Time-varying networks approach to social dynamics:
From individual to collective behavior

Candidate
Michele Starnini

Supervisor
Prof. Romualdo Pastor-Satorras

October 2014
Abstract

In this thesis we contribute to the understanding of the pivotal role of the temporal dimension in networked social systems, previously neglected and now uncovered by the data revolution recently blossomed in this field. To this aim, we first introduce the time-varying networks formalism and analyze some empirical data of social dynamics, extensively used in the rest of the thesis. We discuss the structural and temporal properties of the human contact networks, such as heterogeneity and burstiness of social interactions, and we present a simple model, rooted on social attractiveness, able to reproduce them. We then explore the behavior of dynamical processes running on top of temporal networks, constituted by empirical face-to-face interactions, addressing in detail the fundamental cases of random walks and epidemic spreading. We also develop an analytic approach able to compute the structural and percolation properties of activity driven model, aimed to describe a wide class of social interactions, driven by the activity of the individuals involved. Our contribution in the rapidly evolving framework of social time-varying networks opens interesting perspectives for future work, such as the study of the impact of the temporal dimension on multi-layered systems.
Contents

Invitation 1

1 From empirical data to time-varying networks 3
 1.1 Time-varying networks formalism 6
 1.1.1 Basics on temporal networks 8
 1.1.2 Time-respecting paths 9
 1.2 Empirical data of social dynamics 12
 1.2.1 Face-to-face interactions networks 13
 1.2.2 Scientific collaboration networks 25

I Models of social dynamics 29

2 Human contact networks 33
 2.1 A model of social attractiveness 35
 2.2 Modeling face-to-face interactions networks 38
 2.2.1 Individual level dynamics 39
 2.2.2 Group level dynamics 43
 2.2.3 Collective level dynamics and searching efficiency 44
 2.3 Model robustness 48
 2.4 Summary and Discussion 50
Contents

3 **Activity driven networks** 55
3.1 The activity driven network model 57
3.1.1 Model definition 57
3.1.2 Hidden variables formalism: A short review 58
3.2 Time-integrated activity driven networks 61
3.2.1 Mapping the integrated network to a hidden variables model 62
3.2.2 Topological properties 64
3.3 Temporal percolation on activity driven networks 75
3.3.1 Generating function approach to percolation 76
3.3.2 Effect of degree correlations on the temporal percolation threshold 80
3.3.3 Application to epidemic spreading 84
3.4 Extensions of the activity driven model 86
3.5 Summary and Discussion 89

II **Dynamical processes on empirical time-varying networks** 93
4 **Random walks** 97
4.1 A short overview of random walks on static networks 99
4.2 Synthetic extensions of empirical contact sequences 102
4.2.1 Analytic expressions for the extended sequences 106
4.3 Random walks on extended contact sequences 107
4.3.1 Network exploration 107
4.3.2 Mean first-passage time 111
4.4 Random walks on finite contact sequences 114
4.5 Summary and Discussion 120

5 **Epidemic spreading** 123
5.1 Epidemic models and numerical methods 126
Contents

5.2 Immunization strategies .. 129
5.3 Numerical results ... 131
 5.3.1 Effects of temporal correlations 134
 5.3.2 Non-deterministic spreading 138
5.4 Summary and Discussion 138

6 Conclusions and future perspectives 145

Acknowledgements .. 151

List of Publications .. 153
Contents

viii
Invitation

Network science is, and will remain in the future, a crucial tool to understand the behavior of physical as well as social, biological and technological systems. The network representation is indeed appropriate to study the emergence of the global, system-scale, properties of systems as diverse as the Internet or the brain. In the traditional framework of network science, graphs have long been studied as static entities. Most real networks, however, are dynamic structures in which connections appear, disappear, or are rewired on various timescales. Social relationships and interactions, in particular, are inherently dynamically evolving. Very recently, the interest towards the temporal dimension of the network description has blossomed, giving rise to the emergent field of temporal or time-varying networks. This boost in network science has been made possible by the social data revolution, with the collection of high resolution data sets from mobile devices, communication, and pervasive technologies. The ever increasing adoption of mobile technologies, indeed, allows to sense human behavior at unprecedented levels of detail and scale, providing to social networks a longitudinal dimension that calls for a renewed effort in analysis and modeling. In the future, the digital traces of human activities promise to transform the way we measure, model and reason on social aggregates and socio-technical systems. This rapidly evolving framework brings forth new exciting challenges. The social data revolution joined with the network science approach will allow us to leverage the study of social dynamics on a dif-
different scale. We are on the way to the next paradigm shift in the understanding and modeling of the social dynamics, from the individual behavior to the social aggregate, and my thesis will dive directly into the core of this endeavor.

This thesis is organized as follows. In Chapter 1 we introduce the time-varying networks formalism and we present and analyze several empirical data sets of social dynamics, extensively used in the rest of the thesis. The main body of the exposition is then split into two parts. Part I will deal with models of social dynamics, focusing on two different kinds of social interactions: face-to-face contact networks and activity driven networks. In Chapter 2 we present a simple model able to reproduce the main statistical regularities of empirical face-to-face interactions. Chapter 3 is instead devoted to the analytic study of the topological properties and the percolation processes unfolding on the activity driven networks model. Part II will uncover the behavior of dynamical processes running on top of empirical, temporal networks. We will focus on two diffusive processes: Chapter 4 is devoted to the paradigmatic case of random walks, while in Chapter 5 we consider epidemic spreading, with particular attention to the impact of immunization strategies on the spreading outbreak. A detailed summary and discussion is reported at the end of each Chapter, while conclusive remarks and perspectives for future work are drawn in Chapter 6.

During my PhD studies I have been mainly focused on the topics exposed in the previous paragraph, and main results obtained have been published in scientific papers [147, 149, 150, 151, 152, 153]. In my PhD program I also studied the emergence of collective phenomena in social systems, such as synchronization of Kuramoto oscillators, emergence of cooperation in social dilemmas and achievement of consensus in the voter model [148]. Since these studies have been performed on static networks, I decided not to include them in the present thesis. The emergence of collective phenomena in time-varying networks is, however, a promising hot topic I plan to explore in future work.
From empirical data to time-varying networks

Modern network science allows to represent and rationalize the properties and behavior of complex systems that can be represented in terms of a graph [112, 43]. This approach has been proven very powerful, providing a unified framework to understand the structure and function of networked systems [112] and to unravel the coupling of a complex topology with dynamical processes developing on top of it [44, 22]. Until recently, a large majority of works in the field of network science has been concerned with the study of static networks, in which all the connections that appeared at least once coexist. This is the case, for example, in the seminal works on scientific collaboration networks [108], or on movie costarring networks [15]. In particular, dynamical processes have mainly been studied on static complex networks [22, 44, 125]. Presently,
however, a lot of attention is being devoted to the temporal dimension of networked systems. Indeed, many real networks are not static, but are actually dynamical structures, in which connections appear, disappear, or are rewired on various timescales [68]. Such temporal evolution is an intrinsic feature of many natural and artificial networks, and can have profound consequences for the dynamical processes taking place upon them. A static approximation is still valid when such time scales are sufficiently large, such as in the case of the Internet [129]. In other cases, however, this approximation is incorrect. This is particularly evident in the case in social interactions networks [171], in which social relationships are represented by a succession of contact or communication events, continuously created or terminated between pairs of individuals. In this sense, the social networks previously considered in the literature [108, 15, 96] represent a projection or temporal integration of time-varying graphs, in which all the links that have appeared at least once in the time window of the network evolution are present in the projection.

The so-called “data revolution” has spurred the interest in the temporal dimension of social networks, leading to the development of new tools and concepts embodied in the rising field of temporal or time-varying networks [68]. The recent availability of large digital databases and the deployment of new experimental infrastructures, indeed, such as mobile phone communications [120], face-to-face interactions [34] or large scientific collaboration databases [131], have made possible the real-time tracking of social interactions in groups of individuals and the reconstruction of the corresponding temporal networks [118, 13, 56, 34]. Specially noteworthy in this context is the data on face-to-face interactions recorded by the SocioPatterns collaboration [167], which performed a fine-grained measurement of human interactions in closed gatherings of individuals such as schools, museums or conferences. The newly gathered empirical data poses new fundamental questions regarding the properties of temporal networks, questions which have been ad-
addressed through the formulation of theoretical models, aimed at explaining both the temporal patterns observed and their effects on the corresponding integrated networks [180, 77, 146, 149].

Empirical analyses have revealed rich and complex patterns of dynamic evolution [72, 65, 120, 54, 34, 165, 10, 157, 103, 79, 68], pointing out the need to characterize and model them [144, 61, 54, 156, 180]. At the same time, researchers have started to study how the temporal evolution of the network substrate impacts the behavior of dynamical processes such as epidemic spreading [140, 73, 157, 79, 103, 85], synchronization [52], percolation [124, 10] and social consensus [17]. The alternation of available edges, and their rate of appearance, indeed, can have a crucial effect on dynamical processes running on top of temporal networks [151, 169, 62, 130]. A key result of these efforts has been the observation of the “bursty” dynamics of human interactions, revealed by the heavy tailed form of the distribution of gap times between consecutive social interactions [118, 120, 72, 65, 165, 34], contradicting traditional frameworks positing Poisson distributed processes. The origin of inhomogeneous human dynamics can be traced back to individual decision making and various kinds of correlations with one’s social environment, while reinforcement dynamics [180], circadian and weekly fluctuations [76] and decision-based queuing process [13] have been proposed as explanations for the observed bursty behavior of social systems. Burstiness, however, turned out to be ubiquitous in nature, appearing in different phenomena, ranging from earthquakes [39] to sunspots [176] and neuronal activity [83], leading to the observation of a universal correlated bursty behavior, which can be interpreted by memory effects [78].

The heterogeneous and bursty nature of social interactions and its impact on the processes taking place among individuals makes evident the need of no longer neglecting the temporal dimension of social networks. In this Chapter we present some empirical data of social dynamics, and we introduce the time-varying networks formalism used to analyze them. First, in Section 1.1 we will give some basic definitions and
Chapter 1. From empirical data to time-varying networks

concepts useful to understand the behavior of temporally evolving systems, extensively used in the following Chapters. Then, in Section 1.2 we will present and analyze several data sets of different social interactions. We will discuss in details the fundamental properties of face-to-face contact networks, as recorded by the SocioPatterns collaboration [167], and characterize the main quantities that identify them. This analysis will be useful in the next Chapters, since the SocioPatterns data will be the benchmark for testing the behavior of the model presented in Chapter 2, as well as the substrate for the diffusion of the dynamical processes considered in part II. We will also show the temporal properties of the scientific collaboration networks [108] and introduce the concept of activity potential, at the core of the definition of the activity driven model, which constitutes the object of study of Chapter 3.

1.1 Time-varying networks formalism

Network theory [111] traditionally maps complex interacting systems into graphs, by representing the elements acting in the system as nodes, and pairwise interactions between them as edges. In mathematical terms, a graph is defined as a pair of sets $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{i, j, k, \ldots\}$ is a set of nodes and $\mathcal{E} = \{(i, j), (j, k), \ldots\}$ is a set of edges connecting nodes among them. We usually denote by N the number of nodes and by E the number of edges. A graph can be directed or undirected, where the latter case implies the presence of a link going from node i to node j if and only if the reverted edge, from j to i, exists in the graph. A weighted graph is defined by assigning to each edge (i, j) a weight w_{ij}. Weighted graphs are useful to encode additional information in the network representation. A graph is connected if all possible pairs of nodes are connected by at least one path. A giant connected component, useful to monitor in percolation processes, is the largest connected part of the graph, usually comprehensive of the majority of the nodes. A graph is
1.1. Time-varying networks formalism

usually represented by an *adjacency matrix*, a $N \times N$ matrix defined such that

$$ a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases} \quad (1.1) $$

For undirected graphs, the adjacency matrix is symmetric, $a_{ij} = a_{ji}$.

Network formalism can be easily extended in order to include temporally evolving graphs, best known as temporal or time-varying networks [106, 68]. In temporal networks, the nodes are defined by a static collection of elements, and the edges represent pairwise interactions, which appear and disappear over time. The interactions can be aggregated over a time window Δt_0, corresponding to some characteristic time scale of the dynamics considered, which can be tracked back to technical or natural constraints, or can be arbitrary defined depending on the context under study. For example, the time scale in scientific collaboration networks [108] is given by the interval between consecutive edition of the journal considered, while in physical proximity networks [34] is often established by experimental setup. The choice of the aggregation window Δt_0 is an important issue which can affect deeply the structure of the resulting time-varying networks [89] and have non-trivial consequences in the study of dynamical processes taking place on top of them [138]. However, this procedure is standard in the time-varying networks fields, and represents a tractable and good approximation as far as the aggregation window is not too large [138]. Although the temporal networks formalism is general and suitable for the representation of any time-varying complex system, in the present thesis we will deal exclusively with social interactions, therefore, in the following, we will explicitly consider time-varying social networks, whose nodes and edges represent individuals and their interactions, respectively.
1.1.1 Basics on temporal networks

In order to build a time-varying network representation, all the interactions established within the time window Δt_0 are considered as simultaneous and contribute to constitute a “instantaneous” contact network, generally formed by isolated nodes and small groups of interacting individuals. Thus, temporal networks can be represented as a sequence of T instantaneous graphs G_t, with $t = \{1, \ldots, T\}$, with a number N of different interacting individuals and a total duration of T elementary time steps, each one of fixed length Δt_0. An exact representation of the temporal network is given in terms of a characteristic function (or temporal adjacency matrix $\chi(i, j, t)$), taking the value 1 when agents i and j are connected at time t, and zero otherwise.

Coarse-grained information about the structure of temporal networks can be obtained by projecting them onto aggregated static networks, either binary or weighted. This corresponds integrating in time up to T the interactions between the agents, equivalent to taking the limit $\Delta t_0 \to \infty$. The binary projected network informs of the total number of contacts of any given actor, while its weighted version carries additional information on the total time spent in interactions by each actor [120, 68, 73, 158]. The aggregated binary network is defined by an adjacency matrix of the form

$$a_{ij} = \Theta \left(\sum_t \chi(i, j, t) \right),$$

where $\Theta(x)$ is the Heaviside theta function defined by $\Theta(x) = 1$ if $x > 0$ and $\Theta(x) = 0$ if $x \leq 0$. In this representation, the degree of vertex i, $k_i = \sum_j a_{ij}$, represents the number of different agents with whom agent i has interacted. The associated weighted network, on the other hand, has weights of the form

$$\omega_{ij} = \sum_t \chi(i, j, t).$$
1.1. Time-varying networks formalism

Here, ω_{ij} represents the number of interactions between agents i and j. The strength of node i, $s_i = \sum_j \omega_{ij}$, represents the average number of interactions of agent i at each time step.

The aggregated representation is an useful benchmark to point out the effect of temporal correlations [147], and it allows to identify interesting properties of the system. For example, the correlation between degree and strength of a node represents the tendency of an individual to spend on average more or less time in interactions with the others, depending on the number of different peer he has seen, as we will see in the next Section 1.2. More in general, the strength of links and individuals helps not only to understand the structure of a social network, but also the dynamics of a wide range of phenomena involving human behavior, such as the formation of communities and the spreading of information and social influence [60, 120, 173].

1.1.2 Time-respecting paths

The temporal dimension of any time-varying graph has a deep influence on the dynamical processes taking place upon such structures. In the fundamental example of opinion (or epidemic) spreading, for example, the time at which the links connecting an informed (or infected) individual to his neighbors appear determines whether the information (or infection) will or will not be transmitted. In the same way, it is possible that a process initiated by individual i will reach individual j through an intermediate agent k through the path $i \rightarrow k \rightarrow j$ even though a direct connection between i and j is established later on. This information is lost in the time aggregated representation of the network, where any two neighboring nodes are equivalent [68]. At a basic topological level, projected networks disregard the fact that dynamics on temporal networks are in general restricted to follow time respecting paths [65, 87, 73, 115, 10, 68]. In general, time respecting paths [65] determine the set of possible causal interactions between the agents of the graph, and the state
of any node i depends on the state of any other vertex j through the collective dynamics determining their causal relationship. Therefore, not all the network is available for propagating a dynamics that starts at any given node, but only those nodes belonging to its set of influence [65], defined as the set of nodes that can be reached from a given one, following time respecting paths. Formally, if a contact between nodes i and j took place at times $T_{ij} = \{t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots, t_{ij}^{(n)}\}$, it cannot be used in the course of a dynamical processes at any time $t \notin T_{ij}$. Moreover, an important role can also be played by the bursty nature of dynamical and social processes, where the appearance and disappearance of links do not follow a Poisson processes, but show instead long tails in the distribution of link presence and absence durations, as well as long range correlations in the times of successive link occurrences [13, 34, 54, 10].

For each (ordered) pair of nodes (i, j), time-respecting paths from i to j can either exist or not; moreover, the concept of shortest path on static networks (i.e., the path with the minimum number of links between two nodes) yields several possible generalizations in a temporal network:

- the **fastest** path is the one that allows to go from i to j, starting from the dataset initial time, in the minimum possible time, independently of the number of intermediate steps;

- the **shortest** time-respecting path between i and j is the one that corresponds to the smallest number of intermediate steps, independently of the time spent between the start from i and the arrival to j.

For each node pair (i, j), we denote by l_{ij}^{f}, $l_{ij}^{s.temp}$, $l_{ij}^{s.stat}$ the lengths (in terms of the number of hops) respectively of the fastest path, the shortest time-respecting path, and the shortest path on the aggregated network, and by Δt_{ij}^{f} and Δt_{ij}^{s} the duration of the fastest and shortest
time-respecting paths, where we take as initial time the first appearance of \(i \) in the dataset. As already noted in other works [86, 73], \(l_{ij}^f \) can be much larger than \(l_{ij}^{s,stat} \). Moreover, it is clear that \(l_{ij}^f \geq l_{ij}^{s,temp} \geq l_{ij}^{s,stat} \); from the duration point of view, on the contrary, \(\Delta t_{ij}^f \leq \Delta t_{ij}^s \).

We therefore define the following quantities:

- \(l_e \): fraction of the \(N(N-1) \) ordered pairs of nodes for which a time-respecting path exists;
- \(\langle l_s \rangle \): average length (in terms of number of hops along network links) of the shortest time-respecting paths;
- \(\langle \Delta t_s \rangle \): average duration of the shortest time-respecting paths;
- \(\langle l_f \rangle \): average length of the fastest time-respecting paths;
- \(\langle \Delta t_f \rangle \): average duration of the fastest time-respecting paths;
- \(\langle l_{s,stat} \rangle \): average shortest path length in the binary (static) projected network;

Note that these averaged quantities are not sufficient to determine the navigability of the temporal network, since the probability distribution of the shortest and fastest time respecting path length and duration may be broad tailed, indicating that a part of the network is difficult to reach. A temporal network, indeed, may be topologically well connected and at the same time difficult to navigate or search. Spreading and searching processes need to follow paths whose properties are determined by the temporal dynamics of the network, and that might be either very long or very slow.
Chapter 1. From empirical data to time-varying networks

1.2 Empirical data of social dynamics

The recent availability of large amounts of data has indeed fostered the quantitative understanding of many phenomena that had previously been considered only from a qualitative point of view [14, 74]. Examples range from human mobility patterns [28] and human behavior in economic areas [134, 133], to the analysis of political trends [3, 33, 92]. Together with the World-Wide Web, a wide array of technologies have also contributed to this data deluge, such as mobile phones or GPS devices [49, 162, 104], radio-frequency identification devices [34], or expressly designed online experiments [35]. The understanding of social networks has clearly benefited from this trend [74]. Different large social networks, such as mobile phone [120] or email [24] communication networks, have been characterized in detail, while the rise of online social networks has provided an ideal playground for researchers in the social sciences [70, 90, 50]. The availability of data, finally, has allowed to test the validity of the different models of social networks that have mainly been published within the physics-oriented complex networks literature, bridging the gap between mathematical speculations and the social sciences [166].

Among the different kinds of social networks, a prominent position is occupied by the so-called face-to-face contact networks, which represent a pivotal substrate for the transmission of ideas [117], the creation of social bonds [160], and the spreading of infectious diseases [96, 141]. The uniqueness of these networks stems from the fact that face-to-face conversation is considered the “gold standard” [107] of communication [36, 84], and although it can be costly [63], the benefits it contributes to workplace efficiency or in sustaining social relationships are so-far unsurpassed by the economic convenience of other forms of communication [107]. It is because face-to-face interactions bring about the richest information transfer [42], for example, that in our era of new technological advancements business travel has kept increasing so steadily [107]. In light of all this, it is not surprising that face-to-face interaction net-
works have long been the focus of a major attention [12, 23, 8], but the lack of fine-grained and time-resolved data represented a serious obstacle to the quantitative comprehension of the dynamics of human contacts.

1.2.1 Face-to-face interactions networks

Recently, the so-called data revolution pervaded also the study of human face-to-face contact networks [167, 159]. Several techniques and methods, with different spatial and/or temporal resolution, have been used for monitoring physical proximity interactions. Mobile phone traces [56, 49] allow to monitor social relationship of a large number of individuals, but cannot assess face-to-face contacts, unless a specific software is provided. Bluetooth and Wi-Fi networks [144, 88] have a spatial resolution of a few meters and can only guarantee the spatial proximity or co-location of individuals, being in general not a good proxy for a social interaction between them. Finally, the MIT Reality Mining project [48, 94] collected rich multi-channel data on face-to-face interactions, by deploying specifically designed “sociometric badges”.

Here we focus on the SocioPatterns collaboration [167], which realized an experimental setup merging scalability and resolution, by means of inexpensive and unobtrusive active RFID devices. This approach can provide data from deployments at social gatherings involving from few tens to several hundreds individuals, and the spatio-temporal resolution of the devices can be tuned to probe different interaction scales, from co-presence in a room, to face-to-face proximity of individuals. In the deployments of the SocioPatterns infrastructure, each individual wears a badge equipped with an active radio-frequency identification (RFID) device. These devices engage in bidirectional radio-communication at very low power when they are close enough, and relay the information about the proximity of other devices to RFID readers installed in the environment. The devices properties are tuned so that face-to-face prox-
iminity (1-2 meters) of individuals wearing the tags on their chests can be assessed with a temporal resolution of 20 seconds. According to his temporal coarse-graining, two persons are considered to be "in contact" during an interval of 20 seconds if and only if their RFID devices have exchanged at least one packet during that interval. A schematic illustration of the sensing mechanism is shown in Fig. 1.1.

The empirical data collected by the SocioPatterns deployments are naturally described in terms of temporal networks [106, 68], whose nodes are defined by individuals, and whose links represent pairwise interactions, which appear and disappear over time. As discussed in Section 1.1, in order to build temporal networks we need to aggregate all the interactions occurring within a time window Δt_0, which here is given by the temporal resolution of the deployment, so that $\Delta t_0 = 20$ seconds represents the elementary time step considered.

In the following we present and analyze several data sets gathered in
1.2. Empirical data of social dynamics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>N</th>
<th>T</th>
<th>$\langle k \rangle$</th>
<th>\bar{p}</th>
<th>\bar{f}</th>
<th>\bar{n}</th>
<th>Δt_c</th>
<th>$\langle s \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25c3</td>
<td>569</td>
<td>7450</td>
<td>185</td>
<td>0.215</td>
<td>256</td>
<td>90.6</td>
<td>2.82</td>
<td>6695</td>
</tr>
<tr>
<td>eswc</td>
<td>173</td>
<td>4703</td>
<td>50</td>
<td>0.059</td>
<td>6.81</td>
<td>2.82</td>
<td>2.41</td>
<td>370</td>
</tr>
<tr>
<td>ht</td>
<td>113</td>
<td>5093</td>
<td>39</td>
<td>0.060</td>
<td>4.06</td>
<td>1.91</td>
<td>2.13</td>
<td>366</td>
</tr>
<tr>
<td>PrimSchool</td>
<td>242</td>
<td>3100</td>
<td>69</td>
<td>0.235</td>
<td>40.8</td>
<td>25</td>
<td>1.63</td>
<td>1045</td>
</tr>
<tr>
<td>sfhh</td>
<td>416</td>
<td>3834</td>
<td>54</td>
<td>0.075</td>
<td>9.15</td>
<td>27.2</td>
<td>2.96</td>
<td>502</td>
</tr>
<tr>
<td>HighSchool</td>
<td>126</td>
<td>5609</td>
<td>27</td>
<td>0.069</td>
<td>5.08</td>
<td>1.95</td>
<td>2.61</td>
<td>453</td>
</tr>
<tr>
<td>hosp</td>
<td>84</td>
<td>20338</td>
<td>30</td>
<td>0.0485</td>
<td>2.37</td>
<td>0.885</td>
<td>2.54</td>
<td>1145</td>
</tr>
</tbody>
</table>

Table 1.1: Some average properties of the datasets under consideration.

different social contexts: the European Semantic Web Conference (“eswc”), the 25th Chaos Communication Congress (“25c3”) \(^1\), the 2009 ACM Hypertext conference (“ht”), a geriatric ward of a hospital in Lyon (“hosp”), a primary school (“PrimSchool”), the 2009 congress of the Société Française d’Hygiène Hospitalière (“sfhh”) and a high school (“HighSchool”). A description of the corresponding contexts and various analyses of the corresponding data sets can be found in Refs \([34, 41, 73, 158, 122]\).

