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Abstract

Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial

Doctor of Philosophy

Machine Learning Methods for the Analysis of Liquid

Chromatography-Mass Spectrometry datasets in Metabolomics

by Francesc Fernández Albert

Liquid Chromatography-Mass Spectrometry (LC/MS) instruments are widely used in

Metabolomics. To analyse their output, it is necessary to use computational tools and

algorithms to extract meaningful biological information. The main goal of this thesis is

to provide with new computational methods and tools to process and analyse LC/MS

datasets in a metabolomic context. A total of 4 tools and methods were developed in

the context of this thesis.

First, it was developed a new method to correct possible non-linear drift effects in the

retention time of the LC/MS data in Metabolomics, and it was coded as an R package

called HCor. This method takes advantage of the retention time drift correlation found in

typical LC/MS data, in which there are chromatographic regions in which their retention

time drift is consistently different than other regions. Our method makes the hypothesis

that this correlation structure is monotonous in the retention time and fits a non-linear

model to remove the unwanted drift from the dataset. This method was found to

perform especially well on datasets suffering from large drift effects when compared to

other state-of-the art algorithms.
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Second, it was implemented and developed a new method to solve known issues of peak

intensity drifts in metabolomics datasets. This method is based on a two-step approach

in which are corrected possible intensity drift effects by modelling the drift and then the

data is normalised using the median of the resulting dataset. The drift was modelled

using a Common Principal Components Analysis decomposition on the Quality Control

classes and taking one, two or three Common Principal Components to model the drift

space. This method was compared to four other drift correction and normalisation

methods. The two-step method was shown to perform a better intensity drift removal

than all the other methods. All the tested methods including the two-step method were

coded as an R package called intCor and it is publicly available.

Third, a new processing step in the LC/MS data analysis workflow was proposed. In

general, when LC/MS instruments are used in a metabolomic context, a metabolite

may give a set of peaks as an output. However, the general approach is to consider

each peak as a variable in the machine learning algorithms and statistical tests despite

the important correlation structure found between those peaks coming from the same

source metabolite. It was developed an strategy called peak aggregation techniques, that

allow to extract a measure for each metabolite considering the intensity values of the

peaks coming from this metabolite across the samples in study. If the peak aggregation

techniques are applied on each metabolite, the result is a transformed dataset in which

the variables are no longer the peaks but the metabolites. 4 different peak aggregation

techniques were defined and, running a repeated random sub-sampling cross-validation

stage, it was shown that the predictive power of the data was improved when the peak

aggregation techniques were used regardless of the technique used.

Fourth, a computational tool to perform end-to-end analysis called MAIT was developed

and coded under the R environment. The MAIT package is highly modular and pro-

grammable which ease replacing existing modules for user-created modules and allow the

users to perform their personalised LC/MS data analysis workflows. By default, MAIT

takes the raw output files from an LC/MS instrument as an input and, by applying a

set of functions, gives a metabolite identification table as a result. It also gives a set

of figures and tables to allow for a detailed analysis of the metabolomic data. MAIT

even accepts external peak data as an input. Therefore, the user can insert peak table

obtained by any other available tool and MAIT can still perform all its other capabilities

on this dataset like a classification or mining the Human Metabolome Dataset which is

included in the package.
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Chapter 1

Introduction

1.1 The Metabolome

The genome of a specie is defined as the set of genes that comprises all its hereditable

material [1]. The proteome for that specie is made of all the proteins that are obtained

from the genome of that specie [2]. In a similar way, the metabolome of that specie is

defined as the set of metabolites involved in the metabolic reactions of that specie [3].

The corresponding sciences that study the genome, the proteome and the metabolome

are called Genomics, Proteomics and Metabolomics respectively. It is known that these

three omics show deep and complex links between them. For example some metabolite

abundance variations seem to be related to some associated genetic variances [4]. Al-

though being related, there is an important difference between the Human Genome and

the Human Metabolome: the Human Genome has been sequenced, which means that the

human DNA sequence is known [5], whereas the exact size of the Human Metabolome

at the present time is unknown [6].

1.2 Experimental Devices

In Metabolomics it is used a wide range of analytical devices to obtain empirical metabo-

lite measures [6]. Gas Chromatography coupled to Mass Spectrometry (GC/MS) and

NMR platforms were the first devices used in the early stages of Metabolomics [7, 8].

The use of Liquid Chromatography coupled to Mass Spectrometry (LC/MS) devices

1
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has increased in metabolomic analyses since the development of the High Performance

LC/MS (HPLC-MS) and Ultra Performance LC/MS (UPLC-MS) [9].

1.2.1 GC/MS

GC/MS platforms consist in two coupled analytical instruments: a gas chromatograph

and a Mass Spectrometer (MS) [10]. The main feature of the gas chromatograph is a

large column whose walls are coated with an stationary phase. Through the column

it flows a carrier gas called mobile phase. Once a sample is injected into the GC/MS,

the mobile phase carries the metabolites in the sample through all the column. These

metabolites interact with the stationary phase of the column by means of intermolecular

forces. As a consequence, the molecules that in the sample were all mixed, at the end of

the column, appear at different times [10]. The time spent for a molecule to get through

all the column is defined as retention time (rt) of that molecule. Typical GC/MS single

sample analysis lasts for about 20-35 min [11].

At the end of the chromatographic column it is attached the MS. In many MS configu-

rations, the device uses a ionisation source to bombard the molecules to ionise them or

to break them down to pieces. Using a mass analyser and a detector, the MS computes

the ratio between the mass and the charge (m/z) of the ionised molecules or pieces of

molecules. To detect a signal, the mass analysers need these ionised molecules and/or

pieces of molecules to have a net electric charge. Among the available mass analysers, the

most commonly used are the time-of-flight (TOF) and the single or triple quadrupoles

[8, 12]. Other types of available mass analysers are ion traps, orbitrap and fourier trans-

form ion cyclotron resonance [13].

As the main advantages of the GC/MS devices, it is highlighted its high sensitivity

and reproducibility of the molecule fragmentation process [11, 14]. Because of this

high reproducibility in the fragmentation patterns of the molecules, there are GC/MS

mass spectral searchable libraries like the National Institute of Standards and Technol-

ogy (NIST) / National Institute of Health (NIH) Mass Spectral Library 1 or GOLM

1http://www.nist.gov/srd/nist1a.cfm

http://www.nist.gov/srd/nist1a.cfm
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Metabolome Database 2 that allow for a fast metabolite identification [15]. However,

GC/MS platforms can only can detect volatile compounds. Some of the non-volatile

molecules can be turned into volatile by applying on them a chemical process known as

derivatisation [11, 14]. As a consequence, an GC/MS platform can only profile apolar

metabolites which are in the range from volatile to semi-volatile having masses typically

under 700 Da [11].

1.2.2 LC/MS

LC/MS platforms (also in its HPLC and UPLC configurations ) also consist of two differ-

ent coupled analytical instruments: a liquid chromatograph and a MS. LC/MS devices

have been used widely in Metabolomics and they are probably one of the most widely

analytical device used in metabolomic studies at the moment [13, 16]. Figure 1.1 shows

a scheme of a LC/MS experimental device. A liquid chromatograph uses a liquid as a

mobile phase to transport the sample molecules through the chromatographic column.

In Metabolomics, it is specially used the LC/MS setup having an Electrospray Ionisation

(ESI) source and a TOF mass analyser. The molecules reaching the electrospray undergo

a soft ionisation process called Electrospray Ionisation [8, 17]. In general this ionisation

does not break the molecules in the samples but it ionises them, allowing the creation

of aggregates with the gain or loss of atoms or molecules. If the resulting aggregate has

greater mass than the original molecule it is called an adduct and if it has lower mass,

it is a fragment. ESI ionisers generate a great number of ions and they can be set up in

either positive or negative polarisation modes. Depending on the characteristics of the

molecule, it is easier ionised in the positive or negative polarisation set up. To obtain

a complete metabolite profiling of the samples it is required to analyse the samples in

both ionisation modes [11]. The reverse phase chromatograph set up is a usual choice

when using an LC/MS platform in the Metabolomics context [11]. This configuration

allows for suitable analysis of medium and low polarity metabolites. However, there

are important metabolites like aminoacids or sugars that are hardly detected under this

setup, as they elute in a very small retention time [11, 18]. Due to this fact, it has been

developed of a new type of LC/MS device called Hydrophilic Interaction LIquid Chro-

matography (HILIC) that uses a special chromatographic column to detect this kind of

2http://gmd.mpimp-golm.mpg.de/

http://gmd.mpimp-golm.mpg.de/
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Figure 1.1: Diagram of an LC/MS device using a quadrupole as a mass analyser.
The model of the picture is a Agilent 6100 Series Quadrupole http://www.kprime.

net/pdf/products/6100_Data_Sheet.pdf

.

molecules [11, 18]. It has been suggested that combining the output of the LC/MS with

the HILIC might give a more complete profiling of the metabolites in the samples [11].

Typical single sample analysis in LC/MS in Metabolomics lasts for about 10-15 min [11].

In contrast to GC/MS, the samples need not to be derivatised prior to be analysed with

a LC/MS device [14, 15]. Other advantages are a wider polarity range and molecular

mass compared to GC/MS [15]. On the other hand, LC/MS sample analysis, as all

MS-related devices, may suffer from ion suppression effect. This problem is related

to the coelution of matrix components with the analytes affecting the device detection

capabilities that is reflected in a drop of peaks intensities [11].
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Chapter 2

State of the Art

Metabolomics has been the latest omic science (after genomics and proteomics) to

undergo an important computational development in their data analysis workflows.

Metabolomic studies apply experimental instruments and protocols devised in analyt-

ical chemistry to biological samples, with special emphasis in analysing biofluids and

tissues [1]. Metabolomics aims at detecting and identifying low weight molecules (typ-

ically under 1500-1800 Da) called metabolites [2, 3] in biological samples under certain

external conditions [4, 5, 6]. Despite the fact that initially there were some differences

between the terms Metabolomics and Metabonomics (see the classical Nicholson refer-

ences [7, 8, 9]) the two terms are nowadays used interchangeably. In this thesis it will

only be used the term Metabolomics.

There are two main approaches to perform Metabolomic studies depending on whether

the metabolites to be detected are known (Targeted Metabolomics) or they are unknown

(Untargeted Metabolomics) [3, 4, 10, 11, 12, 13]. Performing a targeted or an untargeted

metabolomic study is a critical issue for sample preparation [10], for the choice of the

experimental setup [11] and for the statistical approach used [4, 10]. The basic under-

lying difference between both types of study is that the main objective in Untargeted

Metabolomics is to detect the highest possible amount of metabolites in the samples,

whereas Targeted Metabolomics is only focused on detecting certain metabolites of in-

terest.

7
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2.1 Metabolomic Workflow

The main objective in Metabolomics is to study the metabolism using either quantita-

tively or semi-quantitatively approaches [1, 3, 13]. In metabolomic studies it is followed

a well-established pipeline going from experiment design and statistical data analysis to

biological interpretation of the results [1, 3, 6, 14]. Figure 2.1 depicts the stages of the

typical workflow for metabolomic studies. The main processing steps in a metabolomic

analysis include the following stages:

• First steps are focused on an experimental context and they include the exper-

imental design and collecting the biological samples. The samples are gathered

following a sample protocol extraction [13, 15]. The data acquisition is performed

through analytical instruments such as an LC/MS or a Nuclear Magnetic Reso-

nance (NMR) [4, 11].

• Next stages include computational data processing steps such as peak detection,

data filtering and data normalisation (Figure 2.1). One of the objectives of this

stage for metabolomic untargeted studies is to obtain which peaks of the system

are the most significant in terms of class separability in the data. That means to

find which variables separate mostly separate the classes in the dataset. These

classes usually refer to different study conditions like patients that have followed

different diets or that have undergone some drug treatment. To find these signif-

icant masses, the data are analysed through different statistical approaches [16]

including multivariate and machine learning methods [3, 17, 18, 19, 20].

• The Statistical Analysis stage shown in Figure 2.1, might include a validation

stage, whose objective is to evaluate the statistical predictive power contained in

a subset of variables. Different Machine Learning techniques are applied in this

stage being Partial Least Squares linear Discriminant Analysis (PLSDA) one of

the most used approaches in Metabolomics [17].

• Peak annotation procedure is a processing step to improve the biological interpre-

tation of the metabolomic data. This stage gives biological and chemical insight

by labelling the variables (i.e. peaks) of the data with biological and/or chemical

information. There are several kinds of peak annotation. Database mining is a

type of peak annotation in which a database (or databases) are mined to match the
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Figure 2.1: Metabolomic Workflow for Metabolomic Studies from Zhou et al [21].

peaks in the data to actual metabolites in the data. Another type of peak anno-

tation step is the adduct or fragment identification depending on the polarisation

used in the LC/MS instrument (see Section 2.2.5).

• Last steps of the workflow might include pathway and metabolic network analy-

sis [1, 3]. Functional analysis is performed by searching for overrepresented and

underrepresented labels from known biological data. In most metabolomic stud-

ies, it is common to perform additional steps based on metabolite verification and

quantification of the candidate metabolites (e.g. using a tandem MS for better

metabolite identification) [3].
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2.2 LC/MS Data Processing

The first data preprocessing steps after LC/MS data acquisition are signal filtering and

peak picking, also known as peak detection (Figure 2.1). The output of LC/MS instru-

ments is a sparse 3D signal whose dimensions are intensity, m/z and the rt for each

detected feature (peak mass). Figure 2.2 depicts an LC/MS profiling for a urine sample.

The figure shows that the LC/MS signals are intrinsically sparse, as the majority of the

2D plane formed by m/z and rt does not contain any peaks. Furthermore, Figure 2.2

also shows that LC/MS signals are highly anisotropic. If we consider the integral of

the whole signal in Figure 2.2 on the plane I-rt, the resultant signal has broader peaks

and almost all the rt range has an intensity signal. On the other hand, the integral of

the signal on the I-m/z plane gives narrow peaks and gaps in the m/z range without

any intensity signal. This anisotropy is also depicted in the TIC shown in Figure 2.3

compared to the masses of Figure 2.4

Peak mass signals can be recorded in either profile or centroid mode. Centroid mode

records peak masses as a set of discrete values in which the peak masses have no width

(Figure 2.4 shows a centroid mass recording). On the other hand, in profile recording

the peak mass signal is continuous. Centroid mode recording produces smaller file sizes

as only the peak centroid is saved. There are algorithms and tools provided by the

commercial vendors of analytical devices to switch the signal recording from profile

mode to centroid mode in a process called centroidisation [22].

2.2.1 Peak Detection

Peak Detection (also called Peak Picking) is a complex mathematical step that usually in-

volve the use of complex peak detection algorithms and filtering methods [22, 24, 25, 26].

The main objective of this step is to detect signal peaks which will ultimately be related

to metabolites. The anisotropy of the LC/MS signals is exploited by many peak picking

algorithms that detect the peaks taking into account that rt and m/z dimensions are

different in terms of peak behaviour and peak resolution (m/z measures are more precise

than rt measures) [24]. Two of the most used methods for peak detection are Matched
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Figure 2.2: LC/MS profile for a urine sample from Guan et al [23]. The height
depicts the intensity in arbitrary units, horizontal axis is the m/z for the piece whereas

the in-depth axis is the retention time in seconds

Figure 2.3: Chromatographic profile registered in a LC/MS device from Zhu et al
[27]. Horizontal axis is the retention time in minutes whereas the vertical axis is the

intensity measured in arbitrary units.

Filter [24, 26] and centWave [22].

2.2.1.1 Matched Filter

Matched Filter method uses a two-fold differentiation approach and it has been one of the

most widely used algorithms to filter LC/MS signals [26]. This method is implemented in

the R package XCMS [24]. It makes the hypothesis that the chromatographic peaks can
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Figure 2.4: Sample centroid spectrum profile registered from a urine sample in a
LC/MS device from Zhu et al [27]. Horizontal axis is the mass charge ratio in Dalton

whereas the vertical axis is the intensity measured in arbitrary units

be approximated by a certain function. It is usually assumed that the peak shapes are

similar to a gaussian function. The next step is to perform a slicing of the signal known

as binning in the m/z domain, and superimpose the second derivative of the gaussian

function on the rt dimension of the signal to obtain a sharper chromatographic shape of

the peaks [26]. XCMS software suggests taking a signal-to-noise cutoff value to finally

detect the peaks once the filter has been applied [24]. This software tool also proposes

to take the mean of the unfiltered data to determine the noise threshold value. The

Matched Filter method shows some drawbacks related to having to manually choose

the binning value, and to the dependence of the method with the gaussian function

parameters [22]. If the binning value is too small, the m/z slices are so thin that the

same chromatographic peaks are found in many slices and they are not detected as peaks.

On the other hand, if the binning value is so large, small chromatographic peaks will not

be detected as they will be added to other chromatographic peaks [22, 24]. The issue

with the gaussian parameters is related to the different shapes that chromatographic

peaks show in biological samples. Depending on the input parameters, the Matched

Filter method can lead to detect more or less peaks than exist in the chromatogram

due to the different shape between the input gaussian and the real chromatographic

peaks.[22].
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2.2.1.2 centWave

Another different approach is the centWave method which was specially design to avoid

the binning problems associated to the Matched Filter algorithm. The centWave al-

gorithm is based on detecting the so-called regions of interest (ROIs) in the centroided

m/z domain, combined with a Continuous Wavelet Transform (CWT) approach for chro-

matographic peak resolution [22]. Given a mass accuracy value, masses are classified

to ROIs depending on their mass value. Regions with an amount of centroids below

a user-defined threshold are removed. centWave method proposes the use of CWT to

replace the second derivative of the Gaussian in the filtering as it correctly detects chro-

matographic peaks of different width [22]. The CWT is applied to the extracted ion

chromatogram and the local maxima of the coefficients are used to detect the chromato-

graphic peak of the ROI [22]. Chronologically, the Matched Filter method was developed

earlier than the centWave. Nowadays it is recommended to use the centWave method

instead of the Matched Filter [28].

In a similar way than in the Matched Filter method, the centWave algorithm is also

implemented in the XCMS package as another peak detection method.

2.2.2 Peak alignment

In a metabolomic study many biological samples are collected and analysed. A critical

step in the metabolomic workflow is the a peak alignment stage. Computational data

processing workflows typically include a transformation of the original raw data into a

data matrix containing information of the peak masses and retention time values for all

the samples [29]. This mathematical procedure requires the samples to be aligned in the

retention time dimension to ensure that the retention time axis is the same for all the

samples. The fact that the sample chromatograms may show different peak behaviour

can have different reasons: replacement of the chromatographic column, changes in the

mobile phase, drift in the instrument etc. [30]. Because of this wide variety of causes, the

alignment procedure should consider possible unwanted non-linear effects in the reten-

tion time [31]. Figure 2.5 shows how the chromatograms taken from consecutive samples

may be unaligned. The objective of the alignment algorithms is to correct these effects
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Figure 2.5: Group of unaligned LC/MS chromatograms the drift caused by an LC/MS
instrument, from van Nederkassel et al [32]. Each row corresponds to a sample and the
horizontal axis is the retention time. The lighter the colour, the higher the intensity of

the signal.

and to get the same chromatographic peaks from all the samples as much aligned as

possible. Ideally, after performing the peak alignment, the peaks of the resulting mean

TIC chromatogram would have higher and sharper peaks thus improving the chromato-

graphic behaviour of the samples as the uncertainty of the peaks would be lower.

The need for peak alignment in chromatography has been known for a long time and

many alignment algorithms has been proposed [30, 31, 33, 34, 35, 36, 37]. The alignment

algorithms can be divided into two main categories: those that require to run a peak mass

detection stage prior to perform the alignment [38], and those algorithms that are applied

directly on the chromatogram profiles without using the m/z values [30, 37]. Among the

most used methods for both types of algorithms there is the Locally Weighted Scatterplot

Smoothing (LOESS) that uses peak masses and the Parametric Time Warping (PTW)

that need not to detect the peak masses to run the chromatographic alignment.

2.2.2.1 LOESS

The LOESS method uses a warping approach using groups of well-behaved peak mass

groups to adjust local polynomials and align the chromatograms [24]. To find the re-

gression function, it is only used those points close to a certain point x where we want
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to evaluate the function [39]. The weight functions used in the LOESS algorithm are

usually either quadratic or cubic polynomials. As a consequence, the LOESS algorithm

performs the alignment of the chromatograms by performing a piecewise local adjust-

ment of second- or third-order polynomials where the retention time intervals are found

by detecting the groups of well-behaved peak mass groups. The LOESS method is also

implemented in the XCMS package. The version implemented in the XCMS package

uses high density peak regions considering all the samples to define the well-behaved

peaks. When a group of samples show peak masses in a close region, it is likely that

that peak is not much unaligned an is chosen as a well-behaved peak.

Despite being widely used in recent times and being implemented in a package like

XCMS, LOESS method present the drawbacks of the warping methods. Being a piece-

wise warping algorithm, the pieces of the chromatograms are stretched or compressed

following the optimisation of an objective function. This warping procedure might cause

artefacts in the aligned chromatograms or produce models with overfitting depending

on the binning parameter.

2.2.3 Amplitude Normalisation

The next step in the LC/MS signal processing is the amplitude or intensity normal-

isation. This stage corrects the overall changes in the intensity of the samples when

different batches were used and/or because some samples were injected in different days

and the experimental device shows a drift in the intensity measurements. Figure 2.6

depicts a PCA score plot of the LC/MS metabolomic data described in Wang et al [40].

In this plot it is shown that batch and injection order effects have an strong influence

on the structure of the data by being and important source of variance in the data. In

particular, the second PC of Figure 2.6 contains a combination of batch and injection

order effects.

Batch effects cause the variables to behave differently depending on which sample is

being considered. Because the sources of this misleading variance are many, the noise

structure of LC/MS data have heteroscedastic behaviour, which means that signals with

higher intensity values show higher variance [41]. As a consequence applying machine
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Figure 2.6: PCA Scoreplot of the LC/MS data set from Wang et al [40]. Solid and
open circles refer to WC and study samples respectively. Different colours are used to

label different batches. Solid lines show the injection order.

learning or multivariate methods such as PCA on the raw data may give wrong infor-

mation [41] although these statistical methods has been applied in metabolomic studies

for long time without normalising the intensity of the signal [18].

In recent years, many amplitude normalisation methods have been developed using dif-

ferent approaches to the same problem [28, 40, 41, 42, 43, 44]. A number of them rely

on the use of internal standards [28, 42, 44] to perform the intensity normalisation. The

idea is that internal standards only undergo variations caused by the batch effects or

time biases. The reason is that the internal standards are always the same samples so

they do not contain biological variability (i.e. they will only show technical variability).

As a consequence, if the internal standard for a certain sample shows a lower intensity

value than a sample of the previous batch, it is expected that all the intensity levels for

the samples of that batch (or that have been analysed closely in time to the QC) are

going to show overall lower intensity values as well. These internal standards are usually

called Quality Controls (QC) and typically can made of a pool of aliquots from all or

a subset of the samples being analysed to ensure that they contain similar metabolic

information[28]. Other QC strategies include using spikes or water samples as a control

of the performance of the analytical instrument [18].

Among the methods used the more relevant are:
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• LOESS method is used to correct the between-batch variations [28]. This method

uses the QC peak expression to adjust a LOESS curve. As the QCs are injected in

each batch, the LOESS adjustment measures the drift of the intensity across the

time [28]. This curve is then used to correct the intensity values of the peaks for

every sample.

• Veselkov et al. describes and compares the performance of four typical approaches

to intensity normalisation with and without a variance stabilisation transformation

that compensates the heteroscedastic noise of the LC/MS data [41]. The four

tested approaches are LOESS, Median fold change (forces the median of log fold

changes of peak intensities to be 0), Total Intensity (all samples are forced to have

the same total intensity) and Quantile (forces the peak intensity distribution to

be the same in all samples) normalisations. Their conclusions show that the best

performance is reached by performing the variance stabilisation transformation

and using the median fold change normalisation [41].

• A method called Batch Normaliser based in a linear regression model to normalise

the intensity is proposed by Wang et al. [40]. The underlying idea of this model

is to fit a linear model using the QC samples to capture the effects of both the

batch and the injection order. Once the model is fit, the parameters of the model

are used to correct the intensity of the rest of the samples [40]. In this paper, the

Batch Normaliser method is compared to other standard methods like the quantile

method. The results show that the Batch Normaliser outperforms all the methods

tested.

2.2.4 Multivariate and Statistical Data Analysis

Once the features in the samples are detected (i.e. the m/z and rt for each peak), their

chromatograms aligned and the intensity normalised, the next data processing stage is

to perform the analysis of the data using Statistical or Machine Learning approaches.

At this point the data takes form of a matrix with a row for each detected peak and a

column for each analysed sample plus two more columns containing the m/z and rt data

for each feature. The data of the matrix is the intensity of the peak for that sample.

There are usually two different ways of computing this intensity which are the maximum
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Figure 2.7: Left plot shows an scoreplot of QC samples analysed using an LC/MS
instrument. Right plot depicts a box plot of a single statistically significant feature of
a dataset containing two classes (F T0 and F T1). Both plots are from Tulipani et al.

[45]

of the chromatographic peak or the area of the chromatographic peak [24].

