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UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



2

2

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



To my wife Reham and my son Ahmed

To my mother and my father

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



2

2

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



i

Abstract

Recent advances in pervasive video surveillance systems pave the way for a compre-
hensive surveillance of every aspect of our lives. Computerized and interconnected
camera systems can be used to profile, track and monitor individuals for the sake
of security. Notwithstanding, these systems clearly interfere with the fundamental
right of the individuals to privacy. To alleviate this privacy problem and avert
the so-called Big Brother effect, the usage of privacy enhancing technologies is
mandatory.

Privacy-aware video surveillance systems are based on a Detection Submodule
that detects the so-called regions of interest (i.e. areas to protect to achieve pri-
vacy) from the captured video and on a Protection Submodule that protects the
detected areas (aiming at preventing identity disclosure). Only a trusted manager
might be able to access the protected video and unprotect it, for instance in case of
criminal investigations and, in general, under permission of a law enforcer (judge,
police, etc.). Most literature on privacy in video surveillance systems concentrates
on the goal of detecting faces and other regions of interest, and in proposing dif-
ferent methods to protect them. However, the trustworthiness of those systems
and, by extension the privacy they provide, is neglected.

In this thesis, the topic of privacy-aware video surveillance is tackled from a
holistic point of view. Firstly, an introductory chapter defines the properties of a
trustworthy privacy-aware video surveillance system, and reviews the techniques
that can be used in the Detection Submodule and in the Protection Submodule.
The remaining of the thesis is divided into two parts. In the first one, some con-
tributions aiming at improving the detection of regions of interest are developed.
Specifically, it addresses our contributions to optical flow detection techniques: it
has been found that, despite its usefulness, the widely known variational optical
flow has several limitations and shortcomings for providing accurate flow fields
for motion estimation problems in computer vision. In order to overcome these
limitations, new development models are introduced as an alternative to classic
concepts. Two models are proposed in this dissertation in order to improve the
robustness of variational optical flow model through tensor voting to be more ro-
bust against noise and to preserve discontinuities. In addition, the data term of
the optical flow model based on brightness constancy assumption is replaced by a
rich descriptor in order to obtain an illumination-robust optical flow model.

In the second part, the protection of regions of interest is addressed. A method
based on coefficient alteration in the compressed domain of the video is presented
and tested in terms of robustness and efficiency. The processes related to the infor-
mation security of the data involved in the protection and unprotection processes
are also comprehensively taken into account.
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The thesis includes tests and implementations for all the theoretical proposals,
aiming at demonstrating their validity in a real video surveillance scenario.

Finally, a chapter with a summary of the advances presented and further work
concludes the thesis.

Keywords: Video surveillance systems, object detection, privacy enhance-
ment, motion estimation, optical flow, tensor voting, histogram of gradients, coef-
ficients alteration, random alteration attack.
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Resumen

Los recientes avances en los sistemas de vigilancia de v́ıdeo generalizados allanan
el camino para una vigilancia exhaustiva de todos los aspectos de nuestras vidas.
Sistemas de cámaras computerizadas e interconectadas se pueden utilizar para
perfilar, rastrear y monitorizar los individuos por el bien de la seguridad. No
obstante, estos sistemas interfieren claramente con el derecho fundamental de los
individuos a la privacidad. Para aliviar este problema de privacidad y evitar el
denominado efecto de Gran Hermano, el uso de tecnoloǵıas potenciadoras de la
privacidad es obligatoria.

Los sistemas de videovigilancia respetuosos de la intimidad se basan en un
submódulo de detección, que detecta las llamadas regiones de interés (es decir, las
zonas a proteger) a partir del v́ıdeo capturado y en un submódulo de protección,
que protege las áreas detectadas. Sólo un administrador de confianza podŕıa ser
capaz de acceder al v́ıdeos protegido y desprotegerlo, por ejemplo en el caso de
investigaciones penales y, en general, con el permiso de un agente de la ley (jueces,
polićıa, etc.). La mayoŕıa de la literatura sobre la privacidad en los sistemas de
vigilancia de v́ıdeo se centra en el objetivo de la detección de rostros y otras regiones
de interés, y en proponer diferentes métodos para protegerlos. Sin embargo, la
fiabilidad de los sistemas y, por extensión, de la privacidad que proporcionan se
descuidan.

En esta tesis, el tema de la videovigilancia respetando la privacidad se aborda
desde un punto de vista hoĺıstico. En primer lugar, un caṕıtulo introductorio de-
fine las propiedades de un sistema de videovigilancia confiable respetuoso de la
privacidad, y se revisan las técnicas que se pueden utilizar en el submódulo de
detección y en el submódulo de protección. El resto de la tesis se divide en dos
partes. En la primera de ellas, se desarrollan algunas de las contribuciones desti-
nadas a mejorar la detección de las regiones de interés. Espećıficamente, se ocupa
de nuestras contribuciones a las técnicas de detección de flujo óptico: se ha encon-
trado que, a pesar de su utilidad, el flujo óptico variacional, ámpliamente conocido,
tiene varias limitaciones y deficiencias para proporcionar campos de flujo precisos
para problemas de estimaciǿn de movimiento en la visión por computador. Con
el fin de superar estas limitaciones, nuevos modelos de desarrollo se introducen
como una alternativa a los conceptos clásicos. Se proponen dos modelos con el
fin de mejorar la robustez del modelo de flujo óptico variacional a través del vo-
toción tensorial para ser más robusto frente al ruido y preservar discontinuidades.
Además, el término datos del modelo de flujo óptico basado en la suposición de
la constancia de brillo se sustituye por un descriptor rico con el fin de obtener un
modelo de flujo óptico - iluminación robusta.

En la segunda parte, se trata la protección de las regiones de interés. Un
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método basado en la alteración de coeficientes en el dominio comprimido se ha
implementado y testeado en términos de robustez y eficiencia. Los procesos rela-
cionados con la seguridad de la información de los datos que intervienen en los
procesos de protección y desprotección también se ha considerado.

La tesis incluye pruebas e implementaciones para todas las propuestas teóricas,
con el objetivo de demostrar su validez en un escenario de videovigilancia real.

Por último, la tesis concluye con una recapitulación de los avances presentados
y con la propuesta de trabajos futuros.
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Chapter 1
Introduction

”Only two men live in this life: a science-speaking scientist and a conscious
learner.” - Prophet Muhammad

In the last years enormous advances of Information and Communication Tech-
nologies (ICT) have paved the way for the consolidation of a growing Information
Society. Millions of users continuously upload tons of information (pictures, videos,
opinions, etc.), using a variety of devices. That information is stored in multiple
interconnected servers that are remotely accessible from almost everywhere. In
addition, computer scientists have developed techniques for information gathering
and analysis that allow the generation of huge amounts of knowledge.

In the last decade, we have witnessed an unprecedented increase of citizen
data acquisition: search engines, medical systems, social networks, etc. collect vast
amounts of data. In addition, video cameras can be found almost everywhere: from
city-scale surveillance systems controlled by local authorities, to simple and cheap
private systems in restaurants and shops. As a result, people are being monitored
and recorded while doing some of their everyday activities: having lunch at the
restaurant, leaving a parking, entering a companys building, using a bus, shopping
in the supermarket, etc.

Video Surveillance Systems (VSS) have significantly evolved from simple CCTV
monitored by authorized people to complex and interconnected pervasive video
cameras, whose recorded materials are streamed, processed and mined so as to
extract information and knowledge. Pervasive VSS inherently endanger the privacy
of people due to the fact that their identities and activities could be easily retrieved
from pictures and videos. Computerized and interconnected camera systems can
be used to profile, track and monitor individuals for the sake of security.

Despite all the clear advantages of ICT, pervasive computing and the massive
connection of ubiquitous computing devices (computers, smartphones, RFID read-
ers , video cameras, etc.) may transform Information Society into the so-called

1
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2 Chapter 1. Introduction

Dataveillance Society (Clarke, 2001) thus violating the fundamental right to pri-
vacy as stated in the Universal Declaration of Human Rights1, ”No one shall be
subjected to arbitrary interference with his privacy”. In fact, people profiling fa-
vors the so-called ”Big Brother” effect. Regarding video surveillance, people might
sacrifice part of their privacy for the sake of security2. However, most people dislike
being monitored during their daily activities.

The rest of the chapter is organized as follows. The main aspects of the trust-
worthy in privacy-awareness VSS are introduced in Section 1.1. In addition, the
research directions and objectives of this thesis are introduced in Section 1.2 and
Section 1.3, respectively. Finally, the descriptions of the next chapters are shown
in Section 1.4.

1.1 Privacy-awareness in video surveillance sys-

tems

Certainly, computerized video surveillance has become another main source for
data collection. Moreover, the connection of these surveillance systems to the In-
ternet allows the rapid spread of recorded videos, either because of administrators
misbehaviors or because of attacks. According to legislations, pictures and videos
where individuals can be recognized are considered personal data and, hence, the
improper managing of the videos clearly jeopardises the privacy of the citizens.

In order to guarantee the protection of users rights, governments have been
enacting legislations aiming at regulating video surveillance. The linchpin of these
legislations is that people must trust the operators of VSS. In a nutshell, legis-
lations require that the name of the operators must be clearly identified under
the presence of a VSS. They also state that the videos must be destroyed after
a one-month period and cannot be released to third parties, except in case of
investigations.

Trust can be defined as ”the degree to which a trustor has a justifiable belief
that the trustee will provide the expected function or service”3. However, assessing
the trust of current VSS, due to the pervasive nature of current VSS and the variety
of operators, is not straightforward.

In principle, citizens should feel comfortable with trusting law enforcers that

1The universal declaration of human rights. [Online] available:
http://www.un.org/en/documents/udhr/.

2Directive 95/46/EC of the European Parliament and of the council of 24 Oc-
tober 1995 on the protection of individuals with regard to the processing of
personal data and on the free movement of such data. [Online] avaiable:
http://europa.eu/legislation summaries/information society/data protection/l14012 en.htm.

3The trusted computing group. [Online] available: http://www.trustedcomputinggroup.org/

2

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



1.1. Privacy-awareness in video surveillance systems 3

operate city-scale CCTV systems. In contrast, they may be concerned of the trust
with private security SMEs (specifically in their personnel) and individuals such
as shop owners, waiters, etc. that have a full access to cameras and recordings.
In that sense, people can only conceal their right to privacy by trusting that the
operator behaves according to the law.

Hence, it is essential to provide a framework willing at defining and material-
izing the concept of trustworthy privacy for video surveillance systems.

Prior to defining the concept, a model that will be used throughout this thesis.
Figure 1.1 presents an example of a possible video surveillance scenario. We can
observe a corridor in which two cameras record digital video and perform some
pre-processing (e.g. decrease frame rate, lossy compression of video). This video
is handled by a Video Processing Module that consists of two sub-modules:

• The Detection Submodule, that utilizes some computer vision procedures to
detect the Regions of Interest (ROIs) in the original video. This submodule
outputs a list of ROIs found in each frame.

• The Protection Submodule, that obfuscates the detected ROIs in order to
preserve the privacy of the identified people. Hence, this submodule outputs
the protected video.

Figure 1.1: Example of a typical video surveillance scenario.

Firstly, an input video from the sensor (camera) needs to be preprocessed be-
fore sending to a video processing module stage. The composite video signal from
the CCTV camera is digitized with a video capture board into a time series of raw
RGB images. Each RGB color image is then converted into an alternative color

3
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4 Chapter 1. Introduction

representation, such as YUV representation, which is typically enabling transmis-
sion errors or compression artifacts to be more efficiently masked by the human
perception than using a direct RGB representation. Also, RGB image can be
converted into HSI or HSV representation, which is more robust against the illu-
mination change, lights change, shading or shadow in the input image sequences
than RGB color mode.

Sequently, the video stream is analyzed to find ROIs, which are for example
faces or car plates. ROIs are tracked in time into records, corresponding to a
single object (e.g. person, car). These records are analyzed to determine the
identity of the object (i.e. face recognition). Moreover, behaviors can be analyzed
(e.g. action, gait recognition), to generate alerts upon certain conditions. In the
literature, there are many algorithms used for ROIs detection that reflects object
identification, such as face detection algorithms (Rowley et al., 1998, Viola and
Jones, 2001, Zhang and Zhang, 2010). However, it must be stated that if a VSS
considers the faces as ROIs, some identity disclosure could be done by merely
analyzing clothes or via gait recognition processes. Therefore, motion detection
algorithms based on background subtraction techniques, such as in (Stauffer and
Grimson, 1999, Elgammal et al., 2000, Kim et al., 2004), or based on optical flow
estimation approaches, such as (Lucas and Kanade, 1981, Horn and Schunck, 1981,
Farneback, 2000, Bruhn et al., 2006), are other options for a robust ROIs detection.
In addition, many robust techniques have been used to track objects in a scene,
such as Yue et al. (2009) that presented a wide survey for the state-of-the-art of
object tracking methods.

In turn, the protected video, provided by the Protection sub-module, is sent
to an Information System: a set of computers capable of storing and controlling
the access to the data. We assume that the system stores a compressed video (e.g.
MPEG-2, H.264, etc.) instead of a set of raw uncompressed frames. Finally, a
Security Management Module controls that only authorized users (e.g. a trusted
manager) access the unprotected data (i.e. without obfuscated/obscured faces).
In this scenario, the individuals privacy is protected by means of blurring their
faces or bodies and controlling the access to the unprotected video. However, a
number of privacy concerns might still remain: (i) Do people know that they are
being recorded? (ii) Is the access to the data correctly managed? (iii) Does the
performance of the video processing techniques ensure privacy?

Related literature is mainly devoted to computer vision algorithms whose goal
is to detect and obscure ROIs of an image (cf. Senior (2009) for a comprehensive
overview of privacy-aware video surveillance proposals). Several articles describe
how to detect people, how to blur their faces (usually by scrambling or encrypting
them) and how authorized users should gain access the original data (usually by
means of secret keys). Notwithstanding, as stated in Winkler and Rinner (2010),

4
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researchers must go one step beyond when tackling the problem of privacy in VSS,
and provide manufacturers and operators of VSS with tools to build trustworthy
systems.

In our model, for attack protection, the goal of an attacker is to retrieve the
original or unprotected video from the system, with the purpose of disclosing the
identity of the individuals. Therefore, we assume that the Information System and
the Security Management Module fulfill with standard information security com-
pliances (e.g. authentication, confidentiality, etc.) with regards to the information
stored and the actors involved in the VSS. Fortunately, these aspects are solved
with well-known cryptographic techniques and protocols. Last but not least, the
trusted manager may need the permission of a law enforcer to effectively unpro-
tect the video in case of investigations. Hence, the problem of a trusted manager
arbitrarily unprotecting videos is avoided.

1.1.1 The Three Aspects of Trustworthy ICT

Thousands of users surf the Internet and enter a wide variety of sites that offer free
services (e.g. e-mail, music, videos, newspapers etc.). What makes these services
interesting to most people is their price – they are free and widely accessible
through the Internet. However, the linchpin of their success is the trust of users
in the service4. Thus, a VSS is trustworthy, if only stores the protected version of
the video and does not require human supervision.

We distinguish three fundamental pillars sustaining trust in ICT (Mart́ınez-
Ballesté et al., 2012): (i) trust in technology, (ii) law enforcement and (iii) user
collaboration:

• Trust in technology. Users know that technology, if properly used, is
reliable. But behind the facade of reliability, technology can hide inconsistent
performance and behavior – can users be sure that technology behave as it
should? (e.g. users may install software that, in addition to its desired
functionality, sends passwords to remote servers.) In this regard, non-expert
users trust technology but they are not fully aware of its real behavior.

• Law enforcement. Technology evolves fast but legislation adapts slowly (Eli-
zondo et al., 2012). The definition of laws covering ICT services and their
actual enforcement is somehow arduous. A lack of legislation can potentially
slow down the social acceptance of ICT and ICT-based services. To mitigate
this effect, widespread technologies must appear along with the laws that
guarantee the protection of users rights.

4Notice that there are many sites offering the same free services, and clients/users decide on
using one or another based on factors such as trust

5
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6 Chapter 1. Introduction

• User collaboration. Since the dawn of the collaborative web (Web 2.0)
made of users contributions, the concept of collaborative trust has gained
importance. For instance, recommendation systems use collaborative filter-
ing (Balabanović and Shoham, 1997), and other services such as location-
based services (Solanas and Mart́ınez-Ballesté, 2008) and user profiling (Viejo
and Castellà-Roca, 2010) rely on distributed peers trust. Thus, it appears
to be natural to seriously consider user collaboration in the design of ICT to
ease the management of trust.

In this thesis, we focus on the first aspect of trustworthy privacy in video
surveillance (i.e. trust in technology). Certainly, privacy-aware systems may be
based on tamper proof devices (e.g. smart cards or Trusted Platform Module chips5

as proposed in Winkler and Rinner (2010), where the authors utilize a trustworthy
camera to deploy their proposal. However, trusting a video surveillance device is
not straightforward (e.g. someone may hack the camera firmware so as to send
ROIs to a remote server prior to their encryption). Consequently, users might
trust that technology behaves correctly (e.g., detecting ROIs and protecting them
as expected, granting access to authorized people only, etc).

In order to be trustworthy the technology used in the submodules must fulfill
the next properties:

• Real time performance. The procedures used in the Detection and Protection
submodules must work in real time. Otherwise since, some portions of the
original video should be temporarily stored, a security leak could compromise
the privacy of the individuals.

• High accuracy. The techniques used in the Detection Submodule must detect
correctly all ROIs. If the technique fails to detect them, the system will not
protect the identity of some individuals. Moreover, the process may need to
be supervised by humans and, as a result, this could lead to a lack of privacy.

• Utility. The techniques used in the Protection Submodule must protect the
ROIs in a reversible manner. Hence, disclosing the identity of the individuals
in the video (for instance, under petition of law enforcers) should be done
by applying some technique over the protected video. If so, there is no need
to store a copy of the original video to be shown upon requests by trusted
managers.

Last but not least, trustworthy systems must securely manage the information.
Currently, properties such as confidentiality (e.g. encryption of the video bitstream
during transmission), authenticity and integrity (e.g. fast digital signature of the

5The trusted computing group. [Online] available: http://www.trustedcomputinggroup.org/
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1.2. Research directions 7

protected video) can be fulfilled by means of state-of-the-art cryptographic tech-
niques and well-known protocols. Moreover, the access to the data stored in the
information system must be controlled by a Security Management Module and,
in addition, every access to the system must be registered by secure logging tech-
niques. Finally, users identity (specially the identity of the Trusted Manager)
could be guaranteed by means of smart cards and biometric techniques.

1.2 Research directions

Without the shadow of a doubt, there is a vast literature on privacy in video
surveillance. Based on the revision of the literature, this thesis addresses two
different stages to enable privacy in VSS: one with regarding to ROIs detection
and another with respect to ROIs protection.

Regarding ROIs detection, using face detection algorithms instead of motion
detection algorithms (i.e. the ROI is any moving object in the scene) poses some
constraints on the efficiency and accuracy of the system. Moreover, using simple
motion detection algorithms, such as background subtraction models, may fail in
scenes with moving backgrounds or dynamic textures such as rain or leaves. In
order to cope with this problem, the use of the motion detection based on optical
flow techniques is highly recommended. However, a wide variety of optical flow ap-
proaches have been proposed during the last years achieving outstanding levels of
accuracy under ideal conditions6. In addition, most of these techniques are based
on two main assumptions: brightness and gradient constancy. Both constancy
assumptions respectively depend on the brightness (brightness constancy assump-
tion) and the derivative of the brightness (gradient constancy assumption) of the
pixels contained in a given pair of images. However, the brightness of a point on
an object can dramatically change if the object moves to another part of the scene
with different illumination or after global or local illumination changes. Further-
more, the two assumptions are sensitive to noise with its various types. Therefore,
this dissertation proposes a development for optical flow estimation methods based
on tensor voting in order to solve the effect of noise on estimating the motion vec-
tors. In turn, the extracted features based on histogram of gradients (HOG) are
used instead of the brightness of images to generate an illumination-robust optical
flow model to cope with illumination changes.

With respect to ROIs protection, the approaches must be invertible methods
in order to retrieve the original data under law enforcement authorities without
needing to store the original video. In addition, the computational complexity
of the protection method must be low to avoid system overloading. Hence, the

6Middlebury datasets, http://vision.middlebury.edu/flow/data/
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8 Chapter 1. Introduction

protection methods used during the pixel-domain can not properly retrieve the
complete clear data in a case of need, due to some data and details will be lost
during the decoding process. As result, the protection approaches applied during
the compression-domain are more practical than the pixel-domain based methods,
because the clear original data can be properly got back. Therefore, we have ob-
served that VSS that protect ROIs in the pixel-domain do not offer high trust and
these systems must keep an unprotected version of the video that could be exposed
in case of attacks yielding security leaks. In turn, regarding the protection during
the compression-domain, there is no proposal that entirely takes into account all
the aspects needed to asses the trust on the surveillance system, as pointed out in
Chapter 2. In addition, we will concern in this thesis about the definition of pro-
tection streams, which are required for both protecting and unprotecting a video
sequence.

1.3 Objectives

Bearing in mind the previous discussion about the privacy-aware surveillance sys-
tems, both ROIs detection and ROIs protection in computer vision and cryptog-
raphy fields and according to our definition of VSS, the main contributions of this
thesis can be summarized in three main topics:

1. Assess the state of the art on optical flow methods with regarding to the
factors and conditions that influence on the estimation of accurate flow fields.
In addition, one of the main contributions of this thesis is the proposal of an
optical flow model used in ROIs detection that is more robust against noise
than the state-of-the-art approaches. As well as, it can cope with different
environmental factors such as illumination and shadow changes.

2. Propose a practical ROIs protection model during the compression-domain
based on content protection, not only by using convenient cryptographic
techniques, but also law enforcement and user cooperation in order to get
feedback with regard to the whole VSS.

3. Build a comprehensive trustworthy VSS that can be used for practical and
different purposes.

1.4 Chapter descriptions

Chapter 2 presents a brief survey for the techniques that could be used in a privacy-
aware VSS. These techniques are discussed with regards to the fulfilment of the

8
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properties that a trustworthy system must achieve (accuracy, real-time perfor-
mance and utility of the protected video).

The reminder of this thesis is distributed in two parts. On the one hand, Part
1 is dedicated to the description of the proposed robust optical flow estimation.
On the other hand, Part 2 defines a new trustworthy VSS.

Part 1 is organized as follows:

Chapter 3 proposes a robust optical flow model that combines a local and a
global optical flow method based on an adaptation of the approaches described
in Bruhn et al. (2005) and more recently in Zimmer et al. (2009), by replacing
the isotropic Gaussian filtering based on the structure tensor by a discontinuity-
preserving filtering stage based on tensor voting introduced in Medioni et al. (2000)
in order to get more robust and accurate flow fields.

Chapter 4 presents a robust algorithm for estimating accurate flow fields. The
proposed algorithm consists of replacing the discontinuity-preserving filtering stage
based on tensor voting, previously proposed in Chapter 3, by a similar stage exclu-
sively based on stick tensor voting in order to reduce the computational cost. An
additional weighted non-local term based on stick tensor saliency is introduced,
similarly to the one proposed in Sun et al. (2010a) in order increase the robustness
of the resulting flow fields.