In Table 1.1 we summarize the main average properties of the datasets we are considering, that are of interest also in the context of dynamical processes on temporal networks. In particular, we focus on:

- N: number of different individuals engaged in interactions;
- T: total duration of the contact sequence, in units of the elementary time interval $\Delta t_0 = 20$ seconds;
- $\langle k \rangle = \sum_i k_i / N$: average degree of nodes in the projected binary network, aggregated over the whole data set;

\(^1\)In this particular case, the proximity detection range extended to 4-5 meters and packet exchange between devices was not necessarily linked to face-to-face proximity.
• $\overline{p} = \frac{\sum_t p(t)}{T}$: average number of individuals $p(t)$ interacting at each time step;

• $\overline{f} = \frac{\sum_t E(t)}{T} = \frac{\sum_{i,j} \chi(i,j,t)}{2T}$: mean frequency of the interactions, defined as the average number of edges $E(t)$ of the instantaneous network at time t;

• $\overline{n} = \frac{\sum_t n(t)}{2T}$: average number of new conversations $n(t)$ starting at each time step;

• $\langle \Delta t_c \rangle$: average duration of a contact.

• $\langle s \rangle = \frac{\sum_i s_i}{N}$: average strength of nodes in the projected weighted network, defined as the mean number of interactions per agent, averaged over all agents.

Table 1.1 shows the heterogeneity of the considered data sets, in terms of size, overall duration and contact densities. The contact densities, represented by the values of \overline{p}, \overline{f} and \overline{n}, are useful in order to compare and rescale some quantities concerning dynamical processes taking place on top of different data sets, as we will see in part II. We note that the 25c3 data set shows a very high density of interactions (large \overline{p}, \overline{f} and \overline{n}), due to the larger range of interaction considered (4-5 meters) for this particular case, while the others are sparser. The 25c3 data set is also the bigger in terms of size, thus having a larger average degree $\langle k \rangle$. However, even without taking into account the 25c3 data set, all the quantities considered vary by almost an order of magnitude, with the exception of the average duration of contacts $\langle \Delta t_c \rangle$, which is constant across the different sets. Moreover, as also shown in the deployments timelines in [34], some of the datasets show large periods of low activity, followed by bursty peaks with a lot of contacts in few time steps, while others present more regular interactions between elements. In this respect, it is worth noting that we will not consider those portions of the
datasets with very low activity, in which only few couples of elements interact, such as the beginning or ending part of conferences or the nocturnal periods.

The contact patterns followed by the agents are highly heterogeneous. To explore them, one can consider the frequency of contacts between one individual and his peers. In this sense, one can rank the peers of each individual according to the number of times he interacts with them, such that for each individual i, agent $j = 4$ is his forth-most-met peer. In Fig 1.2 we plot the frequency distribution $f(j)$ aggregating over individuals with the same final aggregated degree k (representing the total number of different agents met) of 4 different data sets. Fig 1.2 shows the frequency distribution $f(j)$ for several data sets and for different final aggregated degree k, finding that the probability that an individual interacts with his j-th most met peer is well approximated by the Zipf’s law [181], independent of the individual’s final degree k:

$$f(j) \sim j^{-\zeta},$$ \hspace{1cm} (1.4)

with $\zeta = 1 \pm 0.15$. Therefore, people engage most of their interactions with few peers, although interacting also with many other individuals, met with diminished regularity. A consequence of Eq. (1.4) is that the probability distribution of the frequencies of meeting different individuals, $P(f)$, turns out to be power law distributed,

$$P(f) = f^{-\gamma}, \hspace{0.5cm} \gamma = 1 + 1/\zeta \approx 2.$$ \hspace{1cm} (1.5)

a behavior verified by the empirical data sets.

As discussed in Section 1.1.2, time-respecting paths are a crucial feature of any temporal network, since they determine the set of possible causal interactions between the actors of the graph. Moreover, diffusion processes such as random walks or spreading are particularly impacted by the structure of paths between nodes, as we will see in part II. In Table 1.2 we report the empirical values of some quantities defined in Section
Chapter 1. From empirical data to time-varying networks

Figure 1.2: Frequency of the j–most met individual, $f(j)$, as a function of j, for 3 groups of individuals with final degree $k(T)$, for eswc (up, left), hosp (up, right), ht (down, left) and sfhh (down, right) dataset.

1.1.2, with respect to the shortest and fastest time-respecting paths between nodes, for some of the empirical data sets considered. It turns out that the great majority of pairs of nodes are causally connected by at least one path in all data sets. Hence, almost every node can potentially be influenced by any other actor during the time evolution, i.e., the set of sources and the set of influence of the great majority of the elements are almost complete (of size N) in all of the considered datasets.

In Fig. 1.3 we show the distributions of the lengths, $P(l_s)$, and durations, $P(\Delta t_s)$, of the shortest time-respecting path for different datasets. In the same Figure we choose one dataset to compare the $P(l_s)$ and the $P(\Delta t_s)$ distributions with the distributions of the lengths, $P(l_f)$, and du-
1.2. Empirical data of social dynamics

Table 1.2: Average properties of the shortest time-respecting paths, fastest paths and shortest paths in the projected network, in the datasets considered.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>l_e</th>
<th>$\langle l_s \rangle$</th>
<th>$\langle \Delta t_s \rangle$</th>
<th>$\langle l_f \rangle$</th>
<th>$\langle \Delta t_f \rangle$</th>
<th>$\langle l_{s,stat} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25c3</td>
<td>0.91</td>
<td>1.67</td>
<td>1607</td>
<td>4.7</td>
<td>893</td>
<td>1.67</td>
</tr>
<tr>
<td>eswc</td>
<td>0.99</td>
<td>1.75</td>
<td>884</td>
<td>4.95</td>
<td>287</td>
<td>1.73</td>
</tr>
<tr>
<td>ht</td>
<td>0.99</td>
<td>1.67</td>
<td>1157</td>
<td>3.86</td>
<td>452</td>
<td>1.66</td>
</tr>
<tr>
<td>PrimSchool</td>
<td>1</td>
<td>1.76</td>
<td>853</td>
<td>8.27</td>
<td>349</td>
<td>1.73</td>
</tr>
</tbody>
</table>

The heterogeneity of the contact patterns of the face-to-face interactions [34] is revealed by the study of the distribution of the duration Δt of contacts between pairs of agents, $P(\Delta t)$. The correspondent aggregated quantity is the total time spent in contact by a pair of agents,
Chapter 1. From empirical data to time-varying networks

Figure 1.3: Left: Distribution of the temporal duration of the shortest time-respecting paths, normalized by its maximum value T. Inset: probability distribution $P(l_s)$ of the shortest path length measured over time-respecting paths, and normalized with its mean value $\langle l_s \rangle$. Note that the different datasets collapse. Right: Probability distribution of the duration of the shortest $P(\Delta t_s)$ and fastest $P(\Delta t_f)$ time-respecting paths, for the eswc dataset. Inset: Probability distribution of the shortest $P(l_s)$ and fastest $P(l_f)$ path length for the same dataset.

represented in the temporal network by the weight w. Fig. 1.4 show that both distributions $P(\Delta t)$ and $P(w)$ are heavy-tailed, typically compatible with power-law behaviors, with exponents $\gamma_{\Delta t} \approx 2.5$ and $\gamma_w \approx 2.$ for $P(\Delta t)$ and $P(w)$, respectively. This means that there are comparatively few long-lasting contacts and a multitude of brief contacts, but the duration of the interactions does not have a characteristic time scale, as also found in other works based in Bluetooth technology [143, 37].

Remarkably, despite the settings and contexts where the experiment took place are very diverse, different data sets display a similar behavior, showing a nice collapse of the different curves. Concerning the duration distribution $P(\Delta t)$, the only exception is the data set “PrimSchool”, which decays more rapidly than the others. Specially noteworthy is the
1.2. Empirical data of social dynamics

Figure 1.4: Probability distribution of the duration Δt of the contacts between individuals, $P(\Delta t)$, (left) and the weight w_{ij} representing the cumulative time spent in interaction by pair of agents i and j, $P(w)$, (right).

fact that also the “25c3” data set, recorded with a larger detection range, displays a close behavior, meaning that the spatial scale of the interactions is not a discriminating signature of the observed dynamics. The collapse in the weight distribution $P(w)$ is less striking, with the “25c3” and “hosp” data sets deviating slightly with respect to the other, a fact due to their larger duration T.

The burstiness of human interactions [13] is revealed by the probability distribution of the interval τ between two consecutive contacts involving a common individual and two distinct persons, $P(\tau)$. In other words, if agent A starts a contact with agent B at time t_{AB}, and later starts a different contact with agent C at t_{AC}, the inter-contact interval is defined as $\tau = t_{AC} - t_{AB}$. As we will see in part II, measuring this quantity is relevant for the study of causal processes (concurrency) that can occur on the temporal network, such as diffusion processes. The inter-contact intervals, indeed, determine the timescale after which an indi-
Chapter 1. From empirical data to time-varying networks

Figure 1.5: Probability distribution of the gap times τ between consecutive interactions of a single individual i, $P_i(\tau)$ (left), and aggregating over all the individuals, $P(\tau)$, (right). In the case of $P_i(\tau)$, we only plot the gap times distribution of the agent which engages in the largest number of conversation, but the other agents exhibit a similar behavior.

From the point of view of time-aggregated networks, it is interesting to look and the probability distribution of the strength s, representing the total time spent in interaction by an individual. In Fig. 1.6 (left)
1.2. Empirical data of social dynamics

Figure 1.6: Cumulative probability distribution of the rescaled strength $s/\langle s \rangle$, $P_{\text{cum}}(s)$, (left) and correlation between the degree and the strength of each node, $s(k)$ (right). In dashed line is plotted a linear correlation between strength and degree.

we plot the cumulative strength distribution $P_{\text{cum}}(s)$, representing the probability of finding an individual with rescaled strength greater than the $s/\langle s \rangle$. One can see that the $P_{\text{cum}}(s)$ seems to be compatible with an exponential decay, although the small sizes of the datasets under consideration do not permit to establish the functional form of $P(s)$ accurately. However, some nodes can have a very large strength, up to 5 times the average strength $\langle s \rangle$, in particular for the “25c3” and “sfhh” data sets.

Face-to-face networks can be further characterized by looking at the correlation between the number of different contacts and the temporal duration of those contacts. In temporal networks language, these correlations are estimated by measuring the strength s_i of a node i, representing the cumulative time spent in interactions by individual i, as a function of its degree k_i, representing the total different agents with which agent i has interacted. Fig. 2.3 (right) shows the growth of the average strength of nodes of degree k, $s(k)$, as a function of k in vari-
ous empirical datasets. As one can clearly see, different data sets show a similar behavior and can be fitted by a power law function \(s(k) \sim k^\alpha \) with \(\alpha > 1 \). This super-linear behavior implies that on average the nodes with high degree are likely to spend more time in each interaction with respect to the low-connected individuals [34]. On the contrary, in mobile phone activity [119] it has been reported a sub-linear relation between number of different contacts and time spent in interactions. The observed phenomenon points out the presence of super-connected individuals, that not only engage in a large number of distinct interactions, but also dedicate an increasingly larger amount of time to such interactions. These highly social individuals may have a crucial impact in the pattern of spreading phenomena [7].

To sum up, the empirical data of face-to-face interactions recorded by the SocioPatterns collaboration are naturally represented in terms of temporal networks, and exhibit heterogeneous and bursty behavior, indicated by the long tailed distributions for the lengths and strength of conversations, as well as for the gaps separating successive interactions. We have underlined the importance of considering not only the existence of time preserving paths between pairs of nodes, but also their temporal duration: shortest paths can take much longer than fastest paths, while fastest paths can correspond to many more hops than shortest paths. Remarkably, although the data sets are collected in very diverse social contexts, the appropriate rescaling of the quantities considered, when necessary, identifies universal behaviors shared across the different data sets considered. These features call for a twofold effort: On the one hand, a modeling attempt, able to capture the main statistical regularities exhibited by empirical data, and on the other hand, a study of the behavior of dynamical processes running on top of temporal networks constituted by the same empirical data. These two directions will be both explored in the next Chapters.
1.2.2 Scientific collaboration networks

Digital traces of human activity allow to grasp social behaviors and reconstruct the network of social interactions including the temporal dimension. One of the main drawbacks of the face-to-face contact networks presented in the previous Section 1.2.1 is the relative small sizes of the systems considered, which can hardly reach one thousand individuals, due to technical and economic constraints. Large databases of social interactions, on the contrary, such as mobile phone communications [56], online social networks [162] or scientific collaboration data [108], are cheap to collect and present the advantage of scaling up to hundreds of thousands individuals. A scientific collaboration network, for example, can be easily reconstructed by using data drawn from databases of scientific publications, such as the American Physics Society (APS) [1]. In this simple network, two scientists are considered connected if they have authored a paper together. In the past, the fundamental work by Newman [108] showed that the scientific collaboration networks display scale free degree distribution and small world properties. These networks, however, present a temporal component that can be exploited, since the sequence of editions of a scientific journal constitutes a time-varying network, in which each instantaneous snapshot is formed by the connections between the authors who published together in the same issue of the journal. In this case, the time scale is fixed and one unit of time corresponds to the interval between two consecutive issues of the journal considered, Physical Review Letters (PRL), for example, is weekly edited and therefore $\Delta t_0 = 1$ week. PRL was published for the first time in 1958, thus the time-varying network obtained from APS data has a total duration of more than 2700 time steps. The analysis presented in the previous Section, regarding the heterogeneity and burstiness of the temporal network and the topological properties of the corresponding aggregated network, can be repeated as well, leading to qualitatively similar results. Fig. 1.7 (left), for example, shows the distri-
Figure 1.7: Left: Probability distribution $P(\tau)$ of the gap times τ between consecutive publications by the same author in PRL, in collaboration with one or more colleagues. Right: Probability distribution of the activity of the agents, $F(a)$, measured as number of papers written in unit of time, in the scientific collaboration network, for different journals considered. In dashed line we plot a power law distribution with exponent $\gamma = -2.7$.

The large sizes of the scientific collaboration networks increase the statistical significance of the probability distribution of the structural and temporal properties considered, and therefore allow to study other features of the corresponding time-varying networks. It is possible, for example, measuring the activity of the individuals involved in the social interactions, representing their inclination to engage in a social act with other peers [131]. The activity potential a_i of agent i can be defined as the probability per unit time that he engages in a social interaction. In
1.2. Empirical data of social dynamics

![Cumulative distribution of the activity potential, $F_C(x)$, empirically measured by using 4 time windows in the Twitter (A), IMDb (B) and PRL (C) data sets. Figure courtesy of Nicola Perra.](image)

the case of the scientific collaboration networks, it corresponds to the number of papers written in collaboration with colleagues in a given time window [131]. In Fig. 1.7 (right) we plot the probability distribution of the activity potential, $F(a)$, measured in scientific collaboration networks defined by different journals, such as Physical Review Letters (PRL), Physical Review A (PRA), or Physical Review B (PRB), with data drawn from the APS. Fig. 1.7 (right) shows that the activity distribution $F(a)$ is broad tailed and compatible with a power law form, with an exponent close to $\gamma = -2.7$, regardless of the journal considered.

The concept of activity potential is ubiquitous in social networks, and can be applied to different kinds of social interactions. In Ref. [131], the authors analyzed three different empirical sets of data: Scientific collaborations in the journal “Physical Review Letters”, messages exchanged over the Twitter microblogging network, and the activity of ac-
actors in movies and TV series as recorded in the Internet Movie Database (IMDb). In the Twitter network the activity potential represents the number of messages exchanged between the users, while in the IMDb co-starring network two actors engage in a social act if they participate in the same movie. Fig. 1.8 shows that the activity distribution is broad tailed and, importantly, independent of the time window considered in the activity potential definition. This observation is crucial for the definition of the activity driven model, proposed by Ref. [131], in which a time-varying network is built on the basis of the different activity potential of the nodes. We will discuss in detail the activity driven model in Chapter 3.
Part I

Models of social dynamics
Network modeling is crucial in order to identify statistical regularities and structural principles common to many complex systems. It has a long tradition in graph theory \([51, 105, 172]\), with the class of growing network models \([15, 47]\) deserving a special mention for its success, which has spilled over different fields \([46]\). Recently, the interest towards the temporal dimension of the network description has blossomed. The analysis of empirical data on several types of human interactions (corresponding in particular to phone communications or physical proximity) has unveiled the presence of complex temporal patterns in these systems \([72, 65, 120, 34, 165, 157, 103, 79, 68]\), as discussed in Chapter 1. These findings have raised the necessity to outrun the traditional network modeling paradigm, rooted in the representation of the aggregated network's topology, regardless of the instantaneous dynamics responsible of its shape. Efforts in temporal networks modeling range from social interactions \([149, 156]\) and mobility \([144]\) to air transportation \([54]\), and are based in mechanisms such as dynamic centrality \([61]\), reinforcement dynamics \([180]\) or memory \([80]\).

The modeling effort presented in this part of the Thesis has twofold nature: First and foremost, it is aimed to reproduce the fundamental properties of the empirical data, which have a deep impact on the dynamical processes taking place on top of them. Secondly, it calls for developing a theoretical framework, in order to find analytic expression of the main quantity involved in the model, when possible. In particular, in this part we will focus on two models of social dynamics, concerning different fields of social interactions. On the one hand, in Chapter 2 we will devote our attention to human contact networks. We present and analyze a model, based in the social attractiveness of individuals, capable to reproduce most of the main properties showed by face-to-face interactions data. On the other hand, in Chapter 3 we will focus on activity driven networks. The activity driven model is aimed to bridge the gap between the well-known topological properties of real social networks and the microscopic mechanisms yielding the observed topology. Its sim-
plicity allows some analytic treatment, and we will derive both the topological properties and the percolation properties of the time-integrated networks.
Human contact networks

Uncovering the patterns of human mobility [56] and social interactions [74] is pivotal to decipher the dynamics and evolution of social networks [112], with wide practical applications ranging from traffic forecasting to epidemic containment. Recent technological advancements have made possible the real-time tracking of social interactions in groups of individuals, at several temporal and spatial scales. This effort has produced large amounts of empirical data on human dynamics, concerning letter exchanges [118], email exchanges [13], mobile phone communications [56], or spatial mobility [28], among others. The bursty dynamics of human interactions has a deep impact on the properties of the temporally evolving networks defined by the patterns of pair-wise interactions [68], as well as on the behavior of dynamical processes developing on top of those dynamical networks [147, 157, 79, 93, 124, 52, 169]. A better understanding of these issues calls for new models, capable to reproduce the
bursty character of social interactions and trace back their ultimate origin, beyond considering their temporal evolution [131]. Previous modeling efforts mostly tried to connect the observed burstiness to some kind of cognitive mechanisms ruling human mobility patterns, such as a reinforcement dynamics [180], cyclic closure [77] or preferential return rules [146], or by focusing on the relation between activity propensity and actual interactions [131].

In this Chapter we present and analyze a simple model able to replicate most of the main statistical regularities exhibited by human face-to-face contact networks data. Avoiding any a priori hypothesis on human mobility and dynamics, we assume that agents perform a random walk in space [71] and that interactions among agents are determined by spatial proximity [17]. The key insight of the model is the suggestion that individuals have different degrees of social appeal or attractiveness, due to their social status or the role they play in social gatherings, as observed in many social [168], economic [9] and natural [142] communities. This insight is implemented by allowing individuals, each characterized by an intrinsic social attractiveness, to wander randomly in a two dimensional space—representing the simplified location of a social gathering—until they meet someone, at which point they have the possibility of stopping and starting a “face-to-face” interaction. Without entering into a precise definition of attractiveness, we adopt here an operative approach: Attractive individuals are more likely to make people stop around them, but they are also more prone to abandon their interactions if these are initiated by less attractive agents. We will see that these simple assumptions, and the asymmetry of the interactions that they imply, are sufficient to reproduce quantitatively the most important features of the empirical data on contact networks.

The Chapter is structured as follows: Section 2.1 defines in detail the model, while in Section 2.2 we compare the model behavior with respect to the properties shown by empirical data. In Section 2.3 we show the model robustness concerning the variation of the main parameters in-
2.1 A model of social attractiveness

The model is defined as follows (see Fig. 2.1): N agents are placed in a square box of linear size L with periodic boundary conditions, corresponding to a density $\rho = N/L^2$. Each individual i is characterized by her attractiveness or social appeal, a_i which represents her power to raise interest in the others. The attractiveness a_i of the agents is a (quenched) variable randomly chosen from a prefixed distribution $\eta(a)$, and bounded in the interval $a_i \in [0, 1)$. Agents perform a random walk biased by the attractiveness of neighboring individuals. Whenever an agent intercepts, within a distance smaller than or equal to d, another individual, they start to interact. The interaction lasts as far as the distance between them is smaller than d. Crucially, the more attractive an agent j is (the largest her attractiveness a_j), the more interest she will raise in the other agent i, who will slow down her random walk exploration accordingly. This fact is taken into account by a walking probability $p_i(t)$ which takes the form:

$$p_i(t) = 1 - \max_{j \in N_i(t)} \{a_j\}, \quad (2.1)$$

where $N_i(t)$ is the set of neighbors of agent i at time t, i.e. the set of agents that, at time t, are at a distance smaller than or equal to d from agent i. Hence, the biased random walk performed by the agents is defined as follows: At each time step t, each agent i performs, with probability $p_i(t)$, a step of length v along a direction given by a randomly chosen angle $\xi \in [0, 2\pi)$. With the complementary probability $1 - p_i(t)$, the agent does not move. Thus, according to Eq. (2.1), if an agent i is interacting with other agents, she will keep her position in the follow-
ing time step with a probability proportional to the appeal of his most interesting neighbor.

Furthermore, the empirical observations of SocioPatterns data show that not all the agents involved in a social event are actually present for its entire duration: Some agents leave the event before the end, some join it later after the beginning, and some others leave and come back several times. Therefore we assume that agents can be in an active or an inactive state. If an individual is active, she moves in space and interacts with the other agents; otherwise she simply rests without neither moving nor interacting. At each time step, one inactive agent i can become active with a probability r_i, while one active and isolated agent j (not interacting with other agents) can become inactive with probability $1 - r_j$. The activation probability r_i of the individual i thus represents her activeness in the social event, the largest the activity r_i, the more likely agent i will be involved in the event. We choose the activation probability r_i of the agents randomly from an uniform distribution $\zeta(r)$, bounded in $r_i \in [0, 1]$, but we have verified that the model behavior is independent of the activity distribution functional form (even if we consider a constant activity rate, $r_i = r$ for all agents, we obtain very similar results, see Section 2.3).

Within this framework, each individual performs a discrete random walk in a 2D space, interrupted by interactions of various duration with peers. The movement of individuals is performed in parallel in order to implement the time resolution (20 seconds) at which empirical measurements are made [34]. The model is Markovian, since agents do not have memory of the previous time steps. The full dynamics of the system is encoded in the collision probability $p_c = \rho \pi d^2$, the activation probability distribution $\zeta(r)$, and the attractiveness distribution $\eta(a)$. The latter can hardly be accessed empirically, and is likely to be in its turn the combination of different elements, such as prestige, status, role, etc. Moreover, in general attractiveness is a relational variable, the same individual exerting different interest on different agents. Avoiding any
2.1. A model of social attractiveness

Figure 2.1: Left: Blue (dark) colored agents are active, grey (light) agents do not move nor interact. Interacting agents, within a distance d, are connected by a link. Right: Each individual is characterized by a number representing her attractiveness. The probability for the central individual to move is $p = 1.0 - 0.6 = 0.4$, since the attractiveness of the inactive agent is not taken into account.

speculations on this point, we assume the simplest case of a uniform distribution for the attractiveness [123]. Remarkably, this simple assumption leads to a rich phenomenology, in agreement with empirical data.

The model has been simulated adopting the parameters $v = d = 1$, $L = 100$ and $N = 200$. Different values of the agent density ρ are obtained by changing the box size L. In the initial conditions, agents are placed at randomly chosen positions, and are active with probability 1/2. Numerical results are averaged over 10^2 independent runs, each one of duration T up to $T_{\text{max}} = 2 \times 10^4$ time steps. Different choices of the parameters, if any, are specified.

Before proceeding a comment is in order. We adopt here an operational definition of “attractiveness” as the property of an individual to attract the interest of other individuals, making them willing to engage
in a conversation, or to listen to what he/she is saying. Thus, we do not enter in any speculations on what are the cultural or psychological factors that make a person attractive in this sense, but we reckon that many possible candidates exist, ranging from status [64] to extroversion [143]. In light of the success of our model in reproducing the empirical distributions (see Section 2.4), we consider that identifying which feature, or set of features, the attractiveness is a proxy of represents one important direction for future work.

