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Resum

Aquesta tesi es centra en la detecció automàtica de lesions noves d’esclerosi múltiple (EM)

en estudis longitudinals del cervell mitjançant l’ús d’imatges de ressonància magnètica

(RM). Aquesta malaltia es caracteritza per la presència de lesions al cervell, predomi-

nantment en el teixit de la matèria blanca, i la detecció i la quantificació de les noves

lesions són elements crucials per al seguiment dels pacients. No obstant això, la detec-

ció manual d’aquestes noves lesions no només requereix de molt temps, sinó que també

és propensa a la variabilitat intra- i inter-observador. Per tant, el desenvolupament de

tècniques automàtiques per a la detecció de lesions d’EM és un gran repte.

Després d’un anàlisi exhaustiu de l’estat de l’art de les diferents tècniques de detecció de

lesions d’EM, en aquesta tesi es presenta una nova classificació assenyalant-ne les principals

fortaleses i debilitats. També es proporciona una avaluació quantitativa complementària

d’alguns dels mètodes més rellevants en la literatura. Posteriorment, es presenta una nova

proposta, que combina diverses característiques de les diferents modalitats d’imatges de

RM, basada en la subtracció d’imatges per tal de determinar els canvis entre una imatge

basal i una de seguiment. En primer lloc, s’inclouen en la proposta mètodes de preproces-

sament, per tal de millorar la qualitat de les imatges de RM, així com mètodes de registre

d’imatges rígids i no rígids. S’analitza en molt deteniment l’efecte d’aquests preprocessats

en el resultat final de la proposta. També s’aplica un pas d’emmascarament de la matèria

blanca amb la finalitat de reduir l’espai de cerca de les lesions només dins de la màscara.

Posteriorment, s’aplica un llindar a les imatges de resta. Tot i que la determinació del

llindar pot ser realitzada pels experts, en aquesta tesi es proposa un procés automatitzat

de detecció del llindar òptim que proporciona un compromís satisfactori entre sensibilitat

i especificitat. Finalment, es refinen les lesions candidates detectades utilitzant les carac-

terístiques de la lesió, sobretot amb la finalitat de reduir la detecció de falsos positius. Per

a aquest propòsit, s’inclouen les imatges basals i de seguiment, i es fusionen els resultats

obtinguts a partir d’imatges PD-w i T2-w d’una manera supervisada i també no super-
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visada. Els resultats experimentals s’avaluen en una base de dades de 20 pacients amb

EM amb una càrrega variable de la lesió, on es disposa també de la segmentació manual

proporcionada pels experts. L’avaluació s’ha realitzat de forma qualitativa i quantita-

tiva, incloent una comparació dels diferents processos i usant diverses mètriques per a la

detecció i segmentació.
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Resumen

Esta tesis se centra en la detección de lesiones nuevas de esclerosis múltiple (EM) en es-

tudios longitudinales del cerebro mediante el uso de imágenes de resonancia magnética

(RM). Esta enfermedad se caracteriza por la presencia de lesiones en el cerebro, predomi-

nantemente en el tejido de la materia blanca. La detección y cuantificación de las lesiones

nuevas son cruciales para el seguimiento de los pacientes con EM. Por consiguiente, la

detección manual de estas lesiones nuevas no sólo requiere de mucho tiempo por parte del

experto, sino que también es propensa a la variabilidad intra- e inter-observador. Por lo

tanto, el desarrollo de técnicas automatizadas para la detección lesiones de la EM es un

gran desafío.

Después de un análisis exhaustivo del estado del arte de las distintas técnicas de de-

tección de lesiones de EM, en esta tesis se presenta una nueva clasificación de éstas seña-

lando sus principales fortalezas y debilidades. También se proporciona una evaluación

cuantitativa complementaria de algunos de los métodos más relevantes en la literatura.

Posteriormente, se presenta una nueva propuesta basada en un enfoque de detección de

cambios, que combina varias características de las diferentes modalidades de imágenes de

RM. En primer lugar, varios métodos de preprocesamiento se incluyen en la propuesta

para mejorar la calidad de las imágenes de RM. Analizamos estos procesos en detalle, así

como diferentes métodos de registro rígidos y no rígidos de imágenes. La sustracción de

las imágenes basal y de seguimiento se utiliza para determinar los cambios entre las dos

imágenes. Por otra parte, se aplica un paso de enmascaramiento de la materia blanca con

el fin de reducir el espacio de búsqueda de las lesiones sólo dentro de la máscara. Poste-

riormente, se aplica un umbral a las imágenes de sustracción. Aunque la determinación

del umbral puede ser realizada por los expertos, en esta tesis se propone un proceso au-

tomatizado de detección del umbral óptimo que proporciona un compromiso satisfactorio

entre sensibilidad y especificidad. Por último, las lesiones candidatas detectadas se refinan

utilizando las características de la lesión, sobre todo con el fin de reducir la detección de
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falsos positivos. Para este propósito, se incluyen las imágenes basales y de seguimiento,

y se fusionan los resultados obtenidos a partir de imágenes PD-w y T2-w de una forma

supervisada y también no supervisada. Los resultados experimentales se evalúan en una

base de datos de 20 pacientes con EM con carga variable de lesión, donde se dispone

también de la segmentación manual proporcionada por expertos. La evaluación, se ha

realizado de forma cualitativa y cuantitativa, incluyendo una comparación de los distintos

procesos y usando varias métricas para la detección y segmentación.
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Abstract

This thesis deals with the detection of new multiple sclerosis (MS) lesions in longitudinal

brain magnetic resonance (MR) imaging. This disease is characterized by the presence of

lesions in the brain, predominantly in the white matter (WM) tissue of the brain. The

detection and quantification of new lesions are crucial to follow-up MS patients. More-

over, the manual detection of these new lesions is not only time-consuming, but is also

prone to intra- and inter-observer variability. Therefore, the development of automated

techniques for the detection MS lesions is a major challenge. After a thorough analysis of

the state-of-the art in MS lesion detection approaches, we present a new classification of

techniques pointing out their main strengths and weaknesses. A complementary quantita-

tive evaluation of some of the most remarkable methods in the literature is also provided.

Subsequently, we present a new proposal based on a change detection approach, which

combines various characteristics of different MR image modalities. Firstly, several prepro-

cessing methods are included in the pipeline to improve the quality of MR images. We

analyze these processes as well as several rigid and non-rigid image registration methods in

detail. The subtraction of the baseline and follow-up images is used to determine changes

between the images. Moreover, we apply a WM masking step in order to reduce the search

space for lesions only within WM. Afterwards, we apply a threshold to the subtraction

images. Although determining the threshold can be done by experts, we propose an au-

tomated thresholding process which provides a satisfactory trade-off between sensitivity

and specificity. Finally, we refine the candidate lesions detected using lesion features, par-

ticularly in order to reduce false positive lesions. For this purpose, including the baseline

and follow-up images, we join both results obtained from PD-w and T2-w images in a su-

pervised and an unsupervised manner. Experimental results are evaluated on a database

of 20 MS patients with a variable lesion load, where manual segmentation provided by ex-

perts was available. The evaluation, carried out in a quantitative and qualitative manner,

includes a comparison and uses several metrics for detection and segmentation.
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Chapter 1

Introduction

1.1 Multiple sclerosis

Multiple sclerosis (MS) is one of the world’s most common neurological disorders affecting

the central nervous system (CNS) and is generally considered to be autoimmune. Patho-

logically, MS is an inflammatory-demyelinating and neurodegenerative disease, clinically

defined by demyelinating lesions and characterized by areas of inflammation, demyelina-

tion, axonal loss, and gliosis scattered throughout the CNS [27, 29]. Partially demyelinated

axons can cause delay and demyelinated axons can discharge spontaneously. Affecting dif-

ferent sites within the brain or spinal cord, depending on the site, MS can cause cognitive

impairment, painful loss of vision, tremors, clumsiness and poor balance, vertigo, impaired

speech and swallowing, weakness, stiffness and painful spasms, bladder dysfunction as well

as many other impairments [28].

MS is considered to be caused by an interplay between genetic factors and the environ-

ment [28], however, the distribution of MS cannot be explained by environmental exposure

and genetic susceptibility alone [27, 28]. As the estimated number of people with MS was

2.3 million in 2013 (33 per 100,000), it is more common in northern Europeans regions

(140 per 100,000) (see Figure 1.1). Furthermore, the prevalence of MS also varies within

regions. For instance, the highest prevalence in Europe is 189 per 100,000 in Sweden,

whereas the lowest is 22 per 100,000 in Albania. On the other hand, age seems to be

another important factor in MS since it is frequently seen in young adults. According to

the Atlas of MS 2013, MS is usually diagnosed during early adulthood with an average

age of MS onset of 30 years. Moreover, as with other autoimmune disorders, MS is ap-

proximately twice as common in women as in men, though, in some regions, the ratio of

women to men is considerably higher, such as in East Asia where the female-to-male ratio

is 3.0 [123].

1



2 Chapter 1. Introduction

Figure 1.1: MS prevalance by country 2013 [123].

Several patterns of progression (subtypes) have been described in MS. In 1996, the

United States National Multiple Sclerosis Society described four clinical courses: relaps-

ing remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS

(PPMS) and progressive relapsing MS (PRMS) [72] (see Figure 1.2). At the time of diag-

nosis, around 85% of patients are diagnosed with a relapsing-remitting form of MS, while

a small subset of patients (10%) are diagnosed with PPMS and 5% with PRMS. The

majority of people (80%) diagnosed with RRMS will eventually go on to develop a more

progressive form, SPMS [123].

As a result, diagnosing and monitoring the progression of this disease is vital for MS

patients. In this sense, in order to improve the quality of the diagnostic assessment and

to provide a rapid and sensitive measure of treatment, magnetic resonance imaging (MRI)

techniques have been widely used for clinical purposes.

1.2 MRI, how it works?

As the human body is composed of molecules that contain nuclei (or protons), MRI scan-

ners make use of the electromagnetic activity of atomic nuclei and use strong magnetic

fields and radio-waves in order to form images of the body. Due to fact that a large pro-
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Figure 1.2: Progression types of MS.

portion of the human body is made up of fat and water, both of which contain lots of

hydrogen atoms, the hydrogen atom is commonly used in MRI studies.

As each nuclei spins around its own axis, this motion induces a magnetic field and

when the nuclei are exposed to an external magnetic field, the interaction between the

two magnetic fields urges the nuclei to align with the magnetic field. When the nuclei,

initially precessing with a wobble at various angles, aligns with the external magnetic field

(9 atoms per million in a 1.5T system), this event creates magnetic moments. Different

tissues can be distinguished from each other by examining the sum of all the magnetic

moments called the net magnetization vector. For this purpose, a radio frequency (RF)

that matches the center frequency of the system is applied to the net magnetization vector

(resonance matching) [14].

By sending an RF pulse to the center frequency, with a certain strength (amplitude)

and for a certain period of time, it is possible to flip the net magnetization by any degree

(flip angle) in the range from 1◦ to 180◦ (lifting the protons into a higher energy state),

which is called the RF excitation process. However, as the protons would rather be in a

low energy state, when the RF energy source is turned off, the net magnetization vector

realigns with the axis of the external magnetic field. Realigning with the magnetic field

simultaneously and independently, the longitudinal magnetization increases or recovers
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(T1 recovery, T1 relaxation or the so-called Spin-Lattice relaxation) and the transverse

magnetization decreases or decays (T2 and T2* decays, T2 relaxation or the so-called

Spin-Spin relaxation). Note that various tissues have different relaxation times that make

them distinguishable. During the relaxation processes, the spins shed their excess energy

in the shape of radio frequency waves. In order to produce an image, these waves are

caught by a receiving coil positioned at right angles to the main magnetic field [14].

1.3 MRI parameters and image contrast

Two key parameters, repetition time (TR) and echo time (TE), are key to the creation of

image contrast [14].

• TR: is the time between the application of an RF excitation pulse and the start of

the next RF pulse.

• TE: refers to the time between the application of the RF pulse and the peak of the

echo detected.

For instance, the difference in relaxation time between fat and water can be detected

at short TRs since the longitudinal magnetization (T1 recovery) recovers more quickly

in fat than in water. On the other hand, differences in the T2 signal decay in fat and

water can be detected at long TEs. In this sense, TR relates to T1 and affects contrast

in T1-weighted images and TE relates to T2 and affects contrast in T2-weighted images.

Hence, both parameters affect contrast in MR images because they provide varying levels

of sensitivity to differences in relaxation time between various tissues [14]. Consequently,

for instance, a tissue with a long T1 and T2 (like water) is dark in the T1-weighted (T1-w)

image and brighter in the T2-weighted (T2-w) image, whereas a tissue with a short T1

and a long T2 (like fat) is bright in the T1-weighted image and gray in the T2-weighted

image (see also Figure 1.3). On the other hand, when the TR is long and the TE is short,

the differences in magnetization recovery and in signal decay between fat and water are

not distinguishable.

• T1-w sequences: short TR, short TE (TR < 1000ms, TE< 30 ms).

• T2-w sequences: long TR, long TE (TR > 2000ms, TE > 80 ms).

• PD-w sequences: long TR, short TE (TR > 2000ms, TE < 30 ms).
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Figure 1.3: Diagram shows the signal intensity of various tissues at T1- and T2-weighted
imaging [14].

Hence, the contrast observed in MR images depends on the difference in proton density so

that tissues with more protons have a higher signal intensity and vice-versa [14]. This is

called proton density weighted (PD-w) imaging. Note that, in all weighted MR imaging,

the images show all types of contrast, however, T1 contrast is accentuated in T1-w and

T2 contrast is accentuated in T2-w, while proton density is accentuated in PD-w imaging.

Note that the images formed by MR pulse sequences can be 2D and 3D.

1.4 MRI sequences

A pulse sequence describes a series of RF pulses applied to a sample. A spin echo is

the refocusing of spin magnetization by a pulse of resonant electromagnetic radiation. In

MR image acquisition, additional gradient pulses are being applied by switching magnetic

fields that exhibit a space-dependent gradient that can be used to reconstruct, after Fourier
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Transform, spatially resolved images [13]. Therefore, in MRI studies, there are only two

fundamental types of MR pulse sequences: Spin Echo (SE) and Gradient Echo (GE)

sequences. All other MR sequences are variations of these two sequences obtained by

using different parameters [14]. SE based sequences cover conventional SE (CSE), fast

(turbo) sequences (FSE or TSE) and additionaly inversion recovery (IR) methods.

The hydrogen atoms are first hit with an excitation pulse that tips the atoms 90◦ from

their original orientation into the transverse plane so that they spin and can be detected by

catching the signals from their spin. This is followed by another excitation pulse that flips

the hydrogen atoms’ position 180◦ so that they are synchronized and we can collect the

maximum signal. However, the additional 180◦ refocusing pulse has to be repeated several

times in order to keep them synchronized, therefore, there is only one 90◦, but many 180◦

excitations per TR. As a result, particularly in CSE, more time is needed due to having to

collect more data per TR. In this sense, FSE is a way of manipulating the CSE technique

to save time. FSE allows high resolution imaging in a reasonable amount of time with less

severe motion artifacts, better signal-to-noise ratio (SNR), but with a decreased number of

slices [48]. In FSE imaging, cerebrospinal fluid (CSF) is brighter in PD-w images and fat is

brighter in T2-w images. Moreover, some MS plaques and other lesions at the brain/CSF

interface might be missed in FSE due to the fact that distinguishing between CSF and

periventricular high-intensity plaques is more difficult [48].

The Inversion Recovery technique is an SE sequence using a 180◦ flip of the atoms in

order to null the signal from a specific tissue or a particular entity (like water) so that no

signal is generated for that particular tissue. This is done by applying an inversion pulse

before the normal pulse sequence (SE, FSE, etc) [14]. Particulary for MS patients, the

Fluid-Attenuated Inversion-Recovery (FLAIR) is used. In FLAIR sequences, the signal

from CSF is nulled and appears dark, which can be useful for some lesions that are not

easily distinguishable due to CSF.

On the other hand, Gradient Echo sequences (GE) are an alternative technique to spin

echo sequences. They use gradient fields to generate transverse magnetization and flip

angles of less than 90◦. The Gradient Echo sequences show a wide range of variations

compared to the Spin Echo and Inversion Recovery sequences. Gradients are used to

dephase and rephase transverse magnetization. GE is useful when fast scans are needed

but does not correct for local magnetic field inhomogeneities, which translates into the

presence of artifacts in the image [15]. This technique is particularly helpful in diagnosing

hemorrhagic contusions such as cerebral hemorrhagic contusions [14]. Note also that T1-w
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rapid gradient-echo (MP-RAGE) is considered to have better image quality and contrast

between gray and white matter than the T1-weighted spin echo sequence [18].

1.5 Why MRI for MS?

With MRI it is possible to detect contrast differences in soft tissues. Furthermore, by ma-

nipulating the MR parameters, one can optimize the pulse sequence for certain pathologies

such as adjusting the TR and TE to emphasize a particular type of contrast [14]. Addi-

tionally, it has been demonstrated that MRI is highly sensitive for detecting MS plaques.

Hence, MRI techniques play a pivotal role in both diagnosing and monitoring the pro-

gression of MS and is used as a surrogate marker of drug efficacy in treatment trials [96].

For instance, as a clinically isolated syndrome (CIS) is an individual’s first neurological

episode caused by inflammation or demyelination of nerve tissue, MRI helps to confirm the

diagnosis of MS after the second validated clinical event (clinically definite MS (CDMS))

and differential diagnosis with other neurological diseases [96, 100]. Moreover, a number

of trials have reported that MRI is useful in monitoring early treatment of MS and offers

a opportunity to reduce the disease’s activity and may slow disability progression [103].

Consequently, MRI-derived metrics have become the most important paraclinical tool in

diagnosing MS and in understanding the natural history of the disease as well as moni-

toring the efficacy of experimental treatments [103, 96, 24].

1.6 Conventional brain MR imaging in MS

Conventional MR (cMRI ) sequences used in MS, covering T1-w, gadolinium-enhanced

T1-w, PD/T2-w [103] and FLAIR [105] spin-echo sequences, are accepted in standard

protocols for diagnosis and treatment outcome measures in clinical trials [96]. Particularly

in RRMS and SPMS patients, disease activity is detected more frequently with cMRI than

with clinical assessment of relapses [105]. Therefore, cMRI-derived metrics have become

established as the most important paraclinical tool for MS patients [103, 96, 24].

Furthermore, cMRI modalities offer a high contrast between the main brain tissues,

gray matter (GM), formed by neuron nuclei, white matter (WM), formed by neuronal

axons, and CSF which is the colorless bodily fluid that provides protection and cerebral

autoregulation of cerebral blood flow. The CSF appears dark in both T1-w and FLAIR

images while it is the brightest tissue in T2-w and has relatively similar intensities to
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Figure 1.4: Different MR images of the brain: a) T1-w image, b) T2-w image, c) PD-w
image and d) FLAIR image and their e) tissue segmentation: CSF appears dark blue, GM
appears blue, WM appears white and lesions appear red.

GM tissue in PD-w images. On the other hand, WM is the brightest tissue in T1-w and

has the lowest signal in both PD-w and T2-w images while showing an intermediate gray

level in FLAIR images similar to GM. Lastly, GM tissue has an intermediate gray level in

T1-w and T2-w images in comparison with other tissues. All sequences come with their

own advantages and drawbacks. For instance, while T1-w images depict the anatomy

better, T2-w images provide better depiction of the disease due to fact that most tissues

involved in a pathologic process have a higher water content than normal and fluid areas

appear brighter in T2-w images [14]. On the other hand, PD-w sequences are capable

of depicting both the anatomy and the disease entity [14]. Therefore, all sequences have

some advantages and drawbacks in visualizing MS lesions in various parts of the brain (see

Figure 1.4)

1.6.1 T2-w lesions

T2-w SE sequences are created by a long TR and consist of two sequences, one with a short

TE (PD-w) and one with a long TE (T2-w) images, and are called dual echo images [80]. In

T2-w sequences, the characteristic appearance of MS is bright hyperintense lesions (HL),

reflecting their increased water content. T2-weighted lesions do not have a pathological

specificity and can be caused by inflammation, demyelination, gliosis, edema or axonal

loss. Both acute and chronic lesions appear in T2-w images. They are typically discrete

and focal in the early stages of the disease, however, more subtle as the disease progresses.

These lesions are more frequent in periventricular areas and also typically seen in juxta-

cortical, infratentorial and temporal regions (see Figure 1.5), as well as in the corpus callo-

sum. Note that periventricular lesions are more easily identified in PD-w images [83, 105]

since they give better contrast between periventricular MS lesions and CSF when com-
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Figure 1.5: Example of regions in which lesions are typically seen in MS. ACE: Proton-
density (short-echo) images; BDF: T2 (long-echo) images. Arrowheads: Juxtacortical
lesion; Arrows: Periventricular lesion; Delta arrows: Infratentorial lesion. (Moraal et al.
2010)

pared to long TE T2-w images, but suffer more from flow artifacts, particularly in the

posterior cranial fossa, which makes it difficult to identify infratentorial lesions. Also note

that, as FLAIR images produce heavily T2-w images by nulling the signal from CSF, they

can increase the noticeability of lesions, particularly those located in the periventricular

area. However, they are less sensitive in the depiction of plaques involving the brainstem

and cerebellum [105].
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1.6.2 T1-w lesions

Unlike T2-w lesions, MS lesions in T1-w sequences can be both hyperintense and hy-

pointense. Though the majority of MS lesions seen in T2-w images are isointense or

only slightly hypointense lesions in T1-w images (HL lesions) [19], around 10% to 20% of

T2-w hyperintensities are also seen in T1-w images as hypointense areas compared with

normal-appearing white matter (NAWM), so called black holes (BL) [103]. The study by

Vavasour et al. [134] suggests that myelin loss occurs equally in both chronic isointense

and hypointense lesions but hypointense lesions are distinguished by increased extracellu-

lar water.

Black holes are considered to be acute when they coincide with contrast-enhancing

lesions, otherwise they are considered as chronic or persistent. True chronic black holes

are usually defined as T1-hypointense lesions and provide a more accurate correlation

with disability compared to T2-w lesions [80, 105]. Moreover, chronic black holes are more

frequent in the progressive stage than in RRMS and more frequently seen in supratentorial

WM as compared to the infratentorial WM area [80].

1.6.3 Enhancing lesions

Enhancing lesions (EL) reflects the blood-brain barrier (BBB) disruption and is considered

to be the inflammatory phase of lesion development [19]. Note that the BBB breakdown

is a consistent early feature of new lesion development in RRMS and SPMS patients.

In this sense, after the injection of gadolinium (Gd) in combination with T1-w images,

which suppresses a normal brain but not enhancement, a subset of T2-w lesions shows

this enhancement, so called Gd-enhancing lesions [80]. Approximately 65-80% of contrast

enhancing lesions have a corresponding hypointensity in native T1-w images [105] and

these acute hypointense lesions may become isointense or develop into BL lesions.

Gadolinium-enhanced T1-w imaging detects disease activity more frequently than clin-

ical evaluation of relapses, suggesting that most enhancing lesions are silent. Although

contrast enhancement is more sensitive than T2-weighted images in detecting disease ac-

tivity, it is expensive and there are more false positive lesions (i.e. small vessels) and/or

flow artifacts (i.e. around the brainstem and posterior fossa), while delaying scanning

interferes with the patient’s throughput [80]. Note that, while all new lesions seen in T2-

w images are initially observed as areas of the BBB disruption, a few enhancing lesions

appear without an accompanying T2-w lesion.
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1.6.4 Gray matter involvement in MS lesions

Although MS is predominantly a disease of the white matter, it is also characterized by

lesions in the gray matter [23]. Between 5% and 10% of the lesions may involve gray

matter, including the cerebral cortex and basal ganglia [105]. For instance, cortical gray

matter lesions (GML) and deep gray matter lesions can comprise approximately 5% of the

total lesion volume [23]. Having a less severe degree of inflammation and an intermediate

high signal intensity, GM lesions are more obscure and thus more difficult to detect in MR

imaging when compared to white matter lesions (WML) [105].

1.7 Issues with MRI

The detection of an MS lesion is highly related to the contrast-to-noise ratio (CNR) and

signal-to-noise ratio (SNR) for a region of interest (ROI). In this sense, voxel (3D) or

pixel (2D) size, slice thickness and many other parameters play an important role. For

example, smaller lesions require a higher CNR and thinner slices, however, a reduction of

slice thickness decreases the SNR. Likewise, when the image voxel size is larger, a greater

SNR is obtained, however, for small lesions, a smaller voxel size is needed [80]. Also note

that 3D sequences have intrinsically higher SNRs when compared to 2D sequences, and

therefore, may reveal more subtle changes in lesions over time compared to 2D sequences.

On the other hand, noise and image artifacts due to the scanner’s performance [68], such

as radio-frequency (RF) artifacts [17], are other issues in MRI to deal with. Repositioning

errors, motion artifacts due to inadvertent head movement, inconsistent objects over time

such as blood and cerebrospinal fluid flow artifacts [85] can also affect the detection and

quantification accuracy of MS lesions [68]. Additionally, inhomogeneities in the magnetic

field due to the imperfections in the image acquisition process, as well as patient properties,

can cause a smooth inhomogeneity field across the image, known as the bias field error.

Furthermore, partial volume effects (PVE), where a single voxel contains a mixture of

multiple tissue values, may also introduce errors into the MS quantification and tissue

segmentation processes [61].

Apart from the imaging problems, MRI measures are limited in their sensitivity and

specificity, failing to provide a comprehensive assessment of the underlying pathology [9].

The correlations between disability and conventional MRI parameters are relatively mod-

est [80] mostly due to the fact that MRI lesions are often clinically silent and MRI changes

do not necessarily correlate well with clinical disability [105]. Moreover, a moderate cor-
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relation has been demonstrated between the degree of clinical disability and the mean of

enhancing lesions in RRMS and SPMS patients [105] and there is much less MRI activity

in the primary progressive group [80]. Therefore, more studies are still needed for MR

imaging.

1.8 The role of serial brain MRI in diagnosing MS

The criteria for establishing the diagnosis of MS relies on the principle of demonstration of

demyelinating lesions disseminated in space (DIS) and time (DIT) [96]. These principals

were first codified in 1983 by the Poser committee [98], then in 1997 Barkhof et al. [10]

proposed a four-parameter MRI model to predict the development of CDMS in patients

presenting a CIS, which was later modified by Tintore et al. [125]. After an international

panel on the diagnosis of MS [77], accepted the Barkhof/Tintore criteria [10, 39, 125] into

their scheme for demonstrating DIS, they made use of advances in magnetic resonance

imaging (MRI) techniques for diagnostic criteria for multiple sclerosis, known as the Mc-

Donald Criteria. Afterwards, the McDonald criteria underwent revisions in 2005 [97],

which simplified the MRI evidence required for DIT and in 2010 [96], taking into consid-

eration the MAGNIMS research group’s studies [117, 104, 84].

As a result, a diagnosis of multiple sclerosis in patients who present a CIS for the first

time can be established with MRI, if the MRI demonstrates demyelinating lesions with

dissemination in space (DIS) and dissemination in time (DIT) according to the principles

defined in Sections 1.8.1 and 1.8.2 [96].

1.8.1 Dissemination in space of lesions (DIS)

According to the last revised McDonald Criteria [96], DIS can be demonstrated with at

least 1 T2 lesion in at least 2 out of 4 typical locations for MS as specified in the original

McDonald criteria; periventricular, subcortical, infratentorial and spinal cord areas. Note

that in the event of brainstem spinal cord syndromes, lesions in these regions do not

contribute to the demonstration of DIS.

1.8.2 Dissemination in time of lesions (DIT)

The panel [96], abandoning the requirement for an extra reference MRI after 30 days,

allows a new T2 lesion to establish DIT irrespective of the timing of the baseline MRI.