Chapter 5 proposes the replacement of the classical brightness constancy as-
sumption by a local texture descriptor that is highly invariant to illumination
changes. In particular, the Histogram of Oriented Gradients (HOG) Dalal and
Triggs (2005) is proposed as a texture descriptor in order to extract texture fea-
tures from two consecutive images.

In turn, Part 2 is organized as follows:

Chapter 6 presents a platform for trustworthy storage of privacy-aware surveil-
lance videos. In this platform, the data needed to protect and unprotect the video
are created and stored in a secure manner, using well-known cryptographic func-
tions. The protection is done using a variation of the coefficient alteration method
proposed by Dufaux and Ebrahimi (2008). Using this method, the property of
utility is achieved and, at the same time, the size of the compressed video is not
increased due to the protection process.

Chapter 7 proposes an algorithm to unprotect ROIs (faces) in a protected frame
by assuming a previous knowledge about the faces protected, by having access to
a public database of facial images. These faces have been protected with the
algorithm proposed in Mart́ınez-Ballesté and Rashwan (2013). The algorithm
generates a random set of attacked images based on generating set of random
streams in order to break the protection of AC coefficients of the protected faces
in the current scene with a fixed DC coefficient value. The Eigenfaces algorithm
proposed in Turk and Pentland (1991) is used to measure a similarity score for

9
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10 Chapter 1. Introduction

each face in the generated images in order to select the best facial images. In
addition, we describe a method to correct DC coefficient values of the attacked
regions to reconstruct a complete attacked face.

Finally, Chapter 8 summarizes the contributions of this work and proposes
future research directions and applications of the new concepts introduced in this
thesis.

10
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Chapter 2
Background on Techniques for
Privacy-Aware Video Surveillance

In order to have trustworthy systems, the surveillance systems should be deeply
studied to know the factors that can cause a rise or fall for the system. Thus
by considering the great importance of surveillance cameras, some related work,
Winkler and Rinner (2010), used a trustworthy camera in the surveillance system,
but it is not a sufficient condition to get a trusted surveillance system. As result,
individual video surveillance cameras studies may not be reliable on their own.
However, system administrators and users must also trust in system technologies
that behave correctly (e.g. detecting moving objects and protecting them, allowing
access to the original video under authorized legalization, etc.) and there must not
be any interaction between the system operators and the system to be completely
an automatic trustworthy surveillance system.

Measuring the trust of video surveillance systems (VSS) is complex. In evalu-
ating the merits of video surveillance, it is important to look at the overall trend
of multiple studies and place particular reliance on studies with rigorous method-
ology. Thus, this chapter presents a survey for one of the most important factors
used to increase the trust in surveillance systems that is the trust in the surveil-
lance system technology.

Indeed, there are a few constraints on technology taken into account when
implementing a trustworthy VSS keeping privacy, such as the computer vision
algorithms whose goal is to detect and track ROIs in the video scene and the
confidential protection scheme for ROIs detected (data utility). In other words,
a trusted automatic VSS requires a robust trusted video analysis technique to
extract (ROIs) in the input video and trusted protection schemes to obscure them.
Because, any fail in ROIs detection and protection leads to a lack of protecting
the video stream, or hacking during observing, saving and sending over system
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networks.
In this chapter, we aim at dealing with the trustworthy in the surveillance

systems from the standpoint of the technology used in different levels. That is
firstly done by evaluating whether ROIs detection approaches work properly or
not (i.e. algorithms perform well and in real-time). In addition, we assess protec-
tion schemes that can be used for privacy-sensitive data (i.e. the complexity of
algorithms computations and the plain data can be easily retrieved or not) in order
to choose the best algorithms of ROIs detection and protection for implementing
a trusted video surveillance framework, which satisfies the observers of the system
and the observed by the system.

The rest of the chapter is organized as follows. Section 2.1 presents a brief re-
view of the common methods used for ROIs detection, including two face detection
algorithms in Section 2.1.1, and seven motion detection algorithms (three back-
ground subtraction and four optical flow estimation models) in 2.1.2. In addition,
in Section 2.1, an evaluation of the all tested algorithms is presented. Furthermore,
serval ROIs protection methods are classified into two groups: pixels domain and
compression domain in Section 2.2. Finally, the existing proposals in the previous
sections is discussed in Section 2.3.

2.1 Techniques for detection

The ROI is a particular region in a scene in which we are interested. Therefore, it is
essential to extract that region from the scene which has significant information. In
order to extract significant region there need to determine its cognitive boundary.
The selection of this cognitive boundary by human itself is difficult. This is because
humans have different psychology of interest and decision making criteria. Then
how will we define such boundary autonomously? What things are to be included
and what things are to be excluded from this boundary. For video surveillance,
ROIs should be detected that reflects object identification such as face, gait, skin
color and other regions, which people usually aim to conceal them to be free in
their daily activities.

In the literature, there are several methods proposed to automatically detect
ROIs in an image or a video. Thus, the state-of-the-art techniques used in VSS
are analyzed. If the ROI detection process does not work reliably, there is a risk
for privacy leaks. Even if, the module fails in a single frame, the privacy is broken
for the entire sequence. The confidence and trust in a surveillance system depend
on the performance and accuracy of the ROI detection technique used.

We consider two trends of application in video surveillance: first, we describe
face detection methods assuming that ROIs are faces, which are considered the
main key for human; second, we describe other ROI detection techniques that can
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be applied to more general scenarios, in which ROIs might be any moving object
in the scene.

In order to be trustworthy, the Detection sub-module in Figure 1.1 must fulfill
the aforementioned properties (Real Time Performance and High accuracy)

2.1.1 Face detection

Recently, face detection and recognition have attracted much attention of the
computer vision researchers. Many research demonstrations and applications have
been implemented for these efforts. A first step of any face processing system is
detecting the locations in images where faces are present. However, face detection
from a single image is a challenging task because of variability in scale, location,
orientation (up-right, rotated), and pose (frontal, profile). Facial expression, oc-
clusion, and lighting conditions also change the overall appearance of faces. For
an arbitrary image, the goal of face detection is to determine whether or not there
are any faces in the image and, if present, return the image location and extent of
each face. The challenges associated with face detection can be attributed to many
factors, such as pose, presence, facial expression, occlusion, image orientation and
imaging conditions.

Face is the key of human identification, therefore here are many techniques
enabling privacy concerning with face obscuration to protect individuals in the
scenes. Its immediate application is automated people recognition and, although
identification can be performed based on other factors (such as clothing or gait),
the protection of a face is sufficient and widely accepted for a privacy protection
as proposed in Dufaux (2006).

Most of the face detection algorithms consider a face detection as a feature
pattern-classification problem. The content of a given patch of an image is trans-
formed into special features, after which a classifier trained on example faces de-
cides either that particular region is a face or not. That classifier is used to
distinguish the small patches of an image, for all locations and scales, as either
faces or non-faces (Yang, 2009). It is very complex to build a robust face classi-
fier. Therefore, learning-based approaches, such as AdaBoost (Viola and Jones,
2001), neural-network-based methods (Rowley et al., 1998) or support vector ma-
chines (Shavers et al., 2006, Osuna et al., 1997), have been proposed to find a
good classifier. A review of the face detection techniques is presented in Zhang
and Zhang (2010).

The main challenges of a face detection are related to the illumination and
complexity of the scene, the rotation and even the occlusion of the faces and other
environmental tricks and traps. Most of the face detection methods use pixels
values as features for the classification problem. However, they are very sensitive to
illumination conditions and noise. In turn, numerous methods have been proposed
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to detect faces in an image using the image features. Among the face detection
methods, the ones based on learning algorithms have attracted much attention
recently and have demonstrated excellent results. In this thesis, we consider the
two most common techniques for a face detection used in VSS:

• Haar-like Features (HF): A framework for robust and extremely rapid
object detection was presented in Viola and Jones (2001). The goal of this
framework is the detection of faces. The authors introduce the use of Haar-
like Features to construct a strong classifier by cascading a small number
of distinctive features using Adaboost as shown in figure 2.1. The features
employed by the detection framework universally involve the sums of image
pixels within rectangular areas (integral image). As such, they bear some
similarities to the Haar basis functions, which have been used previously
in the field of image-based object detection. Its result is more robust and
computationally efficient. Although, Haar-like features provide a good ac-
curacy and performance in extracting textures and features, the cascading
architecture and integral image representation make them computationally
efficient.

Figure 2.1: Feature types used by Viola and Jones.

• Local Binary Pattern (LBP): New rotation invariant and computation-
ally lighter feature sets was proposed in Hadid and Pietik (2004). The basic
Local Binary Pattern features have performed very well in various applica-
tions, including texture classification and segmentation, image retrieval and
surface assessment. The original LBP operator labels the pixels of an image
by thresholding the 3 × 3 neighborhood of each pixel with the center pixel
value and considering the result as a binary number. The 256-bin histogram
of the labels computed over an image can be used as a texture descriptor,
see Figure 2.2. Each bin of histogram (LBP code) can be regarded as dif-
ferent types of edges, corners, flat areas, etc. The LBP operator has been
extended to consider different neighbors sizes of 4 or 16. Each face image can
be considered as a composition of micro-patterns which could be effectively
detected by the LBP operator. Although the LBP feature is simple and can
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2.1. Techniques for detection 15

distinguish faster between faces and non-faces, it suffers from environmental
changes. Also, it is difficult to determine the threshold used to differentiate
between faces and non-faces.

174154201

175170 168

178179125

1 0 1

1 0

110

10101101

Example Threshold

Pattern
2

181

Figure 2.2: LBP pattern calculation.

Evaluation of face detection techniques

To assess the accuracy of face detection, we have implemented the HF-based and
LBP-based methods using the OpenCV 2.3 library. They have been compared us-
ing CMU-VASC databases for face evaluation 1. Both algorithms have been tested
upon 115 images containing 434 faces as test images, and 48 images containing 85
faces rotated in different angles. Qualitative results are shown in Figure 2.3. In
addition, table 2.1 shows the face detection rate and the cost in frames per second
(the larger the better). It is apparent that the face detection rate with HF-based is
higher than with LBP features. Regarding performance, we have tested the meth-
ods with 320× 240 pixel images on a 3.2 GHz Intel Pentium DualCore computer.
As shown in Table 2.1, face detection based on LBP works faster than based on
HF. However, the accuracy of HF-based is better than using LBP-based. As a
conclusion, one should use a face detection based on HF, when the accuracy is the
most important issue and the process can be executed on a fast hardware.

Methods Face dataset Detection rate fps
Haar-features Normal 91% 15.3

Rotated 68%
Local binary pattern Normal 83% 29.5

Rotated 48%

Table 2.1: Comparison of the two analyzed methods for face detection.

Figure 2.4 shows a good qualitative comparison for the two faces detectors
using (320x240) real images captured by a real camera (Logitech QuickCam Or-
bit/Sphere AF) on a standard PC (3.2 GHZ Intel(R) Pentium (R) DualCore). The

1CMU/VASC Database: http://vasc.ri.cmu.edu/idb/html/face/index.html.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.3: Results with CMU/VASC faces database. (1st and 3th rows) results with Viola
and Jones (2001). (2nd and 4th rows) results with Hadid and Pietik (2004).

throughput, accuracy and trust score with the two mentioned techniques have been
shown in table 3.2. As shown, face detection based LBP detector is faster than
face detection based on HF features, as shown in 2.2. However, the accuracy
of HF-based algorithm is better than LBP-based algorithm. Thus face detection

16

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



2.1. Techniques for detection 17

based on HF is more trusted technique than one based on LBP. However, it must
be stated that if a VSS considers the faces as ROIs, some identity disclosure could
be done by merely analyzing clothes or via gait recognition processes.

(a) (b) (c)

(d) (e) (f)

Figure 2.4: Results with 320x240 real-time images with Logitech QuickCam Orbit/Sphere AF.
(a-c) Detected faces based on HF features. (e-f) Detected faces based on LBP features.

Methods fps Accuracy Trust score
Face detection with HF 15.3fps good High trust
Face detection with LBP 29.5fps Average Low trust

Table 2.2: Performance throughput with mentioned techniques Viola and Jones (2001) and
Hadid and Pietik (2004) on a standard PC. (3.2 GHZ Intel(R) Pentium (R) DualCore). Execution
time calculated for the 320x240 video stream captured using Logitech QuickCam Orbit/Sphere
AF.

2.1.2 Motion detection

Motion detection has great importance in the analysis of dynamic scenes, with
a variety of applications to motion segmentation and object tracking. Important
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applications of motion detection include video surveillance (Wren et al., 1997,
Collins et al., 2000), remote sensing (Bruzzone and Prieto, 2002, Huertas and
Nevatia, 1998), medical diagnosis and treatment (Bosc et al., 2003, Rey et al.,
1999), civil infrastructure (Nagy et al., 2001) and driver assistance systems (Fang
et al., 2003). Despite the diversity of applications, motion detection researchers
employ many common processing steps and core algorithms. The goal of this
section is to present a brief survey of the common algorithms of the optical flow
estimation.

The goal of motion detection is to identify the set of pixels that are signifi-
cantly different between the last image of the sequence and the previous images;
these pixels comprise the change mask. The motion mask may result from a com-
bination of underlying factors, including appearance or disappearance of objects,
motion of objects relative to the background, or shape changes of objects. In ad-
dition, stationary objects can undergo changes in brightness or color. the main
challenge of detection is that the detection regions should not contain unimportant
or nuisance forms of change, such as those induced by camera motion, sensor noise,
illumination variation, non-uniform attenuation, or atmospheric absorption.

Many techniques have been proposed in order to estimate motion from a given
sequence of images. Common techniques used for motion detection in a scene are
Background Subtraction and Optical Flow Estimation.

Background subtraction

Background subtraction techniques depend on two main stages: constructing the
background model and then detecting the foreground. In addition, according
to Cristani et al. (2003), three aspects can describe the background model respec-
tively: the initialized model, the represented model and the updated model. The
correct initialization yields the best background model with small errors. There-
fore, techniques that analyze video sequences with presence of moving objects in
the whole sequence should consider different initialization schemes to avoid the
acquisition of an incorrect background of the scene.

The main contribution of background subtraction (BS) algorithms is the detec-
tion of foreground objects as the difference between the current frame and a static
background of the scene, assuming a fixed camera. Recently, numerous methods
have been developed and the most used are the statistical ones (see Ren et al.,
2003, Bouwmans, 2008, Baf et al., 2008, Herrero and Bescós, 2009). There are
many challenges in developing a good background subtraction algorithm. First,
it must be a robust algorithm against illumination changes. Second, it should
avoid the detection of non-stationary background objects such as moving leaves,
rain, etc., and shadows cast by moving objects. In the literature, there are three
common algorithms in a background subtraction: background subtraction based
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2.1. Techniques for detection 19

on Mixture of Gaussians, Kernel Density Estimation and Codebook Construction.

• Mixture of Gaussians (MoG-BS): This technique proposed in Stauffer
and Grimson (1999) characterizes each pixel by its intensity in the RGB
color space. Then, the probability of observing the pixel value in the multi-
dimensional case is expressed by means of a Gaussian probability density
function that can be expressed as:

P (Xt) =
k∑

i=1

ωi,t.η(Xt, µi,t,Σi,t), (2.1)

where k is the number of distributions, ωi,t is a weight associated to the
i Gaussian at time t with mean µi,t, standard deviation Σi,t, and η is a
Gaussian probability density function:

η(Xt, µi,t,Σi,t) =
1

(2π)n/2|Σ|1/2 e
− 1

2
(Xt−µ)Σ−1(Xt−µ). (2.2)

The MoG technique is robust against illumination changes. Unfortunately,
this model performs poorly when the background consists of dynamic tex-
tures such as trees waving in the wind and rippling water. Furthermore, it
gives non-coherence foreground objects that have many gaps, which is could
be solved through a morphological dilation operator.

• Kernel Density Estimator (KDE-BS): This technique proposed in El-
gammal et al. (2000) estimates the probability density function of each pixel
by using the last N frames. KDE proposes a Parzen-window estimate of
every background pixel and, when dealing with color video frames, products
of one dimensional kernels (typically Gaussian ones) as:

P (Is, t) =
1

N

t−1∑

i=t−N

∏

{R,G,B}

K(
Ijs,t − Ijs,i

σj
), (2.3)

where, K is a kernel (typically a Gaussian one) and N is the number of
previous frames used to estimate P (.). And σj can be fixed or preestimated
as proposed in Elgammal et al. (2000).

Foreground/Background pixel classification is decided if its likelihood of be-
longing to the pixel PDF is lower or higher than a predefined threshold. This
approach is able to analyze sequences with multimodal backgrounds and it
is more reliable on noisy images. However it still suffers from the problem of
dynamic textures and outdoor conditions.
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• Codebook Construction (CC-BS): This is an adaptive background sub-
traction technique that is able to model a background from a training se-
quence (Kim et al., 2004). the authors assume that the pixels are mostly
distributed along the axis going toward the origin point over time. The CC
model assumes that the background pixel intensities lie along the principal
axis of the codeword with the low and high bound of pixel intensity since the
change is only due to the brightness as shown in Figure 2.5. The proposed
algorithm works well on moving backgrounds, with illumination changes,
and compressed videos. Comparisons with other background modeling algo-
rithms such as the MoG model and the KDE model show that CB is faster
than the others and has good properties for several background modeling
problems. However, it still suffers from the aforementioned outdoor environ-
mental factors.

Figure 2.5: Codebook color model proposed in Kim et al. (2004).

Optical flow estimation

Optical flow methods aim at estimating the spatial displacement of every image
pixel between two sequential images. In particular, optical flow is an approx-
imation of the local image motion based on local derivatives given consecutive
images (see Weickert et al., 2006). It is assumed that intensity variations in the
images are only due to the motion of the objects present in the depicted scenes,
not to illumination changes. The advantage of optical flow estimation used for
ROIs detection is not only to determine the localization (position) of the observed
objects in the scene, but also to detect the direction of objects motion, which is
very important for tracking.

Among a large amount of families used for estimating flow fields, the varia-
tional approaches (or differential-based) yield the best performance to estimate
the optical flow field and are the most widely used techniques (Baker et al., 2010).
They allow the estimation of dense optical flow fields, in many cases even in regions
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2.1. Techniques for detection 21

without distinctive features, where other techniques would generate no more than
voids. Thus, the main assumption for the optical flow estimation is the brightness
constraint or brightness constancy that assumes the brightness is constant between
two consecutive frames that can be defined as:

I(x+ dx, y + dy, t+ dt)− I(x, y, t) = 0

Ixu+ Iyv + It = 0 (2.4)

The variational techniques are classified into two main categories: (i) local
methods (that filter image gradients in a local neighborhood around a pixel and
assume that the velocity field of small patch of pixels changes slowly) (see Lucas
and Kanade, 1981), and (ii) global methods (that apply a global optimization
procedure based on the regularization term for estimating flow field) (see Horn
and Schunck, 1981). Local methods give robust flow fields against noise, but they
fail to obtain a dense optical flow field. In contrast, global methods present dense
optical flow fields but they are more sensitive to noise.

Next, we recall the most outstanding variational techniques in optical flow:

• Lucas/Kanade (LK-OF): This is the basic approach of local variational
methods (Lucas and Kanade, 1981). It assumes that the optical flow in
the local neighborhood of every pixel is uniform and can be estimated by
applying least squares as:

∇2Iw = −It, (2.5)

where I is an image,∇2I is the spatial gradients and It the temporal gradient.

In practice, it is usually better to give more weight to the pixels that are closer
to the central pixel. Thus, it is often used the weighted version of the least
squares equation by applying a Gaussian filter around a small patch. They
yield flow fields except in homogeneous image regions, in which gradients are
null. Since they filter out the input gradients, these approaches have a good
noise tolerance.

• Horn/Shrunk (HS-OF): This technique introduced in Horn and Schunck
(1981) minimizes functional errors by forcing the smoothness of the resulting
flow field over the whole image to solve the aperture problem. The energy
function proposed in Horn and Schunck (1981) can de defined as:

E(w) =

∫

Ω

M(w) + αV (w)dxdy, (2.6)

where Ω is video (spatial-temporal) plane, M(w) is called data term and
V (w) is the smoothness (regularization) term.
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Therefore, this method yields dense flow fields even in homogeneous image
regions. However, it is more sensitive to noise since it does not apply any
kind of local filtering to the input gradients.

• Farnebäck (FB-OF): This is a more recent method (Farneback, 2000) also
known as tensor-based method. It uses polynomial expansion to approximate
the neighbors of a pixel. The expansion could be seen as a quadratic equation
with matrices and vectors as variables and coefficients. This method yields
a dense optical flow that produces a displacement field from two consecu-
tive frames by computing 3D orientation tensors from the image sequence.
These tensors are combined under the constraints of a parametric motion
model to produce velocity estimates. This approach is more robust than
Lucas/Kanade and Horn/Shrunk methods.

• Bruhn/Weickert (BW-OF): A new combination between the local and
global optical flow methods was recently proposed in Bruhn et al. (2006).
This work introduced to a unifying multi-grid approach to variational optic
flow computation in real-time and analyzed the smoothing effects in local and
global differential methods. As a result, they have proposed the application
of the 2D Gaussian filtering with structure tensors suggested in Lucas and
Kanade (1981) to the global method originally proposed in Horn and Schunck
(1981) in order to obtain a dense flow field less sensitive to image noise. They
proposed a very accurate and fast algorithm that is a very robust against
noise, and gives an accurate dense flow field based on multi-grid techniques to
speed up the minimizing of the main optimal procedure with regularization:

E(u, v) =

∫

Ω

ϕ(M(u, v, I)) + αψ(V (∇2u,∇2v))dxdy, (2.7)

where ϕ(.) and ψ(.) are convex functions to avoid outliers.

Moreover, they used image pyramids that are used to detect large dis-
placements. Unfortunately, Gaussian filters with structure tensors used are
isotropic and do not preserve discontinuities and boundaries of the objects
in the scene.

Evaluation and experimental results

We have evaluated the aforementioned techniques with respect to our trustworthy
privacy aware VSS requirements. We show in Figure 2.6 a qualitative comparison
of the presented methods. We have used the video sequences of the CAVIAR
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database 2. In addition, another qualitative comparison is shown in Figure 2.7 for
the tested motion detection algorithms using (320x240) real images captured by a
real camera (Logitech QuickCam Orbit/Sphere AF) on a standard PC (3.2 GHZ
Intel(R) Pentium (R) DualCore).

Among optical flow estimation techniques, LK-OF and HS-OF are more sensi-
tive to texture, noise and illumination and light changes than the others. Table 2.3
shows the throughput, accuracy and trust of the aforementioned algorithms. The
accuracy of algorithms was gauged by using the unsupervised boundary-based eval-
uation proposed in Chabrier et al. (2006). Hence, the accuracy of techniques can
be classified into poor for the interval [0%, 60%], average for the interval (60%, 85%]
and good for the interval (85%, 100%]. The running time has been calculated on
the aforementioned computer. Throughput is considered to be in real time if it
allows processing more than 10 fps. In addition, the trust in the tested techniques
can be classified into no-trust when the accuracy of the technique is poor, low-
trust when the accuracy of the technique is average and it works in real-time, or
when the accuracy of the technique is good and it does not work in real-time, and
high-trust when the accuracy of the technique is good and it works real-time.