2.2 Modeling face-to-face interactions networks

The empirical data of face-to-face interactions show several properties, universally shared across different social contexts, as broadly discussed in Chapter 1. In this Section we will compare the results of the model, obtained by numerical simulations, against the observation from empirical data. We focus on four data sets recorded by the SocioPatterns collaboration representative of different social contexts: a Lyon hospital (“Hospital”), the Hypertext 2009 conference (“Conference”), the Société Francaise d’Hygiéne Hospitaliére congress (“Congress”) and a high school (“School”). These data sets have been extensively analyzed in Section 1.2, a further description can be found in [34, 73, 158, 41].

In the following, we will explore human dynamics properties belonging to three different scales. At the individual, or ‘microscopic’, level, we focus in temporal properties related to the distributions of contact durations or inter-contact times, and in structural properties related to the time integrated representation of the contact data. Moving beyond the analysis of individual properties, we consider the group, or ‘mesoscopic’, level, represented by groups of simultaneously interacting individuals, which typify a crucial signature of face-to-face networks and have important consequences on processes such as decision making and problem solving [29]. We measure the distribution of group sizes as well
2.2. Modeling face-to-face interactions networks

as the distribution of duration of groups of different size. We finally zoom one more step out and inspect the collective, or ‘macroscopic’, level looking at properties that depend on the time interaction pattern of the whole population. We address in particular the issue of the causality patterns of the temporal network, as determined by the time-respecting paths between individuals (see Section 1.1) and the network reachability, defined as the minimum time for information to flow from an individual i to another individual j and measured by means of a searching process performed by a random walker (see Chapter 4 for further details). We observe that the model reproduces not only qualitatively, but also quantitatively, the properties measured from empirical data at all the scales.

Finally, as a check for robustness, we explore the role of the the parameters that define the model. Particular emphasis is made on the motion rule adopted by the individuals. While a simple random walk for the individuals’ movements is initially considered, in fact, a consistent amount of literature suggests that Lévy flights \[170\] might provide a better characterization of human movement \[28, 56, 137, 20\]. We observe that the results of the model are robust with respect to various possible alterations of the original formulation, including the adopted rule of motion.

2.2.1 Individual level dynamics

Here we focus on the statistical properties of individual contacts, from both points of view of time-independent and time-aggregated features.

Temporal correlations

The temporal pattern of the agents’ contacts is probably the most distinctive feature of face-to-face interaction networks \[34, 147\]. We therefore start by considering the distribution of the duration Δt of the con-
Chapter 2. Human contact networks

Figure 2.2: Distribution of the contact duration, $P(\Delta t)$, (left) and distribution of the time interval between consecutive contacts, $P(\tau)$, (right) for various datasets and for the attractiveness model.

Contacts between pairs of agents, $P(\Delta t)$, and the distribution of gap times τ between two consecutive conversations involving a common individual, $P(\tau)$. In Section 1.2 we discussed the power law form of both $P(\Delta t)$ and $P(\tau)$, indicating the bursty dynamics of human interactions. Figure 2.2 show both distributions for the various sets of empirical data along with the same distributions obtained by simulating the model described above with density $\rho = 0.02$. In the case of the contact duration distribution, numerical and experimental data match almost perfectly, see Fig. 2.2 (left). It also worth highlighting the crucial role played by the heterogeneity of attractiveness a_i. In fact, assuming it constant, $a_i = a$ (and neglecting excluded volume effects between agents) our model can be mapped into a simple first passage time problem [136], leading to a distribution $P(\Delta t) \sim (\Delta t)^{-3/2}$ with an exponential cut-off proportional to $d^2/(1 - a)$. The (non-local) convolution of the exponential tails induced by the heterogeneous distribution of attractiveness leads in our model to a power law form, with no apparent cut-off, and with an exponent larger than 3/2, in agreement with the result observed in the SocioPat-
2.2. Modeling face-to-face interactions networks

Figure 2.3: Distribution of the weights, $P(w)$ (left) and rescaled strength, $P(s)$, (right) for various datasets (symbols) and for the attractiveness model (line). In the inset we show the superlinear correlation between the degree and the strength, $s(k)$.

terns data. Regarding the distribution of gap times, $P(\tau)$, the model also generates a long-tailed form, which is compatible, although in this case not exactly equal, to the empirical data, see Fig. 2.2(right).

Time-aggregated networks

A different information regarding the pattern of individual interactions is obtained by integrating the time-varying network into a aggregated, weighted network. As mentioned in section 1.1, this corresponds to considering all the interactions occurring in a given time window Δt_0 in the limit of $\Delta t_0 \rightarrow \infty$, i.e. all the interactions taking place in the dataset. In Fig. 2.3 we plot the distribution of weight between pair of agents rescaled by the total duration of the contact sequence, w_{ij}/T, (left) and the distribution of rescaled strength $s/\langle s \rangle$ (right). The heavy tailed weight distribution, $P(w)$, shows that the heterogeneity in the duration of individual contacts persists even when interactions are accumulated over
longer time intervals. The strength distribution $P(s)$, on the contrary, is more compatible with an exponential decay, as better showed in Section 1.2. Again, we see that the numerical simulation of the model are in good agreement with empirical data. In the inset of Fig. 2.3 (right), we show that the model is also capable to capture the superlinear correlations found between the degree and the strength of a node, $s(k)$, as discussed in Section 1.2. An exception of the good agreement is the “hosp” database. The reason of the departure of this dataset with respect of both other data set and the model could be attributed to the duration T of the corresponding sequence of contacts (see Table 1.1), which is up to four times longer than the other data sets. In the limit of large T, sporadic interactions can lead to a fully connected integrated network, very different from the sparser networks obtained for smaller values of T. These effects extend also to the pattern of weights, which have in the “hosp” database a much larger average value.

A final important feature of face-to-face interactions, also revealed in different context involving human mobility [146], is that the tendency of an agent to interact with new peers decreases in time. This fact translates into a sub-linear temporal growth of the number of different contacts of a single individuals (i.e. the aggregated degree $k_i(t)$), $k(t) \sim t^\mu$, with $\mu < 1$. Fig. 2.4 shows the evolution of $k(t)$ versus time for several agent with final aggregated degree $k(T)$, both belonging to a single dataset (main) and for the different datasets (inset). The sub-linear behavior of $k(t)$ is clear, with $\mu = 0.6 \pm 0.15$ depending on the dataset. Moreover, the shapes of the $k(t)$ functions can be collapsed in a single curve by appropriately rescaling the data as $k(t)/k(T)$ as a function of t/T, Fig. 2.4(inset). Fig. 2.4 shows that, remarkably, the attractiveness model is also capable to reproduce the behavior of $k(t)$, up to the rescaling with total T time, again with the exception of the “hosp” dataset.
2.2. Modeling face-to-face interactions networks

2.2.2 Group level dynamics

Another important aspect of human contact networks is the dynamics of group formation, defined by a set of \(n \) individuals interacting simultaneously, not necessarily all with all, for a period of time \(\Delta t \). As we have noted above, such groups have a sociological relevance in their role of catalysts for decision making and problem solving [29]. In Fig. 2.5 (top) we plot the probability distribution of observing a group of size \(n \), \(P(n) \), in any instant of the ongoing social event, for the different empirical data sets. The distributions are compatible with a power law behavior,
whose exponent depends on the number of agents involved in the social event, with larger datasets (such for example the Congress one, see Table 1.1) capable of forming bigger groups with respect to smaller data sets. Clearly, the model predictions are in substantial agreement with the data when we inform the model with a sensible, data-driven, value of N.

In order to explore the dynamics of group formation, we define the lifetime Δt of a group of size n as the time spent in interaction by the same set of n individuals, without any new arrival or departure of members of the group. In Fig. 2.5 (bottom) we plot the lifetime distribution $P_n(\Delta t)$ of groups of different sizes n, finding that experimental and numerical results have a similar power-law behavior. We note however that for empirical data the lifetime distribution $P_n(\Delta t)$ decays faster for larger groups, i.e. big groups are less stable than small ones, while the model outcome follows the opposite behavior. This means that, in the model, larger groups are (slightly) more stable than observed in the data. This is probably due to the fact that, the larger the group, the bigger the probability of finding two (or more) individuals with large attractiveness in the group, which guarantee the stability against departures. However, an alternative explanation could be that the RFID devices of the SocioPatterns experiment require individuals to face each other within a given angle, making the group definition effectively more fragile than in the model, where such directionality is absent.

2.2.3 Collective level dynamics and searching efficiency

Time respecting paths of temporal networks have a deep impact in any collective dynamics of the individuals, and are especially important when studying dynamical processes taking place upon such structures. For any two vertices, we can measure the shortest time-respecting path, l^s_{ij}, and fastest time-respecting path, l^f_{ij}, between them. The former is de-
2.2. Modeling face-to-face interactions networks

Figure 2.5: Left: Group size distribution $P(n)$ for different datasets and for the model, numerically simulated with different number of agents $N = 200$ and $N = 400$, same size $L = 100$ and total duration $T = 10^4$. Right: Lifetime distribution $P_n(\Delta t)$ of groups of different size n, for the “Congress” data set (symbols) and for the model numerically simulated with $N = 400$ and $L = 100$. (dashed lines).

Defined as the path with the smallest number of intermediate steps between nodes i and j, and the latter is the path which allows to reach j starting from i within the smallest amount of time, as defined in detail in Section 1.1.2. In Fig. 2.6 we plot the probability distributions of the shortest and fastest time-respecting path length, $P_s(l)$ and $P_f(l)$, respectively, of both empirical data and model, finding that they show a similar behavior, decaying exponentially, and being peaked for a small number of steps.

Given the importance of causal relationship on any spreading dynamics, it is interesting to explicitly address the dynamical unfolding of a diffusive process. Here we analyze the simplest example of a search process, the random walk, which describes a walker traveling the network and, at each time step, selecting randomly its destination among
Chapter 2. Human contact networks

Figure 2.6: Probability distributions of the shortest, $P_s(l)$, (up) and fastest, $P_f(l)$, (down) path length, for the time-varying network obtained by the empirical data and by the model, numerically simulated with different number of agents $N = 200$ and $N = 400$, same size $L = 100$ and total duration $T = 10^4$.

the available neighbors of the node it occupies. The random walk represents a fundamental reference point for the behavior of any other diffusive dynamics on a network, when only local information is available. Indeed, assuming that each individual knows only about the information stored in each of its nearest neighbors, the most naive economical strategy is the random walk search, in which the source vertex sends one message to a randomly selected nearest neighbor [4]. If that individual has the information requested, it retrieves it; otherwise, it sends a message to one of its nearest neighbors, until the message arrives to its final target destination. In this context, a quantity of interest is the probability that the random walk actually find its target individual i at any time in the contact sequence, $P_f(i)$, or global reachability (see Chapter 4 for further details). This quantity is related with a realistic case of searching, and has the advantage of not being a asymptotic property of the random walk, thus it can be computed also on finite contact sequences.
2.2. Modeling face-to-face interactions networks

Figure 2.7: Correlation between the reachability of agent i, $P_r(i)$, and his rescaled strength, $s_i \bar{p} T / \langle s \rangle N$. The empirical data sets considered (symbols) and the model (lines), numerically simulated with different density Ω, follow a close behavior. We averaged the reachability of each individual over at least 10^2 different runs, starting with different source node.

In principle, the reachability of an individual i must be correlated with the total time spent in interactions, namely his strength s_i, but it also depends on the features of the considered social event, such as the density of the interaction \bar{p}, the total duration T and possibly other event-specific characteristic (see Table 1.1 for information of the different data sets considered). On the basis of a simple mean field argument, it is possible to show (see Chapter 4) that the probability of node i to be reached by the random walk, $P_r(i)$, is correlated with its relative strength $s_i / \langle s \rangle N$,
times the average number of interacting individuals at each time step, $\bar{\rho} T$. In Fig 2.7 we plot the reachability $P_r(i)$ against the rescaled strength $s_i \bar{\rho} T / \langle s \rangle N$, showing that very different empirical data sets collapse into a similar functional form. Remarkably, the model is able to capture such behavior, with a variability, also found in the data, which depends on the density ρ of the agents involved. As noted for the group dynamics, a larger density corresponds to a higher reachability of the individuals. We note that the empirical data are reproduced by the model for the same range of density considered in the previous analysis.

2.3 Model robustness

The model discussed above depends on different numerical and functional parameters, namely the individual density ρ, the attractiveness distribution $\eta(a)$ and the activation probability distribution $\phi(r)$. As we have seen, some properties of the model, especially those related to group and collective level dynamics, do indeed depend of the density ρ (or the number of individuals N), in such a way that the model is able to reproduce empirical data only when fed with a value of N corresponding to the data set under consideration. The model properties relevant to the individual level dynamics however, such as the contact duration and weight distributions, $P(\Delta t)$ and $P(w)$, do not change in a reasonable range of density. In Fig. 2.8 one can observe that the functional form of these distributions is robust with respect to changes of the individual density, supporting the natural notion that individual level dynamics is mainly determined by close contacts of pairs of individuals, and rather independent of eventual multiple contacts, which become rarer for smaller densities.

We have also explored the dependence of the model on the activation probability distribution and the walking probability. In particular, instead of a uniform activation probability distribution, we have consid-
Figure 2.8: Contact duration (left) and weigh (right) probability distributions obtained by simulating the model in its original definition, with a different density ρ given by $N = 400$ individuals, with constant activation probability $\Phi(r) = \delta_{r,r_0}$ with $r_0 = 0.5$, and with a Lévy flight motion dynamics, obtained by using Eq. 2.3 with $\gamma = 2.5$ for extracting the step length.

We considered a constant distribution

$$\phi(r) = \delta_{r,r_0},$$ \hspace{1cm} (2.2)

where $\delta_{r,r'}$ is the Kronecker symbol. As we can see from Fig. 2.8 the output of the model is robust with respect to changes of this functional parameter.

Finally, in the definition of the model we have adopted the simplest motion dynamics for individuals, namely an isotropic random walk in which the distance v covered by the agents at each step is constant and arbitrarily fixed to $v = 1$. However, it has been noted for long that a Lévy flight turns out to provide a better characterization of human or animal movement and foraging [170]. In this case, the random walk is still isotropic, but now the distance covered in each step is a random
variable, extracted from a probability distribution

\[\mathcal{L}(v) \approx v^{-\gamma}, \]

with a long tailed form. In Fig. 2.8 we show that adopting a Lévy flight motion dynamics gives rise to outcomes in very good agreement with the original definition of the model. We note, however, that the step length probability distribution \(\mathcal{L}(v) \) has a natural cutoff given by the size of the box where the agents move, \(v < L \), reducing the degree of heterogeneity that the walk can cover.

2.4 Summary and Discussion

Understanding the temporal and structural properties of human contact networks has important consequences for social sciences, cognitive sciences, and epidemiology. The interest in this area has been fueled by the recent availability of large amounts of empirical data, obtained from expressly designed experimental setups. The universal features observed in these empirical studies prompt for the design of general models, capable of accounting for the observed statistical regularities.

In this Chapter we have introduced a simple model of mobile agents that naturally reproduces the social context described by the Sociopatterns deployments, where several individuals move in a closed environment and interact between them when situated within a small distance (the exchange range of RFID devices). The main ingredients of the model are: (i) Agents perform a biased random walk in two-dimensional space; (ii) their interactions are ruled by an heterogeneous attractiveness parameter, Eq. (2.1); and (iii) not all agents are simultaneously active in the system. Without any data-driven mechanism, the model is able to quantitatively capture most of the properties of the pattern of interactions between agents, at different scales represented by the individual, group and collective dynamics. Importantly, the match between the
model and the empirical results is independent of the numerical and functional form of the diverse parameters defining the model.

However, the attractiveness distribution $\eta(a)$ used in the model definition deserves a more detailed discussion. Its functional form is hard to access empirically, and it is likely to be in its turn the combination of different elements, such as prestige, status, role, etc. Moreover, even though in general attractiveness is a relational variable – the same individual exerting different interest on different agents – we have assumed the simplest case of a uniform distribution for the attractiveness. For this reason it is important to stress some facts that support our decision, and to investigate the effect of the attractiveness distribution on the model’s outcome.

The choice of a uniform $\eta(a)$ is dictated by the maximum entropy principle, according to which the best guess for a unknown but bounded distribution (as the attractiveness distribution has to be, if we want it to represent a probability) is precisely the uniform distribution [75]. However, we can also explore the relation between the attractiveness and some other variables that can be accessed empirically. In particular, the attractiveness of one individual and the strength of the corresponding node of the integrated network are expected to be (non-trivially) related, since the more attractive an individual is, the longer the other agents will try to engage him in interactions. Fig. 2.3 shows that the strength distribution $P(s)$ of the time-integrated network obtained from the empirical data, which follows approximately an exponential behavior, is well fitted by the model. Thus, if we hypothesize that the attractiveness and strength probability distributions are related as $P(s)ds \sim \eta(a)da$, with $\eta(a)$ uniform in $[0,1]$, it follows that the strength of an individual should depend on his attractiveness as

$$s(a) \sim -\log(1-a).$$

We find that this relation is fulfilled by the model (data not shown), showing that in the model the time spent in interactions by the individuals is
directly related with their degree of attractiveness. Therefore the guess of a heterogeneous but uniform \(\eta(a)\) leads to an exponential decay of the \(P(s)\) for the model, in accordance with experimental data, and providing grounds to justify this choice of attractiveness distribution. Moreover, the simple relation expressed by Eq. 2.4 may suggest a way to validate the model, once some reliable measure of attractiveness will be available.

Finally, it is worth highlighting that the form of the attractiveness distribution \(\eta(a)\) is crucial for the model outcome. Therefore, it is interesting to explore the effect of different functional forms of \(\eta(a)\), for example incorporating a higher degree of heterogeneity, such as in the case of a power-law distribution. We note, however, that the form of Eq. (2.1) imposes to the \(a_i\) variable to be a probability, with the consequent constraint of being bounded, \(a_i \in [0, 1]\). A power law distribution defined over a bounded support presents the necessity of imposing a lower bound to prevent divergence close to 0. To avoid the insertion of a free parameter in the model, one can redefine the motion rule of Eq. (2.1) as

\[
p_{i}^{\text{inv}}(t) = \frac{1}{\max_{j \in N_i(t)} \{a'_j\}}, \tag{2.5}
\]

with the new attractiveness variable \(a'_i\) unbounded, \(a'_i \in [1, \infty)\). If we impose the walking probability of Eqs. (2.1) and (2.5) to be the same, and we use the relation \(\eta(a) da = \zeta(a') da'\), we find that the new attractiveness distribution \(\zeta(a')\) has the form of a power law, \(\zeta(a') = (\gamma - 1)a'^{\gamma-1}\), with exponent \(\gamma = 2\). Therefore, assuming a motion rule of the form of Eq. (2.5), a power law attractiveness distribution will give rise to the same model results, as confirmed by numerical simulations.

On the same line of argument, it would be interesting to relate the agents’ activation probability, \(r_i\), with some empirically accessible properties of the individuals. Unfortunately, finding the activation probability distribution \(\phi(r)\) is a hard task with the information contained in the
available datasets. In the face-to-face interaction deployment, indeed, a non-interacting but active individual is indistinguishable from an inactive individual who is temporary not involved into the event. Thus, simply measuring probability to be not involved in a conversation does not inform on the $\phi(r)$, but instead considers something more related with the burstiness of the individual activity. In any case, however, the model behavior is independent of the functional form the activation distribution, so that this point is less crucial.

In summary, we showed that a simple model is able to account for the main statistical properties of human contact networks at different scales. The proposed framework represents an important step forward in the understanding of face-to-face temporal networks. Confronted with other modeling efforts of SocioPatterns data [180], our model is not based on any cognitive assumption (reinforcement dynamics in Ref. [180]) and furthermore it leads to a good agreement with experimental data without any fine tuning of internal parameters. It thus opens new interesting directions for future work, including the study of dynamical processes taking place on face-to-face networks and possible extensions of the model to more general settings. Moreover, since the concept of social attractiveness is crucial in the model definition, our finding also prompt for further empirical research, based on more detailed and extensive experimental setups, which can shed light on the role of this attractiveness. Such research would help to further refine and validate the model considered here, and could potentially provide new insights for the social and cognitive sciences.
Chapter 2. Human contact networks
Research in the field of network science has mainly focused on a twofold objective: A data-driven effort to characterize the topological properties of real networks [5, 45, 31], and a posterior modeling effort, aimed at understanding the microscopic mechanisms yielding the observed topological properties [5, 112]. Great advancements in these tasks have been made possible through the recent data revolution, with the availability of large digital databases and the deployment of new experimental infrastructures. Nevertheless, despite its importance, the modeling effort in the time-varying network field is still in its infancy [180, 77, 146, 149], while the recent availability of time resolved data allows to deepen the study of the relation between the temporal patterns observed and their effects on the corresponding integrated networks.

In this Chapter we will focus on the activity driven network model recently introduced by Perra et al. [131], aimed to capture the relation be-
Chapter 3. Activity driven networks

tween the dynamical properties of time-varying networks and the topological properties of their corresponding aggregated social networks. The key element in the definition of this model is the observation that the formation of social interactions is driven by the activity of individuals, urging them to interact with their peers, and by the empirical fact that different individuals show different levels of social activity. Based in the concept of activity potential, defined as the probability per unit time that an individual engages in a social activity, Ref. [131] proposed an activity driven social network model, in which individuals start interactions, that span for a fixed length of time Δt, with probability proportional to their activity potential. The model output is thus given by a sequence of graphs, depending on the distribution $F(a)$ of the activity potential, which are updated every time interval Δt.

In the landscape of temporal network models surged in the last years, the activity driven model has the peculiarity of allowing some analytic treatment. Its simplicity, indeed, suggests a analogy with a class of hidden variables models [32, 25, 145], which opens the path toward the analytic derivation of several quantities of interest. Through the mapping to the hidden variable model, it is possible to compute analytic expressions for the topological properties of the time-integrated networks, as a function of the integration time T and the activity potential functional form $F(a)$. Moreover, the activity driven model is an ideal framework to study analytically another problem of interests in the temporal networks field, namely the connectivity properties of the time-integrated networks. The effect of the integration time T in the structural properties of the aggregated network, indeed, is an issue which has been recently shown to have relevant consequences for dynamical processes [138]. The analysis presented in this Chapter is thus twofold. On the one hand, we focus on the topological properties of the aggregated network constructed by integrating the activity driven network up to a given time T. On the other hand, through the expressions found for the aggregated network as a function of the integration time T, we study the percolation
3.1. The activity driven network model

In Section 1.2.2 we showed that the activity potential measured in different social contexts is broad tailed and independent of the time window considered, as revealed by the empirical analysis presented in Ref [131]. This observation leads the authors to the definition of a simple process model for the generation of random dynamic graphs, using the activity distribution to drive the formation of a time-varying network. Importantly, the model allows to study the dynamical processes, such as random walks [130] or epidemic spreading [97], unfolding on the activity driven networks without relying on any time-scale separation approximation.

3.1.1 Model definition

The activity driven network model is defined in terms of \(N \) individuals \(i \) (agents), each one of them characterized by her activity potential \(a_i \), defined as the probability that she engages in a social act/connection with
other agents per unit time. The activity of the agents is a (quenched) random variable, extracted from the activity potential distribution \(F(a) \), which can take a priori any form. The model is defined by means of a synchronous update scheme, time being measured in units of the life span of each connection \(\Delta t \). It proceeds by creating a succession of instantaneous networks \(G_t, t = 0, \Delta t, 2\Delta t, \ldots, n\Delta t, \ldots \). At a given time \(t \), all previous edges are deleted and we start with \(N \) disconnected individuals. Each one of them is checked and becomes active with probability \(a_i \Delta t \). Active agents generate \(m \) links (start \(m \) social interactions) that are connected to \(m \) other agents selected uniformly at random. Finally, time is updated as \(t \to t + \Delta t \). This procedure implies that all edges in the temporal network have the same constant time duration \(\Delta t \). In order to avoid complications due to the differences in the number of emitted and received connections arising from using a synchronous approach\(^1\), here we consider a probabilistic recipe for the instantaneous network construction: Each microscopic time step \(\Delta t \), we choose \(N \) agents, uniformly at random, and check sequentially each one of them for activation and eventual link emission. We avoid self and multiple connections.

To simplify the analytical calculations performed below, in the following we choose \(\Delta t = m = 1 \). Both quantities can be however restored by a simple rescaling of the activity potential and the integration time \(T \). We notice that imposing \(\Delta t = 1 \) implies restricting the activity potential to be probability, and thus to be limited in the interval \(a \in [0, 1] \).