1.9. The role of computer-assisted technologies in serial brain MRI 13

Consequently, it has been accepted that DIT can be demonstrated by either the simulta-

neous presence of asymptomatic gadolinium-enhancing and non-enhancing lesions in any

MRI scan or in those patients who do not meet this criteria, a new T2 or gadolinium

enhancing lesion(s) in follow-up MRI, with reference to a baseline scan, irrespective of the

timing of the baseline MRI (serial MRI imaging).

1.9 The role of computer-assisted technologies in serial brain

MRI

The most common reason for falsely attributing a patient’s symptoms to MS is faulty

interpretation of the MRI [105]. The manual detection of change is not only time-

consuming, but is also prone to intra- and inter-observer variability [111]. Therefore, using

conventional MRI modalities, an automated lesion detection and quantification method,

without doubt, will help neuroradiologists to improve the diagnosis and follow-up of MS

patients. In fact, over the last few years, there have been numerous studies dealing with

these issues. Furthermore, using advance MRI techniques can improve the understanding

of the natural history of the disease and monitoring the efficacy of experimental treatments

as well as enhance our understanding of tissue damage in MS.

1.10 Scope of the research

The Computer Vision and Robotics group (VICOROB) of the University of Girona has

been working on medical image analysis since 1996, mainly in segmentation and regis-

tration of mammographic images. Thanks to their previous knowledge acquired through

several medical projects, the group started to focus their research on brain MRI analysis.

This new line of research started with the segmentation of MS lesions and has expanded to

other fields such as temporal analysis, registration (temporal and intersubject) or atrophy

analysis.

All these studies have been carried out within the funded research projects CEM-

CAT2011 “AVALEM: Avaluació de l’atròfia en pacients amb lesions d’esclerosi múlti-

ple”, PI09/91918 “SALEM: Segmentación Automática de Lesiones de Esclerosis Múlti-

ple en imágenes de resonancia magnética” awarded by the Instituto Carlos III, and the

VALTEC09-1-0025 “Salem: toolkit para la segmentación automática de lesiones de escle-

rosis múltiple en resonancia magnética” awarded in 2009 by the Generalitat de Catalunya
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within the “Projectes de valorització VALTEC”.

In the SALEM project, we proposed to develop and validate an automatic system for

the detection, segmentation and description of MS lesions based on computer vision tech-

niques. In particular, we aim to develop a computer aided tool in order to automatically

detect and segment the MS lesions in MRI images, and to provide quantitative and qual-

itative descriptions for each patient. On the other hand, the AVALEM project aims to

automatically evaluate and quantify the atrophy in the patients and their evolution in

time.

This research has been carried out in close collaboration with the Dr. Josep Trueta and

Vall d’Hebron Hospitals and Clínica Girona. The tools developed have been exhaustively

tested and evaluated in the hospital centers involved in the project, which are reference

centers in Catalonia within the multiple Sclerosis research field.

The goal of both projects is twofold: to create a novel dataset with imaging data from

hospitals and to study and develop techniques to detect and segment new MS lesions that

can be passed to experts for clinical use in evaluating the evolution and quantification of

MS lesions. Within these projects, for which this PhD was the starting point of research,

there has been a strong relationship with medical expert teams in the field of multiple

sclerosis. Specifically:

• From the Hospital Vall d’Hebron: Dr. Rovira, who is the director of the “Unitat

de Ressonància Magnètica-Centre Vall d’Hebron” (URMVH) and has participated

in several research projects funded by public and private institutions in the last few

years, Dr. Pareto and technicians Huerga and Corral. This group is part of the

MAGNIMS network, a European network of centers that share an interest in the

MS study through MRI.

• From the Clínica Girona: Dr. Vilanova and Dr. Barceló are the codirectors of

the “Unitat de Ressonància Magnètica” at the Clínica Girona and are members of

several national and international radiology societies.

• From the Hospital Dr. Josep Trueta: Dr. Ramió-Torrentà, who is the current

coordinator of the “Unitat de Neuroimmunologia i Esclerosi Múltiple”, as well as

radiologists. Quiles, Valls and Beltrán, who work in the radiology unit. The rela-

tionship with this hospital arose from a previous collaboration with Dr. Gich within

the EM-Line project that studied MS rehabilitation through interactive activities

and games.
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1.11 Objectives

As part of the SALEM framework, this PhD thesis’ main goal is

the proposal of a new pipeline capable of detecting new MS lesions

in serial brain magnetic resonance imaging.

This objective refers to the the detection and quantification of new MS lesions as well as

lesion load change using time-series sequences of brain MRI.

This general goal can actually be divided into several sub-goals focused on the differ-

ent stages of this thesis. The first goal is to provide a comprehensive state of the art

of MS lesion detection and quantification methods in serial brain MRI. This objective

aims to review the current MS lesion detection and change detection of these strategies

with an eye detecting new MS lesions in order to better understand the advantages and

drawbacks. With this analysis, we have seen that change detection techniques suffer from

several artifacts as well as registration errors, therefore, tissue classification, using multi

modal information and some post-processing steps are particularly necessary in order to

reduce false positive lesions. These post-processing steps can be either supervised or un-

supervised.

Following this idea, our second goal is to establish an automated general framework

for automatic detection of new MS lesions. As we chose our change detection approach

based on a subtraction pipeline, this framework should also cover a reliable validation

approach, pre-processing steps to reduce image artifacts, noise and bias error caused by

the scanner, a registration method to bring consecutive MR images into the same space,

tissue segmentation for focusing on WM lesions, and finally, post processing steps to refine

detected lesions.

The preprocessing steps can be divided into five main groups: noise reduction due to

the capturing process, the correction of the bias field inherent to this image modality,

intra-subject intensity normalization by means of histogram matching, skull stripping to

remove non-brain tissue that can bias segmentation results and WM tissue segmentation.

After the registration process, subtraction between consecutive images is used to find the

areas of change. The subtraction image obtained undergoes a thresholding step in order to

find any candidate lesions. Afterwards, multi-modal information can be used to refine the

MS lesion candidates. Finally, either using prior knowledge or statistical methods, some
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post-processing steps are applied to the pipeline in order to reduce more false positives

and refine the lesion detection.

We validate our pipeline with real data, obtained from the hospitals, which have different

time intervals (12 and 48 months) and lesion loads. We propose and prepare a reliable

ground truth, which focuses only on the presence of new MS lesions prepared by using the

manual annotations of the experts on the follow-up image. We also evaluate the validation

spaces to determine whether they affect the validation accuracy.

1.12 Document structure

This thesis is structured as follows:

• Chapter 1. Introduction. This chapter presents the background, objectives and

planning of this thesis project.

• Chapter 2. A review of automated detection of MS lesions in serial brain

MRI. After stating the problem in chapter 1, we will review the most recent tech-

niques dealing with this problem, focusing on advantages and drawbacks. A clas-

sification of the approaches for automatic monitoring of MS lesion evolution and

quantification will also be introduced, emphasizing the approaches for detecting new

MS lesions. Finally, the results will be gathered, along with the most common

evaluation measures followed by our conclusions.

• Chapter 3. Temporal analysis proposal on MS lesion detection After the

review in chapter 2, a multi-modal change detection strategy based on a subtraction

pipeline for automatic detection of new multiple sclerosis lesions in longitudinal

studies is proposed and analysed in detail. We provide an overview of the most

important steps: preprocessing steps such as skull stripping and bias field correction;

registration of the images, white matter segmentation, automated thresholding of the

subtraction images, refining detected lesions via supervised or unsupervised methods

using lesion features obtained from different sequences and determining a reliable

validation method with the real MR images of MS patients.

• Chapter 4. Experimental results. The methods implemented will be tested

and evaluated with real data using common similarity measures. In this chapter, we

present our results, pointing out strenghts and weaknesses. We will also present a
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comparison of the state of the art methods and a discussion of the results obtained,

pointing out the important aspects of the proposed contributions.

• Chapter 5. Conclusions. In this final chapter, conclusions summarizing the work

developed are presented. Based on these conclusions, possible improvements are also

introduced as future work.
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Chapter 2

A review of automated detection

of MS lesions in serial brain MRI

2.1 MS lesion detection

This chapter presents a review of approaches that deal with time-series analysis of brain

MRI to detect active MS lesions and quantify the lesion load change. We provide a com-

prehensive reference source for researchers in which several approaches to change detection

and quantification of MS lesions are investigated and classified. We also analyze the results

provided by the approaches, discuss open problems and point out possible future trends.

Conventional magnetic resonance imaging (MRI) techniques, such as T2-weighted (T2-

w) and gadolinium-enhanced T1-weighted (T1-w) sequences, are highly sensitive in de-

tecting MS plaques and can provide a quantitative assessment of inflammatory activity

and lesion load. MRI-derived metrics have become the most important paraclinical tool

for diagnosing MS, understanding the natural history of the disease and monitoring the

efficacy of experimental treatments [133]. Quantitative analysis have become invaluable

in the assessment of the disease’s progression [103, 104, 75] and activity [124] and the

evaluation of therapies over the last 25 years [42, 22]. Figure 2.1 shows two scans (T1-w,

T2-w, and FLAIR images) of a damaged brain taken with a year’s difference, together

with the manual annotations made by an expert. The last column in the figure illustrates

the total 3D lesion load in the baseline exploration and the new lesions appearing in the

follow-up scan.

While there are many articles focusing on the lesion detection problem, most do not

incorporate an automated method to interpret the lesion’s evolution. The most common

approach to the detect changes in serial imaging is visual inspection, which is typically

19
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Figure 2.1: An example of MS lesion serial analysis. The upper row shows a slice of the
baseline control, while the lower row shows the corresponding slice from the following
exploration, made 12 months later. (a), (b), and (c) show, respectively, T1-w, T2-w, and
FLAIR images. (d) shows the manual lesion annotations of the slices performed by an
expert radiologist. In the baseline exploration all the lesions are annotated (in red) while
in the following one only new lesions are marked (in green). Finally, the upper image of
(e) represents the 3D lesion load in the baseline exploration, while the lower image shows
the 3D representation of the new lesions in the follow-up exploration.

performed manually by experts [93]. The processed data, i.e already detected lesions,

are presented to radiologists in order to obtain a decision with respect to the lesion load

change [104, 96]. Experts use their anatomical and prior knowledge to identify lesion

and its evolution. The manual detections of lesion and any change however, are not only

time-consuming, but are also prone to intra-observer and inter-observer variability [111].

Although automated lesion detection techniques reduce this disagreement, an automated

change detection method is still necessary to increase diagnostic precision [34, 35]. More-

over, it has been established that automated systems may outperform any human expert.

For instance, as reported by Bosc et al. [17], that while many small and subtle changes in

lesion evolution were missed by the expert, the automated change detection algorithm did

not. Therefore, we believe that a comprehensive summary of the literature on automated

lesion detection and quantification is important for researchers who want to improve upon

previous work or develop new automated methods for progressive neurological disease

analysis.

Change detection techniques can be divided into two categories: methods consider-

ing large structural changes and methods for smaller, more localized changes [17]. In

accordance with this classification, lesion detection and quantification methods involve

algorithms that must consider both small and large localized structural changes (i.e. tu-
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mors). General problems associated with these techniques are the lesion’s shape, which is

usually ambiguous and has ill-defined boundaries, and the lesion’s position, since the le-

sion can appear or disappear arbitrarily and may shrink or enlarge over time. In addition,

their growth rates are not well characterized, and there can be great similarity between

lesions and normal tissues, so they may not always be easily distinguishable. Moreover,

the effect of a lesion does not always appear as an intensity change on the tissue where it is

located (the so-called tissue transformation), but can also influence the appearance of sur-

rounding tissues (known as the mass effect) [122]. Thus, observing the lesion’s evolution

without change in intensity but with displacement in the surrounding tissues (deforma-

tion) is more difficult. In real cases, both tissue transformation (changes in intensity) and

tissue deformation generally occur. Hence, the mass effect of the lesion should also be

taken into account in order to define a precise lesion evolution. Furthermore, detecting

real image changes is hard work due to noise and residual artifacts in MR images, and

also because the images of a patient at different times are not always directly comparable

due to patient movement. In many cases, a robust image registration algorithm must be

used [49, 74, 153]. Notice that in this case the quantification accuracy will depend on

the alignment’s accuracy [99]. Therefore, change detection techniques should be tuned to

these facts accordingly.

Numerous approaches to lesion detection and quantification have been proposed in the

literature [45, 99, 17, 94, 146, 86]. Despite the variety of approaches, none provide a fully

automatic procedure that includes all the required steps for the diagnosis and treatment

follow-up. For instance, some of the studies that introduce automated methods for lesion

detection, typically based on segmentations, do not always provide an automated method

for quantifying the lesion’s evolution [137, 5, 4]. On the other hand, some of the studies that

focus on change detection do not always provide an automatic lesion detection method

and need user interaction to locate lesions [122] because they are not good enough to

segment lesions after the change detection [99]. Furthermore, some of the change detection

algorithms provide only a resulting image which then has to be interpreted visually by

experts [119, 85], and a final expert decision is required to assess the lesion’s evolution [17].

Note also that the change detection algorithms do not cover the detection of static lesions.

Combining the advantages of different techniques may compensate some of the missing

elements in some strategies and may enable the development of less subjective and more

automated approaches.

The aim of this chapter is to point out the capabilities of the approaches developed

and provide an up-to-date state-of-the-art review of automated MS lesion detection and
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quantification methods in serial MRI. Furthermore, we classify the different techniques

according to the strategy used, as well as describing the most representative studies in

this field. We analyze numerous articles and provide a detailed classification of lesion

detection and change detection techniques based on the main characteristics of each strat-

egy, pointing out the challenging parts of each method. In addition to introducing and

classifying these approaches, we also describe the algorithms used to detect and quantify

the lesions as well as the features and type of MR images used. Furthermore, we compare

the results of the studies analyzed in terms of accuracy and robustness.

Few articles have reviewed MS lesion detection and quantification methods in brain MRI

serial analysis. For instance, Patriarche and Erickson [93] provided a review of the change

detection techniques in time-series analysis. However, this review did not particularly focus

on the purpose of MS lesion detection. Bosc et al. [17] also provided a simple classification

of inter-image comparisons considering lesion evolution. Nevertheless, this study was not

a complete review. Recently, Mortazavi et al. [87], Lladó et al. [71], and Garcia et al. [41]

have presented a review of MS lesion detection at a single time point, without taking into

account change detection, lesion evolution, or quantification. Even though some articles

have given information about either MS lesion detection or lesion evolution quantification

methods [112, 94, 64, 58], none have proposed a comprehensive review. Furthermore, none

of them tried to quantitatively compare the results, as it would be difficult to guess the

performance of all these detection and quantification approaches. Ideally, methods should

be applied to a common database and compared to a ground truth. This, however, is very

difficult due to the lack of common public databases of real image scans at different time-

points along with their ground truth and the fact that only a few methods are publicly

available. Here we will quantitatively compare the detection approaches accordingly to

their reported results in the literature. We will describe the most typical measures used

for evaluating MS lesion detection and quantification in time-series MRI, comparing in a

qualitative and quantitative way the results of the studies analyzed. As a consequence,

we review the most relevant studies in the time-series analysis from both an MS detection

and quantification point of view and which also provides an evaluation of the experimental

results.
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2.2 Classification of MS lesion detection and quantification

in serial brain MRI

In this section we propose a classification to categorize the state-of-the-art automated

serial MS detection and quantification methods in time-series analysis. Afterwards, we

also analyze the general problems encountered in the segmentation and quantification

processes.

2.2.1 Proposed classification of lesion detection approaches

In order to classify the MS lesion detection approaches, we considered the different classifi-

cations proposed by Bosc et al. in 2003 [17] along with the one proposed by Patriarche and

Erickson in 2004 [93]. From this starting point, and also from the information collected

from the newest studies [112, 64, 94, 58], we propose a new classification of the categories

and subcategories shown in Figure 2.2. In particular, we classify the detection approaches

in two primary categories, according to their main principle and characteristics:

• Lesion detection methods. We consider lesion detection methods to be those that aim

to detect both static and dynamic MS lesions in a single time MR volume of a pa-

tient. These segmentation-based methods, which can be supervised or unsupervised

algorithms, rely on the intensity homogeneities of the tissues and typically apply

data mining techniques (clustering, classification) to distinguish lesions from nor-

mal tissues. In time-series analysis, the use of segmentation-based methods mostly

involves a subsequent lesion quantification approach that computes the volumetric

changes of each segmented lesion between two time points in order to determine the

MS lesion’s evolution.

• Change detection methods. These approaches are not based on the analysis of a single

time point (one control of a patient) but rely on analyzing the differences between

successive MRI controls at both a 2D and 3D image levels. From this classification,

we further subclassify the main strategies. The intensity based methods consist of

analyzing two successive scans by means of subtraction techniques. Among these

methods, we further distinguish between deterministic approaches, which typically

cover the subtraction methods using direct intensity differences between the scans,

and statistical approaches, which are used for compensating the interpretation prob-

lems of point-to-point comparison. The temporal analysis approaches are based on
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Figure 2.2: Proposed classification of MS lesion serial analysis. We clearly distinguish
between lesion detection and lesion change detection techniques. The acronyms VDF and
DFM stand for vector displacement field and deformation field morphometry, respectively.

detecting active voxels through a time-series analysis of more than two successive

scans. Finally, the deformation-based approaches aim to obtain a deformation field

from a non-rigid registration process between successive controls that can be used

directly to perform the lesion detection and evolution. We have subclassified these

approaches according to the way the deformation field is used: vector displacement

field and deformation field morphometry. Note that, depending on the technique

used, these approaches may or may not require a subsequent analysis of the quan-

tification.

The approaches reviewed in this study are summarized in Table 2.1, which offers a

compact, at-a-glance overview of these studies. Moreover, the most important features

and properties of all the approaches have also been taken into account. Namely, the

main characteristics of each approach analyzed: The detection strategy and quantification

algorithm used, the type of automation (semi automated or fully automated), whether

the method uses a template (an atlas) to improve the accuracy, such as a template driven

segmentation (TDS), or methods that use healthy control images to compare and correct

their results. Finally, we have also included the image types used (T1-w, T2-w, PD-w,

FLAIR, etc) and the lesion types the method can deal with. It should be noted that not

all the studies analyzed always specify the particular type of lesion.



2
.2

.
C

la
ssifi

ca
tio

n
o
f

M
S

lesio
n

d
etectio

n
a
n

d
qu

a
n

tifi
ca

tio
n

in
seria

l
bra

in
M

R
I

2
5

Table 2.1: Classification of the lesion evolution methods. The different acronyms refer to: DETECTION METHODS: FCS: Fuzzy-
Connectedness Segmentation, KNN: K-Nearest Neighbor, ANN: Artificial Neural Network, EM: Expectation Maximization, PVEC: Partial Volume
Effect Correction, SVM: Suport Vector Machines, FCM: Fuzzy C-Mean, SDF: Structure Difference Filtering, SNM: Structure Noise Map, GLRT:

Generalized Likelihood Ratio Test, LVR: Local Volume Ratio, RFC: Random Forest Classification, RLF: Region Level Filtering, STPC: Single Time
Point Classification, GLCM: Gray Level Co-occurence Matrix, RL: Run Length Matrix, AR: Auto Regressive Model, WA: Wavelet Analysis Model,
QUANTIFICATION METHODS: VI: Visual Inspection, SCD: Statistical Change Detection, 4DCCA 4D Connected Component Analysis.
LESION TYPES: WML: White Matter Lesion, WMSA: White Matter Signal Abnormalities, GML: Gray Matter Lesion, GEL: Gadolinium
Enhancing Lesion, FCDL: Focal Cortical Dysplasia Lesion.
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[Udupa, 1997] FCS Volumetric SA - T2;PD WML
[Warfield, 2000] KNN - A X T2 WML

[Zijdenbos, 2002] ANN Volumetric A - T1;T2;PD WML
[Wei, 2002] Self Adaptive EM & PVEC Volumetric A X T2;PD WMSA

[Ashton, 2003] Bayesian Volumetric SA - T1;T2;PD WML
[Meier, 2003] Self Adaptive EM & PVEC Temporal Analysis A X T2 WMSA
[Antel, 2003] GLCM Features & Bayesian - A - T1 FCDL

[Anbeek, 2004] KNN - A - T1;T2;PD;FLAIR;IR WML
[Wu, 2006] KNN - A X T1;T2;PD; WML & GEL

[Duan, 2008] PVEC & Thresholding & Manual Volumetric SA X T2;PD -
[Zacharaki, 2008] SVM Volumetric A - T1;T2;PD;FLAIR WML

[Shen, 2008] FCM Volumetric A X T1 IL
[Zhang, 2008] GLCM & RL &AR & WA Features & KNN & ANN - SA - T2 WML
[Shiee, 2010] FCM - A X T1;T2;FLAIR WML

[Yamamoto, 2010] Level Sets & SVM - A - T1;T2;FLAIR WML
[Cerasa, 2011] ANN - A - FLAIR WML

[Geremia, 2011] Random Decision Forest - A - T1;T2;FLAIR WML
[Rode, 2012] GLCM Features & SVM & ANN - SA - - WML
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[Ettinger, 1994] EM & Subtraction Volumetric (4D-CCA) A - T2;PD WML
[Lee, 1998] Thresholding & Subtraction Volumetric SA - T2;T1 GEL

[Guttmann, 1999] EM & PVEC Volumetric (4D-CCA) A - T1;PD WML
[Kikinis, 1999] EM & PVEC Volumetric (4D-CCA) A - T1;PD WML
[Weiner, 2000] EM & PVEC Volumetric (4D-CCA) A - T1;PD GEL
[Hillary, 2009] ISODATA Volumetric A - T1;FLAIR -
[Duan, 2008] Thresholding & Manual Volumetric SA - T2;PD -
[Juang, 2010] Histogram-Based Classification VI A - T2;T1 Tumor
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[Curati, 1996] 2D Subtraction VI (Manual) SA - T1 -
[Tan, 2002] 2D Subtraction VI (Manual) A - T2 -

[Moraal, 2009] 2D Subtraction VI (Manual) A - T1;T2;PD WML
[Moraal, 2010] 3D Subtraction VI (Manual) A - FLAIR;DIR;MP-RAGE WML

[Battaglini, 2013] 3D Subtraction & RLF Volumetric(region-wise) A - T1;T2;Pd;FLAIR WML

S
ta

t.

[Lemieux, 1998] 2D Subtraction & SDF & SNM VI (SCD) A - T1 -
[Bosc, 2003] 2D Subtraction & GLRT VI (SCD) A - T1;RARE;FLAIR -
[Elliot, 2013] 3D Subtraction & Bayesian (STPC) & lesion-level RFC Volumetric(region-wise) A - T1;T2;PD;FLAIR;T1c -

[Sweeney, 2013] 3D Subtraction & logistic regression Volumetric(voxel-wise) A - T1;T2;PD;FLAIR -

T
m

p [Gerig, 2000] Temporal Analysis Volumetric A - FMRI WML & GML
[Welti, 2000] Spatio Temporal Analysis - A - T1;T2;PD;FLAIR WML & GML
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F [Thirion, 1999] Norm and Divergence of Vector Fields Warping A - T2 -
[Rey, 2002] Flow Field & Jacobian Operator Warping A - T2;PD -

D
F

M

[Pieperhoff, 2008] Flow Field & LVR Warping A - PD -
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2.2.2 Proposed classification of lesion quantification

As well as classifying the MS lesion detection approaches, we have categorized the methods

according to the quantification of the lesion’s evolution. Note that this quantification

process is essential for radiologists and neurologists to analyze the patients’ follow-ups [96].

We classify the quantification approaches into three main categories: visual inspection,

statistical change detection, and volumetric approaches.

The visual inspection is a manual method to determine a lesion’s evolution. The pro-

cessed images, such as registered images or subtracted images, are analyzed and visually

interpreted by a user or expert in order to arrive at a decision. Although this is a very

subjective method, some improvements can be made to reduce the number of misinter-

pretations made by an expert. For instance, statistical change detection techniques using

statistical correction [17] or structured noise maps [68] in order to reduce false positives in

the subtracted images may be applied. In a different way, the volumetric approaches typ-

ically use already segmented lesions in order to quantify the lesion’ evolution by means of

its volume changes. These volumetric quantification approaches have proven to be useful

in detecting positive and negative disease activity [140]. Notice that this quantification

process can be done by either subtracting single lesion volumes or total lesion volumes

between the time-series images. However, notice that when computing the total MS le-

sion volume of a patient, it is possible that some lesions will enlarge while others shrink.

Therefore, this quantification process may not detect a change in lesion volume even if

there are growing and shrinking lesions. As a result, comparing lesion volumes individ-

ually seems a more precise way of doing the quantification. Furthermore, when using

volumetric measures one should note that the process relies on the results of a previous

segmentation method that might not provide the desired result and introduce errors in the

quantification. Note that we could also add the temporal analysis and the warping meth-

ods, which were also included as detection approaches, to this quantification classification.

In fact, these methods produce the detection and quantification of the MS active lesions

in a single step. For instance, the main property of the warping algorithms (also known

as deformation field based approaches [17]) is that they are based on a one-to-one tissue

correspondence and, as well as providing lesion detection, they allow the lesion mass effect

to be quantified from the registration process between temporal studies of a patient.
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2.2.3 General problems in MRI

Image intensities between corresponding tissues or structures in successive scans may differ.

Thus, normalization algorithms are used to compensate global intensity changes between

successive images before and/or after the registration processes [17]. This normalization

process improves the alignment between images if used before the registration step and

also allows a better comparison between the tissues analyzed, structures and lesions if

used after registration. For instance, Bosc et al. [17] used a linear intensity normalization

algorithm before each registration step and a non-linear joint normalization algorithm

after registration.

Another well-known issue when processing MRI images is that noise and artifacts may be

present due to the scanner’s performance and may affect the detection and quantification

accuracy [68]. For instance, Guttman et al. [46] and Kikinis et al. [61] used a non-linear

anisotropic diffusion filtering, an edge-preserving noise reduction method, to overcome this

problem. With a similar strategy, Bosc et al. [17] applied a low-pass Gaussian filter to the

images obtained by subtracting successive registered and normalized images to eliminate

residual artifacts such as radio-frequency (RF) artifacts [17].

Besides these difficulties, partial volume effects, where a single voxel contains a mixture

of multiple tissue values, generally occur in medical imaging. This situation is particularly

true for voxels on the boundaries [30] or brain surfaces that contain both brain tissue (skull

bone) and cerebrospinal fluid [61] due to the particular intensity characteristics of PD-w

and T2-w images. Thus, regions with similar intensity values to the lesions may introduce

errors into the quantification process. Several approaches have been proposed to deal with

this issue. For instance, some methods use a priori anatomical knowledge [46] to eliminate

spurious lesions selectively [61].

2.3 Lesion detection approaches

Image segmentation is the process of assigning a label to every voxel in a single im-

age so that voxels with the same label share certain visual characteristics typically in-

dicating a particular object, namely tissue or lesion. To our knowledge, segmentation

based approaches cover the largest area of methods for MS lesion detection and are still

the largest active area of research. Various methods have been proposed for this pur-

pose [46, 152, 4, 36, 107, 58], and some attempts to classify these automated MS lesion

segmentation approaches have been made. Mortazavi et al. [87] have recently presented a
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Figure 2.3: Flowchart of the lesion detection approaches: (a) supervised, (b) unsupervised.
As clearly shown, the main difference between both strategies is the use or not of an initial
training step.

review of the segmentation of multiple sclerosis lesions in MR images, providing a classi-

fication of the approaches reviewed into four different categories: data-driven, statistical,

intelligent, and deformable methods. Even though numerous attempts have been made to

solve this segmentation problem, due to the arbitrary shapes and locations of the lesions,

automated segmentation is still an open issue and a challenging task [107].

