7 el A AS

R
——r

Antisymmetric waves

/ AN AN A W A
4

(WA VARV,
A 0 W 5, YO
(VAR VAV AV,

Swhxtrate
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Figure 2.2 Left: Scheme of a free-standing membrane. Right: Symmetric and antisymmetric waves.

Lamb waves

The classical problem of Lamb’s wave propagation is associated with a wave motion in a
stress-free and isotropic plate. The solution of this system can be uncoupled between two fields:
shear waves (0, v, 0) and sagittal waves (u, 0, w). The displacement fields of the sagittal waves
are f requently written using t he H elmholtz de composition [82]. This co nsists i n al inear

combination of a scalar, ¢, and vectorial, i, potentials functions:

U =%+5 W,

i ox, ijk ﬁxj [2.5]

where g is the Levi-Civita te nsor and t he sc alar an d v ectorial p otential correspondt o
irrotational and r otational fields, r espectively. Introducing this solution in t he e quation of
motion, Equation [2.4], isp ossible to unc ouplet he po tentials generating two ha rmonic

equations:

1 0°¢
Vig=—— 2.6
b= [2.6]

1 &y,
Vi =——1! 2.7
Y, V2 o [2.7]

which has the typically plane wave solutions:
=d(z)expli(g,x — wt

¢ = D(z)expli(g, )] (2.4]

y =Y (2)expli(g,x — 1))
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These equations r epresent travelling waves in the x direction, parallel to the surface, and
standing waves in z direction. Finally, substituting these solutions in the E quations [2.6] and

[2.7], respectively, leads to solutions for ®(z) and W(z) as:

D(z) = 4, sin(q,z) + A, cos(q,z)

2.9
Y(z) = B, sin(q,z) + B, cos(q,z) [29]

where ¢; and ¢, are the perpendicular component of the wavevector expressed as:
g =0 /v;—q, and ¢/ =@’ /v, —q, [2.10]

Finally, the displacements can be written in terms of the potentials. These solutions split in to

two sets of modes: symmetric and antisymmetric modes with respect to midplane.

Figure 2.3 Decomposition of longitudinal and transverse wavevectors.

Symmetric and antisymmetric modes

For displacement in the p lane direction, the m otion will b e s ymmetric o r a ntisymmetric
depending if the # components contain cosines or sines, respectively. The same rule applies to

displacement perpendicular to plane.

16
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Symmetric modes

® = 4, cos(q,z)
Y = B, sin(q,z)

) [2.11]
u=iq,4, cos(q,z) — q,B, cos(q,z)
w=—q,4, sin(q,z) +iq, B, sin(q,z)
Antisymmetric modes
® = 4, sin(q,z)
Y =B, cos(q,z
2 (4,2) [2.12]

u=1iq,4,sin(q,z)+q,B, sin(q,z)
w=q,4, cos(q,z)+iq,B, cos(q,z)

For s ymmetric (antisymmetric) modes, not e thatt he w ave m otiona res ymmetric

(antisymmetric) in # and antisymmetric (symmetric) in w.

This separation is only valid and possible for waves propagating along a sy mmetry axis of
the plate. For multi-layer structures this separation is only possible if this symmetry exists in the

system itself.

Once the displacements field are obtained the boundary conditions can be introduced. This
gives homogenous systems of two equations for the two unknowns: A4,, B; for the symmetric
case and A4, B, for the antisymmetric case. The non-trivial solutions require that the determinant

of the matrix coefficient vanishes in order to ensure solutions yielding the expression:

+1
44,4,,9,. :_[tan(%,na/ 2)] [2.13]

2 22
(Qt,n - q//) tan(ql,na / 2)
where t he ex ponents +1a nd—1 correspondt o symmetric an d antisymmetric m odes,

respectively. The parameters ¢, and ¢, represent the longitudinal and transverse perpendicular
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component of the wavevector. The dispersion relation is found through the relationship between

two perpendicular wavevectors:

2 _ 22, 2 22, 2
@, :VL(Q// +‘]1,n):VT(‘I// "'qm) [2.14]
The parallel wave vector, g, is numerically equal to @/v,,, where v, is the phase velocity of

the mode with a frequency f'= /2. By introducing Equation [2.14] in Equation [2.13] a non-

linear equation is obtained, where for each value of ¢, there are many values for ¢, and g;,,.

The solutions for ¢,, and ¢,, will be real or purely imaginary depending of the values taken
by g,. For real values of g/, the values of ¢, and ¢, will be real if ®> vr;qg,. The real values of ¢,
and ¢, imply that the waves are propagating without damping, i.e., propagating waves. The pure
imaginary values of ¢g; and ¢, imply that the waves decay in the perpendicular direction. Such

waves are called surface or Rayleigh waves, because their propagation is on the plane.

im

Other p ossibility is that g, can be take complex values. Taking g, = ¢"° + ig"™ the time-

harmonic factor becomes:

exp(i(q”x - a)t))exp(— q"”x) [2.15]

im

Depending of the value taken by ¢™ there are three possible types of waves:

i. g™ <0, waves which grow with distance, growing waves.

ii. ~ ¢™ =0, waves which propagate without damping, propagating waves.

im

iii. ¢ >0, waves which decay exponentially with distance, evanescent waves.

Growing w aves (i) are w aves the amplitude i ncreases of w hich exponentially w ith t he
distance and physically have no meaning. Propagating waves (ii) are waves the amplitude of
which does not change in the media. Evanescent waves (iii) are waves the amplitude of which

decreases with distance from their source or upon interaction with a scattering centre.
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To calculate the dispersion relation it is necessary to employ a numerical approach in order

to solve the Equations [2.14] and [2.13]. A complete scheme to solve this system is described in

the Appendix L.
@il |
G =
=
Eq4d F0 47 o e
=
Ih ’
- : £
0 -
— R
= = G
8 12 "0 H 8 12
In-plane wavevector |g -al (er) fn-plenme wavevector g a (h)

Figure 2.4 (a) Dimensionless acoustic dispersion relation, f-a, and (b) group velocity, v,, of Si
membrane for dilatational (red dotted lines, DW), flexural (black solid lines, FW) and shear (blue
dashed lines, SW) waves as a function of the dimensionless in-plane wavevector, q,/ a.

Figure 2.4 shows t he ph onons d ispersion relation (a) a nd g roup v elocity (b)o fa Si
membrane. An interesting ch aracteristic o f the dispersion relation can be observed for small
values of g,. In this regime the fundamental modes of the dilatational and flexural waves can be
approximated by linear and quadratic dependences, respectively [87]. This dependence will be
found to be important when determining the thermal properties in the low temperature regime,

where these modes became the most populated states.

The values of perpendicular wavevector, ¢, and g,, for dilatational (a) and flexural (b) waves
are shown in Figure 2.5. The values of ¢g; and g, above the abscissa are real and below it are pure

imaginary.
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Figure 2.5 Out-of-plane component of the wavevector, the red solid and blue dotted lines are q; and g,
wavevector component respectively for dilatational (a) and flexural (b) waves.

The linear behaviour of the zero-order dilatational mode is due to the pure imaginary values
of perpendicular co mponents o f the w avevector, ¢; and g, respectively. This means that the
zero-order dilatational mode has terms extended throughout the width of the membranes
(harmonic function, i.e., sine and cosines in ¢g,) as well as terms localized on the surface of the
membranes (hyperbolic sine and cosines in g;). On the other hand, the quadratic behhaviour of
the zero-order flexural mode is due to the fact that both values of the perpendicular wavevector
have pur e i maginary s olutions, thus the a coustics v ibrations are essentially lo calized on the
surface an d their amplitudes d ecrease e xponentially from t he surfaceto the interior o f the

membrane. The other of solutions of the system are divided in three types of behaviour:
i.  Real solution of perpendicular wavevector, ¢, and g,.
ii.  Real solution of ¢; and pure imaginary solution of g,.
iii.  Pure imaginary solution of ¢, and ¢,.

The s olution (i) m eans t hat t hese w aves ar ¢ ex tended t hroughout o f the m embrane, an d
commonly are called propagating waves. The solution (i) means that there are waves extended
throughout o f the m embrane ( propagating w aves) an d waves | ocalized ont he su rface

(evanescent waves), which we will call them mixed waves. The solution (iif) means that all the
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waves ar e p ropagating i n t he p lane o ft he m embrane and d ecay t owards the cen ter (pure
evanescent w aves). O ther k ind o fso lutions a re the st anding w aves obtained for 1 ong
wavelength, g, — 0, or thin membranes, d — 0, which behave like a confined standing wave
between the surface of the membrane formed by the superposition of two counter-propagating

plane waves [18].

Finally, all solutions of the system are harmonic waves which propagate through the crystal
and result in a movement in the material. F or this movement tw o ty pes o f v elocity c an be
defined: the phase velocity, v,, = @/q,, as the speed of moving the points of equal phase and the
group velocity, v, = da/dg,, which is the speed of moving the wavefront (pulse wave formed of
different frequency). B oth quantities are approximately e qual for the zero order modes in the

limits ¢, — 0 and g, — .

Shear Waves

These waves have only non-zero component perpendicular to sagittal plane U = (0, v, 0). If

solutions are taken as v = V(z)exp[i(g,x—at)], the elastic equation can be written as:

2

d—QV(z) +(@* - S;q)V(z)=0 [2.16]
dz

Taking stress-free as boundary conditions and defining (vr¢.)* = & — (vr¢,)’, the solutions

can be expressed in terms of:

cos(q.,z), n=odd

V(z) { with g, , =nmwa [2.17]

sin(g.,z), n=even
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These modes are similar to the transverse modes in the bulk and their quantization is based
on th e s imple in teger h alf-wavelength fits in a p late o f t hickness a. F inally, the di spersion

relation is generated for the expression @ = v7(¢*,+ (nwa)?)">.

The solutions of shear waves are completely analytical and they only depend on the other n
of the branches. Figure 2.4 shows the acoustic dispersion relation (a) and group velocity (b) of

shear waves, SW, for a free-standing silicon membrane.

2.1.2 Layered systems

The problem o f guided waves in layered systems can be used in multiple situations, e.g.:
coating materials, painted s tructures, geological systems, multilayer systems, oxide materials,
among others. Early studies on t his topic were performed by Love in 1911 [85], who adding
another interface to the “Rayleigh’s problem”, found out that shear waves can exist in the layer
only whenitisattachedtoa solid ha If-space ofad ifferent m aterial. In 1924, Stoneley
generalized the problem studying the propagation of waves at the interface of two solid half-

spaces [88].

The first s ignificant w ork on t he w ave pr opagation i n m ultilayer m edia w as done by
Thomson [89] in 19 50, w ho i ntroduced a t ransfer m atrix m ethod. T his m ethod c onsists of
reducing the layered s ystems into six equations, relating the boundary ¢ onditions at the first
interface to the boundary conditions at the last interface, in the process, the e quations for the
intermediates interfaces are eliminated so that the fields in the layers of the plate are described
solely of the external conditions. Others alternatives methods are: Global matrix proposed by

Knopoff [90], plane wave expansion or Green functions.
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From one layer to N layers

A simple so lution t o d escribe al ayered system canb e arrived at through t he m ethod
proposed by Donetti et al. [91]. It consists of linear combinations of single layer solutions for
each layer. The number of solutions used will be in according to the number of interfaces. For
example, if the system consists in N layers, the number of interfaces will be N + 1. Two of these
interfaces correspond to boundary and N — 1 to junctions between the layers. Then, the total
number of equation generates will be 6N. Six equations are related to the boundary condition,
e.g. stress-free or clamped surfaces and the other 6N — 6 equations correspond to the continuity

condition of the displacement and stress field in each interface.

Separating t he w aves i n s hear an d sagittal w aves, the sy stemis reduced to 4N sag ittal
equations and 2N shear equations. If the system has symmetry with respect to the midplane, the
number of equation is reduced again in N shear equations and 2N sagittal equations. Taking into
account the num ber of e quations needed to e xpress t he s olutions w ith the same nu mber o f

unknowns, i.e., give the number of waves that will be used for each layer.

Layer 1
Layer 2

Layer N-1
Layer N

:lr-\ 1 =?:::_‘-. ) E-LI:‘ [} =|[ -._'.'

T‘__ =1

2o Boponi

Figure 2.6 Scheme of layered system
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Example

Consider the system shown in Figure 2.7, here the number of layer is three, i.e., the total
number of equations necessary to describe the system is 18, of which twelve are sagittal and six
are shear equations. If the first and last layers are equals, the system has symmetry with respect
of the midplane. Then, the numbers of independent equations is only six. Finally the solutions

for each layer will be given as:

u(z)=DW, +FW,

wi,(z2)=DW_+FW,
u,(z)=DW_or FW,
w,(z)=DW_or FW,

[2.18]

where u; (w;) is the x (z) component of the amplitude of displacement in the media i and DW,(z)
(FW(z)) is sy mmetrical (antisymmetrical) solutionin x (z) component. E xpanding Equation

[2.18], the solutions are:

Uz (z)= iA1,3CI// Sin(%mz) +B,3q,5 Sin(thz) + iC1,3‘]// COS(‘]!uz)
=D 3q,; c0s(q,,52)
w3(2) = 4,34;,5 €08(q,,32) +1B, 39, €08(q,,32) — C, 34, 8in(g,, ;2)

. . [2.19]
+iD, 39, 81n(q,, 32)
u,(z) =id,q, c0s(q,,z) — B,q,, €08(q,,2) or id,q, sin(q,,z) + B,q,, sin(q,,2)
w,(2) = —4,q,, sin(q,,2) +iB,q,, 8in(q,,z) or 4,q;, c0s(q,,z) +iB,q, c0s(q,,2)
with linear dispersion relation given by:
@ = v, (q; +47) =V, (45 +4)), 1=1,2,3 [2.20]

where A4y, A,, A3, B1, B,, Bs, C1, C3, Dy, Ds are the unknowns. Note that in the intermediate layer
only one type of symmetric or antisymmetric wave is used, due to the symmetry of the system.

This implies that symmetric and antisymmetric wave solutions can be decoupled.
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Figure 2.7 Scheme of symmetric three-layer system. Here “b” is the thickness of layer 1 and 3, and
“a” is the thickness of layer 2 of layered system

Finally, continuity and boundary conditions are applied at the interface and external surfaces,
respectively. This produces a system of six linear equations with six unknowns. The dispersion
relation will be given by setting to zero the d eterminant of the matrix ofthe corresponding

system.
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CHAPTER I11: ANHARMONICITY AND THERMAL CONDUCTIVITY

Considering the w ave-particle duality, it is possible to express lattice waves as quanta o f
vibrational energy, i.e., as a particle. The associated particle is the phonon” and it represents the

discretization of vibrational energy of an atom or group of them.

In a cr ystalline sy stem, a 1l t he t hermodynamic properties ar e 1 inked to the st atistics o f
phonons. There are several of approaches to describe the phonons in a solid crystal. The most
common it is assume that the amplitude of the atomic displacement is smaller t han the
interatomic distance. This leads to the harmonic a pproximation of the Hamiltonian, which is
sufficiently accu rate t o d escribe m ost o f't he p roperties o ft he c rystal at 1 ow t emperatures.
However, as increases the t emperature ¢ ertain p roperties ¢ annot b e e xplained us ing onl y
harmonic terms. A t hi gher t emperatures t he h armonic approximation b reaks down a nd t he

introduction of the anharmonic theory is required to explain physical properties.

3.1 Harmonic effect in crystals

At temperatures lower than the melting point, the assumption of small oscillations appears to
be reasonable for s olid c rystals. However, this description is poor and it does not represent

adequately the system.

Under t he ha rmonic a pproximation, the p honon st ates ar e st ationary. This i mplies that a
phonon distribution, which carries a thermal current, will remain unaltered in the course of time.

Then, the thermal current will be forever unchanged, i.e., a perfect harmonic crystal will have an

* To be more precise, the term phonon is not a particle but rather itis quasi-particle since it needs a
medium to propagate.
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infinite t hermal ¢ onductivity. However, t he t hermal conductivity in a real crystal cannotbe
infinite for several reasons given the inevitable imperfections, impurities and boundaries. Even,
if the crystal were perfect and infinity, the presence of anharmonic terms in the in teratomic
potential would produce interaction between the phonons, setting a limit to the mean free path

and, consequently, to the thermal conductivity [72].

3.2 Phonon-phonon interaction

Let us consider the most general case of the lattice with a basis. The atoms are labelled by
two symbols, / and b, where [ is the vector from the origin to the cell and 4 is the basis vector to

the atom in the cell (see Figure 3.1).

L&

h

Figure 3.1 Diagrammatic representation of coordinates of a lattice point.
Using a Taylor expansion, the potential energy of the system, ¢, can be written as a power

series around its minimum:
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o¢ 1 o’¢ "
V=V,+ lbza: 2u_ () Oua (Ib) + 5 %H o, (1b)ou, (I'b) u, (Ibyuy(I'b')
" ° [3.1]
+ 1 Z o' ‘ u, (Ib)yu,(I'b"Yu, (I''b'") +....higher order terms
3! s ou,, (Ib)Ou ,(I'b")ou, (I"'b") 0 “ " 7

where u,(lb) is the displacement of the atom « in the cell / in the position b. The first term is a
constant, which canb e setas zero; the se cond termis zero b ecause t he sy stem is inthe
minimum of its energy, i.e. equilibrium configuration; the third term represent the interatomic
force constant, harmonic term; and the last one represents the anharmonic term or perturbation

of the Hamiltonian.

This last term is responsible for the phonon-phonon interaction and, depending of case, it
could contain t erms higher t han t he cubic one . By i ntroducing hi gher-order t erms i n the
Hamiltonian these could be included as perturbations of the classical Hamiltonian. This leads to
transitions between eigenstates, i.¢., the creation and destruction of particles. If the anharmonic
terms are sufficiently small compared to the harmonic terms, it is possible to calculate the effect
of the perturbation using the perturbation theory. Then, the anharmonic part can be written as a

perturbation of the harmonic Hamiltonian, such as:

1

H,, = 30 2771,17771',1;'771",1;" R
S IbsI'bIb"
u, (1) > 7, .
0’
Al,b;l',b';l"ﬁ" =

6771,176771',17'8771",#'

Which e xpressed i n terms of the wave ope rator, i.e., usinga Fourier transform, can be

rewritten as:
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1 s Nl
_ - —i(ql+q'l'+q"I")
H,y = (V)72 Y S e Aoy Ay @A, e

gbiq'b'1,11"
q"b"

[3.3]

where N, represents the number of units cell, Q the volume of each unit cell and A;, is the

Fourier transform of 77, .

Considering the crystal symmetry, it is convenient to change the summations over /” and /”’
to those over new variables 2’ and 4”’, defined by I’=1[1+ h’and [’” = [+ h’’. Then substituting

in Equation [3.3] the Hamiltonian becomes:

1 e
_ -1/2 —i(q+q'+q")!
H, = 3 (N2> e Ay Ay Ay ®F e
: gbiq'b" 1
4" [3.4]
O g
F},b;l',b';l",b" = Ze Al,b;l+h',b';l+h",b”
hh'

Applying the orthogonal properties of the crystal the summation over / has to vanish unless:

1 3 et =1 if q+4+q"=GC

5I,q - . ' " [35]
NQ 5 =0 if q+q9+q¢"#G
where G is a reciprocal lattice vector. Then, the perturbed Hamiltonian is given by
1 -3/
H, = 5(NOQ) 2 Z5G,q+q'+q”Al,bAl',b‘Al“,b” QF ) b [3.6]
: qbiq'b'
q"b"

Using s econd qu antization, i t is po ssible to e xpresst he un perturbed a nd pe rturbed

. . . . . * . . . .
Hamiltonian as a combination of creation, a 4, and annihilation, a, operators given by:

— * l
H,=(N,Q) I/ZZha)qs(aqsaqs +§j [3.7]

qs

: (a5, ~a Nap ~a oy —a )
H, = 3 D SgraraWassasias\ oy = Qg N = s Nisss = Ao [3.8]

*gs;q's'q"s"
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where .45 1S a sca lar quantity, r esulting f rom a nnihilation-creation t ransformation,

defined by

1/2
3
B h €, p5Cap s @ Fpppipng

Visasas =

i [3.9]
NOQa)an)qu.a)qusu bb'b" \/mbmb,mb,.

where m is the atomic mass of the atom localized in the position b.

This factor is an average of the Fourier transformed tensor projected on the directions of the

polarizations vectors e ;.

Therefore, the effect o f anharmonicity is to introduce interactions among the independent
phonons of a crystal. In first-order perturbation approximation, the cubic term in the potential
causes interactions of three phonons and in second-order, interactions involving four phonons.

Similarly, the quartic term causes, in first-order perturbation, four phonon interactions, etc.

3.2.1 Normal and Umklapp process

Solving all the combination of the expression [3.8] four basic processes can be distinguished:
i.  Annihilation of two phonons and creation of third phonon: a_, a_ - a*qvvsv'.

ii. ~ Annihilation of one phonon and creation of two phonons: a_ a*q - a*qns'v.

iii. Simultaneous creation of three phonons: a*qs a*q - a*qns'v.

iv. Simultaneous annihilation of three phonons: a_, a_,v a_; .

However, onl y the c ombinations (i) and (if) ar e p ermitted b ecause they sat isfy en ergy

conservation, while processes (i) and (iv) are forbidden because they violate it. Nevertheless,
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processes (iii) and (iv) have to be takeninto account to develop higher-order terms in the

perturbed Hamiltonian.

These operators b asically cr eate and destroy different pho nons states. F or e xample, the
combination a_4 a_, a*q s~ has the effect of reducing by unity the number of the quanta in the
modes (—q, 5), (—¢’, s’) and increasing by unity the number in the mode (¢, s ), i.e., it creates
a phonon in (¢ ”’, s’’) destroying two phonons, in the sates (—¢, s) and (—¢’, s’) (See Figure 3.2).

However, this interaction is limited by the Kronecker delta, which vanishes unless:

q+9+q'"'=G [3.10]

where ¢, ¢ and ¢’ are restricted to the first Brillouin zone.

g
Figure 3.2 Diagrammatic representation of a phonon-phonon interaction.
If G = 0the wavevector of the created phonon is the result o fthe vectorial sum of t he
wavevectors of the phonons being destroyed. This interaction is known as normal processes, N-
processes. In these processes the energy and the momentum of the phonons are conserved, thus,

there is no contribution to the thermal resistance.

When G [ 0 the interaction is denominated Umklapprozesse, U-processes, and it indicates
that the phonons “flip over” in the process [92]. In the U-processes, in opposite to N-processes,
the m omentum i s not ¢ onserved, w hich p roduces a thermal r esistance. Figure 3.3 shows a

diagram of N and U-processes.
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The argument for U-processes can be interpreted, as a collision of two phonons with “large”
wavevectors g and ¢’, which generating a third phonon with a wavevector outside the Brillouin

zone, which can be brought back into the Brillouin zone by the addition of a G vector.

iy L

g
Il 5=
q&\ ,"/‘;;’ g

Figure 3.3 Diagrammatic representation of Normal and Umklapp processes, left and right
respectively.

As discussed above, the introduction of cubic or higher order terms in the potential causes
phonon-phonon interactions, if terms w ere absent, there would be not heat diffusion. This is
simply because the carriers of the heat are the phonons. Their collision introduce anharmonic
terms, otherwise, the thermal conductivity of a cr ystal would be infinite. Others consequences

of the introduction of anharmonic terms include:

i.  Deviations of the temperature dependence of specific heat at high temperatures.

ii.  Electron-phonon and phonon-phonon interaction.

iii. ~ Temperature dependence of phonon frequencies (thermal expansion).

iv.  Finite phonon lifetimes.
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Selection Rules: Normal and Umklapp processes.

As been mentioned above, the N -processes o ccur when momentum is conserved, i.e., the
vectorial sum of the wavevectors lie inside of the first Brillouin zone. One graphic example of
these selection rules is show in Figure 3.4. There, the phonon frequency is represented as a
function of wavevector, for a given radial direction from the centre to the border of the Brillouin
zone. Where O is the origin of dispersion relation and O’ corresponds to the chosen value g with
polarization s. At this point, the same dispersion relation is drawn again but with origin at O’.
This results in the intersections of curves O’t,’, O’t,’, O’l’ and Ot,”’, Ot,”’, Ol’” at the points Q;,
0, and Qs, with values ¢’ and @ "’ that satisfying the selection rules for momentum and energy

in N-processes.

Figure 3.4 Construction for intersection of three phonons in a line for N process, adapted from

ref. [7].

Usually the shape of dispersion relation is such that they are upwardly convex and tend to
have a horizontal tangent at the border of the Brillouin zone, visually in this region there are not
intersections between the branches, i.e., “there is no process in which all three phonons belong
to the same polarization branch of the spectrum” [7]. However, this statement is only valid for
U-processes, because, the dispersion relation of low frequency phonons can be approximate as
Debye-like dispersion, allowing the normal interaction processes of the phonons with the same

polarization [17,93-95].
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Iftheindex [ and ¢ arer elabelled a s 1 ongitudinal, L , a nd t ransverse, T, pol arization,

respectively, based the Figure 3.4 it is possible to define two types of interactions in the points

O and Q:

0,:T+T L

3.11
O, T+Lo L B-11]

This generates another rule: “the created phonon must lie in a higher branch than one at
least of the destroyed phonons™ [7]. Similarly, it is possible to establish a different selection rule
for U-processes, with, the condition that the intersections points have to be outside of Brillouin

zone (see Figure 3.5).
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Figure 3.5 Construction of the intersection of three phonons in a line to illustrate Umklapp-process.

3.3 Phonon lifetime: relaxation time approximation

The t ermr elaxation i s us ed t o de scribe h ow a s tate o r en semble o f st ates returnst o

equilibrium state. If a sy stem in equilibrium is subjected to an external perturbation, such as a
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temperature ch ange, t he systemi s p erturbed an d the lagging tim eitta kesto returnt o

equilibrium is called relaxation time.

The phon on a ttenuation time or | ifetime re fers to the t ime t aken by a phonon a nd/or
wavepacked of them to be s cattered, attenuated or absorbed. In a so lid crystal a variety o f
mechanisms exists including: impurities, isotopes, defects, dislocations, boundaries as well as
collision with other quasi-particles or excitations such as electrons, magnons, photons or other

phonons.

Depending on the nature of the scattering mechanism they can be divided in two interaction
types: inelastic s cattering an d el astic s cattering. T ypically, th e s cattering d ue to im purities,
isotopes, defects, dislocations or boundaries are treated as elastics scattering, because they only
produce a change of the direction in the phonon path. The scattering resulting from collisions
with ot her p articles, 1 .e., “ons”-phonon i nteraction, a re treated asi nelastic sc attering.
Mathematically, these scatterings are a consequence of the anharmonic terms in the interatomic

potential.

As discussed before, the phonon-phonon interaction can be divided in two process Normal
and Umklapp processes. Both processes are governed by energy and momentum conservation

rules.

0+ 0 0" [3.12]
qg+q'<>q'"  Nprocesses [3.13]
q+q'<> q'"+G U processes [3.14]

The N-processes do not lead to a thermal resistance because the momentum is conserved, but
they ¢ hange the d istribution int he pho non frequency, thus indirectly af fecting to other
scattering process w hich depends on frequency, such as impurity or U -processes. Therefore,

these processes indirectly contribute to thermal conductivity.

36



Chapter 111

Assuming that each process is independent from each other, the effective relaxation time, z,

can be expressed using the Mattheissen’s rule:

1 1 I 1 _
_:_+_+_+..-:zfil [315]

where 7y is relaxation time for Umklapp processes, 73 the contribution of boundary scattering

and 7; the contribution of impurity scattering.