Three main types of mathematical approaches might applied on this data matrix:

• A range of statistical tests such as parametric tests (e.g. Student’s t-test or

ANOVA) or non-parametric tests (e.g. Mann-Whitney or Welch tests) are nor-

mally applied on the data in order to obtain the most statistically significant

features that separate the classes of the data [45]. As these tests are applied on

each feature individually, the number of computed tests is high and performing a

multiple test correction like Bonferroni or False Discovery Rate (FDR) is recom-

mended to avoid false positives [46]. Plotting Boxplots (see the one shown in the

right plot of Figure 2.7) is also a classical approach used in metabolomic studies

to evaluate the differences of statistically significant features between the classes

involved in the data. For example the box plot of Figure 2.7 shows that the plotted

feature is statistically significant because the metabolite is found for samples of

class F T1 but it is not found for both class F T0.

• The most common non-supervised technique applied on metabolomic LC/MS data

is a PCA score plot of the data for visualisation purposes [47, 48]. Plotting the

data in a PCA score plot allows a dimensionality reduction of the data and it

revels the main sources of variance in the data. Left plot of Figure 2.7 depicts a

2D PCA score plot with three different types of QC samples. In this Figure it can

be seen that the three classes are clearly separable in the PC1/PC2 plane as they

appear depicted wide apart in the score plot. Another mathematical approach
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Figure 2.8: Heat map showing the unsupervised clustering of samples at the top
(colours refer to real sample classification) and of the statistically significant features

at the left side of the plot from Tulipani et al [45].

regarding non-supervised techniques are the unsupervised classifiers. In LC/MS

metabolomic studies, unsupervised classifiers usually take the form of heat map

plots in which are performed unsupervised clusterings of features and samples.

Figure 2.8 depicts a heat map of samples having of two classes. The actual sample

labelling is shown at the column colour at the top of the plot. The samples

shown in the figure correspond to the statistically significant features found after

performing a Student’s test on each feature. The most typical distances used for

these hierarchical clustering are either the euclidean or the correlation distances.

As it is clear from Figure 2.8, heatmap figures are useful for analysing the results

of metabolomic studies as they allow an easy correspondence of every significant

feature to a class.

• Supervised classifiers such as PLSDA and SVM are normally used in an LC/MS

metabolomic context to evaluate the class-related information of the features [47,

50, 49]. Repeated random sub-sampling cross-validation stages are applied us-

ing SVM and PLSDA to evaluate the statistical predictive power of the LC/MS
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Figure 2.9: Boxplot showing the classification ratio in a 50-fold random sub-sampling
cross-validation SVM classification stage from Nam et al [49]. The different boxes refer

to different biomarkers used as variables to predict the samples.

metabolomic data. Figure 2.9 shows the classification ratio of performing a cross-

validation stage in a metabolomic study using four different biomarkers in SVM.

Random forests can be used either as a supervised or unsupervised classifier and

they are based on constructing sets of classification trees. The use of this technique

in the LC/MS metabolomic context has increased in recent years [51].

2.2.5 Peak Annotation

Peak Annotation is a stage of the metabolomic data that has as an objective, to make

the biological interpretation of the results easier by gaining some chemical and biolog-

ical insight. In general, in LC/MS metabolomic data, the ionisation of a single source

metabolite might give a set of features. To make easier the metabolite identification,

there are some approaches that find the peaks coming from the same metabolite and

relate them through possible chemical transformations that the molecules might have

undergone in the MS. Depending on the polarisation mode used when analysing the

samples, the peaks might form agglomerates with some other atoms or molecules, re-

sulting in a overall charged positive (if the polarisation mode of the ESI was set to

positive) or negative (if the polarisation mode of the ESI was set to negative) feature.

The positively charged agglomerates are called adducts (for example if a sodium atom
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was attached a piece of metabolite having neutral electrical charge) whereas the nega-

tive are called fragments (for example if a hydrogen atom was removed from a piece of

metabolite having neutral electrical charge). A typical approach to find these agglom-

erated peaks is to define a retention time allowance window and a correlation threshold

value [52, 53, 54]. Another agglomeration that the molecule pieces might undergo is the

neutral loss or biotransformations, in which a neutral molecule is lost or attached to a

piece of the ionised molecule (for example a loss of glucose from a a piece of metabolite

having neutral electrical charge) [52].

Database mining can also be considered a type of peak annotation. Databases usually

contain a relation between the metabolite and a primary mass i.e. a characteristic piece

of the metabolite fragmentation or ionisation. To perform the metabolite identification

step, the typical approach is using an allowance mass window to query a metabolite

database for example METLIN [55] or Human Metabolome DataBase (HMDB) [21, 27,

55, 56]. The main problem of this strategy is that, in general, the allowance window

method is not restrictive enough and there are multiple possible hits for each query

mass. Several approaches have been proposed to tackle this issue. A first approach to

choose between several metabolite hit candidates, proposes to introduce a gaussian model

in order to generate a probabilistic measure of the possible candidates [57]. Another

approach is to used the so-called ”In silico fragmentation”. This strategy is based on

performing the opposite procedure than the regular metabolite identification. The idea

is to simulate the fragmentation pattern of the metabolites in the database following

chemical laws and the check which of the simulated peaks appear in the real data [57, 58].

As the final step of this procedure, the candidate metabolites are then ranked according

to the number of matched peaks between the real and the simulated peaks.

2.3 Computational Tools

Analysing biological samples using an LC/MS in a metabolomic context produces high

throughput data. Therefore, due to the sizes of the data involved in a typical metabolomic

analysis, using software tools is a mandatory step in the data processing workflow. Many

commercial brands producing their own LC/MS instruments, deliver their own in-house

software tools with the analytical instrument. The softwares from Analyst http://

http://www.absciex.com/products/software/analyst-software
http://www.absciex.com/products/software/analyst-software
http://www.absciex.com/products/software/analyst-software
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www.absciex.com/products/software/analyst-software or the software MarkerL-

ynx from Waters http://www.waters.com/waters/en_US/MarkerLynx-/nav.htm?cid=

513801&locale=en_US perform the first signal processing steps. There also exist com-

putational tools from companies focused on the statistical analysis of high-throughput

data produced by such devices. These software tools are usually applied as black boxes

with limited user intervention. Among these commercial computational tools, one of the

most used softwares is SIMCA-P+ from Umetrics (http://www.umetrics.com/simca).

Free tools usually developed in R [24], Python [59] or Java [60] to cite some, are also

available and they are also widely used. R is a free software programming language

specially focused on statistics with which have been developed many tools for analysing

metabolomic data [61]. Besides R, in recent times it has been developed a great number

of computational tools developed in many other programming languages like Python,

Java or web tools. In this thesis, only free tools will be considered. Basically, the avail-

able free tools fall within two different classes. There are tools which are specific of

certain processing stages of the metabolomic data analysis workflow, like for example

the CAMERA package which is focused on peak annotation (i.e. adduct, fragment and

neutral loss annotation stages)[52]. Most of R packages fall within this category. Nev-

ertheless more tools are needed to perform a complete complex metabolomic analysis

when these kind of tools are used. On the other hand, there also exist free online tools

that allow to perform a complete end-to-end metabolomic analysis such as Metaboan-

alyst [62]. However, this kind of tools are usually implemented as a web service and

they are not as flexible as the other set of tools due to its limited user customisation

capabilities. Additionally, due to their web-based nature, it is hard to implement an

automatic procedure to fully analyse the data with little user intervention. Table 2.1

contains a summary of the main available computational tools with their main stages of

application in the metabolomic workflow.

2.3.1 R packages and other tools

R is perhaps the programming language in which the number of metabolomic packages

is growing the most. Because of the package-based nature of the R language, newer R

packages are normally supported on other older R packages. Therefore, the user can

develop complex R packages with ease. Because of this feature of the R language, the

http://www.absciex.com/products/software/analyst-software
http://www.absciex.com/products/software/analyst-software
http://www.absciex.com/products/software/analyst-software
http://www.waters.com/waters/en_US/MarkerLynx-/nav.htm?cid=513801&locale=en_US
http://www.waters.com/waters/en_US/MarkerLynx-/nav.htm?cid=513801&locale=en_US
http://www.umetrics.com/simca
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library of R packages which are focused on processing metabolomic data is increasing

in number and complexity. Normally, the available R packages to perform metabolomic

data analysis are focused on the first stages of the metabolomic workflow [24, 52, 53].

Among the available R packages in the metabolomic context, XCMS is one of the most

used packages. The main tasks of this package are to perform the peak detection and

peak alignment, as well as basic statistical processing in metabolomic data analysis. The

package is designed to analyse signals from both GC/MS and LC/MS platforms.

As it is explained in Sections 2.2.1.1 and 2.2.1.2, XCMS allows the use of both Matched

Filter and centWave methods when it comes to filtering the raw signals and perform the

peak detection stage. Before moving on to the peak alignment stage, XCMS groups the

peaks across the samples. As it is said in section 2.2.2.1, Besides the LOESS method

(explained in section 2.2.2.1) to align the chromatograms, the XCMS package also con-

tains other alignment methods such as Obiwarp [64] or the piece-wise linear alignment

methods.

Besides the peak detection and peak alignment stages, XCMS also allows to perform

basic univariate statistical tests such as ANOVA test (when there are more than two

classes in the data) or a Student’s t-test (when there are two clases on the data) for

each feature. The results of these statistical tests are retrieved as p-values in the output

table of the package. Moreover, XCMS is able to perform and online query the Metlin

database [55]. It was also published a protocol englobing the use of XCMS to perform

the peak detection stage and the Metlin Database to identify the statistically significant

features [27].

Another used package is CAMERA. This R package is designed to perform the peak

annotation of adducts, fragments and neutral losses. The package requires the previous

use of the package XCMS to detect the peaks before computing the peak annotation.

It includes tables of adducts, fragments and neutral losses but it accepts a user-defined

table as an input parameter to allow customisation of the peak annotations.

As it is explained in section 2.2.5, one of the methods to perform the peak annotation

is to group the peaks using an allowance retention time window and a peak correla-

tion threshold strategy. The Retention time allowance window is defined according to

the shape of the chromatographic peak and a user input parameter. According to this

procedure, the peaks falling inside the retention time allowance window are grouped as
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possible candidates to come from the same source metabolite. In a second step, the

correlation between the peaks of each group and across the samples is computed. If

the correlation value is lower than a certain user-defined correlation threshold value, the

group is split in groups where the peak correlation in the peak groups is equal or greater

than the threshold.

In a similar way than the XCMS package, the output of the CAMERA analysis is a

table. This table includes the XCMS output the peak annotation and also contains the

peak groups obtained in the CAMERA workflow.

metaXCMS is another R package that proposes to perform an extra processing step

besides the XCMS statistical tests [65, 66]. The package is based on finding significant

features between different pairwise experiments, giving as an the different combinations

of statistical significant features in a Venn Diagram.

mzMine is a toolset implemented in Java and designed to analyse metabolomic signals

[67]. The original mzMine launched in 2006 has been updated and improved recently

to its second version mzMine 2.0 [60]. It performs the peak detection stage and basic

statistical processing while the tool is designed putting emphasis on visualisation tools.

2.3.2 Online Computational Tools

Online Computational tools to perform metabolomic data analysis are a recent devel-

opment compared to many software packages. Among the web tools available, Metabo-

Analyst [62, 68] and XCMS online [69] are two of the most widely used online tools for

metabolomic data processing.

The first version of the MetaboAnalyst web server was launched in 2009 [68] but it has

been updated recently to its second version [62]. Overall MetaboAnalyst is one of the

most complete computational tools available for performing Metabolomic data analysis.

It allows for and end-to-end processing workflow that analyse GC/MS, LC/MS and NMR

metabolomic data. Among its processing steps, there are the data processing (including

peak detection and noise filtering), data normalisation, statistical analysis (including
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time-series analysis) and pathway/enrichment analysis [62]. A wide array of statisti-

cal tools are available in the MetaboAnalyst 2.0 classified in traditional chemometric

analysis including multivariate (like PCA, PLSDA) and univariate (ANOVA, t-tests)

approaches or more advanced machine learning apporaches such as SVM or Random

Forest methods. It also includes several methods to perform unsupervised clustering

analysis like K-means or self-organising maps (SOM). Furthermore, MetaboAnalyst 2.0

has enhanced graphical interface compared to its first version making it more user-

friendly. Before launching the second version of the MetaboAnalyst software tool, it

was published a protocol to perform and end-to-end metabolomic analysis and obtain

biological interpretation from raw data [70].

XCMS Online is another recently launched tool to perform end-to-end untargeted anal-

ysis of metabolomic data. Its objective is to be an easy-to-use computational tool to

analyse LC/MS data in a user-friendly environment [69]. XCMS Online uses the R

package XCMS to perform the peak detection and peak alignment stage. The soft-

ware automatically identifies the statistically significant metabolites using the Metlin

database [69].

Table 2.1: Summary of the main available computational tools.

Tool Type Description and Functionality

XCMS R Package
Peak Detection, Statistical Test (Student’s
T-test/ANOVA) and Metabolite Identification
through Metlin Database query

CAMERA R Package
Peak Annotation of Adducts/Fragments and
Neutral Losses. It complements the XCMS
package.

metaXCMS R Package
Statistical Analysis. It complements the XCMS
package by adding pairwise comparison of the
significant features for pairs of experiments.

mzMine Java tool
Peak detection and basic statistical processing.
Its main feature is the great range of visualisa-
tion tools.

metaboAnalyst R Online Tool
The tool covers all the workflow, including peak
detection, statistical analysis, peak annotation
and pathway enrichment.

XCMS Online R Online Tool
Peak detection, statistical analysis and Metabo-
lite Identification through Metlin Database.
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Chapter 3

Goals

3.1 Main Objective

The main objective of the thesis is to improve the methodology of data analysis in

metabolomics from end to end covering from the signal processing to statistical analysis

and network analysis using machine learning methods. The data used in the thesis will

be based on real human samples (especially urine) analysed through LC/MS devices

with ESI.

3.2 Goals of the Project

• Improve the statistical prediction capabilities of the data using machine learning

methods.

• Implement an easy-to-use R library to perform a flexible, robust and automatic

analysis of LC/MS data.

• Develop a new algorithm to perform the peak alignment taking advantage of the

experimental conditions particularities (7.5 min recording reverse-phase UPLC-

MS).

• Implement the developed peak alignment algorithm as an independent R library.

• Solve the LC/MS normalisation issues by finding an appropriate normalisation

algorithm or algorithms.
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• Implement the required normalisation algorithms in an independent normalisation

R package.

• The three developed R packages should be compatible. They have to be imple-

mented to be applied sequentially as a workflow.

3.3 Expected Contributions

The most important expected contribution is a methodology based on a set of tools

implemented in R that allow the user to analyse LC/MS metabolomic data. The tools

design should allow flexibility in its use, meaning that proficient users might design or

perform modification with ease. Additionally, the tools should be highly compatible

between them as they should be used as black-boxes for most unexperienced users.

All the improvements performed in the metabolomic analysis workflow will be imple-

mented as R packages (either additional packages or inside one of the three R packages

mentioned in Section 3.2). Using these packages that are expected to contain improve-

ments in the metabolomic workflow will provide the user with the necessary tools to

perform an analysis of LC/MS metabolomic data.



Chapter 4

Peak aggregation as an innovative

strategy for improving the

predictive power of LC-MS

metabolomic profiles

Note: This chapter is an exact copy of the paper:

Peak Aggregation as an Innovative Strategy for Improving the Predictive Power

of LC-MS Metabolomic Profiles

Francesc Fernández-Albert, Rafael Llorach, Cristina Andres-Lacueva, Alexandre Perera-Lluna

Analytical Chemistry 2014 86 (5), 2320-2325

4.1 Abstract

The Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomic datasets

consist of different features including (de)protonated ions, fragments, adducts and iso-

topes that may show high correlation values related to a high level of collinearity.

There have been described several sources of these high correlation patterns regard-

ing metabolomic datasets. Among these sources, it should be highlighted the high level

of correlation computed between features coming from the same metabolite. It is well

37



Chapter 4. Peak Aggregation Techniques 38

known that soft ionisation methods (such as electrospray) produce several mass fea-

tures from a particular compound (i.e. metabolite spectrum). Typically, the statistical

methods used in metabolomics consider spectral peaks as variables. However it has

been reported that a high collinearity between variables might be the responsible for

high uncertainty values in the predictors of a regression. In this context, this technical

note proposes a new strategy based on the application of the so-called peak aggrega-

tion methods (NMF Reduction, PCA Decomposition, Maximum Peak and Spectrum

Mean) to take advantage of the variable collinearity and solve the issue of high variable

collinearity. A set of real samples obtained after human nutritional intervention with

placebo or polyphenol-rich beverages was used to test this methodology. The results

showed that applying any peak aggregation method (especially NMF and PCA) im-

proves the statistical prediction power of class pertinence independently of the nature of

the classifier (linear PLS-DA or non-linear SVM). Overall, the introduction of this new

approach resulted in a reduction of the dimensionality of the data and, in addition, in a

significant increase in the overall predictive power of the data.

4.2 Introduction

The Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomic analyses

produce data sets with a high level of complexity. High feature (i.e. peak) collinearity

values are an important characteristic of this complexity. The origin and meaning of this

collinearity (e.g. correlations) has already been revised [1, 2]. Among the different kind

of correlations found in the LC-MS metabolomics data sets it should be highlighted the

statistical relevance of the correlations between features coming from the same metabo-

lite. In this context, it is assumed that an LC-MS metabolomics dataset consists in

a mixture where, with the (de)protonated ion, it is possible to find different features

corresponding to the formation of adducts [3], isotopes and fragments ions coming from

the ionization source [4] that show high levels of correlation. In particular, Moco et al

[5] showed that after analysis of the correlations in an LC-MS dataset containing more

than 3.000 mass signals the highest positive correlations were found for mass signals

belonging to the same metabolite.

Typically, after the LC-MS acquisition stage[6, 7, 8], the data takes the form of a matrix

having mass features (treated as variables) as columns and samples as rows. This matrix
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is used as the basic dataset in the algorithms which process LC-MS data. In this context,

multivariable methods such as Principal Components Analysis (PCA), Partial Least

Squares (PLS) and Partial Least Squares Discriminant Analysis (PLS-DA) are widely

used to extract the significant features from such data sets [9]. Some more specific

procedures, for example the application of an orthogonal filter before the PLS (OPLS)

or PLS-DA (OPLS-DA) to separate the between-class from the within-class variance

[9, 10, 11] are also commonly used. Moreover, univariate statistical tests such as t-tests

or ANOVA[12] are also applied obtaining a p-value for each mass feature. It has been

reported that when collinearity among variables is found in performing regression or

discriminant analysis, this may lead to biased regressor estimators [13]. In the case of

an exact linear relationship between the variables, it is not even possible to find a unique

predictor[13]. In consequence, collinearity among variables should be controlled in order

to arrive at better-fitting regressions.

The main aim of this paper is to explore the potential of shifting from single mass features

towards a mass peak spectrum oriented analysis. For each mass spectrum, the feature

measure is obtained through peak aggregation techniques. The effect of considering

this new variable measures instead of single features is evaluated by the selection of

significant features using a standard ANOVA test and by obtaining the classification

ratio in a classification stage by using two different classifiers: Support Vector Machines

(SVM) and PLS-DA [14].

4.3 Materials and Methods

4.3.1 Spectrum Definition

In the context of data obtained in full scan mode, the concept of spectrum is defined

as the set of features/peaks including the (de)protonated ion, isotopes, adducts and

fragments originated in the ionisation source that eluted at the same retention time.

Therefore, all peaks produced by the same metabolite will show large correlation prop-

erties.
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4.3.2 Peak Aggregation Techniques

Let Y be the peak data set matrix (dimension of Y = n×m) where the elements of this

matrix are the intensity of the peaks in the samples, n is the number of samples in the

peak data set, m is the number of peaks in the peak data set. Let p be the total number

of spectra present in the peak data set with p ≤ m (assuming that p matches the actual

number of metabolites in the data). In the process of changing to a metabolite-based

scheme, each peak is assigned to a metabolite as defined in previous section. Several

criteria are available to perform this assignment. In this paper, we use the correlation-

based approach proposed by Kuhl et al [15]. This method relates each spectrum to

a submatrix of the peak data set known as a spectral submatrix. In general, as each

spectrum may have any number of peaks, the dimensions of these spectral submatrices

are different. The complete set of peaks Y from now on is considered to consist of a set

of p spectral sub matrices Y k (n× ok) each one having ok peaks:

Y = {Y k, k = 1, 2, ...p} (4.1)

Applying either multivariate techniques or statistical tests on LC-MS samples using

spectra as variables is not straightforward due to the different dimensions of the spectral

submatrices. Different peak aggregation techniques are studied in this technical note to

reduce the dimensionality of all spectral submatrices. Each peak aggregation method

is based on a multivariate process that is applied independently over each spectrum,

resulting in a 1D-spectral submatrix per spectrum.

For each method and for a spectrum k, the effect of applying the method over the

spectral data Y k is mathematically expressed as shown at equation (4.2).

Y k = Sk · (Lk)T + Ek (4.2)
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Matrices Sk (n × 1) and Lk (ok × 1) are method-dependent and correspond to the

scores and loadings matrices for the k-th spectrum respectively. Matrix Ek (n × ok) is

the error matrix of the model. The loadings matrix can be thought of as the spectral

representation obtained by the applied peak aggregation technique, whereas the scores

matrix is the expression of Lk across the samples. Graphically, the interpretation of both

loadings and scores matrices for each peak aggregation method used and for a certain

spectrum k is depicted in Figure 4.2.

All the resulting p-spectral submatrices Sk can be combined to build a new data set

called a spectral data set S (n × p). Statistical tests or multivariate techniques can

then be applied to the spectral data set to extract its significant features. We report

results for the following peak aggregation methods: Maximum Peak, Spectral Mean, PCA

Decomposition and Non-negative Matrix Factorisation Reduction (NMF Reduction).

4.3.2.1 No Peak Aggregation Method

When peaks are used as variables, no peak aggregation is performed and the spectral

data set SNone equals the peak data set Y :

SNone = Y (4.3)

4.3.2.2 Maximum Peak

The Maximum Peak method consists in taking the peak having maximum mean values

across samples within the spectrum. Mathematically, it can be expressed as is shown in

(4.4)

Sk
max = (Y k

lq | q = maxj(
n∑

i=1

Y k
ij

n
), l = 1, 2, ..., n) (4.4)

where Sk
max is an (n × 1) dimensional matrix. In some metabolomic processing algo-

rithms, the Maximum Peak approach is used after building the spectra, to select the

peak to be sent as a query to the database [16]. In this kind of algorithm, the spectral
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maximum peak is chosen as the representative of the spectra and sent to the database

to identify the whole metabolite.

4.3.2.3 Spectral Mean

The Spectral Mean is a peak aggregation method that applies a mean to the peaks of

the spectrum, expressed as (4.5).

Sk
mean = (

ok∑
j=1

Y k
ij

ok
| i = 1, 2, ..., n) (4.5)

This method considers all peaks in a spectrum with the same weight disregarding of

their statistical properties.

4.3.2.4 Principal Component Analysis Decomposition

A natural evolution from the Spectral Mean method is the PCA Decomposition method.

In this peak aggregation method, a PCA is performed on every spectrum k as shown

in equation 4.6. This method builds an aggregated factor through a maximum variance

criteria through a PCA decomposition. A data centered PCA model is constructed for

each Y k matrix and the set of scores corresponding to the first principal component

is employed as aggregated index. In equation (4.6), T k (ok × 1) is the first principal

component and P k (n × 1) the first score vector whereas Ek
PCA (n × ok) is the error

matrix.

Y k = P k · (T k)T + Ek
PCA (4.6)

The spectral data set when PCA Decomposition method is used is shown at (4.7).

Sk
PCA = P k (4.7)
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Provided that the loadings change for each of the peaks of the spectrum, this peak

aggregation method can take into account complex peak collinearity patterns between

peaks of the same spectrum. However, interpretability of the output of the PCA method

is not possible as, in that case, negative values are allowed in both the loadings and the

scores.

4.3.2.5 Non-Negative Matrix Factorisation Reduction

An alternative decomposition is to impose non-negativity on the computation of the

peak loadings corresponding to each spectrum. This can be achieved through a Non

Negative Matrix Factorisation of Y k into the product of two matrices Hk (n × 1) and

W k (ok×1) plus an error matrix Ek
NMF (n×ok) shown at (4.8) [17]. NMF is a versatile

technique which has been used in some other pattern discovery fields[18] and which may

be obtained by several different mathematical criteria [19]. In the NMF method, all the

matrix components of the H-matrix and the W-matrix are non-negative [17]. The matrix

components were obtained by performing an optimisation procedure, which consisted of

a minimisation of the Kullback-Leibler divergence [20] between the spectral data set Y k

and the product Hk · (W k)T .

Y k = Hk · (W k)T + Ek
NMF (4.8)

When NMF is applied to a spectrum, the component capturing maximum variance of

the Y k matrix is chosen to be the 1D-spectral matrix as shown in (4.9).