Segmentation based approaches can be classified as manual outlining methods, semi-

automated methods, and fully automated methods. In this study, we explore the fully

automated methods, which do not require user interaction and reduce the intra/inter

operator variability [112]. However, to provide a wider analysis, we also include some of

the most relevant semi-automated methods [128, 65, 7, 36]. Figure 2.3 shows a flowchart of

the general idea of the segmentation based approaches for brain MRI time-series analysis.

Automated MS lesion segmentation is a difficult task due to the similarity of intensity

between lesions and normal tissues. For instance, gray matter lesions (GML) may share

intensities with gray matter (GM) or cerebrospinal fluid (CSF) [107]. Thus, traditional

segmentation methods, like region-based methods where the voxels are directly analyzed

by means of a region growing strategy, or methods using thresholding techniques, may
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not provide the desired results. Noise and residual artifacts also make lesion segmentation

difficult, even for white matter lesions (WML).

Analyzing the literature, we have seen that tissue class segmentation based approaches

(clustering methods) are commonly used for automated MS lesion segmentation. Tissue

class segmentation, which uses tissue-class weights to consider the presence of lesions,

can be considered as an estimation problem to determine intensity inhomogeneities [141].

These techniques use spatial information (position of the tissues and lesions) and incon-

sistency of lesions (intensity differences between lesions and normal tissue distributions)

to detect and then quantify the lesions. Note that these are statistical segmentation ap-

proaches that use knowledge about tissue properties and, therefore, rely on the fact that

the same tissues have the same intensity values.

Several techniques have been used to improve segmentation accuracy. It is well known

that the use of prior knowledge of normal tissue distribution improves the capability of

segmentation methods [139]. The main strategy is to use an anatomical template (atlas)

to introduce spatial information into the statistical segmentation. Although this infor-

mation can be introduced in different ways [21], the most common approach is based on

template-driven segmentation (TDS), which mainly consists of a non-linear registration

step [137, 114] to match MR images to the atlas. As reported by Warfield et al. [137], sta-

tistical classification and non-linear registration are often complementary since pathologic

structures such as lesions are not modeled in an anatomical template. Lesions cannot

be segmented directly with an anatomical template. Therefore, statistical methods are

performed to compensate for this problem.

In addition to TDS, multi-spectral approaches are used to improve the segmentation’s

accuracy since different modalities of MR images (T1-w, T2-w, PD-w, FLAIR, etc.) have

different signal characteristics that provide different information. However, multi-spectral

anatomical images are not always available in clinical practice since the acquisition of all

these images is cost intensive and requires more processing time [107]. Methods using

multi-spectral information also require a registration step, which may be assumed to be

an affine [107] or a deformable registration [137].

Furthermore, some studies also use a partial volume effect correction (PVEC) method

to eliminate any false positive lesions detected [139, 46, 61, 36]. For instance, Guttmann et

al. [46] and Kikinis et al. [61] applied a PVEC algorithm and improved their previous re-

sults. Moreover, Wei et al. [139] concluded that the PVEC algorithm eliminated only false

positive errors while TDS corrected false negative misclassifications and some of the false
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positive misclassifications. They also pointed out that using TDS with PVEC together

showed the highest accuracy in the segmentation of white matter signal abnormalities

(WMSA) [139].

2.3.1 Supervised methods

We consider those methods as supervised approaches that mainly use the image intensities

of different MR images to train a classifier by using labeled tissues and manually identified

lesions and those methods that use information from a template (atlas) to classify tissues

and segment lesions as deviations from normal human brains. It can be seen in Table 2.1

that several techniques have been used to perform supervised classification. For instance,

k-nearest neighbors (KNN), artificial neural networks (ANN), and support vector ma-

chines (SVM) are typical supervised approaches for tissue segmentations. Furthermore,

Yamamoto et al. [145] have recently proposed a false positive reduction step that uses

a level set method and a SVM classifier to substantially reduce the number of false MS

lesion detections.

According to Udupa et al. [128], human experts usually outperform automated algo-

rithms in the recognition task and, therefore, in their approach, brain tissues such as

WM, GM and CSF are manually determined by an operator. They claim that automated

algorithms conversely perform better in the delineation, hence, they used a fully auto-

mated algorithm for the delineation process from which they segmented the MS lesions

based on the principle of fuzzy-connectedness [127] using the manually recognized brain

tissues (WM, GM, CSF) as fuzzy connected regions. After the detection of CSF, WM and

GM as 3D fuzzy objects, lesions appeared as "holes". The approach by Udupa et al. [128]

can also be considered as an early multi-spectral approach, since they used both T2-w and

PD-w images to classify brain tissues. They state that CSF tissue is better recognized in

T2-w images whereas WM and GM tissues are better recognized in PD-w images.

Another semi-automated supervised and multi-spectral method was proposed by Ashton

et al. [7]. They compared the regional-based methods (GEORG) with a directed multi-

spectral segmentation (DMSS) approach, and concluded that both methods were accept-

able in terms of speed and precision. They used statistical characteristics of background

tissues supplied by a Bayesian classifier and target statistics supplied by the exemplar.

This approach is also multispectral since they mapped the three T1-w, T2-w, and PD-w

images to the red, green, and blue channel, respectively. Nevertheless, both algorithms

need user interaction: a single mouse click was used to place a seed for a region growing
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algorithm and a manually traced exemplar was needed for the classification method.

Warfield et al. [137] applied a TDS segmentation and a spatially varying statistical

classification based on a multiple feature KNN classification process. Also based on the

KNN classifier, Wu et al. [144] proposed an automatic segmentation of MS lesions into

three subtypes: enhancing lesions, black holes and hyperintense lesions. An intensity-

based statistical KNN classifier is combined here with an atlas segmentation to extract

WM masks. Assuming that lesions are only found in WM regions, the authors discard all

the lesions outside the masks. Moreover, partial volume problems (i.e. those arising from

the fact that a voxel may be composed of more than one tissue type) are corrected using

morphological operators. On the other hand, Wei et al. [139] and Meier and Guttman [78]

included a template-driven strategy to perform the tissue class segmentation based on an

expectation maximization algorithm. Meier and Guttman [78] also applied subtraction and

partial volume corrections to identify lesion load changes and to eliminate false positive

lesions. After the lesion segmentation, they combined space and time into the MS lesion

characterization process via direct quantitative analysis of the signal intensity in the time

domain obtained from serial MR images. In this way, they showed the signal dynamics of

active and chronic MS lesions [78].

Zijdenbos et al. [152] proposed a supervised MS lesion segmentation method using multi-

spectral information (T1-w, T2-w, and PD-w) using an artificial neural network (ANN). In

particular, they used a back propagation ANN method to classify the MS lesions because

of the reliability of the method under different imaging conditions. Similarly, Cerasa et

al. [25] propose a technique to segment white matter lesions in MS patients by using a

Cellular Neural Network (CNN) based approach. Unlike ANN, in a CNN, interconnections

among cells are local, that is, each processing unit directly interacts only with its neigh-

bouring cells located within a prescribed sphere of influence. The authors applied this

CNN-based technique to automatically segment MS lesions in FLAIR images, comparing

the performance of their approach with the manual segmentation provided by two expert

radiologists. Moreover, Anbeek et al. [4] combined a supervised classification algorithm

with a multi-spectral approach for white matter lesion (WML) detection. They used five

different modalities (T1-w, T2-w, PD-w, IR and FLAIR) and applied a KNN classification

technique. Likewise, Zacharaki et al. [146] recently presented a supervised WML segmen-

tation method based on SVM. They applied an Adaboost algorithm to each of the scans.

As they reported, WMLs had intensities similar to GM tissue in T1-w images, and similar

to CSF in T2-w and PD-w images, so they applied a multi-spectral approach. Another

multi-spectral supervised (T1-w, T2-w and FLAIR) approach was proposed by Geremia
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et al. [43]. applying a discriminative random forest classification (RDF) to the MS lesion

segmentation problem. They included knowledge on tissue classes and long-range spatial

context in order to discriminate lesions from background.

Besides these techniques, texture analysis has also been proposed as an alternative strat-

egy to identify active MS lesions [60]. First order-statistics (individual pixel values such as

mean and variance of gray level), second order statistics (properties of pixel pairs) obtained

primarily from gray level co-occurrence matrix (GLCM) and run-length matrix (RLM),

and additionally, some spectral approaches (Fourier, Wavelet and Stockwell transforms)

can be used for this purpose [150]. Zhang et al. [148] demonstrated that 9 particular fea-

tures show larger differences when distinguishing NWM (normal white matter), NAWM

(normal appearing white matter) tissues and MS plaques. They also pointed out that

using a combined set of features provides a better performance than using single feature

extraction approaches. Classifying a region of interest (ROI) based on texture features,

KNN, ANN, Bayesian and SVM classifiers are widely used. For instance, Antel et al. [5]

used texture feature maps obtained by using co-occurrence matrices together with a su-

pervised classification based on the two-step Bayesian classifier to perform the MS lesion

detection, whereas Zhang et al. [149] used KNN and ANN classifiers and, more recently,

Rode et al. [102] used the SVM classifier. While Zhang et al. [149] demonstrated that

ANN classified more accurately than the KNN, Rode et al. [102] found that the SVM

classifier has a higher accuracy over ANN classifier. For these techniques, the selection of

the ROI is crucial and is typically carried out manually by experts.

Alternatively, Shen et al. [107] identified MS lesions using their inconsistency by a de-

fined threshold. They combined the fuzzy c-means (FCM) algorithm and TDS to create

tissue probability maps. There are more examples of atlas-based approaches. The method

proposed by Shiee et al. [108] segmented brain tissues in an iterative way, interleaving a

fuzzy segmentation and defining topologically consistent regions. MS lesions were iden-

tified as dark holes inside the WM. The authors used multi-channel images to segment

the major structures of the entire brain. Basically, their method is an atlas-based seg-

mentation technique employing a topological and statistical atlas, together with the FCM

algorithm to perform the classification. As reported by Shiee et al., the advantage of using

the topological atlas is that all the segmented structures are spatially constrained, thereby

allowing subsequent processing to perform cortical reconstruction and unfolding.

One of the drawbacks of the supervised segmentation is that the accuracy may depend

highly on the selection of the training set and the control groups [107] used to compare
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Figure 2.4: Generated 3D volume with MS lesions segmented by two different experts
showing a large inter-rater variability. Note here the importance of using more than one
manual annotation when evaluating the automatic algorithms [71].

individual patient images to a normal control group (model-based strategy) [114]. Gerig

et al. [44] compared a clustering technique (ISODATA (Iterative Self Organizing Data

Analysis Technique)) with a supervised classification (parametric maximum likelihood

classification and Parzen window technique) for brain MR images and found similar esti-

mated parameters. Furthermore, although supervised methods are more efficient for the

segmentation purpose, they require some user interaction for the training steps. Besides,

different users or trainings at different times with the same data may produce different

results. Figure 2.4 shows an example of a MS patient volume segmented by two different

experts. Thus, unsupervised methods are less subjective, completely automated and more

reproducible with respect to supervised classifications.

2.3.2 Unsupervised methods

As illustrated in Table 2.1, many of the unsupervised classification methods [38, 46, 61, 140]

use the expectation maximization (EM) algorithm [142]. For instance, Ettinger et al. [38]

combined statistical tissue classification based on the EM algorithm and subtraction in

order to detect positive and negative changes. In a similar way, Guttmann et al. [46],

Kikinis et al. [61] and Weiner et al. [140] used a similar strategy to segment MS lesions

based on tissue classification and expectation maximization.

Lee et al. [65] used a local threshold defined by a single observer in order to segment

MS lesions. Areas of new lesions and areas of resolving lesions were defined by subtract-

ing normalized and co-registered images. They labelled the lesion areas with color, and
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subtracted two successive images. The outcome image yielded a colored subtraction map

that indicated areas of new lesions and areas of resolving lesions.

More recently, Duan et al. [36] compared two different approaches called conventional

image segmentation (CSEG) and segmentation of subtraction image (SSEG). The first

was a supervised approach due to the use of TDS, while the second was an unsupervised

approach using the intensities of the subtracted images to detect the MS lesions. However,

both segmentation methods are refined by applying an automated Otsu threshold and

manual editing. The authors concluded that the SSEG method provided a significantly

higher measurement of reproducibility and enhanced sensitivity to cortical and subcortical

lesions.

Hillary et al. [50] used an ISODATA technique consisting of a multi-parametric unsu-

pervised segmentation method. Jacobs et al. [54, 53] applied ISODATA technique for

MRI tissue characterization in clinical stroke. As a different approach to classification

methods, Juang and Wu [58] applied color-based segmentation with k-means clustering

based on applying a histogram based metric to produce colored images indicating tissues

and lesions.

2.4 Change detection approaches

As we have already stated before, the patient’s follow-up over time is crucial to determine

the evolution of the disease. Therefore, change detection techniques are needed to compare

the brain’s evolution over time. As shown in Figure 2.2, we distinguish between three main

different strategies to perform these tasks, which are described in the following subsections.

Figure 2.5 shows the different flowcharts of each category.

2.4.1 Intensity-based approaches

Intensity-based approaches for change detection use voxel-to-voxel intensity comparison

to distinguish evolving lesions. Therefore, a lesion without changes in the follow-up scan,

i.e static lesions, cannot be detected using this strategy.

Voxel-to-voxel comparison methods usually suffer from repositioning errors due to pa-

tient movement, inconsistent objects over time such as blood and cerebrospinal fluid flow

artifacts [85], noise in the images, and partial volume effects [30]. Therefore, image reg-

istration, bias field correction, intensity normalization [106], and using multisequence in-
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Figure 2.5: Flowchart of the main change detection categories. (a) intensity-based tech-
niques, (b) temporal analysis, and (c) deformable approaches.

formation are necessary to compensate for these problems. Furthermore, the selection of

image type (T1-w, T2-w, PD-w, FLAIR, MP-RAGE) and the interpolation method during

the registration process are also important criteria for the accuracy and robustness of the

subtraction methods.

Deterministic approaches

We include in this group those intensity-based approaches that are based on subtracting

two successive images in order to find intensity differences due to evolving lesions. Typ-

ically, after the subtraction of two consecutive temporal images, positive activity (new

or enlarging lesions) appears as hyperintense areas while negative activity (resolving or

shrinking lesions) appears as hypointense areas when compared to the background [119].

The roots of the subtraction approach to detect MS lesions were made by Curati et

al. [30], who investigated contrast enhancement with registered difference images. They

reported that the recognition of small changes, changes at the boundaries, and tissues and

fluids with very high or very low signals were more difficult to determine. Furthermore,

they noted that while the use of thin slices decreased the partial volume effect, it increased

the misregistration. Thus, they stated that an accurate alignment was necessary to assess

change. They also claimed that using 3D scans of MP-RAGE images might increase the

accuracy of the results since these types of scans have better contrast.

Tan et al. [119, 120] suggested that using only the variation in the intensity signal to

determine negative or positive activity was not sufficient, since change in the intensity
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signal may also be due to different conditions such as the use of a different scanner or a

high level of noise. Thus, they determined regional activity by also checking if there was

a change in the lesion’s size or shape. They concluded that using subtracted images for

lesion detection showed better agreement for positive activity than for negative. Besides,

they reported that the success of this approach highly depends on the lesion’s size. To

detect enlarging lesions smaller than 5 mm in diameter, they must increase their size by

more than 100%. On the other hand, the detection of shrinking lesions with a diameter

smaller than 5 mm was not reliable.

Following a similar approach, Moraal et al. [85] concluded that subtracted images pro-

vide a sufficient measure for the quantification of positive disease activity. The authors

found a good inter-observer agreement in the quantification of positive disease activity and

compared their results with previous studies in terms of inter-observer agreement, con-

cluding that their success was due to the improvements in the registration and intensity

correction methods used. They also noted that results obtained for the negative activity

were not as good as the results obtained for the positive disease activity. In a different

study, Moraal et al [86] evaluated the performance of 2D and 3D subtraction methods,

and concluded that 3D subtraction techniques, after image registration, provided greater

inter-observer agreement. Furthermore, they compared several image sequences (3D DIR

(double inversion recovery), 3D FLAIR, 3D T2-w, 3D MP-RAGE) and found that nega-

tive active lesions, even small ones, could be detected using the 3D MP-RAGE images,

owing to good anatomical detail and clear GM-WM contrast. More recently, Battaglini et

al. [11], proposed using an overestimated mask of candidate lesions obtained by applying

a low-intensity threshold to the subtraction image. Specifically, the obtained hyperintense

voxel clusters are filtered using a set of specific constraints for shape, size and intensity to

provide the final detections.

Statistical approaches

Statistical change detection techniques for interpreting intensity differences aim at reduc-

ing the noisy results obtained by direct point-to-point subtraction [17]. This group of

methods is based on building a statistical model of intensity changes between successive

scans in order to detect active lesions and their evolutions. These methods rely on changes

in the lesions and not on changes in individual voxels.

For instance, after the image subtraction, Lemieux et al. [68] classified each voxel as

changed versus unchanged according to a threshold value, and subsequently grouped to-
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gether the changed voxels. They called these grouped voxels structured differences objects,

which can be caused by either biological processes or image artifacts. Afterwards, in or-

der to quantify changes in the image difference, these structured difference objects were

thresholded by applying the structure difference filtering that was used to estimate the

Gaussian noise level. After the normalization, the outcome image was a map of the voxel

classification indicating no signal change, signal increase, signal decrease, or outside of the

brain. The authors also compared this map with the one obtained by a set of normal

volunteers in order to assess the significance of the changes. By using this full scheme,

they avoided the structured noise, and were able to determine real changes more correctly.

However, note that this statistical method cannot directly give the total count of active

lesions, although a set of statistics, such as the total genuine change voxels and total

number of normal structured voxels, can be easily obtained.

On the other hand, Bosc et al. [17] presented both a single-modal and multi-spectral

(FLAIR, RARE, and MP-RAGE) change detection approach. They registered the im-

ages into a common reference according to their modality, instead of choosing a baseline

reference from the serial images of a patient, since the registered images undergo geomet-

rical transformations while the reference image does not. In this sense, all the images

undergo equivalent processing steps, as is done in the study of Moraal et al. [86], using

the well-known half-way registration [56, 55]. Affine registration was used to register the

single modality matching while affine and deformable registration was used for the multi-

modality matching. Afterwards, they computed the voxels probability ratio of change,

and grouped any neighboring changed voxels together. Thus, clustered voxels (also sorted

in decreasing likelihood) were presented to the experts instead of individual voxels. Notice

that evaluating individual voxel changes is more difficult, and also, manually delineating

the lesion’s evolution is more subjective. They evaluated their results with simulated

lesions and found that lesions with a radius greater than 0.6 voxels could be detected.

Furthermore, they found that the multi-modality detection increased the detection prob-

ability from 79% to 95% due to the richer information and avoids a lot of false positive

detection.

More Recently, Elliott et al. [37] and Sweeney et al. [118] used both baseline and follow-

up images together with multisequence image information in a supervised subtraction

pipeline to interpret the results of subtraction images. Elliott et al. [37] used baseline

and follow-up images to obtain a tissue classification and then combined it with a random

forest classification considering voxel neighborhoods and incorporating lesion level features

to refine new lesion candidates. On the other hand, Sweeney et al. [118] included reference



38 Chapter 2. A review of automated detection of MS lesions in serial brain MRI

FLAIR images and subtraction images of other sequences in a logistic regression model.

Serio-temporal analysis approaches

Temporal analysis is based on the analysis of long time-series of MR images, i.e. more

than two explorations. Note that in these cases, the subtraction techniques should not

be employed. Hence, in temporal analysis, the intensity of each voxel is regarded as a

function of time, and the aim is to see how the brightness of these voxels varies over time.

This analysis is useful for both lesion segmentation [45] and characterization [78].

Gerig et al. [45] combined space and time into a 4D volume in order to track the bright-

ness of each voxel. They first applied a supervised method to segment normal tissues

based on a parametric maximum likelihood classification and parzen windows [44]. After-

wards, they distinguished active lesions by computing the mean and variance of the voxel

time-series, since voxels belonging to active lesions show a higher variance compared to

static tissues. Note, however, that this temporal analysis relying on voxel level comparison

assumes a perfect registration among the different volumes, which cannot be true in most

cases. This drawback can be minimized by taking the spatial correlation between neigh-

boring voxels into account [143]. Therefore, the voxels’ gray-value information and their

surrounding tissue in all the serial scans were stored in the database, implicitly assuming

that the mean spatio-temporal evolution of all the lesions in the database can be regarded

as characteristic models of typical MS lesions.

Recently, Srivastava et al [114] presented a statistical segmentation method based on

building a lesion specific feature map. They incorporated a template-driven segmentation

of the three main tissues (CSF, WM, and GM) and then used the ratio of cortical thickness

over an absolute image intensity gradient. The statistical parametric map was thresholded

in order to detect lesions. They stated that their method can be applied to almost any

lesion satisfying the thickening and blurring models, hence lesions with a volume smaller

than 3.8cm3 could be detected.

2.4.2 Deformation field-based approaches

An MS lesion is generally seen as the combination of two different effects, tissue transfor-

mation and tissue deformation [122]. Tissue transformation refers to the intensity change

in the lesion’s tissue, while tissue deformation refers to the modification of its surround-

ing tissue, due to the lesion’s expansion or contraction. Therefore, using only approaches
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based on intensity changes between serial scans to evaluate the evolution of lesions may

not give satisfactory results, since the surrounding tissue deformation due to the presence

of the lesion is not taken into account. In order to consider the mass effect of lesions,

deformation-based approaches should be employed.

In deformation field-based approaches, a non-linear registration is performed between

successive scans, and the structural changes are determined based on the local deformation

of voxels. Note, however, that due to the fact that this approach looks for the differences

between successive scans, static lesions cannot be detected.

Vector displacement fields

Thirion and Calmon [122] proposed a semi-automatic approach using vector displacement

fields obtained with a non-rigid registration of two successive scans to track MS lesions.

They proposed using both the divergence and the norm of the displacement vector fields in

order to provide sensitivity to deformation and intensity changes. Therefore, high values

of the norm indicated large deformation areas, while high divergence indicated evolving

lesions, where the sign of the divergence operator showed whether the lesion was growing

or shrinking. Moreover, they also observed that noise was characterized by high divergence

and low norm, while the norm was large and the divergence low in the case of a translation.

Hence, a region of interest encompassing the lesion and the surrounding tissues should be

selected to perform this analysis. In their evaluation, the authors demonstrated that this

method worked better than intensity-based methods when there was a mass effect without

any change in enhancement, although intensity-based methods performed slightly better

when there was no mass effect.

Rey et al. [99] improved Thirion and Calmon’s approach [122] by using the Jacobian

operator to determine local volume changes instead of using the divergence and norm of

the vector fields. Furthermore, they used multi-resolution levels to avoid the influence of

motion in the center of a lesion by the vectors in the boundary. By using the Jacobian

operator, it is possible to distinguish the lesion’s evolution. As is commonly accepted, the

authors stated that a Jacobian operator larger than 1 indicates a local expansion, while

smaller values indicate local shrinking. Furthermore, they can segment lesions by using

a threshold defined on the Jacobian operator (for instance, a threshold of 0.3 indicates

significant shrinking). Actually, in their work, they only analyze shrinking lesions, due

to the richer information when looking at the shrinking field and expanding areas more

greatly influenced by the spatial smoothing. Note that this is not a main drawback,
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since they use both information about the deformation field from old to new images as

well as from new to old images. Comparing this algorithm with image subtraction, they

demonstrated that the Jacobian operator was invariant to registration errors, although

the algorithm gave poor results for segmentation.

Deformation field morphometry

Recently, Pieperhoff et al. [94] applied deformation field morphometry to the detection of

local volume changes in Parkinson patients, although this algorithm could also be used

to detect the evolution of MS lesions. The authors considered MR images as a 3D set of

grid points and calculated the deformation vectors related to the grid points between the

images that indicate shifted voxels in the source image (a deformed image to target image).

Hence, they defined the local volume ratio (LVR) as the volume of the deformed voxels in

the source image divided by the volume of the non-deformed voxels in the target image.

A local volume ratio greater than 1 shows a local increase and vice-versa. Subsequently,

they created LVR-maps that comprised the LVR values of all the voxels. An LVR-map

can be used in a ROI by adding up the LVR values of all the voxels. Furthermore, they

compared LVR and the Jacobian determinant, and reported that LVR gave smoother

volume measures since the latter only considers 4-6 deformation vectors, whereas LVR

is computed from 27 deformation vectors. Moreover, the Jacobian operator requires the

calculation of partial derivatives, which usually introduces approximation computation

problems.

2.5 Classification of MS lesion quantification in serial brain

MRI

As well as performing the MS lesion detection and the change detection in MR images,

the quantification process is also essential for radiologists and neurologists to analyze the

patient’s follow-up. As already presented in Section 2.2.2, there are different ways to

quantify lesion evolution: visual inspection, statistical change detection, and volumetric

approaches.

As shown in Table 2.1, the approaches based on lesion detection typically use volu-

metric approaches to quantify the lesion’s evolution. Metcalf’s 4D connected component

analysis [79], which uses a time domain on registered segmented images, may be the most

common approach for this purpose (see, for instance, the following study that use this
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quantification approach [38, 46, 61, 140]). A 4D connected component analysis provides

the size and position of the lesions in a time line and is commonly used to identify indi-

vidual lesions in a time series.

In order to perform the quantification with temporal-based approaches, the outcome

of the images obtained must be interpreted. Observing Table 2.1, it is clear that point-

to-point subtraction methods commonly use visual inspection to detect active lesions and

interpret the lesion’s evolution. For instance, Moraal et al. [86] detect positive activity by

analyzing the bright area against a gray background. Furthermore, statistical intensity-

based approaches use additional techniques to interpret the outcome images. For example,

Lemieux et al. [68], who used a structured noise map (SNM) to identify lesion evolutions by

comparing the outcome image with the SNM, and Bosc et al. [17], who used the generalized

likelihood ratio test to avoid the drawbacks of a direct manual visual inspection.

Regarding the deformation-based approaches, both Thirion and Calmon [122] and Rey

et al. [99] used vector fields obtained from the non-linear registration step to identify the

lesion’s evolution. Vector fields allow the displacement of tissues and lesions so as to

be more readily visible. For instance, Rey et al. [99] showed how the displacement field

emphasizes a shrinking lesion while Thirion and Calmon showed the 3D deformation field

measured between two volumetric MRI’s of the same patient at the level of the lesion.

Moreover, Thirion and Calmon also used the volume variations measurements to validate

their method’s accuracy by comparing it with a conventional segmentation result. The

approach by Rey et al. could also be used to segment lesions by defining a threshold.

Therefore, volumetric analysis was also used to quantify the lesion’s evolutions.

2.6 Experimental validation

An experimental validation of brain MRI serial methods is not an easy task. The main

problem when evaluating serial brain analysis remains the difficulty of obtaining a solid

ground truth. Also, some of the automated methods do not provide a final quantitative

result, but a processed image that is later shown to experts who provide the final diagnosis.

In these cases, the experimental results usually evaluate the performance of the radiologists

with and without using the software. In what follows, we explain the main steps that

researchers follow to prepare the data and evaluate their approaches.
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2.6.1 Data preparation

The initial step needed to perform a validation of any algorithm is the selection of cases.

Depending on the aim of the validation, a different subset of images may be necessary. For

instance, if the accuracy of a segmentation algorithm is evaluated, only lesioned volumes

are necessary, while lesioned volumes along with healthy controls are necessary to evaluate

the performance of a lesion detection algorithm. Moreover, it is usually interesting to

cluster the data according to the total lesion load in order to correlate this with the

algorithms performance.