3.3 Evaluation of phonon relaxation times

Finite s ample s ize, t he i mperfections s uch a si nhomogeneity, i sotopes di fferences,
dislocations, a nd a nharmonicity i n t he crystal potential provide t he m ain phonon-scattering
sources in non-metallic solids. Each scattering mechanism contributes to limiting the lifetime of
the phonons. These mechanisms give rise to intrinsic relaxation time (due to anharmonicity) or

to extrinsic relaxation times (due to the medium).

In particular, t he phonon lifetime 1imits value of the quality factor of micro/nano-scaled
mechanical resonators. Moreover, as mention above, they are a necessary input parameter for
accurate calculations of nanoscale thermal transport. Although, the fundamental understanding
of the phonon lifetime is well established the testing of these models against experimental data
has been challenging due to the complexity of the models, the use of fitting parameters that still
remains unknowns, e.g. the Griineisen parameter, and also due to the few experimental reports

of phonon lifetime in the gigahertz and terahertz regimes.
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3.3.1 Extrinsic relaxation times

Boundary scattering

The main extrinsic scattering mechanism in the nanoscale is the surface roughness scattering.
The effect of boundary s cattering due t o s urface r oughness m ay be i ntroduced t hrough a
boundary ¢ ondition on the s teady-state B oltzmann t ransport equation [7]. An e xtended

explanation of this formalism can be found in Appendix II.

Intuitively, the boundary condition is that all the phonons which reach the boundary at an
arbitrary position, 7, will be reflected with the normal component of their velocity reversed, v,.
Introducing a displaced Bose-Einstein distribution function ng, = ng.0 + g4+(r), where ny is the

equilibrium distribution, the boundary condition can be derived to have the following form:

8y (FB)L” = P8, (73 )\ [3.16]

In this treatment, t he ef fect o f t he r oughness is d escribed by a si ngle p henomenological
parameter, p, w hich r epresents t he “p olish” o ft he surface, with p = 0 for pe rfectly r ough
surfaces and p = 1 for perfectly smooth surfaces. For the case of thin films and/or membrane, it
is possible derive a phonon wavelength-dependent specularity p(4) by considering a plane wave
normally incident on t he boundary, i.e., standing waves. T he change in phase ¢ of the wave

reflected from the boundary is related to the roughness, and varies thickness of the membrane,

as:

¢<x>=4jy(x> [3.17]
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where x is the direction parallel to the m embrane surface, and y(x) is a ¢ ontinuous function
representing the de viation of the height of the surface from a reference plane. From this, the
wavelength-dependent specularity can be derived by ¢ onsidering the auto-correlation function
of t he pha se [7], p(A) = exp(-ng?) = exp(—167*17/A%), w here 7 ist he root mean s quare
deviation of y(x), sometimes known as the asperity, henceforth referred to as the roughness. The
physical interpretation of this expression is that phonons with shorter wavelengths will be more

affected by the surface roughness than longer wavelength phonons.

10

08 L

p(x)

0.4

02 -

0.a

A (nm)

Figure 3.6 Wavelength-dependent specularity p(4) as a function of phonon wavelength A for
roughness values of n= 0.5 nm (black), n= 1 nm (red), n=2 nm (blue).

Once the wavelength-dependent specularity p(A1) is determined, it is possible to calculate the
effective m ean free p ath i n t he m embrane. A fter ¢ onsidering m ultiple reflections from t he

boundary in series, the mean free path can be written as:

A_1+p(ﬂu)A

R [3.18]

where A, is the characteristic d imension oft he s tructure, i .e. the th ickness o f the f ilm.

Considering t hat t he m ean free path can expressed in terms of group v elocity and lifetime,
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A = v, it is possible to express the boundary relaxation time as a function of the thickness of

the film, a, the group velocity, v,, the wavelength, A, and the roughness parameter, 7, such as:

16202 92 25,2
A al+exp(-1677"17) a (87”7 J (3.19]

Tg=—7= =—coth| ——
"oy, v, l—exp(-l6x'n’ I X)) v, i

Impurity scattering

This scattering process is a consequence of the internal imperfections of the crystal, such as:
atomic m ass d ifferences, substitutional and in terstitial impurities, ch anges i n atomic f orces
constants or vacancy defects. The impurity scattering mechanisms are assumed to change the
phonon w avevector and/or pol arization, but not its energy, i.e. @, = @, . The transition of

probability of these occurrences is governed by the Fermi’s golden rule.

For phono ns w ith w avelength | arger t han i mperfection t ypical size, t he s catteringi s
essentially o f R ayleigh t ype. T herefore, t he sca ttering t ime i s i nversely pr oportional t o the
fourth power of frequency. The relaxation time can be expressed following the Rayleigh regime

in radiation theory [17]

i Ty
7.} (md) = 4m§,s w,, [3.20]
MY (A As Y
L =S fl1-20] 12/ 28i_64,2% 321
1 Zf[ M] (g 7§j [3.21]

where V, is the volume per atom and T is determined from the nature of the imperfection, M the
average atomic mass and f; the fraction of the unit cells having atomic mass M,. The fractional

spatial ex tent of the i mperfection is ex pressed as Ad/S, Agi/g. They represent the fractional
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stiffness constant of the nearest-neighbour bonds from the imperfection to the host crystal and y

is an average anharmonicity of bonds linking the imperfection.

3.3.2 Intrinsic relaxation times

As seen above, the inclusion of anharmonicity in the Hamiltonian leads to phonon-phonon

interactions which become increasingly important as the temperature increases.

Limiting th e c rystals a nharmonicity to the c ubic terms, th e r elaxation tim e a ssociated to
three-phonon i nteractions can be treated us ing t he first-order pe rturbation theory a nd f our-
phonon interactions using second-order perturbation theory. In general, four-phonon processes
are ignored because their small contribution to the thermal conductivity [96]. In the literature
the anharmonic relaxation time has been expressed as a product of frequency and temperature
7, 0 &'T", where the exponents are chosen depending of temperature range. However, with a
systematic t heoretical ap proach this r elationship is subtancially m ore ¢ omplexbecoming a

continuous function over the entire range of frequencies and temperature.

According t o the type o fi nteraction, t hree-phonon p rocesses ¢ an b ¢ ¢ lassified int wo
classes [17], as shown in Figure 3.7. In class I two phonons are annihilated and one phonon is
created and in class II one phonon is annihilated and two phonons are created.

clas= 1 Class 11

ER ]

w

Figure 3.7 Schematic representation of three phonon-phonon scattering processes.
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The phonon-phonon scattering rates can be studied by applying Fermi’s golden rule, which
is based on first order time-dependent perturbation theory. Where the probability of the initial

state goes to the final state is given by

5(E,-E) [3.22]

quq'q” - 27” <f‘pr‘i>

where H,, is given by Equation [3.8]; i and f correspond to the initial and final states of the

phonon distributions; and the delta Dirac function ensures the energy conservation.

Depending of the class of the event the delta energy is

E,-FE = h(a)q,,s., — @, — a)q,s,) for class 1

[3.23]
E -E = h(a)qs — @, — a)q,,s,,) for class I

The scattering rates due to class I and II and their reverses contribute to phonon scattering

can be expressed in term of collisional part of BTE given by:

on n._—n
qs _Tgs qs,0 ) (1 ,reverse)
ol = = D, =)
L. Tys 45g's" 324]
1
L (ran B (II,reverse))
Wi =W

where the factor 1/2 is due to the indistinguishability between processes where ¢’ and ¢’ switch
places and change the p honon d istributions. A s an e xample, the c¢ alculations of the m atrix

element due to a class I process give:

0 2z 2

qS,q'S',q"S" - h_z

<nqs —Ln,.—Ln..+ I‘pr‘nqs Mgy nq,.s,,>

[3.25]
X 5(% — @, — a)q,.s,,)

In an isotropic ¢ ontinuum model in the D ebye approach, the anharmonic perturbation has

eight combinations. Once the annihilator and creator operators are bracketed between the initial
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and final state (see Equation [3.25]), there are only three combinations in class I, which give

non-zero matrix elements. Then, the equation for class I reduces to:

7h qq9'q"
0 .= A“,S,, nn ot 1
AT 4N, Q VY, ‘ e “( ) [3.26]
X0, g OBy = O p — @)

qs q's q"s
where | A;f]; |2 are the Fourier components of the phonon coupling constants, giving the three-

phonon scattering strength. In same way it is possible to define the expression for the transition

probability in class II:

W(II) _ 7Th qq'q” ‘Ass's" 2(1’1 +1)l’l n
4s.q's',q"s" 4p3N Qvyov. 99'q" gs q's""q"s" [3.27]
sUs'Vs" .
X0, g0 (@) — O — @)

Finally, using the single-mode relaxation time approximation, assuming that only the phonon
in the mode gs has a displaced distribution function, i.e., g5 = 7450 + Wosttgso(ngs0 + 1), and that
all other phonons have their equilibrium distribution, i.e., ¥, = ¥, = 0, then under these

considerations Equation [3.24] can be write as:

2 4q'q" [ Mol +1)5

7h

-1 ss's
T = ‘ (o +o., —®,..)
qs 4p3z\70Q Z 999 qs qs qs

i AR N+l
[3.28]
1 I’l v,von "0
qs,V qs,
X é‘s+s'+s",G LS — §(a)q a) 's" ) q+G,q'+q"
2 n
qs,0
where three-phonon scattering strengths, | A;; Sq | , can be approximated as [71]:
4p°
ss's 2.2 2 2
‘A‘Iqq - 72 VsVsVoVsr [3.29]

with y as the mode-average Griineisen’s constant, v as the phonon average group velocity given

by:
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Z Vqans,O
qs

e [3.30]
Z nqs,O
qs

V=

The real value of the Griineisen parameter is not known with sufficient degree of accuracy,

and sometimes it is treated as a semi-adjustable parameter.

Finally, t o e valuate t he p honon-phonon i nteraction, E quation [3.28] , it is necessary to

express the sum in ¢ -space by an integral in all space:

Z"ZW%I' [3.31]
qS N

A numerical scheme to perform the integration within the Brillouin zone and the phonon

density of state is required.

Phonon density of states

The p honon de nsity of s tates is one o f t he m ost i mportant qu antities t o d eterminate t he
thermal conductivity. Similarly to electronic density of states, this is defined as the number of
states p er u nit f requency. In pr inciple, the de nsity of s tates m ay be ¢ omputed e xactly, by
calculating the energies of all the allowed states in the sp ecimen. But the c omplexity be hind

does not allow to calculate and approximation have to be made.

The number of allowed g values for which the phonon frequency is between w and @ + dw is

given by:

NOQ ¢
D(o)dw = ﬁ j d’q [3.32]

Shell
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where N, is the number of cells with a volume Q. This integral goes over all the volume of the
shell in the g-space bound by two constant surfaces @ and @ + dw [97]. To calculate the total

volume of the shell, it is possible to approximate it as small and straight cylinder with basal area

dS,, and high dq
do ds
d’q=|dS dg, =|dS,———= “dw [3.33]
sﬁ[// '[ : '[ |dw/dq| w_c'[ns;. | Ve |
Then the DOS is given by
N,Q ds
D ) = 0 0]
=5 L 34

Calculating D(w) using the Equation [3.34] requires the full integration over all the Brillouin
zone of the crystal, i.e., the full dispersion relation for all possible directions is also required. To
avoid the full integration, symmetry properties can be used and the total integration is reduced
to the irreducible part of the Brillouin zone. Although crystal symmetry properties can reduce
the problem, the element of ar ea still remains intractable and, in general, the only wayto

calculate this integral is numerically or making some approximations.

Einstein and Debye approximations

A very simple DOS model was proposed by Einstein in 1907. He considered a solid as an
ensemble of independent quantum harmonic oscillators vibrating at the same frequency, @g. In

this case, the density of states would be worth zero for @ # @, or one for frequencies @ = .

Although the model reproduces quite well the expected b ehaviour of the heat capacity at

high t emperatures (T > ©®p, where ®p is the D ebye t emperature), the Dulong-Pettit law or
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classical limit, it breaks down at low temperatures, (T > ®,/10). In this regime, Einstein formula

predicts a faster decrease of heat capacity as compared to experimental data.

Based on the fact that at low temperature most of the excited phonons populate the short-
wavevector or long-wavelength acoustic branches, Debye suggested that an isotropic and linear
dispersion relation, a(q) = v,q, can be used for all the normal modes lying within a sphere of
radius ¢g. Then the element of area, dS,, can be approximated by an element of area of a sphere

of radius ¢:

ds, =q*sin(0)dod¢ [3.35]
In addition, in the c ontinuum approximation the phonon group velocity is the same as the

phase velocity, v, 4 = v;, therefore the Equation [3.34] can be reduced to:

2
];770;2 ‘i— [[sin(o)aadg

_NQ o
27 v}

D(a,) =
[3.36]

There are two conventions regarding the normalization of the phonon D OS. It can be either
normalized to unity or to the total number of vibrational modes, 3V, where N is the number of
atoms. Thus, it is possible to define an upper limit in w avevector, gp, or equivalently in the

frequency wp, which represents the maximum radius of a sphere which contains 3N modes:

3N = ]2\70?2% Ia)zda)
SRR [3.37]
NO 1
- 27’ QDE

where Vv is an average of the sound velocity given by:
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1 1 1
=32 [3.38]

Using E quation [3.37] itis possible t o de fine an av erage cut-off w avevector, ¢p, a nd

averaged frequency, wp, given by:

67Z-ZN 1/3
O =Va.- =V [3.39]
p =Vdp ( NO J
Similarly, it is also possible to define the averaged Debye temperature, ®p, for the solid by

the relation kz®p = Aiwp. This represents the temperature at which the wavelength of vibration of

the atoms in a crystal is equal to the length of the unit cell.

3.4.3 Phonon-phonon interaction and the Debye approximation

To c alculate t he phonon -phonon i nteraction a full k nowledge of the realistic d ispersion
relation inside of the first Brillouin zone is necessary. The complex evaluation of this quantity
usually makes does that the study of three-phonon processes intractable. T hus motivating the
use of a much s impler m odel based on t he D ebye a pproximation. H owever, t he ¢ ontinuum
approach used in Debye’s model does not allow for a physical picture of U-processes, because
there is no concept of a reciprocal lattice vector in the continuum. T o overcome this problem,
Parrot [98] and S rivastava [99,100] designed t he f ollowing e xpression f or a pseudo-lattice

wavevector, “G”, in the continuum.

[3.40]
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where ¢ is the Debye radius and the +/— signs correspond to class I and II events, respectively.
Including the linear dispersion relation leads two news N-processes such as: T+T — Tand L +

L — L, which are forbidden in non-linear dispersion relation [7].

In this model is possible to approximate the sum in ¢ -space by an integral in all space. Once
this replacement is made, the sum in ¢’ can be eliminated using the Kronecker delta function,

then the sum in ¢’ can be expressed by:

N.Q
D = ZIdW [3.41]

q's'

After some al gebra, the expression for the relaxation time for class I and class II events is

given by:
zh  N,Q | )2
1 0 : ' ' ss's o a2 '
b e b sin@'d@'| A%}, d
T 4p’N,Q 87° p;G vsvs,vs,.!; H wo| 499794
Mo\ Moo +1
X Mé’(qu_kqusy — a)q"s") [3.42]
Mo +1
LR s g — )
2 nqs,O * " "

where |¢”| = |G — (¢ = ¢’)| and G is equal zero for N-processes. Using the Equation [3.40] in the

expression of ¢’ the reduced form:

14"[=(=&)qp +e|q£q| [3.43]
with & = +1/—1 for N/U-processes, r espectively. T aken the three-phonon s cattering s trengths

given in Equation [3.29] and a linear dispersion relation, the relaxation time is given by:
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AS'SS'
o ‘ 949 ron '2d
s 167[,0 ; s s s" jqq q
nq's'o( q"s", 0+1 " : do’
y —ljé(q -Cq—Dq')q" sin0'd0 [3.44]
+
qu
n
I Mjg(q” Cq + Dq')s"sin0'd0’
2 n

qs,0
with C = vy/v,- and D = v,/v,-. The angular integral can be solve using the Dirac delta function

properties [17], finally the expression for the relaxation time on Debye approach is given by:

2
ss's"
xx'x"

s oo

x? x!(1-&+&(Cx + Dx"))dx'

167z-p S5 ngyvg nxS0+1
’ [3.45]
nx's' n.
+ljﬂx‘2 x!(1-¢&+¢&(Cx—Dx'))dx’
2 nxs,O

with x = q/qp,x’ = q’/qp, x’. = Cx £ Dx’, and n,., is the Bose-Einstein distribution function
evaluated in x .. The different scattering event for N and U-processes are summarized in Table

3.1.

The e nergy a nd m omentum ¢ onservation r ules for N a nd U -processes impose cer tain
restriction on the integration of the x’. The areas of integration in the space x — x’ for U and N-

processes are summarized in the Figure 3.8 and Figure 3.9

o+ o — o’ 0w— 0+ o’
S s’ s C D S s s C D
L T L 1 vilvg L T T vi/vr 1
T T L vilvy vilvg L L T vi/vr vi/vr
T L vilvy 1 L T L 1 vi/vg
L L L 1 1 L L L 1 1

Table 3.1 N and U-processes interactions. s is the polarization, L and T are the longitudinal and
transverse polarization, respectively. The processes described in the last row is only valid for N-
Processes

49




Anharmonicity & thermal conductivity

X (ve =vp)/(vp +v7) X4 (ve = vp)lvg
X2 (ve = vp/vr Xs 2vil (v + vr)
X3 (ve—vp/2v, Xe (v +vp/2v,

Table 3.2 Limit values for areas of integration in the x-x’ space, with v, and vr longitudinal and
transverse sound velocity, respectively.

The ne w f ormulation ¢ an be s implified a gaint o c onsidert he hi gha nd 1 ow
temperature limits , but thi s w ould not pe rmitto see and to understand easily the

interaction between the phonons in the crystal.

X -l : X -t .YI_ I: X . .1';1 ."l'_|
: 1 i
03 03 e 0ns
".'4
I-"-_'. .'l.'l
i 0 t { }
0 i3 | ] 1k I {i fi§ |
T+ L1 * T+ T—L - L+T—L ~
(a) () (©)
x’ | X i -l .1}, X" I o
05+ 05+ 05+
I_rE
X3
"""" Xy fravend Xy |
b - b - : 0 ! |
1] K] | 0 0.3 I 1] 05 |
L=sT+T o . S * e TET .
(d) (e) 1))

Figure 3.8 (a-f): Areas of Integration in the x-x’ plane allowed for U-processes. Where x; _; 4, s are
given in Table 3.2
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Figure 3.9 Areas of Integration in the x-x’ plane allowed for N-processes. Where x; _; , s are given in

Table 3.2
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Numerical simulations

As an example, simulations of U -processes were performed by using the E quation [3.45]
under the Debye approach. The selection rules employed are show in Table 3.1, with the limit
values for areas of integration show in Figure 3.8 and Figure 3.9 . All simulations were
performed using a computational algorithm developed using the commercial code MATLAB™

and Mathematica. The material parameters used in the simulation are summarized in the Table

3.3
Parameter Symbol Value Reference
Lattice constant oy 0.543 nm [101]
Atomic mass M 46.6 x 10°'Kg [101]
Density P 2330 Kg/m’ [101]
Averaged longitudinal
Griineisen parameter " 1.14 [102]
Averaged transverse
Grilineisen parameter r 0.56 [102]
Longitudinal velocity Sy 8440 m/s [103]
Transversal velocity Sr 5845 m/s [103]
Debye radius qp 1.435x 10" m™ [17]

Table 3.3 Silicon parameters used in the simulation of Umklapp-processes
in the bulk system.

Bulk Umklapp-processes

Figure 3.10 shows the r elaxationr ate, 1 /7y, f or classI an dcl assI Iev ents atr oom
temperature. The higher relaxation rate processes of class II are due to the allowed participation

of only phonon with large energies in these events.
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Figure 3.10 Relaxation rate, 1/ty, for bulk silicon at room temperature via class I (a) and class II (b)
event.

Figure 3.11 shows the contribution to the total intrinsic relaxation time of each process. For
class I events, Figure 3.114, the larger c ontribution comes from L + 7 — L process at small
values of normalized wavevector. But, its contribution decreases as the normalized wavevector
begin to take larger v alues, w here the m ore i mportant c ontribution c omes from 7+ 7" — L
process. F or class [ 1 events, Figure 3. 115, the bigger c ontribution c omes from L — T + T

process. At large v alues of n ormalized w avevector t he co ntribution o f the three p rocesses

becomes comparable.

|.“ E | b T = | 1.0k _._.L —h r } L
—_—Tt ] T
—T+T—+1 =T

5 = 0.5 =

Total Contriburion [%)
Total Contribution |%5]

b

.0 - - —_— (1] - .
an 05 1.0 LI} 0.9 1=
Normalized wavevector [g/g,] (a) Normalized wavevector [gq/q,] (b

Figure 3.11 Relative contribution to the total intrinsic relaxation time for each processes and event
Figure 3.12 shows the total relaxation time for U-processes at room temperature. From this

picture is possible to observe that for small normalized wavevector the contribution come from
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class I event and decrease dramatically at g/gp ~ 0.8 where the more i mportant ¢ ontribution

comes from class II events.

iy < —— Total time [ns]

Total Intrinsic time |ns)

10’ r . r ;
0.0 0.2 0.4 .6 0.8 1.0

Normalized wavevector [q/q, |

Figure 3.12 Total relaxation rate for Umklapp-processes. Grey dotted line denotes the different zones
where each processes dominate.

The relaxation rate as function of temperature and reduced wavevector for different phonon-
phonon p rocesses i s s hown Figure 3.13 . T he i mportant feature f rom these picturesisthe
increase of the relaxation rate as function of temperature. This is due to the fact that at high

temperature the phonon population can be approximated by n,,o ~ kzT/hw and the relaxation

rate is directly proportional to temperature.
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Rate [ns™')

l].‘:"ﬂ-qf 4,095 —
(e) )
Figure 3.13 Relaxation rate as a function of temperature and reduced wavevector for different phonon-
phonon processes.

Figure 3.14 and Figure 3.15 show the total relaxation time, as a function of temperature and
reduced wavevector, for class I and II respectively. The total contribution for each event was
plotted separately because of the large difference between the two interactions. In general the
class I1 e vent involves u ltra-short time due to the high-frequency phonons involves in these

processes.
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Figure 3.14 Total relaxation rate for class I event as a function of temperature and reduced wavevector:

Figure 3.15

(a) three-dimensional plot, (b) contour plot (isoline).
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Total relaxation rate for class Il event as a function of temperature and reduced
wavevector: (a) three-dimensional plot, (b) contour plot (isoline).

One consequence of the Debye approximation is an overestimation of the class II event. That

is a consequence

of the linear-like dispersion relation, which produces faster decay of the border

zone phonons due to its energy is higher than the real one. In general to avoid this problem, it is

possible to use the Holland approach [104], but the limits of the integration areas have to be

redefined.
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Intrinsic sound absorption: Akhieser and Landau-Rumer mechanisms

The i ntrinsic sound a bsorption” can b e explained u sing t wo theoretical ap proaches: (i)
Landau-Rumer or t hree-phonon s cattering pr ocesses [105] and ( i7) A khieser mechanism o r
viscous d amping mechanism [106]. The d ominant p rocesses w ill de pend of t wo factors: the
wavelength of the absorbed phonon, 4, and the mean free path of the thermal phonons, A,,, i.e.

the average of the mean free path of thermally excited phonon in the crystal.

If the A of the acoustic wave is much larger than the typical A, of the thermal phonons,
i.e. frry << 1, we can assume that the acoustic wave is interacting with the whole of the thermal
phonons. This range is known as the Akhieser regime. But if the A is much smaller than the
Ay, 1.€., fTry >> 1, then the phonon attenuation is better described in the Landau-Rumer regime
and the phonon attenuation is due to three-phonon interaction processes. The main difference
between both approaches is the point of view how the sound wave is considered. In the Landau-
Rumer approximation the sound wave is treated microscopically, i.e., as a phonon, whereas in
the Akhieser approximationt he sound wavei s treated m acroscopically. I n general, the
momentum a ssociated t o t he 1 nteracting phonon i s not e nough t o pr oduce a collision t hat
generates a phonon ou tside of t he B rillouin zone. T hen U -processes can b e n eglected i n
comparison with the N -processes and the Landau-Rumer and Akhieser m echanisms can be

treated as pure N-processes.

In the Akhieser damping mechanism the sound of wave is considered as a macroscopic strain
field in th e crystal, a driving f orce, w hich pr oduces a s hift in the equilibrium di stribution
function o f't hermal phono ns. T he di sturbed s ystem will then tend to returnto equilibrium
through collision be tween thermal phonons 1 eading to t he a bsorption of t he a coustic wave.

Theoretically, the Akhieser mechanism can be obtained using the BTE under the relaxation time

“In general the sound absorption is related with acoustic phonon with frequency smaller than 1 THz
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approximation for the collision part. For the case where the thermoelastic damping is negligible,

the relaxation time can be written as [106—108]

2
k(@) = 2C pVT i f;:;jiy) () -07) [3.46]

where the lifetime of the thermal phonon can be approached by [109-111].

Ty ® — 3.47
™H C, v’ [3.47]

Originally, the Akhieser theory was developed for high temperatures where the average of
the phon on mean free path of the thermal phonons is much less than the w avelength o fthe
absorbed aco ustic w ave, i.e., fr<< 1.Y earslater, t he t heory w as d evelopedin d etails b y
Woodruff a nd E hrenreich [112] and Maris [107], w ho e xtended t he 1imits t o include values

fr>1and fr= 1, respectively.

3.4 Thermal conductivity: modelling and approximations

The thermal conductivity, x; is defined as the material ability to conduct heat and, in general,
the total thermal conductivity can be expressed as a s um of all heat carrier contributions. In a
semi-conductor, a lloys a nd non -metallic m edia, the d ominant c arriers of the heat are lattice
vibrations, i.e., phonons. In a macroscopic sy stem, the thermal conductivity is related to the
thermal flux through the Fourier’s law. This equation establishes a link between the heat flux,

0, and the temperature gradient, d7/dr, caused by it:

0= Ki—f [3.48]
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The calculation o fthe thermal c onductivity is a major mathematical challenge due to the
complexity of the variables involved. The first thermal ¢ onductivity models for bulk systems
were ba sedont hes olution o fphono nB TE u ndert hes ingle m oder elaxationt ime
approximation [67—70]. This a pproach pr ovides the simplest p icture of phon ons i nteractions
considering that each phonon mode has a single relaxation time independent of others modes,
i.e., it assumes that all other phonons have their own undisturbed equilibrium distribution [17].
The calculation of the thermal conductivity in semiconductor materials imply the knowledge of
three m ajor f requency-dependent p arameters, i.e., the sp ecific h eat, Cy, t he phonon g roup

velocity, v,, and the phonon mean free path, A = v,7. This leads to:

1 1 5
K= EZ CV,qsvg,quqs = EZ CV,qsvg,qSqu [3.49]
qs qs

The dispersion relation can be approximated us ing d ifferent ap proaches such as: the sine
function a pproximation, ab initio simulations, D ebye-like and Holland approximations,
Brillouin zone boundary ¢ ondition, f ourth-order po lynomial f it, etc.[17,104,113—115]. I n
general, due to the high symmetry of cubic semiconductor, it is assumed that the first Brillouin
zone i s 1 sotropic, i mplying that the di spersionr elationi s identically f or any w avevector

direction and, consequently, it can be represented just by the (100) direction.