3.1.2 Hidden variables formalism: A short review

The class of network models with hidden variables was introduced in Ref. [25] (see also [32, 145]) as a generalization of the random network

\(^1\)Indeed, in a synchronous scheme, every time step an agent fires at most one connection, but can receive a number \(n \) of connections, given trivially by a binomial distribution.
3.1. The activity driven network model

Gilbert model [43], in which the probability of connecting two vertices is not constant, but depends on some intrinsic properties of the respective vertices, their so-called hidden variables. This class of models is defined as follows: Starting from a set of N disconnected vertices and a general hidden variable h, we construct an undirected network with no self-edges nor multiple connections, by applying these two rules:

1. To each vertex i, a variable h_i is assigned, drawn at random from a probability distribution $\rho(h)$.

2. For each pair of vertices i and j, $i \neq j$, with hidden variables h_i and h_j, respectively, an edge is created with probability $r(h_i, h_j)$, the connection probability, which is a symmetric function bounded by $0 \leq r(h, h') \leq 1$.

Each model in the class is fully defined by the functions $\rho(h)$ and $r(h, h')$, and all its topological properties can be derived as a function of these two parameters. These topological properties are encoded in the propagator $g(k|h)$, defined as the conditional probability that a vertex with hidden variable h ends up connected to k other vertices. The propagator is a normalized function, $\sum_k g(k|h) = 1$, whose generating function $\hat{g}(z|h) = \sum_k z^k g(k|h)$ fulfills the general equation [25]

$$\ln \hat{g}(z|h) = N \sum_{h'} \rho(h') \ln \left[1 - (1 - z) r(h, h') \right]. \quad (3.1)$$

From this propagator, expressions for the topological properties of the model can be readily obtained [25]:

- Degree distribution:

$$P(k) = \sum_h g(k|h) \rho(h). \quad (3.2)$$
Chapter 3. Activity driven networks

• Moments of the degree distribution:

\[\langle k^n \rangle = \sum_{k,h} k^n g(k|h) \rho(h). \quad (3.3) \]

• Degree correlations, which can be measured by the average degree of the neighbors of the vertices of degree \(k \), \(\tilde{k}^{nn}(k) \) [126]:

\[\tilde{k}^{nn}(k) = 1 + \frac{1}{P(k)} \sum_{h} \rho(h) g(k|h) \tilde{k}^{nn}(h), \quad (3.4) \]

where we have defined

\[\tilde{k}^{nn}(h) = \frac{N}{k(h)} \sum_{h'} \rho(h') \tilde{k}(h') r(h,h'), \quad (3.5) \]

and the average degree of the vertices with hidden variable \(h \),

\[\tilde{k}(h) = N \sum_{h'} \rho(h') r(h,h'). \quad (3.6) \]

• Average clustering coefficient \(\langle c \rangle \), defined as the probability that two vertices are connected, provided that they share a common neighbor [174]

\[\langle c \rangle = \sum_{h} \rho(h) \tilde{c}(h), \quad (3.7) \]

where we have defined

\[\tilde{c}(h) = \sum_{h',h''} p(h'|h) r(h',h'') p(h''|h), \quad (3.8) \]

and

\[p(h'|h) = \frac{N \rho(h') r(h,h')}{\tilde{k}(h)}. \quad (3.9) \]

Additionally, one can define the clustering spectrum, as measured by the average clustering coefficient of the vertices of degree \(k \), \(\bar{c}(k) \) [126, 135]

\[\bar{c}(k) = \frac{1}{P(k)} \sum_{h} \rho(h) g(k|h) \bar{c}(h), \quad (3.10) \]
3.2 Time-integrated activity driven networks

In this Section we address the study of the aggregated network generated by the activity driven model, obtained by integrating the time-varying network up to a given time T. The activity-driven network model, indeed, generates a time series of instantaneous sparse graphs \mathcal{G}_t, each one with an average degree $\langle k \rangle_t \approx 2 \langle a \rangle$, where $\langle a \rangle = \sum_a a F(a)$. The integrated network at time T is constructed by performing the union of the instantaneous networks, i.e. $\mathcal{G}_T = \bigcup_{t=0}^T \mathcal{G}_t$. In this integrated network, nodes i and j will be joined by an edge if a connection has been established between i and j in any of the instantaneous networks at $0 \leq t \leq T$.

In Fig. 3.1 we show a schematic representation of the activity driven model, with two snapshot at different time steps T_1 and T_2 of the time-varying network, and the integrated static network at time $T \gg T_1, T_2$.

The topological properties of the integrated activity driven network were related in Ref. [131] at the level of the degree distribution, which, by means of approximate arguments, was shown to be proportional to the activity potential distribution $F(a)$. However, despite the interest of the model, expressions for the rest of topological observables have been still lacking, a fact that hampers its possible validation as a generator of realistic integrated social networks, as well as the identification of the particular role that integration time has on the behavior of dynamical processes running on top of the temporal network [130, 138].

By considering a mapping of the integrated network to the hidden variables model [25] reviewed in Section 3.1, we are able to obtain analytic expressions of several topological properties of the integrated network, depending on the activity potential distribution and the considered time T. We obtain a set of expressions for the degree distribution, degree-degree correlations and clustering coefficient of the aggregated network that are exact in the limit of large network size $N \rightarrow \infty$ and finite time T, and which are amenable to analytic asymptotic expansions in this same limit. The expressions obtained, confirmed by numerical sim-

61
Chapter 3. Activity driven networks

Figure 3.1: Schematic representation of activity driven model. (A), (B): Temporal network at two different time steps T_1 and T_2, represented by the graphs G_{T_1} and G_{T_2}. (C): Integrated network over a certain period of time. The size and color of each node describes its activity, while the width and color of each link describes the weight. Figure courtesy of Nicola Perra.

ulations, corroborate the basic assumption of the activity driven model linking social activity with network topology.

3.2.1 Mapping the integrated network to a hidden variables model

The key point to map the integrated network to a hidden variables model resides in computing the probability $\Pi_T(i, j)$ that two vertices i and j become eventually joined at time T. This probability is given by $\Pi_T(i, j) = 1 - Q_T(i, j)$, where $Q_T(i, j)$, the probability that no connection has ever been created between agents i and j up to time T, can be calculated as follows: At time T, an agent i will have become active z times with
3.2. Time-integrated activity driven networks

probability \(P_T(z) \). Given the definition of the model, at time \(T \) we have selected \(TN \) agents to check for activation. The number of times \(z \) that agent \(i \) has become active will be given by the binomial distribution

\[
P_T(z) = \binom{TN}{z} \left(\frac{a_i}{N} \right)^z \left(1 - \frac{a_i}{N} \right)^{TN-z},
\]

and analogously for agent \(j \). Now, vertices \(i \) and \(j \) will be connected in the integrated network if at least one of the links generated from \(i \) reaches \(j \), or vice-versa. Since every time that she becomes active, an agent creates a connection targeted to a randomly chosen peer, the probability \(Q_T(i, j) \) is given by

\[
Q_T(i, j) = \sum_{z_i, z_j} P_T(z_i) P_T(z_j) \left(1 - \frac{1}{N} \right)^{z_i+z_j} = \left[\left(1 - \frac{a_i}{N^2} \right) \left(1 - \frac{a_j}{N^2} \right) \right]^{TN},
\]

where we have performed the summation using the probability distribution in Eq. (3.11). We see now that the probability that agents \(i \) and \(j \) are connected in the integrated network at time \(T \) depends only on their respective activity potentials \(a_i \) and \(a_j \), which are random variables with distribution \(F(a) \). The mapping to a hidden variables network is thus transparent:

- Hidden variable: \(h \to a \).
- Distribution of hidden variables: \(\rho(h) \to F(a) \).
- Connection probability: \(r(h, h') \to \Pi_T(a, a') \).

At very large times, the integrated network emerging from the activity driven model will trivially tend to a fully connected network. Interesting topology will thus be restricted to the limit of small \(T \) compared with
Chapter 3. Activity driven networks

the network size N. In this limit, Eq. (3.12) can be simplified, yielding

$$
\Pi_T(a, a') = 1 - Q_T(a, a') \approx 1 - \left[1 - \left(\frac{a + a'}{N^2} \right)^{TN} \right] \approx 1 - \exp \left[-\lambda(a + a') \right],
$$

(3.13)

where we have neglected terms of order $O(N^{-2})$ and defined the parameter

$$
\lambda = \frac{T}{N}.
$$

(3.14)

An explicit calculation of the connection probability for a factor $m > 1$ and a time interval $\Delta t \neq 1$ can be easily performed; in the limit of large N and constant λ, the only change ensuing is a rescaling of time, $T \rightarrow Tm$, the value of Δt becoming canceled in the process of taking the limit $\lambda \rightarrow 0$.

3.2.2 Topological properties

Here we will apply the formalism presented in Sec. 3.1.2 to provide analytic expressions characterizing the topology of the integrated network resulting from the activity driven model. For the sake of concreteness, we will focus in the following activity potential distributions, in the continuous a limit:

- **Constant activity:**

 $$
 F(a) = \delta_{a, a_0}, \text{ with } 0 < a_0 < 1.
 $$

- **Homogeneous activity:**

 $$
 F(a) = 1/a_{\text{max}}, \text{ with } 0 \leq a \leq a_{\text{max}} \leq 1.
 $$

(3.15)

- **Power-law distributed activity:**

 $$
 F(a) = (\gamma - 1)\varepsilon^{\gamma-1} a^{-\gamma}, \text{ with } a \in [\varepsilon, 1].
 $$

(3.16)
In the last case, where we consider \(\gamma > 2 \), in accordance with experimental evidence [131], we have introduced a lower cut-off \(0 < \varepsilon \ll 1 \) in order to avoid dangerous divergences in the vicinity of zero.

Degree distribution

In order to compute the degree distribution we have to solve and invert the generating function equation Eq. (3.1), an almost impossible task to perform exactly, except in the case of very simple forms of the activity potential distribution. So, in the case of constant activity, \(F(a) = \delta_{a,a_0} \), we have

\[
\hat{g}(z|a_0) = [z\Pi_T(a_0, a_0) + (1 - \Pi_T(a_0, a_0))]^N,
\]

which corresponds to the generating function of a binomial distribution [177]. Therefore, in the limit of large \(N \) and constant \(\prod \), the degree distribution takes the Poisson form

\[
P_T(k) = e^{-\mu} \frac{\mu^k}{k!}
\]

with parameter \(\mu = N(1 - e^{-2\lambda a_0}) \), which, for fixed \(T \) and large \(N \), can be approximated as \(\mu \approx 2 Ta_0 \).

For a nontrivial activity distribution \(F(a) \), we must resort to approximations. We therefore focus in the interesting limit of small \(\lambda \), which corresponds to fixed \(T \) and large \(N \), which is the one yielding a nontrivial topology. In this limit, we can approximate the connection probability as

\[
\Pi_T(a, a') \approx \lambda (a + a').
\]

Introducing this expression into Eq. (3.1) and performing a new expansion at first order in \(\lambda \), we obtain [25]

\[
\ln \hat{g}(z|a) \approx (1 - z)\lambda N \sum_{a'} F(a')(a + a') = (1 - z)\lambda N(a + \langle a \rangle).
\]
The generating function of the propagator is a pure exponential, which indicates that the propagator itself is a Poisson distribution \([177]\), i.e.

\[
g_T(k|a) = e^{-T(a+\langle a \rangle)} \frac{T(a+\langle a \rangle)^k}{\Gamma(k+1)}, \tag{3.21}
\]

where \(\Gamma(x)\) is the Gamma (factorial) function \([2]\). From Eq. (3.2) we obtain the general expression for the degree distribution

\[
P_T(k) = \frac{T^k}{\Gamma(k+1)} \sum_a F(a) [a+\langle a \rangle]^k e^{-T(a+\langle a \rangle)}. \tag{3.22}
\]

In the case of a homogeneous activity distribution, \(F(a) = a_{\text{max}}^{-1}\), for which \(\langle a \rangle = a_{\text{max}}/2\), we can integrate directly Eq. (3.22), to obtain

\[
P_T(k) = \frac{\Gamma(k+1, T\langle a \rangle) - \Gamma(k+1, 3T\langle a \rangle)}{2T\langle a \rangle \Gamma(k+1)}. \tag{3.23}
\]

where \(\Gamma(x, z)\) is the incomplete Gamma function \([2]\). In Fig. 3.2 we plot the degree distribution \(P_T(k)\) of the aggregated network at different values of \(T\), for constant and homogeneous activity potential, \(F(a) = \delta_{a,a_0}\) and \(F(a) = a_{\text{max}}^{-1}\), respectively, showing the perfect agreement between numerical results and theoretical prediction given by Eqs. (3.18) and (3.23).

More complex forms of the activity distribution do not easily yield to an exact integration, and more approximations must be performed. In particular, the asymptotic form of the degree distribution can be obtained by performing a steepest descent approximation. Thus, we can write

\[
P_T(k) = \frac{1}{\Gamma(k+1)} \int F(a) e^{\phi_T(a)} \, da, \tag{3.24}
\]

where we have defined

\[
\phi_T(a) = k \ln[T(a+\langle a \rangle)] - T(a+\langle a \rangle). \tag{3.25}
\]
3.2. Time-integrated activity driven networks

Figure 3.2: Degree distribution $P_T(k)$ for integrated networks corresponding to different values of T, with constant activity distribution $F(a) = \delta_{a,a_0}$ with $a_0 = 0.5$ (left), and uniform activity distribution $F(a) = a^{-1}$ with $a_{\text{max}} = 0.5$. The behavior predicted by Eq. (3.18), on the left, and by Eq. (3.23), on the right, is showed as dashed lines.

The function $\phi_T(a)$ has a sharp maximum around $a_M = \frac{k}{T} - \langle a \rangle$. Performing a Taylor expansion up to second order, we can write $\phi_T(a) \approx \phi(a_M) - \frac{T^2}{2k} |a - a_M|^2$, with $\phi(a_M) = k \ln(k) - k$. Now, for $T^2/k \gg 1$, the function $e^{-\frac{T^2}{2k} |a - a_M|^2}$ is strongly peaked around the maximum a_M; therefore we can substitute the activity potential by its value at the maximum, to obtain

$$P_T(k) \approx \frac{e^{\phi(a_M)} F(a_M)}{\Gamma(k+1)} \int_{-\infty}^{\infty} e^{-\frac{T^2}{2k} |a - a_M|^2} da = \frac{\sqrt{2\pi k} k^k e^{-k}}{T \Gamma(k+1)} F\left(\frac{k}{T} - \langle a \rangle\right),$$

(3.26)

where we have extended the integration limits to plus and minus infinity. In the large k limit, we can use Stirling’s approximation, $\Gamma(k+1) \sim \sqrt{2\pi k} k^k e^{-k}$, to obtain the asymptotic form

$$P_T(k) \sim \frac{1}{T} F\left(\frac{k}{T} - \langle a \rangle\right).$$

(3.27)
In this expression we recover, using more rigorous arguments, the asymptotic form of the integrated degree distribution obtained in Ref. [131]. The limits of validity of this expression are however now transparent, being explicitly $N \gg T \gg 1$ and $T^2 \gg k \gg 1$.

For the case of constant activity, $F(a) = \delta_{a,a_0}$, the asymptotic form of the degree distribution is $P_T(k) \sim \delta_{k, T a_0} / T$, while the exact form is a Poisson distribution centered at $2 T a_0$. For a uniform activity, on the other hand, the asymptotic prediction is a flat distribution, while the exact expression can be quite different, in particular for large and small values of k, see Eq. (3.23). For the case of a power-law distributed activity, in Fig. 3.3 we plot the degree distribution $P_T(k)$ of the aggregated network at different values of T for networks of size $N = 10^6$ and two different values of γ. As we can see, for such large networks sizes and values of $\lambda \sim 10^{-2} - 10^{-3}$, the asymptotic expression Eq. (3.27) represents a very good approximation to the model behavior. In Fig. 3.3 we plot the degree distribution for a smaller network size $N = 10^3$. As one can see, a numerical integration of Eq. (3.22) recovers exactly the behavior of $P_T(k)$ even for small values of k. With such small network size, however, the asymptotic prediction of Eq. (3.27) is less good, as shown in the inset of Fig. 3.3.

Moments of the degree distribution

The moments $\langle k^n \rangle_T$ of the degree distribution present a very simple form given by Eq. (3.3). Since the propagator $g_T(k|a)$ has the form of a Poisson distribution, given by Eq. (3.21), $\langle k^n \rangle_T$ are a direct combination of the moments $\langle a^n \rangle$ of the activity distribution, and simply read as

$$\langle k^n \rangle_T = \sum_{m=1}^{n} \binom{n}{m} T^m \kappa_m,$$

(3.28)
3.2. Time-integrated activity driven networks

Figure 3.3: Left: Rescaled degree distribution $P_T(k)$ for integrated networks corresponding to different values of T, with power law activity distribution with exponents $\gamma = 3$ and 2.25. Network size $N = 10^6$. The behavior predicted by Eq. (3.27) is represented as dashed lines. Right: Degree distribution $P_T(k)$ for integrated networks corresponding to different values of T, with power law activity distribution with exponent $\gamma = 2.25$. Network size $N = 10^3$. The result of a numerical integration of Eq. (3.22) is showed as continuous lines. Inset: Rescaled $P_T(k)$ shown against Eq. (3.27), dashed in blue.

where $\{^n_m\}$ are the Stirling numbers of the second kind [57] and

$$\kappa_m = \sum_a F(a)(a + \langle a \rangle)^m = \sum_{i=0}^{m} \binom{m}{i} \langle a^i \rangle \langle a \rangle^{m-i}. \quad (3.29)$$

Degree correlations

We start from Eq. (3.6), which takes the form, as a function of time

$$\tilde{k}_T(a) = N[1 - e^{-\lambda a\Psi(\lambda)}], \quad (3.30)$$
where \(\Psi(\lambda) \) is the Laplace transform

\[
\Psi(\lambda) \equiv \sum_a F(a) e^{-\lambda a}.
\]
(3.31)

We can now use Eq. (3.5), which leads to the exact expression

\[
\tilde{k}_{nn}^T(a) = N \left\{ 1 - \Psi(\lambda) \frac{\Psi(\lambda) - \Psi(2\lambda) e^{-\lambda a}}{1 - \Psi(\lambda) e^{-\lambda a}} \right\}.
\]
(3.32)

In order to obtain an explicit expression for \(\tilde{k}_{nn}^T(k) \) we must perform the integral in Eq. (3.4). In the case of a constant activity potential, \(F(a) = \delta_{a,a_0} \), we have \(P_T(k) = g(k|a_0) \). Since in this case \(\Psi(\lambda) = e^{-\lambda a_0} \), we have

\[
\tilde{k}_{nn}^T(k) = 1 + N \left[1 - e^{-2\lambda a_0} \right] \approx 1 + 2 T a_0,
\]
(3.33)

where the last expression corresponds to the limit of small \(\lambda \). This function is independent of \(k \), indicating that the integrated network corresponding to constant activity potential has no degree correlations.

For more complex forms of \(F(a) \), we resort to an expansion in powers of \(\lambda \) to obtain an approximate expression, which at lowest order takes the form

\[
\tilde{k}_{nn}^T(a) \approx \frac{\lambda N}{a + \langle a \rangle} \left[\langle a^2 \rangle + \langle a \rangle^2 + 2 a \langle a \rangle \right].
\]
(3.34)

Inserting this expression into Eq. (3.4), and considering the Poisson form of the propagator Eq. (3.21), we can write

\[
\tilde{k}_{nn}^T(k) \approx 1 + \frac{T^2 \langle a^2 \rangle + \langle a \rangle^2}{k P(k)} \int da F(a) g(k-1|a) + \frac{2 T^2 \langle a \rangle}{k P(k)} \int daa F(a) g(k-1|a)
\]

\[
\approx 1 + \frac{T^2 P(k-1)}{k P(k)} \left[\sigma_a^2 + 2 \langle a \rangle \left(\frac{k}{T} \right) \right],
\]
where in the last expression we have performed the steepest descent approximation used to obtain Eq. (3.26), and \(\sigma_a^2 = \langle a^2 \rangle - \langle a \rangle^2 \) is the variance of the activity potential \(F(a) \). In the limit of large \(k \), where \(P(k-1)/P(k) \sim 1 \), we have the general form for the degree correlations

\[
\frac{\bar{k}_{nn}^T(k) - 1}{T} \approx 2\langle a \rangle + \sigma_a^2 \left(\frac{k}{T} \right)^{-1}.
\]

This expression recovers in a natural way the exact result for constant activity potential, where \(\sigma_a^2 = 0 \). From Eq. (3.35) we conclude that, in general, for an non-constant activity distribution, the integrated networks resulting from the activity driven model show disassortative mixing by degree \([109]\), with a \(\bar{k}_{nn}^T(k) \) function decreasing as a function of \(k \). This disassortative behavior, which can be however quite mild in the case of small variance \(\sigma_a \), as in the case of a power law distributed activity with small \(\epsilon \), is in any case at odds with the assortative form observed for degree correlations in real social networks \([112]\).

In Fig. 3.4 (left) we check the validity of Eq. (3.34) and the asymptotic form Eq. (3.35) in the case of power law distributed activity. We observe that the prediction of Eq. (3.34) recovers exactly the model behavior, also in the case of small activity \(a \) (shown in the inset). The degree correlation, \(\bar{k}_{nn}^T(k) \), is also correctly captured by the asymptotic form Eq. (3.35). Note however that, since the variance \(\sigma_a \) is small (of order \(\epsilon^{\gamma-1} \) for \(\gamma < 3 \) and order \(\epsilon^2 \) for \(\gamma > 3 \)), the net change in the average degree of the neighbors is quite small, and the integrated network may be considered as approximately uncorrelated, depending on the degree of accurateness desired.

Another, global measure of degree correlations can be defined in terms of the Pearson correlation coefficient \(r \) between the degree of a node and the mean degree of its neighbors \([109]\), taking the form

\[
r = \frac{\langle k \rangle \sum_k k^2 \bar{k}_{nn}^T(k) P(k) - \langle k^2 \rangle^2}{\langle k \rangle \langle k^3 \rangle - \langle k^2 \rangle^2}.
\]
Figure 3.4: Left: Rescaled average degree of the nearest neighbors of the vertices of degree k, $k_{nn}^T(k)$, for the integrated network with size $N = 10^4$ and power law activity distribution with $\gamma = 2.5$, for different values of T. The prediction of Eq. (3.35) is dashed in blue. Inset: Average degree of the neighbors of the vertices with activity a, $k_{nn}^T(a)$, for the same integrated network. The predictions from Eq. (3.34) are shown as continuous lines. Right: Assortativity r as a function of the integration time T of the activity driven network, for different activity distribution: Uniform with $a_{\text{max}} = 10^{-3}$, power law (PL) with $\gamma = 3.5$, power law (PL) with $\gamma = 2.5$, with $\epsilon = 10^{-2}$, and $\epsilon = 10^{-3}$. In dashed line we plot the prediction given by Eq. (3.37). Results are averaged over 10^2 runs, $N = 10^7$.

We can easily evaluate the sum $\sum_k k^2 k_{nn}^T(k) P_T(k)$ by applying the hidden variable formalism presented in Sec. 3.1.2. Inserting in Eq. (3.36) the first moments of the degree distribution as obtained from Eq. (3.28), the coefficient r in the limit of large N reads

$$r_T = -\frac{\left(\sigma_a^2\right)^2}{\kappa_1\kappa_2 + \kappa_1\kappa_3 - \kappa_2^2},$$

(3.37)

where $\sigma_a^2 = \langle a^2 \rangle - \langle a \rangle^2$ is the variance of the activity distribution. Both
3.2. Time-integrated activity driven networks

Figure 3.5: Rescaled clustering coefficient of the nodes of degree k, $c_T(k)$, of the integrated network with size $N = 10^4$ and power law activity distribution with $\gamma = 2.5$, for different values of T. The prediction of Eq. (3.43) is dashed in blue. Inset: Clustering coefficient of the nodes with activity a, $c_T(a)$, of the same integrated network. The predictions from Eq. (3.41) are shown as continuous lines.

the decreasing functional form of $\bar{k}^{nn}(k)$ and the negative value of r (since $\kappa_1 \kappa_3 > \kappa_2^2$ for any probability distribution with a positive support), indicate the presence of dissasortative correlations [109] in the integrated activity driven networks, correlations whose amplitude is modulated by σ_a^2. In Fig. 3.4 we show that the coefficient r as measured on activity driven networks obtained by numerical simulations is very well fitted by the prediction of Eq. 3.37. We note in particular that scale free activity distribution with $\gamma < 3$ lead to relevant degree correlations, as measured by the coefficient r.