Reviewing the literature, a variety of MRI scanner machines are used, such as the 2-T

Bruker [17], the 1.5-T Phillips [4], the 1.5-T Siemens [119] and the 1.5-T GE machine [82,

46, 36]. All these systems provide different fields of view (FOVs) (25.6 cm, 230 mm,

196 × 310 mm, 230 × 310 mm, etc.), different slice thicknesses (usually between 2 and

6 mm), and different sizes of the final image volume (256 × 256 × 54, 256 × 256 × 38,

162 × 256 × 20, 128 × 256 × 22, etc.). Moreover, different MRI modalities are acquired

for each patient, typically T1-w, T2-w, PD-w, and FLAIR images (2D or 3D), which

can be acquired from different views, usually axial or sagittal. This variety of inputs

should be covered by the algorithm developed, which cannot be an easy task in terms of

computational speed or amount of memory used. The most common way to deal with this

data is to construct a (virtual) 3D volume. Hence, in serial analysis, where two or more

volumes are analyzed at the same time, researchers use the term 4D dataset, assuming

that time is the fourth dimension.

Once the 3D volumes have been obtained, they are still not ready for direct processing.

As explained in Section 2.2.3, some inherent problems of the MRI data should be addressed

before tracking the lesions. Bias-field correction, spatial co-registration and intensity nor-

malization are applied to correct for inter-scan intensity variations (due to scanner drift

or other technical sources) and are usually applied to each 3D volume individually. Once

these artifacts have been minimized in both volumes, the registration step between the

volumes can be performed. New problems arise here such as different intensity normaliza-

tion between the different volumes and issues caused by deformation artifacts that may be

related to the registration itself (repositioning) or to the voxel interpolation. Note that the

brain extraction is usually performed after the registration step in order to take advantage

of the fact that the skull should be invariant in the different scans.
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2.6.2 Ground-truth preparation

In general, there are two different ways of evaluating the approaches: with experiments

using synthetic data or with experiments using real data. The use of a phantom brain (like

the BrainWeb one [2, 26]) provides an excellent framework to quantitatively evaluate the

algorithms. However, it is well-known that synthetic data do not reproduce all the complex

factors involved in real data, and algorithms working in these environments may fail when

tested on real data. In contrast, the introduction of simulated lesions into real MRI scans

provides a controlled ground-truth in a more realistic environment. For example, Thirion

and Calmon [122] introduced spherical lesions with blurred contours that were obtained

by averaging the intensities of real lesions, while Bosc et al. [17] used cubic lesions with

Gaussian profiles obtained from real lesions in all the modalities they used. In contrast to

these studies that only introduce lesions in the new volumes, Rey et al. [99] suggested the

addition of lesions in both old and new volumes to obtain a more realistic evaluation.

The common way of obtaining the ground-truth of real data is with an accurate manual

segmentation performed by at least one expert. If more than one expert segments the

images, the final ground-truth will be more reliable [138]. For instance, the ground-

truth used in Anbeek et al. [4] was first segmented by an expert, and then the manual

segmentations were independently reviewed and corrected by two other experts, who were

blinded to the clinical symptoms of the patients. Finally, the manual segmentation was re-

evaluated in a consensus meeting and considered as a gold standard. Molyneux et al. [82]

also noted that the potential for any memory of the images may introduce a systematic

bias. Therefore, they suggested minimizing it by randomizing the scan order and ensuring

a delay of at least one week between repeated measurements of the same scan.

One of the key points usually not considered in the approaches is related to the de-

gree of difficulty of the data, which can be measured using the coefficient of variation

(COV) between the annotations. The COV is the ratio of the standard deviation of the

measurements to the mean and provides a measure to indicate the reproducibility of one

strategy [147]. It is common to differentiate between:

• Inter-rater COV: variation of the results between different experts.

• Intra-rater COV: variation of the results at different times with the same expert.

As an example, Zijdenbos et al. [152] presented a COV of 44% for an evaluation made by

experts from seven different institutes. This value indicates that the image data they used

was complicated and resulted in a large variability even among the experts.
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Moraal at al.[86] also noted the necessity of training the radiologists when performing

the ground truth. First, the radiologists checked the image differences in healthy patients.

Subsequently, they checked the difference in brains with MS lesions (not present in the

testing set). Therefore, when they provided the ground-truth using their software, they

looked for lesions individually, and finally arrived at a consensus opinion.

2.6.3 Validation with the ground truth

The validation of an algorithm using a ground-truth depends on its final aim. In many

computer aided diagnosis (CAD) systems [34, 35], the output is not the accurate segmen-

tation of the lesion but the capacity of the algorithm to detect lesions. In these systems,

the performance is computed using ROC and FROC analysis. ROC analysis is performed

at a case-level, and is used to evaluate the capacity of the algorithm to distinguish be-

tween normal or abnormal (containing lesions) cases [59]. In contrast, FROC analysis

is performed at the region-level, and plots the percentage of detected lesions against the

number of false positive regions detected. This analysis is useful when evaluating the per-

formance of the algorithm to detect lesions [59]. In this latter analysis, a region of interest

should be defined. For instance, Yamamoto et al. [145] assume that a lesion is detected

when a single voxel is marked inside the lesion. On the other hand, to evaluate the per-

formance of a segmentation algorithm, the most commonly computed measurements are

sensitivity, specificity, and the Dice similarity coefficient [31], all computed at voxel-level.

The sensitivity measures the percentage of well-detected voxels among all the lesions in

the volume, the specificity is related to the capacity of an algorithm to avoid false pos-

itive voxels, while the Dice coefficient indicates the overlap between the automated and

the manually delineated lesions (this measure is also known as the similarity index [6]).

Again, the COV coefficient may be used to compare both the automated and the manual

results obtained. On the other hand, with respect to MICCAI challenge [1], the number

of lesions correctly identified, the number false positive lesions as well as volume difference

and surface distance are becoming common measures for evaluation of the segmentation

algorithm.

However, in serial analysis, this quantitative evaluation is less important, since it does

not quantify the effectiveness of the algorithm in tracking the lesion’s evolution. In this

sense, the comparison between the result of the automated algorithm and the ground-

truth in terms of absolute [152] and changed lesion [82, 36] volume may provide a more

realistic evaluation of the algorithm. A reliable qualitative evaluation was performed by
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Bosc et al. [17], who visually evaluated their algorithm using two experts, and classified the

automatically detected lesions into three different categories: valid lesion evolution, valid

non-lesion evolution, or false detection. Although subjective, this evaluation provides a

clear indication of how well the algorithm tracks the evolution of the lesions. On the other

hand, volumetric analysis can also be done by using the number of voxels or number of

true positive (TP) and false positive (FP) regions instead of comparing volume of lesions.

For instance, Battaglini et al. [11] and Elliott et al. [37] use region-wise sensitivity and

false discovery rate (FDR) while Sweeney et al. [118] provide both voxel-wise sensitivity

and volume change in order to compare with the ground truth.

2.6.4 Validation without a ground truth

Due to the difficulty of obtaining the ground-truth in their experiments, researchers de-

veloped different ways to demonstrate the consistency of their approaches. One of the

most common ways to show the robustness of an algorithm is the scan-rescan validation,

where the experiments are repeated several times to show the differences in the final re-

sult, which can be done with the COV coefficient (COV for reproducibility or also known

as inter-scan COV). Note that to correctly perform this validation, patients are removed

from the MR room after the first scan and then repositioned in the MR machine by a

different technologist [36, 46, 78].

Other ways to show the robustness of the approaches is through temporal coherency and

sequence coherency, although some specific features are needed in both cases. Temporal

coherency consists of checking the differences in the lesion’s volume through the different

explorations [122]. The idea is that the lesion’s volume should not change drastically

between two consecutive explorations in time (assuming there are no relapses in that

time). This is analog of the evaluation of SIENAx [111], where the authors computed the

error of their method for atrophy quantification in a three-times exploration by checking

if the tissue loss in T1−T2 added to the loss in T2−T3 were equal to the loss in T1−T3.

On the other hand, the sequence coherency aims to compare the results of an algorithm

when detecting lesions through the different MRI sequences independently [82]. However,

those algorithms that rely on the analysis of a single sequence (i.e. FLAIR) or the use of

two or more sequences together cannot perform this evaluation.
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2.7 Evaluation strategies for change detection

The evaluation of lesion change detection techniques is an extremely difficult task [70].

The common way to obtain a ground truth for validation purpose is an accurate manual

segmentation performed by at least one expert but preferably more. However, in many

cases, such a ground truth estimate is very subjective and varies highly between experts

[152]. These variations can be analyzed using measures like the correlation of variation

(COV), which may be computed between different experts (inter-observer COV) or be-

tween different annotations made by the same expert (intra-observer COV) [152]. Note

that these measures can also be seen as measures to evaluate data complexity.

In the following, we analyze the advantages and drawbacks of the different validation

methodologies used in the literature and propose an objective and quantitative evaluation

of MS lesion change detection.

2.7.1 Visual inspection of outcome images

The most common approach for the detection of change in serial imaging is visual in-

spection, which must be performed manually by experts [93]. Tan et al. [119] validated

their approach by computing the inter-observer agreement between six observers that sep-

arately identified new, enlarging, resolving, and shrinking lesions directly in the subtracted

images. Although the use of different observers reduces validation errors, presenting the

experts with subtracted images might intrinsically be a source of errors. The fact that the

subtracted images, the only images that experts actually see, are the result of the whole

lesion detection pipeline and make the introduction of information that corresponds not

to valuable lesion information but to artifacts or errors introduced by the lesion detection

process possible. This might induce experts to make erroneous interpretations. A similar

approach was proposed and validated in terms of inter-observer agreement by Moraal et

al. [85, 86]. Besides, Moraal et al. [85] compared the inter-observer agreement using the

subtracted images as well as the original unregistered images. Significantly higher inter-

observer agreement was observed when using subtraction. Consequently, there seems to

be a higher degree of consensus among experts when using subtraction images, however,

this does not prove that lesions detected in this way are correct. For example, a wrong

subtraction or registration might produce a clear indication of a lesion, leading experts to a

consensual, albeit wrong, decision. Thus, apart from the intra/inter observer agreements,

a quantitative validation of a pipeline should also be performed on original image pairs.
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2.7.2 Validation by segmented lesions in baseline and follow-up images

A possible way to avoid biasing the experts would be to annotate images directly on the

original baseline and follow-up images. Lesion evolution ground truths would then be

obtained by subtracting them. Although this looks like a straightforward solution, im-

ages cannot be subtracted directly. The reason for this is the need of image registration

previous to the subtraction. Consequently, the transformation matrix computed (either

normal rigid or halfway registration) should be applied to ground truth images (using

nearest neighborhood interpolation, since the ground truth annotations are binary im-

ages). Afterwards, the ground truth might be obtained by subtraction. However, this

validation method assumes that either the registration step is perfect or the registration

errors between the baseline and the follow-up images affect the ground truth in the same

way. It is, however, a well-known fact that this is not the case [33].

The following example shows the pitfalls of this evaluation methodology. Two subtracted

images were computed between baseline and follow-up images using the proposed pipeline.

The only difference in the images was due to registration. In the first case (R1), registration

was stopped far before reaching a satisfactory stopping condition, while in the second

(R2), convergence was reached. Therefore, the R1 registration was "worse" than the R2.

To evaluate the results of the pipeline, we applied the transformation matrices to the

ground truth and manually tuned the pipeline’s thresholding step in order to obtain the

best lesion change overlap coefficient. Surprisingly, despite the fact that registration R1

aligned the images undesirably, the overlap obtained was better. The explanation for this

is that the worse registration (R1) changed the ground truth in an undesirable way, as

graphically shown in Figure 2.6. Using the R1 registration, the overlap obtained consists

of 3255 positively changed voxels, while when using the more accurate registration R2,

this number decreased to 1853. Therefore, we seized our chance to get more true positive

(TP) voxels for the R1 registration, as this error was a failure for the validation procedure.

2.7.3 Validation by segmented new lesions in follow-up images

The above example clearly shows how a different strategy needs to be used in order to

obtain a more reliable ground truth. The problem above appears mainly when subtracting

the same lesion manually marked in the two scans. Note that here there are two different

problems. First, experts might annotate the lesion in a different way. This might happen

because of different acquisition parameters (including head positioning) or because of



48 Chapter 2. A review of automated detection of MS lesions in serial brain MRI

Registration R1

Registration R2

Figure 2.6: An example of the pitfalls of this evaluation methodology: The first column
shows the results of the pipeline before manual threshold, while the second shows the
ground truth obtained applying the registration transforms found during the pipeline.
White areas in the subtracted ground truth images indicate positive activity (new or
growing lesions) while the black areas indicate negative activity (shrinking or resolved
lesions).

morphological changes (either in the lesion itself or in the brain tissues). Second, even if

experts annotate the lesion in the same way, due to registration inaccuracies, the lesion

will look slightly different in the two scans registered.

Therefore, in order to avoid this problem and perform a quantitative analysis of a

change detection pipeline, we propose a more reliable ground truth that focuses only on

the presence of new MS lesions in the follow-up scan. In this situation, we still need to

register the baseline image with the follow-up one to compare them, but we are able to

avoid subtraction errors in the ground truth. Hence, we focus the quantitative analysis on

evaluating the appearance of new MS lesions using the manual annotations of new lesions

located by the experts in the follow-up image.

Lastly, in order to compare the ground truth with the detection pipeline’s results, they

have to be in the same space, otherwise they must be registered as well. In this case,

great care has to be taken since moving the ground truth image to another space could
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also yield undesirable problems.

2.8 Analysis of the reported results

Table 2.2 summarizes the results of the lesion detection algorithms reviewed in terms

of reproducibility (comparison without a ground-truth) and agreement with the experts

(comparison with a ground-truth). Note that the automatic segmentation methods obtain

good reproducibility results. Regarding the comparison with a ground-truth, we can see

that the work of Anbeek et al. [4] provides the highest performances in terms of DSC

and sensitivity (computed voxel-wise). On the other hand, Geremia et al. [43] achieved

similar results than those of Anbeek et al. [3] using the datasets from the MICCAI 2008

Workshop. Notice also that most of the studies provide specificity values close to 1. This

is due to the fact that this measure evaluates the ratio between the number of voxels

correctly classified as healthy divided by the total number of healthy voxels. Therefore,

considering that lesions are small spots within the whole volume, the specificity value

always tends to be close to 1 [71]. A different way to evaluate the performance of an

algorithm is to use a region-wise measure instead of voxel-wise one, as done in the work of

Yamamoto et al. [145]. In this case, the sensitivity is computed as the number of detected

lesions divided by the total number of lesions (81.5% in their work) and is compared with

the total number of false positive lesions per volume or slice (2.9 per slice in [145]).

Looking at the results of the algorithms, clustering techniques perform better than con-

ventional segmentation methods [36], and the use of additional strategies like PVEC or

TDS [139] leads to increased accuracy. Note that these strategies are based on introduc-

ing the experience of the expert into the algorithms, and hence, supervised segmentation

methods perform better than unsupervised methods. Nevertheless, it should be consid-

ered that this additional information, which either comes from a training set or from an

anatomical template will bias the accuracy of the results.

On the other hand, Figure 2.7 provides a comparison of the results obtained by different

subtraction methods in terms of inter-observer agreement, detailing the results for positive

and negative lesion detection. Tan et al. [119] investigated the lesion evolution from 26

patients using a 2D subtraction-based approach, while Moraal et al. [85] also tested the

use of a 2D subtraction-based method using 46 pairs of MR images from 40 patients. In

later work, Moraal et al. [86] proposed and evaluated a 3D subtraction-based approach

using controls from 14 patients. Comparing the results obtained by the 2D subtraction
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Figure 2.7: Inter-observer agreement of the subtraction-based approaches. The perfor-
mance of the algorithms according to the lesion activity is shown. 2D and 3D refers to
the way the subtraction is performed.

approaches, Moraal et al. [85] outperformed the results of Tan [119], thanks mainly to both

the improvement in the registration algorithms and the use of an initial normalization step.

However, the results of a similar strategy used with different data [85, 86] were drastically

decreased. On the other hand, comparing 2D and 3D subtraction, one can see that the 3D

subtraction outperforms the 2D approach, especially in the detection of negative activity.

Furthermore, analyzing the results for each MRI sequence made it possible to see that the

FLAIR sequence provided the best overall performance, while the use of the MP-RAGE

sequence improves the detection of MS cortical lesions.

2.8.1 Improvements and further trends

Regarding the imaging modalities, the analysis of the approaches has shown that FLAIR

discriminates well between lesions and healthy tissue and is used in numerous approaches

to perform the automated lesion segmentation and lesion evolution analysis [87]. Recent

reports have also stated that 3D FLAIR imaging reduces artifacts and provides an excellent

signal-to-noise ratio compared with 2D FLAIR images. Notice that 3D FLAIR images

provide 3D volume data with isotropic information and minimize the partial volume effect

between small lesions and the surrounding tissue. Therefore, the use of 3D FLAIR imaging

may improve the estimates of the WM and GM as well as the MS lesions.

As the MR images suffer from various image acquisition issues, pre-processing and
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Table 2.2: Summary of the results obtained by different lesion detection approaches. The
acronyms refer to: MRI Sequences: DE Dual Echo, SE Spin Echo, GE Gradient
Echo, VE Variational Echo, FSE Fast Spin Echo FFE Fast Field Echo; Patients:
CP Chronic Progressive, FCD Focal Cortical Dysplasia, RR Relapsing Remitting TPI
Traumatic Brain Injury; Measures: CC Correlation Coefficient, COV Coefficient Of
Variation, DSC Dice Similarity Coefficient, FPR False Positive Rate, FDR False
Discovery Rate. The datasets are defined by (number of patiens) × (number of controls).
If not specified, the measures are computed voxel-wise.

References Methods Data acquisition Dataset Measure Results
[Udupa, 1997] FCS DE FSE T2-w/PD-w 20 MS patients Avg. COV with FCM

vs
0.9%

COV of 3 experts 22.6%
without FCM

[Guttmann, EM+PVEC SE/DE-SE T1-w 20x2 RR MS patients Avg. LVE 0.05cm3

1999] GE Signa 1.5T
[Kikinis, 1999] EM+PVEC SE/DE/LongTR

T1-w
1 RR MS patient COV of WML 39.5% vs 52.0%

GE Signa 1.5T
[Wei, 2002] EM+PVEC DE SE PD-w/T2-w 11x2 CP MS Avg. inter-scan COV 7.50%

GE Signa 1.5T 9x2 RR MS patients Zscore −2.84
EM+TDS Avg. inter-scan COV 2.57%

Zscore 1.84
EM+TDS Avg. inter-scan COV 4.98%
+ PVEC Zscore −0.99

[Zijdenbos, ANN-BP T1-w/ 500x3;100x4 Avg. inter-scan COV 0%
2002] 2D SE T2-w/PD-w MS patients Avg. CC with 7 rater 0.93

14 Hospitals Avg. Kappa (Dice) 0.60

[Ashton, 2003] Bayesian SE VE 10 dataset for intra intra-rater COV 5.1% vs 1.5%
(DMSS) T1-w/T2-w/PD-w 1 dataset for inter Avg. inter-rater COV 16.5% vs 5.2%

[Ashton, 2003] GEORG SE VE 10 dataset for intra intra-rater COV 5.1% vs 1.4%
T1-w/T2-w/PD-w 1 dataset for inter Avg. inter-rater COV 16.5% vs 2.3%

[Antel, 2003] Bayesian FFE T1-w 18 MS patients Region-wise sensitivity 0.85%
with FCD Voxel-wise sensitivity 0.2%

[Anbeek, 2004] KNN T1-w/T2-w/PD-w/ 18 MS patients Avg. DSC 0.81%
FLAIR/IR Avg. sensitivity 0.971%

Avg. specifity 0.974%
[Wu, 2006] KNN+TDS DE-SE PD-w/T2-w 6 MS patients Avg. sensitivity 0.70%-0.623%

+ PVEC SE /T1c-w Avg. specifity 0.987%-0.997%
[Duan, 2008] SSGE DE PD-w/T2-w MR 10x2 RR MS patients Avg. inter-scan COV 0.98%

GE Signa 1.5T Avg. LVE 1.50%
[Duan, 2008] CSEG DE PD-w/T2-w MR 10x2 RR MS patients Avg. inter-scan COV 8.64%

+ PVEC GE Signa 1.5T Avg. LVE 11.40%
[Shiee, 2010] FCM T1-MPRAGE/ 10 MS patients Avg. DSC 0.633%

FLAIR Avg. sensitivity 0.712%
[Yamamoto, LS+SVM T1-w FSE / T2-w / 3x2 MS patients Avg. DSC 0.77%
2010] FLAIR
[Cerasa, 2011] CNN FLAIR 11 RR MS patients Avg. DSC 0.64%

GE Signa 1.5T
[Geremia, 2011]RDF T1-w/T2-w/FLAIR 20 MS patients Avg. TPR 0.55%

MICCAI’08 Dataset Avg. FPR 0.73%
[Elliot, 2013] Bayesian T1-w/T2-w/PD-w 160x2 RR MS patientsRegion-wise sensitivity 0.90%

+ RFC FLAIR/T1c Region-wise FDR 0.23%
[Sweeney, Logistic T1-w/T2-w/PD-w/ 11x2 RR MS patients sensitivity 0.83%
2013] Regression FLAIR FPR 0.001%
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post-processing steps play an important role for MS diagnosis and follow-up MS patients.

Therefore, bias field correction algorithms and global scaling of the images are commonly

employed before registration. Besides, most of the approaches use a normalization algo-

rithm as, for example, the recent N4 algorithm [126], particularly for MR images.

To perform a better comparison between images of different controls and particularly for

the change detection algorithms, the registration is, without a doubt, the most important

step. However, the registration procedure includes an interpolation process to re-sample

the moving image which may affect the images and the posterior measure of the lesion’s

volume. Moreover, the lesions themselves, for instance, enlarged, shrunken or resolved,

may negatively affect the registration accuracy. One possible way to reduce this miss-

alignment caused by the lesions’ evolution is to use a similarity metric robust to local

differences. For instance, mutual information (MI) or normalized mutual information

(NMI), which are the most commonly used measures in multi-modal registration [101, 116,

49], can be used for the serial MRI registration to reduce the effects of the lesion’s evolution

and other variations in the images which are caused by misalignments. The correlation

ratio used for this purpose can also be a good choice for the serial MRI registration, since it

can deal with intensity differences [153] and has been shown in some cases to be more robust

than MI with respect to the initialization of registration [101]. In order to avoid residual

artifacts caused by the registration, we have seen that some approaches also used the half-

way registration method [17, 86], which is a robust way to avoid interpolation artifacts and

consists of applying the same interpolation effect to both the fixed and moving images.

Notice that the type of interpolation method used is also important. For instance, using

a spline interpolation will provide better results than using a linear interpolation method.

Some authors also suggested the sinc interpolation to register MR images while using a 3D

pipeline [30, 93] since the frequency content of MR images is strictly band-limited [30] and

therefore, is suitable for a sinc interpolation. However, using a high-level interpolation

method drastically increases the processing time with respect to the number of iterations

and resolution. Thus, a linear interpolation method may be used in the iterations of the

registration, while the principal interpolation method could be used in the last iterations

or just for the final re-sampling process.

By analyzing these approaches, we have seen that lesion detection and change detection

techniques can be combined. In fact, this may help to carry out the diagnosis and follow-

up of the patients at the same time and compensate for their inherent weaknesses. For

instance, Duan et al. [36] combined a change detection algorithm based on subtraction of

registered serial MR images with a detection algorithm based on a direct segmentation
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of the lesions. Rey et al.[99] proposed a uniform threshold over the Jacobian operator

obtained from a deformation analysis to perform the lesion segmentation. Though they

provided an experimental evaluation, the results were still far from a desired segmentation.

Considering the detection of new lesions, more recent techniques tend to combine change

detection and subtraction imaging paradigms with single time point segmentation using

multisequence information [118, 37]. The selection of one MR image sequence (i.e. T1-w,

T2-w, PD-w and FLAIR) for specific purposes such as registration, detection or segmen-

tation, or a combination of some of them will have an important effect on the results

obtained. In fact, combining the advance characteristics of the different MR image types

is another important factor, which was also pointed out by Mortazavi et al. [87]. Some of

the approaches reviewed have already applied multi-spectral algorithms that benefit from

the different signal characteristics in the MR images. Moreover, contextual features such

as surrounding tissue type of the candidate lesion [37] and region-level features [11] are

also used to refine the lesion detection. Making use of more information obtained from

sequences, hybrid approaches can yield a better performance. Therefore, other types of

information such as texture features could also be included in such a hybrid pipeline. Re-

garding these strategies that merge different methods, we believe that the quantification

of the mass effect in vivo for MS will be a new challenge in the near future.

We want to stress also that performing an exhaustive evaluation and comparison of

the existing studies is a very difficult task. The use of different data sets and evaluation

measures has been a major obstacle to reviewing these methods. Ideally, approaches

should be applied to a common database and compared to a single ground truth. This

is, however, very difficult due to the lack of common public databases of real image scans

at different time-points along with their ground truths and the fact that the methods are

not publicly available. Implementation of some significant work and comparison with a

common database will, without a doubt, provide a more objective comparison. However,

integration of expert knowledge and a proper setting of the algorithms’ parameters will

be another important issue when trying to reproduce these results. As an example, Klein

et al. [62] recently evaluated 14 different nonlinear deformation algorithms applied to

human brain MRI registration. However, the work only focused on deformable registration,

comparing a set of protocols rather than independent algorithms.
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2.9 Conclusion

A review and classification of classical and to-date approaches for automatic monitoring

of MS lesion evolution has been proposed and discussed in this chapter. These techniques,

which have been classified according to their nature, are essential for the diagnosis and

follow-up of MS patients using MR images. Assessment of MS lesion evolution involves

both detection and quantification of the lesions’ changes. In accordance, we have also

distinguished between lesion detection and lesion change detection techniques.

The lesion detection-based methods rely on using only a patient’s scan to detect lesions,

and a posterior quantification method may be used to determine the lesion’s evolution,

which is usually carried out by using the total lesion volume between the image time-series.

In this category, we have distinguished between supervised and unsupervised techniques,

based on the use or not of a priori training of the algorithm. On the other hand, lesion

change detection techniques make it possible to detect active lesions and interpret the

lesion’s evolution at the same time. However, these algorithms cannot detect static lesions

since they need changed or deformed regions between the time-series. We have further

sub-divided these strategies into two main categories: intensity-based and deformation-

field based techniques; the former based on performing a subtraction of successive scans,

while the latter can also detect the mass effect of the lesions, which is an aspect overlooked

by lesion detection and intensity-based methods, and may be crucial for the MS patients.

Comparing different approaches and highlighting a single strategy is a difficult task due

to the lack of a common database and a proper gold standard, which prevents making

an exhaustive analysis. Furthermore, the setting of all the algorithms’ parameters and

the integration of expert knowledge are also important aspects to consider for a proper

experimental validation. In this work, we have studied the reported results of all the

automated MS lesion detection and quantification methods analyzed. We have seen that,

for the lesion detection methods, the work by Anbeek et al. [4] was the most remarkable

approach in terms of precision since they provided the highest DSC values and sensitivity

(computed voxel-wise). Other approaches have used a different way to evaluate the per-

formance, using region-wise measures instead of voxel-wise ones [145]. We have also seen

that the precision of a proposal may be analyzed by considering the reproducibility and

repeatability. In this case, the COV measure is a good way to indicate these two aspects.

For instance, among the lesion detection methods, the work by Zijdenbos et al. [152] had

the best reproducibility and reliability since it provided the best COV value. On the other

hand, among the change detection techniques, the approach of Moraal et al. [86] provided
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the highest performances with respect to inter-observer agreements. We have also seen

that new techniques, particulary those aiming at the detection of new lesions, tend to

combine different approaches such as including single time point information (baseline

and follow-up images) in a subtraction pipeline also using feature properties of candidate

lesions and multisequence information. In this sense, the work by Elliot et al [37] achieved

a satisfactory performance even for smaller lesions.