Sk
NMF = Hk (4.9)
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This method has the advantage of better interpretability. As the initial data values

are intensities, all the components of the peak data set X are positive. The resulting

spectral data set under the NMF method, SNMF , is a matrix all of whose components

are positive. The components of the spectral data set Sij;NMF can be understood as the

expression of a certain spectrum j in the sample i. As the W-matrix represents a certain

averaged spectrum, the components Sij;NMF can be understood as a type of spectral

intensity. The R source code of the methods will be available through the Bioconductor

repository.

4.3.3 Experimental Data

4.3.3.1 Experimental design

A randomized, crossover, placebo-controlled, double-blind intervention study was per-

formed with 30 volunteers, who consumed 187 mL of a control placebo (class A) or a

functional beverage (FB) (class B) in an acute study, and twice a day during 15 days

for a chronic consumption study (15 days placebo samples were labelled as class C and

15 days FB samples as class D). Twenty-four-hour urine samples were collected the day

before the acute intervention study and on the last day of the chronic study. For the

acute study, the urine samples were collected in the first 4 hours. The FB was a grape

extract preparation obtained from grape skins with alcohol mixtures at different tem-

perature conditions. The study protocol was approved by the Ethics Committee of the

Hospital Universitario La Paz, Madrid.

4.3.3.2 Urine analysis

The samples were analysed by liquid chromatography coupled with a hybrid quadrupole

time-of-flight (LC-q-TOF, AB/MDS Sciex) in positive mode using the protocol proposed

by Tulipani et al[10]. LC was performed in HPLC Agilent using a RP 18 Luna column

(50 X 2.0 mm, 5µm), with a sample injection volume of 15 µL. A linear gradient elution

was performed consisting of [A] Milli-Q water 0.1% HCOOH (v/v) and [B] acetonitrile

0.1% HCOOH (v/v). The gradient elution (v/v) of [B] was: (time, min; B, %): (0, 1),

(4, 20), (6, 95), (7.5, 95), (8, 1), (12, 1). Q-TOF spray parameters were set as previously
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described[21, 22] and full data acquisition was performed scanning from 70 to 700 m/z.

The TOF was calibrated with reserpine (1 pmol/µL). LC-MS data were acquired in

random order to avoid possible bias. Finally, the files were translated to the netCDF

format.

4.3.4 Statistical Validation

In order to evaluate the quality of the significant features found by all the five methods,

a cross-validation classification step was performed over the spectral data set S, using

only the significant features (section A.2) and 5 training samples for each class in a

repeated random sub-sampling cross-validation stage. For each of the 5 methods (the

standard method and the four peak aggregated methods) a total of 300 repetitions was

performed. In each repetition, the training set of 5 samples/class was chosen randomly

between all the samples. Two different classifiers were used: PLS-DA which is a linear

classifier, and SVM which is a non-linear one [14] (further details in section A.2). In

order to selectively check the effect of the peak aggregation strategy, only spectra having

more than one peak are considered valid in this analysis.

4.4 Results

4.4.1 Effect of the Peak Aggregation

Figure 4.1 shows a typical pattern for correlation values between peaks in LC-MS data

sets (section A.1). It can be seen from this Figure that there exist peak blocks having

high correlation values. The peaks of these highly correlated peak blocks showing similar

retention times are likely to come from the same metabolite and are considered to

constitute a spectrum.
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Figure 4.1: Heatmap showing the correlation values profile for a subset of 50 peaks
in the metabolomic LC-MS sample set. Both dendrograms were performed using cor-
relation distance. The Figure depicts a typical pattern for correlation values between
peaks in LC-MS data sets (section A.1) showing that there exist peak blocks having
high correlation values. It is possible to conclude that those peaks showing high corre-
lation and similar retention time (because they were produced after chromatography)

came from the same metabolite.
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In order to illustrate in more detail the effect of using one or another peak aggregation

method on the spectra, Figure 4.2 shows how a sample spectrum is processed depending

on which method is applied. Using different peak aggregation techniques implies having

a different spectral pattern (matrix Lk at Equation 4.2) and a different expression of

this spectrum across samples (cf. matrix Sk at Equation 4.2). In Figure 4.2, the picture

B corresponds to the original spectrum for only one sample, whereas the C plots of the

Figure show the result of applying peak aggregation methods to a single spectrum. The

D plots correspond to the aggregated value for the sample spectrum and the analysed

sample.

From Figure 4.2, it can be seen that the Maximum Peak method (plots C1 and D1) is a

restrictive one, as only the maximum peak of each spectrum is considered. In this case,

the expression of the spectrum over samples is the expression of the maximum peak over

samples. The Spectral Mean method (plots C2 and D2) enforces all the peaks of the

spectrum to have equal weight. The main difference between using PCA Decomposition

(plots C3 and D3) and NMF Reduction (plots C4 and D4) as opposed to using the Max-

imum Peak or the Spectral Mean is that the weight of each peak in the final spectrum

value depends not only on the peaks, but also on the expression of those peaks over the

samples. The C3 and D3 plots of Figure 4.2 show that the PCA Decomposition allows

for negative values for both the spectrum pattern and for the expression of the spectrum

over samples

Finally, plots C4 and D4 show the effect of applying the NMF Reduction on the sample

spectrum. All the values in both the spectrum pattern (Lk)T and the expression of the

spectrum over samples Sk are positive. This gives better interpretability of the spectral

pattern which can now be understood as weighted intensity measures over samples of the

spectrum. In consequence, the C4 plot would be the spectrum where the weights have

taken into account the different peak patterns across samples and the D4 plot would be

the expression of this spectrum on the sample i.
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4.4.2 Class Prediction Results

After applying a peak aggregation method, the variables are now the metabolite spectra

Lk rather than the peaks themselves. In consequence, the peak correlation patterns due

to the peaks coming from the same metabolite are no longer present in the data and

hidden correlation patterns then emerge. To test if the spectral data set S improves

the predictive power of the data, the metabolomic LC-MS sample files were processed

following the steps described in section A.2 after which the classification procedure

explained in section ”Statistical Validation” was applied.

The results of performing the 300 classification steps and their associated Fisher’s Least

Significant Difference (LSD) parameters for each method and both classifiers are shown

at table 4.1 (Figures S-4 and S-5). Irrespective of the classifier used, clear tendencies

emerge when peak aggregation methods are used. The results, using both classifiers,

show that applying peak aggregation methods where spectra are used as variables im-

proves the predictive performance compared to the standard methods, where peaks are

used. This improvement is at least equal to 14% and as much as 18% in the mean value

of the classification ratio depending on the method used (Table 4.1). PCA Decompo-

sition and NMF Reduction showed the best performance and were indistinguishable in

both classifiers according to the Fisher’s LSD results. The main difference between using

the PLS-DA and the SVM classifiers was that, when PLS-DA was used, there was no

difference between applying the Spectral Mean or the Maximum Peak as peak aggrega-

tion methods, whereas when SVM is used, the Spectral Mean showed better performance

than the Maximum Peak method.

To give a deeper insight to the improvement of the overall classification ratio, Figure 4.3

shows the classification ratios for each of the four classes, using either NMF Reduction as

a peak aggregation technique or not using any method. The results show improvements

in the classification ratios for all the four classes when NMF Reduction is used. This

suggests that using NMF Reduction as a peak aggregation method improves the overall

statistical power of the data, regardless of the similarity between classes.
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Table 4.1: Table showing the output parameters of the Fisher’s LSD test for the
PLS-DA and SVM classifiers after 300 classification steps. The method labelled ”None”
corresponds to the standard method in which no peak aggregation is performed. Least
Significant Difference was found to be 0.013 for PLS-DA and 0.012 for SVM. Mean
differences lower than this value cannot be told apart. The labels LCL and HCL
in the columns correspond to Lower Confidence Limit and Higher Confidence Limit
respectively. Methods having one asterisk in the superscript mean that Fisher’s LSD
test found them to be equal regardless of the classifier used. Methods having two
asterisk in the superscript mean that Fisher’s LSD test only found them to be equal in

the PLS-DA classifier.

PLS-DA SVM

Method Mean Std error LCL HCL Mean Std error LCL HCL

Mean∗∗ 0.803 0.003 0.797 0.809 0.804 0.003 0.798 0.809

NMF∗ 0.817 0.003 0.812 0.824 0.820 0.003 0.814 0.825

None 0.636 0.004 0.629 0.643 0.652 0.003 0.646 0.659

PCA∗ 0.821 0.003 0.814 0.827 0.817 0.003 0.812 0.822

Maximum∗∗ 0.795 0.003 0.789 0.801 0.790 0.003 0.784 0.797

4.5 Conclusions

This paper has studied the effect of performing peak aggregated measures in the statis-

tical analysis of metabolomic LC-MS urine samples. Using peak aggregation techniques

implies a change from a single mass features to a metabolite spectrum oriented analysis.

Different peak aggregation techniques, which imply different spectral data sets, have

been compared to each other and also to the not-aggregated standard analysis. The

results showed that using peak aggregation methods in the statistical analysis improves

the statistical power of the LC-MS data independently of whether the classifier is lin-

ear (PLS-DA) or non-linear (SVM). Considering the classification ratio as the quality

metrics for both classifiers, it was shown that using NMF Reduction or a PCA Decom-

position methods over each spectrum are the methods which most improve the detection

of significant features.
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Chapter 5

An R package to analyse LC/MS

metabolomic data: MAIT

(Metabolite Automatic

Identification Toolkit)

Note: This chapter is an exact copy of the paper:

An R package to analyse LC/MS metabolomic data: MAIT (Metabolite Automatic

Identification Toolkit)

Francesc Fernández-Albert, Rafael Llorach, Cristina Andres-Lacueva, Alexandre Perera-Lluna

Bioinformatics 2014 30 (13): 1937-1939. doi: 10.1093/bioinformatics/btu136

5.1 Abstract

Current tools for Liquid Chromatography and Mass Spectrometry (LC/MS) for metabolomic

data cover a limited number of processing steps, whereas online tools are hard to use in

a programmable fashion. This paper introduces the Metabolite Automatic Identifica-

tion Toolkit (MAIT) package, which makes it possible for users to perform metabolomic

end-to-end LC/MS data analysis. MAIT is focused on improving the peak annotation
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Figure 5.1: Correspondence between MAIT functions (centre column), generated
output files (left column) and their functionality (right column).

stage and provides essential tools to validate statistical analysis results. MAIT generates

output files with the statistical results, peak annotation and metabolite identification.

5.2 Availability:

http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/

http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/
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5.3 Introduction

Liquid Chromatography and Mass Spectrometry (LC/MS) is an analytical technique

used widely in metabolomics to detect molecules in biological samples [1]. A wide array

of software tools are available for LC/MS profiling data analysis, including commercial,

programmatic and online tools. A commercial example is Analyst R© whereas some

open source packages permit programmatic processing, such as the R package XCMS

[2] to detect peaks or CAMERA [3] and AStream [4] for peak annotations. There

have been efforts on just peak annotation using JAVA [5]. MZmine and mzMatch are

modularised tools coded in JAVA that are focused on LC/MS data preprocessing and

visualisation [6, 7, 8]. Online tools permit sample processing through a web GUI, such as

XCMSOnline (http://xcmsonline.scripps.edu) or MetaboAnalyst [9]. Refer to table

1 of the supplementary material for a comparative between the capabilities for some of

the main available tools. In this context, we introduce a new R package called Metabolite

Automatic Identification Toolkit (MAIT) for automatic LC/MS analysis. The goal of the

MAIT package is to provide an array of tools that make programmable metabolomic

end-to-end statistical analysis possible (see section 3 of the supplementary material

for details about the MAIT modularity). MAIT includes functions to improve peak

annotation through the processes called biotransformations and to assess the predictive

power of statistically significant metabolites that quantify class separability.

5.4 Methods

MAIT includes the stages: peak detection, peak annotation, statistical analysis and

table and plots creation (see Figure 5.1). The peak detection stage detects the peaks

in the LC/MS sample files. The peak annotation stage improves the identification of

the metabolites in the metabolomic samples by increasing the chemical and biological

information in the data set. A statistical analysis reveals the significant sample features

and measures their predictive power. MAIT uses the R package XCMS to detect and

align peaks. For the peak annotation step, MAIT uses 3 steps:

• First, MAIT uses the CAMERA package to perform the first annotation step [3].

In this stage, a peak correlation distance and a retention time window to find

http://xcmsonline.scripps.edu
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which peaks came from the same source metabolite based. The peaks within each

peak group are annotated following a reference adduct/fragment table and a mass

allowance window.

• Biotransformations could be related to specific in-source mass losses. Therefore, in

the second annotation step, they are detected using a mass allowance window inside

the peak groups [10]. For this search, MAIT already includes a biotransformations

table (here Human biotransformations). User-defined biotransformation tables can

be set as input, following the procedure defined in Supplementary text (Section

6.6).

• Finally, a predefined metabolite database is mined for significant masses. This

identifies metabolites with the help of the Human Metabolome Database [11],

2009/07 version.

The objective of analysing the metabolomic profiling data is to obtain the statistically

significant features (SSF) that contain the highest amount of class-related information.

To gather these features, MAIT can apply statistical tests such as ANOVA or Student’s

t-test to every feature, selecting the significant set of features given a threshold P-value.

A validation test is included to quantify SSF class separability by a repeated random sub-

sampling cross-validation using three methods: partial least squares and discriminant

analysis (PLSDA), support vector machines (SVM) and K-nearest neighbours (KNN)

[12]. MAIT computes overall and class-related classification ratios to evaluate the SSF

class-related information.

5.5 Results

The example data files are a subset of the data used in the reference [13], which are

distributed freely through the faahKO package [14]. MAIT was used to read and anal-

yse these samples using the functions depicted in Figure 5.1 (see the tutorial in the

supplementary info). The significant features for each class are found using statistical

tests and analysed through the different plots that MAIT produces. Using the following

function call, 2640 peaks were detected:

R> MAIT <- sampleProcessing(dataDir = "Dataxcms", project
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= "MAIT_Demo", snThres = 2, rtStep = 0.03)

At this point, the first annotation stage is launched:

R> MAIT <- peakAnnotation(MAIT.object = MAIT)

Next, we gather the significant features from the peaks detected. After the Welch’s

tests, 106 of these features were found to be significant through the spectralSigFeatures

function. Statistical plots such as heat maps, boxplots and principal component anal-

ysis (PCA) score plots can be generated (Supplementary Figures 3 and 4). Significant

features are annotated after checking for certain neutral losses (biotransformations).

R> MAIT <- spectralSigFeatures(MAIT, pvalue = 0.05)

R> MAIT <- Biotransformations(MAIT, peakPrecision = 0.005)

By using only the SSF, a validation stage is launched, obtaining a classification ratio of

100% with 3 training samples for all classifiers. These results suggest that the significant

variables separate both classes completely.

R> MAIT <- Validation(MAIT, Iterations = 20, trainSamples= 3)

Finally, the database is mined to identify the significant features.

R> MAIT <- identifyMetabolites(MAIT, peakTolerance = 0.005)

5.6 Conclusions

MAIT provides a set of tools and functions to perform an automatic end-to-end analysis

of LC/MS metabolomic data, putting special emphasis on peak annotation and metabo-

lite identification. In addition, MAIT validation functions make it possible to estimate

predictive power for significant variables.
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[4] Arnald Alonso, Antonio Julià, Antoni Beltran, Maria Vinaixa, Marta Dı́az, Lourdes
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6.1 Abstract

Liquid Chromatography coupled to mass Spectrometry (LC/MS) has become widely

used in Metabolomics. Several artefacts have been identified during the acquisition

step in large LC/MS metabolomics experiments, including ion suppression, carryover

or changes in the sensitivity and intensity. Several sources have been pointed out as

responsible for these effects. In this context, the drift effects of the peak intensity is one

of the most frequent and may even constitute the main source of variance in the data,

resulting in misleading statistical results when the samples are analysed. In this paper,

we propose the introduction of a methodology based on a common variance analysis

prior to the data normalisation to address this issue. This methodology was tested and
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compared with four other methods by calculating the Dunn and Silhouette indices of the

Quality Control classes. The results showed that our proposed methodology performed

better than any of the other four methods. As far as we know, this is the first time that

this kind of approach has been applied in the metabolomics context.

6.2 Availability:

The source code of the methods is available as the R package intCor at: http://b2slab.upc.edu/software-

and-downloads/intensity-drift-correction/

6.3 Introduction

Metabolomics aims to asses the metabolic changes in a global way to infer biological

functions and provide the detailed biochemical responses of cellular systems [1]. Liq-

uid Chromatography/Mass Spectrometry (LC/MS) devices are among the most-used

experimental setups in metabolomics. LC/MS analyses of biological samples such as

urine or plasma give high-throughput data having a three index scheme: retention time,

mass/charge ratio and intensity values [2, 3]. In metabolomic data, as in other types of

high-dimensional data such as gas sensor arrays or microarray data, the intensity values

of the variables might be biased or might suffer from variations due to external factors.

Among these factors is a contribution from the drift of the experimental devices, due to

various causes such as column ageing in the case of LC/MS, temperature variations or

contamination effects [4, 5]. The presence of peak intensity drift in the data is an impor-

tant issue, as its effects can be important enough to mask the real statistical behaviour

of the data and may indeed be the largest source of variance in the data [4, 6].

In most LC/MS protocols, quality control (QC) samples are regularly injected to ensure

good analytical device performance [7]. In LC/MS metabolomics studies the quality

controls have been carried out using pools of biological samples, spikes with standards

or Milli-Q water samples [8]. These quality control samples consist either of a pooling of

all the samples in the study or of a spike-in of some known metabolites (several classes

having different types of QC samples might be injected). In the data preprocessing



Chapter 6. Intensity drift removal in LC/MS metabolomics by Common Variance
Compensation 65

stage, one may distinguish two different steps: data normalisation and data equalisa-

tion. We understand the data normalisation step as the mathematical process which

makes the variables in the data set comparable, whereas the data equalisation step,

makes the samples from the data set comparable. In the literature, many normalisation

and equalisation methods, based on several different approaches and scopes, may be

found. Regarding equalisation methods, a methodology using certain internal known

metabolites as quality standards to normalise the whole data set has been reported [9].

Another approach is to use the injected samples for internal control (i.e. QCs) to fit

a smoothed model for the intensity levels of certain features, and then to correct all

the biological samples accordingly [7]. The R package sva includes the ComBat func-

tion which compensates the batch effects on microarray data using an empirical Bayes

approach [10, 11]. This method has been applied to normalise gene expression and

methylation data [12, 13]. Equalisation methods based on a sample-wise correction for

LC/MS metabolomic data have also been tested and compared by Veselkov et al. [6].

Their results suggest that a variance stabilisation transformation of the data, followed

by a median fold change normalisation, gives the best performance as compared to three

other methods. Their method performs a normalisation and an equalisation step to give

a robust output when having urine samples with different concentration values. Among

the equalisation methods, the one proposed by Artursson et al., based on component

correction (CC), was developed in the sensor array field [14]. This method is based

on the assumption that, in multivariate data, the drift direction is the first Principal

Component (PC) of a PCA decomposition for a class consisting of measurements of the

same samples. Such samples are known as technical replicates (i.e. there is no biological

or chemical variation in addition to the variability of the technical replication of the

measure). Once the drift direction is computed, the drift is removed from the data by

subtracting the data projection on the drift direction from the original data. However,

if some between-class variability is aligned with the drift direction, it will also be sub-

tracted and some non-drift variability will be removed. A natural extension of the CC

method is the one proposed by Ziyatdinov et al. which is based in a Common Principal

Component Analysis (CPCA) decomposition [15]. This method proposes modelling the

drift contribution in the data as the direction capturing maximum variance that simul-

taneously diagonalises the covariance matrices of a set of classes. All the variability of

the samples in that particular direction is considered to be drift-induced variability, and
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the projection of the data on that direction is subtracted from the data as in the CC

method.

In this paper, to find the drift model, we state the hypothesis that the intensity drift of

the chromatograms is the common variance direction of all the QC classes that captures

the maximum variance. In this context, we propose a preprocessing method based on a

two-step approach by first equalising the data through a CPCA, and then normalising

the data using a median fold change step.

6.4 Materials and Methods

6.4.1 Description of the Data

The samples were analysed by liquid chromatography coupled with a hybrid quadrupole

time-of-flight (LC-q-TOF, Hybrid quadrupole TOF QSTAR Elite, AB/MDS Sciex) in

positive mode using the protocol proposed by Tulipani et al. (Tulipani et al. 2011).

LC was performed in HPLC Agilent (Agilent 1200 Series Rapid Resolution HPLC sys-

tem) using a RP 18 Luna column (50 X 2.0mm, 5m), with a sample injection volume

of 15 µL. A linear gradient elution was performed consisting of [A] Milli-Q water 0.1%

HCOOH (v/v) and [B] acetonitrile 0.1% HCOOH (v/v).The gradient elution (v/v) of

[B] was: (time, min; B, %): (0, 1), (4, 20), (6, 95), (7.5, 95),(8, 1), (12, 1). Q-TOF spray

parameters were set as previously described [8] and full data acquisition was performed

scanning from 70 to 700 m/z. The TOF was calibrated with reserpine (1 pmol/µL).

LC-MS data were acquired in random order to avoid possible bias and the batches equi-

librated. Throughout all the analysis, data process quality control (QC) samples were

analysed in order to monitor the stability and functionality of the system. The sample

collecting span was of 18 days and there was a replacement of the chromatographic

column in the process on day 14. There were 994 study samples and 182 QC samples.

Three classes of QC samples were used for each batch:

• Water: Milli-Q water samples (n=96 samples).

• Spikes: Standard mixture solution (n=48 samples) consisting of 12 metabolites at

the final concentration of 5ppm for all of them except for indole-3-acetic-2,2-d2

acid whose final concentration was of 10 ppm.
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• Reference: Urine sample belonging to the one volunteer. (n=38 samples).

6.4.2 Preprocessing

All the methods were applied to the chromatograms without any prior feature detec-

tion. The R package XCMS was used to read the chromatograms of the mzXML files

containing the sample data [16]. The chromatograms were aligned using an in-house

developed R package (UB/UPC). The chromatographic data of all the files read were

merged, creating an n × m chromatogram matrix X. This step required the binning

of the retention time in m bins that were given by the XCMS package. Therefore, the

chromatogram matrix had samples as rows and retention time as columns (in our case,

n = 1176 samples and m = 441 retention time points). Thus, the i-th row of this matrix

corresponds to the chromatogram of the i-th sample. From here on, the variable j refers

to the retention time bins in the chromatogram matrix. A class-wise outlier detection

and removal procedure was applied to the QC classes. This procedure was based on

computing the Score Distance (SD) and an Orthogonal Distance (OD) in a PCA model

using the pcaPP R package [17, 18]. QC samples having SD and OD distances greater

than the suggested critical values were considered to be outliers and were discarded from

the data set [19]. The critical values used in the package were (i) a quantile of the chi-

squared distribution for the SD and (ii) a Wilson-Hilferty approximation for the scaled

chi-squared distribution for the OD [19, 17]. Using this approach, 9 outlier samples

were detected (4 samples in class reference, 3 in class water and 2 in class spikes). As it

is known that raw LC/MS metabolomic data suffer from multiplicative noise, we took

the logarithm of the data to compensate for such error sources and to convert them

into additive noise sources [6]. Once the o outliers were removed, then we could define

the quantity p = n − o to be the new sample range. The resulting matrix Y (p × m)

was used as an input parameter for all the normalisation methods tested. This matrix

contains the data for both the QC classes and the study class and it can be divided into

matrices corresponding to each class (i.e. YQC(pQC ×m) for the corresponding data set

for all QC classes, Yr(pr×m) for the corresponding data set for the reference class, etc.).
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6.4.3 Methods

The five methods compared in this paper (CPCA, CC, Median fold change, ComBat and

our CPCA+Median Fold Change) have different input parameters. The methods based

on a CPCA decomposition or the CC method involve a class (or classes) selection step

to use them for the drift modelling. These methods also need as input the number of

components of the drift decomposition which are supposed to be captured. The ComBat

method needs the batch relation for each class, whereas the Median fold change method

does not need any specific input parameter in addition to the data to be normalised.

6.4.3.1 Component Correction

The hypothesis underlying this method is that the drift direction is found in the first

PC of a reference class. The methodology used to normalise this data is described in

Artursson et. al. [14]. As the feature pattern of the QC samples was more complex

than that of the other two QC classes, the reference class was selected to generate the

PCA model. Because of this higher complexity, this class is better able to capture the

drift in the data than would a class with a simpler feature pattern. Mathematically, the

CC method can be expressed as in equation (6.1).

Yr = S · LT + E (6.1)

The methodology proposed by Artursson et al removes one PC, but the method can

be generalised to remove as many PCs as can be found in the data. If Ncomps is the

number of components to be removed, then S (pr × Ncomps) is the scores matrix, L

(m×Ncomps) is the loadings matrix and E (pr ×m) is the error matrix.

As only one PC is required to perform the normalisation, no further increase in the

dimensions of the matrices S and L is necessary. The drift direction is the first PC,

which in this case corresponds to the matrix L. The next step is to project the data

set Y onto this direction to obtain the drift component in the data. This projection is

mathematically expressed as the equation (6.2).
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Y cc
d = (Y · L) · LT (6.2)

where the superscript cc refers to Component Correction and the subscript d to drift.

Once the drift component Y cc
d (pr×m) of the data is computed, the last step in removing

the drift is to subtract it from the data. Equation (6.3)) shows this last step and the

resulting matrix Zcc (pr ×m) is the corrected matrix using the CC method.