73
Chapter 3. Activity driven networks

Clustering coefficient

The expression of the clustering spectrum at time T, $\bar{c}_T(k)$, takes the form, from Eq. (3.10)

$$\bar{c}_T(k) = \frac{1}{P_T(k)} \sum_a F(a) g(k|a) \bar{c}_T(a).$$

(3.38)

Using Eqs. (3.8), (3.9) and the expression for $\tilde{k}(a)$, we can write the exact form

$$\bar{c}_T(a) = 1 - \left[\Psi(\lambda) - e^{-\lambda a} \Psi(2\lambda) \right] \frac{1}{1 - e^{-\lambda a} \Psi(\lambda)}. \quad (3.39)$$

Again in the simplest case of a constant activity potential, $F(a) = \delta_{a,a_0}$, we have $\bar{c}_T(a) = 1 - e^{-2\lambda a_0}$, which leads to a clustering spectrum

$$\bar{c}_T(k) \equiv \langle c \rangle_T = 1 - e^{-2\lambda a_0} \approx \frac{2Ta_0}{N}, \quad (3.40)$$

where the last expression is valid for small λ. The clustering spectrum is in this case constant, and equal to the average clustering coefficient. For fixed time T, it is inversely proportional to the network size, in correspondence to a purely random network. It increases with T, saturating at $\langle c \rangle_\infty = 1$ for a fully connected network in the infinite time limit.

For a general activity potential distribution, we need to perform again an expansion in λ, which in this case takes the form, at first order in λ,

$$\bar{c}(a) \approx \frac{2\lambda}{a + \langle a \rangle} [\langle a^2 \rangle + a \langle a \rangle]. \quad (3.41)$$

Inserting this form into Eq. (3.38), and performing the same steepest descend approximation applied in Eq. (3.35), we obtain

$$\bar{c}(k) \approx \frac{2T^2}{N} \frac{P(k-1)}{kP(k)} \left[\langle a^2 \rangle - \langle a \rangle^2 + \langle a \rangle \left(\frac{k}{T} \right) \right]. \quad (3.42)$$
3.3. Temporal percolation on activity driven networks

In the limit of large k, we obtain the general form of the clustering spectrum, valid for any activity potential,

$$\bar{c}(k) \approx \frac{2\langle a \rangle}{N} + \frac{2\sigma_a^2}{N} \left(\frac{k}{T} \right)^{-1}. \quad (3.43)$$

In Fig. 3.5 (right) we plot the clustering coefficient as a function of the degree (main) and the activity (inset), in the case of power law distributed activity. We observe that both Eq. (3.41) and Eq. (3.43) recover correctly the clustering coefficient behavior.

3.3 Temporal percolation on activity driven networks

The connectivity properties of the time-integrated networks \mathcal{G}_T, and in particular the birth and evolution of a giant connected component, may have relevant consequences for dynamical processes running on the top of \mathcal{G}_T, [138]. Indeed, at a given instant of time t, a temporal network can be represented by a single network snapshot, which is usually very sparse, composed by isolated edges, stars or cliques. As we integrate more and more of those snapshots, the integrated network will grow, until at some time T_p it will percolate, i.e. it will possess a giant connected component with a size proportional to the total number of individuals in the network. The time of the first appearance of this giant component is not only an important topological property of integrated networks, but it is also relevant for the evolution of dynamical processes running on the top of the time-varying graph, in the sense that any process with a characteristic lifetime $\tau < T_p$ will be unable to explore a sizable fraction of the network.

In this Section we will focus on the percolation properties of the time-integrated form of activity driven networks. Building on the analytic expression for the topological properties of the integrated networks at time T.

75
Chapter 3. Activity driven networks

T, G_T, found in the last Section 3.2, we compute analytic expressions for the percolation time and the size of the giant component of the integrated network. An added value of our approach is the possibility to extend the mapping of epidemic spreading into percolation processes in static networks [110] into the temporal case. Thus our results can be extended to provide the epidemic threshold and the outbreak size of the susceptible-infected-susceptible epidemic model [7].

3.3.1 Generating function approach to percolation

Percolation in random networks can be studied applying the generating function approach developed in Ref. [113], which is valid assuming the networks are degree uncorrelated. Let us define $G_0(z)$ and $G_1(z)$ as the degree distribution and the excess degree distribution (at time T) generating functions, respectively, given by [112]

$$G_0(z) = \sum_k P_T(k) z^k, \quad G_1(z) = \frac{G'_0(z)}{G'_0(1)}. \quad (3.44)$$

The size of the giant connected component, S, is then given by

$$S = 1 - G_0(u), \quad (3.45)$$

where u, the probability that a randomly chosen vertex is not connected to the giant component, satisfies the self-consistent equation

$$u = G_1(u). \quad (3.46)$$

The position of the percolation threshold can be simply obtained by considering that $u = 1$ is always a solution of Eq. (3.46), corresponding to the lack of giant component. A physical solution $u < 1$, corresponding to a macroscopic giant component, can only take place whenever $G'_1(1) > 1$, which leads to the Molloy-Reed criterion [105]:

$$\frac{\langle k^2 \rangle_T}{\langle k \rangle_T} > 2. \quad (3.47)$$
3.3. Temporal percolation on activity driven networks

The moments of the degree distribution $\langle k^n \rangle$ has been computed in Section 3.2.2: The ratio $\langle k^2 \rangle_T / \langle k \rangle_T$ is a monotonic, growing function of T, and it will fulfill the condition of Eq. (3.47) for $T > T_p^0$, defining a percolation time

$$T_p^0 = \frac{2\langle a \rangle}{\langle a^2 \rangle + 3\langle a \rangle^2}.$$ (3.48)

This percolation time is independent of N, and thus guarantees the fulfillment of the condition $\lambda < 1$ assumed in the derivation of Eq. (3.19). We can obtain information on the size of the giant component S for $T > T_p^0$ from Eqs. (3.44) and (3.2), using the Poisson form of the propagator, which allows to write the simplified expressions

$$G_0(u) = \sum_a F(a) e^{-(1-u)T(a+\langle a \rangle)},$$ (3.49)

$$G_1(u) = \frac{1}{2\langle a \rangle} \sum_a F(a)[a + \langle a \rangle]e^{-(1-u)T(a+\langle a \rangle)}.$$ (3.50)

From the self-consistent Eq. (3.46), setting $\delta = 1 - u$, and solving at the lowest order in $\delta > 0$, we find, close to the transition,

$$\delta \approx \frac{2\kappa_1}{\kappa_3 T^2} \left(\frac{T - T_p^0}{T_p^0} \right),$$ (3.51)

where κ_n has been defined in Section 3.2.2. Thus we recover the Molloy Reed criterion, Eq. (3.48), for the onset of the giant component. Since the derivatives of $G_0(u)$ are finite, we can obtain the size of the giant component S by expanding Eq. (3.49) close to $u = 1$,

$$S \approx 1 - G_0(1) + \delta G_0'(1) - \frac{\delta^2}{2} G_0''(1)$$

$$= \frac{2\kappa_1^2}{\kappa_3 T} \left(\frac{T - T_p^0}{T_p^0} \right) - \frac{2\kappa_2\kappa_1^2}{\kappa_3^2 T^2} \left(\frac{T - T_p^0}{T_p^0} \right)^2.$$ (3.52)
Since Eq. (3.52) is obtained from a Taylor expansion for $\delta \ll 1$, we expect it to be valid only close to the percolation threshold.

In order to check the validity of the analytical results developed above, we consider the concrete case of two different forms of activity distribution, namely a uniform activity distribution $F(a) = a^{-1}_{\text{max}}$, with $a \in [0, a_{\text{max}}]$, and the empirically observed case of power law activity distribution in social networks [131], $F(a) \approx (\gamma - 1)e^{\gamma-1}a^{-\gamma}$, $a \in [{\epsilon}, 1]$, where ϵ is the minimum activity in the system. In this last case, we note that the analytical form of the activity distribution is valid for small ϵ only in the limit of large N. Indeed, a simple extreme value theory calculation [59] shows that, in a random sample of N values a_i, the maximum activity scales as $\min\{1, {\epsilon}N^{1/(\gamma-1)}\}$. Therefore, when performing numerical simulations of the model, one must consider systems sizes with $N > N_c = \epsilon^{1-\gamma}$ in order to avoid additional finite-size effects. In case of performing simulations for system with small sizes $N < N_c$, for example to study the finite size effects on the percolation threshold (see next Section), we used a deterministic power law distribution to avoid the cutoff effect on the maximum value of the activity due to a random sampling of values.

Fig. 3.6 shows the giant component size S of the activity driven network as a result of numerical simulations for both uniform and power law activity distributions. In Fig. 3.6 (left) we compare S with the analytical approximation Eq. (3.52), as well as with the result of a direct numerical integration\(^2\) of Eqs. (3.45) and (3.46), for uniform activity and power-law activity with exponent $\gamma > 3$. In both cases we observe an almost exact match between numerical simulations and the numerical integration of the generating function equations, and a very good agreement with the analytical approximation in the vicinity of the percolation threshold. Fig. 3.6 (right), on the contrary, focuses on power-law activ-

\(^2\)The numerical integration has been performed by using the function *quad* of the package *SciPy* with *Python* 2.7.
3.3. Temporal percolation on activity driven networks

Figure 3.6: Rescaled giant component size S/N as a function of the rescaled time T/T_p^0 for activity driven networks. Left: Uniform ($a_{\text{max}} = 0.01$) and power law ($\gamma = 3.5, \epsilon = 0.01$) activity distributions, compared with the numerical integration of the generating function equations (continuous line) and the theoretical approximation Eq. (3.52) (dashed line). The inset shows the details close to the percolation threshold T_p. Right: Power law activity distribution with $\gamma = 2.5, \epsilon = 10^{-2}$ and $\epsilon = 10^{-3}$. The peaks of the variance of the giant component size, $\sigma(S)^2$, and the susceptibility of the clusters size, $\chi(s)$, are plotted in continuous and dashed line, respectively. Percolation threshold T_p is plotted in dotted line for reference. Results averaged over 10^2 runs, network size $N = 10^7$.

ity distributions with an exponent smaller than three. In this case we additionally plot a numerical estimation of the percolation threshold as given by the peak of both the variance of the giant connected component size S, $\sigma(S)^2 = \langle S^2 \rangle - \langle S \rangle^2$, and the susceptibility of the clusters size, $\chi(s) = \sum_{s=2}^{S-1} s^2 n_s$, where n_s is the number of cluster of size s. From this figure we can see that the numerical percolation threshold strongly deviates in this case from the theoretical prediction Eq. (3.48), deviation that increases when the distribution cutoff ϵ becomes smaller.
3.3.2 Effect of degree correlations on the temporal percolation threshold

The origin of the disagreement for the case of power law activity distribution with $\gamma < 3$ can be traced back to the effect of degree correlations in the integrated networks generated by the activity driven model. Indeed, as stated above, the generating function technique makes the explicit assumption of lack of degree correlations [113]. However, in Section 3.2 we showed that the integrated activity driven network exhibits degree correlations. The average degree of the neighbors of the vertices of degree k, $\bar{k}_{nn}^T(k)$ [126], is a decreasing function of k (see Fig. 3.4), and the Pearson correlation coefficient r between the degree of a node and the mean degree of its neighbors [109] can assume non-negligible values, especially for networks obtained with scale-free activity distribution with $\gamma < 3$, as shown in Fig. 3.4.

In order to take into account the effect of degree correlations let us consider the general problem of percolation in a correlated random network [55]. The effect of the degree correlations are accounted for by the branching matrix

$$B_{kk'} = (k' - 1)P(k'|k), \quad (3.53)$$

where $P(k'|k)$ is the conditional probability that a node with degree k is connected to a node with degree k' [126]. The percolation threshold is determined by the largest eigenvalue Λ_1 of $B_{kk'}$ through the condition $\Lambda_1 = 1$. If the network is uncorrelated, the branching matrix does not depend on k, $B_{kk'} = \frac{k'(k' - 1)P(k')}{\langle k \rangle}$, and thus Λ_1 reduces to the ratio of the first two moment of the degree distribution,

$$\Lambda_1^0 = \sum_{k'} \frac{k'(k' - 1)P(k')}{\langle k \rangle} = \frac{\langle k^2 \rangle}{\langle k \rangle} - 1 \quad (3.54)$$

thus recovering the Molloy-Reed criterion Eq. (3.47).

In activity driven networks we can compute the largest eigenvalue Λ_1 in the limit of small λ by applying the hidden variables mapping from
3.3. Temporal percolation on activity driven networks

Sec. 3.2.1. In fact, the conditional probability \(P_T(k'|k) \) of the integrated network at time \(T \) can be written as [25]

\[
P_T(k'|k) = \frac{N}{P_T(k)} \sum_{a,a'} g_T(k-1|a') F(a') \frac{\Pi_T(a', a)}{\tilde{k}_T(a)} F(a) g_T(k|a),
\]

where \(\tilde{k}_T(a) = N \sum_a F(a) \Pi_T(a, a') \), as follows from Eq. (3.6). From here, the branching matrix takes the form

\[
B_{kk'} = (k' - 1) \left[p_{k'-1} + \frac{p_{k-1}}{kp_k} (k' p_{k'} - \langle k \rangle p_{k'-1}) \right],
\]

where we write \(P_T(k) \) as \(p_k \) for brevity. Assuming that the branching matrix is irreducible, and given that it is non-negative (see Eq. (3.53)) we can compute its largest eigenvalue by applying Perron-Frobenius theorem [53] and looking for a principal eigenvector \(v_k \) with positive components. Using the ansatz \(v_k = 1 + \alpha p_{k-1} / kp_k \), we obtain that, in order to be an eigenvector, the following conditions must be fulfilled:

\[
\Lambda_1 = \langle k \rangle_T + \alpha \sum_k \frac{(k-1)p_{k-1}^2}{kp_k},
\]

\[
\Lambda_1 \alpha = \langle k^2 \rangle_T - \langle k \rangle_T \langle k \rangle_T + \langle k \rangle_T^2 + \alpha \langle k \rangle_T \left(1 - \sum_k \frac{(k-1)p_{k-1}^2}{kp_k} \right).
\]

One can see that \(\sum_k (k-1)p_{k-1}^2 / kp_k \approx 1 \), in the limit of large \(N \). Thus we obtain the equation for \(\Lambda_1 \)

\[
\Lambda_1(T)^2 - \langle k \rangle_T \Lambda_1(T) - \langle k^2 \rangle_T + \langle k \rangle_T^2 + \langle k \rangle_T = 0.
\]

(3.57)

By using the form of the moments of the degree distribution given by Eq. (3.28), we solve Eq. (3.57). Excluding the non-physical solution \(\Lambda_1 < 0 \), one finally find the largest eigenvalue \(^3\) of the branching matrix as

\[
\Lambda_1(T) = \left(\sqrt{\langle a^2 \rangle + \langle a \rangle} \right) T.
\]

(3.58)

\(^3\)From Eq. (3.58) one can find \(\alpha = \frac{\sigma_a^2}{(\sqrt{\langle a^2 \rangle} + \langle a \rangle)} T > 0 \), confirming the validity of the proposed ansatz for \(v_k \), implying \(v_k > 0 \forall k \).
From here, the percolation threshold in activity driven networks follows as
\[
T_p = \frac{1}{\sqrt{\langle a^2 \rangle + \langle a \rangle}}.
\] (3.59)

We can understand the results of Fig. 3.6 by comparing the ratio of the exact threshold \(T_p\) with the uncorrelated value \(T_p^0\),
\[
Q = \frac{\frac{T_p - T_p^0}{T_p^0}}{1 - \frac{\sigma_a^4}{2\langle a \rangle \sqrt{\langle a^2 \rangle + \langle a \rangle}}}. \tag{3.60}
\]

In the case of a uniform activity distribution, we have \(Q = 13/\sqrt{3} - 15/2 \approx 5.5 \times 10^{-3}\), and therefore the temporal percolation threshold is given with very good accuracy by the uncorrelated expression. For a power-law activity distribution, the ratio \(Q\) depends simultaneously of the exponent \(\gamma\) and the minimum activity \(\varepsilon\). Thus, for \(\gamma < 3\), we have that \(Q \approx \varepsilon^{(\gamma - 3)/2}\), which diverges for \(\varepsilon \to 0\), indicating a strong departure from the uncorrelated threshold. For \(\gamma > 3\), on the other hand, \(Q\) becomes independent of \(\varepsilon\), and it goes to 0 in the limit of large \(\gamma\). In the case \(\gamma = 3.5\) and \(\varepsilon = 0.01\), for example, we obtain \(Q \approx 1.6 \times 10^{-2}\). This implies an error of less than 2% in the position of the percolation threshold as given by the uncorrelated expression, explaining the good fit observed in Fig. 3.6(a).

In Fig. 3.7 we show the ratio \(Q\) as a function of the exponent \(\gamma\) of a power-law distributed activity potential for different values of \(\varepsilon\), computed from numerical simulations by evaluating the percolation threshold from the peak of the variance of the giant component size, \(\sigma(S)^2\). The numerical result is compared with the analytical prediction given by Eq. (3.60). In this Figure one can see that, although numerical and analytical results are in quite good agreement, they still do not exactly coincide for \(\gamma < 3\). This is due to the presence of finite size effects, which have not been taken into account in the percolation theory developed. We can consider the finite size effects on the percolation time \(T_p(N)\) in a network of size \(N\) by putting forward the standard hypothesis of a scaling
3.3. Temporal percolation on activity driven networks

Figure 3.7: Ratio Q, defined in Eq. (3.60), as a function of the exponent γ of the activity potential $F(a) \sim a^{-\gamma}$, for $\varepsilon = 10^{-2}$ and $\varepsilon = 10^{-3}$. We compare Q as obtained by estimating the percolation threshold T_p from the peak of the variance of the giant component size, $\sigma(S)^2$, by means of a numerical simulation of a network with size $N = 10^7$ (symbols), with the prediction of Eq. (3.60) (lines). The results of numerical simulations are averaged over 10^2 runs.

law of the form [154]

$$T_p(N) = T_p + AN^{-\gamma}. \quad (3.61)$$

In Fig. 3.8 we plot the rescaled numerical thresholds $[T_p(N) - T_p]/T_p$ estimated by the peak of the variance of the giant component size $\sigma(S)^2$ (left), and by the susceptibility of the clusters size $\chi(s)$ (right), as a function of the network size N. We can observe that the numerical thresholds $T_p(N)$ asymptotically tend to the theoretical prediction T_p by following the scaling law of Eq. (3.8), with an exponent close to $\nu \approx 0.34 \pm 0.04$, and
Figure 3.8: Finite size scaling of the percolation threshold as estimated by the peak of the variance of the giant component size $\sigma(S)^2$, (left), and by the peak of the susceptibility of the cluster size $\chi(s)$, (right), for a network with power law activity distribution with $\gamma = 2.5$ (main) and $\gamma = 3.5$ for different values of ϵ. We plot $(T_p(N) - T_p)/T_p$ as a function of N, finding a scaling of the form of Eq. 3.61, plotted in dashed line. The two methods give similar exponents, although the $\sigma(S)^2$ method seems to be more precise: $\nu_\sigma = 0.34 \pm 0.01$ for $\gamma = 2.5$ and $\nu_\sigma = 0.34 \pm 0.02$ for $\gamma = 3.5$ with the $\sigma(S)^2$ method, $\nu_\chi = 0.38 \pm 0.03$ for $\gamma = 2.5$ and $\nu_\sigma = 0.32 \pm 0.04$ for $\gamma = 3.5$ with the $\chi(s)$ method. Results are averaged over 10^2 runs.

different values of the prefactor A depending on the values of γ and ϵ. The two methods used to estimate the numerical threshold give similar values for the exponent ν, and a slightly different prefactor A.

3.3.3 Application to epidemic spreading

The concept of temporal percolation can be applied to gain understanding of epidemic processes on activity driven temporal networks [131]. Let us focus in the susceptible-infected-susceptible (SIR) model [7], which
3.3. Temporal percolation on activity driven networks

is the simplest model representing a disease that confers immunity and that is defined as follows: Individuals can be in either of three states, namely susceptible, infected, and removed. Susceptible individuals acquire the disease by contact with infected individuals, while infected individuals heal spontaneously becoming removed, which cannot contract the disease anymore. On a temporal network, the SIR model is parametrized by the rate μ (probability per unit time) at which infected individuals become removed, and by the transmission probability β that the infection is propagated from an infected individual to a susceptible individual by means of an instantaneous contact.

We can approach the behavior of the SIR model on activity driven networks by extending the mapping to percolation developed in Ref. [110] into the temporal case. To do so, let us consider first a modified SIR model in which individuals stay in the infected state for a fixed amount of time τ. We define the transmissibility T_{ij} as the probability that the infection is transmitted from infected individual i to susceptible individual j. Considering that contacts last for an amount of time $\Delta t = 1/N$, the transmissibility can be written as

$$T_{ij}(\beta, \tau) = 1 - (1 - \beta p_{ij})^{\tau N}, \tag{3.62}$$

where $p_{ij} = (a_i + a_j)/N^2$ is the probability that individuals i and j establish a contact in any given time step Δt, as given by Eq. (3.19). In the limit of large N, we can thus write

$$T_{ij}(\beta, \tau) = 1 - \exp\left(-\frac{\beta \tau [a_i + a_j]}{N}\right). \tag{3.63}$$

From here we can deduce the form of the transmissibility when healing is not deterministic but a Poisson process with rate μ. In this case, the probability that an infected individual remains infected a time τ is given by the exponential distribution $P(\tau) = \mu e^{-\mu \tau}$. Therefore, we can write
Chapter 3. Activity driven networks

\[T_{ij}(\beta, \mu) = \int_0^\infty T_{ij}(\beta, \tau) P(\tau) \, d\tau \]
\[= 1 - \left(1 + \frac{\beta \, a_i + a_j}{\mu} \right)^{-1} \approx \frac{\beta \, a_i + a_j}{\mu} \] \quad (3.64)

in the limit of large \(N \). If we consider the process of infection as equivalent to establishing a link between infected and susceptible individuals and we compare this expression with Eq. (3.19), we can see that the SIR process can be mapped to the creation of the integrated network in the activity driven model up to a time \(T = \beta / \mu \). The epidemic threshold will be given by the existence of a finite cluster of recovered individuals, and therefore will coincide with the temporal percolation threshold, i.e.

\[\left(\frac{\beta}{\mu} \right)_c = T_p. \] \quad (3.65)

The temporal percolation threshold given by Eq. (3.59) recovers the epidemic threshold obtained in Ref. [97] using a mean-field rate equation approach\(^4\). A particular benefit of this percolation mapping is the fact that it makes accessible the calculation of explicit approximate forms for the size of epidemic outbreaks, Eq. (3.52) (valid however in certain limits), which are not easily available in mean-field approximations [131, 97]. Moreover, the finite-size scaling presented in Section 3.3.2 allows to estimate corrections to the epidemic threshold due to the size \(N \) of the system considered.

3.4 Extensions of the activity driven model

The potency of the hidden variables formalism we have introduced above to solve the activity driven model allows to easily extended it to tackle the

\(^4\)Notice that in Ref. [97] the per capita infection rate \(\beta' = 2 \langle a \rangle \beta \) is used.
3.4. Extensions of the activity driven model

analysis of generalized models inspired in the same principles. We can consider, indeed, different rules for activation and reception of connections. The only limitation to be imposed in order to properly implement the formalism is that connection rules must be local, i.e. involving only properties of the emitting and receiving agent. As a simple example, we consider a sort of “inverse” activity driven model, in which every agent i becomes active with the same constant probability $a_i = a_0$ and, when active, she sends a connection to another agent j, chosen at random with probability proportional to some (quenched) random quantity b_j, i.e. with probability $b_j / \langle b \rangle N$. In this case the quantity b_j can represent the importance of the individual j in the social context, being the agents in the system interested in engaging a social act with individual j. One can easily repeat the steps of the mapping presented in Sec. 3.2.1: The number of times z that agent i becomes active is now

$$P'_T(z) = \binom{TN}{z} \left(a_0 N \right)^z \left(1 - \frac{a_0}{N} \right)^{TN-z},$$

and the probability that i and j become connected up to time T is

$$Q'_T(i, j) = \sum_{z_i, z_j} P'_T(z_i) P'_T(z_j) \left(1 - \frac{b_j}{\langle b \rangle N} \right)^{z_i} \left(1 - \frac{b_i}{\langle b \rangle N} \right)^{z_j}
= \left[\left(1 - \frac{a_0 b_i}{\langle b \rangle N^2} \right) \left(1 - \frac{a_0 b_j}{\langle b \rangle N^2} \right) \right]^{TN}
\approx \exp \left[-\lambda' (b_i + b_j)\right],$$

where we have defined the new parameter $\lambda' = a_0 T / \langle b \rangle N$ and, in the last step of the previous expressions, we have performed and expansion for large N a finite λ' and assumed a bounded distribution $F(b)$ for the values b_i. From here, we obtain $\Pi'_T(i, j) = 1 - Q'_T(i, j)$. As one can see, this modified model can be exactly mapped to the activity driven model
(see Eq. (3.13)), with the simple translation $\lambda \rightarrow \lambda'$; all the general expression derived above hold thus in this case, and can be worked out, upon providing the selected expression for the distribution $F(b)$.