It can be observed that CC-BS is the fastest technique among the proposed
schemes. In contrast, BW-OF is the slowest one, although it gives an accurate
segmentation for moving regions. The CC-BS technique gives the best accurate
segmentation for moving objects. Moreover, FB-OF gives acceptable results for the
detection of moving regions with a reasonable throughput. MoG-BS and KDE-
BS work in real-time, but they give only an average accuracy. Finally, LK-Of
and HS-OF provide the poorest results and they are not trusted ROIs detection
schemes. Algorithms CC-BS and FB-OF give a good accuracy and work in real-
time, therefore they are highly recommended for implementing a TP-VSS.

Methods Detection rate Accuracy fps Trust level
MOG-BS 76.8% Average 16 Low
KDE-BS 77.3% Average 15.5 Low
CC-BS 93.1% Good 400 High
LK-OF 33.7% Poor 80 No trust
HS-OF 35.2% Poor 12 No trust
FB-OF 87.4% Good 14.5 High
BW-OF 93.5% Good 1.8 Low

Table 2.3: Evaluation of the trust offered by ROI detection methods according to their accuracy
and their performance in real time.

2CAVIAR: Context Aware Vision using Image-based Active Recognition http://homepages.
inf.ed.ac.uk/rbf/CAVIAR/
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Figure 2.6: One of the experiments for testing motion detection using (a) Mixture of Gaussians,
(b) Kernel Density Estimator, (c) Codebook Construction, (d) Lucas/Kanade, (e) Horn/Shrunk,
(f) Farnebäck and (g) Bruhn/Weickert.

2.2 Techniques for protection

After automatically detecting ROIs, privacy is protected in those regions by the
Protection sub-module (cf. Figure 1.1). It may perform distortion operations
such as blurring to protect the data (which is stored in the Information System)
against hacking and release over untrusted networks. In this section, we present
a novel categorization of the techniques found in the literature, paying special
attention to the utility of the data retrieved by the trusted manager. In general,
the data gathered by a VSS may be used for monitoring purposes (e.g. identifying
users, tracking people, etc.). We divide the proposals in two groups as shown in
Figure 2.8, depending on the domain in which ROIs are protected: first, pixels
domain techniques, which modify the ROI in every frame (raw images), before
compression of the video; second, compression domain techniques, which modify
the data in the container of the compressed video.

2.2.1 Pixels Domain

There are several proposals in the literature dealing with ROI protection in the
pixel domain. The Video Processing Module proceeds as follows:

1. Extract the frame from the compressed stream

2. Decompress the frame
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.7: (an experiment for testing motion detection using (a) Mixture of Gaussians, (b)
Kernel Density Estimator, (c) Codebook Construction, (d) Lucas/Kanade, (e) Horn/Shrunk, (f)
Farnebäck and (g) Bruhn/Weickert.
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Figure 2.8: A pixels domain and compression domain system diagram.

3. Detect the ROIs in the frame

4. For each ROI in the frame, obscure it

5. Compress the frame

6. Insert the frame in the compressed stream
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Steps 1 and 2 are only for stored video. If we use a camera, we may directly
operate over the uncompressed raw images. Regarding ROI protection in pixel
domain, we can classify the existing literature in three trends:

• Simple pixel transformation. It consists of replacing the value of a pixel.
The most common approaches are blurring (applying a Gaussian filter to
remove the details of the ROI) and pixelization (replacing a block of pixels
by their average values) Berger (2000), Newton et al. (2005), Wickrama-
suriya et al. (2004), H. Wactlar and Ng (2002). The implementation of such
techniques is very simple but their application results in a non-invertible
protected video (i.e. it is a one-way operation).

• Cryptography-based techniques. Some other methods in the pixel do-
main make use of encryption (see Spinder et al., 2006, Carrillo et al., 2009,
Upmanyu et al., 2009). For instance, in Carrillo et al. (2009) the pixels in
a ROI are permuted pseudo-randomly. The generation of this permutation
depends on a key that is the seed of a pseudo-random number generator
(PRNG). This means that the same key allows the PRNG to output the
same series of numbers and hence it can be used for both encryption (pro-
tecting the ROIs) and decryption (obtaining the unprotected ROIs). If ROIs
are protected using this technique, the utility of the protection technique is
low: the permutation of pixels results in a set of high-frequency image blocks;
then, these blocks will pass through the compression procedure, which will
discard high frequency components so as to decrease the video size; as a
result, protected ROIs will suffer a heavy information loss after compression
and it will be difficult to obtain the original image from a compressed and
protected frame.

• Abstraction-based techniques. Those consist in replacing a ROI (e.g. a
person) by a shape (e.g. a silhouette) in the pixel domain. An example of
those techniques can be found in Tansuriyavong and Hanaki (2001), Senior
et al. (2005), Cavallaro (2004). In addition, Cavallaro (2007) presents a
surveillance system that use the camera to directly separates the gathered
data into personal data and behavioral data as shown in Figure 2.9. In
this system, users can only access the behavioral data, and only authorities
(through law enforcement) have access to the personal data.

All these approaches are computationally feasible. However, in all cases, the
information system must store a copy of the non-protected (i.e. original) video
so as to provide a trusted manager with an unprotected version of the video. As
stated in the case of ROIs detection, a security leak in the information system
would allow the access to this non-protected copy and compromise the privacy of
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Figure 2.9: A frame protected by an abstraction technique.

the individuals. As a conclusion, the use of ROIs protection in the pixel domain
is clearly discouraged.

Protection Techniques done through pixel domain are only worth in uncom-
pressed video, since the protection process would become irreversible. However,
if any compression is done on the protected video, we would need a copy of the
unprotected video in order to retrieve the original video and this does not yield a
trustworthy surveillance system.

2.2.2 Compression domain

The solutions based on the compression domain protect the gathered data during
or after the image compression. For the sake of completeness, we briefly introduce
the concept of compressed video. A compressed video is a set of compressed frames,
grouped in GOPs (Group of Frames). Each GOP starts with an I-frame (intra-
coded) and contains several P-frames (predicted) and B-frames (bi-predictive). I-
frames are stored and compressed entirely: the frame is divided into blocks; a
frequency transform (e.g. Discrete Cosine Transform) is applied to each block;
a quantization is applied to each block (each frequency component is divided by
a number, aiming at reducing the number of discrete symbols but resulting in a
lossy compression and, also, a set of zero coefficients); finally, entropy encoding
(for the non-zero coefficients) and run-length encoding (for the zero coefficients)
are applied for a lossless compression of the block. The information needed to
reconstruct the frame is stored in a specific and standardized data structure. In
addition, P and B-frames are not stored entirely: in a nutshell, they just consist
of the changing blocks between frames in the GOP; each P and B-frame is stored
as a succession of slices (a collection of consecutive blocks), where blocks are not
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stored as pixel values, but describing how they change through the frames in the
GOP (using motion compensation techniques).

As an example, if ROIs are encrypted in the compression domain (e.g. some
values of the compressed video stream data structure are encrypted), unauthorized
users (i.e. without a proper decryption key) would obtain noise in the ROI pixel
area of the decompressed frame. On the contrary, authorized users (i.e. with the
corresponding decryption key) would be able to decrypt the structure and hence
reconstruct the original ROI. These solutions are dependent on image compression
techniques used (since each codec uses a specific data structure for the compressed
video) and may require modification of the video encoders. Note that the complete
encryption for the video streams does not serve the purpose of surveillance due
to the fact that (authorized) viewers could not understand the context (i.e. the
scene, background, etc.) without decrypting the video.

The literature can be classified in three trends: cryptographic approaches,
scrambling-based and information hiding. These transformations are totally re-
versible. As a result, protecting ROIs in the compression domain does not require
storing the original copy, which fulfills our trust goals. Still, note that ROIs may
suffer from information loss if some kind of transcoding or recompression is done
over the protected stream.

With regard to the input video stream, the protection process should be per-
formed over the compressed video, instead of over a sequence of still frames. And,
whenever possible, the protection process should be implemented along with the
compression module of the video system. Last but not least, the cryptographic
operations involved in the protection should rely on the use of smart cards.

Cryptographic approaches

Several proposals fall into this category. In Boult (2005) the authors use the DES
cryptosystem to encrypt the data. DES is a block encryption algorithm and the
authors must cope with the block size constraint on the size of the ROIs. The
encryption key is protected by public-key cryptography. However, the encryption
decreases the efficiency of the entropic compression of video. The authors claim
that the loss of efficiency of entropy coding due to encryption could be avoided by
applying encryption during or after the entropy coding step. However, the authors
do not present any relevant test on this important issue.

This shortcoming is tackled in Shahid et al. (2011), where an algorithm for
the protection of H.264/AVC video streams focused on the entropy coding is pre-
sented. The encryption is performed using the AES (Advanced Encryption Stan-
dard) cryptosystem. The authors claim that by encrypting in the entropy coding
step, the compression efficiency is not altered and, consequently, the resulting bi-
trate is not modified. Unfortunately, the system is valid for I and P-frame streams
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only and all the frame is encrypted, without taking into account ROIs detection
and protection.

In Yabuta et al. (2005), an architecture to encrypt moving objects over a JPEG
stream is presented. AES is used for encryption, and a given password for the im-
age viewer has to be used to show the original JPEG. The authors do not test the
system with video streams but with a 320 × 240 pixel JPEG stream. Moreover,
with regard to the processor architecture that runs the protection algorithms, they
presented two approaches: a sequential one with a performance of 9.2 fps and a dis-
tributed one with a performance of 16.2 fps. Unfortunately, this architecture does
not work on video streams and encrypts all moving objects instead of detecting
ROIs.

In Martin and Plataniotis (2008), a secure visual object coder that focuses
on the shape and texture of visual objects is proposed by using a Shape-Adaptive
Discrete Wavelet Transform variant Said and Pearlman (1996) and offering embed-
ded bitrate output. This proposed method uses a selective encryption algorithm,
utilizing a stream cipher to encrypt a portion of the output bit stream related to
ROIs. The proposal only works for still JPEG frames.

Finally, Cheung (2008) proposes an architecture to exchange key information
and retrieve data. ROIs are protected by encrypting with AES the coefficients of
the luminance channel. The video is stored as a set of still frames.

Scrambling-based

There is a plethora of proposals based on scrambling the data to produce a privacy-
aware video. For the sake of briefness, we only address the proposals working with
video streams instead of merely still frames.

Two interesting proposals are Sohn et al. (2009), Dufaux and Ebrahimi (2008),
which are quite similar. They present a privacy-aware surveillance system for
H.264/AVC video. The VSS described in Sohn et al. (2009) considers human
faces as ROIs, whereas Dufaux and Ebrahimi (2008) considers moving objects.
The technique scrambles those detected regions in the compression domain us-
ing a pseudo-random sign inversion applied to the coefficients of the luminance
component in order to scramble ROIs. Authors use different combinations of se-
curity keys in order to produce a protected video that is robust against brute force
attacks.

Information hiding

A final trend in the literature is information hiding. In Mart́ınez-Ponte et al.
(2005), the authors use the JPEG 2000 standard to protect frames, instead of
working with video flows. A JPEG 2000 frame consists of a set of quality layers
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(each one providing more or less details depending on a quality value), see Fig-
ure 2.10. Hence, the method provides authorized users with access to all layers
of the picture. On the contrary, unauthorized users would only be able to decode
the lowest quality layers. In this proposal, the authors do not deal with the access
control to the high quality layers of the frame by means of security techniques. In
addition, Fukuoka et al. (2012) proposed a method for producing different level
of privacy protected videos from a delivered video at the client side according to
the client authority level by implying a way of protection, such as, box, mosaic or
transparency.
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Figure 2.10: Protection based information hiding technique (top) JPEG 2000 quality layers.
(Down) JPEG 2000 quality layers with isolated ROIs.

2.3 Discussion on the existing proposals

In this section, we review the cited detection and protection tools, according to
their suitability for our concept of VSS. First, we summarize in Table 2.4 the
most significant advantages and disadvantages of the methods involved in a VSS.
Finally, we elaborate on the lacks we have found upon reviewing the literature.

With respect to the ROI protection, we have addressed face detection and
general motion detection. Regarding the tools for face detection, efficiency and
accuracy is a constraint. However, we discourage the use of the face as ROI because
the identity of individuals could be disclosed via other techniques. The tools for
motion detection (considering as ROI any moving object) may fail in scenes with
moving backgrounds or dynamic textures such as rain or leaves. To cope with this
problem, the use of optical flow is highly recommended.

With respect to the ROI protection, we have observed that systems that protect
ROIs in the pixels domain do not cope with our definition of trustworthy privacy:
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since protection is not reversible, these systems must keep an unprotected version
of the video that could be exposed in case of attacks leading to privacy leaks.
Regarding the protection in the compression domain, there is no proposal that
entirely takes into account all the aspects needed to asses the trust on the system.
However, we encourage using tools that only protect the ROIs in the frames, and
perform the protection procedures without significantly increasing the size of the
protected video.
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Chapter 3
Improving the Robustness of Variational
Optical Flow Through Tensor Voting

Video surveillance systems typically consist of several functional modules working
in concert. The main module of video surveillance analysis performs a motion de-
tection. One way of detecting motion is using optical flow that expresses about the
distribution of apparent velocities of movement of brightness patterns in an image.
Differential optical flow methods allow the estimation of optical flow fields based
on the first-order and even higher-order spatio-temporal derivatives (gradients) of
sequences of input images. If the input images are noisy, for instance because of
the limited quality of the capturing devices or due to poor illumination conditions,
the use of partial derivatives will amplify that noise and thus end up affecting the
accuracy of the computed flow fields. The typical approach in order to reduce that
noise consists of smoothing the required gradient images with Gaussian filters, for
instance by applying structure tensors. However, that filtering is isotropic and
tends to blur the discontinuities that may be present in the original images, thus
likely leading to an undesired loss of accuracy in the resulting flow fields.

This chapter proposes the use of tensor voting that is a powerful tool in com-
puter vision field as an alternative to Gaussian filtering, and shows that the discon-
tinuity preserving capabilities of the former yield more robust and accurate results.
In particular, a state-of-the art variational optical flow method has been adapted
in order to utilize a tensor voting filtering approach. The proposed technique has
been tested upon different datasets of both synthetic and real image sequences,
and compared to both well known and state-of-the-art differential optical flow
methods.

The rest of the chapter is organized as follows. Section 3.1 introduces to the
state-of-the-art optical flow methods. Related work is discussed in section 3.2.
Section 2.3 summarizes the proposed approach in this chapter. Section 3.4 gives an
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overview of tensor voting and discusses its relationship with the structure tensor
applied in Zimmer et al. (2009) and Bruhn et al. (2005). Sections 3.5 to 3.7
describe the proposed adaptation of tensor voting to the optical flow problem. In
particular, Section 3.5 describes the pre-segmentation of the input images based
on their spatio-temporal gradients. Section 3.6 describes how image gradients are
filtered with tensor voting. The adapted variational optical flow model is then
detailed in Section 3.7. Finally, experimental results with both synthetic and real
image sequences are shown and discussed in Section 3.8, including a comparison
with both well-known and state-of-the-art differential optical flow methods.

3.1 Introduction

The video surveillance systems (VSS) interest in using of imaging sensors to mon-
itor the activity of objects in a video stream Connell et al. (2004). The primary
aims of these systems are to provide an automatic interpretation of scenes and to
understand the actions of the observed objects through the information taken by
special cameras. The main task of video surveillance analysis is detecting moving
objects.

Motion detection has a great importance in the analysis of dynamic scenes of
VSS. Many techniques have been proposed in order to estimate motion from a
given sequence of images. One of those approaches is optical flow, which aims
at estimating the spatial displacement of every image pixel between two adjacent
images at time t and t + dt respectively. In other words, optical flow is an ap-
proximation of the local image motion based on local derivatives given consecutive
images. It is assumed that intensity variations in the images are only due to the
motion of the objects present in the depicted scenes, not to illumination changes.

Five families of optical flow methods have been proposed in the literature Bar-
ron et al. (1992), Baker et al. (2010): correlation-based, energy-based, discrete-
optimization, differential and phase-based methods. Correlation-based approaches
are suitable for matchable features, such as corners, whereas they are inaccurate
for other cases. In turn, energy-based methods, which apply continuous optimiza-
tion in the frequency domain, yield good estimations of the local orientation of
2D patterns together with corresponding confidence measures, but they solve the
optical flow problem locally, not guaranteeing an optimal global solution. On the
other hand, discrete optimization schemes, such as graph-cuts, belief propaga-
tion and dynamic programming have gained more popularity than the continuous
counterparts due to their better ability to minimize non-convex energy functions.
Nevertheless, those discrete optimization methods suffer from the problem of label
discretization, that is, the difficulty to properly discretize 2D flow fields.

Differential techniques compute image velocities from spatio-temporal deriva-

34

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



3.1. Introduction 35

tives of image intensities. The image domain is therefore assumed to be continuous
(or differentiable) in space and time. In contrast, phase-based methods solve the
optical flow problem depending on the change of phase of the signal instead of on
the change of amplitude of the signal and its derivatives. However, phase correla-
tion may yield ambiguous results with several peaks in the resulting output.

Among the aforementioned techniques, differential and phase based approaches
yield the best performance for estimating the optical flow field as mentioned in Bar-
ron et al. (1992), Baker et al. (2010). However, differential methods are the most
widely used techniques since they allow the estimation of dense optical flow fields,
in many cases even in regions without distinctive features, where other techniques
would generate voids (see Barron et al., 1992, Baker et al., 2010).

Differential methods estimate optical flow based on the first-order and even
higher-order partial derivatives (gradients) of the input images. These approaches
can be further classified into local and global methods. Local methods, such as Lu-
cas and Kanade (1981), Bigun et al. (1991), estimate the optical flow at every
pixel based on the filtered image gradients in a local neighborhood around that
pixel. Alternatively, global methods, also known as variational optical flow meth-
ods, such as Horn and Schunck (1981) and its numerous discontinuity-preserving
variations (Nagel, 1983, Black and Anandan, 1991, Schnorr, 1994, Weickert and
Schnórr, 2001, Bruhn and Weickert, 2005), apply a global optimization procedure
based on regularization that determines the optical flow at every pixel from the
image gradients of the whole image.

Local methods assume that the optical flow in the local neighborhood of every
pixel is uniform and estimate it by applying least squares. They yield flow fields
except in homogeneous image regions, in which gradients are null. Since they filter
out the input gradients, these approaches have a good noise tolerance. On the other
hand, global methods minimize an error functional by forcing the smoothness of
the resulting flow field over the whole image. Therefore, these methods yield dense
flow fields even in homogeneous image regions. However, they are more sensitive
to noise since they do not apply any kind of local filtering to the input gradients.

Trying to overcome the aforementioned drawbacks, Zimmer et al. (2009), Bruhn
et al. (2005) proposed a combined approach that merges both local and global
methods through Gaussian filtering based on structure tensors. However, Gaussian
filtering is isotropic, leading to an undesired blurring of the discontinuities present
in the scenes, thus likely yielding an undesired loss of accuracy in the resulting flow
fields. The main contribution of this chapter is replacing that Gaussian filtering
based on structure tensors by a discontinuity-preserving filtering stage based on
tensor voting. This leads to a robust algorithm for estimating an accurate dense
optical flow field given a pair of color images, merging the benefits of both local
and global differential methods.
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Different anisotropic filtering methods have been proposed in the literature to
preserve image discontinuities, such as the bilateral filter (Tomasi and Manduchi,
1998) and non-local means (NLM) (Kervrann and Boulanger, 2008). The bilateral
filter extends the concept of Gaussian filtering by adding a Gaussian weighting
function that depends on the difference between pixel intensities. However, it is
unable to filter very noisy images as mentioned in Moreno et al. (2011a). In turn,
NLM is an extension of the bilateral filter that uses the spatial distance between
pixel neighborhoods instead of pixel intensities. However, an experimental analysis
conducted in Moreno et al. (2011a) showed that NLM tends to generate colored
spots and undesirable quantization effects, not being satisfactory enough with real
noise. Alternatively, Moreno et al. (2011a) proposed the tensor voting framework
as a more robust methodology for anisotropic filtering of color images.

Related work

Both the sensitivity and the effect of noise in local and global optical flow dif-
ferential methods have widely been analyzed in the literature, Bainbridge-Smith
and Lane (1997), Fermüller et al. (2001) and Galvin et al. (1998). The conclusion
is that global methods are more sensitive to noise than local methods. In order
to take advantage of the complementary benefits of both local and global meth-
ods, some researchers have also proposed their combination. For instance, Schnorr
(1993) proposed such a combined technique by applying Gaussian filters shifted in
the frequency space or local methods integrating second-order derivatives instead
of the solutions proposed in Lucas and Kanade (1981), Bigun et al. (1991). More
recently, Bruhn et al. (2005) analyzed the smoothing effects in local and global
differential methods for optic flow computation. In particular, Bruhn et al. (2005)
applied the 2D Gaussian filtering suggested in Lucas and Kanade (1981), Bigun
et al. (1991) to the global method originally proposed in Horn and Schunck (1981)
in order to obtain dense flow fields less sensitive to image noise.

Unfortunately, Gaussian filters are isotropic and do not preserve discontinuities.
Therefore, their application may lead to the propagation of incorrect information
to pixels located between different image regions, such as object boundaries, or
between objects that move along different directions. As a result, the computation
of the optical flow field may be seriously affected at those regions.

Alternatively, Little et al. (1988) proposed a framework for calculating the
optical flow field through a local voting scheme based on the similarity of planar
patches. However, this approach can not prevent motion boundary blurring due
to over-smoothing and it is restricted to short-range motion.

Following a voting scheme, Gaucher and Medioni (1999) is the first work that
proposed tensor voting for solving the motion flow estimation problem. Tensor vot-
ing is a perpetual organization technique originally proposed in Tong et al. (2001),
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Medioni et al. (2000). Two separate voting processes are defined in Gaucher and
Medioni (1999): one to determine boundary points as the pixels with maximum
motion uncertainty, and another to locally refine velocities near boundaries by al-
lowing voting only between pixels placed at the same side of a boundary. However,
the voting process between pixels is essentially a 2D process that does not reduce
the influence of different velocities of neighbors upon each other.

In addition, a visual motion analysis and interpretation framework was pre-
sented in Nicolescu and Medioni (2003). That work proposed an approach for
motion segmentation from two images using a 4D framework in order to handle
real data, and integrated it with a 2D voting-based method for accurate inference
of motion boundaries. This approach consists of a correlation-based matching pro-
cess that recovers feature correspondences as a sparse velocity field, followed by a
motion capture process that infers motion boundaries and regions, and an interpre-
tation process that determines the 3D structure and motion of the defined objects
using 4D tensor voting (image position and velocity) and taking into account the
constancy velocity assumption over an image area at small time intervals.

In this chapter, a new approach for estimating motion detection based on op-
tical flow for video surveillance sequences is presented. Our method proposes a
combined local and global optical flow method based on an adaptation of the
approaches described in Bruhn et al. (2005) and more recently in Zimmer et al.
(2009), by replacing the isotropic Gaussian filtering based on the structure ten-
sor utilized in Zimmer et al. (2009) and Bruhn et al. (2005) by a discontinuity-
preserving filtering stage based on tensor voting.

3.2 Approach overview

The proposed approach estimates the optical flow field given a pair of consecutive
images in several stages shown in Figure 3.1.