Zcc = Y − Y cc
d (6.3)

6.4.3.2 Median Fold Change

The Median Fold Change method is not focussed on finding the drift direction. Its

objective is to rescale the data to make the median fold changes of the variables close

to zero. The methodology followed in applying this method is the one of Veselkov et.al.,

based on a sample-wise approach [6]. The first step of this method, shown in equation

(6.4), is to compute the median for each variable, thus obtaining a vector ŷi(1 × m).

This vector is used to rescale the original data set Y into a new one, Ŷ (p × m) (see

equation (6.4)).

Ŷij =
Yij
ŷi

where ŷi = mediani(Yij) (6.4)

To obtain the normalised data set ZM (p×m), the data set Y is divided by the sample

median of the matrix Ŷ (defined as ŵj(p× 1)) as shown in equation (6.5)).

ZM
ij =

Yij
ŵj

where ŵj = medianj(Ŷij) (6.5)

where the superscript M refers to Median Fold Change method.
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6.4.3.3 ComBat

The ComBat method is a function of the R package sva. This function aims to correct the

batch effects, which are known to be a source of bias, in gene expression experiments; its

extension to LC/MS metabolomic datasets is both natural and straightforward. Firstly,

it is assumed that batch effects have multiplicative and additive contributions to the

data, and that these effects can be variable-dependent (gene or peak respectively). We

state a model following this hypothesis (see equation 6.6)

Yijb = αj +Xβj + γjb + δjbεijb (6.6)

where Yijb is the intensity value for sample i, variable j and batch b. αj is the intensity

value for variable j, X is the design matrix, βj contains the regression coefficients of

the model, γjb is a matrix containing the additive batch effects for variable j and batch

b, δjb is a matrix containing the multiplicative batch effects for variable j and batch

b and εijb is the residual matrix of the model. Using either a parametric or a non-

parametric empirical prior estimation, the distributions for γjb and δ2
jb are estimated.

The conditional posterior probabilities (γ∗jb and δ2∗
jb ) can then be found and the data is

corrected for batch effects as shown in equation (6.7). In the following, all the variables

having a hat ( ˆ ) on them refer to their values estimated from the data.

ZCB
ijb =

σ̂j

δ̂∗ij
(Zijb − γ̂jb∗) + α̂j +Xβ̂j (6.7)

where the superscript CB refers to the ComBat function and Zijb is the standardised

data and σ̂j is the estimated standard deviation.

6.4.3.4 CPCA

CPCA is a generalisation of the PCA decomposition for different classes first introduced

by Flury et. al. [20]. Say we have k classes and Σk (pk × pk) are the set of their

covariance matrices, then CPCA aims at finding a space such as the one defined by the
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V (in general, pk × pk) matrix shown in equation (6.8). In the space spanned by V , the

covariance matrices for all the classes involved Σk are diagonal.

Λk = V T · Σk · V (6.8)

where Λk (pk × pk) is the diagonalised covariance matrix for class k. Each one of

the dimensions of this space is called a Common Principal Component (CPC). The

hypothesis underlying the CPCA method for drift correction is that the drift direction

is contained in the CPC capturing the largest variance. The CPC will be computed

by using the YQC data set (i.e. there are three expressions like equation (6.8), using

the different covariance matrices for the QC classes: Σr, Σwater, Σspikes). In a similar

way as in a PCA decomposition, given the desired number of CPCs and following a

stepwise algorithm, it is possible to compute the number of CPCs one by one [21].

Setting the desired number of CPCs as Ncomps, the dimensionality of the V matrix is

(pk×Ncomps). We have tested the values Ncomps = 1, 2, 3 separately for this method.

Once the CPCs are found, the data set is projected onto this space as shown in (6.9)

Y CPCA
d = (Y · V ) · V T (6.9)

Y CPCA
d (n × p) contains the drift component in the data. To eliminate the drift from

the data, the last step is to subtract this drift from the data (equation 6.10)

ZCPCA = Y − Y CPCA
d (6.10)

where ZCPCA (n× p) is the corrected data set using the CPCA method.

6.4.3.5 CPCA + Median Fold Change

The method we propose consists of a two-step approach. Firstly, the data is equalised

by removing the drift using CPCA and, in the second step, the data is normalised by
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Figure 6.2: PCA Scoreplot of all the classes in the data. The three plots in the lower
left show the effect of the time elapsed since the first sample was injected, whereas the
plots in the top right refer to the batch of the sample. The numbers in the diagonal
plots correspond to the variance captured by each PC. The order in the legend of the

batches corresponds to the real injection order of the samples.

applying the Median Fold Change method. As the CPCA method was applied three

times with different number of extracted CPCs (Ncomps in previous subsection), the

proposed method will be computed for the same number of components (Ncomps =

1, 2, 3).

6.4.4 Validation

From the class definition in section 6.4.1, it follows that a PCA score plot of all the classes

should have the classes clearly separated in different clusters. We propose a quality

measure for peak intensity drift correction methods based on the standard clustering

internal measures Dunn and Silhouette for the QC classes in the principal plane (the
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plane explaining maximum variability of the data) score plot of all the classes (including

the study class). The clustering technique used was k-means. The R package clValid

was used to compute the quality indices [22, 23]. In general, the greater the Dunn and

Silhouette indices, the better the clustering, meaning that the QC classes are more easily

separable in the principal plane and that the intra-class variance is lower.

6.5 Results and Discussion

The top left plot in Figure 6.1 depicts a PCA score plot for the raw data using all the

classes. The Figure shows that one of the main sources of variance is the interclass

variability. The drift effect on the variance becomes clear when the same PCA score

plots are coloured according to the injection time or the batch of the sample. This

effect is shown in Figure 6.2. From this Figure, we conclude that there is a clear drift

component (having different sources) that is causing an important drift of the QC classes

and which, in all likelihood, affects the samples in the study class as well.

Table 6.1 contains the Dunn and Silhouette values for all the methods used, whereas

Figure 6.1 depicts the PCA Scoreplots for the same methods. The CPCA+Median

fold change method shows the highest clustering values (highest Dunn index when two

components are removed and highest Silhouette index when one component is removed)

and it has a slight advantage over the CPCA and the Median Fold Change methods.

From the mathematical formulation of the Dunn index, it is important to note that its

measures might give low values when there are a small number of samples some distance

from the cluster centre, even if all the other samples and classes are tightly clustered

[24]. This might be the case here, since applying the CC method removing 2 PCs had

a higher Dunn index than the CPCA+Median Fold Change removing 1 CPC, when the

PCA score plots showed a lower drift clustering for the latter (compare Figure D.1 vs

the bottom right plot of Figure 6.1).

The Silhouette index (Table 6.1) for the different CPCA methods applied suggests that

the drift seems to be contained in just the first CPC, as the quality measures go down

as more CPCs are removed from the data. Figure 6.3 depicts the origin of the variance

removed by each of the three CPCs and the mean chromatogram of the QC samples.

Whereas the first CPC shows a smooth variation along the retention time, the second
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Table 6.1: Dunn and Silhouette values for all the tested methods. The CPCA and CC
methods were tested removing one, two and three components (the number in brackets
refers to the components subtracted from the data). The last three entries of the table
correspond to sequentially using the CPCA with one CPC, and then the Median fold

change method. The highest clustering indices are shown in bold.

Method / Index Dunn Silhouette

None 0.029 0.560

CPCA (1CPC) 0.159 0.749

CPCA (2CPC) 0.129 0.725

CPCA (3CPC) 0.051 0.680

ComBat 0.074 0.553

CC (1PC) 0.182 0.573

CC (2PC) 0.249 0.600

CC (3PC) 0.209 0.566

Median Fold Change 0.171 0.719

CPCA (1CPC)+Median 0.208 0.794

CPCA (2CPC)+Median 0.344 0.690

CPCA (3CPC)+Median 0.101 0.631

and third CPCs show abrupt changes in their values, especially close to major chro-

matographic peaks. In some of these peaks, the values of the second and third CPCs

have a zigzag behaviour, suddenly going from negative to positive values or vice versa.

This behaviour suggests that the variance captured by these two CPCs corresponds to

not having the chromatograms perfectly aligned, meaning that the peaks in the chro-

matograms are not fully coincident across the samples. This fact further reinforces the

hypothesis that the drift is contained in just the first CPC. Assuming this hypothesis,

it can be noted from Figure 6.3 that the drift of the data is not higher close to the

chromatographic peaks, apparently quite the opposite, meaning that the drift affects

the baselines of the chromatograms more than their peaks.

The CC method corrects some of the drift in the data although a large drift component

is still to be found in the data (Figure 6.1). The larger Dunn index value for the CC

method as compared to the raw data value is evidence for the drift correction (Table

6.1). However, this improvement is not validated by the Silhouette index which remains

practically unchanged as compared to the raw Silhouette value regardless of the number

of components removed.

The ComBat method seems not to be the most suitable method for correcting LC/MS

metabolomic data despite being used widely and successfully in the field of gene expres-

sion and methylation data. Although it corrects some batch effects in the study samples,
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Figure 6.3: CPCs loading values and mean chromatogram for the QC samples. The
chromatogram is plotted in arbitrary units. The loadings of the CPCs correspond to

the columns of the V matrix shown in equation (6.8)

the batch effects are still important in the QC classes after the correction (see circles

A-G for some spikes and water samples compared to the H circle containing some study

samples in Figure D.2). Furthermore, the resultant PCA score plot (lower left plot of

Figure 6.1) for the ComBat correction suggests that some between-variance component

was removed in the correction process as the different classes are closer than for the raw

data.

The Median Fold Change method considerably improves both the Dunn and the Silhou-

ette indices. A visual inspection of the resulting PCA score plot for the Median Fold

Change method confirms this improvement (Figure 6.1). Nevertheless, the PCA score

plot also shows that the spikes and water classes have similar shapes and these long

shapes turn out to be caused by residual uncorrected drift effects (Figure D.3). This
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fact suggests that, as the Median Fold Change method normalises the data without

specifically trying to remove the drift, there may still be a source of variance in the data

caused by the drift of the experimental device. On the other hand, because the methods

based in the CPCA approach (CPCA and CPCA+Median Fold Change methods) are

developed to model the drift direction, their resultant datasets show less residual drift

in their corresponding principal plane score plot (Figures D.4 and D.5 for the CPCA

and the CPCA+Median Fold Change methods respectively).
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To evaluate the performance of the tested methods for different dataset sizes, we have run

a random subsampling stage taking the 10%, 25%, 33% and 50% (taking 100 iterations

per subsample). For each subset, we applied the proposed methodology in order to test

the compensation effect given dataset size and to find an estimate on the variability

of this effect. We computed the Silhouette index for each drift correction method as

described in Section D.1. Figure 6.4 depicts the Silhouette values for all the methods

and dataset sizes. The Figure shows that the CPCA + Medians method has the highest

mean Silhouette values for all the tested values. To measure how the performance of the

methods is modified as function of the dataset size, we have fitted a linear model using

size as a cofactor and computed an ANOVA test. Table D.1 contains the values of the

slopes, the standard errors and the p-values of the ANOVA tests for all the methods.

Results show that the Median Fold Change and the CC methods suffer from performance

for large datasets. On the other hand, the ComBat method improves its correction as

data availability increases. This last result is probably due to a better estimation of

the batch components when having larger sample sizes. The Table D.1 also shows that

the performance of the CPCA and CPCA + Medians methods is insensitive to the

considered dataset size. This suggests that the mathematical approach taken, where the

drift component is extracted from a multi-class QC variance analysis is more resilient to

the sample size variations.

Overall, in the context of LC/MS drift correction, the proposed two-step methodology

shows better clustering properties of the QC samples for large metabolomic studies than

the median fold change method. The method also shows a robust behaviour under

small sample size conditions. Furthermore, unlike the median fold change method, the

two-step method is able to capture intensity drifts that covariate with the retention

time.

6.6 Conclusions

Applying the combined method CPCA and the median fold change, results in a data

set that contains less drift effects than the data set corrected solely by the median fold

change, and the QC class separability of the data set is higher than if just the CPC

method is applied.
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Results show that, among all the methods tested to normalise the LC/MS metabolomic

data, the best approach is to use a two-step method in which the first step is to remove

the drift by finding the drift direction in a multivariate space using a CPCA approach.

The second step, based on performing a median fold change to account for differences

in concentration results, improved between-class separability and hence resulted in a

better-normalised data set overall. As far we know, this is the first time that this kind

of approach has been applied in the metabolomics context. Applications such as the one

proposed open the possibility of carrying out large epidemiological LC/MS metabolomics

experiments with high guarantee of the control the quality of the acquisition data step.
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Chapter 7

Correcting time drift effects in

Liquid Chromatography using a

new non-linear model-based

methodology

7.1 Abstract

The statistical control of variance is highly desirable when analysing Liquid Chromatog-

raphy data. Among the most unwanted sources of variability is instrumental drift which

greatly interferes with the data processing by inducing broader chromatographic peaks

leading to noisier measures. Most of the variability induced by the chromatographic

columns is compensated for by aligning the chromatographic signals. Many of the cur-

rently available alignment methods are based on piecewise warping of the data. These

powerful curve aligners however, carry a risk of overcorrection and of generating arte-

facts for datasets which show large drifts. The aim of this paper is to introduce a

new methodology to correct the chromatographic drift in LC-MS metabolomic data.

With this in mind, our methodology includes applying a parametric model that corrects

non-linear drift components which show systematic behaviour over the samples. Using

two different datasets, this new methodology (named H-Cor) is compared to three other

alignment methods: Locally Weighted Scatterplot Smoothing (LOESS), piecewise linear

85
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regression and Parametric Time Warping (PTW). Kurtosis and correlation metrics for

the five most intense chromatographic peaks are used as quality measures. Our results

show that the H-Cor methodology has a better performance than all others when the

drifts show large non-linearities over the retention time. Additionally, the LOESS and

piecewise linear warping algorithms generate artefacts in the data when there are large

retention time drifts due to overcorrection. This behaviour suggests that a model-based

methodology like H-Cor generalises better in controlling the chromatographic drifts gen-

erated in Liquid Chromatography.

Availability: The method is available as an R package at http://b2slab.upc.edu/

software-and-downloads/retention-time-drift-correction/

7.2 Introduction

The application of LC-MS in large metabolomic studies carries certain risks — among

others, the creation of artefacts related to shifts in the intensity and retention time. Re-

tention time drift is, along with possible contamination by background chemicals and the

stability of the column, one of the main challenges in LC-MS-based large metabolomic

studies. In fact, maintaining excellent retention time repeatability is essential. A lack of

consistent repeatability compromises the peak extraction procedure, yielding false peak

detection of ar tefacts in the peak covariability structure [1]. The standard LC-MS data

workflow includes a peak alignment stage whose aim is to correct the time retention

shifts [2]. An additional reason for performing this alignment stage is that, in Liquid

Chromatography, the signal is often converted to a data matrix as a precursor to analysis

[3]. To perform such a mathematical transformation, it is necessary to ensure a common

time scale over all the samples (i.e. the chromatographic region of a sample corresponds

to the same chromatographic region of all the other samples). If no alignment is applied,

given two or more samples, one might find a chromatographic peak of the same chemical

in different chromatographic regions.

Many algorithms have been proposed to perform chromatographic alignment. These

algorithms have been extensively reviewed and some comparisons between them have

http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
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previously been performed [4, 5]. Alignment algorithms may be classified in two different

categories, depending on whether or not the mass peaks are detected before the chro-

matographic alignment [6, 7, 8, 9, 10]. Among the methods that do not need to perform

the mass peak detection stage, are piecewise warping algorithms such like Correlation

Optimised Warping (COW) [6, 7] or Parametric Time Warping (PTW) [8]. COW uses

an aggregated correlation as a quality measure in the optimisation, whereas PTW adopts

a parametric approach using the sum of squared residuals as quantitative metric. Among

the techniques that do require prior detection of mass peaks, one of the most widely used

is Locally Weighted Scatterplot Smoothing (LOESS) [11]. In this algorithm, only data

close to a regression function evaluation value, x, are used [7]. In the LOESS approach,

it is common to use either quadratic or cubic polynomials as weight functions. As a

result, in the piecewise warping algorithms, pieces of the chromatogram are stretched or

compressed following the optimisation of an objective function. This warping approach

might cause artefacts in the aligned chromatograms or produce models with over-fitting

depending on the binning parameter [12].

When performing chromatographic alignment, to avoid overcorrection of the signal due

to overfitting, we propose a new methodology which does not use a piecewise approach.

This methodology does not require prior detection of the peak masses.

7.3 Materials and Methods

The proposed methodology is based on the assumption that, for Liquid Chromatography,

the chromatogram recording time is short enough (7-8 minutes), that highly complex

time drift shapes are not observed. Under these circumstances, our methodology includes

the fitting of a non-linear model to perform the drift correction. To test its performance,

this new methodology was compared to three other alignment methods: LOESS, PTW

and Piecewise Linear for two different datasets having different drift patterns. Dataset

1 has a less severe retention time drift than Dataset 2. LOESS and piecewise linear were

applied using the R package XCMS [7] whereas PTW was applied using the R package

ptw [13] (see Section S1 for package utilization details).
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7.3.1 Experimental Section

The samples were analysed by a liquid chromatograph coupled with a hybrid quadrupole

time-of-flight device (LC-q-TOF, AB/MDS Sciex) in positive mode using the protocol

proposed by Tulipani et al. [14]. LC was performed in HPLC Agilent using a RP 18

Luna column (50 X 2.0mm, 5m), with a sample injection volume of 15 µL. A linear

gradient elution was performed consisting of [A] Milli-Q water 0.1% HCOOH (v/v) and

[B] acetonitrile 0.1% HCOOH (v/v).The gradient elution (v/v) of [B] was: (time, min;

B, %): (0, 1), (4, 20), (6, 95), (7.5, 95),(8, 1), (12, 1). Q-TOF spray parameters were

set as previously described [15] and full data acquisition was performed, scanning from

70 to 700 m/z. The TOF was calibrated with reserpine (1 pmol/µL). LC-MS data

were acquired in random order to avoid possible bias and the batches were equilibrated.

Throughout all the analysis, data process quality control (QC) samples were analysed

in order to monitor the stability and functionality of the system. Two different data

sets of 300 samples were acquired using the same experimental protocol with different

chromatographic columns.

7.3.2 H-Cor Model

Instead of dividing the chromatograms in pieces and appling a warping algorithm on

these pieces, we propose a new methodology based on a sample-wise parametric model.

As stated in the last section, the sample drift is modelled as shown in (7.1). This model

is fitted for each sample separately and following the procedure detailed in Section S2,

we obtain a dataset where the retention time drift component has been removed.

∆rt′ =
a

rt+ b
; b ≥ 0.5 (7.1)

In expression (7.1), the underlying assumption is that the highest signal drift is located

in the lowest retention times, while this drift vanishes for high retention times i.e. rt→

∞ ⇒ ∆rt′→0



Chapter 7. Correcting time drift effects in Liquid Chromatography using a new
non-linear model-based methodology 89

7.3.3 Validation

In order to evaluate the performance of the algorithms, two quality measures were de-

fined: peak correlation and peak kurtosis (see Section S3 for details). Both quality

measures were used in the five highest chromatographic regions to evaluate the effects of

the alignments over the whole retention time. Peaks having a smaller width and larger

height are expected to have larger kurtosis, leading to a better peak definition in terms

of its retention time interval. On the other hand, a higher correlation value would lead

to better peak alignment.

7.4 Results and Discussion

Figure 7.1 depicts the chromatographic profiles gathered for the samples of Dataset 1

whereas Figure E.1 shows a the same plot for Dataset 2. A large temporal drift pattern

is observed among the later samples shown in Figure 7.1. Qualitatively speaking, for

each sample, this pattern seems to behave similarly across the retention time. This

drift is larger for lower retention times, whereas the signal at high retention times seems

unaffected by such drift behaviour.

The bottom-left plot of Figure 7.2 shows the average chromatogram for the Dataset 1. In

this chromatogram, peaks labelled from A to E are the highest peaks over all the samples

of the dataset. Peaks A, B and D correspond either to known endogenous metabolites

or to a spike in metabolites (see Table E.1). In consequence, these three peaks will be

found in all the samples of both datasets. Using the procedure detailed in Section S4, it

is possible to obtain the peak drift measures and to characterise the correlation between

their shifts. The plots located at the upper-right in Figure 7.2 summarise the results

of the peak drift measures for Peaks A, B and D for the first dataset (see Figure E.2

to see the drifts of the five peaks). The peak drift measures of Peaks A, B and D for

Dataset 2 are depicted in Figure E.3. We can assess the statistical significance of the

correlation between the relative shifts for the different peaks by fitting a linear model

and checking its p-values (see Table E.2) — we find a clear correlation. This peak drift

correlation is not statistically significant for high retention times (Peak E). Similarly,

positive correlation does not exist for high retention times (Figure 7.1). This pattern

suggests an underlying non-linear component which extends over the retention time. The
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Figure 7.1: Raw chromatograms for the first dataset. Each row refers to a sample,
whereas the columns are the retention time in minutes. Darker grey means higher
signal intensity. The chromatogram at the top of the image corresponds to the average

chromatogram of all the samples of the dataset.

evidence lead us to hypothesise that the observed time drift in Liquid Chromatography

is not random, but decreases over retention time in some non-linear manner. This drift

component gradually decreases with retention time and is not observed at large retention

times. The proposed model, called the H-Cor model, assumes a model for these peak

drift pattern features to correct the overall data drift and to align the chromatograms.

7.4.1 Dataset 1

Table 7.1 shows the values of the peak correlation and peak kurtosis respectively for

Dataset 1. In this table, the LOESS method results were computed using two different

span values (0.7 and 0.8, see Section S4 for details). From Table 7.1 it can be noted

that, despite of the alignment method used, Peak D and especially Peak E have lower

correlation values than the other peaks. This is evidence that the final region of the

chromatograms contains the most noisy data, making this end region (including Peaks



Chapter 7. Correcting time drift effects in Liquid Chromatography using a new
non-linear model-based methodology 91

1 2 3 4 5 6 7

Retention time (min)

0
.1
4

0
.2
9

0
.4
3

0
.5
7

0
.7
1

0
.8
6

1

A B D

C E

-0.15 -0.05 0.05

-0
.1
5

-0
.0
5

0.
05

peak A

-0.15 -0.10 -0.05 0.00 -0.10 0.00 0.05 0.10

-0
.1
5

-0
.0
5

0.
05

peak B

-0
.1
5

-0
.1
0

-0
.0
5

0.
00

-0.10 0.00 0.05 0.10

-0
.1
0

0.
00

0.
05

0.
10

peak D

***

Figure 7.2: The top-right plots show the peak drifts of three chromatographic peaks
using the raw data of the first dataset. The bottom-left image corresponds to the
chromatogram of a single sample. The labelled chromatographic peaks point to high-
intensity regions found in all samples. The asterisk symbol shows the statistical signifi-
cance of the slope in the linear models following an ANOVA test. Figure E.2 shows the
linear models for all five peaks labelled in the chromatogram and Table E.2 contains

the p-values of the slopes.

D and E) less reliable in terms of drift correction. In consequence, it contains narrower

peaks that are more difficult to align.

The high dependence of the LOESS method on the span parameter appears evident

when comparing the entries for span=0.7 and span=0.8 in Table 7.1. Differences up to

0.186 in correlation Peak C) and up to 0.333 in kurtosis (Peak E) are observed. We

deduce from these data that the optimal span parameter for this dataset is 0.7 over all

higher correlation and kurtosis values.
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H-Cor, LOESS and piecewise Linear methods seem to behave similarly for Peaks B

and C, with comparable correlation and kurtosis values. However, the H-Cor method

outperforms all others for Peak A, showing the highest correlation, 0.901, and kurtosis,

0.083, values. As expected, the H-Corr Method performs greater signal correction for

lower retention time zones while this correction effect is lowered for high retention times.

Consequently, considering both the kurtosis and the correlation measures, the H-Cor

method outperforms all other methods, showing the best alignment in Peak A with a

gain of 0.087 in correlation and 0.316 in kurtosis as compared to the unaligned signal.

These two gain values are also the maximum gain values when considering all the meth-

ods and peaks. LOESS with span=0.7 and Linear methods show similar correlation

patterns whereas LOESS has better kurtosis values. Figure 7.3 depicts a comparison

between the H-Cor and LOESS (span=0.7) alignments for the Dataset 1. In this Figure,

the LOESS correction is not large enough to align the drift of the last samples of the

dataset. The H-Cor method, on the other hand, showed better performance in aligning

the samples. Figure E.4 shows the LOESS correction when the parameter span is 0.8.

In this case, LOESS is able to solve the drift of the last samples. However, the method

is overcorrecting as can be concluded from the saw-like pattern seen in the peaks (es-

pecially in Peak A). A similar behaviour is shown by the Linear method in Figure E.5,

whereas the corrections performed by the PTW method seem not big enough (see Fig-

ure E.6). Note that the profile of Figure E.6 for the PTW method is different from the

profile generated by the other methods. The reason is the use of a function to subtract

the signal background in the PTW process. The effect of applying the H-Cor method to

the peak drifts is depicted in Figure E.2. For the Peaks A, B and C, we see that the drift

correlation has been lowered (Table E.2 contains the p-values of the linear regression

shown in Figure E.2), whereas the method performs hardly any correction on Peaks D

and E.