Finally, to calculate the thermal conductivity it is necessary to pass the summation in the q-

space by an integral in the g-space:

1
Kbulk = § Z j v;,qs qu CV,qu(a)s )da)s [3 50]

where D(w,) is the phonon density of states, DOS. The determination of DOS in a particular
system is a highly complex dynamic problem. But, as been above, this function is estimated by

using simple and analytical models such as Einstein or Debye approximations.
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3.4.1 Specific heat capacity

The specific heat capacity, Cy, of a solid is defined as the heat capacity, ¢y, per unit volume,
i.e. Cy= cy/NyQ. The heat capacity is defined as the amount of energy per unit mass or per unit
volume to be supplied to a system to increase its temperature by one degree Kelvin or Celsius. It
can be defined as the temperature derivative of the average energy, U:

oUu

Cy =——
"ooor|,

n_ .
=> hao, 8‘;"’ [3.51]

q,s
Using t he Debye a pproach f or the DOS, E quation [3.36],1tis pos sible to replace the
summation in the g-space to the integral in the g-space:
N, Qn’ @

_ 4
Cy = 22T Tz fw n,(n, +1)da, [3.52]

By introducing dimensionless quantities x = ia/kpT and xp = @p/T, it is possible to rewrite

the heat capacity as:

x

=9Nk, —
xD£ g —1) [3.53]

An important characteristic of the heat capacity in the Debye expression is that it can recover
the D ulong-Petit limit at hi gh temperature and the 7 * behaviour for dielectric solids at low
temperature. S ome d eviations of this power law can be found in layered-type materials, e¢.g.
graphite, which exhibits a 2D-like behaviour at low temperature, namely, ¢y ~ T %, and in long
molecular-chains of organic polymers which shows a 1D-like behaviour, i.e., ¢y ~ T. Others

deviations from 7° can be found in metallic system due to the electronic contribution.
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3.4.2 Thermal conductivity in low dimensional systems

It is well known that in thin films and nanostructures, compared to the bulk, the boundary
scattering reduces the thermal conductivity. In the literature, this decrease has been associated to
two main factors: (i) modification of the dispersion relation [41-47] and/or (i7) shortening of the

phonon mean free path due to the diffuse scattering of phonons at the boundaries [2,48—50].

For 1 ow-dimensional sy stems Zou et al. [51] classified th e th eoretical m odels in to th ree
types. T he first on e t akes t he bul k f ormulation of the t hermal ¢ onductivity, introduces t he
modified dispersion relation caused by the spatial confinement and adds a boundary scattering
rate to the total scattering rate through Mattiessen’s rule [44]. The second one uses the bulk
dispersion r elation a nd d erives a n e xact solution to the PBTE a fter i ntroducing diffusive
boundaries ¢ onditions, a ccording t o the Knudsen f low model [2,48,52]. The t hird m odel,
proposed by Zou etal. [51],is a combination of these two approaches. This model takes the
modified expression of the thermal conductivity including the Knudsen flow model in addition
to the modified dispersion relation. More recently Huang et al. [46] developed one- and two-
dimensional expressions for the thermal conductivity of thin films and nanowire, which include

the modified expression of the relaxation time due to the boundaries.

Modified Debye-Callaway-Srivastava model: complete phonon-phonon scheme

Depending of the model chosen, each result in a reasonable fit to the experimental data, but
some assumptions and approximations could lead to an over/underestimation of the contribution
of intrinsic phonon-phonon scattering processes. It is due to the typical approximation used for
phonon-phonon scattering processes, i.e., T o T"@". However, this approach does not include

any kind of phonon selection rules and certain kinds of forbidden phonon-phonon interactions
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appear incorrectly as allowed, such as Umklapp processes for zone-centre longitudinal phonons.
In a ddition, s ome m odels ¢ ompletely e xclude t he contribution o f the decay pr ocesses in

Umklapp scattering processes.

From E quation [3.50] is clear that to m odel th e lattice t hermal ¢ onductivity d ispersion
relation, the total relaxation time o f each mode and a numerical scheme for p erforming t he
integration w ithin t he B rillouin z one are r equired. The ph onon d ispersion r elation c an be
calculated by several methods. However, the calculation of the intrinsic relaxation rates and the
summation over the Brillouin zone can be very time-consuming and the necessary knowledge of
the anharmonic phonon-phonon scattering strengths is not yet sufficiently well-established [71].
Taking these d ifficulties into account, Srivastava formulated a model o fthe lattice thermal
conductivity based upon an isotropic continuum dispersion relation approximation limiting the
Brillouin zone with the Debye radius. Under these approximations, Equation [3.50] reduces to a

more tractable form:

K= 67T2k TZ ZV J.x nxs(nxy + I)T sdx [354]

with @, = v,q, gp denotes the Debye radius cut-off and x = ¢/¢gp the reduced wavevector. The
total r elaxation time, t,,, and the distribution function, 7, are functions that depend on the
reduced w avevector, x, and the polarization, s. Although the D ebye model does not include
optical modes or dispersion at large wavevectors, it is a good representation of almost 60% of
the full a coustic d ispersion r elation. Mo reover, this 60% represents t he m ajority o f't he h eat

carrying phonons due to their relatively large group velocities and low scattering rates [116].

The total relaxation time is obtained by Mathessien’s rule ad ding the boundary s cattering
processes derived from Equation [3.19]. As an example, the Figure 3.16 shows the good match

between this theoretical model and experimental results in silicon nanowires.
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Figure 3.16 Modelling and comparison of thermal conductivity of free-standing silicon nanowires ref.
[45]

Fuchs-Sondheimer model: correction of the thermal conductivity expression

The modelling of the reduction of the thermal conductivity is typically approached adding
the phonon-boundary scattering term, 7, to the total relaxation time. It is estimated from the
structure thicknesses and/or diameter, a, the phonon group velocity and the correction factor
parameter w hich will de pend of the geometry of the system, F, 7z = Fa/vy(q). S ometimes, a
specularity f actor, p, isa dded, whichr epresentst he su rface polish qua lity of t he
film/wire [7,117]. However, the boundary scattering is a surface phenomenon and the addition
of an extra term in the total relaxation time is not strictly rigorous. Instead, it is necessary to

include the boundary effect on the phonon mean free path.

Based on the experimental results of Lovell [118] and the theoretical model of
Thomson [119], Fuchs developed the first analytical solution of the size effect in the electrical
conductivity of thin films [120]. He derived the effective electronic conductivity by solving the

electronic-BTE w ith pa rtially di ffuse boun daries. [ t1 ed to m odification of the e lectronic
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distribution function r esults in a modified f ormulation of th e e lectronic ¢ onductivity. Y ears
later, Chambers extended the models for nanowires [121] and Sondheimer simplified the model
for thin film and nanowires [122]. The same concept was extended and adapted for phonons to

calculate the reduced thermal conductivity of thin films [2,6,49] and nanowires [52,123,124].

The thermal conductivity simulation of Si free-standing membranes is carried out, first, by
deriving t he | attice t hermal co nductivity of t he bulk usingt he modified C allaway-Holland

model, Equation [3.50], under the single-mode relaxation time approximation [68,104].

Then, once t he t hermal conductivity of bulki s d etermined, t he ef fect o f f inite s ize is

introduced through the Fuchs-Sondheimer boundary corrections:

x5,
K fim

IR 3.55]

—X0

— pe

l\)\w
—“—-8

Kbulk s
where p = exp(417°¢°) is the fraction of phonons specularly reflected by the boundaries, 7 is the
root mean square deviation of the height of the surface from a reference plane [7] (roughness),

J; = a/A, is the inverse of Knudsen number and A, is the bulk mean free path.

Huang _model: modified dispersion relation and correction of the thermal conductivity
expression

As discussed in Chapter II, the decrease in the structure dimension leads to the confinement
of acoustics modes and the discretization of the acoustics spectrum, which results in a change in
phonon propagation. The quantization of the dispersion relation leads to a modification of all
frequency-dependence parameters which, in turn, results in changes in the phonon density of
states, group velocity and phonon-phonon interaction. Based in this fact, Huang et al. [46]

postulated a new | attice thermal conductivity m odel. The m odel included noto nlyt he
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modification of the dispersion relation and group v elocity, but also, that of the sp ecific heat
capacity an d, consequently, the D ebye t emperature. I n a ddition, ¢ onsidering t he b oundary

scattering effect, the lattice thermal conductivity expression also undergoes changes.

Due t ot he discretization o f dispersion r elation in t he pe rpendicular ¢ omponent of t he
wavevector in a membrane, it is not possible to integrate over all ¢ space. Therefore, to convert
the sum to an integral over q-space, the summation along the perpendicular direction has to be

made to keep also over the discrete number of modes m, i.¢.:

[3.56]

0 (2 )
with A4 the su rface o f the f ilm. Taken the solution o ft he st eady st ate r elaxation t ime
approximation of the BTE, Equation [II.12] of Appendix II, the thermal flux through of the film

for a given direction can be written as:

0
%_ ad (27[) Z.[ Ve.as cos(6) e, Dy sTa,s q//dq//dQ [3-57]

By introducing the Fourier Law in the Equation [3.57], the lattice thermal conductivity of the

film can be expressed as:

ZI @y ,sT q//s OT 6]//alq// [3.58]

The number of discrete modes, m, is limited by the material size [125]. However Huang et
al. [20] suggested that for a given p lane w ave number q ,, t he ma ximum number of a llowed

discrete modes is:

[3.59]

m(q,) = {2\/ qp—4;

1 +1
27/ a)
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where [x] is the Gauss notation that gives the largest integer less than or equal to x. The number
one in Equation [3.59] counts the modes for g,=¢gp. The Figure 3.17 shows the number of

discrete modes for 10 nm Si membranes.

Now, to calculate the thermal conductivity of our structure it is only necessary to know the

dispersion relation and the total phonon lifetimes, i.e., 7, =g

On't he ot her ha nd, a sha s been shown int he F uchs-Sondheimer m odel, t he thermal
conductivity e xpression must be corrected to a ccount for the c ollision of phonons with the
surface. However, for the case of membranes, only the phonon di spersion relation o f w aves
travelinginthe planeis allowed anditw ould s eem that phonons cannot collide withthe
boundaries. However, thisis unlikely to be the ¢ ase because t heir amplitudes a re s trongly

affected by the boundaries.

45 1 Mumber of modes in
_:\&,' g 10 nm Si membrane
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Figure 3.17 Number of discrete modes for 10 nm thick Si membrane as a function of the dimensionless
in-plane wavevector.

In order to correct this expression, the boundary scattering will be viewed as a microscopic
phenomenon and may be modelled using a characteristic relaxation time given by the Fuchs-

Sondheimer corrections. The thermal conductivity of the film can be written as a correction of
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the bulk values due to the boundary, i.e., &jm = Kpux — FKpur, Where F is the reduction function
given by the E quation [3.55]. In this e xpression the phonon g roup velocity is considered as

three-dimensional and this means that phonons collide with the boundaries.

1 on
K tim = Ko = F Ky = 3 Z I (I- F)va;wha)s ﬁ D(w,)dw, [3.60]

Since this expression takes into account the scattering due to the boundary, the total life time
in this expression has to contain only Umklapp and impurity scattering processes, i.€., 1/7, =
1/7ys + 1/7,. Now, to derivate the boundary relaxation time, the lattice thermal conductivity of

the thin film has to be rewritten in a suitable form akin to bulk materials, i.e.:

1 Ny s
K = 2|7V who, ';°T‘“‘ D(w,)do, [3.61]

Finally, by comparing Equation [3.61] with [3.60], it found that:

r'=7(1-F) [3.62]
According to the Matthiessen’s rule, it is now possible to define the boundary relaxation time

as:

(1-F)
Tp =71 T [363]
Finally, more r ealistic expression for the b oundary lifetime is ob tained. To ¢ ompute t he

lattice th ermal c onductivity w ithin this model it is just ne cessary t o i ntroduce t he E quation

[3.62] in the expression [3.58].

It is noteworthy that the derivation of the modified boundary relaxation time followed here is
not equal to that in the R eference [46], be cause the reduction function used here is different
although mathematically is the same and it does not have any major implications for the data

analysis.
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3.5 Phonon confinement and modification of specific heat capacity

The dispersion relation of a lower dimensional structure is not Debye-like and the acoustic
dispersion relation is quantized. Therefore, all the frequency-dependent p arameters could be
affected, r esulting i n ¢ hanges i n t he phonon de nsity of s tates, g roup v elocity a nd phonon -
phonon interaction. In this section, the effect of the modified dispersion relation on the specific

heat capacity will be examined.

3.5.1 Modification of the specific heat capacity

As seen in the Huang-model, the discretization of the dispersion relation does not allow the
integration over all g values. Taking t he d iscrete e xpression o f the s pecific heat capacity,
Equation [3.51], and replacing by the c ontinuum through E quation [3.56], the specific h eat

capacity can be rewritten as [20,22]:

1 < tho, )'n, o0, o+ 4
G, = Z_[ e ) (27)q,dq,

o ) [3.64]

1 qp . 1 ha)q/’S 2
= % mz; .(';c(a)q,s )q//dq// > C(a)q//s) = E T nq r/s,O(nq/’s,O + 1)

where c( @) is defined as the spectral density o f the specific heat cap acity representing the
contribution to the sp ecific heat by the states in the interval @ + dw, the nu mber of phonon
modes is given by the Equation [3.59] and the dispersion relation is given by Equations [2.13]
and [2.17]. Finally, the sp ecific heat capacity is calculated from E quation [3.64] taking into
consideration the phonon discretization as well as the ¢ ontribution o f e ach po larization, i .e.,

flexural, dilatational and shear modes.
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Figure 3.18 Specific heat of Si as a function of temperature for the bulk (blue dashed line) and for 1 to
120 nm thick free standing membrane.

Figure 3.18 shows the temperature dependence of the specific heat for Si membranes with
thicknesses ranging from 1 to 120 nm. For comparison, the specific heat of the bulk Si is also

plotted. As the membrane thickness increases, the bulk behaviour is recovered.

In t he | ow t emperature regime, a d eparture from oc T’ is ev ident, approaching a I inear
dependence with decreasing membrane thickness. As shown in Figure 3.19 a and b, the linear
dependence reflects the predominance of the fundamental flexural mode in this low temperature
regime due toi ts qua dratic di spersion. O nt he ot her ha nd, a t hi gher t emperatures t he
contribution of shear polarization becomes important, which for 10 nm, reaches the maximum
contribution of around of 43% at 30 K, and the specific heat capacity becomes proportional to

T°. Above T > 400 K the contributions of all polarizations converge.
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Figure 3.19 (a) Specific heat capacity and temperature dependence of flexural (red line), shear (blue
line) and dilatational (black line) polarizations for a 10 nm thick silicon membrane. For comparison
the dependence of the Si bulk is also plotted (green line). (b) Contributions of each polarization to the
total specific heat for 10 nm and 1 nm thick silicon membrane. The solid (dotted) black, solid (dotted)
red and solid (dotted) blue lines represent the polarization contribution of flexural, shear and
dilatational modes, respectively for 10 nm (1 nm) thick Si membrane.

Figure 3.19b shows the specific heat as a function of thickness. Note that at low temperature

the specific heat increases as the thickness decreases, reflecting the dominant role of flexural

waves in the low temperature regime, whereas it r emains v irtually th ickness-independent a t

room temperature.
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Figure 3.20 (@) Normalized specific heat capacity as a function of temperature the blue line illustrates
the bulk values. (b) Specific heat as a function of the membrane thickness at 300, 10, 4 and 1 K.
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Figure 3.21 Spectral density of the heat capacity of a 10 nm thick Si membrane at 30 K (a) and 300 K
(b) as a function of frequency.

Figure 3.21a and b show the spectral density of the heat capacity as a function of frequency
for a 10 nm thick Si membrane. The numerous peaks are due to regions of high density of states
in the modified dispersion relation. It is seen that at room temperature the main contribution to
the specific heat comes from the more energetic phonons (~ 1.6 to 6 T Hz), while at 30 K the

main contribution comes from low-energy phonons (~ 0.3 to 1.3 THz).

The size effects in the specific heat capacity are most important at cryogenic temperatures
and/or ultra-thin membranes (see Figure 3.18 and Figure 3.20a). At higher temperatures bulk
values are quickly approached. From this result, two important questions arise: To what degree
is the modification of the dispersion relation important? When does it make sense to usethe

modified dispersion relation?

71



Anharmonicity & thermal conductivity

3.6 Use of modified dispersion relation: defining criteria

Although t here is n o f ormal pr ocedure for d eciding w hen it is v alid and/or us eful t o
introduce of the modified dispersion relation, it is clear from Figure 3.18 and Figure 3.20a that

it only affects the low temperature regime and smaller thicknesses.

To estimate when is useful to use the discretised relation, the comparison between the lattice
thermal e nergy, Ery = kgT,a ndt hee nergy spacing betweent he phon ons br anches,
AE=hAwmay be asuitable criterion. Atthe centre o fthe Brillouin zone t his s eparation is
approximately AE=fzv/a where v; can be the longitudinal or transverse sound velocity. The
high t emperature regime and/or in thicker sy stems the energy between the modes is al ways
much smaller than the thermal lattice energy, hence many modes are occupied. In this case the
dispersion relation and the phonon density of states may be approached by bulk-like behaviour.
Figure 3.22 a and b show the lattice t hermal an d separation en ergy a s a f unction of t he
temperature and thickness respectively. For 7> 15 K and a > 15 nm it is clear that the lattice
thermal energy is always much larger than the energy between the modes. In this regime the
bulk-dispersion relation becomes a good approximation. However, the bulk dispersion relation
is no longer a good approximation when the energy separation exceeds the thermal energy, that
is, Ta < hnv/kp. It is in this regime that the modified dispersion relation plays a role in the

thermal properties [126].

Taking these facts into consideration, the reduction of thermal conductivity in Si thin films
can be attributed mainly to the s hortening of the ph onon mean free p ath due to the diffuse
scattering of p honons a t the bo undaries [2,48-50], but int hel ow dimensions and/or | ow
temperature r egime e ffect of m odification o f't he d ispersion r elation s hould be t aken i nto

account, including its effects on both group velocity and heat capacity [20,51,87].
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Figure 3.22 Lattice thermal energy (ved solid line) and spacing energy (black solid and grey dashed
lines) as a function of the temperature and thickness, respectively. (b) Magnified image of the low
temperature/thickness regime plotted in linear scale.
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CHAPTER IV: FABRICATION AND EXPERIMENTAL TECHNIQUES

In t he p resent ch apter, the f abrication p rocesses a nd ¢ haracterization m ethods w ill be
described. The silicon membranes used in this work were fabricated by collaborators from: the
Technical Research Centre of Finland (VTT) in collaboration with Dr. Andrey Shchepetov, Dr.
Mika P runnila, a nd P rof. Dr. Jouni A hopelto o fthe T echnical R esearch C entre o f F inland
(VTT). Three Si membranes with thickness of 250, 1000 and 2000 nm were purchased from

NORCADA Inc.

4.1 Fabrication of ultrathin freestanding silicon membranes

A co nvenient w ay t o f abricate thin f ree-standing s ilicon m embranes t o investigate t he
thermal properties is to start with silicon-on-insulator (SOI) wafers. The fabrication processes
developed at VTT for ultrathin Si membrane (< 100 nm) includes thinning of the SOI film by
thermal oxi dation, ox ide r emoval a nd r eleasing t he m embrane by de ep e tching t hrough t he
handle wafer and the buried oxide layer (BOX). The windows to be opened on the backside are
defined by phot olithography a nd, c onsequently, doubl e s ide po lished ( DSP) S OI w afers are
used. The thickness of the SOI film and BOX layer are typically a few hundreds of nm. The SOI
film is thinned to the desired thickness by thermal oxidation w hich provides very accurate
control o f the film t hickness and atomic layer s harp i nterfaces b etween silicon a nd s ilicon
dioxide. The grown oxide can be selectively removed in hydrofluoric acid (HF) or in buffered
HF (BHF). Windows are patterned to the back side of the wafer by optical lithography. T he
deep etching through the handle wafer can be done by wet etching in tetramethyl ammonium

hydroxide (TMAH) bath or by reactive ion etching (RIE) or by combining both. In RIE SFy
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based ¢ hemistry pr ovides g ood s electivity be tween s ilicon a nd oxi de a nd for T MAH t he
selectivity is in practice infinite, leading in both cases to stopping of the deep etching at the
handle w afer - BOX interface. The final removal o fthe B OX layer is c arried out in B HF.
During the f abrication p rocess t he t hickness oft he 1 ayersi s co ntrolled b y an optical
reflectometer with an accuracy be tter than 1 nm and c onfirmed by c ross-sectional scan ning
electron microscopy (SEM). Using this process free-standing membranes with areas of several
square millimetres and with thickness below 10 nm can be fabricated in a controlled manner,
afforded by established silicon processing. The main process steps are schematically shown in

Figure 4.1,
SOl
.~ BOX

(a) ()

(©) (d)
Figure 4.1 (a) Typical SOI wafers used in the fabrication of the free-standing membranes with a few
100s nm thick SOI film and BOX layer. (b) The SOI film is thinned by thermal oxidation. The thermal
process creates compressive stress in the film, as shown by the arrows. (c) After release the membrane
is relaxed and tends to buckle. (d) Optical micrograph of a released 1.4x1.4 mm’ membrane with
thickness of 9 nm. Courtesy of Prof. Dr. Jouni Ahopelto.

However, the thermal processes used to thin the SOI film tend to create compressive stress in
the film [127], l eading t o buckling o f the m embranes after the release. The buckling can be
potentially detrimental for experimental work, especially for optical measurements, because the
angle of incidence of the laser beam may not be well defined, and can also prevent the use of
membranes i n de vices. I na ddition, t he s train and, ¢ onsequently, the el asto-mechanical

properties of the membrane, cannot be tuned in a controlled manner because of the relaxation of
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the built-in stress. There are w ays to overcome t his p roblem an d control the stress such as
growing Si epitaxially on a SiGe buffer [128], oxide undercut [129], depositing thick SiN layers

on top and bottom of the Si layer [130] or using SiN top frame [10].

This last approach avoids buckling and allows control of the strain. The strain can be tuned
by varying the dimensions and layout of the frame and, c onsequently, the pr operties of the

membrane can be engineered in controlled manner.

4.2 Advanced methods of characterizing phonon dispersion, lifetimes and thermal
conductivity

In order to measure the main components of thermal transport: dispersion relations, lifetimes
and thermal conductivity/diffusivity, advanced characterization techniques will be explained
and discussed. Starting with the measurement o f the dispersion relation and the de tection of

confined phonons to novel technique to measure thermal conductivity and transport regime.

4.2.1 Brillouin scattering

In or der t o determinate the i mpact o f co nfinement ef fects o n the thermal p roperties o f
nanostructures, the first step is the experimental determination of the phonon dispersion. [tis
crucial to measure the de pendence of the phonon frequency on i ts propagation direction and
magnitude and c ompare it with theory. S everal que stions must be answered: Is t he el astic
continuum model still valid at t he nanoscale? Is quantum confinement important w hen the

coherence of the scattered phonons is masked by boundary or grain effects?
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The experimental t echnique t o m easure t he transfer of e nergy a nd momentum be tween
photons and phonons, is known generically as Inelastic Light Scattering (ILS), which allows a
direct measurement of the energy or frequency of phonon, vibrational and rotational states of
molecules, as well as p lasmons, ex citons and m agnons. It is a non -contact, n on-destructive

method, with no pre- or post- processing required.

Historically, ILS by acoustic phonons has been known as Brillouin Light Scattering (BLS),
while scattering from optical phonons, and vibrational and rotational states of molecules, has
been k nown a s R aman s cattering. F rom t he poi nt of v iew of qua ntum t heory, B rillouin
scattering is s imply the f irst-order R aman sc attering asso ciated w ith a t ransitionint he

vibrational states of the acoustic vibrations [131].

In practice, the difference among the ILS techniques is the apparatus used to access with
enough resolution to the different frequency or energy ranges of the targeted quasiparticles or
vibrations. The interaction of the quasiparticle with the photon causes a frequency down-shift
(Stokes) ora frequency u pshift (anti-Stokes) d epending on whether the energyis given or
absorbed by the photon. The typical frequency range accessed by BLS, extends from 500 MHz

to several hundred GHz, which is suitable to access acoustic phonons.

In the quantum de scription of the interaction, the incident photon creates or annihilates a
phonon and the energy and momentum of the phonon is equal to the difference in energy and
momentum between t he incident and scattered phot ons. T wo main inelastic light s cattering
processes by acoustic phonons are present in nanostructured materials, namely, the photoelastic

scattering mechanism, and the ripple scattering mechanism.

- Photoelastic (or elasto-optic) scattering occurs due to time-dependent fluctuations in the

polarisability of a material, which are caused by acoustic phonons.
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- The ripple s cattering mechanism di ffers from the phot oelastic one mainly in that the
scattering s trength doe s n ot de pend directly on the strain, pho toelastic c onstants, or
polarisability of the material. Instead, the strength of the scattered signal is proportional
to the normal displacement of the acoustic wave, or ripple, since the change in phase is
caused by variations of the optical path length arising from the surface displacement.
For this reason, the ripple scattering mechanism is stronger for surface acoustic waves,
or waves which cause modulation at the surface, such as the flexural and dilatational

waves in a membrane.

However, b ulk w aves will al so ¢ ause su rface d isplacement, an d su rface w aves w ill al so
induce a strain, an d t herefore s catter light via the photoelastic e ffect; thus, in general, b oth
effects must b e t aken i nto acco unt. The r elative i mportance o f either ef fect i s d etermined
primarily by the scattering volume. Extensive discussions of both mechanisms can be found in

references [132,133].

To measure a dispersion relation, both frequency and wavevector magnitude and direction
are required. The wavevector of the phonon involved in the scattering process is determined by
the angle of scattering, which is defined through the scattering apparatus and the mechanism

responsible of the ILS.

The wavevector, ¢, involved in the scattering process depends on the scattering mechanism.

In the general case of photoelastic scattering it is given by:

q =2ksin(a/2) [4.1]
where k& and ¢ aret he w avevectors of't he incident phot on within t he material a nd t he
generated/absorbed phonon, respectively, and « is the angle between the incident and scattered

light beams. In a backscattering configuration of & =180 degrees, Equation [4.1] becomes:
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q =2k [4.2]
where the magnitude of the wavevector is independent of the scattering angle and the direction

of the wavevector within the sample is defined by Snell’s law (See Figure 4.2).

=25
= dm'Ad

Figure 4.2 Wavevector conservation in the photoelastic backscattering configuration.

For the case of the ripple scattering, the wavevector of the phonon involved is given by:

q, = ki — ki, = 2k(sin(e;) + sin(e;)) [4.3]
where ¢; and oy are the incident and scattered angle, respectively, both defined with respect to

the normal to the surface. For the backscattering configuration the previous relation becomes:

q =2ksin(a) = 47ﬁsin(a) [4.4]

In this case, the magnitude of the wavevector changes as a function of the angle, while the

direction remains constant, parallel to the surface in the scattering plane (See Figure 4.3).

&
g, =2k sin{a) )
= 4m/ A sin{a) -
k, i
i N
L————

Figure 4.3 Wavevector conservation in backscattering configuration via the ripple effect.
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The apparatus is shown in Figure 4.4 and it is built in a b ackscattering geometry. A small
prism or beam splitter is used to direct the light towards the sample, with an achromatic lens to
focus the light. As the scattering occurs at the focus of the lens, the backscattered light is
collimated, and an other 1ens placed a fter the prism is used to focus the light to the entrance
pinhole of the spectrometer. A beam splitter is placed between the prism and the lens to form an

image of the sample on a CCD camera.