Let I(p) be an image sequence with p = (x, y, t), where x and y denote the po-
sition in the image domain and t denotes time. The optical flow field, w = (u, v, 1),
represents the displacement vector field between two frames at times t and t+ dt.
The first stage determines the first spatio-temporal image derivatives, (Ix, Iy, It),
and the second spatio-temporal image derivatives, (Ixx, Ixy, Ixt) and (Iyx, Iyy, Iyt),
for a pair of consecutive images in the image sequence I(p). In the second stage,
the image pixels are classified into homogeneous-moving regions (HM), textured-
moving regions (TM) and stationary (not moving) regions (NM) based on the
spatio-temporal image derivatives. This stage will be explained in detail in Sec-
tion 5. In the third stage, a classical tensor voting approach described in Tong et al.
(2001), Medioni et al. (2000) is used to independently filter the spatio-temporal
image derivatives of the first two classes (HM and TM). The result of this stage
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Figure 3.1: Overview of the proposed approach for estimating a dense optical flow field from a
pair of consecutive images.

is a smoothing of the spatio-temporal image gradients that preserves discontinu-
ities. The fourth stage solves the optical flow problem using the combined global
differential method described in Zimmer et al. (2009), Bruhn et al. (2005) based
on the results of the tensor voting stage. Finally, the results are integrated in a
dense optical flow field.

3.3 Tensor voting as an alternative to the struc-

ture tensor

Tensor voting is a robust methodology for propagating and fusing both 2D and
3D information in the presence of noise, (see Tong et al., 2001, Medioni et al.,
2000). In 3D, the information associated with every data point is encoded as a
tensor and propagated to its neighboring points through a convolution-like process.
Afterwards, the analysis of the resulting tensors leads to the location of surfaces,
edges and junctions. This approach takes advantage of the Gestalt principles
of proximity, similarity and good continuation in order to estimate perceptual
saliency.

In particular, the result of applying tensor voting at point (pixel) p is a tensor,
TV (p), defined as:

TV (p) =
∑

q∈Θ(p)

SV (v, Sq) + PV (v, Pq) +BV (v,Bq), (3.1)

where q represents every point belonging to the neighborhood Θ of p. SV , PV
and BV are the stick, plate and ball tensor votes cast to p by every component of
q, and v = p − q. Sq, Pq and Bq are the stick, plate and ball components of the
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3.3. Tensor voting as an alternative to the structure tensor 39

tensors at q, respectively:

Sq = (λ1 − λ2)e1e
T
1

Pq = (λ2 − λ3)(e1e
T
1 + e2e

T
2 )

Bq = λ3(e1e
T
1 + e2e

T
2 + e3e

T
3 ), (3.2)

where λi and ei are the i -th eigenvalue and its corresponding eigenvector of the
tensor at q, respectively. Saliency measurements can be estimated from an analysis
of the eigenvalues of the resulting tensor in (3.1). Thus, s1 = λ1−λ2, s2 = λ2−λ3

and s3 = λ3 can be used as measurements of surfaceness, edginess and junction-
ness, respectively (Figure 3.2). Small eigenvalues imply noisy points. Moreover,
eigenvector e1 represents the estimated normal for points lying on a surface, while
e3 represents the most likely tangent direction of a curve for points belonging to
that curve.

e2

λ1 − λ2

e1
λ1

e3
λ3

λ2

λ2 − λ3 λ3

Figure 3.2: Geometrical interpretation of tensor voting.

A stick tensor encodes the orientation of the surface normal at a specific 3D
point. Stick tensor voting aims at propagating surfaceness in a neighborhood by
using the perceptual principles of proximity, similarity and good continuation.
Given a known orientation of the normal at a point q, which is encoded by Sq, the
orientation of the normal at a neighboring point p can be inferred by tracking the
change of the normal on a joining arc of a circle, Figure 3.3(left). Thus, the stick
tensor voting can be written as:

SV (v, Sq) = fs[R2θSqR
T
2θ], (3.3)

where fs is a decaying function, θ is the angle shown in Figure 3.3(right) and R2θ

a rotation with respect to the axis v × (Sqv). Function fs was defined in Tong
et al. (2001) as:

fs(v, sq) =

{
e−

l2+bk2

σ2 if θ ≤ π/4
0 otherwise,

(3.4)

39

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



40
Chapter 3. Improving the Robustness of Variational Optical Flow

based on TV

where σ is the standard deviation of a Gaussian function that modulates the
influence of q over p based on their Euclidean distance, l is the length of the curve,
k is the curvature of the path and b is a function of σ (see Medioni et al., 2000).
In turn, a plate tensor encodes an edge, whereas a ball tensor encodes either a
junction or noise. Plate and ball fields are obtained by integrating stick spanning
disks and spheres respectively (see Tong et al., 2001, Medioni et al., 2000).

On the other hand, the structure tensor, which is applied in Zimmer et al.
(2009), Bruhn et al. (2005), makes the assumption that gradients change in a
neighborhood slowly. Thus, the geometrical structure in that neighborhood can be
estimated through a weighted sum of the gradients belonging to the neighborhood.
In particular, given two consecutive image frames, I(x, y, t) and I(x, y, t+ dt), the
structure tensor, J , is defined as the convolution of a Gaussian Gρ with the tensor
of the image gradient (Liou and Jain, 1989):

Jρ = Gρ ∗ ∇3I(∇3I)T , (3.5)

where ∇3 is the spatio-temporal gradient operator, ∇3 = (∂x, ∂y, ∂t)
T .

Although both tensor voting and the structure tensor can be utilized for es-
timating the geometrical structure of images from their gradients, they have sig-
nificant differences due to their particular assumptions. On the one hand, the
structure tensor can be interpreted as a voting process in which the voter q prop-
agates the orientation of its gradient to the votee p whenever the former is in a
neighborhood of the latter, as shown in Figure 3.3(right).

In turn, tensor voting makes the additional assumption that both the voter
and the votee must lie along a smooth curve (i.e., an image contour). Under this
assumption, the voter propagates its gradient to the votee if the angle θ between
them is lower than or equal to 45o, Figure 3.3(left). If this condition is satisfied, the
gradient propagated to the votee is not the one at the voter, as in the structure
tensor, but a rotated version of it perpendicular to the aforementioned smooth
curve that hypothetically joins both points.

Both the 3D structure tensors and 3D tensor voting have experimentally been
tested in order to estimate the geometrical structures (surfaces, edges, junctions)
present in consecutive images by considering their 3D spatio-temporal gradients
(see Section 4). Figure 3.4 shows the map of (λ2−λ3) that can be used to extract
edginess. It can be observed that the structure tensor causes blurring, whereas
tensor voting tends to preserve discontinuities.

Therefore, tensor voting propagates image gradients more consistently from a
geometrical point of view than the structure tensor. As a consequence, the result of
filtering image gradients with tensor voting is likely to yield more accurate results
than by applying the structure tensor.
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3.4. Pre-segmentation of image pixels based on image gradients 41

no voting θ2 > 45o

voting θ1 < 45o

q2

q1

θ1

θ2

p

(a)

voting θ2 > 45o

voting θ1 < 45o

q2

q1

p

θ2

θ1
(b)

Figure 3.3: (left) Tensor voting propagates rotated versions of the original gradients to neigh-
boring points if θ is less than or equal to 45o. (right) The structure tensor interpreted as a voting
process propagates the original gradients to all neighboring points.

3.4 Pre-segmentation of image pixels based on

image gradients

In order to apply tensor voting to the problem of optical flow estimation, it is nec-
essary to include additional constraints beyond the original restrictions regarding
the value of θ and the size of the local neighborhood. In particular, it is nec-
essary to ensure that pixels only propagate their gradients to other pixels that
are likely to belong to the same region. Otherwise, that propagation is likely
to blur discontinuities and, hence, to introduce undesired artifacts. Two addi-
tional discontinuity-preservation constraints have thus been enforced. The first
constraint prevents the voting process if one of the pixels belongs to a textured
region and the other to a homogeneous region. In turn, the second constraint
prevents the voting process in case of two pixels that belong to the same type of
region (homogeneous or textured) but one of them being in a moving region and
the other in a stationary region.

As a consequence, it is necessary to define a fast and simple preprocessing stage
that efficiently segments the original image into both homogeneous and textured
regions on the one hand, and into moving and stationary regions on the other
hand, in both cases based on the analysis of the spatio-temporal gradients of the
image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: (a, b) a pair of consecutive images of a grid that is moving to the right. (c) Map of
λ2 − λ3 of 3D tensor voting when σ = 1.0. (d) Map of λ2 − λ3 of the 3D structure tensor when
σ = 1.0. (e, f) a pair of consecutive images of a textured ball that is rotating around its axis.
(g) Map of λ2 − λ3 of 3D tensor voting when σ = 1.0. (h) Map of λ2 − λ3 of the 3D structure
tensor when σ = 1.5.

3.4.1 Classification into homogeneous and textured regions

Let ∇3I = (Ix, Iy, It)
T be the spatio-temporal gradient of image I(x, y, t), where

Ix = ∂xI, Iy = ∂yI and It = ∂tI. The magnitude of the image gradient is:

‖∇3I‖ =
√
I2
x + I2

y + I2
t . (3.6)

The signal-to-noise ratio (SNR)is estimated in order to determine what pixels
belong to either homogeneous or textured regions:

SNR = 20 log10(µ/ς), (3.7)

where µ is the mean of the gradient magnitudes within a square window (the
window size has been set to 11x11 in this chapter) centered at every pixel, and
ς is the standard deviation of those gradients. The value of SNR is estimated in
order to determine what pixels belong to either homogeneous or textured regions.
In particular, the gradients of pixels belonging to homogeneous regions will have
a small standard deviation and, hence, a large SNR. In turn, pixels from textured
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3.4. Pre-segmentation of image pixels based on image gradients 43

regions will have a big deviation and low SNR. A threshold τ equal to 25 dB1,
has been applied in order to distinguish between high and low SNR values, which
correspond to homogeneous and textured regions respectively.

3.4.2 Classification into moving and stationary regions

In order to discriminate between moving and stationary regions, it is necessary
to analyze the variation of image intensity along time, since the only intensity
variation is assumed to be due to object motion and not to illumination changes,
which are taken into account in the next step of the algorithm. This is done
as follows. The angle δ between the spatio-temporal gradient (Ix, Iy, It)

T and
the temporal unit vector (0, 0, 1)T gives an indication of the contribution of the
temporal gradient to the spatio-temporal gradient. When (Ix, Iy, It)

T is parallel
to direction t, | cos δ| is close to one and the corresponding pixel is likely to belong
to a moving region:

cos δ =
It

‖∇3I‖+ ε
, (3.8)

where 0 < ε� 1 to avoid division by zero.

Since any small variation in the temporal gradients will cause | cos δ| to be
close to one, this condition is necessary to detect motion in homogenous regions.
However, this condition is not sufficient for textured regions and edges, since the
noise and discretization errors will also cause | cos δ| to be close to one.

In order to avoid that problem of noise sensitivity, a second angle β is intro-
duced according to the confidence measure proposed in Liou and Jain (1989):

cos β =
1√

1 + ‖∇3I‖2
. (3.9)

When the magnitude of the image gradient is very high, | cos β| is close to
zero. However, this condition is not an indication of motion by itself due to the
contribution of the spatial gradients. For instance, textured regions and edges will
yield values of | cos β| close to zero even through they are still. Thus, the necessary
and sufficient condition for a pixel belonging to a moving textured region is that
| cos δ| be close to one and | cos β| to zero. Based on the above three measures
obtained from the spatio-temporal gradients (SNR, cos δ, cos β), the pixels of the
given input image are classified into three broad classes: textured-moving regions
(TM), homogeneous-moving regions (HM) and not moving regions (NM) using

1Define minimum SNR values. [Online] available http://www.wireless-
nets.com/resources/tutorials/define SNR values.html.
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3.10. Figure 3.5 shows an example of this segmentation given two consecutive
images.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: (a) Frame at time t in sequence OPEN-HOTEL. (b) Frame at time t + dt. (c)
Classified pixels: red pixels are textured-moving regions, green pixels are homogeneous-moving
regions and blue pixels are stationary (not moving) regions. (d) Frame at time t in sequence
STREET-CROSS. (e) Frame at time t+ dt. (f) Classified pixels: red pixels are textured-moving
regions, green pixels are homogeneous-moving regions and blue pixels are stationary (not moving)
regions.

I(x, y, t) =





TM SNR ≤ τ, | cos δ| ≈ 1, | cos β| ≈ 0
HM SNR > τ, | cos δ| ≈ 1
NM otherwise.

(3.10)

3.5 Smoothing of image gradients using tensor

voting

Once the given image has been segmented as described in the previous section, ten-
sor voting is applied in order to filter the image gradients of the pixels that belong
to the TM (texture-moving) class on the one hand, and to the HM (homogeneous-
moving) class on the other hand, as all those pixels correspond to moving regions.
In textured regions, the necessary filtering window size (3σ) must be small enough
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3.5. Smoothing of image gradients using tensor voting 45

in order to preserve edges and texture. In homogeneous regions, however, the
window size will be large enough in order to filter out image noise. In particular,
the standard deviation of tensor voting applied to homogenous regions (σ1) has
experimentally been set to twice the standard deviation corresponding to textured
regions (σ2).

Tensor voting is only applied to pixels that belong to the same class. Thus,
pixels belonging to textured-moving regions do not propagate their gradients to
those belonging to homogeneous-moving regions and vice-versa. In turn, pixels
belonging to the NM (not moving) class have gradients whose third component, It,
is very small. Therefore, tensor voting does not bring any significant improvement
on the result of optical flow at those regions, not being applied in order to save
computations.

In order to preserve discontinuities within the pixels belonging to a same class
and also to prevent the influence of objects belonging to the same class and moving
along opposite directions, tensor voting is not applied between any pair of pixels
whose gradients are significantly different, in particular, if the angle between both
gradient vectors is above a predefined threshold ξ that has experimentally been
set to 45 in this chapter, Figure 3.6.

ξ < 45

ξ > 45

Voting

No voting

Figure 3.6: Textured voters (green) with ξ < 45 will cast votes to textured votee (black).
Textured voter (red) with ξ ≥ 45 will not cast votes to textured votee (black). Homogenous
voter (blue) will not cast votes to textured votee (black).

The methodology described in the next section would require the computation
of three image gradients for every pixel if the input images were gray-level images:
∇3I = (Ix, Iy, It)

T , ∇3Ix = (Ixx, Ixy, Ixt)
T and ∇3Iy = (Iyx, Iyy, Iyt)

T . However,
when the original images are color images with three channels, which is the assump-
tion in this chapter, the number of gradients is tripled. Thus, the following nine
gradients are computed and independently filtered through separate tensor voting
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processes: ∇3I
k = (Ikx , I

k
y , I

k
t )T , ∇3I

k
x = (Ikxx, I

k
xy, I

k
xt)

T and ∇3I
k
y = (Ikyx, I

k
yy, I

k
yt)

T ,
with k ∈ {0, 1, 2} being the color channel.

Each tensor voting process applies the classical methodology introduced in the
second section of this chapter and illustrated in Figure 3.3(left). Points p and q
correspond to the spatial coordinates of two image pixels. The information associ-
ated with each pixel is a gradient vector encoded as a tensor. For instance, in case
of ∇3I

k = (Ikx , I
k
y , I

k
t )T , the initial tensor for a pixel p is defined as ∇3I

k(∇3I
k)T .

After all pixels cast votes to their neighbors, the final tensor is computed for ev-

ery pixel by applying (3.1). Finally, the filtered gradient ˆ∇3Ik = (Îkx , Î
k
y , Î

k
t )T

corresponding to pixel p is defined as the eigenvector associated with the largest
eigenvalue of TV (p). This procedure is also applied to the rest of second-order
gradients. Therefore, at the end of this stage, nine filtered gradient vectors are

obtained for every pixel: ˆ∇3Ik, ˆ∇3Ikx and ˆ∇3Iky , with k ∈ {0, 1, 2}.

3.6 Adapted optical flow model

This section describes the proposed adaptation to tensor voting of the variational
optical flow technique originally proposed in Zimmer et al. (2009) and Bruhn
et al. (2005). Variational global optical flow methods estimate the optical flow
field by minimizing a functional that is constituted by some data constraints and
a smoothness constraint:

EI(u, v) =

∫

Ω

[M(w, I) + αV (∇2u,∇2v, I)]dxdy. (3.11)

The data term M(w, I) takes into account the data constraints, whereas the
smoothness term V (∇2u,∇2v, I) penalizes deviations from the smoothness of w.
∇2 is the spatial gradient operator, ∇2 = (∂x, ∂y)

T . The regularization parameter
α > 0 determines the weight of the smoothness term. The proposed definition of
both the data term and the smoothness term is detailed below.

3.6.1 Data Term

The most common assumption in optical flow estimation is that the grey value of a
moving object does not change with the motion of the object. This is refereed to as
the gray-value constancy assumption or brightness constraint, which is formulated
as:

I(x, y, t)− I(x+ u, y + v, t+ dt) = 0. (3.12)

By expanding the second term in (3.12) through its first-order Taylor expan-
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3.6. Adapted optical flow model 47

sion Brox et al. (2004), it yields the well-known linearized optical flow constraint:

Ixu+ Iyv + It = 0, (3.13)

where u = dx/dt and v = dy/dt. That equation can be expressed in vector form
as:

wT∇3I = 0, (3.14)

where ∇3I = (Ix, Iy, It)
T . Then, the data term can be penalized in a least squares

sense as:
M1 = (wT∇3I)2. (3.15)

This equation can be written as:

M1 = wT∇3I(∇3I)Tw = wTSw, (3.16)

where S is the motion tensor for the data term, S = ∇3I(∇3I)T , which is a positive
semi-definite 33 symmetric matrix. S is integrated over a neighborhood of fixed
size through a convolution of S with a Gaussian kernel Kρ of standard deviation
ρ. Thus, a modified Sρ = Kρ ∗ S is obtained that makes the method more robust
against noise Bruhn et al. (2005):

M1 = wT (Kρ ∗ S)w = wTSρw. (3.17)

In the present chapter, the above integrated motion tensor Sρ is replaced by the
result of applying tensor voting to the neighborhood of p illustrated in Section 3.5.
Thus, a data term that ensures the grey value constancy assumption can be defined
as:

M1 = wT tv(∇3I)w = wT ∇̂3I(∇̂3I)Tw, (3.18)

with ∇̂3I being defined as described in the previous Section 3.5 and tv(χ) = χ̂(χ̂)T

.
As indicated above, the brightness (grey-value) constancy assumption does not

cope with illumination changes. If such changes occur in the given image sequence,
it is possible to circumvent the problem by considering that the gradient of an
object does not change with the motion of the object. This yields the so-called
gradient constancy assumption or gradient constraint, which is formulated as:

∇3I(x, y, t)−∇3I(x+ u, y + v, t+ dt) = 0. (3.19)

Applying the first-order Taylor expression of the second term in (3.19) yields:

Ixxu+ Ixyv + Ixt = 0

Ixyu+ Iyyv + Iyt = 0. (3.20)
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A second data term dependent on the gradient constraint can then be written
as:

M2 = wT∇3Ix + wT∇3Iy. (3.21)

After penalizing it in a least squares sense, it becomes:

M2 = wT∇3Ix(∇3Ix)
Tw + wT∇3Iy(∇3Iy)

Tw. (3.22)

The two tensors, ∇3Ix(∇3Ix)
T and ∇3Iy(∇3Iy)

T , can also be integrated over
a neighborhood of fixed size through the convolution with a Gaussian kernel Kρ

Bruhn et al. (2005):
In the present chapter, that Gaussian filtering is replaced by tensor voting:

M2 = wT tv(∇3Ix)w + wT tv(∇3Iy)w

= wT ˆ∇3Ix( ˆ∇3Ix)
Tw + wT ˆ∇3Iy( ˆ∇3Iy)

Tw. (3.23)

This gradient constraint is robust to translations, whereas the brightness con-
straint defined above is suitable for more complicated types of motion. Therefore,
Brox et al. (2004) proposed the combination of the two constraints in the data
term while keeping the linearization. The combined data term using tensor voting
is defined as:

M = M1 + γM2, (3.24)

where γ is the weight of the gradient constancy term in the data term. Therefore,
the final tensor obtained as a result of the voting processes for ∇3I, ∇3Ix and
∇3Iy is:

T = tv(∇3I) + γ[tv(∇3Ix) + tv(∇3Iy)]

= T0 + γTxy.

T =




t11 t12 t13

t12 t22 t23

t13 t23 t33


 . (3.25)

In order to gain robustness against outliers, it is convenient to define the data
term without the quadratic penalization intrinsic to the use of tensors. In partic-
ular, the non-quadratic function ΨM proposed in Zimmer et al. (2009) is applied:

ΨM(l2) =
√
l2 + ζ2, (3.26)

where ζ → 0 is close to zero.
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In addition, the data term is extended in order to be applicable to HSV color
images. This copes with illumination changes, highlights, shading and shadow
effects, as proposed in Zimmer et al. (2009). The final data term becomes:

M(w, I) =
3∑

k=1

ΨM(wTT kw), (3.27)

where T k is (3.25) applied to the k − th color channel of I.

3.6.2 Smoothness term

Any value of w that minimizes the data term M(w, I) defined in (3.27) would be a
valid optical flow solution in agreement with both the grey-value and the gradient
constancy assumptions. However, such a solution is not unique in general. That
is, by only considering the spatio-temporal image gradients in a neighborhood of
a pixel, it is not possible to estimate the direction and magnitude in which this
pixel is moving in general. This is known as the aperture problem of optical flow.
In order to obtain a unique solution, it is necessary to introduce some additional
constraint in the functional that is minimized, that is, it is necessary to apply
regularization. This is the goal of the smoothness term V included in (3.11). In
particular, a quadratic smoothness term that penalizes the squared magnitude of
the flow gradient was proposed in Horn and Schunck (1981):

V (∇2u,∇2v) = |∇2u|2 + |∇2v|2. (3.28)

However, this function leads to an isotropic smoothing of the resulting flow
field that does not preserve discontinuities. Thus, other smoothness terms more
tolerant to discontinuities have been proposed in the literature. Image disconti-
nuities are taken into account by image-driven methods, such as the anisotropic
filter proposed by Nagel and Enkelmann (1986). That method regularizes the flow
field along image edges, but not across them. Thus, image-driven filters are prone
to generating artifacts in textured image regions.

In order to avoid the aforementioned problem, flow-driven regularization meth-
ods have been proposed in (Weickert and Schnórr, 2001). They preserve disconti-
nuities in the flow field, not being affected by image textures. In particular, the
anisotropic complementary smoothness term proposed in Zimmer et al. (2009)
takes into account directional information from the constraints imposed in the
data term. A robust penalization is performed across edges in order to reduce
the smoothing effect in the direction where the data term gives the most informa-
tion. Along edges, where the data term gives no information, a strong filling-in is
performed by using a quadratic penalization. This smoothness term provides an
effective combination of both image-driven and flow-driven behaviors.
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Accordingly, the smoothness term proposed in Zimmer et al. (2009) has been
adapted to tensor voting by using the directional information resulting from its
process that suggested in this work by considering HSV color images.

Let R a regularization tensor defined as:

R =
3∑

k=1

[tv(∇2I
k) + γ(tv(∇2I

k
x) + tv(∇2I

k
y ))].

R =
(
e1 e2

)( λ1 0
0 λ2

)(
e1

e2

)
. (3.29)

The smoothness term is finally defined as in Zimmer et al. (2009):

V (∇2u,∇2v, I) = ΨV ((eT1∇2u)2 + (eT1∇2v)2) +

((eT2∇2u)2 + (eT2∇2v)2), (3.30)

where e1 and e2 are the eigenvectors of the regularization tensor R in (3.29) cor-
responding to the eigenvalues λ1 ≥ λ2, and ΨV is the non-convex regularizer
proposed in Zimmer et al. (2009):

ΨV (l2) = ζ2 log (1 +
l2

ζ2
), (3.31)

using ζ > 0 is a contrast parameter.

