

Optimizing SIMD Execution in HW/SW Co-designed

Processors

Rakesh Kumar

Department of Computer Architecture

Universitat Politècnica de Catalunya

Advisors:

Alejandro Martínez

Intel Barcelona Research Center

Antonio González

Intel Barcelona Research Center

Universitat Politècnica de Catalunya

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

i

ABSTRACT

SIMD accelerators are ubiquitous in microprocessors from different computing

domains. Their high compute power and hardware simplicity improve overall performance

in an energy efficient manner. Moreover, their replicated functional units and simple

control mechanism make them amenable to scaling to higher vector lengths. However,

code generation for these accelerators has been a challenge from the days of their inception.

Compilers generate vector code conservatively to ensure correctness. As a result they lose

significant vectorization opportunities and fail to extract maximum benefits out of SIMD

accelerators.

This thesis proposes to vectorize the program binary at runtime in a speculative

manner, in addition to the compile time static vectorization. There are different

environments that support runtime profiling and optimization support required for dynamic

vectorization, one of most prominent ones being: 1) Dynamic Binary Translators and

Optimizers (DBTO) and 2) Hardware/Software (HW/SW) Co-designed Processors.

HW/SW co-designed environment provides several advantages over DBTOs like

transparent incorporations of new hardware features, binary compatibility, etc. Therefore,

we use HW/SW co-designed environment to assess the potential of speculative dynamic

vectorization.

Furthermore, we analyze vector code generation for wider vector units and find out

that even though SIMD accelerators are amenable to scaling from hardware point of view,

vector code generation at higher vector length is even more challenging. The two major

factors impeding vectorization for wider SIMD units are: 1) Reduced dynamic instruction

stream coverage for vectorization and 2) Large number of permutation instructions. To

solve the first problem we propose Variable Length Vectorization that iteratively vectorizes

for multiple vector lengths to improve dynamic instruction stream coverage. Secondly, to

reduce the number of permutation instructions we propose Selective Writing that

selectively writes to different parts of a vector register and avoids permutations.

Finally, we tackle the problem of leakage energy in SIMD accelerators. Since

SIMD accelerators consume significant amount of real estate on the chip, they become the

principle source of leakage if not utilized judiciously. Power gating is one of the most

widely used techniques to reduce leakage energy of functional units. However, power

gating has its own energy and performance overhead associated with it. We propose to

selectively devectorize the vector code when higher SIMD lanes are used intermittently.

This selective devectorization keeps the higher SIMD lanes idle and power gated for

maximum duration. Therefore, resulting in overall leakage energy reduction.

ii

iii

Table of Contents

Abstract i

List of Figures vii

List of Tables xi

List of Algorithms xiii

1. Introduction ... 1

1.1 SIMD Execution Model .. 2

1.2 Challenges in SIMD Execution .. 3

1.2.1 Static Vectorization Limitations .. 3

1.2.2 Wider Vector Units .. 4

1.2.3 Leakage in SIMD accelerators ... 5

1.3 Contributions... 5

1.3.1 Speculative Dynamic Vectorization .. 5

1.3.2 Vectorizing for Wider Vector Units .. 6

1.3.3 Dynamic Selective Devectorization ... 6

1.4 HW/SW Co-designed Processors ... 7

1.5 Why HW/SW Co-designed Environment ... 7

1.6 Thesis Organization .. 8

2. Background ... 11

2.1 Microarchitectural Innovations to Exploit Parallelism 12

2.1.1 Extracting Instruction Level Parallelism ... 12

2.1.2 Extracting Thread Level Parallelism ... 13

2.1.3 Extracting Data Level Parallelism ... 15

2.2 SIMD ISA Extensions... 16

2.2.1 Intel´s SIMD Extensions .. 17

2.2.2 PowerPC Altivec .. 20

iv

2.2.3 ARM Neon ... 20

2.3 Code Generation for SIMD Accelerators ... 21

2.3.1 Traditional Compiler Vectorization ... 21

2.3.2 Superword Level Parallelism ... 22

2.3.3 SLP in Presence of Control Flow... 23

2.3.4 Speculative Dynamic Vectorization .. 24

2.3.5 Liquid SIMD .. 24

2.3.6 Vapor SIMD... 25

2.4 Code Optimizations .. 25

2.4.1 Static Compiler Optimizations ... 26

2.4.2 Dynamic Binary Optimizations ... 26

2.4 Hardware/Software Co-designed Processors .. 28

2.4.1 Memory System in HW/SW Co-designed Processors 29

2.4.2 TOL translator/optimizer ... 30

2.4.3 Hardware Support in HW/SW Co-designed Processors 32

2.4.4 Salient features of HW/SW Co-designed Processors 33

3. Experimental Framework .. 35

3.1 Main Components ... 36

3.2 Execution Flow ... 37

3.3 Translation Optimization Layer .. 39

3.3.1 Interpretation .. 39

3.3.2 Basic Block Translation ... 40

3.3.3 Superblocks and Optimizations ... 42

3.4 Speculation and Recovery... 44

3.5 The Timing Model .. 46

3.6 TOL Configuration ... 48

3.6.1 Optimal Promotion Threshold ... 49

3.6.2 Optimized Code Distribution ... 51

3.6.3 Emulation Cost... 52

3.6.4 Dynamic Instruction and Overhead Distribution 52

3.6.5 Floating Point and Integer Instruction Distribution 54

3.7 Host ISA Extension... 55

3.8 McPAT .. 56

v

3.8.1 Power Modeling ... 57

4. Speculative Dynamic Vectorization ... 59

4.1 Introduction ... 59

4.2 Motivation ... 61

4.3 Dynamic Vectorization Algorithm ... 64

4.3.1 The Vectorizer ... 65

4.3.2 Avoiding Cyclic Dependences ... 68

4.3.3 Static vs Dynamic Vectorization ... 68

4.3.4 Working through an Example .. 70

4.4 Performance Evaluation .. 72

4.4.1 FP Dynamic Instruction Elimination ... 72

4.4.2 Dynamic FP Instruction Stream Distribution .. 74

4.4.3 Vectorization Overhead ... 76

4.4.4 Effectiveness of Memory Speculation ... 77

4.4.5 Performance ... 77

4.5 Related Work .. 79

4.6 Conclusion .. 80

5. Vectorizing for Wider Vector Units ... 81

5.1 Introduction ... 81

5.2 Motivation ... 82

5.2.1 Reduced Dynamic Instruction Stream Coverage 82

5.2.2 Number of Permutation Instructions .. 83

5.3 Variable Length Vectorization .. 84

5.3.1 Code Generation .. 85

5.3.2 Hardware Requirements... 86

5.4 Selective Writing .. 87

5.4.1 Eliminating Permutation using Selective Writing 87

5.4.2 Reducing Permutation Instruction to Pack N Values 90

5.5 Performance Evaluation .. 93

5.5.1 Dynamic Instruction Stream Coverage .. 93

5.5.2 Permutation Reduction... 94

5.5.3 Putting Everything Together .. 95

5.5.4 Performance ... 96

vi

5.6 Related Work .. 97

5.7 Conclusion .. 98

6. Dynamic Selective Devectorization .. 99

6.1 Introduction ... 99

6.2 Background and Related Work ... 101

6.3 Motivation ... 103

6.4 Profiling and Devectorization ... 104

6.4.1 Profiling ... 106

6.4.2 Devectorization .. 107

6.4.3 Reducing Devectorization Slowdown.. 108

6.5 Performance Evaluation .. 109

6.5.1 Baseline .. 109

6.5.2 Models and Parameters .. 110

6.5.3 Higher SIMD Lane Usage Profile.. 111

6.5.4 SIMD Accelerator Energy Savings .. 111

6.5.5 Overall Energy Savings ... 115

6.5.6 Performance ... 116

6.5.7 Sensitivity Analysis ... 118

6.6 Conclusion .. 121

7. Conclusions ... 123

7.1 Conclusions ... 123

7.2 Future Work .. 124

8. References .. 127

vii

List of Figures

2.1 SIMD Execution Model………………………………………………………….17

2.2 HW/SW interface in processors………………………………………………….28

2.3 Memory system in a HW/SW co-designed processor……………………………30

2.4 Typical two stage TOL control flow……………………………………………..31

3.1 DARCO Main components…….………………………………………...………36

3.2 Data page request from the PPC component, enforcing the synchronization

phase……………………………………………………………………………..38

3.3 Translation Optimization Layer execution flow………..………………………...40

3.4 Abstract translation of an x86 basic blaock to host ISA………………………….41

3.5 Optimizations flow in Superblocks.……………………………………………...44

3.6 Speculation Failure Detection Example….………..……………………………..46

3.7 Host Processor Pipeline…………………………………………………………..47

3.8 Effect of Threshold Variation on the Number of host instructions.……..……….50

3.9 Dynamic x86 instruction distribution in IM, BBM and SBM……………………51

3.10 Host instructions per x86 instruction in SBM………..…..………………………52

3.11 Overall Host Dynamic Instruction Distribution..…………..…………………….53

3.12 Dynamic TOL Overhead Distribution..………………………………………..…53

3.13 Floating Point and Integer instruction distribution in host dynamic instruction

stream…..………………………………………………………………………...54

4.1 An Example Loop with pointer arithmetic….……………………………………62

4.2 Optimization Sequence in Superblocks for Vectorization Support……..………..64

4.3 Additional Dependence after vectorization..…………………………….……….69

4.4 Speculative Dynamic Vectorization Example…..………………………………..71

4.5 Percentage of Dynamic Instructions eliminated by GCC, TOL and

GCC+TOL vectorizations…..……………………………………………………73

4.6 Dynamic FP instruction stream distribution for SPECFP2006…………………..75

4.7 Dynamic FP instruction stream distribution for Physicsbench.…………………..75

4.8 Execution speed for GCC, TOL and GCC + TOL vectorized code relative

to unvectorized code…...…………………………………………………………77

viii

5.1 Dynamic FP Instruction Stream Coverage for vectorization at 128, 256 and

512 bit vector lengths normalized to 128-bit case..………………………………83

5.2 Number of permutation instructions generated per vector instruction at 128,

256 and 512 vector lengths normalized to 128-bit case..…………………………84

5.3 Instruction format for masked vector instructions..………………………………85

5.4 Variable Length Vectorization Example……..…………………………………..86

5.5 Masked Vector Instruction Execution……..……………………………………..86

5.6 Packing scalar instruction results for feeding a vector instruction…..……………88

5.7 Proposed instruction format for scalar instructions..……………………………..88

5.8 Functionality of the proposed arithmetic scalar instructions...……………………89

5.9 Percentage of Dynamic Instructions with one, two and more number of

consumers……………………………………………………………………….. 89

5.10 Operand Forwarding before shuffle……………………………………………... 90

5.11 Instruction sequence for packing 4 values from different registers into a

single register…………………………………………………………………….91

5.12 Instruction format for the proposed permutation instruction…………………….91

5.13 Functionality of the proposed Pack instruction…………………………………..91

5.14 Dynamic Instructions stream coverage at three vector lengths, baseline and

with VLV………………………………………………………………………...93

5.15 Number of Permutation Instructions per vector instruction, baseline and with

SWR.……………………………………………………………………………..94

5.16 Dynamic Instruction Percentage after baseline and VLV-SWR vectorizations…95

5.17 Execution time for baseline and VLV-SWR vectorizations normalized

to unvectorized code execution time……………………………………………..96

6.1 Percentage of vector instruction (excluding memory instructions) in the

dynamic instruction stream over the time……………………………………….104

6.2 Optimization sequence in superblocks for devectorization support…………….105

6.3 Percentage of vector instruction in the dynamic instruction stream after

dynamic selective devectorization for 434.zesump……………………………..111

6.4 SIMD accelerator energy savings for CPG, SPG and DSD normalized

to no power gating without including DSD energy overhead…………………..113

6.5 SIMD accelerator energy savings for CPG, SPG and DSD normalized

to no power gating including DSD energy overhead……………………………113

6.6 Percentage of vector instruction (excluding memory instructions) in the

dynamic instruction stream for 470.lbm………………………………………...114

ix

6.7 Core overall energy distribution at different technologies………………………115

6.8 Core energy consumptions for CPG, SPG and DSD normalized to no power

gating……………………………………………………………………………116

6.9 Overall Performance after DSD normalized to SPG…………………………….117

6.10 Percentage of vector instructions (excluding memory instructions) in the

dynamic instruction stream for 410.bwaves before and after DSD……………...118

6.11 Effect of breakeven threshold variation on DSD overall (dynamic + leakage)

energy savings over SPG with a fixed wakeup latency of 10 cycles……………119

6.12 Effect of breakeven threshold variation on DSD overall (dynamic + leakage)

energy savings over SPG normalized to breakeven threshold of 20 cycles,

with a fixed wakeup latency of 10 cycles (no success monitors, no dynamic

idle detect interval)……………………………………………………………...119

6.13 Effect of wakeup delay variation on DSD overall (dynamic + leakage)

energy savings over SPG with a fixed breakeven threshold of 150 cycles………120

x

xi

List of Tables

3.1 Host Processor Microarchitectural Parameters……………………………...……47

3.2 TOL configuration parameters………………………………………………...…48

4.1 Percentage of Dynamic Instructions eliminated by GCC, TOL and

GCC+TOL vectorizations………………………………………………………..74

4.2 Execution speed for GCC, TOL and GCC + TOL vectorized code relative to

unvectorized code………………………………………………………………...78

5.1 Percentage of permutations requiring N, N-1 and N-2 input registers to

pack N values, for 256 and 512-bit vectors………………………………………92

6.1 McPAT Parameters……………………………………………………………..110

xii

xiii

List of Algorithms

4.1 Speculative Dynamic Vectorization Algorithm………………………………….67

6.1 Dynamic Selective Devectorization Algorithm………………...……………….108

xiv

1

Chapter 1

Introduction

Microprocessor design has traditionally been driven by higher performance

requirements. Several microarchitectural techniques have been used to extract different

kinds of parallelism from the applications. Starting with the introduction of pipeline,

processor microarchitecture has gone through numerous improvements like superscalar

and VLIW execution, out-of-order execution, speculative execution, multithreaded

architectures, application specific accelerators, etc. Different microarchitectural extensions

target different kinds of parallelism available in the applications in order to boost

performance. Broadly, the parallelism available in an application falls under one or more

of the following categories.

1) Instruction Level Parallelism (ILP)

2) Data Level Parallelism (DLP)

3) Thread Level Parallelism (TLP)

 Microarchitectural techniques like instruction pipelining, superscalar and VLIW

execution, out-of-order execution, register renaming, branch prediction, etc. are all used to

exploit ILP. Single Instruction Multiple Data (SIMD) accelerators and vector processors

are specifically designed to extract DLP from data parallel applications. Finally, techniques

like multithreading and architectures like chip multiprocessors (CMP) target TLP. This

thesis focuses on extracting data level parallelism through SIMD accelerators.

SIMD accelerators are one of the most widely used microarchitectural extensions

because these are particularly effective in exploiting DLP. Applications from multimedia,

scientific, and throughput computing domains are the main targets of these accelerators

since they provide significant amount of DLP. Data parallel applications perform the same

operation on multiple pieces of data. As a result, SIMD accelerators just need to have

duplicated functional units with a very simple control mechanism. The performance

boosting ability of SIMD accelerators and their relatively low complexity has led to their

incorporation in processors from all the computing domains: general purpose processors,

digital signal processors, gaming consoles, as well as embedded architectures. Intel´s

2

MMX, SSE and AVX extensions, AMD´s 3DNow!, PowerPC´s Altivec, and ARM Neon

are prominent examples of SIMD extensions.

Apart from microarchitectural innovations, code optimizations have played an

important role in boosting performance. Significant amount of work has been done in

compiler optimizations to generate optimized binaries. Traditional compiler optimizations

like constant propagation, copy propagation, common sub-expression elimination, loop-

invariant code motion, redundant load elimination, store forwarding, dead code

elimination, software pipelining, etc. have been successfully used to achieve significant

performance improvements. Last decade has also seen the emergence of dynamic

optimizations that are performed at runtime. These optimizations benefit from the

availability of runtime information that is not available at compile time.

Performance has traditionally been the main focus of computer architects.

However, power consumption of the microprocessors and battery life requirements of

portable devices have made power/energy consumption an equally important factor.

Therefore, computer architects now have to achieve a balance between performance and

energy consumption. To address the problem, computer architects have turned their focus

on designing simple cores by eliminating power hungry components of a complex core.

Since simple cores provide lower performance than complex cores, several proposals have

been made to improve overall throughput. For instance, Hardware/Software (HW/SW) Co-

designed processors employ dynamic optimizations and speculative execution to improve

the overall performance. Chip multiprocessors (CMP) have multiple simple cores on the

same die and by simultaneously executing several threads on different cores, the overall

throughput is increased.

 Since HW/SW co-designed processors provide an opportunity to optimize the

applications dynamically using the information about runtime behavior of the application,

this thesis focuses on efficient code generation for SIMD accelerators in a HW/SW co-

designed environment.

1.1 SIMD Execution Model

 SIMD execution, as the name suggests, consists of operating on multiple data

elements in parallel using a single instruction. Therefore, the first step to enable SIMD

execution is to encode multiple data elements that can be operated on in parallel, in a single

instruction. This step is called vectorization. In general, vectorization is done at compile

time by a vectorizing complier. Compilers do program analysis to find independent scalar

3

instructions performing the same operation. Several of these instructions, depending on the

data type of instructions and the SIMD accelerator width, are packed together in a single

instruction, called a vector/SIMD instruction. Vectorized instructions are then executed on

the SIMD accelerator. SIMD execution has several advantages over scalar execution. Some

of them are described below:

1) Since SIMD accelerators perform multiple scalar operations encoded in a single

vector instruction in parallel, they improve the overall performance.

2) Since a single vector instruction encode multiple operations, the total number of

instructions to execute an application reduces. This results in lower instruction

cache size requirements. Alternatively, it results in improved instruction cache hit

rate and improved performance.

3) Having fewer instructions also reduces the amount of work the processor front-end

needs to do. It needs to fetch, decode, and schedule less instructions. Also, the back-

end needs to retire fewer instructions. This translates to better energy efficiency.

4) Having multiple operations encoded in an instruction allows a high number of

effective operations in the instruction window. This leads to better instructions

scheduling.

5) Vector memory instructions lead to fewer memory accesses and better utilization

of available memory bandwidth.

1.2 Challenges in SIMD Execution

Even though SIMD accelerators are very simple from the hardware perspective,

code generation for them has always been a challenge. Static compile time vectorization

loses significant vectorization opportunities due to conservative memory disambiguation

analysis. The problem further deepens at higher vector lengths because it becomes difficult

to find enough independent instructions, performing the same operation, to fill the wider

vector/SIMD paths. Furthermore, SIMD accelerators without any leakage control

mechanism might become a major source of leakage energy if not utilized judiciously.

1.2.1 Static Vectorization Limitations

The Instruction Set Architecture (ISA) of microprocessors contains special

instructions that are executed over SIMD accelerators. However, in the early days,

compilers were not smart enough to generate these instructions automatically. Therefore,

programmers used to target these extensions mainly using in-line assembly or specialized

4

library calls. Later, automatic generation of SIMD instructions (auto-vectorization) was

introduced in compilers, which borrowed their methodology from vector compilers.

 A recent evaluation of vectorizing compilers by S. Maleki et al. [74] shows that

the modern compilers including GNU GCC, IBM XLC, and Intel ICC are limited in

extracting available vectorization opportunities from the vectorizable applications. One of

the main problems in static compiling that they discovered is compilers inability to do

accurate interprocedural pointer disambiguation and interprocedural array dependence

analysis. Furthermore, J. Holewinski et. al. [45] showed that static vectorization fails to

extract significant vectorization opportunities especially in pointer-based applications.

They vectorize array- and pointer-based version of Digital Signal Processing (DSP) kernels

from UTDSP benchmark suit [13]. Their results show that the compiler is able to extract

significant parallelism from array based version of the kernels, whereas for pointer based

version it fails to extract any vectorization opportunity.

1.2.2 Wider Vector Units

 Due to their hardware simplicity SIMD accelerators are relatively easy to scale to

higher vector lengths. As a result, SIMD accelerators grow in size with each new

generation. For example, Intel´s MMX [4] had vector length of 64-bits, which was

increased to 128-bits in SSE [4] extensions. Intel´s recent SIMD extensions AVX [4] and

AVX2 [4] support 256-bit wide vectors. Furthermore, Intel Xeon Phi [12] and its visual

computing architecture Larrabee [93] perform 512-bit wide vector operations.

Although SIMD accelerators are amenable to scaling from the hardware point of

view, generating efficient code for higher vector lengths is not straightforward. The

problem lies in the fact that different applications have different natural vector length. The

applications with low natural vector length cannot benefit from wider vector units. There

are applications for which compilers just need to unroll loops with a higher unroll factor to

fill the wider vector paths. However, there is another category of applications that does not

have enough parallelism for vectorization at higher vector lengths. Generating code for

these applications for wider vector units becomes a challenge.

We discover that there are two key factors that thwart the performance at higher

vector lengths: 1) Reduced dynamic instruction stream coverage for vectorization and 2)

Huge number of permutation instructions.

5

1.2.3 Leakage in SIMD accelerators

 Leakage energy is the static energy consumption of a circuit when it is idle.

Functional units of microprocessors are responsible for a major fraction of leakage energy.

Even though SIMD accelerators are an energy efficient way of improving performance,

they become the main source of leakage energy due to their wider datapaths, for the

applications lacking DLP, in the absence of leakage control mechanism. Therefore, it is of

prime importance to shrink the leakage energy of SIMD accelerators when they cannot be

utilized efficiently due to lack of DLP.

 Many leakage control techniques have been studied [46][96][116], power gating

[46] being one of the most prominent ones. Power gating cuts the supply voltage to the idle

functional units, resulting in leakage energy savings. However, power gating has an energy

and performance overhead associated with it. The energy and performance penalty has to

be paid every time a power gated function unit is awakened to perform some operation.

This overhead is unjustifiable especially if a functional unit like SIMD accelerator is

needed to be awakened only for few cycles.

1.3 Contributions

This thesis focuses on optimizing SIMD execution in HW/SW co-designed

processors including efficient code generation and reducing leakage energy of SIMD

accelerators.

1.3.1 Speculative Dynamic Vectorization

We propose to complement the static vectorization with a speculative dynamic

vectorizer. Static vectorization applies several complex and time consuming loop

transformations to make a loop vectorizable. However, due to conservative memory

disambiguation analysis it loses significant vectorization opportunities, especially in

pointer rich applications. We propose to have a speculative dynamic vectorizer to handle

these cases. The proposed dynamic vectorizer speculatively assumes that a pair of

ambiguous memory accesses will never alias. This speculative assumption gives more

freedom in instructions reordering and hence the dynamic vectorizer is able to discover

more vectorization opportunities. During execution, the hardware checks for any memory

dependence violations caused by the speculative vectorization. If any violation is detected,

the hardware rolls back to a previously saved check-point and executes a non-speculative

version of the code.

6

This work has been published in the Proceedings of 20th International Conference

on High Performance Computing (HiPC 2013) [61] as a full length technical paper and in

the Proceedings of the 21st International Conference on Parallel Architectures and

Compilation Techniques (PACT 2012) [65] as a short paper. Furthermore, we also

presented this work at Hipeac Compiler, Architecture and Tools Conference at Haifa, Israel

in November 2013 [62].

1.3.2 Vectorizing for Wider Vector Units

We discovered two major problems in generating code for wider vector units: 1)

Reduced dynamic instruction stream coverage for vectorization and 2) Huge number of

permutation instructions.

We propose Variable Length Vectorization (VLV) to increase the dynamic

instruction stream coverage. Compilers generate vectorized code only when it is possible

to fill the entire vector path, or in other words when there are enough independent scalar

operations to occupy all the vector lanes. If this condition is not met, all the instructions

are left in the scalar form. VLV, on the other hand, packs maximum number of scalar

instructions together, even if the number is less than the number of vector lanes available.

Therefore, the dynamic instruction stream coverage for vectorization increases and the

dynamic instruction count decreases.

To tackle the problem of permutation instructions, we propose Selective Writing.

Permutation instructions are needed when the input operands of a vector instruction are not

available in a single vector register or are not in the correct order. Selective Writing consists

of two techniques. The first technique eliminates permutation instructions altogether if the

result of a scalar instruction is read only by one scalar instruction. The other technique

reduces the number of instructions required to pack N values from N-1 to N/2.

This work resulted in a publication in the Proceedings of 15th International

Conference on High Performance Computing and Communications (HPCC 2013) [63].

1.3.3 Dynamic Selective Devectorization

Dynamic Selective Devectorization (DSD) is a technique to efficiently power gate

higher SIMD lanes. It helps reducing the leakage energy of higher vector lanes and, as a

result, of whole SIMD accelerator and the core.

7

Power gating [46] is a widely used technique to reduce leakage energy consumption

of functional units. Power gating cuts the supply voltage to the idle functional units,

sending it to sleep state, resulting in leakage energy savings. DSD dynamically profiles the

applications to find higher lanes usage pattern. If a period of low activity, when the higher

lanes are used scarcely, is detected, DSD devectorizes the corresponding piece of code. As

a result, the higher lanes can be power gated for longer time intervals without intermittent

awakening. Therefore, DSD enables power gating to save more leakage energy.

This work has been published in the Proceedings of the 25th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD

2013) [64].

1.4 HW/SW Co-designed Processors

HW/SW Co-designed processors [36][39][91] have enticed researchers for more

than a decade. Moreover, there is a renewed interest in them in both industry and academia

[5][28][29][73][79][87][113]. These processors employ a software layer that resides

between the hardware and the operating system. This software layer allows host and guest

ISAs to be completely different, by translating the guest ISA instructions to the host ISA

dynamically. The host ISA is the ISA which is implemented in the hardware, whereas,

guest ISA is the one for which applications are compiled. The basic idea behind these

processors is to have a simple host ISA to reduce power consumption and complexity.

The software layer translates the guest ISA instructions to the host ISA in multiple

phases. Generally, in the first phase, guest ISA instructions are interpreted. In the rest of

the phases, guest code in translated and stored in a code cache, after applying several

dynamic optimizations, for faster execution. The number of translation phases and

optimizations in each phase are implementation dependent.

1.5 Why HW/SW Co-designed Environment

HW/SW co-designed processors provide some unique features that enable

optimized vector code generation. Some of these features include:

Support for Speculation and Recovery: HW/SW co-designed processors provide

efficient speculation and recovery support. It enables them to apply aggressive and

speculative runtime optimizations. We speculatively vectorize the code when dependence

between the two memory references is unknown. The hardware support is then leveraged

to recover from any speculation failure caused due to speculative vectorization.

8

Bigger Optimization Regions: Compilers, in general, vectorize at basic block level in the

absence loops. On the other hand, runtime optimizations in HW/SW co-designed

processors are applied on bigger optimization regions called superblocks. Superblocks

include multiple basic blocks following the biased direction of branches. Applying

vectorization at superblocks increases the scope of vectorization and hence, available

opportunities.

Decoupled ISA and Hardware: HW/SW Co-designed processors decouple the ISA from

hardware implementation by means of a software layer. This decoupling allows to modify

the hardware transparently to the software stack. As a results, different SIMD accelerators

can be targeted without recompiling the code.

Dynamic Optimizations: HW/SW co-designed processors dynamically optimize the

program binary at runtime. Therefore, vectorizing the program binary, instead of source

code, allows legacy code vectorization.

Online Profiling: HW/SW co-designed processors employ online profiling to discover

runtime application behavior. This information about runtime behavior of applications

allows more specialized optimizations. For example, runtime application behavior can be

used to decide which portions of application can be devectorized for efficient power gating

of higher vector lanes without affecting performance.

1.6 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 provides the necessary background for the work presented. First we

present an historical evolution of microprocessors and SIMD accelerators, followed by a

description of different vectorization techniques. Then, we introduce dynamic optimization

and different environments where they are applied. Finally, we present an overview of

HW/SW co-designed processors and the features they offer.

Chapter 3 provides the details of our simulation environment. First, we present our

simulation infrastructure, DARCO that is an in house development in collaboration with

other members of the research group. Then, we describe benchmarks used for the

evaluation of our proposals. Afterwards, we present the vector instruction set of the host

ISA.

9

The next three chapters illustrate our proposals in detail. Each chapter starts with

an introduction and motivation for the work presented. It is then followed by a description

of the proposed algorithms or techniques. Thereafter, we present the experimental

evaluation results. Finally, we compare out proposals with the related work in the

corresponding area.

Chapter 4 explains our proposal of Speculative Dynamic Vectorization to vectorize

application at runtime and extract vectorization opportunities missed by compilers due to

conservative memory disambiguation analysis. Chapter 5 discusses problems in

vectorization at higher vector lengths and provides details of our proposals: Variable

Length Vectorization and Selective Writing. Chapter 6 presents the proposed Dynamic

Selective Devectorization technique and how it improves power gating efficiency in saving

leakage energy in SIMD accelerators. Finally, Chapter 7 concludes the thesis and outlines

the future work.

10

11

Chapter 2

Background

High computational power requirements have always driven the microprocessor

design. The high performance demands have been met through technology scaling and

microarchitectural innovations to extract different kind of parallelism from the

applications. Parallelism can broadly be divided into the following categories:

Instruction Level Parallelism:

Instruction level parallelism (ILP) takes advantage of sequences of instructions that

require different functional units (such as the load unit, ALU, FP multiplier, etc.) for

execution. Different architectures approach this in different ways, but the idea is to have

these non-dependent instructions executing simultaneously to keep the functional units

busy as often as possible.

Thread Level Parallelism:

Thread level parallelism (TLP) is extracted by running multiple flows of execution

of a single application simultaneously. TLP is most often found in applications that need

to run independent, unrelated tasks (such as computing, memory accesses, and IO)

simultaneously. These types of applications are often found on machines that have a high

workload, such as web servers. TLP is gaining importance due to the rising popularity of

multi-core and multi-processor systems, which allow for different threads to truly execute

in parallel.

Data Level Parallelism:

Data level parallelism (DLP) is more of a special case than instruction level

parallelism. DLP appears due to the need of performing the same operation on multiple

data items simultaneously. A classic example of DLP is performing an operation on an

image in which processing each pixel is independent from the ones around it (such as

brightening). Other types of operations that allow the exploitation of DLP are matrix, array,

and vector processing.

12

2.1 Microarchitectural Innovations to Exploit Parallelism

A whole body of microarchitectural innovations exists to exploit different kind of

parallelisms. Most prominent of these techniques are given below:

2.1.1 Extracting Instruction Level Parallelism

 Arguably, the maximum number of microarchitectural innovations have been

focused on extracting ILP, especially in general purpose computation domain. These

include:

Instruction Pipelining: Instruction pipelining is a technique to overlap the execution of

different instructions at the same time [26][31]. An instruction goes through different

processor stages during its execution: fetch, decode, register read, execute, memory access,

and write back are the most basic stages. The insight behind pipelining is that any given

instruction is only in one of these processor stages during its execution while the rests of

the stages are idle. Instead of waiting for one instruction to finish its execution and then

initiating the next instruction, pipelining initiates next instruction as soon as first instruction

leaves the first stage. In other words, pipelining thrives by keeping all the processor stages

busy. Hence, pipelining extract parallelism among different phases of instructions by

executing them in parallel and boosts overall throughput.

Dynamic Instruction Scheduling and Out-of-Order Execution: Dynamic instruction

scheduling decides the order of instruction execution at runtime. It enables instructions

bypassing each other during execution, i.e. out-of-order execution, instead of following the

strict order in which they are stored in memory. In the absence of dynamic instruction

scheduling, the whole pipeline is stalled if an instruction cannot be executed due to any

reason like dependence, cache miss, etc. However, dynamic instruction scheduling allows

later instructions to bypass the stalled instruction and continue their execution. Scoreboard

in CDC 6600 [105] and Tomasulo´s algorithm [108] are two earliest example of dynamic

instruction scheduling. Executing instructions in out-of-order fashion increases resource

utilization and hence improves performance. However, complex hardware structures are

maintained to allow the instructions to execute out of the original program order and track

dependencies. This increases hardware complexity and increase power consumption.

Superscalar Processors: These processors consist of multiple pipelines all operating in

parallel [16][20]. Having multiple pipelines allow superscalar processors to issue and

commit (complete) multiple independent instructions per cycle. These processors

incorporate sophisticated hardware to dynamically check dependences among instructions

13

at runtime. This hardware sophistication results in chip complexity and power dissipation,

which have become a major problem in modern superscalar processors. Even though

superscalar processors incorporate multiple pipelines, the effective use of these pipelines

depend on available ILP in the applications. Data dependency among consecutive

instructions limits the amount of ILP that can be extracted by superscalar processors.