PR S (ot rand il
Laniw f = 30 mm

(a) (b)
Figure 4.4 (a) Schematics of apparatus used for backscattering configuration, (b) Photograph of
apparatus used for backscattering configuration. TPFI is a Tandem Fabry-Perot Interferometer

For our experiment, the incident radiation was provided by a diode-pumped solid state laser
(DPSSL) from O xxius, with a free-space wavelength, A, of 532.6 nm. The light inelastically
scattered by optical and ac oustic phonons undergoes an ex tremely small fractional change in
frequency and a high-resolution spectrometer is required. The scattering light was analysed with
ahi gh resolution m ultipass ( 3+3) T andem Fabry-Pérot Interferometer ( TPFI) fro m J RS
Scientific Instruments [134,135], which consists in two Fabry-Pérot Interferometers (FPIs) put

in series (see Figure 4.5).

In ordinary FPIs the increase of the finesse is achieved by increasing the cavity length, but
this reduces the free spectral range. The tandem configuration overcomes this problem since the
two cavities can be configured, using two slightly different cavity lengths, to be both resonant
just ata certain wavelength and detuned for the neighbouring supported modes. T his greatly

enhances the free spectral range, while maintain a high finesse.
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Figure 4.5 Schematic of Tandem Fabry-Perot Interferometer, TPFI, manufactured by JRS
Instruments, Sandercock showing path of light [134,135]. Courtesy of Dr. Bartlomiej Graczykowski.

As ex ample, t he ty pical Brillouin spectrum of 200 nm thick Si membranes is shown in
Figure 4.6. The spectra was taken using Olympus 10 x objective, with a n umerical aperture of
NA = 0.25 and spot size measured at Full-Width-Half-Max (FWHM) of 12.5 um was used as
the focus and collection lens for the thicker membrane [136]. The main difference with respect
to bulk counterpart is the multiples peaks observed in the membrane case. For bulk system just a

single peak corresponding to the surface acoustic wave is seen.
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Figure 4.6 Typical Brillouin spectra recorded for 200 nm thick free-standing Si membrane. The first
two peaks nearest the central quasi-elastic peak are identified as the zero-order flexural, A0, and
dilatational, SO, modes. The others belongs to first, and second order dilatational modes, SI and S2,
respectively. Adapted from J. Cuffe and E. Chavez et at. [21,137]
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4.2.2 Pump-and-probe ultrafast spectroscopy.

Understanding t he lifetimes o fheat carrying p honons is e ssential t o en gineering t hermal
transport. A phonon’s lifetime refers to the time taken for a phonon or phonon wavepacket to
scatter or be attenuated. The reason for this attenuation may be either collision with impurities
or defects within the sample or the boundaries of the sample (extrinsic mechanisms), or due to
the intrinsic anharmonicity of the lattice, which occurs even for perfect crystals. In conjunction
with its group v elocity, the phonon lifetimes de fines how far a phonon can carry its energy,
which is known as the phonon mean free path. D espite the fundamental i mportance of these
parameters, accurate m easurements o f phonon lifetimes ar e ch allenging, and their values are
unknown in most materials. Even though silicon is the most important material for nanoscale
devices, there are few direct m easurements o f p honon lifetimes in the gigahertz t o terahertz
range [108]. Moreover, many open questions remain about the relative contributions of intrinsic
and e xtrinsic scattering pr ocesses at high frequencies i n bot h bu lk a nd na noscale s tructures

[138-140].

Generation and detection of high-frequency phonons

One of the most fundamental a pproaches t o measure phonon lifetimes is to first generate
phonons with an impulse and then observe the rate at which they decay. As the dominant heat-
carrying phonons at room temperature have frequencies of the order of 1 THz and above, one of
the challenges relates to exciting high-frequency phonons. One of the primary tools that enabled
the study of these phonons is ultrafast lasers, capable of generating very short pulses with very
intense electric fields. These pulses, with durations of just a few picoseconds, and more recently

down to sub-100 fs pulses, deliver very fast, powerful impulses, which generate high-frequency
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phonons. This de velopment opened a field of study now known of picosecond acoustics or

picosecond ultrasonic.

The light-matter i nteractions t hat cau se u Itra-short | aser p ulses t o ex cite h igh frequency
phonons constitute a rich and interesting field of study. The intense electric field of the short
pulse interacts with the el ectron clouds of the material, w hich then generates strain t hrough
different m echanisms, d epending on t he m aterial properties. The p rocesses involved f or
semiconductors, such as silicon, are illustrated in Figure 4.7. The light pulse hits the sample,
electrons are excited into the conduction band. These electrons decay rapidly while giving their
energy to the lattice through phonon e mission and come to equilibrium with the lattice at the
bottom of the conduction band within ~ 1 ps. The subsequent dynamics then depend on carrier
and t hermal diffusion. The | aser p ulse causes s train v ia t wo sep arate m echanisms, n amely
thermal expansion, and the hydrostatic deformation potential. The thermal expansion is due to
the anharmonicity of the lattice, whereas the deformation potential is due to the excitation of
electrons into binding orbitals. In the case of bulk silicon, the stress caused by the deformation
potential is about seven times greater than the thermal stress and is compressive [141]. These
stress terms then lead to the generation o f acoustic phonons. O ften, metal layers are used as
transducers, especially for transparent films which cannot absorb the radiation. Here, the

dynamics are quite similar, except that electron-hole recombination is much faster.

To de tect these p honons, the strain d ependence o f the r eflectivity of many materials is
exploited, which occurs due to a change in the refractive index caused by the elasto-optic or
photoelastic coefficients of the material. For many pico-/femto-second experiments, one intense
laser pulse will be used to excite phonons, while another weaker pulse or train of pulses is used
to detect the corresponding change in reflectivity. These are collectively known as pump-probe

measurements.
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Figure 4.7 Schematic of the response of a semiconductor to an ultra-short pulse. Electrons are excited
from the valence band, VB, to the conduction band, CB, where they decay rapidly to the bottom of the
conduction band through electron-electron collisions and phonon emission. The dynamics are then
described by a slower decay involving electron-hole pair recombination, carrier diffusion, and
thermal diffusion. Courtesy of Dr. John Cuffe.

Asynchronous Optical Sampling: ASOPS

The f irst m easurements i nvolving t he g eneration and de tection o f a coustic phonons by
picoseconds | aser p ulses were p erformed inthe 1 980’s [142,143]. The t echnique w as t hen
applied to measure the attenuation of phonons in amorphous Si0,, for frequencies up to 440
GHz [144]. R ecently, t hese experimental i nvestigations ha ve been extended to m easure of
phonons in superlattice cavities with frequencies of around 1 THz [145]. For bulk samples, the
phonon lifetimes are e xpected to be limited by intrinsic a nharmonicity, for w hich there are
many models. The generation and detection of coherent acoustic phonons at high frequencies is
an ideal method t o i nvestigate t hese m echanisms an d t heir r elative i mportance co mpared t o

extrinsic scattering in nanostructures.
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One state-of-art technique of generation and detection coherent phonons is the Asynchronous
Optical Sampling spectroscopy, ASOPS [146]. The ASOPS method is based on the traditional
ultra-fast pum p-probe t echniques, b ut instead of the mechanical de lay line for t he t emporal
dephasing of the lasers, Figure 4.8 a, it produces pulses from t wo m ode-locked femtosecond

Ti:Sa lasers with slightly detuned repetition rates, Figure 4.8b.
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Figure 4.8 Schematic pump-probe experiment: (a) Mechanical delay and (b JASOPS with two mode-
locked lasers, adapted from J. Cuffe [136]

To scan the dynamic of the system, the ASOPS technique uses the detuning of the repetition
rate be tween the pum p a nd pr obe pul ses. This detuning ¢ reates a m onotonically t emporal
window which allows scanning the dynamic of the system without the need the re-adjustment of
the any mechanical stage. The scan rate is determinate by the difference in frequency, Afz, and
the t emporal window is given by the inverse of t his difference, 1/ Afz. For example, i fthe
repetition rates of the pump and probe are 1 GHz and 0.999999 GHz, respectively, the temporal
window will be of one nanosecond and it can be probed in 100 ps, see Figure 4.9. The typical

resolution of the ASOPS could achieve values smaller than 100 fs [83].
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Figure 4.9 Schematic time delay between pump and probe pulses. From Gigaoptics GmbH website.

4.2.3 Raman Thermometry

The ex perimental measurement o fth e th ermal ¢ onductivity in volves tw os teps: the
introduction o f t hermal e nergy into the system, he ating, and t he de tection of the ¢ hange o f
temperature o r related p hysical p roperties d ue t o t he i ncrease o f't he t hermal en ergy, i .e.,
sensing. B oth, heating and sensing, can be measured mainly by el ectrical or optical and/or a

combination of both.

In recent y ears, novel contactless characterization t echniques for thermal co nductivity (or
thermal d iffusivity) de termination h ave be en de veloped. Their main ad vantage co mpared t o
electrical techniques is the lack of contacts and the pre-processing stage of the samples. Besides
from t he st eady-state m ethod f or thermal ¢ onductivity de termination, where g ood t hermal
contacts ar e m andatory [147], t he w ell-established 3 w technique f or bu lk a nd t hin f ilms
samples [ 148] requires an initial lithography process followed by a metallic strip deposition and
finally the bonding of electrical contacts. The later represents a good example of the drawbacks
of c ontact techniques s ince, a Ithough the accuracyis inthe order of = 5%, the fabrication
process sometimes results difficult, e.g., due to large roughness of the samples which can result

in breakage of the metallic strip. Scanning thermal microscopy with higher spatial resolution is
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also an alternative, a Ithough th e f abrication o f the thermal tips is co mplex and e xpensive.

Moreover, the physics behind the tip-sample interactions is far from being unravelled.

In c onsequence, many different groups have d eveloped a v ariety o f contactless ad vanced
techniques such as, e.g., time-domain thermoreflectance (TDTR) [149,150], frequency-domain
thermoreflectance ( FDTR) [151], t hermal tr ansient g rating (TTG) [152], the phot oacoustic
method [153], and Raman thermometry [61]. In addition, optical sensing methods might be able
to collect information more selectively which could be used to distinguish between emission

and scattering originated within a sample or its substrate and to measure local temperatures.

Single Laser Raman Thermometry: 1LRT

Single L aser Raman thermometry, 1LRT, is a contactless ad vanced technique for thermal
conductivity determination based on the probe of the local temperature due to different physical
mechanism. A ccordingly, a ny a spect o f phonons ¢ hanging with t emperature canbe used to
probe the thermal state of the system. These changes are reflected mainly in: the Stokes and
anti-Stokes intensity components, the Raman p eak position and linewidth (full width at half
maximum, FWHM) associated with s pecific optical phonon modes, all of which vary w ith

temperature, as is shown in Figure 4.10a and b.
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Figure 4.10 Schematic examples of Raman spectra as thermometer: (a) typical Raman spectrum
showing the anti-Stokes, Rayleigh, and Stokes signal, (b) Redshift and broadening of the linewidth due
to temperature increasing, adapted from [154].

The first method, Stokes and anti-Stokes, is based on ratio of the intensities of Stokes and

anti-Stokes processes, 1,/1s, it is related to the phonon population. Which it is determinate by

Boltzmann statistics:

ho
I_A ~ eXp ‘phonon [45]
I k,T

In Figure 4.10a the schematic change in the intensity, for a given temperature T, is shown.

One of disadvantage of this method is thatitis only accurate at higher temperatures and for

materials with small phonon energies. Also intensity is a more difficult parameter to measure

accurately and, more importantly, consistently. This method is possible with Raman as well as

with Brillouin light scattering spectroscopy.

A second way to estimate the temperature from the Raman pe ak position and/or F WHM,

both sensitive to the sample temperature given in the references [155,156]. To increase/decrease

the temperature, the atoms are displaced from their equilibrium positions, resulting in an overall

volumetric expansion or contraction

of the anharmonicity of the bonds .

of the lattice and a change in interatomic forces as a result

This ch ange in t he i nteratomic force is reflected in the
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Raman p eaks positionr esulting in a red s hift to lower w ave n umbers as t he temperature
increases. Similarly, the linewidth of the Raman sp ectrum is broadened as the temperature
increases. This br oadening is a ¢ onsequence o ft he temperature-dependence of t he ph onon
lifetime. In silicon, the R aman peak position, A@gym., and Raman linewidth, ALy, depend

linearly with the temperature [157] and can be simplified as:

Awy,,..(T)/ cm™ =-0.022 (AT /K) [4.6]

AT, (T)/cm™ =-0.011 (AT /K) [4.7]
Raman

There are some inconvenient when using this method. Sometimes it is less reliable due to
other contributions to the Raman spectral line-shape, such as embedded strain, strain due to a
thermal ¢ xpansion mismatch, s ample ¢ ompositional/structural d isorder, i mpurities a nd
contamination of the sample as well as the presence of pseudo-phases and deformation of the

material [158-161].

A main requirement to apply this technique is that the material should have a non-negligible
Raman signal from any o fits optical modes. F or e xample, a morphous m aterials a nd m etals
exhibit poo r R aman s ignal. O n t he ¢ ontrary, most i norganic a nd or ganic s emiconductors,
electrical insulators, and p olymers e xhibit m any optical R aman m odes de pending upon t heir
symmetry. In any case, the temperature dependence of just one optical mode can serve as the

local temperature probe.

The temperature of the focused spot can be easily obtained by fitting the spectral position of
the o bserved R aman m ode, g ivenap revious ca libration of its spectral p osition with
temperature. A laser is focused onto the surface of a sample using a microscope objective with
high numerical aperture (NA=0.9) resulting in a spot of about 1 pm in diameter. Thus,

increasing the incident laser power leads to local heating and, thus, to a red-shift of the observed
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Raman mode. The temperature increase in the spot region for a given incident laser power will

depend on the thermal properties of the investigated material.

Finally, the thermal conductivity of the sample can be extracted with a suitable heat diffusion
model. For example, for bulk materials the three-dimensional heat equation has to be solved
considering a Gaussian power source [162] (i.e., the incident laser), for thin films on a substrate
the problem results analytically m ore co mplicated due to the interface resistances and heat
reflections [163,164], for thin membranes the solution is much simpler since the heat equation

can be reduced to two dimensions.

Figure 4.11 shows a simple example of the application of Raman thermometry in ultrathin
suspended S i m embranes. T he sc hematics i s a f inite el ement si mulation o f t he t emperature
distribution in a Si membrane upon heating with a Gaussian power source (the incident laser) in

its central position (yellow=max, black=min temperature).

Figure 4.11 Scheme of the Raman thermometry method.

Considering that the typical thickness of the membranes, d <1 pum, is much smaller than

their lateral, L ~ 300 um. The heat equation can be approximated as 2-dimensional model, i.e.:

K 2mdo’k 2

2
_V2T = glx,y) Py, exp(— F_J [4.8]
(o}
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where g(x,y)1s ap ower g eneration f unction w hich, ba sed ont hel aser p rofile,c anb e

approximated by a Gaussian function and P, is the absorbed laser power.

Measurement of the absorbed power

Due to multiple reflections in the membranes the p ower ab sorbed cannot ap proach to the

bulk values. The membranes behave as Fabry-Pérot cavities.

In order to obtain the absorbed power in each membrane a home-made setup was build. This
setup is able to measure simultaneously the incident light and reflectance, R, and transmittance,
T, of the Si membranes. The r eflectance and transmittance were obtained measuring the
incident, Py, reflected, P i, a nd t ransmitted, Pr, pow ers a fter focusing t he 1 aser s pot on the
surface of the m embranes us inga 50x ( NA = 0 .55) m icroscope ob jective. T he pow er

absorptance, 4, of each membrane was computed considering that:

A=1-R-T

4.9

~1-P/R-P/P, 42
The Figure 4.12 shows the schematic configuration of the incident, reflected and transmitted

power measurements. The power measurements were performed using digital power and energy

meters with 50 n W to 50 mW Si sensor, from Thorlabs company. The calibration of the setup

was carried out by using a silver coated mirror, with reflectivity > 99.0 % at 514.5 nm.

The measurement of the scattered was also considered by using integrating spheres, but the

contribution was negligible.
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Figure 4.12 Schematic configuration for the incident reflected and transmitted power measurements.

Measurement of the temperature field by two-laser Raman thermometry: 2LRT

The Raman t hermometry t echnique is p articularly u seful f ora q uick an d ¢ ontactless
determination of t het hermal ¢ onductivity. H owever, there isasu bstantial am ount o f
information that can be obtained studying the spatial dependence of the temperature distribution
in the membranes, e.g., the heat transport regime. On a macroscopic length scale, heat transport

is generally described as a diffusive process where the heat flow, Q, is driven by a temperature
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gradient, VT, following Fourier’s law of heat conduction: Q = —«VT. However, this description
fails if the material dimensions, L, become smaller than and/or in the order of the mean free path
of the heat carriers, A. In the case of acoustic phonons in crystalline materials such as silicon, A
can be several hundreds of nanometers at room temperature [8]. For shorter length scales, A >
L, the heat flow will become quasi-ballistic driven by direct point-to-point transport of energy
quanta [165]. In other words, in a large system (A << L) the heat can reach equilibrium whereas
ina confined system di ssipation | eads toa local non-equilibrium. P ast ex periments have
demonstrated the size dependence of ballistic thermal transport in nanostructures such as thin

films, superlattices, nanowires and carbon nanotubes [3,30,165-169].

In order to investigate the transport behaviour in the nanoscale, we developed a novel and
contactless technique: Two-Laser Raman Thermometry technique, 2LRT. This new technique is
based on a two-laser approach to create and probe a thermal field in nanostructures. As is shown
in Figure 4.13, while a &eating laser with A, is used to produce a hotspot, a thermometer laser
with A, measures the s patial d istribution o f the local t emperature through t he t emperature

dependent redshift of a Raman mode.

To apply this technique, the sample has to have a Raman active mode, with detectable
temperature d ependence. A cal ibration o f't he R aman sh ift v ersus t emperature i s essential.
Moreover, the sample should have a reasonable absorbance in the spectral region of the heating
laser to set up a temperature distribution. The absorbed has to be power measured by, e.g. the

technique described for 1LRT above.

One of the main advantages o f this technique compared t o o ther co ntactless s teady-state
methods, e.g. infrared thermometry, is its sub-micrometer spatial resolution, given by the spot
size of the probe laser ~ 500 nm with a 100x high NA microscope objective. In addition, the
spatial resolution can be also improved using, for example, Tip Enhanced Raman Spectroscopy,

TERS, which could reach resolution better than 10 nm [170,171].
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Figure 4.13 Schematic configuration of the Two-Laser Raman Thermometry Technique developed in
this work.

Using the same concept of the two lasers, it is possible to vary slightly the setup touse
different phy sical ph enomena t o de tect t he t emperature s uch as: pho toluminescence [172] or

reflexion and transmission coefficient [64].

4.2.4 Transient thermal grating (TTG)

The TTG m ethodis an optical t echnique f or m easuring t hermal di ffusivity. While t he
thermal conductivity is a measure of how well a material conducts heat, the diffusivity is related
to how quickly a material conducts heat. The thermal conductivity of a sample is the product of

its diffusivity and volumetric heat capacity.
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Figure 4.14 Typical time trace from a 400 nm thick Si membrane. The electronic response of the
sample is seen, which decays quickly to leave the thermal response. This decay can then be fitted to
extract the decay time, which is proportional to the thermal diffusivity. Courtesy of Dr. John Cuffe.

In this method, t wo s hort 1aser pul ses are crossed at the sample to form an interference
pattern. The absorption of the light causes a spatially periodic thermal grating, which in turn
induces an optical phase and amplitude grating through the temperature dependence of the real
and imaginary parts of the refractive index, respectively. A probe beam is diffracted from this
transient grating and the thermal diffusivity can be determined from the rate of the signal decay.
As the heat diffuses from the peak to the null of the grating, the diffraction e fficiency of the
optical grating decreases and the signal intensity d ecays ex ponentially with time, i.e., T(t) ~

exp[—¢*at] as shown in Figure 4.14.

The thermal d ecay can then b e ch aracterised by a decay time 7 which isrelated tothe
thermal diffusivity « as:
1
a= , [4.10]
qT
where ¢ =2n/L is the grating w avevector c orresponding to a grating period L. T he grating

period is controlled by the angle of incidence 6, and is given by:
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L:/;sin(H/Z) [4.11]

The TTG method has a number of advantages. As no adsorbed metal layer is required, no
electrical or thermal contact resistances are introduced in the measurement or analysis. Hence
the diffusivity is measured, instead of to directly measuring the thermal conductivity, and this
has t he implication t hat t he a bsolute pow er d oes n ot n eed to b e m easured, which can be
challenging for many nanoscale objects. The thermal length scale can also easily be varied by
changing the grating period, which is useful to ensure diffusive transport and can be used to
observe ba llistic phon ont ransporto verm icrometred istances ins iliconat  room
temperature [173]. Finally, as the thermal grating is defined in the plane of the membrane, in-
plane thermal transport is assured. Typical ap paratus for p erforming a T TG m easurement is

shown in Figure 4.15.

For our measurements, the thermal grating was created by the interference of two crossing
pulsed laser beams with pulse duration of 60 ps, repetition rate of 1 kHz and wavelength of 515
nm. This i nterference pr oduces t he di ffraction o fa t hird qua si-CW pr obe be am w ith a
wavelength of 532 nm chopped to 64 us. T he diffracted probe be am is mixed with a fourth
reference beam from the same laser source for the heterodyne detection. The thermal diffusivity
is extracted from the de cay signal of the quasi-CW probe be am fora given spacing of the
thermal grating. T he period of the thermal grating is varied by changing the angle of the two

crossing beam, which can be changed from 4 to 25 um.
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Muask

Ihsiecior

Figure 4.15 Schematics of Four-beam Transient Thermal Grating apparatus adapted from Johnson et
al. [173]. The angle between the pump beams is controlled by splitting the beams with a diffraction
grating (phase mask) with a well-defined pitch. The pump beams are later blocked, while the signal

from the probe beam that is diffracted from the thermal diffraction grating is recorded. This signal is

mixed with an attenuated reference beam for heterodyne detection.
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CHAPTER V: MODELLING AND EXPERIMENTAL RESULTS

In this ch apter, measurements of t he ph onon properties i n free-standing m embranes are
shown. T he results a re d ived in to experimental a nd th eoretical p art. Inth e firstp artth e
measurement of acoustic di spersion r elation, pho non 1 ifetime a nd thermal transport ar e
described. I n t he seco nd part the theoretical m odels ar e d iscussed an d co mpared w ith t he

experiments.

5.1 Acoustic phonons dispersion relation in ultrathin silicon membranes

In the present section the measurement of the flexural mode in ultra-thin Si membrane will
be shown. These Si membranes were fabricated at the Technical R esearch Centre of Finland
(VTT) in c ollaboration w ith D rs. A ndrey S hchepetov and M ika P runnila and Prof. J ouni

Ahopelto of the Technical Research Centre of Finland (VTT).

The phonon dispersion r elation w as m easured by angle-resolve Brillouin L ight S cattering
spectroscopy. This technique has been shown to be an adequate non-contact technique to detect
confined phonons in thin films [174], free-standing membranes [21,137] and phononic crystals

[175]. The measurements were taken in backscattering configuration, as described in section
4.2.1. The laser beam was focused on t he sample by means of a long working di stance 50x
Olympus objective with N.A. = 0.55, that produces a spot size of about ~1.2 um. The
measurements were performed at room temperature with an incident power of 1.2 mW and o
was varied in the 30°-75° range, which corresponds approximately, according to Equation [4.2],

to the range of ¢~ 11.8-22.8 um™' corresponding to ~ 0.001% of the Brillouin zone.
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5.1.1 Flexural mode dispersion

Figure 5.1 shows B rillouin s pectra of 17.5 nm thick Si membrane for several s cattering
angle, a, between 30° to 70° displaying a single feature. This peak is identified as the zero-order
flexural mode of the Si membrane. The flexural mode corresponds to in-phase vibrations which
flexes the membrane (see the inset to Figure 5.2a). In thin membranes, the lowest flexural mode
has been found to dominate in the Brillouin spectra. This is a consequence of three combined
effects: t he dominant ripple s cattering m echanism [21,133], mode s ymmetry [78] andt he

enhancement of the phonons density of states [21,44].

The t heoretical cu rves w ere ca Iculated solving Equation [2.4] and us ing numerical r oot
searching described in the Appendix 1. The sound velocities used were 8440 m/s and 5840 m/s
for | ongitudinal a nd t ransverse sound speed, respectively [176]. 1 n a ddition, afit tot he
experimental values with a quadratic dependence is displayed, which is a clear difference from

the well-known linear dependence of the bulk acoustic phonons in this wavevector range.

Figure 5.2b shows the phase velocity as a function of the in-plane wavevector. An important
characteristic from this data is the dramatic decay of the phase velocity compared to the bulk
counterpart (8440 m/s and 5840 m /s for longitudinal and transverse, respectively) near to the
zone centre of the Brillouin zone. This decay is due to the quadratic behaviour of the flexural
mode, w hich 1 eads t 0 a 1 inear de pendence of t he phase v elocity w ith r espect t 0 i n-plane

wavevector [21,137].
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Figure 5.1 Brillouin spectra as function of the angle of incidence, showing for the fundamental flexural mode of
a 17.5 nm Si membrane.

Moreover, as was shown in the Figure 3.18 and Figure 3.19a, this quadratic behaviour leads
to departure of the specific heat capacity dependence from 7 ° to T at temperatures below few
Kelvins and in ultra-thin films [20,22], and to the thermal conductance approaching the ballistic

limit, which displays in a 7** dependence [177,178].

In summary, we have studied confinement effects on the flexural mode dispersion relation in
17.5 nm thick free-standing silicon membrane. We use angle-resolved Brillouin Light scattering
spectroscopy to detect the low frequency (1 to 3 G Hz) flexural mode as a function of the in-
plane wavevector (~11-22 um™). We have calculated the overall dispersion relation and found a
good a greement w ith the experimental r esults for t he fundamental flexural mode. W e a Iso
demonstrated t hat t he fundamental flexural w ave d ispersion in u ltra-thin m embranes can b e
described b y si mple q uadratic w avevector d ependence. This b ehaviour 1 eadsto a d ramatic

decrease of the group/phase v elocity and has implications for the thermal pr operties of the
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system, specifically at the low temperature regime, where the fundamental flexural mode carries

most of the heat.
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Figure 5.2 Dispersion relation and phase velocity of the zero order flexural mode of a 17.5 nm
silicon membrane: experimental results (blue dots), simulation (black solid line) and quadratic fit (red
dashed line). Inset (a): Schematic representation of the displacement fields of the flexural mode,
courtesy of Dr. Jordi Gomis-Bresco.

5.2 Phonon lifetime: measurements and simulations.

In this section measurements of frequency and lifetime of confined phonon will be shown.
This work formed part of collaboration with the group of Prof. Dr. Thomas D ekorsky of the
University of Konstanz, Konstanz, Germany. All th is measurements were developed in

collaboration with Dr. John Cuffe, Dr. Mike Hettich and Mr Oliver Ristow.

The m easurements w ere p erformedb yu sing ultra-fast pum p-probet echnique o f
Asynchronous Optical Sampling, A SOPS, described in the previous in the section 4.2.2. The
samples investigated were silicon membranes over a large range of thickness from 7.7 + 0.1 to
194 + 1 nm, allowing the investigation of the trend of phonon lifetime with frequencies up to ~
500 GHz. The analysis of the ex perimental data was carried out considering the intrinsic and

extrinsic damping mechanism. T he intrinsic phonon lifetimes were calculated by considering
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the Akhieser and the Landau-Rumer damping m odels. T he extrinsic phonon lifetimes were
modelled considering the s urface roughness s cattering mechanism i ncluding a w avelength-

dependent specularity parameter.

