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Introducci on/Preface

La Teoria de Brunn-Minkowski estd considerada por muchos el corazén de la Geometria de
Cuerpos Convexos clasica. Su origen data del cambio de los siglos XVIII al XIX, como conse-
cuencia de los trabajos en dimensiones dos y tres de H. Brunn -principalmente mediante su Tesis
Doctoral en 1887- y H. Minkowski (quien podria decirse que es el padre de esta rama de la Ge-
ometria Convexa debido a sus importantes contribuciones). Una amplia parte de sus resultados
fueron pronto generalizados a espacios de dimensiones superiores. Ademads, algunos de los temas
que Minkowski apenas tocé ligeramente, han sido més tarde profundamente estudiados asi como

significativamente ampliados.

A fin de dar una visién sencilla de lo que es la Teoria de Brunn-Minkowski, uno podria decir
que es simplemente el resultado de combinar dos nociones elementales para conjuntos en el espacio
euclideo: la suma de Minkowski (o suma vectorial), 4, y el volumen (medida de Lebesgue), vol(-).
La suma de Minkowski de cuerpos convexos (conjuntos convexos y compactos), al combinarla con
el volumen, conduce, por un lado, a la desiqualdad de Brunn-Minkowsk: y, por el otro, tanto al

polinomio de Steiner como a la nocién de volimenes mixtos.

En relacién a la desigualdad de Brunn—Minkowski, su enunciado aparentemente sencillo podria
hacerla pasar desapercibida: asegura la concavidad de la raiz n-ésima del funcional volumen, es

decir, para cuerpos convexos K, F se tiene que
vol((1 = MK + AE)Y" > (1 = Avol(K)/™ + Avol(E)V/". (+)

Sin embargo, no seria posible recoger aqui las potentes extensiones de este resultado, algunas de
ellas muy recientes, asi como su impacto en las matematicas y mas alla de ellas. Sin ir mas lejos,
esta desigualdad implica, entre otras, la desigualdad isoperimétrica clasica -todo matemaético es
consciente de la relevancia de este resultado- para cuerpos convexos (y otras familias importantes
de conjuntos), no sélo en el plano sino en R™. Mds atin, la desigualdad de Brunn-Minkowski es el

punto inicial de una fructifera teoria de desigualdades geométricas (y analiticas).

Por otro lado, cuando se calcula el volumen de la suma de Minkowski de K con una copia
homotética con factor A > 0 de la bola euclidea unidad B,, esto es, el llamado cuerpo paralelo
exterior de K a distancia A, se obtiene una expresién polinémica en A\ de grado n, la llamada

formula de Steiner. En cuanto a los coeficientes, existen dos normalizaciones diferentes, a saber,
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la primera de ellas mediante las denominadas quermassintegrales de K, W;(K), y la segunda
utilizando los llamados volimenes intrinsecos de K, V;(K):

n

n

n - A

vol(K + AB,,) = Z <Z,>Wi(K))\’ = Zvol(Bi)Vn,i(K)Az.
=0 =0

Las quermassintegrales son funcionales relevantes asociados al cuerpo convexo dado K y, en-

tre ellas, encontramos magnitudes familiares como el volumen o el area de superficie. En 1975,

McMullen normalizé las quermassintegrales de la siguiente forma:

Vi(K) = <n> L”_Z‘(K);

1 Rn—i

mas aun, propuso llamar estos funcionales voltimenes intrinsecos de K debido, por un lado, a que

no dependen de la dimensién del espacio en el que se embeba el cuerpo y, por otro lado, a que

Vi (K) resulta ser el volumen k-dimensional usual de K cuando éste es un conjunto k-dimensional.

Un resultado andlogo se obtiene en el contexto mas general de la denominada Geometria Relativa
de Minkowski, es decir, cuando se cambia el papel desempenado por la bola euclidea B, en las
nociones anteriores por un cuerpo convexo arbitrario E. En este caso, el cuerpo paralelo exterior y
las quermassintegrales pueden ser reescritas en relacién al cuerpo fijado (llamado ‘gauge’) E'y, en
particular, la férmula de Steiner relativa proporciona el volumen de la suma de Minkowski K + \E':

n
vol(K + AE) =Y (’Z) W,(K; E)N; (1)
i=0

los funcionales W;(K; E) se denominan quermassintegrales relativas de K con respecto a E. El lado
derecho en (), visto como polinomio en la variable compleja z € C, se llama el polinomio (relativo)

de Steiner de K respecto a E, y se representa por fx.g(2), i.e., fr.p(2) =D i, (’Z)V\Q(K7 E)zZ.
Estos dos resultados que involucran el volumen y la suma de Minkowski permiten plantear
tres cuestiones, en principio de distinta naturaleza, pero que en el fondo estan estrechamente

relacionados, como se mostrara a lo largo del trabajo recogido en esta memoria:

i) Como hemos comentado previamente, la desigualdad de Brunn-Minkowski puede resumirse
diciendo que el volumen es una funcién (1/n)-céncava. Ademds, es bien conocido que este
exponente es necesario, en el sentido de que el volumen no es una funcién céncava en si
misma, hecho que podria interpretarse de algiin modo como la correccién natural que debemos
imponer al volumen (puesto que es homogéneo de grado n) a fin de obtener una desigualdad
de este tipo. Sin embargo, no estd muy lejos de serlo, como muestra el siguiente resultado
que se puede encontrar en la literatura: si K, F son cuerpos convexos para los cuales existe
un hiperplano H de forma que K|H = E|H (aqui | denota la proyeccién ortogonal) entonces,
para todo A € [0, 1],

vol((1 = MK + AE) > (1 — A)vol(K) + Avol(E). 1)
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ii)

iii)

Llegados a este punto, es una pregunta natural plantearse si podria obtenerse un resultado
analogo cuando se asume una proyeccion comin sobre un plano (n—k)-dimensional, es decir,

cuando el volumen es (1/k)-céncavo bajo tal hipotesis.

La desigualdad de Brunn-Minkowski (%) se verifica con igualdad, para algin A € (0,1), siy
solo si K y E o bien estan contenidos en hiperplanos paralelos o bien son homotéticos. En
relacion a la anterior versién lineal de la desigualdad de Brunn-Minkowski, buenos candidatos
a (pares de) cuerpos convexos que caractericen el caso de igualdad son las salchichas (el par
K, E es una salchicha si uno de los cuerpos es la suma de Minkowski del otro cuerpo y un

segmento) ya que, mediante (f)), es ficil comprobar que para estos cuerpos se tiene
Vol((l - MK + )\E) = (1 = A)vol(K) + Avol(E) (8)

para cualquier A € [0,1]. Ademads, un par de cuerpos convexos de este tipo verifica la condicién
de proyeccion comun, y asi se podria pensar que esta familia permite caracterizar el caso de
igualdad en (f). Més atn, llegados a este punto, uno podria plantearse si las salchichas son los
unicos cuerpos que aseguran linealidad del volumen, es decir, aquéllos cuerpos para los cuales
(8) se cumple para todo A € [0, 1]. En caso negativo, jseria posible obtener una caracterizacion
asi bajo alguna hipétesis adicional? ;Quizds suponer un inradio (relativo) prefijado? Estas
cuestiones estan relacionadas con ciertas conjeturas sobre el comportamiento del polinomio

de Steiner respecto a los sumandos de cuerpos convexos.

Considerando ahora el polinomio de Steiner fx,r(z) y el consecuente problema natural de
estudiar propiedades sobre sus raices, lo cual ha sido recientemente abordado en la literatura,
surgen las siguientes cuestiones: ;pueden extenderse las propiedades conocidas de las raices
del polinomio de Steiner a las del polinomio de Wills > V(K )2'? De ser asi, jse pueden
deducir propiedades para alguna familia general de polinomios geométricos de cuerpos con-
vexos (que englobe tanto al polinomio de Steiner como al de Wills)? En cualquier caso, seria
gratificante si tal familia general de polinomios geométricos procediese de una extensién nat-
ural de funcionales asociados a los cuerpos convexos. Por otro lado, seria interesante conocer

si existe una relacién entre las raices del polinomio de Steiner y las del polinomio de Wills.

Podriamos decir, a grandes rasgos, que esta memoria estd dedicada, por un lado, al estudio

de desigualdades de tipo Brunn-Minkowski, especialmente cuando se trabaja con hipdtesis sobre

proyecciones/secciones, y, por otro lado, al estudio de las raices de polinomios geométricos que

surgen de una generalizacion del denominado funcional de Wills. En medio, nos encontrariamos

las salchichas, las cuales resultan ser, salvo cuerpos convexos degenerados, la familia de los ‘conjun-

tos extremales’ en relacién a algunas mejoras lineales de desigualdades tales como la desigualdad

de Brunn-Minkowski o la primera desigualdad de Minkowski (y por tanto también de la desigual-

dad isoperimétrica y la desigualdad de Uryshon). Ademds esta familia de cuerpos convexos esté

ampliamente relacionada con algunos problemas relativos al polinomio de Steiner.
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La memoria comienza con un primer capitulo introductorio, donde se establece la notacién a
seguir y se presentan brevemente los conceptos y resultados que se necesitardn en un desarrollo
posterior, tanto de convexidad general, como de volimenes mixtos y otros funcionales en parti-
cular. Asi, en una primera seccion, se recuerdan nociones importantes como suma de Minkowski,
cuerpo convexo, funcién céncava/convexa... A continuacion, se introducen los volimenes mixtos,
las quermassintegrales y los volimenes intrinsecos, y dedicamos un apartado especial para recor-
dar el funcional de Wills, asi como para contextualizarlo y recoger algunas relaciones integrales
que seran de utilidad més tarde. Seguidamente, se enumeran, por un lado, otros funcionales rele-
vantes tales como el inradio y los minimos sucesivos, y por el otro, algunos de los cuerpos convexos
que seran considerados especialmente a lo largo de esta memoria, tales como las p-bolas unidad,
las salchichas o los cuerpos p-tangenciales. Proseguimos el capitulo recordando algunas desigual-
dades importantes, la mayoria de ellas relacionando volimenes mixtos, tales como la desigualdad
de Brunn-Minkowski, las desigualdades de Minkowski, la desigualdad de Alexandrov-Fenchel, la
desigualdad isoperimétrica... Finalmente, se recogen algunos resultados y propiedades conocidos

sobre polinomios reales.

El sequndo capitulo estd dedicado al estudio de mejoras de la desigualdad de Brunn-Minkowski,
en el sentido de ‘refinar’ el exponente 1/n, cuando se asume que los cuerpos comparten una
proyeccién comun sobre un (n — k)-plano, por un lado, y para familias de cuerpos particulares,
por el otro. En el primer caso, demostraremos que el resultado esperado de concavidad para la
raiz k-ésima del volumen (cf. (1)) no es cierto, es decir, que existen cuerpos convexos K, E para

los cuales K|H = E|H para algtin (n — k)-plano H (y cierto 1 < k < n) mientras que se verifica
vol((1 = MK + AE)* < (1 = \vol ()% + Avol(E) /¥

para todo A € [0,1]. Sin embargo, se pueden obtener otras desigualdades de tipo Brunn-Minkowski
bajo una hipétesis de (n — k)-proyeccién comun (respectivamente, bajo una hipédtesis de (n — k)-

secci6n de maximo volumen comin).

En el segundo caso, trabajaremos con la familia de los cuerpos p-tangenciales (a grandes rasgos,
estos conjuntos se caracterizan por ser aquellos cuerpos convexos que surgen de forma natural
cuando se clasifica el tipo de singularidad de sus puntos frontera en términos del pardmetro p; la
definicién precisa se recoge en el primer capitulo), y demostraremos que, para la familia de cuerpos

p-tangenciales, el exponente en la desigualdad de Brunn-Minkowski puede ser reemplazado por 1/p.

En el tercer capitulo, abordamos el caso de igualdad en (i), es decir, probamos que bajo la
unica hipétesis de que K y E tengan una proyeccién con el mismo volumen (o una seccién con el
mismo volumen que sea de volumen méximo a través de hiperplanos paralelos a uno dado), si se
da la igualdad en (f) para s6lo un valor de A en (0, 1), entonces o bien K, F estdn contenidos en
hiperplanos paralelos o bien el par K, E es una salchicha. Sin embargo, incluso teniendo igualdad
para todo A € [0,1], lo que serd referido brevemente como linealidad del volumen, probaremos

que, si no se impone ninguna hipétesis adicional sobre K, F, una caracterizacién de este tipo no
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es posible. Este problema estd estrechamente relacionado con una conjetura reciente en la que
se relacionan las raices del polinomio de Steiner de un cuerpo convexo con su inradio; a saber,
que dado un cuerpo convexo K con inradio 1 entonces —1 es una raiz de multiplicidad n — 1 de
fr:B, (%) siy sélo si K es una salchicha con respecto a B,,. Esta relaciéon proviene de la propiedad,
que demostramos en este capitulo, de que la linealidad del volumen para K, FE es equivalente al
hecho de que —1 es una rafz de multiplicidad n — 1 del polinomio de Steiner fx.r(z). Aunque
es conocido que esta conjetura es cierta en el plano para cualquier cuerpo arbitrario F, gracias
al caso de igualdad en la famosa desigualdad de Bonnesen-Blaschke, resultara sin embargo falsa
para dimensiones més altas en el contexto més general posible: se construye explicitamente un
contraejemplo para el caso de un cuerpo gauge E arbitrario. En la misma linea, se da también un
contraejemplo a una conjetura de Matheron del afio 1978 sobre cuerpos paralelos interiores y el asi

denominado polinomio de Steiner alternado.

A continuacion abordamos la correspondiente mejora de la primera desigualdad de Minkowski,
cuando se trabaja con hipdtesis adicionales sobre proyecciones/secciones, y descubriremos que, de
nuevo, las salchichas son los cuerpos que permiten caracterizar el caso de igualdad. En particu-
lar, obtendremos mejoras lineales de, tanto la desigualdad isoperimétrica (clésica), como de la
desigualdad de Urysohn, cuyos casos de igualdad vienen dados por (la familia de) las salchichas con
respecto a la bola. El capitulo finaliza con una caracterizacién de la linealidad del determinante de
matrices definidas positivas mediante ‘salchichas’ de matrices, i.e., la suma de una matriz de rango
(a lo sumo) 1 y otra matriz; esto puede considerarse como la contrapartida al comportamiento
lineal del funcional volumen, con la diferencia/ventaja de que no se necesitan hipétesis adicionales

(sobre ‘proyecciones/secciones’).

En el dltimo capitulo, investigamos las raices de una familia de polinomios geométricos de
cuerpos convexos asociados a una medida dada p en la semirrecta real no-negativa R>g, que surgen
de una generalizacion natural del funcional de Wills. Estudiamos su estructura, mostrando que el
conjunto de raices en el semiplano superior es un cono convexo y cerrado, conteniendo al semieje
real no-positivo R<q, y estrictamente creciente en la dimension, para cualquier medida ;. Ademaés,
se prueba que el cono de raices ‘méas pequeno’ de estos u-polinomios es el dado por el polinomio de
Steiner, lo cual proporciona, por ejemplo, informacién adicional sobre las raices de p-polinomios
cuando la dimension es suficientemente grande. Este hecho también dard condiciones geométricas
necesarias para que una sucesion {m; : i =0,1,...} se corresponda con la de los momentos de una
cierta medida sobre R>(, una cuestion relacionada con el denominado ‘(Stieltjes) moment problem’.
Por otro lado, también determinamos los polinomios tipo-u que proporcionan el cono ‘mas grande’

de raices cuando se trabaja con medidas log-concavas.

En la segunda seccién de este capitulo, estudiamos propiedades de p-polinomios asociados a
p-bolas unidad, lo que puede considerarse como la generalizacién a estos cuerpos del polinomio de

Wills clésico. Primero, demostramos que el correspondiente funcional puede acotarse simplemente
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en funcién de la penultima quermassintegral relativa. Luego relacionamos también las raices del
polinomio de Steiner y las del polinomio de Wills de p-bolas unidad, dando una relacién asintética
general entre las raices de los polinomios de Steiner y las de los polinomios antes mencionados, lo
que proporciona otro argumento por el cual el funcional de Wills puede surgir de forma natural.
Estas propiedades se obtienen como consecuencia de otros resultados mas generales para ciertos
polinomios de Steiner ‘con pesos’, que se denominaran, a lo largo de la memoria, m-polinomios.
Finalmente, particularizamos la medida (y el cuerpo ‘gauge’) para investigar las raices de los poli-
nomios (cldsicos) de Wills de cuerpos convexos. En particular, damos la descripcién precisa de los
conos de raices para dimensiones n = 2,3 y discutimos algunas cuestiones en relaciéon a la esta-
bilidad del polinomio. Ademads, estudiamos el ‘tamafio’ de sus raices, acotandolas en términos de

funcionales tales como el in- y el circunradio, o los minimos sucesivos del conjunto.

Los resultados originales que se encuentran recogidos en esta memoria pueden encontrarse en
nuestros trabajos [29, 30} 31}, 50, 62, [63].



Brunn—Minkowski’s theory has been recognized as the heart of the classical Geometry of Convex
Bodies. Its origin dates from the turn of the 19-th century, mainly due to the works in dimensions
two and three of H. Brunn -especially to his Ph.D Thesis in 1887- and H. Minkowski (who is consid-
ered the father of this branch of Convex Geometry because of his important contributions). A big
part of their results was soon generalized to higher dimensional spaces. Furthermore, some topics

that Minkowski just touched briefly, have been deeply studied later and significantly extended.

Trying to make a simple overview of Brunn—Minkowski’s theory, one could say that it is just
the result of combining two elementary notions for sets in Euclidean space: the Minkowski addition
(i.e., the vectorial addition), 4+, and the volume (Lebesgue measure), vol(-). The Minkowski sum of
convex bodies (compact and convex sets), when combined with the volume, leads to the fundamental
Brunn—Minkowski inequality on one hand and to both the Steiner polynomial and the notion of

mized volumes on the other hand.

Regarding the Brunn—Minkowski inequality, its rather simple statement might make it to go
unnoticed: it ensures the concavity of the n-th root of the volume functional, i.e., given convex
bodies K, E then

vol((1 = MK + AE)" > (1 = Avol(K)/™ + Avol(E)Y/™. (1)

Nevertheless, it would be not possible to collect here the potent extensions of it, some of them very
recent, as well as their impact on mathematics and beyond. For instance, this inequality implies,
among others, the classical isoperimetric inequality -all mathematicians are aware of this relevant
result in the plane- for convex bodies (and other important classes of sets) not only in the plane
but in R™. Moreover, Brunn-Minkowski’s inequality is the starting point for a fruitful theory of

geometric (and analytic) inequalities.

When computing the volume of the Minkowski sum of K with a homothetic copy with factor
A > 0 of the Euclidean unit ball B,,, namely, the so-called outer parallel body of K at distance X\, one
gets a polynomial expression in A of degree n; this is the content of the Steiner formula. Regarding
the coefficients, two different normalizations are considered, one of them involving the the so-called

quermassintegrals of K, W;(K), whereas the second one uses its intrinsic volumes, V;(K):

n

vol(K + AB,,) = Z (:L) W (KN = Zn: vol(B;)V,_i (K.
=0

=0
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Quermassintegrals are relevant functionals associated to the given convex body K and, among
them, well-known magnitudes such as the volume or the surface area can be found. In 1975,

McMullen normalized the quermassintegrals in the following way:

Vi(K) = <n> L"_ZA(K);

¢ Kn—;
further, he proposed to call these functionals intrinsic volumes because of the fact that they do not
depend on the dimension of the embedding space, on the one hand, and that Vi (K) is the usual

k-dimensional volume of K, provided that K is k-dimensional, on the other hand.

An analogous result is obtained in the more general context of the so-called Minkowski Relative
Geometry, i.e., when the Euclidean unit ball B,, is replaced by an arbitrary convex body F. In this
case the above notions of outer parallel body and quermassintegrals may be now rewritten relative
to the fixed (so-called gauge) body E and, in particular, the relative Steiner formula provides the
volume of the Minkowski addition K + AE:

n
mn .
vol(K + AE) =Y (Z.>W¢(K; E)N: ()
=0
the functionals W;(K; E) are called relative quermassintegrals of K with respect to E. The right-
hand side in (||), when considered as a formal polynomial in a complex variable z € C, is called the

(relative) Steiner polynomial of K with respect to E, and is denoted by fx.g(z):

n
n .
fK,E(Z) = Z <1>WZ(K, E)Zl
=0
These two results involving the volume and the Minkowski addition allow to pose three ques-
tions, in principle of different nature but deep down closely related, as we will show throughout the

work gathered in this dissertation:

i) As we have previously mentioned, Brunn-Minkowski’s inequality can be summarized by stat-
ing that the volume is (1/n)-concave. Moreover it is well-known that this exponent is nec-
essary in the sense that the volume itself is not a concave function; a fact that could be
understood somehow as the natural correction that we must impose to the volume -since it
is homogeneous of degree n- in order to obtain such an inequality. Nevertheless, it is not so
far away from being it, as it shows the following result found in the literature: if K, E are
convex bodies such that there exists a hyperplane H with K|H = E|H (here | denotes the
orthogonal projection) then, for all A € [0, 1],

vol((1 = A)K + AE) > (1 — A)vol(K) + Avol(E). (%)

At this point it is a natural question whether an analogous result can be obtained if a common
projection onto an (n — k)-dimensional plane is assumed, i.e., whether the volume is (1/k)-

concave under such an assumption.
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ii) Brunn-Minkowski’s inequality () holds with equality, for some A € (0, 1), if and only if K
and F either lie in parallel hyperplanes or are homothetic. Regarding the above linear version
of Brunn-Minkowski’s inequality, good candidates for (pairs of) convex bodies characterizing
its equality case are the sausages (the pair K, E is a sausage if one of them is the Minkowski
addition of the other body and a segment) since, by (||), it is easy to check that for these
bodies we have

vol((1 = A)K + AE) = (1 — A\)vol(K) + Avol(E) (t7)

for any A € [0,1]. Moreover, such a pair of convex bodies satisfies the common projection
assumption, and thus one might think that this family allows to characterize the equality
case in (#%). Furthermore, at this point it is a natural question whether sausages are the
only bodies that ensure linearity of the volume, i.e., those bodies for which (f{)) holds for all
A € [0,1]. If the answer is negative, would it be possible to get such a characterization under
some additional hypothesis? Maybe to assume a fixed (relative) inradius? These questions
are closely related to some conjectures relative to the behavior of the Steiner polynomial with

respect to summands of convex bodies.

iii) Regarding the Steiner polynomial fx.r(z) and the consequent natural problem of studying
properties of its roots, which has been recently treated in the literature, the following ques-
tions arise: may the known properties of the roots of the Steiner polynomial be extended to
the ones of the Wills polynomial Y 1, Vi(K)z'? If it is so, can we deduce similar proper-
ties for some general family of geometric polynomials of convex bodies (extending both the
Steiner polynomial and the Wills polynomial)? In any case, it would be more gratifying if
these general geometric polynomials could arise from a quite natural extension of functionals
associated to convex bodies. Moreover, it would be interesting to know whether there exists

a relation between the roots of the Steiner polynomial and the Wills polynomial.

We can say, roughly speaking, that this dissertation is devoted, on the one hand, to the study of
Brunn-Minkowski’s type inequalities, especially when working with projections/sections assump-
tions and, on the other hand, to the study of the roots of geometric polynomials which arise from a
generalization of the so-called Wills functional. In the middle, we would find sausages, which turn
out to be, up to degenerated convex bodies, the family of ‘extremal sets’ in relation to some linear
improvements of inequalities such as Brunn-Minkowski’s inequality or Minkowski’s first inequality
(and thus also the isoperimetric inequality and Urysohn’s inequality); furthermore, this family of

convex bodies is strongly connected to some problems relative to the Steiner polynomial.

This work starts with an introductory first chapter where we establish the notation and in-
troduce the concepts and results that will be needed later on, both about general Convexity and,
in particular, about mixed volumes and other functionals. Thus, in a first section, the important
notions such as Minkowski addition, convex body, concave/convex function... are recalled. Next,

mixed volumes, quermassintegrals and intrinsic volumes are introduced and we use a part of this
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section to recall the Wills functional as well as to provide a context for it and collect some inte-
gral relations that will be needed further on. Then, we collect, on the one hand, other relevant
functionals such as the inradius and the successive minima and, on the other hand, some special
convex bodies that will be considered throughout this dissertation such as unit p-balls, sausages or
p-tangential bodies. Then, some important inequalities are recalled, most of them relating mixed
volumes, such as Brunn-Minkowski’s inequality, Minkowski’s inequalities, Alexandrov-Fenchel in-
equality, the isoperimetric inequality... Finally, some well-known results and properties on real

polynomials are collected.

The second chapter is devoted to the study of refinements of the Brunn-Minkowski inequality,
in the sense of ‘enhancing’ the exponent 1/n, when assuming that the bodies share a common
projection onto an (n — k)-plane on the one hand, and for particular families of bodies on the other
hand. In the first case, we will show that the expected result of concavity for the k-th root of the
volume (cf. (¥%)) is not true, i.e., that there exist convex bodies K, E so that K|H = E|H for some

(n — k)-plane H (and certain 1 < k < n) whereas
vol((1 = MK + AE)* < (1 = Ayvol(K)V* 4 Avol(E)V/*

holds for all A € [0,1]. Nevertheless, other Brunn-Minkowski type inequalities can be obtained
under an (n — k)-projection hypothesis (respectively, under a common maximal volume (n — k)-

section assumption).

In the second case, we will work with the family of p-tangential bodies; roughly speaking, these
sets are characterized to be those convex bodies which arise in a natural way when classifying,
in terms of a parameter p, the (type of) singularities of their boundary points (for the precise
definition see Chapter [I)). There, we show that for the family of p-tangential bodies, the exponent
in Brunn-Minkowski’s inequality can be replaced by 1/p.

In the third chapter, we deal with the equality case in (¥%), i.e., we prove that under the
sole assumption that K and F have an equal volume projection (or a common maximal volume
section through parallel hyperplanes to a given one), if equality holds in (%) for just one value
A in (0,1), then either K, E lie in parallel hyperplanes or the pair K, E is a sausage. However,
even having equality for all A € [0, 1], which will be briefly referred as linearity of the volume, if no
extra assumption on K, F is done, we will show that such a characterization is not possible. This
problem is deeply connected with a recent conjecture relating the roots of the Steiner polynomial of
a convex body and its inradius, namely, that given a convex body K with inradius 1, then —1 is an
(n — 1)-fold root of fx.p, (%) if and only if K is a sausage with respect to B,,. This relation comes
from the property, proved in this chapter, that linearity of the volume for K, F is equivalent to the
fact that —1 is an (n — 1)-fold root of the Steiner polynomial fx.r(z). Although this conjecture
is known to be true in the plane for any arbitrary body E, as a consequence of the equality case
in the well-known Bonnesen-Blaschke inequality, it will turn out to be false for higher dimensions

in the most general setting: a counterexample for the case of an arbitrary gauge body is explicitly
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given. In the same line, a counterexample to a conjecture by Matheron of 1978 on inner parallel

bodies and the so-called alternating Steiner polynomial is also provided.

Afterwards we deal with the corresponding refinement of Minkowski’s first inequality, when
working with additional projections/sections assumptions and we will find out that sausages are
again the bodies which allow to characterize the equality case. In particular, we obtain linear
improvements of both the (classical) isoperimetric inequality and Urysohn’s inequality and whose
equality cases are given by (the family of) sausages with respect to a ball. The chapter ends with
a characterization of the linearity of the determinant of positive definite symmetric matrices via
‘sausages’ of matrices, i.e., the sum of a matrix of rank (at most) 1 and another matrix; it may be
seen as the counterpart to the linear behavior of the volume function, with the difference/advantage

that no further assumptions (on ‘projections/sections’) are needed.

In the last chapter, we investigate the roots of a family of geometric polynomials of convex
bodies associated to a given measure ;1 on the non-negative real line R>g, which arise from a
natural generalization of the Wills functional. We study its structure, showing that the set of roots
in the upper half-plane is a closed convex cone, containing the non-positive real axis R<q, and
strictly increasing in the dimension, for any measure u. Moreover, it is proved, on the one hand,
that the ‘smallest’ cone of roots of these p-polynomials is the one given by the Steiner polynomial,
which provides, for example, additional information about the roots of u-polynomials when the
dimension is large enough. This will also imply geometric necessary conditions for a sequence
{m; : i =0,1,...} to be the moments of a certain measure on R>(, a question regarding the so-
called (Stieltjes) moment problem. On the other hand, we also determine the p-type polynomials

which provide the ‘biggest’ cone of roots when working with log-concave measures.

In the second section of this chapter, we study properties of u-polynomials associated to the
unit p-balls, which may be regarded as the generalization for these bodies of the classical Wills
polynomial. First, we show that the corresponding functional can be bounded just by the last but
one relative quermassintegral. Then we also relate the roots of the Steiner and the Wills polynomials
of unit p-balls, by giving a general asymptotic relation between the roots of Steiner polynomials and
the above-mentioned polynomials, which provides another argument why the Wills functional may
arise in a natural way. These properties will be obtained as consequences of more general results
for some ‘weighted’-Steiner polynomials, which will be referred throughout the dissertation as m-
polynomials. Finally, we particularize the measure (and the gauge body) to investigate the roots
of the classical Wills polynomial of a convex body. In particular, we give the precise description of
the cones of roots for dimensions n = 2,3 and we discuss some questions relative to the stability
of the polynomial. Moreover, we study the size of its roots, bounding them in terms of functionals

like the in- and circumradius, or the successive minima, of the set.

The original results which are contained in this dissertation can be found in the papers |29} [30,
31, 50, 62, 163].
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Chapter 1

Preliminaries

In this first chapter we make a brief survey of the main definitions, properties and results of

convex bodies and polynomials which will be needed throughout this dissertation.

1.1 Convex bodies and their properties

We will use the following standard notation. We write R™ to denote the n-dimensional Euclidean
space, endowed with the standard inner product (-,-) and the Euclidean norm |-|. We denote by

e; the i-th canonical unit vector in R™.

The closure of a set M C R"” is denoted by cl M, its boundary by bd M and its interior by int M.
The dimension of a set M C R™, i.e., the dimension of the smallest affine subspace containing M
(its affine hull, aff M) is denoted by dim M. Regarding the dimension of a convex set M, we write

relint M to denote the relative interior of M, i.e., the interior of the set M relative to its affine hull.

Given z,y € R, [z,y] will denote the segment determined by x and y, namely,

[,y ={(1 =Nz +Ay: 0 <A< 1}

The following definitions and properties are well known and can be found in any book on
Convexity, for instance [9, 15, 21), 52, 55, 58]. We would like to mention also the work [3].

Definition 1.1. A (non-empty) set M C R"™ is said to be convex if, whenever two points x,y € M,
then the segment [x,y] is contained in M, i.e., the convexr combination (1 — N)ax + Ay € M, for
0< A< 1.



2 Preliminaries

Definition 1.2. A convex body K C R" is a non-empty compact convex set, not necessarily with

interior points.

From now on K™ will denote the set of all convex bodies in R™. The subset of K" consisting of

all convex bodies with non-empty interior is denoted by K.

The Minkowski sum of two convex bodies K,L € K™ is nothing else but their (vectorial)
addition, i.e.,
K+L={zx+y:z€ Kandye L},

which is clearly a convex body (see Figure[l.1), and we write AK = {Az : xz € K}, for A € R. Two
convex bodies K, L € K™ are called homothetic if K = AL 4+t with ¢t € R™ and A > 0.

Figure 1.1: The Minkowski (vectorial) addition.