Nonetheless, superscalar processors have been used successfully to extract ILP by

executing multiple instructions in parallel.

VLIW Processors: Very Long Instruction Word (VLIW) processors [33][40][76][94] are

similar to superscalar processors in the sense that they also incorporate multiple pipelines.

However, VLIW processors do not have dynamic instruction scheduling, as do

superscalars. Compiler is responsible for scheduling instructions to be executed in different

pipelines. This reduces the complexity and high power consumption problems of

superscalar processors. However, compiler needs to be aware of microarchitectural details

in order to do efficient scheduling and extract ILP. The dependence of VLIW processors

on the compiler support makes them a less attractive option. This is one of the reasons

behind superscalars being more popular than VLIWs.

 Register renaming, branch prediction [38][49][51][84][97][118][119], and

speculative execution [48][50][100][101][102] are some of the other well-known

microarchitectural techniques to extract more ILP. Register renaming is a technique used

to avoid false (anti and output) dependence among instructions. Removing false

dependences exposes more ILP. Branch predictor, as the name suggests, predicts outcome

of a branch before it is executed so that the control dependent instructions can start their

execution without waiting for the outcome of the branch. If the prediction is incorrect,

however, there is a penalty to be paid. Speculative execution refers to performing a task

before knowing whether it is to be performed or not. Brach prediction is an example of

speculative execution. All these techniques focus on boosting performance by exploiting

ILP.

2.1.2 Extracting Thread Level Parallelism

 Exploiting ILP has driven the microprocessor design for several decades. However,

diminishing returns on ILP has led architects to consider exploiting other kinds of

parallelism to meet performance requirements. TLP has been targeted in the applications

that perform several independent tasks. Microarchitectural supports for extracting TLP can

be summarized as:

14

Multithreading: The basic idea behind multithreading is to execute multiple threads

(workloads) on a processor simultaneously. In a multithreaded processor, the hardware

resources are shared among a set of threads. However, it requires duplication of some of

the resources like registers and program counter, to maintain the thread state. The three

main approaches to multithreading are:

 Fine-grained Multithreading: This technique issues instructions from a different

thread on each clock cycle, skipping the stalled threads [44][53][67]. Since the threads are

switched every clock cycle, throughput loss even for short stalls in one thread can be

efficiently hidden by executed instructions from the other threads. The flip side of fine-

grained multithreading is that it slows down the execution of an individual thread even if

does not suffer any stalls. Nonetheless, the technique is effective for improving system

throughput.

 Coarse-grained Multithreading: Where fine-grained multithreading switches

between threads on every clock cycle, coarse-grained multithreading switched them only

for costly stalls, like L2 or L3 cache misses [14]. Therefore, slowdown in individual threads

is going to be less, if they do not have costly stalls. However, thread switching only for

costly stalls prevents coarse-grained multithreading to compensate for throughput loss due

to short stalls.

 Simultaneous Multithreading: Simultaneous multithreading technique [75][111] is

a special case of fine-grained multithreading implemented in multiple issue, dynamically

scheduled superscalar processors. Fine- and coarse-grained multithreading, even though

switch threads, issue instructions from a single thread in one cycle. As a result, some of the

issue slots may remain empty due to lack of ILP. Simultaneous multithreading solves the

problem by issuing instructions from multiple threads in the same cycle. Therefore, the

number of empty slots reduces and system throughput increases.

Multiprocessor: Multiprocessors [42] consist of a set processors sharing memory and

peripherals. TLP is extracted by executing independent threads on different processors.

Comparing to a single multithreaded processor, multiprocessors duplicate the entire

processor, whereas multithreading requires duplication of only the private state such as the

registers and program counter. Moreover, each processor within the multiprocessor can

also support multithreading, thereby, increasing the total number of threads that can be

executed on the multiprocessor. If all the processors in a multiprocessor are on the same

chip, it is called chip multiprocessor or CMP. Depending upon the memory organization,

15

multiprocessors can be categorized as either shared memory multiprocessors or distributed

memory multiprocessors.

 Centralized Shared-Memory Multiprocessors typically consist of small number of

processors sharing a centralized memory. Since the memory is centralized, all the

processors have uniform memory access latency, therefore, this configuration is called

Uniform Memory Access (UMA) multiprocessors as well. UMA is suitable only for

multiprocessors with few cores because it is not practical for a centralized memory to

support the bandwidth requirements of large number of cores.

 Distributed Shared-Memory Multiprocessors can support larger processor count,

since the memory is physically distributed among the processors. The memory bandwidth

increases as a result of distributed memory, however, it also means that the memory access

latency is not uniform, rather depends on the location of the processor that has the requested

data. Therefore, these multiprocessors are also called Non Uniform Memory Access

(NUMA) Multiprocessors.

2.1.3 Extracting Data Level Parallelism

 A set of architectural extensions exists to specifically extract data level parallelism

from applications from different computing domains like multimedia applications,

scientific computing, etc. These extensions include vector processors, graphics processing

units (GPU), and SIMD accelerators. The basic idea behind all of these extensions is to

perform the same operation on multiple data elements by a single instruction. In addition

to the performance benefits, this also results in energy efficiency because the front-end of

the microprocessor has to handle less instructions.

Vector Processors: Vector processors [43][114] are especially designed to efficiently

execute data parallel applications. These processors work with long vectors, a typical

example is 64 element vectors. The elements in a vector are processed in a pipelined

manner, including memory load/store. These pipelined load/stores help vector processors

in hiding memory latency. However, these architectures are expensive mainly because of

high memory bandwidth requirements.

Graphics Processing Unit (GPU): The last decade saw the appearance of GPUs [2][6][7]

as high performance graphics accelerators. However, due to their high throughput they are

gaining popularity in general purpose computing domain as well. GPUs consist of highly

parallel hardware that support single instruction multiple data execution model. They also

support huge number of threads executing in parallel. These architectures sometimes are

16

referred to as heterogeneous architectures because they have a system processor and system

memory in addition to the GPU itself. The main challenge in GPUs is optimizing the

communication between system memory and GPU.

SIMD Accelerators: In the mid-90´s SIMD accelerators [4][23][37] [68] emerged mainly

to accelerate multimedia applications on general purpose processors. Like vector

processors, SIMD accelerators perform the same operation on multiple pieces of data using

one instruction. However, the vector length of SIMD accelerators is typically much smaller

than the maximum vector length of vector processors. Furthermore, some of the

fundamental features of vector processors like variable vector length, strided memory

access, gather-scatter, and mask registers are generally omitted in SIMD accelerators to

simplify the design. This, however, makes it difficult for compilers to generate code for

them. Therefore, some of the latest SIMD accelerators have started to incorporate these

features in their ISA gradually with each new generation.

 Due to their simplicity, performance boosting ability, and energy efficiency SIMD

accelerators form an integral part of processors from different computing domains. Even

though GPUs have greater compute potential, they work as a coprocessor, whereas SIMD

accelerators form part of processor´s pipeline. This fact allows them to speed up the

execution of more general purpose applications. GPUs and vector processors, on the other

hand, target a specific kind of applications that have significant amount of explicit DLP.

Moreover, GPUs have specific programming language requirements and require

programmers to explicitly expose DLP through programming language notations.

Whereas, SIMD accelerators do not have any such requirements. Therefore, this thesis

focuses on extracting DLP through SIMD accelerators instead of GPUs or vector

processors.

2.2 SIMD ISA Extensions

 SIMD accelerators [4][35][23][37][52][68][103][109] are ubiquitous in

microprocessors from different domains ranging from supercomputers to smart phones.

These accelerators are specially designed to target computation intensive scientific

applications, multimedia applications like image processing, signal processing, graphics,

audio and video encoding, etc. These applications consists of compute intensive data

parallel kernels where each element can be processed in parallel. For example, in image

processing, properties of individual pixels can be modified in parallel. To efficiently

execute these kernels, SIMD accelerators provide multiple functional units all performing

the same operation as shown in Figure 2.1.

17

Microprocessors have special extensions to their Instruction Set Architecture (ISA)

and hardware state (e.g. new registers) to support SIMD execution. Following are some of

the representative SIMD extensions in current microprocessors.

2.2.1 Intel´s SIMD Extensions

 Intel´s SIMD extensions [4] have gone through major transformations since they

were first introduced in 1996. Intel introduced MMX as 64-bit wide multimedia extensions

for their Pentium processors. MMX supports 8-bit, 16-bit, and 32-bit vectors. This means

that the 64-bit wide vector path can perform eight 8-bit, four 16-bit or two 32-bit operations

in parallel. Following the IA-32 semantics, MMX implements two-operand destructive

instruction encoding, where one of the source registers is also the destination register.

However, MMX does not include floating-point vector instructions.

MMX defines eight 64-bit vector registers named MM0-MM7. However, these

registers are mapped to x87 floating-point registers to avoid saving extra state on context

switches. Therefore, this register aliasing prohibits MMX and x87 code intermixing. The

register values need to be saved and retrieved before switching between MMX and x87

code.

Streaming SIMD Extensions (SSE): Intel introduced SSE [4] in 1999 in Pentium III to

overcome the limitations of MMX. The vector length was increased to 128-bits from 64-

bit of MMX to boost performance. SSE introduced 70 new instructions to perform single-

precision floating-point arithmetic operations, memory load/store, comparison, data

shuffling, and data type conversion between integer and floating-point. Moreover, SSE

Op Op Op

Opcode

Figure 2.1: SIMD execution model.

18

introduced special instructions for cacheability control, prefetch, and memory ordering.

The vector single-precision floating-point instructions of SSE perform four single-

precision floating-point operations in parallel, whereas the scalar floating-point

instructions perform only one operation. Therefore, the scalar instructions in SSE provide

an option to avoid the complex x87 Floating Point Unit (FPU) to execute floating-point

code even without vectorization. The cacheability control instructions provide a fine

control over when and what data to bring to caches.

 SSE also introduced a separate vector register file with eight 128-bit vector registers

(XMM0 – XMM7) and a 32-bit status and control register MXCSR. Having a separate

register file resolves the register aliasing problem of MMX. The ability to intermix SSE

and MMX code provides greater flexibility and throughput for applications operating on

large arrays of floating-point and integer data.

SSE2: SSE2 [4] was introduced in 2001 with Intel Pentium IV processors. SSE2 improved

on existing MMX and SSE extensions by adding 144 new instructions. SSE2 extensions

featured two major enhancements: 1) Double-precision floating-point instructions and 2)

128-bit SIMD integer instructions. MMX and SSE both lacked double-precision floating-

point support. Its inclusion in SSE2 enabled high precision computations in SIMD unit and

as a result, better performance for scientific and engineering applications. MMX had 64-

bit vector integer instructions and even though SSE supports 128-bit wider vectors, it does

it only for floating-point instructions. SSE2 extended 128-bit vector support for integer

instructions as well. Furthermore, SSE2 improved upon the cacheability control and

prefetching support introduced in earlier SSE extensions.

SSE3/SSSE3/SSE4: SSE3 [4] was introduced in 2004 with Pentium IV processor with

Hyper Threading (HT) technology. SSE3 introduced 13 new instructions in different

categories. It included floating point instructions that support packed addition/subtraction

and horizontal addition/subtraction. The packed addition/subtraction instructions perform

addition on one element of the vector register and subtraction on the other element. The

horizontal addition/subtraction instructions perform the operation on the different elements

of the same source register instead of performing it on the corresponding elements of

different source registers. Furthermore, two thread synchronization and one integer

unaligned load instruction was also introduced in SSE3.

 Supplement Streaming SIMD Extensions (SSSE3) was introduced in 2006 with

Intel Core 2 processor family. It introduced 32 new instructions mainly to accelerate

multimedia and signal processing applications with integer data. It extended the horizontal

19

addition/subtraction support of SSE3 to integers as well. Further, SSSE3 introduced new

instructions like absolute value evaluation, multiply and add for dot products, negating

packed integers, etc.

 SSE4 consists of two extensions: SSE4.1 and SSE4.2. The 47 new instructions of

SSE4.1 are targeted at improving the performance of media, imaging, and 3D applications

whereas SSE4.2 focuses on string and text processing.

Advanced Vector Extensions (AVX): AVX [4] is Intel´s 256-bit SIMD extension

supported by Sandy Bridge architecture. A major difference between AVX and earlier

SIMD extensions, apart from the vector length, is the instruction encoding. AVX uses a

three operand non-destructive instruction encoding. It helps in reducing the number of

register-register copy operations.

Further, AVX enhances the 128-bit floating point instructions to operate on 256-

bits. However, vector integer instructions do not have a 256-bit version. Apart from

enhancing existing instructions to 256-bits, AVX offers several new instructions for non-

unit-stride fetching of data, intra-register manipulation of data, etc. AVX also introduces a

new register file consisting of eight 256-bit registers YMM0 –YMM7. However, the lower

128-bits of the YMM registers are mapped on to XMM registers.

FMA and AVX2 Extensions: Fused-Multiply-Add (FMA) [4] extensions include various

combinations of fused instructions to further improve the performance. The instructions in

this extension includes fused multiply-add, fused multiply-subtract, fused multiply

add/subtract interleave, and signed-reversed multiply on fused multiply-add and multiply-

subtract. All these instructions can operate on single-precision and double-precision

floating-point data. Moreover, scalar and vector (packed) version of all these fused

operations are available except for fused multiply add/subtract interleave that has only the

vector version.

 Advanced Vector Extensions 2 (AVX2) [4] promotes the majority of integer

instructions to support 256-bit vector operations, whereas AVX supports 256-bit vector

operations only on floating-point data. Moreover, AVX2 provides gather support to fetch

data from non-contiguous memory locations. It also includes vector shift instructions with

per element shift count. Furthermore, it improves the broadcast and permutation

functionality of AVX instructions.

Intel´s 512-bit Vector Extensions: Intel´s Many Integrated Core (MIC) architecture and

products based on it, like Xeon Phi [12], support 512-bit wide vector instructions. Apart

20

from wider vectors, this architecture supports masked vector execution that enables

vectorizing short conditional branches. This improves overall efficiency of vector

processing unit. Furthermore, MIC supports gather and scatter instructions to access non-

unit stride memory accesses. Vectorizing irregular memory access patterns helps extracting

additional vectorization opportunities and improves overall performance.

2.2.2 PowerPC Altivec

 Altivec [37] SIMD extensions were the result of a joint effort from Apple, IBM,

and Motorola in late 90´s. The name Altivec, however, comes from Motorola. IBM called

these extensions VMX, whereas Apple referred to them as Velocity Engine. Like SSE,

Altivec supports a vector length of 128-bits, thought it was launched before SSE. It

included a rich set of both integer and floating-point vector instructions; however, support

for double-precision floating-point is absent. Furthermore, Altivec implements non-

destructive instruction encoding.

 Altivec has a vector register file with thirty-two 128-bit registers compared to eight

128-bit registers of SSE (though x86-64 has sixteen 128-bit registers). A notable difference

between Altivec and SSE is that Altivec does not have scalar floating-point instructions

like SSE. Scalar code has to be executed on a separate floating-point unit (FPU).

Furthermore, there is no instruction for moving data between vector and floating-point

register files.

 Altivec provides some very flexible data permutation instructions like vperm. It

allows each byte of a resulting vector to be taken from any byte of either of two other

vectors, parameterized by yet another vector. vsel is another permutation instruction that

operates at bit level. In addition, Altivec offers vector compare instructions and select

mechanism to allow control flow in the vectorized code. Like SSE, Altivec also provides

instructions for cacheability control to avoid polluting the cache with non-temporal data.

2.2.3 ARM Neon

 Neon is 128-bit (or alternatively 64-bit) wide SIMD extension for ARM processors.

Neon provides a rich set of integer and floating-point vector instructions. It supports scalar

single-precision and double-precision computations. However, only single-precision

floating-point instructions have vector equivalents. Neon also provides scalar and vector

half-precision conversions instructions. Like Altivec, it uses a non-destructive instruction

encoding for most of the instructions.

21

 Neon has a vector register file that can be viewed as: 1) Thirty-two 64-bit registers

D0-D31 or 2) Sixteen 128-bit register Q0-Q15. In other words, each D register is one half,

either lower or higher, of a Q register. Alternatively, a Q register is composed to two D

registers. For example Q0 is the same register as D0 and D1 combined. This dual view of

registers allows to promote/demote the elements within a single operation. A “promotion”

doubles the precision of the elements, for example instructions like VMULL, VADDL, etc.

promotes elements from 16-bits to 32-bits. These instructions read the source operands

from D registers and place the results in the destination Q register. Similarly, a “demotion”

reduces the precision by reading input operands from Q registers and placing the result in

D register, e.g. VADDHN. Furthermore, there are instructions that promote only the second

operand like VADD, VSUB, etc.

 In addition, Neon instruction set allows vector operations with scalar values. In this

case, the scalar is used for all the operations instead of having to operate on corresponding

elements of the vector registers. It has the same effect as first duplicating the scalar to all

the elements of a vector register and then performing a vector-vector operation. Neon also

provides a variety of memory load/store instructions like broadcasting, interlaced

load/store, inserting/extracting to/from a particular element of a vector register, etc.

2.3 Code Generation for SIMD Accelerators

 Despite their hardware simplicity, the code generation for SIMD accelerators is a

challenging task. Initially, SIMD extensions were targeted using inline assembly or

specialized library routines. Even though these solutions are capable of utilizing the SIMD

accelerators, they have their own limitations. For example, they are time consuming, error

prone, and require the programmers to have in-depth knowledge of the underlying SIMD

architecture. Moreover, the code is not portable between different SIMD accelerators.

These limitations led the compiler technology to target these extensions automatically.

Most of the compiler vectorization techniques operate at source code level. However, S.

Larsen et al. [66] introduced a technique that operates at low-level intermediate code. Since

then, there have been other proposals that operate at lower level. This section reviews the

existing compiler approaches to vectorization.

2.3.1 Traditional Compiler Vectorization

 Compiler vectorization traditionally targets loops for vector code generation. The

vectorizer, first of all, strip-mines the loop iteration space by vector length vl. For example,

on a 128-bit wide SIMD accelerator, for a loop operating on 32-bit variables, the iterations

22

space is strip-mined by 128/32 = 4. Then a vectorized version of the loop is generated along

with some pre- and post-vectorization steps. The following scalar loop

 for (i = 0; i < n; i++) { //scalar statements }

will be vectorized by the compiler as shown below:

 i = 0;

prelude: if (runtime-test) goto cleanup;

 m = n – (n % vl)

 …….

vector loop: for (; i < m; i += vl) { //vector statements }

postlude: ……

cleanup: for (; i < n; i++) { //scalar statements }

exit:

 As shown above, the vector version of the loop has several parts: prelude,

vectorized code, postlude, cleanup, and exit. Prelude does some pre-processing steps for

vectorization. For example, it might include a runtime test to check for number of iterations

if loop trip count is not known statically or a runtime test to check multiple arrays for

aliasing. In both of these cases, the vectorized loop will not be executed if the test fails.

“Vectorized code” section includes the vectorized version of the loop which is executed if

runtime tests in prelude succeed. Postlude is used for post-processing after executing

vectorized code. One example of this post-processing is generating the final result of a

reduction after executing vectorized code. The cleanup section consists of scalar version

of the loop. Cleanup is necessary when the loop trip count is not evenly divided by vector

length. Therefore, cleanup executes iterations that remain after executing vector loop.

Finally the loop exits and the rest of the application is executed. It is important to note that

not all of these sections are needed for all the vectorized loops. For example, if number of

iterations is evenly divided by the vector length, we might not need cleanup.

2.3.2 Superword Level Parallelism

 Superword Level Parallelism (SLP) is defined as short SIMD parallelism in which

the source and result operands of a SIMD operation are packed in a storage location [66].

The technique works at low-level intermediate code level rather than operating at source

23

code level like conventional vectorization approaches. Traditional vectorization schemes

target loops for generating vectorized code, whereas SLP targets parallelism within a basic

block, possibly after loop unrolling. Therefore, SLP can vectorize parts of a loop, if the

loop is not completely vectorizable. Moreover, SLP avoids complex loop transformations

like loop fission and scalar expansion, while it is still able to extract equal or even more

parallelism.

 The technique first unrolls a loop to convert vector parallelism into superword level

parallelism. Then, SLP starts vectorization by locating adjacent memory references and

packing them together in groups of two instructions. Then they follow def-use and use-def

chains of these initial packs and newly created packs, if any. These groups are then merged

together to form bigger groups depending on the SIMD accelerator width. The vectorized

code is then scheduled and groups involved in acyclic dependences, if any, are eliminated.

The technique also includes a cost model to estimate the profitability of vectorization based

on the number of packs created and the cost of permutation instructions generated.

2.3.3 SLP in Presence of Control Flow

 Since the technique presented by S. Larsen works at basic block level, it fails to

vectorize loop with control flow. To overcome this limitation, J. Shin et al. [95] extended

SLP in the presence of control flow. The basic idea behind their technique is to execute

both if and else parts of an “if statement” in vector form and then choosing the correct

result based on the outcome of the control instruction.

Their mechanism, like SLP, starts by unrolling a loop. Then, if-conversion is

applied to convert control dependences into data dependencies. However, each instruction,

that was control dependent earlier, now has a predicate associated with it. The predicate

might be true or false depending upon the outcome of the control instruction. Therefore,

if-conversion removes control dependences and creates a bigger basic block with

predicated instructions.

 The modified SLP algorithm takes this basic block as input for vectorization and

produces an output that is a mix of predicated scalar and superword (packed) instructions.

If the underlying architecture supports predicated instructions, nothing more needs to be

done. However, if it does not, then the predications need to be removed either by restoring

the control flow or by mapping them to the features provided by the underlying

architecture. For example, predicated superword instructions can be mapped to the vector

select instruction vsel of Altivec.

24

2.3.4 Speculative Dynamic Vectorization

 Both of the last two vectorization schemes that we have seen, work on low-level

intermediate format. A. Pajuelo et al. [83] proposed yet another vectorization scheme that

vectorizes the applications at binary level. Instead of compiler vectorization, they proposed

a microarchitectural extension for superscalar processors that speculatively vectorizes the

program binary. The basic idea is to predict when certain operations are vectorizable and

generate vector code that speculatively fetch and precompute data using the SIMD

accelerator.

 The vectorization begins when a scalar strided load instruction is detected. Next, a

vectorized version of this instruction is generated/executed that speculatively loads into a

vector register assuming that the future instance of this instruction will be executed with

same stride and without any intermediate store to the corresponding locations. Next

occurrences of the given load instruction are used to validate the assumptions that were

made speculatively. Arithmetic instructions are vectorized when any of the source

operands is already vectorized. As with load instructions, the rest of the instances of the

scalar arithmetic instructions are used to check that the corresponding source operands are

still valid for vector operation. Speculation failure triggers a recovery mechanism and

execution in non-speculative scalar mode.

 Speculative Dynamic Vectorization is able to get away with the complexities

encountered by compiler. Moreover, legacy code can also be vectorized using it. However,

the cost of speculation failure can be high. A. Pajuelo et al. [83] reported that more than

half of speculative work was useless due to misspeculations. This is also important from

energy efficiency point of view, which is already a big issue in superscalar processors.

2.3.5 Liquid SIMD

 Liquid SIMD [34] targets the problems of binary compatibility, software migration

cost, and redesigning of SIMD ISA that arise due to increased functionality and larger

vector width with each new generation of SIMD accelerators. Liquid SIMD decouples the

SIMD ISA from the SIMD accelerator hardware by means of delayed binding. The delayed

binding is achieved by a combination of compiler support and translation system.

 The compiler support is used to translate vectorized SIMD instructions to a

virtualized representation using the processor´s baseline instruction set. Moreover,

compiler adds vectorization hints in the translated code, so that the translation system can

easily discover the vectorizable code. The conversion can be done at compile time or as a

25

post conversion step. Moreover, the conversion applies to both complier vectorized code

and hand coded in-line assembly.

 The principle task of the translation system is to convert the virtualized code to

equivalent SIMD representation targeted at the specific implementation of the SIMD

accelerator. The translation system could be a binary translator, just-in-time compiler, or a

hardware extension; each with its own pros and cons.

2.3.6 Vapor SIMD

 Vapor SIMD targets portable vectorization across disparate SIMD accelerators

with different vector lengths [82]. It opts for a split-compilation approach where the final

machine code is generated by a combination of two separate yet synergistic compilation

phases. The first phase is an aggressive and generic offline compilation stage that generates

an optimized target independent intermediate code. The second phase is an online just-in-

time compilation stage that reads the optimized target independent intermediate code and

generates target specific vectorized SIMD code.

2.4 Code Optimizations

 Section 2.1 presented a summary of most commonly used microarchitectural

techniques to improve the performance. Apart from these microarchitectural innovations,

a whole body of optimizations exists that plays an important role in meeting the high

performance requirements.

Optimizations transform a piece of code to make it more efficient. The efficiency

may come in the form of better performance, smaller memory/cache size requirements,

energy efficiency, etc. Moreover, optimizations must not change the output of a program,

or in other words, the output remains the same with and without optimizations. However,

this may not be true for incorrectly written programs e.g. uninitialized variables. The only

effect of optimizations is that the optimized program runs faster and/or consumes less

energy and/or consumes less memory, etc. Code optimizations can be broadly categorized

as:

1) Static Compiler optimizations.

2) Dynamic Binary optimization.

26

2.4.1 Static Compiler Optimizations

 The primary task of compilers is to generate machine code from higher level source

code. While generating the machine code, the prime responsibility of the compiler is to

ensure correctness and then whatever extra benefit that may come from the optimizations.

Compiler optimizations can be divided into two categories: 1) Local Optimizations and 2)

Global Optimizations.

Local Optimizations: Local optimizations are performed within the scope of a basic block.

These are relatively easier to perform since there is no control flow to be worried about.

Some of the most common local optimizations are:

1) Constant Folding.

2) Constant Propagation.

3) Copy Propagation.

4) Common Sub-expression Elimination.

5) Algebraic Simplification.

6) Operator Strength Reduction.

7) Dead Code Elimination.

Global Optimizations: The scope of Local Optimizations is limited to a single basic block.

By widening this scope, more optimization opportunities can be discovered. This is exactly

what Global Optimizations do. By doing some additional program analysis, they expand

the scope and apply local optimizations across multiple basic blocks. Global optimizations

typically optimize a whole function at a time. In addition to increasing the scope of local

optimizations, following global optimizations further improve the generated code quality:

1) Loop Invariant Code Motion.

2) Register Allocation.

3) Instruction Scheduling.

4) Peephole Optimizations.

5) Machine Code Optimizations.

2.4.2 Dynamic Binary Optimizations

 As the prime responsibility of compilers is to ensure correctness, they optimize the

code conservatively to ensure correctness. Furthermore, the lack of knowledge of the

runtime program behavior also restricts compilers ability to apply aggressive

optimizations. Dynamic binary optimizers (DBO), on the other hand, optimize the program

27

binary at runtime. This allows them to profile the code to understand the dynamic program

behavior and, accordingly, apply aggressive, even speculative, optimizations. However,

certain support is required either in hardware or software to recover from speculation

failures, if any.

 Dynamic binary optimizers profile the program binary on the fly to determine what

and when to optimize. This dynamic profiling leads to optimizations that are not coupled

to one or more particular program inputs, as would be the case for offline profiling. The

profiling provides, among others, two important characteristics of execution: 1) the most

frequently executed portion of the code and 2) the most frequently followed paths in the

execution i.e. the sequence of execution of basic blocks. In order to keep the optimization

overhead minimum, as it is done on the fly, only the most frequently executed basic blocks

are optimized. Moreover, the knowledge of most frequently followed paths helps in

applying local and global optimizations described above only across the basic blocks that

follow each other during execution.

 Dynamic binary optimizers can be divided into two categories depending on

whether they are implemented in software or hardware:

1) Software Dynamic Binary Optimizers.

2) Hardware Dynamic Binary Optimizers.

Software DBOs are a software layer that intercepts the program binary, before it

starts execution, to profile and later optimize it. However, they might need some hardware

support in order to apply some aggressive optimizations like speculative instruction

reordering. Software DBOs introduce a certain performance overhead, since they share the

execution time with applications. However, they thrive by compensating this overhead by

performing aggressive code optimizations to improve overall performance. The examples

of Software DBOs include Dynamo [21], IA-32 EL [22], Strata [92], DynamoRIO [30],

etc.

Hardware DBOs are completely implemented in hardware; though their presence

is not reflected in the ISA. Due to their hardware implementation, they do not introduce

performance overhead like Software DBOs. However, the down side of Hardware DBOs

is increased hardware complexity and more energy consumption. rePLay [85] and

PARROT [90] are the most representative Hardware Dynamic Binary Optimizers.

Apart from Software and Hardware DBOs, dynamic optimizations are also

employed by Hardware/Software Co-designed Processors as explained in the next section.

28

2.4 Hardware/Software Co-designed Processors

 HW/SW Co-designed processors [36][39][91] have enticed researchers for more

than a decade. Moreover, there is a renewed interest in them in both industry and academia

[5][28][29][73][79][87][113]. These processors are specially designed to achieve energy

efficiency, design simplicity, and performance improvement. In order to achieve design

simplicity, they keep the hardware simple and implement a relatively simple ISA. The

simple hardware design also helps in achieving energy efficiency. Transmeta reports

significant reduction in power dissipation for their HW/SW co-designed processor Crusoe

compared to Intel Pentium III for a software DVD player [57]. Their data shows that

Pentium III heats up to a temperature of 105º C whereas Crusoe maximum temperature

goes only up to 48º C running the same software DVD player. Furthermore, to achieve the

performance goal, HW/SW co-designed processors employ dynamic binary optimizations.

In general, HW/SW co-designed processors implement a proprietary ISA in order

to achieve design simplicity and power efficiency. Therefore, they need to apply binary

translation to map the guest ISA on to the host ISA. We define host ISA as the ISA which

is implemented in the hardware, whereas, guest ISA is the one for which applications are

compiled. The binary translation can be implemented in either hardware or software.

Modern processors implementing CISC ISA, like x86, implement binary translation in

hardware [99]. The hardware binary translator translates CISC instructions to RISC like

instructions dynamically to simplify the execution pipeline implementation. However, the

hardware implementation leads to significant complexity and power consumption.

HW/SW co-designed processors, on the other hand, implements binary translation in

software which leads to power efficiency.

a) Conventional RISC processor. b) Conventional CISC processor. c) HW/SW co-designed processor.

Figure 2.2: HW/SW interface in processors.

 Figure 2.2a shows the hardware/software interface in a conventional RISC

processor where the software stack directly interacts with the hardware. Conventional

Operating
System

Execution Hardware

Libraries

Application Programs

ISA

Operating
System

Translation Optimization
Layer (Hardware)

Libraries

Application Programs

Execution Hardware

ISA

Internal
ISA

Operating
System

Translation Optimization
Layer (Software)

Libraries

Application Programs

Execution Hardware

Guest ISA

Host ISA

29

CISC processors implements a RISC like ISA in hardware. As shown in Figure 2.2b, they

employ a hardware dynamic binary translator to translate CISC instructions to the internal

ISA instructions. The binary translation in HW/SW co-designed processors is performed

by a software layer as shows Figure 2.2c. We call this software layer as Translation

Optimization Layer (TOL) in this thesis. Doing the binary translation/optimization in

software layer provides several benefits over the hardware implementation. For example,

the software implementation significantly reduces hardware complexity and power

consumption. Furthermore, it allows to upgrade a processor in the field by introducing new

optimizations in the software layer. On the contrary, if TOL is implemented in hardware,

adding new optimizations in the existing processor is not feasible. Additionally, software

implementation of TOL significantly reduces hardware validation and verification cost and

time.

In HW/SW co-designed processors, TOL resides in a ROM and is the first program

to start execution when system boots up. Since TOL acts as in insulation layer between the

conventional software stack and the hardware, the host ISA can be changed arbitrarily

without having to make changes in the conventional software stack. The only modification

needed in this case would be having a new version of TOL that translates guest ISA code

to the new hardware. Since the execution of TOL itself requires some processor time, it

might affect the overall performance. However, in addition to binary translation, TOL is

also responsible for optimizing the translated binary to boost the performance and

compensate for its own execution overhead.

2.4.1 Memory System in HW/SW Co-designed Processors

 As shown in Figure 2.3, the system memory in HW/SW co-designed processors is

divided into two parts:

1) Conventional memory.

2) Concealed memory.

The conventional memory part works as a normal memory system of a hardware

only processor. All the guest ISA application code, operating system, and data reside in

this part. Moreover, this is the only part of the memory that is visible to the conventional

software stack including operating system.

The concealed memory contains TOL binary, TOL data, and code cache. Code

cache is the memory where TOL stores translated and optimized user/system code. Since

TOL takes control as soon as the system boots up, it hides the concealed memory from

30

conventional software stack. Any attempt to access the concealed memory by the

conventional software stack results in an invalid memory access.