3.6.3 Implementation

The functional in (3.11) is minimized by solving the corresponding Euler-Lagrange
equations:

∂uM − α(∂x(∂uxV ) + ∂y(∂uyV )) = 0

∂vM − α(∂x(∂vxV ) + ∂y(∂vyV )) = 0, (3.32)

which can be rewritten based on the resulting tensor S of the voting process (3.25)
as:

3∑

k=1

ΨM(wTT kw)(tk11 + tk12 + tk13)− αXMV (∇2u,∇2v) = 0

3∑

k=1

ΨM(wTT kw)(tk21 + tk22 + tk23)− αXMV (∇2v,∇2u) = 0, (3.33)
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where XMV (∇2a,∇2b) is:

XMV (∇2a,∇2b) = divergence(D(e1, e2,∇2a,∇2b)∇2a),

with D(e1, e2,∇2u,∇2v) defined in Zimmer et al. (2009) as:

D =
(
e1 e2

)(Ψ′V ((eT1∇2u)2 + (eT1∇2v)2) 0
0 1

)(
e1

e2

)
, (3.34)

where Ψ′V is the differential of ΨV .
The multi-scale, coarse-to-fine warping approach described in Brox et al. (2004)

is used by most modern algorithms for estimating optical flow in order to sup-
port large displacements while keeping a good accuracy. This approach relies on
estimating the optical flow in a Gaussian pyramid, where the top images are the
original images after having been rescaled to a coarse scale. At each pyramid level,
small flow increments are computed by solving the linear system in (3.33) through
the Successive Over-Relaxation (SOR) solver with alternating liner relaxation2.

In practical, the levels below are warped representations of the images based
on the flow estimated at the preceding scale. This ensures that the small motion
assumption considered in 3.11 remains valid, Figure 3.7. At each warping level,
small flow increments are computed by solving the linear system in 3.27. Once
a flow field is estimated (v0), the past frames used (F10 , F20) and the flow field
calculated (v0) in the coarse level are rescaled to the finer level. Then in this finer
level, the second frame rescaled (F21) warps towards the first frame (F11). And,
a new flow field is calculated between the first frame (F11) and the warped frame
(Fw21). This value is then added to the previous flow rescaled (v0) to get a new
flow field (v1) and the process is repeated until the maximum number of iterations
is met.

To obtain the coarse representation of the pyramid, the input images have
been rescaled by a factor ι. A standard image pyramid uses ι = 0.5, whereas a
larger factor ι = 0.9 is actually used (according to Brox et al. (2004)) to obtain
better results at the expense of an increased computational time. In this work,
the number of pyramid levels is calculated as:

n ≈ log10(30/min(ht, wt))/log10(0.9), (3.35)

where constant 30 indicates the minimum image width or height in the pyramid and
parameters ht and wt are the height and width of the original image, respectively.
Moreover, in order to avoid aliasing, a low pass filter is applied to each level of the
pyramid through a Gaussian convolution with a standard deviation equal to 0.5/ι.

2Black, Noel, Moore, Shirley, Successive over-relaxation method. Available:
http://mathworld.wolfram.com/SuccessiveOverrelaxationMethod.html
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Figure 3.7: Coarse-to-fine approach.

3.7 Experimental results

The proposed technique, referred to as IROF − TV , has been implemented in
Matlab and compared to both classical and state-of-the-art optical flow estima-
tion methods. The results have been submitted to the Middlebury optical flow
benchmark for external evaluation3, (see Baker et al., 2010). The parameters of
the proposed method for the Middlebury database have been set to: σ1 = 1.3 for
homogeneous regions, σ2 = 0.5 for textured regions, α = 20 and γ = 100. More-
over, the SNR threshold τ has been set to 25. The Matlab execution time for
the Middlebury training sequences is around 250 seconds on a 3.2 GHZ Dual Core
Pentium, by considering 640×480 images. At the time of submission (June 2011),
the proposed method was ranked in the sixth position with respect to the Aver-
age End-Point Error (AEE), in the eighth position with respect to the Average
Angular Error (AAE) and in the fourth position with respect to both the Aver-
age Interpolation Error (AIE) and the Average Normalized Interpolation Error
(ANIE), Figure 3.8. Figure 3.9 shows some of the results for several Middlebury
sequences.

The proposed technique has also been compared with other 12 datasets from
the Middlebury database and 6 datasets from MIT datasets Liu et al. (2008), all of
them with ground truth, see Figure 3.10. The AAE and AEE Baker et al. (2010)

3Middlebury datasets. Available: http://vision.middlebury.edu/flow/data
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(d)

Figure 3.8: Results of Middlebury benchmark. The proposed method (IROF-TV) is high-
lighted. (a) Topmost methods according to the Average End-Point Error (AEE). (b) Topmost
methods according to the Average Normalized Interpolation Error (AAE). (c) Topmost methods
according to the Average Normalized Interpolation Error (AIE). (d) Topmost methods according
to the Average Normalized Interpolation Error (ANIE). Snapshots from Middlebury benchmark
website.

between the ground-truth and the results obtained by Brox et al. (2004), Bruhn
et al. (2005), Zimmer et al. (2009) and the proposed method have been calculated.
Table 7.1 shows the AAE, in turn table 3.2 shows AEE for some of the image se-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.9: Results for some Middlebury sequences with corresponding ground-truth. (1st
column) and (2nd column) Frames 10 and 11. (3rd column) Ground-truths (black points corre-
spond to pixels without available ground-truth). (4th column) Optical flow fields obtained with
the proposed approach.

quences from Middlebury datasets (Urban3, Dimetrodon) and from MIT datasets
(Car, Table). Qualitative results are shown in Figure 3.10. Parameter γ = 10 is
a constant for all the compared methods, while α, σ1 and σ2 are experimentally
tuned parameters. The experimental parameters of the proposed approach have
been set to: α = 15, σ1 = 2.0 and σ2 = 0.5 for the Middlebury sequences, and
α = 25, σ1 = 1.5 and σ2 = 0.6 for the MIT sequences. In addition, the SNR
threshold τ has been set to 25.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.10: Results for some Middlebury and MIT sequences with associated ground-truths.
(1st column) and (2nd Column) Two consecutive frames. (3th Column) Ground-truths. (4th
Column) Optical flow fields obtained with the proposed approach.

The consistency of the computed optical flow has been tested by calculating
the histogram of Angular Error (AE) and the histogram of Endpoint Error (EE)
between the computed optical flow and the ground-truth. Figure 3.11 shows the
histograms of AE and EE for two different sequences from MIT datasets: Car
and Table. The histograms of AE and EE have been calculated for both Zimmer
et al. (2009) and the proposed method. As can be observed in Figure 3.11, the
proposed method yields a result more similar to the ground-truth than Zimmer
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Methods URBAN Dim CAR TABLE
Brox et al. (2004) 0.259 0.232 0.143 0.353

Bruhn et al. (2005) 0.565 0.352 0.226 0.877
Zimmer et al. (2009) 0.144 0.195 0.209 0.347

Proposed 0.141 0.125 0.094 0.225

Table 3.1: AEE for some sequences from the Middlebury and MIT databases.

Methods URBAN Dim CAR TABLE
Brox et al. (2004) 03.882 04.487 04.871 04.121

Bruhn et al. (2005) 4.264 05.270 04.659 04.415
Zimmer et al. (2009) 03.105 03.358 03.153 03.537

Proposed 02.824 02.934 02.415 03.4721

Table 3.2: AAE for some sequences from the Middlebury and MIT databases.

et al. (2009).

Another qualitative comparison has been carried out by adding Gaussian noise
with zero mean and different standard deviations (σn = 0 : 25). Figure 3.12 shows
the AAE and AEE between the ground-truth and the flow fields obtained with
both Zimmer et al. (2009) and the proposed technique for the Urban3 sequence
under different noise levels. As can be seen in Figure 3.12, the AEE does not
experimentally increase with the different levels of noise. In turn, the AAE is not
affected at low levels of noise, σn < 10, but it deteriorates at the highest levels,
σn > 10. In addition, the result obtained with Zimmer et al. (2009) is much more
sensitive to noise than the one obtained with the proposed method.

Figure 3.13 visually compares the results for three examples of small objects in
the Army sequence with the optical flow methods that have a rank in AEE better
than the one achieved by the proposed method in Middlebury benchmark (Figure
3.8): Xu et al. (2012), Sun et al. (2010b), Volz et al. (2011), Jia et al. (2011),
Sun et al. (2010a). Figure 3.14 shows that the flow estimated with the proposed
method contains more motion details than the other techniques, and detects the
contours of small objects better than them. Furthermore, Figure 3.16 visually
compares the flow fields estimated for two regions within the Yosemite sequence
with the same aforementioned optical flow methods, whose results are shown in
Figure 3.15. The flow field estimated with the proposed technique has a smoother
transition between different regions in the flow field.

The proposed method has also been tested upon two real image sequences:
OPEN-HOTEL (Figure 3.17) and STREET-CROSS (Figure 3.18). Both sequences
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: (a) Histogram of AE for the CAR sequence with the proposed method. (b)
Histogram of EE for the CAR sequence with the proposed method. (c) Histogram of AE for
the CAR sequence with Zimmer et al. (2009). (d) Histogram of EE for the CAR sequence with
Zimmer et al. (2009). (e) Histogram of AE for the TABLE sequence with the proposed method.
(f) Histogram of EE for the TABLE sequence with the proposed method. (g) Histogram of
AE for the TABLE sequence with Zimmer et al. (2009). (h) Histogram of EE for the TABLE
sequence with Zimmer et al. (2009).

are unstructured crowded scenes. The parameters of the proposed method have
experimentally been set to: σ1 = 1.5, σ2 = 0.5, α = 20, γ = 75 and τ = 25
. Figure 3.17 (row 1) shows four consecutive frames from the OPEN-HOTEL
sequence. In Figure 3.17(row 2), the resulting dense optical flow fields for those
frames are shown. In order to visualize the flow fields, a color coding has been
used such that color encodes the flow direction, while brightness indicates the
magnitude, as shown in Figure 3.17 (h). Figure 3.18 shows four consecutive frames
from the STREET-CROSS sequence and their resulting optical flow fields. As
can be appreciated, the optical flow fields obtained with the proposed technique
are very accurate both in direction and magnitude. Although, some artifacts are
present, the structure and appearance of the individuals in the scene is remarkable.
Furthermore, the motion boundaries are fairly sharp. Accordingly, those flow fields
could directly be used for image motion segmentation as a realistic application.
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Figure 3.12: Stability of the proposed method for different noise levels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.13: Resulting flow fields with the proposed method and the techniques with better
AEE according to Middlebury benchmark. (a) Reference image in the Army sequence. (b)
Ground-truth. (c) Flow field obtained with the proposed method. (d) Flow field obtained with
Xu et al. (2012). (e) Flow field obtained with Sun et al. (2010b). (f) Flow field obtained with
Volz et al. (2011). (g) Flow field obtained with Jia et al. (2011). (h) Flow field obtained with
Sun et al. (2010a).
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 3.14: Detail images of the resulting optical flow for the Army sequence with the proposed
method and the techniques with better AEE according to Middelbury benchmark. (a, h, o)
Ground-truth (b, i, p) Proposed method. (c, j, q) Method proposed in Xu et al. (2012). (d, k,
r) Method proposed in Sun et al. (2010b). (e, l, s) Method proposed in Volz et al. (2011). (f, m,
t) Method proposed in Jia et al. (2011). (g, n, u) Method proposed in Sun et al. (2010a).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: Resulting flow fields with the proposed method and the techniques with better
AEE according to Middlebury benchmark. (a) Reference image in the Yosemite sequence. (b)
Ground-truth. (c) Flow field obtained with the proposed method. (d) Method proposed in Xu
et al. (2012). (d, k, r) Method proposed in Sun et al. (2010b). (e, l, s) Method proposed in Volz
et al. (2011). (f, m, t) Method proposed in Jia et al. (2011). (g, n, u) Method proposed in Sun
et al. (2010a).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 3.16: Detail images of the resulting optical flow for the Yosemite sequence with the
proposed method and the techniques with better AEE according to Middlebury benchmark. (a,
h) Ground-truth (b, i) Proposed method. (c, j) Method proposed in Xu et al. (2012). (d, k)
Method proposed in Sun et al. (2010b). (e, l) Method proposed in Volz et al. (2011). (f, m)
Method proposed in Jia et al. (2011). (g, n) Method proposed in Sun et al. (2010a).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: (a, b, c, d) Application of the proposed method to four consecutive frames (625,
626, 627 and 628) of the OPEN-HOTEL sequence. (e) Resulting optical flow field between frames
625 and 626. (f) Resulting optical flow field between frames 626 and 627. (g) Resulting optical
flow field between frames 627 and 628. (h) Color coding chart.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.18: (a, b, c, d) Application of the proposed method to four consecutive frames (63,
64, 65 and 66) of the STREET-CROSS sequence. (e) Resulting optical flow field between frames
63 and 64. (f) Resulting optical flow field between frames 64 and 65. (g) Resulting optical flow
field between frames 65 and 66. (h) Color coding chart.
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Chapter 4
Robust Optical Flow Estimation Based
on Stick Tensor Voting

In order to get a robust video surveillance systems, a fast and robust optical flow
approach used for a motion detection is required. Variational optical flow tech-
niques allow the estimation of flow fields from spatio-temporal derivatives. They
are based on minimizing a functional that contains a data term and a regulariza-
tion term. Recently, numerous approaches have been presented for improving the
accuracy of the estimated flow fields. Among them, tensor voting has been shown
to be particularly effective in the preservation of flow discontinuities. This chapter
presents an adaptation of the data term by using anisotropic stick tensor voting in
order to gain robustness against noise and outliers with significantly lower compu-
tational cost than (full) tensor voting that proposed in Chapter 3. In addition, an
anisotropic complementary smoothness term depending on directional information
estimated through stick tensor voting is utilized in order to preserve discontinuity
capabilities of the estimated flow fields. Finally, a weighted non-local term that
depends on both the estimated directional information and the occlusion state of
pixels is integrated during the optimization process in order to denoise the final
flow field. The proposed approach yields state-of-the-art results on the Middlebury
benchmark.

The rest of this chapter is organized as follows. Section 4.1 introduces to the
related work. The complexity of using full tensor voting is discussed in Section
4.2. The adapted variational optical flow model based on stick tensor voting is
detailed in Section 4.3. The improved model based on a weighted non-local term
using the saliency of image gradients and the occlusion state of pixels is described
in Section 4.4. Finally, experimental results are shown and discussed in Section
4.5, including a comparison with state-of-the-art optical flow methods using the
Middlebury benchmark.
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4.1 Introduction

Optical flow is an important visual cue for representing the motion information
associated with the objects present in a given sequence of images. Many methods
have been proposed for estimating an optical flow field based on differential tech-
niques Baker et al. (2010). They are able to estimate flow fields even in regions
where other techniques would generate voids. These techniques can be classified
into local and global methods. Local methods (e.g., Lucas and Kanade (1981))
assume a uniform optical flow around each pixel and estimate it by applying least
squares. These methods yield flow fields except in homogeneous regions with null
gradients. In turn, global methods (e.g., Horn and Schunck (1981)) minimize a
function that forces the smoothness of the resulting flow field over the whole im-
age, thus yielding dense flow fields even in homogeneous regions. However, they
are more sensitive to noise since they do not filter the input gradients.

Furthermore, the most recent schemes apply a coarse-to-fine approach in order
to cope with large motions and to improve the accuracy of the estimated flow
fields as explained in Chapter 3. This approach estimates the optical flow fields
using Gaussian pyramids corresponding to the input images, the latter being the
fine scale images in those pyramids. Most top ranking methods in the Middlebury
benchmark1 apply differential techniques with a coarse-to-fine approach.

Related work

Recently, Brox et al. (2004) combined the classical brightness constancy assump-
tion introduced in Horn and Schunck (1981) with the higher-order gradient con-
stancy assumption Schnorr (1994) and a coarse-to-fine approach to improve the
accuracy of the estimated flow fields, as well as to cope with illumination changes.
However, the method proposed in Brox et al. (2004) does not filter the input
gradients, yielding flow fields sensitive to noise. Alternatively, Bruhn et al. (2005)
suggested a combination of the local method proposed in Lucas and Kanade (1981)
by applying the 2D Gaussian filtering with structure tensors suggested in Lucas
and Kanade (1981)Bigun et al. (1991) with the global method proposed in Horn
and Schunck (1981) in order to obtain accurate flow fields less sensitive to image
noise. Unfortunately, Gaussian filters are isotropic and do not preserve discontinu-
ities. This may lead to the propagation of incorrect information at pixels located
between different image regions, such as object boundaries, or between objects
that move along different directions.

More recently, Zimmer et al. (2009) presented a robust data term that uses the
HSV color space to avoid illumination, shading and shadow conditions. Moreover,

1Middlebury’s website: vision.middlebury.edu/flow.
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they suggested an anisotropic complementary regularization term that merges an
image-driven and a flow-driven regularizer Nagel and Enkelmann (1986) and We-
ickert and Schnórr (2001) in order to preserve flow discontinuities. In addition,
Zimmer et al. (2011) combined the variational optical flow technique proposed in
Zimmer et al. (2009) with a simple method for automatically determining the opti-
mal smoothness weight. The approaches proposed in Zimmer et al. (2009)Zimmer
et al. (2011) generate accurate and dense optical flow fields, but they still suf-
fer from inaccurate object boundaries, since the regularization term introduced
in Zimmer et al. (2009)Zimmer et al. (2011) depends on the integration of local in-
formation through Gaussian convolution, which blurs object boundaries and small
details.

Furthermore, Sand and Teller (2008) proposed to combine long-term feature
tracking with dense flow fields. Their optical flow approach uses the same global
smoothness value suggested in Brox et al. (2004) and adds a local parameter that
specifies the smoothness criterion in a gradient dependent manner, in such a way
that image regions with edges and texture will have lower local smoothness than
textureless regions, thus preserving flow field discontinuities.

In turn, Chapter 3 (Rashwan et al. (2011) and Rashwan et al. (2012)) proposed
a discontinuity-preserving filtering stage based on tensor voting with an adaptation
of the complementary regularization term proposed in Zimmer et al. (2009) based
on directional information obtained from tensor voting. This technique illustrated
in Chapter 3 estimates accurate dense optical flow fields by merging the benefits
of both local and global differential methods using robust tensor voting. However,
tensor voting is a time consuming process due to its three constituent stages:
stick, plate and ball tensor voting. Plate and ball tensor voting are the most
expensive stages and responsible for dealing with image discontinuities. Both
stages must be applied to all pixels, despite only a fraction of them usually belong
to discontinuities.

In addition, Arredondo et al. (2004) proposed an approach to estimate optical
flow fields using textural image information estimated using matrices designed to
act as matched filters for certain types of quasiperiodic variations. Optical flow
fields are then independently estimated in both intensity and textural images and
then combined by weighting them according to the strength of the gradients in
the neighborhood used to estimate the flow fields. Furthermore, Xu et al. (2012)
presented an accurate optical flow estimation method that computes extensive
initial flow vectors at each image level thus making the optimization process less
dependent on the results from the coarser levels.

Moreover, Werlberger et al. (2009) proposed an anisotropic image-driven reg-
ularization based on the Huber norm. Image-driven diffusion filters regularize the
flow field along image edges but not across them Weickert and Schnórr (2001).
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Thus, they are prone to generating artifacts in textured image regions. In turn,
Werlberger et al. (2010) applies non-local total variation regularization. Further-
more, their data term is based on patch-based normalized cross-correlation in or-
der to gain robustness against illumination changes. However, their optimization
operates on each individual pairwise term (data term and regularization term)
yielding a high computational complexity, and their non-local term depends on
color-similarities and on spatial distances between pixels. Unfortunately, the re-
liance on color similarities of the non-local term make the latter being influenced
by textured, noisy pixels and illumination changes, leading to inaccurate flow fields
and to blurred object boundaries.

Alternatively, Krähenbühl and Koltun (2012) introduces long-range temporal
constraints in order to improve the scene flow consistency both visually and quan-
titatively. However, it depends on the image-driven diffusion tensor proposed in
Werlberger et al. (2009), which yields artifacts with textured images. In turn,
Hung et al. (2012) incorporated the traditional optimization model proposed in
Werlberger et al. (2010) with an accelerated non-local regularization term that
also depends on the colors and positions of pixels. In addition, Sun et al. (2010a)
proposed an algorithm based on the classical optimization function introduced in
Horn and Schunck (1981) with a weighted non-local term dependent on the color
distance and spatial distance between pixels, which can be minimized as suggested
in Li and Osher (2009) in order to denoise the resulting flow field while preserving
object details. However, that non-local term dependent on the difference of inten-
sity values is again influenced by textured, noisy pixels and illumination changes.

This chapter presents a robust algorithm for estimating accurate flow fields.
The first contribution consists of replacing the discontinuity-preserving filtering
stage based on tensor voting previously proposed in Chapter 3 by a similar stage
exclusively based on stick tensor voting in order to reduce computational cost. The
anisotropic stick tensor is used in the data term to make it robust against noise and
outliers, as well as in the smoothness term in order to preserve the discontinuities
of the estimated flow field.

Furthermore, the second contribution of this chapter aims at compensating for
the loss of accuracy due to the suppression of both the plate and ball tensor voting.
This is done by modifying the optimization function with an additional weighted
non-local term that is similar to the one proposed in Sun et al. (2010a), although
with its weights defined according to both saliency information obtained after the
stick tensor voting process and the occlusion state of pixels, the latter as proposed
in Sand and Teller (2008).
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4.2 Complexity of tensor voting

The tensor voting process consists of stick, plate and ball tensor voting stages.
Stick tensors are used in tensor voting to encode the orientation of the surface
normal at every point. Tensor voting handles stick tensors through the so-called
stick tensor voting, SV (v, Sq). Stick tensor voting is based on the hypothesis that
the normals of neighboring points lying on a same surface change smoothly (see
Figure 4.1). Thus, the stick tensor voting proposed in Medioni et al. (2000) can
be written as:

SV (v, Sq) = fs[R2θSqR
T
2θ], (4.1)

where fs is a decaying function, θ is the angle shown in Figure 4.1 and R2θ a
rotation with respect to the axis v × (Sqv). Function fs was defined in (3.10) (see
Tong et al., 2001):

fs(v, Sq) =

{
e−

l2+bk2

σ2 if θ ≤ π/4
0 otherwise,

(4.2)

where σ is the standard deviation of a Gaussian function that modulates the
influence of q over p based on their Euclidean distance, l is the length of the
arc of circle between p and q, such that its endpoint tangents are orthogonal to
SV (v, Sq) and Sq, respectively (see Figure 4.1), k is the curvature of the arc and
b is a function of σ as described in Tong et al. (2001). Under this assumption,
the voter propagates its gradient to the votee if the angle θ between them is lower
than or equal to 45o (see Rashwan et al., 2012).