The intersection of all convex sets containing M C R"™ is the convexr hull of M, and it will be
denoted by conv M; thus conv M is the smallest convex set containing M. Analogously, the linear
hull of M, lin M, is defined, i.e., it is the intersection of all linear subspaces in R” containing M.
The convex hull of a compact set is always a convex body. In particular, the convex hull of a finite

number of points is so and the family of all of them defines a very important class of convex bodies:

Definition 1.3. A polytope is the convex hull of finitely many points in R™ (its vertices).

A particular subfamily of polytopes that will be used along this dissertation are the simplices:

an n-simplez is the convex hull of n 4 1 affinely independent points in R™ (see Figure [1.2).

—

Figure 1.2: 1-, 2- and 3-simplices.




1.1 Convex bodies and their properties 3

Furthermore, the set of all k-dimensional (linear) subspaces of R™ will be denoted by L}, and
for H € L}, with H Le L, we represent the orthogonal complement of H. For H € L}, K € K",
the orthogonal projection of K onto H is denoted by K|H, which is a convex body as well.

In spite of the fact that many of the following properties and definitions are valid for closed
convex sets, in order to simplify the exposition we will restrict them to compact ones, since we will

always work under the hypothesis of compactness. An important notion is the following one:

Definition 1.4. A hyperplane H is called a supporting hyperplane of K € K" if HNK # () and K

1s contained in one of the two halfspaces determined by H, which is called its supporting halfspace.

Supporting hyperplanes can be used to characterize convexity, because if K C R" is a compact
set with non-empty interior, then K is convex if and only if for every x € bd K there exists a
supporting hyperplane to K. As a consequence, we get that any convex body is the intersection of

its supporting halfspaces.

There is no doubt that convex functions play an important role in the theory of convex bodies.

Definition 1.5. A function f: R™ — R is convex if for any x,y € R" and 0 < A\ <1,

A =Nz +Xxy) < (1=XN)f(2) + ().

Moreover, if f((1 =Xz + Xy) < (1 —=N)f(z)+ Af(y) for all z,y € R™, z # y and 0 < X\ < 1, then
f s said to be strictly convex. A function f is concave if —f is convex, or equivalently, if for any
z,y €ER® and 0 < X <1, f((l — ANz + )\y) > (1= XN f(x)+ Af(y), and it is strictly concave if —f

1s strictly convex. Finally, f is affine if it is conver and concave.

Related to the notion of concavity, we have the following definition, which will be used later on.

Definition 1.6. A non-negative function f : R" — Rx is said to be log-concave if its logarithm,

log f, is concave, i.e., if for all z,y € domf and all A € [0,1], f satisfies
FIL =Nz +Ay) = f(2) )

The following properties of convex functions will be needed later. For references and further

study we refer for instance to [48, [52].

Proposition 1.1.1. Let f: R"™ — R be a convex (concave) function. Then,

i) f is continuous in int domf and

i) if n =1, and f is twice-differentiable, then f is convex (concave) if and only if f"(x) > 0
(f"(x) <0) for all x € domf. Moreover, if f"(x) >0 (f"(x) <0) for all x € domf then f

is strictly convex (strictly concave).
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We include the following remark on convex (concave) functions which turns out to be funda-

mental in some future proofs and is an easy consequence of the definition of concavity.

Remark 1.1. Let f : [a,b] — R be a convex (concave) function such that, for some Ay € (0,1),
f((l - /\0)a+/\0b): (1=Xo)f(a)+Xof(b). Then f is an affine function on the whole interval [a, b].

The following well-known result about sequences of functions will be needed later on.

Theorem 1.1.1. Let f, : [a,b] — R, n € N, be a sequence of functions of class C* such that
there exists xg € [a, b] with {fn(azo)}n convergent, and such that f] — g converges uniformly. Then

f(2) = limy o0 frn(x) converges uniformly and f'(x) = g(x) = lim, . f,(2).
The space of convex bodies K" is endowed with the Hausdorff metric, namely
§(K,L)=min{A\>0: K CL+AB,, LC K+ AB,} for K,LeK",

where B,, denotes the n-dimensional Euclidean unit ball, which allows to consider continuity of
functionals defined on K™ and approximation of convex bodies. We finish this section by formulating
the famous Blaschke selection theorem, which provides a very useful tool in proving the existence

of convex bodies with specific properties.

Theorem 1.1.2 (Blaschke’s selection theorem). Every bounded sequence of convex bodies in

R™ has a convergent subsequence (in the Hausdorff metric) to a convex body.

1.2 The Steiner formula and the Wills functional

The so-called (relative) Steiner formula of a convex body K € K", with respect to a gauge body
FE € K", is nothing else but a polynomial of degree at most n, which expresses the volume of the
Minkowski sum of K and an homothetic copy of E with factor A (the variable of the polynomial).
In order to introduce the Steiner polynomial and the general setting involving the so-called mixed

volumes, we need to define the volume.

Definition 1.7. Given a convex body K € K™, the volume of K is defined as its Lebesque measure
and will be denoted by vol(K) (or vol,(K) if the distinction of the dimension is needed).

Therefore, vol(-) satisfies the known properties of the Lebesgue measure, namely:

i) If dim K = n then vol(K) > 0. If dim K’ < n — 1 then vol(K) = 0.
ii) vol(AK) = A"vol(K) for A > 0.
)
)

iii) The volume vol : K" — R>¢ is a continuous function on the space of convex bodies.

iv) If L C K then vol(L) < vol(K) and equality holds, for dim L = n, if and only if L = K.
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Another relevant property of the volume is the following well-known result:

Theorem 1.2.1 (Fubini). Let K € K" and H € L}. Then,

vol(K) = /Hi volg (K N (t+ H)) dt.

Combining the notions of volume and Minkowski sum, the concept of mixed volume appears.

For a deep study of mixed volumes we refer mainly to Section 5.1 in [52].

Theorem 1.2.2. Let Ki,..., K., € K" and \; >0 fori=1,...,m. Then

vol(i/\iKi) Z ZA,,. V(K. .., K. (1.1)
=1

i1=1 in=1

The coefficients V(K , ..., K;,) are symmetric in the indices for any permutation, and they are

called the mixed volumes of K1, ..., K.

Some useful properties of the mixed volumes are listed in the following proposition; they will

be needed throughout this work.

Proposition 1.2.1. Let K,L,Ky,..., K, € K™. The following properties hold:

1

V(K, ..., K) = vol(K).

i) V(rK +sL,Ks,...,K,) =rV(K,Ko,...,K,)+sV(L,Ks,...,Ky) for every r,s > 0.

)
i)
iii) Mized volumes are continuous functions on (K™)", and translation and rigid motion invariant.
iv) If K C L then V(K,Kay,...,K,) <V(L,Ks,...,K,).

)

v) V(Ki,...,Ky,) > 0. Moreover, V(Ki,...,K,) > 0 if and only if dim(K;, +---+ K;,) > k

for each choice of indices 1 <iy < --- <ip <nandallk € {1,...,n}.

Another useful and important property of the mixed volumes, but now referring to sets lying
in subspaces, is collected in the following theorem (see page 300, Theorem 5.3.1 and identity (5.68)

n [52]). We denote by 9*) the mixed volume computed in a k-dimensional affine subspace.

Theorem 1.2.3. Let H € L}, for ke {1,...,n—1}, and let Ky,...,K,_j,L1,..., L € K™ with
L;C H foralli=1,..., k. Then

n _
(k)V(Kl,...,Kn_k,Ll,...,Lk) =W (L, . L) 0O (K [ HE, L K [ HY).

In the particular case when k =1, i.e., if L is a line segment, we get

nV(Ki,...,Kn1,L) = voly (L) 9" V(K |L*, ... K| LF). (1.2)
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The polynomial expansion (1.1) can be written in a more concise form. Introducing, for the

sake of brevity, the notation
(Kl [rl]a s aKm[TM]) = (Kla ('T'l')7 K17 1e 7Km7 (Tm)a Km)

and the multinomial coefficient
n! )
< n > _ ) ot if Y7 r;=mn, and r; € {0,...,n}
— ! !
1

e T .
0 otherwise,

using the linearity in each variable of mixed volumes, it is easy to check that

n

Vol<§;&m>= 3 (rl.é.rm>)\?---)\:;L"V(Kl[rl],...,Km[rm]).

T1 ey Tm=0
Similar polynomial expansions are obtained for the mixed volume if some of its arguments are fixed.
Let p e {1,...,n} and let Cpyq,...,C, € K™ be given. Then

\4 (Z ANiK [p} ) Cerla SRR Cn)
i=1

p
= > (7“1 p Tm)x; c AV (K, - K[rm], Cogts - -2, Ch).

T1yeeesTm =0

(1.3)

In the particular case of two convex bodies K, E € K", the mixed volumes V(K [n — i], E[i]),
for i = 0,...,n, are called the relative quermassintegrals of K (with respect to F) and they are
denoted by W;(K; E'). In particular, Wo(K; E) = vol(K), W, (K; E) = vol(F) and moreover,

Wi(K; E) = Wy (E; K).

When E = B, the (classical) i-th quermassintegral W;(K) = W,(K; B,,) is just called i-th quer-
massintegral of K. In particular Wo(K) = vol(K), Wy (K) = vol(B,), nW1(K) = S(K) is the
usual surface area of K and (2/vol(B,))W,_1(K) = b(K) is the mean width of K (see e.g. (1.30)
in [52]). If n = 2, then vol(K) = A(K) is called the area of K and 2W(K) = p(K) is its perimeter.

If we have to distinguish the dimension in which the quermassintegrals are computed, we will
write Wim to denote the i-th quermassintegral in R*. Then, the following connection between the
quermassintegrals of a convex body K € K™ with dim K = k (k < n), computed, respectively, in
R™ and R*, holds (see e.g. Property 3.1 in [49]):

_ Rn—k+i (];) (k)
Wn—k’—i—i(K) = o ( Py )Wz
v k—i

where we write k, = vol(B,) (see (1.15) for additional properties). The remaining quermassinte-

(K), i=0,...,k, (1.4)

grals in R™, namely, W;(K) for j =0,...,n —k — 1, vanish.

Taking into account the following definition, the so-called relative Steiner formula or Minkowski-
Steiner formula is obtained (cf. Theorem 1.2.2)).
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Definition 1.8. For K € K™, the outer parallel body (relative to E) of K at distance X\ > 0 is the
Minkowski sum K + \E.

Theorem 1.2.4 (The (relative) Steiner formula. Steiner, [54]). Let K, E € K". The volume
of the outer parallel body of K with respect to E at distance A > 0 is expressed as

n
vol(K + AE) = > (”) Wi(K; )M (1.5)
; i
=0
We notice that if £ € Kfj, then the polynomial in the right-hand side of (1.5), the so-called
relative Steiner polynomial, has degree n, i.e., the dimension of the space. Moreover, the formal
polynomial expression in the complex variable z € C

n

n .
frm(2) = Z <i)Wi(K;E)z’, (1.6)
=0
is (also) known as the (relative) Steiner polynomial of K with respect to E. We notice that for
z € R, z > 0, it provides the volume of K + zE (cf. (L.5)).

Taking into account that quermassintegrals are particular cases of mixed volumes, the following

Steiner formula for the relative quermassintegrals can be obtained.

Theorem 1.2.5 (Steiner formula for relative quermassintegrals). Let K, E € K™ and A > 0.
The relative i-th quermassintegral, i = 0,...,n, of the outer parallel body of K (relative to E),
K + AE, can be expressed as a polynomial in the parameter A,

n—i

Wi(K +AE;E) =) (”;i>wi+k(1(; E)\F, (1.7)
k=0

In the particular case E = By, (1.5) becomes the classical Steiner formula of K:

n

vol(K + AB,) = Y (?) Wi (KN (1.8)

=0
In [42], McMullen considered the normalized quermassintegrals

Vi(K) = <n> Wi_i(K)

. : (1.9)

Kn—g
and proposed to call these measures the intrinsic volumes of K, since, if K is k-dimensional, then
Vi (K) is the usual k-dimensional volume of K. The intrinsic volumes depend only on the convex

body K but not on the dimension of the embedding space (see e.g. Section 6.4 in [21]). Thus the

Steiner formula (1.8) can be represented via (1.9) as

VOl(K + ABp) = Y #i Vo i(K)X.
=0
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In 1973, Wills [59] introduced and studied the functional
n n
W(K) = Vi(K) = _— 1.10
)= 3 = 32 (1) (1.10)
because of its possible relation with the so-called lattice-point enumerator

G(K) = #(KNZ"),

i.e., the number of points with integer coordinates contained in K, and conjectured that W (K) is
bounded by above by G(K). Although Hadwiger [23] showed that Wills’ conjecture was wrong (see
also [6]), the Wills functional turned out to have several interesting applications, e.g., in Discrete
Geometry, where there exist nice relations of this functional with the so-called successive minima,
which we introduce next, of a convex body [61], or in deriving exponential moment inequalities
for Gaussian random processes [56]. Many other nice properties of this functional, as well as
relations with other measures, have been studied in the last years, see e.g. [22, 23, [43], 59, 60, [61].
More recently, the Wills functional has been also considered from a more general point of view or

in a probabilistic context (see [32] and [56, 57], respectively).

In [22] Hadwiger showed, among others, the following integral representations of W (K):
—md(z,K)? > —t?
W(K) :/ e @K e, W(K) :27r/ vol(K + tB,)te ™ dt, (1.11)
n 0

where d(z, K) denotes the Euclidean distance between z € R" and K.

1.3 Some relevant functionals and convex bodies

We include here a couple of additional definitions that we will use throughout this dissertation.

Definition 1.9. Let K € K". The relative inradius r(K; E) of K with respect to E € K™ and the
relative circumradius R(K; E) of K with respect to E € K are defined, respectively, by

r(K;E) =max{\ >0: 24+ AE C K for some z € R"},

R(K;E) =min{\ > 0: K C x+ AE for some x € R"}.

Moreover, such points x in the above expressions are called, respectively, the (relative) incenter and
circumcenter of K. Moreover, the diameter of K is defined as D(K) = max{|x —y|l:z,y € K}.

We notice that the relation
r(K; E)R(E; K) = 1.

always holds. In the particular case when E = B, the classical inradius r(K) = r(K; B,) and
circumradius R(K) = R(K; B;,) are obtained (see Figure [1.3).
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R

N—7

Figure 1.3: The classical inradius and circumradius.

Since, up to translations, r(K)B,, C K and K C R(K)B,, the following inequalities are a direct

consequence of the monotonicity of the mixed volumes:
r(K)Wip1(K) < W4(K) < R(K)Wiq1(K), (1.12)
foralli=0,...,n—1.

As already introduced in the previous page, we denote by Z" the integer lattice, i.e., the set of
all points with integer coordinates in R™. As a general reference for lattices and successive minima

we refer to [21].
Definition 1.10. Let K € K™ be a 0-symmetric convex body, i.e., satisfying that K = —K. The

i-th successive minimum X\;(K) of K, i =1,...,n, is defined as

Ai(K) = min{A > 0: dim(AK NZ") > i}.

[ ) [ ) L[] L[] L[] L[] L[]
[ ) \d \d \ 4 L[]
L] 4 + K L] + L L]

_________________

Xo(K)K = 4K

Figure 1.4: The successive minima of a rectangle.

Clearly the successive minima form an increasing sequence, i.e., 0 < A\ (K) < --- < A\, (K), and

they are homogeneous of degree —1, this is, A\;(aK) = (1/a)\;i(K).
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1.3.1 Special convex bodies

A particularly interesting family of convex bodies is the one of the p-balls: for 1 < p < oo, we

write B}, to represent the unit p-ball associated to the p-norm |- |, (see Figure [1.5), namely,

n 1/p
Bl == (x1,...,2,)  €R" : |z, = (Z mv)) <1y, (1.13)
=1

where, as usual |z|, must be understood as |z|s = maxi<i<n |i|.

7 N\
N

Figure 1.5: The p-balls.

In the particular case p = 2, we write for short B2 = B,, and S*~! for the (n — 1)-dimensional
unit sphere, i.e., its boundary. We also denote by C, the n-dimensional cube of edge-length 1
centered at the origin, i.e., C), = (1/2) B°.

We write k5, = vol(Bp), which takes the value
(2r(t+1))"
A e (1.14)
r (g + 1)

(see e.g. page 11 of [47]), where I" denotes the gamma function, namely,

F(x):/ t* le7tdt
0

for any x > 0. Thus, the volume of the unit Euclidean ball is given by

/2

r(2+1)
By (1.15) and the fact that I'(¢t + 1) = tI'(¢) for ¢ > 0 (for some properties of the gamma function
see e.g. Section 5.3 in [58)]), it is obtained that
2
fin 2T (1.16)

Rnp—2 n

kp = vol(By,) = (1.15)
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Proposition 1.3.1. The gamma function satisfies
[(z) = V2m a1/ 2em4n(@) (1.17)

for all x > 0, where

n(m):i((m—i—k—i—i)log(l%—zik)—l).

k=0

Since it can be checked that

0(x)
= 2% f(z) < 1
aw) =2 o< <1
formula (1.17) yields the asymptotic formula (see e.g. Theorem 5.3.12 in [58] and page 24 of [2])
r
lim (Zn) — =1, (1.18)
n=oo Vo ()™ 7

provided that (x,)pen — oo if n goes to co. Both relations (1.17) and (1.18) are usually called

Stirling’s formulae and allow to estimate I'(x) for large values of = > 0.

Moreover, the well-known beta function (see e.g. page 215 of [58])

1
B(a:,y):/ t* 11 — t)ytdt,
0

for x,y > 0, satisfies the relations

T /2
B(z,y) = L(@)T(y) = 2/0 (sin 5)2*1(cos 5)?¥ " ds.

Another family of convex bodies which will be often used along this dissertation is that of the
so-called p-tangential bodies. Tangential bodies can be defined in several equivalent ways; here we
will use the following one. For further characterizations and properties of p-tangential bodies we
refer to Section 2.2 in [52].

The normal cone N(K,x) of K € K™ at x € bd K consists of all outer normal vectors of K at
x together with the zero vector. Then the boundary point x is said to be an r-singular point of K
if the dimension dim N(K,x) > n — r.

Definition 1.11. A convex body K € K™ containing the convez body EE € K" is called a p-tangential
body of E, p € {0,...,n — 1}, if each support plane of K not supporting E contains only (p —1)-
stngular points of K.

So a 0-tangential body of F is just the body FE itself and each p-tangential body of F is also a
g-tangential body for p < ¢ < n—1. An (n—1)-tangential body will be briefly called tangential body.

A 1-tangential body is usually called cap-body, and it can be seen as the convex hull of £ and
countably many points such that the line segment joining any pair of those points intersects E (see

Figure (1.6} left). The n-dimensional cube C,, is an example of tangential body.
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Figure 1.6: The cap bodies (left) and the regular cube and simplex are tangential bodies of B,,.

We state here the following result by Favard [16] that allows to characterize an n-dimensional
p-tangential body in terms of the relative quermassintegrals, and which will be needed along this
work (see also Theorem 7.6.17 in [52]).

Theorem 1.3.1 (Favard, [16]). Let K,E € K, E C K, and let p € {0,...,n —1}. Then
Wo(K; E) = Wi(KE) =+ = Wy p(K; E)
if and only if K s a p-tangential body of E.

Remark 1.2. We notice that, in the particular case when E = r(K)B,, a convex body K € K"
containing the ball v(K)By, is a tangential body, if and only if the equality Wo(K) = r(K)W;(K)
holds (cf. (1.12), i =0).

Another relevant family of convex bodies are the so-called sausages since, as we will show
throughout this work, they will essentially characterize some linear Brunn-Minkowski type inequal-

ities under certain projection assumptions on convex bodies.

Definition 1.12. We say that a pair of convex bodies K, E € K™ is a sausage if there exists L € K™
with dim L < 1 such that either K = L+ E or E = L+ K. In particular, K is a sausage with
respect to B, if K =L+ B,.

\ /
l}
! !
/ \
/ N

Figure 1.7: Sausages with respect to a ball.

Another important notion that will play a key role in this work is the Schwarz symmetrization
of a convex body K with respect to a k-plane H € L} (see chapter IV of [36], page 58 of [18]),
which is defined as follows:
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Definition 1.13. For anyy € K|H, let B,y (y,r,) C y+H" be the (n—k)-dimensional Euclidean
ball with center y and radius r,, such that vol,,_j, (Bn_k(y, ry)) = vol,,_j (K N (y + HJ-)); then

UH(K): U Bn—k(y7ry)
yeK|H

is the Schwarz symmetral of K with respect to H.

Yo Y Y1 H

Figure 1.8: The Schwarz symmetrization.

Next lemma collects some properties of the Schwarz symmetrization that will be needed later.
Lemma 1.3.1. Let K, E € K" and H € L}}. Then:
i) vol(K) = vol (o (K)).
i) op(aK + BE) D aoy(K) + oy (E), for a, 8 > 0.

iii) K|H = oy (K)|H = o (K) N H.

1.4 Inequalities for mixed volumes and other related results

Mixed volumes satisfy many inequalities. Here we collect some of the most relevant ones, which

will be needed throughout this work. One of them has been already stated: inequality (1.12).

We dare to say that the most important inequality relating mixed volumes is the Aleksandrov-

Fenchel inequality. For a deep study of this inequality we refer to Sections 7.3, 7.6 in [52].

Theorem 1.4.1 (Aleksandrov-Fenchel inequality). Let Ki,..., K, € K". Then

V(Ki,Ky,Ks,...,K,)?>V(Ky,K,K3,...,K,)V(K3, K3, Ks,...,Kp). (1.19)
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Clearly, equality holds in (1.19) if K; and K9 are homothetic. However, the complete classifica-

tion of the equality case has not been settled yet. Only in several special cases the solution is known.

As particular cases of the most general Aleksandrov-Fenchel inequality (1.19) we get the so-
called Aleksandrov-Fenchel inequalities for quermassintegrals, which turn out to be a very useful

tool for some of the proofs along this dissertation: for allt=1,...,n — 1,
Wi(K;E)? > W,_1(K; E)YW,1(K; E) (1.20)
or, more generally, it can be also deduced that
Wi(K; EYW(KGE) > W, (K E)W 0 (KGE), 1<i<j<n-—1 (1.21)
Theorem 4 in [53] shows that these inequalities allow to characterize quermassintegrals/Steiner
polynomials:
Theorem 1.4.2 (Shephard, [53]). If a sequence of real numbers ay, . ..,a, > 0 satisfies inequal-

ities (1.21)), then there exist simplices K, E € K™ such that W;(K; E) = a;.

Shephard gave an explicit construction of the two simplices in the case when all W; > 0
(see Figure [1.9), whereas the general case was obtained by a rather non-constructive topological
argument. In Lemma 2.1 of [27] the authors reduced the number of involved inequalities, and
extended the construction of the two convex bodies to the case W; > 0 (see Subsection 4.1.2 for a

more detailed explanation).

€3

Ases

€2 )\262

& Aeg

Figure 1.9: Construction of the simplices for given quermassintegrals: A1 > A2 > As.

Regarding the equality case in the above inequalities, we will need the following particular

characterizations. For the first result, we refer to Theorem 7.6.2 in [52].
Theorem 1.4.3. If K, L € K" are convex bodies for which equality holds in
V(K,L,B,,...,B,)?>V(K,K,B,,...,B,)V(L,L,B,,...,B,),

then K and L are homothetic.
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Next result can be found in [52], Theorem 7.6.20.

Theorem 1.4.4. If K € K™ is 0-symmetric and i € {1,...,n — 1}, then the equality
W;(K)? = W1 (K)W;1(K)
holds if and only if either dim K < n —i or K is an (n — i — 1)-tangential body of a ball.

Relating the volume with the Minkowski addition of convex bodies, one is led to the famous
Brunn-Minkowski inequality. Its statement is rather simple: it ensures the concavity of the n-th

root of the volume functional, vol'/" : K" — R:

Theorem 1.4.5 (Brunn-Minkowski’s inequality). For convex bodies K, L € K™ and X € [0, 1],
vol((1 = N)K + AL)Y™ > (1 = Aol (K) /™ + Avol(L)'/™, (1.22)

i.e., the n-th root of the volume is a concave function. Equality for some \ € (0,1) holds if and

only if K and L either lie in parallel hyperplanes or are homothetic.

This theorem can be found in any of the already mentioned books of classical Convexity. Al-
though the inequality is also true for the more general case of measurable sets, since our approach
relies on convexity, we will make use of the above version. There is an equivalent multiplicative

version of the Brunn-Minkowski inequality (see e.g. Theorem 8.15 in [21]):

Theorem 1.4.6 (Brunn-Minkowski’s inequality, multiplicative version). Let K, L € K" be

convex bodies. Then

vol((1 = A\)K + AL) > vol(K)Yvol(L)  for 0 < A< 1.

Brunn-Minkowski’s inequality is one of the most powerful results in Convex Geometry and
beyond: for instance, its equivalent analytic version (Prékopa-Leindler’s inequality, Theorem [1.4.8)
and the fact that the convexity /compactness assumption can be ‘weakened’ to consider just Lebes-
gue measurable sets (see [37]), have allowed it to move in much wider fields. It implies very
important inequalities as the isoperimetric and Urysohn inequalities (see e.g. page 382 in[52]) or
even the Aleksandrov-Fenchel inequality, and it has been the starting point for new developments
like the so-called L,-Brunn-Minkowski theory (see e.g. [38, 39]), a Brunn-Minkowski result for
integer lattices (see [19]), or a reverse Brunn-Minkowski inequality (see e.g. [44]), among many
others. It would not be possible to collect here all known references regarding versions, applications
and/or generalizations on Brunn-Minkowski’s inequality. So, for extensive and beautiful surveys

on them we refer to [5, [17].

Brunn-Minkowski’s inequality has a more general version for quermassintegrals: if K, L, E € K"
and 0 < A <1, then, forall i =0,...,n— 2,

Wi((1 = MK + AL E)Y"7) > (1 = WWi(K; B)Y =) 4 AWy(L; B)Y (), (1.23)
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whereas
Wit ((1 - A)K + AL; E) = (1 - )\)Wn—l(K; E) + )\Wn_l(L; E)

In fact, there exist the most general version of Brunn-Minkowski’s inequality for mixed volumes
(Theorem 7.4.5 in [52]): for m € {1,...,n} and K, L, K;p41,. .., K, € K" given, the function

FO) = V(1= MK + AL[m], Kpni1,.-., K2)'™  is concave on [0,1]. (1.24)

Using Brunn-Minkowski’s inequality and the fact that the volume of the convex combination
(1 —t)K 4 tL is a polynomial in ¢ € [0, 1], another two important inequalities can be obtained,

namely, the first and the second Minkowski inequalities (see Section 7.2 in [52], Theorem 7.2.1).

Theorem 1.4.7 (Minkowski’s inequalities). Let K,L € K". Then

V(K[n —1],L)" > vol(K)" vol(L). (1st Minkowski’s ineq.) (1.25)
For K, L € Kf, equality holds if and only if K and L are homothetic.

V(K[n—1], L)2 > vol(K)vol(K[n — 2], L[2]). (2nd Minkowski’s ineq.)

For L € K}, equality holds if and only if either dim K < n — 1 or K is homothetic to an (n —2)-
tangential body of L.

We observe that second Minkowski’s inequality is a particular case of the Aleksandrov-Fenchel
inequality (1.19). Moreover, in the special case when L = B, is the unit ball, first Minkowski’s

inequality reduces to the famous isoperimetric inequality,

S(K)™ > n"k,vol(K)" 1. (1.26)

1.4.1 Some functional inequalities

As we have mentioned before, the integral version of the Brunn-Minkowski inequality is the

so-called Prékopa-Leindler inequality, which can be found, e.g., in [21], Theorem 8.14.

Theorem 1.4.8 (Prékopa-Leindler’s inequality). Let A € (0,1) and f,g,h : R — R be

non-negative Lebesque measurable functions such that, for any x,y € R™,

h((1 =Nz + Xy) > f(2) gly)™.

/nh(m) da > ( [ @ dg;)“ </ng(x) dx>/\. (1.27)

The following inequality can be seen as the reverse inequality to Prékopa-Leindler’s theorem.

Then

It can be found, e.g., in [21], Corollary 1.5.
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Theorem 1.4.9 (Holder’s inequality). For a measure space, let f,g: Q2 — R be non-negative
and integrable functions and let 1 < p,q < 0o be such that 1/p+1/q =1. Then

[ r@s@ane) < ([ srauo) " ([ rraucs) " (1.28)

A particularly interesting case arises when p = 2:

Theorem 1.4.10 (Cauchy-Schwarz inequality). For a measure space, let f,g : @ — R be

non-negative and integrable functions. Then

/f(x)g(x) </f 2du(x )1/2(/f )2du(x )1/2. (1.29)

Equality holds if and only if there exists o > 0 such that f(x) = ag(x) almost everywhere on §Q.

The arithmetic-geometric mean inequality (see e.g. Corollary 1.2 in [21]) is closely related with

the above inequalities. We collect it here for future references.

Theorem 1.4.11 (Arithmetic-geometric mean inequality). Let x1,...,z, be non-negative
real numbers and let \i,..., A\, > 0 be such that > ;" ; \; = 1. Then

wi\lxi\bn < \NT1 4+ AT (1.30)

1.5 Some properties on real polynomials

In the last section of this introductory chapter, we briefly collect some known results about (the
roots of ) real polynomials that will be needed throughout this dissertation. Most of them can be
found in the book [40].

In the following, and unless we explicitly say the opposite, we will assume that any formal
polynomial > 7" a;Z" in the complex variable z € C is a real polynomial, i.e., the coefficients a; € R

for all t =0, ...,n, since it is the setting which will be used in this work.

The first result allows to assert, roughly speaking, that the roots of a polynomial are continuous
functions of the coefficients (see e.g. Theorem (1,4) of [40]):

Theorem 1.5.1. Let
p
f)=apt+az+ - +anz" =a, [J(z = 2)™,  an#0,
j=1
F(2) = (ap +€0) + -+ + (an—1 + en-1)2""1 + an2"
and let
0 < 7, < min |z — 2], j=1,....p, j#Ek.

Then there exists € > 0 such that, if |e;| < e fori=0,...,n—1, F(2) has precisely my, zeros in

the circle centered at zp and with radius ry.
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We will also need the following stability criterion (see Theorem 3 in [45] and Theorem 1 in [33]):

Theorem 1.5.2 (Nie et al., [45]; Katkova et al., [33]). A polynomial f(z) = > i a; z*, with

a; >0 fori=0,...,n, is stable, i.e., all its roots have negative real part, if
ai—10;42 < Bajait1, i=1,...,n—2 (1.31)
where (3 = 0.4655 is the only real solution of z(z +1)% = 1.

Another useful stability criterion is the Routh-Hurwitz criterion (see Corollary (40,2) of [40]):

Theorem 1.5.3 (Routh-Hurwitz criterion). Let F(z) = 2" + a12" ' +--- + a, and let

ar a3z as -0 a2k—1
1 ax ag -+ agx2
0 a1 a3 -+ agp—
5k — det 1 3 2k—3
0 1 az -+ agky
0o 0 0 - ag
for k =1,...,n, where a; = 0 for j > n. If all the above determinants o are positive then the

polynomial F(z) has only roots with negative real parts.

Regarding a ‘more concrete’ location of the roots of a real polynomial, we have the following

result (see e.g. Exercise 2, page 137 of [40]):

Theorem 1.5.4. The roots of a polynomial Z?:o ajzj with coefficients a; > 0 lie in the ring

min{ 4 :j—O,l,...,n—l}glz\gmaX{ 4 :j—O,l,...,n—l}.
aj41 aj+1

The following well-known result can be found in [40], Theorem 6.1.