7.4.2 Dataset 2

Table 7.2 shows the correlation and kurtosis results for the second dataset. As in the

first dataset, the quality measures for Peaks D and E are lower than the rest of the peaks

regardless of the alignment method used, because these two peaks are noisier than the

others. The Loess and H-Cor methods show similar performance for Peaks B and C,
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Figure 7.3: Aligned chromatograms for the first dataset using the H-Cor and LOESS
methods. Each row refers to a sample, whereas the columns are the retention time in
minutes. Darker grey means higher signal intensity. The chromatogram at the top of
the image corresponds to the average chromatogram of all the samples of the dataset.

whereas the performance of the Linear method is slightly lower. A similar conclusion is

drawn from Peak A where LOESS has the highest correlation value (0.937 for span=0.8),

while H-Cor is the method with highest kurtosis (-0.079). However, in correlation terms,

the LOESS method with span=0.8 performs badly for Peaks D and E, whereas the H-Cor

kurtosis value for the Peak E is lower than any of the LOESS kurtosis values. Overall,

in the case of Dataset 2, it seems that LOESS and H-Cor perform equally well and

their results are somewhat better than those of the Linear Method. The PTW method

showed the worst values when the four methods were compared, having the minimum

correlation values for all the peaks and minimum kurtosis in four out of five peaks.

Figure E.7 show the aligned chromatograms for LOESS (span=0.8) and H-Cor for the

second dataset. Comparing both pictures, it appears that their performance is similar.
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Hence, for both datasets, the H-Cor methodology corrects the chromatography tempo-

ral drifts, performing best when the data shows high non-linear drifts over the retention

time. Even when the dataset drifts are low, the H-Cor method does not seem to over-

correct the data.

7.5 Conclusions

In this paper, the H-Cor methodology has been introduced to correct signal retention

time drifts in Liquid Chromatography metabolomics data. This alignment procedure has

been compared to other widely used methods such as LOESS, PTW and piecewise linear

fitting. In order to test the alignment of the chromatograms, two different datasets were

used. One of the datasets showed large non-linear drift components over the retention

time, whereas the other dataset showed small drift effects. To quantify the performance

of the algorithms, we computed kurtosis and correlation metrics for the five highest

chromatographic peaks for each method and dataset. The results of the alignment

showed that H-Cor outperformed all other methods when there was a large non-linear

drift component over the retention time. It displayed a similar performance to LOESS,

without producing artefacts due to overcorrection, when there was no systematic drift in

the samples. The LOESS and Linear methods showed overcorrection phenomena which

led to a worse performance compared to H-Cor method in the first (large drift) dataset.

When the methods were applied to the second (small drift) dataset, the performance

of LOESS and H-Cor was similar and the Linear method was slightly worse, whereas

PTW had the worst metrics. All these facts suggest that applying the H-Cor model and

reducing the peak drift correlation constitutes a good strategy for reducing the overall

drift of the data and for performing the chromatographic alignment stage in Liquid

Chromatography.

Bibliography

[1] Helen G. Gika, Georgios A. Theodoridis, Robert S. Plumb, and Ian D. Wilson.

Current practice of liquid chromatography–mass spectrometry in metabolomics and

metabonomics. Journal of Pharmaceutical and Biomedical Analysis, 87(0):12 – 25,



Chapter 7. Correcting time drift effects in Liquid Chromatography using a new
non-linear model-based methodology 96

2014. ISSN 0731-7085. doi: http://dx.doi.org/10.1016/j.jpba.2013.06.032. Review

Papers on Pharmaceutical and Biomedical Analysis 2013.

[2] Beata Walczak and Wen Wu. Fuzzy warping of chromatograms. Chemometrics and

Intelligent Laboratory Systems, 77(1-2):173–180, 2005.

[3] Micha? Daszykowski and Beata Walczak. Use and abuse of chemometrics in chro-

matography. TrAC Trends in Analytical Chemistry, 25(11):1081–1096, 2006.

[4] A M Van Nederkassel, M Daszykowski, P H C Eilers, and Y Vander Heyden. A

comparison of three algorithms for chromatograms alignment. Journal of Chro-

matography A, 1118(2):199–210, 2006.

[5] Eva Lange, Ralf Tautenhahn, Steffen Neumann, and Clemens Gröpl. Critical as-
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Chapter 8

Publications

During the development of this thesis there were produced a set of publications in

national and international conferences as well as scientific papers in indexed journals. It

was also developed a set of R packages coding the methods developed in this thesis.

8.1 Indexed Journal Papers

• Francesc Fernández-Albert, Rafael Llorach, Cristina Andres-Lacueva and Alexan-

dre Perera. Peak Aggregation as an Innovative Strategy for Improving

the Predictive Power of LC-MS Metabolomic Profiles.

Analytical Chemistry, 2014, 86 (5), pp 2320–2325. DOI: 10.1021/ac403702p

• Francesc Fernández-Albert, Rafael Llorach, Cristina Andres-Lacueva and Alexan-

dre Perera. An R package to analyse LC/MS metabolomic data: MAIT

(Metabolite Automatic Identification Toolkit).

Bioinformatics (2014) 30 (13): 1937-1939. DOI: 10.1093/bioinformatics/btu136

• Francesc Fernández-Albert, Rafael Llorach, Mar Garcia-Aloy, Andrey Ziyatdinov,

Cristina Andres-Lacueva and Alexandre Perera. Intensity drift removal in

LC/MS metabolomics by Common Variance Compensation.

Bioinformatics (2014). DOI: 10.1093/bioinformatics/btu423

• Francesc Fernández-Albert, Rafael Llorach, Cristina Andres-Lacueva and Alexan-

dre Perera. Correcting time drift efects in Liquid Chromatograpy using
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a new non-linear model-based methodology.

Metabolomics (Submitted)

8.2 Conference Papers

• F.Fernández, A.Perera-Lluna. Methods and Tools for Liquid Chromatogra-

phy/Mass Spectrometry in Metabolomics.

I Conference on Bioinformatics and Computational Biology.

Barcelona (Spain) 11/13

• F.Fernández-Albert, S. Kanaan-Izquierdo, Alexandre Perera-Lluna. Liquid Cro-

matography / Mass Spectrometry Analysis Methods in Metabolomics

7th Annual Conference CIBER-BBN.

Málaga (Spain) 11/13

• F.Fernández, R.Llorach, C.Andrés-Lacueva, A.Perera-Lluna. Un nuevo algo-

ritmo para el análisis de estudios de nutrimetabolómica basados en LC-

MS.

XXIX Conference of the Spanish Society of Biomedical Engineering.

Cáceres (Spain) 11/11

• F.Fernández, A.Perera-Lluna, C.Andrés-Lacueva, R.Llorach-Asunción. A new

computational assisted bioinformatics workflow to identify polyphenols

biotransformation markers on LC-MS based nutrimetabolomics studies.

5th International Conference of Polyphenols and Health.

Sitges (Spain) 10/11

• F.Fernández, A.Perera-Lluna, C.Andrés-Lacueva, R.Llorach-Asunción. A new

computational assisted bioinformatics workflow for the comprehensive

analysis of LC/MS based nutrimetabolomic studies. I International Work-

shop in Metabolomics.
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Bilbao (Spain) 09/11

8.3 Computational Tools and Packages developed

• HCor: R package containing the model-based method to correct non-linear drift ef-

fects in the rt (Chapter 7). Available at http://b2slab.upc.edu/software-and-downloads/

retention-time-drift-correction/.

• intCor: R package containing several intensity drift correction methods. These

methods are described in Chapter 6. The package is available at http://b2slab.

upc.edu/software-and-downloads/intensity-drift-correction/ and its vi-

gnette can be found in this document at Appendix C

• MAIT: R package that allows to perform end-to-end statistical analysis of LC/MS

Metabolomic data. It is described in Chapter 5 and its vignette is found in

Appendix B. It is found at http://b2slab.upc.edu/software-and-downloads/

metabolite-automatic-identification-toolkit/.

• pagR: R package including the peak aggregation techniques described in Chapter

4. It is currently delivered on-demand.

http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/
http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/
http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/
http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/




Chapter 9

Results and Conclusions

9.1 Summary of the Results

The effect of applying peak aggregation techniques to LC/MS datasets was evaluated

through a repeated random sub-sampling cross-validation stage using a 4-class dataset.

We evaluated 4 different peak aggregation techniques and compared them to the sit-

uation in which no peak aggregation technique was applied. These peak aggregation

techniques were the Spectral Mean method, the Maximum Peak Method, the PCA

Decomposition methods and the NMF reduction method. 300 iterations of such clas-

sification stage were run using two different classifiers (PLSDA and SVM) and it was

computed the classification ratio for each case as quality metrics of the peak aggregation

technique. The results show an improvement of the classification ratio compared to not

using such approach (differences found when a Fisher’s LSD test was run) regardless

of which peak aggregation technique was used. The improvement of the classification

ratio for the tested data was in a range between 14% and 18%. We found that the

PCA Decomposition and the NMF Reduction showed equal performance (no differences

were found in a Fisher’s LSD test) and they showed larger improvement in the classi-

fication ratio compared to the Spectral Mean and the Maximum Peak methods. The

peak aggregation showing worse performance was the Maximum Peak method with an

improvement of 15.9% (for PLSDA) and 13.8% (for SVM), whereas the improvement

of the NMF and PCA was between 18.3% (for PLSDA) and 16.7% (for SVM). All the

peak aggregation methods were coded and implemented in an R package called pagR.

103



Chapter 9. Results and Conclusions 104

We developed an R package called MAIT to perform end-to-end LC/MS Metabolomic

data analysis. The MAIT workflow is depicted in Figure 5.1. Section B.7 contains

a detailed example using MAIT on the the data distributed through the R package

faahKO. In this example it is performed and end-to-end analysis and it is put especial

emphasis on how to define a customised data analysis including the definition of user-

defined databases or annotation files. It is also shown how MAIT can use an external

peak data set computed through any other available computational tool to perform its

data analysis, or how the user can define its own statistical test and apply it on a real

dataset.

When evaluating the variance of the QC classes, we found that drift effects may be

important in large LC/MS Metabolomics data. These effects are evident from Figure

6.2 in which is depicted a PCA Scoreplot of three QC classes (labeled as Spikes, Water

and Reference in Figure 6.1) and the class containing the biological variability (labelled

as Sample in Figure 6.1). Figure 6.2 depicts how the time elapsed since the first sample

injection is an important source of variance despite not being biologically meaningful.

We proposed a two step method based on a CPCA drift removal and a median fold

change to normalise the LC/MS data. 4 different methods were tested and compared

to the proposed method: CC, CPCA, ComBat method and median fold change. The

results of the drift corrections were evaluated using the Dunn and Silhouette clustering

indices on the QC classes as a quality metric. These measures were computed for the QC

classes in their projection on their PC1-PC2 plane. The proposed two-step method gave

the highest score for both quality metrics, when removing one CPC (Silhouette equal

to 0.794) and two CPCs (Dunn equal to 0.344). Furthermore, a random subsampling

stage with different number of samples (10%, 25%, 33% and 50% of the original dataset,

taking 100 iterations for each size) were run using all the methods and computing the

Silhouette index values. The results shown that the two step method had the highest

median value regardless of the dataset size (Figure 6.4) and that its performance is the

same regardless of the dataset size (p-value not significant in a t-test).

Retention time drift is a known issue in LC/MS instruments. The retention time values

of the same peaks are generally different when comparing different samples. This issue

is tackled by performing an alignment stage in the LC/MS data processing workflow, to

ensure that the same chromatographic regions for different samples would show similar

retention time values. When evaluating the retention time drift in a large LC/MS
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dataset for typical reverse-phase chromatography experiment run (around 7.5 min),

we found that the retention time drift, consistently gave different values depending on

the chromatographic region. In particular, chromatographic regions of lower retention

time showed greater drift. As a consequence, retention time drift showed a correlation

pattern along the rt. It was proposed a novel method to correct the retention time drift

taking into account its correlation pattern. The performance of this novel method was

compared against 3 other peak alignment methods: piecewise-linear, PTW and LOESS.

Peak Correlation across samples and peak kurtosis values for 5 chromatographic regions

in which there were located known metabolites, were selected as quality metrics. The

methods were run in two different datasets, one having a large retention time drift, and

the other small retention time drift. The results show that the proposed method has

the higher correlation and kurtosis values (0.901 and 0.083 respectively) for the most

unaligned regions of the dataset having large retention time drift, whereas it shows

similar performance to LOESS method in the other regions (Table 7.1). On the other

hand, the performance of the proposed method is similar to that of the LOESS method

for the dataset having small retention time drift, but it consistently gave better retention

time drift removal for small retention time drifts (Table 7.2).

Overall, the contributions performed throughout this thesis aim at improving the the

data analysis workflow of LC/MS Metabolomic data. All these contributions were coded

as packages under the R environment and are completely compatible but they can also be

used independently as well. Therefore, after analysing the samples through an LC/MS

and recording the data files, the peak alignment step might be run using our model-based

method using the H-Cor package to specifically remove the retention time drift. Once

the data is aligned, the package intCor can use the output files of the HCor package

to remove possible intensity drifts and to normalise in the data using our two-step

method through the intCor package. Once the drift sources are removed, the files can

be analysed end-to-end using the MAIT package. The optional package pagR, codifies

the peak aggregation techniques used to improve the predictive power of the LC/MS

data. The pagR package is compatible with the MAIT package, allowing to run an

end-to-end analysis using spectra instead of peaks. As the MAIT package contains

the HMDB, it is possible to give a metabolite table identification after using the pagR

package.
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9.2 Discussion of the results and further work

From the main contributions of this thesis, it can be derived that the data analysis

pipeline and the available computational tools in LC/MS Metabolomics is a prolific field.

Moreover, there are some spots in the workflow that need of newer and more efficient

algorithms to tackle LC/MS data analysis. First, it is important to state that, as in

many other omic sciences, the quality of experimental procedures used in Metabolomics

is crucial. Even small variations of the intensity of a single peak due to modifications of

the LC/MS conditions or of the experimental conditions, might affect not only one peak

but many other peaks due to the technical correlation structure found in the LC/MS

metabolomic data.

An important spot to cover in the data analysis workflow, is the peak intensity nor-

malisation. Although they might be an important source of variance in the data, until

very recently (2011), it was not published the first scientific article studying intensity

drift effects in LC/MS data. This fact means that data normalisation in LC/MS has

not been deeply analysed and taken into account in many of the published papers in

Metabolomics. This could be in part due to a lack of open large datasets or to a lack of

datasets having an important time span between the injected samples in Metabolomics.

In this sense, the contribution of the intCor package with the proposed two-step method

aims at performing a quick and robust drift correction of the data regardless of the

sample size.

Peak annotation algorithms in LC/MS links the LC/MS data with the biological knowl-

edge, and it is another critical step in LC/MS data analysis. There are currently too few

tools and algorithms to deal with peak annotation, despite being a processing step of

paramount importance. Although in recent years there has been published an important

number of methods and tools with different mathematical approaches, this is still a hot

scientific topic as there are not very well defined standards.

Another important topic is the data enrichment in Metabolomics. Most of the data

enrichment algorithms performed in LC/MS metabolomics such as over representation

analysis or gene-set enrichment analysis are imported from the gene expression field
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where have been used extensively. However, data enrichment algorithms are extremely

dependent on the quality of the annotated data. Whereas the gene expression field has

a long tradition of open annotation ontologies such as the Gene Ontology Consoritum

1 linking genes and biological processes, in Metabolomics this is rather new and mainly

undone. As the metabolomic annotation is improved, more enrichment algorithms will

be used in metabolomic analysis as better biological insight will be retrieved from the

data. Therefore, this is going to be a prolific scientific topic in the upcoming years.

The highly specific tasks of many of the available tools and the lack of an open and

programmable tool to perform end-to-end statistical analysis in Metabolomics inspired

the creation of the MAIT tool. As the computational development in Metabolomics

is large in number, the MAIT package was coded as highly modularised tool to allow

the future replacements with updated and improved algorithms. A nice addition to

the MAIT package would be a module to perform data enrichment in the metabolomic

context. Other improvements like adding new classification capabilities (e.g. Random

Forest classifiers) are also in the agenda of the new versions of MAIT.

9.3 Conclusions

This section summarises the conclusions of the doctoral thesis.

• Traditional LC/MS data analysis pipelines normally are based on one-peak/one-

variable data treatment approaches. However, the peak intensity measures are not

independent, as a single metabolite analysed through an LC/MS, in general gives

a set of peaks that show a clear correlation pattern in their intensity profiles. In

this thesis it was proposed a new step in the metabolomic LC/MS data analysis

workflow based on computing aggregated measures using the peaks coming from

the same metabolite and redefining these measures as the new variables in the

dataset. Therefore, applying this step implies a change in the paradigm of one-

peak/one-variable to a one-metabolite/one variable concept. This approach was

shown to improve the statistical predictive power of the LC/MS metabolomic data.

1http://geneontology.org/

http://geneontology.org/
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This evidence was found true regardless of the peak aggregation method and of

the nature of the classifier (linear PLSDA or non-linear SVM).

• The improvement in the statistical predictive power was computed for several

different peak aggregation techniques: Spectral Mean, Maximum Peak, PCA De-

composition or NMF Reduction. All these techniques are based on a dataset

decomposition according to Y = S × LT + E where Y is the LC/MS dataset,

S the scores matrix and L the loadings matrix. Each peak aggregation method

would lead to a different loadings and scores matrix. When comparing the sta-

tistical predictive power of the LC/MS datasets built using these four different

peak aggregation measures, it was found that PCA Decomposition and NMF Re-

duction showed higher classification ratio than the Spectral Mean and Maximum

Peak methods. However, due to the nature of the original LC/MS signals (in-

tensity values), the data built through the NMF Reduction method has better

interpretability as it only contains positive values (in both loadings and scores).

• A set of tools was coded as an R package named MAIT which allows to perform

end-to-end LC/MS data analysis pipeline. This package has been designed as a

modularised and programmable software tool with special emphasis on peak anno-

tation and traceability. The core of the package relies in an S4 class named MAIT

class. The objects of this class are designed to contain all the information of a single

data analysis. The main functions of the MAIT package have a MAIT object as an

input and give another MAIT object as an output updated with the new results.

To improve the usability of the package, MAIT also includes a set of functions

devoted to plotting results and to writing tables. These functions automatically

create the files in an ordered manner by creating subfolders. Finally, MAIT not

only supports using raw files as an input, but also is possible to use external sources

of data (e.g. peak tables detected using another software). The package and its

tutorial can be found here: http://b2slab.upc.edu/software-and-downloads/

metabolite-automatic-identification-toolkit/

• The intensity of the LC/MS signal can suffer from severe drift effects. In the thesis

it was depicted how these effects might become an important source of variance,

leading to correlation patterns not related by the underlying biological variabil-

ity. In most LC/MS metabolomic datasets, some samples (called Quality Control

http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/
http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/
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samples) are injected regularly to check the performance of the LC/MS device and

test whether its technical behaviour is correct. Therefore, these samples do not

contain any biological variability. Normally the feature pattern of the samples in

these classes is known so they can be used to calibrate the experimental device.

In the context of the thesis, it was proposed a two-step method to correct the

peak intensity drifts in LC/MS data. In this method, the drift effects are consid-

ered to be contained in the common variance space of the quality control samples.

The common variance space is computed using a Common Principal Components

approach (CPCA). The first step of the method is to remove this variance from

the data followed by a data normalisation using a median fold correction. The

proposed was compared to other four different drift correction methods: Compo-

nent Correction method, the CPCA method, the median fold correction method

and the ComBat method. Taking the Silhouette and the Dunn clustering indices

as quality metrics, it was found that the dataset corrected using the proposed

method, showed less intensity drift effects.

• All the tested methods to correct the intensity drift effects (including the proposed

method) were coded in a single R package called intCor. The package, the vignette

and the required files to run the vignette are available here: http://b2slab.upc.

edu/software-and-downloads/intensity-drift-correction/.

• The profile of the retention time drifts in LC/MS metabolomic signals shows a

non-linear behaviour. In particular, in reverse-phase chromatography, some chro-

matographic regions show more retention time drift than other regions. In this

work, we supposed that even though these time drift measure are different, they

show a correlation pattern between them. Based on this hypothesis, a new method

was developed to remove the time drift in LC/MS Metabolomic data. This method

is based on fitting a non-linear model to capture the time drift effects on the data.

To that end, the quality control samples were selected to elute at early, middle and

later retention times, to ensure that a metabolite signal will be clearly found in all

the range of the dataset. The model is fitted using the peak drifts of the metabolites

found in the quality control samples. Finally, the drift is removed sample-wise from

the dataset. This method was tested on two datasets of different characteristics:

one shows clear non-linear time drift effects and the other showed little time drift ef-

fects. The quality metrics were the peak kurtosis and peak correlation of the peaks

http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/
http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/
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found in the quality control samples. These measures were compared to other three

methods: Linear piece-wise, Parametric Time Warping and LOESS method. The

results showed that the proposed method performed better than the other methods

for the dataset containing large drift effects and it had similar performance than the

LOESS method for the dataset with little drift (both the proposed method and the

LOESS method over performed the others for this dataset. The proposed method

is coded as an R package called HCor and it can be found at: http://b2slab.

upc.edu/software-and-downloads/retention-time-drift-correction/.

http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
http://b2slab.upc.edu/software-and-downloads/retention-time-drift-correction/
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Supporting Information: Peak

aggregation techniques

A.1 Peak Correlations

In order to build the correlation matrix shown in Figure 1, a subset of 50 peaks of the

peak data set Y was selected (data was processed as stated in section A.2). The samples

used to get such data set are the same that were used in the evaluation of the effect

of the peak aggregation methods (section ”Effect of the Peak Aggregation”) and whose

obtaining is detailed in section ”Experimental Data”. Once the data set Y was gathered,

peak pairwise Pearson’s correlations were calculated and the corresponding correlation

matrix was obtained as a result.

A.2 Metabolomic Data Processing

The XCMS package used in this paper to perform the peak detection step [1, 2] allows

the user to extract the peaks from a set of samples using certain instrument-dependant

input parameters. In the XCMS run was used the matched filter method along with

the parameters snthresh = 2, sigma = 2.123, mzdiff = 0.3, bw = 3. Peaks were then

111



Appendix A. Supporting Information: Peak aggregation as an innovative strategy for
improving the predictive power of LC-MS metabolomic profiles 112

detected and grouped across samples. Possible retention time deviations were also cor-

rected following standard XCMS peak alignment procedure. After the peak detection

step, the R package CAMERA was used to find the peaks features coming from the

same metabolite, for building the spectra and for finding the spectral matrices [3]. The

CAMERA package uses a retention time window and peak correlation across samples

(and within each peak cluster), to build the spectral matrices. The parameters used

in the CAMERA package were perfwhm = 0.6 and cor eic th = 0.7. Applying this

procedure, 5688 peaks were detected which were grouped into 2821 spectra. 2113 of

these spectra had one peak, 659 had between 1 and 10 peaks and 50 spectra had more

than 10 peaks per spectra.

Once the spectral matrices were found, one of the five methods (the standard method

which uses peaks as variables or one of the four peak aggregation methods described

in section ”Peak Aggregation Techniques”) was applied on the peak data set Y . The

R package NMF was used to perform the computation of the matrices factorisation in

the NMF reduction method[4]. After this step, the spectral data set S was built in

accordance with the method used.

The data were scaled in all methods to have unit variance. The data were centred when

the PCA peak aggregation method was used. Once the spectral data set was built, an

ANOVA test was applied on every variable (spectrum) with threshold p − value <=

1 · 10−3. 1301 spectra out of the 2821 were found to be statistically significant. Among

these 1301 significant spectra, 362 had more than one peak.

In the validation step, it was used the R package e1071 to perform the SVM classifica-

tions [5]. In order to choose the SVM parameters it was used the tune.svm function with

a radial kernel. To quantify the differences between the peak aggregation methods it was

applied a Fisher Least Significant Difference (LSD) test an adjusted p-value threshold

of 0.05 using the R package AGRICOLAE [6].

Bibliography

[1] C A Smith, E J Want, G O’Maille, R Abagyan, and G Siuzdak. XCMS: processing

mass spectrometry data for metabolite profiling using nonlinear peak alignment,



Appendix A. Supporting Information: Peak aggregation as an innovative strategy for
improving the predictive power of LC-MS metabolomic profiles 113

matching, and identification. Analytical Chemistry, 78(3):779–787, 2006. ISSN

00032700. doi: 10.1021/ac051437y. URL http://pubs3.acs.org/acs/journals/

doilookup?in_doi=10.1021/ac051437y.
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Figure A.1: Boxplot showing the differences in the five methods used when a linear
classifier (PLSDA) classifier is used. The method labelled ”None” corresponds to the
standard method in which no peak aggregation is performed. The lines joining boxes

mean that Fisher’s LSD test found them to be equal.