5.2.1 Lifetimes of Confined Acoustic Phonons in Ultrathin Silicon Membranes

The A SOPS experiments were performed at room temperature in reflection c onfiguration.
The laser spot size on the membranes was about 1.7 um in diameter and the wavelengths of the
pump and probe beams were 780 and 810 nm, respectively. Due to the large optical penetration
depth ~ 8 um, the pump pulse causes a symmetric strain in the membrane via thermal expansion
and the hydrostatic deformation potential [141,179], resulting in the excitation of the first-order
dilatational mode at g, = 0, which oscillates at a frequency of f'= v, /2a, where a is the thickness

of the membrane.

As t he d ilatational m ode ch anges temporarily the t hickness of t he m embrane, it w ill
modulate th e reflectivity a ccording with th e well-known F abry-Perot ef fect. Althought he
change in thickness is of the order of 1 pm and below, corresponding to a reflectivity change of
about one part in 10°, the ASOPS technique is sufficiently sensitive to detect it. Other
phenomena which can also change the reflectivity include the photoelastic effect, however, the
change of the optical cavity thickness is the dominant contribution, due to the small photoelastic
constant and volume of the silicon samples. The subsequent dynamics of the confined phonons
are then observed by recording the light modulation induced by phonon-photon coupling in a

one-dimensional photo-acoustic cavity.
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Figure 5.3 Fractional change in reflectivity as a function of time in the 100 nm silicon membrane. The
sharp initial change is due to the electronic response of the membrane. The subsequent weaker
oscillations are due to the excited acoustic modes. (b) Close-up of the acoustic modes after
subtraction of the electronic response for membranes with 100 and 30 nm thickness shown by the
green and red line, respectively. The sinusoidal decay of the reflectivity due to the first-order
dilatational mode is clearly observed as a function of time, with a faster decay observed for the
thinner membrane. The time trace of the 30 nm membrane has been magnified by a factor of 10 for
clarity. Adapted from J. Cuffe et al. [23].

Figure 5.3a shows a typical time trace of the change in reflectivity induced by the laser pulse
in a 100 nm silicon membrane. The initial spike is related to the electronic response, while the
subsequent oscillations are due to the excited phonon modes. Figure 5.35 shows a close up of
these modes, and a comparison for membranes of two different thickness values. It can be seen

that the signal from the 30 nm membrane decays faster compared to that of the 100 nm one.

The e lectronic c ontribution ¢ an be modelled by a bi-exponential de cay and subtracted to
reveal the acoustic modes [180] as shown in Figure 5.35. The phonon lifetime is then extracted

by modelling the decay, assuming a damped harmonic oscillator of the form:

A}f (1) = Asin(wt)exp[—t/ 7] [5.1]

where w is the phonon frequency, ¢ the time and 7 the phonon lifetime. Then, by fitting the
decay curve with the E quation [5.1] the phonon lifetime is extracted. The results from all the
membranes ar ¢ sh own in Figure 5. 4. Itcan b e seent hat the p honon lifetime d ecreases

dramatically with membrane thickness, corresponding to higher phonon frequencies.
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These f indings ar e co mpared w ith t heories introduced i n C hapter I II considering bot h
intrinsic p honon sca ttering an d ex trinsic su rface roughness sca ttering. T he 1 ntrinsic p honon
lifetimes w ere m odelled applying F ermi’s g olden r ule to c alculate three-phonon i nteraction
probabilities [17] based upona D ebye modelinthe S rivastava a pproximation f or N ormal
processes. The surface scattering was calculated following the approach of Ziman, including a
wavelength-dependent specularity parameter and surface roughness fixed to 7 = 0.5 nm. The
discussion of the theoretical models will be presented in the next section.
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Figure 5.4 Experimental and theoretical phonon lifetime of the first-order dilatational mode in free-
standing silicon membranes as a function of frequency. Experimental data of free-standing silicon
membranes with thickness values ranging from approximately 194 to 8 nm (red dots) [23] and 222 nm
(black dot) [180]. Green line: extrinsic boundary scattering processes. Blue line intrinsic three-

phonon normal scattering processes. The total contribution, calculated using Matthiessen’s rule, is
shown by the solid black-dashed line. Adapted from J. Cuffe et al. [23].

5.2.2 Phonon lifetime: theoretical results

The nanoscale the phonon lif etime is lim ited m ainly b y extrinsic surface r oughness

scattering. As shown in Equations [3.16] to [3.19], this effect may be introduced t hrough a
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boundary condition in the steady-state BTE, following Ziman’s approach [7]. For the case of the

first order dilatation mode, the extrinsic rate can be simplified as:

2 2
= thanh[ 20 LJ 5.2]
T v

where wp =27f= 7 v;/a is the phonon frequency of the first order dilatational mode, 77 surface

roughness and v; is longitudinal sound velocity.

The intrinsic acoustic phonon attenuation can be calculated using two different approaches:
(i) L andau-Rumer and ( i) A khieser m echanisms. The v alidity o f e ach m odel w ill d epend

principally on the wavelength of the absorbed phonon, 4, and the mean free path of the thermal

phonons, A,

If the A of the acoustic wave is much larger than the typical A, of the thermal phonons, i.e.,
frry << 1, where fis the phonon frequency and 77 the lifetime of the thermal phonons, we can
assume that the acoustic wave interacts with the whole spectrum of thermal phonons. This range
is known as the Akhieser regime. But if A is much less than A, i.e., f7r >> 1, then the phonon
attenuation can be better described in the Landau-Rumer formalism and the phonon attenuation

is due to three-phonon interactions processes.

The difference b etween L andau-Rumer and A khieser m odel is basically t he a pproach t o
describe of t he pho non a bsorption. I n t he L andau-Rumer approach t he a coustic phononis
described as a p article an d t he a bsorption i s due to c ollisions be tween the phonons. The
calculation is based on quantum mechanical perturbation theory, given by the Fermi golden rule
and for low frequency phonons, it can be considered as pure N-processes. To apply the Landau-
Rumer approach is necessary that the uncertainty in the conservation of the energy, AE ~ i/,
will be smaller than the energy of the absorbed phonon, £ = hiw, i.e., E > h/try or otry> 1.

...“This c ondition e nsures t hat t he t hermal phono ns e xist sufficiently long in time or travel
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sufficiently far in space for them to endure a c omplete oscillation of the absorbed phonon and
hence for them to establish a proper interference conditions in the space and time”... [7]. Using

the Equation [3.45], the lifetime of the first order dilatational mode can be simplified as:

L hyty, 1 2 , (@ ,)(n(a)L +o ,)+1)
T = w0, + o, : s do
" Agpv? gvaf -[ (@, + o) n(w,)+1

» n(w)n(w,

n(w,)

1 2 _a)sv)
+5J.a)s,(a)L -@,) da,

where the first and second term in the Equation [5.3] represent the class I and class II processes,

respectively.

As the first order dilatational mode at g, = Ois a pure longitudinal m ode, the possible
interactions of this mode are: Ly + L, —> L3; L1+ T, > Ly; Ly > Lo+ Ly, Ly > T, + T, Ly — Ly
+ T3 and L — T, + L;, where 1 d enotes the low energy phonon, t he dilatational one, 2 and 3
denote the higher f requency phononsa nd L and 7 aret he longitudinal and t ransverse
polarization, r espectively. Ho wever, as shown in the inset of the Figure 5.5b, the p rocesses
which involves the d ecay of the phonon into two o thers phonons are negligible to the total

relaxation time. That is due to the low phonon energy of this mode.

Although the collinear processes of the type L; + L, — L; are often neglected or categorized
as forbidden processes due to the dispersion of the branches. Early works have shown that these
processesm ayo ccura st hef inite lifetime o ft heb ranches co mpensates for the
dispersion [17,93-95]. In a ddition, t hey c anpl aya significant role e specially at sh ort
wavevectors where t he d ispersion r elationi s D ebye-like. We f ound that t his p rocesses
contributes most to the total intrinsic phonon lifetime shown in Figure 5.5a and b and it also
matches quite well the experimental data of Figure 5.4. The parameters used for the simulation

are summarized in Table 3.3.
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Figure 5.5 Phonon-phonon processes in Si membranes: (a) Intrinsic relaxation rate as function of the
frequency. (b) Relative contribution to the total intrinsic lifetime of each phonon-phonon processes as
a function of the frequency.

The other mechanism to explain the intrinsic phonon attenuation is the Akhieser mechanism.
In this model the mechanical wave is treated as a macroscopic strain field in the crystal, which
produces a shift of the equilibrium distribution of thermal phonons. The latter tends to return to
the equilibrium via phonon-phonon interaction, producing a time-dependence of the entropy of

the system, which leads to the absorption of the mechanical wave.

The intrinsic phonon relaxation rate in the Akhieser regime can be expressed by using the
Equation [3.46]. Although the theory of sound absorptionin solids is well established, the
alignment of da mping models with e xperimental da ta s till r emains un finished due tot he
complexity of the models themself. The use of adjustable p arameters b ecomes inevitable. In
particular, the Griineisen parameter and the lifetime of the thermal phonons are o ften used as
fitting parameters in the analysis of the experimental data. The flexibility with which the two
parameters a re v aried h as b een ¢ onsidered acceptable b ecause experimental dataw as
unavailable. For example, the only experimental data known of the Griineisen parameter are for
modes at few high-symmetry points of the Brillouin zone [101]. In the case o fthe thermal
phonon lifetime t he G riineisen p arameter is identified as an av erage v alue o ver t he w hole
spectrum of thermally excited phonons in the crystal. In some cases, a kink in the slope of the

quality factor (Q-factor, O = wr, where 7 is the lifetime of the phonon mode with frequency w)
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and/or phono n a ttenuation against frequency is used as i ndicative o fthe frequency cu t-off
between t he intrinsic da mping m odels from w hich t he | ifetime of t he t hermal phononsis
extracted [144,181,182]. However, it has been shown that this slope depends on the direction of

the phonon propagation [183] and therefore such method can be misleading.

In Reference [23] we noticed that the Akhieser model did not describe the experimental data
of mechanical mode de cay in Si ul trathin m embranes, when a single value of 77y was used
regardless of the membranes thickness. As the real value of 77y is unclear, we used the constant
value of 77z = 17 p s taken from R eference [108], w hich provided t he best fitto acoustic
attenuation in bul k silicon. However, as h as b een sh own throughout t his w ork, the t hermal
conductivity of thin layers and membranes, &, decreases appreciably compared to the bulk

counterpart, &, as the membrane thickness decreases.

In order to correct this expression we suggest a modification of the 77y to take into account
the shortening of the phonon mean free path due to diffuse scattering at the b oundaries. By
replacing x by &, in the Equation [3.47] the lifetime of the thermal phonons can be expressed

as:

3k
film
Ty = 54
TH CV\72 [ ]
and the intrinsic phonon relaxation rate in the Akhieser regime can be rewritten as:
—\2 2
! =3T& v a)L(Kﬁlm/CV) }72
" P \VL (‘74 + (3a)LKﬁlm /Gy )2)
or [5.5]
—\2 2
_1 1% aw; )
T, =31TC,| — | —/————
" P(VL j ' +(Gaw,)’)
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where a = &y,/Cy is the thermal diffusivity, Cp the specific heat capacity and 7 the average of

the Griineisen parameter.
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Figure 5.6 (@) Thermal conductivity of Si membranes normalized to the Si bulk value as function of
the thickness. The experimental data were obtained from thermal transient gradient (black dots),
Raman thermometry (red dots) and two-laser Raman thermometry (green dot) methods,
respectively [184—186]. The theoretical description of the data using the Fuchs-Sondheimer model is

shown in blue solid line. (b) Theoretical lifetime of the thermal phonon, try, as a function of thickness:
black line includes modification of thermal phonon lifetime due to the decrease of the thermal
conductivity, blue and red lines: constant thermal phonon lifetime of 17 and 6 ps are shown for
comparison.

Figure 5.6a shows the experimentally determined room-temperature thermal conductivity of
Si membranes of thickness from ~ 400 nmto 9 nm [184—-186] which undergoes d ecrease of
about a factor of five with d ecreasing m embrane thickness. The t hermal ¢ onductivity m odel
using t he F uchs-Sondheimer a pproachis seento bein good ag reement w ith the m easured

values. The details and the parameters used in the simulation are shown in the Appendix III.

An improved estimate of 77y can be obtained considering the thickness dependence of the
thermal c onductivity, &y, inthe E quation [5.4]. Figure 5. 6b shows the calculated 7 asa
function o f thickness together with the constant values 77y = 17 ps and 6 ps . While the first
value was obtained in Reference [108] using 77 as an adjustable parameter, the second value is
directly derived from Equation [5.4] by taking x5, = 149 WK 'm™. Then, once the dependence
of 77z on membrane thickness is determined, the total effect on the intrinsic phonon attenuation

is introduced through Equation [5.5].
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Finally, th e t otal I ifetime, 77, o f't he si licon m embranes w as ¢ alculated co nsidering t he
extrinsic surface-roughness boundary scattering, 73, and the intrinsic Akhieser damping e ffect,
Tix. The values of Cy, v, and p used in these simulations were taken from the literature [101].
Since the Griineisen parameter in silicon fluctuates between —1 and +1, it is possible to assume
that the RMS variation of # is simply equal to 1. Although this approximation would fail at low
temperatures where 1 ow f requency phonon s w ith similar v alues o f y are ex cited, t he v ast
majority of acoustic phonons are expected to be excited at room temperature and therefore the

approach becomes reasonable [108]. A value of 7 =0.5 nm for the roughness was taken from

Reference [23].

The calculated total relaxation time using the z,x component with a constant 77y = 17 ps and
6 psorwitha thickness-dependent 77 = 3x5,/(Cy Vz) is s hownin Figure 5. 7. AD etter
agreement with experimental data is obtained with the thickness-dependent 775, As pointed out
in R eference [23], at frequencies above 100 G Hz ( thickness < 50 nm ) t he measured t otal
phonon lifetime i s dom inated by e xtrinsic b oundary s cattering. I n ¢ ontrast, t he 1 ntrinsic

Akhieser damping becomes the dominant process at lower frequencies (thicknesses > 50 nm).

Although in our previous work [23] the intrinsic phonon attenuation at low frequencies was
simulated using the Landau-Rumer model, the modification of the thermal phonon lifetime was

not taken into account.

The modified thermal phonon lifetime has a direct consequence for the intrinsic upper limit
of the Q-factor of nano-mechanical resonators, namely, a d ecrease in thermal conductivity zry
can en hance or degrade the Q-factor de pending on the frequency range. Asisshowninthe
Figure 5.8a, at low frequencies the Q-factor scales as ~ 1 /(@zry) hence, smaller values of 7y
result in higher O-factor. However, at high frequencies, where the O-factor scales as ~ (wzry),

decreasing zry leads to the deterioration of the Q-factor.
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Figure 5.7 Experimental and theoretical phonon lifetime of the first-order dilatational mode in free-
standing silicon membranes as a function of frequency. Data of free-standing Si membranes with
thickness ranging from 194 to 8 nm (green dots) were taken from Reference [23] and the data point
for a 222 nm thick membrane (violet dot) was taken from reference [180]. Solid blue (a), red (b) and
black lines (c) are the intrinsic Akhieser attenuation dependence calculated for thermal phonon

lifetimes of 17 ps (a) and 6 ps (b), whereas (c) includes the thickness-dependent.

In the e xample c onsidered here, ofa Simembrane for w hich bo th ph onon lifetimes and
thermal conductivities w ere a Iready k nown, t he v alidation o f't he m odified A khieser m odel
becomes easi er. M oreover, the co nnection es tablished in the m odel b etween t he m echanical
mode lif etime a nd th ermal co nductivity m eans t hat t hermal t ransport p arameters co uld be
obtained us ing ¢ ontactless pum p-and-probe measurements. T his is p articularly ad vantageous
since st andard el ectrical m ethods t o m easure x require non -negligible pr ocessing a nd i ts
calculation is far from s traightforward due to the c omplex s hape of nano/micro m echanical

oscillators. Taking this into consideration, we propose the possibility to extrapolate the thermal
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conductivity from the experimental v alues o f phonon lifetime or Q-factor of the n ano/micro
oscillators. Assuming that the phonon attenuation/damping of the system is dominated by pure
Akhieser m echanism, it is p ossible to e stimate the thermal ¢ onductivity/diffusivity from th e

phonon lifetime or Q-factor from Equation [5.5].

As an example, we calculate the thermal conductivity of a 1D optomechanical crystal [187].
The complexity of t his s tructure m akes t he c alculation of t he r eduction f unction almost
unfeasible, see the inset of Figure 5.8b. If we assume that the quality factor of this system is just
limited by the intrinsic Akhieser damping mechanism, then by fitting the E quation [5.5] with
the ex perimental d ata o f the QO-factor,itis p ossiblet o est imate t he v alue o f't he t hermal

conductivity/diffusivity.

Figure 5.8b shows the experimental and theoretical quality factor as a function of the phonon
frequency. The ex perimental data were taken from the R eference [187]. The determination of
the thermal conductivity was extracted from the best fit to the experimental quality factor. The
obtained value, ;.. = 56.2 WKﬁlmfl, is in good agreement with a similar structure reported by

Marconnet et al. [57].
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Figure 5.8 (@) Frequency dependence of the Q-factor for different values of the lifetime of the thermal
phonon: bulk values, try pu = 3 Kpu/(Cy \72), 50% of the bulk value, try = 0.5 Ty p and 10% of the

bulk value, try = 0.1 1y puy. (b) Experimental and theoretical quality factor of different phonon modes
in a Si nano-resonator. The experimental data (ved dots) were taken from the Reference [187], blue-

solid line shows the best fit. Inset SEM image of the nano-resonator, courtesy of Dr. J. Gomis-Bresco.
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We have revisited the intrinsic damping mechanism limiting the performance of mechanical
resonators i n vi ew of the modified t hermal p roperties of na nostructured m aterials. T hisi s
illustrated with the example of Si nanomembranes for mechanical mode frequencies above 10
GHz, where a reformulated Akhieser model accounts very well for the measured decrease of the
mechanical m ode |l ifetime. W e have de monstrated that for membranes it is not possible to
assume a constant thermal phonon lifetime since modifications due to surface scattering have to
be taken into account. The dependence of the lifetime on the thermal conductivity has a direct
impact on the upper limit of the nano-resonators Q-factor which, depending on the frequency

regime, could enhance or degrade the resonator performance.

In addition, we suggest the possibility to extract thermal conductivity values from lifetime
measurements, w hich o pens the possibility to use the Q-factor as indicative o f the thermal

conductivity/diffusivity of nano-resonators.

5.3 Thermal conductivity: measurements and simulations

The experimental determination of the thermal conductivity in nanostructures is one of the
most di fficult tasks. C ontrary to the analogous charge in current, the heat current cannot be
measured directly and the heat flux has to be determined assuming a given direction considering
a particular geometry. Finally the thermal conductivity is extracted by assuming the diffusive

behaviour, i.e., dominated by Fourier law.

In general in a bulk system, it is possible to use a heater and a sink to create a temperature
gradient and a pair of thermocouples to measure it, see Figure 5.9, and its thermal conductivity
is determined as x = (Q/4)/(AT/AL), where Q is the amount of heat passing through a cross

sectional area 4 and AT the temperature difference between two points spaced by a distance AL.
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However, in nanostructures miniature electrical h eaters/thermometers have to be deposited on
the sam ple and us ed to heatu p an dt o m easure thet hermal g radient. Int his sen se, t he
dimensions of the heater/thermometer are one of the major challenges to measure the thermal
properties in nanostructures. One typical example of this kind of technique it is the well-known
3w method. Some inconveniences of this kind of techniques are the pre-processing stage of the
samples preparation which s ometime c ould I ead to the m odification of the s ystem itself. In
addition, the thermal resistance between the heater and the sample could lead to errors in the
measurement. For this reason the uses of contactless techniques becomes increasingly attractive
to study thermal properties at nanoscale. The lack of contact avoids the interaction between the

heater and thermometer with the system.

In this section the measurement o f the thermal conductivity as f unction o f the membrane
thickness w ill b e described. T he m easurements w ere p erformed b y u sing t hree co ntactless
techniques: Single-Laser Raman T hermometry ( 1LRT), Two-Laser R aman T hermometry

(2LRT) and Transient Thermal Grating (TTG) techniques.

Heater

Coolant

Figure 5.9 Typical thermal conductivity measurement diagram
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The Raman-based measurements were performed in our laboratories with the collaboration
of Dr.J uan Sebastian Reparaz and D r. F rancesc A 1zina. The TTG m easurements w ere
developed as part of collaboration with groups o f Prof. Dr. Gang Chen and Prof. Dr. Keith
Nelson from the Massachusetts Institute of Technology, MIT. The TTG work was developed in

collaboration with Dr. John Cuffe and Mr. Jeffrey Eliason.

5.3.1 Reduction of the thermal conductivity in free-standing silicon nano-membranes
investigated by non-invasive Raman thermometry

As been shown the Section 4.2.3, the Raman thermometry technique is based on focusing a
CW 1 aser b eam ont 0 the m embranes and m onitoring t he R aman s hift ( redshift) o ft he
longitudinal optical (LO) phonon of Si as a function of the absorbed power. To correlate the
change of't emperature witht he ab sorbed poweri ti s possible to est imate thet hermal

conductivity of the system by solving the steady-state heat equation.

KV°T =—P,(r,z) [5.6]
where « is the thermal conductivity and Py(7, z) is the heat source term. Considering that the
sample i s 1 lluminated b y 1 aser source, the h eat source term can b e written as p roduct of
irradiance o f the laser (the power delivered by the beam on a unit area perpendicular to the

beam) and an exponential decay in the z direction, which is

P(x,v,z) = a,(1- R)fd];;exp[—zr2 /b*Jexp[-a,z] [5.7]

where o is the optical absorption coefficient, R the reflectivity, P; the total laser incident power

and b the spot laser radius. Considering that the lateral dimensions are so much larger than the
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thickness, the E quation [5.7] can be reduced just to one-dimensional equation along r adial
direction only, yielding:

1-R-T) 2P,
KT = —g—éexp[—Zr2 /b*] [5.8]
a b
This approximation is suitable f or thin f ilms, ho wever f or thicker membranes it is

recommended to use the full three-dimensional equation.

The determination of the reflectance, R = Px/P;, transmittance, T = P;/P;, and absorptance, 4
=1 — R — T, were performed by measuring the incident, P, transmitted, Pr, and reflected, P,
powers a fter focusing t he 1 aser sp ot, w ith w avelength A= 514.5 nm, ont he s urface of the
membranes using a 50% (NA = 0.55) microscope o bjective. The p ower m easurements w ere

performed by using a home-made setup described in Section 4.2.3 and schematically in Figure

4.12.

The theoretical and experimental thickness dependent of R, T and A are shown in the Figure
5.10. The measurements o f the optical co efficients were p erformed at low incident p ower to
avoid any e ffect from local heating o f the membranes. The e ffect o f the scattering w as al so
taken in c onsideration by using integrating s pheres. However, the total c ontribution from the
scattered light was negligible. Finally, the absorption coefficient was computed considering 4 =
1 — R — T with absolute values and uncertainty lower than 1%. The theoretical modelling, solid
lines show inthe Figure 5.10, were performed in the group by Dr. F rancesc A lzina. T he
simulations were carried out at room temperature applying the laws of reflection and refraction
in a plane-parallel film and using the dielectric function of silicon reported in Reference [188].
From t he g raph w e c an note thatat thicknesses s maller than, a nd/orin the or der o f, t he
wavelength of the incident light, the optical coefficient has an oscillatory be haviour. T hat is
because membranes behave as Fabry-Pérot optical cavity. Therefore, an oscillatory behaviour is

observed instead of a monotonous behaviour as in the case of bulk silicon [189].
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Figure 5.10 Theoretical and experimental absorptance, A, reflectance, R, and transmittance, T, as a
function of membrane thickness. The solids lines are calculation obtained from Fabry-Perot
simulations, courtesy of Dr. Francesc Alzina. The solid dots are experimental data points. Inset:

diagrammatic Fabry-Perot effect in membranes

After t he a bsorptance is determined, t he temperature d ependence o f the R aman shiftis
determined. This d ependence provides the c alibration of the thermometer. The t emperature
dependence o f the R aman shift is shown in Figure 5.11. T he calibration curve w as obtained
using a cryostat to control the bath temperature. In addition, and for comparison, the data from
the Reference [156] is also plotted. By fitting the experimental data, we can observe two ranges
of temperature with a linear behaviour: the first range is 200 K < 77 <800 K with a slope of
dT/df = — 46 K/cm ™" and the second one is T < 150 K with a slope of d7/df = — 174 K/ecm™". The
temperature accuracy of the calibration is given by the spectral resolution of the equipment. In
our case, we used T64000 Raman spectrometer manufactured by HORIBA Jobin Yvon. It was
used in s ingle g rating mode w ith a s pectral r esolution be tter than 0.4 cm™', w hich gives a

temperature resolution of £ 2 K.

Figure 5. 12 shows the temperature o f each membrane at the laser spot as function of the
absorbed p ower, which was computed as P, = AP;. The Raman shift of the LO mode of the
silicon was fitted using a Lorentzian function, which gives an accuracy better than + 0.05 cm .

The solid lines are fits to the data using a linear relation.

118



Chapter V

2
=
|

Temperature | K|
.
=
1

@ | 5. Reparaz et al.
@ . Menéndez cf al.

A

46 K'em A
200 = :
T -174 K/cm '—*\
0 - : - y . : . -
08 a3l2 36 320 324

o
Raman Shift [em ')
Figure 5.11 Calibration of the Raman shift of the LO Si mode as function of the temperature: the red
and green dots were extracted from the References [156,186), respectively.

Finally, the thermal conductivity of the sample is determined by solving the steady state heat
equation u sing f inite ¢ lement method, F EM, with the co mmercial software C OMSOL
multiphysics. Since the typical thickness o fthe membranes is much smaller than the I ateral

dimensions, the heat equation was approximated by a two-dimensional expression.
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Figure 5.12 Raman shift (vight axis) of the longitudinal optical (LO) Si phonon of the membranes as a
function of the absorbed power and membrane thickness. The left axis represent the temperature

obtained from the temperature dependence of the LO mode extracted from the slope of the Figure
5.11.

The he at e quation w as s olved ¢ onsidering r oom t emperature bo undary ¢ onditions at t he
edges of the membranes. The values of the thermal conductivity were determined from the best

fit to the temperature rise for e ach absorbed p ower an d t hicknesses. Figure 5.13 shows the
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normalized t hermal ¢ onductivity, #u/kp.u, forthe S im embranesa sa f unction of t heir
thickness. For comparison experimental data of SOI films [2—4] and Si membranes from TTG
measurements [184] are alsos hown. As expected, asy stematic d ecrease o f't he t hermal
conductivity i s obs erved with de creasing t he t hickness, r eaching values as low as x ~9

WK 'm™ for the thinnest membranes, a ~ 9 nm.