Theorem 1.5.5 (Gauss-Lucas theorem). All the roots of the derivative of a non-constant poly-
nomial f(2) lie in the convex hull of the set of roots of f(2).

Next result can be found in [40], Theorem 16.1.

Theorem 1.5.6. Let
" /n e " /n
f =% (k)kk gz =3 (k)bkk Mo =3 (k)kbk’f
k=0 k=0 k=0
If all the roots of f(z) lie in a set K C C which is either the closed interior or exterior of a circle

or a closed half-plane, and if aq,. .. ayp are the roots of g(z), then all roots of h(z) are of the form

—wa;j for some j € {1,...,n} and w € K.



Chapter 2

Refinements of the Brunn-Minkowski
iInequality

As it was stated in the previous chapter, Brunn-Minkowski’s theorem says that the function
in A € [0,1] given by vol((1 — A\)K + )\L)l/n

chapter we study refinements of the Brunn-Minkowski inequality, in the sense of ‘enhancing’ the

, where K, L are convex bodies, is concave. In this

exponent 1/n, either when a common projection onto an (n — k)-plane is assumed or for particular
families of sets. In the first case, we will show that the expected result of concavity for the k-th
root of the volume is not true, although other Brunn-Minkowski type inequalities can be obtained
under the (n — k)-projection hypothesis. In the second case, we show that for p-tangential bodies,
the exponent in Brunn-Minkowski’s inequality can be replaced by 1/p. The original work that we

collect in this chapter can be found in [31].

2.1 A counterexample for the concavity of the k-th root of the vol-
ume under a common ( n — k)-projection assumption

In Section 50 of [9], linear refinements of the Brunn-Minkowski inequality are obtained for
convex bodies having a common/equal-volume hyperplane projection (see also [46] for compact

sets and more recently Subsection 1.2.4 of [20]).

Theorem 2.1.1 (Bonnesen, [9]; [20]). Let K,L € K" be convez bodies such that there exists a
hyperplane H € L)' | with K|H = L|H. Then, for all A € [0,1],

vol((1 = A\)K + AL) > (1 — A)vol(K) + Avol(L). (2.1)

This is, the volume itself is a concave function.
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Theorem 2.1.2 (Bonnesen, [9]; [20, 46]). Let K, L € K" be convex bodies such that there exists
a hyperplane H € L7, with vol,_;(K|H) = vol,—1(L|H). Then, for all X\ € [0, 1],

vol((1 = A\)K + AL) > (1 — A)vol(K) + Avol(L). (2.2)

We would like to point out that, contrary to Theorem 2.1.1, Theorem 2.1.2| does not provide
the concavity of the function f(\) = vol((1 — A\)K 4+ AL) for A € [0,1]. Indeed, inequality (2.2)
only yields the condition f(A) > (1 — X)f(0) + Af(1) and, in order to get the concavity of f one
should be able to assure that

F=t)A +1xg) = vol((l (1= A)K + ML) +t((1 - \)K + )\QL)) > (1—1)f(A) +tf(Na).

Thus one should (be under the suitable conditions to) apply (2.2) to the bodies (1— A1) K+ AL and
(1—XA2) K+ Ao L. However, in general, these sets do not have a common volume projection although
the condition vol,,—1(K|H) = vol,,—1(L|H) holds. Moreover, there exists a counterexample in the
literature which shows that the above-mentioned function is not concave under the sole assumption
of common volume projection. For further details we refer to Notes for Section 7.7 in [52] and
the references therein. Nevertheless, when working with convex bodies K and L with a common

projection onto a hyperplane, this problem does not exist (see the proof of Theorem 2.1.3).

Regarding Theorem 2.1.1, Schneider proved in a very elegant way that even the most gen-
eral Brunn-Minkowski inequality for mixed volumes (1.24) (and thus, in particular, the Brunn-
Minkowski inequality for quermassintegrals (1.23))) admits an improved version of this type, unify-
ing different results in the literature about this topic ([51], see also Section 7.7 of [52]): if K, L € K"
are convex bodies such that there exists a hyperplane H € £7'_; with K|H = L|H, then any mixed
volume (and hence, quermassintegrals, volume) V((1 — A\)K + AL[m], Kpt1, . .., Ky) itself of the
convex combination (1 — A\)K + AL, for Ky41,..., K, € K™, is a concave function in A € [0, 1].

At this point it is a natural question whether an analogous result to Theorem 2.1.1, but with
the suitable exponent, can be obtained if a common projection onto an (n — k)-dimensional plane

is assumed. Thus, the following property would be a natural expected solution:

Let k € {1,...,n} and let K,L € K™ be convex bodies such that there exists

He L' , with K|H = L|H. Then for all X\ € [0,1] (2.3)

vol((1 = MK + L)Y > (1 = Avol(K)/* + Avol(L)!/*,

Here we show that this statement is not true; it is the content of Theorem [2.1.3. To this aim,

we start by showing a couple of preliminary results which will be needed for its proof.
Lemma 2.1.1. The first derivative of the function n: (0,00) — R given by

n(x) = i <(x +k+ %) 10g<1 + aﬁj—k) — 1> (2.4)

k=0

s concave.
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Proof. Denoting by
1 1
= k4= )log (14— —1
() <x+ +2> og( +x+ ) ,

a straightforward computation shows that

" 2z 4 2k + 1

Mk ($):_(x+k‘)3(x+k+1)3 <0 (2.5)

i (z)| is a decreasing function on (0, c0) and so

for all x > 0. Moreover,

20 +2k+1 < 2k +1

O = e k1P S PR (26)

Hence, since the numerical series
0. ]

2k +1 <o
3 3 ’
—k (k+1)

and by means of (2.6), the Weierstrass M-test ensures that Y .~ ,7;’(x) converges uniformly on

every [a,b] C (0,00). Comparing with the series Y 32, 1/k?, it is easy to check the convergence of

donim), Y m(1) and Y m(1),
k=0 k=0 k=0

and thus, by Theorem [1.1.1, we may assure that >~ 71 (x), Y pe o). (z) and >~ ne(x) converge
uniformly on every [a,b] C (0,00) with 1 € [a,b]. Furthermore, n/(z) = Y 72 n;.(z) for all z > 0,

and so it is a concave function on (0,00) (cf. (2.5)). O
Lemma 2.1.2 ([31]). The sequence (/%/-fn,g/lffl_l)n>2 is strictly increasing and

lim =2 g

nmoo s Ky

Proof. On the one hand, we consider the real functions f; : (0,00) — R, i = 1,2, given by
fi(x) = (x — 1/2)logx and fa(z) = n(z) where n(z) is the function by (2.4). From the concavity

of their first derivatives (cf. Lemma 2.1.1) we get

1> _fi@+ filz+ D)

2 (24 3) - fita) = fita+ 1) =21t (4 5 /
and hence, the real functions h; : (0,00) — R, i = 1,2, given by
(o) =26 (a4 3 ) = fla) = e+ 1)
are strictly increasing. Therefore, e/ (#)+h2(%) ig also strictly increasing.
On the other hand, Stirling’s formula (1.17) for the gamma function I'(z) allows to write

2
F@E+3) _ m@ime
T(@)l(z+1)
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Thus, all together, and using (1.15), we can conclude that

_ 2
RnKkn—2 _ I (nTl + 1) — ehl(%)Jth(%)
o D(E+1)0 (%52 +1)

is strictly increasing in n. The last assertion comes from the fact that

lim okl

o (’{nfl/"in)k

for all £ > 0, and then, for k = 2 we get the required result. Indeed, Stirling’s formula (1.18) for
the gamma function together with (1.15) yield the asymptotic formula

. Kn _
W ey L b
n n

il

Therefore we get

n—=k k
2me 2 1
2me\/2 1
lim Iin_k/lin — lim n—k (n—k)m ( )

n=00 (kp_1 [kn)F 1= (2&)”/2\/% (zm>21 |

n

~m (n _ 1)k/2\/ﬁ (n _ 1)(n—1)k:/2 nn/? _

We point out that this fact will be shown in a more general setting in Lemma [4.2.3| of this disser-

tation; we have included here the proof of this particular case for the sake of completeness. O

In order to show that the statement (2.3) is, in general, not true, we explicitly construct the

convex bodies providing a counterexample for it.

Theorem 2.1.3 ([31]). For every n > 3, there exist convex bodies K,L € K", with a common
(n — 2)-dimensional projection K|H = L|H, H € L] _,, such that, for all A € (0,1),

vol((1 = MK + ML) < (1 = \vol(K)'/2 + Avol(L)"/2. (2.7)

Proof. Let g(\) = vol((1 — \)K + AL) and f()\) = g(A\)'/2. On the one hand, we observe that the

reverse inequality to (2.7), namely,
vol((1 = K + ML) > (1 = \vol(K)"/? + Avol(L)"/?

for convex bodies K, L € K" having a common (n — 2)-dimensional projection, K|H = L|H, holds
if and only if f()\) is a concave function on [0, 1]. Indeed, since K|H = L|H, then

(1= A)K|H 4+ ML|H = (1 — X\)K|H + M\ L|H for any A1, Az € [0, 1],
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and thus the above inequality can be applied to the convex bodies (1—A1)K + AL, (1—X2)K + oL
in order to get the inequality f((1—¢)A1+tA2) > (1—1¢) f(M)+tf(A2). Conversely, if f is a concave
function on [0, 1] then we have, in particular, that f(t) > (1—¢)f(0)+tf(1), which gives the required

inequality for the volume.

On the other hand, f(\) is concave if and only if

1

') = 59072 gW)g" (V) = 56 (V)?] <0,
i.e., if and only if
F(3) = 909" (V) — 5 (V) <0.

Therefore, if we find two convex bodies K, L € K™, having a common (n—2)-dimensional projection,
and satisfying that F'(A\) > 0 for all A € [0, 1], then inequality (2.7) will hold for all A € (0,1).

Let L = By, and K = M+ B,,, with M € K3 lying in a 2-dimensional linear plane (see Figure2.1).
On the one hand, it is clear that if H = (lin M)+ € £"_, is the orthogonal complement of lin M,
then K|H = B, |H.

=

Figure 2.1: The counterexample: M + Bs and Bs, with dim M = 2.

On the other hand, Steiner formula (1.8) allows us to write

g(A) = vol((1 = A\)(M + By) + AB,) =vol((1 = A\)M + B,) = . <n>WZ(M)(1 — )

. 1
=0

and since dim M = 2, the quermassintegrals W;(M) take the values

Wi(M)=0, i=0,....,n—3,

_ n(n—1)
2
= k-2 A(M)(L = 2)? + “oLp(M) (1= ) + £y

W o(M)(1 = X2 4+nW,_ 1 (M)(1 = \) + Ky
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Thus, it is an easy computation to check that

/A 2 1
_9 (2) =3 16knkn—2A(M) — kj_p(M)?|,

and does not depend on A. So, F(A) > 0 if and only if there exists a planar convex body M

satisfying that
p(M)? < 16 ”Z’;”"—Z’A(M) (2.8)

n—1
for all n > 3. We observe that kpk,—2/ /{%_1 is strictly increasing for n > 2 (see Lemma [2.1.2)), and

hence, since n > 3, we have

R2Kko A — P(BZ)2

K A(Bz)

Rnkn—2

2
n—1

16 > 16

K

Thus, the planar unit ball By satisfies (2.8) for any value of the dimension. It finishes the proof.

In fact, many planar convex bodies satisfy (2.8)). O

An analogous argument also shows that the corresponding expected refinement for the Brunn-

Minkowski inequality for quermassintegrals (1.23) (when F = B,,), namely,
Wi((1 = MK +AL)7" > (1= W, (K)Y* + AW, (L) V*, (2.9)
is not possible:

Proposition 2.1.1 ([31]). Leti € N be fized. Then there exists ng > i+3 such that, for alln > ng,
there are convex bodies K, L € K™, with a common (n — 2)-dimensional projection, satisfying that,
for all X\ € (0,1),

W,((1 = MK + ALY < (1= N Wi(K)Y? + AW, (L) V2. (2.10)

Proof. Let g(A) = W;((1-=A\)K+AL) and f(\) = g(\)'/2. Arguing in the same way as in the proof of
Theorem 2.1.3, we conclude that if we find two convex bodies K, L € K", having a common (n —2)-
dimensional projection, n large enough, and satisfying that F(A) = g(\)g”(\) — (1/2)g’(A)? > 0 for
all A € [0,1], then inequality (2.10) will hold for all A € (0,1).

Again, let L = B, and K = M + B,, with dim M = 2, for which the projection condition is
fulfilled. Similar computations as before show that F(\) > 0 if and only if there exists a planar
convex body M satisfying that

nn—1i—1) Kpkn—2
P(M)* <160 v —

n—1

A(M). (2.11)

It is easy to check that the function n(n —i —1)/((n — 1)(n — 7)) is strictly increasing in n if

n > (i+1)/2 (in particular, for n > i+ 3) for fixed ¢, and has limit 1 when n goes to infinity. Since
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Knkn—2/K2_; is also increasing in the dimension and tends to 1 when n — oo (see Lemma 2.1.2),

the product of both functions is increasing and we get

—i—1 - By)?
lim 162001 Fnknz oy PUB)
G D) w2, AB)

Thus, if ng € N is the first value of the dimension such that the planar unit ball By satisfies (2.11)
(the above condition for the limit ensures that ng always exists), then the monotonicity shows that
for all n > ng, inequality (2.10) holds for K = By + B,, and L = B,,. O

Remark 2.1. We observe, for instance, that in the case i = 1, the value of the dimension from
which inequality (2.10) holds is ng = 5.

In Section 50 of [9] a similar result to Theorem 2.1.2, but involving sections instead of projec-

tions, is mentioned (a proof can be found in Corollary 1.2.1 of [20] for A = 1/2):

Theorem 2.1.4 (Bonnesen, [9]; [20]). If

;22}5 vol,—1 (KN (H +z)) = ;g%)i vol,—1 (LN (H + 2)), (2.12)
for K,L € K" and some hyperplane H € L] _,, then for all A € [0, 1]

vol (1= A)K + AL) > (1 — A)vol(K) + Avol(L).

The same construction can be made in order to show that an analogous result for (n — k)-dim-
ensional sections will be not true: indeed, since the convex bodies K = By + B,, and L = B,, are
symmetric with respect to the origin, for any (n—2)-plane H, the section KN (H +x), x € H*, with
maximum (n — 2)-dimensional volume is the one through the origin, i.e., K N H, which coincides
with K|H (analogously for L = B,). Therefore, choosing H as in the proof of Theorem [2.1.3|
condition (2.12)) is fulfilled, but we get that vol((1/2)(K—i—L))1/2 < (1/2)vol(K)Y24(1/2)vol(L)'/2.

Moreover, the same inequality is obtained when working with any A € (0, 1).

2.2 Refinements of the Brunn-Minkowski inequality involving pro-
jections

In the previous section we have shown that statement (2.3) is not true (Theorem 2.1.3). There-
fore, either additional assumptions should be imposed in order to get such a result or, under that
precise hypothesis, a different inequality can be obtained. In this sense, we get Propositions 2.2.1
and 2.2.2 In order to state some of these results, we need the following extra notation, which will
be used throughout all the chapter: given K € K™ and H € L] _,, we will write, for any v € K|H,

K(u) = {x e Rk (2) € K} . (2.13)
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The proofs of these results follow the idea of the proofs of Theorems 2.1.1/ and 2.1.2 in [20].

Proposition 2.2.1 ([31]). Let k € {1,...,n} and let K,L € K" be convex bodies such that there
exists H e L, with K|H = L|H. Then, for all A € [0,1],

vol((1 — A)K + AL) > (1 — A\)Fvol(K) + Mvol(L). (2.14)

Proof. Without loss of generality we assume that H = {(ml, ey ) TERY : 1y =+ =, = O},

and for the sake of brevity we write, on the one hand,
U=K|H=L|IH and M,=(1-XNK+ L.

Thus, M)\|H = (1 — \)(K|H) + A(L|H) = U, for all A € [0,1]. On the other hand, it is clear that
for all w € U and any = € K(u), y € L(u) (cf. (2.13)), we have

<(1 - ALerAy) — (1)) <~Z> +)\<Z> € My,

and therefore, (1 — A\)K(u) + AL(u) C My(u). Hence, using Fubini’s Theorem [1.2.1 and Brunn-
Minkowski’s inequality (1.22), we get

vol((1 = AN)K 4+ AL) = vol(M,) = /UVOlk (Mx(u)) du > /UVOIk((l = N)K (u) + A\L(u)) du

> /U (1 = A)voli (K (w)) ¥+ awol (L (w)) k>kdu
> /U ((1 — MN)evol; (K(u))—i—/\kvolk(L(u))) du
= (1 — N)*vol(K) + Mvol(L). O

As in the case of Theorems 2.1.1/ and 2.1.2, the same inequality (2.14) can be obtained when the

identity assumption on projections is weakened to a condition between (n—k)-dimensional volumes.

Proposition 2.2.2 ([31]). Let k € {1,...,n} and let K,L € K™ be convez bodies such that there
exists H € L, with vol,_y(K|H) = vol,,_(L|H). Then, for all X € [0,1],

vol((1 = A)K + AL) > (1 — A)Fvol(K) + Avol(L).

Proof. Applying Schwarz symmetrization to the convex bodies K, L and (1—\) K+ AL, with respect
to the (n — k)-plane H, yields new convex bodies K’ = o5 (K), L' = o5 (L) and o ((1 = A) K + AL)
satisfying

(L=XNK"+ AL Cog((1—NK + AL)
(see Lemma [1.3.1/ii)), and since Schwarz symmetrization preserves the volume (Lemma [1.3.1 1)),

it suffices to prove that

vol((1 = N)K' + AL') > (1 — A)*vol(K') + Avol(L)).
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Next, we notice that K|H = K’ N H and, moreover,

Voln,k(K’ N H) = fgfﬁ Voln,k(K’ N (t+ H)),

and analogously for the convex body L. Then, applying again Schwarz symmetrization to the sets

K', L', but now with respect to H+, we get new convex bodies oy (K'), o1 (L') satisfying that

vol,,_ i (K|H)\ Y "% 5
Kk n—=k

voln_(L|H) ) Y .
n—k»

Kn—k

(ogL(K')) |H = (

(ope (L)) |H = <
and since vol,,_(K|H) = vol,,_x(L|H), we obtain that
(og L (K") |H = (o1 (L)) |H.

Thus, we can apply Proposition 2.2.1 to the convex bodies o1 (K'), o571 (L") which, together with

the facts that the volume is preserved and the inclusion
(1= XNoge (K') + Aoy (L) C oy (1= NK' + L)
holds, yields
vol(1 = \)K' + A\L) = VOI(UHL (1= MK+ /\L’)) > VOI((l — Moy (K') + )\UHL(L')>

> (1 — A)*vol(oyi (K")) + Nevol (a1 (L))
= (1 — N)fvol(K') + Avol(L). O

Remark 2.2. We observe that Brunn-Minkowski’s inequality (1.22)) implies that
vol((1 = A\)K + AL) > (1 — X\)"vol(K) + A"vol(L).
Therefore inequality (2.14) generalizes the above one for k =n and (2.1) when k = 1.

Inequality (2.14) can be also obtained if we replace the property about the projection volume

vol,_(K|H) = vol,,_(L|H) by a section volume condition:

Proposition 2.2.3 ([31]). Let k € {1,...,n} and let K,L € K" be convez bodies such that there
exists H € L, with

max vol,_, (K N (z + H)) = max vol,_, (LN (z + H)).
zeHL reH-+

Then, for all X € [0,1],

vol((1 — A)K + AL) > (1 — A)Fvol(K) + A*vol(L).
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This result generalizes Theorem 2.1.4/to all k € {1,...,n}. The proof is a direct consequence

of Proposition 2.2.2/ and the following lemma.
Lemma 2.2.1 ([31]). Let k€ {1,...,n} and H € L] _,.. The following statements are equivalent:
i) If K,L € K" satisfy that vol,,_x(K|H) = vol,_x(L|H), then inequality (2.14) holds for all
A e [0,1].
it) If K,L € K™ satisfy that max,e g1 vol,— (K N (z + H)) = max,cp1 vol,—i (LN (z + H)),

then inequality (2.14) holds for all X € [0,1].

Proof. First, we suppose i) and assume that

max vol,_ (K N(x+ H)) = max VOln—k(L N(z+ H)) =
reHL zeH+

Then the orthogonal projections onto H of the Schwarz symmetrals of K and L with respect to

H*, namely, o1 (K), o1 (L), are equal; more precisely,

v

1/(n—Fk)
(oL (K))|H = ( > By, = (og1(L))|H.

Rn—k

Thus part i), together with the known properties of the Schwarz symmetrization (see Lemma/1.3.1),

allows to conclude that
vol((1 — A)K + AL) = VOI(UHL ((1- MK + /\L)) > vol((1 = Nogs (K) + Aoy (L))
> (1-— )\)kVOI(UHL (K)) + )\kVOl(O'HJ_ (L))
(1 — A)*vol(K) 4 Afvol(L).

Conversely, we now suppose ii) and assume that vol,,_,(K|H) = vol,_;(L|H). Then the Schwarz
symmetrals oy (K) and o (L) satisfy that

max vl (o (K)) N (z + H)) = vol,—((ou(K)) N H) = vol,_(K|H) = vol,_x(L|H)

= 9?611%[)1(- Voln,k((GH(L)) N(z+ H))’

and therefore, ii), together with known properties of the Schwarz symmetrization, yields
vol((1 = A)K + AL) = VOI(UH((l ~ MK+ AL)) > vol((1 = Ny (K) + Ao (L))
> (1= A\)vol(om (K)) + Nvol(op (L))
(1 — N)*vol(K) 4 AFvol(L). O

We observe that the above relation (2.14) has inequality (2.1) as a particular case; however,
Brunn-Minkowski’s inequality cannot be obtained from it (see Remark 2.2). Next theorem provides
an extension of both inequalities (2.14) and (1.22) (see Remark 2.3).
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Theorem 2.2.1 ([31]). Let k € {1,...,n} and let K,L € K" be convex bodies such that there
exists He L', with K|H = L|H = U. Then, for all X € [0, 1],

1/k volk.(K(u)) Lk volk(L(u)) Lk
vol((1=A)K + AL) 2(1—A)/U ol (O du—i—)\/U ol (T du. (2.15)

Proof. Arguing as in the proof of Proposition 2.2.1, we get (1 — \) K (u) + AL(u) C M) (u) which,
together with Brunn-Minkowski’s inequality (1.22)), yields

1/k
vol((1 = K + AL)Y* = vol(My) /¥ = (/U voly, (M) (u)) du>
1/k
> (/U voli (1 = A\) K (u) + AL(u)) du)

> ( /U (1= A)voli (K ()" + avol (L(w)) "] ’ du> "

Then, applying Holder’s inequality (1.28) to the functions (1 — A)voly, (K(u))wC + Avoly, (L(u))l/k

and 1, we finally get
K\ L/k
vol((1~ VK + L) > (/ {(1 — Avolg (K (u)) " + Avoly (L(U))I/k] du)
U

1
>
- VOln,k(U)l_l/k

voly, (K (u)) MR voly (L(u)) HH
(1- ) /U (voln_k(U)k—1> du+ ) /U ers=d B

Remark 2.3. Theorem [2.2.1 generalizes both, Theorem |2.1.1l and Brunn-Minkowski’s inequality
(L.22). Indeed, if k = 1 then (2.15) becomes (2.1); for k = n, then U = {0} and hence, voly(U) =1,
and the integrals in (2.15)) are just the volumes of K and L, respectively. Thus, (2.15) gives (1.22).

/ [(1 — Avolg (K (u)) " + Avoly (L(u)) " ’“} du
U

We conclude this section by showing that, for a particular relative quermassintegral, the ex-

pected refinement can be obtained (cf. (2.9)).

Proposition 2.2.4 ([31]). Let k € {1,...,n — 1} and let K,L € K§ be such that there exists
H e , with K|H = L|H. Then, for any convex body Ej, C H*, dimEy, =k, and all A € [0,1],

1/k

Wi (1= NK + AL Eg) 7" > (1= Wiy (K Ep)Y* + AWy (L; Ey) V. (2.16)

Proof. We observe that (2.16) holds for convex bodies K, L having a common (n — k)-projection
if and only if f(A) = Wy_1((1 — \)K + AL; Ey,) Yk is a concave function on [0,1] (see the proof
of Theorem 2.1.3). So we have to see that f”(\) < 0, and following the argument of the proof of
Theorem 7.4.5 in [52], it suffices to show this for A = 0: indeed, if 0 < A < 1 we set

K.=01-7)(1-NK+AL)+7L and h(r) = Wy_1(K; Bp)'/%,
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T € [0,1]; since f(A+p) = h(p/(1 = X)), 0 < p < 1— A, then f”(X) < 0 follows from h”(0) < 0.
Now, using (1.3) it can be checked that f”(0) < 0 if and only if

(n — k)Wg_1(K; Ey,) [Wk_l(K; Eip) —2V(K[n — k|, L, Ey[k — 1)) +V (K [n—k—1], L[2], Ex[k — 1])}
1 2
— (1 — k> (n—k+1) {V(K[n — k|, L, Ex[k — 1]) — Wi_1 (K Ek)] <0.
The second summand is clearly negative, and hence, we have to study the sign of the first one.

On the one hand, denoting for short C = (K[n — k — 1], Ex[k — 1]), it is well-known that

V(K[2],C) 2V(K, L,C) V(L[2],C)
V(K,M,C)?  V(K,M,C)V(L,M,C) ' V(L, M,C)? <0 (2.17)

for any convex body M € K™ such that the above mixed volumes are not zero (see Theorem 7.4.3
n [52]). On the other hand, since Ey C H*, we have (see Theorem 1.2.3)
1
Wk(K, Ek> = @Volk (Ek)voln,k(K\H) and
k
V(K[n—k—1],L, Ex[k]) = volx(Ey)V ( K[n — k — 1], L, L[k]
voly (Ey)'/k
I, (E
— YU o) (| 1 — ke — 1], LIH),
(%)
and using the projection assumption K|H = L|H, we get
voly (Ej)
(&)

ie., V(L,Ex,C) = V(K, E,C). Then, (2.17) for M = E}, yields

V(K[n—k—1], L, E,[k]) = vol,_(K|H) = Wi(K; Ey),

W1 (K; Ey) — 2V(K[n — k], L, Eg[k — 1]) + V(K[n — k — 1], L[2], Ex[k — 1]) <0,

which shows that f”(0) <0, as required. O

2.3 Brunn-Minkowski type inequalities for particular families of con-
vex bodies

In this section, we wonder whether refinements of Brunn-Minkowski’s inequality of type (2.3))
can be obtained for particular families of sets or under additional assumptions. First we show
that, among others, it has a positive answer for the family of the so-called p-tangential bodies (see
Definition [I.11)). In this case, also a refinement of the more general Brunn-Minkowski inequality for
quermassintegrals (1.23) can be achieved (see Theorem 2.3.1). We start by showing the following
theorem, which is an improvement of the Brunn-Minkowski inequality for the family of p-tangential

bodies, and which is a direct consequence of a slightly more general result (Theorem 2.3.2).
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Theorem 2.3.1 ([31]). Let K be a p-tangential body of E € K, 1 <p <mn—1. Then
vol((1 = \)K + )\E)l/p > (1 = \)vol(K)Y? + Avol(E)Y/P
for all X € [0,1], and equality holds if and only if K = E. Moreover,
Wi((1 = MK 4+ AE; K)YP7 > (1 WWi(K; K)Y@) 4 AW, (B; K)Y -0,
1=0,...,p—1, and equality holds for a fized i, if and only if K is also an i-tangential body of E.

Next result shows that the above inequality holds even in the case when the inclusion £ C K
does not hold (for any translate of E); roughly speaking, it is sufficient that “first” quermassintegrals
are equal (cf. Theorem [1.3.1)), a condition which is satisfied by a class of convex bodies bigger than

tangential bodies.

Theorem 2.3.2 ([31]). Let K € K", E € K§ be convex bodies and s € {1,...,n} such that
W (K;E)=Ws1(KGE) =+ =W, (K; E). Then, for all A € [0,1],

vol((1 = MK + AE)"* > (1 = Avol(K)Y/* + Avol(E)V/*, (2.18)
and equality holds if and only if K = E. Moreover,
W, (1= VK +AE; E)YC7 > (1 - ZWWi(K; B)Y6) 4 AW, (B; B)Y/ (9,
i=0,...,5— 1, and equality holds for a fixed i, if and only if W;(K; E) =--- = W, (K; E).

Before showing this result, we see how Theorem [2.3.1 can be deduced from it: if K is a p-tan-
gential body of ' € K, 1 <p <n — 1, then Favard’s Theorem [1.3.1 ensures that

Wo(KGE) =W (KE)=---=W,_,(K;E) #0,
and since W;(K; E) = W,,_;(F; K), Theorem 2.3.2 immediately implies Theorem [2.3.1.

Now, we deal with the proof of Theorem 2.3.2.

Proof. We will show the inequality (2.18) for the volume. The relations for the quermassintegrals,

as well the corresponding equality cases, can be obtained analogously.

Using the well-known Aleksandrov-Fenchel inequality for quermassintegrals (1.20) and since
W, (K; E) # 0, we easily get that

Wo(K;E) < - < W, 1(K;E) < Wy(K;E) = = Wy (K E). (2.19)

Now we consider the polynomial function

=3 (3w By -2,
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for A € [0,1]. On the one hand, we can write

FO) = [(1— N+ A" F) = 7§<n;s>(1_ n—s—jyi (ZSO (s) (1—A)sw'>

j=

- :0 ( ‘ kwi(K;E) (f) <n - 5) Ly
)

> win(5)("°

i+i=k

and using (2.19) we get that

cwien) Y ()(7) < wimn ()

i+j=k
Therefore,

n

1/s
fOYe < (Z (Z) Wi(K; E)(1— A>"W> =vol(L- VK +2E)" (220

k=0
On the other hand, since the coefficients of the polynomial f(\), namely, W;(K; E) fori =0,...,s,
are non-negative real numbers satisfying the Aleksandrov-Fenchel inequalities (1.20), Theorem 1.4.2
ensures that W;(K; E) = W, (Ks; Es) are the relative quermassintegrals of two convex bodies
Ks,Es € K%,i=0,...,s. Then, using (2.20), Brunn-Minkowski’s inequality (1.22) in R®, and since
voly(Ky) = Wy (K Bs) = Wo(K; E)  and
voly(Ey) = W, (K3 By) = W, (K; B) = W (K3 E),
we can conclude that

vol((1 = K + AE)"/*

> F)Y* = voly((1 — MK, + AE,)"/*

> (1 — Mol (K)Y* + Avoly(Es)Y* = (1 — A)vol(K)Y* 4 Avol(E)Y/*.
If K = FE then equality holds in (2.18)). Conversely, if we have equality in (2.18), then equality holds
in (2.19) for all quermassintegrals, i.e., Wo(K; E) = --- = W, (K; E). It implies that K = E. O

Remark 2.4. The condition int E # 0 cannot be removed, since it is needed that vol(E) # 0.
Indeed, taking K = [0,e1] + [0, ea] + [0,2e3] € K? and E = [0, e3], then Wo(K; E) = W3(K; E) = 0.
However, for every A € (0,1),

vol((1 = MK + ML) = (1= \) (2= N)Y2 < (1 = M)vV2 = (1 — Avol(K)/2 + Avol(E) /2.
In order to conclude the chapter, we make an observation regarding another family of convex
bodies for which a refinement of Brunn-Minkowski’s inequality can be obtained, namely, the family

Y = {K € K" : vol(K) = 1/}, for a fixed positive real number v € Rg: if K, L € V, then the

multiplicative version of Brunn-Minkowski’s inequality (Theorem 1.4.6) leads to
vol((1 — A)K + AL) > vol(K)*vol(L)* = v = (1 — A) vol(K) + Avol(L).