As shown in (4.2), the complexity of stick tensor voting mainly comes from the
computation of an arcsine required to calculate l and the exponential required by
(3.10). In addition, these computations are not necessary for θ ≤ 45o

Furthermore, tensor voting utilizes plate tensors to encode edges. Ideally, if
a point belongs to an edge, the third eigenvector of its associated tensor must
be aligned with the tangent to the edge at that point, and the corresponding
eigenvalue, λ3, must be zero. Tensor voting handles plate tensors through the so-
called plate tensor voting, PV (v, Pq). The plate vote is defined as the aggregation
of the stick votes cast by all the stick tensors Spq(φ) in which a specific plate Pq
can be decomposed, Figure 4.2, where φ is a rotation angle with respect to an axis
parallel to the third eigenvector of tensor Pq, and λ1 is the biggest eigenvalue of
Pq:

PV (v, Pq) =
λ1

π

∫ 2π

0

SV (v, SPq(φ))dφ. (4.3)

In turn, ball tensors are utilized by tensor voting to encode either junctions
or noise. Tensor voting handles ball tensors through the so-called ball tensor
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C

l

2θ

q

p
θSV (v, Sq)

v

Sq

Figure 4.1: Stick tensor voting. A stick Sq casts a stick vote SV (v, Sq) to p.

voting, BV (v,Bq). Ball tensor voting is defined similarly to plate tensor voting as
the integration of stick votes cast by all the stick tensors SBq(φ1, φ2) in which a
specific ball Bq can be decomposed:

BV (v,Bq) =
3λ1

4π

∫

φ1,φ2

SV (v, SBq(φ1, φ2))dφ1dφ2, (4.4)

where SBq(φ1, φ2) is a unitary stick tensor oriented in the direction (1, φ1, φ2) in
spherical coordinates.

As discussed above, plate and ball fields are respectively obtained by integrating
stick spanning disks and spheres Tong et al. (2001) and Medioni et al. (2000). Thus,
a significant computation time is necessary for the plate and ball voting stages,
which are beneficial for preserving edges and junctions, despite those features
usually correspond to a fraction of the image pixels. In Rashwan et al. (2011)
and Rashwan et al. (2012), the rotation angle φ used for plate tensor voting (4.3)
was discretized into 30o steps. Therefore, plate tensor voting was obtained by
integrating 12 rotated stick tensors for every neighbor of a point p. Likewise, the
ball tensor voting was aggregated from 144 rotated stick tensors for every neighbor
of a point p. For instance, if the window size used for voting is 9x9 pixels, the
full tensor voting process requires 80 votes for stick tensor voting, 80x12 votes
for plate tensor voting and 80x144 votes for ball tensor voting. As a result, the
full tensor voting (stick, plate and ball) is a computationally intensive process. In
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e1

e3
e2

q

p

Pq

PV (v, Pq)

v

θ

Figure 4.2: Plate tensor voting. Aggregation of stick votes cast to p by all the stick tensors
belonging to the plate around a point q.

order to speed up this process, this chapter proposes the exclusive application of
stick tensor voting in order to filter and smooth the input image gradients instead
of applying full tensor voting as suggested in Rashwan et al. (2011, 2012).

For the aforementioned reasons, (3.1) is simplified in such a way that the result
of applying stick tensor voting at pixel p is a tensor defined as:

STV (p) =
∑

q∈Θ(p)

SV (v, Sq). (4.5)

STV (p) can be decomposed into a stick tensor Sp, a plate tensor Pp and a ball
tensor Bp, as illustrated in Figure 3.2 using (3.2). As defined in (3.2), eigenvector e1

represents the estimated normal for points lying on a surface, while e3 represents
the most likely tangent direction of a curve for points belonging to that curve.
Furthermore, three saliency measurements are defined: surfaceness (S1 = λ1−λ2)
edginess, (S2 = λ2−λ3), and junctionness (S3 = λ3) (see Tong et al., 2001, Medioni
et al., 2000).

4.3 Adapted variational optical flow model

After applying the pre-segmentation stage of the input spatio-temporal gradients
illustrated in Chapter 3.4, the proposed method requires the computation of nine

69

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



70
Chapter 4. Robust Optical Flow Estimation Based on Stick Tensor

Voting

image gradients for every pixel of a given color image. These gradients are filtered
through separate stick tensor voting processes according to (4.5): the first spatio-
temporal derivatives ∇3I

k = (Ikx , I
k
y , I

k
t )T , the second spatio-temporal derivatives

for the horizontal direction x,∇3I
k
x = (Ikxx, I

k
xy, I

k
xt)

T , and the third spatio-temporal
derivatives for the vertical direction y, ∇3I

k
y = (Ikyx, I

k
yy, I

k
yt)

T , with k ∈ {0, 1, 2}
being the color channel. For every pixel, the nine gradients ∇3I

k, ∇3I
k
x and ∇3I

k
y

are encoded as nine 3D stick tensors and used as initial input tensors for the stick
voting process.

As a result, nine tensors for every pixel are obtained. Furthermore, after an-
alyzing the resulting tensors, nine filtered gradient vectors are obtained for every
pixel, which correspond to the eigenvectors associated with the biggest eigenval-

ues λ1: ˆ∇3Ik, ˆ∇3Ikx and ˆ∇3Iky , with k ∈ {0, 1, 2}. The nine resulting tensors are
aggregated in a joint tensor ST as:

ST =
1

3

2∑

k=0

(STV (∇3I
k) + STV (∇3I

k
x) + STV (∇3I

k
y )). (4.6)

The surfaceness saliency measure, S1, for every pixel p is computed as:

S1(p) = λ1(p)− λ2(p), (4.7)

where λ1(p) and λ2(p) are the first and second eigenvalues of the resulting tensor
ST (p) defined in (4.6), respectively.

The proposed definition of both the adapted data term and the adapted regu-
larization term is described below.

4.3.1 Adapted data term

In this chapter, the motion tensor S in (3.25) is replaced by the result of applying
stick tensor voting (4.5) to the neighborhood of p. Thus, a data term combining
the brightness and the gradient constancy assumptions using stick tensor voting
can be defined as a direct adaptation of (3.23):

M(w, I) = wT [STV (∇3I) + γ(STV (∇3Ix)

+ STV (∇3Iy))]w, (4.8)

The symmetric tensor finally obtained as a result of the stick voting processes
for ∇3I, ∇3Ix and ∇3Iy is the direct adaptation of (3.25):

S = STV (∇3I) + γ[STV (∇3Ix) + STV (∇3Iy)]. (4.9)
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The final data term that is applicable to HSV color images is the corresponding
adaptation of (3.27):

M(w, I) =
2∑

k=0

ΨM(wSSkw), (4.10)

where Sk is (4.9) applied to the k − th color channel of I.

4.3.2 Adapted regularization term

The complementary regularizer introduced in Zimmer et al. (2009, 2011), and
later adapted in Chapter 3.6.2 (see Rashwan et al., 2011, 2012), has been further
adapted to stick tensor voting in this chapter. In particular, the regularization
term R defined in (3.29) has been reformulated as:

R =
2∑

k=0

[STV (∇2I
k) + γ(STV (∇2I

k
x) + STV (∇2I

k
y ))]. (4.11)

The first two eigenvectors (e1, e2) of tensor R are then used to compute the
regularization term by applying (3.30) as illustrated in Chapter 3.6.2.

4.4 Improved optical flow model

The only reliance on stick tensor voting in both the data and the smoothness
terms causes the loss of some of the benefits of full tensor voting for properly
preserving edges and object boundaries and details in the estimated flow fields.
In order to diminish the negative impact on flow discontinuities of the exclusive
use of stick tensor voting, it is necessary to introduce a non-local term (NL) (a
practical median filter) similar to the one proposed in Sun et al. (2010a) to denoise
the flow field.

However, applying a median filter in a large neighborhood has negative effects
on edges and corners, since they are affected by their surroundings, leading to
oversmoothing. Thus, it is necessary to ensure that pixels only propagate their
information within their same regions, provided they do not belong to edges and
corners. In practice, the non-local term proposed in Sun et al. (2010a) has been
modified by introducing a weighting function H, which gives high values for pixels
belonging to the same surface (region) and low values for pixels corresponding to
edges, corners and thin structures.

A weighting function H was proposed in Sun et al. (2010a) for all image pixels
based on their spatial distance and their difference of intensities:
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H(x, y, x́, ý) = exp(
| x− x́ |2 + | y − ý |2

2σ2
p

− | I(x, y)− I(x́, ý) |2
2σ2

I

), (4.12)

where (x́, ý) is the spatial position of any pixel ṕ belonging to a neighborhood of
pixel p = (x, y) in a possibly large region Nx,y, I(x, y) and I(x́, ý) are the intensity
values of (x́, ý) and (x, y), respectively, and σp and σI are standard deviations.

As shown in (4.12), the weighting functionH partially depends on the difference
of intensity values. As a result, this function can be influenced by textured pixels,
noisy pixels, and shadows and illumination changes, as shown in Figure 4.3. Thus,
it negatively affects object motion details in the estimated flow fields. In this
chapter, the aforementioned weighting function is redefined as the complement of
the normalized saliency of surfaceness, 1−S1(p), which is obtained from the stick
tensor voting stage for every image gradient, as shown in Figure 4.3 and described
in Section 4.3 (4.7).

Most current optical flow estimation approaches do not handle occlusions, thus
yielding artifacts particularly near moving occlusion boundaries. In this chapter,
those occlusion effects have been addressed by using the flow divergence and by
considering temporal changes between consecutive frames, as suggested in Sand
and Teller (2008). This is beneficial for extracting a set of candidate occluding and
disoccluding points, which convey information about boundaries that respectively
appear and disappear.

In particular, the flow divergence is defined as:

Div(p) =
∂

∂x
u+

∂

∂y
v. (4.13)

The occlusion state of pixels, O(p), is estimated by combining the flow divergence
and the pixel projection difference, as proposed in Sand and Teller (2008), in order
to identify occluded pixels. Based on the latter, the occluding boundary function,
d(p), is defined in Sand and Teller (2008) as:

d(p) =

{
Div(p) Div(p) ≤ 0
0 otherwise.

(4.14)

In turn, the pixel projection difference, e(p), is defined as:

e(p) = I(x, y, t)− I(x+ u, y + v, t+ dt) (4.15)

Finally, the pixel’s occlusion state can be expressed as a combination of both d(p)
and e(p) by using zero-mean, non-normalized Gaussian functions Sand and Teller
(2008):

O(p) = NG(e(p), σe)NG(d(p), σd), (4.16)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: (a,d,g) Original frames of Middlebury sequences Venus, Urban2 and Grove2. (b,e,h)
Complement of the normalized saliency of surfaceness, 1 − S1. (c,f,i) Weighting function H
suggested in Sun et al. (2010a).

where σe and σd are standard deviations experimentally set to 0.5 and 10, respec-
tively, andO(p) is close to zero for occluded pixels and close to one for non-occluded
pixels (Figure 4.4).

Thus, a weighting function $p,ṕ is introduced in the proposed non-local term
to take into account the occlusion state of pixels, O(p), and the complement of the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: (a,c,e) Original frames of Middlebury sequences Venus, Urban2 and Grove2. (b,d,f)
Resulting occlusion state O(p) as suggested in Sand and Teller (2008).
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normalized saliency of surfaceness, 1− S1(p):

$p,ṕ = (1− S1(p))
O(ṕ)

O(p)
. (4.17)

Thus, the functional in (3.11) is complemented with a weighted non-local term,
which is a particular median filter within a region of an auxiliary flow field (û, v̂)
defined below. The optimization process is thus redefined as:

min
u,v,û,v̂

EI(u, v, û, v̂) =
∑

x,y∈Ω

M(u, v, I) + αV (∇2u,∇2v, I)

+ λ(‖ u− û ‖2 + ‖ v − v̂ ‖2)

+
∑

(x,y)

∑

(x́,ý)∈Nx,y

$p,ṕ(|ûx,y − ûx́,ý|+

|v̂x,y − v̂x́,ý|), (4.18)

λ is the weight of the coupling term that, in practice, is small or steadily increased
from small values (i.e., changed logarithmically from 10−2 to 1) for each step in
the alternating optimizations of (4.18) (see Sun et al. (2010a)). In turn, û and v̂
are the resulting flow fields obtained by minimizing the weighted non-local term as
suggested in Sun et al. (2010a). Moreover, ûp and v̂p are the refined horizontal and
vertical components of the flow vector at point p = (x, y), which are formulated
as described in Li and Osher (2009):

û(h+1)
p = median{Neighbours(h)

u ∪Datau}
v̂(h+1)
p = median{Neighbours(h)

v ∪Datav}, (4.19)

where h is the number of steps of the alternating optimization,
Neighbours

(h)
u = {û(h)

ṕ } and Neighbours
(h)
v = {v̂(h)

ṕ } for ṕ ∈ Nx,y, with û(0) = u

and v̂(0) = v. Datau is the set of weighted values of up within Nx,y:

Datau = {up, up ±
$p,ṕ

λ
, up ±

2$p,ṕ

λ
, ...

up ±
|Nx,y|$p,ṕ

2λ
}, (4.20)

where |Nx,y| is the number of neighbours of a certain point p. Similarly, Datav is
defined as:

Datav = {vp, vp ±
$p,ṕ

λ
, vp ±

2$p,ṕ

λ
, ...

vp ±
|Nx,y|$p,ṕ

2λ
}, (4.21)
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In order to minimize (4.18), an alternating optimization process is performed
by defining two functionals, EI1 and EI2, as proposed in Sun et al. (2010a):

EI1(u, v, û, v̂) =
∑

x,y∈Ω

M(u, v, I) + αV (∇2u,∇2v, I)

+ λ(‖ u− û ‖2 + ‖ v − v̂ ‖2). (4.22)

EI2(u, v, û, v̂) =λ(‖ u− û ‖2 + ‖ v − v̂ ‖2)

+
∑

x,y

∑

(x́,ý)∈Nx,y

$p,ṕ(|ûx,y − ûx́,ý|+

|v̂x,y − v̂x́,ý|). (4.23)

A multi-scale, coarse-to-fine scheme is used by most modern algorithms for
optical flow estimation in order to support both small and large motion and to
improve the accuracy of flow fields. This approach relies on estimating the optical
flow in a Gaussian pyramid, where the bottom image is the original image at the
finest scale, and the levels above are warped representations of the images based
on the flow estimated at every preceding scale Brox et al. (2004), Bruhn et al.
(2005).

At each pyramid level, the alternating optimization process first holds û and
v̂ constant and minimizes the linear system corresponding to the Euler-Lagrange
equations of (4.22) with respect to u and v (initially set to zero) by using a SOR
type solver with alternating line relaxation Press et al. (1993). Subsequently, by
fixing u and v, (4.23) is minimized with respect to û and v̂ (initially set to u and
v) based on the median formulation proposed in Li and Osher (2009) as shown in
(4.19). The alternating optimizations are repeated h steps at every pyramid level
to denoise the resulting flow fields. The weighting parameter λ of the coupling
term is changed logarithmically (in this work from 10−2 to 1), as proposed in Sun
et al. (2010a). In the end, the resulting û and v̂ are the horizontal and vertical
components of the sought optical flow field.

4.5 Experimental results

In order to evaluate the performance of the proposed variational optical flow
method, experiments on the widely used Middlebury optical flow data sets have
been performed. The parameters of the proposed method have been experimen-
tally set to: the standard deviation σ1 = 1.50 for filtering the homogeneous regions
based on stick tensor voting, the standard deviation σ2 = 0.75 for textured regions,
α = 15 and γ = 80. Moreover, the SNR threshold τ has been set to 25 Rashwan
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et al. (2011, 2012). Regarding the coarse-to-fine scheme, the rescaling factor has
been set to 0.90.

According to the Middlebury benchmark2, the proposed technique, referred to
as IROF++, is in the 1th position out of 64 methods with respect to the Average
End-Point Error (AEE), in the 3th place regarding the Average Angular Error
(AAE), in the 6th position with respect to the Average Interpolation Error and
in the 4th position with respect to the Average Normalized Interpolation Error,
Figure 4.5.

In order to separately assess the different contributions of this chapter, the
resulting flow fields for the following algorithms have been computed: (a) the
baseline method proposed in Rashwan et al. (2012), which uses stick, plate and
ball tensor voting plus the discontinuity -preserving stage (TV+DS), (b) the pro-
posed method with stick tensor voting alone (ST), (c) the proposed method with
stick tensor voting and the discontinuity-preserving stage proposed in Rashwan
et al. (2011, 2012) (ST+DS), (d) the proposed method with stick tensor voting,
the discontinuity-preserving stage, and the weighted non-local term proposed in
Sun et al. (2010a) (ST+DS+SW), (e) the proposed method with stick tensor vot-
ing plus the proposed variation of the aforementioned weighted non-local term by
using surfaceness saliency as defined in (4.17) (ST+NW), and (f) the proposed
method with stick tensor voting, the discontinuity-preserving stage, and the pro-
posed variation of the aforementioned weighted non-local term by using surfaceness
saliency (ST+DS+NW).

The proposed techniques have been tested upon 12 datasets from the Mid-
dlebury database, all of them with corresponding ground-truths. The baseline
method Rashwan et al. (2012) and the four aforementioned variations of the pro-
posed technique have been tested by calculating the average end-point error AEE
(table 4.1) and the average angular error AAE (table 4.2). The proposed method
with stick tensor voting and the weighted non-local term based on the surfaceness
saliency yields the lowest error among the five variations.

Qualitative results of some of these experiments are shown in Figure 4.7. The
flow fields obtained by adapting the data and regularization terms with stick tensor
voting present artifacts and deformations near discontinuities and occluded bound-
aries. Figure 4.6(row 1) shows two examples of blurring edges in the Dimetrodon
sequence from the Middlebury datasets. Thus, using a weighted non-local term
is useful to avoid smoothing near discontinuities and to preserve edges and object
boundaries, as well as to prevent smoothing near occluded boundaries, as shown
in Figure 4.7 (row 5 and 6) for the proposed method with the weighted non-local
term proposed in Sun et al. (2010a) and its adaptation according to (4.17), respec-

2The present IROF++ ranking is related to the submission date (Feb. 2012). Results can be
seen at: http://vision.middlebury.edu/flow/eval/
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Average 
endpoint 

error avg.

Army
(Hidden texture)

GT   im0   im1  

Mequon
(Hidden texture)

GT   im0   im1  

Schefflera
(Hidden texture)

GT   im0   im1  

Wooden
(Hidden texture)

GT   im0   im1  

Grove
(Synthetic)

GT   im0   im1  

Urban
(Synthetic)

GT   im0   im1  

Yosemite
(Synthetic)

GT   im0   im1  

Teddy
(Stereo)

GT   im0   im1  

rank all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext

IROF++ [63] 7.3 0.08 3 0.23 4 0.07 6 0.21 14 0.68 13 0.17 16 0.28 9 0.63 7 0.19 15 0.15 6 0.73 7 0.09 9 0.60 3 0.89 3 0.42 5 0.43 9 1.08 9 0.31 9 0.10 4 0.12 5 0.12 3 0.47 4 0.98 4 0.68 8 

MDP-Flow2 [40] 7.6 0.09 11 0.23 4 0.07 6 0.16 2 0.52 1 0.13 3 0.22 2 0.46 3 0.17 6 0.17 17 0.93 25 0.09 9 0.65 6 0.98 7 0.43 6 0.29 1 0.91 3 0.26 3 0.11 8 0.13 12 0.17 10 0.51 12 1.11 14 0.72 11 

(a)

Average 
angle 
error avg.

Army
(Hidden texture)

GT   im0   im1  

Mequon
(Hidden texture)

GT   im0   im1  

Schefflera
(Hidden texture)

GT   im0   im1  

Wooden
(Hidden texture)

GT   im0   im1  

Grove
(Synthetic)

GT   im0   im1  

Urban
(Synthetic)

GT   im0   im1  

Yosemite
(Synthetic)

GT   im0   im1  

Teddy
(Stereo)

GT   im0   im1  

rank all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext

nLayers [61] 5.5 2.80 1 7.42 1 2.20 1 2.71 12 7.24 2 2.55 25 2.61 2 6.24 2 2.45 23 2.30 3 12.7 4 1.16 3 2.30 1 3.02 1 1.70 1 2.62 2 6.95 1 2.09 2 2.29 14 3.46 9 1.89 15 1.38 2 3.06 3 1.29 2 

Layers++ [38] 8.6 3.11 3 8.22 3 2.79 12 2.43 6 7.02 1 2.24 13 2.43 1 5.77 1 2.18 14 2.13 1 9.71 1 1.15 2 2.35 2 3.02 1 1.96 2 3.81 17 11.4 14 3.22 20 2.74 27 4.01 29 2.35 23 1.45 3 3.05 2 1.79 8 

IROF++ [63] 9.0 3.17 7 8.69 5 2.61 6 2.79 13 9.61 13 2.33 17 3.43 8 8.86 10 2.38 19 2.87 10 14.8 10 1.52 12 2.74 4 3.57 4 2.19 5 3.20 6 9.70 7 2.71 8 1.96 7 3.45 8 1.22 5 1.80 9 4.06 9 2.50 15 

MDP-Flow2 [40] 9.3 3.32 12 8.76 8 2.85 14 2.18 1 7.47 4 1.85 5 2.77 4 6.95 4 2.06 11 3.25 20 17.3 24 1.59 18 2.87 9 3.73 7 2.32 7 3.15 4 11.1 13 2.65 4 2.04 8 3.64 15 1.60 8 1.88 10 4.49 11 1.49 3 

(b)

Average 
interpolation 

error avg.

Mequon
(Hidden texture)

im0   GT   im1  

Schefflera
(Hidden texture)

im0   GT   im1  

Urban
(Synthetic)

im0   GT   im1  

Teddy
(Stereo)

im0   GT   im1  

Backyard
(High-speed camera)

im0   GT   im1  

Basketball
(High-speed camera)

im0   GT   im1  

Dumptruck
(High-speed camera)

im0   GT   im1  

Evergreen
(High-speed camera)

im0   GT   im1  

rank all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext

MDP-Flow2 [40] 8.0 2.86 2 5.31 3 1.20 2 3.46 3 5.07 3 1.31 4 3.49 1 5.34 1 1.47 3 5.40 12 7.95 18 3.41 38 10.2 3 12.7 3 3.61 15 6.12 8 11.8 7 2.38 21 7.48 3 17.1 3 1.51 2 7.32 1 11.4 1 1.75 34 

CBF [12] 11.4 2.83 1 5.20 2 1.23 22 3.97 23 5.79 21 1.56 26 3.62 3 5.47 2 1.60 9 5.21 2 7.12 1 3.29 21 10.1 2 12.6 2 3.62 19 5.97 4 11.5 4 2.31 9 7.76 16 17.8 16 1.61 15 7.60 6 11.9 6 1.76 41 

Aniso. Huber-L1 [22] 13.7 2.95 8 5.44 7 1.24 28 4.42 40 6.27 40 1.67 38 3.79 11 5.70 7 1.50 4 5.31 4 7.42 6 3.24 18 11.1 21 14.0 25 3.61 15 5.91 3 11.4 3 2.24 1 7.60 8 17.3 5 1.51 2 7.62 8 11.9 6 1.73 21 

CLG-TV [51] 14.0 2.94 7 5.45 8 1.25 33 4.26 35 6.17 32 1.60 31 3.68 7 5.73 8 1.73 13 5.36 7 7.41 5 3.32 31 11.1 21 14.0 25 3.57 6 5.88 2 11.3 2 2.26 2 7.58 6 17.0 2 1.57 12 7.75 12 12.1 12 1.72 16 

IROF-TV [56] 14.5 3.07 18 5.91 23 1.23 22 3.71 12 5.47 11 1.40 13 3.70 8 6.27 23 1.58 8 5.25 3 7.60 8 3.17 7 11.0 17 13.9 19 4.47 53 6.37 21 12.4 22 2.30 7 7.79 18 17.9 18 1.50 1 7.63 9 11.9 6 1.66 1 

LCM-flow [65] 14.8 2.86 2 5.13 1 1.25 33 3.94 22 5.87 22 1.64 34 3.87 15 6.60 31 1.79 15 5.37 9 7.29 4 3.30 25 9.99 1 12.5 1 3.56 3 6.12 8 11.8 7 2.26 2 7.76 16 17.7 14 1.68 30 7.58 5 11.8 4 1.80 52 

IROF++ [63] 15.2 3.03 12 5.77 16 1.20 2 3.59 7 5.31 8 1.33 7 4.32 28 6.61 33 2.25 28 5.06 1 7.14 2 3.16 6 11.0 17 13.9 19 4.44 51 6.34 17 12.3 18 2.27 4 7.54 5 17.3 5 1.64 25 8.09 25 12.7 26 1.69 3 

Second-order prior [8] 16.9 2.91 6 5.39 6 1.24 28 4.26 35 6.21 35 1.56 26 3.82 13 6.34 25 1.62 10 5.39 11 7.68 10 3.04 2 11.1 21 13.9 19 3.59 8 6.14 10 11.9 10 2.31 9 7.61 9 17.4 10 1.63 23 7.90 17 12.4 19 1.78 43 

(c)

Average 
normalized interpolation

error avg.