From Figure 5.13 we note that the thermal conductivity of the SOI films is systematically
larger than those of the free-standing membranes. This deviation could be associated to the Si-
Si0, interface or with a different impurity concentrations, but these have not yet experimentally
confirmed. A more logical explanation is to consider that in the case of the SOI samples, the

substrate acts as an extra heat sink, thus, leading to a larger effective thermal conductivity.
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Theoretical models J> %
— Fuchs-Sondheimer &
=] eesrarrs Huang |
- Srivislava @ 201
% 0,52
B Exp. Data:
=1 membrmnes
@ LRI
i a TIG
0.0 T v -
10’ iy [y 10

Thickness [nm)

Figure 5.13 Thermal conductivity of the membranes, Kgp/Kpuy, normalized to the bulk Si value as a
function of the thickness (solid red dots). As reference previous work in SOI [2—4] and membranes
using TTG [184] are also shown. The theoretical description of the data using the modification of the
dispersion relation, Srivastava and Fuchs-Sondheimer models are shown in green dotted, black
dashed and blue solid lines, respectively.

The m easured t hermal co nductivity v alues w ere co mpared w ith t he d ifferent t heoretical
models de scribed in the C hapter IV: F uchs-Sondheimer [120,122], Huang [46] and m odified
Debye-Callaway-Srivastava [17] models. All the simulations were performed by using the same

Si parameters summarized in the Table 3.3.
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While the implementation of each model gives us a correct interpretation of the experimental
data, t he ¢ omputational ¢ ost makes a si gnificant difference. For ex ample, t o cal culate t he
thermal conductivity using the Huang model it is necessary to know the fully modify dispersion
relation w ith the correct number of br anches, se ¢ Equation [3.59]. The c alculation o f't he

required branches is not only a hard task but may also be incorrect.

To calculate the dispersion relation the elastic continuum model is often used. In this model,
the discrete nature of the atomic lattice is ignored and the material is treated as a continuum.
This model can be derived from the theory of lattice vibrations by considering that the lattice
deformations vary slowly on a scale determined by the range of the inter-atomic forces [80], and
is usually valid provided the w avelength o f e lastic waves, A, is significantly l arger than the
atomic l attice constant, a,1.e., May > 20. This corresponds to wavelengths approximately

longer than 10 nm, or frequencies smaller than approximately 100 GHz [81].

On the other hand, if we do not take into consideration the elastic limit, from the calculation
of the specific heat capacity, see Figure 3.18 and Figure 3.20, we note that the effect of the
modified dispersion relation is almost negligible at high temperatures (7 > 10 K). However, if
we use the criteria of the lattice thermal energy versus spacing energy between the branches, it
is possible to find a temperature and thickness range where modified dispersion relation have to
be taken into consideration. As shown in the Chapter III, if the energy spacing of the branches
exceeds the lattice thermal energy, i.e., Ta < Anv/kp, the bulk dispersion relation is not the best
approximation and modified dispersion relations have to be take into consideration. The effect
of thatcan be seenin the Figure 5. 13, w hich a t s maller t hicknesses, ¢ <15 nm, Fuchs-
Sondheimer and Srivastava models does not exactly match. Anyway, it is very important to note
that this does not prove the validity of a model over the other, because by using different
impurity concentration, surface roughness or Griineisen parameter each model can match

properly in all the range of thicknesses.
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In summary, the thickness dependence of the thermal conductivity in ultrathin free-standing
Si membranes of high crystalline quality was investigated by using Raman thermometry. The
power absorption coefficient of the membranes was determined experimentally and theoretically
calculated. The expected reduction of the thermal conductivity with decreasing thickness w as
also observed. This was successfully modelled considering the modification of the dispersion
relation and the shortening of the phonon mean free path due to the diffuse scattering at the
boundaries. The thermal conductivity of the thinnest membrane with a = 9 nm resulted in kg, ~
9+2 WK 'm™, which could be argued approaches the amorphous limit while still maintaining a

high crystalline quality.

5.3.2 A novel contactless technique for thermal field mapping and thermal
conductivity determination: Two-Laser Raman Thermometry

Despite the single laser R aman thermometry suitability to determine thermal conductivity,
there is substantial information that can b e ob tained s tudying t he spatial d ependence of the
temperature d istribution in th e m embranes, ¢ .g., t he type of heat transport r egime. Recent
studies found that phonons with mean free paths greater than 1000 nm contribute 50% of the
bulk thermal conductivity of Si near of room temperature [8]. Similar observations were made
in GaAs, GaN, AIN and 4H-SiC where phonons with MFPs greater than 230 + 120 nm, 1000 +
200 nm, 2500 £ 800 nm and 4200 + 850 nm, respectively, contribute also to 50% of the bulk
thermal c onductivity respectively [190]. It is precisely these 1ong MFP that open a world of

possibilities to effectively control thermal transport in devices with similar dimensions.

In order to investigate the thermal transport regime, we used the 2LRT technique described
in detail in Section 4.2.3. This technique is used to determine the in-plane thermal conductivity

as well as its spatial distribution in Si membranes with thicknesses of 250 nm, 1 pm and 2 pm.
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The membranes were single crystalline with a surface roughness Ra = 0.2 nm and rms = 0.15
nm, and w ere purchased from NORCADA Inc. The thermal c onductivity was determined by

solving the Fourier law analytically and also by using FEM simulations.

Figure 5.14 shows three-dimensional contour plot of the thermal field distribution of the 250
nm thick Si membrane. The maximum temperature reached at the center is 7, = 830 K and it

decays symmetrically to 400 K at the edges as is shown in lower part of the Figure 5.14.
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Figure 5.14 Three-dimensional contour plot of the thermal field distribution of a 250 nm thick free-
standing Si membrane. The isoline distribution of the thermal field is also shown in a lower plane. The
colour bar indicates the maximum temperatures reaches.

The sy mmetry o f't he t hermal fields ar ises from t he i sotropic behaviour of t he t hermal
properties of silicon. However, for anisotropic materials an asymmetric thermal decay is

expected.

Figure 5. 15 shows vertical an d h orizontal t emperature cu ts of the isoline t hermal field
distribution of a 250 nm thick free-standing Si membrane. It is noteworthy that the temperature
field does not fully decay to the thermal bath temperature of ~ 300 K, and instead reaches only
400 K at 120 um from the centre. The origin of this slow thermal bath temperature is due to a
combination two e ffects: the 1ow thermal ¢ onductivity of the membrane as well as the extra

heating source from the probe laser.
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Finally, by using the symmetric properties of the thermal field the determination of the
thermal conductivity can be made using only single line scan between two arbitrary points, with

one of them being the origin, i.e., the point of highest temperature rise.
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Figure 5.15 Vertical and horizontal temperature cuts of the isoline thermal field distribution of a 250 nm thick
free-standing Si membrane. Note the high symmetric distribution in temperature from both cuts.

Figure 5.16 shows the temperature profile taken on a 1 um thick Si membrane (blue dots).
The heating laser location corresponds to the centre of the plot (0 um) and the Raman signal is
obtained by scanning the thermometer laser symmetrically on both sides of the source along a
line. The Raman shift is converted to temperature using the calibrated temperature dependence
of the Raman peak position (see Figure 5.11). A temperature rise of ~ 140 K is measured at the

position of the source decaying slowly towards the edges of the membrane. The experimental
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and s imulated t emperature fields are s hownin Figure 5. 16, taking di fferent v alues of g,
ranging f romt he va lues normalized toth eb ulk th ermal ¢ onductivity (1) decreasing
progressively t 0 65% o f it. T he t hermal conductivity and the t emperature pr ofiles were
determined s olving t he E quation [5.7] using the finite e lement m ethod. A compressive

discussion of the simulation can be found in Appendix III.
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Figure 5.16 Comparison of the temperature map measured and simulated for a 1 pm thick silicon

membrane. The solid lines represent theoretical curves with different thermal conductivity values
ranging from the bulk values (1) and decreasing progressively to 65% of the bulk values (0.65).

A better agreement between ex perimental data and simulation is found when a d ecrease of
the thermal conductivity in the membrane is included, &, = 0.70 &, 1.€., K = 105 WK 'm™.
This is better seen in Figure 5.17 where all the ex perimental p oints have been gathered. The
decrease of the thermal conductivity matches very well the expected value in Figure 5.13. A
similar analysis was performed for the 2 um Si membrane, where the best fit was found to be

Kum = 118 WK 'm™". The experimental and theoretical data are shown the Figure 5.18.
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Figure 5.17 Experimental temperature profile measured in a 1um thick Si membrane (green and
purple dots). The purple dots come from of the negative part of the Figure 5.16 mirror reflected to the
right side.

For the case of an ultra-thin membrane it is possible to obtain an analytical expression for the
thermal field distribution. Following the work of J.S. Reparaz et al. [186], we can approximate
the temperature distribution created by the excitation of a point like laser source to that shown
in Figure 5.15. The solution of the heat equation is then simply given by integrating the Fourier
Law: Q =— x(T) U T, where the total flux is given by the total power injected to the system, P,
= AP;, dividedb yt he cr oss sectional a rea o ft he m embrane 4 = 2za and t he t hermal
conductivity can be considered constant or temperature-dependent (3, ~ 1/7 ). Finally, the

temperature profile is for a constant thermal conductivity is given by:

T(r)=T, - Lln[r/ro] — Ky, = const. [5.9]
film

—P, (2mf)
T(r) = TO(FJ — K = BIT [5.10]
VO ’

where Ty is the temperature of the bath at a distance r, from the heat source.
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Figure 5.18 Comparison of the temperature map measured and simulated for a 2 pm thick silicon
membrane. The solid lines represent theoretical curves with thermal conductivity value of 118
WK 'm™.

Figure 5.19 shows the experimental and theoretical results of a 250 nm thick Si membrane.
The experimental data are shown in blue dots with errors bars of the same size of the dots. The
red solid line represent the theoretical curve of the thermal field simulated with Equation [5.9],

by assuming that the bath is at in the limit of the line scan, » ~230 pum and constant thermal

conductivity. For comparison, the bulk limit is shown in black solid line.
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Figure 5.19 Comparison of the measured and simulated temperature map for a 250 nm thick silicon
membrane. The solid red line represents theoretical curves with thermal conductivity value of
8IWK'm™. The bulk limit, black solid line, is shown by comparison.
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From the Figures 5.16 to 5.19, it is possible to note that the bulk limit for each case shows
smaller temperature r ise thant he m embranes. This d ifference b etween t he t hermal f ield

distributions is a direct consequence of the low thermal conductivity of the membranes.

In s ummary, t he values o ft he thermal conductivity of free-standing S i m embranes w ere
extracted from a novel contactless two-Laser R aman T hermometry, 2 LRT. This technique is
based ona two-laser a pproach t o induce a nd pr obe the thermal field in the samples. T he
temperature resolution for Si samples is ~ £ 2K and the spatial resolution is de fined by the

optical diffraction limit which can be as low as 300 nm.

The experimental temperature profiles obtained with this technique for a Si membrane have
been simulated by solving the thermal c onduction e quation within a finite element model as
well as using an an alytical a pproach. As expected, we found t he reduction of t he t hermal
conductivity matched quite well the theoretical prediction as well as the values in the literature,

see Figure 5.20.
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Figure 5.20 Theoretical and experimental thermal conductivity of the Si membranes, normalized to
the bulk Sivalue, kp,/Kpup as a function of thickness. The green solid dots show this work (2LRT) and
as reference previous work data on SOI [2—4] and Si membranes using TTG [184], and Single-Raman

thermometry, 1LRT, are also shown.
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5.3.3 Transient thermal grating measurements: temperature dependence of thermal
diffusivity

Here, the temperature-dependence of the thermal diffusivity of 100 nm and 200 nm thick Si
membranes is studied using TTG technique. This method was recently used to measure thermal
transport i n nanoscale s ilicon m embranes, w ith t hickness v alues r anging ov er t wo or ders o f
magnitude from 15 nm to 1.5 um [173,184]. A schematic TTG configuration is shown in Figure
4.15. Similarly to Raman t hermometry, t his t echnique d oes n ot require an absorbed m etal
transducer or any electrical heating. This means that no electrical or thermal contact resistances

are introduced in the measurement or the analysis.

The main advantage of this technique compared w ith Raman thermometry is that the
absolute injected power does not need to be measured. However, we have to take care that the
finite size of t he h eat source d oes not affect t he r esults, e specially in S i, where a broad
distribution of the phonon mean free path contributes to the thermal conductivity [8]. Therefore,

it is crucial to vary the grating period in order to ensure diffusive transport.

Finally, since the thermal grating is defined in the plane of the membrane, in-plane thermal
transport is assured. As described in section 4.2.3, the thermal diffusivity is extracted from the
exponential fit to the time t races of the t hermal g rating. T he d ecay t ime, 7,1 s i nversely
proportional to the thermal diffusivity, a, with a constant of proportionality given by the square

of the grating wavevector g, i.e., 1/7= 47" a/A> where A is the fringe spacing.

The thermal diffusivity as a function of grating spacing of a 200 nm thick Si membrane is
shown in Figure 5.21. Data was collected for grating periods and temperatures ranging from 7.5
to 25 wm and 80 to 294 K, respectively. The diffusivity is seen to be constant as a function of
grating spacing, indicating diffusive thermal transport. The slope shown at 80 and 90 K is due to

non-diffusive effects.
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Figure 5.21 Thermal diffusivity as a function of grating spacing in a 200 nm thick Si membrane at
different temperatures.

Figure 5.22 shows the thermal diffusivity as a function of the temperature for 100 nm and
200 nm thick in Si membranes. A dramatic decrease of the thermal diffusivity is found, down to
values of at least an order of magnitude between the membranes and the bulk counterpart. This

is reflected in the change of temperature-dependence of the thermal diffusivity from ~ 7>° to

T—0.6

Previous work in bulk Si has shown differences of one order of magnitude between lightly
and hi ghly dope d s amples [193]. H owever, in ul tra-thin membranes t he b oundary scat tering
becomes the dominant processes. The change in the temperature-dependence reveals the impact
of the bo undary scattering, w hich be comes more s ignificant with decreasing membrane

thickness.

In summary, the temperature dependence of the thermal diffusivity in 100 nm and 200 nm
thick free-standing Si membranes has been measured. As expected, the thermal diffusivity is
substantially reducedin the t hinnest m embrane, r eaching values as1 ow astwo orders o f

magnitude compared with their bulk counterpart at low temperature regime.
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Figure 5.22 Temperature dependence of the thermal diffusivity for 100 and 200 nm thick Si
membranes. The Si bulk values are also shown for comparison [191,192]

5.4 Thermal rectification

Similar to the electric charge diode, thermal rectification is a phenomenon where transport is
preferred in one direction over the opposite. T his e ffect ¢ ould ha ve w idespread a pplications
including electronics cooling and thermoelectrics with the improved ability to control thermal
transport. This process requires simultaneously asymmetry a nd non-linearity [194]. Thermal
rectification a t the nano/microscalei s attracting s cientific a ttention d ue to its p romising
potential. Moreover, in analogy with electrical diodes, the thermal rectifier or thermal diode

becomes an essential building block of future thermal logic circuits.

Thermal rectification is a phenomenon in which thermal transport properties, along a specific

axis, de pend upo n t he d irection o f't he temperature g radient o r h eat current. I n so lid-state
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systems, at least five different rectifications mechanisms have been suggested: different thermal
boundary resistance between two materials [195-197], anharmonic interatomic potentials [198],
ballistic sc attering i n asy mmetric na nostructures [199], asy mmetric | oad m ass [200], a nd
different temperature dependence of the thermal conductivity of two connected di fferent bulk
materials [201-203]. B ased on  this | ast m echanism f ort hermal r ectification, i .e., the
combination of two dissimilar materials with different trends in their temperature dependence of
the thermal conductivity in a ce rtain temperature range, we have studied the control of the in-

and out- of-plane heat conduction in laterally and vertically stacked Si and Ge thin films.

5.4.1 Modelling of thermal rectification in Si and Ge thin films

In the present w ork w e h ave st udied an ex tension of t he ¢ lassical t hermal r ectification,
arising in ¢ ertain ¢ ases f rom th e ¢ ontact o f two dissimilar b ulk m aterials with d ifferent
temperature dependence of the thermal conductivity, to Si-Ge when boundary scattering effects
are taken into account. Moreover, the directionality of the in-plane heat flow in a Si plate can be
achieved by tuning the thickness and the impurity concentration along the cross section of the
plate. W e designed sev eral p otential structures with this function in mind and discussed the

physics behind.

Based on the combination o f two d issimilar materials with d ifferent trends int heir
temperature d ependence o fthe thermal conductivity in a ¢ ertain t emperature range, we have
studied the control of the in- and out- of-plane heat conduction in laterally and vertically stacked
thin films, as shown in Figure 5.23. Moreover, the dependence of the thermal conductivity with
film thickness provides a degree of freedom to optimize the rectification effect in Si-Ge system,

when boundary effects are taken into account. In addition, the directionality of the in-plane heat
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flow in a Si plate can be achieved by tuning the thickness and the impurity concentration along

the cross section of system.
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Figure 5.23 Two-segment schemes for thermal rectification: (a) In-plane Si-Si or Si-Ge configuration.
(b) Out-of- plane Si-Ge configuration.

We start by deriving the lattice thermal conductivity in thin films, both in- and out-of-plane,
based on a modified Callaway model with Fuchs-Sondheimer boundary corrections. Then the
rectification factor of the different configurations is calculated. Estimated efficiencies of 10 %
(at AT=60 K) and 12 % (at AT=40 K) are found in Si-Si and Si-Ge systems, respectively, for in-
plane configuration. In the case of Si-Ge out-of-plane ¢ onfiguration, the thermal rectification

reaches a maximum efficiency of around 3.6 % at room temperature with AT=200 K.

In general terms, the c ondition of r ectification in a t wo- component sy stem is t ypically
related to the appearance of a crossing of the temperature-dependent thermal conductivities at a
certain T, as a result of their different trend, i.e., different slope sign and/or value. Figure 5.24
shows different ex amples of tuned thermal ¢ onductivities of Siand Ge thin films where this
condition a pplies. W ith the prospecto fv erifyingt he s uitability of t hinf ilmsi n the
configurations of Figure 5.23 as basic components for thermal rectification, we evaluated the
heat flow of a two-segment system connected to two reservoirs at 7y and T¢, respectively, using
the Fourier law approach. The temperature difference generates a heat flow (Q-) in the direction

of the temperature gradient. A fter ex changing the temperatures o f the reservoirs, the thermal
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flux changes its direction (Q). [fthe magnitudes of the two fluxes are di fferent, the de vice

exhibits an effective thermal rectification, which is evaluated by the coefficient [202],

dz%zgzgéééé [5.11]

For simplicity, we have not considered interface resistances. The derivation of the thermal
flux expressions and the methodology used to calculate it, follow the work of C. Dames [202]

and references therein.

The thermal rectification coefficient w as calculated in different c onfigurations of laterally
and vertically stacked Si and Ge thin films, according to Figure 5.23a and b. Different
combination pairs of Si and Ge were tailored to present a crossing of the temperature-dependent
thermal conductivities (Figure 5.24). In each case, the thermal rectification was calculated by

fixing 7y and varying T¢ in an adequate temperature range.
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Figure 5.24 Temperature dependence of the in-plane (a) and out-of-plane (b) thermal conductivity of
Si and Ge thin films. All curves were calculated with a mass-defect scattering parameter (I) reflecting
the natural isotope concentration, with the exception of the 500 nm thick Si film for which an
increased mass-defect scattering was introduced (107).
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Figure 5.25 Calculated in-plane thermal rectification coefficient of (a) 500-200 nm Si-Si, (b) 800-200
nm Ge-Si and (c) 80-15 nm Ge-Si systems. Calculated out-of-plane thermal rectification of a 100-20
nm Si-Ge system. For each configuration Ty, was fixed and the low temperature was varied.

The first design of the type sketched in Figure 5.23a consists ofa S i film with a natural
isotope co ncentration, t hat is with a mass d efect sc attering p arameter I', presenting a c ross
section comprised of a 500 nm thick section with high impurity concentration, 10I", followed by
a 200 nm thick undoped Si section. The effect of the high-impurity concentration is to decrease
the thermal conductivity of the 500 nm thick section, which becomes smaller than that of the
200 nm thick s ection for temperatures above 70 K ( green and blue curves in Figure 5. 24a,
respectively). As a consequence of the crossing of these two curves at this temperature and their
different s lopes ar ound i t, t he 1 aterally st acked S i-Si sy stem ex hibits an e ffective t hermal
rectification between 0.5 to 10 % for a AT ranging from 4 to 60 K, as the calculated rectification

factor in Figure 5.25a reveals.

The s econd and t hird de signs are a gain c onfigured for i n-plane t hermal r ectification ( cf.

Figure 5.23a) but using segments of different material, i.e., Si and Ge films, with a combination

135



Modelling & experimental results

of thicknesses of 200-800 nm and 15-80 nm, respectively. For the first system, the crossing of
the thermal conductivity was found around of T = 58 K (blue and red curves in Figure 5.24q).
The thermal rectification was estimated to be between 0.4 to 12 % at a temperature difference
AT ranging from 3 to 40 K, as is shown in Figure 5.25b. For the second system, the crossing
was found around T = 118 K (black and orange curves in Figure 5.24a) yielding a th ermal
rectification factor between 0.4 to 9 % for a temperature difference AT ranging from 4 to 100 K

(cf. Figure 5.25¢).

The last design involves an out-of-plane configuration (see Figure 5.23b) composed of 20
and 100 nm thick Si and Ge films, respectively. In this case the thermal conductivities cross at
around 300 K (blue and red curves in Figure 5.245). The rectification factor was found between

0.3 to 3.6 % for a AT ranging from 20 to 200 K, as is shown in Figure 5.25d.

In summary, we have calculated the thermal rectification coefficient in structures containing
Si and Ge layers using t he w ell-known mechanism f or t hermal r ectification ba sed ont he
different temperature-dependence of the thermal conductivity in a two-component system. The
crossing of the thermal conductivity curves of the two materials in either a horizontal or vertical
stack establishes a condition to achieve thermal rectification. We have shown that by varying
the film t hicknesses an d the i mpurity co ncentration w e ar e ab le t o t ailor t he t emperature
dependence of the thermal conductivities in order to maximize the rectification efficiency and,
thus, tune the temperature operation of the devices. This concept was fully exploited in the first
in-plane d esign in Sic onsisting oft wo Si sections (segments) with d ifferent im purity
concentration and film thicknesses. The rectification factor founded is in the range of 0.5 to 10
%. In the second and third in-plane designs based on a two-component system (Si and Ge), the
thermal rectification factor was estimated between 0.4 to 12 %. Whereas for the out-of-plane

configuration the resulting thermal rectification factor is about 3.6 %.

136



Chapter VI

CHAPTER VI: CONCLUSIONS AND FUTURE WORK

6.1 Thesis Summary

Staring w ith t he hy pothesis that phonon c onfinement plays an i mportant role on t hermal
properties; we present an insightful theoretical and experimental study of the phonon properties
of silicon n anomembranes. By us ing a dvance and novel contactless t echniques the acoustic
dispersion relation, phonon lifetime, thermal conductivity and thermal diffusivity transport have

been measured and compared with theoretical predictions.

The aco ustic dispersion relation w as m easured b yu sing Inelastic B rillouin L ight
Spectroscopy. Modes between 1 to 3 GHz from the fundamental flexural mode were detected in
17 nm thick silicon membrane. The quadratic behaviour of the dispersion curves was observed
and si mulated using t he e lastic ¢ ontinuum a pproach, s howing a g ood a greement with the
experimental data. Additionally, we demonstrated that the fundamental flexural wave dispersion
in ul tra-thin membrane can be described with simple quadratic wavevector de pendence. This
behaviour leads to a dramatic decrease of the group/phase velocity and has implications for the
thermal properties of the system, being stronger in the l ow temperature r egime, w here t he
fundamental flexural m ode c arries m ost of the he at. The impact o f the quadratic d ispersion
relation was observed in a strong modification of the specific heat capacity at low temperature
regime. We found that the temperature dependence of the specific heat in this regime departs
from “3D behaviour” C; ~ T toward a “1D behaviour” Cy ~ T. This change is related to the
large contribution from the fundamental flexural wave, which for small parallel wavevector has
a quadratic dispersion relation. We found that in the low temperature regime the specific heat of

membranes is larger than in the bulk.
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The phonon lifetime and frequencies of first order dilatational mode, with frequency given
by f = vi/(2a), were measured by st ate-of-the-art ultra-fast pump-probe t echnique known as
Asynchronous O ptical S ampling, A SOPS. We i nvestigated a se ries o f S i m embranes w ith
thicknesses r anging from ~ 8 nm to 200 nm . T he t hicknesses/frequency dependence of the
phonon lifetime was observed and simulated. The experimental phonon lifetime was compared
with theories considering intrinsic scattering and extrinsic surface roughness s cattering. From
this modelling, we have identified that at frequencies higher than 100 GHz or thickness < 50
nm, the total phonon lifetime i s dom inated by e xtrinsic b oundary s cattering, w hile a lower
frequencies or thickness > 50 nm , the phonon 1 ifetime i s do minates by i ntrinsic s cattering

mechanisms.

Although previously [23], we m odelled t he i ntrinsic m echanism c onsidering the L andau-
Rumer ap proach, the modification of the lifetime of the thermal phonons, 77y, was not taken
into account. Finally, we demonstrated that the intrinsic phonon-phonon interaction based on
Landau-Rumer approach can fit better the experimental data. The poor fit between the Akhieser
model and our experimental data can be attributed to the values of z7. Due to the uncertainly in
the value of the lifetime, we used the constant value of 77y = 17 ps taken from Reference [108],
which provided the best fit to the acoustic attenuation in bulk silicon. In order to correct this
expression w e suggested t he m odification o f 7 due to the thicknesses dependence of the
thermal conductivity in Si membranes. By expressing the lifetime of thermal phonon as 77y =
3 K/ (Cy Vz), we found out that it is not possible to assume a constant lifetime of the thermal
phonons and a more complex dependence has to be taken. Additionally, we showed the impact
of the modification o f 7y in the pe rformance of the O-factor of high frequency os cillators:
depending on the frequency regime as w ell as on the values of the thermal conductivity, it is
possible t o e nhance a nd/or de grade the (O-factor. At low frequencies the QO-factor scales ~

1/(w7ry) and since the 77y scales d irectly p roportional to the th ermal ¢ onductivity, s maller
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values of the thermal conductivity lead to higher values of Q. However, at higher frequencies,
where the O-factor scales ~ (@7rry), a smaller thermal conductivity leads to a decrease of the Q-
factor. These r esults h ave i mportant co nsequences for the p erformance o fr esonance based
sensors as well as providing a firm foundation to study of the effect of thermal conductivity in

the intrinsic limit of O-factors.

The s tudy of t he in-plane thermal co nductivity w as measured by us ingt hree optical
techniques: single-laser R aman thermometry, t wo-laser R aman thermometry and thermal
transient gradient. As expected, a systematic decrease of the thermal conductivity was observed
with decreasing membrane thickness, reaching values as low as & ~9 WK 'm™" for the thinnest
membranes, @ ~ 9 nm. The measured thermal conductivity was also modelled considering the
modification of the dispersion relation and the shortening of the phonon mean free path due to

the diffuse scattering at the boundaries.

Finally, we calculated t he t hermal r ectification co efficient i n S i-Ge films-based sy stems
using the well-known mechanism for thermal rectification based on the different temperature-
dependence of the thermal ¢ onductivity in a two-component s ystem. W e have shown that by
varying the film thicknesses and the impurity concentration we are able to tailor the temperature
dependence of the thermal conductivities in order to maximize the rectification efficiency and,
thus, tune the temperature operation of the devices. This has important c onsequences for the
design of future thermal 1 ogic c ircuit a nd pr ovides two di fferent pa rameters f or t uning t he

performance of thermal rectifiers.