Summarizing, from this analysis, we have seen that the lesion detection approaches are

required to detect static lesions and for diagnostic purposes, while either quantification

of detected lesions or change detection algorithms are needed to follow up MS patients.

In this latter case, deformation field-based algorithms allow the mass effect of the lesions

to be detected, although analyzing all the individual lesions detected is a time-consuming

task and may not be necessary for expert radiologists.
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Chapter 3

Temporal analysis proposal on MS

lesion detection

3.1 Overview

After analysing the state-of-the art on MS lesion detection approaches in chapter 2, we

concluded that statistical approaches including multi-sequence information, yield better

performances. Following this fact, we propose a multi-sequence subtraction pipeline in-

cluding an unsupervised auto-thresholding step in order to establish a rough detection of

new lesions. Subsequently, we examine the candidate lesions with either a supervised or an

unsupervised approach. PD-w and T2-w images are combined to improve the lesion detec-

tion performance in a supervised and an unsupervised manner. In order to avoid partial

volume errors, we include a template driven tissue segmentation (atlas-based), particulary

to obtain an accurate WM mask to apply to the subtraction images. Furthermore, we

analyse the various preprocessing steps, registration methods and several other possible

techniques within this pipeline. In order to assess the pipeline’s performance, we used two

data-sets according to the time interval between the consecutive scans, which are studies

acquired with one year (12M) and four years difference (48M).

3.2 The proposed framework

Following an unsupervised thresholding strategy, we revisit the use of a simpler and fully

automated subtraction pipeline based on a thresholding strategy for the detection of new

MS white matter lesions (WML) in brain MRI data. The main challenges that voxel-to-

voxel subtraction methods deal with are: repositioning errors (patient movement), incon-

sistent objects over time such as blood and cerebrospinal fluid flow artifacts, noise in the

57
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images, and partial volume effects. Therefore, image registration, bias field correction,

intensity normalization and using multi-sequence information are necessary steps to com-

pensate for these problems [86]. After the subtraction of two consecutive temporal images,

unchanging areas (normal tissue) appear as gray areas, while changing areas are darker

or brighter due to either the appearance or disappearance of lesions. Typically, positive

activity (new or enlarging lesions) appears as hyperintense areas while negative activity

(resolving or shrinking lesions) appears as hypointense areas compared to the background.

Therefore, the final step in these pipelines is a thresholding process. The selection of the

threshold may be done by experts considering a trade-off between specificity and sensi-

tivity, or in an automatic way within the pipeline. Nevertheless, in order to achieve a

fully automatic pipeline, selection of these thresholds is still an open issue which will be

addressed in this chapter.

The main body of the proposed pipeline in this work, schematically depicted in Fig-

ure 3.1, shares some aspects with that of Moraal et al. [86] (i.e. image registration and bias

field correction), although we added some additional steps to improve the performance,

specifically: the use of a WM mask obtained from single time point tissue classifications

based on T1-w, T2-w and PD-w sequences [20], Gaussian filtering and the use of the mean

and standard deviation of the positive activity in WM to define an automated threshold

that produces the initial detection result in an unsupervised manner. Afterwards, we in-

troduce two different postprocessing approaches based on examining the candidate lesions

in the registered baseline and follow-up images and the use of multisequence information

(as done by Elliott et al. [37] and Sweeney et al. [118]), combining the subtraction of PD-w

and T2-w sequences in order to refine the final detection of new lesions. While Elliott et

al. [37] apply a lesion level classification after defining candidate lesions by a supervised

voxel-wise classification, here we propose an unsupervised approach to define candidate

lesions since we believe that after white matter segmentation the lesions are outliers in

the WM tissue which is usually assumed to follow a Gaussian distribution [151, 113, 20]

regardless of whether or not the tissue segmentation method uses prior knowledge like

Atlases [113, 20]. Hence, lesions can be taken as outliers in a Gaussian distribution and

easily extracted from WM tissue without needing any prior information, improving the

reproducibility of the method and reducing the complexity and computational cost. The

former post-processing method is an unsupervised approach based on intensity features,

particularly using the local intensity neighbor information. In the latter method, follow-

ing the main framework, we implement similar postprocessing steps but in a supervised

manner, studying also the use of texture features of the candidate lesions to perform the
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false positive reduction step.

3.3 Validation spaces

As stated in Chapter 2 section 2.7, to assess the performance of the pipeline, a reliable

ground truth and validation method is needed. For this purpose, we focus on the ground

truth including only the new MS lesions determined by experts in the follow-up image (see

section 2.7.3). Nevertheless, new lesions are annotated in the follow-up space. Therefore,

registering by moving the follow-up image to the baseline image might cause problems

since the final subtracted image is registered to the baseline space which is inconsistent

with the annotation made in the follow-up space. In this case, the ground truth image

has to be moved to the baseline space to perform the validation step. Moreover, we

face the same problem when comparing half-way registration with standard registration.

Therefore, in this section, we examine the validation spaces to evaluate whether moving the

ground truth image has an affect on the validation step or not. We distinguish among the

following solutions using the same transformation matrix for all cases (see also Figure 3.2):

• Direct or Normal (NW) registration. The follow-up image is used as the source of

the registration (moving image) and the baseline image as the target. The trans-

formation obtained is also applied to the ground truth of new lesions in order to

perform an evaluation.

• Inverse or Reverse (RW) registration. In this case, the baseline image is the source

of registration and the follow-up image is the target. This situation allows a quanti-

tative evaluation to be carried out without having to move the ground truth anno-

tations, which were already defined in the follow-up space.

• Halfway (HW) registration. In halfway registration, both baseline and follow-up

images are registered towards a half space. In this case, the ground truth has to be

moved using the same half transformation the follow-up image undergoes.

• Halfway reverse (HWR) registration. In halfway reverse registration, the output

subtracted image in the half space is registered back to the follow-up space. Note

that this strategy does not allow the modification of the ground truth but requires

a second transformation step in order to bring the subtracted image outcome to the

follow-up space.
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Figure 3.1: Flowchart of the unsupervised pipeline used for MS change detection.
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Figure 3.2: Illustration of the validation spaces.

Once a proper ground truth has been obtained, we compare the thresholded subtracted

image with the ground truth. Notice how, whenever the ground truth is moved, rounding

and interpolation errors can be introduced into the (displaced) ground truth mask. Con-

sidering the small size of the lesions compared to the entire image, these errors might affect

all subsequent evaluation and be difficult to discern from those errors attributable to the

lesion detection. We claim that the results obtained can vary when the ground truth is

modified even if the same transformation is used. We back this claim in the results section

by evaluating all the validation spaces described previously.

3.4 Preprocessing

Moraal et al. [85, 86] interpreted the success of their subtraction pipelines compared to the

other subtraction approaches as evidence that the quality of subtraction images relies on

the quality of the registration and intensity correction procedures [85]. In their subtraction

approaches [85, 86], they applied a nonparametric bias field correction. Moreover, they
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matched the brightness and contrast of all the follow-up images to the baseline images on

the basis of the signal intensity of the intracranial cavity (ICC). Furthermore, many other

studies concerning the MS lesion detection problem use similar preprocessing steps [46,

61, 17, 37, 118, 11].

Consequently, in our study, we included skull stripping, bias field correction, histogram

matching steps before the subtraction process. Moreover, we analyzed these processes as

well as different registration methods in detail to the point that, we computed the results

when: not using normalization or histogram matching (Original), using normalization but

not histogram matching (N), using histogram matching but not normalization (H), and

using both normalization and histogram matching (N+H). Furthermore, we also analyzed

the pipeline with different registration methods such as rigid registration, rigid half-way

registration and four different non-rigid registration methods. Note that, we also analysed

the performance when using scans separated by 12 months and 48 months.

3.4.1 Skull stripping

In this step, MR scans are processed in order to identify the ICC. The importance of this

step is twofold. First, it allows the limiting of the search space for lesions to internal brain

tissue. Second, it prevents the introduction of errors coming from the rest of the brain in

subsequent steps of the pipeline. Furthermore, Johnston et al. [57] suggested applying a

brain masking step before the inhomogeneity correction so that the correction would be

carried out only on those voxels belonging to the internal brain tissues.

There are various methods available to perform ICC extraction. Boesen et al. [16]

compared the performance of their novel brain extraction algorithm (McStrip) with three

other brain extraction algorithms widely used in the neuroimaging community: Statistical

Parametric Mapping (SPM), Brain Extraction Tool (BET) and Brain Surface Extractor

(BSE). Using manually stripped T1-w MRI brain volumes as the "gold standard", they

concluded that the McStrip outperformed SPM, BET and BSE methods. They also stated

that overall the results reported for volume and boundary metrics indicate that all four

algorithms provide reproducible results. On the other hand, Hartley et al. [47] compared

BSE and BET software on PD-w images and concluded that neither method has a definite

advantage over the other and both correlated well with the manually calculated intracranial

volume (TICV), though the BET software had large positive errors (overestimated TICV)

and very low negative errors compared to the BSE method.

Owing to fact that the McStrip algorithm is not publicly available and the differences
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(a) (b) (c)

Figure 3.3: An example slice of 3D BET Extraction: (a) brain with skull, (b) brain mask
extracted using the BET software, and (c) intracranial cavity of the brain image (ICC).

in accuracy are not significant when compared to other publicly available tools (BSE

and SPM), it is also prone to low negative errors, so in this work we decided to use the

BET (Brain Extraction Tool) algorithm1, which segments the brain from the non-brain

structures and also models the skull’s surface. The BET algorithm defines an intensity-

based estimation of the brain/non-brain threshold and lower/upper intensity values of the

image from the intensity histogram to obtain a rough initial mask. With this initial mask,

the center-of-gravity for the image is found. Afterwards, a triangular tessellation of a

sphere’s surface is initialized inside the brain and allows to deform slowly outward toward

the brain’s surface until the surface is well-spaced and smooth [110]. Figure 3.3 shows an

example of the result of applying this algorithm.

In the BET algorithm, two parameters are user-adjustable: the fractional intensity

threshold (FIT, default = 0.50) and the threshold gradient (TG, default = 0.0). Following

our experimental observations, we used default parameters and, instead of applying the

BET tool independently to all image sequences, applied it once to the PD-w images and

masked the result to the other sequences. Moreover, manual lesion annotations have been

made on this sequence. Hence, this step assumes that the various sequences are already

registered to the same space. Otherwise, the images should be co-registered either using a

rigid body or an affine registration [49, 91, 92, 40, 63]. Finally, since the output masks of

the baseline and follow-up images may be slightly different, we intersected them in order

to use only those voxels present in both.

1BET is part of the public FSL software.
http://www.fmrib.ox.ac.uk/analysis/research/bet/

http://www.fmrib.ox.ac.uk/analysis/research/bet/


64 Chapter 3. Temporal analysis proposal on MS lesion detection

3.4.2 Bias field correction

The bias field is a multiplicative smooth field that causes intensity inhomogeneities in

images due to imperfections in the image acquisition process often encountered in MR

imaging generally caused by the inhomogeneous RF excitation process, non-uniform recep-

tion sensitivity or electrodynamic interactions with the object [109]. This is an important

issue since tissue intensity varies with its location in the image. Therefore, in order to

the increase sensitivity to small changes, these intensity variations must be corrected in a

preprocessing step.

Despite the fact that other similar models in the literature [135] can be used, the most

common model in describing the multiplicative bias field [52] is shown:

v(x) = βu(x) + ε, (3.1)

where, at location x, v is the measured signal, u is the true signal emitted by the tissue, β

is the unknown multiplicative smooth bias field that causes intensity inhomogeneities and

ε is the noise assumed to be independent of the true signal and can be approximated by

a Gaussian distribution [109, 52, 135]. Note that, to simplify the computation, the noise

parameter (ε) is often ignored in the equation [52].

The methods concerning retrospective bias field correction can be classified into various

groups such as segmentation-based, filtering-based, surface fitting-based, histogram-based,

and other specific techniques. However, none of these methods has shown to be superior to

the others [52, 135]. On the other hand, a non-parametric non-uniform intensity normal-

ization method was proposed by Sled et al [109] particularly for MR images, called the N3

method. This algorithm is based on a high-frequency maximization that assumes a simple

parametric model (Gaussian) for the bias field and does not require a priori knowledge

like tissue segmentation. Furthermore, the N3 method has become a "de facto" standard

when other methods need comparing [135]. More recently, the N3 method was improved in

2010 by using an improved B-spline fitting and modifying the iterative optimization which

improved the convergence performance and was renamed the N4 method [126]. Therefore,

after the skull stripping, we used the N4 algorithm2 for this purpose.

An example of this procedure can be seen in Figure 3.4. The first row of Figure 3.4

shows the result of the N4 algorithm for one axial slice, while the second row shows the

2The N4 algorithm is part of the ITK library
http://www.itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImageFilter.html

http://www.itk.org/Doxygen/html/classitk_1_1N4BiasFieldCorrectionImageFilter.html
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(a) (b) (c)

(d)

Figure 3.4: Bias field correction: (a) ICC, (b) normalized image, and (c) computed bias
error of the slice. (d) shows the resulting bias error in the volume. High biased values can
be seen at the top and bottom of the volume. Red areas indicate positive bias fields, blue
areas indicate negative bias fields, and white areas no bias field.

result of applying it to the whole volume. Notice that the correction is different according

to the different parts of the brain.

3.4.3 Histogram matching

The next step in the pipeline is histogram matching. MR images taken from the same

patient at different times may appear different from each other, even if they are acquired

using the same scanning machine. This presents a problem when comparing two volumes

from the same patient since the actual meaning of each intensity value might vary from

one to the other. Therefore, the aim of this step is to map the grayscale intensity values

of the source image onto the grayscale range of the reference image. This is done by using

the technique known as histogram matching [89, 136, 115]. Histogram matching aims at

bringing together the intensity distribution of two images at a specified number of sample

values. The histogram matching method used in our pipeline was specifically designed

to normalize MR images of the same MR protocol [89]. As suggested by the authors, all

pixels with grayscale values smaller than the mean were excluded in order to obtain better

results3. Figure 3.5 shows an example of the result of applying this step.

3This software is part of the ITK library
http://www.itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1HistogramMatchingImageFilter.html

http://www.itk.org/SimpleITKDoxygen/html/classitk_1_1simple_1_1HistogramMatchingImageFilter.html
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(a) (b) (c)

Figure 3.5: Histogram Matching examples of 12M (first row) and 48M (second row). (a)
N4 normalized baseline image, (b) N4 normalized follow-up image, and (c) histogram
matched normalized follow-up image onto source image.

3.5 Registration

Once the brain has been extracted in both volumes, the bias field has been corrected, and

the images have been normalized by histogram matching, they are ready for the registra-

tion process. The goal of this step is to align the two MRI volumes so corresponding voxel

in both scans have the same physical spatial localization. Once this is achieved, differences

in intensity between both volumes will presumably be part of an active (appearing / disap-

pearing) lesion. Registration is done using PD-w images as this sequence obtained higher

similarity metrics after registration. Subsequently, the transformation matrix obtained is

applied to the other sequences as well as to the binary masks in order to move them all

to the same space.

3.5.1 Rigid registration

If we assume that there is no big difference between the two successive scans, and partic-

ularly if the effect of atrophy is small, then rigid body registration is well-suited for this

case. In rigid registration, images are spatially aligned using a rigid body transformation.

We used a 3D versor transform4 to define the transformation matrix between the images

4ITK 3D Versor Transform can be found at:
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html

http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html
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and is represented by a rigid rotation and translation in 3D space. The rotation is speci-

fied by a versor or unit quaternion, while the translation is represented by a vector. The

advantage of this notation is that it includes only 6 parameters (3 for the versor compo-

nents and 3 for the translation components), and therefore reduces the search space for

the optimizer.

Concerning the cost function, similarity metric mutual information (MI) has been widely

used in medical image registration [95] and in MR imaging [73]. It has been demonstrated

that those similarity measures based on joint entropy (MI, NMI) produce better consis-

tency and less sensitivity to the presence of extra-dural tissues such as the tissues in the

brain [51]. Furthermore, MI based metrics provide acceptable accuracy in the presence of

noise and RF inhomogeneity, and are the most suitable measures to determine a rigid body

transformation between serial MR images of the head [51]. Therefore, the registration step

in our pipeline is conducted with the MI metric proposed by Mattes et al. [76] as the cost

function. This cost function is minimized by using a specialized version of the regular step

gradient descent optimizer5. Lastly, as resampling the images requires an interpolation

method, B-spline interpolators produce remarkable results as well as running fast [66].

Furthermore, B-spline interpolators are preferable, particularly for those applications in

medical image processing that require high precision [67, 130]. As a consequence, we

decided to resample the images at their new coordinates employing the B-spline interpo-

lation [131, 132, 129], with the exception of the intermediate (internal) registration steps

that involve linear interpolation as suggested in the study by Bosc. et al [17].

3.5.2 Rigid halfway registration

Traditional registration approaches consist of registering one volume into the other. How-

ever, when analyzing the results of a subtraction approach using the registered image and

the reference one may result in many interpolation artifacts [70]. This happens because

the intensities of the moving volume are interpolated while those of the reference volume

are not. To avoid this issue, some authors proposed a solution known as halfway regis-

tration. In this scenario, both volumes are moved to an intermediate space, and a similar

interpolation effect is applied to both the moving and reference images [86].

For this purpose, instead of moving one image to another, we simply use the same

matrix obtained from the normal registration. However, this time we calculate half the

5ITK specialized step gradient descent optimizer for Versor Transform can be found at:
http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransformOptimizer.html

http://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransformOptimizer.html
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angle radian obtained from the versor component and half the translation parameters

and then, reversing them when necessary, align two images into a common space at their

halfway positions as done in Moraal et al [86].

3.5.3 Non-rigid registration

Deformable registration algorithms might introduce deformations in the lesions, which

for the purpose of this study, is not desirable. Nevertheless, depending on its basics, a

deformable algorithm might be useful in some cases, particularly when there are larger

changes between successive scans, such as when brain atrophy occurs. Therefore, if a

deformable registration algorithm is able to compensate the larger changes without sup-

pressing the lesions, this may improve the pipeline’s performance. For this purpose, we

also evaluate the pipeline with non-rigid registration techniques.

In the study by Diez et al. [32], the SyN and Nifty reg methods consistently outperformed

other non-rigid techniques in terms of the lesion overlap Dice coefficient and obtained

good values for the image similarity metrics, the sum of squared differences (SSD) and

normalized mutual information (NMI). Klein et al. [62] also demonstrated that the SyN

method obtained the highest rank for all tests when compared to other registration tools.

On the other hand, the ITK Demons and the Dramms registration performed well in terms

of NMI metric, however, though ITK demons ranked first in NMI metric, it produced

worse results in terms of the lesion overlap. Therefore, four different non-rigid registration

methods were especially chosen based on the study by Diez et al. [32]; Nifty registration6,

SyN registration7, Demons8 and Dramms9. All these methods were tested with rigid plus

affine initialization carried out with the ITK library.

The Nifty method

Nifty Reg is a B-spline based deformable algorithm that provides faster convergence. The

Nifty method includes graphics processing units (GPU) based implementation designed

to reduce the computational cost of cubic B-Spline methods. They use NMI as the cost

6Nifty Reg download at sourceforge,
http://sourceforge.net/projects/niftyreg/

7Advanced Normalization Tools webpage,
http://www.picsl.upenn.edu/ANTS/download.php

8ITK implementation can be downloaded at
http://www.insight-journal.org/browse/publication/154/

9Dramms can be downloaded at:
http://www.rad.upenn.edu/sbia/software/dramms/download.html

http://sourceforge.net/projects/niftyreg/
http://www.picsl.upenn.edu/ANTS/download.php
http://www.insight-journal.org/browse/publication/154/
http://www.rad.upenn.edu/sbia/software/dramms/download.html
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function that is minimized by using a conjugate gradient ascent optimization [81].

The SyN method

The SyN method is a symmetric deformable image registration method that uses cross-

correlation as the cost function within the space of diffeomorphic maps (topology pre-

serving maps) and relies on Euler-Lagrange equations in the optimization process. This

method particulary uses the cross-correlation formulation to provide the advantage of

symmetrizing the cross-correlation Euler-Lagrange equations. Therefore, the algorithm

provides inverse fields as well [8].

The Demons method

The Demons method is a non-rigid registration method based on Thirion’s demons [121]

and registers two images by computing the displacement field that maps the moving image

onto the fixed image. A displacement is a vector whose elements behave like floating point

scalars. The method encompasses techniques close to optical flow [69, 49]. Mattes mutual

information is used as the cost function and is minimized by a regular step gradient descent

optimizer.

The Dramms method

The Dramms method is based on the study by Ou et al. [90] and refers to a deformable

registration via attribute matching and mutual-saliency weighting. As stated by the au-

thors [90], the Dramms method bridges the gap between the traditional voxel-wise methods

and landmark/featured-based methods. Note that the landmark based methods are of-

ten considered to provide better registration but require expert annotations which is time

consuming and difficult to obtain. In practise, the authors try to automate determining

landmarks into the image. With the ’attribute matching’ term they refer to a rich set of

Gabor attributes assigned to each voxel, with the ’mutual-saliency weighting’ term they

make reference to a novel method that aims at giving more weight in the transformation

to more distinctive voxels so they can make use of distinctive voxels like the conventional

landmark based methods [74] used in image aligning. Therefore, they propose a gra-

dient descent based optimization that utilizes all the imaging voxels but with different

weights [90].
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3.6 Tissue segmentation and WM masking

The output of the subtraction step may yield a large number of false positives, most falling

outside the white matter. On the other hand, as stated in Chapter 1, only around 5-10% of

the lesions might involve gray matter [105] and approximately only 5% of the total lesion

volume [23] could be comprised of gray matter. Moreover, GM lesions are more obscure

and thus subtle and more difficult to detect in MR imaging [105]. As a consequence, we

apply a WM masking step in order to reduce the search space to only lesions within white

matter.

WM masks are computed before applying the registration step to avoid interpolation

errors when segmenting the tissues. Thus, the masks are registered and re-sampled by

using nearest neighbor interpolation. Finally, both WM masks defined in the baseline

and follow-up images are combined (see Figure 3.6 (b)). The combination is made by

applying the union operator (voxel-wise OR logical operator). Figure 3.6(c) shows the

final subtraction restricted to the white matter. Notice that the white regions located at

the border of the skull are now not considered as lesions. Note that, partial volume errors

may arise when a single voxel contains a mixture of multiple tissue values (generally at

the tissue’s boundaries), and these errors may cause undesired results [36, 46, 61, 139].

Therefore, the partial volume class should be included in the clustering algorithm to avoid

aggregating these voxels into the WM mask.

To obtain WM masks, we employ and test two different approaches. In the former

approach, we propose an algorithm using single modalities. For this purpose, we use FSL

tools10 based on the segmentation approach in the study by Zhang et al. [151]. In the

latter approach, we follow a more sophisticated strategy that combines atlas information

and multisequence information obtained from T1-w, T2-w and PD-w images.

3.6.1 Tissue segmentation using single modalities

FSL segmentation tools segment 3D brain MR images based on the hidden Markov random

fields (HMRF) model fitting by the expectation-maximization (EM) algorithm [151] using

Gaussian estimation. The initial parameters for the EM algorithm, the mean and standard

deviations for each class type, are determined after an initial estimation of the tissues using

the discriminant based thresholding method proposed by Otsu [88]. The advantage of

10FSL (FAST: FMRIB’s Automated Segmentation Tool) :
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
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(a) (b) (c)

Figure 3.6: Subtracted image and WM masking: (a) result of the subtraction between the
images 3.5(a) and 3.5(c), (b) (union) WM mask obtained by an atlas-based supervised
algorithm using PD-w, T1-w, and T2-w images, and (c) WM masked subtracted image.
Note that new and enlarging lesions appear as white spots in the final image.

the HMRF model is that the tissue information is encoded through the mutual influences

of neighboring sites, therefore, partial volumes can also be determined. We obtain a WM

mask for T1-w sequences with and without partial volumes. Additionally, we show the

results for WM masks obtained from T2-w and PD-w modalities in the proposed pipeline.

3.6.2 Atlas based multi-modal tissue classification

In this approach, the WM mask is obtained using an atlas-based multi-spectral tissue

segmentation algorithm that uses PD-w, T1-w, and T2-w images [20]. This algorithm,

similar to the study by Souplet et al [113], uses an Expectation-Maximization algorithm

to maximize the log-likelihood between real MRI data and a Gaussian model of four classes.

The four classes considered are: pure tissues (WM, GM, CSF) and a partial volume class

(GM / CSF). For the pure tissue classes, prior probabilities are provided by the Gaussian

distributions guided by an atlas (ICBM atlas of 452 patients11), while for the partial

volume class, a weighted atlas of CSF and GM is used. The algorithm creates a PV atlas

that is used during the expectation step as a prior. The priors are redefined by a similarity

map computed during registration in order to avoid a segmentation completely driven by

the atlas. Finally, in order to improve the tissue parameter estimation, a threshold and a

trimmed likelihood estimator are used to compute the mean and covariance matrix during

the maximization step.

11Publicly available at
http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml

http://www.loni.ucla.edu/ICBM/Downloads/Downloads_Atlases.shtml
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3.7 3D subtraction

Once the volumes are aligned, the 3D voxel-wise subtraction can be applied. If the follow-

up image is subtracted by the baseline image, positive activity (new or enlarging lesions)

appears as brighter areas while negative activity (resolving or shrinking lesions) appears as

darker areas against the gray background. An example of a subtracted 2D slice is shown

in Figure 3.6(a). A brighter area corresponding to a new lesion can be observed.

3.8 Thresholding and locating of WM candidate lesions

Two different types of thresholds are proposed in our proposal: intensity and size thresh-

olds. The first one allows us to select the regions more likely to contain MS lesion changes,

while the second allows us to discard small spots that may appear due to image artifacts

or small registration misalignments.

We set a minimum number of voxels greater than 3 as the size threshold. This is

also consistent with previous approaches, where authors also mentioned that small spots

should not be considered since most of them were caused by spurious noise [119, 85]. Notice

that intensity and size thresholds should be adjusted with respect to each other, so that

a lower intensity threshold may require a higher threshold and vice versa. On the other

hand, as the selection of intensity-based threshold can be made empirically by the experts,

we aim at determining an automatic threshold providing a satisfactory trade-off between

sensitivity and specificity. Thus, we propose a fully automatic unsupervised method for

intensity-based thresholding.

3.8.1 Gaussian filtering

We apply a low pass Gaussian filter to the subtraction image before thresholding and to the

baseline and follow-up images before postprocessing, hence, the usage of Gaussian filtering

here is twofold. Firstly, the Gaussian filter enables us to reduce noise in the subtraction

image and, moreover, it allows the pipeline to include neighborhood information into

the lesion area when carrying out post processing steps on the baseline and follow-up

images. To incorporate spatial information of the neighboring voxels, Sweeney et al. [118]

proposed a Gaussian kernel with window size of 3 mm. On the other hand, notice also

that shape and size of the lesions determined by the pipeline can be ill-posed depending on

the threshold or method used, thus, incorporating spatial information of the neighboring
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voxels might help to compensate this shortcoming. Consequently, using the information

from tissue surrounding the lesion might improve sensitivity. Therefore, as done in previous

studies [118], we also relax the subtraction images obtained and smooth them by applying

a 3D Gaussian filter with a window size of 3 voxel radius and a σ value of 0.5. The selection

of the window size and σ values will be discussed in the experimental section.