On different grounds, one of the most striking features of the empirical social interactions under consideration is the broad tailed form of the interevent time probability distribution, the well known phenomenon of burstiness of human dynamics, presented in Chapter 1. In its present formulation, the activity driven model does not reproduce this empirical fact, since one can easily check that the number of time steps τ between two consecutive fires of a node i has a probability distribution of the form $\phi_i(\tau) = a_i e^{-a_i \tau}$, a fact rooted in the Poissonian process ruling the node’s activation. The waiting time distribution $\phi_i(\tau)$ decays exponentially in time, with a characteristic time scale given by the inverse of the activity a_i of node i, at odds with the scale free form of the interevent time distribution found in many cases. In order to overcome this issue, one can move forward and consider a generalization of the activity driven model, in which the activation probability $a_i(t)$ of node i explicitly depends also on time t. The process of activation of an individual can be interpreted as a renewal process [40], being $a_i(t)\, dt$ the probability that individual i becomes active in the interval $[t, t + dt]$, with t the time occurred since the last activation event. The waiting time distribution can be obtained by applying renewal theory [40], and reads

$$
\phi_i(\tau) = a_i(\tau) \exp \left[- \int_0^\tau a_i(\tau') \, d\tau' \right].
$$

The original activity driven model can be recovered by considering a constant activation probability, $a_i(t) = a_i$. The explicit time-dependence of $a_i(t)$, on the contrary, opens the path toward non-Poissonian dynamics, with the possibility of considering power law form of the waiting time distribution. Importantly, the hidden variables formalism presented in Section 3.1.2 still applies, and it is possible to compute expressions for the topological properties of the time-integrated networks as done...
in Section 3.2. Therefore, although this conclusion arises from a preliminary study, it seems to be possible to incorporate in the activity driven model a more realistic non-Markovian activation process, which leads to broad tailed form of the interevent time distribution.

3.5 Summary and Discussion

The activity driven model represents an interesting approximation to temporal networks, providing a preliminary explanation of the origin of the degree distribution of integrated social networks, in terms of the heterogeneity of the agents’ activity, and the distribution of this quantity. In this Chapter we addressed the activity driven networks under an analytic point of view.

First, we have explored the full relation between topology and activity distribution, obtaining analytical expressions for several topological properties of the integrated social networks for a general activity potential, in the thermodynamic limit of large number of agents, $N \to \infty$, and finite integration time T. To tackle this issue, we have applied the hidden variables formalism, by mapping the aggregated network to a model in which the probability of connecting two nodes depends on the hidden variable (in this case represented by the activity potential) of those nodes. Our analysis is complemented by numerical simulations in order to check theoretical predictions against concrete examples of activity potential distributions. Using this formalism, we can demonstrate rigorously that the integrated degree distribution at time T takes the same functional form as the activity potential distribution, with the rescaled degree $k/T - \langle a \rangle$, in the limit of large system size $N \to \infty$. This is however an asymptotic result, which is well fulfilled for an activity potential power-law distributed, as empirically measured in a wide range of social interaction settings, but fails for simple constant or homogeneous distributions. We also show that the aggregated social networks show in
general disassortative degree correlations, at odds with the assortative mixing revealed in real social networks. The clustering coefficient is low, \(\langle c \rangle \sim T / N \), comparable with a random network.

Secondly, we have studied the time evolution of the connectivity properties of the integrated network. We have focused in particular in the onset of the giant component in the aggregated network, defined as the largest set of connected agents that have established at least one contact up to a fixed time \(T \). We have been able to provide analytic expressions for the percolation time \(T_p \), at which the onset of the giant component takes place, depending on the details of temporal network dynamics. Assuming lack of degree correlations in the initial evolution of the integrated network, the application of the generating function formalism \[113\] allows to obtain an explicit general form for the temporal percolation threshold, as well as analytic asymptotic expressions for the size of the giant component in the vicinity of the threshold. These expressions turn out to be in good agreement with numerical results for particular forms of the activity distribution imposing weak degree correlations. For a skewed, power-law distributed activity \(F(a) \sim a^{-\gamma} \), the uncorrelated results are still numerically correct for large values of \(\gamma \). When \(\gamma \) is small, however, strong disagreements arise. Applying a percolation formalism for correlated networks \[55\], we have been able to obtain the exact threshold \(T_p \), valid for any kind of activity potential. For \(\gamma > 3 \), the correlated threshold collapses onto the uncorrelated result, which thus provides a very good approximation to the exact result. For small \(\gamma < 3 \), the percolation threshold as obtained by numerical simulation of large networks is in very good agreement with the analytical prediction.

Our study opens interesting direction for future work, in the first instance concerning the possible modifications of the activity driven network model, in order to incorporate some properties of real social networks currently missed, such as a high clustering coefficient, assortative mixing by degree or a community structure \[112\]. A particularly promising line of investigation regards the possibility of considering an activ-
ity driven model in which the probability to fire new connections does not follow a Poissonian or periodic process, but it is driven by a non-Markovian or renewal process. In this case, the model would incorporate one of the most relevant features of human dynamics, the burstiness of interactions, represented by a power law distributed interevent time [13]. Through the hidden variable formalism and renewal theory, it is possible to show that the degree distribution of the aggregated network still displays a broad tailed behavior, whose exact form depends on the interplay between the renewal process and the activity potential form. The study of the percolation properties of integrated temporal networks also opens new interesting venues of future research, related in particular to the properties of dynamical processes running on top of them and to the coupling of their different time scales. One such application in the context of epidemic spreading is the study of the SIR model, which we have shown can be mapped to a temporal percolation problem in activity driven networks, thus providing explicit forms (albeit valid in certain limits of weak degree correlations) for the size of epidemic outbreaks in this class of systems.
Chapter 3. Activity driven networks
Part II

Dynamical processes on empirical time-varying networks
The traditional approach to the study of dynamical processes on complex networks considered a time-scale separation between the network evolution and the dynamical process unfolding on its structure [22]. In most cases, the substrate is taken as a static entity, or *quenched* in its connectivity pattern, with connections frozen or evolving at a time scale much longer than the one of the process under study [22, 44]. Researchers have also focused on the opposite limit, in which the process dynamics are much slower than the network evolution, thus the interactions among individuals can be replaced by effective random couplings, equivalent to consider the graph as *annealed* [26]. While time scale separation is extremely convenient for the numerical and analytical tractability of the models, in many cases of interest the two timescales are comparable and cannot be decoupled [30, 106, 122]. The time duration and the co-occurrence of links is crucial. This is particularly true when the substrate is represented by a social network, in which connections between individuals are constantly rewired. Longitudinal data has traditionally been scarce in social network analysis, but, thanks to recent technological advances, researchers are now in a position to gather data describing the contacts in groups of individuals at several temporal and spatial scales and resolutions.

The analysis of empirical data on several types of human interactions (corresponding in particular to phone communications or physical proximity) has unveiled the presence of complex temporal patterns in these systems, [72, 65, 120, 34, 165, 157, 103, 79, 68]. In particular, the heterogeneity and burstiness of the contact patterns of human interactions [13], as broadly discussed in Chapter 1, stimulated the study of the impact of a network’s dynamics on the dynamical processes taking place on top of it. The processes studied in this context include synchronization [52], percolation [124, 11], social consensus [17], or diffusion [147]. Epidemic-like processes have also been explored, both using realistic and toy models of propagation processes [140, 73, 157, 79, 103, 85, 122, 66, 139, 101]. The study of simple schematic spreading processes
over temporal networks helps indeed expose several properties of their dynamical structure: dynamical processes can in this context be conceived as probing tools of the network's temporal structure [79].

In this part of the Thesis, we will uncover the behavior of dynamical processes running on the top of empirical temporal networks. To this aim, we consider as typical examples of temporal networks the dynamical sequences of contact between individuals in various social contexts, as recorded by the SocioPatterns project [167], (see Chapter 1). We will devote our attention to two simple cases of dynamical processes: in Chapter 4 we address random walks, while Chapter 5 is dedicated to epidemic spreading. Considering the pivotal role of these processes, we believe that our understanding could help to shed light on the behavior of more complex dynamics on temporally evolving networks.
Random walks are a paradigm of dynamical processes, having a glorious tradition in statistical physics, and since they lie at the core of many real-world phenomena, they have been extensively studied in many other fields, ranging from biology to economics [175, 71, 99]. The random walk is indeed the simplest diffusion model, and its dynamics provides fundamental hints to understand the whole class of diffusive processes on networks. Moreover, it has relevant applications in such contexts as spreading dynamics (i.e. virus or opinion spreading) and searching. For instance, assuming that each vertex knows only about the information stored in each of its nearest neighbors, the most naive economical strategy is the random walk search, in which the source vertex sends one message to a randomly selected nearest neighbor [4, 100, 22]. If that vertex has the information requested, it retrieves it; otherwise, it sends a message to one of its nearest neighbors, until the message arrives to
its finally target destination. Thus, the random walk represents a lower bound on the effects of searching in the absence of any information in the network, apart form the purely local information about the contacts at a given instant of time.

In this Chapter we will focus on the dynamics of a random walker unfolding on a temporal network [68], represented by the empirical contact sequence of face-to-face interactions [167], presented in Chapter 1. In our study, we introduce different randomizing strategies that allow us to single out the role of the different properties of the empirical networks, such as the heterogeneity and burstiness of the social interactions. We will show that the random walk exploration is slower on temporal networks than it is on the aggregate projected network, even when the time is properly rescaled. In particular, we point out that a fundamental role is played by the temporal correlations between consecutive contacts present in the data. We also address the consequences of the intrinsically limited duration of many real world dynamical networks, by considering the reachability of the individuals when performing a random walk search. Although these results refer to temporal networks represented by face-to-face social interactions, our findings, especially regarding the impact of burstiness in slowing down the dynamics, turn out to be crucial in the study of a wide class of dynamical processes on temporal networks [102, 91, 69].

The Chapter is structured as follows. In Sec 4.1 we review some of the fundamental results for random walks on static networks. In Sec. 4.2 we recall the datasets used in the study and we introduce suitable randomization procedures, which will help later on to pinpoint the role of the correlations in the real data, and we write down mean-field equations for the case of maximally randomized dynamical contact networks. In Sec. 4.3 we investigate the random walk dynamics numerically, focusing on the exploration properties and on the mean first passage times, while Sec. 4.4 is devoted to the analysis of the impact of the finite temporal duration of real time series. Finally, we summarize our results and
4.1 A short overview of random walks on static networks

The random walk (RW) process is defined by a walker that, located on a given vertex \(i \) at time \(t \), hops to a nearest neighbor vertex \(j \) at time \(t + 1 \).

In binary networks, defined by the adjacency matrix \(a_{ij} \) (see Chapter 1) the transition probability at each time step from \(i \) to \(j \) is

\[
p_b(i \rightarrow j) = \frac{a_{ij}}{\sum_r a_{ir}} \equiv \frac{a_{ij}}{k_i},
\]

(4.1)

where \(k_i = \sum_j a_{ij} \) is the degree of vertex \(i \): the walker hops to a nearest neighbor of \(i \), chosen uniformly at random among the \(k_i \) neighbors, hence with probability \(1/k_i \) (note that we consider here undirected networks with \(a_{ij} = a_{ji} \), but the process can be considered as well on directed networks). In weighted networks with a weight matrix \(\omega_{ij} \), the transition probability takes instead the form

\[
p_w(i \rightarrow j) = \frac{w_{ij}}{\sum_r w_{ir}} \equiv \frac{w_{ij}}{s_i},
\]

(4.2)

where \(s_i = \sum_j \omega_{ij} \) is the strength of vertex \(i \) [21]. Here the walker chooses a nearest neighbor with probability proportional to the weight of the corresponding connecting edge.

The basic quantity characterizing random walks in networks is the *occupation probability* \(\rho_i \), defined as the steady state probability (i.e., measured in the infinite time limit) that the walker occupies the vertex \(i \), or in other words, the steady state probability that the walker will land on vertex \(i \) after a jump from any other vertex. Following rigorous master
equation arguments, it is possible to show that the occupation probability takes the form [116, 178]

\[\rho_i^b = \frac{k_i}{\langle k \rangle N}, \quad \rho_i^w = \frac{s_i}{\langle s \rangle N}, \]

(4.3)
in binary and weighted networks, respectively.

Other characteristic properties of the random walk, relevant to the properties of searching in networks, are the \textit{mean first-passage time} (MFPT) \(\tau_i \) and the \textit{coverage} \(C(t) \) [175, 71, 99]. The MFPT of a node \(i \) is defined as the average time taken by the random walker to arrive for the first time at \(i \), starting from a random initial position in the network. This definition gives the number of messages that have to be exchanged, on average, in order to find vertex \(i \). The coverage \(C(t) \), on the other hand, is defined as the number of different vertices that have been visited by the walker at time \(t \), averaged for different random walks starting from different sources. The coverage can thus be interpreted as the searching efficiency of the network, measuring the number of different individuals that can be reached from an arbitrary origin in a given number of time steps.

At a mean-field level, these quantities are computed as follows: let us define \(P_f(i; t) \) as the probability for the walker to arrive for the first time at vertex \(i \) in \(t \) time steps. Since in the steady state \(i \) is reached in a jump with probability \(\rho_i \), we have \(P_f(i; t) = \rho_i [1 - \rho_i]^{t-1} \). The MFPT to vertex \(i \) can thus be estimated as the average \(\tau_i = \sum_t t P_f(i; t) \), leading to

\[\tau_i = \sum_{t=1}^{\infty} t \rho_i [1 - \rho_i]^{t-1} = \frac{1}{\rho_i}. \]

(4.4)

On the other hand, we can define the \textit{random walk reachability} of vertex \(i \), \(P_r(i; t) \), as the probability that vertex \(i \) is visited by a random walk starting at an arbitrary origin, at any time less than or equal to \(t \). The reachability takes the form

\[P_r(i; t) = 1 - [1 - \rho_i]^t \approx 1 - \exp(-t \rho_i), \]

(4.5)
where the last expression is valid in the limit of sufficiently small ρ_i. The coverage of a random walk at time t will thus be given by the sum of these probabilities, i.e.

\[
\frac{C(t)}{N} = \frac{1}{N} \sum_i P_r(i; t) \equiv 1 - \frac{1}{N} \sum_i \exp(-t \rho_i).
\] (4.6)

For sufficiently small $\rho_i t$, the exponential in Eq. (4.6) can be expanded to yield $C(t) \sim t$, a linear coverage implying that at the initial stages of the walk, a different vertex is visited at each time step, independently of the network properties [155, 6].

It is now important to note that the random walk process has been defined here in a way such that the walker performs a move and changes node at each time step, potentially exploring a new node: except in the pathological case of a random walk starting on an isolated node, the walker has always a way to move out of the node it occupies. In the context of temporal networks, on the other hand, the walker might arrive at a node i that at the successive time step becomes isolated, and therefore has to remain trapped on that node until a new link involving i occurs. In order to compare in a meaningful way random walk processes on static and dynamical networks, and on different dynamical networks, we consider in each dynamical network the average probability \overline{p} that a node has at least one link. The walker is then expected to move on average once every $\frac{1}{\overline{p}}$ time steps, so that we will consider the properties of the random walk process on dynamical networks as a function of the rescaled time $\overline{p}t$. The values of the mean ratio of interacting individuals \overline{p} for each dataset is reported in Table 1.1, as one can see, these values are far from $\overline{p} = 1$, which implies that the slowing down due to the temporal nature of the network is considerable and cannot be neglected.
Chapter 4. Random walks

4.2 Synthetic extensions of empirical contact sequences

In this study we use as substrate for the random walks dynamics the temporal networks representing the face-to-face interactions recorded by the SocioPatterns collaboration [167]. In particular, we focus on data sets measured in several different social contexts: the 2010 European Semantic Web Conference (“eswc”), a geriatric ward of a hospital in Lyon (“hosp”), the 2009 ACM Hypertext conference (“ht”), and the 2009 congress of the Société Francaise d’Hygiène Hospitalière (“sfhh”). A detailed description of the properties of these data sets has been provided in Chapter 1, while a broader analysis including a discussion on experiment setup can be found in [34, 41, 73, 158, 122].

The empirical contact sequences represent the proper dynamical network substrate upon which the properties of any dynamical process should be studied. In many cases however, the finite duration of empirical datasets is not sufficient to allow these processes to reach their asymptotic state [121, 157]. This issue is particularly important in processes that reach a steady state, such as random walks. As discussed in Sec. 4.1, a walker does not move at every time step, but only with a probability p, and the effective number of movements of a walker is of the order $T \bar{p}$. For the considered empirical sequences, this means that the ratio between the number of hops of the walker and the network size, $T \bar{p} / N$, assumes values between 3.01 for the school case and 1.60 for the eswc case. Typically, for a random walk processes such small times permit to observe transient effects only, but not a stationary behavior. Therefore we will first explore the asymptotic properties of random walks in synthetically extended contact sequences, and we will consider the corresponding finite time effects in Sec. 4.4. The synthetic extensions preserve at different levels the statistical properties observed in the real data, thus providing null models of dynamical networks.
4.2. Synthetic extensions of empirical contact sequences

Inspired by previous approaches to the synthetic extension of empirical contact sequences [65, 121, 157, 85, 68], we consider the following procedures:

- **SRep**: Sequence replication. The contact sequence is repeated periodically, defining a new extended characteristic function such that \(\chi^{SRep}_e(i, j, t) = \chi(i, j, t \mod T) \). This extension preserves all of the statistical properties of the empirical data (obviously, when properly rescaled to take into account the different durations of the extended and empirical time series), introducing only small corrections, at the topological level, on the distribution of time respecting paths and the associated sets of influence of each node. Indeed, a contact present at time \(t \) will be again available to a dynamical process starting at time \(t' > t \) after a time \(t + T \).

- **SRan**: Sequence randomization. The time ordering of the interactions is randomized, by constructing a new characteristic function such that, at each time step \(t \), \(\chi^{SRan}_e(i, j, t) = \chi(i, j, t') \) for all \(i \) and \(j \), where \(t' \) is a time chosen uniformly at random from the set \(\{1, 2, \ldots, T\} \). This form of extension yields at each time step an empirical instantaneous network of interactions, and preserves on average all the characteristics of the projected weighted network, but destroys the temporal correlations of successive contacts, leading to Poisson distributions for \(P(\Delta t) \) and \(P_i(\tau) \).

- **SStat**: Statistically extended sequence. An intermediate level of randomization can be achieved by generating a synthetic contact sequence as follows: we consider the set of all conversations \(c(i, j, \Delta t) \) in the sequence, defined as a series of consecutive contacts of length \(\Delta t \) between the pair of agents \(i \) and \(j \). The new sequence is generated, at each time step \(t \), by choosing \(\bar{n} \) conversations (\(\bar{n} \) being the average number of new conversations starting at each time step in the original sequence, see Table 1.1), randomly selected.
Chapter 4. Random walks

Figure 4.1: Left: Probability distribution $P(\Delta t)$ for the extended contact sequences SRep, SRan and SStat of the 25c3 dataset. Right: Interevent time probability distribution $P_i(\tau)$ of a single individual i (chosen as the most connected one) for the SRep, SRan and SStat extensions of the 25c3 dataset. Inset: Interevent time probability distribution $P(\tau)$ for N agents. The weight distribution $P(w)$ of the original contact sequence is preserved for every extension.

from the set of conversations, and considering them as starting at time t and ending at time $t + \Delta t$, where Δt is the duration of the corresponding conversation. In this procedure we avoid choosing conversations between agents i and j which are already engaged in a contact started at a previous time $t' < t$. This extension preserves all the statistical properties of the empirical contact sequence, with the exception of the distribution of time gaps between consecutive conversations of a single individual, $P_i(\tau)$.

In Fig. 4.1 we plot the distribution of the duration of contacts, $P(\Delta t)$, and the distribution of gap times between two consecutive conversations realized by a single individual, $P(\tau_i)$, for the extended contact sequences SRep, SRan and SStat. One can check that the SRep extension preserves all the $P(w)$, $P(\Delta t)$ and $P_i(\tau)$ distributions of the origi-
4.2. Synthetic extensions of empirical contact sequences

<table>
<thead>
<tr>
<th>Extension</th>
<th>$P(w)$</th>
<th>$P(\Delta t)$</th>
<th>$P_i(\tau)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRep</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SRan</td>
<td>✓</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>SStat</td>
<td>✓</td>
<td>✓</td>
<td>❌</td>
</tr>
</tbody>
</table>

Table 4.1: Comparison of the properties of the original contact sequence preserved in the synthetic extensions.

nal contact sequence, the SRan extension preserves only $P(w)$ and the SStat extension preserves both the $P(w)$ and the $P(\Delta t)$ but not the $P_i(\tau)$, as summarized in Table 4.1. Interestingly, we note that the distribution of gap times for all agents, $P(\tau)$, is also broadly distributed in the SRan and SStat extensions, despite the fact that the respective individual burstiness $P_i(\tau)$ are bounded, see Fig. 4.1. This fact can be easily understood by considering that $P(\tau)$ can be written in terms of a convolution of the individual gap distributions times the probability of starting a conversation. In the case of SRan extension, the probability r_i that an agent i starts a new conversation is proportional to its strength s_i, i.e. $r_i = s_i/(N\langle s \rangle)$. Therefore, the probability that it starts a conversation τ time steps after the last one (its gap distribution) is given by $P_i(\tau) = r_i[1 - r_i]^{\tau - 1} \approx r_i \exp(-\tau r_i)$, for sufficiently small r_i. The gap distribution for all agents $P(\tau)$ is thus given by the convolution

$$P(\tau) = \int P(s) \frac{s}{N\langle s \rangle} \exp\left(-\tau \frac{s}{N\langle s \rangle}\right) ds,$$

where $P(s)$ is the strength distribution. This distribution has an exponential form, as shown in Section 1.2. This leads, from Eq. (4.7), to a total gap distribution $P(\tau) \sim (1 + \tau/N)^{-2}$, with a heavy tail. Analogous arguments can be used in the case of the SStat extension.
4.2.1 Analytic expressions for the extended sequences

Let us consider a random walk on the sequence of instantaneous networks at discrete time steps, which is equivalent to a message passing strategy in which the message is passed to a randomly chosen neighbor. The walker present at node i at time t hops to one of its neighbors, randomly chosen from the set of vertices

$$\mathcal{V}_i(t) = \{ j \mid \chi(i, j, t) = 1 \},$$ \hspace{1cm} (4.8)

of which there is a number

$$k_i(t) = \sum_j \chi(i, j, t),$$ \hspace{1cm} (4.9)

If the node i is isolated at time t, i.e. $\mathcal{V}_i(t) = \emptyset$, the walker remains at node i. In any case, time is increased $t \rightarrow t + 1$.

Analytical considerations analogous to those in Sec. 4.1 for the case of contact sequences are hampered by the presence of time correlations between contacts. In fact, as we have seen, the contacts between a given pair of agents are neither fixed nor completely random, but instead show long range temporal correlations. An exception is represented by the randomized SRan extension, in which successive contacts are by construction uncorrelated. Considering that the random walker is in vertex i at time t, at a subsequent time step it will be able to jump to a vertex j whenever a connection between i and j is created, and a connection between i and j will be chosen with probability proportional to the number of connections between i and j in the original contact sequence, i.e. proportional to ω_{ij}. That is, a random walk on the extended SRan sequence behaves essentially as in the corresponding weighted projected network, and therefore the equations obtained in Sec. 4.1, namely

$$\tau_i = \frac{\langle s \rangle N}{s_i},$$ \hspace{1cm} (4.10)
and
\[
\frac{C(t)}{N} = 1 - \frac{1}{N} \sum_i \exp \left(-t \frac{s_i}{\langle s \rangle N} \right) \tag{4.11}
\]
apply. In this last expression for the coverage we can approximate the sum by an integral, i.e.
\[
\frac{C(t)}{N} = 1 - \int ds P(s) \exp \left(-t \frac{s}{\langle s \rangle N} \right), \tag{4.12}
\]
being \(P(s)\) the distribution of strengths. Giving that \(P(s)\) has an exponential behavior, we can obtain from the last expression
\[
\frac{C(t)}{N} \approx 1 - \left(1 + \frac{t}{N} \right)^{-1}. \tag{4.13}
\]

4.3 Random walks on extended contact sequences

In this Section we present numerical results from the simulation of random walks on the extended contact sequences described above. Measuring the coverage \(C(t)\) we set the duration of these sequences to 50 times the duration of the original contact sequence \(T\), while to evaluate the MFPT between two nodes \(i\) and \(j\), \(\tau_{ij}\), we let the RW explore the network up to a maximum time \(t_{\text{max}} = 10^8\), time steps, corresponding to \(10^4 - 10^5\) times the duration of the original contact sequences. Each result we report is averaged over at least \(10^3\) independent runs.