It is also important to note that only the TOL code and translated/optimized code

from the code cache enter the instruction cache hierarchy. The source ISA code goes to

data cache hierarchy, since it acts as data for TOL translator. Thereafter, TOL translates

and stores this code in code cache. Then, it is read from the code cache, through the

instruction cache hierarchy for execution.

2.4.2 TOL translator/optimizer

 As said before translating guest ISA code to host ISA is the prime responsibility of

TOL. The translation is done dynamically and generally, in multiple phases. Usually, in

the first phase, an interpreter decodes and executes guest ISA instructions sequentially. In

the rest of the phases, guest code in translated to host ISA code and stored in the code

cache, after applying several dynamic optimizations, for faster execution. The number of

translation phases and optimizations in each phase are implementation dependent.

Figure 2.4 shows a typical two stage translation/optimizations flow in a TOL. It

starts by interpreting guest ISA instruction stream sequentially. While interpreting, TOL

also profiles the guest code to collect information about most frequently executed code and

biased branch directions. The execution frequency guides TOL to decide which guest code

basic blocks to translate. When a basic block has been executed more than a predetermined

number of times, TOL invokes the translator. The translator takes the guest ISA basic

blocks as input, translates them to host ISA code and saves the translated code into the code

cache for fast native execution. Instead of translating and optimizing each basic block in

TOL code

TOL data

Code Cache

Source ISA Code

Source ISA data

Instruction Cache
Hierarchy

Data Cache
Hierarchy

Processor Core

C
o

n
ce

a
le

d

M
em

o
ry

C
o

n
ve

n
ti

o
n

al

M
em

o
ry

Figure 2.3: Memory system in a HW/SW co-designed processor.

31

isolation, the translator uses biased branch direction information, collected during

interpretation, to create bigger optimization regions, called superblocks. A superblock,

generally, consists of multiple basic blocks following the biased direction of branches.

Therefore, superblocks increase the scope of optimizations to multiple basic blocks and

allow more aggressive optimizations. Superblocks have a single entry point that is the first

instruction of the first basic block included in the superblock. However, depending on the

implementation they might have multiple or a single exit point, making them a single-entry

multiple-exit or single-entry single-exit structure.

Initially, the control is transferred back to TOL after executing a superblock from

the code cache. Then, TOL searches the next instructions to be executed. If the next

instruction is not already translated, it has to be interpreted. However, if it is already

translated, TOL patches the last branch of the first superblock (the one that transferred the

control back to TOL) to the beginning of the second superblock. This process is called

chaining [36] or linking [21]. Chaining enables the control to be transferred directly from

one superblock to the other without having to come back to TOL. This reduces TOL

overhead of looking up a translation in the code cache.

Figure 2.4: Typical two stage TOL control flow.

Next
instruction

in Code
Cache?

Execute from Code
Cache

Exceed
Translation
Threshold?

Translate and store in
Code Cache

Interpret Next
Instruction

Start

Yes

Yes

No

No

Chain
No Chain

32

The example binary translation/optimization mechanism that we just saw has two

stages: interpretation and one translation phase. However, there are systems with more

translation stages, with each translation stage applying progressively more complex

optimizations. Moreover, there are some systems that skip interpretation stage and directly

go to translation like IA-32 EL [22] and DynamoRIO [30]. The different

interpretation/translation stages provide a tradeoff between startup and steady state

performance. For example, applying aggressive optimizations is costly in terms of

overhead; however, they generate a highly optimized code that runs faster than un-

optimized code. Hence, a system that starts with aggressive optimizations, skipping

interpretation and simple translation, would have unacceptably poor startup performance

and excellent steady state performance. However, the overall performance of such a system

would depend on how much of the startup delay or translation/optimization overhead could

be offset by the optimized code execution. They might end up having poor overall

performance if the translation/optimization overhead in not compensated by the optimized

code execution. Therefore, most systems start with interpretation or lightweight

translations to improve startup performance, whereas aggressive optimizations are applied

only to hot code that dictates the steady state performance.

2.4.3 Hardware Support in HW/SW Co-designed Processors

 Hardware support is needed for efficient and correct execution of the guest ISA

instructions on the host architecture. Memory speculation is the key to several

optimizations performed by HW/SW co-designed processors. For example, Transmeta

Crusoe [36] reports that, on average, suppressing memory reordering causes 10% and 33%

performance loss in operating system boots and user applications respectively. To ensure

the correctness of memory speculation, hardware support is provided to detect speculation

failure and recover from it. Transmeta shadows all the registers holding x86 state i.e. they

keep a working and a shadow copy of each register [57]. During the execution, only the

working copy is updated. If the execution reaches the end of a translation without

speculation failures or exceptions, a special commit operation copies the working register

into the corresponding shadow registers. To ensure the correctness of memory state,

Transmeta employs a “gated store buffer”. The memory store instructions write their results

to this buffer which are forwarded to memory only if a translation finishes without

exceptions and speculation failures. BOA [91] also incorporates similar techniques by

having two sets of registers. However, they schedule stores in the original program order.

33

Furthermore, hardware support is necessary for providing precise exceptions and

detecting self-modifying code. Moreover, overhead of indirect branches and function

returns can be reduced by having some hardware support [54][55].

2.4.4 Salient features of HW/SW Co-designed Processors

HW/SW co-designed processors provide certain features that set them apart from

traditional hardware only processors. These features include:

Hardware Simplicity: These processors employ simple hardware to cut down the

complexity. To simplify the hardware they implement a simple RISC ISA. Furthermore,

TOL is implemented as a software layer whereas, the hardware implementation of TOL in

conventional CISC processors contributes significantly to the hardware complexity.

Power Consumption: Having a simple hardware allows HW/SW co-designed processors

to keep power consumption within limits. The simple RISC ISA allows to have a simple

front-end and avoid power hungry components.

Flexibility: The software implementation of TOL makes it relatively simple to upgrade a

processors by introducing new features in the software layer, in the field. On the other

hand, due to the hardware implementation, the conventional CISC processors cannot

introduce new features in TOL or fix a bug once the processor is rolled out.

Multiple Guest ISA Support: HW/SW co-designed processors also provide an excellent

opportunity to run multiple guest ISA on a single host ISA. In this case, TOL needs to

support multiple front-ends where each front-end corresponds to a different guest ISA.

Once a front-end has done guest ISA to intermediate representation translation, the

common back-end can be used to generate the host ISA code. This feature allows to execute

codes complied for different architectures to be executed on the same hardware. This is

going to be especially important in the future architectures as one would like be able to run

any application on any computing device.

Binary Compatibility: TOL also allows HW/SW co-designed processors to maintain

forward and backward binary compatibility without any additional hardware complexity.

TOL can translate binaries targeted for old architectures to run them on a latest one and

vice-versa.

34

35

Chapter 3

Experimental Framework

This chapter presents DARCO [86], the tool we used to evaluate our proposals.

DARCO is an infrastructure for research in the field of HW/SW co-designed virtual

machines. Due to lack of appropriate tools in this research area, we developed DARCO in

collaboration with other members of our research group.

An infrastructure for modeling HW/SW co-designed processors needs to provide

functional emulators for the host and guest ISAs, cycle-accurate timing simulation for the

host processor, and a software layer that is able to interpret, translate, and dynamically

optimize the guest binaries. Developing from scratch and debugging all these components

has a multiple man-years cost. Using existing components to build such an infrastructure

is a better alternative. Therefore, we used QEMU [9] to build some of the components of

DARCO. However, it still required a significant effort with multiple people contributing

to it for approximately two years. Currently, DARCO is being used by several member of

our research group and has led to a number of research publications in various conferences

[27][28][29][32][61][62][63][64][65][86].

DARCO models a HW/SW co-designed processor with guest x86 ISA [4] and a

PowerPC (PPC) [8] like RISC host ISA. QEMU is used for emulating both the guest as

well as the host ISA. The software layer of DARCO, called Translation Optimization Layer

(TOL), translates and optimizes guest binaries to run on the host architecture. TOL

provides staged compilation through an interpreter, a translator, and an optimizer. In

addition to the functional emulators for guest and host ISAs, DARCO provides a cycle-

accurate timing simulator and a debugging tool chain. DARCO has a clean interface for

including new optimizations in TOL and allows easy implementation of new hardware

features.

Except for the x86 and PowerPC functional emulators, for which we used modified

versions of QEMU, all other components are in-house developments. The current version

of DARCO supports only user-level x86 instructions.

36

3.1 Main Components

DARCO is composed of four main components as shown in Figure 3.1.

1) x86 component.

2) PPC component.

3) Timing Simulator.

4) Controller.

The x86 component provides a full-system functional emulator for the guest x86

ISA. It runs an unmodified operating system and is the only component that interacts with

the operating system. The operating systems is completely unaware of the existence of the

software layer, which follows the concept of HW/SW co-designed processors like Crusoe

[57] and Efficeon [59]. The authoritative register and memory state is also kept by this

component because it emulates x86 code and not the translated/optimized code. The main

role of this component is to permit co-simulation [58], a technique that is very useful for

debugging, that checks if the co-designed execution state (kept by PPC component) after

translations/optimizations done by TOL is consistent with authoritative x86 state or not.

The PPC component provides the co-designed processor functional model for

DARCO. This component consists of a modified version of PowerPC emulator provided

by QEMU. The name “PPC component” comes from the fact that PowerPC is the baseline

RISC host architecture. However, we modified the baseline PowerPC ISA to meet our

needs as will be explained in Section 3.3.2 and Section 3.5. The PPC functional emulator

is executing TOL, which translates and optimizes the x86 instruction stream to host

instructions. This component keeps the emulated x86 register and memory state, which is

x86 Binary

Commands Path Commands Path

Timing
Simulator

Authoritative x86
Register State

Authoritative x86
application

Memory Space

Emulated x86
Register State

Emulated x86
application

Memory Space

Process
Tracker

Data and
Instruction Path Data and

Instruction Path

State Checker

x86 Component PPC Component

Controller

x86
Functional
Emulator

Power PC
Functional
Emulator

x86 OS
Translation Optimization
Layer (TOL)

Figure 3.1: DARCO Main components.

37

updated as the application execution proceeds. Consistency among authoritative and

emulated x86 states validates the correctness of translation/optimizations done by TOL.

The timing simulator models a parameterized in-order core. It receives the dynamic

instruction stream from the PPC component and provides detailed execution statistics.

Moreover, it is able to distinguish the instructions corresponding to the emulation of the

x86 application from those corresponding to TOL and its various modules. The use of the

timing simulator is optional and doesn’t affect the functionality of the rest of the

infrastructure.

The controller is the main interface of DARCO with the user. It provides full control

over the execution of the application as well as debugging utilities. The main task of the

controller is to provide synchronization among different components and the resolution of

the various requests from the PPC component as will be explained in Section 3.2. The

controller is also responsible for comparing authoritative and emulated x86 states to ensure

the correctness of translation/optimization process of TOL.

3.2 Execution Flow

The execution flow of an application passes through three distinct phases: 1)

Initialization, 2) Execution, and 3) Synchronization. During the Initialization phase, the

controller first starts the PPC component, which in turn, initiates the execution of TOL.

The PPC component then remains idle until the controller sends the initial x86 register state

of the application to be executed to it.

As for the x86 component, when launched by the controller, it initiates the

execution of the application defined by the user. When it reaches the system call EXECVE

(which always takes place at the beginning of an application) the execution pauses. A

process tracker is initialized with the application’s Control Register 3 (CR3) value, which

can be used to distinguish the specific process from the rest of the applications running on

top of the operating system. The process tracker is used throughout the execution of the

application in the x86 component in order to ease synchronization and tracking of the

changes made to the x86 state (register and memory) of the application. After the process

tracker is initialized, the x86 component sends the initial x86 register state of the

application to the controller. The Initialization phase is completed when the controller

sends this state to the PPC component. At this point, the x86 register state is the same in

both components.

38

During the Execution phase, TOL begins by executing code from the initial

Program Counter value it received during the Initialization phase. All changes made to the

x86 register state from the emulation of the x86 instructions are stored in the “Emulated

x86 register state”, which resides in the memory space of TOL. Changes made to the

memory space of the x86 application are stored in the “Emulated application x86 memory

space”, which also resides in the memory space of TOL. While the x86 application is

making forward progress in PPC component, the x86 component remains idle.

The Synchronization phase is initiated by the PPC component when any of the

following three events occurs during the execution phase: 1) data request, 2) system call,

or 3) end of application. The data request event is raised when the PPC component

encounters a load or store instruction that accesses an x86 memory page for the first time.

The subsequent actions from the different components are depicted in Figure 3.2. The PPC

component sends a request to the controller for the particular data page along with the total

number of dynamic x86 basic blocks that has been executed until this point. Then, it

remains idle until the request is satisfied. The controller forwards the request to the x86

component, which in turn continues the execution of the application until it reaches the

same execution point as the PPC component (remember that the x86 component remained

idle after the initial launch of the application). When the correct execution point is reached,

the data page is sent to the controller and forwarded to the PPC component. This process

guarantees that after every Synchronization phase, the x86 application state, register and

memory, is identical between the x86 component and PPC component. Otherwise, the

system complains and execution is aborted. This is also a useful technique to debug

Execute

Controller

Data Request:
Requested @
Number of BB

Data Request:
Requested @
Number of BB

Data Page

Data Page

Wait

PPCx86

Figure 3.2: Data page request from the PPC component, enforcing the synchronization

phase.

39

DARCO. The exact same process is followed for the other two events: system calls and

end of application.

System calls raise the synchronization event because TOL models only user-level

code. Therefore, the system calls are executed only in the x86 component. Any changes

made to the x86 state during the execution of system calls are passed to the PPC component

after the completion of the system call. As for the end-of-application, the synchronization

phase is necessary in order to ensure that the execution of the application on the PPC

component was correct.

3.3 Translation Optimization Layer

Translation Optimization Layer (TOL) is the software layer that executes on-top of

the host RISC processor. It is responsible for translating the target x86 code to the host

ISA. It does that in three different execution modes: 1) interpretation mode (IM), 2) basic

block translation mode (BBM), and 3) superblock translation and optimization mode

(SBM).

TOL starts by interpreting guest x86 instruction stream in IM. When a basic block

is executed more than a predetermined number of times, TOL switches to BBM. In this

mode, the whole basic block is translated and stored in the code cache and the rest of the

executions of this basic block are done from the code cache. Moreover, branch profiling

information for direction and target of branches is also collected. Once the execution of a

basic block exceeds another predetermined threshold, TOL creates a bigger optimization

region, called superblock, using the branch profiling information collected during BBM.

The superblock goes through several optimizations and is stored in the code cache. The

high level view of the execution flow of TOL is shown in Figure 3.3.

3.3.1 Interpretation

TOL begins the execution of the application in IM. While in IM mode, x86

instructions are interpreted one by one and the x86 state is updated accordingly. The IM

guarantees forward progress of the application and also is used as a safety-net in case

instructions cannot be included in basic block translations and superblocks. Moreover,

interpretation is necessary to make forward progress, in case of speculation failures in

superblock due to aggressive optimizations.

There is one caveat concerning the interpretation method employed in DARCO.

Due to the complex and time consuming nature of building an interpreter, we decided to

40

use the translator provided by QEMU but instead of translating one basic block at a time,

it was modified to translate one instruction at a time. Since QEMU’s translator was

designed for portability (it supports translation from various guest to host ISAs), using it

to translate just one instruction introduces high overhead. In order to accommodate the high

cost of such interpretation method, an interpretation cache is used to store the

interpretations. Interpretation cache is a typical code cache used in HW/SW co-designed

processors; the only difference being instead of storing whole basic block translation or

superblocks, it stores translation for individual instructions. Once the translation of an x86

instructions has been stored in the interpretation cache, its subsequent executions are done

from this cache. This modification significantly reduced the cost of interpreting an x86

instruction. Also note that no chaining is done between interpretations.

3.3.2 Basic Block Translation

During IM, profiling information is collected for execution frequency of the basic

blocks using software repetition counters. When the repetition counter of a basic block

Figure 3.3: Translation Optimization Layer (TOL) execution flow. The left path is

followed in IM, the middle in BBM and the right in SBM.

x86 eip

In
Code

$?
In

Intr
$?

Interpret

Store in Intr $

Execute from Intr $

BB translate

Store in Code $

Chain

Execute from Code $

Create SB

Optimize SB

> BBth?

From Code $

Yes

Yes

Yes

No

No

No

41

reaches the BB_translation_threshold, TOL switches to BBM in order to translate the

corresponding basic block.

Note that since we use a modified version of the QEMU translator and code

generator, we also inherit some of the nomenclature. The intermediate representation of

the instructions in DARCO is called qOps.

Figure 3.4 shows an abstract version of a typical translation of an x86 basic block.

The original code is translated into an equivalent set of qOps. TOL translates all x86

memory operations in a special way. We introduced new qOps and host instructions for all

load and store instructions in order to be able to distinguish during the execution whether

a memory access corresponds to the application itself or TOL. There are two reasons for

doing this. The first regards to functionality. The PPC component needs to know if there is

an access to the x86 memory space and in the uncommon case that the data page was not

communicated before, requests the page to the controller as explained before. The second

reason regards to evaluation, since we would like to be aware of the performance

characteristics of each translation.

At the end of the translation, a branch instruction and two exit stubs are inserted.

The outcome of the branch instruction decides which of the two exit stubs to execute. Each

exit stub consists of an empty position where the chaining will be patched later during the

execution, an update of the program counter and a branch to TOL where the basic block

starting at the new program counter will be interpreted or translated. When the chain

position is patched, the execution will not return to TOL, but instead the next basic block

will be executed directly from the code cache. Finally, a new PPC instruction, eob_x86, is

introduced. The purpose of this instruction is strictly for synchronization. In terms of

timing, this instruction has no effect.

x86 Basic Block

mov eax, [ebx]
jne label1

qOps for x86 BB

q_ld_x86 env->eax, [env->ebx]
bne taken_exit_stub

eob_x86
chain position
update eip
branch to TOL

eob_x86
chain position
update eip
branch to TOL

Taken exit
stub

Not taken
exit stub

Host code for x86 BB

ld_x86 r19, [r20]
Jne taken_exit_stub

eob_x86
chain position
update eip
branch to TOL

eob_x86
chain position
update eip
branch to TOL

Taken exit
stub

Not taken
exit stub

Figure 3.4: Abstract translation of an x86 basic block to host ISA. The eob_x86

instruction is used by DARCO for execution synchronization and special ld_x86

instructions to point out accesses to x86 memory space.

42

The qOps are forwarded to the code generator. There, they undergo some basic

optimizations like dead code elimination and constant propagation, which contribute

towards reducing the number of generated instructions. Finally, the qOps are translated to

PPC instructions and stored in the code cache from where they are dispatched for

execution.

3.3.3 Superblocks and Optimizations

 During Basic-Block translation Mode (BBM), profiling information is gathered for

all the basic blocks in BBM using software counters. This information consists of execution

and edge counters. The execution counter provides the execution frequency of a basic block

while the edge counters monitor the biased branch direction. Once the execution of a basic

block exceeds another predetermined threshold, TOL creates a bigger optimization region,

called superblock, using the branch profiling information collected during BBM.

In Superblock translation and optimization mode (SBM), TOL generates a new

superblock starting from the triggering basic block. A superblock generally includes

multiple basic blocks following the biased direction of branches. A superblock ends at one

of the following conditions:

1) The last basic block included in the superblock ends with an indirect branch,

call, or return instruction.

2) The last basic block included in the superblock ends with an unbiased branch

or the probability of reaching the last basic block from the beginning of the

superblock falls below a predetermined threshold.

3) The number of instructions in the superblock exceeds a predetermined

threshold.

4) The number of basic blocks included in the superblock exceeds a predetermined

threshold.

Moreover, the branches inside the superblocks are converted to “asserts” so that a

superblock can be treated as a single-entry, single-exit sequence of instructions. This gives

the freedom to reorder and optimize instructions across multiple basic blocks. “Asserts”

are similar to branches in the sense that both checks a condition. Branches determine the

next instruction to be executed based on the condition; however, asserts have no such

effect. If the condition is true, assert does nothing. However, if the condition evaluates to

false, the assert “fails” and the execution is restarted from a previously saved checkpoint

in IM. Furthermore, if the number of assert failures in a superblock exceeds a

predetermined limit, the superblock is recreated without converting branches to “asserts”.

43

As a result, this time the superblock has to be treated as a single-entry multiple-exit

sequence of instructions. Having multiple exits in a superblock also reduces available

optimization opportunities because the instructions across different exit paths cannot be

reordered as freely as before.

Furthermore, while creating a superblock, if a loop is detected, it is unrolled.

Currently, we unroll loops consisting only a single basic block, as they are the ones which

provide maximum benefit [77]. To detect and unroll the loops without control flow the

following steps are followed.

1) The target address of the first branch instruction in the superblock is compared

against the address of the first instruction of the superblock. In case of a loop,

the addresses will match.

2) The execution and edge counters are used to determine the loop trip count.

3) Loop unroll factor is determined based upon the data types in the loop, SIMD

accelerator width, and the loop trip count determined in the last step. For

example, if a loop contains only single-precision floating-point data types, then

for a 128-bit wide SIMD accelerator the loop is unrolled 4 times if the loop trip

count is more than or equals to 4.

Moreover, the unrolled version of the loop is followed by the original loop (without

unrolling). During execution, a runtime check is performed to determine whether to

execute the unrolled version or the original loop. If the number of iterations left for

execution are less than the loop unroll factor, then the original loop is executed instead of

the unrolled loop.

The optimizer applies several transformations on the superblock. Figure 3.5 shows

different optimizations performed by the optimizer. First, the qOps are transformed into a

Static Single Assignment format. This transformation removes anti & output dependences

and significantly reduces the complexity of subsequent optimizations. Second, a forward

pass applies a set of conventional single pass optimizations: constant folding, constant

propagation, copy propagation, and common subexpression elimination. Third, a backward

pass applies dead code elimination.

After the basic optimizations, the Data Dependence Graph (DDG) is prepared. To

create DDG, the input and output registers of the instructions are inspected and the

corresponding dependences are added. During DDG creation, we perform memory

disambiguation analysis. If the analysis cannot prove that a pair of memory operations will

never/always alias, it is marked as “may alias”. In case of reordering, the original memory

44

instructions are converted to speculative memory operations. Apart from this, Redundant

Load Elimination and Store Forwarding are also applied during DDG phase so that

redundant memory operations are removed. The DDG is then fed to the instruction

scheduler that uses a conventional list scheduling algorithm. Afterwards, the determined

schedule is used by the register allocator that implements linear scan register allocation

algorithm. Finally, the qOps are translated to PPC instructions and the code is stored in the

code cache. The previous entry in the code cache that corresponds to the first basic block

of current superblock is invalidated and freed for use by subsequent translations.

3.4 Speculation and Recovery

 Memory speculation is a key optimization to achieve performance in HW/SW co-

designed systems. Considering two ambiguous memory references independent of each

other provides more freedom in instruction scheduling and boosts performance. For

example, Transmeta Crusoe [36] reports that, on average, suppressing memory reordering

causes 10% and 33% performance loss in operating system boots and user applications

respectively. This section briefly explains how the speculation and recovery mechanism

works in DARCO.

- Translation to Intermediate
- Loop Unrolling

- Control Speculation

- SSA

-Forward Pass
- Constant Folding

- Constant Propagation

- Copy Propagation

- Common Subexpression Elimination

-Backward Pass
-Dead Code Elimination

-DDG

- Redundant Load Removal

- Store Forwarding

- Memory Alias Analysis

-Instruction Scheduling
- Data Speculation

- Register Allocation

- Code Generation

Figure 3.5: Optimizations flow in superblocks.

45

A combination of software and hardware mechanisms is used to detect speculation

failure and subsequent recovery. As described in the last section, if a pair of memory

references cannot be proved never/always aliasing; it is marked as “may alias”. TOL labels

each load/store instruction with a sequence number in the original program order. If a pair

of load-store or store-store instructions that may alias is reordered, the original load/store

instructions are converted to “speculative load/store” instructions.

The hardware has two sets of architectural registers: a working set and a shadow

copy. Before starting the execution of speculative code, a copy of the working set is saved

into the shadow registers (saving a checkpoint). During the execution, only the working

copy of the registers is updated. In the case of speculation failure, the register state is

restored by copying the contents of shadow registers to the working copy. Restoring the

memory state is a little more complicated since it is not practical to have two copies of the

whole memory state. To track the changes in the memory state, a store buffer is used.

During the normal execution, store instructions write to the store buffer instead of directly

writing to the memory. In the case of speculation failure, the contents of the store buffer

are discarded, whereas they are forwarded to the memory if the speculated code executes

successfully.

To detect a speculation failure, the hardware maintains a table to record address and

size of all the memory locations accessed by “speculative load/store” instructions in the

current superblock. Moreover, the sequence number of “speculative load/store”

instructions is also recorded in the table. During the execution, if the hardware detects:

 that a speculative memory instruction with higher sequence number is executed

before another speculative memory instruction with lower sequence number and

 they access overlapping memory locations,

an exception in raised. In this case, the contents of the store buffer are flushed;

register values from the shadow registers are copied to the working set; (this has the effect

of restoring the earlier saved checkpoint) and the execution is restarted in Interpretation

Mode. On the other hand, in case of successful execution of speculated code, values in the

store buffer are forwarded to the memory and the contents of the shadow registers are

discarded.

Figure 3.6 shows an example of speculation failure detection mechanism. Figure

3.6a shows the original code sequence with two memory references where the relation

between the memory addresses is unknown. The two instructions are labeled in the

program order. Figure 3.6b shows the reordered code sequence. The instructions maintain

46

their sequence number. However, they are converted to speculative instructions to inform

the hardware to check them for speculation failure. Figure 3.6c shows the hardware table

state just before executing the speculative load instruction. The program counter points to

the current instruction and the table has entry for the executed speculated store instruction.

At this point, since the instruction with higher sequence number (2) has been executed

before the instruction with smaller sequence number (1), if the address of the current

speculated load instruction overlaps with the address of the speculated store instruction,

the hardware will generate an exception and will go to the recovery mode. If the rate of

speculation failures exceeds a predetermined limit in a particular superblock, it is recreated

without reordering ambiguous memory references.

 Seq Num Seq Num

1 ld_64 v1, M[x] 2 st_64_s v2, M[y]

2 st_64 v2, M[y] 1 ld_64_s v1, M[x]

a) Original Code Sequence b) Reordered Code Sequence

PC --> 1 ld_64_s v1, M[x]

Seq Num Address Size

2 y 8

c) Hardware Table State

Figure 3.6: Speculation Failure Detection Example.

3.5 The Timing Model

The timing simulator is attached to the PPC component and models a simple in-

order processor as depicted in Figure 3.7. The simple in-order processor is chosen in

congruence with the simple hardware design philosophy of the co-designed processors.

The closest product to the baseline modeled processor is the PPC 440 [3].

The modeled pipeline decouples the Front-End from the Back-End using an

Instruction Queue. The Front End reads (Address Calculation - AC stage / Instruction Fetch

- IF stage), decodes (DEC stage), and stores the instructions in the Instruction Queue (after

DEC stage). Also, it is equipped with a Gshare branch predictor and a Branch Target

Buffer.

47

The Back-End issues and executes instructions from the Instruction Queue. Issuing

is done using a scoreboard that keeps track of the availability of the source registers. During

the Register Read (RR) stage, the instructions read their operands from the bypass or the

register file. The register file is logically divided between TOL and application (32 registers

are only accessible by TOL and 128 only by the translated application code). The EXE

stage performs the required operations for instruction execution. Instructions spend

different number of cycles in this stage depending on their latencies. Branch mispredictions

are also detected and handled in this stage. The last stage, Write Back, writes the results

computed during EXE stage to the register file.

Parameter Value

L1 I-cache
64KB, 4-way set associative, 64-byte

line, 1 cycle hit, LRU

L1 D-cache
64KB, 4-way set associative, 64-byte

line, 1 cycle hit, LRU

Unified L2 cache
512KB, 8-way set associative, 64-byte

line, 6 cycle hit, LRU

Scalar Functional Units

(latency)

2 simple int(1), 2 int mul/div (3/10)

2 simple FP(2), 2 FP mul/div (4/20)

Vector Functional Units

(latency)

1 simple int(1), 1 int mul/div (3/10)

1 simple FP(2), 1 FP mul/div (4/20)

Registers 128-Integer, 128-Vector, 32-FP

Main memory Lat 128 Cycles

Table 3.1: Host Processor Microarchitectural Parameters.

The modeled processor has two level cache hierarchy. The first level is split

between instructions (L1 I$) and data (L1 D$), whereas the rest of the memory hierarchy

(L2 and main memory) is shared. The TLB exists only for data and it also has a two level

architecture. Furthermore, notice that the Back-End is equipped with a stride prefetcher.

Prefetcher
TLB L1

TLB L2

Front End

AC IF DEC ISSUE RR EXE WB

IL1$ L2$ DL1$

Back EndIQ

Main
Memory

Figure 3.7: Host Processor Pipeline.

48

Microarchitectural parameters for the modeled processor are given in Table 3.1. The issue

width of the processor is 2, with both pipelines being symmetric.

We model a 128-bit wide SIMD accelerator with two 64-bit wide lanes. Even

though the two pipelines are considered to be symmetric and the modeled processor has an

issue width of two, the SIMD accelerator is shared by both lanes. Furthermore, all the

operations except for division and reciprocal are assumed to be pipelined.

3.6 TOL Configuration

In this section, we provide a quantitative insight into TOL configuration and the

characteristics of the generated code. First, we study the effect of the threshold variation

for promoting basic blocks from BBM to SBM. It is followed by a discussion on dynamic

x86 instruction distribution in different execution modes. Then a study of emulation cost

of x86 instructions in SBM is presented. Finally, we study TOL overhead and its various

components.

To configure TOL, we use applications from SPEC2006 [11] and Physicsbench

[117] benchmarks suites. For SPEC2006, we instrument the benchmarks, using PIN [71],

to find the most frequently executing routines. Then, we simulate four billion x86

instructions starting from these routines. The benchmarks in Physicsbench are executed till

completion. The benchmarks are compiled with GNU GCC version 4.5.3, optimization

flags “-O3 -ffast-math -fomit-frame-pointer”.

Parameters Value

Basic Block Promotion Threshold

IM to BBM 5 repetitions

Superblock creation parameters

Maximum basic blocks in a superblock 16

Maximum instructions (intermediate representation)

in a superblock
2K

Minimum probability to reach last basic block in the

superblock from the entry
0.9

Minimum probability to reach a branch instruction in

the superblock from the entry to convert it to "assert"
0.9

Speculation Failure parameters

Control speculation failure threshold
500 in last 5000

executions (10%)

Memory speculation failure threshold
100 in last 10000

executions (1%)

Table 3.2: TOL configuration parameters.

49

Table 3.2 shows TOL configuration parameters. As the table shows, a basis block

is promoted to BBM after executing it five times in IM. The maximum number of basic

blocks and intermediate representation instructions allowed in a superblock is 16 and 2K

respectively. Also, while creating a superblock, if the probability of reaching a basic block

from the entry of the superblock falls below 0.9, no more basic blocks are included in the

superblock. Similarly, for a branch instruction to be converted into “assert” the probability

to reach the branch from the entry of superblock should be higher than 0.9. Alternatively,

all the branches in a superblock are converted to “assert”. Moreover, if the number of

assert failures in superblock exceeds 500 in the last 5,000 executions (10%), the

superblocks is recreated without converting branches into asserts. Furthermore, if the

memory speculation failures in a superblocks surpass a threshold of 100 in last 10,000

executions (1%), the superblock is recreated without reordering ambiguous memory

references.

For the speculation and recovery, as discussed in Section 3.4, the hardware

maintains a table where it stores the sequence number, direction, and size of speculative

load/store instructions. We implement this table with 1K entries. Optimal duration/position

to take a checkpoint is a different research problem and is out of scope of this work. For

simplicity, at execution time, we take a checkpoint in the beginning of every superblock.

We implement the store buffer with 1K entries. Moreover, to avoid overflow of the store

buffer, we restrict the number of load/store instructions to be 1K in a superblock. Since we

take checkpoint in the beginning of every superblock and a superblock cannot have more

than 1K load/store, the store buffer can never overflow.

3.6.1 Optimal Promotion Threshold

The promotion threshold from BBM to SBM (BB/SBth) (number of times a basic

block needs to be executed in BBM before it is further optimized and included in a

superblock) poses a trade-off between the quality of the generated code in terms of host

instruction per x86 instruction and the optimization overheads introduced by TOL for

generating this code. The lower the threshold, more code is optimized thus reducing the

emulation cost, but at the same time the overhead introduced by the optimizer is higher.