3.8.2 Unsupervised thresholding

In order to fix the threshold automatically, we propose an intensity thresholding method

based on the average intensity and standard deviation of the positive activity in the union

WM tissue in subtracted images. Notice that Atlas based multi-modal tissue classifica-

tion [113, 20] uses an EM algorithm and a Gaussian model of four classes, while FSL

segmentation tools [151] segment 3D brain MR images based on HMRF model fitting by

an EM algorithm using Gaussian estimation. Therefore, both models assume that WM

tissue follows a Gaussian distribution. Thus, lesions can be taken as outliers in WM tissue

with respect to a Gaussian distribution, which should appear as hyperintense areas in

the subtraction images. Therefore, we consider MS lesion detections as those voxels that

have intensity values in the subtracted images larger than the mean and multiplication

of the standard deviation by a constant (see Equation 3.2 and 3.3). The selection of the

constant parameter (β) with respect to trade-off between the specificity and sensitivity

will be analyzed in the experimental section.

σ =

√

√

√

√

1
Nvoxels

Nvoxels
∑

i=1

(I(xi) − µ)2 where,

µ =
1

Nvoxels

Nvoxels
∑

i=1

(I(xi)) and I(xi) > 0

(3.2)

threshold = µ + βσ , (3.3)

In this equations Nvoxels is the total number of positively active voxels and I(xi) is the

voxel intensity at the WM masked subtracted image.

3.8.3 Supervised thresholding

In this scenario, we propose a simple learning strategy to determine a threshold for every

particular case using a pattern recognition approach. Firstly, the threshold selection is
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performed by maximizing the Dice coefficient. Afterwards, for each training image, the

average intensity of the positive activity (i.e. the positive values inside the white matter

masked region) is computed. Following a leave-one-patient-out validation strategy, when

a new case is tested, its average intensity of positive activity is computed and compared

to the learnt ones using a K-Nearest Neighbor classifier. When K = 1, the most similar

threshold is used, while for K > 1, the automatic threshold is computed as the average of

the thresholds obtained for the K nearest cases.

3.9 Postprocessing: refining candidate lesions

After the thresholding step based on Equation 3.3, the binary image outcome may contain

many false positives. In order to reduce the rate of these false positive detections we

introduce two different postprocessing approaches: supervised and unsupervised intensity

postprocessing steps, as well as the combination of PD-w and T2-w images in a supervised

and unsupervised way.

3.9.1 Unsupervised pipeline

In order to reduce the rate of false positive detections in an unsupervised way, we introduce

two simple postprocessing rules that analyze the original image intensities of candidate

regions. The candidate region slices are removed if all the slices in the 3D region are

determined as false positive according to the constraints.

The first constraint has the goal of discarding those regions detected in the subtracted

images due to very low intensity values in the baseline image, for example, candidate

regions that resulted from inaccuracies in the skull extraction process and misclassified

during the WM masking. These regions turn out to be false positives even though they do

not present high intensities in the follow-up image. To discard these regions, we compute

the mean and standard deviation of the intensities of all the candidate regions in the

original baseline image and remove those that have an intensity lower than µBaseline
AllROIs -

2σBaseline
AllROIs (BZS < −2, equation 3.4).

Baseline ZScore = BZS =
µBaseline

ROI − µBaseline
AllROIs

σBaseline
AllROIs

(3.4)

On the other hand, the second postprocessing step aims at including the local intensity

neighbor information for each candidate region in both the baseline and follow-up images.
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This is done in order to remove any detected false regions created by using the global

automated thresholding process. Notice that, when experts try to locate a lesion, they

analyze the image both globally and locally since the white matter tissue is not smooth

all the time and the global hypointensity areas may not necessarily refer to a lesion when

looking locally, especially those voxels that have relatively low signals. In this case, we

enlarged the candidate regions by applying a dilation operation to account for the local

neighborhood. For each dilated candidate region we analyse, the coherence of the mean

intensity of the detected area with the neighboring voxels. For the baseline image, we

remove all the regions with a ratio smaller than 0.95 (BNR < 0.95, Equation 3.5). Notice

that if the candidate region is surrounded by WM, the ratio should be close to 1. Moreover,

we applied a similar process to the follow-up images. In this case, the mean intensity of

the candidate lesion area should not be smaller than that of its neighbors. Therefore, if the

mean intensity of the lesion area is smaller than the mean of its neighbors (FNR > 1.0,

Equation 3.6) the region should be removed (see Figure 3.12).

Baseline Neighborhood Ratio = BNR =
µBaseline

ROI

µBaseline
ROINeighbor

, (3.5)

and

Follow − up Neighborhood Ratio = FNR =
µ

F ollow−up
ROI

µ
F ollow−up
ROINeighbor

, (3.6)

where µROI is the mean intensity of the lesion area and µROINeighbor is the mean intensity

of the tissue surrounding the lesion.

Two different types of false positives are shown in Figures 3.7 and 3.8. In Figure 3.7 a

false positive that is caused by intensity differences between CSF tissues on baseline and

follow-up images is shown. Notice that the ROI on the follow-up image is not a lesion and

BNR and BZS values are low. On the other hand, in Figure 3.8 the ROI turned out to be

a false positive due to the low signal on the baseline image although it does not present

high intensities in the follow-up image, thus, the FNR is greater than 1.0. See also Figures

3.9 and 3.10 for an FP (non-brain tissue) caused by an inaccuracy in the skull extraction

process and notice that the ROI has a low BZS value in the T2-w sequence and the same

ROI has low BNR and BZS values in the PD-w sequence. Note that, the constraints are

applied to both PD-w and T2-w images separately.

The postprocessing thresholds were defined empirically within the cross-validation pro-

cess. The 12M dataset was used to perform the parameter optimization with a 2-fold

cross-validation scheme where the data was divided in two groups of five patients each.
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Figure 3.7: BNR, FNR and BZS features on a FP caused by CSF. (a) Subtraction image,
(b) Baseline image, (c) Follow-up Image, (a1) Candidate lesion area and Region of inter-
est (ROI) after thresholding, (b1) ROI in the baseline image (c1) ROI in the follow-up
image.

Figure 3.8: BNR, FNR and BZS features on a FP caused by low signal on baseline image.
(a) Subtraction image, (b) Baseline image, (c) Follow-up Image, (a1) Candidate lesion
area and Region of interest (ROI) after thresholding, (b1) ROI in the baseline image (c1)
ROI in the follow-up image.

One group was retained as the testing data and the other was used for training. We

repeated the process changing the fold used for training and testing, using therefore all

the cases once as validation data. The DSCR evaluation measure was used to analyze the

results and optimize the different thresholds. Afterwards, this 12M threshold configura-

tion was applied to all the 48M dataset (not used for parameter optimization purposes)

to provide the results shown in this work.

Combination of PD-w and T2-w images

Initially, we analyzed the unsupervised pipeline using the available image modalities in

our dataset individually (T1-w, T2-w and PD images). Due to the fact that PD-w and
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Figure 3.9: BNR, FNR and BZS features on a FP caused by an inaccuracy in the skull
extraction process (non-brain tissue in T2-w). (a) Subtraction image, (b) Baseline im-
age, (c) Follow-up Image, (a1) Candidate lesion area and Region of interest (ROI) after
thresholding, (b1) ROI in the baseline image (c1) ROI in the follow-up image.

Figure 3.10: BNR, FNR and BZS features on a FP caused by an inaccuracy in the skull
extraction process (non-brain tissue in PD-w). (a) Subtraction image, (b) Baseline im-
age, (c) Follow-up Image, (a1) Candidate lesion area and Region of interest (ROI) after
thresholding, (b1) ROI in the baseline image (c1) ROI in the follow-up image.

T2-w images are actually T2-w sequences, MS lesions show hyperintense areas (reflecting

their increased water content) in these modalities, while false positive regions can vary

depending on the sequence type. Therefore, most of the false positives caused by the

scanner depending on the modality used can be removed by combining them. On the

other hand, MS lesions were not always visible in T1-w images. Consequently, we decided

to combine the use of PD-w and T2-w sequences to eliminate any FP detections and also

to refine the MS lesion candidates.

After the unsupervised postprocessing of the sequences, in order to eliminate individual

artifacts in the PD-w and T2-w images, we used a straightforward solution which is to

join both results obtained in the PD-w and T2-w images using the intersection of the

subtracted images. By doing this, only those lesions that appear in both PD-w and T2-
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w images are considered as new lesions. Notice that the main purpose of this step is

to reduce FP detections rather than increasing sensitivity since this type of subtraction

pipeline suffers from a high number of FP detections in individual sequences [70].

One should also notice that owing to the fact that PD-w and T2-w images are acquired

simultaneously, we can strongly assume that both images are already in the same space

and well-suited for combining, also avoiding multi-modal misregistration errors.

3.9.2 Supervised pipeline

As stated in Chapter 2 section 2.3.1, first order-statistics (individual pixel values such as

mean and variance of the gray level) and second order statistics (the properties of pixel

pairs) can be used in a supervised classification for lesion detection [5, 149, 148, 60, 150,

102]. Using the leave-one-patient-out strategy, the SVM and KNN classifiers are employed

to perform the classification of the candidate regions. The main body of the supervised

pipeline in this work, schematically depicted in Figure 3.11.

Unlike the unsupervised approach, here we let a classifier determine the false posi-

tive regions using multisequence information instead of directly intersecting the binary

subtracted PD-w and T2-w images. For this purpose, we collect the PD-w and T2-w

information of the ROI in the baseline and follow-up images in a supervised algorithm

where we have a feature vector for each ROI. Consequently, we combine features from

both PD-w and T2-w modalities concatenating the feature vectors.

Supervised pipeline using intensity features

In the first place, we analyze the previous unsupervised pipeline in a supervised manner

using the same features (FNR, BNR and BZS) obtained for the postprocessing step. How-

ever, we use here a supervised algorithm to remove the false positive regions instead of

using fixed FNR, BNR (see also Figures 3.12(b2) and 3.12(c2)) and BZS constraints. By

doing this, we also propose evaluating the pipeline without using fixed constraints. To

compare this pipeline with the previous unsupervised pipeline properly, we trained 12M

and 48M datasets separately.
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Supervised pipeline using GLCM features

Secondly, using second order statistics, we include texture features of the candidate lesions

obtained with a gray level co-occurrence matrix (GLCM) [150]. Although the selection

of the ROI is typically carried out manually by experts, for this purpose, we make use

of the candidate lesions obtained by our pipeline using enlarged hypothetical rectangles

(see Figures 3.12(b3) and 3.12(c3)). In this sense, the energy, contrast and homogeneity

properties of the ROI in the baseline and follow-up images are included in the supervised

classifier. We re-scaled the ROI matrices by using 8 gray levels (see Figures 3.12(b4) and

3.12(c4)). Normalizing the intensity values, we used the mean intensity of the baseline

and follow-up ROIs as the lower limit intensity value and upper limit intensity value

respectively. Furthermore, in order to carry out an isotropic (bi-directional) approach, we

obtained the mean energy, contrast and homogeneity values by including all the neighbors

of the voxel of interest (8 directions). We have illustrated a sample analysis of a new lesion

in Figure 3.12. Notice that, concerning a new lesion candidate, the ROI in the follow-

up image (new lesion) involves a stronger contrast but lower energy and homogeneity

compared to the same ROI in the baseline image. As a consequence, GLCM features are

used in the supervised classifier to determine lesions. We trained the data using all the

patients applying the leave-one-patient-out strategy.

3.10 Summary

In this chapter, we have proposed a change detection approach to detect new lesions

based on a subtraction method. First of all, we have presented a reliable ground truth

and validation method mentioned in Chapter 2. The effect of the validation spaces will

be analyzed in the next chapter. We have also presented a framework including an initial

preprocessing pipeline that comprises several steps to reduce image artifacts and MRI

issues introduced in Chapters 1 and 2. Furthermore, we have presented several different

methods in every step of the pipeline to improve the performance such as various regis-

tration and WM masking methods which will also be evaluated in the next chapter. A

novel strategy for automating the threshold of the subtraction image has also been ad-

dressed in this chapter. We proposed using the mean and standard deviation of the active

positive activity in the subtraction, and, have presented a fully automated unsupervised

framework and then re-established it in a supervised manner. Afterwards, we presented

another supervised framework including texture features of the candidate lesions. In this
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Figure 3.11: Flowchart of the supervised pipeline used for MS change detection.
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Figure 3.12: An example of MS lesion detection postprocessing: (a) Subtraction image,
(b) Baseline image, (c) Follow-up Image, (a1) Candidate lesion area, (a2) Region of
interest (ROI), (m1) Hypothetical rectangle to obtain texture features of the lesion’s ROI,
(m2) Neighborhood mask to obtain the ratio between the lesion and its surrounding tissue,
(b1) ROI in the baseline image (c1) ROI in the follow-up image, (b2) The intensities
in the neighborhood mask in the baseline image to obtain the BNR value, (c2) The
intensities in the neighborhood mask in the follow-up image to obtain the FNR value,
(b3-b4) Texture information in the baseline image, (c3-c4) Texture information in the
follow-up image.

section, we will summarize the pipelines to be evaluated in the next chapter and highlight

our contributions.

3.10.1 Preprocesing pipeline

Before the detection of new lesions, different preprocessing steps must be applied to prepare

the images for further analysis. The first step includes removal of the skull which is

applied by means of the publicly available BET tool [110], and is a part of the FSL

toolbox. Afterwards, we applied a bias field correction based on the N4 method, which

is an improved version of the N3 method from the study by Tustison et al. [126]. In the
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following step, we aimed at bringing together the intensity distribution of the two images

based on histogram matching [89, 136, 115] that maps the grayscale intensity values in

the source image into the grayscale range of the reference image.

3.10.2 Registration of the images

Registration of the images is the most important step in a change detection approach.

Hence, here we have proposed two different approaches; the rigid registration and non-

rigid (deformable) registration. We considered the non-rigid registration methods to be

able to deal with the brain atrophy changes that usually occur if the time interval between

images is long (in our case 48M images). For this purpose, we studied 4 non-rigid methods

that will be evaluated in the experimental section. On the other hand, concerning the

rigid registration, we additionally presented halfway registration to remove interpolation

artifacts.

3.10.3 White matter segmentation

We applied a WM masking step in order to reduce the search space for lesions only within

white matter. We employed and tested two different approaches in the pipeline. In the

first approach, we used a method based on single modalities with and without partial

volume correction. We will analyze this strategy comparing the WM masks obtained from

PD-w, T1-w and T2-w images separately. In the second approach, we included an atlas

and the multisequence information on the PD-w, T1-w, T2-w images based on the study

done by Souplet et al [113].

3.10.4 Thresholding of the subtraction image

Although determining the threshold could be done empirically by experts, here we pre-

sented two different automatic thresholding methods. In the unsupervised approach, we

proposed an automated threshold providing a convenient trade-off between sensitivity and

specificity. We considered MS lesion detections as those voxels that have intensity values

in the subtracted images larger than the mean and multiplication of the standard devia-

tion by a constant that will be evaluated in the next chapter. Afterwards, we compared

this method with a supervised approach that relies on training the average intensity of

positive activity and maximizing the Dice coefficient.
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3.10.5 Postprocessing

Since the binary image outcome may introduce many false positives, we tried to reduce the

rate of false positive detections by applying postprocessing methods. For this purpose,

we removed the low intensity values in the baseline image and used the local intensity

neighbor information for each candidate region in both the baseline and follow-up images to

incorporate single time point segmentation in addition to a subtracted image and to avoid

the errors caused mainly by the global thresholding. Afterwards, we also re-established

this framework using supervised algorithms. Further, we examined the candidate lesions

by using texture information that will also be evaluated in the experimental section. In the

unsupervised approach, we joined both results obtained from PD-w and T2-w images using

the intersection of the subtracted images after the postprocessing step. In contrast, in the

supervised approaches, we used classifiers to determine lesions, including the information

obtained from the ROIs in both the PD-w and T2-w sequences.
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Chapter 4

Experimental results

4.1 Evaluation

As introduced in Chapter 2, the use of different data sets and evaluation measures has

been a major obstacle to reviewing lesion detection methods. Ideally, approaches should

be applied to a common database and compared to a ground truth. This is, however,

very difficult due to the lack of common public databases of real images along with several

controls and their ground truths and the fact that the methods are not publicly available.

For the study carried out in this work, we follow the strategy of validation with the

ground truth of new lesions in follow-up images as described in Chapter 2 section 2.7.3.

In this sense, only the annotations on the follow-up images were used to evaluate the

pipeline. All annotations were made on PD-w images and semiautomatically delineated

using JIM c© software1. This software allows experts to manually define the contours of

the MS lesions in the MR images.

In this chapter, after introducing the database we used to evaluate our proposals de-

scribed in Chapter 3, we will present the evaluation measures that will be used in the

analysis of the pipeline. Finally, we will present a comparison with the state of the art

methods and a discussion of the results obtained, pointing out the important aspects of

the proposed contributions.

4.2 Study population

Our database consists of data from 4 healthy controls and 20 different patients with

clinically confirmed MS. Each patient underwent MR imaging using the same protocol

1Xinapse Systems, JIM software webpage, http://www.xinapse.com/home.php.
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(T1-w, T2-w and PD-w). The scanner used was a 1.5T Siemens Simphony Quantum

scanner, with 2D conventional spin-echo T1-w (TR 450 ms, TE 17 ms), and dual echo PD

T2-w (TR 3750 ms, TE 14 / 86 ms). The field of view of the scans was 256 × 256 × 46

(192 × 256 for two patients at 12M and 244 × 320 for the control image of two patients in

the 48M set), resulting in a roughly 1 × 1mm in-plane pixel size. The section thickness

was 3mm for all the sequences.

Two different MRI datasets acquired from MS patients can be distinguished according

to the elapsed time between the patients’ explorations. The first set (12M) is composed of

10 patients who underwent two studies acquired one year apart. On the other hand, the

second set (48M) is composed of 10 different patients’ studies acquired four years apart.

Lesions in the baseline images were fully annotated by a trained technician and confirmed

by expert radiologists. In contrast, the follow-up images, which were annotated by the

same expert technician, included only the annotation of new lesions. In order to validate

the new lesions, only the annotations on the follow-up images determined by experts were

used to evaluate the pipeline. The healthy control dataset is composed of patients’ studies

acquired 1 years apart.

The 12M data contains a total of 177 lesions distributed as 53.7% small (3-10 voxels of

which 62.1% had 3-6 voxels), 22.0% small-medium (11-20 voxels), 17.0% medium (21-50

voxels), 5.6% large (51-100 voxels), and 1.7% very-large lesions (101+ voxels). On the

other hand, the 48M data contains a total of 152 lesions, 26.3% small (of which 62.5%

had 3-6 voxels), 24.3% small-medium, 28.9% medium, 10.5% large and 9.9% very-large

lesions. The aim of this grouping is to analyze the performance of the pipeline according

to the different lesion sizes. A more detailed distribution of the 12M and 48M datasets

can be found in Tables 4.1 and 4.2, respectively. Note that, 1 voxel refers to 0, 003cc in a

1 × 1mm in-plane pixel size with 3mm thickness.

The purpose of each set is different. With the first set (12M), we aim at evaluating the

pipeline in a situation that is frequent in clinical practice. The main challenges of this sce-

nario are: on the one hand, natural changes in brain tissues need to be discriminated from

lesion growth, while, on the other hand, this lesion growth is, in this test set, very small,

hence the algorithm needs to be able to detect small pathological changes. The second

set of cases (48M) allows us to evaluate the pipeline in a much more extreme situation.

In this scenario the long time elapsed between studies produces greater differences due

to natural changes in the brain’s morphology (i.e. atrophy). These changes are difficult

to compensate for when registering the images and could compromise the performance of
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Table 4.1: Study population for the 12M dataset. N: new ground truth lesions, Range:
range for each of the lesion categories, Median: median number of lesions for each of the
lesion categories. All lesion sizes defined in voxels: small (3-10); small-medium (11-20);
medium (21-50); large (51-100); very-large (101+).

Size
3-6 7-10 11-20 21-50 51-100 101+

N 59 36 39 30 10 3
Range 0..19 0..18 0..9 0..9 0..4 0..1

Median 3.5 1.5 3 2 1 0
Patient1 1 0 0 2 0 0
Patient2 3 0 5 1 1 0
Patient3 11 7 3 2 1 0
Patient4 0 1 2 0 0 0
Patient5 0 0 3 4 0 0
Patient6 4 3 6 7 2 1
Patient7 1 1 1 0 0 0
Patient8 19 18 9 4 1 0
Patient9 13 2 7 9 4 1
Patient10 7 4 3 1 1 1

the pipeline. Therefore, it poses an even more challenging situation for the subtraction

pipelines. In addition, further tests of the methodology were performed using an MRI

dataset of 4 healthy controls with paired MRI scans.

4.3 Evaluation measures

In Chapter 2, we described different measures that have been used in the literature. From

this analysis it was clear that the average inter-scan and the inter- and intra-rater coef-

ficient of variation (COV) measures are widely used when the evaluation of the pipeline

is carried out by visual inspection. On the other hand, there is a clear tendency to use

sensitivity (true positive rate (TPR)), the false discovery rate (FDR) and Dice overlap co-

efficient (DSC) measures, particulary for a quantitative analysis of detection. Therefore,

we evaluated our pipelines using these measures in a quantitative validation computed as

follows:

Sensitivity =
TP

TP + FN
, (4.1)

and

False Discovery Rate (FDR) =
FP

FP + TP
, (4.2)

where TP, FN and FP refer to true positive, false negative and false positive detections,
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Table 4.2: Study population for the 48M dataset. N: new ground truth lesions, Range:
range for each of the lesion categories, Median: median number of lesions for each of the
lesion categories. All lesion sizes defined in voxels: small (3-10); small-medium (11-20);
medium (21-50); large (51-100); very-large (101+).

Size
3-6 7-10 11-20 21-50 51-100 101+

N 25 15 37 44 16 15
Range 0..4 0..5 0..7 1..13 0..6 0..7

Median 2.5 1 3.5 3.5 1 1
Patient11 4 2 7 2 1 1
Patient12 2 2 0 1 1 0
Patient13 1 3 6 6 0 0
Patient14 2 5 5 13 6 7
Patient15 4 0 2 5 1 1
Patient16 1 1 3 3 0 1
Patient17 0 0 4 6 2 3
Patient18 3 1 1 1 1 1
Patient19 4 1 2 4 1 1
Patient20 4 0 7 3 3 0

respectively. We considered a new lesion as detected correctly (TP) when there is a region

detected by the pipeline sharing at least 1 voxel with the corresponding ground truth

lesion. Likewise, a detection was considered an FP when there was no intersection between

the detected lesion and the ground truth lesions by the automatic pipeline. Only lesions

detected inside the WM mask were taken into account when computing the sensitivity

and the Dice coefficient. A DSC, which is a common overlap metric between two binary

masks, is computed as

DSC =
2 · |A ∩ B|

|A| + |B|
=

2 × TP

2 × TP + FP + FN
, (4.3)

where A represents the automatic segmentation mask and B the manual segmentation

done by the expert. The Dice coefficient can be computed in different ways:

• Voxel-wise DSC (DSCV). This evaluation is performed by making a voxel-to-voxel

comparison for lesion segmentation. The maximum value (1.0) is only reached when

both images are equal (the automated detected lesions are totally matched with

the manually annotated lesions). However, this maximum value is difficult to reach

in practice, also obtaining low values for this measure is usual due to the inherent

difficulty of the delineation process. Moreover, even if two lesions are perfectly

matched but shifted by only a few voxels due to registration errors, the overlap

will drastically decrease providing a very low value even though the lesion has been
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detected and even had the right volume.

• Region-wise DSC (DSCR). The evaluation in this case is made at a region level:

a TP occurs whenever the overlap between real and automatically located lesions

exceeds a prefixed minimum. This measure is useful to evaluate the detection, but

it is not a reliable segmentation measure (lesion delineation), since the size of the

region is not considered.

Furthermore, on account of a more reliable validation, similar to Elliott et al. [37], we

also studied the performance of our approach according to different lesion sizes. We used a

similar size division, except for the small size set, where we distinguish between lesions of

3-6 voxels and lesions of 7-10 voxels. This additional division is necessary since we have a

large proportion of small lesions and, hence, we provide more details on these challenging

detections.

4.4 Evaluating the validation space

We first evaluate the effect of the space where the evaluation is performed. In order to do

this in an automatic way, the threshold selection is performed by maximizing the DSCV

and DSCR coefficients individually for each case (the best possible threshold). We used

this strategy based on the existence of a ground-truth image in order to emulate an expert’s

supervision. Figure 4.1 shows the algorithm’s performance in terms of DSCV and DSCR

detailing, for each of these measures, the result when using the validation space computed

by the four registration strategies mentioned in Section 3.3. The figure shows how both

reverse and halfway reverse registration performed similarly and obtained better results

than the other two strategies. As for direct strategies (NW and HW), worse results were

obtained with normal (NW) registration.

Hypothesis tests proved to be inconclusive, however, reverse strategies clearly outper-

formed direct ones. For example, RW obtained better results than NW in terms of DSC

values in almost all cases. In some cases, these differences reached a perceptual difference.

The reason why this behavior is not clearly supported by hypothesis tests is that the vari-

ability inside the data is very high, as can be seen in Figure 4.1. Consequently, although

a clear behavior can be observed in the data, the diverse nature of our data base prevents

us from using classical statistical inference.

Two main sources for errors in terms of validation can be identified. The first are
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Figure 4.1: Comparison of the registration methods on different validation spaces. (a)
methods on PD-w sequences, (b) methods on T2-w sequences, Normal or direct registration
(NW): the follow-up image is rigidly transformed to match the baseline study. The same
transformation is applied to ground truth data, Inverse or Reverse registration (RW): the
baseline image undergoes rigid transformation towards the follow-up image. The ground
truth need not be transformed, Half-way registration (HW): the half-way registration
where both the baseline and follow-up images undergo rigid transformation towards an
intermediate space. The ground truth image is transformed using the same transformation
as the follow-up image and Half-way Reverse registration (HWR): the same as the previous
one except that the subtraction performed in the half-way space is rigidly transformed to
the follow-up space so no transformation of the ground truth images is necessary.

interpolation errors and are introduced every time an image is moved. Consequently,

all validation spaces contain them, although halfway approaches (HW and HWR) are

expected to diminish their importance. The second type of error appears whenever we

resample the ground truth images. Only inverse approaches (RW and HWR) are free from

these errors. Looking at the results, an interesting fact that stands out is that the RW and

HWR validation obtained the best results. For RW, this happens despite the fact that it

does not reduce the interpolation effects in the way that HW and HWR do. This leads us

to think that the negative effects of transforming ground truth data dominate tthe usual

interpolation effects. This becomes clearer when comparing HW and HWR. Despite the

fact that both use the same transformation matrix for registration, the HWR space has

slightly better results (Figure 4.1).

Additionally, in some cases, HWR outperformed even RW and obtained the best result

in all the validation spaces. However, it is still difficult to get a clear picture of the

reduction of interpolation errors brought on by halfway approaches. The reason for this is
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that halfway approaches only reduce and do not completely eliminate interpolation errors

and no approach exists, in the fashion that happens with ground truth deformation errors

that is free of them.

In summary, we claim that RW and HWR obtained better results because they allow a

voxel-to-voxel validation without registering (modifying) the ground truth image. There-

fore, in the following subsections, we present the results of reverse registration in order to

elaborate on the performance of our pipeline. Similar trends were observed for HWR.

4.5 Evaluating the preprocessing steps

In order not to bias the impact of the preprocessing steps, we evaluated the bias field cor-

rection (normalization) and the histogram matching steps without applying the proposed

automated thresholding, the PD-w T2-w combination, Gaussian filtering or any postpro-

cessing. By this means we examined the impact of the preprocessing steps on PD-w and

T2-w images separately based on the best possible threshold obtained by maximizing the

DSCV and DSCR values using the ground truth on separate sequences.