4.3.1 Network exploration

The network coverage \(C(t)\) describes the fraction of nodes that the walker has discovered up to time \(t\). Figure 4.2 shows the normalized coverage \(C(t)/N\) as a function of time, averaged for different walks starting from different sources, for the dynamical networks obtained using the SRep,
Figure 4.2: Normalized coverage $C(t)/N$ as a function of the time $\bar{p}t/N$, for the SRep, SRan and SStat extension of empirical data. The numerical evaluation of Eq. (4.12) is shown as a dashed line. The exploration of the empirical repeated data sets (SRep) is slower than the other cases, the SRan is in agreement with the theoretical prediction, and the SStat case shows a close (but systematically slower) behavior.

SRan and SStat prescriptions. Time is rescaled as $t \rightarrow \bar{p}t$ to take into account that the walker can find itself on an isolated vertex, as discussed before. While for SRep and SRan extensions the average number of interacting nodes \bar{p} is by construction the same as in the original contact sequence, for the SStat extension we obtain numerically different values of \bar{p}, which we use when rescaling time in the corresponding simulations.

The coverage corresponding to the SRan extension is very well fitted by a numerical integration of Eq. (4.12), which predicts the cover-
4.3. Random walks on extended contact sequences

Figure 4.3: Number of new conversations $n(t)$ started per unit time in the SRep (black, full dots), SRan (red, empty squares) and SStat (green, diamonds) extensions of the school dataset.

age $C(t)/N$ obtained in the correspondent projected weighted network. Moreover, when using the rescaled time $\bar{p}t$, the SRan coverages for different datasets collapse on top of each other for small times, with a linear time dependence $C(t)/N \sim t/N$ for $t \ll N$ as expected in static networks, showing a universal behavior.

The coverage obtained on the SStat extension is systematically smaller than in the SRan case, but follows a similar evolution. On the other hand, the RW exploration obtained with the SRep prescription is generally slower than the other two, particularly for the 25c3 and ht datasets. As discussed before, the original contact sequence, as well as the SRep extension, are characterized by irregular distributions of the interactions in time, showing periods with few interacting nodes and correspondingly a small number $n(t)$ of new started conversations, followed by peaks with many interactions (see Fig. 4.3). This feature slows down the RW exploration, because the RW may remain trapped for long times on isolated nodes. The SRan and the SStat extensions, on the contrary, both destroy this kind of temporal structure, balancing the periods of low and
high activity: the SRan extension randomizes the time order of the contact sequence, and the SStat extension evens the number of interacting nodes, with \bar{n} new conversations starting at each time step.

The similarity between the random walk processes on the SRan and SStat dynamical networks shows that the random walk coverage is not very sensitive to the heterogenous durations of the conversations, as the main difference between these two cases is that $P(\Delta t)$ is narrow for SRan and broad for SStat. In these cases, the observed behavior is instead well accounted for by Eq. (4.12), taking into account only the weight distribution of the projected network, i.e., the heterogeneity between aggregated conversation durations. Therefore, the slower exploration properties of the SRep sequences can be mostly attributed to the correlations between consecutive conversations of the single individuals, as given by the individual gap distribution $P_i(\tau)$, (see [157, 79, 85] for analogous results in the context of epidemic spreading).

A remark is in order for the 25c3 conference. A close inspection of Fig. 4.2 shows that the RW does not reach the whole network in any of the extensions schemes, with $C_{max} < 0.85$, although the duration of the simulation is quite long $\bar{pt}_{max} > 10^2 N$. The reason is that this dataset contains a group of nodes (around 20% of the total) with a very low strength s_i, meaning that there are agents who are isolated for most of the time, and whose interactions are reduced to one or two contacts in the whole contact sequence. Given that each extension we use preserves the $P(w)$ distribution, the discovery of these nodes is very difficult. The consequence is that we observe an extremely slow approach to the asymptotic value $\lim_{t \to \infty} \frac{C(t)}{N} = 1$. Indeed, the mean-field calculations presented in Secs. 4.1 and 4.2.1 suggest a power-law decay with $(1 + \bar{pt}/N)^{-1}$ for the residual coverage $1 - C(t)/N$.

In Fig. 4.4 we plot the asymptotic coverage for large times in the 4 datasets considered. We can see that RW on the eswc and ht dataset conform at large times quite reasonably to the expected theoretical prediction in Eq. (4.13), both for the SRep and SRan extensions. The 25c3
4.3. Random walks on extended contact sequences

Figure 4.4: Asymptotic residual coverage $1 - C(t)/N$ as a function of $\bar{p} t / N$ for the SRep (left) and SRan (right) extended sequences, for different datasets. In the inset we show the same plot in semilog scale.

dataset shows, as discussed above, a considerable slowing down, with a very slow decay in time. Interestingly, the school dataset is much faster than all the rest, with a decay of the residual coverage $1 - C(t)/N$ exhibiting an approximate exponential decay. It is noteworthy that the plots for the randomized SRan sequence do not always obey the mean-field prediction (see lower plot in Fig. 4.4). This deviation can be attributed to the fact that SRan extensions preserve the topological structure of the projected weighted network, and it is known that, in some instances, random walks on weighted networks can deviate from the mean-field predictions [19]. These deviations are particularly strong in the case of the 25c3 dataset, where connections with a very small weight are present.

4.3.2 Mean first-passage time

Let us now focus on another important characteristic property of random walk processes, namely the MFPT defined in Section 4.1. Figure 4.5 shows the correlation between the MFPT τ_i of each node, measured in
Figure 4.5: Rescaled mean first passage time τ_i, shown against the strength s_i, normalized with the total strength $N\langle s \rangle$, for the SRep, SRan and SStat extensions of empirical data. The dashed line represents the prediction of Eq. (4.10). Each panel in the figure corresponds to one of the empirical datasets considered.

The random walks performed on the SRan and SStat extensions are very well fitted by the mean field theory, i.e. Eq. (4.10) (predicting that τ_i is inversely proportional to s_i), for every dataset considered; on the other hand, random walks on the extended sequence SRep yield at the same time deviations from the mean-field prediction and much stronger fluctuations around an average behavior. Figure 4.6 addresses this case in more detail, showing that the data corresponding to RW on different
4.3. Random walks on extended contact sequences

Figure 4.6: (Mean first passage time at node \(i\), in units of rescaled time \(p_t\), vs. the strength \(s_i\), normalized with the total strength \(N\langle s \rangle\), for RW processes on the SRep datasets extension. All data collapse close to the continuous line whose slope, \(\alpha \approx 0.75\), differs from the theoretical one, \(\alpha = 1.0\), shown as a dashed line.

Datasets collapse on an average behavior that can be fitted by a scaling function of the form

\[
\tau_i \sim \frac{1}{p} \times \left(\frac{s_i}{N\langle s \rangle} \right)^{-\alpha},
\]

with an exponent \(\alpha \approx 0.75\).

These results show that the MFPT, similarly to the coverage, is rather insensitive to the distribution of the contact durations, as long as the distribution of cumulated contact durations between individuals is preserved (the weights of the links in the projected network). Therefore, the
deviations of the results obtained with the SRep extension of the empirical sequences have their origin in the burstiness of the contact patterns, as determined by the temporal correlations between consecutive conversations. The exponent $\alpha < 1$ means that the searching process in the empirical, correlated, network is slower than in the randomized versions, in agreement with the smaller coverage observed in Fig. 4.2.

The data collapse observed in Fig. 4.6 for the SRep case leads to two noticeable conclusions. First, although the various datasets studied correspond to different contexts, with different numbers of individuals and densities of contacts, simple rescaling procedures are enough to compare the processes occurring on the different temporal networks, at least for some given quantities. Second, the MFPT at a node is largely determined by its strength. This can indeed seem counterintuitive as the strength is an aggregated quantity (that may include contact events occurring at late times). However, it can be rationalized by observing that a large strength means a large number of contacts and therefore a large probability to be reached by the random walker. Moreover, the fact that the strength of a node is an aggregate view of contact events that do not occur homogeneously for all nodes but in a bursty fashion leads to strong fluctuations around the average behavior, which implies that nodes with the same strength can also have rather different MFPT (Note the logarithmic scale on the y-axis in Fig. 4.6).

4.4 Random walks on finite contact sequences

The case of finite sequences is interesting from the point of view of realistic searching processes. The limited duration of a human gathering, for example, imposes a constraint on the length of any searching strategy. Fig. 4.7 (left) shows the normalized $C(t)/N$ coverage as a function of the rescaled time $\bar{p}t/N$. The coverage exhibits a considerable variability in the different datasets, which do not obey the rescaling obtained for
4.4. Random walks on finite contact sequences

Figure 4.7: Left: Normalized coverage $C(t)/N$ as function of the time $\bar{p} t / N$ for the different datasets. Inset: probability distribution $P(\Delta t_{\text{new}})$ of the time lag Δt_{new} between the discovery of two new vertices. Only the discovery of the first 5% of the network is considered, to avoid finite size effects [16]. Right: Coverage $C(t)/N$ as a function of the number of new conversation realized up to time t, normalized for the mean number of new conversation per unit of time, \bar{n}, for different datasets.
the extended SRan and SStat sequence. The probability distribution of the time lags Δt_{new} between the discovery of two new vertices [16] provides further evidence of the slowing down of diffusion in temporal networks. The inset of Fig. 4.7 (left) indeed shows broad tailed distributions $P(\Delta t_{\text{new}})$ for all the dataset considered, differently from the exponential decay observed in binary static networks [16].

The important differences in the rescaled coverage $C(t)/N$ between the various datasets, shown in Fig. 4.7 (left), can be attributed to the choice of the time scale, \bar{t}/N, which corresponds to a temporal rescaling by an average quantity. We can argue, indeed, that the speed with which new nodes are found by the RW is proportional to the number of new conversations $n(t)$ started at each time step t, thus in the RW exploration of the temporal network the effective time scale is given by the integrated number of new conversations up to time t, $N(t) = \int_0^t n(t') dt'$. In the same Fig. 4.7 (right) we display the correlation between the coverage $C(t)/N$ and the number of new conversations realized up to time t, $N(t)$, normalized for the mean number of new conversations per unit of time, \bar{n}. While the relation is not strictly linear, a very strong positive correlation appears between the two quantities.

The complex pattern shown by the average coverage $C(t)$ originates from the lack of self-averaging in a dynamic network. Figure 4.8 shows the rank plot of the coverage C_i obtained at the end of a RW process starting from node i, and averaged over 10^3 runs. Clearly, not all vertices are equivalent. A first explanation of the variability in C_i comes from the fact that not all nodes appear simultaneously on the network at time 0. If $t_{0,i}$ denotes the arrival time of node i in the system, a random walk starting from i is restricted to $T_i^T = T - t_{0,i}$: nodes arriving at later times have less possibilities to explore their set of influence, even if this set includes all nodes. To put all nodes on equal footing and compensate for this somehow trivial difference between nodes, we consider the coverage of random walkers starting on the different vertices i and walking for exactly ΔT time steps (we limit of course the study to nodes with
4.4. Random walks on finite contact sequences

Differences in the coverage $C_i(\Delta T)$ will then depend on the intrinsic properties of the dynamic network. For a static network indeed, either binary or weighted, the coverage $C_i(\Delta T)$ would be independent of i, as random walkers on static networks lose the memory of their initial position in a few steps, reaching very fast the steady state behavior Eq. (4.3). As the inset of Fig. 4.8 shows, important heterogeneities are instead observed in the coverage of random walkers starting from different nodes on the dynamic network, even if the random walk duration is the same.

Another interesting quantity is the probability that a vertex i is discovered by the random walker. As discussed in Section 4.1, at the mean field level the probability that a node i is visited by the RW at any time less than or equal to t (the random walk reachability) takes the form $P_r(i; t) = 1 - \exp[-t\rho(i)]$. Thus the probability that the node i is reached by the RW at any time in the contact sequence is

$$P_r(i) = 1 - \exp\left(-\frac{\bar{p}T_s_i}{\bar{N}\langle s\rangle}\right),$$

$$117$$
Figure 4.9: Correlation between the probability of node i to be reached by the RW, $P_r(i)$, and the rescaled strength $\frac{pT_s_i}{N\langle s \rangle}$ for different datasets. The curves obtained by different dataset collapse, but they do not follow the mean-field behavior predicted by of Equation (4.15) (dashed line). The inset shows the same data on a linear scale, to emphasize the deviation from mean-field. Right: Correlation between the probability of node i to be reached by a RW of length $T/2$, $P_r(i)$, and the rescaled strength $\frac{pT s_i}{N\langle s \rangle}$ for different datasets, where s_i is computed on the whole dataset of length T. The inset shows the same data on a linear scale.
4.4. Random walks on finite contact sequences

where the rescaled time $\bar{p}t$ is taken into account. In Fig. 4.9, we plot the probability $P_r(i)$ of node i to be reached by the RW during the contact sequence as a function of its strength s_i. $P_r(i)$ exhibits a clear increasing behavior with s_i, larger strength corresponding to larger time in contact and therefore larger probabilities to be reached. Interestingly, the simple rescaling by \bar{p} and $\langle s \rangle$ leads to an approximate data collapse for the RW processes on the various dynamical networks, showing a very robust behavior. Similarly to the case of the MFPT on extended sequences, the dynamical property $P_r(i)$ can be in part “predicted” by an aggregate quantity such as s_i. Strong deviations from the mean-field prediction of Eq. (4.15) are however observed, with a tendency of $P_r(i)$ to saturate at large strengths to values much smaller than the ones obtained on a static network. Thus, although the set of sources of almost every node i has size N, as determined by the large fraction l_e of pairs of nodes connected by at least one time respecting path, shown in Table 1.2 (see Section 1.2.1), the probability for node i to be effectively reached by a RW is far from being equal to 1.

Moreover, rather strong fluctuations of $P_r(i)$ at given s_i are also observed: s_i is indeed an aggregate view of contacts which are typically inhomogeneous in time, with bursty behaviors1. Figure 4.9 also shows that the reachability computed at shorter time (here $T/2$) displays stronger fluctuations as a function of the strength s_i computed on the whole time sequence: $P_r(i)$ for shorter RW is naturally less correlated with an aggregate view which takes into account a more global behavior of i.

1When considering RW on a contact sequence of length T randomized according to the SRan procedure instead, Eq. (4.15) is well obeyed and only small fluctuations of $P_r(i)$ are observed at a fixed s_i.

119
4.5 Summary and Discussion

In this Chapter we have investigated the behavior of random walks on temporal networks. In particular, we have focused on real face-to-face interactions concerning four different datasets. Given the finite life-time of each network, we have considered as substrate for the random walk process the replicated sequences in which the same time series of contact patterns is indefinitely repeated. At the same time, we have proposed two different randomization procedures to investigate the effects of correlations in the real dataset. The “sequence randomization” (SRan) destroys any temporal correlation by randomizing the time ordering of the sequence. This allows to write down exact mean-field equations for the random walker exploring these networks, which turn out to be substantially equivalent to the ones describing the exploration of the weighted projected network. The “statistically extended sequence” (SStat), on the other hand, selects random conversations from the original sequence, thus preserving the statistical properties of the original time series, with the exception of the distribution of time gaps between consecutive conversations.

We have performed numerical analysis both for the coverage and the MFPT properties of the random walker. In both cases we have found that the empirical sequences deviate systematically from the mean field prediction, inducing a slowing down of the network exploration and of the MFPT. Remarkably, the analysis of the randomized sequences has allowed us to point out that this is due uniquely to the temporal correlations between consecutive conversations present in the data, and not to the heterogeneity of their lengths. Finally, we have addressed the role of the finite size of the empirical networks, which turns out to prevent a full exploration of the random walker, though differences exist across the four considered cases. In this context, we have also shown that different starting nodes provide on average different coverages of the networks, at odds to what happens in static graphs. In the same way, the prob-
ability that the node i is reached by the RW at any time in the contact sequence exhibits a common behavior across the different time series, but it is not described by the mean-field predictions for the aggregated network, which predict a faster process.

In conclusion, the contribution of the analysis presented in this Chapter is two-fold. On the one hand, we have proposed a general way to study dynamical processes on temporally evolving networks, by the introduction of randomized benchmarks and the definition of appropriate quantities that characterize the network dynamics. On the other hand, for the specific, yet fundamental, case of the RW, we have obtained detailed results that clarify the observed dynamics, and that will represent a reference for the understanding of more complex diffusive dynamics occurring on dynamic networks. Our investigations also open interesting directions for future work. For instance, it would be interesting to investigate how random walks starting from different nodes explore first their own neighborhood [18], which might lead to hints about the definition of “temporal communities” (see e.g. [132] for an algorithm using RW on static networks for the detection of static communities); various measures of nodes centrality have also been defined in temporal networks [27, 164, 95, 121, 68], but their computation is rather heavy, and RW processes might present interesting alternatives, similarly to the case of static networks [114].
Chapter 4. Random walks
Epidemic spreading

The topology of contacts between individuals plays a fundamental role in determining the spreading patterns of epidemic processes [82]. The first predictions of classical epidemiology [7, 81] were based on the homogeneous mixing hypothesis, assuming that all individuals have the same chance to interact with other individuals in the population. This assumption and the corresponding results were challenged by the empirical discovery that the contacts within populations are better described in terms of networks with a non-trivial structure [112]. Subsequent studies were devoted to understanding the impact of network structure on the properties of the spreading process. The main result obtained concerned the large susceptibility to epidemic spread shown by networks with a strongly heterogeneous connectivity pattern, as measured by a heavy-tailed degree distribution $P(k)$ [127, 98, 110].
The study of spreading patterns on networks is naturally complemented by the formulation of immunization strategies tailored to the specific topological properties of each network. Optimal strategies shed light on how the role and importance of nodes depend on their properties, and can yield importance rankings of nodes. In the case of static networks, this issue has been particularly stimulated by the fact that heterogeneous networks with a heavy-tailed degree distribution have a very large susceptibility to epidemic processes, as represented by a vanishingly small epidemic threshold. In such networks, the simplest strategy consisting in randomly immunizing a fraction of the nodes is ineffective. More complex strategies, in which nodes with the largest number of connections are immunized, turn out to be effective [128] but rely on the global knowledge of the network's topology. This issue is solved by the so-called acquaintance immunization [38], which prescribes the immunization of randomly chosen neighbors of randomly chosen individuals. In the temporal networks field, few works have addressed the issue of the design of immunization strategies and their respective efficiency [93, 163, 161, 101]. In particular, [93] consider datasets describing the contacts occurring in a population during a time interval [0, T]; they define and study different strategies that use information from the interval [0, ΔT] to decide which individuals should be immunized in order to limit the spread during the remaining time [ΔT, T]. Using a large ΔT = 75% T, the authors show that some tailored strategies, based on the contact patterns, perform better than random immunization and show that this is related to the temporal correlations of the networks.

In this Chapter, we study the dynamics of a simple spreading process running on top of empirical temporal networks. In particular, we investigate the effect of several immunization strategies, including the ones considered by [93], and address the issue of the length ΔT of the “training window”, which is highly relevant in the context of real-time, specific tailored strategies. The scenario we have in mind is indeed the possibility to implement a real-time immunization strategy for an ongo-
ing social event, in which the set of individuals to be immunized is determined by strategies based on preliminary measurements up to a given time ΔT. The immunization problem takes thus a two-fold perspective: The specific rules (strategy) to implement, and the interval of time over which preliminary data are collected. Obviously, a very large ΔT will lead to more complete information, and a more satisfactory performance for most targeting strategies, but it incurs in the cost of a lengthy data collection. On the other hand, a short ΔT will be cost effective, but yield a smaller amount of information about the observed social dynamics.

In order to investigate the role of the training window length on the efficiency of several immunization strategies, we consider a simple snowball susceptible-infected (SI) model of epidemic spreading or information diffusion [7]. In this model, individuals can be either in the susceptible (S) state, indicating that they have not been reached by the “infection” (or information), or they can be in the infectious (I) state, meaning that they have been infected by the disease (or that they have received the information) and can further propagate it to other individuals. Infected individuals do not recover, i.e., once they transition to the infectious state they remain indefinitely in that state. Despite its simplicity, this model has indeed proven to provide interesting insights into the temporal structure and properties of temporal networks. Here we focus on the dynamics of the SI model over empirical time-varying social networks. The networks we consider describe time-resolved face-to-face contacts of individuals in different environments and were measured by the SocioPatterns collaboration (see Chapter 1). We consider the effect on the spread of an SI model of the immunization of a fraction of nodes, chosen according to different strategies based on different amounts of information on the contact sequence. We find a saturation effect in the increase of the efficiency of strategies based on nodes characteristics when the length of the training window is increased. The efficiency of strategies that include an element of randomness and are based on temporally local information do not perform as well but are
Chapter 5. Epidemic spreading

largely independent on the amount of information available.

The Chapter is organized as follows: In Sec. 5.1 we define the spreading model and some quantities of interest. The immunization strategies we consider are listed in Sec. 5.2. Section 5.3 contains the main numerical results, and we discuss in Sec. 5.3.1 and Sec. 5.3.2 the respective effects of temporal correlations and of randomness effects in the spreading model. Section 5.4 finally concludes with a discussion of our results.

5.1 Epidemic models and numerical methods

Here we present the results of numerical simulation of the susceptible-infected (SI) spreading dynamics on the empirical data of human face-to-face proximity. The process is initiated by a single infected individual ("seed"). At each time step, each infected individual \(i \) infects with probability \(\beta \) the susceptible individuals \(j \) with whom \(i \) is in contact during that time step. The process stops either when all nodes are infected or at the end of the temporal sequence of contacts.

Different individuals have different contact patterns and \textit{a priori} contribute differently to the spreading process. In order to quantify the spreading efficiency of a given node \(i \), we proceed as follows: We consider \(i \) as the seed of the SI process, all other nodes being susceptible. We measure the half prevalence time, i.e., the time \(t_i \) needed to reach a fraction of infected nodes equal to 50\% of the population. Since not all nodes appear simultaneously at \(t = 0 \) of the contact sequence, we define the \textit{half-infection time} of seed node \(i \) as \(T_i = t_i - t_{0,i} \), where \(t_{0,i} \) is the time at which node \(i \) first appears in the contact sequence. The half-infection time \(T_i \) can thus be seen as a measure of the spreading power of node \(i \): smaller \(T_i \) values correspond to more efficient spreading patterns. We first focus on the deterministic case \(\beta = 1 \) (the effects of stochasticity, as given by \(\beta < 1 \), are explored in Sec. 5.3.2). Figure 5.1 (left) shows the rank plot of the rescaled half-infection times \(T_i / T \) for various datasets,
5.1. Epidemic models and numerical methods

Figure 5.1: Left: Rank plot of the half-infection times T_i divided by the contact sequence duration T for the various datasets. Right: Rank plot of the infection delay ratio τ_i for various datasets.

where T is the duration of the contact sequence. We note that T_i is quite heterogeneous, ranging from $T_i < 5\%T$ up to $T_i \approx 20\%T$.

Some nodes are therefore much more efficient spreaders than others. This implies that the immunization of different nodes could have very different impacts on the spreading process. To estimate this impact, we define for each node i the infection delay ratio τ_i as

$$\tau_i = \left\langle \frac{T_j^i - T_j}{T_j} \right\rangle_{j \neq i},$$

where T_j^i is the half-infection time obtained when node j is the seed of the spreading process and node i is immunized, and the ratio is averaged over all possible seeds $j \neq i$ and over different starting times for the SI process (as the half-infection time is typically much smaller than the

\footnote{We note that defining T_i as the time needed to reach a different fraction of the population, such as e.g. 25\%, leads to a similar heterogeneity.}

127
Chapter 5. Epidemic spreading

total duration of the contact sequence, $T_j \approx 0.1 T$ \(^2\). The infection delay ratio τ_i quantifies therefore the average impact that the immunization of node i has on SI processes unfolding over the temporal network. Individuals with large τ_i have a high impact in delaying the infection propagation and should be immunized, while individuals with low τ_i will have a marginal impact in slowing down the spreading if immunized. Figure 5.1 (right) displays a rank plot of τ_i for various datasets. As expected, the immunization of a single node does most often lead to a limited delay of the spreading dynamics. Interestingly however, τ_i is broadly distributed and large values are also observed.

The infection delay ratio of a single node i, τ_i, can be generalized to the case of the immunization of any set of nodes $\mathcal{V} = \{i_1, \ldots, i_n\}$, with $n < N$. We measure the spreading slowing down obtained when immunizing the set \mathcal{V} through the infection delay ratio

$$\tau_{\mathcal{V}} = \left\langle \frac{T_j^\mathcal{V} - T_j}{T_j} \right\rangle_{j \notin \mathcal{V}},$$

where $T_j^\mathcal{V}$ is the half-infection times of node j when all the nodes of set \mathcal{V} are immunized, and the average is performed over all possible seeds $j \notin \mathcal{V}$ and over different starting times for the SI process.