*

Maximum

Figure A.2: Boxplot showing the differences in the five methods used when a non-
linear classifier (SVM) classifier is used. The method labelled ”None” corresponds to
the standard method in which no peak aggregation is performed. The line joining boxes

mean that Fisher’s LSD test found them to be equal.
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Supporting Information:

MAIT vignette

B.1 Abstract

Processing metabolomic liquid chromatography and mass spectrometry (LC/MS) data

files is time consuming. Currently available R tools allow for only a limited number

of processing steps and online tools are hard to use in a programmable fashion. This

paper introduces the metabolite automatic identification toolkit MAIT package, which

allows users to perform end-to-end LC/MS metabolomic data analysis. The package is

especially focused on improving the peak annotation stage and provides tools to validate

the statistical results of the analysis. This validation stage consists of a repeated random

sub-sampling cross-validation procedure evaluated through the classification ratio of the

sample files. MAIT also includes functions that create a set of tables and plots, such

as principal component analysis (PCA) score plots, cluster heat maps or boxplots. To

identify which metabolites are related to statistically significant features, MAIT includes

a metabolite database for a metabolite identification stage.

B.2 Introduction

Liquid Chromatography and Mass Spectrometry (LC/MS) is an analytical technique

widely used in metabolomics to detect molecules in biological samples [1]. It breaks the
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molecules down into pieces, some of which are detected as peaks in the mass spectrom-

eter. Metabolic profiling of LC/MS samples basically consists of a peak detection and

signal normalisation step, followed by multivariate statistical analysis such as Princi-

pal Components Analysis (PCA) and a wide range of statistical tests such as ANOVA,

Welch’s test or Kruskal-Wallis test [1, 2].

As analysing metabolomic data is time consuming, a wide array of software tools are

available, including commercial tools such as Analyst R© software. There are program-

matic R packages, such as XCMS [3, 4, 5] to detect peaks or CAMERA package [6]

and AStream [7], which cover only peak annotation. Other modularly-designed propos-

als coded in JAVA such as MZmine or mzMatch are also available [8, 9, 10]. These

tools are mainly focused on LC/MS data pre-processing and visualisation. Another

category of free available tools consists of those having online access through a graphi-

cal user interface (GUI), such as XCMS Online (http://xcmsonline.scripps.edu) or

MetaboAnalyst [11], both extensively used. These online tools are difficult to use in a

programmable fashion. They are also designed and programmed to be used step by step

with user intervention, making it difficult to set up metabolomic data analysis workflow.

We introduce a new R package called metabolite automatic identification toolkit (MAIT)

for automatic LC/MS analysis. The goal of the MAIT package is to provide an array

of tools for programmable metabolomic end-to-end analysis. It consequently has special

functions to improve peak annotation through the processes called biotransformations.

Specifically, MAIT is designed to look for statistically significant metabolites that sep-

arate the classes in the data. MAIT has the following dependencies in terms of R

packages: pls, plots, e1071, caret, plsgenomics and agricolae.

B.3 Available Computational Tools

Table B.1 contains a capability comparison between MAIT and some of the most widely

used computational tools when processing LC/MS metabolomic data. Among the pro-

gramable tools, there are R packages such as XCMS which is focused on preprocessing

the data but it also is able to perform a simple statistical analysis of the data. MZmine

or mzMatch are highly modularised tools based on JAVA and also centred on the data

preprocessing and visualisation methods than in the statistical processing of the LC/MS

http://xcmsonline.scripps.edu
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data. On the other hand, the main approach of the online tool MetaboAnalyst is on

the statistical analysis of the LC/MS data but it lacks of the programmable approach

and off-line capabilities of the previous tools. In this context, MAIT aims at filling the

gap of programmatic tools that allow for a full statistical study of LC/MS metabolomic

data.
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B.4 MAIT Modularity

Modularity is a highly desirable property of any software tool. A modular package is

made of functions each one of which performs highly specific tasks. These functions are

used by the package as building blocks to perform more complex procedures. Under the

modular design of MAIT, the functions of the package operate with objects of a char-

acteristic class named MAIT-class objects. The main functions of the MAIT workflow

fill certain slots of the object and then return the updated MAIT-class object as an

output. In this context, Table B.2 shows the slots of the MAIT-class objects that are

necessary to run each of the main MAIT functions and also the slots that are filled after

the function run. From the same table, it is shown that just a few slots are necessary to

run the functions. In particular, considering all the main functions, the required slots

are four: @PhenoData@classes, @PhenoData@classNum, FeatureInfo@featureSigID and

one of the following slots @RawData@data or

@FeatureData@extendedTable. If a certain module is to be added, it is only necessary

to fill the slots with the appropriate data. Function getScoresTable returns a peak scores

table generated from a xsAnnotate object (see documentation of CAMERA package) if

available (it comes from the peakAnnotation function) to extract the peak data. If there

is no data in the slot, the table saved in @FeatureData@extendedTable is taken instead.

New modules for peak detection and peak annotation stages (see Figure B.1) to be imple-

mented in the MAIT workflow, should create an overload of the function getScoresTable

to extract the appropriate data (see help file of the function getScoresTable). Another

option would be to use the MAITbuilder function instead (Sections B.6.5 and B.7.9).
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B.5 Methodology

The main processing steps for metabolomic LC/MS data include the following stages:

peak detection, peak annotation and statistical analysis. In the peak detection stage, the

objective is to detect the peaks in the LC/MS sample files. The peak annotation stage

identifies the metabolites in the metabolomic samples better by increasing the chemical

and biological information in the data set. A statistical analysis step is essential to

obtain significant sample features. All these 3 steps are covered in the MAIT workflow

(see Figure B.1).

B.5.1 Peak Detection

Peak detection in metabolomic LC/MS data sets is a complex issue for which several ap-

proaches have been developed. Two of the most well established techniques are matched

filter [13] and the centWave algorithm [4]. MAIT can use both algorithms through the

XCMS package.

B.5.2 Peak Annotation

The MAIT package uses 3 complementary steps in the peak annotation stage.

• The first annotation step uses a peak correlation distance approach and a retention

time window to ascertain which peaks come from the same source metabolite,

following the procedure defined in the CAMERA package [6]. The peaks within

each peak group are annotated following a reference adduct/fragment table and a

mass tolerance window.

• The second step uses a mass tolerance window inside the peak groups detected in

the first step to look for more specific mass losses called biotransformations. To do

this, MAIT uses a predefined biotransformation table where the biotransformations

we want to find are saved. A user-defined biotransformation table can be set as

an input following the procedure defined in Section (B.7.6).

• The third annotation step is the metabolite identification stage, in which a prede-

fined metabolite database is mined to search for the significant masses, also using
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a tolerance window. This database is the Human Metabolome Database (HMDB)

[14], 2009/07 version.

B.5.3 Statistical Analysis

The objective of analysing metabolomic profiling data is to obtain the statistically signif-

icant features that contain the highest amount of class-related information. To gather

these features, MAIT applies standard parametrical and non-parametrical statistical

tests on every feature and selects the significant set of features by setting up a user-

defined threshold P-value. Depending on the number of classes defined in the data,

MAIT can use Student’s T-test, Welch’s T-tests and Mann-Whitney tests for two classes

or ANOVA and Kruskal-Wallis tests for more than two classes. Furthermore, MAIT sup-

ports adding user-defined tests in a straightforward way (see section B.7.4 for an example

using the Fisher’s exact test). Different multiple testing correction methods including

false discovery rate and Bonferroni are implemented in MAIT through R function p.adj.

We propose a validation test to quantify how well the data classes are separated by the

statistically significant features. The separation is validated through a repeated random

sub-sampling cross-validation using partial least squares and discriminant analysis (PLS-

DA), support vector machine (SVM) with a radial Kernel and K-nearest neighbours

(KNN) [15]. Overall and class-related classification ratios are obtained to evaluate the

class-related information of the significant features.

B.5.4 Support for Peak Aggregation Techniques

MAIT optionally supports peak aggregation techniques that might lead to better feature

selection [16] through the commercial pagR package.

B.6 MAIT workflow

MAIT accepts LC/MS files in the open formats mzData and netCDF. Sample files should

be placed in a folder having a set of subfolders, each of which is going to be a class in

the data (see function sampleProcessing() in Section B.7 for details).



Appendix B. MAIT vignette 123

The package centrepiece consists of the S4 MAIT-class objects. In terms of traceability,

objects belonging to this class are designed to contain all the information related to the

processing steps already run. The reason for this design is that using a single R object

throughout the workflow improves the traceability of the analysis. The contents of a

MAIT-class object are shown below. The slots of the MAIT-class objects are:

Formal class ’MAIT’ [package "MAIT"] with 5 slots

..@ FeatureInfo:Formal class ’MAIT.FeatureInfo’ [package "MAIT"] with

3 slots

.. .. ..@ biotransformations: logi [1, 1] NA

.. .. ..@ peakAgMethod : chr ""

.. .. ..@ metaboliteTable :’data.frame’: 0 obs. of 0 variables

..@ RawData :Formal class ’MAIT.RawData’ [package "MAIT"] with 2 slots

.. .. ..@ parameters:Formal class ’MAIT.Parameters’ [package "MAIT"] with

10 slots

.. .. .. .. ..@ sampleProcessing : list()

.. .. .. .. ..@ peakAnnotation : list()

.. .. .. .. ..@ peakAggregation : list()

.. .. .. .. ..@ sigFeatures : list()

.. .. .. .. ..@ biotransformations : list()

.. .. .. .. ..@ identifyMetabolites: list()

.. .. .. .. ..@ classification : list()

.. .. .. .. ..@ plotPCA : list()

.. .. .. .. ..@ plotPLS : list()

.. .. .. .. ..@ plotHeatmap : list()

.. .. ..@ data : list()

..@ Validation :Formal class ’MAIT.Validation’ [package "MAIT"] with 3

slots

.. .. ..@ ovClassifRatioTable: logi [1, 1] NA

.. .. ..@ ovClassifRatioData : list()

.. .. ..@ classifRatioClasses: logi [1, 1] NA

..@ PhenoData :Formal class ’MAIT.PhenoData’ [package "MAIT"] with 3 slots

.. .. ..@ classes : logi(0)

.. .. ..@ classNum : logi(0)



Appendix B. MAIT vignette 124

.. .. ..@ resultsPath: chr ""

..@ FeatureData:Formal class ’MAIT.FeatureData’ [package "MAIT"] with 12

slots

.. .. ..@ scores : logi [1, 1] NA

.. .. ..@ featureID : logi(0)

.. .. ..@ featureSigID : logi(0)

.. .. ..@ LSDResults : logi [1, 1] NA

.. .. ..@ models : list()

.. .. ..@ pvalues : logi(0)

.. .. ..@ pvaluesCorrection: chr ""

.. .. ..@ pcaModel : list()

.. .. ..@ plsModel : list()

.. .. ..@ masses : num(0)

.. .. ..@ rt : num(0)

.. .. ..@ extendedTable :’data.frame’: 0 obs. of 0 variables

A MAIT-class object is built of 5 different S4 classes:

• FeatureInfo-class: The information regarding the peak annotation is saved in this

class.

• RawData-class: This class contains the data imported from the metabolomic

LC/MS (xcmsSet-class object or xsAnnotate-class object depending on the last

function run)

• Validation-class: This contains the results of the cross-validation classification

stage.

• PhenoData-class: All the class-related information and the results path is con-

tained in this class.

• FeatureData-class: This class contains the information related to the features, its

P-values and the mathematical models used.

Figure B.1 shows the flowchart of the main functions of the MAIT package, their output

files and their functionality. Table B.3 shows the specific outputs of each function shown
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in Figure B.1.

The MAIT package uses the wrapper function sampleProcessing() to call the required

XCMS functions to perform the peak detection step. These functions include xcmsSet(),

group(), retcor() and fillPeaks(). The peaks detected are saved as a xcmsSet-class object

inside a MAIT-class object.

B.6.1 Peak Annotation

The default tables used to perform all the peak annotation steps are provided in MAIT

as an R Data object called MAITtables.RData. When this file is loaded, the following

objects can be found:

• posAdducts: The possible annotations for the first annotation step when the po-

larisation mode in the sample acquisition is set to positive.

• negAdducts: The possible annotations for the first annotation step when the po-

larisation mode in the sample acquisition is set to negative.

• biotransformationsTable: This table contains the specific biotransformations for

the second annotation step.

• Database: The metabolite database table to perform the metabolite identification

stage (third peak annotation step). This database is the Human Metabolome

Database (HMDB)[14], 2009/07 version.

The MAIT package uses a CAMERA package wrapper function called peakAnnotation()

to perform the first step in the peak annotation stage. CAMERA groups the peaks using

a retention time window followed by a correlation cut-off approach. An adduct table

is required to launch this step. A user-defined adduct table or a MAIT default adduct

table (posAdducts or negAdducts) can be selected. The user-defined table should be

created following the CAMERA adduct table layout, which is:

name nmol charge massdiff oidscore quasi ips

1 [M+H]+ 1 1 1.007276 1 1 1.0
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2 [M+Na]+ 1 1 22.989218 8 1 1.0

3 [M+K]+ 1 1 38.963158 10 1 1.0

4 [M+NH4]+ 1 1 18.033823 16 1 1.0

5 [M+2Na-H]+ 1 1 44.971160 34 0 0.5

6 [M+2K-H]+ 1 1 76.919040 60 0 0.5

The second peak annotation step is performed by the function called Biotransforma-

tions(). The function is codified to perform the procedure defined in Section B.5.2.

As is shown in Figure B.1, function Biotransformations() should be launched after de-

tecting the significant features using function spectralSigFeatures() (see Section B.6.2).

The first 10 entries of the Biotransformation Table are shown below. When 2 peaks in

the same peak group have mass differences (within tolerance) equal to a value of the

MASSDIFF column, they are related to each other by that biotransformation and are

annotated accordingly.

NAME MASSDIFF

1 debenzylation -90.0468

2 tert-butyl dealkylation -56.0624

3 decarboxylation -43.9898

4 isopropyl dealkylation -42.0468

5 propylketone to acid -40.0675

6 tert-butyl to alcohol -40.0675

7 alkenes to dihydrodiol 34.0054

8 nitro reduction -29.9742

9 propyl ether to acid -28.0675

10 deethylation -28.0312

Likewise, to perform the third peak annotation step, function identifyMetabolites()

mines the metabolite database file to find suitable metabolites for each peak. The

function outputs a table (see Table B.3) that contains all the possible matches for all
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the peaks. If no peak aggregation technique was applied through function peakAggre-

gation() (see Section B.6.3), the set of features to be identified are all the significant

features found in the statistical tests (Section B.6.2). A user-defined database can be

used as an input object as well. To do so, the user file should have the following format:

ENTRY NAME FORMULA MASS

1 HMDB00001 1-Methylhistidine C7H11N3O2 169.085129

2 HMDB00002 1,3-Diaminopropane C3H10N2 74.084396

3 HMDB00005 2-Ketobutyric acid C4H6O3 102.031693

4 HMDB00008 2-Hydroxybutyric acid C4H8O3 104.047340

5 HMDB00010 2-Methoxyestrone C19H24O3 300.172546

6 HMDB00011 (R)-3-Hydroxybutyric acid C4H8O3 104.047340

Biofluid

Blood; Cerebrospinal Fluid; Saliva; Urine

Blood; Urine

Blood; Cerebrospinal Fluid; Urine

Blood; Cerebrospinal Fluid; Urine

Urine

Blood; Cerebrospinal Fluid; Urine

Each of these 3 annotation steps is implemented through a function. These 3 functions

all have an input parameter where a user-defined table can be used instead of the MAIT

default tables. In particular, in function peakAnnotation() there is the argument ad-

ductTable, in function Biotransformations(), the argument is called bioTable and the

input argument for function identifyMetabolites() is called database.

B.6.2 Statistical Analysis

spectralSigFeatures() performs a univariate statistical test on each feature to gather the

statistically significant variables that separate the classes in the data. The results of
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these statistical tests are saved in the MAIT-class object and are easily retrieved from

it by applying function sigPeaksTable(). The validation procedure defined in Section

B.5.3 is launched using function Validation(). The overall and class-related classification

ratios are saved in boxplots and tables (see Table B.3) in the folder called ”Validation”.

The confusion matrices for each iteration and classifier are saved in the folder named

”Confusion Tables”.

B.6.3 Support for Peak Aggregation Techniques

The peak aggregation techniques, optional in MAIT workflow, are applied through func-

tion peakAggregation(). This function allows the use of several different methods to ob-

tain the peak aggregation measures. If the chosen method is None, no other packages are

required and no peak aggregation technique is applied. Any other valid choice (Mean,

Single, PCA, NMF) requires the additional commercial package pagR (see Figure B.1).

B.6.4 Statistical Plots

The package also contains functions that create statistical plots to evaluate analysis

results. These plots include 2D PCA score plots and an interactive 3D PCA score

plot through function plotPCA(). The interactive 3D PCA score plot is generated by

the package rgl [17]. Function plotHeatmap() produces an array of heat maps using

different thresholds for the P-values and hierarchical clustering distances (Euclidean and

Pearson’s; see Table B.3), whereas Function plotBoxplot() makes it possible to create

a boxplot for each significant feature found. As is shown in Figure B.1, all 3 functions

require the significant features to be found to run the functions correctly and create the

plots.
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sampleProcessing

peakAnnotation

MAIT Functions FunctionalityOutput Files

peakAggregation
Optional through
pagR package

spectra.csv

significantFeatures.csv

Peak Annotation

Peak Detection

Statistical Analysis

Peak Annotation

metaboliteTable.csv

Validation folder

PCA Scoreplots

Boxplots

Heatmaps

Peak Annotation

Statistical Analysis

Visualisation

Visualisation

Visualisation

spectralSigFeatures

Biotransformations

identifyMetabolites

Validation

plotPCA

plotBoxplot

plotHeatmap

VisualisationplotPLSPLS Scoreplots

Figure B.1: Flowchart showing the main MAIT functions. Each box refers to a
function and each circle points to the functionality of the function in the workflow.
Solid arrows refer to possible data processing path. The left column plots contain the

output of the functions.
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B.6.5 External Peak Data

MAIT supports importing external peak data through a function called MAITbuilder.

This function allows the user to create a MAIT object from a wide variety of data.

Table B.4 shows the correspondence between the arguments that the user needs to

provide to the MAITbuilder function and the function that the user wants to run. An

important point of the MAITbuilder function is the spectraID argument. Whereas

this argument is not necessary to run any of the functions related to the statistical

processing, it has a big impact on the annotation functions (i.e. Biotransformations and

identifyMetabolites). The reason is that, if no spectral information is provided and the

flag named spectraEstimation is set to FALSE, the MAITbuilder function considers the

provided data as being all in separate spectra (one peak/one spectrum). Therefore the

annotation functions will not find any annotation for the provided data. Nevertheless, if

the spectraEstimation flag is set to TRUE, MAIT uses a retention time window (defined

by the argument rtRange) and a correlation threshold value (defined by corThresh) to

estimate a peak grouping into spectra for the provided data.

B.7 Using MAIT

The data files for this example are a subset of the data used in reference [18], which are

freely distributed through the faahKO package [19]. In these data there are 2 classes

of mice: a group where the fatty acid amide hydrolase gene has been suppressed (class

knockout or KO) and a group of wild type mice (class wild type or WT). There are 6

spinal cord samples in each class. In the following, the MAIT package will be used to

read and analyse these samples using the main functions discussed in Section B.6. The

significant features related to each class will be found using statistical tests and analysed

through the different plots that MAIT produces.

B.7.1 Data Import

Each sample class file should be placed in a directory with the class name. All the class

folders should be placed under a directory containing only the folders with the files to

be analysed. In this case, 2 classes are present in the data. An example of correct file
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Table B.4: Correspondence between the necessary arguments of the MAITbuilder
and the MAIT functions that can be launched. Given a function, the arguments not
mentioned in the should be considered as optional for that function. The argument
significantFeatures is a flag that, if it is set to TRUE, the provided features are consid-
ered to be statistically significant. A field labelled with an asterisk refers to an optional

argument.

MAIT function to be
launched

Necessary arguments of the
MAITbuilder function

spectralSigFeatures() classes, data

Biotransformations() masses, significantFeatures=TRUE, spectraID∗

identifyMetabolites() masses,significantFeatures=TRUE, spectraID∗

Validation() classes, data, significantFeatures=TRUE

Plot functions
(plotBoxplot,plotHeatmap,

plotPCA, plotPLS)
classes, data, significantFeatures=TRUE

Figure B.2: Example of the correct sample distribution for MAIT package use. Each
sample file has to be saved under a folder with its class name.

distribution using the example data files is shown in Figure B.2.
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B.7.2 Peak Detection

Once the data is placed in 2 subdirectories of a single folder, the function sampleProcess-

ing() is run to detect the peaks, group the peaks across samples, perform the retention

time correction and carry out the peak filling process. As function sampleProcessing()

uses the XCMS package to perform these 4 processing steps, this function exposes XCMS

parameters that might be modified to improve the peak detection step. A project name

should be defined because all the tables and plots will be saved in a folder using that

name. For example, typing project = ”project Test”, the output result folder will be

”Results project Test”.

By choosing ”MAIT Demo” as the project name, the peak detection stage can be

launched by typing:

R> MAIT <- sampleProcessing(dataDir = "Dataxcms", project = "MAIT_Demo",

snThres = 2,rtStep = 0.03)

ko15: 215:366 230:680 245:1014 260:1392 275:1766 290:2120 305:2468 320:2804

335:3150 350:3468 365:3846 380:4182 395:4486 410:4804 425:5110 440:5444

455:5778 470:6136 485:6504 500:6892 515:7296 530:7742 545:8138 560:8620

575:9048 590:9526

ko16: 215:344 230:662 245:1018 260:1378 275:1728 290:2090 305:2434 320:2722

335:3030 350:3352 365:3680 380:4006 395:4310 410:4640 425:4966 440:5276

455:5618 470:6010 485:6370 500:6818 515:7230 530:7662 545:8108 560:8608

575:9110 590:9654

...

wt22: 215:304 230:568 245:872 260:1202 275:1536 290:1838 305:2150 320:2444

335:2758 350:3030 365:3306 380:3576 395:3848 410:4140 425:4420 440:4712

455:5018 470:5364 485:5692 500:6060 515:6472 530:6912 545:7326 560:7786

575:8302 590:8792

Peak detection done

262 325 387 450 512 575
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Retention Time Correction Groups: 7

Warning: Span too small, resetting to 0.8

Retention time correction done

262 325 387 450 512 575

Peak grouping after samples done

ko15

.

.

.

Peak missing integration done

After having launched the sampleProcessing function, peaks are detected, they are

grouped across samples and their retention time values are corrected. A short sum-

mary in the R session can be retrieved by typing the name of the MAIT-class object.

R> MAIT

A MAIT object built of 12 samples

The object contains 6 samples of class KO

The object contains 6 samples of class WT

The result is a MAIT-class object that contains information about the peaks detected,

their class names and how many files each class contains. A longer summary of the data

is retrieved by performing a summary of a MAIT-class object. In this longer summary

version, further information related to the input parameters of the whole analysis is

displayed. This functionality is especially useful in terms of traceability of the analysis.

R> summary(MAIT)

A MAIT object built of 12 samples

The object contains 6 samples of class KO

The object contains 6 samples of class WT



Appendix B. MAIT vignette 135

Parameters of the analysis:

Value

dataDir "Data"

snThres "2"

Sigma "2.12332257516562"

mzSlices "0.3"

retcorrMethod "loess"

groupMethod "density"

bwGroup "3"

mzWidGroup "0.25"

filterMethod "matchedFilter"

rtStep "0.03"

nSlaves "0"

project "MAIT_Demo"

ppm "10"

minfrac "0.5"

fwhm "30"

family1 "gaussian"

family2 "symmetric"

span "0.2"

centWave peakwidth1 "5"

centWave peakwidth2 "20"

B.7.3 Peak Annotation

The next step in the data processing is the first peak annotation step, which is per-

formed through the peakAnnotation(). If the input parameter adductTable is not set,

then the default MAIT table for positive polarisation will be selected. However, if the

adductTable parameter is set to ”negAdducts”, the default MAIT table for negative

fragments will be chosen instead. peakAnnotation function also creates an output table

(see Table B.3) containing the peak mass (in charge/mass units), the retention time (in

minutes) and the spectral ID number for all the peaks detected. A call of the function
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peakAnnotation may be:

R> MAIT <- peakAnnotation(MAIT.object = MAIT, corrBetSamp = 0.75, perfwhm = 0.6)

WARNING: No input adduct/fragment table was given. Selecting default MAIT table

for positive polarity...

Set adductTable equal to negAdducts to use the default MAIT table for negative

polarity

Start grouping after retention time.

Created 1037 pseudospectra.

Spectrum build after retention time done

Generating peak matrix!

Run isotope peak annotation

% finished: 10 20 30 40 50 60 70 80 90 100

Found isotopes: 15

Isotope annotation done

Start grouping after correlation.

Generating EIC’s ..

Calculating peak correlations in 1037 Groups...

% finished: 10 20 30 40 50 60 70 80 90 100

Calculating peak correlations across samples.

% finished: 10 20 30 40 50 60 70 80 90 100

Calculating isotope assignments in 1037 Groups...

% finished: 10 20 30 40 50 60 70 80 90 100

Calculating graph cross linking in 1037 Groups...

% finished: 10 20 30 40 50 60 70 80 90 100

New number of ps-groups: 2398

xsAnnotate has now 2398 groups, instead of 1037

Spectrum number increased after correlation done
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Generating peak matrix for peak annotation!