Throughout this section, we define as overhead all the instructions that are not devoted

directly to the emulation of the application. As a metric to find the optimal promotion

threshold, we will use the total number of host instructions (TOL and application

instructions) needed to execute a given number of x86 instructions.

50

For this study, we considered different thresholds ranging from 500 up to 180K.

The experimental results are depicted in Figure 3.8. Each bar corresponds to a different

value of BB/SBth and it represents the number of host dynamic instructions normalized to

the execution with the threshold of 500. Each bar is split into two parts: the lower part

represents the overhead introduced by TOL, and the upper part represents the host

instructions corresponding to the x86 code.

Two dominant trends can be observed in Figure 3.8. As the BB/SBth increases,

TOL overhead decreases, as less static basic blocks are optimized. At the same time, the

number of application instructions increases, since a smaller portion of the dynamic

instruction stream has been optimized by TOL, leading to a higher ratio of host/guest

instructions.

The experimental results show that the optimal BB/SBth is 60K for Physicsbench

and SPECINT2006 whereas, SPECFP2006 is relatively insensitive to the threshold

variation. It is also important to note that TOL overhead is also more in Physicsbench than

in SPEC2006. The reason lies in the fact that SPEC2006 benchmarks have high dynamic

to static instruction ratio than Physicsbench. Therefore, in SPEC2006, TOL overhead is

amortized by repetitive executions of the translated/optimized code. Furthermore, the

effect of threshold variation is more in SPECINT2006 and Physicsbench than in

SPECFP2006. The high dynamic to static instruction ratio and bigger basic blocks also

make SPECFP2006 less sensitive to BB/SBth threshold variation.

Figure 3.8: Effect of Threshold Variation on the Number of host instructions.

0

0.2

0.4

0.6

0.8

1

1.2

5
.0

0
E+

0
2

1
K

1
0

K
2

0
K

3
0

K
4

0
K

5
0

K
6

0
K

7
0

K
8

0
K

9
0

K
1

0
0

K
1

2
0

K
1

4
0

K
1

6
0

K
1

8
0

K

5
0

0
1

K
1

0
K

2
0

K
3

0
K

4
0

K
5

0
K

6
0

K
7

0
K

8
0

K
9

0
K

1
0

0
K

1
2

0
K

1
4

0
K

1
6

0
K

1
8

0
K

5
0

0
1

K
1

0
K

2
0

K
3

0
K

4
0

K
5

0
K

6
0

K
7

0
K

8
0

K
9

0
K

1
0

0
K

1
2

0
K

1
4

0
K

1
6

0
K

1
8

0
K

SPECINT2006 SPECFP2006 Physicsbench

N
o

rm
al

iz
ed

 H
o

st
 In

st
ru

ct
io

n
s

TOL Overhead Application

51

It is worth mentioning that the optimal threshold varies between different systems.

For example, a lightweight translator, like DynamoRIO [30], can use a lower threshold (50

repetitions for DynamoRIO) since the introduced overheads due to translation are

significantly lower, mainly due to the fact that the guest and host ISA are the same. On the

other hand, the overhead introduced by a different guest and host ISA translator, like TOL,

is higher and as such, it requires higher threshold in order to amortize the overhead

introduced by the optimizer.

3.6.2 Optimized Code Distribution

Given the optimal threshold of 60K repetitions, we studied the dynamic x86

instruction distribution in the three execution modes of TOL; the Interpreter Mode (IM),

the Basic Block Mode (BM), and the Super Block Mode (SBM).

The dynamic x86 code distribution is depicted in Figure 3.9. The experimental data

shows that even with a threshold as high as 60K repetitions, 88%, 96%, and 75% of the

dynamic instruction stream comes from the highest level of optimization, superblocks, in

SPECINT2006, SPECFP2006, and Physicsbench respectively. For three benchmarks in

Physicsbench, namely continuous, periodic, and ragdoll, significant number of instructions

are executed in BBM. The dynamic instruction count and dynamic to static instruction ratio

in these is really small. Therefore, only a small portion of code is promoted to SBM.

Figure 3.9: Dynamic x86 instruction distribution in IM, BBM and SBM.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2
4

0
3

.g
cc

4
2

9
.m

cf
4

4
5

.g
o

b
m

k
4

5
8

.s
je

n
g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f
4

7
1

.o
m

n
et

p
p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k
4

1
0

.b
w

av
es

4
3

3
.m

ilc
4

3
4

.z
eu

sm
p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M
4

3
7

.le
sl

ie
3d

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay
4

5
4

.c
al

cu
lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m
4

8
2

.s
p

h
in

x3
b

re
ak

ab
le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s
h

ig
h

sp
ee

d
p

er
io

d
ic

ra
gd

o
ll

SP
EC

IN
T2

0
0

6
SP

EC
FP

2
0

0
6

P
h

ys
ic

sb
en

ch

SPECINT2006 SPECFP2006 Physicsbench Averages

D
yn

am
ic

 x
8

6
 In

st
ru

ct
io

n
 P

er
ce

n
ta

ge

Insn executed in IM Insn executed in BBM Insn executed in SBM

52

3.6.3 Emulation Cost

 Emulation cost is the number of host instructions generated per x86 instruction.

Since the dynamic instruction stream is dominated by the execution of code in SBM, we

present the emulation cost only in SBM. As Figure 3.10 shows, on average TOL generates

4, 2.6, and 3.1 host instructions per x86 instructions for SPECINT2006, SPECFP2006, and

Physicsbench respectively. The emulation cost of SPECINT2006 is high because of high

emulation cost of branch instructions. Since the basic blocks in SPECINT2006 are smaller,

the emulation cost of branch instructions dominates the overall emulation cost.

Physicsbench is costlier in terms of emulation cost because it uses significant amount of

trigonometric functions like sin, cos, etc. These x86 instructions are not directly mapped

to the host instructions, however, they are emulated in software. Therefore, the overall

emulation cost increases.

3.6.4 Dynamic Instruction and Overhead Distribution

The overall host dynamic instruction stream is composed to two components: 1)

Application Instructions and 2) TOL Overhead Instructions. Application instructions are

the amount of dynamic instruction stream corresponding to the emulation of x86

application. On the other hand, TOL overhead is the amount needed to translate x86 code

to the host code and other housekeeping tasks performed by TOL.

Figure 3.11 shows the percentage of application instructions vs. TOL overhead in

the host dynamic instruction stream. For SPECINT2006 and SPECFP2006, 16% and 13%

0

1

2

3

4

5

6

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

IN
T2

0
0

6

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECINT2006 SPECFP2006 Physicsbench Averages

H
o

st
 In

st
ru

ct
io

n
s

p
er

 x
8

6
 In

st
ru

ct
io

n

Figure 3.10: Host instructions per x86 instruction in SBM.

53

of the overall instruction stream corresponds to TOL overhead respectively, whereas for

Physicsbench this number rises to 41%. As mentioned earlier, the high dynamic to static

instruct ion ratio causes TOL overhead to be amortized in SPEC2006. On the other hand,

in Physicsbench the overhead in not amortized due to fewer executions of translated code.

 Figure 3.12 shows various component of TOL overhead. It is divided into seven

major categories (bottom-up): 1) Interpretation Overhead: TOL overhead for interpreting

the code before it is promoted to BBM. 2) BB Translator Overhead: TOL overhead for

translating the basic block promoted to BBM. 3) SB Translator Overhead: TOL overhead

for creating, translating, and optimizing the superblocks. 4) Prologue: Every time control

is transferred between TOL and the translated code, a specific piece of code is executed to

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2
4

0
3

.g
cc

4
2

9
.m

cf
4

4
5

.g
o

b
m

k
4

5
8

.s
je

n
g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f
4

7
1

.o
m

n
et

p
p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k
4

1
0

.b
w

av
es

4
3

3
.m

ilc
4

3
4

.z
eu

sm
p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M
4

3
7

.le
sl

ie
3

d
4

4
4

.n
am

d
4

5
0

.s
o

p
le

x
4

5
3

.p
o

vr
ay

4
5

4
.c

al
cu

lix
4

5
9

.G
em

sF
D

TD
4

7
0

.lb
m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le
co

n
ti

n
u

o
u

s
d

ef
o

rm
ab

le
ex

p
lo

si
o

n
s

h
ig

h
sp

ee
d

p
er

io
d

ic
ra

gd
o

ll

SP
EC

IN
T2

0
0

6
SP

EC
FP

2
0

0
6

P
h

ys
ic

sb
en

ch

SPECINT2006 SPECFP2006 Physicsbench Averages

H
o

st
 D

yn
am

ic
 In

st
ru

ct
io

n
 S

tr
ea

m

TOL Overhead Application Instructions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

IN
T2

0
0

6

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECINT2006 SPECFP2006 Physicsbench Averages

D
yn

am
ic

 T
O

L
O

ve
rh

ea
d

 In
st

ru
ct

io
n

s

Interpreter overhead BB Translator Overhead SB Translator Overhead Prologue Chaining Code $ lookup Others

Figure 3.12: Dynamic TOL Overhead Distribution.

Figure 3.11: Overall Host Dynamic Instruction Distribution.

54

do some housekeeping stuff like stack management. Prologue overhead corresponds to

executing this code. 5) Chaining: Different translated basic blocks and superblocks can be

connected to each other in the code cache. To check whether chaining is possible and

chaining the possible pairs constitutes “Chaining” overhead. 6) Code Cache Lookup: Every

time that control is transferred to TOL, it checks whether the translation for next x86 basic

block is already present in code cache or not. This lookup is termed as code cache lookup

overhead. 7) Others: All other overheads like managing control flow in the main loop of

TOL, collecting statistics, TOL initialization, etc. are counted under this category.

 It is interesting to note that, in Physicsbench, Interpretation Overhead and BB

Translator Overhead dominates the overall overhead, whereas in SPECFP2006 these

overheads relatively smaller. The reason for this behavior is once again dynamic to static

instruction ratio. SB Translator Overhead, where most aggressive and speculative

optimizations are applied, is relatively smaller for both benchmark suites.

3.6.5 Floating Point and Integer Instruction Distribution

 Figure 3.13 presents the host dynamic instruction distribution. As the figure shows

39% and 22% of the overall host dynamic instruction stream corresponds to floating point

code for SPECFP2006 and Physicsbench respectively. Whereas, the amount of floating

point code in SPECINT2006 is negligible. Since most of the SIMD optimizations target

floating point code, we consider only SPECFP2006 and Physicsbench to evaluate our

proposals in the next chapters.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2
4

0
3

.g
cc

4
2

9
.m

cf
4

4
5

.g
o

b
m

k
4

5
8

.s
je

n
g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f
4

7
1

.o
m

n
et

p
p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k
4

1
0

.b
w

av
es

4
3

3
.m

ilc
4

3
4

.z
eu

sm
p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M
4

3
7

.le
sl

ie
3

d
4

4
4

.n
am

d
4

5
0

.s
o

p
le

x
4

5
3

.p
o

vr
ay

4
5

4
.c

al
cu

lix
4

5
9

.G
em

sF
D

TD
4

7
0

.lb
m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le
co

n
ti

n
u

o
u

s
d

ef
o

rm
ab

le
ex

p
lo

si
o

n
s

h
ig

h
sp

ee
d

p
er

io
d

ic
ra

gd
o

ll

SP
EC

IN
T2

0
0

6
SP

EC
FP

2
0

0
6

P
h

ys
ic

sb
en

ch

SPECINT2006 SPECFP2006 Physicsbench Averages

H
o

st
 D

yn
am

ic
 In

st
ru

ct
io

n
 S

tr
ea

m

Floating Point Integer

Figure 3.13: Floating Point and Integer instruction distribution in host dynamic

instruction stream.

55

3.7 Host ISA Extension

 The baseline PowerPC ISA has been extended mainly to support missing features

in vector execution. For example, Altivec (the SIMD extension of PowerPC) supports only

packed single-precision floating-point operations. We added support for double-precision

floating point operations as well. Altivec has only packed floating-point operations and

does not support scalar floating-point operations. The scalar floating-point operations are

executed on a different floating point unit (FPU) with its own register file. The

communication between the vector register file and the scalar floating-point register file

has to go through memory. We added support for scalar floating-point operation as well,

that allows both scalar and vector floating point operations to execute on the same unit

without the overhead of communication between the two register files. The SIMD

instruction set of the host ISA consists of following instruction groups:

Data Transfer Instructions: The data transfer instruction set provides instructions for

moving data among vector registers and between vector registers and memory. The

memory access instructions include 32-bit, 64-bit, and 128-bit loads/stores from/to

memory. Moreover, the speculative versions of these basic memory instructions are also

provided. The ISA also provides instructions to move data between vector and integer

register files.

Arithmetic and Logical Instructions: The arithmetic instruction set offers instructions

for performing addition, subtraction, multiplication, division, maximum, minimum, and

square root operations on single and double-precision floating-point data. Moreover,

reciprocal operation is available only for single-precision floating-point numbers. The

logical instructions provide support for AND, AND NOT, OR, and XOR operations. The

ISA provides scalar and vector versions of all the instructions. The scalar version operates

only on one element, whereas vector version performs multiple operations at the same time.

Conversion Instructions: The base ISA provides instructions to support conversion

between:

1) Single and double-precision floating-point formats.

2) Single-precision floating-point and doubleword integer formats.

3) Double-precision floating-point and doubleword integer formats.

 Scalar and vector versions of all the conversion instructions are provided.

56

Comparison Instructions: The baseline ISA comparison instructions compare single-

precision floating-point, double-precision floating-point, or integer values and return the

result either to a destination register or to the flag register. For single and double-precision

floating-point values the comparison instruction can check for “equal”, “not equal”, “less

than”, “not less than”, “less than or equal”, “not less than or equal”, “ordered” (true if none

of the source operands is NaN), and “unordered” conditions. For integers the only checks

provided are “greater than” and “equal”. Moreover, integer comparisons are provided at

byte, word, doubleword, and quadword levels.

Permutation Instructions: Permutation support in the baseline ISA is provided through

several shuffle instructions. These instructions interleave the contents of two vector source

registers and store the results in destination register. “Broadcast instructions” are provided

to copy a value in all the elements of a vector register. The copied value may come from

the memory or another register. Moreover, unpack instructions are provided to distribute

the result of a packed operation to several registers.

3.8 McPAT

To measure the energy savings of power gating we integrated McPAT [70] to

DARCO. McPAT is an integrated power, area, and timing modeling tool for multithreaded

and multi-core architectures. In terms of power, McPAT not only models dynamic power

but also the leakage power. Instead of being hardwired to a particular simulator, McPAT

uses an XML-based interface to communicate with performance simulators. In addition to

communicating with performance simulator, the XML interface is also used to pass static

microarchitectural, circuit, and technology parameters. Running McPAT separately from

the performance simulator makes it flexible and easily portable to different performance

simulators.

The configuration parameters in the XML file, can be defined at three levels:

architectural, circuit, and technology. The parameters defined at the architectural level are

similar to the input parameters of a performance simulator. These include number of cores,

core issue width, homogeneous or heterogeneous cores, in-order or out-of-order cores,

number of hardware threads per core, instruction scheduling scheme, cache sizes and

levels, shared or private caches, directories, network on chip, number of routers, etc. The

circuit level parameters are used to specify implementation details. These include

specifying whether to use flip-flops or SRAM to implement arrays, crossbar types for on-

chip routers, etc. Technology level parameters include device and interconnect types.

McPAT support three device types: 1) High performance, 2) Low standby power, and 3)

57

Low operating power. The interconnects can use either aggressive or conservative wire

technology. Moreover, user can specify whether to use long channel devices or not, if there

is a possibility. McPAT supports technology nodes from 22nm to 90nm. Instead of

modeling power using linear scaling assumption across different technologies, McPAT

uses technology projections from ITRS [10].

 McPAT is composed of three main components 1) power, area, and timing models,

2) optimizer for circuit level optimizations and 3) internal chip representation. The power,

area, and timing model reads the configuration parameters passed by the user in the XML

file and models power, area, and timing. In general, McPAT focuses on power and area

modeling, whereas the target clock rate is taken as a design constraint. The optimizer takes

in the target clock frequency, power and area deviation, optimization functions, and other

parameters and explores the design space to optimize each processor component. Among

the configurations satisfying the power and area deviations, McPAT applies optimization

function to calculate power and area results. Then the optimizer generates an internal chip

representation. This chip representation along with power, area, and timing models is used

to generate final chip area, timing, and peak power. The final runtime power dissipation is

calculated based upon the activity factor and peak power of individual units. Most of the

parameters in the internal chip representation are directly set by input parameters in the

XML file like cache levels and capacity, issue width, etc.

3.8.1 Power Modeling

 The main sources of power dissipation in CMOS technology includes: 1) Dynamic

power, 2) Short-circuit power, and 3) Leakage power. The power consumed by the circuit

while it is performing some operations (or when is it active) is called dynamic or active

power. The main source of dynamic power consumption is charging and discharging of

capacitive loads due to changes in the circuit states. Therefore, the dynamic power

consumption of a circuit is directly proportional to the capacitive load it drives. Other

factors that affect the dynamic power include the supply voltage, the voltage swing during

charging/discharging, clock frequency, and activity factor. Most of these parameters are

passed to McPAT in the XML configuration file like clock frequency and the supply

voltage (depends upon technology used). The activity factor is provided by, or calculated

by, the statistics provided from the performance simulator. Circuit decomposing techniques

and analytic models are used by McPAT to find the load capacitance of a module.

 The short-circuit power in CMOS circuits occurs because both the transistors

(PMOS and NMOS) are momentarily in “on state” when the circuit switches its state.

58

During this interval, there is a path between power supply and ground that results in short-

circuit power consumption. McPAT uses a model developed by Nose et al. [81] to compute

the short-circuit power consumption.

In sub-nanometer technologies, the contribution of leakage power towards the

overall power consumption increases significantly. The power consumed by a circuit when

it is idle, is called leakage power. There are mainly two sources of leakage power: 1)

Subthreshold Leakage and 2) Gate Leakage. Subthreshold leakages occurs due to current

flowing between drain and source terminals of a transistor even when it is in off state.

Whereas, gate leakage corresponds to the tunneling of electrons from gate terminal to the

channel between drain and source of the transistor. McPAT used MASTAR [10] and data

from Intel [19] to estimate the leakage power consumption.

59

Chapter 4

Speculative Dynamic Vectorization

The compiler based static vectorization is used widely to extract data level

parallelism from computation intensive applications. Static vectorization is very effective

in vectorizing traditional array based applications. However, compilers inability to reorder

ambiguous memory references severely limits vectorization opportunities, especially in

pointer rich applications. HW/SW co-designed processors provide an excellent opportunity

to optimize the applications at runtime. The availability of dynamic application behavior

at runtime will help in capturing vectorization opportunities generally missed by the

compilers.

This chapter presents our proposal of complementing the static compile time

vectorization with a speculative dynamic vectorizer in a HW/SW co-design processor. It

also presents a speculative dynamic vectorization algorithm that speculatively reorders

ambiguous memory references to uncover vectorization opportunities. The hardware

checks for any memory dependence violation due to speculative vectorization and takes

corrective action in case of violation.

4.1 Introduction

 As we have seen in the previous chapters, Single Instruction Multiple Data (SIMD)

accelerators are ubiquitous in processors from all the computing domains. They are very

attractive from the hardware point of view due their simple control mechanism and

replicated functional units. However, code generation for SIMD extensions has always been

challenging. In the early days, programmers used to target these extensions mainly using in-

line assembly or specialized library calls. Then, automatic generation of SIMD instructions

(auto-vectorization) was introduced in compilers [24][78][104], which borrowed their

methodology from vector compilers. These compilers target loops for generating code for

SIMD accelerators. Later, S. Larsen et al. [66] introduced Superword Level Parallelism

(SLP) in which they target basic blocks instead of whole loops for vectorization. These static

approaches to vectorization are effective for traditional applications where memory is

referenced through explicit array accesses, whereas modern applications make extensive

use of pointers. Due to this, disambiguation of a pair of memory accesses becomes difficult

60

at compile time. Since memory operations form the foundation of vectorization, current

static approaches are limited in extracting SIMD parallelism.

 In this chapter, we provide details of our proposal of having dynamic vectorization

as a complimentary optimization to the compiler based static vectorization. It is important

to note that we do not propose to eliminate static vectorization altogether because there are

several complex and time consuming transformations that are not straightforward to apply

at runtime and are too costly like loop distribution, loop interchange, loop peeling, memory

layout change, algorithm substitution, etc. However, static vectorization alone fails to

capture significant vectorization opportunities due to conservative pointer disambiguation

analysis. To handle these cases we propose to have a speculative dynamic vectorizer that

can speculatively reorder ambiguous memory references to uncover vectorization

opportunities. Moreover, in the absence of loops, the scope of vectorization for static

vectorization is a single basic block. We propose to vectorize bigger code regions,

superblocks, which include multiple basic blocks and can be created at runtime following

the biased direction of branches.

 Furthermore, we propose a speculative dynamic vectorization algorithm that can be

implemented in the software layer of HW/SW co-designed processors. The proposed

algorithm speculatively reorders and vectorizes memory operations. During execution, the

hardware checks for any memory dependence violations caused by speculative

vectorization. If any violation is detected, the hardware rolls back to a previously saved

check-point and executes a non-speculative version of the code. The hardware support

required for speculative execution is already provided by co-designed processors as

discussed in Chapter 2. Therefore, no additional hardware support is needed from

speculative vectorization point of view.

Moreover, in the absence of static compiler vectorization, our algorithm can work

as a standalone vectorizer also. Therefore, the legacy code which was not compiled for any

SIMD accelerator can be vectorized using the proposed algorithm. The co-designed nature

of the processor makes the vectorization portable. As a result, the algorithm can be

modified to transparently target a different SIMD accelerator. It is important to note that

the proposed algorithm does not require any compiler or operating system

support/modification.

In the rest of the chapter, we start by briefly providing the motivation for the work

presented in Section 4.2. It is followed by the details of the proposed speculative dynamic

vectorization algorithm in Section 4.3. Evaluation of the algorithm using SPECFP2006,

61

Physicsbench, and UTDSP [13] applications is presented in Section 4.4. Section 4.5

presents the related work and Section 4.6 concludes.

4.2 Motivation

Traditional compile time loop vectorization is effective for applications involving

explicit array accesses since memory dependence analysis are relatively easy. Significant

performance gains have been reported using compiler vectorization in the past [24][66].

However, one of the major obstacles in vectorization at compile time is memory

disambiguation and dependence testing. J. Holewinski et. al. [45] showed that static

vectorization fails to extract significant vectorization opportunities especially in pointer-

based applications. Furthermore, S. Maleki et al. [74] showed that the modern compilers,

including Intel ICC, IBM XLC, and GNU GCC, are limited in vectorizing modern

applications. Extensive use of pointers and pointer arithmetic in these applications

complicate memory disambiguation and dependence testing. Even though research shows

that a pair of memory accesses rarely alias until and unless aliasing is obvious [41],

compilers generate conservative code to ensure correctness, which limits vectorization

opportunities [88]. For example, Figure 4.1a shows a function with a loop that performs

pointer arithmetic. The function takes in two pointers as parameters. Since the function can

be called from a number of places in the entire program, the inter-procedural analysis of

compiler needs to check whether the two pointers can alias or not. If the compiler cannot

prove that the two pointers always reference different memory locations, it will

conservatively assume dependence between them to ensure correctness. As a result, the

loop will not be vectorized.

As stated before, another approach to vectorization, SLP [66], performs

vectorization at lower intermediate representation level. SLP vectorizes at basic block level

instead of loop level. Therefore, SLP may vectorize portions of a loop if the whole loop is

not vectorizable, whereas traditional loop vectorizers vectorize either whole loop or

nothing. SLP starts by identifying adjacent memory accesses and then follows their def-

use and use-def chains. A def-use chain consists of a definition of a variable and all its uses

reachable from that definition without any other intervening definitions. Similarly, a use-

def chain consists of a use and all the definitions of a variable that can reach that use without

any other intervening definition. Figure 4.1b shows low level intermediate representation

for the loop of Figure 4.1a after unrolling it once. In this case, even though I0 and I6 are

adjacent memory references, they cannot be packed by SLP since I4 and I6 may alias.

Similarly, I4 and I10 access consecutive memory locations. However, they also cannot be

62

vectorized because I6 might alias with them. Thus, memory dependences affect both

traditional loop vectorizers as well as modern SLP.

1 Pack/Unpack instructions are explained in Section 4.3.1.

void example(double *a, double *b)

{

 int i;

 for (i = 0; i < NUM_ITR; i++)

 a[i] += b[i] * CONST;

}

a) An example loop with pointers.

loop: I0 ld_64 v2, M [r2 + r1 * 8]

 I1 mulsd v3, v2, v1

 I2 ld_64 v4, M [r3 + r1 * 8]

 I3 addsd v5, v4, v3

 I4 st_64 v5, M [r3 + r1 * 8]

 I5 add r4, r1, 1

 I6 ld_64 v6, M [r2 + r4 * 8]

 I7 mulsd v7, v6, v1

 I8 ld_64 v8, M [r3 + r4 * 8]

 I9 addsd xmm0, v8, v7

 I10 st_64 xmm0, M [r3 + r4 * 8]

 I11 add r1, r4, 1

 I12 cmp r1, r0

 I13 jne loop

b) Unrolled lower level representation.

 V0 Pack1 v1, v1, v1

loop: V1 ld_128_spec v2, M [r2 + r1 * 8]

 V2 mulpd v3, v2, v1

 V3 ld_128 v4, M [r3 + r1 * 8]

 V4 addpd v5, v4, v3

 V5 st_128_spec v5, M [r3 + r1 * 8]

 V6 add r1, r1, 2

 V7 cmp r1, r0

 V8 jne loop

V9 Unpack xmm0, v5

c) Speculatively vectorized version.

 Figure 4.1: An example loop with pointer arithmetic.

63

One possible solution that compilers may provide is to generate two versions of the

loop: one without vectorization and another vectorized with a runtime test to check for

aliasing. However, this solution is not optimal because:

1) runtime test has to be executed every time before executing the loop, thus

resulting in performance loss. Moreover, as the number of arrays to be checked for aliasing

increases the number of checks to be performed also increases.

 2) Having multiple versions of the loop increases the static code footprint of the

application, which results in higher instruction cache size requirements.

 Another way of vectorizing the example loop is through “__restrict” keyword. It can

be used to indicate that a symbol is not aliased in the current scope. If the programmer

knows that the two pointers to the function will not alias in any case, he can pass this

information to compiler using the “__restrict” keyword. Once the compiler is sure that the

two pointer always access non-overlapping memory locations, it can vectorize the loop.

However, it requires source code modification which is not always possible e.g.

unavailability of the source code or any other reason. In contrast, the proposed mechanism

does not require any source code modification.

 HW/SW Co-designed processors provide an excellent opportunity to handle these

cases: instead of generating multiple versions, a single speculatively vectorized version can

be generated by the software layer and the hardware can be tailored to execute the vectorized

code efficiently and safely. The proposed algorithm speculatively reorders memory

operations to expose vectorization opportunities. For example, in the code of Figure 4.1b,

our algorithm speculatively assumes that I4 and I6 will never alias and reorders them to

pack I0 and I6 together, as shown in Figure 4.1c. Moreover, due to the speculative

reordering, V1 is converted to a speculative load and V5 to a speculative store. If during the

execution it turns out that V1 and V5 access overlapping memory locations, the hardware

will detect this condition and will take corrective measures. In this example, by vectorizing

speculatively, we are able to vectorize the whole loop, whereas loop vectorization and SLP

could not find vectorization opportunities.

Therefore, having two complementary vectorizing schemes helps to get the best of

both the worlds. First, static vectorization applies more complex and time consuming loop

transformations, even though vectorizes conservatively. Later at runtime, a dynamic

vectorization phase catches the opportunities missed by static vectorization and

speculatively vectorizes ambiguous memory references and their dependent operations.

64

4.3 Dynamic Vectorization Algorithm

This section provides the details of the proposed speculative dynamic vectorization

scheme. Vectorization is applied only on superblocks in SBM, as they represent the most

frequently executed portion of the code. Moreover, vectorization is applied after applying

all other dynamic optimizations. This ensures that all the dead code is eliminated before

vectorization and only the code contributing to the final result is vectorized.

Figure 4.2 shows the modified optimization sequence in superblocks. The changes,

with respect to the baseline, are shown in italic. First of all, we do additional analysis during

DDG to discover consecutive memory accesses. We call it consecutiveness analysis. This

analysis discovers consecutive memory accesses so that they can be packed together by the

vectorizer if possible. After consecutiveness analysis, vectorization itself is performed. A

backward pass follows the vectorization phase and converts the scalar version of vectorized

instructions to “nops”.

- Translation to Intermediate

- Loop Unrolling

- Control Speculation

- SSA

-Forward Pass
- Constant Folding

- Constant Propagation

- Copy Propagation

- Common Subexpression Elimination

-Backward Pass
-Dead Code Elimination

-DDG

- Redundant Load Removal

- Store Forwarding

- Memory Alias Analysis

- Consecutiveness Analysis

- Vectorization

- Dead Code Elimination

- Instruction Scheduling
- Data Speculation

- Register Allocation

- Code Generation

Figure 4.2: Optimization Sequence in Superblocks for Vectorization Support.

65

4.3.1 The Vectorizer

This section explains the vectorization algorithm with pseudo-code and using a

practical example. The pseudo code for the vectorizer is listed in Algorithm 4.1. The

vectorizer packs together a number of independent scalar instructions that perform the

same operation, and replaces them with one vector instruction. The number of scalar

instructions packed depends on two factors:

 data-types of scalar instructions

 host vector length

For example, for a host vector length of 128-bit, four 32-bit single-precision

floating-point instructions can be packed together in a single vector instruction. Therefore,

vectorization reduces dynamic instruction count and improves performance. Before

describing the algorithm itself, we define a set of conditions that a pair of instructions must

satisfy to be included in the same pack:

 The instructions must perform the same operation.

 The instructions must be independent.

 The instructions must not be in another pack.

 If the instructions are load/store, they must be accessing consecutive memory

locations.

 Vectorization starts by marking all the instructions which are candidates for

vectorization. Moreover, we mark First Load and First Store instructions. First Load/Store

instructions are those for which there are no other loads/stores from/to adjacently previous

memory locations. For example, if there is a 64-bit load instruction IL that loads from a

memory location [M] and there is no 64-bit load instruction that loads from address [M –

8], we call IL First Load.

Vectorization begins by packing consecutive stores, starting from a First Store. The

decision of starting with stores instead of loads is based on the observation that a given

kind of operation always has the same number of predecessors, e.g. all the additions always

have two predecessors, whereas the number of successors may vary depending on how

many instructions consume the result. Consequently, following a bottom-up approach

results in a more structured tree traversal than a top-down approach.

Once a pack of stores is created, their predecessors are packed (Pack_pred_succ

rountine), before packing other stores, if they satisfy the packing conditions. Moreover if

66

the last ore in the pack has a next adjacent store, it is marked as First Store so that a new
Algorithm 4.1a. Top Level Vectorization Function

Vectorize (SB):

 Set_packable(SB,Available_for_pack, First_St,First_Ld)

 Pack_ldst(SB, Available_for_pack, First_St, packs)

 Pack_ldst(SB, Available_for_pack, First_Ld, packs)

 Set_Arith(SB, Available_for_pack, Arith)

 Pack_Arith(SB, Available_for_pack, Arith, packs)

Algorithm 4.1b. Load-Store Vectorization

Pack_ldst(SB, Available_for_pack, First_LdSt, packs):

 for inst in First_LdSt:

 vec_length = get_vector_length(inst)

 P = [inst]

 for i in range(1, vec_length):

 if inst has next_ldst:

 if inst_can_pack(P,next_ldst, Available_for_pack):

 P.extend(next_ldst)

 inst = inst.next_ldst

 else:

 break

 if len(P) == vec_length:

 packs.extend(P)

 Make_unavilable(P, Available_for_pack)

 First_LdSt.extend(inst.next_ldst)

 Traverse_pred_succ (SB, Available_for_pack, packs)

Algorithm 4.1c. Traverse Predecessors/Successors

Traverse_pred_succ(SB, Available_for_pack, packs):

 need_Pack = Pack_pred_succ(SB, Available_for_pack, packs[latest].preds, packs)

 if need_Pack:

 generate_Pack_inst

 need_Unpack = Pack_pred_succ(SB, Available_for_pack, packs[latest].succs, packs)

 if need_Unpack:

 generate_Unpack_inst

Algorithm 4.1d. Vectorize Predecessors/Successors

Pack_pred_succ(SB, Available_for_pack, pred_succ, packs):

 for inst in pred_succ:

 if inst in Available_for_pack:

 vec_length = get_vector_length(inst)

 P = [inst]

 for i in range(1, vec_length):

 for inst1 in pred_succ[i]:

 if inst_can_pack(P, inst1, Available_for_pack):

 P.extend(inst1)

 break

 if len(P) == vec_length:

 packs.extend(P)

 Make_unavilable(P, Available_for_pack)

 Traverse_pred_succ (SB, Available_for_pack, packs)

 if All_pred_succ_packed(pred_succ):

 return NO

 else

67

the last store in the pack has a next adjacent store, it is marked as First Store so that a new

pack can start from it.