The results o f't his t hesis ha ve de monstrated t he s trong i mpact of the reduction of't he
dimensionality on t he thermal properties of the systems. The modification of acoustic phonon
dispersion, | ifetime, sp ecific h eat cap acity an d t hermal conductivity an d d iffusivity was
investigated a ndt hee ffectof t he reduction of the dimensionality was su ccessfully

demonstrated. However the impact of the modified dispersion relation on the thermal properties
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was not completely demonstrated. T o further understand the effect of the modified dispersion
relation in the thermal conductivity, new experiments in porous silicon membranes will be
performed. I n addition, research on the transitions between heat transport r egimes ( diffusive

and/or ballistic) as a function of materials, dimensions and temperature will also be investigated.

6.2 Future work

Traditionally, the tuning of the thermal c onductivity is achieved by v arying t he i mpurity
concentration, surface roughness and grain boundaries or by the inclusion of nanoparticles or
holes. This leads to increase of the phonon scattering and the shorting of the phonon mean free
path. Among these means, the introduction of holes in a silicon structures has demonstrated to
be one of the most effective ways to reduce the thermal conductivity which, depending of the

porosity, can reach values as low as three orders of magnitude those of the non-porous material.

In this sense, the ordered fabrication of pores in a crystalline system gives rise to phononic
crystals. Similarly to the concept of pho tonic crystal, the phononic crystal was conceived as
periodic arrange of two dissimilar materials, e.g. silicon and holes, generating an artificial lattice
with all the associated concepts to them such as: Brillouin zones, band gap, modification of the
dispersion relation, and so on. The redefinition of the Brillouin zones and the modification of
the dispersion lead to changes in all the frequencies dependent parameters of the system, which

in turns has an impact on the thermal properties of the system.

However, for the particular case of the Si membranes, we have shown that the reduction of
thermal conductivity can be attributed mainly to the shortening of the phonon mean free path
due t ot he di ffuse s cattering of phonons a tt he b oundaries. Atr oom,t he impact of the

modification of the dispersion relation on the reduction of thermal conductivity is negligible.

140



Chapter VI

This is be cause the qu antization of t he di spersion relation qu ickly reaches the c ontinuum.
However, for small dimensions (d < 15 nm) or at low temperature (7 < 15 K), the modification
of the dispersion relation should be taken into account, including its effects on group velocity,

phonon density of states, heat capacity and so on.

From t hese r esults an o pen q uestion emerges co ncerning the | ow t hermal ¢ onductivity
exhibited by phononic crystals at room: Is it just a consequence of increased extrinsic scattering
(boundary and holes scattering) or is it due to the modification of the dispersion relation? This

question also gives rise to others questions:

i. Isitp ossible to manipulate the t hermal ¢ onductivity t hrough modifications oft he

dispersion relation at room temperature?

ii. ~ What is the role o fth e m odification ofth e d ispersionr elation o nth e thermal

conductivity at room temperature?

iii.  If the low thermal conductivity in a phononic crystal is just due to extrinsic scattering:
does it make sense to work on a proper design of phononic crystal (including acoustic

band gap and stop bands)?

In o rder t 0 an swer these questions and s tudy t he r eal effect o f the m odification o f't he
dispersion relation future ex periments will be p erformed. The main idea is to compare three
similar membranes: two porous membranes with an order and disorder pattern (see Figure 6.1a
and b, respectively) and one without any nanostructuring. Measurements of dispersion relation,
phonon lifetime and thermal conductivity would be performed and the results compared among

them.

Measurements o f't he temperature-dependence of t he t hermal ¢ onductivity m ay a Iso be
performed. This e xperiment w ould allow us to e stablish the t emperature r egime where t he

modification of the dispersion relation becomes relevant for the thermal management.
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Figure 6.1 SEM image of the ordered (a) and disorder (b) phononic crystal for thermal properties
analysis. Courtesy of Dr. Marianna Sledzinska.

Others important questions rise from the dynamics of high frequency phonons in the surface
and interfaces. The influence of constant or frequency-dependent surface roughness parameter
still remains as op en que stion and the experimental measurements of the phonon decay as
function of roughness are necessaries. Future experiments of the phonon-lifetime may also be

performed by using ultra-fast pump-and-probe technique (ASOPS).

The study of the phononic and thermal properties of suspended membranes is the key to
determining the thermal behaviour of more elaborated structures leading to advanced electronic
and photonics devices based on SOI and other thin film stacks. These include opto-mechanical
crystals and advanced op to-NEMS, obtained by e ngineering t he m echanical and pho tonic
properties of such devices, which exploit the strong interaction between photons and phonons
and that at room temperature are extremely sensitive to thermo-optical effects. It can be argued
that several solid state variables are intrinsically linked to phonon properties when it c omes to

dissipation, coherence and low-power operation.
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APPENDIX I: ELASTIC CONTINUUM MODEL

In a solid material, the acoustic waves, cause changes to the positions of the atoms. These
displacements can be described in terms of the strains, S. In presence of the strain, the materials
generate in ternal forces th at r eturn th e material to its o riginal p ositions, i.e. the e quilibrium
state. These forces are expressed in terms of the stresses (T). Finally the acoustic waves can be

described using strain and stress tensors.

1.1 Strain

In an e quilibrium s tate, the particle” can be located at the point X = (x, y, z). W hen the
material is not in its equilibrium state, this particle is displaced by an amount u = (u,, u, us),
where the c omponents u;, u, and uz are functions o f the ¢ oordinates x, y and z'. Under the
Lagrangian description [204], it is possible to write an expression for the transformations of any
infinitesimal | ine e lement AX fromt he o riginal s tate, e quilibrium, t o t he corresponding
infinitesimal line element Au in the displacement state. This transformationis given by the

equation:

Au = IAX [L.1]
where 3 is the 3x3 Jacobian matrix of the transformation, i.e., 3; = Ou, / ij. The line elements
AX and Au are to be treated as column vectors. The transposed operation in [L.1]1is Au" = AX'S"

and the square of the length of the displacement line element is:

" The term particle can be associated to infinitesimal element of a solid continuum media.
¥ For mathematical convenience x, y and z variables will be changed by x;, x, and x; respectively.
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A’ =Au" -Au=AX"T -IAX [1.2]

For any rigid body motion, the length of all line elements remains unaltered and hence the
product 33 mustbe e qualt o FEs, t he un it m atrix of or der 3. Thus, f or a n a rbitrary

displacement, the difference between Au and AX can be expressed as:

Au? —AX? = AX T IAX —AX AX

K L3
A’ —AX? = AX(I'I-E,)AX (L]
Au® - AX® = AX"2S"AX
where S” is Lagrangian finite strain tensor:
§ =135 E,)or 8L (xmux )—l(%&’f -5 J [1.4]
= 3 ij KAy A3) = i
2 2| oOx; Ox,

Now, defining AX in terms of Au, AX = 3°Au with 3’ = [x, /lu; and doing the same that in

[1.2] and [1.3], it is found that:

Au? —AX? =Au'Au—Au"T" 3 Au
Au® —AX? = Au"(E, — 3 3)Au [L5]
Au® —AX? = AX 2SEAX

where S is Eulerian-Almansi finite strain tensor:

1 # 1 Ox, Ox,

St =—\E,~33) or SL(x,,x,,x,)=—| 6, ——~— L6
2( 3 ) 4/(1 25%3) 2[4, auj ou, [1.6]
Both strain tensors can be expressed in terms of the displacement gradient tensor. For this

first is defined an ar bitrary d isplacement, y, as d ifference b etween s trained c oordinates an d

unstrained coordinates, z(x, f) = u(x, t) — X or 6;U; = u; — d;x;, where Uj represents a component
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of the arbitrary d isplacement. Then, differentiating with respect to unstrained c oordinates is

found that:

S 8Uj B 8ui GXj
V. u=3-E, 7 ox, _axk 7 o,

or

=V u+E, au_g(aU j

o,

[17]

replacin .71 1n |1.4], the Lagrangian finite strain tensor 1s expressed as:
placing [1.7] in [1.4], the Lagrangian fini i i p d

1 oU, oU, oU, oU
SL 2( xﬂ+(v /Ll) - xﬂvxﬂ) or Skl ( + L - mJ [18]

ox, Ox, Ox, Ox

similarly, the Eulerian-Almansi finite strain tensor,

' 5U' ' '
5% - [8U ]_aUkaUk} 191

ou ou. Ox. Ox ;

1 l

Neglecting higher products than those of first order (i.e. linear materials), the Lagrangian and

Eulerian-Almansi finite strain matrix then reduce to the usual definition.

SL(E) aU(V) 8U](') [1.10]
20 o, ox, '

With this definition, the strain is a second-rank tensor and is clearly symmetrical, thus only

six of the nine components are independent [205]. This can write conveniently as:

6u Giu N @ 6v ow |
8x oy Ox az 8y
ou 6v ov 6w ou
2 [L11]

ay ax oy ax oz
6v ow 6w Oou 6w

_82 8y ox 82 az

N | —

where u, v, w are the components x, y, z of displacement vector.
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1.2 Stress

Consider a general body subject to arbitrary (concentrated and distributed) external loadings,
as shown in Figure I.1. It is define traction or stress vector as the average of surface forces, AF,
acting on an element, A4, defined by:

T"(x,n)= Al}lt_l)l()% [1.12]

F
4
&

F'|
Figure 1.1 Sectioned solid under external loading

where 7 is a unit normal vector to the surface under study. Now, considering that exists a special
case in which A4 coincides w ith each o f the three coordinates p lanes w ith th e unit n ormal

vectors pointing along positives coordinate axes (see Figure 1.2).

Figure 1.2 Stress components

The traction vector on each face can be written as:
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n J— J—
T"(x,n=e)=0.e +7 0, +7 e,

T"(x,n=e,)=7,€+0€,+7 6 [1.13]
T"(x,n=e,)=1_e + r,e t0.¢
where e;, e; and e; are the unit vectors along of each coordinate direction. The nine quantities
{ov 0, O Ty Ty Ty, Toxs Tiny are the c omponents of the stress vector on each o f't hree
coordinate planes, with g; referred to normal stresses and z; called shearing stresses. Commonly
the components of the stress on an oblique plane with arbitrary orientation (see Figure 1.3), with

unit normal vector, x, it can be written as:

O-x Xy Xz nx
n — —
I'=o,n,=\7r, o, 7,.|n, [1.14]

sz zy Gz nz

[]

P

Iy '\'\..\L
m - r-

i T —

Figure 1.3 Traction on arbitrary orientation

where n,, n,, n. are the direction cosines of the unit vector » relative to the gi ven c oordinate
system. Whereas that inside of the body all the forces have to satisfy the static equilibrium, i.e.
forces and torque equal cero. This defines closed and in equilibrium subdomain, with volume V'
and surface 4, where the conservation of linear momentum implies that the average of all the

forces acting over this region must vanish, i.e.,
[[1daa+[[[Fav =0 or [[o,n,da+|[[FaV =0 [L15]
A vV A 4 ’
which, applying the divergence theorem can be expressed as:
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J[J(V-0,+Fyav=0or [[[(o,,+F)ar=0 [1.16]

doing the same with angular momentum, torque equilibrium:

Hgljkxja,knldA+J.J.J‘£kaijdV =0 [1.17]
Vv

A

where & xj oy n; represents the vectorial product between an arbitrary distance x; and the force

oy, with g, the Levi-Civita tensor . Applying again the divergence theorem:

‘['“.((gijkxjo-lk),j +&,x,F, )dv =0 [1.18]
v

and expanding the terms of Equation [1.18] and using the Equation [1.16], it is obtained that:

[[[8,0u +5x, (00, + FNdV =0 [[[ 20,7 =0 [L19]

v — v '
Due to the region V is arbitrary, the only possible solution to Equation [1.19] is that integrand
must vanish, i.e. g0y = 0. Considering that g is antisymmetric in the indices jk, i.e. g = — &y,

the only possible solution is that the product term of o;, must be symmetric, i.e.,

xy >
0,=0,;>T7,=7, [1.20]
zx = Xz

This r educes t he n umber of independent s tress ¢ omponents t o only s ix, i nstead of the

original nine.

" The vectorial product of two arbitrary vector, @ x b = ¢ , can be expressed as: ¢; = & a; by.
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1.3 Hooke’s law

To construct a g eneral three-dimensional co nstitutive law for linear el astic materials, it is
possible to assume that each stress components is linearly related to each strain component such

as:

O-x = CllSll + C12S22 + C13S33 +2C14S12 +2CISSZ3 +2C16S31

O-y = C21S11 + C22S22 + C23S33 +2C24S12 +2C25S23 +2C26S31
Ux = C31S11 +C32S22 +C33S33 +2C34S12 +2C35S23 +2C36S31
T, = CyS; +C Sy, +C Sy +2C,, S, +2C 58, +2C, S5,
Tyz = C151Sll + C52S22 + C53S33 +2C54S12 +2C55S23 +2C56S31
sz = C61S11 + CGZSZZ + C63S33 +2C64SIZ +2C65S23 +2C66S31

[1.21]

The factor two arises because of the symmetry of the strain tensor. This relation can be write

conveniently as

O, ¢, C, Ci Sh
o, G, Sy
o | |- ] S .
7, C o 28,
T, 28,
_szj | Cer o Gy | 285 ]

Using this notation, the relationship between stress and strain can be written reduce form

such as:

Tl;,' = Cg,'kISkz [1.23]

with Cjy, fourth order tensor called elastic modulus tensor, which has 81 components, but only

36 of these components are independent, because elastic modulus tensor is symmetrical, i.e,
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Cijkl = Cjikl
[1.24]

Cijkl = Cijlk
In the isotropic case the stress-strain relations, the elastic modulus tensor must be the same
under rotation operations, based in this point Chandrasekharaiah [206] found that for isotropic

case the elastic modulus can be written as:

Cijkl = aé‘ijé‘kl + 5ik5jl +75i/5jk [1.25]

where o, f and y are constants, then introducing Equation [1.25] in Equation [1.23] the stress-

strain relation gives:

Tij = ﬂ’Skké‘ij + 2/JSij [1.26]

where a, £ and y have relabelled using Lamé’s, A, and shear modulus, z, constants. Equation
[1.26] is known as generalized Hooke’s law for linear isotropic elastic solids. Robert Hooke was
the first in propose that the de formation ofan elastic s tructure is proportional to the applied
forces. Equation [1.26] is pos sible to note that, for is otropic m edia, only t wo i ndependent
elastics constant are necessary to describe its behaviour. Commonly the strain components are

written as:

S, :1+_le] Y

V=5 16, [1.27]

Ekk

where E = 4(34 + 2 1)/(1+ w) andis called Y oung’s modulus, and v =1/(2(4 + u)) is called

Poisson’s ratio.
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1.4 From strain-stress relation to equations of motion

A simple and illustrative application of elastic ¢ ontinuum model is found in the case L A
mode pr opagating t rough of on e d imensional (1-D) structure. T aking u(x, ) as an elastic
displacement can be described the 1ongitudinal di splacement of the infinitesimal element dx.
Then, taken the strain and stress definition, it will define 1-D strain as e = du/dx and 1-D stress
as T(x), then, taking one-dimensional Hooke’s law, T = Ye, and 1-D Newton’s law, F = ma, the

following equations can be formed:

2
pAdxgt? =[T(x +dx)-T(x)]4

a—T dx
ox

[1.28]

where pAdx isthe mass associated t o el ement dx and 0%/t the force. Now introducing
Hooke’s law is found that:

2 2 2
ou G(Yﬁuj_)au_}’au [1.29]

Por "axl ox) o pox
The Equation [1.29] is called one-dimensional w ave equation and their solutions can be
expressed in terms of plane waves, i.e. u(x,t) = &exp(i(gx — ot)), where ¢ is the wavevector, g =

21 and @ is 2 the frequency of the wave, = 27f.

Following the same approach, the three-dimensional equation can be carried out using the
generalized displacement field, i.e. U(x, y, z) =(u, v, w), and the tensorial H ook’s 1 aw, i .e.

Equation [1.26].

Due t o the s train, s tress and e lastic m odulus t ensors are sy mmetric; their in dex can be

compressed using the Voigt’s notation, i.e. 1 =11,2=22,3=33,4=23,5=31and 6 =12.
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T, =A(S, +S, +8,)+2uS, = AA+ 248,
T, =A(S, + 8, +8;)+2uS, = AA+2uS,
T, =A(S,+S, +8,)+2uS, = AA+2uS,
T, = uS,, I; = pSs, Ty = S,

[1.30]

where A = Ou/0x + Ov/ly + Ow/lz. Then, the generalization for t hree-dimensional sy stem is

given by the equations:

o’u oI, oT, oI, oA >
=t o+ 2 =A+pu)_—+uv
Por = ax "oy T AT G TV
2
,oa r= T, +6T2 +6T4 =(/1+y)a—A+yV2v [1.31]
ot ox oy Oz oy
o’w 0T, 0T, OT, oA >
= + + =(A+p)—+uv
Por " Ty T AT TV

These can be written straightforwardly as the single vector equation

azU 2v72 2 2
?=VTV U+, =v;)V-(VU) [1.32]

where U = (u, v, w) is the amplitude of the displacement vector, v, = [(1 + 2 1)/p]"* and vy =

(1/p)"* are longitudinal and transversal sound velocities, respectively.

1.5 Boundary conditions and Lamb waves

As seen in the Chapter II, the introduction of boundary conditions to infinite media changes
the nature of the acoustic propagation. Following the Rayleigh’s work, Lamb introduced a semi-

infinite and isotropic system subject to a stress free on both surfaces as a boundary condition.
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To calculate the dispersion relation is proposed a new dimensionless v ariable in order to

eliminate the thicknesses dependence of the problem.

0 =aq,/2, 0, =aq,/2, Q,=aq,/2; Q=aw/(2v,) [1.33]
This permits t o redefine the p roblemt o c alculate the pe rpendicular ¢ omponent o f't he
wavevector (O, O,) which are dependent on perpendicular component of the wavevector O, and

the dimensionless frequency Q. Then, Equations [2.13] and [2.14] are given by:

£(0,,Q)

_ 40200, +(tan(Q,)]”:O [134]
-0\ tan(Q)

le\/Qz_Q/z/a Qt:’\/rsz 2_Q/3; re =S8, /8; [L.35]

Now, only o ne p arameter which depends o n t he m aterial is the ratio of t ransverse and

longitudinal velocities (rs).

The problem has symmetry with respect to the inversion of each variable then, if Q; is a
solution, so —(Q; is solution too. This permits to restrict the study of equations just to values of Q;
>0,wherei= (//, [, ). The presence of the tangent function in the first of these e quations

suggests the existence of several branches of solutions.

To calculate the numerical solutions of the Equations [1.34] and [1.35], for s ymmetric and

antisymmetric modes, is now relatively simple:

i.  First the equations are solved to Qp =0, this give us the first point on the dispersion

relation, Q, ,. Being O, = 0, the only point with an analytical solution.

ii.  The wavevector is slightly modified, O; = Qp + AQ, and dimensionless frequency near

of the first solution is chosen, Q; , = Q , £ AQ.
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iii.  Fixing O, and varying slightly Q, ,, the signs of the Equation [1.34], F(0:,Q2, ), are
evaluated. The idea is found an interval where the function F change of sign, i.e. the

function cross the abscissa and exist a solution of the equation. F

iv.  Once fixed the interval, it is p ossible to use any numerical algorithm |ike N ewton-
Raphson, B isection, R egula-Falsi or Brent to find the be st solution. T he rest of the

solutions are obtained using the same approach and changing Q, , by Qo , and O, by
Oo.

An example of the typical curve of the non-linear e quation is show in Figure I. 4. In this
graph the typical asymptotical behaviour given by the combination of tangential functions can
be observed. For the simulation ratio sound velocity was taken as r; = 1.44, corresponding to v,

= 8440 m/s and vy = 5845 m/s longitudinal and transverse sound velocity, respectively.

¥
1

& v sl [

i |

F(g =105, Q) [a.1.]

i
L

=11 -+ T - - -

2 + a b
Reduced frequency £}

Figure 1.4 Typical graph of non-linear equation of dilatational waves for a fixed dimensionless
wavevector, Q = 0.5, as a function of reduced frequency

156



Appendix 11

APPENDIX 1l1: AHNARMONICITY AND THERMAL CONDUCTIVITY

1.1 Harmonic effect in crystals

The assumptions of small oscillations to describe the vibrations in almost all solids appear to
be ad equate and r easonable. But to d escribe more ad equately a so lid crystal is necessary to
include high order terms in the Hamiltonian. A good example of this is the calculus of thermal
expansion in a crystal. Using the Helmholtz free energy is possible to write the pressure of the

system as state equation [207]:

=—(oF/oV),, F=U~-TS

P:__( _TIdT' ouU(T", V)] [IL1]

T

where F'is Helmholtz free energy, V' the total volume, U the internal energy, S the entropy and T
the temperature. I fis used small o scillations, i.e. h armonic ap proach, the internal energy is

given by:

U=U“+1/2) ho, +Zh

q,s

DysTys [1L.2]

and the pressure:
P:_i Ueq+1/2z ho |+ E —i(ha)s)ns [1L.3]
ov )

where U the energy of't he s ystem in e quilibrium, @, ist he frequency o fmode ¢ with

polarization s and n, is the phonon distribution function.
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Anharmonicity and thermal conductivity

According with the last equation, the equilibrium pressure depends on the temperature only
because the normal modes depend on the equilibrium volume of the crystal. But if is used more

rigorous expression for the harmonic potential of the form:
U=U“+1/2) UR)D(R-RU(R') (11.4]
R,R'

where D is force constants that are independent of U(R), then the normal mode could have no
volume dependence at all. This is due to the normal modes of harmonic crystal are not affected
by the volume in equilibrium, and then the formulation of the pressure, Equation [I1.3], depends
only ont he v olume but not on the temperature. This m eans t hat the pressure r equired to

maintain a given volume does not vary with temperature.

Other implications of this result are: the volume cannot vary with the temperature at fixed

temperature and the coefficient of thermal expansion (@) must vanish:

(an __(ep/ar),
or ),  (eP/aV),

azl(alj J(aq :_1(%)
i\or), 3w\er), 3v(ep/ov).\or),

The absence of thermal expansion has other consequences as being equal in constant-volume

[1L.5]

and constant-pressure specific heats (Cp and Cy respectively).

c—c _T(eP/oT), (IL6]
PN p(eplav), '
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These an omaliesis dueto thatinreal crystalsthe force constants D inthe harmonics
approximation t o t he po tential energy do de pend on the equilibrium 1 attice about w hich the

harmonic expansion is made.

11.2 Thermal conductivity models

Depending o f't he m aterial, h eat en ergy can b e transported b y d ifferent c arriers such as :
electrons, phonons, ph otons, m agnons, ¢ tc. F or the case of non-metals, sem iconductors an d
alloys m aterials the dom inant ¢ onduction m echanics i s the lattice thermal conduction, i .e.

phonons.

Thermal conductivity, x, is defined as material’s ability to conduct heat and, generally, the
total thermal conductivity can be expressed as a sum of all carrier contribution, x= [ ,x,, where

a denotes a type excitation.

The fundamental ch allenge f or thermal t ransport ist o cap ture t he co mplexities o f't he
systems. The models to capture these complexities can be derivate from B oltzmann transport
equation, B TE. This e quation de termines t he status of a particle viaits localization, r, and

velocity, v.

11.2.1 Boltzmann equation

The BTE is an equation for the temporal e volution of the non-equilibrium thermodynamic

distribution function, n,(r, v, t), in phase space.

159



Anharmonicity and thermal conductivity

If a particle travels with a velocity v in a time ¢, its velocity and position before a time ¢ + dft

will vary inv +dv and r + dr, i.e.,

t—>t+dt
r—>r+dr—r+vdt [11.7]
Vv —>v+dv—r+adt

In the absence of collisions, the probability to find a particle does not change with the time,

then:

n,(r+vdt,v+adt,t+dt)—n,(r,v,t) o

1.8
” [11.8]

on,, On, On, on, p
v—+a—"L+—"L=00r = +=Vn +FV n =0 [11.9]
or ov ot oo m " pe

where a is the particle acceleration, F is the force field acting on the particles, m is the mass and
p its momentum, the last equation is called Liouville equation. Now, if within this period there

is a collision the Liouville equation is modified as:

on, on,,
= +WwW,on, +aV on, =|—" [11.10]
ot ot o

This expression is known as Boltzmann equation. The first term in BTE represents the net
rate o f p articles o ver time, the second term is the convective i nflow due to accelerationin
physical space, and the third term is the net convective inflow due to acceleration in velocity
and/or momentum space and right hand side term represents the net rate of change of particles
due t o c ollisions. C ommonly i n a bsence o f e xternal f orces the third term va nish and t he

scattering term is approximated under the relaxation-time approach [17],

nqs,O - nqs

[.11]
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where n is the thermodynamic distribution at equilibrium: Bose-Einstein distribution function

for bosons and Fermi-Dirac distribution function for fermions particles.
Some of models can be derived from BTE are:
i.  The Fourier model (Kinetic theory)
ii. ~ The Cattaneo model
iii.  The C- and F-process model for bridging Fourier to Cattaneo limits
iv.  The equation of the phonon radiative transfer (EPRT)
v.  The Callaway/Holland models and its modifications

In general these models are derived under the premise that system has local thermal dynamic
equilibrium (LTE). The LTE implies that the second term in BTE can be expressed as [ n,, =
dng;o/dTU T, and then the BTE is given [68]

on Ry =My

LA dnqs,O VT =4
ot dr T

[11.12]

11.2.2 Kinetic theory
The basic law defining the relationship between the heat flow and the temperature gradient
was developed for mathematics physicist Joseph Fourier.

The F ourier law is t he s implest m odel for t hermal transport v alid f or hom ogeneous a nd
isotropic solids. In this approach phonon behaviour is approximated in acoustically thick limit,

i.e. the size of the system, L, is much larger than the phonon mean free path, L/I' >>1, in
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addition, the temporal phenomena have to occur on time scale much larger than the ph onon

lifetime, t >> 7.