Found and use user-defined ruleset!

Calculating possible adducts in 2398 Groups...

% finished: 10 20 30 40 50 60 70 80 90 100

Adduct/fragment annotation done

Because the parameter adductTable was not set in the peakAnnotation call, a warning

was shown informing that the default MAIT table for positive polarisation mode was

selected. The xsAnnotated object that contains all the information related to peaks,

spectra and their annotation is stored in the MAIT object. It can be retrieved by

typing:

R> rawData(MAIT)

$xsaFA

An "xsAnnotate" object!

With 2398 groups (pseudospectra)

With 12 samples and 2640 peaks

Polarity mode is set to: positive

Using automatic sample selection

Annotated isotopes: 15

Annotated adducts & fragments: 16

Memory usage: 7.07 MB

B.7.4 Statistical Analysis

Following the first peak annotation stage, we want to know which features are different

between classes. Consequently, we run the function spectralSigFeatures().

R> MAIT<-spectralSigFeatures(MAIT.object = MAIT, pvalue = 0.05, p.adj = "none",

scale = FALSE)

It is worth mentioning that by setting the scale parameter to TRUE, the data will

be scaled to have unit variance. The parameter p.adj allows for using the multiple
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testing correction methods included in the function p.adjust of the package stats. A

summary of the statistically significant features is created and saved in a table called

significantFeatures.csv (see Table B.3). It is placed inside the Tables subfolder located

in the project folder. This table shows characteristics of the statistically significant

features, such as their P-value, the peak annotation or the expression of the peaks

across samples. This table can be retrieved at any time from the MAIT-class objects by

typing the instruction:

R> signTable <- sigPeaksTable(MAIT.object = MAIT, printCSVfile = FALSE)

R> head(signTable)

mz mzmin mzmax rt rtmin rtmax npeaks KO WT ko15 ...

610 300.2 300.1 300.2 56.36 56.18 56.56 17 6 3 4005711.4 ...

762 326.2 326.1 326.2 56.92 56.79 57.00 9 5 2 3184086.4 ...

885 348.2 348.1 348.2 56.95 56.79 57.15 14 4 2 320468.2 ...

1760 495.3 495.2 495.3 56.93 56.82 57.05 11 3 4 110811.4 ...

935 356.2 356.1 356.3 63.77 63.58 63.92 9 4 4 962224.6 ...

1259 412.2 412.1 412.3 68.61 68.44 68.81 16 4 3 113096.3 ...

isotopes adduct pcgroup P.adjust p

610 27 0.01748294 0.01748294 ...

762 [M+H]+ 325.202 31 0.01991433 0.01991433 ...

885 [M+Na]+ 325.202 31 0.16856322 0.16856322 ...

1760 31 0.96828618 0.96828618 ...

935 74 0.03310409 0.03310409 ...

1259 81 0.02240898 0.02240898 ...

Median Class KO Median Class WT

610 2769931.356 115642.29

762 2353947.791 43006.61

885 40384.825 0.00

1760 6531.515 15969.26

935 848999.980 16836.67

1259 215979.768 34607.95
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The number of significant features can be retrieved from the MAIT-class object as

follows:

R> MAIT

A MAIT object built of 12 samples and 2640 peaks.

No peak aggregation technique has been applied

106 of these peaks are statistically significant

The object contains 6 samples of class KO

The object contains 6 samples of class WT

By default, when using two classes, the statistical test applied by MAIT is the Welch’s

test. Nevertheless, when having two classes,MAIT also supports applying the Student’s

t-test and the non-parametric test Mann-Whitney test. For using the Student’s t-test

on the data, the call to the spectralSigFeatures function should be as:

R> MAIT_Student <- spectralSigFeatures(MAIT.object = MAIT, pvalue = 0.05,

p.adj = "none", scale = FALSE, var.equal = TRUE)

R> MAIT_Student

A MAIT object built of 12 samples and 2640 peaks.

No peak aggregation technique has been applied

148 of these peaks are statistically significant

The object contains 6 samples of class KO

The object contains 6 samples of class WT

If we want to apply the Mann-Whitney test, in this case is necessary to add some jitter

noise in our data. The reason is that the Mann-Whitney test has ties when the data has

values equal to zero. Adding a small noise to the data solves this issue. MAIT supports

using jitter noise through the flag jitter and the parameter jitter.amount:

R> MAIT_MW <- spectralSigFeatures(MAIT.object = MAIT, pvalue = 0.05,

p.adj = "none", scale = FALSE, parametric = FALSE, jitter = TRUE)
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As an example of its modularity, MAIT supports applying user-defined statistical tests

on the data. To use a user-defined test in MAIT, the output of the function should

give the p-value of the test given a numeric vector (i.e. the variable values) and a factor

vector (the classes of the samples in the parameter group). In the following example, lets

suppose that we want to know if a certain metabolite is present or not in the data. To

that end, we will define a special exact Fisher’s test function with a threshold intensity

value. If the intensity of the peak for a particular sample is above this threshold value,

the peak is labelled as ”present”. If the intensity value is below the threshold, the peak

is labelled as ”absent”. If all the labels for a particular peak are the same, the function

will not compute the Fisher’s test and will throw an NA as a p-value. The function of

the Fisher’s test, can be defined as follows:

R> ftest <- function(x,group){

threshold<-100

x[x>threshold]<-"present"

x[!x>threshold]<-"absent"

x<-as.factor(x)

if(length(summary(x))==1){

out<-NA

}else{

out<-fisher.test(x=x,y=group)$p.value

return(out)

}}

And the call to the spectralSigFeatures in this case:

R> MAIT_Fisher <- spectralSigFeatures(MAIT.object = MAIT, test.fun = ftest,

namefun = "fisher’s test")

R> MAIT_Fisher

A MAIT object built of 12 samples and 2640 peaks.

No peak aggregation technique has been applied

18 of these peaks are statistically significant

The object contains 6 samples of class KO

The object contains 6 samples of class WT
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R> sigPeaksTable(MAIT_Fisher)

mz mzmin mzmax rt rtmin rtmax npeaks KO WT ko15 ko16 ko18

686 314.20 314.1 314.3 58.34 58.26 58.52 9 4 2 53657.59 44311.386 46921.83

743 323.10 323.1 323.2 58.36 58.10 58.70 32 5 6 93579.73 163605.100 269543.46

1879 512.10 512.1 512.1 58.36 58.30 58.36 3 3 0 20781.25 9272.833 15164.85

2398 572.10 572.0 572.2 58.35 58.23 58.54 10 4 4 17548.34 0.000 10066.08

2425 574.15 574.1 574.3 58.36 58.17 58.54 8 3 3 0.00 0.000 7615.29

2484 582.10 582.0 582.2 58.36 57.88 58.75 32 5 6 67578.36 19928.601 20647.05

ko19 ko21 ko22 wt15 wt16 wt18 wt19

686 21571.953 11447.427 12034.850 10547.28 6815.575 13099.050 8719.591

743 146186.650 4367.423 128649.260 231889.92 223209.690 105094.445 270387.409

1879 9574.670 0.000 2273.451 0.00 0.000 0.000 0.000

2398 4721.605 17117.194 0.000 5033.04 6322.965 9087.955 0.000

2425 0.000 4596.405 5992.385 0.00 8590.285 5377.340 0.000

2484 16169.580 5601.135 0.000 20898.59 63014.725 9707.695 8850.075

wt19 wt21 wt22 isotopes adduct pcgroup P.adjust p

686 8719.591 2475.368 0.00 98 1.00000000 1.00000000

743 270387.409 26666.035 55103.65 98 NA NA

1879 0.000 0.000 0.00 98 0.01515152 0.01515152

2398 0.000 8717.050 11374.42 98 1.00000000 1.00000000

2425 0.000 0.000 6685.68 98 1.00000000 1.00000000

2484 8850.075 5623.045 25839.54 98 1.00000000 1.00000000

p Fisher.Test Mean Class KO Mean Class WT Median Class KO Median Class WT

686 1.00000000 NA 31657.506 6942.811 32941.669 7767.583

743 NA NA 134321.938 152058.525 137417.955 164152.068

1879 0.01515152 NA 9511.176 0.000 9423.752 0.000

2398 1.00000000 NA 8242.204 6755.905 7393.843 7520.007

2425 1.00000000 NA 3034.013 3442.218 2298.203 2688.670

2484 1.00000000 NA 21654.119 22322.279 18049.090 15303.143
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All the peaks in the sigPeaksTable are found to be significant for the user-defined Fisher’s

exact test (note that the column named Fisher.test in the sigPeaksTable refers to the

Fisher LSD test performed after an ANOVA test and not to the user-defined Fisher’s

exact test). This means that If the peak mass related to the fragmentation of the

metabolite we are looking for is found in this table, the metabolite would statistically

show a different absence/presence behaviour across the classes (WT/KO).

On the other hand, in the call to the spectralSigFeatures function, the argument test.fun

contains the function of the user-defined test and the argument namefun is an optional

parameter that contains the name of the user-defined function. This name will appear

in the parameters slot of the MAIT-class object:

R> summary(MAIT_Fisher)

A MAIT object built of 12 samples and 2640 peaks.

No peak aggregation technique has been applied

18 of these peaks are statistically significant

The object contains 6 samples of class KO

The object contains 6 samples of class WT

Parameters of the analysis:

Value

dataDir "Data"

snThres "2"

Sigma "2.12332257516562"

mzSlices "0.3"

retcorrMethod "loess"

groupMethod "density"

bwGroup "3"

mzWidGroup "0.25"

filterMethod "matchedFilter"
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rtStep "0.03"

nSlaves "0"

project "MAIT_Demo"

ppm "10"

minfrac "0.5"

fwhm "30"

family1 "gaussian"

family2 "symmetric"

span "0.2"

centWave peakwidth1 "5"

centWave peakwidth2 "20"

corrWithSamp "0.7"

corrBetSamp "0.75"

perfwhm "0.6"

sigma "6"

peakAnnotation pvalue "0.05"

calcIso "TRUE"

calcCiS "TRUE"

calcCaS "TRUE"

graphMethod "hcs"

annotateAdducts "TRUE"

peakAggregation method "None"

peakAggregation PCAscale "FALSE"

peakAggregation PCAcenter "FALSE"

peakAggregation scale "FALSE"

peakAggregation RemoveOnePeakSpectra "FALSE"

fisher’s test p-value "0.05"

fisher’s test p-value p.adj "none"

The multiple test corrections are also implemented in this case by changing the p.adj

argument of the function:

R> MAIT_Fisher <- spectralSigFeatures(MAIT.object = MAIT, test.fun = ftest,

namefun = "fisher’s test", p.adj = "fdr")
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Warning message:

In spectralSigFeatures(MAIT.object = MAIT, test.fun = ftest, namefun =

"fisher’s test", : No significative features found with the selected parameters.

In this particular case, a warning is thrown as no significant features were found with a

false discovery rate-adjusted p-value lower or equal 0.05.

B.7.5 Statistical Plots

Out of 2,402 features, 106 were found to be statistically significant. At this point, several

MAIT functions can be used to extract and visualise the results of the analysis. Functions

plotBoxplot, plotHeatmap, plotPCA and plotPLS automatically generate boxplots, heat

maps PCA score plot and PLS score plot files in the project folder when they are applied

to a MAIT object (see Table B.3).

R> plotBoxplot(MAIT)

R> plotHeatmap(MAIT)

R> MAIT<-plotPCA(MAIT)

R> MAIT<-plotPLS(MAIT)

The plotPCA and plotPLS functions produce MAIT objects with the corresponding

PCA and PLS models saved inside. The models, loadings and scores can be retrieved

from the MAIT objects by using the functions model, loadings and scores:

R> PLSmodel <- model(x=MAIT, type = "PLS")

R> PCAmodel <- model(x=MAIT, type = "PCA")

R> PLSscores <- scores(x=MAIT,model="PLS")

R> PCAscores <- scores(x=MAIT,model="PCA")

R> PLSloadings <- loadings(x=MAIT,model="PLS")

R> PCAloadings <- loadings(x=MAIT,model="PCA")

R> PLSscores

Comp 1

1 8.460117
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2 8.238226

3 7.465394

4 6.341839

5 4.958885

6 5.887925

7 -6.577803

8 -6.570983

9 -6.660059

10 -6.363424

11 -7.427228

12 -7.752889

attr(,"class")

[1] "scores"

R> PCAscores[,1:3]

PC1 PC2 PC3

[1,] -8.758728 0.92480221 -6.1406083

[2,] -8.348530 -0.86569846 0.1783953

[3,] -7.570347 0.32825445 -1.6159867

[4,] -6.209758 -0.01281555 3.1104855

[5,] -4.632576 -0.80459247 5.6779015

[6,] -5.757966 -0.47710433 0.8561668

[7,] 6.483476 7.10158291 0.9827710

[8,] 6.508645 0.44504996 -1.2287543

[9,] 6.568818 3.66149693 -0.2422269

[10,] 6.311563 -1.97819990 -0.8625683

[11,] 7.518147 -5.26076372 -0.8812214

[12,] 7.887257 -3.06201203 0.1656458

R> head(matrix(PLSloadings))

[,1]

[1,] 0.11179158

[2,] 0.10718688

[3,] 0.10167223
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[4,] 0.10124325

[5,] -0.09481443

[6,] 0.10828112

R> head(PCAloadings[,1:3])

PC1 PC2 PC3

[1,] -0.1129682 0.008376894 -0.14442144

[2,] -0.1080615 -0.002674411 -0.14786276

[3,] -0.1027608 -0.006700719 -0.10304058

[4,] -0.1009138 -0.010796632 0.09038020

[5,] 0.0950440 -0.212358347 -0.06243794

[6,] -0.1098603 0.054060752 -0.16588612

All the output figures are saved in their corresponding subfolders contained in the project

folder. The names of the folders for the boxplots, heat maps and score plots are Boxplots,

Heatmaps, PCA Scoreplots and PLS Scoreplots respectively. Figures B.3 and B.4 depict

a heat map, a PCA score plot and a PLS score plot created when functions plotHeatmap,

plotPCA and plotPLS were launched. Inside the R session, the project folder is recovered

by typing:

R> resultsPath(MAIT)

B.7.6 Biotransformations

Before identifying the metabolites, peak annotation can be improved using the function

Biotransformations to make interpreting the results easier. The MAIT package uses

a default biotransformations table, but another table can be defined by the user and

introduced by using the bioTable function input variable. The biotransformations table

that MAIT uses is saved inside the file MAITtables.RData, under the name biotrans-

formationsTable.

R> MAIT <- Biotransformations(MAIT.object = MAIT, peakPrecision = 0.005,
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Figure B.3: Heat map created by the function plotHeatmap. Row numbers refer to
spectra numbers.
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Figure B.4: PCA and PLS score plots (left and right plots respectively) generated
by functions plotPCA and plotPLS. The PLS decomposition in this case has just one

principal component.

adductAnnotation=FALSE)

WARNING: No input biotransformations table was given. Selecting default

MAIT table for biotransformations...

WARNING: No input adduct/fragment table was given. Selecting default MAIT

table for positive polarity...

Set adductTable equal to negAdducts to use the default MAIT table for negative polarity

% Annotation in progress: 10 20 30 40 60 70 80 90 100

The Biotransformations function can also annotate adducts by setting the flag adduc-

tAnnotation as TRUE. This is useful when analysing peak data that come from an

external source (i.e. peaks and spectra have not been detected by MAIT).

Building a user-defined biotransformations table from the MAIT default table or adding

a new biotransformation is straightforward. For example, let’s say we want to add a

new adduct called ”custom biotrans” whose mass loss is 105.

R> data(MAITtables)

R> myBiotransformation<-c("custom_biotrans",105.0)

R> myBiotable<-biotransformationsTable
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R> myBiotable[,1]<-as.character(myBiotable[,1])

R> myBiotable<-rbind(myBiotable,myBiotransformation)

R> myBiotable[,1]<-as.factor(myBiotable[,1])

R> tail(myBiotable)

NAME MASSDIFF

45 glucuronide conjugation 176.0321

46 hydroxylation + glucuronide 192.0270

47 GSH conjugation 305.0682

48 2x glucuronide conjugation 352.0642

49 [C13] 1.0034

50 custom_biotrans 105.0

To build an entire new biotransformations table, you only need to follow the format of

the biotransformationsTable, which means writing the name of the biotransformations

as factors in the NAME field of the data frame and their corresponding mass losses in

the MASSDIFF field.

B.7.7 Metabolite Identification

Once the biotransformations annotation step is finished, the significant features have

been enriched with a more specific annotation. The annotation procedure performed by

the Biotransformations() function never replaces the peak annotations already done by

other functions. MAIT considers the peak annotations to be complementary; therefore,

when new annotations are detected, they are added to the current peak annotation and

the identification function may be launched to identify the metabolites corresponding

to the statistically significant features in the data.

R> MAIT <- identifyMetabolites(MAIT.object = MAIT, peakTolerance = 0.005,

polarity="positive")

WARNING: No input database table was given.

Selecting default MAIT database...

Metabolite identification initiated
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% Metabolite identification in progress: 10 20 30 40 50 60 70

80 90 100

Metabolite identification finished

By default, the function identifyMetabolites() looks for the peaks of the significant fea-

tures in the MAIT default metabolite database. The input parameter peakTolerance

defines the tolerance between the peak and a database compound to be considered a

possible match. It is set to 0.005 mass/charge units by default. The argument polarity,

refers to to the polarity in which the samples were taken (positive or negative). It is

set to ”positive” by default but it should be adjusted changed to ”negative” if the sam-

ples were recorded in negative polarisation mode. To check the results easily, function

identifyMetabolites creates a table containing the significant feature characteristics and

the possible metabolite identifications. Such a table is recovered from the MAIT-class

object using the instruction:

R> metTable <- metaboliteTable(MAIT)

R> head(metTable)

Query Mass Database Mass (neutral mass) rt Isotope Adduct Name spectra

1 300.2 Unknown 56.36 Unknown 27

2 588.2 Unknown 46.65 Unknown 91

3 537.4 Unknown 64.41 Unknown 1869

4 451.2 450.193634 61.88 Geranylgeranyl-PP 1891

5 325.2 Unknown 60.95 Unknown 1901

6 395.1 Unknown 51.19 Unknown 1921

Biofluid ENTRY p.adj p Fisher.Test Mean Class KO Mean Class WT

1 unknown unknown 0.017482939 0.017482939 NA 2258350.1365 128461.054

2 unknown unknown 0.193607894 0.193607894 NA 1998.5050 28919.323

3 unknown unknown 0.024657677 0.024657677 NA 521.9275 3261.594

4 Not Available HMDB04486 0.003172073 0.003172073 NA 8853.1464 1629.177

5 unknown unknown 0.019582285 0.019582285 NA 7781.1248 16818.493

6 unknown unknown 0.025496645 0.025496645 NA 1463.7786 6408.485
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Median Class KO Median Class WT KO WT ko15 ko16 ko18 ko19

1 2769931.3564 115642.2922 6 3 4005711.400 3115027.656 2726906.080 2812956.63

2 0.0000 10033.2150 2 4 0.000 0.000 0.000 0.00

3 0.0000 3751.3050 1 3 0.000 0.000 0.000 0.00

4 9644.3125 835.6261 5 0 10878.315 1943.378 12670.240 9634.14

5 7676.3250 17783.4658 5 6 9563.384 7485.395 3538.465 11418.24

6 900.5959 6702.1125 0 4 0.000 1801.192 3595.172 0.00

ko21 ko22 wt15 wt16 wt18 wt19 wt21 wt22

1 57169.450 832329.600 192385.450 94036.332 48410.145 137248.252 213368.607 85317.540

2 2837.345 9153.685 40378.565 0.000 0.000 6696.635 13369.795 113070.941

3 0.000 3131.565 3306.845 0.000 4255.525 1844.086 4195.765 5967.345

4 8338.320 9654.485 1671.252 3877.383 0.000 0.000 4226.428 0.000

5 6814.010 7867.255 17009.985 18556.947 27223.175 7555.820 11949.359 18615.675

6 3386.308 0.000 4895.743 9045.700 11105.240 5371.080 0.000 8033.145

This table provides useful results about the analysis of the samples, such as the P-value of the

statistical test, its adduct or isotope annotation and the name of any possible hit in the database.

Note that if no metabolite has been found in the database for a certain feature, it is labelled

as ”unknown” in the table. The table also includes the median and mean values per class and

feature.

B.7.8 Validation

Finally, we will use the function Validation() to check the predictive value of the significant

features. All the information related to the output of the Validation() function is saved in the

project directory in a folder called ”Validation”. Two boxplots showing the overall and per

class classification ratios are created, along with every confusion matrix corresponding to each

iteration (see Table B.3).

R> MAIT <- Validation(Iterations = 20, trainSamples= 3, MAIT.object = MAIT)

Iteration 1 done

Iteration 2 done

Iteration 3 done

...
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Iteration 19 done

Iteration 20 done

A summary of a MAIT object, which includes the overall classification values, can be accessed:

R> summary(MAIT)

A MAIT object built of 12 samples and 2640 peaks. No peak aggregation technique has been applied

106 of these peaks are statistically significant

The object contains 6 samples of class KO

The object contains 6 samples of class WT

The Classification using 3 training samples and 20 Iterations gave the results:

KNN PLSDA SVM

mean 1 1 1

standard error 0 0 0

Parameters of the analysis:

Value

dataDir "Data"

snThres "2"

Sigma "2.12332257516562"

mzSlices "0.3"

retcorrMethod "loess"

groupMethod "density"

bwGroup "3"

mzWidGroup "0.25"

filterMethod "matchedFilter"

rtStep "0.03"

nSlaves "0"

project "MAIT_Demo"

ppm "10"

minfrac "0.5"

fwhm "30"

family1 "gaussian"

family2 "symmetric"

span "0.2"
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centWave peakwidth1 "5"

centWave peakwidth2 "20"

corrWithSamp "0.7"

corrBetSamp "0.75"

perfwhm "0.6"

sigma "6"

peakAnnotation pvalue "0.05"

calcIso "TRUE"

calcCiS "TRUE"

calcCaS "TRUE"

graphMethod "hcs"

annotateAdducts "TRUE"

peakAggregation method "None"

peakAggregation PCAscale "FALSE"

peakAggregation PCAcenter "FALSE"

peakAggregation scale "FALSE"

peakAggregation RemoveOnePeakSpectra "FALSE"

Welch pvalue "0.05"

Welch p.adj "none"

peakPrecision "0.005"

Biotransformations adductAnnotation "0"

peakTolerance "0.005"

polarity "positive"

Validation Iterations "20"

Validation trainSamples "3"

Validation PCAscale "0"

Validation PCAcenter "1"

Validation RemoveOnePeakSpectra "0"

Validation tuneSVM "0"

Validation scale "1"

PCA data logarithm "FALSE"

PCA data centered "TRUE"

PCA data scaled "TRUE"

It is also possible to gather the classification ratios per class, classifier used and iteration number

by using the function classifRatioClasses():

R> classifRatioClasses(MAIT)
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The classification ratios are 100% in all the iterations; the set of significant features separates

the samples belonging to these classes.

B.7.9 Using External Peak Data

Taking advantage of the modularised design of MAIT, it is possible to use the function MAIT-

builder to import peak data and analyse it using the MAIT statistical functions. As stated in

section B.6.5, there are certain arguments that should be provided depending on which function

is wanted to be launched. In this section we will show an example of this data importation

procedure using the same data that we have been using in the tutorial so far. Let’s say we have

a peak table recorded in positive polarisation mode with the peak masses and retention time

values such as:

R> peaks <- scores(MAIT)

R> masses <- getPeaklist(MAIT)$mz

R> rt <- getPeaklist(MAIT)$rt/60

We want to perform an annotation stage and metabolite identification on these data. To that

end, we can launch the function MAITbuilder to build a MAIT-class object with the data in the

table:

R> importMAIT <- MAITbuilder(data = peaks, masses = masses, rt = rt,

significantFeatures = TRUE, spectraEstimation = TRUE, rtRange=0.2,corThresh=0.7)

We have selected the option spectraEstimation as TRUE because we do not know the grouping

of the peaks into spectra. As we want to annotate and identify all the peaks in the data frame,

we set the flag significantFeatures to TRUE. At this point, we can launch the Biotransformations

function:

R> importMAIT <- Biotransformations(MAIT.object = importMAIT, adductAnnotation = TRUE,

peakPrecision = 0.005, adductTable = NULL)

We set the adductAnnotation flag to TRUE as we want to perform an adduct annotation step.

The parameter adductTable set to NULL implies that a positive polarisation adduct annota-

tion stage will be performed. To run a negative annotation, the argument should be set to

negAdducts. The metabolite identification stage is launched as in the previous case:
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R> importMAIT <- identifyMetabolites(MAIT.object = importMAIT, peakTolerance=0.005,

polarity="positive")

The annotation of the Biotransformations and the adducts is given in the Adduct field of the

metabolite table. The identification procedure can be performed for LC/MS data gathered in

negative polarisation mode by setting polarity = ”negative”. If the class information is also

introduced in the MAITbuilder, it is also possible to launch the computation of statistical tests

(through function spectralSigFeatures), the validation and the functions regarding the statistical

plots and models.