In addition to slowing down the propagation process, the immunization of certain individuals can also block the spreading paths towards other, non-immunized, individuals, limiting in this way the final number of infected individuals. We measure this effect through the average outbreak size ratio

$$i_{\mathcal{V}} = -\left\langle \frac{I_j^\mathcal{V} - I_j}{I_j} \right\rangle_{j \notin \mathcal{V}},$$

Note that in some cases, node i is not present during the time window in which the SI process is simulated; in this case, $T_j^i = T_j$.
where I^V_j and I_j are the final numbers of infected individuals (outbreak size) for an SI process with seed j, with and without immunization of the set V, respectively. The ratio is averaged over all possible seeds $j \notin V$ and over different starting times of the SI process.

5.2 Immunization strategies

An immunization strategy is defined by the choice of the set V of nodes to be immunized. We define here different strategies, and we compare their efficiency in section 5.3 by measuring τ_V and i_V. More precisely, for each contact sequence of duration T we consider an initial temporal window $[0, \Delta T]$ over which various node properties can be measured. A fraction f of the nodes, chosen according to different possible rules, is then selected and immunized (it forms the set V). Finally, τ_V and i_V are computed by simulating the SI process with and without immunization and averaging over starting seeds and times. For each selection rule, the two relevant parameters are f and ΔT. Larger fractions f are naturally expected to lead to larger τ_V and i_V. Here we also consider the effect of ΔT, where a larger ΔT corresponds to a larger amount of information on the contact sequence. We investigate whether and how more information about the contact sequence yields a higher efficiency of the immunization strategy.

We consider the following strategies (or “protocols”):

K Degree protocol. We immunize the fN individuals with the highest aggregated degree in $[0, \Delta T]$ [128]; the aggregated degree of an individual i corresponds to the number of different other individuals with whom i has been in contact during $[0, \Delta T]$;

BC Betweenness centrality protocol. We immunize the fN individuals with the highest betweenness centrality measured on the aggregated network in $[0, \Delta T]$ [67];
Chapter 5. Epidemic spreading

A Acquaintance protocol. We choose randomly an individual and immunize one of his contacts in \([0, \Delta T]\), chosen at random, repeating the process until \(fN\) individuals are immunized [38];

W Weight protocol. We choose randomly an individual and immunize his most frequent contact in \([0, \Delta T]\), repeating the process until \(fN\) individuals are immunized [93];

R Recent protocol. We choose randomly an individual and immunize his last contact in \([0, \Delta T]\), repeating the process until \(fN\) individuals are immunized [93].

As a benchmark, we also consider the following two strategies:

Rn Random protocol. We immunize \(fN\) individuals chosen randomly among all nodes;

\(\tau\) -protocol. We immunize the \(fN\) individuals with the highest \(\tau_i\), where the values of \(\tau_i\) are calculated according to Eq. (5.1) in the interval \([0, \Delta T]\).

The \(\text{Rn}\) strategy uses no information about the contact sequence and we use it as a worst case performance baseline. The \(\tau\) strategy makes use, through the quantity \(\tau_i\), of the most complete information available in the interval considered, since it takes into account the average effect of node immunization on SI processes taking place over the contact sequence. It could thus be expected to yield the best performance among all strategies.

The \(A, W, R\) and \(\text{Rn}\) strategies involve a random choice of individuals. In these cases, we therefore average the results over \(10^2\) independent runs (each run corresponding to an independent choice of the immunized individuals).
5.3. Numerical results

We first study the role of the temporal window ΔT on the efficiency of the various immunization strategies. To this aim, we consider two values of the fraction of immunized individuals, $f = 0.05$ and $f = 0.2$, and compute the infection delay ratio τ_V as a function of ΔT for each immunization protocol and for each dataset. Considering the limited duration of the contact sequence, we simulate the spreading dynamics over the whole sequence $[0, T]$, and not only over the remaining part $[\Delta T, T]$. The results, displayed in Figs. 5.2 and 5.3, show that an increase in the
Figure 5.3: Infection delay ratio τ_{ν} as a function of the training window ΔT for different immunization protocols, for various datasets. The fraction of immunized individuals is $f = 0.2$.

amount of information available, as measured by an increase in ΔT, does not necessarily translate into a larger efficiency of the immunization, as quantified by the delay of the epidemic process. The A, W and R protocols have in all cases lower efficiencies that remain almost independent on ΔT. Moreover, and in contrast with the results of [93] on a different dataset, W and R do not perform better than A. On the other hand, the immunization efficiency of the K, BC and T protocols increases at small ΔT and reaches larger values for all the datasets. As expected, the Rn protocol, which does not use any information, fares the worst. For $f = 0.05$, all protocols yield an infection delay ratio that
is largely independent of ΔT for large enough training windows $\Delta T \gtrsim 0.2 T$. For $f = 0.2$, the increase of τ_V is more gradual but tends to saturate for $\Delta T \gtrsim 0.4 T$ as well. In all cases, a limited knowledge of the contact time series is therefore sufficient to estimate which nodes have to be immunized in order to delay the spreading dynamics, especially for small f, i.e., in case of limited resources. Interestingly, in some cases, the K and BC protocols lead to a larger delay of the spread than the T protocol, despite the fact that the latter is explicitly designed to identify the nodes which yield the maximal (individual) infection delay ratio. This could be ascribed to correlations between the activity patterns of nodes, leading to a non-linear dependence on f of the immunization efficiency (in particular, the list of nodes to immunize is built using the list of degrees, betweenness centralities, and τ_i values computed on the original network, without recomputing the rankings each time a node is immunized, i.e., effectively removed from the network).

Figure 5.4 reports the outbreak ratio i_V as a function of the temporal window ΔT for different immunization protocols. Results similar to the case of the infection delay ratio are recovered: the reduction in outbreak size, as quantified by the average outbreak size ratio defined in Eq. (5.3), reaches larger values for the degree, betweenness centrality and T protocols than for the A, W and R protocols.

We finally investigate the robustness of our results when the fraction of immunized individuals varies. To this aim, we use a fixed length $\Delta T = 0.4 T$ for the training window and we plot the infection delay ratio τ_V and the average outbreak size ratio i_V as a function of f, respectively, in Figs. 5.5 and 5.6. The results show that the ranking of the strategies given by these two quantities is indeed robust with respect to variations in the fraction of immunized individuals. In particular, the K and BC protocols perform much better than the W and R protocols for at least one of the efficiency indicators.
Figure 5.4: Average outbreak ratio i_V as a function of the temporal window ΔT for different immunization protocols, for various datasets. Here the fraction of immunized individuals is $f = 0.05$.

5.3.1 Effects of temporal correlations

Real time-varying networks are characterized by the presence of bursty behavior and temporal correlations, which impact the unfolding of dynamical processes [65, 87, 73, 115, 11, 68, 147]. For instance, if a contact between vertices i and j takes place only at the (discrete) times $\mathcal{F}_{ij} = \{ t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots, t_{ij}^{(n)} \}$, it cannot be used in the course of a dynamical processes at any time $t \notin \mathcal{F}_{ij}$. A propagation process initiated at a given seed might therefore not be able to reach all the other nodes, but only those belonging to the seed’s set of influence [65], i.e., those that can be reached from the seed by a time respecting path.
5.3. Numerical results

Figure 5.5: Infection delay ratio τ_V as a function of the fraction f of immunized individuals, for different immunization protocols, for various datasets, and a fixed $\Delta T = 0.4 T$.

In order to investigate the role of temporal correlations, we consider a reshuffled version of the data in which correlations between consecutive interactions among individuals are removed. To this aim, we consider the list of events (i, j, t) describing a contact between i and j at time t and reshuffle at random their timestamps to build a synthetic uncorrelated new contact sequence, as done in the study of the random walks process with the “SRan” randomization. We then apply the same immunization protocols to this uncorrelated temporal network.

Figure 5.7 displays the corresponding results for the infection delay ratio τ_V computed for SI spreading simulations performed on a random-
Chapter 5. Epidemic spreading

Figure 5.6: Average outbreak ratio i_V as a function of the fraction f of immunized individuals, for different immunization protocols, for various datasets. The dashed line represents the fraction f of immunized individuals. Here $\Delta T = 0.4T$.

ized dataset (similar results are obtained for the average outbreak size ratio i_V). We have checked that our results hold across different realizations of the randomization procedure. The efficiency of the protocol is then largely independent of the training window length. As the contact sequence is random and uncorrelated, all temporal windows are statistically equivalent, and no new information is added by increasing ΔT: in particular, as nodes appear in the randomly reshuffled sequence with a constant probability that depends on their empirical activity, the ranking of nodes according for instance to their aggregated degree remains
5.3. Numerical results

Figure 5.7: Infection delay ratio τ_V as a function of the training window length ΔT, computed on one instance of a randomized dataset in which the timestamps of the contacts have been reshuffled, for different immunization protocols and various datasets, with $f = 0.05$.

very stable as ΔT changes, so that a very small ΔT is enough to reach a stable ranking. Nevertheless, the efficiency ranking of the different protocols is unchanged: the degree, betweenness centrality, and T protocols outperform the other immunization strategies. Moreover, the efficiency levels reached are higher than for the original contact sequence: the correlations present in the data limit the immunization efficiency in the case of the present datasets. Note that studies of the role of temporal correlations on the speeding or slowing down of spreading processes have led to contrasting results, as discussed by [101], possibly because
Chapter 5. Epidemic spreading

of the different models and dataset properties considered.

5.3.2 Non-deterministic spreading

We also verify the robustness of our results using a probabilistic SI process with \(\beta = 0.2 \). We consider the same immunization strategies and we compute the same quantities as in the case \(\beta = 1 \). Given the probabilistic nature of the spreading process, we now average the above observables over \(10^2 \) realizations of the SI process. Figure 5.8 shows that our results hold in the case of a probabilistic spread, although in this case the infection delay ratio \(\tau_I \) presents a noisy behavior, due to the stochastic fluctuations of the spreading dynamics. The average outbreak ratio \(i_Y \), not shown, behaves in a very similar way. Thus, also in this more realistic case with \(\beta < 1 \), a limited knowledge of the contact sequence is enough to identify which individuals to immunize.

5.4 Summary and Discussion

Within the growing body of work concerning temporal networks, few studies have considered the issue of immunization strategies and of their relative efficiency. In general terms, the amount of information that can be extracted from the data at hand about the characteristics of the nodes and links is a crucial ingredient for the design of optimal immunization strategies. Understanding how much information is needed in order to design good (and even optimal) strategies, and how the efficiency of the strategies depend on the information used, remain largely open questions whose answers might depend on the precise dataset under investigation.

We have here leveraged several datasets describing contact patterns between individuals in various contexts and performed simulations in order to measure the effect of different immunization strategies on sim-
5.4. Summary and Discussion

Figure 5.8: Infection delay ratio τ_V as a function of the temporal window ΔT in a probabilistic SI with $\beta = 0.2$, for different immunization protocols, various datasets, and $f = 0.05$.

We have considered immunization strategies designed according to different principles, different ways of using information about the data, and different levels of randomness. Strategies range from the completely random Rn to the A, W and R strategies that include a random choice, to the fully deterministic K, BC and T that are based on various node’s characteristics. Moreover, K uses only local information while BC and T rely on the global knowledge of the connection patterns. The most efficient strategies, as measured by the changes in the velocity of the spread and in the final number of nodes infected, are the deterministic protocols, namely K and BC. Strategies based on
random choices, even when they are designed in order to try to immunize “important” nodes, are less efficient.

We have moreover investigated how the performance of the various strategies depends on the time window on which the nodes’ characteristics are measured. A longer time window corresponds indeed a priori to an increase in the available information and hence to the possibility to better optimize the strategies. We have found, however, a clear saturation effect in the efficiency increase of the various strategies as the
training window on which they are designed increases. This is particularly the case when the fraction of immunized individuals is small (Fig. 5.2), for which a small ΔT is enough to reach saturation, while the saturation is more gradual for larger fractions of immunized (Fig. 5.3). The emergence of a saturation timescale is noteworthy as it is unexpected in such a system in which broad distributions of contacts and inter-contact times are observed and no characteristic timescale can be defined [34]. Finally, the strategies that involve a random component yield results that are largely independent on the amount of information considered.

In order to understand these results in more details, we have considered the evolution with time of the nodes’ properties. In particular, we compare the nodes with the largest degree in the fully aggregated network with the set of nodes $\mathcal{S}_K(\Delta T)$ chosen by following the K strategy on the training window $[0, \Delta T]$. To this aim, we show in Fig. 5.9 the median of the degrees, in the fully aggregated network, of the nodes of $\mathcal{S}_K(\Delta T)$, as a function of ΔT. The median rapidly reaches its final value, showing that, even for short ΔT, the set of immunized nodes $\mathcal{S}_K(\Delta T)$ has properties (here the degree) similar to the ones of the set $\mathcal{S}_K(T)$ that would be obtained by taking into account the whole dataset of length T.

Figure 5.10 moreover displays the evolution of the degree aggregated over the training window $[0, \Delta T]$, as a function of $\Delta T/T$, for several nodes. The top 5% of nodes with the largest degree in the fully aggregated network are ranked among the most connected nodes already for small training windows ΔT. The top 20% of the ranking fluctuates more and takes longer to stabilize. Overall, while the precise ordering scheme of the nodes according to their degree is not entirely stable with respect to increasing values of ΔT, a coarse ordering is rather rapidly reached: the nodes that reach a large degree at the end of the dataset are rapidly ranked among the highest degree nodes, and the nodes that in the end have a low degree are as well rapidly categorized as such. This confirms the result of Fig. 5.9 and explains why the K strategy reaches its best efficiency even at short training windows for small f, and with a more
Figure 5.10: Degree of nodes on the network aggregated over $[0, \Delta T]$, vs. $\Delta T / T$. The top 5% of nodes with highest degree on the fully aggregated network are shown in red (only one third is shown for clarity). The nodes ranked between the top 5% and top 20% in the fully aggregated network are shown in blue (only one sixth is shown). The evolution of the aggregated degree of a small number of other nodes is shown in grey for comparison.

The fact that high degree nodes are identified early on in the information collection process comes here as a surprise: for a temporal network with Poissonian events, all the information on the relative importance of links and nodes is present in the data as soon as the observation time is larger than the typical timescale of the dynamics; this is however a priori not the case for the bursty dynamics observed in real-world temporal networks, for which no characteristic timescale can be
5.4. Summary and Discussion

defined. Various factors can explain the observed stability in the ranking of nodes. In first instance, some nodes can possess some intrinsic properties giving them an important a priori position in the network (for instance, nurses in a hospital, or senior scientists in a conference) that ensure them a larger degree than other nodes even at short times. Secondly, the stability of the ranking could in fact be only temporary, and due to the fact that nodes arriving earlier in the dataset have a larger probability to gather a large number of contacts. In this case, the observed stability of the ordering scheme might decrease on longer timescales. In order to be able to discriminate between these possibilities, datasets extending on much longer timescales would however need to be collected.

The main conclusion of our study is therefore twofold. On the one hand, a limited amount of information on the contact patterns is sufficient to design relevant immunization strategies; on the other hand, the strong variation in the contact patterns significantly limits the efficiency of any strategy based on importance ranking of nodes, even if such deterministic strategies still perform much better than the “recent” or “weight” protocols that are generalizations of the “acquaintance” strategy. Moreover, strategies based on simple quantities such as the aggregated degree perform as well as or better than strategies based on more involved measures such as the infection delay ratio defined in Sec. 5.1. We also note that, contrarily to the case investigated by [93], the “recent” and “weight” strategies, which try to exploit the temporal structure of the data, do not perform better than the simpler “acquaintance” strategy. Such apparent discrepancy might have various causes. In particular, [93] consider spreading processes starting exactly at $t = \Delta T$ while we average over different possible starting times. The datasets used are moreover of different nature ([93] indeed obtain contrasted results for different datasets) and have different temporal resolutions. A more detailed comparison of the different datasets’ properties would be needed in order to fully understand this point, as discussed for instance by [101].
Chapter 5. Epidemic spreading
Data revolution in social science revealed complex patterns of interactions in human dynamics, such as heterogeneity and burstiness of social contacts. The recently uncovered temporal dimension of social interactions, indeed, calls for a renewed effort in analysis and modeling of empirical time-varying networks. I contributed to pursue this program with the work presented in this thesis, focusing on a twofold track: Modeling of dynamical social systems and the study of the impact of temporally evolving substrates on dynamical processes running on top of them, addressed in part I and part II, respectively. Below a general summary of such a work is given, including perspectives for future work, for more specific considerations see the concluding sections of each Chapter.

Firstly, in Chapter 1 we introduced some basic concepts and defini-
tions of the time-varying networks formalism, and we presented some empirical data of social dynamics, discussing their main features. We showed that the scientific collaboration networks [108] present a temporal dimension that can be used to define the concept of activity potential, discussed more in detail later in Chapter 3. We also analyzed the main statistical properties of the face-to-face interactions networks, recorded by the SocioPatterns collaboration, such as the bursty dynamics of social interactions, revealed by the heavy tailed form of the distributions of contact duration between pairs of individuals and gap times between consecutive interactions. These empirical data of human contact networks have been largely used in the rest of the thesis, since they constitute the benchmark for developing the modeling effort presented in Chapter 2, as well as the substrate on which dynamical processes considered in part II take place. Recently, a lot of attention has been devoted to the study of multi-layered or multiplex networks. Real complex systems, indeed, are often composed of several layers of interrelated networks, in which the same actors interact between them on different layers. Social networks, among the others, seem to be particularly appropriate to be described as multiplex, since social interactions between the same individuals can occur in different contexts or mediated by different means, such as face-to-face versus online communication. Up to date, however, the great majority of works has dealt with the theoretical study of static multiplex, while little or no attention has been given to the empirical analysis of real multi-layered networks. This is a promising perspective for future work on temporal networks, it would be particularly interesting to consider the burstiness of human dynamics on different layers of interactions, and the effect of the correlation between the different time series on diffusion processes.

In the first part of the thesis we focused on modeling of social dynamics, with a twofold aim: reproduction of empirical data properties and analytic treatment of the models considered. In Chapter 2 we presented and discussed the behavior of a simple model able to replicate
the main statistical properties of empirical face-to-face interactions, at
different levels of aggregation, such as individual, group and collective
scales. The model considers individuals involved in a social gathering as
performing a random walk in space, and it is based on the concept of so-
cial “attractiveness”: socially attractive people (due to their status or role
in the gathering) are more likely to make people stop around them, so
they start to interact. Interestingly, the remarkable agreement between
the model and experimental data is robust with respect to variations of
the internal parameters of the model. The fact that the attractiveness
model is able to reproduce the collective dynamics of the individuals,
as shown with the reachability in the random walk case, is promising
for the forthcoming study of dynamical processes, such as a spreading
of information or diseases, taking place on the temporal networks pro-
duces by the model. Moreover, the key role of the concept of social at-
tractiveness in the model definition naturally encourages further empir-
ical research in this direction, in order to deepen the relation between
the individual’s attractiveness and his behavior in the social gathering,
revealed by the number and duration of his interactions.

Chapter 3 has been devoted to the analytic study of the activity-driven
model, aimed to capture the relation between the dynamics of time-
varying networks and the topological properties of their correspond-
ing aggregated social networks. Through a mapping to a hidden vari-
ables formalism, we obtained analytic expressions for several topologi-
ical properties of the time-integrated networks, as a function of the inte-
gration time and the form of the activity potential. We also explored the
connectivity properties of the evolving network, as revealed by the gi-
ant connected component size and the percolation threshold, for both
cases of uncorrelated and correlated networks, finding notable differ-
ences. Despite the success of the activity driven model in explaining the
formation of hubs and the scale free form of the degree distribution, our
analysis revealed that several topological properties of real social net-
works are still missing in the present formulation of the model, opening
directions for its possible extensions. In particular, preliminary studies showed that the model remains analytically tractable if the probability to fire new connections is ruled by a renewal process. This non-Markovian model would be able to reproduce the heavy tailed form of the inter-event time distribution, one of the most striking features currently missing in the original activity driven model.

In the second part of the thesis we studied the behavior of diffusive processes taking place on temporal networks, constituted by empirical face-to-face interactions data. In Chapter 4 we considered random walks, the simplest diffusion model and a paradigm of dynamical processes, since its behavior provides fundamental insights on more complex diffusive processes. Thanks to different randomization strategies we introduced, we were able to single out the crucial role of temporal correlations in slowing down the random walk exploration. Our results contribute to shed light on the dynamics of random walks, and represent a reference for the study of general dynamical processes unfolding on temporal networks. Future work along this line of research will be devoted to the investigation of the behavior of a random walker moving on top of a multi-layered network, such as a social network constituted by a communication layer and a physical layer. Particular attention will be dedicated to the study of the impact of the temporal correlation between the layers on the random walk exploration and the network navigability.

Finally, Chapter 5 dealt with spreading dynamics, focusing on the case of a simple SI model taking place on temporal networks. We complemented the study of the epidemic spreading by investigating the impact of different immunization strategies, in order to reduce and delay the infection outbreak. We addressed in particular the effect of the length of the temporal window used to gather information in order to design the immunization strategy, finding that a limited amount of information of the contact patterns is sufficient to identify the individuals to immunize so to maximize the effect of the vaccination protocol. Moreover, our results indicate that strategies based on simple quantities
such as the individual’s aggregated degree perform as well as complex strategies more difficult to implement. Spreading dynamics have been recently studied on top of multiplex [58]. In the scenario considered, an epidemic process is taking place on a layer of physical contacts, while information awareness regarding the disease is spreading on the communication layer involving the same individuals. The interplay between the two processes is analyzed under a theoretical point of view, revealing the effect of the interrelation with the awareness process on the epidemic threshold. These findings prompt for further studies, aimed to compare theoretical predictions with the results of spreading dynamics on empirical multi-layered networks, and to study the impact of the temporal dimension on the phase diagram of the epidemics incidence.
Chapter 6. Conclusions and future perspectives
Acknowledgements

I am deeply grateful to Prof. Romualdo Pastor Satorras for the effort he put in educate me to critical judgement and thinking, and for his passionate and inspiring way of mentoring. I am indebted with him also for his expert guidance to approach physics problems, and for his constant human support. In these years I have had the lucky opportunity to work in close contact with Andrea Baronchelli, learning a lot: Andrea, thank you very much, I really enjoyed it. I would like to express my gratitude to Universitat Politecnica de Catalunya for its support, and for the unique human environment that I found there. My collaboration network is one of most valuable asset I gained during my PhD studies: Alain, Ciro, Alessandro, Nicola and Claudio, thank you all, and thanks also to your institutions for their kind hospitality. Many thanks also to all the people who crossed my path during my PhD studies and made these years so nice and stimulating, through many discussions and ideas. Finally, a special mention for everything that is not directly involved in this thesis, but contributed to bring it to light: thanks to my family and old friends, and thanks to Barcelona and my new life here.
Acknowledgements
List of Publications

The work exposed in this thesis has been published in the following papers and preprints (number of citation updated to September 2014, according to Google Scholar):

- M. Starnini, A. Baronchelli, A. Barrat and R. Pastor-Satorras
 Random walks on temporal networks
 Physical Review E, 85, 056115, May 2012,
 Times cited: 36, Results exposed in Chapter 1 and Chapter 4.

- M. Starnini, A. Baronchelli, and R. Pastor-Satorras
 Modeling human dynamics of face-to-face interaction networks
 Phys. Rev. Lett., 110, 168701, Apr 2013,
 Times cited: 10, Results exposed in Chapter 2.

- M. Starnini, A. Baronchelli, and R. Pastor-Satorras
 Model reproduces individual, group and collective dynamics of human contact networks
 Results exposed in Chapter 2.

- M. Starnini and R. Pastor-Satorras
 Topological properties of a time-integrated activity-driven network
 Physical Review E, 87, 062807, June 2013,
 Times cited: 5, Results exposed in Chapter 3.
List of Publications

• M. Starnini and R. Pastor-Satorras
 Temporal percolation in activity-driven networks
 Physical Review E, 89, 032807, Mar 2014,
 Times cited: 1, Results exposed in Chapter 3.

• M. Starnini, A. Machens, C. Cattuto, A. Barrat, and R. Pastor-Satorras
 Immunization strategies for epidemic processes in time-varying contact networks
 Journal of Theoretical Biology, 337 p. 89–ÅŞ 100, 2013,
 Times cited: 5, Results exposed in Chapter 5.

Other papers and book chapters related with my PhD studies and not included in the present thesis are:

• M. Starnini, A. Baronchelli, and R. Pastor-Satorras
 Ordering dynamics of the multi-state voter model
 Journal of Statistical Mechanics: Theory and Experiment, P10027,
 2012,

• P. Moretti, A. Baronchelli, M. Starnini and R. Pastor-Satorras
 Generalized voter-like models on heterogeneous networks
 Chapter in Dynamics On and Of Complex Networks, Volume 2, 285-300.
Bibliography

Bibliography

[86] G. Kossinets, J. Kleinberg, and D. Watts. The structure of information pathways in a social communication network. In *Proceedings*
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, pages 435–443, New York, NY, USA, 2008. ACM.

Bibliography

Bibliography

Bibliography