Once all the stores are packed and their predecessor/successors chains have been

followed, we check for remaining load instructions that satisfy the packing conditions and

pack them in the same way as stores. Pack_ldst routine provides the functionality for

packing loads and stores.

Vectorization starting from adjacent loads/stores has an obvious limitation: if a

superblock does not have any consecutive loads/stores, nothing can be vectorized. To

tackle this problem, after packing all loads/stores and their predecessors/successors, we

check if still there are some arithmetic instructions which can be packed together. If yes,

we vectorize them and follow their predecessor/successor trees (Pack_Arith). This allows

us to partially vectorize loops with interleaved memory accesses.

While traversing the predecessor/successor chains, if we find out that the

predecessors of a pack cannot be vectorized, a Pack instruction is generated. This Pack

instruction collects the results of all the predecessors into a single vector register and feeds

 return YES

Algorithm 4.1e. Vectorize Remaining Arithmetic Operations

Pack_Arith(SB, Available_for_pack, Arith, packs):

 for inst in Arith:

 if inst in Available_for_pack:

 vec_length = get_vector_length(inst)

 P = [inst]

 for inst1 in Arith[pos(inst):len(Arith)]:

 if inst_can_pack(P, inst1, Available_for_pack):

 P.extend(inst1)

 if len(P) == vec_length:

 packs.extend(P)

 Make_unavilable(P, Available_for_pack)

 Traverse_pred_succ (SB, Available_for_pack, packs)

 break

Algorithm 4.1: Pseudo code for the algorithm. Vectorizer is the top level function that starts

vectorization. First of all, vectorizable instructions are marked and the staring points First

Stores/Loads are identified. Pack_ldst function creates packs from consecutive memory

operations and then calls Traverse_pred_succ function to pack predecessors/successors. After

packing all packable predecessors/successors with Pack_pred_succ function, Pack and Unpack

instructions are generated if necessary. Finally, all the remaining arithmetic operations are

packed by Pack_Arith function. “packs” contains the packs created during vectorization.

Set_Arith function marks remaining arithmetic operations for vectorization. inst_can_pack

checks if instructions can be packed together. Make_unavilable marks instructions as

unavailable for vectorization, since they are already included in other pack.

All_pred_succ_packed returns true if all the predecessor/successors of the current pack have

been vectorized, otherwise it returns false.

68

the current pack. Similarly, if all the successors of a pack cannot be vectorized, an Unpack

instruction is generated. This Unpack instruction distributes the result of the pack to the

scalar successor instructions. Traverse_pred_succ routine provides this functionality.

For example, in the case of loops with interleaved memory access, when we reach several

load instructions while traversing the tree, we find out that they cannot be packed since

they are not consecutive. Therefore, we leave them in scalar form and assemble their results

using a Pack instruction.

Moreover, Pack instructions are needed if a pack contains an instruction whose

input is live-in of the superblock. Similarly, Unpack instructions are needed to put the

results from a pack to the architectural registers that are live-outs of the superblock.

4.3.2 Avoiding Cyclic Dependences

One of the important points that should be taken care of during vectorization is that,

after creation of a pack, two instructions that were earlier independent may become

dependent. If we pack these instructions in a new pack, there will be a cyclic dependence

in the DDG. Figure 4.3 shows an example of this scenario. Figure 4.3a shows the

unvectorized code. We start vectorization by packing two consecutive and independent

store instructions (I4 and I8). Then following the predecessor chains we pack I3 and I7

also. After this step I9 becomes dependent on I1 as shown in Figure 4.3b, however these

two instructions were independent in the original scalar code of Figure 4.3a. Therefore, we

cannot select them to be packed together because it would produce a cyclic dependence.

One way to solve the problem of inadvertently packing dependent instructions

together is to address it during instruction scheduling and undo one of the packs involved

in the cyclic dependence. However, it is not an optimal solution since dependence violation

may have gotten propagated while traversing predecessor/successor chains. Therefore, we

decided to update the DDG every time we create a new pack. As a result, cyclic

dependences never appear in the DDG. This also allows us to check for alternative packing

possibilities whereas, if we remove cyclic dependence during instruction scheduling, we

cannot pack instructions of dissolved packs with other instructions.

4.3.3 Static vs Dynamic Vectorization

Loops are the basic program structures that the vectorizers target for extracting

parallelism through vectorization. Several loop transformations are sometimes needed to

make a loop vectorizable. The transformation like loop distribution, loop interchange, loop

69

peeling, node splitting, memory layout change, algorithm substitution, etc are generally

applied to make a loop vectorizable. These time consuming transformations are better

suited at compile time than at runtime. However, compile time vectorization suffers from

several limitation like: 1) limited vectorization opportunities due to conservative memory

disambiguation analysis, 2) scope of vectorization is limited to basic blocks if the loops

cannot be unrolled e.g. due to complex control flow, and 3) legacy code cannot be

vectorized.

The proposed speculative dynamic vectorization gets rid of all these limitations. 1)

The proposed algorithm relaxes the restrictions on memory disambiguation by

speculatively reordering/vectorizing the ambiguous memory references, 2) Since the scope

of vectorization for the proposed algorithm is a superblock, it crosses the basic block

boundaries to vectorize instructions from multiple basic blocks, and 3) Since the dynamic

I0:

ld_64

I1:

mulsd

I2:

ld_64

I3:

addsd

I4:

st_64

I5:

ld_64

I6:

ld_64

I7:

addsd

I8:

st_64
I9:

mulsd

a) DDG for unvectorized code.

I0:

ld_64

I1:

mulsd

I2:

ld_64

I5:

ld_64

I6:

ld_64

I3:

addpd

I4:

st_128

I9:

mulsd

b) DDG after vectorizing I4-I8 and I3-I7.

Figure 4.3: Additional dependence after vectorization.

70

vectorization is applied at runtime on the program binary and not at the source code level,

the legacy code can also be vectorized.

Moreover, dynamic vectorization provides some additional benefits. For example,

for the loops where the number of iterations are not known statically, it is difficult to decide

the unroll factor at compile time. The availability of dynamic application behavior, at

runtime, allows to detect the loop unroll factor dynamically. Unrolling the loops

correspondingly helps dynamic vectorizer to extract significant vectorization

opportunities. Furthermore, since the dynamic vectorization is done at runtime by TOL,

the vectorization algorithm can be modified to transparently target a different SIMD

accelerator.

4.3.4 Working through an Example

Figure 4.4a shows the DDG for the example code of Figure 4.1b. Since the loop is

unrolled once and there is no loop carried dependences, assumed speculatively, the two

trees are completely separated from each other. For the sake of simplicity, we do not show

loop control code in this figure. Also, pairs of ambiguous memory reference instructions

like I4 and I6 are considered independent speculatively. As our algorithm begins with

consecutive stores, the stores I4 and I10 are packed together as shown in Figure 4.4b.

Moreover, the new store instruction is speculative one and I6 is also converted to

speculative load. Following the predecessor tree, we see that I3 and I9 satisfy the packing

conditions and vectorize them. Notice here that I9 writes to a live-out architectural register.

As a result, we have to generate an Unpack instruction to write the result to the live-out

register. This is shown in Figure 4.4c.

Traversing up the tree, we vectorize multiplication instructions I1 and I7. One of

the inputs of the multiplication instructions is a live-in to the superblock. Hence, we

generate a Pack instruction to put the live-in values in a vector register as shown in Figure

4.4d. As explained earlier, before packing the other predecessors of additions (I3 and I9),

we traverse the tree up for the predecessors of I1 and I7. We discover that the loads I0 and

I6 are independent and consecutive, thus, they are packed next. Also, the new vector load

instruction is speculative since I6 was speculative, Figure 4.4e. Finally, Figure 4.4f shows

the second inputs of additions (I3 and I9): the two load instructions (I2 and I8) are also

vectorized. Pack and Unpack instructions generated to read and write architectural registers

in this example can be moved outside the loop as loop invariant code during instruction

scheduling, as shown in Figure 4.1c. This way, we are able to vectorize the whole loop.

71

I0:
ld_64

I1:
mulsd

I2:
ld_64

I3:
addsd

I4:
st_64

I6:
ld_64

I7:
mulsd

I8:
ld_64

I9:
addsd

I10:
st_64

I0:
ld_64

I1 I7:
mulpd

I2:
ld_64

I6:
ld_64_s

I8:
ld_64

I3 I9:
addpd

I4 I10:
st_128_s

unpack

pack

I0:
ld_64

I1:
mulsd

I2:
ld_64

I3:
addsd

I6:
ld_64_s

I7:
mulsd

I8:
ld_64

I9:
addsd

I4 I10:
st_128_s

I1 I7:
mulpd

I2:
ld_64

I0 I6:
ld_128_s

I8:
ld_64

I3 I9:
addpd

I4 I10:
st_128_s

unpack

pack

I0:
ld_64

I1:
mulsd

I2:
ld_64

I6:
ld_64_s

I7:
mulsd

I8:
ld_64

I3 I9:
addpd

I4 I10:
st_128_s

unpack

I2:
mulpd

I1:
ld_128_s

I3:
ld_128

I4:
addpd

I6:
st_128_s

I5:
unpack

I0:
pack

a)

b)

c)

d)

e)

f)

Figure 4.4: Example for vectorization of the code of Figure 4.1b. a). Shows the DDG for the loop which

is unrolled once. We don´t show loop control code for the sake of simplicity. Since two iterations are

completely independent we have two completely separated trees. Two arrows coming in to I1 and I7

represents live-in and arrow going out of I9 represents live-out of the superblock. Also, speculatively, we

assume there is no dependence between the memory instructions until and unless its obvious b) Shows the

state of DDG after vectorizing consecutive stores, also, the new store instruction is speculative one. c) Then,

we follow the predecessor chains and pack addsd instructions. Since I9 writes to an architectural register, we

need to unpack the results and write to the architectural register. d) Packs two mulsd instructions and since

one of the inputs to both of these instructions is a live-in, a Pack instruction is also generated to pack the

inputs in a single vector register. e) and f) pack remaining load instructions and f) Shows the final state.

72

4.4 Performance Evaluation

As explained in Chapter 3, we use DARCO [86], which is an infrastructure for

evaluating HW/SW co-designed virtual machines, to evaluate our proposals. In our

experiments, we assume that the host architecture supports a vector width of 128-bits.

Moreover, we consider only floating point operations for vectorization (because most

SIMD optimizations tend to focus on them) and no integer operation is vectorized. For this

reason, we show only floating-point instructions in the results presented in this section.

However, for performance study we included both floating-point as well as integer code.

In addition to SPECFP2006 and Physicsbench, we use UTDSP benchmark suite

[13] as well. This benchmark suite consists of array and pointer based version of several

signal processing kernels. Both versions provide identical functionality, the only difference

being the use of arrays or pointers to traverse the data structures. Vectorization results for

UTDSP kernels show TOL´s effectiveness in vectorizing array and pointer based code. All

the benchmarks are executed till completion. Moreover, SPECFP2006 benchmarks are

executed using “train” input. Furthermore, we choose only the benchmarks which have less

than 150 billion dynamic instructions to keep the execution time manageable.

4.4.1 FP Dynamic Instruction Elimination

This section presents the percentage of dynamic instructions eliminated by 1) only

GCC vectorizer , 2) only TOL, and 3) GCC+TOL vectorizations, first for SPECFP2006

and Physicsbench benchmarks suites and then for UTDSP Kernels. GCC and TOL

represent static and dynamic vectorization respectively. For TOL vectorization the input

binary is compiled by GCC but not vectorized. Also, TOL vectorization results show its

effectiveness in vectorizing legacy code, since input binary is not vectorized for any SIMD

accelerator. For GCC+TOL case, the input binary to TOL is already vectorized by GCC.

The results of this case show the vectorization opportunities missed by GCC but captured

by TOL.

Benchmarks: For SPECFP2006, on average, the combined GCC+TOL approach

eliminates approximately twice the number of instructions than only the static GCC

vectorization as shows in Figure 4.5. GCC+TOL vectorization outperforms GCC for all

the SPECFP2006 benchmarks except for 436.cactusADM and 459.GemsFDTD. GCC

completely vectorizes these benchmarks and hence TOL does not get any further

vectorization opportunities. Therefore, instruction elimination is same for GCC and

73

GCC+TOL. It is also important to note that on average, dynamic TOL vectorization itself

outperforms static GCC vectorization. Moreover, the only benchmarks where GCC

outperforms TOL are again 436.cactusADM and 459.GemsFDTD. The effectiveness of

TOL vectorization, to some extent, depends on the quality of the input binary. For example,

for 436.cactusADM the input binary to TOL contains GCC unrolled version of the hottest

loop. This GCC unrolled loop does not fit in a single superblock due to TOL´s restriction

on the maximum number of instructions in a superblock. Therefore, TOL vectorizer could

not vectorize it as good as GCC. For 459.GemsFDTD GCC generates significant spill-fill

code (to store/retrieve temporary values to/from memory) in the frequently executed loops.

This spill-fill code affects TOL´s ability to vectorize this benchmark.

GCC could not vectorize Physicsbench mainly due to the presence of complex

control flow in the most frequently executed loops. TOL also is unable to unroll these

loops; however, it extracts significant vectorization opportunities through superblock

vectorization. Since GCC fails to vectorize anything, GCC+TOL and TOL vectorizations

both eliminate 20% of dynamic instruction stream.

Kernels: Table 4.1 shows the vectorization results for UTDSP kernels. As the table shows,

GCC vectorizes the array based version of FFT, LATNRM, and Matrix Multiplication

(MULT) but for the pointer based version it is able to vectorize only LATNRM. On the

contrary, performance of TOL is same for the array and pointer based versions for all the

kernels except for IIR. Pointer based version of IIR contains control flow inside the

innermost loop and hence TOL fails to vectorize it. Furthermore, once again a combination

of static and dynamic vectorization, GCC+TOL, provides the best solution.

Figure 4.5: Percentage of Dynamic FP Instructions eliminated by GCC, TOL and

GCC+TOL vectorizations.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

4
1

0
.b

w
av

e
s

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
06

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

D
yn

am
ic

 F
P

 In
st

ru
ct

io
n

s
El

im
in

at
ed

GCC

TOL

GCC + TOL

74

For the array based version, TOL vectorizer outperforms GCC in vectorizing IIR.

GCC is unable to resolve loop carried dependences, whereas speculative vectorization

helps TOL to provide an instruction reduction of 32%. On the other hand, GCC surpasses

TOL vectorization for LATNRM and Matrix Multiplication (MULT). In the current

version of TOL vectorizer, reductions are not implemented. Both LATNRM and MULT

have reductions, which TOL fails to vectorize. Moreover, MULT has non-unit stride

memory accesses, since only one dimension of the matrix (either row or column) can be

accessed in the unit-stride manner. Compliers apply optimizations like “memory layout

change”, “data coping”, etc to convert non-unit stride accesses to unit-stride. However,

these optimizations are not directly applicable at runtime. This adds to the loss of

vectorization opportunities for TOL vectorizer.

Benchmark Type GCC TOL GCC + TOL

FFT
Array 43.28% 52.70% 43.28%

Pointer 0.00% 49.87% 49.87%

FIR
Array 0.00% 0.00% 0.00%

Pointer -0.08% 0.00% -0.08%

IIR
Array 0.00% 32.52% 32.52%

Pointer 0.00% 0.00% 0.00%

LATNRM
Array 23.48% 7.38% 20.44%

Pointer 19.43% 17.85% 27.76%

LMSFIR
Array 0.00% 0.00% 0.00%

Pointer 0.00% 0.00% 0.00%

MULT
Array 64.72% 17.62% 64.72%

Pointer 0.00% 17.62% 17.62%

Avg
Array 21.91% 18.37% 26.83%

Pointer 3.23% 14.22% 15.86%

Table 4.1: Percentage of Dynamic Instructions eliminated by GCC, TOL and GCC+TOL

vectorizations.

None of the vectorization schemes is able to extract benefit for FIR and LMSFIR,

mainly because of the presence of control flow inside the innermost loop. Moreover, in

these benchmarks, the number of independent instructions in the basic blocks (and even in

superblocks) is not enough to enable vectorization. It is also interesting to note that TOL

eliminates 53% of instructions from array version of FFT, whereas GCC+TOL eliminate

only 43% (as does GCC alone). This is because the input to TOL is completely vectorized

by GCC and TOL does not find any vectorization opportunities, therefore the instruction

reductions stays at 43% in GCC+TOL case.

4.4.2 Dynamic FP Instruction Stream Distribution

 Figure 4.6 and 4.7 present dynamic FP instruction stream distribution for

SPECFP2006 and Physicsbench respectively for no vectorization, GCC vectorization,

75

TOL vectorization and GCC + TOL vectorization cases. The results shown are normalized

to no vectorization case. The dynamic FP instruction stream includes: Scalar and Vector

instructions, Pack/Unpack instructions (as described in Section 4.3.1), unvectorizable

instructions (e.g. we do not vectorize conversion instructions), and Merge instructions (the

instructions needed to merge correct values in live-out vector architectural registers even

without vectorization).

 For GCC vectorization, the majority of the dynamic instruction stream is composed

of scalar instructions. However, for TOL and GCC + TOL vectorizations the percentage of

scalar instructions falls to 30% and 28% for SPECFP2006 and 48% and 48% for

Physicsbench respectively. Furthermore, even though scalar instructions form much

smaller (30% and 28%) part of the vectorized dynamic instruction stream in SPECFP2006

Figure 4.6: Dynamic FP instruction stream distribution for SPECFP2006: no

vectorization, GCC, TOL and GCC + TOL vectorization normalized to no vectorization.

Figure 4.7: Dynamic FP instruction stream distribution for Physicsbench: no

vectorization, GCC, TOL and GCC + TOL vectorization normalized to no vectorization.

76

than Physicsbench (48%), the overall dynamic instruction stream for both benchmarks

suites is reduced by the same amount, almost 20%, by TOL and GCC + TOL

vectorizations. The reason lies in the fact that SPECFP2006 benchmarks operate on 64-bit

double-precision floating-point variables whereas, Physicsbench benchmarks are

composed of 32-bit single-precision floating-point variables. As a result, for a vector length

of 128-bits, a single vector instruction in Physicsbench replaces four scalar instructions

whereas, in SPECFP2006 a vector instruction replaces only two scalar instruction.

Therefore, SPECFP2006 needs more vector instructions to replace the same number of

scalar instructions than Physicsbench. The fact is also evident in Figure 4.6 and 4.7 where

the vector instructions form 32% and 34% of vectorized instruction stream in SPECFP2006

and only 13% in Physicsbench for TOL and GCC + TOL vectorizations.

 In addition, Pack and Unpack instructions also form a moderate fraction of the

vectorized dynamic instructions stream. For TOL and GCC + TOL vectorizations, they

constitute 15% and 12% of vectorized dynamic instruction stream for SPECFP2006 and

8% for Physicsbench. Unvectorizable instructions on the other hand are negligible in both

the benchmark suites.

 4.4.3 Vectorization Overhead

Vectorization overhead is the fraction of dynamic instruction stream that

corresponds to the vectorization of superblocks by TOL. A high vectorization overhead

might offset the benefits of the vectorization. We calculate the vectorization overhead as:

=
𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑤𝑖𝑡ℎ 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − 𝑇𝑜𝑡𝑎𝑙 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Our experimental results show that, on average, the vectorization overhead is less

than 0.5% of the dynamic instruction stream, for all the benchmark suites. Hence, the

dynamic vectorization overhead is negligible compared to its benefits. There are two main

factors that make the vectorization overhead to be negligible:

1) Since vectorization is performed at superblock level, the “superblock overhead”

is the only overhead component that would increase. Moreover, as shown in

Figure 3.12 in Chapter 3, the “superblock creation” overhead accounts for only

14% and 9% of the overall overhead for SPECFP2006 and Physicsbench

respectively. Therefore, an increase in this component has minimal effect on

the overall overhead.

77

2) Since vectorization reduces the total number of instructions in a superblock, the

optimizations following the Vectorization pass, namely instruction scheduling,

register allocation, and host code generation, now have to optimize lesser

instructions. Therefore, the overhead of these optimization steps also reduces.

As a result, total increase in the overall overhead is insignificant.

4.4.4 Effectiveness of Memory Speculation

One of the main factors in the success of the proposed vectorization scheme is the

memory speculation. However, it might backfire if there are lots of speculation failures.

A speculation failure results in executing un-optimized (and without TOL vectorization)

version of the code and if the rate of speculation failure exceeds a predetermined threshold,

recreating the superblock without speculation. However, our results show that, on average,

we execute more than 99% of the dynamic superblocks in speculation mode. It reflects the

fact that the number of speculation failures, and hence the overhead associated with it, is

negligible.

 4.4.5 Performance

For the performance analysis, both the floating point and integer instructions are

considered, even though TOL vectorizes only the floating point code. Figure 4.8 shows the

performance of the vectorized code using the different vectorization schemes relative to

the unvectorized code, for SPECFP2006 and Physicsbench. The performance results in the

figure conform to the results of Figure 4.5 for dynamic instruction elimination. For

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
44

.n
am

d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

R
el

at
iv

e
P

er
fr

o
m

an
ce

GCC

TOL

GCC + TOL

Figure 4.8: Execution speed for GCC, TOL and GCC + TOL vectorized code

relative to unvectorized code. Higher is better.

78

SPECFP2006, GCC+TOL vectorization provides twice the performance benefit than GCC

alone (10% compares to 5% of GCC alone). Also, TOL vectorization alone provides better

performance than GCC alone. It is interesting to note that for 410.bwaves and 433.milc

GCC vectorized code gets a slowdown even though Figure 4.5 shows dynamic FP

instruction elimination. The slowdown comes because of the integer code. GCC adds more

integer code than it vectorizes, hence suffers a slowdown. Moreover, for these benchmarks

GCC+TOL provides worse performance than TOL alone because GCC+TOL vectorizes

GCC vectorized input with extra integer code whereas TOL vectorizes unvectorized code.

As GCC fails to vectorize anything in Physicsbench it does not show any

performance improvements. However, similar to the results of Figure 4.8, GCC+TOL and

TOL vectorizations provide similar performance benefits for Physicsbench.

An interesting thing to note is that in Figure 4.8 GCC+TOL vectorization, on

average, eliminates 20% of the dynamic instruction stream for both SPECFP2006 and

Physicsbench. However, SPECFP2006 gets more speed up than Physicsbench as shown in

Figure 4.8. This is because percentage of floating point code is more in SPECFP2006 than

in Physicsbench as shown in Figure 3.13 in Chapter 3.

Table 4.2 shows the speedup for UTDSP kernels. These results also conform to the

results of Table 4.1. For the pointer based version of the kernels GCC loses significant

performance compared to the array based version. However, performance is not affected a

lot for TOL vectorizer. Furthermore, the combination of static and dynamic vectorizations,

GCC+TOL, is able to extract maximum performance out of the kernels.

Benchmark Type GCC TOL GCC + TOL

FFT
Array 1.26 1.50 1.26

Pointer 1.00 1.50 1.50

FIR
Array 1.00 1.00 1.00

Pointer 1.05 1.00 1.05

IIR
Array 1.00 1.29 1.29

Pointer 1.00 1.00 1.00

LATNRM
Array 1.39 1.03 1.33

Pointer 1.31 1.13 1.39

LMSFIR
Array 1.00 1.00 1.00

Pointer 1.03 1.00 1.03

MULT
Array 2.33 1.07 2.33

Pointer 1.17 1.23 1.16

Avg
Array 1.33 1.15 1.37

Pointer 1.09 1.14 1.19

Table 4.2: Execution speed for GCC, TOL, and GCC + TOL vectorized code relative to

unvectorized code. Higher is better.

79

4.5 Related Work

Speculative Dynamic Vectorization is not a much extended topic in literature.

There have only been a few proposals like Speculative Dynamic Vectorization [83] and

Dynamic Vectorization in Trace Processors [112]. None of them is in the context of

HW/SW co-designed processors.

A. Pajuelo et al. [83] proposed to speculatively vectorize the dynamic instruction

stream in the hardware for superscalar architectures. Their scheme prefetches data into the

vector registers and speculatively manipulates it through arithmetic instructions. Moreover

scalar instructions that are converted into vectors are not eliminated but are converted into

‘check’ operations to validate whether the operands used by the corresponding vector

instruction were correct or not. Several hardware structures are added to support

speculative dynamic vectorization, which is not a power efficient solution, especially in

out-of-order superscalar processors where power consumption is already a big issue. They

report, more than half of the speculative work is unless due to mispredictions, whereas the

rate of speculation failure is negligible in our case. S. Vajapeyam et al. [112] builds a large

logical instruction window and converts repetitive dynamic instructions from different

iterations of a loop into vector form. The whole loop is vectorized if all iterations of the

loop have the same control flow.

HW/SW Co-designed processors like Transmeta Crusoe [36], BOA [91], etc. apply

several dynamic optimizations at runtime and evaluate their contribution in improving

overall performance. Also, software dynamic binary optimizers like Dynamo [21], IA-32

[22], and hardware dynamic binary optimizers like rePLay [85] and PARROT [90] report

performance improvements by applying on the fly optimizations. However, none of these

systems have proposed vectorization at runtime. Y. Almog et al. [17] briefly point out that

one of the optimizations applied in their system is SIMDification. Unfortunately, details of

their vectorization scheme are not provided in the paper.

Liquid SIMD [34] decouples the SIMD accelerator implementation from the

instruction set of the processor by compiler support and a hardware based dynamic

translator. Similarly, Vapor SIMD [82] provides a just-in-time compilation solution for

targeting different SIMD architectures. Thus, both solutions eliminate the problem of

binary compatibility and software migration. However, both need compiler changes and

recompilation. J. Li et al. [69] propose a runtime algorithm for mapping guest vector

registers to host vector registers when guest ISA vectors registers support more data types

than host ISA vector registers.

80

4.6 Conclusion

This chapter proposed to assist the static compiler vectorization with a

complementary dynamic vectorization. Static vectorization applies complex and time

consuming loop transformations at compile time to vectorize a loop. Subsequently at

runtime, dynamic vectorization extracts vectorization opportunities missed by static

vectorizer due to conservative memory disambiguation analysis and limited vectorization

scope. Furthermore, the chapter proposed a vectorization algorithm that speculatively

reorders ambiguous memory references to facilitate vectorization. The hardware, using the

existing speculation and recovery support, checks for any memory dependence violation

and takes corrective action in that case.

Our experimental results show that the combined static and dynamic vectorization

improves the performance twice compared to static vectorization alone for SPECFP2006.

Furthermore, we show that the proposed dynamic vectorization performs as good for

pointer based applications as for the array based ones. However, GCC vectorization loses

significant opportunities when source code utilizes pointers. Moreover, the overhead of

runtime vectorization is only 0.5%.

81

Chapter 5

 Vectorizing for Wider Vector Units

Due to their hardware simplicity, SIMD accelerators have evolved in terms of width

from 64-bit vectors in Intel´s MMX to 512-bit wide vector units in Intel´s Xeon Phi. This

chapter explores the scalability of SIMD accelerators from the code generation point of

view. We explore the potential problems in vectorization at higher vector lengths.

Furthermore, we propose Variable Length Vectorization and Selective Writing in a

HW/SW co-designed environment to get around these problems.

5.1 Introduction

SIMD accelerators form an integral part of modern microprocessors. Since these

accelerators perform the same operation on multiple pieces of data, they just require

duplicated functional units and a very simple control mechanism. Due to this hardware

simplicity they are relatively easy to scale to higher vector lengths. As a result, SIMD

accelerators grow in size with each new generation. For example, Intel´s MMX [4] had

vector length of 64-bits, which was increased to 128-bits in SSE [4] extensions. Intel´s

recent SIMD extensions AVX [4] and AVX2 [4] support 256-bit wider vectors.

Furthermore, Intel Xeon Phi [12] and its visual computing architecture Larrabee [93]

perform 512-bit wide vector operations.

Although SIMD accelerators are amenable to scaling from the hardware point of

view, generating efficient code for higher vector lengths is not straightforward. There are

applications for which compilers just need to unroll loops with a higher unroll factor to fill

the wider vector paths. However, there is another category of applications that does not

have enough parallelism for vectorization at higher vector lengths. Generating code for

these applications for wider vector units becomes a challenge.

In this chapter, we explore the scalability of SIMD accelerators from the code

generation point of view. We discover that there are two key factors that thwart the

performance of applications at higher vector lengths: reduced dynamic instruction stream

coverage for vectorization and huge number of permutation instructions. We propose

Variable Length Vectorization and Selective Writing to tackle these problems. Our

82

experimental results show average dynamic instruction elimination of 25% and speed up

of 13% for SPECFP2006, for 512-bit vector length.

The rest of the chapter begins by briefly providing the motivation for the work

presented and identifying key issues in efficient vector code generation for higher vector

lengths in Section 5.2. Then, Section 5.3 and 5.4 provide details of the proposed Variable

Length Vectorization and Selective Writing techniques, respectively. Evaluation of the

proposals using a set of SPECFP2006 and Physicsbench applications is presented in

Section 5.5. Section 5.6 presents related work and Section 5.7 concludes.

5.2 Motivation

The trends in the recent past have shown that vector lengths are going to increase

in the future microprocessors, since it provides a simple and efficient way of achieving

higher FLOPS in an energy efficient manner. Intel´s 256-bit AVX and 512-bit vector length

of Xeon Phi and Larrabee are few examples of these trends. However, it is a challenge to

generate efficient code to utilize these wider vector units. To demonstrate this fact, we

vectorized floating point instructions in SPECFP2006 for three different vector lengths of

128, 256, and 512-bits using the speculative dynamic vectorization algorithm described in

Chapter 4. Moreover, at a given vector length, all the vector instructions operate only on

the maximum vector length and not on a subset of it. For example, for 512-bit vector length

case, all the vector instructions operate on whole 512-bits and there is no vector instruction

that operates only on 256 or 128-bits.

Our results show that there are mainly two problems in vector code generation at

higher vector lengths: reduced dynamic instruction stream coverage for vectorization and

huge number of permutation instructions.

5.2.1 Reduced Dynamic Instruction Stream Coverage

We define dynamic instruction stream coverage as the number of dynamic scalar

instructions vectorized. Figure 5.1 shows the dynamic instruction stream coverage for

vectorization at different vector lengths normalized to the 128-bit case. Best, worst and

average cases are shown. We divide the applications in two categories: The first category

applications have maximum dynamic instruction stream coverage at all the vector lengths,

like 454.calculix. On the contrary, there are applications like 444.namd where dynamic

instruction steam coverage falls by 70% at vector length of 512-bits.

83

The dynamic instruction stream coverage at different vector lengths depends upon

the degree of data level parallelism available in the application, or in other words the natural

vector length of the application. If an application spends most of its time in loops with

higher trip counts, it will benefit from higher vector lengths, since the wider vector paths

can be filled by unrolling the loops more number of times depending on the vector length.

However, as shown by the average case of Figure 5.1, this is not the case for most of the

applications. We see an average reduction of 25% and 48% in dynamic instruction stream

coverage at 256-bit and 512-bit respectively. If this trend continues, the coverage is going

to be even lesser at higher vector lengths.

5.2.2 Number of Permutation Instructions

When the input operands of a vector instruction are not available in a single vector

register or are not in the same order as required by the vector instruction, permutation

instructions are needed to arrange them in the correct order. Our results show that the

number of permutation instructions grows significantly with increasing vector lengths.

Figure 5.2 shows the number of permutation instructions generated per vector

instruction in SPECFP2006 normalized to the 128-bit case. As the figure shows, if we

generate one permutation instruction for each vector instruction at 128-bit vector length,

this number goes as high as 10 at 512-bit vectors in case of 444.namd. Also, there are

applications for which this number does not grow that rapidly. However, the average

behavior suggests that number of permutation instructions is going to be a problem at

higher vector lengths.

Both of these factors become a limitation as vector paths become wider and instead

of performance improvements, it starts degrading compared to the lower vector lengths.

This chapter investigates both problems and proposes Variable Length Vectorization and

0

0.2

0.4

0.6

0.8

1

1.2

128-bit 256-bit 512-bit

N
o

rm
al

iz
e

d
 D

yn
am

ic
 In

st
ru

ct
io

n

St
re

am
 C

o
ve

ra
ge

454.calculix(Best case) Avg 444.namd(Worst case)

Figure 5.1: Dynamic FP Instruction Stream Coverage for vectorization at 128, 256 and

512 bit vector lengths normalized to 128-bit case.