Figure 4.2 illustrates the results obtained by the pipeline with and without normalization

(bias field correction) and histogram matching. The results showed a distinct behavior

between the two data sets. For instance, for the 12M data set, the differences regarding the

use of the preprocessing steps were low. In terms of the DSCV and DSCR values, the use

of the normalization step slightly improved the pipeline’s performance, while histogram

matching did not provide any significant difference. This was to be expected since the

baseline and follow-up scans analyzed were acquired with the same scanning machine and

protocol producing similar intensities for both scans.

In contrast, for the 48M data set, the results showed that both the normalization and

histogram matching steps improved the performance particulary for PD-w images. Basi-

cally, the results obtained without any preprocessing and even after normalization were

very bad. This can also be explained by scanning issues: images acquired by the scanners

may differ more in terms of intensity after long time periods. This might happen because

of a different performance of the scanner due to wear-and-tear, in other words extensive

usage. Therefore, a histogram matching step between the two scans is both necessary and

provides a greater improvement than with the 12M case. Once this step has been applied,

results improve greatly and reach values similar to those obtained for 12M patients. Even

further improvement is obtained when applying both histogram matching and normaliza-
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Figure 4.2: Analysis of preprocessing steps’ performance in the pipeline. PD-w images
from scans separated by (a) 12 months and (c) 48 months, and T2-w images from scans
separated by (b) 12 months and (d) 48 months were used. Original (Org.): the pipeline
without a bias field correction or histogram matching; Normalized (N): the pipeline with a
bias field correction but without histogram matching; Histogram Matched (H): the pipeline
with histogram matching but without a bias field correction; pipeline (N + H): the full
pipeline including both histogram matching and a bias field correction.

tion. Figure 4.2 shows how the the pipeline with all the preprocessing steps reaches similar

results for 48M and 12M patients.

In general, the performance of the pipeline was slightly higher for 12M images and

significantly higher for 48M images when using both a bias field correction and the his-

togram matching steps (N+H) together, in particular for PD-w images while the bias field

correction had a relatively small effect on T2-w images.
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Figure 4.3: Lesion Sensitivity vs. False Discovery Rate for different operating points
(12M).

4.6 Automated thresholding

4.6.1 Unsupervised thresholding

Before analyzing the results obtained for both 12M and 48M datasets, we present the

procedure used to define the best operating point (parameter setting) of our approach.

The 12M dataset was used to perform the training of a 2-fold cross-validation scheme

where the data was divided into 2 groups of 5 patients each. One group was retained as

the testing data and the other was used for training. We repeated the process changing the

fold used for training and testing, using, therefore, all the cases once as validation data.

The DSCR evaluation measure was used to analyze the results and optimize the various

thresholds. Figure 4.3 shows the detection performance at different operating points.

With these experiments, we observed that the threshold defined by µ + 5σ provided the

best operating point for our approach in all tests. The postprocessing thresholds were

also defined empirically in the cross-validation process. Afterwards, this 12M threshold

configuration was applied to the entire 48M dataset (not used for training purposes) to

provide the results shown in this work.
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Figure 4.4: Comparison of the automated thresholding methods. Automated thresholding
results from the scans separated by (a) 12 months and (b) 48 months: sigma 5: results
using the thresholds defined by µ + 5σ, Best DSCV: results using the thresholds obtained
by computing the best DSCV values, K = 1, K = 2, K = 3 : Results using the thresholds
obtained by KNN training based on the best DSCV values.

4.6.2 Supervised thresholding

We have computed the correlations between the thresholds obtained by maximizing the

DSCV values and the average intensity of the positive activity in WM masked subtracted

images. These correlations reached 0.9043 and 0.9375 (p < 0.0001) for PD-w and T2-w

images respectively. This would mean that the mean intensity of the outcome subtraction

image could be used for fixing the threshold.

Figure 4.4 shows the detection performance with respect to the different automated

thresholding methods. Analyzing the results, we observed that there were no significant

differences for the various K values. However, when comparing the results, the KNN

method performed better for the 48M images. This happened mainly due to fact that the

12M images contained more small lesions. Hence, after the combination of PD-w and T2-w

images, there is more of a chance that small lesions could be lost since KNN thresholds

are computed on PD-w and T2-w images separately. This suggests that one should use

an underestimated threshold before combining the PD-w and T2-w images if intersection

is used for the combining. This claim is also supported by comparing the unsupervised

thresholding (µ + 5σ) with the best possible thresholds and Figure 4.4 clearly shows that

after the combining, using µ + 5σ performed better than the best possible thresholds

computed on PD-w and T2-w images separately.
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4.7 Evaluating the registration methods

Fig 4.5 shows the curves for different registration methods including rigid registration

(RW), rigid halfway registration (HWR), non-rigid Nifty, the SyN and the Demons and

Dramms methods. The black curve corresponds to the rigid registration. Observing the

curves, we do not see a significant difference between the RW and halfway registration

(HWR). On the other hand, the Demons and Dramms methods failed to reach desirable

results for both the 12M and 48M datasets while the Nifty and SyN methods performed

similarly to that of the rigid registration, though Nifty performed better with 12M images

and the SyN method performed better on 48M images in terms of area under the curve.

These results can be considered as reasonable since both the Nifty and SyN methods

are topology preserved shape deformation algorithms whereas the Demons and Dramms

methods do not.

Observing the curves, one can say that Nifty performed better than rigid registration

on 12M T2-w images and the SyN method performed better than rigid registration on

48M T2-w images in terms of area under the curve. This might suggest that the Nifty

and SyN methods could be useful under some circumstances when rigid registration fails.

Nevertheless, the Nifty and Syn methods have a high algorithm complexity and more

importantly after combination of PD-w and T2-w images, they perform similarly, in fact

rigid registration is slightly better on optimum operating point (µ + 5σ) despite the fact

that the Nifty and SyN methods’ performance look more consistent in terms of area under

the curve. Moreover, we have seen that the deformation algorithms are more vulnerable

to the modification of or removing small lesions. Consequently, we recommend using rigid

registration on optimum operating point unless it fails to register.

4.8 Evaluating the white matter masking methods

We computed the performance of the different WM masks in the pipeline. The perfor-

mances of the white matter masking methods using the proposed threshold is shown in

Figure 4.7(b) in terms of DSCR values. The WM masks outcome can be seen visually in

Figure 4.6. According to the results, only the atlas based WM method (the work done by

Souplet et al [113] and Cabezas et al. [20]) and the T1-w WM method (by FSL segmen-

tation tools (FAST) [151]) produced desirable results. The area under the curve can be

observed in Figure 4.7(a), which clearly shows that the multi sequence atlas based method
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Figure 4.5: Analysis of the different registration methods for different operating points.
PD-w images from the scans separated by (a) 12 months and (c) 48 months, and T2-w
images from the scans separated by (b) 12 months and (d) 48 months, and Combination
of the PD-w and T2-w images from the scans separated by (e) 12 months and (f) 48
months were used. RW: Rigid registration; HWR: Rigid Half-way registration; Nifty :
Nifty non-rigid registration; SyN: SyN non-rigid registration; Demons: Demons non-rigid
registration; Dramms: Dramms non-rigid registration.

outperformed the WM method obtained from a single T1-w modality.

On the other hand, the results also demonstrate that the curves follow the same tendency

and that the thresholds defined between 4σ and 6σ produce desirable results. Furthermore,

the threshold defined by µ + 5σ provided the best operating point regardless of the WM

masking method used.

4.9 Evaluating the pipeline with different Gaussian filters

We tested the pipeline with different Gaussian filters. Figure 4.8(a) shows that using

σ = 0.5 produced the best results in terms of both area under the curve and at the
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.6: Comparison of the white matter masks. (a) Atlas based (PD + T1 + T2)
WM, (b) T1-w WM, (c) PD-w WM, (d) T2-w WM, (e) Atlas based WM on PD-w image,
(f) Atlas based WM on T2-w image, (g) Atlas based WM on T1-w image

threshold obtained by µ + 5σ, and leads us to believe it could be used as the optimum

threshold. On the other hand, all the Gaussian filters performed slightly better than the

pipeline without gaussian filtering. Nevertheless, after the σ = 0.5, the area under the

curve is prone to decline.

A comparison of the Gaussian filters with different voxel radius is shown in Figure 4.8(b).

The results show that the Gaussian filters obtained by a 3 voxel radius perform better

than those with a 5 voxel radius with the same σ values for 12M data. On the other hand,

for 48M data, a 5 voxel radius performed better than 3 voxel radius in terms of area under

the curve. However, if the curves are analyzed carefully, between the thresholds obtained

by σ = 4 and σ = 6, the Gaussian filter produced by σ = 0.5 performed better than the 5

voxel radius. As a consequence, we suggest using a Gaussian filter obtained by a 3 voxel

radius at σ = 0.5.
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Figure 4.7: (a) Lesion Sensitivity vs. False Discovery Rate for the detection of new lesions
using different white matter masking methods: The T1-w white matter masking method
corresponds to the blue curve and the multi sequence (PD-w + T1-w + T2-w) atlas-based
white matter masking method corresponds to the black curve. (b) Performances of all
the white matter masking methods on the proposed threshold in terms of DSCR values
(PVEC: partial volume effect correction).

4.10 Detailed evaluation of the unsupervised pipeline for

12M and 48M datasets

We have analyzed the performance of the presented pipeline when using rigid registration

and automated unsupervised thresholding. The threshold is defined in the subtracted

images of PD-w and T2-w individually by using the mean and standard deviation of the

positive changes. As mentioned in section 3.8, we empirically define a common threshold,

which in turn was mean + 5σ of the positive activity, for all the cases and experiments

presented here. Afterwards, the candidate lesions in the PD-w and T2-w images were also

combined to reach the final detection of new lesions.

Table 4.3 summarizes the results obtained when using the proposed pipeline for the

12M and 48M datasets respectively. We have also indicated the performance according

to different lesion sizes. Analyzing the results for the 12M dataset, we observe that, for

all the groups with a lesion size greater than 10 voxels, the sensitivity reached was high

(> 0.90), also obtaining a very low FDR. Notice that the large and very-large groups of
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Figure 4.8: Analysis of Gaussian filter performance in the pipeline. Lesion Sensitivity vs.
False Discovery Rate for the (a) 12M data and (b) 48M data under different Gaussian filters
using 3 voxel radius (r=3) and different σ values (for s = σ = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0),
and the (c) 12M data and (d) 48M data under different gaussian filters using 3 and 5 voxel
radius (r=3 and r =5) with the same σ values (for s = σ = 0.5, 0.8, 1.0).

lesions both obtained 100% TP detections at 0 FDR. However, when considering all the

lesion sizes together, the overall performance was lower. This happened mainly due to the

fact that our dataset is highly challenging, containing a high number of small lesions (53%

of all the ground truth lesions were in the small size group). This can be appreciated with

the performance obtained with lesions of 3-6 voxels. We also observed that 92% of the

falsely detected regions also corresponded to this small size group (3-10 voxels).

Analyzing the results obtained per patient (see Table 4.4), we observed variability for

each individual patient. This happens mainly due to the difference in number and size of
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Table 4.3: Performance of the unsupervised pipeline by lesion size. N: new ground truth
lesions,TP: number of true positive lesions, FP: number of false detected lesions, SENS:
region-wise sensitivity, FDR: false discovery rate, DSCR: region-wise Dice coefficient.
All the lesion sizes are defined in voxels: small (3-10); small-medium (11-20); medium
(21-50); large (51-100); and very-large (101+).

Size
Overall 3-6 7-10 11-20 21-50 51-100 101+

N 177 59 36 39 30 10 3
TP 147 39 33 34 28 10 3

12M SENS 0.83 0.66 0.92 0.87 0.93 1.00 1.00
FP 23 15 6 1 1 0 0

FDR 0.14 0.28 0.15 0.03 0.03 0.00 0.00
DSCR 0.85 0.69 0.88 0.92 0.95 1.00 1.00

N 152 25 15 37 44 16 15
TP 117 16 10 29 34 13 15

48M SENS 0.77 0.64 0.67 0.78 0.77 0.81 1.00
FP 25 14 4 3 2 2 0

FDR 0.18 0.47 0.29 0.09 0.06 0.13 0.00
DSCR 0.80 0.58 0.69 0.84 0.85 0.84 1.00

the lesions from one patient to another. Patients with larger lesions obtained better results

than those with smaller lesions. Small lesions are more sensitive to misclassification and

vulnerable in the PD-w and T2-w combination process. Regarding the region-wise DSC

coefficient, we obtained a mean DSCR for the 10 patients of 12M of 0.85 ± 0.12, having

also a mean TP detection rate of 0.91±0.12 and a mean FDR of 0.17±0.19. On the other

hand, the result of the DSCV was 0.61 ± 0.08. In this dataset, we had five patients with

perfect TP detection with two of them also having 0 FDR. The worst result corresponded

to a patient with a DSC of 0.67 and an FDR of 0.50. Figure 4.9 illustrates some qualitative

results obtained with the proposed approach, showing original images, subtracted images,

manual segmentations provided by experts and automated detections.

We also evaluated the performance of the proposed pipeline for patients whose studies

were taken 48 months apart (see Table 4.3). Except for very-large sized lesion set, the

results were lower than those obtained for the 12M dataset. Please note that this dataset

presented a particularly challenging situation for subtraction pipelines for two reasons:

larger image intensity changes due to mostly brain atrophy changes that may cause regis-

tration errors and greater changes in lesion activity, which may produce more false positive

detections since changes caused by growing lesions could turn out to be false positive de-

tections. The overall sensitivity was 0.77 at an FDR of 0.18. Notice that, in this 48M
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Table 4.4: Performance of the unsupervised pipeline per patient. SENS.: region-wise
sensitivity, FDR: false discovery rate, DSCR: region-wise dice coefficient, DSCV: voxel-
wise dice coefficient, Avg: average validation measure of all patients in the dataset.

Evaluation measures - 12M Evaluation measures - 48M
SENS. FDR DSCR DSCV SENS. FDR DSCR DSCV

Avg 0.91 0.17 0.85 0.61 Avg 0.80 0.20 0.79 0.60
P1 1.00 0.50 0.67 0.50 P11 0.76 0.00 0.87 0.54
P2 1.00 0.17 0.91 0.65 P12 0.50 0.67 0.40 0.39
P3 0.79 0.00 0.88 0.63 P13 1.00 0.11 0.94 0.58
P4 1.00 0.50 0.67 0.60 P14 0.58 0.08 0.71 0.60
P5 1.00 0.00 1.00 0.72 P15 0.77 0.09 0.83 0.65
P6 0.91 0.22 0.84 0.57 P16 1.00 0.10 0.95 0.68
P7 1.00 0.00 1.00 0.49 P17 0.80 0.14 0.83 0.78
P8 0.80 0.02 0.88 0.71 P18 0.88 0.46 0.67 0.44
P9 0.67 0.17 0.74 0.54 P19 1.00 0.00 1.00 0.80
P10 0.94 0.16 0.89 0.66 P20 0.71 0.29 0.71 0.54

set we had 26% of the lesions belonging to the small lesion size group that had the lowest

sensitivity and the higher FDR.

Regarding the results obtained per patient (see Table 4.4), we had a mean DSCR for

the 10 patients of 0.79 ± 0.18. The mean TP detection was 0.80 ± 0.17, while the mean

FDR and DSCV was 0.20±0.22 and 0.60±0.13 respectively. In this dataset, we had three

patients with a perfect TP detection, one of them also having a 0 FDR. The lowest result

was obtained for a patient with a DSCR of 0.40 and an FDR of 0.67.

Finally, the mean number of voxel for overall amount of lesions detected per healthy

control subject was 20.75 voxels, which was 313.9 and 462.5 voxels in the 12M and 48M

datasets, respectively. On the other hand, in two patients which have the minimum

number of MS voxels in the 12M data, the pipeline detected 27 and 82 voxels against 30

and 42 voxels determined by experts in the ground truth. Consequently, MS patients were

significantly found to have a higher number of detected voxels than healthy controls in

our unsupervised pipeline.

4.10.1 Impact of image combination, postprocessing and WM masking

In this section, the impact of the different pipeline steps is evaluated. Table 4.5 sum-

marizes the results obtained when using for instance a single image as input or when

using combination (PD+T2), when using or not using the white matter masking (WMM)

procedure, and when using or not using the postprocessing steps.
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(a) (b) (c) (d) (e)

Figure 4.9: Visual examples of automated detections of new lesions in unsupervised
pipeline. (a) baseline image, (b) follow-up image, (c) subtraction image, (d) manual
segmentation, (e) automated detection.
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When including the postprocessing steps but using only a single modality as input,

PD-w or T2-w images without combination, the results obtained showed a higher number

of false positives. For instance, in the 12M dataset when using only T2-w images the

detection produced an overall FDR of 0.48 at a sensitivity of 0.84, and while when using

PD-w images the overall FDR was 0.50 at a sensitivity of 0.88 (see Table 4.5 for both).

Even though different σ values were also tested when using individual sequences, the

results were worse, specially for small lesions. Notice that, when combining PD-w and T2-

w sequences, the false positive regions were significantly reduced at the cost of decreasing

a small number of true positive detections. This TPR was slightly higher when using

a single modality. On the other hand, the improvement in terms of FP was significant

when introducing an image combination. The results presented in Table 4.3 (12M) and

Table 4.5 show that the use of both PD-w and T2-w images keeps true positive lesions

stable while considerably reducing the false positive detections. After the combination,

most of these missed lesions, 92% for 12M, were small (less than 10 voxels). This is not

surprising since the combination might provide smaller detected regions, thus increasing

the chance of eliminating those regions by the lesion size threshold.

Similarly, we analyzed the performance of the pipeline when not including the postpro-

cessing steps but combining the results from PD-w and T2-w images (see Table 4.5). In

this case, the combination step was also able to remove many FP detections providing an

overall sensitivity of 0.83 and 0.77, and an FDR of 0.16 and 0.30 in the 12M and 48M

datasets, respectively. Note that the sensitivity was similar to that of the full pipeline but

with a higher FDR.

A detailed postprocessing analysis under different thresholds can be seen in Figure 4.10.

Observing the curves, one should notice that the postprocessing step performs similarly

regardless of the threshold, which always reduces false positives without loosing the true

positive lesions. The postprocessing performance can be observed for 12M PD-w images in

Figure 4.10(a), T2-w images in Figure 4.10(b) and after the combination in Figure 4.10(c).

The improvement is relatively lower after the combination (see Figure 4.10(c)) since many

false positives detected by the postprocessing step are also removed by combining the PD-

w and T2-w images. On the other hand, for the 48M images (see Figure 4.10(a) for PD-w,

Figure 4.10(b) for T2-w and Figure 4.10(c) after the combination) the postprocessing step

removed many false positives that could not be removed by the combination since the

48M data mainly suffers from false positives due to the low signal areas in the baseline

image caused by misalignments. This kind of false positive appears in both PD-w and

T2-w images and cannot be directly removed by only combining them.
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Table 4.5: Impact of image combination, postprocessing and WM masking. SENS.:
region-wise sensitivity, FDR: false discovery rate, DSCR: region-wise dice coefficient,
DSCV: voxel-wise dice coefficient, WMM: white matter masking

SENS. FDR DSCR DSCV

12M

PD+WMM+PostProcessing 0.88 0.50 0.64 0.51
T2+WMM+PostProcessing 0.84 0.48 0.64 0.48

PD+T2+WMM+PostProcessing 0.83 0.14 0.85 0.61

PD+T2+WMM 0.83 0.16 0.84 0.61
PD+T2 0.41 0.78 0.29 0.27

48M

PD+WMM+PostProcessing 0.81 0.48 0.63 0.58
T2+WMM+PostProcessing 0.79 0.60 0.53 0.56

PD+T2+WMM+PostProcessing 0.77 0.18 0.80 0.63
PD+T2+WMM 0.77 0.30 0.73 0.62

PD+T2 0.15 0.92 0.10 0.09

Analyzing in more detail the effect of postprocessing at the proposed threshold, we

identified that the source of most of the FP regions appearing in the 12M dataset was

caused by intensity changes due to growing lesions (36%), regions in ventricle zones (18%)

and regions produced by image artifacts (18%). Additionally, for the 48M dataset and due

to misalignment errors, some FP caused by misclassified WM and CSF tissue appeared

(26%). The rest of the FP regions for both the 12M and 48M images were caused by

GM tissue, lesion displacements due to brain atrophy, and low signal areas in the baseline

image. After applying the postprocessing steps, we were able to reduce 21% and 51% of

the total amount of FP in the 12M and 48M respectively. In the 12M, the neighborhood

information of the follow-up image allowed for the removal of 17% of FP regions while

losing only 1 TP. In the 48M dataset, the two intensity constraints applied to the baseline

image allowed to correctly remove 47% of the FP regions without losing any TP.

Regarding the use of the WM mask, we also observed that the proposed approach missed

some lesions due to their being outside the WM mask computed. In particular, in the 12M

dataset, 10 lesions were missed (9 small and 1 small-medium size) while in the 48M dataset,

5 lesions were outside the WM (3 small, 1 small-medium and 1 medium size). In order to

show the importance of the WM masking procedure, we repeated the experimental tests

using the pipeline without introducing the WM mask, therefore, intensity changes outside

WM were taken into account when applying the automatic thresholding step. However,

this performance was far from the one achieved with the complete pipeline (see Table 4.5).

For instance, in the 12M dataset, the overall sensitivity was 0.41 while the FDR was 0.78.
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Figure 4.10: Analysis of the postprocessing steps. PD-w images from the scans separated
by (a) 12 months and (d) 48 months, and T2-w images from the scans separated by (b)
12 months and (e) 48 months, and Combinations of the PD-w and T2-w images from the
scans separated by (c) 12 months and (f) 48 months were used.

4.11 Comparison with state of the art methods

Even though there is no a common database for a quantitative comparison among different

approaches, in this section we present a qualitative analysis with respect to the most recent

proposals in the field. When comparing our results with those reported in the work by

Elliott et al. [37], we observed that the performance of our pipeline is comparable and

in some situations slightly better. For instance, in the 12M dataset, we obtained better

results in terms of sensitivity and an FDR for the lesion groups small-medium, medium,

large and very large, where they reported sensitivities of 0.74, 0.86, 0.98 and 1.00 with

FDR of 0.17, 0.13, 0.02 and 0.02 respectively, in a dataset with a total of 336 new lesions.

At the same time, our pipeline provided lower results in terms of FDR for the small lesion

size, having a 0.23 FDR when considering both 3-6 and 7-10 voxel lesions in contrast to

the 0.08 reported by Elliott et al. [37]. Also, in this case, our sensitivity was 0.76 against
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their 0.61 value.

We also compared our detection results with those shown in the work by Battaglini et

al. [11]. 19 MS patients with only 36 weeks of follow-up were used to report a sensitivity

of 0.91 (116 detected lesions over 127 lesions manually annotated by experts) with a

FDR of 0.21 (31 FP detections), also obtaining 11 FN lesions. In contrast, we obtained

lower sensitivity (0.83) and better FDR (0.14). However, it is important to note that a

description of the lesion size was not provided in Battaglini et al. [11], and therefore, a

direct comparison with the quantitative results is a difficult task, since, as shown in our

experimental tests, the performance of the automated detection depends highly on the

size of the lesions.

Another recent example of automatic MS lesion detection in longitudinal analysis is

the work by Sweeney et al. [118], where the authors evaluated their approach using 11

longitudinal studies each with a mean time between scans of 3 months. These cases had

a total of 55 new or enlarging lesions annotated by experts. In this work, results were

provided in terms of 3D volume voxel segmentation. Our pipeline provided an FPR of

0.00005 and specificity of 0.99995 at a sensitivity of 0.65 and 0.59 for 12M and 48M datasets

respectively, approximately within the same FPR (0.00025) and specificity (0.99995) their

approach provided with a lower sensitivity of 0.54 (see their detailed results in [118]).

4.12 Evaluating the pipeline when using supervised classi-

fiers

Table 4.6 summarizes the results obtained when using the proposed pipeline with different

classifiers. Although we found no significant differences between the classifiers, the SVM

with polynomial function performed slightly better than the others. In this case, we

obtained an overall sensitivity of 0.80 against a FDR of 0.12 for the 12M dataset, along

with a DSCR of 0.83. On the other hand, the overall sensitivity was 0.76 at an FDR of

0.17 for the 48M dataset, which is clearly better than the direct intersection of the PD-w

and T2-w images (see Table 4.5 48M PD+T2+WMM results). Figure 4.11 illustrates

some qualitative results obtained with the supervised approach, showing original images,

subtracted images, manual segmentations provided by experts and automated detections.



4.12. Evaluating the pipeline when using supervised classifiers 107

(a) (b) (c) (d) (e)

Figure 4.11: Visual examples of automated detections of new lesions in supervised pipeline.
(a) baseline image, (b) follow-up image, (c) subtraction image, (d) manual segmentation,
(e) automated detection.
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Table 4.6: Supervised pipeline using BNR, FNR and BZS features SVM: Support vector
machine, KNN: K-nearest neighborhood (K=1,3,5) RBF: Radial basis function, SENS.:
region-wise sensitivity, FDR: false discovery rate, and DSCR: Region-wise dice coefficient

SENS. FDR DSCR

12M

SVM Linear 0.79 0.19 0.79
SVM Quadratic 0.79 0.13 0.83
SVM Polynomial 0.80 0.12 0.84

SVM RBF 0.78 0.15 0.81
KNN (K=1) 0.72 0.20 0.76
KNN (K=3) 0.75 0.19 0.78
KNN (K=5) 0.77 0.18 0.79

48M

SVM Linear 0.78 0.22 0.78
SVM Quadratic 0.76 0.21 0.77
SVM Polynomial 0.76 0.17 0.79

SVM RBF 0.77 0.17 0.80
KNN (K=1) 0.70 0.24 0.73
KNN (K=3) 0.72 0.19 0.76
KNN (K=5) 0.73 0.19 0.77

4.13 Evaluating the supervised pipeline when using GLCM

features

Among the classifiers, in general SVM classifiers outperformed the KNN classifier. The

SVM classifier with linear function obtained slightly better results than the others, though

we found no significant difference between any of them. Analyzing the obtained results,

we have seen that the supervised pipeline with GLCM features obtained better results

in terms of FDR, however, the sensitivity was lower, so that, for 12M, the linear SVM

classifier reached 0.10 FDR against 0.77 of sensitivity. On the other hand, the result was

0.77 sensitivity against 0.20 FDR for 48M, which is better than the direct intersection of

the PD-w and T2-w images (see Table 4.5 48M (PD+T2+WMM) results).

4.14 Comparing the unsupervised and supervised pipelines

A comparison of the supervised and unsupervised pipelines is shown in Table 4.8. In the

first place, all the pipelines performed better than the pipeline without postprocessing

and also obtained better results than the pipeline using only the intersection of PD-w and

T2-w images.