Thus, the following corollary has been proved.
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Corollary 2.3.1 ([31]). Let K,L € K™ with vol(K) = vol(L). Then,

vol((1 = A)K + AL) > (1 — A)vol(K) + Avol(L).

The above result can be also obtained as a consequence (for k£ = 0) of a more general refinement
of the Brunn-Minkowski type inequality (2.3) for quermassintegrals.
Proposition 2.3.1 ([31]). Let k € {0,...,n —2} and let K,L € K" be convex bodies such that

vol,_,(K|H) =vol,_x(L|H) forall H € L)_,. (2.21)

Then,
Wk((l - MK + )\L) > (1= ANWg(K) + AWg(L).

Proof. Kubota’s integral recursion formula (see e.g. identity (5.72) in [52]) states, in particular,
that, for any convex body K € K",

K

Wi(K) = 2 / vol,_ (K| H) du(H),
Rn—k Jcy_,

where p is the (rotationally invariant) Haar measure on the set £, such that u(£_,) = 1. Thus,

since vol,,_;(K|H) = vol,,_i(L|H ), we immediately get that Wy (K) = Wy (L), and moreover, using

Brunn-Minkowski’s inequality in R* we can conclude that

J

Voln_k(((l — MK + L) \H) du(H) = / vol, 1 ((1 = \)K|H + AL|H) du(H)

n n
n—k n—k

—k
> / [(1 — Avol,,_ (K |H)Y"=F) +Avoln,k(L\H)1/<”—k>r dyu(H)

n—k

= /n vol,_,(K|H)du(H).
Therefore,
Wi (1= XK +AL) > Wi(K) = (1 = A)Wg(K) + AW,(L). O

We would like to point out that the assumption (2.21)) is not so restrictive: it is known in the
literature that if K|H = L|H for all H € L!'_,, then K = L; moreover, Aleksandrov’s projection
theorem (see e.g. Corollary 8.1.5 in [52]) states that if K, L € K are O-symmetric convex bodies
such that vol,_1(K|H) = vol,,—i (L|H) for all H € L}!_, then (up to translations) K = L. However,
there exist convex bodies K # L satisfying (2.21), i.e., Aleksandrov’s projection theorem is not
true neither for non-symmetric convex bodies nor for projections onto (n — k)-dimensional planes,

with £ > 1.
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Chapter 3

Linearity of the volume. Looking for a
characterization of sausages

Let Vi;5(A) = vol(AK + (1 — A)E) be the volume of the convex combination of K, E € K" for
A € [0, 1] which, for convenience, will be written AK + (1 — ) E throughout this chapter. From (L.5)
it follows that V. () is a polynomial of degree (at most) n, namely,

n
Viep(\) = 7>W- K E)A"(1 = M)
o) =3 () Wik
Brunn-Minkowski’s inequality (1.22)) ensures that the function V%% defined on A € [0, 1] is concave.
In the previous chapter, we have studied that under special assumptions on the convex bodies K, E
relative to a projection onto a hyperplane (Theorems2.1.1'and 2.1.2)) the classical Brunn-Minkowski
inequality can be refined obtaining that Vg.g(A) > Avol(K) + (1 — A)vol(E).

In this chapter, we prove that under the sole assumption that K and E have an equal volume
projection (or a common maximal volume section through parallel hyperplanes to a given one),
if equality holds in the above inequality for just one value A in (0, 1), then (up to degenerated
convex bodies) the pair K, F is a sausage, i.e., we characterize the equality case of Theorem [2.1.2
(and thus also Theorem 2.1.1)) and Theorem 2.1.4. However, even having equality for all A € [0, 1],
if no extra assumption on K, E is done, such a characterization is not possible. This problem is
connected with a conjecture relating the roots of the Steiner polynomial of a pair of convex bodies
and their relative inradius; counterexamples for the general case are explicitly given. In the same
line, a counterexample to a conjecture by Matheron of 1978 on inner parallel bodies is also shown.

The original work that we collect in this chapter can be found in [50), 62].
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3.1 Linearity of the volume and the sausage conjecture: counterex-
amples

In [26], the following statement was conjectured (see Definition [1.12):

Conjecture 3.1.1. Let K € K" with inradius r(K) = 1. Then —1 is an (n—1)-fold root of fx.s, (%)

if and only if K is a sausage with respect to By,.

The classical Bonnesen inequality in the plane establishes that
A(K) = p(K)r(K) + rar(K)* <0,

with equality if and only if K = L+r(K)B, with L € K2, dim L < 1. This was proved by Bonnesen
in [8]. Then Blaschke generalized it to an arbitrary gauge body F in the plane (pages 33-36 in [7]):

Wo(K; E) — 2W (K; E)t(K; E) + Wy(K; E)r(K; E)* < 0. (3.1)

Again, equality holds if and only if K = L + r(K; E)E with L € K?, dimL < 1. Thus, Conjec-
ture [3.1.1] is true in dimension 2 for any gauge body E.

In this section we intend to understand/characterize the (pairs of) convex bodies K, E for which

Vik.E is a linear function in A € [0, 1], i.e., those bodies for which
Vi.g(A) = Avol(K) + (1 — A)vol(E) (3.2)

for all A € [0,1]. From now on, whenever we refer to the linearity of the volume we will mean (3.2).
First, we will prove in the following result that both, linearity of the volume and Conjecture 3.1.1,
are closely related: indeed, (3.2) is equivalent to the fact that —1 is an (n —1)-fold root of fx.g(2).
It will come from an expression for the (relative) i-th quermassintegral of AK + (1 — A)E involving

the derivatives of the Steiner polynomial fx.g(z) (cf. (1.6)). We notice that the j-th derivative of
[r.E(2) is given by

J

Do) =3 (0wt (1)
i=j
From now on and for the sake of brevity, we will write K = AK + (1 — A\)E for A € [0,1].

Lemma 3.1.1 ([50]). Let K,E € K™ be convez bodies. Then, for i =0,...,n

n—i . (n—3) _
W,(\K + (1= \)E; E) = 12 (” _]) fé;f_(j)!l)v.

Proof. Using the linearity of mixed volumes, we can write the quermassintegrals W;(K; E) for

i=0,...,n—1 as polynomials in A (cf. also Theorem [1.2.5):

i —i
Wiy E) = ( . )wi%(K;E)A“ 40 (1 - AP,
k=0
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By rearranging the terms we obtain that

|
<.

n

Wi(Kxi E) = (” N ) Wik (B E)X 0 (1= 2

" I; Z) Wik (K E) Zk: (k) (— i)

( >(,
_ ni (ni <“ ]; i>Wi+k(K; E) <’;> (_1)k—z> \n—i-l

—i (n\ (it+k
(H—k) ( —iz_ )Wz+k(K7 E) <I;> (_1)k—l> )\n—i—l

X ()wan () () o

j=i \r=j
GE(OFC o)
- GrE () e :

In particular, for ¢ = 0, we have
vol(AK + (1= NE) =) ="\, (3.3)

and hence, from the above result, we immediately get the announced equivalence:

Corollary 3.1.1 ([50]). For K, E € K", Vik.g(X) is linear if and only if —1 is an (n —1)-fold root
of fi:r(2). In this case, we also have linearity for all quermassintegrals W;(Kx; E), i =1,...,n.

Remark 3.1. From Lemmal3.1.1 we know that if W;,(Ky; E) is linear for someig € {0,...,n—2},
then W;(Ky; E) is also linear for all i > ig. The converse is not true, as the following example
shows. For n = 2 there is nothing to see, because W1 is always linear. For n = 3, the numbers
Wo =9, W; =7, Wy =4 and W3 = 1, satisfy inequalities (1.20) and hence, Theorem|1.4.2 ensures
that there exist K, E € K" such that W;(K; E) = W;, which yields fx.g(z) =9 + 21z + 1222 4 23.
Thus fx;p(=1) = =1, fr.p(=1) = 0 and we have that W;(Ky; E) is linear for i = 1,2,3, but

Wo(Ky; E) is not so. In higher dimensions similar examples can be constructed.

Good candidates for (pairs of) convex bodies characterizing the linearity of the volume are the
sausages: fixing a convex body F, let K = L + E, with L € K™ so that dim L < 1. Then, by (1.5),

for these bodies we have

vol(AK + (1 = N)E) = vol(AL + E) = nW,,_1(L; E)A + vol(E) = Avol(K) + (1 — A)vol(E). (3.4)
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So, one might think that this family allows to characterize the linearity of the volume. In fact,
considering full-dimensional convex bodies K, F having equal volume, the following remark ensures

that, in this case, only ‘degenerated’ sausages, i.e., K = L + FE with dim L = 0 can turn up.

Remark 3.2. Let K, E € K" satisfying (3.2) for some X € (0,1). The following facts hold:
i) If vol(K) = vol(E) then
Vis(\) = vol(K) = ()\vol(K)l/” F(1- )\)vol(E)l/")n

and the equality case in Brunn-Minkowski’s inequality yields that either K and E lie in parallel
hyperplanes if dim K, dim E < n or, since vol(K) = vol(E), then K = E (up to translations).

ii) Conversely, if for some A € (0,1)
Vi.e(A) = ()\vol(K)l/” +(1- )\)VOI(E)l/n)n,

then from the strict concavity of(-)l/” it follows that either K and E lie in parallel hyperplanes
or K = E (up to translations).

In the following we will suppose, without loss of generality, that vol(K) # vol(E). Despite all
the traces, sausages are not the only (pairs of) convex bodies satisfying linearity of the volume as
it is shown in the next proposition. They are, in turn, not so far from being the only ones, as it
follows from Theorems [3.2.1/ and [3.2.3. There, the sole additional assumption that the bodies have
a common volume projection or a common maximum volume section provides a characterization

for sausages.

Proposition 3.1.1 ([50]). There exist convex bodies K, E € K™, n > 2, such that K, E is not a

sausage, and satisfying

vol(AK + (1 = N\)E) = Avol(K) + (1 = A)vol(E)  for all A € [0,1].

Proof. Let L € K™ with dim L = 1. Obviously, the quermassintegrals W;(L + B,,) of L + B,, with
respect to By, satisfy the inequalities (1.20) for 1 < i < mn — 1, and hence, by Theorem [1.4.2! there
exist simplices K and E such that W;(K; E) = W;(L + By,). Thus fx.g(2) = fi+B.:B, (2) which,
together with (3.4) yield the linearity of Vi.g(X).

Finally, we notice that a simplex K is a sausage with respect to another simplex F if and only

if they coincide (up to a translations), which cannot be the case because

vol(K) = Wo(L + By,) = vol(L + By,) > vol(By,) = Wy, (L + By,) = vol(E). O

The (pairs of) convex bodies for which V. is linear, i.e., such that —1 is an (n — 1)-fold root

of frx.r(2) (see Corollary 13.1.1)), satisfy also other properties, as showed in the next result.
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Lemma 3.1.2 ([50]). Let K, E € K". If =1 is an (n — 1)-fold root of fr.r(2) then
i) Wo(KG E) — Wi(K;E) =W, (K;E) — W1 (KGE) fori=0,...,n—1.

ii) fl(ii;E(—l) =0 fori=0,...,n—2, and any X € [0,1].

Proof. If —1is an (n — 1)-fold root of fx.g(z), then it is also a root of its (n — 2)-th derivative, i.e.,
0=W,_o(K;E)—2W,_1(K; E)+ W,(K; E),
which can be read as W,,_o(K; E) — W,,_1(K;E) = W,_1(K;E) — W, (K; E).
Now, we assume by reverse induction on j < 0 that
W, (K E) — W (K E) = Woo (K E) — Wo(KGE)  forall n—1>s>j,

and we substitute this in the j-th derivative of fx.r(2). Then by arranging the terms we obtain

0= f(f()E)(]"” = z; <”;j>wj+z-<K; E)(-1)
- WK E) + g (720 (770 Wotrs By Wi By

=W, (K;E) - W1 (KGE) + Z 7

maid <n —7-1
i=1

> (Wjsi(K; E) = Wi (K E)) (—1)

n—j—1 .
= WS E) = Wy (K3 B) + (Woa (6 B) - Wo(iE) 3o (777 )y
=1
=W;(K;E) — W1 (K;E) — (Wy1(K; E) — Wy (K E)),

which concludes the proof of i).

In order to prove the second assertion, we notice that, since —1 is an (n—1)-fold root of fx.g(2),
we have W;(K\; E) = AW, (K; E) + (1 — A)W,(E; E) (see Corollary 3.1.1) and hence

WZ(K)\,E) - Wi+1(K)\;E> = )\(WZ(K, E) - WZ‘+1(K; E)) for ¢ = 0, NN 1.
Therefore we have, by the previous item, that Wo(K; E)—W1(Ky; E) = Wi(Kx; E)—Wip1 (K E)

for i =0,...,n—1, and substituting on successive derivatives of fx,.r(z) we obtain that, as it also
happens for K, fl(ng(—l) =0,7=0,1,...,n—2. O

We would like to mention that under the assumption of a common projection of K and F, it is

known (see Theorem 7.7.3 in [52]) that i) implies that the pair K, E is a sausage.

Indeed, this is a consequence of some results which support Conjecture [3.1.1. Its validity is
known in some special cases where additional hypothesis, such as a common/equal-volume projec-
tion onto a hyperplane, are assumed. For completeness we collect the cases in which the validity

of Conjecture 3.1.1] is known.
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(n—1)

Remark 3.3. i) If there exists a hyperplane H € L, so that W, o (K|H; By,—1) = Kp—1,

i)

iii)

or equivalently, if the mean width of K|H, in the ambient space H, coincides with the mean
width of the unit ball in H, i.e., 2, and

W—o(K) = 2Wp_1(K) + K = 0,

then K is the sum of a segment and the unit ball (see [12]).

From this result it follows that if K is a convex body having a common projection with the
unit ball, K|H = B,,_1 = By|H, then —1 is an (n — 1)-fold root of fx.p, (%) if and only if K

18 a sausage with respect to B,,.

If there exists H € L)', so that K|H = E|H, with dim E|H = n — 1, then Conjecture 3.1.1
follows from Theorem 7.7.3 in [52].

The above two cases are closely related to Theorem 3.3 in [26], since this one can be obtained
from them when the set of incenters of K is not a unique point. Indeed, let K have inradius
r(K) = 1. If all 2-dimensional projections of K have (2-dimensional) inradius 1, the set of
incenters of K is at most 1-dimensional; otherwise, some of the projections would have greater
inradius. Since the set of incenters is not a singleton, there is at least a 1-dimensional (convez
and compact) set of incenters l. Furthermore if there exists a point p € K, p & (aff 1) + By,
then conv (p U+ Bn))| aff conv (l U {p}) has inradius greater than 1, a contradiction. So K

has an (n — 1)-dimensional projection being an (n — 1)-unit ball.

Lemma 3.1.2] and the comments afterwards, together with the previous remark and the fact
that r(Ky; E) = r(K; E) = 1 might lead to think that Conjecture 3.1.1 is true (for every gauge

body FE) as it occurs in dimension 2 (cf. (3.1)). The following result shows that this statement is

not true: we explicitly construct convex bodies providing a counterexample.

Theorem 3.1.1 ([50]). For n = 3, there exist convex bodies K, E € K3, with —r(K; E) being an
(n — 1)-fold root of fr.r(2), such that K, E is not a sausage.

Proof. Embedding the unit cube C5 in the plane {(xl, 2o, 23)T €R3: 23 = 0}, let

~ 11 T
CQ - <27270> +CQ

and let L = [0,e3]. We take C7 = [(0,1,1)T, (1,1,1)T]. Now, for 7 € [0,1] fixed, we define by
A, = [0,e1] 4 7[0, e] C Cy the orthogonal box of edge-lengths 1 and 7.

Let L1 = [(O,T, T, (1,71, T)T} be the segment, parallel to [0,e;] lying in the diagonal face
conv ([0,e1] U C1) of the 3-dimensional unit cube (1/2,1/2,1/2)T 4+ C3, whose projection onto the
plane {(:1:1,3:2,:133)7 eR3: 23 = O} is the edge [(0,7‘, 0)T, (1,7,0)7] of A,.
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Finally, we consider

11 1\T ~
=(§,§,§> +C3=L+Cy; and FE =conv(A;UL)

the triangular prism determined by L; and A, (see Figure 3.1)).

T3

T
|
|
|
!
|
|
|
Z

Ty
e
Figure 3.1: The counterexample

Then, on the one hand, it is clear that r(K; E') = 1. On the other hand, for A > 0, and denoting
by M (s) the section of M € K3 with the plane {(ml,xg,xg)T ER3: 23 = 5}, we have

fr;5(A) = vol(K + AE) = vol(L + Co + AE) = VO]Q((CQ +AE)|LY) + vol(Cg + AE)

AT
= voly Cg + /\A +/ V012 C’2 + )\E)(s)) ds
0
AT
— O+ 1)+ 1) +/ voly (G + AE)(s)) ds.
0

Since
AT . AT s s ~
/0 voly ((Ca 4+ AE)(s)) ds = /0 voly ((1 — E> AL+ ;)\Ll + C’g) ds
1 ~
- AT/ voly ((1 — H)AA; + ALy + 02> dt
0
1 . 1 .
=\ (/ vola (1 — )AA, + Cb) dt +/ tawoly (1= A4, + 02)|Lf>dt>
0 0
1
= /\7/ (T=tAT+1) (1 =) A+1+tN)dt
0

(A1) (1+)\T/01(1—t)dt)
A+ 1) (§+1>,
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we have )

Finally, since 72 — 47 +2 = 0 if and only if 7 = 24 /2, if we take 7 = 2 — /2 € [0, 1], then we have
that —1 = —1r(K; E) is a 2-fold root of fx,r(z). However, it is clear that K is not a sausage with
respect to F, which concludes the proof. O

We have been not able to extend the above construction to the n-dimensional case. Nevertheless,
if degenerated gauge bodies F are considered, a pair of convex bodies K, F € K™ providing a

counterexample can be obtained as follows:

Remark 3.4. Following the same notation as in the proof of Theorem 3.1.1, let

K= (2 N, —r+a
— 25"'72 n — n—1

be the unit cube and let

FE = conv {571—2, % <C~’n_2 + En—?) }

be the diagonal ‘half-face’ of the cube K determined by 6’n_2. It is clear that K is not a sausage
with respect to E and r(K; E) = 1. However we have

Frep(\) = vol(K + AE) = vol (L G + AE) — vol (én_l + AE) +vol, ((5”_1 +A\E) \LL>

= %(/\ + 1)) 4 <;‘ + 1) A+ 2=+ L

To the best of our knowledge it is not known whether for some other fixed gauge body E, in
particular for the Euclidean ball B,,, Conjecture 3.1.1 holds true. In fact, the problem of classifying
the gauge bodies F, if there are any, for which Conjecture 3.1.1 is true for any K remains open.

So far we only know that they are not the whole K™, as the above results show.

Nevertheless, known results (see Remark 3.3) ensure the validity of Conjecture 3.1.1 in some
special cases where an additional hypothesis, such as a common projection onto a hyperplane, is

assumed.

This fact suggests that one may get a characterization of the linearity of the volume, under the
additional assumption of a common projection onto a hyperplane. We have been able to characterize
the convex bodies for which the volume function is linear even with a weaker assumption, namely,
that the convex bodies have an equal volume hyperplane projection. This problem, as well as other
related questions, will be one of the aims of the next section. Before showing it, in the following
subsection, we deal with a conjecture by Matheron closely related to Conjecture[3.1.1; we will show
how a slight modification of the bodies that provided us the above counterexample can be also used

in order to disprove such conjecture.
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3.1.1 A counterexample to a conjecture by Matheron

For two convex bodies K, E € K™ with interior points and 0 < A < r(K; E), the inner parallel
body of K (relative to E) at distance X is the set

K~AE={z€R": 2+ \ECK}.

It is easy to check that if r(K; E)E is a summand of K, i.e., if there exists L € K™ such that
K =L +1(K;E)E, then (see e.g. [41] and page 225 of [52])
Wi(K ~ AE;E) =Y (" R Z) Wi (K E) (=) (3.5)
k=0
for 0 < A < r(K;FE) and i = 0,...,n. In [41] Matheron proved that the validity of (3.5) for
0<A<r(K;E)and all i =0,...,n implies that r(K; E)E is a summand of K. He conjectured

that it was enough to assume (3.5) just for ¢ = 0:

Conjecture 3.1.2 (Matheron, [41]). Let K, E € K" be convex bodies with interior points. Then

vol(K ~ AE) > znj (Z‘) Wi(K; B)(=\)! (3.6)

i=0
for all 0 < X\ < r(K; E) with equality if and only if v(K; E)E is a summand of K.

The right hand side in (3.6) is usually called the alternating Steiner polynomial of K with
respect to /. Matheron proved Conjecture [3.1.2 for n = 2.

In [28] it is proven that it is not possible to bound the volume of K ~ AE in terms of just the
alternating Steiner polynomial. So, the counterexample(s) to the Matheron conjecture contained
in [28] shows that the inequality part of the conjecture is not true. However, the equality case of
this conjecture have not been considered yet, i.e., it was open whether there exist convex bodies
K, E satisfying that vol(K ~ AE) = 7" (7)W;(K; E)(—A)’, and so that the pair K, E is not a
sausage. In the next theorem, an answer to this question is provided: the convex bodies K, F/ given

in Theorem [3.1.2] are not a sausage; however the above condition is fulfilled.
Theorem 3.1.2 ([50]). There exist convex bodies K, E € K3 with interior points satisfying

Vol(K ~ \E) = i <::) Wi(K; E)(=A)'

=0
for all 0 < X\ < 1(K; E) and such that v(K; E)E is not a summand of K.

Proof. Following the same notation as in the proof of Theorem [3.1.1, we take the orthogonal box
A= (1/4)[0,e1] + (3/4)[0, 2] C Cy of edge-lengths 1/4 and 3/4, and let

3 3\T /1 3 3\T
IR — - - - Z
1 |:<Oa4a4> 7(45474) :|
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be the segment (of length 1/4) parallel to [0,e;] lying in the diagonal face conv ([0,e,] U C1) of the
unit cube (1/2,1/2,1/2)7 4 Cs.

Thus, if we consider (see Figure 13.1)

11 1\T =~
K:<2,2,2> +C3=L+Cy and FE =conv(AULp)

the triangular prism determined by L1 and A, it is easy to check, on the one hand, that
3.\ 1 4
vol(K ~ AFE) = 1—1)\ 1—1)\ , forallOS)\Sg:r(K;E).

On the other hand, a similar computation as in the proof of Theorem [3.1.1 shows that, for A > 0,

Jre(N) = (1 + iA)Q (1 + iA) ,

and hence vol(K ~ AE) = fx.p(—A). Finally, it is clear that (4/3)E is not a summand of K, which

concludes the proof. O

3.2 Characterizing sausages and linearity at one point

In this section we provide several characterizations of sausages which rely on the linearity
of the volume (cf. Proposition 3.1.1) and some additional assumption on common/equal-volume

projection or maximal volume section through parallel hyperplanes to a given one.

We will prove that the sole assumption of linearity at one point, together with the equal ‘size’

of a projection or a section, in the already mentioned sense, allows to characterize sausages.

In general, linearity of the volume at some point A\g € (0,1) does not imply linearity of the
volume. Indeed, if we take Wy = 5, W1 = 4, Wy = 2 and W3 = 1, these numbers satisfy inequalities
(1.20) and hence there exist convex bodies K, E € K3 such that W;(K; E) = W;, which yields
frp(z) =5+122 4622 + 23. So

fK;E(_l) :_2a f}{,E(_l):?% }/(,E<_1) :67 }/(/,E(_l):67

and thus, by Lemma 3.1.1, Vol()\K +(1- A)E) = 143X+ 32 —2)3. Therefore, the volume of K

is not linear but satisfies

K+ FE 1 1 1 1
vol < 5 ) =3= §Wo + §W3 = ivol(K) + QVOI(E),

i.e., there is linearity at \g = 1/2.

In order to prove the main theorems of this section we still need further results, some of
which already provide characterizations of sausages. We will see that, under the assumptions of
common/equal-volume projection or maximum volume section, linearity of the volume at some

point g € (0, 1) implies linearity of the volume.
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Theorem 3.2.1 ([50]). Let K, E € K™ be convex bodies such that there is a hyperplane H € L',
with vol,_1(K|H) = vol,,_1(E|H). Then

vol(AK + (1 — A\)E) = Avol(K) + (1 — A\)vol(E)  for all X € [0,1],

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.

Proof. On account of Remark [3.2, we may assume without loss of generality that vol(K) > vol(E)
and also that vol,_1(K|H) > 0 (otherwise we would have vol(K) = vol(E) = 0).

Because of the linearity of the volume and by means of (3.3), we have that f }:TEJ )(—1) =0 for
all 7 > 2 and f[(?;;)(—l)/(n — 1) = vol(K) — vol(E), and thus

Jr:E(2) = vol(E)(z +1)" + (Vol(K) — Vol(E))(z + 1)”*1
"lrin n—1 ,
= vol(E)z" + . |vol(E) + , vol(K') — vol(E)) | =".
3| ()e (") )

We define | = (vol(K) — vol(E)) /vol,—1(K|H) > 0 and L =1[0,u], where u € S"! is a normal
vector of H, so having that
vol(K') = vol(E) + lvol,—1(K|H),

and thus, using (1.5) and (1.2), we get
vol(L + E) = nWy,_1(L; E) + vol(E) = lvol,,—_1(E|H) + vol(E) = lvol,—1 (K|H) + vol(E) = vol(K).
Therefore we have

V(K,...,K,L+E)" = (V(K,...,K,L)+ Wi(K; E))"
_ <lvoln_1(K]H) N nvol(E) + (n — 1)lvoln_1(K|H)>n

n n
= vol(K)" = vol(K)" ' vol(L + E),
and hence, by the equality case in Minkowski’s first inequality (see Theorem [1.4.7) together with

the common volume projection hypothesis, K = L + E (up to translations).

The converse is immediately satisfied (cf. (3.4)). O

We notice that if K = L+ E, with L € K", dim L < 1, then K|H = E|H for H = L*. Besides,
if K, E lie in parallel hyperplanes H; and Hs, then for any H = u™, where u is a vector (embedded)
in H;, i = 1,2, we have vol,_1(K|H) = vol,,—1(E|H) = 0. So the following result holds.
Theorem 3.2.2 ([50]). Let K,E € K™ be convez bodies. Then we have

vol(AK + (1 — A\)E) = Avol(K) + (1 — A\)vol(E) for all X € [0,1], and
vol,—1(K|H) = vol,_1(E|H) for some hyperplane H € L}_,

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.
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In the following (Theorem [3.2.3)), we will show that replacing a common volume projection by
a common maximal volume section through parallel hyperplanes to a given one, we may obtain
the same characterization. The Schwarz symmetrization will become an essential tool in order to
exchange these above-mentioned assumptions. To this end, first we will prove a sufficient condition,

relying on the Schwarz symmetrization, for the pair K, E to be a sausage.
Lemma 3.2.1. Let K, E € K" be convex bodies, int K # 0, and let H € LI'_, be a hyperplane. If
ot (MK + (1= X)E) = Moy (K) + (1 — Xo)ogi(E) (3.7)
for some \g € (0,1) and
ogL(K)=L+ oy (F), where L € K" with dim L < 1, (3.8)

then K s a sausage with respect to E.

Proof. We may assume that the origin is an interior point of K. By an appropriate choice of the
coordinate axes, we may suppose that H = {(xl, o x)TER 21 = O}. By definition of the
Schwarz symmetrization, L C H+ and then L = [(a, 0,...,0)T,(b,0,..., O)T], for some a < b.

We will denote by Hy = {(xl, o xp)TER" : 2y = t} and H;" = {(xl, o) TER" D 2y > t}
(respectively, H, = {(xl, o xp)TER™ : 2 < t}) and, for any convex body M, by M; = M N H;
and M;” = M N H," (vespectively M, = M N H, , see Figure [3.2).

Figure 3.2: Dividing a convex body in pieces.

Without loss of generality, we may also assume that (one of) the maximum volume section(s)

of E through hyperplanes parallel to H contains the origin. So, condition (3.8) implies that

l,_1(KN(z+H)) = max vol,, 1 (EN(x+H))=m>0
xrg?;ivon 1( (x ) erﬁan( ( )

(since 0 is an interior point of K) and also that vol,_1(K};) = m for all ¢ € [a, b].
Moreover, from the inclusion Ky,1(1—xp O AKa + (1 — A) Ky, for A € [0,1], and using Brunn-
Minkowski’s inequality in R?~! we get
m = voly—1 (Kxay(1-2p) = Voln—1 (AKq + (1 = N Kp)

n—1

> (Avoln_l(Ka)l/Wl) (1= Mvoly_1 (Ky)Y <”*1>) —m,
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and hence the equality case in Brunn-Minkowski’s inequality allows to conclude that
K)\a—‘r(l—)\)b =K, for all A € [0, ].] (39)

(up to translations). Finally, we have to study what happens on the ‘leftmost and rightmost parts’

of K. To this aim, using Lemma [1.3.1/ ¢) and the inclusion
/\OK;_ +(1- Ao)ES_ C ()\()K-i-( —Xo)E )/\ b
we obtain, on the one hand,

vol (MK, + (1 — Xo)Ey)

vol(o s (MoK, + (1= Xo)E))
vol (g1 (MK + (1 —Xo)E)Y, b))

| /\

vol (o (MK + (1= 20)E); )

(
(

Vol< Moo (K) + (1= Xo)op L (E))joz)
((

(3.10)
= vol (AL + o571 (E)) .,
=vol(oyL(E)f) = vol(Ef).
On the other hand, Brunn-Minkowski’s inequality yields
vol (Aok + (1= 20) Ef) > (Aavol (5) " + (1 = MoJvol () ")
- (onol(aHl(K);)”” +(1— Ao)vol(Eo*)l/")n (311)

= (Movol (o (B)$) " + (1= dopvol () V)
= vol(Ey ),

and hence, from (3.10) and (3.11) we have equality in Brunn-Minkowski’s inequality for K" and
EJ . Therefore, there are two possibilities depending on the dimension of Ear and K gL :

i) If vol(Ey ) = vol(K,; ) = 0, then

volp—1 (Ao Kp + (1 = Xg)Ep) = volp—1((AoK + (1 = X0)E)rgp)

= voln_1 (a1 MK + (1= \o)E)rgp)
voly—1 (oL + o2 (E))agh)
vol,—1(Ep) =m > 0,

and thus (again by the equality case in Brunn-Minkowski’s inequality) K} = yo+ Eo, for some
yo € R™. Hence K;" = K, = yo + Eo :y0+E()+.

ii) If vol(Ey ), vol(K,") > 0 then, since they are homothetic with the same volume, K, = yo+E;
for some yp € R”.
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In any case we have that K;” = 39 + EJ for some y9 € R™ and, arguing in the same way as
before, we may assert that K; = xo + E; for some o € R". These facts together with (3.9) (and
by convexity) imply that K = [xo,yo] + E, i.e., K is a sausage with respect to E. O

Remark 3.5. We might wonder whether (only) one of the conditions (3.7), (3.8) is enough in

order to characterize sausages. The answer is negative in both cases.

i) For (3.7), we consider E = B,, and K = L + By,_1 a cylinder, where L € K™ with dim L = 1
and L L aff B,,_1. Since both sets (and their convex combination) are rotationally symmetric
about the axis determined by L, it is clear that condition (3.7) holds for all X € [0,1], but K

s not a sausage with respect to E.

ii) For (3.8), we may consider E = Cy, and K = L+Cy,_1 a parallelepiped, where L is a segment
of appropriate length which is neither orthogonal nor parallel to aff C,,_1. These bodies satisfy
(3.8) for H = aff C,,—1 but K is not a sausage with respect to E.