84

Selective Writing to solve the problems of reduced coverage and permutation instructions,

respectively.

5.3 Variable Length Vectorization

Vector instructions in the current architectures, generally, operate on all the

elements of the source vector registers and write the whole destination register. Due to this

reason, compilers generate a vector instruction only when there are sufficient numbers of

independent operations to fill the vector path. When there are not enough instructions to

fill up the vector path, all the instructions are left in scalar form. This is going to be an

important issue in the future microprocessors with wider vector paths and a lot of,

otherwise vectorizable, code will be left unvectorized. We propose Variable Length

Vectorization (VLV) using masked vector instructions to vectorize the scalar code when it

is not possible to fill the vector path entirely.

An important factor to consider here is the need of masking. Masking is used to

disable unused vector lanes when a vector instruction does not use all the lanes. In general,

not masking the unused lanes might work well for arithmetic instructions from the

functionality point of view. However, the register file will contain invalid data because

whole destination register will be written. Therefore, we would need a way to distinguish

between invalid and valid data in the register file. Mixing the architectural state and

temporal values is typically not a good idea. Moreover, performing unnecessary operations

in the unused lanes might also generate exceptions, like divide by zero. Therefore, we

would need a way to distinguish real and false exceptions. Furthermore, for memory access

instructions this might result in crossing array boundaries and leading to page/segmentation

0

2

4

6

8

10

12

128-bit 256-bit 512-bit

N
u

m
b

e
r

o
f

p
e

rm
u

ta
ti

o
n

in

st
ru

ct
io

n
s

p
e

r
ve

ct
o

r
in

st
ru

ct
io

n
s

434.zeusmp(Best Case) Avg 444.namd(worst case)

Figure 5.2: Number of permutation instructions generated per vector instruction at 128,

256, and 512 vector lengths normalized to 128-bit case.

85

faults. Also, for store instructions it would result in writing incorrect data to the memory.

On the other hand, masking the unused lanes helps us get rid of all these problems.

5.3.1 Code Generation

We modify our baseline speculative dynamic vectorization algorithm of Chapter 4

to generate vector code with variable vector length. The modified algorithm starts by

vectorizing for the given maximum vector length, we call it physical vector length. Once

all the possible packs for the physical vector length have been created, the vectorizer

reduces the logical vector length iteratively. At lower logical vector lengths, packs are

created with smaller number of scalar instructions than required to fill the vector path. The

left out positions in a pack are considered as no operations (NOP).

Since, the number of operations in the vector instructions varies depending on the

logical vector length; we need a way to notify the hardware which vector lanes to enable

and which ones not. We make use of mask registers for this purpose. Mask register has one

bit per vector lane. The bits containing ones signify the corresponding vector lanes are to

be enabled; 0 means otherwise. We include the mask register in instruction encoding in

addition to the regular source and destination registers. The new instruction encoding for

vector instructions is shown in Figure 5.3.

Figure 5.3: Instruction format for masked vector instructions.

Figure 5.4 shows a simple vectorization example using the proposed VLV

algorithm. Figure 5.4a shows unvectorized code having six independent single-precision

floating-point addition (32-bit) instructions. For a vector length of 128-bits, we can pack a

maximum of four single-precision floating-point additions in a single vector addition

instruction. The algorithm first packs four of the six instructions in a vector instruction and

assigns a mask register with all ones to this instruction, as shown in Figure 5.4b. A mask

register with all ones signifies that all the vector lanes are to be enabled.

A fixed vector length vectorization algorithm will stop at this point, since there are

just two ADDSS instructions left and at least four are required to generate a vector

instruction. However, VLV algorithm continues and packs the remaining two addition

instructions as shown in Figure 5.4c. Moreover, a mask register with ones only at lowest

two positions is assigned to this instruction. It makes sure that only the two lower vector

lanes are enabled during the execution of this vector instruction.

opcode dest src1 src2 mask reg unused

86

a) Unvectorized code.

b) Vectorized code for fixed vector length of 128-bits.

c) Vectorized code with variable length vectorization.

Figure 5.4: Variable Length Vectorization Example.

Figure 5.5: Masked Vector Instruction Execution.

5.3.2 Hardware Requirements

From the hardware perspective, we do not really need to have real mask registers

in the hardware. Since we need to enable only consecutive lower order vector lanes, the

number of lanes to be activated can directly be encoded in the instructions encoding. This

also saves upon the extra instructions, otherwise, needed to write the mask in the registers.

It is important to note that the traditional vector processors support variable vector length

through a vector length register. It needs to be set to the desired vector length before

executing vector instructions. However, it is not the optimal solutions for the processors

targeting general purpose applications, where the vector length needs to be changed

frequently. In this scenario, overhead of writing the vector length register would affect the

addss addssaddssaddss addssaddss

addss addssaddssaddss addssaddss

Mask 1111

addss addssaddssaddss addssaddss

Mask 1111 Mask 0011

src1

0 110

++

src2

mask

dest

87

performance severely. Therefore, instead of having a variable vector length register we

propose to have Variable Length Vectorization using masked vector instructions.

For the execution of a vector instruction, the hardware now reads not only the

source registers but also a mask to enable only the required vector lanes. Figure 5.5 shows

the execution of second vector instruction generated in the example vectorization sequence

of Figure 5.4. As shown in the figure only two of the four vector lanes are activated. This

is also important from the power consumption point of view, not to activate all the vector

lanes for all the vector instructions.

Variable Length Vectorization helps in vectorizing the applications which have

loops with lower iterations count than required by the vector length and the straight line

code with fewer independent scalar operations.

5.4 Selective Writing

This section presents the proposed Selective Writing (SWR) technique to reduce

the number of permutation instructions at higher vector lengths. First, we present a

technique to eliminate permutation instructions completely if the result of an instruction is

read only by one instruction. Then, we present another technique to reduce the number of

instructions required to pack N values from N-1 to N/2, if the values to be packed are in N

different registers.

5.4.1 Eliminating Permutation using Selective Writing

If the producer instructions of a vector instruction cannot be vectorized, the results of

these instructions have to be packed together before feeding the vector instruction. This is

due to the fact that the scalar producer instructions write their results to the lowest element

of different vector registers, whereas the vector instruction needs them to be in a single

vector register and in a particular order.

Figure 5.6a shows a situation where producers of I7 (I0-I3) are not vectorized and

their results are packed using a permutation instruction sequence (I4-I6). As shown in the

figure, I0 to I3 write their results to the lowest elements of different vector registers. Then

a sequence of three instructions, I4 to I6, is used to pack these results in a single vector

register xmm3, before feeding it to the vector instruction I7.

88

I0 addss xmm0, xmm6

I1 addss xmm1, xmm6

I2 mulss xmm2, xmm7

I3 mulss xmm3, xmm7

I4 shufps xmm1, xmm0, imm

I5 shufps xmm3, xmm2, imm

I6 blendps xmm3, xmm1, imm

I7 addps xmm3, [M]

a) Traditional code sequence.

 I0 addss vr4, vr0, vr6, imm

 I1 addss vr4, vr1, vr6, imm

 I2 mulss vr4, vr2, vr7, imm

 I3 mulss vr4, vr3, vr7, imm

I4 addps vr5, vr4, [M]

b) Proposed instruction sequence.

Figure 5.6: Packing scalar instruction results for feeding a vector instruction.

If the scalar instructions can write their results to any element of a vector register,

instead of always writing to the lowest element, we can get rid of the permutation

instructions. It can be done by making the scalar instructions to selectively write in the

different elements of a vector register in the order they are needed by the vector instruction.

This way, we can avoid putting permutation instructions altogether. This kind of selective

writing capability is already available in the memory access instruction set of current

architectures. For example, INSERTPS in Intel´s SSE can be used to write a 32-bit value

loaded from memory to any part of the destination register. We extend this capability to

the arithmetic instruction set as well. The proposed instruction format for the scalar

arithmetic instructions is shown in the Figure 5.7 and the functionality in Figure 5.8.

Figure 5.7: Proposed instruction format for scalar instructions.

As shown in the Figure 5.7, in addition to carry source and destination register

numbers, all scalar arithmetic instructions also carry an immediate that specifies to which

element of the destination vector register the scalar result is to be written.

opcode dest src1 src2 immd unused

89

Figure 5.8: Functionality of the proposed arithmetic scalar instructions.

Figure 5.9: Percentage of Dynamic Instructions with one, two and more number of

consumers.

If scalar instructions have written their results to a single vector register in the order

in which they are needed by the vector instruction, the instruction sequence for packing

these results is not needed anymore as shown in Figure 5.6b.

The limitation of SWR scheme is that it works as long as the result of a scalar

instruction is consumed only by one instruction. In the case of more than one consumer,

we would not get the maximum benefit out of SWR. However, our analysis of

SPECFP2006 shows that more than 70% of dynamic instructions have only one consumer,

as shown in Figure 5.9.

The proposed scalar instructions can be viewed as an arithmetic operation followed

by a shuffle. However, this does not affect the latency of these instructions, since the results

can be forwarded as soon as the arithmetic operation is finished. As Figure 5.10 shows, it

requires only an additional input to the multiplexers, selecting input operands of the ALUs

An A0A1……. Bn B0B1……

op

Cn C0C1…….

Immd

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
n

ta
ge

 o
f

D
yn

am
ic

 In
st

ru
ct

io
n

s

1 consumer 2 consumers More consumers

90

Figure 5.10: Operand forwarding before shuffle.

from the output of the first vector lane (which performs scalar operations). Consequently,

forwarding the results of the first vector lane to any other vector lane provides the

functionality of a shuffle operation.

5.4.2 Reducing Permutation Instruction to Pack N Values

Current architectures provide vector instruction set where N-1 instructions are

required to bring N values to a register. A typical instruction sequence to bring 4 values

from different vector registers to single vector register in x86 architecture is shown in

Figure 5.11a. The first two shuffle instructions bring values selected by the immediate into

register xmm1 and xmm3, respectively. Then a BLENDPS instruction is used to combine

the results from xmm1 and xmm3 into xmm3.

One of the main factors that force this instruction count to be N-1 is that, these

instructions write to all the elements of the destination register. If it is possible to write

only the selective elements of the destination register, then this number can be brought

down. In this case, the number of instructions required will depend upon the total number

of different registers to be read and the number of registers that can be read by a single

permutation instruction. In a case where we need to read N registers and the permutation

instruction can read only two registers, we would need N/2 instructions to collect N values

in a single register. If we support more number of input registers, the number of instructions

required can be brought further down. Moreover, we need a mechanism to tell which

elements of the source registers are to be read and which elements of the destination register

are to be written.

Pipeline
Register

Pipeline
Register

M

U

X

M

U

X

M

U

X

M

U

X

PR

PR

PR

PR

Shuffle
Network

From Memory

From
Register File

PR -> Pipeline Register

91

I0 shufps xmm1, xmm0, imm

 I1 shufps xmm3, xmm2, imm

 I2 blendps xmm3, xmm1, imm

a) x86 instruction sequence.

 I0 packps vr6, vr0, vr1, imm

 I1 packps vr6, vr2, vr3, imm

b) Proposed instruction sequence.

Figure 5.11: Instruction sequence for packing 4 values from different registers into a

single register.

We propose to have a permutation instruction with the instruction format shown in

Figure 5.12 and the functionality in Figure 5.13.

The proposed instruction (PACKPS) has two input registers and a 16-bit immediate

that tells which elements of the source and destination registers are to be accessed. The

first four bits of the immediate [0:3] tells which element of the first source register is to be

read and the next four bits [4:7] tell where it is to be written in the destination. Similarly,

bits [8:11] tell which element of the second source register is to be written to the destination

element selected by the bits [12:15]. Note that PACKPS is very similar to SHUFPS but

with a bit more freedom in choosing source element for each destination element.

Therefore, their latencies will be similar.

Figure 5.12: Instruction format for the proposed permutation instruction (PACKPS).

Figure 5.13: Functionality of the proposed Pack instruction.

opcode dest src1 src2 16-bit imm

n 01… n 01…

n 01…

Immd[0:3]Immd[8:11]

Immd[4:7]Immd[12:15]

92

Number of registers

to be read
256-bit 512-bit

N 54% 32%

N-1 30% 18%

N-2 12% 20%

Table 5.1: Percentage of permutations requiring N, N-1 and N-2 input registers to pack N

values, for 256 and 512-bit vectors.

 The instruction sequence for replacing x86 instruction sequence of Figure 5.11a is

shown in Figure 5.11b. In this case, we are able to reduce the number of instructions

required to two. For higher vector lengths, where we need to get 8 and 16 values in a

register, we need just 4 and 8 instructions, respectively, instead of 7 and 15 instructions

required by the original sequence. The down side of this scheme is that it requires N/2

instructions even if the values to be collected are in less than N number of registers.

However, our experiments show that in SPECFP2006, on average, about 84% and 50% of

permutations, for 256-bit and 512-bit vectors respectively, need to read N or N-1 registers

to pack N values as shown in Table 5.1.

Discussion

VLV and SWR are well suited to HW/SW co-designed processors than traditional

microprocessors mainly due to two reasons: First, they require significant ISA changes,

since all the vector instructions now carry a mask register and the scalar instructions carry

an immediate. It can be achieved in HW/SW co-designed processors transparently to the

user/compilers but not in the traditional microprocessors. Second, the VLV algorithm is

fairly simple to extend to compilers for the static trip count loops, however for loops with

unknown trip count at compile time it becomes tricky. For fixed vector length, compiler

can vectorize such loops by unrolling them enough number of times to fill the vector path

and putting a runtime check before the vectorized version to decide whether to execute it

or not. However, for variable length vectorization, choosing a single unroll factor becomes

difficult at compile time. The runtime information of the program behavior in HW/SW co-

designed processors makes it straightforward to choose the correct unroll factor.

93

Figure 5.14: Dynamic Instructions stream coverage at three vector lengths,

baseline and with VLV.

5.5 Performance Evaluation

For our experiments, we extended the host architecture to supports vector sizes of

128, 256, and 512-bits. Like in Chapter 4, we vectorize only the floating-point code and

report only the number of floating-point instructions in the results shown in this section.

Performance results include both integer as well as floating-point code.

5.5.1 Dynamic Instruction Stream Coverage

Figure 5.14 shows the dynamic instruction stream coverage for three vector lengths

first without and then with Variable Length Vectorization (VLV). We will have maximum

coverage when the number of instructions required to create a pack is minimum, i.e. two

instructions. At 128-bit vector length the maximum number of 64-bit double precision

operations that can be packed together is two. Therefore, 128-bit vector length provides

maximum coverage, even without VLV, for double precision operations. Since all the

SPECFP2006 benchmarks primarily operate on double precision floating point variables,

they have maximum coverage at 128-bits as shown in Figure 5.14. For single precision

floating point variables, Variable Length Vectorization helps increasing coverage even at

128-bit vector length, as is evident from the figure, for Physicsbench benchmark suite.

For the vector lengths of 256-bit and 512-bits, the benchmarks can be divided into

two categories. First, the benchmarks like 454.calculix have maximum, or close to

maximum, dynamic instruction stream coverage at higher vector lengths also. The hottest

loops of these benchmarks have enough iterations to fill the wider vector paths. Second,

the benchmarks like 436.cactusADM, 444.namd, and Physicsbench show drastic reduction

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

P
h

ys
ic

sb
en

ch

SPEC Physicsbench Avg

D
yn

am
ic

 In
st

ru
ct

io
n

 C
o

ve
ra

ge

128bit-baseline 256bit-baseline 512bit-baseline 128bit-VLV 256bit-VLV 512bit-VLV

94

Figure 5.15: Number of Permutation Instructions per vector instruction, baseline

and with SWR.

in coverage as vector length increases, due to the lack of independent instructions to fill

the wider paths. These benchmarks either have loops with fewer iterations or with complex

control flow. For example, the hottest loops in 410.bwave iterate four times, therefore, for

256-bit vector length it has the maximum coverage but for 512-bit, it drops down to zero.

Benchmarks in Physicsbench have loops with complex control flow and cannot be

unrolled. Moreover, number of independent instruction in individual superblocks is not

enough to fill the vector path. Thus, the dynamic instruction stream coverage reduces

severely. Using VLV, we bring the coverage for these benchmarks also to the maximum

as shown in the Figure 5.14.

5.5.2 Permutation Reduction

Figure 5.15 shows the number of permutation instructions per vector instruction

required at three vector lengths without and with Selective Writing (SWR). Again, we have

the same two categories of benchmarks as for the dynamic instruction stream coverage.

Benchmarks like 434.zeusmp, 459.GemsFDTD, and Physicsbench have, essentially, the

same amount of permutation instructions across all the vector lengths. Packing the

instructions from the different iterations of unrolled loops avoids generation of permutation

instructions in the case of 434.zeusmp and 459.GemsFDTD. Physicsbench, however, has

really less number of permutations since we fail to vectorize anything. On the contrary,

433.milc, 436.cactusADM and 444.namd show an increase in the permutation instructions

at higher vector lengths. Complex control flow and lack of number of loop iterations forces

us to vectorize straight line code which require higher number of permutation instructions.

0

1

2

3

4

5

6

7

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

P
h

ys
ic

sb
en

ch

SPEC Physicsbench Avg

N
u

m
b

e
r

o
f

P
e

rm
u

ta
ti

o
n

 In
st

ru
ct

io
n

s
p

e
r

V
e

ct
o

r
In

st
ru

ct
io

n

128bit-baseline 256bit-baseline 512bit-baseline 128bit-SWR 256bit-SWR 512bit-SWR

95

Figure 5.16: Dynamic Instruction Percentage after baseline and VLV-SWR

vectorizations.

SWR helps in eliminating significant number of permutation instructions for these

benchmarks.

Another point to notice in Figure 5.15 is that for 128-bit vector length there is

negligible reduction in permutation instructions. This is because we need to pack two

double precision values in a 128-bit register and for N=2, N/2 and N-1 are same. Therefore,

we do not get much benefit. However, on average we reduce the number of permutation

instruction required to half.

5.5.3 Putting Everything Together

Figure 5.16 shows the percentage of dynamic instructions after vectorization

without and with VLV-SWR. As shown in this figure, after applying both the optimizations

all the applications perform better as vector length is increased. Applications like 433.milc,

436.cactusADM, 470.lbm, and Physicsbench which were earlier getting worse with

increase in the vector length, compared to 128-bit vector length; now perform better. On

average, VLV-SWR help eliminating 9% and 16% more dynamic instructions compared

to the baseline vectorization, at 256-bit and 512-bit vector lengths respectively, for

SPECFP2006. Overall, vectorization with VLV-SWR reduce unvectorized dynamic

instruction stream by 13%, 22%, and 25% for 128-bit, 256-bit, and 512-bit vector lengths

respectively. For Physicsbench, we eliminate 40% more instructions compared to baseline

vectorization and unvectorized code, at 256-bit, and 512-bit vector lengths with VLV-

SWR. Baseline vectorization does not find any vectorization opportunity at higher vector

lengths for Physicsbench.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

P
h

ys
ic

sb
en

ch

SPEC Physicsbench Avg

P
e

rc
e

n
ta

ge
 o

f
D

yn
am

ic
 In

st
ru

ct
io

n
s

128bit-baseline 256bit-baseline 512bit-baseline 128bit-VLV-SWR 256bit-VLV-SWR 512bit-VLV-SWR

96

Figure 5.17: Execution time for baseline and VLV-SWR vectorizations

normalized to unvectorized code execution time.

As Figure 5.16 shows, the percentage of reduced instructions is same for 256-bit

and 512-bit vector lengths in case of Physicsbench and 410.bwaves. The lack of availability

of independent instructions at 512-bit vector length forces VLV to vectorize the code the

same way as for 256-bit vector length. However, important point to notice is that we still

have more instruction reduction than 128-bit case, which was not possible without VLV.

5.5.4 Performance

This section presents the performance results. Since, we vectorize only the floating

point instructions, the overall performance will depend upon the fraction of floating point

instructions in the dynamic instruction stream.

Figure 5.17 shows the percentage of execution time, at three vector lengths, after

vectorization without and with VLV-SWR. On average VLV-SWR provide 5% and 7%

speed up over the baseline vectorization and 11% and 13% over the unvectorized code, for

vector length of 256-bit and 512-bit respectively, for SPECFP2006. Similarly, for

Physicsbench, we get a speed up of 10% for with VLV-SWR over unvectorized and

baseline vectorization.

There are several interesting points to note in Figure 5.17. First, even though we

have higher dynamic instruction elimination, e.g. 25% for SPECFP 512-bit vector length,

the speed up we get is smaller, 13% for SPECFP 512-bit vector length. This is because

only 40% of dynamic instructions are floating point in SPECFP, which reduces the overall

performance. Second, dynamic instruction reduction is more for Physicsbench, 40%

compared to 25% of SPECFP2006 for 512-bit vector length; SPECFP2006 shows more

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

105.00%

110.00%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

Ex
e

cu
ti

o
n

 T
im

e

128bit-baseline 256bit-baseline 512bit-baseline 128bit-VLV-SWR 256bit-VLV-SWR 512bit-VLV-SWR

97

speed up, 13% compared to 10% of Physicsbench for 512-bit vector length. This is due to

the fact that Physicsbench has higher percentage of integer instructions than SPECFP2006

as shows Figure 3.13 in Chapter 3.

5.6 Related Work

The proposal by M. Woh et al. [115] for supporting multiple SIMD widths is the

closest to our proposal of Variable Length Vectorization. They proposed a configurable

SIMD datapath that can be configured to process wide vectors or multiple narrow vectors.

Unfortunately, details of their vectorization algorithm for vectorization for multiple vector

lengths are not provided.

Masked operations have been used in the past for vectorization of code with control

flow. However, we use them in the absence of control flow to increase dynamic instructions

stream coverage. J. Smith et al. [98] proposed masked operations as a means of adding

support for conditional operations in vector instruction set. J. Shin et al. [95] incorporated

masked operations to vectorize loops with conditional flow in Superword Level Parallelism

approach. Larrabee [93] also uses masked instructions to map scalar if-then-else control

structure to the vector processing unit. All of these proposals execute both if and else

clauses and select the correct results based on the values in the mask registers. Our

proposal, on the other hand, uses masked operations to increase the dynamic instruction

stream coverage when there not enough instruction to fill the wider vector paths.

Significant amount of work has been done on the optimal generation of permutation

instructions due to their obvious effect on performance. However, previous work does not

show effect of permutations at increasing vector lengths. A. Kudriavtsev et al. [60] show

the relationship between operation grouping and permutation generation. They show the

ordering of individual operations in SIMD instructions affect the number of permutation

instructions required. G. Ren et al. [89] presented an algorithm that converts all the

permutations to a generic form. Then, permutations are propagated across the statement

and redundant permutations are eliminated. These solutions focus on reducing the number

of permutations required, whereas our solution reduces the number of instructions for each

permutation. L. Huang et al. [47] proposed a method to reduce the number of instruction

for one permutation. Their system has a Permutation Vector Register File which provides

implicit permutation capabilities. However, the permutation pattern is to be saved

beforehand in a permutation register. Moreover, only the values from two consecutive

registers can be permutated.

98

5.7 Conclusion

In this chapter, we showed that different applications have different natural vector

lengths. Therefore, widening the SIMD accelerators do not improve the performance for

all the applications. We discovered two main problems hurting the performance of natural

low vector length applications for wider SIMD units: Reduced dynamic instruction stream

coverage and large number of permutation instructions.

We propose Variable Length Vectorization to increase the instruction stream

coverage. This technique creates packs with less number of instructions when there are not

enough operations to fill the wider vector path. To reduce the number of permutation

instructions, we propose Selective Writing. This enables us to write to only a particular

element of vector registers and helps reducing the number of permutation instructions.

99

Chapter 6

 Dynamic Selective Devectorization

Leakage energy is a growing concern in current and future microprocessors.

Functional units of microprocessors are responsible for a major fraction of this energy.

Therefore, reducing functional unit leakage has received much attention in the recent years.

Power gating is one of the most widely used techniques to minimize the leakage energy.

Power gating turns off the functional units during the idle periods to reduce the leakage.

Therefore, the amount of leakage energy savings is directly proportional to the idle time

duration.

This chapter focuses on increasing the idle interval for the higher SIMD lanes by

selectively devectorizing the compiler vectorized code at runtime. The applications are

profiled dynamically, in a HW/SW co-designed environment, to find the higher SIMD

lanes usage pattern. If the higher lanes need to be turned-on for small time periods, the

corresponding portion of the code is devectorized to keep the higher lanes off. The

devectorized code is executed on the lowest SIMD lane.

6.1 Introduction

Modern microprocessors need to meet the high performance/throughput

requirements of the increasingly complex applications. In addition, they have to provide

such high performance under a very stringent power envelope. Moreover, the increase in

leakage power at sub-nanometer technologies has put further constraints on the power

budget. Therefore, it is of prime importance for computer architects to achieve a balance

between the energy consumption and performance.

Single Instruction Multiple Data (SIMD) accelerators are incorporated in the

processors, from different computing domains, to improve performance, especially for

compute intensive data parallel applications [4][35][23][37][52][68][103]. However, due

to their wider datapaths, they become main source of leakage energy for applications

lacking data level parallelism. Therefore, it is crucial to control the leakage of these

accelerators when they are not being utilized.

100

Many leakage control techniques have been studied [46][56][110][116], power

gating being one of the most prominent ones. Power gating cuts the supply voltage to the

idle functional units, resulting in leakage energy savings. The amount of leakage energy

saved is directly proportional to the length of time interval for which the circuit remains

idle. The longer the idle time interval, the more is the leakage energy saving. Therefore, it

is desirable to have longer idle time intervals to save maximum leakage energy. However,

power gating has an energy and performance overhead associated with it. Certain amount

of energy is required to turn a functional unit off and then on again, resulting in energy

overhead. Moreover, a certain number of cycles are required before the functional unit can

be used after starting the turn on procedure, resulting in performance penalty. It is

important to consider two special cases in power gating context:

1) Small idle intervals during periods of high utilization.

2) Small busy intervals during otherwise idle interval.

In the first case, a functional unit is awakened too early after turning it off. In this

case, power gating energy overhead might not be offset by the leakage energy savings and

power gating will result in net energy loss. Due to their obvious adverse effects on the net

energy savings, several mechanisms have been studied to avoid such cases [72][120]. In

the second case, the functional unit is awakened only for a small period of time before it is

tuned off again. Power gating benefits can be increased if, somehow, the functional units

can be kept off during these intervals. The gain here is twofold:

1) Since the functional unit is not turned on and then off again, there is no energy

overhead.

2) Avoiding to turn on the functional unit also saves the performance overhead of

power gating.

However, an alternate functional unit is required to avoid turning on the power gated

(turned off) unit. The work presented in the chapter focuses on reducing these cases to

improve the net energy savings.

SIMD accelerators have duplicated functional units/lanes to perform several

independent operations in parallel. Lowest SIMD lane executes scalar/unvectorized code,

whereas, the higher SIMD lanes comes into action when the application code is vectorized.

In the cases when the higher SIMD lanes are power gated and need to be tuned on only for

smaller periods of time, the corresponding portion of the code can be devectorized and

executed on the lowest lane. Thus, the energy and performance overhead of power gating

the higher SIMD lanes can be saved, resulting in increased net energy savings. However,

the portions of the application to be devectorized should be chosen cautiously, as

101

aggressive devectorization might also result in significant slowdown. Moreover, the

slowdown might result in a net energy loss due to extra leakage energy incurred in the

entire processor.

One of the ways of choosing devectorizable portions of the application is to profile

the application offline and then guiding the compile time vectorizer to vectorize only the

specific portions of the application. This method, however, has two major drawbacks. First,

the execution profile of applications might change with the input. Thus, when an

application is executed with an input other than the one with which it was profiled, the

profile guided optimizations will not help. It might even result in slowdown if the

frequently executed portions with the current input are not vectorized. Secondly, the

existing code has to be recompiled to get benefits of the new techniques. HW/SW co-

designed processors provide an excellent opportunity to profile and translate/optimize the

applications at runtime. Since the profiling is done at runtime it is not coupled to any

particular input.

We propose to extract maximum vectorization opportunities at compile time. Then,

at runtime, profile the application dynamically to find out the candidates for

devectorization. Therefore, dynamic selective devectorization discovers and devectorizes

only the portions of code that help improving the power gating efficiency without having

a significant effect on the performance.

For the rest of the chapter, Section 6.2 provides a background and related work on

power gating. Section 6.3 provides the motivation for the work presented in this chapter.

Section 6.4 describes the proposals of dynamic profiling and devectorization. Evaluation

of the proposals using SPECFP2006 and Physicsbench applications is presented in Section

6.5. Section 6.6 concludes the chapter.

6.2 Background and Related Work

 As leakage is becoming a growing concern in the current microprocessor designs,

several leakage control mechanisms have been studied [46][56][110][116]. All these

mechanisms try to reduce leakage when the circuit is in idle state. Power gating [46] consists

of shutting down parts of the circuit by cutting their power supply by means of high

threshold header or footer transistors, called sleep transistors. SSGC [56] is similar to power

gating as this technique also cuts the power supply to the circuit. However, it is more

effective than power gating in reducing leakage in data-retention circuits. Input vector

activation [110] changes the input of the circuit to keep the maximum number of transistors

102

in the off state. As the number of off transistors between power supply and ground increases

the leakage reduces. Adoptive body biasing techniques [18][116] increase transistor

threshold voltage by applying a reverse bias at transistor body. The increased threshold

voltage reduces the sub-threshold and gate leakages.

 Power gating is one of the most commonly used leakage control technique. There

have been several proposals to increase the efficiency of power gating. Hu et al. [46] showed

several key intervals in power gating, three of the most important being: idle detect interval,

breakeven threshold, and wakeup delay. Idle detect interval is the amount of time needed to

decide when to shut down a unit. At the end of idle detect interval a sleep signal is generated

to shut down the functional unit. Breakeven threshold is the amount of time a unit must

remain shut down to offset the power gating energy overhead. Waking up a unit before this

threshold, results in net energy loss. Finally, wakeup delay is the amount of time needed

before the unit can be used after turning it on. Therefore, a higher wakeup delay translates

to a higher performance penalty.

 Hu also proposed a branch prediction based and a counter based technique to

generate sleep signal. In branch prediction based technique, the unit is shut down after a

branch misprediction is detected whereas, the counter based technique generates the sleep

signal after the unit has been idle for a fixed number of cycles. As noted before, if the power

gated unit needs to be awakened before crossing the breakeven threshold, power gating

suffers a net energy loss. Several techniques has been proposed to minimize this energy loss

[15][72][120]. A. Youssef et al. [120] proposed to change idle detect interval dynamically.

Their proposal increases the idle interval during the period of high utilization, when the

functional units are being used frequently. Since the probability of a unit being awakened

before crossing the breakeven threshold is high during these periods, increasing the idle

detect interval reduces the number of power gating instances and hence the likelihood of

energy loss. On the contrary, they reduce the idle detect interval during the phases of low

activity to increase the number of powered off cycles and hence the energy savings. A.

Lungu et al. [72] proposed to use success monitors to measure the success of power gating

during a certain time interval. If power gating saves energy it is applied in the next interval

as well, if possible. Otherwise, power gating would be deactivated in the next time interval

even if a possibility existed. K. Agarwal et al. [15] proposed to have multiple sleep modes

in power gating. Each mode has different wakeup delay and energy savings. By trading-off

these two parameters during periods of different activity they achieve higher energy savings.

All of these techniques focus on improving the power gating efficiency by

improving the decision of when to shut down a unit. On the other hand, our work focuses

103

on how to keep a unit shut down for longer time intervals once it is already power gated.

Even though we target SIMD accelerators to show the potential of the proposal, it can be

applied to any functional units with multiple instances. To increase the length of the idle

periods, the higher SIMD lanes usage is profiled dynamically. Then the portions of the

code corresponding to the low utilization periods of higher lanes are located. This piece of

code is then devectorized and executed on the lowest SIMD lane.

6.3 Motivation

Power gating has been used efficiently, in the recent past, to reduce the leakage

energy when a functional unit is idle. Power gating cuts off the power supply to the

functional unit to shut it down and hence reduce the leakage energy. However, every time

a function unit is shut down and subsequently awakened, there is some energy overhead

associated with it. The energy overhead comes due to the fact that the sleep signal needs to

be generated and distributed to the appropriate functional units. Moreover, turning the sleep

transistor on and off also requires energy. Therefore the net energy saving of power gating

can be computed as:

Net Energy Savings = EL * ∑ 𝑜𝑓𝑓_𝑐𝑦𝑐𝑙𝑒𝑠[𝑘]
𝑛

𝑘=0
 – (n * Eoverhead)

Where EL is the leakage energy per cycle, Eoverhead is power gating energy overhead

per power gating instance and n is the number of power gating instances. Thus, having

large off_cycles with minimum number of power gating instances (n) results in maximum

energy savings. Furthermore, a functional unit cannot be used immediately after putting

the power supply back on, resulting in performance loss. Therefore, to get maximum

leakage savings at minimum performance penalty, a functional unit needs to be kept shut

down for longer time intervals, with minimum number of power gating instances.