To describe the thermal conductivity, we need to define some characteristics quantities. Then

taken the Equation [3.7] we can to describe the quantized phonon energy as:

E, =ha,(n,,+1/2) [11.13]

and the probability of a harmonic oscillator is an energy state E,, is giving by:

P(E)=(1/Z)exp(-E, / k,T) [11.14]
with Z a normalization constant giving by >, P(E,) = 1, i.e. Z = X, exp(—E,/kgT). Introducing

the quantized energy expression, Equation [11.13], in the Z function definition:

exp(—ha,, /2k,T)

Z(T)= Z(;exp[— (nqs,o + 1/2)hqu /kBT]= exp(ho /k.T) [IL.15]
n= qs B

Once obtained the form of probability, we can to find the contribution of the elastic waves to

the average energy, which is giving by:

<U’N> - z(nqs,o +1/2)hquP(En)

n

_ gy 011210, g T
- (1/2); (1,00 +1/ 2100, e 161

1
<qus> = %ha)qs + ha)qs m = ha)qs (nqs,O +1/2)

The equilibrium phonon distribution function (EPDF), n,, represents the average number of
phonons with wave vector q in equilibrium and at a given temperature 7, the EPDF is described

by the Bose-Einstein distribution:

1
n =
0 exp [hao,, [k,T]-1

[1.17]
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According to the B oltzmann e quation, in the presence ofa temperature gradient VT, the

steady state for phonons can be describes as:

[1.18]

where ¥, is the phonon group velocity and 7z, is the phonon scattering relaxation time. The

heat flux in a dielectric solid is obtained by adding all the contribution of the ¢ phonon in all

possible s polarizations:

= —Z nha, v, [11.19]
substituting [I1.18] into [11.19]:
A 1 2 2 anq:,o Y.
0= 5 Z R, oV, <cos«9>—ha)qqux<cos 49>qu o7 VT [11.20]
0 q,S
0= Ny VT [11.21]
3N S oT '

where 6 is the angle between the group velocity and gradient of temperature: The first term in
[I1.20] is vanish due to integration o ver all the phase space. Once obtained the flux we can

introduce this quantity in the Fourier’s law to find the thermal conductivity:

0
K=——
VT
1 ) on, ,
=— Y hov.r 4
3NOQ — qs " qs” gs oT [1122]
1 2
=3§CVVqSTqS

The d ifferential he at ¢ onduction equation ¢ an b ¢ obtained ¢ onsidering e nergy-balance

equation for small control volume, V, stated as [208]:
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Rate of heat entering through rate of energy | | rate of storage 1193
the bounding surface of V' generation in V' | of energyin V [H1.23]
The first term of the Equation [I1.23] can be evaluated as:
Rate of heat entering through .
, :—IQ-ndA:—IV-QdV [11.24]
the bounding surface of V' ’ ’

with A the surface area ofthe volume V, 7 is the outward normal unit vector to the surface
element d4. The sign minus is included to ensure that the heat flow is into the volume. T he

other terms in are evaluated as:

Rate of energy
generation in V'

} =—[ g(r,t)dv [11.25]
)

Rate of ener oT (r,t
[ gy}z—j c, L0 4, [11.26]

storage in V' ) ot

where g(r, t)is the he at generation r ate inthe m ediumand Cy isthe h eat capacity. T he

substitution of Equations [I1.24], [11.25] and [I1.26] in Equation [11.23] yields:

oT (r,t)

J[_ V-O@r,t)+g(r,t)— pC, :|dv =0 [1L.27]

taking O(r, t) from [I1.22] into [II.27] and eliminating the integral, it is obtain the differential
equation of heat conduction for a stationary, homogeneous, isotropic solid with heat generation

within the body:

oT (1)

V- A&NVT(r,t)]+g(r,t)=pC, o

[11.28]

Normally the thermal conductivity is assumed as constant, i.e. independent of position, and

then the Equation [I1.28] is simplified as:
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V2T (r,f) + % o(r 1) = é% [11.29]

where a= x/pCy, is the thermal diffusivity. For a medium with constant thermal conductivity

and no heat generation the equation [I1.29] become in the Fourier equation.

OT (1)

VT (r,t) = L [11.30]
a ot

11.2.3 Cattaneo equation: hyperbolic heat equation.

One of the problems of the F ourier equation is that the description of the velocity of heat
propagation. The Fourier law assumes that the heat flow, O, and the gradient of temperature,
T, appear at the same time instant ¢. This implies that thermal conductivity propagates with
infinite speed which is incompatible with the physical laws. In addition, in a steady state the
Equation [11.30] yields to erroneous results for the acoustically thin limit, where ballistic phonon
transport effects are important [209]. To overcome these problems many scientists proposed an
upgrade of the Fourier equation be using a hyperbolic form among which Cattaneo and phase-

lagging models have found greater applications.

The Cattaneo equation is obtained using BTE under relaxation time, the temperature gradient
approximation, Equation [II.12], and flux definition, Equation [I[.22]. First the Equation [I1.12]

is multiplying by v,/ NyQ2 and sum over all frequency and polarization ranges to yield:

on on vha)
IR v .31
ot oT Z N,Q [ |
r%—? +Q=—&VT [11.32]
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The divergence of the Equation [I1.29] and time derivate of the E quation [I1.27] give two
equations, which can be combined with the Equation [I.27] to eliminate the heat flux terms.

The resulting differential equation for constant properties can be written as:

TV%+VQ+KV2T=O [11.33]
ov ) o'T
_ra—tgﬂa—f-fpc =0 [11.34]
2
_(g+ra—g]+ia—T+la—f=v2T [11.35]
ot a ot o ot

This is the hyperbolic he at e quation, which, in c ontrast to the F ourier e quation, the wave
speed is finite. Without heat generation the E quation [II.35] is known as telegraph or damped
wave equation. The solution is propagating waves that its amplitude decays exponentially as it

travels. The speed of this temperature in high-frequency limit is given by v,, = (/7)".

11.2.4 Callaway model

The r elaxation-time ap proximation a ssumes that the phonon distribution is restored to the
equilibrium di stribution at rate proportional to the departure from e quilibrium. A ssuming that
scatters p rocess ar e i ndependent o f o ne other th e e ffective r elaxation time is given by the
Matthiessen’s Rule. As been in the Chapter III, it is well known that the normal process cannot
by themselves contribute to thermal conductivity, consequently, it is not legitimate add effective
relaxation time. But it is incorrect assume that they do not influence the thermal conductivity,
because they are capable of redistributing momentum and the energy. T he resistive processes

such as U processes tend to return the phonon s ystem to e quilibrium di stribution, whereas N
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processes 1ead to a displaced this distribution. A n investigation of the real e ffect of normal

process was developed for Joseph Callaway in 1958 [68]. In his model is assumed that:
i.  Debye-like phonon spectrum (linear dispersion relation).
ii.  The medium is isotropic and homogeneous.
iii.  No distinction between longitudinal and transverse phonons.
iv.  One average of sound velocity.
v.  Scattering mechanism only depends on of the frequency and temperature

From BTE in presence of gradient of temperature and for steady state for phonons can be

describes as:

_ (‘—)» . ﬁT) anq.c,O — anqs — nqs (2’) - nqs + nqs - nqs,O [II 36]
or or ), Ty Tp '

where, 7y is normal relaxation time and 73 is the relaxation time for all the processes which do

not conserve the momentum and n,,(A) is the displaced Bose-Einstein distribution, which can be

expressed as Fourier expansion:

-1
hao,, — A d
nqs(/i){eXp[q;{—Tq}—l] znqs,0+i-qih+... [11.37]
B

defining n, = ng, — ny, and adding [11.37], The BTE, Equation [I1.36], can be written as:

- \On T dn
—w V)= e + A gy —=2 0 I1.38
( qs ) aT ( R N) 1 q N ha)qs dT [ ]
Now is defined the following parameters:
. =1 41y [11.39]
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n =9, VT)% [11.40]
l‘q:_ﬂ%@(% V7) [1141]

where 4 is the total relaxation time, A is a constant vector in direction of temperature gradient,
and f is parameter with the di mension of relaxation time. S ubstituting the E quations [I1.39],

[I1.40] and [11.41] in [11.38] is simplifies to:

‘9_ﬂ:1_>9:r{1+ﬂj [11.42]

Tc Ty Ty

Using the assumed isotropic model, the thermal conductivity can be expressed in terms of

the kinetic theory:

K= %z j W2 Cydq’ [11.43]

K =v;[z.(1+ B/7,)C, D(@)de [11.44]

where D(w) = NQa'/2 7 v3qs is the density of state in the Debye approach.

The term 1/3 is vanishing due to the summation in the polarization. The factor ( 1+ B/ty)
expresses the correction due to displaced of phonon distribution (N-processes contribution). To
determinate the v alue o f £ is n ecessary u tilize t he fact t hat the N -processes co nserve t he

momentum, therefore, the rate of change of the total phonon m omentum due to N -processes

have to be zero, i.c.,

on n (A)—n
J.[a—:sJ qdq’ = J'qu(f =0 [11.45]
T
N

N
Done the adequate substitution and introducing the variable x = iw/ksT (the dimensionless

phonon angular frequency), the Equation [I1.45] becomes:
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0,/T

[ xtea 0By,
0 (exp(x)—l)2 Ty

[11.46]

with 6 is the Debye temperature. Inserting & from the Equation [11.42] and solve for £ which is

independent of x:

0p/T 0p/T
x*exp(x)z. /7, dx/ xtexp(x)(1—7./7y) N (11.47]

ﬁ =
! (exp(x)—1) 7 7, (exp(x)—1)
Once t hat £ is c omputed, i t is s ubstituted i nto [I1.43], a nd t he t hermal ¢ onductivity i s

obtained. N ote t hat if't herei snot U -process,i.e. 7y — oo, [ becomest o1 nfinity, a nd

consequently the thermal conductivity is infinite.

Finally, in the C allaway m odel, the thermal ¢ onductivity i s c omposed of two terms, one
represents contributions of resistive processes, and the other represent the combined scattering

rate which include the redistribution of the phonons due to N-processes.

K =V j 7.C,D(w)dw [11.48]
K, =V j Br.tC,D(w)dw [11.49]
K=K tK, [11.50]

i; isnot only a correction term to kj, it is essential to counteract the effect of treating N-
processes in 7¢ as if they were entirely resistive. In the literature the contribution of term &
remains b elow 1%, but for ultra-pure crystal th e c ontribution increases to 2 0% of the total
thermal conductivity. The magnitude of x; is controlled by the concentration of point defects.
However, when the N-processes become comparable to the resistive processes 7y = 7z, €.g. in
very pure, d efect free and isotopically pure samples, the x contribution to the total thermal

conductivity is significant [210].
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11.2.5 Holland model

The consideration of no distinction between the phonon polarizations used in the Callaway
model, can lead to mistakes in the calculation of the thermal conductivity, because this means
that all the phonons have the same group velocity, in addition all the process are de generated.
An analysis of the contributions of each polarization was done by Holland in 1963 [104]. He
included effects of dispersion relation, as well as the modification of the group velocity under
the a ssumptions x>, = 0. H olland s eparated t he ¢ ontributions of transversal a nd 1 ongitudinal
phonons, and includes a partial e ffect of non-linearity of dispersion relation by splitting each
polarization in two zones at the middle the first Brillouin zone. For each polarization Holland

assumed t hat t he g roup v elocity an d t he p hase v elocity ar e co nstant at eac h z one at each

polarization.

BT T T T 1 T
= 1 ™ Esperumental data : ,}/
—— Theor g

Middle of By —*:

Fregquency, of2n [THz)

LVE

(4 0.2 0.4 0 a8 L0
Reduoed wave voctor
Figure IL.1 Silicon dispersion relation, adapted from [211].

For b ulk si licon, H olland cal culated t he g roup v elocity as an av erage in ea ch z one for

transversal and longitudinal modes. The values are summarized as:
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For 0<¢g<gq,, /2
_|5860 m/sfor j=T [11.51]
18480 m/s forj=L

vg,j

FOI' qlim /2 < q < qlim
/2000 m/sfor j=T [11.52]
14240 mysfor j=L

Vg,j

where ¢, is the maximum wave vector, i.e. in the limit of the Brillouin zone.

The new formulation postulated that the thermal conductivity can be expressed as the sum of

the contribution of longitudinal and transverse phonons:

1{ N,Q T )
1 3( 27 j;'[ V. v [11.53]
ZHT/T T3 4
K, == I SptyTx e"pz(x) [11.54]
35 (exp()-1)
6, /T 3 4
K, =L Snlx ew() , [1L55]
3% (exp(x)—l)
K=K, +K, [11.56]
and
[11.57]

s=T,L; x=hao,/ k,T; 0, =k,o,/h; S, =(K*/27°I’v,,
the subscripts 7 and L refer to transversal and longitudinal phonons respectively.

The separation between two zones and the form of relaxation times used by Holland permits

to divide the term &7 into in two parts:

K=Ky +tKpy +K, [11.58]
) 6,/T )
Kro :ETa J.TTOSTX4 exp(x)(exp(x)—l) " dx [11.59]

0
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5 T )
o =2 [ " explolexp(v)-1) [1L60]
6./T
1o
w, =T [2Sect exp()(exp() —1) [11.61]

0

This division is because the U-processes such as T+ L — L or T+ T — L do not begin until
@ > @y, because the shape of T branch. Figure I1.2 shows the typical phonon s pectrum of a
material s uch a s g ermanium or s ilicon. N ote t hat U -processes s tart just for a m inimum o f

frequency, under this limit there is absence of these processes.

o 0.5b 1.00
L L
0" —> > '—1 = T
Tk S T e
» {2
A

T T Teom

Figure IL2 Schematic phonon spectrum showing zone division, 0.5b, and the extension into second
Brillouin zone. Adapted from [104].

Holland was the first who postulated that the modification of the acoustic dispersion relation

could lead to modification of the thermal conductivity.

11.2.6 Holland-Callaway modifications

In general, the most used techniques for calculations of lattice thermal conductivity are based
on C allaway or H olland models. T hese c alculations a re ba sed on the linearized dispersion

relation (Debye model) and involve certain of adjustable parameters.
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As mentioned earlier, the lattice thermal conductivity is represented by the Equation [I1.22].
It can b e cal culated t hrough t he sum o ver o ne 1 ongitudinal an d two d egenerate t ransverse
phonon branches [I1.56]. In the Callaway model the thermal conductivity can be expressed as a
sum of t wo c ontributions [II.50]. T aking bot h m odels A sen-Palmer ex pressed t he thermal
conductivity as sum between transversal and longitudinal contribution and adding the Callaway

correction to each contribution [210], i.e.,

K=K, +k, + 2(KT1 + K‘Tz) [11.62]
K =Ll gfjié(x)l"(x)dx, I'(x) _ xexp(x) [11.63]
3 (exp(x)—1Y
1 . 0,/T Té(x) 2 Jor I'(x)
K, =—ST [(x)———dx - - dx [11.64]
3 { '([ 7y (x) '([ (TN(X)"'TR(X))
and
[1.65]

i=T,L, x=ho/KT; 0,=Kew,/h;, S,=(K" /27’1,

where v; and vr are longitudinal and transversal sound velocity, respectively.

I1. 3 Boundary scattering processes

This s cattering process d ominates at low temperature regime, b ecause the phonons in this
regime acquire long wavelengths. The boundaries of a crystal of finite size act as scatterings
regions and limit the effective mean free path of the phonons. The formulations of this process
can b e find follow t he treatment given by Z iman. Substituting t he di splaced B ose-Einstein

distribution, Equation [I1.37], in the steady state BTE, Equation [I1.18]:
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B (q _ﬁT\anqs,o _ W (r)nqs,o (nqs’o + l)

U +V -V rn, \n ., +1 11.66
qs ] 8T qu(bulk) qs l//qs( ) qs,O( qs,0 ) [ ]

where ,,(r) is analogous to A-g, defined in the equation [I.37]. If it is considered the situation
at very l ow temperature, when the relaxation time for bulkis very long compared with to

boundary relaxation time, i.e. 7,(bulk) — oo. The equation [I.66] is reduced to:

w0 (ﬁ 6T) on, /0T p
Vos * s )= "Wy ’ 11.67
! l//q ! nqs,O nqs,O +1 [ ]
The solution of this first-order differential equation can be expressed as:
on, /0T (-
V()= —e (T )45 [1L68]

nqs,O (nqs,O + 1)
where O is a c onstant o fintegration. T his ¢ an be found by i ntroducing s uitable bou ndary

conditions, 1.e.,

Vo (1)), = =Py, ()] [11.69]

Which assumes that the fraction p of all the phonons arriving at the surface rp are reflected
with t he n ormal v elocity v, reversed. F or p urely d iffuse sca ttering p = 0 and t he boundary
condition is set in zero. This represents the Casimir limit in which all the phonons lose the sense
of their directionality and obey the equilibrium distribution. For pure diffusive case the equation

[11.68] becomes:

%) -
My 0 (nqs,o + 1)% (r)= %VT (r—ry) [11.70]

Using the definition of the flux [I1.19] over a cross-sectional area S,, the heat current is
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QSC qsl//qs (r)nqs O( qs,0 + l)vqs dS [H71]

N7

Lo G (r=rg)v, [11.72]

NQ

cos’ (0)dS.dQ [11.73]

0 -
%%jjha)qs %‘VT"(}* — 75 )”qu

where (7 — rp) points in the solid angle dQ and @ is the angle between (r — r3) and [ 7, and
between v,, and dS,. The phonon velocity, (r — r5) and [ T are in the direction of dS,. Grouping
terms the equation [I1.73] can express as:
1 - -
0= gCyquLO‘VT‘ = V| [1.74]

where L, represents an effective boundary mean free path in the Casimir limit.

L, = %j [[r =] cos’ ()dads, [11.75]

Similarly to include the effect o f specular reflection (p [ 0) and the e xpression [I1.68] is

modified as [7]:

on_, —
ol + Wy ()= LT[ p)r =)+ plr =)

+p2(r—r"B)+...}]

[11.76]

where r’p, r’’, etc, are the points on the surface where specular reflections would have taken
place before the point is 73 reached. With this expression the effective boundary men free path

becomes:

b 0 bl -l s @anas,
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If it is assumed that the average position of r is in the middle on the circular cross section
(for cylindrical sample), then |r — »’g| = 3|r — rg|; |r — 7’| = 5|r — rg|, etc. Then, the series is

transformed in:

+1
|r —rB|{1 +3p+5p° +..+(2n +1)p”}: 2an" + Zp" = p—z [11.78]
n=0 n=0 (1 - p)
with p < 1, finally the equation [II.77] can be expressed as:
l+p
L=—=—IL, [11.79]

I-p
Thus the boundary MFP becomes longer when specular reflections are presents. The factor p
depends on surface conditions and also of the temperature. With decreasing the temperature the
phonon wavelength increase and the surface appears smoother. The phonon relaxation rate due

to boundary scattering can be expressed as:

z'q_pl (bp)=v,,/L [11.80]

here L represents an effective boundary MFP.
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APPENDIX 111: MODELING OF THERMAL TRANSPORT

In this a ppendix the simulation of the thermal properties will be presented. The t hermal
conductivity c alculation w as done in our group by using original codes de veloped w ith the
commercial software MATLAB an d Ma thematica. T he f inite el ement si mulations w ere

modelled by using the commercial software COMSOL multiphysics.

I11.1 Calculation of thermal conductivity

Nomenclature
K, Lattice thermal conductivity

Planck constant divided by 27

T Temperature

kg Boltzmann constant

q Wavevector

s Phonon polarization

Vs Group velocity

Wy Phonon frequency

I Bose-Einstein equilibrium phonon distribution function
Tys Total relaxation time

Dy Phonon density of states

L Effective diameter of the bulk sample
r Impurity scattering parameter

Vo Volume per atom

% Griineisen parameter

Op,s Debye temperature of polarization s

Atomic mass average
o, Inverse of Knudsen number

d Film thickness.
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A Bulk mean free path
Dy Wavevector dependent specularity parameter
X Integration variable

The thermal c onductivity simulation of free-standing membranes was carried out, first, by
deriving the lattice thermal conductivity in Si (or Ge) bulk system using the modified Callaway
model unde rt he s ingle moder elaxationt ime a pproximation. Then, on cet he t hermal
conductivity for bulk Si (or Ge) is determined, we introduced the effect of finite size through

Fuchs-Sondheimer boundary corrections.

hZ
Kbulk = 3kB—T,2 z J. vssa);srqans (nqs + I)Dqsdq [III 1]
K. 1_ © _ —X0
Ky 3 pﬂj({s_xdyj_flgywh [11.2]
Kbulk 2 55 1 1 - pqe ’

where p, = ex p(—4( na)qs/vqs)z)is the fraction of phonons t hat are s pecularly r eflected by t he

boundaries, D, is phonon density of states and ds = d/A, is the inverse of Knudsen number.

The dispersion relation, a,, was determinate ap plying an analytical form from a second-

order polynomial fit to the experimental data for (100) direction:

o= Aq+Bq’ [1IL.3]
with 4 and B constants determined via numerical fitting of experimental values. The total bulk,
7,5, relaxation time for each polarization, s, is limited by various scattering mechanisms such as:

boundary 7z,, mass defect 7;,, and Umklapp phono n-phonon interactions 7y, T his can be

obtained via the Matthiessen’s rule as

-1

| -1 -1
Tys T T Tras T Ty [111.4]

where the relaxation times 7z 4, 774, and 7y, are given by [117,212,213]:
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v .
Thigs = . [111.5]
V.r
-1 4
Tras = 47;; @ys [111.6]
i hy?

1 s 2

Tugs = m @y exp[- 6, /(37)] [111.7]

Figure III.15 compares the thermal conductivity of bulk Si and Ge obtained by the Equation
[III.1], from Egs. [IIL.5] to [III.7] and substituting into Eq. [II.1], with reported e xperimental
values [ 18], s howing a good a greement. The main parameters u sed i n t he cal culations ar e

displayed in Table IIL.1.

Material | 7 7 © | ® | oy | @w
Silicon 1.14 0.56 591 213 2.01 5.0

Germanium 1.14 0.56 330 117 5.88 4.8
Table 1.1 Silicon and Germanium parameters used in the calculations.

With the thermal conductivity determined, the effect of the finite size is introduced using the
Equation [III.2]. The surface roughness surface parameter, 7, was fixed in 0.5 nm taken from

the estimated value in Reference [23] for Si membranes.

In order to avoid the infinite limit of the Equation [II1.2], we suggest a change of variables of

the form:

x=>1+y)/(1-y) [111.8]
This mathematical trick turns the infinite range of integration, x I [1, ), into a finite range

of integration in the new integration variable, y [I [0, 1], i.e.,

y=>0=>x-1

I1I1.
yo>l=>x—>0 [11.9]
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Then, the new integral is given by:

Kﬁlm -1 _E (1 -
Kk 2

N

2

pq) 1 -3 )
T‘([(f(y) _f(y) )l—pqe_f(y)ﬁ” (1—y)2

dy [111.10]

where f{y) = (1 + y)/(1 — y) and the factor 2/(1 — y)* arises from the Jacobian associated to the

change of variables.

12
!

Si

==
|

5
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2 |
I X

Reduced wavevectar {a)

1000

Temperature |K] ()

Figure 111.1 (a) Phonon dispersion relation of bulk silicon and germanium systems: experimental
results (red and blue dots) from Ref. [176] and second-order polynomial fit (red and blue solid line).
(b) Red and blue lines: calculated temperature-dependence of the lattice thermal conductivity of bulk

silicon and germanium, respectively. Red and blue dots: the experimental data of silicon and

germanium bulk respectively obtained from Ref. [70]

111.2 Modelling of thermal transport: 2LRT and FEM simulations

To calculate the temperature distribution inside laser-heated Si membrane we must solve the

two-dimensional he at flow e quation illuminated by laser source, i.e., the heat source te rm is

written as product o f irradiance o f the laser (the p ower carried by b eam across a u nit area

perpendicular to the beam) and an exponential decay in the z direction, given by:
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V2T =—a,(1- R)72Zézexp[—2r2 /b*Texp[-a,z] [M1.11]

where « is the thermal conductivity, ¢ is the optical absorption coefficient”, R the reflectance,
P; the total laser incident power and b the spot laser radius. Depending on the thickness of the
sample the Equation [III.11] can be reduced to one-dimensional equation along radial direction

with a uniformly distributed heat source along of z-direction:

o (I=R-T)2P,
g d b’

exp[-2r*/b’] [11.12]

where d is the thickness of the membrane. However, if the absorption of the sample is very
high it is recommendable to use the Equation [III.11] instead of the Equation [II1.12], this will
depend of the thickness of the membrane, the wavelength of the heating laser and the material.
In our case, we use a heater laser with a wavelength of 407 nm (~3.05 eV), as silicon has
indirect band gap of ~ 1.1 eV the absorption of the light with wavelength near of the UV range
is very high. In bulk silicon the penetration depth of a monochromatic light with wavelength of

407 nmis ~ 130 nm, i.e., the light intensity has fallen to ~ 36% (1/e) of its original value after

travel 130 nm.

Figure II1.2 shows the intensity decay of monochromatic light with wavelength of 407 nm as
a function of the travelled distance in bulk silicon. Three different points at 250, 1000 and 2000
nm are included to rough c omparison with the thicknesses of the studied membranes. In the
inset of the Figure II1.2 we can note that light intensity falls to ~ 13% of its original value after

travel 250 nm, while for longer distance (> 500 nm) the light is completely absorbed.

Due t o t he m embranes b ehave as o ptical c avities ( Fabry-Pérot o ptical c avity) itis n ot

possible compare directly the bulk absorption with the membranes and the multiple reflection

* The absorption coefficient, in general given in 1/cm, determinates the depth at which light of a certain
wavelength penetrates a medium.
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effect have to be take into consideration. Figure II1.3 shows the thickness-dependence of the
absorptance (4), reflectance (R) and transmittance (7) of monochromatic light with wavelength
0of 407 nm. The simulations w ere performed by Dr Francesc A lzina by applying the laws of
reflection and refraction in a plane-parallel slab and using the data for the dielectric function of

bulk silicon for a monochromatic incident light of 407 nm at 300 K.

=10

L 10— g . oy
= - 21073
'S:‘ U-E - I-\;-":-:l[l“'.
E - ] ¥r 50am

. = 1 & 100nm
E ﬂ ﬁ- . E“' oy MK nm
E | T 100 1000
E:j Travelled distance | )
P —
3 0.4
§ 1 # 250nm
S 0.2 - = 1000 nm
< 4 % 2000nm

0.0 < o
- - -

5 10 100 1000
Travelled distance [nm]

Figure 111.2 Normalized intensity of the monochromatic light with wavelength of 407 nm as a function
of travelled distance in bulk silicon. Three different stars at 250 (red), 1000 (blue) and 2000 (green)
nm are included to rough comparison with the thicknesses of the studied membranes. Inset: idem in

double logarithmic scale for better visualization of the graph.

From the Figure III. 35 we can note that the values of the absorptance and reflectance for
1000 nm and 2000 nm thick membranes a pproaches to the bulk v alues, then the a bsorption
coefficient, o, also approaches to the bulk values. This implies the incident light in the media
will be absorbed totally in the first hundreds of nm of the travelled distance. T herefore, the
assumption of a uniformly distributed heat source along z-direction it is not completely right in

the thicker membranes. This forces us to use Equation [III.11] instead of the Equation [II1.12].
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(a) (b)
Figure 1.3 Absorptance (A), reflectance (R), and transmittance (T) as a function of the thickness of
the membranes. Solid black, red and blue lines are the calculated A, R and T coefficient considering
the Fabry-Perot effect. For comparison the bulk limit of the A and R coefficients are shown in dashed
grey and pink lines, respectively. Note that the oscillating behaviour is more appreciable at small
thicknesses (a), while larger thicknesses the absorption reaches quietly the bulk values (b). Courtesy
of Dr Francesc Alzina.

Finally, the two-dimensional heat equation is solved using finite element method (FEM) of
the commercial software COMSOL MultiPhysics (v4.3). The thermal conductivity of the

membranes is assumed to be as:

K i1 (T) = Py (T) [111.13]
where x;, is the Sibulk thermal c onductivity and £ is a fitting factor that accounts for the

reduction of the thermal conductivity of the membranes.

Asisshowninthe FigureIll 4, t he thermal c onductivity was d eterminate a pplying an
analytical form from a second-order polynomial fit (solid blue line) to the experimental d ata

silicon (red dots).
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Figure 111.4 Temperature dependence of the bulk silicon thermal conductivity. The experimental data
(red dots) were obtained from Ref. [214]. The solid blue line is a second-order polynomial adjust.

The geometry of the sample used in the model is shown in Figure III. 5a. A representative
simulated temperature profile is displayed in Figure II1.5b, where a circular membrane is heated
in the centre by a Gaussian he ating source. T he t emperature di stribution on the m embranes
exhibits a m aximum at the source position and gradually decays to room temperature towards

the frame of the membrane, which is in contact with the substrate.

Finally the thermal conductivity of the membranes is obtained from the best fit between the

experimental temperature profile and the simulated one.

184



Appendix 111

¥
Silicon x
S0,
Substrate
(51 bulk)
(@) (b)
Figure I11.5 (a) Geometry of the sample used in the simulations. (b) Representative simulated
temperature field.
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