We notice that in the above two examples it is also fulfilled that

max vol,—1 (K N (z + H)) = max vol,—1(EN (z + H)), (3.12)
reH-+ reH-+
for some hyperplane H. So even under this additional assumption, none of conditions (3.7), (3.8)
is enough to determine sausages. However, as we shall see in the following result, (3.12) together

with linearity of the volume allows to characterize sausages.

Theorem 3.2.3 ([50]). Let K, E € K" be such that there exists a hyperplane H € L' _, with
max voly—1 (K N(z+ H)) = max vol,—1(EN(z+ H)).

Then we have
vol(AK + (1 — N\)E) = Avol(K) + (1 = A)vol(E)  for all X € [0,1],

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.

Proof. On account of Remark 3.2, we may assume without loss of generality that vol(K) > vol(E).
Denoting by v = max,c . vol,—1 (K N (x+ H)), we get that the orthogonal projections onto H
of the Schwarz symmetrals of K and E with respect to H», namely, o1 (K), oy (E), are equal;

more precisely,
v

1/(n—1)

Thus, we can apply Theorem 2.1.2/ to the convex bodies op1 (K), oy (FE) which, together with

Rn—1

Lemma [1.3.1} 7), i) yields
vol(AK + (1 = N)E) = vol(oig1 (AK 4+ (1 = AN)E)) > vol(Aogi (K) + (1 — Noy. (E))
> Avol(oy1 (K)) + (1 = A)vol(o g1 (E)) = Avol(K) + (1 — A)vol(E).
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Thus, the linearity of the volume for the bodies K, F¥ implies, on the one hand, that
ot (AK + (1 = N)E) = Aoy (K) + (1 = Aoy (E).

On the other hand, the linearity for the volume of the bodies o1 (K), o5 (F) is also obtained,
which, by Theorem [3.2.1), yields

ogL(K)=L+ oy (F), where L € K" with dim L < 1.
Now, the result follows directly from Lemma [3.2.1. O
In order to reduce the assumption on the linearity of the volume for the range [0, 1] to a single

point in (0, 1) we need first the following result, where not just equal volume projections are needed,

but common projections of K and F.

Lemma 3.2.2 ([50]). Let K, E € K" be convez bodies such that there exists a hyperplane H € L7,
with K|H = E|H. Then we have

vol(AoK + (1 — Ag)E) = Agvol(K) + (1 — Xg)vol(E),  for some g € (0,1),

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.

Proof. Since K|H = E|H, the function Vg, g () is concave (see the proof of Theorem 2.1.3) which,
together with linearity at Ao, implies that Vg.g()) is an affine function on [0, 1] (see Remark [1.1)).

Now, the result follows from Theorem [3.2.1. O

Theorem 3.2.4 ([50]). Let K, E€K" be convex bodies such that there exists a hyperplane He L] _,
with vol,—1(K|H) = vol,—1(F|H). Then we have

vol( MoK + (1 = Xg)E) = Agvol(K) + (1 — Xo)vol(E)  for some Ao € (0,1),

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.

Proof. Without loss of generality (see Remark 3.2), we may assume that vol(K) > vol(F). Using

Lemma [1.3.1! 7i7), we have that
op1 (ou(K))|H = oy (ou(E))|H.

So, we can apply Theorem 2.1.2 to the convex bodies o1 (017(K)), o1 (or(E)) which, together
with Lemma [1.3.1/4), i7), yields

vol (K + (1= X)E) = vol (g1 (o (MoK + (1= M) E) ) )
> VOI()\DUHL (01 (K)) + (1 — Ag)ogre (o—H(E)))
> ono1(aHL (JH(K))> r(1- )\O)V01<JH¢ (GH(E)))
= Xovol(K) + (1 — Ao)vol(E).

(3.13)
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Thus, the linearity of the volume at Ay for the bodies K, E is equivalent to the same property for
op1(0u(K)), o1 (0 (E)) and hence, by Lemma 3.2.2, we obtain

o1 (ou(K)) = L+ oy (ou(E)), with L C H+, dimL=1, and (3.14)

OprL ()\()JH(K) + (1 — Ao)UH(E)) = )\oaHJ_ (JH(K)) + (1 — )\O)O'HJ_ (UH(E)) (3.15)
We observe that dim L # 0 because of the condition vol(K) > vol(E). Now, the above conditions
(3.14), (3.15) yield, by Lemma 3.2.1,
og(K) =1L +og(E), dimL; =1,
where, from the common/equal-volume projection hypothesis, Ly 1 H. Therefore, we have
K|H =0y (K)|H = (L1 + ou(F))|H = oy (E)|H = E|H

(up to translations), and hence Lemma 3.2.2 allows to assert that K = Lo+ E, dim Ly = 1. O

Replacing the common/equal-volume projection by an equal maximal volume section through

parallel hyperplanes to a given one, we obtain the same characterization.

Theorem 3.2.5 ([50]). Let K, E € K" be such that there exists a hyperplane H € L' _, with

ax vol,_1 (K N(z+ H)) = max vol,_1(EN(x+ H)).
max volp—1 (K N (v + H)) = max voly—1 (EN (z + H))

Then we have
vol(AoK + (1 — Xg)E) = Agvol(K) + (1 — Xo)vol(E),  for some \g € (0,1),

if and only if either K and E lie in parallel hyperplanes, or the pair K, E is a sausage.

Proof. On account of Remark 3.2, we may assume without loss of generality that vol(K) > vol(E).
Arguing like in (3.13) with the sets o1 (K), 051 (F), and by Lemma [3.2.2, we get that oy (K) is
a sausage with respect to o1 (E) and that o1 (MoK + (1 — Xo)E) = Agogs (K) + (1 = Xo)og 1 (E).

Hence, by Lemma [3.2.1, we may conclude that K is also a sausage with respect to E. O

Remark 3.6. We would like to point out that, after the elaboration of the original work [50], the

recent article [10] was brought to our attention.

At that point, we realized that, for the particular case in which K and E are both n-dimensional
convez bodies, Theorems |3.2.4 and [3.2.5 follow respectively from Theorem 1.4 and Theorem 1.5
in [10]. Nevertheless, the general results, as stated in our work, cannot be obtained from the above
mentioned paper [10]. Therefore in order to deal with the most general cases, a different strategy
seems to be needed, as shown here. Moreover, we would like to underline that, as it has been shown
along this work, we have come to these conclusions from a totally different approach and in any

case, we provide alternative proofs of them.
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To conclude this section, we show that if we assume linearity at some point Ag € (0, 1) for all

quermassintegrals, then all of them are really linear functionals.
Proposition 3.2.1 ([50]). If there exists Ao € (0,1) such that

Wi (MK + (1= X)E; E) = MNW,(K;E) 4+ (1= Xo)Wi(E; E), forall i=0,...,n—2,
then Wi()\K + (1= NE; E) is linear for alli=0,...,n.

Proof. We will prove the result by induction on j =n — .

If j = 2, then it follows trivially from the fact that W, _o ()\K +(1-MNE; E) is a polynomial
of degree at most two which coincides with AW,,_o(K; E) 4+ (1 — \)W,,_o(E; E) at (at least) the

points 0, A\g, 1, and hence they are really the same polynomial.

Now we assume 2 < j + 1 < n and that the result is true for j, i.e.,
Wo j(AK + (1= N E; E) = A\W,,_;(K; E) + (1 = )W, _;(E; E)

for all A € [0,1]. Then, by Lemma 3.1.1, we have that

n—j n—2
1 (1) == il (1) =0

and so W,,_;_1 ()\K + (1= MNE; E) = a+ b\ + cN L. From the identities at 0, \g and 1, it follows
a+Xob+c) =Wy j_1(E;E) + X (Wn—j—1(K; E) = Wy_j_1(E; E))
= Woojo1 (MoK + (1= X)E; E) = a+bo + Xt
so having that ¢ = 0, and thus
Wihjm1t(AK + (1= NE;E) =a+ b =AW, (K; E) + (1 = AW, _;_1(E; E),

which concludes the proof. O

3.3 Characterizing sausages via inequalities and roots of Steiner
polynomials

We recall that the well-known Minkowski first inequality (see (1.25)) states that
V(K[n— 1], E)" > vol(K)" 'vol(E),
and equality holds, for K, E € K, if and only if K and E are homothetic.

In this section, first, we deal with the corresponding refinement of the above inequality, when
working with additional projections/sections assumptions. To this aim, and for the sake of brevity,
we will write

S(K;E) =nW(K;E) =nV(K[n—1],E),

following the standard notation for the surface area. The main result is the following one:
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Theorem 3.3.1 ([62]). Let K, E€K"™ be convex bodies such that there ezists a hyperplane He L',
with vol,_1(K|H) = vol,,_1(E|H). Then

S(K; E) > (n—1)vol(K) + vol(E), (3.16)
and equality holds, for K, E € K¢, if and only if the pair K, E is a sausage.

We notice first that the above inequality is indeed stronger than (1.25) since, by the arithmetic-
geometric mean inequality (1.30), we have (n — 1)vol(K) + vol(E) > nvol(K)™=1/myol(E)Y/™,

We present here two proofs of (3.16). The first one, shorter and perhaps more elegant, has the

disadvantage that it does not allow to characterize the equality case.

First proof. Using the (relative) Steiner formula (cf. (1.5)) it is easy to check that

S(K:E) = lim vol((1— A\ K + Ab;) —vol((1 = A\)K) |

(3.17)

Thus, applying Theorem 2.1.2 we have

vol((1 = A\ K + AE) —vol((1 — M) K)

A—0+ A

(1 = A)vol(K) + Avol(E) — (1 — A)"vol(K)

T A0t A

= (n — 1)vol(K) + vol(E). O

For the study of the equality case we will need a different proof. The first part of it follows the
same steps to that of Theorem 7.2.1 in [52].

Before beginning with the proof, we point out the behavior of the ‘relative surface area’ S(K; E)
with respect to the Schwarz symmetrization: using the well-known representation

S(K: B) = lim, vol(K + Af) — vol(K)
—0

(see e.g. (5.33) in [52], cf. (1.5) and (3.17)) and Lemma [1.3.11¢), i), it is immediate that
vol(o (K) + Aoy (E)) — vol(ou(K))

S(ow(K);on(E)) = lim

A—07F A

< lim vol(og (K + AE)) — vol (o (K)) (3.18)
A—0t A

_ )\lim vol(K + A\E) — vol(K) (K. B).
—0t A

Second proof. First, we will assume that K|H = E|H. In this case, the function f : [0,1] — Rxg
defined by f(t) = vol((1 — t)K + tE) — (1 — t)vol(K) — tvol(E) is concave by Theorem [2.1.1 and it
satisfies f(0) = f(1) = 0. Hence, its derivative at 0,

£1(0) = S(K; B) — ((n — 1vol(K) + vol(E)).
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fulfills f/(0) > 0, which shows (3.16)) in this case, and f’(0) = 0 if and only if f is identically 0. The
latter implies equality in (2.1), on the whole interval [0, 1], and thus Theorem [3.2.1 ensures that,

for K, E € K{, the pair K, ' is a sausage.

Now we deal with the general case vol,_1(K|H) = vol,_1(F|H). Applying Schwarz symmetri-
zations with respect to H and H™ respectively, and since oy (o (K))|H = oy (ou(E))|H, we
get, using (3.18)), that

S(K: B) > S(ou (K); 0 (F)) > S (012 (o0 (K)o (o (E)) )

> (n— 1)V01(UHJ— (JH(K))> + VOl(O‘HJ_ (GH(E))>
= (n — 1)vol(K) + vol(E),

where equality holds, for K, E € Ky, if and only if
S(K;E) = S(op(K);on(E)) = S(O'HJ_ (on(K)); 05+ (O‘H(E))> (3.19)

and (by the previous case) the pair o1 (0 (K)), o1 (on(E)) is a sausage.

We notice that since (3.16) is not symmetric on the bodies K, E, in order to deal with the

equality case, we should distinguish two cases:

Case 1: 051 (o5 (K)) is a sausage with respect to opr1 (05 (E)), i.e., og1(om(K)) = L+oy. (o (E)),
L e K™ with dim L < 1.

By an appropriate choice of the coordinate axes, we may suppose that the hyperplane H is given
by H = {(xl, o xy)TER D 2y = O}. By definition of the Schwarz symmetrization, L ¢ H+ and
L = [(a,0,...,0)T,(b,0,...,0)T] for some a < b. For short we write K' = oy (K) and E' = oy (E).
On the one hand, since

oy (K'Y =L+ oy (E), (3.20)

following the same notation as in Lemma [3.2.1] and by the equality case in Brunn-Minkowski’s
inequality (1.22) we may conclude that, up to translations, (K'); = (K'), for all ¢t € [a, b] (cf. (3.9)).
In particular, there exists z € R™ so that (K'), = z + (K'),. Hence, the convexity of K’ allows to
assert that K’ = L + E for some E, E € K" with dim L < 1, dim E = n, and moreover,

o1 (E) = oy (E') (3.21)

because o1 (K') = L+ o1 (E').
On the other hand, since K|H = K'|H = L|H + E|H and

voly_1(K|H) = vol,_(E|H) = vol,_(E'|H)

_ . (3.22)
= vol,—1 (o (E")|H) = vol,—1 (01 (E)|H) = vol,—1 (E|H)

by (3.21)), we may assure that E\H is a point, i.e., LL1H (if L is not a point), and furthermore

voly (L) = voly(L).
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Hence, using (3.20), (1.7) and (1.2), we have, on the one hand, that
S(og2 (K'); 011 (E')) =S(L + oo (E'); 051 (E')) =nWi (L + oo (E); 057 (E'))
=n|vol(oy (E)) + (n — 1)W,,— 1LO'J_E/
[vol (g (E")) + (n = )Wy (Li oy >] 52
= nvol(E") + (n — 1)voly (L)vol,_1(oy (E')|H)
= nvol(E") + (n — 1)v011(L)voln_1(E’|H).
On the other hand, by (1.3) and (1.2),
S(K'; E') = S(E + E; E') =nW; (Z + E; E') =nV ((E + E) [n — 1],E’)
=n |V(Eln—1],E') + (n = )V(L, Eln — 2], F')|
=nV(E[n— 1), E") + (n — 1) vol; (L) (E|H[n — 2], E’|H> :
and then, applying Minkowski’s first inequality (1.25) in the above two mixed volumes, and since
vol(E) = vol(E') (cf. (3.21)) and vol,_1 (E|H) = vol,_1(E'|H) (cf. (3.22)), we obtain
S(K'; E') = nV(E[n— 1], E') + (n — 1) vol; (L) 9™ (E\H[n — 9], E’\H)
> nvol(E) (nfl)/nvol(E’)l/”—i— (n—1)voly (E) vol,—1 (E\H) (n72)/(n71)voln_1 (E'|H)" (=) (3.24)
= nvol(E") + (n — 1)voly (L)vol,_1(E'|H).
Finally, by (3.19), we can put together (3.23) and (3.24) to get that, necessarily, we have equality
in Minkowski’s first inequality (1.25), which implies that £ = E’ (since vol(E) = vol(E")), up to
translations, and hence
on(K)=K' =L+ E =L+oyg(E), dmL<1, L_LH.
Therefore, (up to translations) we have
K|H = op(K)|H = (L + o (E))|H = o (E)|H = E|H
and thus, from the equality case for bodies which have a common projection onto a hyperplane, we
may conclude that K = Lo + E with Lg € K", dim Ly < 1.
Case 2: oy1 (o (FE)) is a sausage with respect to o1 (05 (K)), i.e., o 1(om (E)) = Ltoy1 (o (K)),
L e K™ with dim L < 1.

Arguing in the same way as in Case 1 (and following the same notation, but interchanging K
and E) we get B = L+K for some L, K € K" withdim L < 1, dim K = n, and o5 (K) = o1 (K').
And it is obtained, moreover, that L 1 H and vol; (L) = vol;(L). Thus, all together, and using
again (1.2)), (1.3)), (1.25) and (3.19), we have

nvol(K') 4 vol,_1 (K'|H)voli (L) = S(og1 (K'); L4 oy (K")) = S(og1 (K'); 057 (E'))
=S(K";E') = S(K'; L + K)
= nV(K'[n — 1], K) + vol,_1 (K'|H)vol; (L)
> nvol(K") + vol,—1 (K'|H)voly (L).
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Therefore, we necessarily have equality in Minkowski’s first inequality (1.25) which implies that, up
to translations, K = K’ (since vol(K) = vol(K’)). Finally, similarly to Case 1, we can conclude
that £ = Ly + K with Ly € K™, dim Ly < 1. This finishes the proof. ]

Remark 3.7. We would like to point out that the inequality obtained in the above theorem, as well
as its equality case, can be obtained from inequality (7.191) and Theorem 7.7.3 in [52] for the case

of non-degenerated convex bodies having a common projection onto a hyperplane.

As in the case of the Brunn-Minkowski inequality, the same refinement can be deduced when
exchanging common volume projections by common maximal volume sections through parallel

hyperplanes to a given one. More precisely, we have the following result.
Theorem 3.3.2 ([62]). Let K,E € K" be such that there exists a hyperplane H € L)', with

max vol,—1 (K N(z+ H)) = max vol,—1(EN(z+ H)). (3.25)

Then
S(K;E) > (n—1)vol(K) + vol(E),

and equality holds, for K, E € K, if and only if the pair K, E is a sausage.
For the proof of this theorem we will need the following well-known property relating volumes
and projections (see e.g. page 106 in [21]): let M, L € K™ with dim M =n—1 and dim L = 1. Then
vol(M|L+)voly (L) = vol,—1(M)voly (L|(aff M)™*). (3.26)

Proof of Theorem [3.3.2. Because of condition (3.25), the Schwarz symmetrals of K and F with
respect to H* fulfills o1 (K)|H = oy1 (E)|H, and thus, applying Theorem [3.3.1, we obtain

S(K;E) > S(og (K); o1 (E)) > (n— 1)vol(og (K)) + vol(og1 (E)) = (n — 1)vol(K) + vol(E),
and equality holds, for K, E € K, if and only if the pair o1 (K), 051 (E) is a sausage and
S(K;E) = S(og. (K); o1 (E)). (3.27)

Now, the proof concludes in the same way as the one of Theorem [3.3.1, distinguishing two cases.
We consider Case 1; the second case is analogous. Thus, we assume that o1 (K) is a sausage with
respect to o1 (E), i.e., oy (K) = L + oy (F) with dimL < 1 (and L ¢ H*). Again, arguing
as in the proof of Theorem 3.3.1, we get that K; = K, (up to translations) for all ¢t € [a,b]. In
particular, there exists x € R™ so that K; = x + K,, and hence the convexity of K allows to assert
that K = L + E with dim L < 1, dim E = n, and

o1 (E) = o1 (B). (3.28)

We notice that, since there is no (common) projection assumption, we cannot assure neither L 1 H

nor voly (L) =voly(L).
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First we see that we can assume dim L = 1. Indeed, if dim L=0then K = E up to translations,
which yields, by (3.28), o1 (K) = oy1 (E) = oy.(F). Thus, in particular, vol(K) = vol(E), and
using also (3.27) and Minkowski’s first inequality (1.25) we get

nvol(K) = nvol(oy 1 (K)) = S(oy(K),o51(K)) = S(og. (K), 041 (E)) = S(K; E)
=nV(K[n — 1], E) > nvol(K).

Therefore, we necessarily have equality in Minkowski’s first inequality, which implies that, up to
translations, K = E (since vol(K) = vol(E)). It shows the result.

So, we suppose dim L = 1. On the one hand we notice that, since K = L+FEisa sausage and
o1 (K) = L+ 0y (E) =L+ oy (E) (cf. (3.28)), then o1 (L) = L, i.e.,

LIH = L. (3.29)

On the other hand, denoting by En (respectively, Ejs) the ‘maximal volume section’ of E (respec-

tively, E') with respect to the hyperplane H, i.e., voln_l(EM) = maX,cpL vol,—1 (E N (x + H))
(analogously for E), from (3.28) we obtain that

oy (En) = oy (Enr), (3.30)

and moreover, the ‘sausage property’ of K implies that E |EJ- =F M\EJ—, which yields
volo_1 (E|L*) = vol,—1 (Enm|LY). (3.31)
Then, since Ey; C E, aff )y is parallel to H, and using (3.26)) and (3.29), we get, on the one hand,

voly1 (E|L*)voly (I) = vl (Bu| L*)voly () = vol,—1(Enr)voly (L|(aff Eyr)*) )
— volu_1 (Ear)voli (L). '
On the other hand, by (3.31)), (3.26)) and (3.30) we have
vol,_1 (E|EL)V011 (E) = vol,,_1 (EM|EL)V011 (E) = vol,,_1 (EM)Voll(L)
= vol,,—1 (032 (Epr))voly (L) (3.33)
= voly—1 (051 (Enr))voly (L) = vol,—1(Ep)voly (L),
and thus, (3.32) and (3.33) together yield

vol,_1(E|L*) < vol,_1 (E|LY). (3.34)

Now we have all the needed ingredients in order to argue like in the proof of Theorem 13.3.1:
using (1.2)), (1.3) and (1.25), and taking into account (3.27) and (3.34), we can deduce that

nvol(E) + (n — 1)voly_1 (og1 (E)|H)voly (L) = S(L + oy (E); o1 (E))
= S(0y (K); 051 (E)) = S(K; E) = S(L + B; E) -
—nV(En—1],E) + (n — 1) 9"V (E|L [n — 2], B|L ) vol, (L)
> nvol(E) 4+ (n — 1)vol,—1 (E|L )voly (E),
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this is,
vol,,_1 (O'HJ_ (E) |H)V011 (L) > vol,—1 (E‘EL)VOh (Z) .
Finally, using again (3.30), that aff Eys is parallel to H, (3.29), (3.26) and (3.31), we have that
voly,_1 (O’HL (E)\H)voll (L) = max voly,_1 (E N(x+ H))Voll(L) = vol,—1(En)voli (L)
T€H

= vol,—1 (E'M)Voll (L) = vol,_1 (EM)voh (z|(aff EM)l)

= vol,,—1 (Ey| L) voly (L)

= voly_1 (E|L*)voly (L),
i.e., we have equality in the previous inequality, and thus, by (3.35)), we necessarily have equality
in Minkowski’s first inequality (1.25). So, since vol(E) = vol(E), it implies that £ = E up to
translations, this is, the pair K, F is a sausage, which concludes the proof of Case 1. As previously

mentioned, the proof of Case 2, i.e., when oy1 (E) is a sausage with respect to o1 (K), is analogous

to the previous one, and we will not repeat it here (see also the proof of Theorem [3.3.1). O

By considering the special case where K or E a ball, (3.16) reduces to refinements of well-known

and relevant geometric inequalities for convex bodies. We recall that
S(K) =nWi(K)=nV(K[n—1],By)
and
2 2
b(K)=—W,_1(K) = —V(Byn—1],K)
Kn Rn,
are respectively the surface area and the mean width of K.

Thus, on the one hand, (3.16)) implies that, under a common (volume) projection hypothesis
(resp. common maximal volume section hypothesis) of a convex body K with a ball rB,,, we have

the following refinement of the isoperimetric inequality (1.26):
rS(K) > (n— 1)vol(K) + kpr",

and equality holds, if and only if K is a sausage with respect to the ball rB,,. In the same way, we

have the following linear version of Urysohn’s inequality (see e.g. page 382 of [52]):

% " Ih(K) > (n — 1)r"k, + vol(K),

and equality holds, if and only if K is a sausage with respect to the ball rB,,.

Remark 3.8. At this point we would like to observe that, following the first proof of Theorem/|3.3.1),
if we apply Proposition 2.2.1] instead of Theorem [2.1.2, we get that, for k > 2,

vol((l - MK + )\E) — vol((l — )\)K)

S(K;E) = lim

A—0t A
_\\k k _ R NY
> /\hngr (1 —=X)*vol(K) + A V(;\I(E) (1 —X)™vol(K) — (n— k)vol(E),

although this is not a sharp inequality.
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3.3.1 Sausages via the roots of Steiner polynomials

Next, we deal with the problem of obtaining sausages via the roots of Steiner polynomials. As we
have shown along this chapter (cf. Theorem/3.1.1)), the fact of having —r(K) as an (n—1)-fold root of
the Steiner polynomial (of the convex body K € K™) is not enough to characterize sausages. Thus,
we should assume an additional hypothesis in order to get such a characterization. Moreover, we
would like to point out that, although we will work with the classical Steiner polynomial fx.p, (2)
(in order to avoid less elegant generalizations of the functionals D(-),b(:)), the results may be
extended to the relative Steiner polynomial fr.p(z) with respect to any gauge body E. We will
also assume, for the sake of brevity, that r(K) = 1.

The following auxiliary lemma will be needed later on.

Lemma 3.3.1 ([62]). Let K € K™ be a convez body such that —x(K) = —1 is an (n — 1)-fold root

of the Steiner polynomial fx.p, (z) and let v be the remaining (real) root. Then the real number

[=—"" (v +1) (3.36)

Kn—1

1S mon-negative.

Proof. Tt is easy to see that

fre.B, (2) = kn(z + )"z —7) = kp(z + 1) ! (z +1+ lﬁn_1>

Kn (3.37)
=lkp 1(z4+ D"+ ru(z 4+ 1D
Thus, equating coefficients, we get
nW—1(K) = lkp—1 + nknp;
(Z) Wio(K) = (1 — )rn_1 + (Z) Ko, (3:38)
and applying the inequality W,,_1(K) < W,,_o(K) (cf. (1.12)) we have
lbn—1 +nky, =nW,_1(K) <nW,_o(K) = 2lk,_1 + nkn,
which implies [ > 0. O

The following result allows to characterize sausages via the inradius r(K) = 1 as an (n — 1)-fold
root of fx.p, (z) together with a lower bound for the diameter of the so-called kernel K_; = K ~ B,

of K in terms of the remaining real root of fx.p, ().

Theorem 3.3.3 ([62]). Let K € K" with v(K) = 1. Then K is a sausage with respect to By, if
and only if —1 is an (n — 1)-fold root of fx.p,(2) and D(K_1) > 1, where | is defined in (3.36).

Proof. First, we suppose that —r(K) = —1 is an (n — 1)-fold root of fx.p, (2) and D(K_1) > 1. We

distinguish two cases:
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If dimK_; =0, i.e., if K_; is a point, then we get 0 = D(K_1) > [, and Lemma [3.3.1] ensures
that I = 0. So, fk.p,(2) = kn(z + 1)", which implies that K = B, up to a translations (see

Proposition 3.2 in [26]), i.e., K is a ‘degenerated’ sausage.

If dimK_;1 > 1, we suppose, by contradiction, that dim K_; > 1. Then there exist points
z,y € K_y such that the line segment [z,y] C K_1 and vol; ([z,y]) = D(K_1) > [. Thus, we have
[z,y] + B, € K_i + B,, C K and hence

Voll([x,y])/@n_l + Ky = vol([x,y] + Bn) <vol(K) = fk:B,(0) = lkpn_1 + kn
(see (3.37)), i.e., voli ([z,y]) <, contradicting our assumption D(K_1) > [.
So, dim K_1 = 1 and hence
lkn—1+ kn < D(K_1)kn—1+ kn = voly (K_1)kn—1 + kn = vol(K_1 + By,) < vol(K) = lkp—1 + Kn.

Therefore, in particular, vol(K_; + By) = vol(K), which implies that K = K_; + B,, is a
sausage (property (iv) of the volume, page 4).

Conversely, if K is a sausage with respect to the ball, i.e., K = L + B, with dim L < 1, then
FR:Ba(2) = fra BB (2) = frp.(z +1) = nWyoa (L) (2 + 1) + k(2 + 1,

because Wo(L) = Wi(L) = --- = W,,_o(L) = 0. Therefore, —r(K) = —1 is an (n — 1)-fold root of

fK:B,- Furthermore, it is easy to check that the quermassintegrals of a sausage K = L + B,, are

n—1
- Kn—1voly (L) + kp,

\AQ(I)%—I?n):Z

and thus one can easily check that
n
D(K_1) =D(L) = voly(L) = (Wn—1(K) — k) =1

Kn—1

see (3.38)). It concludes the proof. O
(see (

The following result provides a characterization of sausages with the additional assumption of a

lower bound for the mean width of the kernel K_; in terms of the remaining real root of fx.p,(2).

Theorem 3.3.4 ([62]). Let K € K" with v(K) = 1. Then K is a sausage with respect to By, if
and only if —1 is an (n — 1)-fold root of fr.p,(z) and b(K_1) > 2lk,—_1/(nky,), where | is defined
in (3.36).

Proof. First we suppose that —r(K) = —1 is an (n—1)-fold root of the Steiner polynomial fx.p, (2)
and b(K_1) > 2lkn—1/(nky). By (3.38) we get W,,_1(K) = Ky, + lkn—1/n, and using the inclusion
K 1+ B, C K, we have

lKp_1 lkp—1

o T = Wiy (K) = Wona (Kot + By) = S b(K 1) 4 5 >

+ Kn,
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which implies that W,,_1(K_1 + B,) = W, _1(K). Hence K_; + B,, = K (see e.g. page 48 in [9]).
Now, from the fact that —1 is an (n — 1)-fold root of fx.p, (%) and since

n

i () = Firemin, ) = fi (1) = 3 ()W) 4 1)

i=0
we get that W;(K_1) = 0 for all = 0,...,n — 2, which implies that dim K_; < 1. Then K is a
sausage with respect to the ball.
Conversely, if K = L+ By, with dim L < 1, then —r(K) = —1 is an (n —1)-fold root of fx.p, (%)
and, moreover, using (3.38),
2 2 2 Kp_
b(K_1) =b(L) = — W,,_1(L) = — (Wy_1(K) — rp) = - =L, 0

Kn Kn n Kp

Remark 3.9. We notice that since the remaining real root v satisfies
nW,_1(K) = nn(—’y +(n— 1))

(see (3.36) and (3.38) ), then the conditions on the diameter and the mean width in Theorems|3.3.5

and|3.5.4, respectively, can be rewritten in terms of the quermassintegrals of K :

Kn n
DK 1) >1=— 1) = w1 () — ),
(K-1) > nn,1(7+) finq(w 1(K) = k)
2/43”_1 2

We observe that the term Wy,_1(K) — k, > 0 (¢f. (1.12) for r(K)=1).

3.4 Linearity of the determinant

In this section, we show the characterization of the linearity of the determinant (in the same
sense as for the volume function Vk.g) of positive definite symmetric matrices via ‘sausages’ of
matrices, i.e., the sum of a matrix of rank (at most) 1 and another matrix. We notice that like for
Vg, where for A ¢ [0, 1] we lose the geometry, for positive definite symmetric matrices, we would

lose the positivity if we let A run outside [0, 1].

The Brunn-Minkowski inequality has also its counterpart for matrices. However, conditions
for positive definite symmetric matrices A, B to fulfill a result of the type of Theorem 2.1.2/ are
not known to us. Of course, assumptions on common/equal-volume projection onto a hyperplane
(or maximal volume sections through parallel hyperplanes to a given one) of the parallelepipeds
whose volume is given by the determinants of A and B are enough (for the volume of the convex
combination of those parallelepipeds). Nevertheless it cannot be read in terms of the determinant

of AA + (1 — X\)B. For further information on these topics see e.g. [4] and the references inside.