The results demonstrated that the unsupervised pipeline performed better in terms

of sensitivity whereas the supervised pipeline reached a better performance in terms of
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Table 4.7: Supervised pipeline using GLCM features; Contrast, Energy and Homogeneity.
SVM: support vector machine KNN: K-nearest neighborhood (K=1,3,5) RBF: radial
basis function SENS.: region-wise sensitivity, FDR: false discovery rate, DSCR: region-
wise dice coefficient

SENS. FDR DSCR

12M

SVM Linear 0.77 0.10 0.83
SVM Quadratic 0.77 0.12 0.82
SVM Polynomial 0.67 0.21 0.72

SVM RBF 0.74 0.15 0.79
KNN (K=1) 0.73 0.20 0.76
KNN (K=3) 0.77 0.16 0.81
KNN (K=5) 0.79 0.19 0.80

48M

SVM Linear 0.77 0.20 0.79
SVM Quadratic 0.75 0.20 0.78
SVM Polynomial 0.71 0.19 0.76

SVM RBF 0.72 0.16 0.77
KNN (K=1) 0.70 0.29 0.70
KNN (K=3) 0.70 0.26 0.72
KNN (K=5) 0.75 0.23 0.76

Table 4.8: Comparison of the supervised and unsupervised pipelines SENS.: region-wise
sensitivity, FDR: false discovery rate, and DSCR: region-wise dice coefficient

SENS. FDR DSCR

12M
The unsupervised pipeline using BNR, FNR and BZS features. 0.83 0.14 0.85
The supervised pipeline using BNR, FNR and BZS features. 0.80 0.12 0.84

The supervised pipeline using GLCM features. 0.77 0.10 0.83

48M
The unsupervised pipeline using BNR, FNR and BZS features. 0.77 0.18 0.80
The supervised pipeline using BNR, FNR and BZS features. 0.76 0.17 0.79

The supervised pipeline using GLCM features. 0.77 0.20 0.79

FDR for both 12M and 48M data. For instance, for 12M images, the sensitivity of the

unsupervised pipeline was 0.83 against 0.80 sensitivity with the unsupervised pipeline,

however, their false discovery rates were 0.12 to 0.14 in favour of the supervised approach.

On the other hand, mean number of voxels detected in the healthy control subjects is

almost same. Like the unsupervised pipeline, the supervised pipeline detected only a

mean number of 23 voxels for overall amount of lesions per healthy control subject.

On the other hand, using GLCM features, we obtained better FDR at the expense of

decreasing the sensitivity. So that, for 12M, the pipeline reached 0.10 FDR and 0.77

sensitivity with a similar DSCR to the other pipelines (0.83).
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4.15 Discussion

In this work we have implemented a well-known approach for MS lesion detection in serial

analysis by adding additional steps to a subtraction pipeline. The problem being addressed

in this work is very challenging since the size of the lesions being dealt with is very small

in absolute terms.

As discussed in the validation section, the decisions made in terms of registration may

affect the validation accuracy (Figure 4.1). These decisions are mainly the choice of

source and target images and whether or not ground truth images need to be transformed.

According to our experience, reverse registration is the best approach in order to obtain an

accurate, repeatable one-to-one voxel-wise comparison. Besides, according to this strategy,

the obtained ground truth remains free of any transformation that could compromise its

integrity by introducing interpolation errors.

We also studied the effect that preprocessing steps have on the pipeline results (Fig-

ure 4.2). Although the pipeline including image normalization (but not histogram match-

ing) slightly outperformed original images, and one can notice that the differences are

small, particularly for the T2-w images. Thus, concerning practical considerations, bias

field correction may not be necessary for T2-w images. On the other hand, when images

are acquired in very separated time or even from different scanners, not only are the bias

fields different but the mean intensity of the images might also have changed. For this rea-

son, bias field correction itself is not sufficient, in particular when the gray value intensity

scales are different. In this case, the histogram matching step is also necessary.

Concerning the thresholding of the subtraction image, we demonstrated that the average

intensity of the positive activity can be used to automatically define the threshold. Using

the average intensity of the positive activity, we presented two different approaches. In

the first one, we followed an unsupervised strategy including the standard deviation of the

positive activity. We concluded that using µ + 5σ produced the best results. However,

thresholds defined between 4σ and 6σ also produced desirable results and can be chosen

by experts concerning the trade-off between the sensitivity and specificity (Figure 4.3). In

the second approach, we followed a supervised strategy using the correlations between the

average intensity of the positive activity and the thresholds determined by maximizing

the DSCV value in the sequences. The results showed that the unsupervised strategy

slightly outperformed the supervised one and moreover, provided various thresholds using

a standard deviation (Figure 4.4). However, one should also consider that in supervised



4.15. Discussion 111

thresholding, we trained the thresholds using only 20 patients with a leave-one-patient-out

strategy. Hence, using a database with more patients for training could provide better

results.

The pipeline presented in this study has some potential limitations. So that, the per-

formance of the pipeline depends mostly on the accuracy of the WM masking method

and registration between the images. Both the WM masking and automated thresholding

steps rely on the assumption that the white matter tissue follows a gaussian distribution.

Hence, more accurate WM masks will lead to a better performance. Testing various WM

masks (Figure 4.6), we concluded that the atlas-based WM method generated from PD-w,

T2-w and T1w sequences produced the best results. However, a T1-w WM mask can also

be considered concerning the algorithm complexity and computing time. One should also

consider that 2 lesions were outside of WM mask when using T1-w WMM method whereas

atlas-based WM method missed 15 lesions. Nevertheless, considering the performance of

the methods, it can be negligible since the lesions missed by the atlas-based method have

very small sizes. More importantly, regardless of what WM masking method is used, the

pipeline showed the same tendency that thresholds defined between 4σ and 6σ provided a

good trade-off between the sensitivity and specificity. Moreover, as shown in our experi-

mental results, this step reduced the number of false detected regions while increasing the

sensitivity individually in both PD-w and T2-w images in the WM tissue. However, the

use of this WM masking process prevented the detection of gray matter lesions. Moreover,

the FP and the FN detected by our pipeline could also be attributed to small errors in the

results of the tissue segmentation. Indeed, the analysis of the results highlighted that most

false positive lesions could be easily identified in the brain’s regions by experts. We believe

that better tissue segmentation results may be obtained with the use of high-quality 3D

images (i.e. 3T) that will help improve both the sensitivity and FDR.

Furthermore, we have shown that the inclusion of simple postprocessing steps as well

as the combination of both PD-w and T2-w images eliminated individual artifacts and

reduced FP while keeping the detected lesions stable (Table 4.5 and Figure 4.10). We

believe that PD-w and T2-w images are well-suited for combination considering also that

they are routinely acquired in clinical practise.

The pipeline including rigid registration provided a mean DSCR of 0.85 ± 0.12 and

0.79 ± 0.18 for the 10 patients of 12M and 48M respectively. However, we have seen how

the sensitivity and FDR depend highly on the distribution of the lesions’ sizes, small lesions

being more difficult to detect. On the other hand, 48M results showed that the pipeline
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is still vulnerable to anatomical changes in the brain. In this sense, we studied several

deformable registration algorithms to provide a solution to this problem (Figure 4.5).

We have demonstrated that, while the non-rigid algorithms that do not provide topology

preservation failed to produce desirable results, the topology preserved shape deformation

algorithms (Nifty and SyN) outperformed the rigid registration in some cases. Although

the deformation algorithms are prone to remove small lesions (particularly lesions less than

10 voxels), they can compensate for errors, something rigid registration cannot do. As a

consequence, these algorithms can be included as an option with a potential application

that could be used in clinical practice.

Additionally, we have demonstrated that the postprocessing methods we used in the

unsupervised pipeline can be carried out by using supervised algorithms. Using the same

features (BNR, FNR and BZS values), the pipeline reached similar results as the unsu-

pervised pipeline. Additionally, we have also examined and tested the inclusion of texture

features of the candidate lesions obtained from GLCM. In this case, more false positive le-

sions were removed, at the expense of losing some true positives. However, the supervised

method used in this pipeline could be improved if the intensities across the datasets are

normalized. Furthermore, it is often beneficial to scale all features to a common range,

however, standardization is not appropriate when the data is sparse since it may destroy

the sparsity [12]. Consequently, the features obtained by both the first and second order

statistics could be useful for experts when determining new lesions. Having seen that, our

pipeline is well-suited to providing candidate lesions to be further analysed in detail using

these features. One should also consider including more features obtained from GLCM,

run-length matrix (RLM), and additionally, some spectral approaches (Fourier, Wavelet

and Stockwell transforms), that could also be used for this purpose [150].

Finally, we analyzed the images from healthy controls in order to identify residual regis-

tration and flow artifacts. Despite the fact that some false positive lesions were identified

on the subtraction images of healthy controls, the mean number of voxel detected signif-

icantly differs between patients and healthy controls, in fact, the mean number of voxel

is very low in healthy subjects when compared to MS patients. Consequently, the re-

sults showed that both supervised and unsupervised pipelines are proved to be robust

in preventing detection of false positive changes arising from potential confounds such as

registration errors and flow artifacts. See Section A.1 for the performance of the pipeline

according to the different lesion sizes per patient.
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Conclusions

5.1 Summary of the thesis

The goal of the research presented in this thesis was to propose a new pipeline capable

of detecting new MS lesions in magnetic resonance imaging. Starting with an initial

study of the state-of-the-art of MS lesion detection, we classified the detection approaches

in two primary categories concerning the quantification of MS lesion progression; those

based on determining a lesion’s volume difference after detecting MS lesions at a single

time MR volume of a patient and those change detection methods relying on analyzing

the differences between successive MRI controls. Following a change detection strategy,

a fully automated and improved subtraction pipeline, developed for detecting new MS

lesions in brain MRI data, has been described in Chapter 3 and exhaustively validated in

Chapter 4.

In the first place, considering the fact that the quality of subtraction images relies on the

quality of the registration and intensity correction procedures, we included skull stripping,

bias field correction and histogram matching steps before the subtraction and analyzed

them in detail in order to determine quantitatively the impact of the these steps on the

pipeline. On the other hand, we evaluated 2 rigid and 4 non-rigid registration methods

in the pipeline concluding that the rigid body registration is well-suited for this purpose,

whereas the deformation algorithms that preserve the topology could outperform the rigid

registration in some cases, thus, topology preserved shape deformation algorithms should

also be considered as an option with a potential application that could be used in clinical

practice.

Furthermore, we applied a WM masking step in order to reduce the lesion search space

only in the white matter. In order to achieve our goal, we presented two different WM

masking methods and compared them. In the first approach, we used FSL segmentation

113
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tools which segment 3D brain MR images based on the hidden markov random fields

(HMRF) model fitting by the EM algorithm using a Gaussian estimation. We concluded

that the WM masks obtained from T1-w images including partial volume correction yielded

a better performance. In a second approach, we used an atlas-based segmentation algo-

rithm including PD-w, T1-w, and T2-w images, which was developed by our group and

implemented in the subtraction pipeline. The results demonstrated that the multi se-

quence atlas based method outperformed the WM method obtained from a single T1-w

modality.

Analyzing the literature, we have seen that the selection of the threshold is still an

open issue. Hence, we focused on this issue and presented a novel thresholding method

demonstrating that the average intensity and standard deviation of the positive activity

can be used to define the threshold. Moreover, we presented a supervised thresholding

method using the correlations between the average intensity of the positive activity and

the thresholds determined by maximizing the DSCV values.

After a thorough study of the state-of-the art on MS lesion detection approaches, we

concluded that statistical-based approaches including multi-sequence information yield a

better performance. As a consequence, we combined PD-w and T2-w images and also

presented some postprocessing methods based on the statistical analysis of the intensity

features including baseline and follow-up images in order to reduce false positives. Firstly,

we presented an unsupervised method. Basically, we removed the low intensity values in

the baseline image and used the local intensity neighbor information for each candidate

region determined by the automated threshold in both the baseline and follow-up images

using fixed constraints. We compared this pipeline with state of the art methods.

Afterwards, we demonstrated that the postprocessing methods used in the first pipeline

can be carried out by using supervised algorithms instead of fixed constraints and direct

intersection of multisequence information. The supervised pipeline reached similar results

to those obtained by the first pipeline. Furthermore, to improve this idea, we included

texture features from the candidate lesions. In this case, more false positive lesions were

removed at the expense of losing some true positives. As a consequence, we demonstrated

that our pipeline is well-suited to providing candidate lesions to be further analyzed in

detail using several features in order to remove more false positive detections.

To evaluate these approaches, we presented a reliable validation method based on the

new lesions that are annotated by experts in the follow-up space. Furthermore, we dis-

cussed and evaluated the validation spaces concluding that the validation must be carried
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out without registering (modifying) the ground truth image. The pipeline was tested in

two major scenarios: the first with patients whose studies were taken 12 months apart

stood for typical everyday clinical use. The second with studies taken 48 months apart

presented a much more challenging situation due to natural changes in the brain’s morphol-

ogy (i.e. atrophy). The results obtained showed the validity of this approach, obtaining

comparable and even better performances than those of recent state of the art methods.

Additionally, our first approach is a simple, automatic and unsupervised method that

does not depend on an expert who optimizes a training dataset thus avoiding the variability

between experts when making the annotations. On the other hand, this pipeline can be

improved by using supervised classification algorithms including more features such as

texture and region properties from the candidate lesions. Additional features can help

radiologists to determine new lesions more accurately. Furthermore, the proposed pipeline

could also be adjusted by experts per each case in order to increase the number of lesions

detected at the price of obtaining more false positives. This pipeline flexibility makes it

suitable for both automatic and semi-automatic operation. We believe that it could easily

be adapted to monitor other brain pathologies such as volumetric changes in patients with

vascular disease or tumors.

A prototype of the pipeline implemented by using C++.NET is shown at Figure 5.1.

Note that, the postprocessing steps in the pipeline have been carried out using Matlab,

which needs implementing into C++.NET platform.

5.1.1 Contributions

The goal of this thesis is to aid radiologists in their day-to-day practise by assisting them

in the challenging task of detecting new MS lesions. Idealistically, our proposal should

accurately detect and segment all the new lesions of any given patient. However, a more

realistic expectation is to allow experts to process a batch of patients off-line in order

to accurately detect a majority of the new lesions, reducing the experts interaction with

the images to the correction of some segmentations or the detection of a small number

of missing lesions. By reducing the interaction, we are also reducing the inter- and intra-

observer variability. From this point of view, the main contributions of this thesis to both

the scientific and medical communities are:

• A comprehensive survey of MS lesion detection algorithms and a classification of the

approaches for automatic monitoring of MS lesion evolution. Analyzing the studies,
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Figure 5.1: A prototype of the pipeline implemented by C++.NET.

we concluded that change detection algorithms suffer from image aligning problems

and various artifacts that can be compensated for by using robust registration algo-

rithms and preprocessing methods as well as combining different approaches such as

using multi-sequence information and statistical analysis of the features attributed

to the candidate lesions.

• A novel database for the SALEM project with 1.5T imaging data for 20 cases with

different lesion loads. Two different datasets have been prepared: studies acquired

one year apart (12M) to experience situations frequently occurring in clinical prac-

tice, and studies acquired four years apart (48M) to evaluate the pipeline in much

more challenging situations. The annotations were done by experts to obtain ground

truth of new lesions.

• A reliable validation strategy quantitatively demonstrating the pitfalls of the current

validation methods.

• A quantitative analysis of preprocessing, rigid registration, non-rigid registration,

WM segmentation and postprocessing methods.
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• A novel automated thresholding strategy to provide a fully automated pipeline.

• A new, fully automatic and unsupervised pipeline to detect new lesions including

lesion features.

• An alternative pipeline using supervised postprocessing of lesion features and texture

properties.

• An experimental quantitative comparison between two proposed pipelines and a

promising state-of-the-art approach in terms of both detection and segmentation.

• A prototype to detect and segment new lesions to be tested in hospitals. This tool

has been implemented in C++.NET and is currently being implemented at Hospital

Vall d’Hebron as a set of console functions and scripts.

5.2 Future work

5.2.1 Short term future improvements

The pipeline presented in this thesis has been exhaustively tested with 20 patients in

real cases. Our first future work is to expand the current SALEM database to validate

our proposals for various cases. Furthermore, our database lacked FLAIR images, so, we

expect to improve the performance of the pipeline using FLAIR images. On the other

hand, the studies described in this thesis were performed at 1.5T. In the near future, the

study is to be tested for 3T, which has been found to provide better visualization and

could lead to an increased detection of new lesions in the pipeline as well.

False positive detections could be further reduced by including more features into the

pipeline. In our second approach, we demonstrated that these features can be well used in

a supervised pipeline to determine new lesions more accurately. However, we only included

some texture properties obtained from GLCM in addition to neighbor and intensity prop-

erties from the lesions. Therefore, the algorithm needs to be tested with more intensity,

shape and texture features that could be obtained from run-length matrix or some spec-

tral approaches like the Fourier, Wavelet and Stockwell transforms discussed in Chapter 2.

Furthermore, using an EM algorithm likelihoods of the candidate lesion areas can be ob-

tained to be included along with the other features. These features could be included in

the postprocessing step of the supervised or unsupervised pipelines and could also provide

additional information to experts to help them to determine new lesions more accurately,
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reducing the intra-observer and inter-observer variability. Furthermore, the supervised

method used in this pipeline can be improved by normalizing the intensities across the

datasets. Implementing other supervised techniques would be other future work.

Other improvements to the pipeline would be carried out by improving the preprocessing

steps and registration methods. The eyes or other non-brain tissues from the images of

some patients are likely to be misclassified as white matter tissue, which may decrease

the detection accuracy. Therefore, more study should be carried out in this regard and

alternative skull stripping techniques should also be considered.

Other future work would be to examine candidate lesions according to their positions

in the brain, classifying them into periventricular, juxtacortical or infratentorial lesions

as presented in Chapter 1. For instance, most of the misclassified regions were in the

periventricular due to the ventricles. An atlas could be easily adapted into the pipeline

to provide prior information on the spatial properties of the lesion. This could also aid

the MS diagnosis in those patients with a first clinical episode according to the McDonald

criteria.

5.2.2 Future research lines

In the long term, there are several new research lines departing from this thesis that could

be studied by the group. In this thesis, we have demonstrated that the topology preserved

shape deformation algorithms (such as the Nifty and SyN methods) could outperform

rigid registration in a subtraction pipeline, whereas other, more flexible techniques like

the Dramms and Demons methods can not. However, a non-rigid registration method can

also be used to display disease activity in an alternative way, as we pointed out in Chapter 2

under the title of deformation field-based approaches, by using vector displacement fields or

deformation field morphometry derived from the deformation algorithm applied to register

the images. In this case, that a non-rigid method removes the lesions by deforming them

is not a disadvantage anymore. On the contrary, it becomes an advantage of the method

since the information on the deformed lesion is stored in the deformation fields. Therefore,

extracting this information from the non-rigid method would be a source of information

that could help in the detection of new lesions. For this purpose, The Demons method

would be a good option since it produces a displacement field that maps the moving image

onto the fixed image.

On a separate note, the methods and concepts presented here could also be applied to

other diseases that share similar properties as MS lesions, such as, lupus lesions appearing
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in WM, which are hyperintense and can appear near the ventricles; stroke lesions can also

appear as hyperintense lesions of variable sizes in T2-w images; and tumors usually appear

as large hyperintense areas that deform the tissues surrounding them.
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Appendix A

Detailed evaluation results

The aim of this appendix is to show the detailed results obtained by our approach for

different lesion sizes and for all the studied patients (12M and 48M). Although for sim-

plicity we show here only the results obtained from the unsupervised pipeline, apart from

the number of false positive and true positive detections, the segmentation of the detected

lesion are the same in both unsupervised and supervised pipelines due to the use of the

same automated thresholding process.

A.1 Detailed performance per patient and lesion size

Tables A.1 to A.20 summarize the quantitative results obtained for all patients. On the

other hand, Figures A.1 to A.20 show some visual examples of automated detections of

new lesions for each patient. Note that the false positives and false negatives in the sample

images may not necessarily indicate a false positive or negative detection with respect to

the lesion detection accuracy since a lesion can appear in more than one slice. Thus, part

of the lesion in other slices could have been detected by the pipeline.
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Table A.1: Patient1 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 3 1 0 0 2 0 0

TP 3 1 - - 2 - -
SENS 1.00 1.00 - - 1.00 - -

FP 3 2 1 0 0 0 0
FDR 0.50 0.67 - - 0.00 - -

DSCR 0.67 0.50 - - 1.00 - -

(a) (b) (c) (d)

Figure A.1: Patient1 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.2: Patient2 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 10 3 0 5 1 1 0

TP 10 3 - 5 1 1 -
SENS 1.00 1.00 - 1.00 1.00 1.00 -

FP 2 2 0 0 0 0 0
FDR 0.17 0.40 - 0.00 0.00 0.00 -

DSCR 0.91 0.75 - 1.00 1.00 1.00 -

(a) (b) (c) (d)

Figure A.2: Patient2 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.3: Patient3 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 24 11 7 3 2 1 0

TP 19 7 7 2 2 1 -
SENS 0.79 0.64 1.00 0.67 1.00 1.00 -

FP 0 0 0 0 0 0 0
FDR 0.00 0.00 0.00 0.00 0.00 0.00 -

DSCR 0.88 0.78 1.00 0.80 1.00 1.00 -

(a) (b) (c) (d)

Figure A.3: Patient3 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.4: Patient4 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 3 0 1 2 0 0 0

TP 3 - 1 2 - - -
SENS 1.00 - 1.00 1.00 - - -

FP 3 1 1 0 1 0 0
FDR 0.50 - 0.50 0.00 - - -

DSCR 0.67 - 0.67 1.00 - - -

(a) (b) (c) (d)

Figure A.4: Patient4 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.5: Patient5 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 7 0 0 3 4 0 0

TP 7 - - 3 4 - -
SENS 1.00 - - 1.00 1.00 - -

FP 0 0 0 0 0 0 0
FDR 0.00 - - 0.00 0.00 - -

DSCR 1.00 - - 1.00 1.00 - -

(a) (b) (c) (d)

Figure A.5: Patient5 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.6: Patient6 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 23 4 3 6 7 2 1

TP 21 4 3 5 6 2 1
SENS 0.91 1.00 1.00 0.83 0.86 1.00 1.00

FP 6 6 0 0 0 0 0
FDR 0.22 0.60 0.00 0.00 0.00 0.00 0.00

DSCR 0.84 0.57 1.00 0.91 0.92 1.00 1.00

(a) (b) (c) (d)

Figure A.6: Patient6 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.7: Patient7 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 3 1 1 1 0 0 0

TP 3 1 1 1 - - -
SENS 1.00 1.00 1.00 1.00 - - -

FP 0 0 0 0 0 0 0
FDR 0.00 0.00 0.00 0.00 - - -

DSCR 1.00 1.00 1.00 1.00 - - -

(a) (b) (c) (d)

Figure A.7: Patient7 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.8: Patient8 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 51 19 18 9 4 1 0

TP 41 13 15 8 4 1 -
SENS 0.80 0.68 0.83 0.89 1.00 1.00 -

FP 1 0 1 0 0 0 0
FDR 0.02 0.00 0.06 0.00 0.00 0.00 -

DSCR 0.88 0.81 0.88 0.94 1.00 1.00 -

(a) (b) (c) (d)

Figure A.8: Patient8 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.9: Patient9 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 36 13 2 7 9 4 1

TP 24 4 2 5 8 4 1
SENS 0.67 0.31 1.00 0.71 0.89 1.00 1.00

FP 5 3 1 1 0 0 0
FDR 0.17 0.43 0.33 0.17 0.00 0.00 0.00

DSCR 0.74 0.40 0.80 0.77 0.94 1.00 1.00

(a) (b) (c) (d)

Figure A.9: Patient9 (12M): Visual examples of automated detections of new lesions. (a) baseline
image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.10: Patient10 (12M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 17 7 4 3 1 1 1

TP 16 6 4 3 1 1 1
SENS 0.94 0.86 1.00 1.00 1.00 1.00 1.00

FP 3 1 2 0 0 0 0
FDR 0.16 0.14 0.33 0.00 0.00 0.00 0.00

DSCR 0.89 0.86 0.80 1.00 1.00 1.00 1.00

(a) (b) (c) (d)

Figure A.10: Patient10 (12M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.11: Patient11 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 17 4 2 7 2 1 1

TP 13 2 2 6 1 1 1
SENS 0.76 0.50 1.00 0.86 0.50 1.00 1.00

FP 0 0 0 0 0 0 0
FDR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DSCR 0.87 0.67 1.00 0.92 0.67 1.00 1.00

(a) (b) (c) (d)

Figure A.11: Patient11 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.



A.1. Detailed performance per patient and lesion size 133

Table A.12: Patient12 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 6 2 2 0 1 1 0

TP 3 1 1 - 1 0 -
SENS 0.50 0.50 0.50 - 1.00 0.00 -

FP 6 5 0 1 0 0 0
FDR 0.67 0.83 0.00 - 0.00 - -

DSCR 0.40 0.25 0.67 - 1.00 0.00 -

(a) (b) (c) (d)

Figure A.12: Patient12 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.13: Patient13 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 16 1 3 6 6 0 0

TP 16 1 3 6 6 - -
SENS 1.00 1.00 1.00 1.00 1.00 - -

FP 2 0 1 0 0 1 0
FDR 0.11 0.00 0.25 0.00 0.00 - -

DSCR 0.94 1.00 0.86 1.00 1.00 - -

(a) (b) (c) (d)

Figure A.13: Patient13 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.14: Patient14 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 38 2 5 5 13 6 7

TP 22 1 1 2 6 5 7
SENS 0.58 0.50 0.20 0.40 0.46 0.83 1.00

FP 2 2 0 0 0 0 0
FDR 0.08 0.67 0.00 0.00 0.00 0.00 0.00

DSCR 0.71 0.40 0.33 0.57 0.63 0.91 1.00

(a) (b) (c) (d)

Figure A.14: Patient14 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.15: Patient15 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 13 4 0 2 5 1 1

TP 10 1 - 2 5 1 1
SENS 0.77 0.25 - 1.00 1.00 1.00 1.00

FP 1 1 0 0 0 0 0
FDR 0.09 0.50 - 0.00 0.00 0.00 0.00

DSCR 0.83 0.33 - 1.00 1.00 1.00 1.00

(a) (b) (c) (d)

Figure A.15: Patient15 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.16: Patient16 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 9 1 1 3 3 0 1

TP 9 1 1 3 3 0 1
SENS 1.00 1.00 1.00 1.00 1.00 - 1.00

FP 1 1 0 0 0 0 0
FDR 0.10 0.50 0.00 0.00 0.00 - 0.00

DSCR 0.95 0.67 1.00 1.00 1.00 - 1.00

(a) (b) (c) (d)

Figure A.16: Patient16 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.17: Patient17 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 15 0 0 4 6 2 3

TP 12 - - 3 5 1 3
SENS 0.80 - - 0.75 0.83 0.50 1.00

FP 2 1 1 0 0 0 0
FDR 0.14 - - 0.00 0.00 0.00 0.00

DSCR 0.83 - - 0.86 0.91 0.67 1.00

(a) (b) (c) (d)

Figure A.17: Patient17 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.18: Patient18 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 8 3 1 1 1 1 1

TP 7 3 1 0 1 1 1
SENS 0.88 1.00 1.00 0.00 1.00 1.00 1.00

FP 6 3 1 1 0 1 0
FDR 0.46 0.50 0.50 1.00 0.00 0.50 0.00

DSCR 0.67 0.67 0.67 0.00 1.00 0.67 1.00

(a) (b) (c) (d)

Figure A.18: Patient18 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.19: Patient19 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 13 4 1 2 4 1 1

TP 13 4 1 2 4 1 1
SENS 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FP 0 0 0 0 0 0 0
FDR 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DSCR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(a) (b) (c) (d)

Figure A.19: Patient19 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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Table A.20: Patient20 (48M): Performance of the unsupervised pipeline by lesion size.
Size

Overall 3-6 7-10 11-20 21-50 51-100 101+
N 17 4 0 7 3 3 0

TP 12 2 - 5 2 3 -
SENS 0.71 0.50 - 0.71 0.67 1.00 -

FP 5 1 1 1 2 0 0
FDR 0.29 0.33 - 0.17 0.50 0.00 -

DSCR 0.71 0.57 - 0.77 0.57 1.00 -

(a) (b) (c) (d)

Figure A.20: Patient20 (48M): Visual examples of automated detections of new lesions. (a)
baseline image, (b) follow-up image, (c) manual segmentation, (d) automated detection.
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