Functional unit usage profile of an application changes during its execution. During

the low utilization period the function unit is used scarcely. Therefore, power gating targets

these periods for leakage savings. However, every time the functional unit is needed, it

needs to be awakened from the power gated state and needs to be shut down afterwards.

The wakeup and shutting down energy overhead reduces overall leakage energy savings.

If the functional unit is kept turned off and the corresponding code is executed on some

other functional unit (which are already on); the effectiveness of power gating in saving

leakage energy can be increased. Specifically for SIMD accelerators, higher SIMD lanes

can be switched off during sporadic usage period and the corresponding code can be

executed on lowest lane after devectorization.

104

We profiled SPECFP2006 to discover the higher SIMD lanes usage pattern. Figure

6.1 shows the percentage of vector instructions (higher lanes usage profile) in the dynamic

instruction stream over the execution time for 434.zeusmp. The higher lanes usage profile

shown in the figure is for 4 billion instruction executed starting from the most frequently

executed function/routine. Moreover, the shown vector instruction profile does not include

memory instructions since they do not use SIMD functional units. As can be seen in the

figure, higher lane usage profile changes during the execution. During the time intervals

A-B, C-D, and E-F around 20% of the dynamic instructions are vector instructions and

utilize higher SIMD lanes. Therefore, higher SIMD lanes need be activated during these

intervals. On the other hand, during the time intervals 0-A, B-C and D-E only less than 3%

of the dynamic instructions are vector instructions. During these intervals power gating

will activate SIMD lanes for short durations of time to execute these vector instructions

We propose to devectorize the portion of code corresponding to the time intervals

0-A, B-C, and D-E, if it does not affect the percentage of vectorized code in the other time

intervals. Devectorizing this piece of code results in lesser number (in some cases none) of

vectorized instructions during these time intervals. Therefore the number of power gating

instances also reduces during these intervals. As a result, the power gating energy overhead

diminishes and the net leakage savings increase. However, the dynamic energy

consumption of the lowest lane increases, as it has to execute more instructions now.

Nevertheless, as will be shown in the performance evaluation section, this increase is

relatively small compared to the reduction in the leakage energy.

6.4 Profiling and Devectorization

This section provides the details of the dynamic profiling and devectorization

schemes. Profiling is necessary to discover the code segments that can be devectorized to

0%

5%

10%

15%

20%

25%

30%

A B C D E F

Percentage of vector instructions in dynamic instruction stream

Figure 6.1: Percentage of vector instruction (excluding memory instructions) in the

dynamic instruction stream over the time (4 billion instructions) for 434.zeusmp.

105

keep the higher vector lanes power gated without affecting the performance. These code

segments must not be performance critical, as devectorizing performance critical code will

result in excessive slowdown. Moreover, due to the slowdown caused by devectorization

overall energy consumption will increase. It is important to note that the performance

critical code segments of an application might change with the input. Therefore, profiling

the applications offline with a particular set of inputs might not help in deciding which

code segments to devectorize. For that reason, we choose to profile the applications

dynamically at runtime. Dynamic profiling discovers non-performance critical

devectorization candidates and pass this information to the runtime devectorizer. The

selected code segments are then devectorized, resulting in effective power gating of SIMD

units.

 As stated in Chapter 3, TOL (the software layer of our HW/SW co-designed

processor) operates in three translation modes for generating host code from guest x86

code: Interpretation Mode (IM), Basic Block Translation Mode (BBM), and Superblock

Translation Mode (SBM). We collect the profiling information for the basic blocks in

BBM. This information is then used in SBM during superblock optimization phase to

decide whether or not to devectorize the given superblock. Figure 6.2 shows the modified

optimization flow in superblocks.

- Translation to Intermediate

- Loop Unrolling

- Control Speculation

- SSA

-Forward Pass
- Constant Folding

- Constant Propagation

- Copy Propagation

- Common Subexpression Elimination

-Backward Pass
-Dead Code Elimination

-DDG

- Redundant Load Removal

- Store Forwarding

- Memory Alias Analysis

- Devectorization

- Instruction Scheduling
- Data Speculation

- Register Allocation

- Code Generation

Figure 6.2: Optimization sequence in superblocks for devectorization support.

106

6.4.1 Profiling

In BBM, the application is profiled to get following information

1) Execution and Branch profiling information:

Software counters are used to count the number of times a basic block has been

executed in BBM. Besides, software counters are also employed to get the biased direction

of branches. This information is used to create bigger optimization regions (superblocks)

in SBM. Furthermore, we also profile the higher SIMD lanes usage pattern that helps us in

deciding which superblocks to devectorize.

2) Higher SIMD lanes usage pattern:

To decide whether to devectorize a superblock or not, we anticipate whether the

higher SIMD lanes would be power gated or not when the execution reaches the particular

superblock. In the case when we expect them to be power gated and if the current

superblock also has few vector instruction, it is desirable to devectorize the superblock. To

anticipate the status (power gated or not) of higher SIMD lanes we monitor their usage by

means of an N-bit shift register. Before executing an instruction, the content of this register

are shifted by one and the new position is set to 1 if the current instruction is a vector

instruction, otherwise it is reset to zero. Therefore, the number of ones in the shift register

gives the number of vector instructions executed in the last N instructions.

Each basic block in BBM has a software “devec” counter associated with it. Every

time a basic block, having at least one vector instruction, is executed in BBM, the contents

of the shift register are read. If the number read is less than a threshold (DVth), it would be

desirable to devectorize the basic block, if it is included in a superblock. The

devectorization is desirable in this case, since having less number of vector instructions

indicate low usage of higher SIMD lanes. Therefore, devectorizing this code will help

improving power gating efficiency without a significant impact on the overall performance.

To increase the devectorization likelihood of this basic block the devec counter is

incremented. However, if during the next execution of the same basic block the number of

ones in the shift register is more that DVth, the devec counter is decremented. It indicates

that devectorization is not favored due to more utilization of higher SIMD lanes. Therefore,

the final decision of whether to devectorize the basic block or not depends on the shift

register values just before all the executions of the basic block in BBM. This helps in

devectorizing only the basic blocks that are executing during the low usage phase of higher

SIMD lanes like B-C in Figure 6.1.

107

While creating a superblock, devec counters of all the basic blocks included in the

superblock are examined. If all the counters are greater than a predetermined threshold, the

superblock is devectorized. Otherwise, the superblock is kept in the vectorized form. This

selective devectorization of superblocks improves leakage energy savings through power

gating while maintaining the performance.

6.4.2 Devectorization

Once a superblock has been identified for devectorization through profiling, it goes

through a devectorization phase. The devectorization pass simply replaces vector

instructions by their corresponding scalar instructions and generates permutation

instructions if required. Moreover, vector memory instructions are not devectorized since

they do not use SIMD functional units.

Algorithm 6.1 presents the devectorization algorithm. “devect” is the top level

routine that receives the superblock “SB” to be devectorized. The routine goes over all the

instructions in the superblock in the program order. All the vector instructions (excluding

memory access instructions) are candidates for devectorization. The first step in

devectorization is to find devectorization length (get_devec_len). It is the number of scalar

instructions to be generated corresponding to the vector instruction. Then the scalar opcode

for the scalar instructions to be generated is obtained (get_scalar_opcode). Next, the

“get_scalar_in_reg” routine checks if the input vector registers of the current instruction

have already been mapped to scalar registers or not. If the producers of the current

instruction have already been devectorized, the corresponding input registers are already

mapped to the output scalar registers of the scalar producers. However, if the producers

cannot be devectorized (producers being vector memory loads or live-in of superblock), an

Unpack instruction is generated (generate_Unpack_insn). This Unpack instruction

distributes the contents of the input vector register to set of scalar registers depending on

the devect length. Once all the input vector registers have been mapped to scalar registers,

new output scalar registers are allocated (allocate_reg) for new scalar instructions to be

generated. In the next step, the scalar instructions are generated (generate_insn) using

scalar input and output registers collected during the earlier steps. The vector output

register of the current instruction is mapped to the new scalar output registers allocated

(add_to_mapped_reg). Finally, if the output register is an architecture register or the

consumers of the current instruction cannot be devectorized (vector memory stores), a Pack

instruction is generated (generate_Pack_insn). The Pack instruction collects the values

from the scalar output registers and packs them in a new vector register so that it can be

used by the vectorized consumers (generate_Pack_insn).

108

As the devectorization proceeds, the producer-consumer relations keep changing.

Thus, it is important to update the predecessor/successors chains. However, it is not shown

in the algorithm for the sake of simplicity.

6.4.3 Reducing Devectorization Slowdown

Dynamic selective devectorization serializes the parallel portions of code to save

energy at small performance cost. To reduce the effect of this serialization on the

Algorithm 6.1a. Top Level Dynamic Devectorization Routine

devect(SB):

for each instruction s in SB:

if s is devectorizable:

devec_len ← get_devec_len(s)

scalar_op ← get_scalar_opcode(s)

scalar_in_regs ← get_scalar_in_reg (s)

scalar_out_reg ← ø

for i ← 0 to devec_len do:

 scalar_out_reg ← scalar_out_reg ⋃ allocate_reg()

for i ← 0 to devec_len do:

 generate_insn(scalar_op, scalar_in_reg, scalar_out_reg)

add_to_mapped_reg(org_out_reg)

if org_out_reg is architectural_reg or vectorized_consumer:

generate_Pack_insn(scalar_out_reg)

Algorithm 6.1b. Vector to Scalar Register Mapping

get_scalar_in_reg (s)

scalar_in_regs ← ø

for each input_register ireg of s:

 if ireg in mapped_regs:

scalar_in_regs ← scalar_in_regs ⋃ get_mapped_reg(ireg)

 else

generate_Unpack_insn(ireg)

scalar_in_regs ← scalar_in_regs ⋃ get_mapped_reg(ireg)

return scalar_in_regs

Algorithm 6.1: Dynamic Selective Devectorization algorithm. devect routine devectorizes the

code in a top-down manner, starting with the first instruction in the superblock.

get_scalar_in_reg checks if a vector register is already mapped to a set of scalar register. If it

is not, a new UNPACK insturction is generated to map it to scalar registers.

109

performance, we do partial devectorization whenever possible. To better understand partial

devectorization, consider a SIMD accelerator with two 64-bit wide lanes. Each lane can

execute either one 64-bit double-precision floating-point operation or two 32-bit single-

precision floating-point operations. Devectorized code is executed on the lower lane, so

that the higher lane could be switched off.

In general, a single-precision floating-point vector instruction would be

devectorized into four single-precision scalar instructions. However, partial

devectorization generates only two single-precision “half-vector” instructions. A “half-

vector” instruction combines two scalar instructions that can be executed in parallel. The

rationale behind partial devectorization is to utilize the whole 64-bit wide vector lane. Since

one vector lane can execute two single-precision operations, it is better to partially

devectorized the code instead of full devectorization. As a result, the effect of

devectorization on performance is reduced while still saving energy by power gating the

higher lane. We propose to have “half-vector” instructions in the host processor ISA.

However, these instructions are transparent to the compiler/user and are generated

dynamically by the runtime devectorizer. The co-designed nature of the host processor

allows including new instructions without any change in compiler/recompiling.

6.5 Performance Evaluation

To evaluate the proposals, we implemented the proposed profiling and

devectorization algorithm in the software layer (TOL) of DARCO. Furthermore, for energy

consumption analysis McPAT [70] is integrated with DARCO. The key McPAT

parameters are shown in Table 6.1. Moreover, we consider only the floating point

instructions for devectorization because they are the main target of SIMD accelerators. In

our experiments, we assume that the host architecture consists of a 128-bit wide SIMD

accelerator. Moreover, we consider that the SIMD accelerator is composed of two 64-bit

wide lanes.

6.5.1 Baseline

From power gating point of view, SIMD accelerator can be viewed as a single unit

or two separate lanes. In other words, both the lanes of the SIMD accelerator can be

powered together or separately. If both the lanes are power gated together, we call it

combined power gating (CPG). CPG, however, is not efficient, since higher lane is,

generally, used lesser than the lower lane. Therefore, power gating the higher lane, even

though the lower lane is functional, would result in more power savings. We call this

110

configuration Split Power Gating (SPG). Our proposal of Dynamic Selective

Devectorization also assumes that the SIMD lanes can be power gated individually. We

compare our results with both configurations (CPG and SPG). Furthermore, the results

presented are for the modeled host processors and include profiling and translation

overheads. Only floating point benchmarks in SPEC2006 are considered for evaluation

since the floating point code is the main target of our proposals.

Parameter Value

Technology 65nm

Clock Rate 1.5 GHz

Temperature 350 K

Device Type High Performance

Table 6.1: McPAT Parameters.

6.5.2 Models and Parameters

To measure the success of the proposals, we refer to the power gating energy model

proposed by Hu et al. [46]. However, we changed some of the model input values. Their

breakeven threshold value is between 9 and 24 cycles. However, as A. Youssef [120]

explained, the breakeven threshold value in the real implementations can be more than 100

cycles. We use the breakeven threshold of 150 cycles. The wakeup latency of the functional

units is considered to be 10 cycles. Moreover, later we show a sensitivity study for

breakeven threshold and wakeup delay variations.

A. Lungu et al. [72] proposed a success monitor based improvement to the time-

based power gating mechanism of [46]. They use success counters to monitor whether

power gating has been successful (saved energy) or harmful (wasted energy) during a

monitoring interval. Power gating in the next monitoring interval is disabled if it has been

harmful in the current interval, otherwise it is enabled. This power gating scheme with

success monitors serves as the baseline for our proposals. A. Lungu et al. [72] have a fixed

idle detect interval of 5 cycles (or 15 cycles as an alternate) in their proposal. However,

this interval is varied dynamically in our baseline, depending on the utilization of the

functional units (SIMD lanes), as proposed by A. Youssef [120]. We assume a minimum

idle detect interval of 5 cycles however, there is no maximum limit. Moreover, the idle

detect interval is varied in step of 5 cycles. Furthermore, we consider power gating of only

the SIMD accelerator in our experiments.

111

a) Before DSD. b) After DSD.

Figure 6.3: Percentage of vector instruction in the dynamic instruction stream

before and after dynamic selective devectorization for 434.zeusmp.

6.5.3 Higher SIMD Lane Usage Profile

The dynamic selective devectorization (DSD) technique tries to minimize the usage

of the higher SIMD lane during the low utilization period. As shown in Figure 6.1, in

Section 6.3 (reproduced here as Figure 6.3 a), 434.zesump has several time intervals during

which the higher SIMD lane usage could be minimized. Minimizing the higher lane usages

during these intervals minimizes the number of power gating instances and hence the

energy overhead of power gating.

Figure 6.3b shows the vector instruction profile for the same benchmark after

dynamic selective devectorization. As the figure shows, the dynamic selective

devectorization has been able to reduce the higher SIMD lane usage significantly during

the time interval B-C. Therefore, the energy savings by power gating during this interval

will be improved. However, the vector code corresponding to the low usage periods 0-A

and D-E is not devectorized. This piece of code is executed during the high usage periods

also and its devectorization would result in significant performance loss. Therefore, this

code is always executed in the vectorized version. Moreover, it is also important to note

that the number of vector instructions during the high usage periods A-B, C-D, and E-F is

the same as before devectorization. Therefore, the effect of devectorization on the

performance is going to be negligible.

6.5.4 SIMD Accelerator Energy Savings

The proposed mechanism reduces the number of higher SIMD lane power gating

instances to reduce power gating energy overhead and in turn, the overall leakage of the

SIMD accelerator. However, dynamic selective devectorization has an energy and

performance overhead associated with it. The energy overhead of DSD includes the

following components:

0%

5%

10%

15%

20%

25%

30%

A B C D E F

Percentage of vector instructions in dynamic instruction stream

0%

5%

10%

15%

20%

25%

30%

A B C D E F

Percentage of vector instructions in dynamic instruction stream

112

1) Lower SIMD Lane Dynamic energy: The dynamic energy consumption of the lower

SIMD lane increases, since it has to execute more instructions.

2) Rest of the core Energy: The rest of the core includes all the components of the core

except for the SIMD accelerator. The dynamic and leakage energy of the rest of the core

may increase due to:

a. Dynamic energy consumption increases due to profiling and devectorization of

selected superblocks.

b. Leakage energy of the rest of the core might increase due to the possible slowdown

because of devectorization.

Figure 6.4 and 6.5 show the SIMD accelerator energy savings for Combined power

gating (CPG), Split power gating (SPG) and DSD normalized to no power gating, without

and with DSD overheads respectively. There as several important points to note in these

two figures. First of all, the energy overhead of DSD is minimal as most of the benchmarks

show similar energy savings with and without considering DSD energy overhead. The only

exception is 410.bwaves and the reason behind it is explained in Section 6.5.6 while

discussing the performance results. Since the energy savings are similar with and without

considering the energy overhead of DSD, the rest of this section focuses on results with

overhead (Figure 6.5). As this figure shows, DSD outperforms both CPG and SPG

significantly. The overall energy savings of the proposed technique are 49% and 35%

greater than CPG and 15% and 12% greater than SPG for SPECFP2006 and Physicsbench

respectively. In absolute energy savings terms, DSD saves 63% and 72% overall energy,

SPG saves 54% and 64% overall energy whereas, CPG saves 42% and 53% overall energy

for SPECFP2006 and Physicsbench respectively. CPG performs worse than SPG because

it treats the whole SIMD accelerator as a single unit. Therefore, either both lanes are

powered or neither of them. On the other hand, SPG can turn higher lane off even if the

lower lane is in use. Therefore, SPG saves more energy than CPG. DSD goes one step

ahead and keeps the higher lane powered off (because of devectorized code) for longer

periods and outperforms SPG as well.

The benchmarks in Figure 6.5 can be divided into three categories depending on their

energy saving pattern:

1) Moderately Vectorizable Benchmarks

The benchmarks in this category include 410.bwaves, 434.zeusmp, 435.gromacs,

454.calulix, 482.sphinx3 and most of the Physicsbench benchmarks. These are the

113

benchmarks for which compilers are able to extract enough vector parallelism, however

they are not completely vectorized. Therefore, during the periods of high lower lane usage

and idle higher lane, SPG achieves energy savings over CPG by power gating only the

higher lane. Moreover, these benchmarks have periods of low higher lane activity, as

shown in Figure 6.1 for 434.zeusmp. The proposed mechanism devectorizes the code

corresponding to these intervals and achieve even more energy savings.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

En
e

rg
y

Sa
vi

n
gs

CPG SPG DSD

Figure 6.4: SIMD accelerator overall (dynamic + leakage) energy savings for CPG, SPG

and DSD without including DSD energy overhead.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

En
e

rg
y

Sa
vi

n
gs

CPG SPG DSD

Figure 6.5: SIMD accelerator overall (dynamic + leakage) energy savings for CPG, SPG

and DSD including DSD energy overhead.

114

2) Highly Vectorizable Benchmarks

The benchmarks in the category are 436.cactusADM and 470.lbm. These

benchmarks are completely vectorizable. In other words, the vectorized code uses either

both the vector lanes or none of them. As a result SPG does not provide any additional

benefits over CPG. Moreover, the higher lane utilization in these benchmarks is uniform

over the execution time as shown in Figure 6.6 for 470.lbm. Any attempt of devectorization

would result in significant performance loss. Therefore, these benchmarks are executed in

the vectorized form and no additional leakage energy savings are achieved by DSD either.

Furthermore, the energy savings for 436.cactus are much more compared to 470.lbm for

all the three techniques. The energy savings depend on how long the SIMD accelerator is

used during the execution time of the application. Even though both the benchmarks use

both the SIMD lanes together, the overall usage of SIMD accelerator is less in 436.cactus,

hence power gating provides more energy savings in this benchmark.

3) Unvectorizable Benchmarks

The benchmarks in this category include 444.namd, 450.soplex, etc. Since compilers do

not find enough vectorization opportunities in these benchmarks, the higher SIMD lane is

idle for most of the time. As a result, SPG is able to attain significant energy savings over

CPG by power gating the higher SIMD lane alone. However, the proposed mechanism

does not have enough opportunities to devectorize because compilers do not vectorize the

code. Therefore, DSD does not provide much energy savings over SPG.

It is important to note that the most of the benchmarks fall in the first category

“Moderately Vectorizable Benchmarks” which is targeted by DSD to achieve additional

power savings over power gating. Another interesting point to note in Figure 6.5 is that in

the cases where DSD is not able to reduce leakage, e.g. 470.lbm, the energy overhead of

0%

5%

10%

15%

20%

25%

Time

Percentage of Vector instructions in dynamic instruction stream

Figure 6.6: Percentage of vector instruction (excluding memory instructions) in the

dynamic instruction stream for 470.lbm.

115

DSD is negligible. Hence, DSD has insignificant energy penalty when it fails to provide

leakage benefits.

6.5.5 Overall Energy Savings

This section first presents the ratio of SIMD accelerator leakage energy to the rest

of energy (SIMD accelerator dynamic energy + rest of the core overall energy) and then

presents core level overall energy savings by CPG, SPG and DSD. Figure 6.7 shows the

energy distribution for five different technologies: 90nm, 65nm, 45nm, 32nm and 22nm.

As the figure shows SIMD accelerator leakage energy accounts for 20% to 30% of overall

core energy at various technologies. It is also interesting to note that the SIMD leakage

energy increases as we move from 90nm to 45nm. However, it reduces as the technology

is further scaled down to 22nm. The leakage reduction comes from the enhancement in

fabrication process below 45nm. Nonetheless, SIMD leakage energy still forms a

significant portion of the overall core energy.

C. Bira [25] showed that according to Zedboard documentation a dual-core ARM

CPU consumes a maximum of 1.25 Watts. They also reported that according to Xilinx

power estimation tools the SIMD accelerator consumes 600 mW. This translates to SIMD

accelerator being responsible for consuming approximately half of the CPU power.

Assuming leakage being responsible for 40-50% of total power, SIMD accelerator leakage

is responsible for 20%-25% of total CPU power. This estimation is in coherence with the

results of Figure 6.7.

Figure 6.8 shows the overall energy savings of the whole core by CPG, SPG and

DSD. Since, we consider power gating only the SIMD accelerator and no other functional

unit, absolute overall energy savings are not as high as for the SIMD accelerator alone.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

90nm 65nm 45nm 32nm 22nm 90nm 65nm 45nm 32nm 22nm

SPECFP2006 Physicsbench

C
o

re
 E

n
er

gy
 (

D
yn

am
ic

 +
 L

ea
ka

ge
)

SIMD Leakage Energy Rest of Energy (SIMD Dynamic + Rest of the core total)

Figure 6.7: Core overall energy distribution at different technologies.

116

However, DSD still outperforms both SPG and CPG. DSD energy savings are 48% and

35% greater than CPG and 15% and 12% greater than SPG for SPECFP2006 and

Physicsbench respectively. In absolute energy savings terms, DSD saves approximately

19% and 22% overall energy, SPG saves 16% and 19% overall energy while CPG saves

13% and 16% overall energy for SPECFP2006 and Physicsbench. As the results show,

DSD is able to save comparatively more overall core energy than CPG and SPG even when

SIMD accelerator is the only power gated functional unit.

6.5.6 Performance

As mentioned earlier, power gating has both energy and performance overhead

associated with it. The performance overhead arises because the functional unit cannot be

used immediately after sending the wakeup signal. Moreover, the performance penalty has

to be paid every time the functional unit is awakened from the power gated state.

Reducing the number of power gating instances, using DSD, reduces both the

energy and performance overhead of power gating. However, DSD also has its own

performance overhead. This overhead arises because the lower SIMD lane has to execute

more scalar instructions. Furthermore, profiling and devectorization of the selected

superblocks also diminish performance.

In summary, DSD, on one hand, reduces power gating performance overhead.

However, on the other hand, it adds its own overhead. Therefore the overall performance

depends on the following factors:

0%

5%

10%

15%

20%

25%

30%

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

En
e

rg
y

Sa
vi

n
gs

CPG SPG DSD

Figure 6.8: Core overall (dynamic + leakage) energy savings for CPG, SPG and DSD.

117

Figure 6.9: Overall Performance after DSD normalized to SPG (Higher is better).

1) Speedup, due to lesser number of power gating instances.

2) Slowdown, due to more number of scalar instructions.

3) Slowdown, due to profiling and devectorization overhead.

Figure 6.9 shows the performance results after considering all these factors. The

results are normalized to SPG performance. As the figure shows, on average DSD

experiences a slowdown of less than 1% for Physicsbench. Moreover, for SPECFP2006

the performance is very similar to SPG performance. It is also interesting to note that there

are benchmarks like 433.milc, 450.soplex, 453.povray, 482.shpinx3, etc. that experience a

small speedup. The speedup comes due to lesser power gating instances and hence lesser

performance overhead of power gating. The performance increase also translates to

reduction in the leakage energy in the core because it is now ON for less time. On the other

hand, 410.bwaves suffers slowdown of 6% due to excessive devectorization as shown in

Figure 6.10a and 6.10b. The two figures show vector instruction profiles before and after

devectorization respectively. The excessive devectorization not only affects the

performance but the energy savings also. Due to the slowdown, the leakage energy in the

rest of the core increases, and hence net energy savings reduce. The energy savings for

410.bwaves are approximately 50% without the energy overheads of DSD as shown in

Figure 6.4, however after considering the energy overheads they fall down to 38% as

shown in Figure 6.5. Therefore, DSD provides a trade-off between performance and

energy.

0

0.2

0.4

0.6

0.8

1

1.2

4
1

0
.b

w
av

es

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

6
.c

ac
tu

sA
D

M

4
4

4
.n

am
d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
5

9
.G

em
sF

D
TD

4
7

0
.lb

m

4
8

2
.s

p
h

in
x3

b
re

ak
ab

le

co
n

ti
n

u
o

u
s

d
ef

o
rm

ab
le

ex
p

lo
si

o
n

s

h
ig

h
sp

ee
d

p
er

io
d

ic

ra
gd

o
ll

SP
EC

FP
2

0
0

6

P
h

ys
ic

sb
en

ch

SPECFP2006 Physicsbench Avg

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

Performance

118

6.5.7 Sensitivity Analysis

As mentioned in Section 6.5.2, we assumed a breakeven threshold of 150 cycles

and wakeup delay of 10 cycles in our experiments. These two parameters are technology

dependent and to discover the effect of variations in their values we do a sensitivity study.

For this study, first we vary the breakeven threshold from 20 cycles to 300 cycles while

keeping the wakeup delay at 10 cycles. Next we vary the wakeup delay from 5 to 35 cycles

while keeping the breakeven threshold at 150 cycles.

1) Breakeven threshold sensitivity study

Figure 6.11 shows the results for the effect of breakeven threshold variations on the

overall energy savings of DSD over SPG. As the figure shows, the overall energy savings

of DSD increases with breakeven threshold for SPECFP2006. However, for Physicsbench

the increase is less significant. As mentioned in Section 6.3, one of the components of DSD

0%

2%

4%

6%

8%

10%

12%

14%

16%

Percentage of vector instructions in dynamic instruction stream

a) Before DSD.

0%

2%

4%

6%

8%

10%

12%

14%

Percentage of vector instructions in dynamic instruction stream

b) After DSD.

Figure 6.10: Percentage of vector instructions (excluding memory instructions) in the

dynamic instruction stream for 410.bwaves before and after DSD.

119

energy savings is directly proportional to the breakeven threshold. Therefore, one would

expect more energy savings as the breakeven threshold is increased. The reason for

minimal improvement in the overall energy savings is the use of success monitors and

dynamic idle detect interval. If we disable these two improvements, we get more energy

saving as breakeven threshold in increased, as shown in Figure 6.12. The figure shows

energy benefits of DSD over SPG normalized to the savings corresponding to breakeven

threshold of 20 cycles. As the figures shows the energy savings of DSD increases over SPG

as the breakeven threshold increases from 20 cycles to higher values.

2) Wakeup Delay sensitivity study

Figure 6.13 shows the effect of wakeup delay variation on the overall energy

savings of DSD over SPG. As with breakeven threshold variation results, these results are

Figure 6.11: Effect of breakeven threshold variation on DSD overall (dynamic +

leakage) energy savings over SPG with a fixed wakeup latency of 10 cycles.

Figure 6.12: Effect of breakeven threshold variation on DSD overall (dynamic + leakage)

energy savings over SPG normalized to breakeven threshold of 20 cycles, with a fixed

wakeup latency of 10 cycles (no success monitors, no dynamic idle detect interval).

0%

5%

10%

15%

20%

20 50 100 150 200 250 300D
SD

 E
n

e
rg

y
Sa

vi
n

gs
 O

ve
r

SP
G

Breakeven Threshold

SPECFP2006 Physicsbench

0

2

4

6

8

10

12

14

20 50 100 150 200 250 300

N
o

m
al

iz
e

d
 D

SD
 e

n
e

rg
y

sa
vi

n
gs

 o
ve

r
SP

G

Breakeven Threshold

SPECFP2006 Physicsbench

120

consistent over the range of wakeup delay values. Furthermore, these results are with

success monitors and dynamic idle detect interval enabled. Disabling these two features

will show improvement in DSD overall energy savings as wakeup delay increases.

Discussion

As the leakage energy is becoming a growing concern in the present day

microprocessors, several leakage control mechanisms have been studied. All these

techniques thrive by reducing the leakage energy during the period when the functional

unit is not being used. Therefore, the leakage energy savings of these techniques depend

on the idle interval duration of the functional units. This chapter presented a technique

called Dynamic Selective Devectorization to increase the idle durations of higher SIMD

lanes. The increase in idle interval translates to an increment in the leakage energy savings.

In our experiments, we consider power gating as the leakage control mechanism

implemented in the hardware. However, our proposal of dynamic selective devectorization

does not restrict the choice of leakage control mechanism to power gating. DSD will work

with any other leakage control mechanism equally well. The basic idea of DSD is to

increase the idle intervals of the functional units independent of the leakage control

mechanism.

We presented a mechanism to increase the idle period of higher SIMD lanes to save

more leakage energy. DSD devectorizes certain portions of the code to reduce the higher

SIMD lanes utilization during low usage periods. Even though the work in this chapter

focuses on higher SIMD lanes, the basic concept can be extended to any functional unit.

The only requirement is to have more than one instance of the functional unit. For example,

if we have two integer units, the idle interval of the second one could be increased by

Figure 6.13: Effect of wakeup delay variation on DSD overall (dynamic + leakage)

energy savings over SPG with a fixed breakeven threshold of 150 cycles.

0%

5%

10%

15%

20%

5 10 15 20 25 30 35D
SD

 E
n

e
rg

y
Sa

vi
n

gs
 O

ve
r

SP
G

Wakeup Delay

SPECFP2006 Physicsbench

121

executing more code on the first one. This, however, is helpful only during the low

utilization period of the second unit, to reduce the performance penalty of serialization. In

case of SIMD accelerator, a dynamic profiler guides the devectorizer to decide which

segments of code to serialize. However, in the case of integer units, the dynamic profiler

needs to guide the instruction scheduler to make serialization decisions.

6.6 Conclusion

This chapter proposed to increase the leakage energy savings by increasing the idle

interval of the higher SIMD lanes. To increase the idle interval, we proposed a dynamic

profiling based dynamic selective devectorization scheme. The dynamic profiler monitors

higher SIMD lanes usage and discover the code corresponding to the low utilization period.

A dynamic devectorizer then selectively devectorizes the code based upon the inputs from

the profiler. The dynamic selective devectorization increases the idle interval during the

low utilization period of the higher lanes. Increase in the idle period helps the leakage

control mechanism to save more energy. The proposed mechanism can work with any

leakage control mechanism like power gating, SSGC, etc. Moreover the idea of increasing

idle period is general enough to be extended to other functional units as well.

Our experimental results show average SIMD accelerator energy savings of 15%

and 12% relative to power gating, for SPECFP2006 and Physicsbench respectively.

Moreover the slowdown caused due to devectorization is less than 1%.

122

123

Chapter 7

 Conclusions

This chapter concludes the thesis by first summarizing the challenges in SIMD

execution and our proposed solutions. Then it presents future directions that can be

followed to make SIMD execution even more efficient.

7.1 Conclusions

SIMD accelerators are one of most proficient way of improving compute power in

an energy efficient manner. Even though they are simple from hardware design

perspective, code generation of them has always been challenging. In this thesis, we made

several proposals for optimizing the code generation for SIMD accelerators. Furthermore,

we also proposed a way of reducing leakage energy when SIMD accelerators are not being

utilized to their highest potential.