We first prove the following property for diagonal matrices.
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Proposition 3.4.1 (Linearity case for orthogonal boxes, [50]). Let A, B € R™"*" be diagonal
matrices. Then
det(AA + (1 = X\)B) = Adet A+ (1 — \) det B,

if and only if B = L + A, where L is a diagonal matrix such that rank L < 1.

Proof. Let B = diag(A1,...,\,) and A = diag(A1 +¢€1,..., A\n+ep) withe; e Rforalli=1,...,n.
Then, for all A € [0, 1], we have

n

H(Ei)\+)\i) = det()\A—i- (1 — )\)B) =Adet A+ (1 —X)det B = ﬁ)‘i + A (ﬁ(EZ + )\Z‘) — 12[)‘1> .
=1

i=1 i=1 i=1
Identifying the coefficients of both polynomials in A, we get that the set {1 <7 <n: ¢; # 0} has at

most one element, which implies that at least n — 1 of the ¢;’s vanish. It concludes the proof. [

From the above proposition, next result follows immediately.
Corollary 3.4.1 ([50]). Let K,E € K" be orthogonal bozes. Then
vol(AK + (1 — A\)E) = Avol(K) + (1 — A)vol(E),
if and only if the pair K, E is a sausage.
Theorem 3.4.1 ([50]). Let A, B € R™ ™ be positive definite (symmetric) matrices. Then
det(AA+ (1 = X\)B) = Adet A+ (1 — X) det B, (3.39)

if and only if B =L+ A, with rank L < 1.

Proof. First we assume that condition (3.39) holds. Let T' € R™*™ be an orthogonal matrix such
that TTAT = diag(ai,...,a,), where a; > 0 are the eigenvalues of the matrix A. Denoting by
T = Tdiag (1/@, e 1/\/@) we get that TTAT = I,. Since TTBT is positive definite and
symmetric, there exists an orthogonal matrix S € R™*" such that STTTBTS = diag(y1, ..., Yn)s

with y; > 0, and then
det B

. = det Bdet TTdet T = .
[1v: = det Bde ¢ det A

=1

Therefore
STTT(AA+ (1 = N)B)TS = diag(A + (1 = Ny, ..., A+ (1 — Nyy)

and hence, using (3.39),

det(Aly + (1= A)diag(ys, ., yn)) = det(STTT(AA + (1 = N)B)TS)

1
= 1 —
ot A det ()\A + ( )\)B)
det B
—)\+(1—)\)detA

= AdetI, + (1 — A) det diag(y1, - .., Yn)-
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From the linearity for the determinant of diagonal matrices (see Proposition [3.4.1), we have that
diag(y1,...,yn) = L1 + L, with rank L; < 1, or equivalently STTTBTS = Ly + STTTATS. So, it
follows that B = PL1Q + A where P and () are invertible matrices, which implies that L = PL1Q

has rank at most 1.

The converse can be shown in a similar way by bringing A and B to a diagonal form and using
Proposition [3.4.1. O



Chapter 4

On the roots of generalized Wills
u-polynomials and m-polynomials

In the previous chapter, we studied the problem of recovering sausages via some conditions on
the roots of Steiner polynomials. Moreover, these roots turned out to be a natural tool in order to
deal with the equality cases of some linear refinements of the Brunn-Minkowski inequality as well

as other related topics.

Because of this fact, and motivated by previous works of Henk, Hernandez Cifre and Saorin
Gémez, on the roots of the Steiner polynomial (see [26, 27]), in this chapter we are interested in
studying properties of the roots of a more general family of geometric polynomials of convex bodies
(extending the Steiner polynomial). Moreover, we will mainly focus on those which have a strong
connection with the well-known Wills functional; see Section|1.2/and the references there for further

information about this topic.
We notice also that the (relative) Wills polynomial Y1 ; (1)Wi(K; E)/k;z* (cf. (1.10)) can
be seen as a Steiner polynomial with certain ‘weights’. This fact, together with the (previously

commented) goal of the chapter, has lead us to consider the following definition:

Definition 4.1. Let m = (m;);en be a sequence of positive real numbers and let K, E € K" be
convex bodies with dim(K + E) = n. Then the m-polynomial of K and E is the formal polynomial,

in the complex variable z € C,

FECEDY <”> Wi ) i

n
1=0
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If the weights m; are the moments of some measure ; on the non-negative real line R>g, i.e., if

mi:mi(u):/ t'du(t), i=0,...,n,
0

then it can be shown that the corresponding m-polynomial comes from the natural generalization
of the Wills functional/polynomial. This fact is the starting point of the following section, where it

will be carefully shown. The original work that we collect in this chapter can be found in [29, 30, 63].

4.1 On the roots of generalized Wills  p-polynomials

4.1.1 On the Wills type functionals

Recently, Kampf [32] has proved that generalizations of relations (1.11) remain true when
the ‘distance’ dg(z, K), between 2 € R™ and K, relative to a convex body E with 0 € int E' is

considered, i.e.,

0 - (K; E
/ e (@K 4 = 277/ vol(K + tE)t e At = Z <7Z> M

Py
0 =0 ’

Moreover, a more general functional can be obtained replacing et by a function G(t) which is

properly associated to a measure p on the non-negative real line R>:

/ G(dg(z,K))dz  with G(t) = p([t,0)). (4.1)
We extend this functional to any pair of convex bodies K, F, allowing gauge bodies E with dimen-
sion dim £ < n.

To this aim, for a given ' € K™ with 0 € relint ¥ and « — y € lin F, let
dp(z,y) =inf{A >0: z —y € \E}.

We notice that if F is 0-symmetric, i.e., F = —F, this function defines a distance on lin . Then,
for x € K 4 lin E, we have

dg(z, K) =inf{dg(z,y) :y € KN (z+1inE)} =inf{r >0:2 € K +rE}.

Thus, the expression dg(x, K) is only defined for € K +lin E' and, following the idea used in [32],
the next result is fulfilled.

Lemma 4.1.1 ([29]). Let p be a finite measure on R>q such that the moments m; () = [~ ¢ du(t)
of , i = 0,...,n, exist and are finite, and let G(t) = u([t,oo)), t € R>g. Then, for K,E € K"
with 0 € relint E/, we have that

/ G(dp(z,K)) dz = / vol(K + tE) dp(t) =) (:‘) W,i(K; E)Ymi ().
K+lin E 0

=0
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We follow the idea of the proof given by Kampf in [32], which is based on Fubini’s theorem (see
Theorem [1.2.1). Here x,, will denote the characteristic function of the set M C R™.

Proof. Clearly, for v € K + lin E we have dg(z, K) < t if and only if x € K + tE. Using this

property and Steiner formula (1.5), we get

/ . G(dp(z,K))dz = / 1(lde(z, K),00)) da
K+lin B

K+lin E

_ / /0 Nty K +in B iey<ey () dpi(t) dz

[ [ @ antas= [T [ @ dsdu)

n

/0°° (K +E)du(t) = ) (T;)Wz’(K;E) /Ooot"du(t)

1=0
=() S5 ) ().

1=

It shows the lemma. O

We observe that the right-hand side in the last equality is translation invariant. Thus, for any
convex bodies K, E € K", any ¢ € relint F/, and a given measure p on R>(, we have a Wills type

functional (associated to p)

n

WH(K; E) = /K-l—lin(E » G(dp—ao(z, K))dz = (Z.)Wi(K; E)mi(p)-

i=0
Thus, we can always assume, without loss of generality, that 0 € relint E.

Using the previous lemma for the function G(t) = e_”t2, we get the relative Wills functional

for convex bodies K, F € K™, namely,

" (K:FE
W(K7 E) —_ / e—7TdE(Z’J()2dm — Z <TL> M (42)
K+linE i—o \! K

In the case of the Steiner functional Y7 () W;(K; E), we show that it can be also obtained as
a generalized Wills type functional for a particular ‘limit’ measure. This is the content of the

following result.

Theorem 4.1.1 ([29]). Let K, E € K™ with 0 € relint E. Then

" /n (t 1)2
Z WK = lim / / dt dx.
— 1 U_’0+ K+linE Jdg(z,K) 277(7

=0

Moreover, such an expression (in which a non-discrete measure p on R>q is considered) is only

possible through a ‘pass to the limit’ process.
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Proof. Let 1, be the measure on R>q given by

po(A) = /A fo(t)dt,  with f,(t) =

(see Figure 4.1) and let G, be the function

Galo) = [ dualt) = [ futt)t

(t—=1)2
Figure 4.1: The function f,(t) = —2—e 2.2 for o = 0.2 (red) and o = 0.1.

2mo

On the one hand we observe that, denoting by i, the measure on R<( associated to the function
fo(t), we have

0 0
Jim ! dfio (t) = lim, ot fo(t)dt
-1/(vV20) 4
= lim —(\/icrsjL 1)Te_s2ds

=0t J_ ﬁ
. _1/(\/50-) 1 r r i 2
=jm | = (Z (}) vans ) e tds

o)

i=0
1 & . - 1/(V20)
= Z T 2/2 [ lim a’/ st ds | = 0.
ﬁ = 7 oc—0t —o0
On the other hand, if ¢, (t) = e!T*9%/2 denotes the moment generating function of a normal

distribution N(1, o) associated to the density function f, (on the real line R), then its i-th derivative

can be written as
PO (t) = T2 (14 t0) + 0%goult),
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where g5.i(t) is given by the inductive formula

et tt?a?/2
9o0(t) =0, goiit1(t) = goui(t) + ——5—

(1+10%)7).

We observe that g,.;(0) is bounded in a neighborhood of ¢ = 0, and thus lim, g+ gog)(O) = 1. So,

/KHinEGU (4 (v, ) dz = zn: (?)Wi(K; E) /OOO t" dpo (1)

1=0

o2

by Lemma 4.1.1, and then

o0

lim Go(dp(z,K)) dz = WK E) lim t dpuy ()
o—=0% JK+lin B = \! o—=0% Jo
_ t"dp, (t
> (" T, [ tan,0)

i
o)

o0

W;(K;E) lim t* fo(t)dt

o—0t J_

()
<T.L> W,(K; E) < lim /0 b dpe () + lim,
()

1
<.
3 | M3
[en}

— <?>Wi(K;E) lim ©®(0) = Zn: (?)Wi(KQ E),

i=0 da i=0
where, in the last equality but one, we use the well known connection between the moments of a

measure and its moment generating function (see e.g. Sections 2.3-2.4 and Theorem 2.3.7 in [11]).

Finally, the last assertion of the theorem follows from the fact that if, for a measure z, m; (1) = 1
holds for all i = 0,...,n, with n > 2, then

/Ooo(t —1)%da(t) = /Ooo t2dpu(t) — 2/Oootdﬁ(t) +/O°O dfi(t) = 0,

which implies that 1 is a discrete measure concentrated at t = 1. O

4.1.2 The cone of roots of Wills  u-polynomials

Definition 4.2. Let K,E € K" and let 1 be a measure on R>o with finite moments m;(u),
1=0,...,n. Then
n
n .
Tiep() =3 (Z-)Wi(K;E)mi(mzl
i=0
will denote the Wills p-polynomial of K with respect to E, regarded as a formal polynomial in a

complex variable z € C.

Similarly, we will represent the relative Steiner and Wills polynomial in a variable z € C (cf.
(1.10), (4.2)), respectively, by

e = (MW ana g =3 (1) L

1 Ki
i=0 i=0 v



68 On the roots of generalized Wills p-polynomials and m-polynomials

From now on, we will denote by ¢ the measure associated to G(t) = e‘“tQ, which yields the

(classical) Wills functional when E = B,, (cf. (1.11)), and whose moments are m;(g) = 1/x;.

Here we are interested in studying properties of the roots of the above family of polynomials
f[’”é; g(2). To this end, we fix the notation which will be used along the chapter. We will denote
by Rez, Imz and arg z, the real part, imaginary part and the principal argument of a complex
number z, respectively, whereas CT = {z € C : Im z > 0} will be the set of complex numbers with
non-negative imaginary part. In order to establish most of the results contained in this chapter

involving the roots of fr.;(z), we will need the following definition.
Definition 4.3. Given a measure j1 on R>, let

R¥(n) ={zeC": f[‘é;E(z) =0 for K,E € K", dim(K + E) =n}
be the set of all roots of f;é;E(z), K,E € K", in the upper half-plane.

We notice that the condition dim(K + E) = n in the above definition is needed in order to
avoid identically 0 polynomials (cf. Proposition 1.2.1/ (v) and Steiner formula (1.5))).

From now on and unless we explicitly say the opposite, we will always assume that, for a given
measure g on R>q, its moments m;(p) > 0 for all ¢ > 0, i.e., we omit the case when p is discrete
and concentrates the measure at ¢t = 0. We will also need the following additional notation. For

convex bodies K, E € K™ such that fl"(; (2) has a non-zero root let

Ok.p = min{arg z : 2 € C\{0}, frp(?) = 0}, (4.3)
(see Figure 4.2) and we denote by

RMK;E) = {z € CT\{0} : arg z > 0. } U {0} (4.4)
the convex cone, in the upper half-plane, generated as the positive hull of the roots of the polynomial

f[’”éE(z) and R<g.

roots of fi.p(2)

RHK; E) o 0.5

Figure 4.2: The angle 0%, and the cone R"(K; E).

Along this chapter we will need several different sets of roots of polynomials. Next we collect
all of them.



4.1 On the roots of generalized Wills p-polynomials 69

For a fixed gauge body E € K™ we define
R¥(n;E)={z€C": fg.p(?) =0for K € K", dim(K + E) = n}. (4.5)

The set of roots of all Steiner polynomials fx.g(z), K, E € K", in the upper half-plane will be
denoted by
R(n)={z€C"': fr,p(z) =0for K,E € K", dim(K + E) = n}. (4.6)

Finally, in the analogous way to (4.5), we denote by

R(n;E)={z€C*t: fr,p(z) =0 for K € K", dim(K + E) = n}. (4.7)

We start stating a preliminary lemma which will be needed for the proof of Theorem 4.1.3. In

Theorem 5.2 of [34] the following result is proved.

Theorem 4.1.2 (Kato, [34]). Let £(t) be an unordered n-tuple of complex numbers, depending
continuously on a real variable t in a (closed or open) interval I. Then there exist n continuous
functions vi(t), i = 1,...,n, which constitute the values of the n-tuple &(t) for each t € I.

As a consequence, we get the following lemma.

Lemma 4.1.2 ([29]). Let K(t) € K", t € [a,b], be a one-parameter continuous (on t) family of
convez bodies with dim K(a) =n —k —1 and dim K (t) = n — k for all t € (a,b], and let E € K"
with dim E = r > k and dim(K(t) + E) = n for all t € [a,b]. Let ff((t);E(z), t € [a,b], be the

corresponding one-parameter family of p-polynomials. Then:

i) There exist r—k—1 continuous functions vi,...,Vp_k_1 : [a,b] — C joining the r—k—1 non-
zero roots offl’é(a),E(z) and r—k—1 non-zero roots offI’é(b)_E(z), such that vy (t), ..., vr—k_1(t)
are r —k — 1 of the r — k non-zero roots of fI“{(t),E(z) for allt € [a,b].

it) Moreover, there exists another continuous function v,_y, : (a,b] — C such that v,_(t) is the
remaining root of f]“((t).E(z) for all t € (a,b], satisfying that lim;_, .+ v,._(t) = 0.
Proof. Since

e(t) = () W05 By ) 0

for all ¢ € [a,b], the result is a direct consequence of Theorem 4.1.2 and the fact that the roots

of a polynomial are continuous functions of the coefficients (see Theorem [1.5.1) applied to the

polynomials
fewe® 1 0w |
c(t)F c(t) z; <k + z> Wi (K (8); B)misa(p)2',

whose leading coefficients are 1 for all ¢ € [a, b]. O
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We start showing that the set of roots in the upper half-plane is a convex cone for any measure
pon Rx>g. In fact, as it will be commented later on, from the proof we may assert that the following
result holds even in the most general case of m-polynomials (it is only needed that m; > 0 for all

i=0,...,n).

Theorem 4.1.3 ([29]). For any measure p, R*(n) is a convex cone, containing the non-positive

real aris R<q.

Proof. By the homogeneity of the quermassintegrals we have that for convex bodies K, E € K"
and A > 0, fix.p(A2) = A" fi.o(2). Hence, if v € R¥(n), v # 0, then there exist K, E € K™ such
that fi p(v) = 0 and thus, for each A > 0, 0 = fi. x(v) = f{;.(Av)/A". Therefore A\v € R¥(n)

and so, R*(n) is a cone.

In order to prove the convexity of R¥(n) it suffices to show that for any vy € R¥(n) fixed,
vy # 0, the cone

R*(n)N ({z € C*\{0} : argz > argrp} U {0})

is convex. To this end, let K, E € K" be such that f}”{; (o) = 0. Without loss of generality we
may assume that aff £ = {(xl,...,a;n)T ER”: 1 =+ =xp_p = 0}, where r = dim E. Let
H; = {(acl, o) TER : i1 = = Tpppi = 0}, i=1,...,7—1, be the (n—1i)-dimensional
coordinate plane containing (aff E)*, and let K; = K|H;, i =1,...,r — 1, with Ko = K.

With this notation we will show, by finite induction on j = r — 1, with j = 1,...,r, that all the
points of R¥(K;; E) (cf. (4.4)) are roots of some u-polynomial, i.e., that R*(K;; E) C RF(n). So
R¥(K; E) C R*(n), which will show the convexity of R*(n)N({z € CT*\{0} : arg z > arg v }U{0}).

If j = 1, then the polynomial f.  p(z) reduces to

[(r ! 1>W“‘1(K’“—1;E) my—1 (1) + (:L)Wr(Kr—l;E) me(p)z| 27

and so it has only a non-zero real root. Thus, R<p = R¥(K,_1; E) C R*(n) and in particular, we

have that R*(n) contains the non-positive real axis.

Now we assume 1 < j < r and that the result is true for j — 1, i.e., we suppose that we have
RHM(K,—jt1; E) C R*(n). We notice that the strict inclusion RF(K,_j11; FE) C R*(K,—j; E) can
be assumed, otherwise the required result is directly obtained. For each ¢ € [0, 1], we consider the
convex body

K(t) =tKr—j1+ (1 = t) Ky,

and let v; be a root of the polynomial f}ér_j,E(z) such that argv; = G‘IL(T_j,E. The family of
sets K(t), t € [0,1], provides a one-parameter family of u-polynomials f[’é(t), ;(2) satisfying the
conditions of Lemma 4.1.2, and hence there exists a continuous map v : [0,1] — C with v(0) = v;

and v(1) = ;-1 being a root of fr. (z), such that v(t) is a root of flﬂ{(t)'E(Z) for all ¢ € [0, 1].

j+1E



4.1 On the roots of generalized Wills p-polynomials 71

Without loss of generality we may assume that v; is not the root which ‘goes to zero’; otherwise,
we can work with its conjugate v;.

Therefore, f : [0,1] — (0,27), given by f(t) = argv(t), is a continuous function satisfying
f(1) = argr_g > GMKT_],H;E and f(0) = GMKT_];E' Thus, using the intermediate value theorem,
together with the fact that R*(n) is a cone and the induction hypothesis, we may conclude that
RM(K,—j; E) C R*(n). O

We notice that in order to construct these Wills type functionals, we work with a measure u
on R>q (cf. Lemma4.1.1). The results by Kampf [32] are stated in the more general setting when
a signed measure p is considered. Next we show that in this case the corresponding set R”(n),

although it is always a cone (see the proof of Theorem 4.1.3), it is not, in general, convex.

Proposition 4.1.1 ([29]). There exist signed measures p on R>o such that the cone RP(n) is not

CONVET.

Proof. Let p be the signed measure on R>¢ given by

p10) = 5o o) =5 e(2) =5 p(Re0){0.1,2)) =0

Then the first four moments of p are given by

mo(p) 111 1
mi(p) | [ 0 1 2 I/g B 0
ma(p) | | 0 1 4 _1§6 | o1y3
ms(p) 01 8 1

Hence, in dimension n = 3, any p-polynomial takes the form

fie.p(2) = Wo(K; E) + Wy(K; E)2* + W3(K; E)2".
On the one hand, if K, E € K" are convex bodies with 1 < dim K < 2 and dim E = 3, i.e., such
that Wo(K; E) = 0 and both Wy(K; E), W3(K; E) # 0, then f7 .(z) has only non-positive real
roots. On the other hand, if K, F € K" have dimK = 3 and dim E = 2, i.e., they are such
that W3(K; E) = 0 and both Wo(K; E), Wo(K; E) # 0, then f% .(z) has imaginary pure complex
roots. Thus

RoU{rie C:r >0} C R*(3)N{z € C":Rez < 0}.

And moreover, it is easy to check that this inclusion is an equality: indeed, if there exist convex
bodies K, E € K™ such that

frep(2) = Wa(K; E) (2 + 1+ bi) (2 + 1 = bi)(2 +¢)
for some b, c > 0, with W3(K; E') # 0, then we get, in particular, the relation

W3 (K; E)(b* 4 2¢+1) =0,

which is a contradiction. This shows that the cone R”(3) is not convex. O
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Characterizing p-polynomials. Properties of  R*(n).

The main ingredient for most of the following proofs are the well-known Aleksandrov-Fenchel
inequalities (1.20) and (1.21)). Strongly connected with these inequalities, a sequence of real numbers

ag, - - -, an > 0 is called ultra-logconcave if
(:21) (i)
2 s
(%)

1 < i <n—1. The following result shows that this property for real numbers allows essentially to

2 .
CinQ; > Qi—1Giy+1, With ¢, =

characterize Steiner polynomials. It can be found in Lemma 2.1 of [27].

Lemma 4.1.3 (Henk et al., [27]). A real polynomial Y 1 a;z", a; > 0, is a Steiner polynomial
fr.E(2) for a pair of convex bodies K, E € K", with dim K =n —k, dimE =r, dim(K + E) = n,
if and only if

i) a; >0 for all k <i<r, and a; =0 otherwise, and
i1) the sequence ag, ..., a, is ultra-logconcave.

This result substantially follows from Shephard’s Theorem 1.4.2 but here the number of involved
inequalities is reduced and the construction of the two convex bodies is extended to the more general
case W; > 0. Moreover, the above lemma can be rewritten in terms of the roots of the Steiner
polynomial; this is the content of the following result which can be found in Corollary 2.1 of [27].

In order to state it, we need additional notation.

For complex numbers z1, ...,z € C let
si(zl,...,zr): Z HZ]'
Jc{1,...r} jeJ
HJ=i
denote the i-th elementary symmetric function of zq,..., 2., 1 <17 <7, setting sg (zl, ey zr) = 1.

Corollary 4.1.1 (Henk et al., [27]). The complex numbers v1,...,~v € C are the roots of a
Steiner polynomial fr.p(2) of degree r < n, with K, E € K", dimK = n —k, dimE = r and
dim(K + E) = n, if and only if
1) (_1)isi(711"'777’) >07 OS’L.ST—]{,
Sz‘(')’l;---a’Yr):Ov T_k+1SZSr7
. 2 .
11) Cr—in Si(717 cee 7’71") > Si—1(717 HE) 7’YT’)SZ'+1 (’717 v 7/}/7“)7 1 <i1<r-— 1.

The above results (Lemma [4.1.3/ and Corollary 4.1.1) can be also exploited to characterize

u-polynomials for a given measure u. Indeed, setting

uo (if1)mi—1(ﬂ> (iﬁl)mi-i-l(/i)
(5) mi(p)?
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and, since a (real) polynomial Y 1" ;a;z%, a; > 0, is a g-polynomial if and only if Y= (ai / mi(,u))zi
is a Steiner polynomial (recall that m;(u) > 0 for all ¢ > 0), we have the following characterization

for p-polynomials:

Lemma 4.1.4 ([29]). A real polynomial Y1y a;z*, a; > 0, is a p-polynomial fl‘éE(z) for a measure
won Rsg and a pair K, E € K", with dim K =n —k, dim E = r, dim(K + E) = n, if and only if
a; >0 for all k <i<r, and a; = 0 otherwise, and the sequence (ai/mi(u))?zo
Moreover, vi,va,...,v. € C are the roots of the p-polynomial fI“{E(z) of degree r < n, dimFE =r,
dim K =n —k, dim(K + E) = n, if and only if

1s ultra-logconcave.

i) (—1)iSi(Z/1,...,I/7~)>O7 0<i<r—k,
Si(l/l,...,l/r):(), r—k+1<i<nr, (4.8)

ii) cf_msi(ul,...,l/r)2 >sic1(vi,oove) siv (v, ), 1<i<r—1.

We notice that an analogous result to Lemma 4.1.4/ can be stated for m-polynomials f3 g(2).

Regarding the topology (closeness) of the cone R*(n), we have the next result. Its proof follows
similar steps to the corresponding one for Steiner polynomials (see Theorem 1.2 in [27]); we include

it here for completeness.

Theorem 4.1.4 ([29]). For any measure u, the cone R*(n) is closed.

Proof. Let v € bd R*(n). Since R<g C R*(n) (see Theorem 4.1.3), we may assume without loss of
generality that v ¢ R. Let (v;)jeny € int R*(n) be such that lim;_.., v; = v. For each j € N, since
vj € R*(n), there exist K, E; € K" with dim(K; + E;) = n such that fl‘éj,Ej (v;) =0.

We notice that among all pairs of convex bodies with v; as a root of the corresponding -
; . 2 —1- : : I
polynomial, we can always choose Kj, E; such that ij;Ej(l) = 1; otherwise, since ij;Ej(l) > 0,
we may consider the convex bodies

I 1 1

= E! E;,
L ’

L - -
(1)1/n g ! fIM(j;Ej(l)l/n

J =3

for which we clearly have fy., ., (v;) =0 and fy, .. (1) = 1.
i i

Since fe . (1) = 3210 (7) WilE; Ej)mi(p) = 1, then Wi(Kj; Ej) € [0,1/ ming<y<p{m(u)}],
for all i = 0,...,n, and not all of them are zero. Denoting by W; ; = W;(Kj; E;), the bounded
sequence of (n + 1)-tuples of numbers (W j,..., W, ;)jen has a convergent subsequence to an
(n+1)-tuple (Wy,..., W,), and without loss of generality we will assume that (Wo j;,..., Wy, ;)jen

is the convergent subsequence.

On the one hand, by continuity, the numbers Wy, ..., W,, also satisfy inequalities (1.20)), and
thus the sequence {ai = (7)Wz 1 =0,... ,n} is ultra-logconcave. On the other hand,

Z (?)W’L mi(p) = jlggoz <7Z>sz mi(p) = lim fr 5 (1) =1,

J—00



74 On the roots of generalized Wills p-polynomials and m-polynomials

i.e., the polynomial
n

Z <2>W m( z = Za@mz

i=0
Moreover, by continuity, the numbers Wy, ..., W,, also satisfy inequalities (1.21). Therefore the
property a; > 0 for all £ < i < r and a; = 0 otherwise, holds for suitable r,k € {0,...,n}. Then
Lemma 4.1.4 ensures that > ( )W m;(p)z" is a p-polynomial of two convex bodies K, E € K"
with dim K = n — k, dim E = r. By continuity, since fI’éj;Ej (vj) =0 for all j € N and the sequence
of complex numbers (v;)en converges to v, we have fI“(;E(V) =0, i.e., v € R*(n). This shows that
the cone RH(n) is closed. O

According to the above theorem, the ‘geometry’ of the set R¥(n) is given by the ‘upper ray’ of
the boundary. Regarding the possible inclusion of this ray in the cone and the monotonicity in the

dimension, we have the following results.

Proposition 4.1.2. For any measure pu, the inclusion R*(n) C R¥(n + 1) holds.

Proof. Let v € R¥(n) and let K, E € K", dim(K + E) = n, be such that fi (v) = 0. Embedding
K canonically into the hyperplane en_H C R"! let K’ = K x [0,e,.1] be the prism over K of
height 1 in the direction e,41. Then

volps1(K' + AE) = vol, (K + AE)

for all A > 0, and thus (cf. (1.5))

1 n n
<n+ >W( K E) = <i>wi (K:E), i=0,...,n,

]
(n+1)

WK E) = 0.
Multiplying the above identities by m;(p) and my,41(p) respectively, we obtain [, .(z) = f[‘é;E(z),
and thus f%, o(v) = 0. Hence v € R¥(n +1). O

Next we show that the inclusion R*(n) C R*(n + 1) is strict. The proof follows similar steps

to the one of Theorem 1.3 in [27]. We include it here for the sake of completeness.

Theorem 4.1.5 ([29]). For any measure pu, R*(n) is strictly increasing in the dimension, i.e.,
RH(n) C R*(n+1).

Proof. In order to show that the above inclusion is indeed strict, let v € bd R*(n) \ R<p; otherwise
the assertion is trivially true (see e.g. Theorem [4.1.6 for n = 2, and Theorem 1.2 in [26]). Since
R*(n) is closed (Theorem 4.1.4), v is a root of some p-polynomial ff’é;E(z) of degree r < n, with
K,FeK" dmK =n—k,dmFE =r, dim(K + E) = n. Let 7,vs,...,v, be the remaining roots
of the polynomial.



4.1 On the roots of generalized Wills p-polynomials 75

Then, we have to see that there exists € > 0 small enough such that, for any z € C, |z| = 1, the
r numbers v + 2,7 + €Z, V3, ..., I, are roots of a suitable p-polynomial f;,.E,(z), K',E' ¢ Knt!
with dim K’ =n —k+ 1, dim E' = r and dim(K’' + E') = n + 1, i.e., the ‘sign conditions’ i) and

the ‘quadratic conditions’ ii) in Lemma 4.1.4 are properly satisfied, namely,

i) (—1)'si(v+ez,v+ez,vs,...,0p) >0, 0<i<r—k,
Si(u+ez,?+EE,U3,...,yT):0, r—k+1<3<r,
and
ii") C¢7i7n+1si(V+€Z,?+€§,V3,.. ,I/T)2

> Si_l(y—i—@z,ﬁ—i—gzyg,...

for1 <i<r-—1.

Since k of the r numbers v + c2,7 + €%, v3, ..

si(l/—i—az,ﬁ—i—gzug,...

Obviously, the numbers v + 2,7 + €z, v3, . .

77/7") =0

,VT) SZ‘+1(V+€Z,P—|—€§,I/3,...,V,«),

., Uy are zero, we also have that, for any € > 0,

for i >r—k+1. (4.9)

., Uy, are roots of a polynomial with real coefficients.

Hence, in view of (4.8) i) and the continuity of polynomials, there exists £; > 0 such that for any

O<e<e

(=1)'si(v+ez,v+e7,vs,...

) >0, 0<i<r—k.

So, with (4.9) both conditions in i’) are satisfied for ¢ < e7.

Relation (4.9) also implies that the inequalities in ii’) are certainly satisfied for r—k <i <r—1.

So it remains to consider 1 <1i < r — k. By (4.8) ii) we know that

Crin si(v,7,. .., 1/7,)2 >sia (v, v)sia (VT ),
and since
oo (") (rT{iJ My —i—1 (1) Mr—iy1 ()
r—intl (73)2 mr—i(1)2

>

(r—?—1> (r—?—&-l) My—i—1 () My —it1 (1) _ K

(")

r—i,n

my—i(p)?

forall1 <i<r—1and si(y,ﬁ,...,ur)2 >0for 0 <i<r—Fk(cf (4.8) 1)), we get that

cff_mﬂ si(v,7,..., 1/7«)2 > s (T, v)sip (T, )

for all 1 <¢ < r — k. Hence, as before, by continuity of polynomials, there exists €2 > 0 such that

" - 2
A i1 Si(v+ezv ez, u)

>si1(v+ez,v+ez,vs, .