B.8 Conclusions

MAIT package is a new R package that analyses LC/MS metabolomic data files. The package

provides functions yielding a programmable environment that is especially focused on performing

an end-to-end metabolomic analysis. Special emphasis is given to peak annotation and statistical

result validation using a predictive approach. MAIT also supports peak aggregation techniques

to improve the predictive power of the features. The package is capable of producing a set of

post-processing plots, such as PCA score plots, and summary tables to evaluate the results of the

analysis. In short, MAIT is an easy, quick-to-use package for performing a complete automatic

analysis of LC/MS metabolomic data files.
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C.1 abstract

Liquid Chromatography coupled to mass Spectrometry (LC/MS) has become widely used in

Metabolomics. Several artefacts have been identified during the acquisition step in large LC/MS

metabolomics experiments, including ion suppression, carryover or changes in the sensitivity and

intensity. Several sources have been pointed out as responsible for these effects. In this context,

the drift effects of the peak intensity is one of the most frequent and may even constitute the

main source of variance in the data, resulting in misleading statistical results when the samples

are analysed. In this paper, we propose the introduction of a methodology based on a common

variance analysis prior to the data normalisation to address this issue. This methodology was

tested and compared with four other methods by calculating the Dunn and Silhouette indices

of the Quality Control classes. The results showed that our proposed methodology performed

better than any of the other four methods. As far as we know, this is the first time that this

kind of approach has been applied in the metabolomics context.

C.2 Using intCor

intCor is an R package focused on drift removal and data normalisation for LC/MS metabolomic

data. The package includes five different methods to correct drift effects in the data. It is mainly

based on two functions, one for data importation and a second one for correcting the drift effects.

Functions to perform graphical analyses (PCA, heat map plots) and to create output cdf files

are also included in the package.

159



Appendix C. intCor vignette 160

C.2.1 Importing data

The intCor package uses the function importData to read the samples or data sets that contain

the data to be analysed. This function, accepts three different input formats: a set of external

files (e.g. cdf or mzXML), a matrix or an xcmsSet object. The output of the package could

be either a set of cdf files (if the input of the importData was a set of files) or a data matrix

(regardless of the type of input).

C.2.1.1 Using an External Data Matrix

One possibility is to import the data through a data table and a class vector. The data matrix

should have the samples as columns and variables (time or masses) as rows. The class vector

should be a character with the class names. Each one of the components in the vector should

have the same ordering than the columns of the data matrix (e.g. the first vector component

should refer to the class of the first column of the data matrix). intCor contains the data used

as cdf in the previous subsection as an RData:

R> data(intCorData)

The normInt object might be constructed as follows:

R> intCor_table<-importData(data=dataMatrix,classes=classes)

The data matrix provided includes peak masses or not? (please answer yes or no)

1: no

Read 1 item

Starting the class-wise outlier detection...

Outlier detection for class Reference in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 5 6 7 9 10 36

Possible orthogonal Outliers: 1 6

Select sample ID number to be removed

1: 1

2: 6
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3:

Read 2 items

Possible score Outliers: 1 2 3 4 5 6 7 8 34

Possible orthogonal Outliers: 2 34

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class Reference done

Outlier detection for class Water in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 4 5 6 7 8 12 15 16 22 23 56 86 89

Possible orthogonal Outliers: 15 23 68

Select sample ID number to be removed

1: 15

2: 23

3: 68

4:

Read 3 items

Possible score Outliers: 1 2 3 4 5 6 7 8 15 21 29 46 54 79 83 84 86

Possible orthogonal Outliers: 83

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class Water done

Outlier detection for class QC in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 8 46 47 48

Possible orthogonal Outliers: 47

Select sample ID number to be removed

1: 47
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2:

Read 1 item

Possible score Outliers: 1 2 3 4 8 9 10 11 47

Possible orthogonal Outliers:

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class QC done

Outlier Removal stage QC finished!

C.2.1.2 Using an xcmsSet object

intCor also supports using a xcmsSet object (from the XCMS package [1]) as an input for the

function importData. In this case, if the class information is not provided (argument classes

of the function importData), the class assignment would be retrieved from the xcmsSet object.

intCor also includes an xcmsSet object of the provided sample files:

R> data(intCorXCMS)

R> xcg

An "xcmsSet" object with 180 samples

Time range: 17.7-451.2 seconds (0.3-7.5 minutes)

Mass range: 70.0626-683.9618 m/z

Peaks: 99333 (about 552 per sample)

Peak Groups: 526

Sample classes: QC, Reference, Water

Profile settings: method = bin

step = 0.1

Memory usage: 8.79 MB

The data importation in this case can be computed as:
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R> normInt_xcms<-importData(data=xcg)

Starting the class-wise outlier detection...

Outlier detection for class QC in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 4 5 6 7 8 9 10 11 12 19

Possible orthogonal Outliers: 2

Select sample ID number to be removed

1: 2

2:

Read 1 item

Possible score Outliers: 1 2 4 5 6 7

Possible orthogonal Outliers: 1 2 3 4 7 18

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class QC done

Outlier detection for class Reference in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 4 5 6 9 10 16 27 36

Possible orthogonal Outliers: 1 5 6 10 16

Select sample ID number to be removed

1: 1

2: 5

3: 6

4: 10

5: 16

6:

Read 5 items

Possible score Outliers: 1 2 3 4 5 6 7 22 31

Possible orthogonal Outliers: 1 3 22 31

Select extra sample ID number to be removed

1:
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Read 0 items

Outlier removal finished

Outlier Removal for class Reference done

Outlier detection for class Water in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 3 4 8 17 18 19 20 23 24 27 28 29 30 33 42 57 58 85 86 91 92 93 94

Possible orthogonal Outliers: 4

Select sample ID number to be removed

1: 4

2:

Read 1 item

Possible score Outliers: 3 6 7 22 23 26 27 28 29 35 40 41 84 85

Possible orthogonal Outliers:

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class Water done

Outlier Removal stage Water finished!

C.2.1.3 Using Sample files

When cdf or mzXML files are provided, the intCor package performs the drift correction on the

chromatograms of the samples. To run the following example, download the data available in our

website (http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/).

The zip file contains the data of three different classes (QC, Reference and Water) in cdf format

along with a csv file containing the metadata of the samples. If we set the R working directory

to where the file sampTable.csv is, we can take a look on the provided metadata:

R> tab <- read.csv("sampTable.csv")

R> head(tab)

http://b2slab.upc.edu/software-and-downloads/intensity-drift-correction/
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FileName Date Time Class Column Batch

1 DM_20121211_POS_pl4_1-M00000000_0_X_X_POS_pl4 12/11/12 14:41 Reference LC-014-MET 4

2 DM_20121211_POS_pl4_1-MQCx1_1_POS_pl4 12/11/12 19:47 Water LC-014-MET 4

3 DM_20121211_POS_pl4_1-MQCx2_1_POS_pl4 12/11/12 20:02 QC LC-014-MET 4

4 DM_20121211_POS_pl4_1-MQC_1_1_POS_pl4 12/11/12 20:16 Water LC-014-MET 4

5 DM_20121211_POS_pl4_2-MQCx1_2_POS_pl4 12/12/12 01:23 Water LC-014-MET 4

6 DM_20121211_POS_pl4_2-MQCx2_2_POS_pl4 12/12/12 01:37 QC LC-014-MET 4

we can see that the data frame relates the sample IDs (column FileName) with information

regarding the sample recording date and time (columns Date and Time), the class of the sample,

the column ID of the chromatograph and the batch number of the sample. Only the columns

relating the sample IDs and the classes are mandatory (columns FileName and Class) for the

intCor package.

A normInt object is created by giving the name of the data frame (sampTable.csv) and the

extension of the sample files (cdf) to the importData function. The function performs a class-

wise user-supervised outlier removal stage by default (argument removeOutliers) that can be set

as automatic (argument automaticOutlierRemoval). The function uses the Hotelling method to

detect the outliers. For each class, the function gives an estimation of the score and orthogonal

outliers and ask to the user for the samples to be removed. Once the sample removal is performed,

the Hotelling distances are computed again to look for more outliers of that class. The loop ends

when no outliers (blank input) is given. For example in the following, we are going to import the

data through the cdf files and remove the samples 1 and 6 of the Reference class, the samples

15, 23 and 68 of the Water class and the sample 47 of the QC class.

R> library(intCor)

R> normInt<-importData(dataDir="data", fileType="cdf", tabName="sampTable.csv")

Reading input table...Done

Extraction of the Total Ion Chromatograms initiated...

% done: 10 20 30 40 50 60 70 80 90 100 Extraction of the Total Ion Chromatograms Finished

Starting the class-wise outlier detection...

Outlier detection for class Reference in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 5 6 7 9 10 36
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Possible orthogonal Outliers: 1 6

Select sample ID number to be removed

1: 1

2: 6

3:

Read 2 items

Possible score Outliers: 1 2 3 4 5 6 7 8 34

Possible orthogonal Outliers: 2 34

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class Reference done

Outlier detection for class Water in progress...

Outlier removal in drift training data in progress...

Possible score Outliers: 1 2 3 4 5 6 7 8 12 15 16 22 23 56 86 89

Possible orthogonal Outliers: 15 23 68

Select sample ID number to be removed

1: 15

2: 23

3: 68

4:

Read 3 items

Possible score Outliers: 1 2 3 4 5 6 7 8 15 21 29 46 54 79 83 84 86

Possible orthogonal Outliers: 83

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class Water done

Outlier detection for class QC in progress...

Outlier removal in drift training data in progress...
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Possible score Outliers: 1 2 3 8 46 47 48

Possible orthogonal Outliers: 47

Select sample ID number to be removed

1: 47

2:

Read 1 item

Possible score Outliers: 1 2 3 4 8 9 10 11 47

Possible orthogonal Outliers:

Select extra sample ID number to be removed

1:

Read 0 items

Outlier removal finished

Outlier Removal for class QC done

Outlier Removal stage QC finished!

C.2.2 Correcting the drift in the data

Once the run of the importData function is finished, the data have been imported into a normInt

object along with the metadata stored in the table:

R> normInt

normInt object with a retention time range of [0.333,7.502] seconds containing:

93 samples of the class Water

47 samples of the class QC

34 samples of the class Reference

The data has not been normalised

We can also retrieve the information regarding the outlier removal stage by running a summary

of the object:

R> summary(normInt)
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Figure C.1: Raw Data score plots. The left plot depicts the samples into the plane
PC1-PC2 using the class labels whereas the right plot shows the same PCA score plot

but using the time labels.

normInt object with retention a time range of [0.333,7.502] seconds containing:

93 samples of the class Water

47 samples of the class QC

34 samples of the class Reference

There were removed the following outliers:

2 samples of class Water

3 samples of class QC

1 samples of class Reference

The data has not been normalised

It is also straightforward to run a PCA Scoreplot of the data (see Figure C.1 for the PCA score

plots regarding the raw data and their class and time labels) by running the pcaPlot function

on the normInt object:

R> pcaPlot(normInt)

At this point, we can correct the drift effects in the data though the corrModel function. The

function supports five different methods: Component Correction (function argument method=”cc”),
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Common Principal Components analysis (function argument method=”cpca”), Common Prin-

cipal Components Analysis + Median Normalisation (function argument method=”cpcaMed”),

Median Normalisation (function argument method=”medians”) and Batch compensation through

the ComBat function (function argument method=”batch”) [2].

In the next command, we correct the data using the Common Principal Components Analysis

+ Median Normalisation method. One common principal component was selected for removal

and all the classes were taken for generating the model:

normInt_cpcaMed_1C <- corrModel(normInt=normInt,method="cpcaMed",

modClasses=c("Water","QC","Reference"),nComps=1)

Detected available classes to select for correction:

QC Reference Water

47 34 93

Selected classes to compute the drift model:

[1] "Water" "QC" "Reference"

Computing CPC model...Model done!

Computing CPC explained variance...

CPC1

0.7

Correcting Intensity Drift...

Computing clustering indices ...

Raw Data

, , kmeans

3

Connectivity 14.5682540

Dunn 0.0242528

Silhouette 0.5038728

, , hierarchical

3

Connectivity 3.64246032

Dunn 0.07857024
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Silhouette 0.49989042

Corrected Data

, , kmeans

3

Connectivity 0.0000000

Dunn 0.9661138

Silhouette 0.8929673

, , hierarchical

3

Connectivity 0.0000000

Dunn 0.9661138

Silhouette 0.8929673

Figure C.2 depicts the PCA score plots for the corrected data set. The comparison between the

clustering indices can be retrieved by running a summary of the normInt object:

R> summary(normInt_cpcaMed_1C)

normInt object with retention a time range of [0.333,7.502] seconds containing:

93 samples of the class Water

47 samples of the class QC

34 samples of the class Reference

There were removed the following outliers:

2 samples of class Water

3 samples of class QC

1 samples of class Reference

The data was normalised using the cpcaMed method

The variance captured for each component was

0.7 for component 1

The computed Dunn indices before and after the normalisation:

Raw Dunn index = 0.0242528
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Figure C.2: PCA score plots of the corrected data using the Common Principal
Components + Median Normalisation method. The class assignment (left) and the

time elapsed since the first sample injection (right) were used as labelling.

Corrected Dunn index = 0.9661138

The computed Silhouette indices before and after the normalisation:

Raw Silhouette index = 0.5038728

Corrected Silhouette index = 0.8929673

The clustering indices show an important improvement after the data correction. The other

methods are launched in a similar way, for example the method regarding the ComBat function:

normInt_comBat<-corrModel(normInt=normInt,method="batch")

Defining Model Matrix

Correcting Batch effects...Found 12 batches

Found 2 categorical covariate(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

Done

Computing explained variance...

[1] 0.881

Computing clustering indices ...
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Raw Data

, , kmeans

3

Connectivity 14.5682540

Dunn 0.0242528

Silhouette 0.5038728

, , hierarchical

3

Connectivity 3.64246032

Dunn 0.07857024

Silhouette 0.49989042

Corrected Data

, , kmeans

3

Connectivity 0.0000000

Dunn 0.6363887

Silhouette 0.8027747

, , hierarchical

3

Connectivity 0.0000000

Dunn 0.6363887

Silhouette 0.8027747

gave the PCA score plots in the Figure C.3, or the medians method:

R> normInt_medians<-corrModel(normInt=normInt,method="medians")

Computing clustering indices ...

Raw Data

, , kmeans
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Figure C.3: PCA score plots of the corrected data using the Batch compensation
(ComBat function) method. The class assignment (left) and the time elapsed since the

first sample injection (right) were used as labelling.
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Connectivity 14.5682540
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Corrected Data

, , kmeans

3

Connectivity 0.0000000

Dunn 0.7873576

Silhouette 0.8622102

, , hierarchical
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Figure C.4: PCA score plots of the corrected data using the Median Normalisation
method. The class assignment (left) and the time elapsed since the first sample injection

(right) were used as labelling.

3

Connectivity 0.0000000

Dunn 0.7873576

Silhouette 0.8622102

which gave the PCA score plots depicted in Figure C.4

C.2.3 intCor Output

If the data was imported through external files, there is the possibility of printing cdf files back

as an output. For example, to print the cdf files of the corrected data through the cpcaMed

method, we can use the function cdfFileCreator as:

R> cdfFileCreator(dataMatrix=getCorrData(normInt_cpcaMed_1C),dir2print="correctedCDFs",

dataDir="data",fileType="cdf",scanRange=NULL)

Finally, another possibility that can be used regardless of the data importation method, is to

retrieve the corrected table using the function getCorrData and (optionally) print a CSV file:

R> write.csv(file="corrData_cpcaMed_1C.csv",getCorrData(normInt_cpcaMed_1C))
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Appendix D

Supporting information: Intensity

drift removal in LC/MS

metabolomics by Common

Variance Compensation

D.1 Dataset size effects on the drift removal

To measure the effect of having a smaller dataset on the performance of the different methods

we performed a random sub-sampling stage using different sample size. We picked 100 random

sets for four different sample sizes (10%, 25%, 33% and 50% of the original dataset). For each

one of these pics, it was performed a drift correction stage using all the tested methods and

there were taken the Silhouette clustering indices. Figure 4 depicts a summary of the Silhouette

index values for the five methods. For the methods involving a different number of components

to model the drift (CC, CPCA and CPCA Medians), there were taken the cases having highest

mean Silhouette index. All the three methods showed best performance when three components

were considered.

Table D.1 shows the results of fitting a linear model for each of the methods using the dataset

size as a cofactor. We consider that a Slope value is different than 0 (null hypothesis) if the

p-value is equal or less than 0.05.

Among the five methods tested, the CPCA and the CPCA + Median showed no variation

depending on the dataset size. The CC and Median Fold Change method had a negative slope.
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Figure D.1: PCA Scoreplot showing the corrected data when the Component Cor-
rection method was applied extracting two PCs.

Table D.1: Results of a linear model fitting and an ANOVA test on each of the
methods depicted in Figure 4. The Slope is related to the dataset size (cofactor of the
linear model). The Standard Error measures the uncertainty of the Slope in the linear

model. The p-value contains the p-values of a statistical test for the Slope.

Method Slope Standard Error p-value

None -0.00075 0.00018 3.78 · 10−5

CC (3PC) -0.0018 0.0003 4.43 · 10−11

CPCA (3CPC) -0.0003 0.0004 3.31 · 10−1

CPCA (3CPC)+Median -0.0004 0.0003 2.50 · 10−1

ComBat 0.0010 0.0002 1.64 · 10−6

Median Fold Change -0.0020 0.0003 2.20 · 10−9

This result means that the correction of these methods worse when the dataset is larger. On the

other hand, the ComBat method showed the opposite behaviour as its correction improves for

larger datasets. Overall, the CPCA Medians method showed the highest mean value regardless

of the dataset size.
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Figure D.2: PCA Scoreplot showing the batch effects for the corrected data set
using the ComBat method ZComBat. Colours refer to different batches (the order in
the legend correspond to the real injection order of the samples despite the numbers)

whereas the geometrical shape of the sample points, refer to the class.
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Figure D.3: PCA Scoreplot showing the time elapsed effect for the corrected data set
using the Median Fold Change Method method ZMedians. Colours refer to the time
elapsed since the first sample injection. A drift component is observed in the PC2

direction for the clusters corresponding to the Water and Spikes classes.
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Figure D.4: PCA Scoreplot showing the time elapsed effect for the corrected data
set using the CPCA method with one CPC removed. Colours refer to the time elapsed

since the first sample injection.
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Figure D.5: PCA Scoreplot showing the time elapsed effect for the corrected data set
using the CPCA with one CPC removed and a Median Fold Change method. Colours

refer to the time elapsed since the first sample injection.
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Supporting Information:

Correcting time drift effects in

Liquid Chromatography using a

new non-linear model-based

methodology

E.1 Alignment algorithms and Packages

R package XCMS [1] was used to perform both the LOESS and the piecewise Linear regression

alignment methods, whereas the PTW method was applied through the R package ptw [2]. The

package ptw was applied using the functions baseline.corr to correct the baseline of the signal and

the function ptw that performs the alignment using a master sample. The XCMS parameters

used in the functions to detect and group the peaks were the same for piecewise Linear and

LOESS (snthresh=4, bw=5). As the LOESS algorithm is sensitive to the span parameter[3],

several values for the span parameter of the retcor function were checked in the range of [0.7,1.0].

The lowest span tested value (0.7) was suggested as a warning call by the retcor function of the

XCMS package. The higher tested span value, was selected to be the value from which making

bigger the span, the quality values showed no changes.
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E.2 Peak Drifts Computation

To compute the drift of a given peak of a set of samples, first a sample was defined as a master

sample. The sample drift was then defined as a pairwise measure between the master sample

and another sample that computes how much the sample has moved compared to the master

sample. The peak drift is the sample drift considering only the region of the signals where the

peak is. In our case the master sample for each dataset was chosen to be the first sample.

To obtain the retention time region of the peaks A to E depicted in the bottom-left part of Figure

6.2, we plotted the fifteen highest intensity points of each sample in a density plot. The density

plot corresponding to the dataset 1 is shown in Figure E.8. At this point, a density threshold

value was defined and the intersection of the density with this threshold value is taken as the

initial peak region. In a second stage, both sides of this initial peak region are enlarged by 30%

of the region’s total length to ensure that the entire peak falls inside the interval. Making the

assumption that the drift between both signals is not very large, we set a maximum drift of 5

temporal units in both directions. Under these conditions, the peak drift is the amount of units

that the signal peak has to be moved to have maximum cross-correlation with the same peak of

the master sample.

Once the peak retention time range is obtained, the peak drift is computed through the cross-

correlation of the two signals in the peak retention time range [4].
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E.3 Peak quality measures

The quality measures to evaluate the different alignment algorithms were the peak kurtosis

and the peak correlation. Both measures were computed through R functions. For computing

the kurtosis it was used the kurtosis function contained in the e1071 package [5]. To compute

the peak quality measures, we used the peak retention time interval as obtained following the

procedure defined in E.4. These peak quality measures were computed for each of the 5 highest

chromatographic regions (see Figure 6.2) and for all the tested alignment methods (the four

aligned datasets using the different alignment methods tested and the raw dataset).
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E.4 Fitting and applying the H-Models

The model defined in (6.1) was fitted for each sample using the peak drift measures of the peaks

A, B and D shown in Figure 6.2. As these peaks show high intensity and they will be found

in all the samples, these peak drift measures are the most reliable peak drift measures in the

data. These features make them good candidates to be used as fitting points for the model (see

a fitting example in Figure E.9).

The parameters of the model (a and b) were computed by minimising the square error of the

model (6.1) in these three peak drift measures. The b parameter is limited to have values greater

than 0.5 to ensure that the function pole will not affect the range of our signals (rt ≥ 0) and

make the corrected signals diverge. To perform the optimisation procedure it was used the R

function optim [6]. We chose L-BFGS-B as the optimising method as it allows to set minimum

or maximum bounds to the fitting parameters.

Once the models are fitted, the residuals of these models are extracted and used as a new

dataset. The peak drifts measures of this new dataset are obtained again by the same procedure

(see section E.3). For each sample of the new dataset, it is computed the overall peak drift error

by adding the square of the peak drift measures for the peaks A, B and D. The overall peak

drift error is also obtained for the original dataset and both values (before and after correction)

are compared to perform a quality measure for each sample. If the overall peak drift error for

the corrected sample is bigger than the not-corrected, then the correction is not applied and

the original sample values are recovered. On the other hand, if the new overall peak drift error

is lower, the correction is applied for that sample. Proceeding this way we ensure that the

correction is only applied on those samples in which exists a nonlinear drift component over the

retention time.
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Figure E.1: Raw chromatograms for the second dataset. Each row refers to a sample
whereas the columns are the retention time. Darker grey means higher signal intensity.
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Figure E.2: Peak Drifts before and after applying the H-Cor method to Dataset 1
labelled Raw and Corrected respectively. The peak names refer to the same peaks
depicted in Figure 6.2. The asterisks refer to statistically significant model following
an ANOVA test. The numerical p-values can be found at table E.2. The linear models

were fitted using the minimum squared approach.
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Table E.2: P-values on the slopes for the peak drifts regressions depicted in Figure
E.2

P-values of the ANOVA tests on the slopes linear models

Peak A Peak B Peak C Peak D Peak E

Peak A
Raw 1.13 · 10−7 *** 1.1 · 10−4 ∗ ∗∗ 0.192 0.754

Corrected 0.512 0.016 * 0.138 0.607

Peak B
Raw < 2.2 · 10−16 *** 0.400 0.703

Corrected 4.38 · 10−07 *** 0.508 0.314

Peak C
Raw 1.94 · 10−4 *** 0.788

Corrected 7.68 · 10−4 *** 0.439

Peak D
Raw 0.469

Corrected 0.117
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Figure E.3: Peak Drifts for Dataset 2. The red line corresponds to a linear fit using
minimum squares approach. The peak names refer to the same peaks depicted in Figure

6.2
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Figure E.4: Aligned chromatograms for the first dataset using the LOESS method
with span = 0.8. Each row refers to a sample whereas the columns are the retention
time in minutes. Darker grey means higher signal intensity. The chromatogram at the
top of the image corresponds to the average chromatogram of all the samples of the

dataset.
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Figure E.5: Aligned chromatograms for the first dataset using the piecewise linear
method. Each row refers to a sample whereas the columns are the retention time in
minutes. Darker grey means higher signal intensity. The chromatogram at the top of
the image corresponds to the average chromatogram of all the samples of the dataset.
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Figure E.6: Aligned chromatograms for the first dataset using the PTW method.
Each row refers to a sample whereas the columns are the retention time in minutes.
Darker grey means higher signal intensity. The chromatogram at the top of the image

corresponds to the average chromatogram of all the samples of the dataset.
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Figure E.7: Aligned chromatograms for the second dataset using the H-cor and
LOESS methods (span=0.8). Each row refers to a sample whereas the columns are

the retention time in minutes. Darker grey means higher signal intensity.
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Figure E.8: Peak density for dataset 1. The 15 most intense points of each sample
were picked and plotted according to their retention time. The peaks show regions of
high intensity peaks (i.e. density of high intensity peaks) rather than chromatographic

peaks.
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Figure E.9: The line depicts the H-Cor model fitted for a sample of the first dataset.
The points show the peak drifts for peaks A, B and D which were used to adjust the

model expressed as shown in (6.1).
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