Speculative Dynamic Vectorization. Chapter 4 showed that compile time vectorization

loses significant vectorization opportunities due to conservative memory disambiguation

analysis. We proposed to have dynamic vectorizer to assist the static compile time

vectorization. In the proposed mechanism, first compiler vectorizes the code after applying

complex loop transformations which are too costly at runtime. Later, during the program

execution, a dynamic vectorizer catches the vectorization opportunities missed by

compiler. The dynamic vectorizer speculatively reorders and vectorizes ambiguous

memory references. The hardware checks for any memory order violation possibly caused

due to speculative vectorization and takes corrective action.

 The experimental results show that the combination of static and dynamic

vectorization discovers twice the number of vectorization opportunities than the static

vectorization alone. Moreover, the dynamic vectorization alone is able to outperform the

static vectorization. Furthermore, the dynamic vectorization vectorizes array and pointer

based applications equally well, whereas static vectorization loses significant vectorization

opportunities for pointer based applications.

124

Vectorizing for Wider Vector Units. Even though SIMD accelerators are very amenable

to scaling due to their duplicated functional unit structure, code generation for wider SIMD

units is not straightforward. We discovered that two major problems in vector code

generation at higher vector lengths are: 1) Reduced dynamic instruction stream coverage

for vectorization and 2) Huge number of permutation instructions. We proposed Variable

Length Vectorization and Selective Writing to get around these two problems.

 Variable Length Vectorization starts by vectorizing for maximum vector length and

then iteratively reduces logical vector length to vectorize as much as possible. Code

vectorized for lower logical vector length is executed on the SIMD accelerator by masking

the unused vector lanes. Selective Writing enable writing to any element of the vector

register instead of always to the lowermost element by scalar instructions. Therefore, the

scalar instructions write results in the vector register in the order required by subsequent

vector instructions. Since the results in the vector register are already ordered, the

permutation instructions are no longer required.

Dynamic Selective Devectorization. As leakage is becoming a growing concern in current

microprocessors, several leakage control mechanisms have been proposed. Power gating

is one of the most common leakage control technique. However, power gating has an

energy and performance penalty associated with it. The penalty has to be paid every time

a functional unit is sent to sleep (leakage saving) mode and later awakened. This penalty

is specifically unjustified if big functional units like SIMD accelerators are to be awakened

only for few cycles.

 We proposed a mechanism to reduce the number of power gating instances and

hence the penalty associated with it. We first profile the code, dynamically, to find the

SIMD accelerator usage pattern. Then the code corresponding to the low utilization periods

is discovered. Afterwards, we devectorize this code so that the SIMD accelerator can be

power gated for large time intervals. This helps in reducing the power gating energy penalty

and maximizing the leakage energy savings. Moreover, selectively devectorizing only the

code corresponding to low utilization periods have minimal impact on the performance.

7.2 Future Work

 The work presented in the thesis opens up following directions in SIMD

accelerators research.

Conditional Code Vectorization. In this thesis we considered unrolling loops only with a

single basic block and discovered significant vectorization opportunities. As a follow up,

125

loops with control flow can be unrolled to further increase the vectorization opportunities.

Conditional code vectorization will benefit from the availability of runtime program

behavior, in particular biased branch directions. Instead of including control flow in the

unrolled loop, biased branch directions can be followed to include only the most frequently

executed path. The unrolled loop without any control flow will provide additional

vectorization opportunities without the complexity of handling the branches. If the

branches inside the loop are not biased, then the conditional code can be vectorized using

masked operations.

Performance and Energy Efficient Vectorization. Our Speculative Dynamic

Vectorization proposal of Chapter 4 showed that the memory speculation uncovers

significant vectorization opportunities and improves performance. Then in Chapter 6 we

showed that selective devectorization can provide significant energy savings. Since, these

two proposals are orthogonal, their basic ideas can be combined to craft a new vectorization

scheme that not only provides performance but also energy efficiency. The vectorization

scheme needs to profile the code to discover both the expected performance benefits and

energy efficiency before vectorizing it.

126

127

References

[1] Auto-vectorization in GCC. URL http://gcc.gnu.org/projects/tree-

ssa/vectorization.html

[2] AMD Radeon.

http://www.amd.com/us/products/desktop/graphics/pages/radeon.aspx

[3] IBM Microelectronics Division Research Triangle Park NC. The PowerPC 440

Core. White Paper, 1999.

[4] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer´s Manual,

Volume 1-3.

[5] Intel’s HW/SW co-designed processor project.

http://www.eetimes.com/document.asp?doc_id=1266396

[6] Nvidia GeForce. http://www.nvidia.com/object/geforce_family.html

[7] Nvidia Tesla. http://www.nvidia.com/object/tesla-supercomputing-solutions.html

[8] PowerPC ISA. http://www.power.org/documentation/power-isa-version-2-06-

revision-b/

[9] Quick EMUlation tool. http://wiki.qemu.org/Main_Page

[10] Semiconductor Industries Association, "Model for Assessment of CMOS

Technologies and Roadmaps (MASTAR)," 2007, http://www.itrs.net/models.html.

[11] Standard Performance Evaluation Corporation. SPEC CPU2006 Benchmarks. URL

http://www.spec.org/cpu2006/.

[12] The Intel® Xeon Phi™ Coprocessor, :

http://www.intel.com/content/www/us/en/high-performance-computing/ high-

performance-xeon-phi-coprocessor-brief.html

[13] UTDSP Benchmarks: www.eecg.toronto.edu/~corinna/

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://www.eetimes.com/document.asp?doc_id=1266396
http://www.power.org/documentation/power-isa-version-2-06-revision-b/
http://www.power.org/documentation/power-isa-version-2-06-revision-b/
http://wiki.qemu.org/Main_Page
http://www.itrs.net/models.html
http://www.eecg.toronto.edu/~corinna/

128

[14] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,

Godfrey D'Souza, and Mike Parkin. 1993. Sparcle: An Evolutionary Processor

Design for Large-Scale Multiprocessors. IEEE Micro 13, 3 (May 1993), 48-61.

[15] Kanak Agarwal, Kevin Nowka, Harmander Deogun, and Dennis Sylvester. 2006.

Power Gating with Multiple Sleep Modes. In Proceedings of the 7th International

Symposium on Quality Electronic Design (ISQED '06). IEEE Computer Society,

Washington, DC, USA, 633-637.

[16] Tilak Agerwala and John Cocke [1987]. High Performance Reduced Instruction Set

Processors, Tech. Rep. RC12434, IBM Thomas Watson Research Center,

Yorktown Heights, N.Y.

[17] Yoav Almog, Roni Rosner, Naftali Schwartz, and Ari Schmorak. 2004. Specialized

Dynamic Optimizations for High-Performance Energy-Efficient

Microarchitecture. In Proceedings of the international symposium on Code

generation and optimization: feedback-directed and runtime optimization (CGO

'04). IEEE Computer Society, Washington, DC, USA, 137-.

[18] Hari Ananthan, Chris H. Kim, and Kaushik Roy. 2004. Larger-than-vdd forward

body bias in sub-0.5V nanoscale CMOS. In Proceedings of the 2004 international

symposium on Low power electronics and design (ISLPED '04). ACM, New York,

NY, USA, 8-13.

[19] C. Auth, et al., "45nm High-k+Metal Gate Strain-Ehanced Transistors," Intel

Technology Journal, vol. 12, 2008.

[20] H. B. Bakoglu, G. F. Grohoski, L. E. Thatcher, J.A. Kahle, C.R. Moore, D.P. Tuttle,

W. E. Maule, W. R. Hardell Jr., D. A. Hicks, M. Nguyenphu, R.K. Montoye, W. T.

Glover, S. Dhawan. "IBM second-generation RISC machine organization,"

Computer Design: VLSI in Computers and Processors, 1989. ICCD '89.

Proceedings., 1989 IEEE International Conference on , vol., no., pp.138,142, 2-4

Oct 1989.

[21] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: a

transparent dynamic optimization system. In Proceedings of the ACM SIGPLAN

2000 conference on Programming language design and implementation (PLDI

'00). ACM, New York, NY, USA, 1-12.

129

[22] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun

Wang, and Yigel Zemach. 2003. IA-32 Execution Layer: a two-phase dynamic

translator designed to support IA-32 applications on Itanium®-based systems. In

Proceedings of the 36th annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 36). IEEE Computer Society, Washington, DC, USA,

191-.

[23] M. Baron. Cortex-A8: High speed, low power. Microprocessor Report,11(14):1–

6, 2005.

[24] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. 2002. Automatic

intra-register vectorization for the Intel architecture. International Journal of

Parallel Programming 30, 2 (April 2002), 65-98.

[25] Calin Bira, Liviu Gugu, Radu Hobincu, Valeriu Codreanu, Lucian Petrica and Sorin

Cotofana. 2013. An Energy Effective SIMD Accelerator for Visual Pattern

Matching. In Proceedings of the Fourth International Symposium on Highly

Efficient Accelerators and Reconfigurable Technologies. Edinburgh, Scotland, 13-

14 June 2013.

[26] Erich Bloch. 1959. The engineering design of the stretch computer. In Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference (IRE-AIEE-ACM '59 (Eastern)).

[27] Aleksandar Branković, Kyriakos Stavrou, Enric Gibert, and Antonio González.

2014. Accurate Off-Line Phase Classification for HW/SW Co-Designed

Processors. In Proceedings of the ACM International Conference on Computing

Frontiers (CF '14). Cagliari, Italy, May 2014.

[28] Aleksandar Branković, Kyriakos Stavrou, Enric Gibert, and Antonio González.

2014. Warm-Up Simulation Methodology for HW/SW Co-Designed Processors. In

Proceedings of Annual IEEE/ACM International Symposium on Code Generation

and Optimization (CGO '14). ACM, New York, NY, USA, Pages 284, 11 pages.

[29] Aleksandar Branković, Kyriakos Stavrou, Enric Gibert, and Antonio González.

2013. Performance analysis and predictability of the software layer in dynamic

binary translators/optimizers. In Proceedings of the ACM International Conference

on Computing Frontiers (CF '13). ACM, New York, NY, USA, , Article 15 , 10

pages.

130

[30] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. 2003. An

infrastructure for adaptive dynamic optimization. In Proceedings of the

international symposium on Code generation and optimization: feedback-directed

and runtime optimization (CGO '03). IEEE Computer Society, Washington, DC,

USA, 265-275.

[31] Werner Buchholz. 1962. Planning a Computer System: Project Stretch. McGraw-

Hill, Inc., Hightstown, NJ, USA.

[32] José Cano, Aleksandar Branković, Rakesh Kumar, Darko Zivanovic, Demos

Pavlou, Kyriakos Stavrou, Enric Gibert, Alejandro Martínez, Gem Dot, Fernando

Latorre, Alex Barceló, and Antonio González. Modelling HW/SW Co-Designed

Processors. In Eighth International Summer School on Advanced Computer

Architecture and Compilation for High-Performance and Embedded Systems

(ACACES 2012), Fiuggi, Italy, July 2012.

[33] A. E. Charlesworth. 1981. An Approach to Scientific Array Processing: The

Architectural Design of the AP-120B/FPS-164 Family. Computer 14, 9 (September

1981), 18-27.

[34] Nathan Clark, Amir Hormati, Sami Yehia, Scott Mahlke, and Krisztian Flautner.

2007. Liquid SIMD: Abstracting SIMD Hardware using Lightweight Dynamic

Mapping. In Proceedings of the 2007 IEEE 13th International Symposium on High

Performance Computer Architecture (HPCA '07). IEEE Computer Society,

Washington, DC, USA, 216-227.

[35] Paul D´Arcy and Scott Beach, StarCore SC140: A New DSP Architecture for

Portable Devices. In Wireless Symposium. Motorola, September 1999.

[36] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas

Kistler, Alexander Klaiber, and Jim Mattson. 2003. The Transmeta Code

Morphing™ Software: using speculation, recovery, and adaptive retranslation to

address real-life challenges. In Proceedings of the international symposium on

Code generation and optimization: feedback-directed and runtime optimization

(CGO '03). IEEE Computer Society, Washington, DC, USA, 15-24.

[37] Keith Diefendorff, Pradeep K. Dubey, Ron Hochsprung, and Hunter Scales. 2000.

AltiVec Extension to PowerPC Accelerates Media Processing. IEEE Micro 20, 2

(March 2000), 85-95.

131

[38] D. R. Ditzel and H. R. McLellan. 1987. Branch folding in the CRISP

microprocessor: reducing branch delay to zero. In Proceedings of the 14th annual

international symposium on Computer architecture (ISCA '87), D. St. Clair (Ed.).

ACM, New York, NY, USA, 2-8.

[39] Kemal Ebcioğlu and Erik R. Altman. 1997. DAISY: dynamic compilation for 100%

architectural compatibility. In Proceedings of the 24th annual international

symposium on Computer architecture (ISCA '97). ACM, New York, NY, USA, 26-

37.

[40] Joseph A. Fisher. 1983. Very Long Instruction Word architectures and the ELI-512.

In Proceedings of the 10th annual international symposium on Computer

architecture (ISCA '83). ACM, New York, NY, USA, 140-150.

[41] Bolei Guo, Youfeng Wu, Cheng Wang, Matthew J. Bridges, Guilherme Ottoni,

Neil Vachharajani, Jonathan Chang, and David I. August. 2006. Selective runtime

memory disambiguation in a dynamic binary translator. In Proceedings of the 15th

international conference on Compiler Construction (CC'06), Alan Mycroft and

Andreas Zeller (Eds.). Springer-Verlag, Berlin, Heidelberg, 65-79

[42] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc. 5 edition, 2011.

[43] R.G. Hintz and D.P. Tate, "Control Data STAR-100 processor design," In

Proceedings of IEEE Compcon, 1972, pp. 1–4.

[44] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki Mochizuki, Akio

Nishimura, Yoshimori Nakase, and Teiji Nishizawa. 1992. An elementary

processor architecture with simultaneous instruction issuing from multiple threads.

In Proceedings of the 19th annual international symposium on Computer

architecture (ISCA '92). ACM, New York, NY, USA, 136-145.

[45] Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia,

Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. 2012. Dynamic trace-

based analysis of vectorization potential of applications. In Proceedings of the 33rd

ACM SIGPLAN conference on Programming Language Design and

Implementation (PLDI '12). ACM, New York, NY, USA, 371-382.

[46] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban, Hans

Jacobson, and Pradip Bose. 2004. Microarchitectural techniques for power gating

132

of execution units. In Proceedings of the 2004 international symposium on Low

power electronics and design (ISLPED '04). ACM, New York, NY, USA, 32-37

[47] Libo Huang, Li Shen, Zhiying Wang, Wei Shi, Nong Xiao, Sheng Ma SIF:

Overcoming the Limitations of SIMD Devices via Implicit Permutation. IEEE 16th

International Symposium on High Performance Computer Architecture (HPCA),

2010, vol., no., pp.1-12, 9-14 Jan. 2010.

[48] W. Hwu and Y. N. Patt. 1986. HPSm, a high performance restricted data flow

architecture having minimal functionality. In Proceedings of the 13th annual

international symposium on Computer architecture (ISCA '86). IEEE Computer

Society Press, Los Alamitos, CA, USA, 297-306.

[49] Daniel A. Jimenez and Calvin Lin. 2002. Neural methods for dynamic branch

prediction. ACM Trans. Comput. Syst. 20, 4 (November 2002), 369-397.

[50] M. Johnson. [1990]. Superscalar Microprocessor Design, Prentice Hall,

Englewood Cliffs, N.J.

[51] David R. Kaeli and Philip G. Emma. 1991. Branch history table prediction of

moving target branches due to subroutine returns. In Proceedings of the 18th annual

international symposium on Computer architecture (ISCA '91). ACM, New York,

NY, USA, 34-42.

[52] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.

Introduction to the Cell Multiprocessor. In IBM Journal of Research and

Development, 49(4), pages 589–604, July 2005

[53] Stephem W. Keckler and William J. Dally. 1992. Processor coupling: integrating

compile time and runtime scheduling for parallelism. In Proceedings of the 19th

annual international symposium on Computer architecture (ISCA '92). ACM, New

York, NY, USA, 202-213.

[54] Ho-Seop Kim and James E. Smith. 2003. Hardware Support for Control Transfers

in Code Caches. In Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 36). IEEE Computer Society,

Washington, DC, USA, 253-.

[55] Hyesoon Kim, José A. Joao, Onur Mutlu, Chang Joo Lee, Yale N. Patt, and Robert

Cohn. 2007. VPC prediction: reducing the cost of indirect branches via hardware-

133

based dynamic devirtualization. In Proceedings of the 34th annual international

symposium on Computer architecture (ISCA '07). ACM, New York, NY, USA,

424-435.

[56] Hyung-Ock Kim; Bong Hyun Lee; Jong-Tae Kim; Jung Yun Choi; Kyu-Myung

Choi; Youngsoo Shin, Supply Switching With Ground Collapse for Low-Leakage

Register Files in 65-nm CMOS, Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on , vol.18, no.3, pp.505,509, March 2010.

[57] A. Klaiber. The Technology Behind the Crusoe Processors. White paper, January

2000.

[58] A. Klaiber, S. Chau. "Automatic detection of logic bugs in hardware designs,"

Microprocessor Test and Verification: Common Challenges and Solutions, 2003.

Proceedings. 4th International Workshop on , vol., no., pp.47,53, 29-30 May 2003.

[59] K. Krewell. Transmeta Gets More Efficeon. Micro-processor Report, 17(10), 2003.

[60] Alexei Kudriavtsev and Peter Kogge. 2005. Generation of permutations for SIMD

processors. In Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems (LCTES '05). ACM, New

York, NY, USA, 147-156.

[61] Rakesh Kumar, Aleajandro Martínez, and Antonio González. 2013. Speculative

Dynamic Vectorization to Assist Static Vectorization in a HW/SW Co-designed

Environment. In the Proceedings of 20th International Conference on High

Performance Computing (HiPC 2013) Bangalore, India, December 18-21, 2013.

[62] Rakesh Kumar, Aleajandro Martínez, and Antonio González. 2013. Speculative

Dynamic Vectorization to Assist Static Vectorization in a HW/SW Co-designed

Environment. In Hipeac Compiler, Architecture and Tools Conference at Haifa,

Israel, November 18-19, 2013.

[63] Rakesh Kumar, Aleajandro Martínez, and Antonio González. 2013. Vectorizing for

Wider Vector Units in a HW/SW Co-designed Environment. In the Proceedings of

15th International Conference on High Performance Computing and

Communications (HPCC 2013) Zhangjiajie, China, November 13-15, 2013.

[64] Rakesh Kumar, Aleajandro Martínez, and Antonio González. 2013. Dynamic

Selective Devectorization for Efficient Power Gating of SIMD units in a HW/SW

134

Co-designed Environment. In the Proceedings of the 25th International Symposium

on Computer Architecture and High Performance Computing (SBAC-PAD

2013).Porto de Galinhas, Pernambuco, Brazil, October 23-26, 2013.

[65] Rakesh Kumar, Aleajandro Martínez, and Antonio González. 2012. Speculative

Dynamic Vectorization for HW/SW Co-designed Processors. In the Proceedings

of the 21st international conference on Parallel architectures and compilation

techniques (PACT '12). Minneapolis, MN, USA, September 2012.

[66] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting superword level

parallelism with multimedia instruction sets. In Proceedings of the ACM SIGPLAN

2000 conference on Programming language design and implementation (PLDI

'00). ACM, New York, NY, USA, 145-156.

[67] James Laudon, Anoop Gupta, and Mark Horowitz. 1994. Interleaving: a

multithreading technique targeting multiprocessors and workstations. SIGPLAN

Not. 29, 11 (November 1994), 308-318.

[68] Ruby Lee. Subword Parallelism with MAX-2. IEEE Micro, 16(4):51-59, Aug 1996.

[69] Jianhui Li, Qi Zhang, Shu Xu, and Bo Huang. 2006. Optimizing Dynamic Binary

Translation for SIMD Instructions. In Proceedings of the International Symposium

on Code Generation and Optimization (CGO '06). IEEE Computer Society,

Washington, DC, USA, 269-280.

[70] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. 2009. McPAT: an integrated power, area, and timing

modeling framework for multicore and manycore architectures. In Proceedings of

the 42nd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 42). ACM, New York, NY, USA, 469-480.

[71] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:

building customized program analysis tools with dynamic instrumentation. In

Proceedings of the 2005 ACM SIGPLAN conference on Programming language

design and implementation (PLDI '05). ACM, New York, NY, USA, 190-200

[72] Anita Lungu, Pradip Bose, Alper Buyuktosunoglu, and Daniel J. Sorin. 2009.

Dynamic power gating with quality guarantees. In Proceedings of the 14th

135

ACM/IEEE international symposium on Low power electronics and design

(ISLPED '09). ACM, New York, NY, USA, 377-382.

[73] Marc Lupon, Enric Gibert, Grigorios Magklis, Sridhar Samudrala, Raúl Martínez,

Kyriakos Stavrou, and David R. Ditzel. 2014. Speculative hardware/software co-

designed floating-point multiply-add fusion. In Proceedings of the 19th

international conference on Architectural support for programming languages and

operating systems (ASPLOS '14). ACM, New York, NY, USA, 623-638.

[74] Saeed Maleki, Yaoqing Gao, Maria J. Garzarán, Tommy Wong, and David A.

Padua. 2011. An Evaluation of Vectorizing Compilers. In Proceedings of the 2011

International Conference on Parallel Architectures and Compilation Techniques

(PACT '11). IEEE Computer Society, Washington, DC, USA, 372-382.

[75] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel.

2005. Characterization of simultaneous multithreading (SMT) efficiency in

POWER5. IBM J. Research and Development 49, 4/5 (July 2005), 555-564.

[76] Cameron McNairy and Don Soltis. 2003. Itanium 2 Processor Microarchitecture.

IEEE Micro 23, 2 (March 2003), 44-55.

[77] Steven S. Muchnick, Advanced Complier Design & Implementation, Morgan

Kaufmann, 1997.

[78] Dorit Naishlos. Autovectorization in GCC. In The 2004 GCC Developers’ Summit,

pages 105–118,2004.

[79] Naveen Neelakantam, David R. Ditzel, and Craig Zilles. 2010. A real system

evaluation of hardware atomicity for software speculation. In Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming languages

and operating systems (ASPLOS XV). ACM, New York, NY, USA, 29-38.

[80] A. Nicolau and J. A. Fisher. 1984. Measuring the Parallelism Available for Very

Long Instruction Word Architectures. IEEE Trans. Comput. 33, 11 (November

1984), 968-976.

[81] K. Nose, T. Sakurai. "Analysis and future trend of short-circuit power," Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on , vol.19,

no.9, pp.1023,1030, Sep 2000.

136

[82] Dorit Nuzman, Sergei Dyshel, Erven Rohou, Ira Rosen, Kevin Williams, David

Yuste, Albert Cohen, and Ayal Zaks. 2011. Vapor SIMD: Auto-vectorize once, run

everywhere. In Proceedings of the 9th Annual IEEE/ACM International Symposium

on Code Generation and Optimization (CGO '11). IEEE Computer Society,

Washington, DC, USA, 151-160.

[83] Alex Pajuelo, Antonio González, and Mateo Valero. 2002. Speculative dynamic

vectorization. In Proceedings of the 29th annual international symposium on

Computer architecture (ISCA '02). IEEE Computer Society, Washington, DC,

USA, 271-280.

[84] Shien-Tai Pan, Kimming So, and Joseph T. Rahmeh. 1992. Improving the accuracy

of dynamic branch prediction using branch correlation. In Proceedings of the fifth

international conference on Architectural support for programming languages and

operating systems (ASPLOS V), Richard L. Wexelblat (Ed.). ACM, New York,

NY, USA, 76-84.

[85] Sanjay J. Patel and Steven S. Lumetta. 2001. rePLay: A Hardware Framework for

Dynamic Optimization. IEEE Transactions on Computers 50, 6 (June 2001), 590-

608.

[86] Demos Pavlou, Aleksandar Brankovic, Rakesh Kumar, Maria Gregori, Kyriakos

Stavrou, Enric Gibert, and Antonio Gonzalez. DARCO: Infrastructure for

Research on HW/SW co-designed Virtual Machines. In In Proceedings of the 4th

Workshop on Architectural and Microarchitectural Support for Binary Translation

(AMAS-BT’11), held in conjunction with ISCA-38, June 2011.

[87] Demos Pavlou, Enric Gibert, Fernando Latorre, and Antonio Gonzalez. 2012.

DDGacc: boosting dynamic DDG-based binary optimizations through specialized

hardware support. In Proceedings of the 8th ACM SIGPLAN/SIGOPS conference

on Virtual Execution Environments (VEE '12). ACM, New York, NY, USA, 159-

168.

[88] Gang Ren, Peng Wu, and David Padua. 2005. An Empirical Study On the

Vectorization of Multimedia Applications for Multimedia Extensions. In

Proceedings of the 19th IEEE International Parallel and Distributed Processing

Symposium (IPDPS'05) - Papers - Volume 01 (IPDPS '05), Vol. 1. IEEE Computer

Society, Washington, DC, USA, 89.2-.

137

[89] Gang Ren, Peng Wu, and David Padua. 2006. Optimizing data permutations for

SIMD devices. In Proceedings of the 2006 ACM SIGPLAN conference on

Programming language design and implementation (PLDI '06). ACM, New York,

NY, USA, 118-131.

[90] Roni Rosner, Yoav Almog, Micha Moffie, Naftali Schwartz, and Avi Mendelson.

2004. Power Awareness through Selective Dynamically Optimized Traces. In

Proceedings of the 31st annual international symposium on Computer architecture

(ISCA '04). IEEE Computer Society, Washington, DC, USA, 162-.

[91] Sumedh Sathaye , Paul Ledak , Jay Leblanc , Stephen Kosonocky , Michael

Gschwind , Jason Fritts , Arthur Bright , Erik Altman , Craig Agricola BOA:

Targeting multi-gigahertz with binary translation. In Proc. of the 1999 Workshop

on Binary Translation, IEEE Computer Society Technical Committee on Computer

Architecture Newsletter, pages 2–11, 1999.

[92] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L. Soffa.

2003. Retargetable and reconfigurable software dynamic translation. In

Proceedings of the international symposium on Code generation and optimization:

feedback-directed and runtime optimization (CGO '03). IEEE Computer Society,

Washington, DC, USA, 36-47.

[93] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin,

Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. 2008. Larrabee: a

many-core x86 architecture for visual computing. ACM Trans. Graph. 27, 3, Article

18 (August 2008), 15 pages.

[94] Harsh Sharangpani and Ken Arora. 2000. Itanium Processor Microarchitecture.

IEEE Micro 20, 5 (September 2000), 24-43.

[95] Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-Level

Parallelism in the Presence of Control Flow. In Proceedings of the international

symposium on Code generation and optimization (CGO '05). IEEE Computer

Society, Washington, DC, USA, 165-175.

[96] Youngsoo Shin, Sewan Heo, Hyung-Ock Kim, and Jung Yun Choi. 2007. Supply

switching with ground collapse: simultaneous control of subthreshold and gate

138

leakage current in nanometer-scale CMOS circuits. IEEE Trans. Very Large Scale

Integr. Syst. 15, 7 (July 2007), 758-766.

[97] James E. Smith. 1981. A study of branch prediction strategies. In Proceedings of

the 8th annual symposium on Computer Architecture (ISCA '81). IEEE Computer

Society Press, Los Alamitos, CA, USA, 135-148.

[98] J. E. Smith, Greg Faanes, and Rabin Sugumar. 2000. Vector instruction set support

for conditional operations. In Proceedings of the 27th annual international

symposium on Computer architecture (ISCA '00). ACM, New York, NY, USA,

260-269.

[99] J.E. Smith and R. Nair. Virtual Machines: A Versatile Platform for Systems and

Processes. (The Morgan Kaufmann Series in Computer Architecture and Design).

Elsevier 2005.

[100] James E. Smith and Andrew R. Pleszkun. 1985. Implementation of precise

interrupts in pipelined processors. In Proceedings of the 12th annual international

symposium on Computer architecture (ISCA '85). IEEE Computer Society Press,

Los Alamitos, CA, USA, 36-44.

[101] M. D. Smith, M. Johnson, and M. A. Horowitz. 1989. Limits on multiple instruction

issue. In Proceedings of the third international conference on Architectural support

for programming languages and operating systems (ASPLOS III). ACM, New

York, NY, USA, 290-302.

[102] Gurindar S. Sohi. 1990. Instruction Issue Logic for High-Performance,

Interruptible, Multiple Functional Unit, Pipelined Computers. IEEE Trans.

Comput. 39, 3 (March 1990), 349-359.

[103] Manu Sporny, Gray Carper, and Jonathan Turner. The Playstation 2 Linux Kit

Handbook, 2002

[104] N. Sreraman and R. Govindarajan. A vectorizing compiler for multimedia

extensions. International Journal of Parallel Programming, 28, 4 (August 2000),

363-400.

[105] James E. Thornton. 1964. Parallel operation in the control data 6600. In

Proceedings of the October 27-29, 1964, fall joint computer conference, part II:

very high speed computer systems (AFIPS '64 (Fall, part II))

139

[106] James E. Thornton, Design of a Computer: The Control Data. Scott, Foresman and

Company, 1970.

[107] G. S. Tjaden and M. J. Flynn. 1970. Detection and Parallel Execution of

Independent Instructions. IEEE Trans. Comput. 19, 10 (October 1970), 889-895.

[108] R. M. Tomasulo. 1967. An efficient algorithm for exploiting multiple arithmetic

units. IBM J. Research and Development 11, 1 (January 1967)

[109] Marc Tremblay and Michael O'Connor and Venkatesh Narayanan and Liang He.

VIS Speeds New Media Pro-cessing. IEEE Micro, 16(4):10-20, Aug 1996.

[110] J.W. Tschanz, S. G. Narendra, Ye Yibin, B.A. Bloechel, S. Borkar, V. De. Dynamic

sleep transistor and body bias for active leakage power control of microprocessors,

Solid-State Circuits, IEEE Journal of , vol.38, no.11, pp.1838,1845, Nov. 2003.

[111] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. 1998. Simultaneous

multithreading: maximizing on-chip parallelism. Proc. 22nd Annual Int’l.

Symposium on Computer Architecture (ISCA), June 22–24, 1995, Santa

Margherita, Italy, 392–403.

[112] Sriram Vajapeyam, P. J. Joseph, and Tulika Mitra. 1999. Dynamic vectorization: a

mechanism for exploiting far-flung ILP in ordinary programs. In Proceedings of

the 26th annual international symposium on Computer architecture (ISCA '99).

IEEE Computer Society, Washington, DC, USA, 16-27

[113] Cheng Wang, Marcelo Cintra, and Youfeng Wu. 2013. Acceldroid: Co-designed

acceleration of Android bytecode. In Proceedings of the 2013 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO) (CGO '13).

IEEE Computer Society, Washington, DC, USA, 1-10.

[114] W. J. Watson. 1972. The TI ASC: a highly modular and flexible super computer

architecture. In Proceedings of the December 5-7, 1972, fall joint computer

conference, part I (AFIPS '72 (Fall, part I)). ACM, New York, NY, USA, 221-228.

[115] Mark Woh, Sangwon Seo, Scott Mahlke, Trevor Mudge, Chaitali Chakrabarti, and

Krisztian Flautner. 2009. AnySP: anytime anywhere anyway signal processing. In

Proceedings of the 36th annual international symposium on Computer architecture

(ISCA '09). ACM, New York, NY, USA, 128-139

140

[116] Y. Ye, S. Borkar, V. De. A new technique for standby leakage reduction in high-

performance circuits, VLSI Circuits, 1998. Digest of Technical Papers. 1998

Symposium on , vol., no., pp.40,41, 11-13 June 1998

[117] Thomas Y. Yeh, Petros Faloutsos, Sanjay J. Patel, and Glenn Reinman. 2007.

ParallAX: an architecture for real-time physics. In Proceedings of the 34th annual

international symposium on Computer architecture (ISCA '07). ACM, New York,

NY, USA, 232-243.

[118] Tse-Yu Yeh and Yale N. Patt. 1992. Alternative implementations of two-level

adaptive branch prediction. In Proceedings of the 19th annual international

symposium on Computer architecture (ISCA '92). ACM, New York, NY, USA,

124-134.

[119] Tse-Yu Yeh and Yale N. Patt. 1993. A comparison of dynamic branch predictors

that use two levels of branch history. In Proceedings of the 20th annual

international symposium on computer architecture (ISCA '93). ACM, New York,

NY, USA, 257-266.

[120] Ahmed Youssef, Mohab Anis, and Mohamed Elmasry. 2006. Dynamic Standby

Prediction for Leakage Tolerant Microprocessor Functional Units. In Proceedings

of the 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO 39). IEEE Computer Society, Washington, DC, USA, 371-384