,Vr)si+1 (u +EZ,V+EZ, V3. .., I/r)

forall 0 < e <egand 1 <i <r — k. Thus we obtain ii’) for ¢ < 9, and the assertion follows with

g0 = min{ey, e2}.

O]
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The following proposition is also analogous to the corresponding one for Steiner polynomials
(see Corollary 1.1 in [27]).

Proposition 4.1.3 ([29]). For n > 3 and a given measure ji on R>q, let K, E € K" be such that
the p-polynomial fi;. ;(z) has a root lying on bd R¥(n) \ R<g. Then K, E are extremal sets for at

least one Aleksandrov-Fenchel inequality.

Proof. For v € bd R*(n) \ R<p, let K, E € K", with dim E = r, be such that f%. -(v) =0, and let
U,v3, ...,V be the remaining roots of fi (z). If K, E are not extremal sets in any Aleksandrov-

Fenchel inequality, i.e., if we have strict inequalities in (1.20), then r > n—1and forall1 <i <r-—1

I

cr_msi(l/, Tous, .. ) > s (T, v, vn)sip (1, T, 13, L 1),

Again, by the continuity of the elementary symmetric functions, for ¢ > 0 small enough, the

numbers v+ez, V+€Z, V3, . . . , Uy are roots of a polynomial with real coefficients, satisfying conditions
i) and ii) in Lemma 4.1.4 for any z € C with |z| = 1. Thus {v +ez : |z| = 1} C R¥(n), a
contradiction. ]

The cone of roots for a fixed gauge body

Let E € K" be a fixed gauge body. The proof of Theorem 4.1.3 also says that R*(n; E)
(cf. (4.5))) is a convex cone, containing the non-positive real axis R<p. However, other properties
of R*(n) cannot be extended to R¥(n; E). For instance, R¥(n; F) is, in general, not closed (see
e.g. Theorem 1.2 in [26]). Here we give a sufficient condition for v € bd R*(n; E) \ R<q to lie in

R*(n; E), involving the circumradius.

Proposition 4.1.4 ([29]). Let v € bd R*(n; E) \ R<g. Let (vj)jen S int R¥(n; E) be a sequence
with limj_. v; = v and, for each j € N, let K; € K", dim(K;+ E) = n, be such that ff(j,E(l/j) =0.
If there exists a subsequence (Kj,, )men C (Kj)jen with dim K, =n —k for all m € N, such that

Wi(K;, ; E

— 70,
m—oo R(Kj, )"

then v € RF(n; E).

Proof. Without loss of generality, we may suppose that dimK; = n — k for all j € N and thus
Wi (Kj; E) # 0.

For each j € N, let IN(j = R(K;)7'K; and 7; = R(K;) 'v;, which is a root of f[%j;E(z).
Since quermassintegrals are translation invariant (and thus the corresponding p-polynomial), it is

not restrictive to assume that the origin 0 is the circumcenter of all K, and so, of I?j. Then,

K ; C By, for all j € N, and Blaschke’s Selection Theorem (see Theorem [1.1.2) ensures the existence
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of a subsequence of (Kj)jen converging to a convex body K € K"; without loss of generality
we may assume that lim; I?j = K. Then, by the continuity of the quermassintegrals, each
coefficient (?)Wl (IN( i E) m;(p) of the polynomial f[’i( E(z) converges to the corresponding coefficient
VEI
("YWi(K; E)ymi(p) of fi.p(2), and moreover,
. . 1
Wi(K;E) =Wy | lim K3 E | = lim Wk(Kj;E) = lim Wy | 5——~Kj;; E
j—00 j—00 Jj—00 R(KJ)
. Wi(Kj; E)
= lim ——2 =2 £,
Jggo R(Kj)n—k 7
Hence, from the fact that the roots of a polynomial are continuous functions of the coefficients of
the polynomial (see Theorem [1.5.1), and since f[’i(”E(z) has degree r = dim F for all j € N, we get
VEl
r—k

that there exist r — k sequences of numbers (V})jeN, el (V;*k)jeN such that 1/]1, ...,v; " are the

r — k non-zero roots of f}’i{_.E(z) for all j € N, and with /' = lim;_0 I/;, i=1,...,7r — k, being
VB

the non-zero roots of f% .(z). Now, since I; was a non-zero root of f}% E(z) for each j, taking
b J;

subsequences if necessary, we may assume that (7;)jen converges to a root of f%- (z), say v'. Then

2o e ¥ i 2 lim R(K) € Ra,

vl limj_,oo Vj j—00 Vj j—00

which implies that f(’f/ e 1(¥) =0, as required. O

4.1.3 The smallest and largest cones of roots of  u-polynomials

We will start this subsection by showing that there exists a relation between (the cone of) the
roots of the Steiner polynomial (cf. (4.6)) and the Wills u-polynomials. The key to prove this
connection will be a well-known inequality involving the moments of any measure u. First we
will show it for the case of the (relative) Wills polynomial ff.(z) via the Aleksandrov-Fenchel

inequalities.

Indeed, the Aleksandrov-Fenchel inequalities (1.20) for W;(C),,) = k; and any value of the

dimension yield the inequalities

mi(9)? < mip1(g)mi—1(g), i=1,2,..., (4.10)

for the moments m;(g) = 1/k; of the measure g associated to G(t) = e~

Moreover, if we had equality in one of the above inequalities, i.e., if for some index ¢ > 1 it is
W;i(Cr)? = W,;_1(Cr)Wi41(Cy), then the known equality case in Aleksandrov-Fenchel inequality
for O-symmetric convex bodies (see Theorem [1.4.4) would lead to a contradiction: it would imply
that C), is an (n — i — 1)-tangential body of a ball with ¢ # 0, which is not true. Thus, inequalities
(4.10) are strict.

This fact can be extended to the moments of (almost) any measure; it will be shown and used

in the proof of the following result.
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Theorem 4.1.6 ([29]). For any measure p, the inclusion R(n) C R*(n) holds. Moreover, if
satisfies p1(R>o \ {0, m;(p)/mi—1(p)}) # 0 fori=1,2,..., then the inclusion is strict.

Proof. Let v € R(n). Then there exist convex bodies K, E € K™ such that

frie(y) = Zn: <7Z> Wi(K; E)y' = 0.

=0

Moreover, for any measure p on Rxg, the Cauchy-Schwarz inequality (1.29) yields

m;(p)? = </Ooo t dﬂ(t))2 = </Oooti+21tiQ1 d“(t)>2 (4.11)

</ " () / " dp(t) = mig ()me (),

ie., 1/mi(p), 1 = 0,...,n, satisfy the Aleksandrov-Fenchel inequalities (1.20). Then, we get that
the sequence of positive numbers () W;(K; E)/m;(u) is ultra-logconcave, and Lemma 4.1.4] ensures
that the Steiner polynomial fx.p(z) is also a p-polynomial for some convex bodies K', E' € K.

Therefore, v € R*(n), as required.

In order to prove the last assertion, we notice that equality in the Cauchy-Schwarz inequality
(4.11)) holds if and only if
£ — 7”%(#) t'T =0
mi—1(p)

almost everywhere (see Theorem [1.4.10) or, in other words, if and only if

N(RZO \ {0, mi(u)/mi_l(,u)}> = 0, 1> 1.

Therefore, if a measure p satisfies the condition of the theorem, inequalities (1.20) strictly hold for
w

the values 1/m;(u), ¢ = 0,...,n, which implies that ¢/, > ¢,—jn; here, r = dim F = dim E', as

usual. Hence, denoting by 72, ..., 7, the remaining roots of fx.r(z) = fl. i (2), we get

Cf_i’nsi(F% 725 - 777")2 > Cr—i,nsi(f% Y25 77"")2
Z Si—l(% Y2y )’YT)Si+1(’Y7 Y25 .- 7/-}/1")5

which implies, if n > 3, that v € int R¥*(n) (see the proof of Proposition 4.1.3). Therefore,
R(n) € R*(n) when n > 3. For n = 2, we just notice that the discriminant of f%. (2) is

and thus, if K = F = By we have A < 0. Hence R(2) = R<p C R*(2). O

This result shows that the ‘smallest’ cone of roots of Wills u-polynomials is the one given by

the Steiner polynomial (see Figure/4.3). Furthermore, the known results for the roots of the Steiner
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polynomial (namely, for n > 10 there are Steiner polynomials having roots with strictly positive
real part, see Proposition 1.3 in [27], and when n tends to oo, R(n) covers the whole C* except
R-o, see Theorem 1.4 in [27]), together with the above result (cf. also Theorem [4.1.1) provide
additional information about the roots of py-polynomials when the dimension is large enough. This

is the statement of the following corollary.

Corollary 4.1.2 (]29]). If n > 10 the inclusion {z € CT : Rez < 0} C R¥(n) holds. Moreover,
given v € CT \ Rxq, there exists ny such that v € R¥(n) for all n > n,.

R (n)
n > 10

RH(n)

R(n)

-
-
-
-
-
-
-
-

- Ry =

Figure 4.3: Relating R*(n) and R(n).

Remark 4.1. It is known that, for any —a € Ry, a > 0, there exist convex bodies K, EE € K"
such that —a is an n-fold root of the Steiner polynomial fr.p(z) (see e.g. Proposition 2.3 in [27]).
This property remains true for any p-polynomial. Indeed, since 1/m;(p), i = 0,...,n, satisfy the

Aleksandrov-Fenchel inequalities (1.20) (see (4.11)), then Lemma 4.1.4 ensures that

n

n .
Z (Z)ZZ =+ )" = [ (2)
i=0
is a p-polynomial for two convex bodies K', E' € K", i.e., —1 is an n-fold root of fI“(,.E,(z); for the

real number —a, it suffices to consider fly., o (2).

Several of the above properties for the cone of roots of p-polynomials (convexity, closeness,
monotonicity in the dimension...) remain true for general m-polynomials, independently the num-
bers m; are moments of a measure on R>( or not; in fact, we have only needed that m;(u) > 0 for
all ¢ > 0. However, the properties collected in Theorem 4.1.6 and Corollary 4.1.2| are not true for

general/arbitrary m-polynomials, as the following example shows.

Remark 4.2. Let m = (e_i(”l)ﬂ) N and for any K, E € K" we consider the m-polynomial

i
R p(2). It is easy to check that
M1 Mit1

<p
my; mi+2

forall 1=1,2,..., (4.12)
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where 3 ~ 0.4655 is the only real solution of the equation z(z + 1)*> = 1. Then, using (1.20) and
(4.12) we get that fRp(2) fulfills the stability criterion given by Theorem [1.5.2 for any pair of
convez bodies K, E € K™ and any value of the dimension. Therefore, Corollary|4.1.2 does not hold.

Thus, Theorem 4.1.6/and Corollary [4.1.2 provide necessary ‘geometric’ conditions for a sequence
of positive numbers {m; : i =0,1,...} to be the moments of a measure on R>g. The question of
knowing whether a sequence of positive numbers arises as the moments of a measure on R is a
problem known in the literature as the (Stieltjes) moment problem, see e.g. [35]; nowadays there

are still many open problems and on-going work on this topic.

So, we already know that the ‘smallest’ cone of roots of p-polynomials is the one given by the
Steiner polynomial. Next we deal with the ‘largest’ cone of roots of p-polynomials, i.e., we would
like to determine the ‘largest’ cone of roots containing R*(n) for any measure p on R>q (or for any

measure 4 on R>g belonging to a certain relevant subclass of measures).

We observe that, in the proof of Theorem 4.1.6, the main tool in order to get the desired
inclusion was the inequality m;1(p)m;_1(u) > m;(u)? for all i > 1. So, for a ‘reverse’ inclusion we

would need that

mip1()mi1(p) < ¢imi(p)?, > 1,

for a suitable sequence (¢;)i;eny. Theorem [4.1.7 determines such a sequence (and thus the corre-

sponding inclusion) when working with log-concave measures, i.e., measures p of the form

H(A) = /A f(t) dt,

where f is a log-concave function (see Definition [1.6)).

According to our terminology, and for any m-polynomial, we will denote the corresponding

cone of roots by R™(n), i.e.,
R™(n) ={z€C": fRE(z) =0for K,E € K", dim(K + E) = n}.

Theorem 4.1.7 ([29]). Let w = (i');eny = (1,1,22,...). Then R*(n) C R*(n) for any log-concave

measure (1 on R>q.

Proof. We take the real functions f,g : [0,00) — [0,00) given by f(t) =t~ g(t) = t'*!, and let

(o) = sup { 1) g2 = T30 ny € 0.0}

Then, we clearly have h((z +y)/2) > f(2)/2g(y)"/? for all 2,y € [0,00) and hence (since y is
log-concave), by the Prékopa-Leindler inequality (1.27),

[ nano = ([T au) v ([ eaun) "
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i.e., we get
00 2
([ haut) = mestomin o (4.13)
So, now we deal with the left-hand side in the above inequality. Taking into account the definition
of h, we maximize, for each ¢t > 0, the function F; : [—t,t] — [0, 00) given by

Fi(s) = (t — 8)(i—1)/2(t + S)(i—l—l)/Q'

Its first derivative (F})'(s) = (t? — 82)(i_1)/2_1(—i82 + (1 —i)ts + t?) has only one root in (—t,1),

namely, ¢/i, which gives in fact the maximum of the function. Therefore, we have

(i — 1)0=D/2( 4 1)+1/2 .

i A f 1
h(t)th<t>: ! i ore=>

2t for i =1.

So, denoting by
<’L _ 1)(171) (Z + 1)(l+1)
320

(/OOO h(t) du(t)>2 = (/OOO o2t du(t)>2 = eimi(p)?,

and thus (4.13) yields

c = forall ¢ >1, ¢ =4,

we get that

cimi(p)? > mi1(p)mipa (p). (4.14)

Now we can prove the result. Let v € R¥(n). Then there exist convex bodies K, E € K™ such
that f[“(;E(V) =30 (?)W,(K, E)m;(u)v* = 0.
Let w = (wi)ien = (1,1,22,...,i% ...). By (1.20) and (4.14), we easily get that the sequence

of positive numbers (7)W,(K, E)m;(p)/wi, @ = 0,...,n, is ultra-logconcave, and hence, f} ()
is also an w-polynomial f%, p (z) for some convex bodies K, E' € K™ (cf. Lemma [4.1.4). Thus,
[ (v) =0, ie., v € R¥(n), as required. O
Appendix: The ‘largest cone’ of roots is also the cone of a certain p-polynomial

In the following, we deal with a ‘moment problem’: the question whether the ‘weights’ m; = i’

are the moments of a measure on [0, 00), i.e., whether IR, p(2) is a Wills p-polynomial.

Assuming that there exists such a measure p, it must be a probability measure on [0, c0) because

mo(p) = 1. Then the moment generating function of such probability distribution is given by

o o~ () o kP
/ et d,LL(.’I:) = ZTtk = ﬁtk,
0 k=0 ) k=0

where, as usual, the above series is computed on its convergence disc.
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Now, we consider the Lambert function W (also called the omega function or product logarithm)
given by the inverse relation
z=W(z)eW&), (4.15)

that is, W is the inverse (multi-valued) function of z +— ze®. We observe that since z — ze® is
not injective, W is, in general, multi-valued. Restricting our attention to real-valued W’s, and
adding the extra constraint W > —1, (4.15) allows to choose a single-valued function Wy (z) with
Wp(0) = 0 and Wy(—1/e) = —1. Such function Wy is called the main branch of the multi-valued
W (see [13] for further information about this topic). Using the Lagrange inversion theorem (see
e.g. [1]), it can be shown that its Taylor series (around 0) is

i~ k—1

Wo(z) = (12' 2~

k=1
Although the radius of convergence of the above series is 1/e, the function defined by this series
can be extended to a holomorphic function on C with a branch cut along the interval (—oo, —1/e];

this holomorphic function defines the main branch of the Lambert function W.
Thus, considering F'(s) =1 — sW{(s), we have
oo
F(s) = 1= sWis) = 3 4y (=9 = [ ™ duto) = (o),
k=0 0

where £(u) denotes the Laplace transform of p (see e.g. [14]). Notice also that F' is an analytic

function on Re(z) > —1/e; therefore the measure p given by

mm-Aﬂwm,

where f(z) = L71(F)(z) is the inverse Laplace transform of F, is the desired measure on [0, 00).

4.1.4 On the stability of generalized Wills  p-polynomials

We conclude the section considering the stability of Wills p-polynomials, i.e., we study the
inclusion
R¥(n) C {z€C":Rez <0} U{0},
property that we call, following the notation in [27], ‘weak’ stability.
Of course, it is not possible to state a general characterization result for p-polynomials for any

measure p. So, it is natural to consider particularly prominent polynomials of this type, which, at

the end, will provide information on the stability of any p-polynomial.

Theorem 4.1.6/ shows that the ‘smallest’ cone of roots of pu-polynomials is the one given by the
Steiner polynomial, and it is known that Steiner polynomials are weakly stable if and only if n <9

(see Proposition 1.3 in [27]). Therefore, we can state the following result (see Corollary 4.1.2)):
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Corollary 4.1.3 ([29]). If n > 10 then, for any measure j1 on R>q, p-polynomials are not weakly
stable, i.e., {z € C* : Rez <0} C R¥(n).

Thus, we wonder for the stability of those polynomials which determine the ‘largest’ cone of roots
containing R*(n) for any log-concave measure p on R>o, i.e., the w-polynomials (Theorem [4.1.7).

We prove the following result.

Proposition 4.1.5 ([29]). w-polynomials are weakly stable if and only if n < 3.

Proof. First we notice that the stability criterion given by Theorem [1.5.2 cannot be applied to
f#.p(2) when n = 3 because condition (1.31) is, in general, not fulfilled. Thus, we assume that
w-polynomials are not weakly stable in dimension n = 3, and hence, since the cone of roots is
convex (cf. Theorem 4.1.3), we know that there exist K, E € K2 such that i, —i, —c, ¢ > 0, are
the three roots of f (2). Then, it is an easy computation to check that the Aleksandrov-Fenchel
inequalities (1.20) yield, in terms of ¢, the relations 4 > 3c¢? > 16/3, a contradiction. Therefore,
w-polynomials are weakly stable for n = 3 and, from the monotonicity of the cone of the roots (see
Theorem 4.1.5)), also for n = 2.

Finally, we consider the w-polynomial f. B, (2) = Ka Z?:o (11) i'z". Tt can be checked with a
computer or by applying the Routh-Hurwitz criterion (see Theorem [1.5.3) that f3 .p (2) has a
root with positive real part (v ~ 0.03838 + 0.208071). The non-stability property for all n > 4 is

deduced again from the monotonicity of the cones (Theorem [4.1.5)). O

Thus, using Theorem 4.1.7,, the following result is a direct consequence of the above proposition.

Corollary 4.1.4 ([29]). If n < 3 then, for any log-concave measure p on R>q, p-polynomials are
weakly stable.

We remark that this bound for the dimension might be not best possible, since we do not know

whether the measure that ‘provides’ the w-polynomials is a log-concave measure on Rx>.
Another particulary interesting p-polynomial is the (relative) Wills polynomial f¥. (z). Its

stability can be also characterized.

Proposition 4.1.6 ([29]). The (relative) Wills polynomials flg(;E(z) are weakly stable if and only
ifn <7.

Proof. 1t is easy to check, using (1.20), that the stability criterion given by Theorem 1.5.2/is fulfilled

for n = 7. The weak stability property for all n < 6 follows from Theorem 4.1.5. Now we consider
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which is a relative Wills polynomial f7- (z) for some K,E € K® (see Lemma [4.1.4). It can be
checked with a computer or by applying the Routh-Hurwitz criterion that f(z) has a root with
positive real part, namely, v &~ 0.05244 4 0.94238 i. The non-stability property for n > 8 is deduced

again from Theorem 4.1.5. O

4.2 On properties for m-polynomials of unit p-balls

In the previous section we have investigated the structure of the roots of the family of m-poly-
nomials of convex bodies when m is associated to a given measure i on the non-negative real line
R>p. As it has been shown, such family of m-polynomials arises from the natural generalization of

the classical Wills functional/polynomial.

A particulary interesting case of m-polynomial associated to a measure on R>q is the following
one. Let Gp(t) = e~ 1 < p < o0, be the function associated to the measure (cf. (4.1)

pp(A) = / pCpe =1t
A

on the non-negative real line Rxg, where C, = (2I'(1/p 4+ 1))”. The interesting feature of this
measure is that it can be checked that its moments are the inverse of the volumes of unit p-balls,
Le., mi(up) = 1/6Y, i =0,...,n, and thus it provides the natural extension of the classical Wills

polynomial (with respect to the Euclidean unit ball) to the unit p-ball Bb.

Lemma 4.2.1 ([63]). Let p, be the measure on the non-negative real line R>q associated to the
function Gp(t) = e~ t >0, with C), = (2F(1/p + 1))p, 1 < p < oo. Then the moments
1

(1) = —5, i >0.
mil) = g P2

Proof. Tt is just an easy computation to check that (see (1.14))

o o1 1 0o F(%—l—l) 1
mi(tp) :pCp/ them Ol dt = Z./p/ sPe™5 ds = VNS O
0 Cy/? Jo (21‘(% n 1)) i

Remark 4.3. Ifp = oo, the corresponding measure oo is the discrete one given by piso ({1/2}) =1,
fioo (R>0 \ {1/2}) = 0, for which m;(pioc) = 1/K5°.

Therefore, the j)-polynomials are given by

P - n WZ(K7E) % n
IIL(’E(Z):Z()(Z)/{?Z’ K,EG’C .

In this section, we are mainly interested in studying several properties of the p,-polynomial

fﬁ’pr (2), K € K". First we will study the (asymptotic) relation between its roots and the roots of

the Steiner polynomial.
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4.2.1 (Asymptotically) relating the roots of Steiner and m-polynomials

At the beginning of (the first section of) this chapter, we have seen how some m-polynomials
appear in a natural way by means of a certain generalization of the Wills functional. In this
subsection, our main goal is to provide another reason why these polynomials might be of interest:
roughly speaking, they also arise when dealing with the asymptotic behavior of the roots of the

Steiner polynomial.

First, we will give a general asymptotic relation involving the roots of Steiner polynomials and
m-polynomials (Theorem 4.2.1)), and then we will particularize it to provide the connection between

the roots of the Steiner polynomial and the p,-polynomials f;??Bp(z) (Theorem 4.2.2)).

Some preliminary results

Here we collect several results which will be needed in the proofs of the main theorems. The
proof of the first lemma includes the construction of a special family of gauge bodies which will be

used in the following.

Lemma 4.2.2 ([63]). Let [a,b] be a closed interval in R with 0 € [a,b], and let r : [a,b] — [0, 00)
be a continuous concave (and not identically zero) function. Then there exists a sequence of convex
bodies { By }nen with dim E,, = n, such that

voly ( / yn—keti
dt, 2<k<n.
VOln k: E, k H

Proof. We consider the family of convex bodies inductively defined by

Ey={0}, Ei=[at, E.= |J <r(t)En,1 x {t}), n>1. (4.16)
t€la,b]

From the concavity and the continuity of r(t), it is easy to see that E, is, in fact, a convex body in

R™, and since r(t) is not identically zero, dim E,, = n. Moreover, we have that, for all 0 < k < n,

b b
vol, (Ep) :/ voly—1 (r(t)Ep—1)dt = VOln_l(En_l)/ r(t)"ldt
k-1 .p .
= ... = VOln—k(En—k:) H / T(t)n_k+zdt
i=0 "

which gives the required identity. O

If for some fixed s € N, the limits

k
- < N r(t)"*ldt)
n—00 H f n k+id¢
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exist and are positive, k = 2,..., s, then we define (see Lemma 4.2.2)

k
(ff r(t)”‘ldt) o Vol k(Bumg) Vol (B )

A = lim = lim > 0, 4.17
F T TR (it e Vo, (By) vol—1 (Bu1 (®17)
k=2,...,s,and \g = \; = 1.
For 1 < p < 00, we consider the function
rpt[—1,1] — [0,00) given by (1) = (1 — [¢}?)"/7. (4.18)

We observe that the family of unit p-balls B} (cf. (1.13)) can be derived from (4.16) using the

function 7,. Next lemma shows that r, satisfies the limit condition defining A\; (cf. (4.17)).

Lemma 4.2.3 ([63]). For allk > 1,

. (f ROk 1dt)

n—>ooH f ) p n k+idt o

Proof. First we observe that, for any i > 0,

1 . 1 ) w/2 )
/ rp(t)" dt = 2/ (1—)/Pdt = 4/ (cos 5)2/P)+1 (sin 5)2/P)~1 45
0 P Jo

-1
2 (i 1 2i  TI(;)
=-B(-+1-)=— it1
p \p p) pli+l) T(H)
where B denotes the beta function (see page [11). Then, it is an easy computation to check that,
for all k > 1,

(a2 (e )
I Llrp (ki (k) (0(ek) /r(s

and since

it suffices to prove that

lim =1. (4.19)

n— n k n— n—1 k n\"
y (resH/rE) ) = A W
it T(RE)P(B)  nteo n\y L N
p (e) Vvn ( e ) ! n—k
. (n— 1)(n=1k/p pn/p
= I () = ) R kT =
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The main results

From the following result, a consequence for ji,-polynomials involving the unit p-balls will be

obtained.

Theorem 4.2.1 ([63]). Let s € N andr : [a,b] — [0, 00) be a continuous concave (non-zero) func-
tion, 0 € [a,b], such that A\, exists, 0 < k < s (¢f. (4.17)). Let K € K* and m = (/\S_Z-/voli(Ei))ieN,
with m; = 0 for i > s, and E; defined by (4.16). Embedding K C R", n > s, let yin,...,7sn be

the non-zero roots of fr.g,(2) and let vy, ... v, be the roots of the m-polynomial fRE. (). Then,
reordering if necessary,
) vol,, (Ey) ,
lim ————— i, =y, i=1,...,s.
n—00 vol,,_1 (Enfl) Yin i

Proof. For t € R, let H(t) = {(x1,...,2,)T € R" : 2, = t}. We may assume without loss of
generality that K C H(0). Then,

=0

-/ Y ol (€ AB,) 1 H (D) dr
A

a

Ab
:/ vol,—1 K+Ar(§)En,1)dt
A

n—1
n—1 (n—1) V01i+1(Ei+1) i+1
=y K By ) — L i
=0 ( ¢ >Wl UG ) vol;(E;)

and identifying coefficients of both polynomials, we get that

iVO]i(Ei) (n—1)
— ) WK Epy).
nvoli_l(Ei_l) -1 ( " 1)

Thus, using the above relation recursively, we obtain

s (s)
st (En—s+j ) W (G Es
Waos (K By = YOnzsti(Bnst) §) f(E. ) ies
(n—s—l—j) VOJ( J)

and, since dim K = s, the Steiner polynomial takes the form

Wi(K; Ep) =

fr.E,(2) =2""° Z < " )Wn_s+j(K; En)%

= n—s+7

() WK By)

s
=z"° Z VOln_5+j(En_s+j) J ol (E) 2.
J J

J=0
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Then, for all i = 1,...,s, v is a (non-zero) root of fx.g,(2) if and only if the complex number
Vin = (VOln(En)/VOIn_l(En_l))’yim satisfies

s ; (S (s)
Z VOln_s+j(En_s+j) (voln_l(En_1)>] (]) Wj (K;Es) N

= vol, (Ep) vol, (Ep)

or equivalently, dividing by (Voln,l(En,l) / voln(En))S, if and only if 7; ,, is a root of the polynomial

VOln—(s—j) (En—(s—j))VOIn(En)S_j (j) W;'S>(K; ES)

: L
jgo voly, (Ep)vol, 1 (Ey_1)*™ vol;(Ej)
() s\ ) 1o,
=25 M1—H{E‘S 1+Zﬂs ()W] (KaEs)z]
vols—1(Fs- ol (B))
where, for the sake of brevity we are writing, for each k =2,...,s,

voly,_k (En,k)voln(En)k
VOln(En)Volnfl(Enfl)k '

kon —
By assumption (cf. (4.17)), lim, oo Bkn = Ak, k= 2,..., s, which shows that the pointwise limit

%) WK By)

z2°" Zﬂs jn—zj :fII?,ES<z)

()
lim ZS+SW5 1(K E
vol;(Ej)

n—oo vols_1(Fs—

This, together with the fact that the roots of a polynomial are continuous functions of the coeflicients

(see Theorem [1.5.1)), concludes the proof. O

As a direct consequence of Theorem [4.2.1] for the unit p-balls we obtain Theorem 4.2.2. In
a sense, this result is saying that for high dimension n, the (n-dimensional) Steiner polynomial
Jrpr(2) =300, (D)Wi(K; Bp)2" of a convex body K with fixed dimension dim K = s ‘behaves

as’ its p,-polynomial fi . (2) = Y7 (§ )W(S)(K BY) /K2

Theorem 4.2.2 ([63]). For s € N fized, let K € K® and let vy,...,vs be the roots of fK Bp( z),
1 <p <oo. Embedding K CR", n > s, let yin,...,%Vsn be the non-zero roots of fK;Bﬁ( z). Then,

reordering if necessary,
p

Kn, .
lim ——vin=v;, i=1,...,s.
n—>oof§ 1

Proof. For 1 < p < o0, let r, be the function given by (4.18), which yields the unit p-balls via
(4.16), i.e., E; = BP.

Then, Lemma [4.2.3| ensures that A\, = 1 for all & > 1 (cf. (4.17)), and thus we can apply
Theorem 4.2.1 in order to get the required result. Notice that now, m; = (1/k}),i=1,...,s.
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Finally, we deal with p = co. In that case B° is the n-dimensional regular cube with edge-length

2, and hence
oo n

K
—Yi;n = on—1Yim = 2%in-

o0
Kn=1

Now we observe that, since dim K = s, identifying K with its canonical embedding in eS{rl ¢ R+

s+1
1 s
> <$ * )W( UK B )N = voley1 (K + ABX,) = 2Avoly (K + ABX)

- 1
=1
_2,\§ j( > W, (K BN,

and identifying coefficients of both polynomials we get

1

]. S S
(STL )w( K BX,) = (,f1>wﬁ V(K;B®), i=1,...,s+1.
Iterating this embedding-process till K C R"™, we finally get the identities

n . DPOO\ __ on—s S (s) . OO .
(Z.)Wi(K»Bn)—Q <Z ( )>Wi_(n_s)(K,Bs ), i=mn—8,...,n,

—n—-=:s

and hence,

friBee(2) = Zn: (n)Wz(K, BX)zt = "¢ _i <n> Wi(K; B®)zimts

L N ane s )
_ ,n=s 2n s K Boo t—n—+s
g S (NN L)
_ > S (s) i
=(22)"° <>W] (K; BX)2’
=0 M
s\ WK BR)
=(2z)"° <S> M(sz
=0 M ?
n—s s )T n—s ploo
= (22) < > JT(QZ)] = (22) I"( Boo(2z).
=0 i
Therefore, 2v;,, = v;. It concludes the proof. ]

4.2.2 Oninequalities for m-polynomials

Here we will show that for the p,-polynomial flu(p Bg(z), K € K", the corresponding functional
in K obtained when z = 1 can be bounded just by the last but one relative quermassintegral
(Theorem 4.2.3)). This property will be obtained as a consequence of a more general inequality for

m-polynomials (Proposition [4.2.1)).
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Again, the inequalities (1.20) will be the main ingredient for the proof of this result. It gener-
alizes (for suitable general ‘m-functionals’) the inequality obtained in [43] for the Wills functional
(1.10), namely, that

n
n\ Wi(K) Wno1(K
W(K) - < Wt ()
=3 (7)) <

The proof follows the idea of the one in [43].