Mequon
(Hidden texture)

im0   GT   im1  

Schefflera
(Hidden texture)

im0   GT   im1  

Urban
(Synthetic)

im0   GT   im1  

Teddy
(Stereo)

im0   GT   im1  

Backyard
(High-speed camera)

im0   GT   im1  

Basketball
(High-speed camera)

im0   GT   im1  

Dumptruck
(High-speed camera)

im0   GT   im1  

Evergreen
(High-speed camera)

im0   GT   im1  

rank all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext all disc untext

MDP-Flow2 [40] 8.7 0.58 1 0.71 1 0.64 1 0.63 4 0.87 4 0.59 1 0.92 5 1.37 8 0.85 7 0.98 17 1.14 32 1.24 17 0.98 1 0.95 1 1.15 4 1.13 20 1.60 24 1.08 17 0.68 6 1.23 6 0.68 9 0.75 1 1.06 1 0.64 20 

CLG-TV [51] 15.8 0.63 26 0.86 27 0.66 28 0.81 37 1.12 36 0.66 29 0.96 8 1.43 10 0.96 17 0.97 10 1.03 6 1.25 20 1.06 21 1.08 22 1.15 4 1.02 1 1.25 1 1.04 2 0.63 1 1.09 1 0.66 3 0.97 33 1.45 33 0.63 2 

LCM-flow [65] 16.2 0.62 18 0.80 15 0.66 28 0.77 27 1.07 27 0.71 42 1.03 14 1.70 26 0.91 14 1.01 25 1.07 12 1.27 26 0.99 2 0.95 1 1.16 17 1.07 7 1.43 8 1.04 2 0.67 5 1.20 5 0.71 15 0.84 9 1.21 9 0.65 36 

Aniso. Huber-L1 [22] 16.9 0.62 18 0.80 15 0.66 28 0.84 40 1.13 38 0.66 29 1.03 14 1.44 11 0.93 16 0.97 10 1.03 6 1.26 25 1.06 21 1.09 23 1.15 4 1.08 9 1.46 11 1.03 1 0.64 2 1.12 2 0.66 3 0.99 37 1.48 40 0.63 2 

IROF++ [63] 17.1 0.59 2 0.74 2 0.64 1 0.65 8 0.89 7 0.59 1 1.15 25 1.71 27 1.17 25 0.92 1 0.96 1 1.21 4 1.17 42 1.26 42 1.69 53 1.11 13 1.54 13 1.04 2 0.68 6 1.23 6 0.70 12 1.07 57 1.62 58 0.63 2 

IROF-TV [56] 17.6 0.62 18 0.84 23 0.65 11 0.67 12 0.92 12 0.60 6 0.92 5 1.49 17 0.79 5 0.94 2 1.02 4 1.22 11 1.18 45 1.28 45 1.70 58 1.12 16 1.58 19 1.05 7 0.79 27 1.57 28 0.70 12 0.85 10 1.24 10 0.64 20 

p-harmonic [29] 18.2 0.61 8 0.83 20 0.64 1 0.82 38 1.14 40 0.68 35 0.91 3 1.49 17 0.77 3 1.04 35 1.11 21 1.28 33 1.05 17 1.07 19 1.15 4 1.06 5 1.39 5 1.07 14 0.70 11 1.31 12 0.76 32 0.96 30 1.44 32 0.63 2 

(d)

Figure 4.5: Results of Middlebury benchmark of Feb. 2012. The proposed method (IROF++)
is highlighted. (a) Topmost methods according to the Average End-Point Error (AEE). (b)
Topmost methods according to the Average Normalized Interpolation Error (AAE). (c) Topmost
methods according to the Average Normalized Interpolation Error (AIE). (d) Topmost methods
according to the Average Normalized Interpolation Error (ANIE).

tively. Moreover, the resulting flow fields with stick tensor voting have strongly
been affected by shadow regions, as shown in the example of the RubberWhale
sequence, Figure 4.6(row 2).

In another experiment, the results of the proposed method have been visually
compared to those of: (i) the baseline method TV proposed in Rashwan et al.
(2011, 2012), (ii) the proposed method with ST+DS, (iii) the proposed method
with ST+DS+SW, and (iv) the proposed method with ST+DS+NW. For Rash-
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Methods Dim Grov2 Grov3 Hyd Rub Urb2 Urb3 Venus
(a) 0.124 0.151 0.458 0.152 0.115 1.503 0.143 0.237
(b) 0.326 0.691 0.634 0.754 0.373 1.738 0.572 1.076
(c) 0.238 0.580 0.549 0.415 0.262 1.325 0.462 0.874
(d) 0.109 0.103 0.289 0.112 0.081 1.917 0.127 0.231
(e) 0.121 0.116 0.302 0.126 0.092 1.118 0.139 0.223
(f) 0.094 0.098 0.224 0.092 0.073 1.027 0.087 0.209

Table 4.1: AEE for the eight tested sequences from the Middlebury dataset.

Methods Dim Grov2 Grov3 Hyd Rub Urb2 Urb3 Venus
(a) 3.005 2.152 4.722 1.832 4.207 5.048 2.874 3.249
(b) 5.382 3.907 6.124 3.547 5.004 5.348 4.149 5.897
(c) 5.012 3.326 5.415 3.124 4.939 4.471 3.854 5.071
(d) 2.861 1.441 3.412 1.287 2.581 7.045 2.623 3.119
(f) 3.097 1.603 3.346 1.421 2.641 7.235 2.698 3.382
(e) 2.525 1.404 3.340 1.302 2.363 3.859 2.507 3.294

Table 4.2: AAE for the eight tested sequences from the Middlebury dataset.

wan et al. (2011, 2012), the parameters suggested in those references were used.
Figure 4.8(column 1-2) shows a visual comparison for two regions of the Army
sequence. Both the method proposed in Rashwan et al. (2011, 2012) and the pro-
posed technique with the weighted non-local term suggested in Sun et al. (2010a)
estimate good flow fields with adequate preservation of discontinuities. However,
the flow fields estimated with the proposed technique (iv) contain more motion
details than the baseline method (i) and the two different variations (ii) and (iii).
In addition, it preserves flow discontinuities and the contours of small objects sig-
nificantly better than the three aforementioned variations. For instance, the fist
crop of Army sequence flow field with the proposed technique (iv) shown in Figure
4.8(row 1) is able to show the smallest details of the soldiers and the rifle contours.
Moreover, Figure 4.8(column 3 and 4) visually compares the flow fields estimated
for two regions within the Grove2 sequence with the aforementioned optical flow
methods. The proposed technique (iv) is able to clearly identify object boundaries
(e.g., the tree branches) better than the other approaches (i), (ii) and (iii).

Additionally, in order to asses the weight of each component in the final pro-
posed algorithm, the effect of the different variations of the proposed technique
with respect to the AEE with respect to the baseline method (TV+DS) has been
measured. As shown in table 4.3, the resulting flow fields significantly deteriorate
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (Column 1) Original frames of Middlebury sequences Dimetrodon and Grove2.
(Column 2) Corresponding ground-truths. (Column 3) Corresponding flow fields with the pro-
posed method ST+DS.

when only stick tensor voting is applied. In addition, adding the discontinuity
preserving stage yields a slight improvement of the AEE for the resulting flow
fields. In turn, adding the non-local term proposed in Sun et al. (2010a) leads to
a significant improvement of the AEE. Furthermore, the weighted non-local term
based on surfaceness saliency yields a major improvement of the final flow fields.

Methods Dimetrodon Grove2 Hydrangea RubberWhale
% % % %

ST (b) -160 -358 -396 -224
ST+DS (c) -92 -285 -173 -127

ST+DS+SW (d) +13 +31 +26 +29
ST+NW (e) +03 +23 +17 +20

ST+DS+NW (f) +25 +35 +40 +37

Table 4.3: Effect of the five tested variations of the proposed technique on the Average End-
Point Error with respect to the baseline method.

The present work aims at reducing the computational time associated with full
tensor voting as proposed in Rashwan et al. (2012), while keeping the accuracy of
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the resulting flow fields. Thus, the computation times for the Yosemite (252x316
gray images) and Urban (640x480 color images) sequences have been obtained and
shown in table 4.4 for the four different variations proposed in this chapter and
the baseline method proposed in Rashwan et al. (2012). All methods have been
run on an Intel Dual Core at 3.2 GHz executing Matlab code. As shown in table
4.4, there is a significant reduction in the execution time of the baseline method
proposed in Rashwan et al. (2012).

Methods Yosemite (seconds) Urban (seconds)
TV+DS (a) 123 270

ST (b) 51 143
ST+DS (c) 53 145

ST+DS+SW (d) 78 187
ST+DS+NW (e) 67 165

Table 4.4: Computation times for the Yosemite and Urban sequences corresponding to the five
tested variations of the proposed technique.
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Figure 4.7: (row 1) Original frames of Middlebury sequences ”Army”, ”Wooden” and ”Grove2”.
(row 2) Corresponding ground-truths. (row 3) Corresponding flow fields with the baseline method
TV+DS. (row 4) Corresponding flow fields with ST. (row 5) Corresponding flow fields with
ST+DS. (row 6) Corresponding flow fields with ST+DS+SW. (row 7) Corresponding flow fields
with ST+NW. (row 8) Corresponding flow fields with ST+DS+NW.
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Figure 4.8: (row 1) Original crop of Middlebury sequences ”Army” and ”Grove2”. (row 2)
Corresponding ground-truth. (row 3) Resulting flow fields with the baseline method TV. (row
4) Resulting flow fields with ST+DS. (row 5) Resulting flow fields with ST+DS+SW. (row 6)
Resulting flow fields with ST+DS+NW.
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Chapter 5
Illumination-Robust Optical Flow Model
Based on Histogram of Oriented
Gradients

Outdoor video surveillance systems require to cope with several surrounding envi-
ronment factors such as objects shadow and illumination changes. The brightness
constancy assumption has widely been used in variational optical flow approaches
as their basic foundation as illustrated in Chapter 3 and 4. Unfortunately, this
assumption does not hold when the illumination changes or for objects that move
into a part of the scene with different illumination. This chapter proposes the
replacement of the classical data term depend on either the brightness constancy
assumption or high-order constancy assumptions, such as the gradient constancy,
by a texture constancy assumption based on a robust feature descriptor. The
proposed method is a variation of the L1-norm dual total variational optical flow
model with a new robust data term defined from the histogram of oriented gra-
dients computed for two consecutive frames. In addition, a weighted non-local
term is utilized for denoising the resulting flow field. Experiments with com-
plex textured images belonging to different scenarios show results comparable to
state-of-the-art optical flow models, although being significantly more robust to
illumination changes.

The rest of the chapter is organized as follows. Section 5.1 introduces for the
relative work. The HOG descriptor and different descriptors used for extract fea-
tures of an image and their benefits and shortcomings are discussed in Section 5.2.
In addition, Section 5.3 summarizes the proposed variational optical flow model,
which consists of a data term, a regularization term and a weighted non-local term.
Finally, experimental results are shown and discussed in Section 5.4, including a
comparison with state-of-the-art optical flow methods.
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5.1 Introduction

Optical flow allows the estimation of the apparent motion of the scene. Motion es-
timation is a key task of video surveillance systems (VSS). The VSS require robust
optical flow methods that are able to cope with different dramatically changing
scenarios. The robustness of optical flow is badly affected by several surrounding
environment factors such as fog, sunshine, clouds, shadow, shading, and lighting
changes that yield brightness changes between two consecutive images.

A wide variety of optical flow approaches have been proposed during the
last years achieving outstanding levels of accuracy such as Middlebury datasets.
Among them, the variational approaches are considered to provide the best re-
sults due to their ability to fill gaps where motion information is not available
as mentioned in Chapter 3 and 4. However, most of these techniques are based
on two main assumptions: brightness and high-order constancy assumptions, such
as gradient constancy. Both constancy assumptions respectively depend on the
brightness and the derivative of the brightness of the pixels contained in a given
pair of images. However, the brightness of a point on an object can dramatically
change if the object moves to another part of the scene with different illumination
or after global or local illumination changes Kim et al. (2005), see Figure 5.1.

Figure 5.1: four images for the same scene with different illumination changes.

In order to reduce this dependency on brightness, classical approaches apply
a structure-texture decompensation of the input images, such as ROF algorithm
proposed in Rudin et al. (1992), as a preprocessing stage to reduce the effect of
noise and illumination changes. In addition, Mattavelli and Nicoulin (1994) has
suggested a more realistic model by assuming that the brightness at time t+ dt is
related to the brightness at time t through a set of parameters that can be esti-
mated from the image sequence. However, Mattavelli and Nicoulin (1994) fails at
estimating accurate motion discontinuities. In turn, Kim et al. (2005) has solved
this problem through an approach that simultaneously deals with motion discon-
tinuities and large illumination variations in an integrated framework by taking
into account multiplicative and additive illumination factors. Notwithstanding,
the accuracy of the estimated optical flow field can be affected by the coupling
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between the two factors and the corresponding components of the flow field and,
in addition, the optimization problem becomes much more complex.

Furthermore, Mileva et al. (2007) proposed a photometric invariants of the
dichromatic reflection model. However, this model is only applicable to color
images with brightness variations. In turn, Molnár et al. (2010) has proposed both
a non-linear scheme and a linearized scheme for a variational optical flow model
based on the normalized cross-correlation in order to implement a illumination-
robust data term. In addition, Werlberger et al. (2010) has incorporated a low-level
image segmentation process by considering an illumination-robust data term based
on the normalized cross correlation, as well as a non-local term in order to tackle
the problems of poorly textured regions, occlusions and small scale image structure
in order to preserve motion discontinuity.

In turn, Zimmer et al. (2011) has presented an advanced data term that is
robust to outliers and varying illumination conditions by using constraint normal-
ization, as well as an HSV color representation with high-order constancy (gradient
constancy) assumptions to cope with illumination changes. In addition, Zimmer
et al. (2011) have proposed the complementary regularization term in order to get
accurate motion discontinuities (see Chapter 3). However, the data term based on
gradient constancy is affected by large illumination changes and it is very sensitive
to noise.

Related work

Recently, Müller et al. (2011) has proposed the census transform descriptor in order
to implement a texture constancy assumption by replacing the classical data term
by the Hamming distance between two census transform signatures. Unfortunately,
the census transform is not accurate enough and has various shortcomings, such as
the inability to discriminate between dark and bright regions in a neighborhood,
as well as being very sensitive to noise due to its dependency on the brightness
values.

In addition, Liu et al. (2011) has proposed a method based on the SIFT de-
scriptor to compute a dense correspondence field between two images through a
discrete optimization based on a belief propagation approach. While, the SIFT
flow algorithm proposed in Liu et al. (2011) is based on matching or visual features
and yields pixel accuracy, the optical flow model proposed in this chapter is based
on the classical motion estimation and yields sub-pixel accuracy. In turn, Brox and
Malik (2011) integrates a discrete pixel matching term based on a HOG/SIFT-like
descriptor into the continuous variational energy function in order to cope with
large displacements while preserving the classical data term based on the bright-
ness and high-order constancy assumptions.

Therefore, this chapter introduces a new optical flow model that can be used
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for outdoor VSS. This model proposes the replacement of the classical brightness
constancy assumption by a local texture descriptor that is highly invariant to
illumination changes. In particular, the Histogram of Oriented Gradients (HOG)
is proposed as a texture descriptor in order to extract texture features from two
consecutive images (see Dalal and Triggs, 2005). These features are then utilized
in order to implement a texture constancy assumption for the data term of the
total variation with L1 norm (TV-L1) optical flow model Zach et al. (2007). In
addition, the loss of accuracy of the estimated flow field due to the use of an
isotropic regularization term is compensated with an additional weighted non-local
term similar to the one proposed in Sun et al. (2010a).

5.2 Texture features descriptors

Many approaches have been used for extracting the features from an image to
use it in a robust data term. The classical variational optical flow approaches
used gradient constancy (GC) introduced in Chapter 3.6.1, and structure texture
decomposition via total variation (ROF) (Rudin et al., 1992, Chambolle and Lions,
1997) for illumination robust data term. In turn, Census transform (CT) Zabih
et al. (1994) and its variations Modified (mean and Median) census transform
Froba and Ernst (2004), ternary census transform Stein (2004) have been used
for improve the data term to be more robust against illumination changes. In
addition, the well-known histogram of oriented gradients (HOG) proposed in Dalal
and Triggs (2005), which is used for the people detection in a scene have utilized
in this chapter as a texture descriptor in order to get a robust data term for the
TV-L1 variational optical flow model.

5.2.1 Structure texture decomposition via total variation
(ROF)

Decomposing an image into meaningful components is an important topic in im-
age processing, Rudin et al. (1992). Range of images are denoising by assuming
that images have been contaminated by noise, and the decomposing purpose is to
remove the noise. This task can be regarded as a decomposition of the image into
signal parts and noise parts. Certain assumptions are taken with respect to the
signal and noise, such as the piecewise smooth nature of the image, which enables
good approximations of the clean original image. Recently, the main successful
approaches for denoising images are based on solving nonlinear partial differen-
tial equations (PDE’s) associated with the minimization of an energy function
composed of some norms of the gradient. One of the best decomposition method
proposed in Rudin et al. (1992) and Chambolle and Lions (1997) is a popular
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denoising algorithm, which preserves well the edges of the original image, while
removing most of the noise.

This algorithm decomposes an image I into two components Iu and Iv. In this
approach, the following functional is being minimized

min
(Iu,Iv)/I=Iu+Iv

(

∫
| DIu | +λ‖Iv‖2), (5.1)

5.2.2 Gradient constancy

Recently, many optical flow methods depend on the gradient constancy to cope
the illumination changes. Therefore, it is possible to circumvent the problem by
considering that the gradient of an object does not change with the motion of
the object. This yields the so-called gradient constancy assumption or gradient
constraint between two images I1(x, y, t) and I2(x + u, y + v, t + dt),, which is
formulated in Chapter 3.6.1 as:

∇3I1(x, y, t)−∇3I2(x+ u, y + v, t+ dt) = 0. (5.2)

5.2.3 Census transform (CT)

Census transform is a form of non-parametric local transform (i.e. relies on the
relative ordering of local intensity values, and not on the intensity values them-
selves) used in image processing to map the intensity values of the pixels within
a square window to a bit string, thereby capturing the image structure. The in-
tensity value of the center pixel is replaced by the bit string composed of set of
boolean comparisons such that in a square window, moving left to right. For each
comparison the bit is shifted to the left, forming an 8 bit string for a census window
of size 3× 3 and a 24 bit string for a census window of size 5× 5, depending on:

ξ(P, P ′) =

{
1 I(x, y) >= I(x+ i, y + j)
0 otherwise.

(5.3)

Census transform can reduce effects of variations caused by the camera gain
and bias. In addition, It can increase the robustness to outliers near depth-
discontinuities. Furthermore, it can also encodes local spatial structure. If a
minority of pixels in a local neighborhood has a very different intensity distribu-
tion than the majority, only comparisons involving a member of the minority are
affected.
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Modified Census transform

Modified census transform is a non-parametric local transform that modified census
transform introduced in Zabih et al. (1994). It is an rendered set of comparisons
of pixel intensities in a local neighborhood that represents which pixels have an
intensity value greater than the mean or the median pixel intensity value within a
certain window Froba and Ernst (2004). For each comparison the bit is shifted to
the left, forming a 9 bit string for a census window of size 3× 3 and a 25 bit string
for a census window of size 5×5. The modified census is very useful to distinguish
between the darkness and brightness regions that census transform fails to detect
it.

Ternary census transform

Ternary census transform maps a local neighborhood surrounding a pixel p to a
ternary string representing the set of neighbors pixels. Each ternary census vector
ξ(p, p′) is defined in Stein (2004) as:

ξ(P, P ′) =





0 p− p′ > ε
1 |p− p′| ≤ ε
2 p′ − p > ε

(5.4)

where ε is a threshold. In this transform, the intensity of a pixel is compared
with the median pixel value. For each comparison the bit is shifted to the left,
forming a 9 bit string for a census window of size 3 × 3 and a 25 bit string for a
census window of size 5× 5.

5.2.4 Histogram of oriented gradients

Histograms of oriented gradients (Dalal and Triggs, 2005) are a robust visual de-
scriptor that allows the discrimination of the objects present in a scene, since the
local appearance and shape of objects can be characterized to a large extent by
the local distribution of intensity gradients, which, in addition, is largely invariant
to shadows and illumination changes.

The HOG descriptor proposed in Dalal and Triggs (2005) is based on dominant
edge orientations. The gradient operator has been applied by computing local
image gradients, dx and dy, within a local window (3×3 or 5×5) using a centered
derivative mask. The magnitudes and orientations of the resulting derivatives
for every window are computed. In addition, the orientations are divided into n
localized bins. In practice, the angles between 0 and 2π are divided into a number
of bins (experimentally set to 8 in this work). The value of each bin is obtained
by summing the magnitudes of the gradients whose orientations are mapped to
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5.3. Optical flow model 91

that bin. The obtained histogram is normalized using L2− norm, L1− norm or
L2− sqrt Dalal and Triggs (2005).

The pair of images I1(x, y) and I2(x+u, y+v) used to estimate the optical flow
field yield multi-channel images S1(x, y) and S2(x+u, y+v), respectively. S1(x, y)
consists of n channels, such that each channel contains the values corresponding
to an orientation bin of the resulting normalized histogram for every pixel.

In order to illustrate the advantages of the HOG descriptor with respect to
the census transform, Figure 5.2 shows the features extracted with the census
transform, as well as the HOG signatures for two windows that contain both a
bright and a dark region. In particular, Figure 5.2 shows the gray values within
a 3 × 3 window with a central pixel equal to 110, for the first and the second
window. The census transform has been computed for the two windows yielding
the 8-bit string 11111111, since all neighbors are larger than the value of the
central pixel. On the other hand, the features with the HOG descriptor have been
computed after calculating the 8 bin histogram of the resulting orientations of the
input windows. For simplicity, a centered mask has been used for computing the
gradients and each bin has been obtained by counting the number of orientations
associated with that bin. The HOG descriptors obtained for the input windows
are 01131111 and 03210210, respectively. Clearly, the census transform produces
the same code for different textures and is not able to cope with image blocks with
a saturated center pixel, whereas HOG can detect changes in the intensity regions
by yielding a different descriptor.