Proposition 4.2.1 ([63]). Let m = (m;)en be a sequence of positive real numbers such that

((n+ 1)m%/(nmn_1mn+1))n€N is a decreasing sequence and with

2
\= lim (n+1) me

n—oo M Mp_1Mpil

> 0.

Then, denoting by
1\n(n—1)/2 .
Cn()\):{(/\) ifo<A<I,

1 otherwise,

the following inequality holds:

fR.z(1) < muvol(E) Cp(A) " Mn—1 W1 (KGE)/(mavol(E)) (4.20)

Proof. For the sake of brevity we will write W, = ( " )Wn_T(K; E)my,_,. Then, by means of the

n—r

Aleksandrov-Fenchel inequalities (1.20) we get

— r+1 n—r+1)m2_ =~ =
W2 ( ) n—r WT—lWT+17
r (n - T) Mp—r—1Mp—r+1

Y

T

and the monotonicity hypothesis yields Wg > ((r+1)/ r)AWH W,41. Thus

Nr 1 — 1 Nr— —
/-\\,N 27’"" )\VYVIZT"F )\QY 22,..2)\7"(7“_’_1)&’
Wr+1 r W, r—1 W,_1 W,
and consequently
Wo < Wo o o (=) <Wec ()
AT‘(T‘* )/ ’]"! W() ! WO

Therefore, summing in r, for r =0, ..., n, we obtain

FRE(1) < Wo Cu(n) W1/ Wo, .

Remark 4.4. The sequence m = (1),¢en trivially satisfies the conditions of Proposition [4.2.1 and

hence, Steiner polynomials satisfy a (4.20)-type inequality, namely,

fr:e(1) < vol(E) "W —1(IGE) /vol(E)
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Next we show that p,-functionals also satisfy a (4.20)-type inequality.

Theorem 4.2.3 ([63]). Let K € K" and 1 <p < co. Then

7 Ry

n . . RP
() D v,
1=0

Proof. Since ff(‘pr (z) = iy (1)Wi(K; BL)/kE 2", we have to check that the conditions of Propo-

%

sition [4.2.1] are satisfied for the sequence (1/kh)pen, 1 < p < 0.
First we notice that for p = oo we get

n+ 1k k00 n4 1207120 4]

n (k)2 n (2m2  n

which is clearly a decreasing sequence and lim,_,oo(n + 1)/n = 1. So, we assume 1 < p < oco. On
the one hand, it is easy to check that (cf. (1.14))

2
n+lKy_iKpy  n T (%)

) ()

p p

and using (4.19) for k£ = 2 we get that it converges to 1 when n goes to oo. Therefore A = 1 and
so Cp(A) = 1.

Thus, it remains to be studied the monotonicity of the above sequence, which, for convenience,

can be also rewritten as

n n
n+1 Fﬁi—ﬁﬁﬂ . I (p> r (p + 1) (4.21)
n Kh)2 n _l> (n l)' '
(n) F(p+1 p I » T

In order to do it, we take the real functions fi, fo : (0,00) — R, given by fi(z) = (z — 1/2)logz
and fa(x) = n(z) where n(z) is the function defined by (2.4). The concavity of their first derivatives

(see Lemma 2.1.1), f/, i = 1,2, together with the Mean-Value Theorem, allows to deduce that, in

both cases 1 < p <2 and p > 2, we have
1 1
fi@)+ filx+1)—f] (x—l—p) —fi <x+1—p> < 0.
Hence, the real functions h; : (0,00) — R, i = 1,2, given by
1 1
hi(z) = fi(z) + filz + 1) — f; $+5 — fi $+1—5 ;

are strictly decreasing, which implies that e (®)+/2(*) is s0. Now, Stirling’s formula (1.17) for the

gamma function I'(z) allows to write

D(z)l(z+1) _ @)+ ()
D(z+1-T(x+ 1)
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Thus, all together, we can conclude that the sequence in (4.21)) is strictly decreasing in n.

Therefore, all conditions in Proposition 4.2.1 are satisfied, and thus, inequality (4.20) for E = B}
and m = (1/k%),en shows that ff(’pr(l) < eWn1(KsBr)/s 1 ag desired. O

4.3 On the roots of the Wills functional

In this section we deal with some (of the above studied) questions for the particular case of
the (classical) Wills polynomial of convex bodies, as well as with the study of the size of its roots,
bounding them in terms of functionals like the in- and circumradius of the set. We also relate the

roots of the Steiner and the Wills polynomials.

To this end, and for the sake of brevity, in the following the Wills polynomial of K € K™,

fhep, (2) = i (?) W;(ZK)ZZ’

=0

regarded as a formal polynomial in a complex variable z € C, will be (re)written as

g (z) = Zn: (7;) Woilth) i iVi(K)zi.

i=0
Remark 4.5. We would like to point out that, since

9x(2) = 2" fic.p, <1> ’

z

both real polynomials have essentially the ‘same’ non-zero roots, in the sense that if v € C, v # 0,
is a root of gi(z), then v/ ]1/\2 is a Toot of ff(;Bn(z) and vice versa. Moreover, by the homogeneity
of the quermassintegrals we have that for any K € K" and all X > 0, g\r(2) = grx(\z); thus,
for the sets of roots of such polynomials there will be no difference regarding their structure and
description. In this way, the set R9(n; By) (cf. (4.5)) turns out to be the set of all roots of gi(z),
K € K™, in the upper half-plane, plus the origin, because gi(0) # 0 for any K € K", since the

constant term of g (z) is always 1.

We notice that gx(z) (and hence its roots) does not depend on the dimension of the space R"
where K is embedded, because the intrinsic volumes of K have this property. Thus, from now on

and unless we explicitly say the opposite, we will always assume that for K € K", dim K = n.

4.3.1 The cone of the roots of the Wills polynomial

We start this subsection studying the structure and the monotonicity of the set of roots of the
Wills polynomial in the upper half-plane, i.e., R9(n; By,) (cf. (4.5)).
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Theorem 4.3.1 ([30]). RY(n; By,) is a convex cone, containing the non-positive real axis R<o and

monotonous in the dimension, i.e., R9(n; B,) C RI(n + 1; Bpt1).

Proof. The inclusion RY(n; B,) C RI(n+1; By41) is a direct consequence of the fact that intrinsic
volumes remain unchanged if a convex body K is embedded in any Euclidean space of bigger

dimension. The remaining properties are just a consequence of (the proof of) Theorem 4.1.3. I

Remark 4.6. It is well-known (see e.g. Proposition 3 in [61)]) that if P is an orthogonal box with
edge-lengths ay, . ..,a, > 0, then the roots of gp(z) are vi = —1/a;, i = 1,...,n. In particular, the
Wills polynomial of the n-dimensional cube of edge-length a, gac, (2), has an n-fold root v = —1/a.

In the particular cases n = 2,3, we can precisely describe the cones RY(2; By) and RY(3; Bs).
Before giving this characterization we study the weak stability of the Wills polynomial, i.e., we
study the inclusion

RI(n; By) C {z € C":Rez <0} U{0},

since it will be needed in the proof of such result (Theorem 14.3.2). The main ingredient in order
to do it will be again inequalities (1.20) and (1.21)).

Proposition 4.3.1 ([30]). Wills polynomials are weakly stable if n < 7. For n > 14 we have
{z € C":Rez <0} C RI(n; By).

Proof. Tt is easy to check that (1.21)) ensures that the stability criterion given by Theorem [1.5.2)is
fulfilled for n = 7. The weak stability property for all n < 6 follows from the monotonicity of the
cone of the roots (see Theorem [4.3.1). Finally, it can be checked with a computer or by applying
the Routh-Hurwitz criterion (see Theorem [1.5.3) that the polynomial

14

14 1 )

9814 (2) = K14 E < ; > 2
1=0

R14—i

has a root with positive real part (v ~ 0.04562 + 1.81036i). The non-stability property for all

n > 14 is deduced again from the monotonicity of the cones (see Theorem 4.3.1). O

We observe that several of the above properties present restrictions in the dimension, in contrast
to the known results for the roots of the relative Steiner polynomials ([27]) or, in a more general
context, to those ones for the roots of the p-polynomials, for any measure p on R>q (see Section/4.1)).
It is due to the fact that in higher dimensions we do not have enough information about the so-called

‘full system’ of inequalities among the quermassintegrals (cf. e.g. Problem 6.1 in [21]).

So only in dimensions 8 < n < 13 we do not know whether Wills polynomials may have roots
with positive real parts. Obviously, by the convexity of the cone RY(n; By,), the existence of a root
with positive real part implies the existence of a pure imaginary complex root. However, not all

roots can be of that type. More precisely:
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Proposition 4.3.2 ([30]). There ezists no convex body K € K™ such that all roots of gi(z) are

imaginary pure complex numbers (excluding the real root existing in odd dimension).

The proof of this result follows similar steps to the one of the corresponding result for the

Steiner polynomial (Proposition 2.1 in [26]). We include it here for completeness.

Proof. By Proposition [4.3.1] all roots of gx(z) are contained in the (open) left half-plane if n <7,

and so we may assume that n = dim K > 8.

Let K € K" be a convex body, n even, such that all roots of gx(z) are {£b;i,j =1,...,n/2},

with all b; > 0. Then
n/2

gx(2) =Y Vi(K)2' = vol(K) [[(* + b)),
=0

j=1
which implies Vo;11(K) =0 for all i = 0,..., (n — 2)/2. In particular, V{(K) =0, i.e., dim K = 0,

a contradiction.

For n odd, let K € K™ be such that the roots of gk (z) are {—a,+b;i,j =1,...,(n —1)/2},

a,b;j > 0. Then
(n—1)/2

g (2) =) _Vi(K)z' =vol(K)(z+a) [[ (z*+1))
i=0 j=1
and, in particular, we have
(n—1)/2 (n—1)/2
vol(K)a ] v =1, vol(K) [] b =Vi(K), vol(K)a=V, 1(K).
j=1 j=1

Thus we get the relation V,_1(K)V1(K) = vol(K), which implies, by (1.9) and inequality (1.21),
that y,_1/k, > n?/2. It contradicts the well-known inequality

2 2
T oo =z (4.22)
n+1 Rn—1 n

(see e.g. Theorem 5.3.2 and page 216 in [58]) since n > 1. O

Next we come to the characterization of the cones RY(2; By) and RY(3; Bs3).

Theorem 4.3.2 ([30]). RY(2; B2) = RY(Ba; B2) and RY(3; Bs) = RY(B3; Bs).

Proof. We start determining the 2-dimensional cone RY(2; By). Let —a+bi € CT be a root of a Wills
polynomial g (z) for some planar convex body K € K2. By Proposition 4.3.1 and Theorem 4.3.1
we may assume that both a,b > 0. Thus gx(z) = vol(K)(2% + 2az + a® + b?), and we have the
identities 2vol(K) a = V1(K), vol(K)(a® + b?) = 1, from which we get

1 2a

VOI(K) = m, Vl(K) = m
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Then, the isoperimetric inequality (1.26)) in terms of the intrinsic volumes (cf. (1.9)), namely,
V1(K)? > mvol(K),

yields
4—7
T

a. (4.23)

If we have equality in (4.23)) then equality in the isoperimetric inequality holds, which implies that
K is the Euclidean ball. Conversely, if K = By then gp,(z) = 722 + 7z + 1, whose (complex)
roots give equality in (4.23). Therefore, equality holds in (4.23) if and only if K = By (up to
homotheties). This, together with the fact that RY(2; Bs) is a cone (Theorem [4.3.1)) shows that

f4 —
RY(2; Bz) = RY(B2; B2) = {x+yi€@+: 7T7rx+y§0},

Now we consider the 3-dimensional case. Since gp,(z) = (47/3)2% + 2w2% + 42 + 1, it can be
checked that (cf. (4.3))
3(t- +1¢
— M ~ 0.9624,
t—t, 27

1/3

mo = ‘tan 9933_33

where ¢4+ = (V672 — 397 + 64 £ \/7(7 — 3))

Let —a+bi € C* be a root of a Wills polynomial g (z) for some K € K3. By Proposition 4.3.1
and Theorem [4.3.1 we may assume that both a,b > 0 and taking m = b/a, m > 0, we have to show

that m < mg. Let —c be the real root of gx(z), ¢ > 0. Then we have the identities

Vs (K) 2, 52 Vi(K) 2, 52
2 = b 2 = b°) = 4.24
(2a+c) vol(K)’ (a7 +b" + 2ac) vol(K)’ cla” +57) vol(K)’ (4.24)
and using (1.9), inequalities (1.20) for ¢ = 1,2 yield, in terms of a,c, m,
4 16 16
i) -+ ( - 27r) ac+ [ —7(1 —|—m2)} a? >0,
3 3 3 (4.25)

i)  [4r —8(1+m?)|c* + [da(1+ m?) (7 — 4)]c + ma®(1+m?)* > 0,
respectively.

We assume m > mg. On the one hand it can be seen that, since ¢ > 0, inequality (4.25) i) is

equivalent to

a <\/37r(4m2 + 37 —12) + 3w — 8)

4
On the other hand, a direct computation shows that the above condition on m also implies that

inequality (4.25) ii) holds if and only if

c>c=

a(m? +1) (\/2(7rm2 —3r+8)+m— 4)

O<c<c=
€= 2(2m? — 7 + 2)




96 On the roots of generalized Wills p-polynomials and m-polynomials

Hence, ¢ < ¢ < ¢, which is a contradiction because it can be checked that condition m > mg gives

¢ < ¢. Therefore m < mg, and using the convexity of the cone RY(3; Bs) we get the result.

Moreover, since equality in (1.20) for £ = B, and ¢ = 2 holds only for the ball (see Theo-
rem [1.4.3), an analogous argument to the one of the case n = 2 shows that the equality m = my
holds if and only if K = Bs (up to homotheties). O

We observe that, in particular, RY9(2; B2) and RY(3; Bs) are closed convex cones, but we do not

know whether this holds in general.

Remark 4.7. From the above proof, it is also obtained that the ball B, is the only convex body
such that one of the roots of gp, (z) lies on (determines) the boundary bd RY(n; B,,)\R<q, n = 2, 3.

Furthermore, from the proof of the above theorem, we may assert that these cones remain

unchanged if any gauge body E € K™ is considered, n = 2, 3. In other words:

Proposition 4.3.3 ([29]). RI(i) = RI(B;; B;), i = 2,3.

4.3.2 Relating the roots of the Wills and Steiner polynomials

In Theorem 1.2 of [26] and Proposition 1.2 in [27] it is proved that
R(2; B2) = R<o,
R(3; B3) = {:E~I—yi€ Ct:z+V3y< O}U{O},
R(4;By) ={z+yieCt:z+y <0} U{0},

(cf. (4.7)). A first direct observation from Theorem 4.3.2 is that clR(n; B,) € RY(n; B,,) for

dimensions n = 2,3. Moreover, it is easy to check that in dimension 4, the cone
RI(By;By) = {z+yie Ct:ax+y <0},

a =1.42224 ..., and hence we also have the strict inclusion clR(4; B4) € RY(By; B4) C RI(4; By).
We cannot expect, however, that clR(n; B,) € RI(By; B,) for any dimension; indeed, it can be
checked with a computer or by applying the Routh-Hurwitz criterion that gp,,(z) is weakly stable,
whereas the (weak) stability of the Steiner polynomial fails for n = 12 (see Remark 3.2 in [25]).

Let v;, i = 1,...,n, be the roots of the Steiner polynomial fx.p, (%) which can be rewritten as
fr:B, (2) = 30 kiVa—i(K)2%, for K € K™. From the identity

n

Z KiVn—i(K)2' = Ky H(Z = %)
i=0

i=1
we get
ifn—i
(—1) n V,L(K) :Si(’}/l,...,’}/n). (426)

Rn
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Similarly, taking the Wills polynomial gx(z) with roots 4, i = 1,...,n, from the relation

gr(2) =Y Vi(K)z' = vol(K) [[(z — )
=0

i=1

we get,
(_ )z Vi (K )
vol(K)
Then from (4.26) and (4.27) we easily obtain the following relations between the roots of the Wills

and the Steiner polynomials:

=8V, - Vn). (4.27)

si(fyl—l,._,,fygl):misi(yl,...,un) and
sz(yfl,...,ygl): /{n'si(’)/]_?...,’)/n).
n—1

However, just checking some easy examples, it can be seen that it is not possible to get relations of
the type v; = ¢(n)v;, for an n-dependent constant ¢(n). Theorem [4.3.3] states a kind of asymptotic

relation between them, which is a particular case of Theorem 14.2.2] for p = 2.

Theorem 4.3.3 ([30]). For s € N fized, let K € K* and let v1,...,vs be the roots of gi(z).
Embedding K C R", n > s, let yin,...,7sn be the non-zero roots of fi.p, (). Then, reordering if
necessary,

Vi

. Rn .
lim ——;n i=1,...,s.

n—0oo Kp—1 N ‘I/i|27

Proof. We recall (Remark 4.5) that v; is a root of gx(2) if and only if v;/ |v;|* = 1/7; is a root of
JEp.(2) = Yisg Vei(K)2', i =1,...,s. Thus it suffices to show that (reordering if necessary)

. Kn ~ .
lim Yin = Ui, i=1,...,s,
n—00 Kp—1
where 7;, ¢ = 1, ..., s, are the roots of ff(,BS (z), which is a direct consequence of Theorem [4.2.2. [

In a sense, the above theorem says that for high dimension n, the Steiner polynomial fx.p, (2)

of a convex body K with fixed dimension dim K = s ‘behaves as’ its Wills polynomial gx(2).

Moreover, from Theorem 14.3.3] we immediately get the following corollary, which shows the
asymptotic behavior of the (modulus and the argument of the) roots of the Steiner polynomial

with respect to the ones of gx(2).

Corollary 4.3.1 ([30]). Let K € K* and let v1,...,vs be the roots of gi(z). Embedding K C R",
n>s, let yipn,...,Ysn be the non-zero roots of fi.p, (2). Then the following properties hold:

i) limp oo [Yin| =00, i =1,...,5.

ii) Reordering if necessary, lim, oo argy;, = argy;, it =1,...,s.
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Proof. Property (ii) is straightforward.. For (i), using (4.22),

Kn—1 1 . n 1

4.3.3 The roots of the Wills polynomial and other functionals

Here we consider the problem of relating the roots of the Wills polynomial of a convex body K
with other functionals, namely, the in- and circumradius of K and the so-called successive minima
of K with respect to the integer lattice Z™. We will start this subsection bounding the roots of the

Wills functional in terms of the in- and circumradius.

Proposition 4.3.4 ([30]). Let K € K™. Then the roots v;, i = 1,...,n, of the Wills polynomial
9K (2) are bounded by

A
S
A

R (4.28)

Both inequalities are sharp. In particular, we have

1 1 <l < n 1

— < |y| £ =————.

2nR(K) ~— "~ 2r(K)
Proof. In order to bound the roots of gx(z), using Theorem [1.5.4, we have to find the minimum
and maximum of V;(K)/V;11(K), j =0,...,n— 1. Writing this quotient via (1.9) in terms of the

quermassintegrals, we get

Vi(E) _ j+1sn—j1 Waj(K)
Vit (K)  n—j kn—j Wpj1(K)

Aleksandrov-Fenchel inequalities (1.20) ensure that W,,_;(K)/W,_;_1(K) is increasing in j, and

clearly j + 1 is so. So we have to study the monotonicity of ﬁn_j_l/((n — j)mn_j) in j.
In order to do it, we consider the sequence vy, = Kp—1/(mky,). Then, by (1.16)),

1 Km, 1 27

i’ﬁm—&-l
m+1lumso m+1m MEp_1

and using Aleksandrov-Fenchel inequalities (1.20) for k,, = W,,,(C},), we get

1 Km 1 Km—2 Km—1

Km

< = Ym-

Sl=

m+1rmer  MER—1

Therefore, y,, is a decreasing sequence in m, i.e., kp—j—1/ ((n — j)nn_j) is an increasing sequence
in j. Thus, altogether we get

ﬁWl(K) Vn_l(K)
2Wo(K)  vol(K)

1 1 Kpa V;(K)

= <
B VJ+1(K)

VI(K) Ewn—l(K) =

for j =0,...,n— 1, which shows (4.28)).



4.3 On the roots of the Wills functional 99

We notice that for n = 1, any line segment gives equality in both inequalities. For arbitrary
dimension, let Q(¢) be the n-dimensional orthogonal box with edge-lengths 1,¢,...,¢, ¢ > 1, for
which V;(Q(¢)) =s;(1,4,...,¢) and vy =1 is one of the roots of go(s)(2) (see Remark 4.6). Then

V(@) _ e e e
—0c0 VO](Q(@) Jaess gn—1

= 1 = ‘]/1‘7

which shows that the upper bound is sharp. Analogously, taking Q(¢) the n-dimensional orthogonal
box with edge-lengths 1,¢,...,/¢, £ < 1, then

lm——=— = lim——— = 1=,
1—0 Vl (Q(f)) {—0 (’I’l — 1)6 =+ 1 ’ 1‘
which shows that the lower bound is sharp.
The bounds in terms of the in- and circumradius follow immediately from (1.12) (via (1.9)),
taking into account that k,_1/k, > 1/2 for all n > 1. O

For the next proposition, we need to deal with a special kind of sets: the tangential bodies of
a ball (see Definition 1.11 and Remark [1.2).

Proposition 4.3.5 ([30]). Let K € K™ and let v;, i = 1,...,n, be the roots of the Wills polynomial
9k (2). If Rev; = —a, a >0, for alli=1,...,n, then

Lo
MM(K) — "= 2u(K)

Equality holds in the right inequality if and only if K is a tangential body of the ball r(K)B,,.

Proof. Using (4.27) for i = 1 and (1.9), we have

N o Vau(K) . nWi(K)
”a_;Re”_;”_ Vol(K) 2 Wo(K)

and thus, by (1.12),

1 1
<a< .
MM(K) = "= 2u(K)
Finally, equality a = 1/(2r(K)) holds if and only if we have equality in Wo(K) > r(K)Wy(K), i.e.,
when K is a tangential body of r(K)B,, (see Theorem 1.3.1 and Remark [1.2)). O

Proposition 4.3.5/ contrasts with the case of the Steiner polynomial, where only the one of the

ball can have all its roots with equal real part (in fact, it has an n-fold real root).

Remark 4.8. From the above argument we also notice that

SR(K) < |ReV1+-~~+ReI/n| <|Revi|+ - -+ |Rewyl|.



100 On the roots of generalized Wills p-polynomials and m-polynomials

In [61] Wills studied relations between the roots of the Wills polynomial of a 0-symmetric convex

body and its successive minima. Here we slightly improve some of those relations.

Proposition 4.3.6 ([30]). Let K € K" be 0-symmetric and let v;, i = 1,...,n, be the roots of the
Wills polynomial, ordered such that |vi| < --- < |v,|. Then:

i) N1 (K) A (K) <277 (D) via] - Jvw], i =1, ,n — 1.
i) Ap(K) + (n—Dr(K)" 1/ RK)" < —2(11 + -+ +vp).
Equality holds in (i) if and only if K = By,.
It improves items (d) and (b) of Theorem 1 in [61], respectively.

Proof. In [24] the following sharp inequality was proved for a 0-symmetric convex body K € K™:
Ait1(K) ... M\ (K)vol(K) < 2"7'V(K),

i=1,...,n — 1. This, together with (4.27), gives, on the one hand,

—i n—i n—i T
)\H—l(K))\n(K) < 2" (—1) Sn—i(Vly--~7Vn) SQ (Z,>‘Vi+1...yn‘.

On the other hand, the known Wills conjecture, proved independently by Bokowski and Diskant,
states that (see e.g. page 389 of [52] and the references inside)
vol(K) — r(K)S(K) + (n — 1)k,r(K)" < 0.

Taking into account that A, (K) < 1/r(K), because K D r(K)B,, and also that vol(K) < k,R(K)"
(cf. (1.12)), using (4.27) we get the required inequality:

n Vn— K S(K 1 Fn .
_2;%:2 VOIEE()):VOE(K))>r(K)+(n_1) r(K)n

r(K)"!
R(K)™

Since equality in Wills’ conjecture holds if and only if K is the Fuclidean ball, we obtain the same

> M(K) + (n—1)

characterization for the equality case in (ii). O

4.3.4 A brief note on the Wills polynomial of the ball

The Wills polynomial of the ball satisfies the nice property (see identity (4.4) in [60])
il Ky gg;_i)(z) =nlk, gp,(2). (4.29)
We have also proved that the Wills polynomial of the ball determines the cone of roots, i.e.,
RI(n; By) = RY(By; By), for dimensions n = 2,3. In this section we show some additional proper-

ties of this particular polynomial gp, (%) and the cone RY(B,,; By,).
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Proposition 4.3.7 ([30]). The Wills polynomial gg, (%) is weakly stable for n < 13 and it is not
for n > 14. Moreover, RI(Bp—1;Bn—1) C RI(By; By) if n < 14.

Proof. Applying the stability criterion given by Theorem [1.5.2, it is easy to check that gp, (2)
is weakly stable for n < 13, whereas the polynomial gp,,(z) has a root with positive real part
(v ~ 0.04562 + 1.81036i).

Let n > 14 be any positive integer such that the polynomial gp (z) is not weakly stable. If we
assume that gp, ., (z) is weakly stable, then we have conv{v : gp,,,(v) =0} € {z € C: Rez < 0}.
The well-known Gauss-Lucas theorem states that all roots of the derivative of a non-constant
polynomial lie in the convex hull of the set of roots of the polynomial (see Theorem [1.5.5). This
result together with the fact gi (2) = (nkn/kn-1)gB,_,(2) (cf. (4.29)) shows that g, (z) is weakly

stable, a contradiction. So, gp,_,(2) is also weakly stable.

On the other hand, let A denote the set of conjugates of complex numbers in A C CT. Because
of the (weak) stability of gg, (2), the cone RY(By; B,) U RYI(By; B,,) is convex for n < 14, and then
it contains the set conv{v : gp,(v) = 0}. Again, Gauss-Lucas’ theorem together with (4.29) prove
that RY(Bp—1; Bn—1) C RY(By; Bp), n < 14. Numerical computations give the strict inclusion.
Finally, the non-stability of ¢gp,,(2) concludes the proof. O

We finish the chapter by showing the following result.

Proposition 4.3.8. Let vy, ..., v, be the roots of the Wills polynomial gp,(2), and let K € K™ be
such that its Steiner polynomial f.p, (%) has only (zero and non-zero) real roots yi,...,v,. Then

for all v € C* with gk (v) = 0 the following properties hold:

i) If n > 14, v € Aconv{vy, ..., vp}, with A = max{ ||, ..., ||}

it) If n < 14, v € RI(By; By). Moreover, RI(By; By), n < 14, contains the roots of the Wills
polynomials g (2) of all convex bodies K € K*, s < n, such that fi.B,(2) has only real roots.
Proof. We notice that if fx.p, (2) has only real roots, then f(z) = E?:o (?)Wj(K)z”_j also does it.
First we show i). Since gp, (z) is not weakly stable for n > 14, there exists one root of gp, (%),

say v, such that Rer; > 0. Moreover, since

—iRel/i: —il/izﬁ >0
=1 =1 2

(cf. (4.27)), there exists another root of gp, (2), say vo, with Revs < 0. Then 0 € conv{vy,...v,}
and hence conv{vy,...vy,} is the intersection of half-planes H., = {z € R? : (z,u;) < ¢;}, with
c¢j > 0. Theorem [1.5.6 applied to each H.; and to the polynomials (1/x,)gg, (2), f(2) and gx (),

ensure that all roots of gk (z) lie in H),,, for all j, and thus also in A conv{vy,...v,}.
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For ii) we just have to apply again Theorem [1.5.6 to the polynomials (1/k,)gs, (2), f(z) and
gk (%), and to the two half-planes determining the convex cone RY(By,; B, )U RI(B,,; By), n < 14, to
obtain that every root of gx(z) is of the form v = rw for r € R and w € RY(By; Bn)U RI(By; By).
The last assertion arises from the facts that any Wills polynomial is invariant with respect to the
embedding dimension and that RY(Bs; Bs) € RY(By; By,) (Proposition 4.3.7). O
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Affine, 13
Beta, [11
Concave, 3
Convex, 3
Elementary symmetric, [72
Gamma, 10

Log-concave, |3

g, measure, 68

I', 10

G(K),8

9K (2),92

gamma function, [10

HL 3
Hausdorff metric, 4
homothetic, 2
hull
Affine, [1
Convex, 2

Linear, 2

Im z, 68

int M, 1

incenter, |8

inequality
Aleksandrov-Fenchel, 13
Arithmetic-geometric mean, [17
Brunn-Minkowski, [15

multiplicative, 15

Cauchy-Schwarz, [17
Holder, [17
Isoperimetric, 16
Minkowski, 16
Prékopa-Leindler, 16

inner parallel body, 143

inradius, |8

intrinsic volume, [7

K+ \E, T
K_1,58
K~ \FE, 43
Kn, 0
Kb, 10
K, 136
K, 2

0,2
K| H,3
K(u), 25
kernel, 58

Mi(K), 9
lin M, 2
L3
lattice-point enumerator, [8
linear hull, 2
log-concave
function, 3
measure, 80
Ultra, [72

mi(p), 64

W, measure, |64

p, Measure, |84

mean width, 6

Minkowski
addition, 2
inequalities, [16

mixed volume, 5

moment problem, 80

N
N(K,z),11
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normal cone, [11 quermassintegral, |6
Steiner formula, [7
Wills functional, (65

Routh-Hurwitz criterion, 18

o
outer parallel body, [7

| o

S

p(K), 6 s-(z1 z ) 72

llel bod S
parahfneroéé on (K), 13

’ S(K), 6

Outer, [7 SEK)E) .
perimeter, 6 S"_l, 1(; :
polynomial ’

sausage, [12

m-polynomial, 63
POy ) Schwarz symmetrization, [13
p-polynomial, (67

simplex, 2
Stable, [18 ] .
) singular point, 11
Steiner, [7 -
. stability, [18
Alternating, [43 o
) criterion, [18
Wills, 67
Weak, 82
polytope, 2 )
Steiner
Q formula, [7
quermassintegral, 6 for quermassintegrals, |7
Relative, |6 polynomial, [7
Alternating, 43
R Stirling formula, 11
R(K;E), 8 strictly
R(K), 8 concave function, 3
r(K; E), 8 convex function, (3
r(K),8 successive minimum, 9
Rez, 68 summand, 43
relint M, 1 supporting
R™(n), 80 halfspace, 3
RM(K; E), 68 hyperplane, [3
RH(n), 68 surface area, 6
RH*(n; E), 69
R(n), 69 T
R(n; E), 69 9’[‘(;E, 68
relative tangential body, [11
circumradius, |8 theorem

inradius, 8 Blaschke selection, 4



112 Index

Brunn-Minkowski, 15
Favard, 12

Fubini, 5
Gauss-Lucas, 18
Shephard, [14

U

ultra-logconcave sequence, 72

volume, 4
Intrinsic, |7
Mixed, 5

W(K; E), 65
WH(K; E), 65
W, (K), 6
wW(K), 6
Wi(K; E), 6
W(K),8
Wills
functional, |8
Relative, |65
polynomial, 67

/)