Figure 5.2: Comparison of a 3× 3 HOG descriptor vs. a 3× 3 census descriptor.

5.3 Optical flow model

Let flow field w = (u, v) is defined as the apparent motion of pixels between a
frame I1(x, y) at time t and a frame I2(x + u, y + v) at time t + 1. The duality
of the TV-L1 optical flow model Zach et al. (2007) is used to compute the vector
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flow field w associated with every pixel p = (x, y) belonging to the image domain
Ω based on the optical flow energy functional (3.11) that can be reformulated as:

argmin(w)

∫

Ω

(λED(w) + Es(w)) dΩ, (5.5)

where ED is a data term, Es a regularization term (a total variational term Zach
et al. (2007)) and λ is the weight of the data term. The energy functional is divided
into two parts that are solved iteratively:

argmin(w)

∫

Ω

(λED(w) + Ec(w, ŵ)) dΩ, (5.6)

argmin(ŵ)

∫

Ω

(Ec(w, ŵ) + Es(ŵ)) dΩ, (5.7)

where Ec is a coupling term and ŵ an auxiliary vector flow field.

5.3.1 Data and regularization terms

In this chapter, the data term includes the residual of two texture features ex-
tracted from the input images in order to ensure texture constancy:

argmin(w)

∫

Ω

(
λψ(S(x, y, w)) +

1

θ
(w − ŵ)

)
dΩ, (5.8)

where 1
θ

is the weight of the coupling term. S(x, y, w) can be formulated as:

S(x, y, w) = S2(x+ u, y + v)− S1(x, y) = 0, (5.9)

such that S1(x, y) and S2(x + u, y + v) are the texture features extracted from
two consecutive images I1(x, y) and I2(x + u, y + v), respectively. In turn, ψ(x)
is a convex penalization function. Thus, (5.9) implements a texture constancy
assumption that assumes that texture features do not change when objects move.

The residual S can be linearized around the starting value w using first order
Taylor expansion as:

S(x, y, w) ≈ S̃(x, y, w) = (S2(x, y)− S1(x, y)) +∇TS(x, y, ŵ)(w − ŵ),

= St +∇TS(x, y, ŵ)(w − ŵ), (5.10)

where ∇TS(x, y, ŵ) = [∂S
∂x

= Sx,
∂S
∂y

= Sy]. Now, (5.8) can be solved for w = (u, v)
by doing:
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∂

∂u
(λψ(S̃(x, y, w)) +

1

θ
(u− û)) = 0,

∂

∂v
(λψ(S̃(x, y, w)) +

1

θ
(v − v̂)) = 0. (5.11)

Both equations can be expressed in vector form as proposed in Müller et al. (2011):

λ
ψ′(S̃(x, y, ŵ))

S̃(x, y, ŵ)
S̃(x, y, w)∇S(x, y, ŵ) +

1

θ
(w − ŵ) = 0. (5.12)

Since (5.12) is linear in (u, v), it can be solved as a linear system, Aw = b. In
addition, the final data term can be extended in order to be applicable to a multi-
channel descriptor:

argmin(w)

∫

Ω

(
λ

n∑

i=1

ψ(S̃i(x, y, w)) +
1

θ
(w − ŵ)

)
dΩ, (5.13)

where n is the number of channels of the texture descriptor used in the data term.
Hence, A and b can be written as:

A =

(
1
θ + λ

∑
ψ′(S̃(x, y, ŵ))

∑
S2
ix
λ
∑
ψ′(S̃(x, y, ŵ))

∑
SixSiy

λ
∑
ψ′(S̃(x, y, ŵ))

∑
SixSiy

1
θ + λ

∑
ψ′(S̃(x, y, ŵ))

∑
S2
iy

)
(5.14)

and:

b =
1

θ

(
û
v̂

)
− λ

∑
ψ′(S̃(x, y, ŵ))

(∑
Six∑
Siy

)(∑
Sit −

(∑
Six û+

∑
Siy v̂

))
. (5.15)

Similarly, the smoothness term represents the isotropic total variation Cham-
bolle (2004). As a result, (5.7) can be decomposed into two equations and rewritten
as:

Eu =

∫

Ω

(
1

θ
(u− û)+ ‖ ∇û ‖

)
dΩ, (5.16)

Ev =

∫

Ω

(
1

θ
(v − v̂)+ ‖ ∇v̂ ‖

)
dΩ. (5.17)

Eu and Ev have two unknowns, û and v̂, while u, v are constants obtained after
solving the data term.

For Eu, thus the Euler-Lagrange equation is:

− div[
∇u
‖ ∇u ‖ ] +

1

θ
(u− û) = 0 (5.18)
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Let Pu = ∇u/ ‖ ∇u ‖. Thus:

u = λdiv(Pu) + û, (5.19)

By using (5.18) and (5.19), Pu can be rewritten as:

P h+1
u =

P h
u + τ∇(div(P h

u ) + û
θ
)

1 + τ ‖ ∇(div(P h
u ) + û

θ
) ‖ , (5.20)

where h is the iteration number, and τ ≤ 1/8 is the time step. The same can be
applied to get Pv. That equations can be solved through a fixed-point iteration
scheme as described in Zach et al. (2007).

Furthermore, a multi-scale, coarse-to-fine scheme is used for solving the energy
functional (5.5) in order to allow for both small and large displacements and to
improve the accuracy of the estimated flow fields. In each pyramid level, the scaled
images are warped representations of the input images based on the flow estimated
at every preceding scale Brox et al. (2004) as illustrated in Chapter 3.

5.3.2 Anisotropic filtering based on a weighted non-local
term

The smoothing term utilized in the energy functional (5.5) described above is
isotropic and propagates the flow field in all directions. Thus, flow vectors near
motion discontinuities are usually inaccurate due to occlusions and over-smoothing.
In order to tackle this problem, the resulting flow fields at every pyramid level
require a denoising stage in order to preserve edge and object boundaries and
details. Therefore, the estimated flow fields are improved by detecting motion
boundaries through the Sobel operator, and then by dilating the detected regions
through a 5 × 5 mask in order to obtain flow boundary regions. For each pixel
p = (x, y) in these regions, a robust weighted median filter proposed in Sun et al.
(2010a) is applied as described in Chapter 4 in (4.23):

Ew =
∑ ∑

(x́,ý)∈Nx,y

$p,ṕ(|ûx,y − ûx́,ý|+|v̂x,y − v̂x́,ý|), (5.21)

where $p,ṕ is a weighting function that takes into account the occlusion state
of pixels, O(p), as proposed in Sand and Teller (2008), as well as the intensity
difference and the spatial distance. Thus, $p,ṕ is formulated as:

$p,ṕ ∝ exp

(
−(p− ṕ)2

2σ2
s

− (I(p)− I(ṕ))2

2σ2
r

)
O(ṕ)

O(p)
, (5.22)

where I(p) and I(ṕ) are the intensity values of pixels p and ṕ, respectively, and σs
and σr are standard deviations experimentally set to 7.0 and 7.0, respectively.
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5.4 Experiments

A qualitative comparison have been done using real images (2144× 1424) for the
same scene with different global illuminations. Figure 5.3 shows a real example that
compares the performance of HOG, the census transform, the gradient constancy
(GC) and the structure-texture decompensation ROF Rudin et al. (1992). The
comparison is performed by computing the histogram of normalized errors between
the same two features extracted from the pair of images. For the census transform
(CT), the error is computed based on the Hamming distance between the two
descriptors (binary descriptors). In turn, the error generated for HOG and ROF is
the difference between the resulting features. In addition, the similarity between
the pair of input images is obtained for the gradient constancy. As shown in the
Figure, the gradient constancy yields the smallest average error(AE = 0.0146)
among the different tested descriptors. However, HOG detects the largest number
of pixels with zero error among them, as well as it yields a good average error
(AE = 0.0184). Thus, HOG is likely to be advantageous for motion estimation
under illumination changes.

In another experiment, the variational optical flow model described in Sec-
tion 5.3 has been tested with different features descriptors by using sequence
GROVE2 from the Middlebury datasets with ground-truth by changing the il-
lumination of the second frame as:

Io = uint8

(
255

(
mIi + a

255

)γ)
, (5.23)

where Ii and Io are the input and output frames, respectively. m > 0 is a multi-
plicative factor, a is an additive change factor and γ > 0 is the gamma correction.
The function uint8 is used for quantizing the values to an 8-bit unsigned integer
format. Figure 5.4 shows a qualitative comparison of the average end-point error
(AEE) and the average angular error (AAE) between the flow fields obtained with
HOG and CT, both determined in a 3×3 neighborhood, as well as GC. The effects
of different values of m, a and γ have individually been assessed by varying γ while
keeping m = 1 and a = 0, by changing m with γ = 1 and a = 0, as well as by
changing a while keeping m = 1 and γ = 1.

As shown in Figure 5.4, the gradient constancy is robust against small changes
of both γ and m. In turn, HOG shows a higher robustness against both small and
large changes of γ, a and m. In addition, the census transform yields adequate
values for both AEE and AAE.

Additionally, the effect of the weighted non-local term on the final proposed
algorithm was evaluated. The AEE and the percentage of the bad pixels (BP)
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(a) (b)

(c) AE = 0.1595 (d) AE = 0.0184

(e) AE = 0.0146 (f) AE = 0.0452

Figure 5.3: (a-b) Two original images. Error histograms for (c) CT, (d) HOG, (e) GC, and (f)
ROF.

of the obtained flow fields with 8 KITTI training sequences 1 are calculated for
the proposed optical flow technique TV-L1 based on HOG with and without the
weighted non-local term and are shown in table 5.1. As shown, the values of both

1http://www.cvlibs.net/datasets/kitti/eval stereo flow.php
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Figure 5.4: AEE and AAE for HOG, census transform and gradient constancy. Column 1:
change of γ; Column 2: change of m; Column 3: change of a

AEE and BP for the proposed algorithm are reduced due to the detected accurate
borders after using the weighted non-local term. In addition, the use of a weighted
non-local term yields more accurate flow fields. In Figure 5.5, the color flow field,
the error image and the histogram of error with and without the non-local term
was visualized.

At the time of submission (April 2013), the results of the proposed model with
HOG (TVL1-HOG) have been evaluated with the KITTI Vision Benchmark, which
contains 195 testing image sequences with ground truths, and it has been ranked in
the seven position against current state-of-the-art optical flow algorithms 2. The
KITTI benchmark considers the bad flow vectors at all pixels that are above a
spatial distance of 3 pixels from the ground truth. (TVL1-HOG) has average of
8.31% bad pixels as shown in table 5.2, in turn the baseline methods Zach et al.
(2007) and Sun et al. (2010a) have 30.75% and 24.64%, respectively.

Furthermore, the proposed variational optical flow method based on the HOG
descriptor is evaluated with eight real image sequences that include illumination
changes and large displacements, as well as low-textured areas, reflections and
specularities. Tables 5.3 and 5.4 show the AEE and bad pixels corresponding to

2http://www.cvlibs.net/datasets/kitti
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Figure 5.5: Optical flow model, Row 1: Original image for sequence 44 of the KITTI datasets,
Row 2: Ground truth. Row 3: Resulting flow field without non-local term, Row 4: Resulting
flow field with non-local term, Row 5: Error image and error histogram without non-local term,
Row 6: Error image and error histogram with non-local term.
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Sequence TV-L1 TV-L1 with
non-local
term

11 35.49%(15.77) 29.92%(8.90)
15 26.55%(13.21) 22.30%(6.48)
44 35.46%(14.70) 21.45%(4.68)
74 61.41%(24.41) 52.74%(19.79)
117 31.58%(15.22) 18.50%(12.27)
144 47.96%(20.03) 31.64%(12.86)
147 18.39%(11.22) 12.42%(2.87)
181 59.40%(48.78) 44.89%(33.72)

Table 5.1: The percentage of bad pixels and average end-point error of the proposed technique
with and without the non-local term.

Rank Method Out-Noc Out-All Avg-Noc Avg-All
1 PR-Sf+E 4.08 % 7.79 % 0.9 px 1.7 px
2 PCBP-Flow 4.08 % 8.70 % 0.9 px 2.2 px
3 MotionSLIC 4.36 % 10.91 % 1.0 px 2.7 px
4 PR-Sceneflow 4.48 % 8.98 % 1.3 px 3.3 px
5 TGV2ADCSIFT 6.55 % 15.35 % 1.6 px 4.5 px
6 Data-Flow 8.22 % 15.78 % 2.3 px 5.7 px
7 TVL1-HOG 8.31 % 19.21 % 2.0 px 6.1 px
8 MLDP-OF 8.91 % 18.95 % 2.5 px 6.7 px
12 fSGM 11.03 % 22.90 % 3.2 px 12.2 px
13 TGV2CENSUS 11.14 % 18.42 % 2.9 px 6.6 px
14 C+NL-fast 12.42 % 22.27 % 3.2 px 7.8 px
25 DB-TV-L1 30.75 % 39.13 % 7.8 px 14.6 px

Table 5.2: The current evaluation of the state-of-the-art method on the KITTI website.
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four sequences with illumination changes calculated for the methods proposed in
Zimmer et al. (2011) (OFH), Sun et al. (2010a) (SRB), full version of Sun et al.
(2010a) (SRBF), Bruhn and Weickert (2005) (BW), Horn and Schunck (1981)
(HS), and Werlberger et al. (2010) (WPB), in addition to the proposed method
based on HOG5 (5×5), HOG3 (3×3), the census transform (CT5 with (5×5)) and
(CT3 with (3×3)), and the gradient constancy (GC) with respect to the occluded
ground-truth and non-occluded ground-truth, respectively. In turn, Tables 5.5 and
5.6 show the same information for four sequences with large displacements

Method 44 11 15 74 Average
HOG3 21.45% (4.68) 32.54% (9.04) 22.30% (6.48) 53.79% (20.03) 32.52%
HOG5 23.23% (5.22) 29.92% (8.90) 24.90% (7.64) 52.74% (19.79) 32.70%

GC 29.25% (9.54) 35.72%(10.91) 26.41% (8.47) 59.20% (23.07) 37.64%
OFH 23.22% (5.11) 37.26% (12.47) 32.20% (9.06) 62.90% (24.00) 38.89%
CT5 35.23% (12.74) 33.93% (9.75) 29.04% (8.70) 57.57% (20.80) 38.94%
CT3 29.55% (10.22) 37.54% (11.14) 33.74% (9.11) 57.43% (20.53) 39.56%
SRB 26.58%(4.67) 40.61% (13.76) 32.85% (9.72) 62.94% (24.27) 40.74%

SRBF 31.83% (5.62) 40.34% (13.96) 35.13% (12.17) 64.89% (24.64) 43.05%
BW 32.44% (5.19) 33.95% (8.50) 47.70% (12.40) 71.44% (25.15) 46.38%
HS 42.96% (6.77) 38.84% (10.72) 58.08% (12.89) 82.14% (28.75) 55.50%

WPB 49.09% (9.20) 49.99% (28.35) 67.28% (28.36) 88.67% (30.68) 63.76%

Table 5.3: Percentage of bad pixels and AEE for the state-of-the-art methods and the proposed
method with four sequences from KITTI datasets: sequences 11, 15, 44 and 74, which include
illumination changes with the occluded points ground truth.

Method 44 11 15 74 Average
HOG5 11.35% (2.26) 15.54% ( 3.12) 10.40%(2.41) 45.76% (13.97) 20.76%
HOG3 9.98% (2.17) 18.53 % (3.78) 8.40% (2.21) 46.99%(14.20) 20.98%

GC 16.78% (4.95) 19.43%(4.01) 11.97% (3.52) 53.13% (16.38) 25.33%
CT5 24.30% (7.96) 19.83 % (5.06) 15.03% (3.41) 51.10%(15.14) 27.57%
OFH 11.17% (2.44) 24.32% (6.48) 18.34% (3.63) 57.40% (17.25) 27.81%
SRB 14.66% (2.44) 27.83% (6.43) 18.93% (4.05) 57.36% (17.36) 29.69 %
CT3 18.26% (6.30) 24.05 % (7.28) 20.30% (3.95) 57.43%(17.53) 30.01%

SRBF 20.98% (3.29) 27.78% (6.73) 21.66% (4.53) 59.56% (17.52) 32.49%
BW 22.38% (3.16) 20.54% (3.62) 36.85% (6.67) 67.22% (18.49) 36.75%
HS 34.18% (4.61) 25.98% (6.79) 49.57% (7.95) 79.57% (21.55) 47.32%

WPB 40.85% (5.88) 39.25% (18.75) 60.50% (17.63) 87.02% (24.09) 56.90%

Table 5.4: Percentage of bad pixels and AEE for the state-of-the-art methods and the proposed
method with four sequences from KITTI datasets: sequences 11, 15, 44 and 74, which include
illumination changes with the non-occluded points ground truth.
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Method 147 117 144 181 Average
HOG5 14.04% (2.90) 18.5% (12.27) 31.64 % (12.86) 44.89 % (33.72) 27.27%
HOG3 12.42% (2.87) 24.49% (14.99) 36.64% (14.40) 55.58% (42.97) 32.28%
OFH 15.04% (4.96) 16.26% (4.33) 42.04% (15.01) 63.86% (50.52) 34.30%
GC 12.28% (3.93) 17.70% (10.81) 44.51% (18.67) 67.63% (58.40) 35.53%
SRB 14.59% (4.85) 24.71% (9.74) 50.67% (19.03) 67.11% (47.70) 39.27%

SRBF 14.79% (5.17) 24.41% (9.92) 50.66% (19.34) 68.41% (48.81) 39.57%
BW 16.98% (5.17) 28.80% (7.86) 46.98% (16.85) 69.04% (45.27) 40.45%
CT5 13.98% (3.41) 27.33% (15.23) 47.68% (16.75) 73.85% (58.59) 40.71%
CT3 14.76% (3.54) 28.80% (15.20) 48.97% (16.83) 73.63% (58.58) 41.54%
HS 24.84% (6.61) 43.24% (15.32) 51.89% (14.81) 74.11% (49.28) 48.52%

WPB 32.72% (8.10) 46.80% (13.67) 52.25% (17.94) 76.00% (50.18) 51.94%

Table 5.5: Percentage of bad pixels and AEE for the state-of-the-art methods and the proposed
method with four sequences from KITTI datasets: sequences 117, 144, 147 and 181, which include
large displacement with the occluded points ground truth.

Method 147 117 144 181 Average
HOG5 6.41% (1.01) 9.09% (5.42) 16.82% (4.23) 27.48% (11.97) 14.95%
HOG3 5.80% (0.92) 17.04% (8.04) 22.56% (6.85) 41.44% (18.68) 21.71%
OFH 8.03% (1.98) 9.09% (2.17) 29.62% (6.77) 52.32% (23.46) 24.76%
GC 7.13% (1.25) 9.70% (4.42) 32.25% (8.26) 57.21% (29.92) 26.57%
SRB 7.55% (1.74) 18.11% (5.28) 39.55% (9.33) 56.51% (22.88) 30.43%

SRBF 7.69% (1.97) 17.95% (5.29) 39.64% (9.59) 58.25% (23.78) 30.88%
BW 10.07% (2.20) 22.25% (4.23) 35.01% (8.17) 59.05% (22.58) 31.60%
CT5 6.78% (0.95) 20.52% (9.82) 36.29% (7.71) 65.55% (31.26) 32.29%
CT3 6.63% (1.00) 21.85% (9.59) 37.49% (8.43) 65.29% (31.92) 32.82%
HS 18.52% (3.38) 37.82% (9.77) 41.30% (7.32) 65.77% (23.40) 40.85%

WPB 25.92% (4.43) 41.23% (9.18) 41.53% (8.94) 68.27% (25.96) 44.24%

Table 5.6: Percentage of bad pixels and AEE for the state-of-the-art methods and the proposed
method with four sequences from KITTI datasets: sequences 117, 144, 147 and 181, which include
large displacement with the non-occluded points ground truth.

In another experiment, the estimated flow fields with HOG (3 × 3) and HOG
(5 × 5) have visually been compared with the proposed optical flow method by
using the data term based on the brightness constancy (BC) assumption, as well as
the one based on the census transform. Figure 5.6 shows the estimated flow field
for sequence 15, which includes illumination changes, as well as the error images
and the error histograms. In addition, Figure 5.7 shows the same information for
sequence 181, which includes large displacements.

In another experiment, the estimated flow fields with HOG, CT, GC and
Brightness constancy (BC) were compared visually. Figure 5.8 shows the esti-
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Figure 5.6: (row 1) Two original images for a sequence 15 of KITTI datasets. Resulting flow
field, error image and error histogram for the proposed optical flow model with: (row 2) BC,
(row 3) 3× 3 CT, (row 4) 5× 5 CT, (row 5) 3× 3 HOG, and (row 6) 5× 5 HOG.

mated flow fields for the proposed model with BC, GC, CT and HOG on Cross-
Cars, CurTruck and BlinkArrow sequences provided for the currently HCI Bosch
Robust Vision Challenge3.

3HCI datasets, http://hci.iwr.uni-heidelberg.de/Static/challenge2012/
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Figure 5.7: Row 1: Two original images for a sequence 181 of KITTI datasets. Resulting flow
field, error image and error histogram for the proposed optical flow model with: (row 2) BC,
(row 3) 3× 3 CT, (row 4) 5× 5 CT, (row 5) 3× 3 HOG, and (row 6) 5× 5 HOG.

Among the evaluated approaches, the optical flow model based on HOG with
different window size yields the most accurate flow fields with respect to the state-
of-the-art methods for real images from HCI datasets, as well as KITTI datasets
that include both illumination changes and large displacements.
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Figure 5.8: (row 1) Original frames of HCI sequences CrossCars, CurTruck and BlinkArrow.
(row 2) Corresponding flow fields for the proposed method with BC. (row 3) Corresponding flow
fields for the proposed method with GC. (row 4) Corresponding flow fields for the proposed
method with CT. (row 5) Corresponding flow fields for the proposed method with HOG.
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Chapter 6
A Platform for Trustworthy Storage of
Privacy-aware Surveillance Videos

This chapter defines a new methodology for trustworthy video surveillance databases,
which fulfills four crucial properties: high accuracy, reversibility, real-time perfor-
mance and information security. We detect the regions of interest (e.g. faces of
people), which are protected by means of the alteration of the coefficients of the
compressed video stream. The proposed protection guarantees the property of
reversibility, since the original coefficients can be restored.

Specifically, we elaborate on the definition of the Protection Stream, which is
required for both protecting and unprotecting a video sequence. We propose a
procedure for securely generating a protection stream for each group of pictures,
thus avoiding the large unsecure streams required if the protection stream was
generated for each video file. The proposed model has been implemented and
tested, and the results confirm the real time performance of the system developed
while keeping the aforementioned crucial properties.

The platform presented in this chapter takes into account the above require-
ments, and tackles privacy in video surveillance from a holistic point of view: we
focus on all the relevant steps involved in the video surveillance system. The rest
of the chapter is organized as follows: Section 6.1 introduces for the trustworthy
privacy-aware video surveillance systems. In addition, Section 6.2 describes the
platform. The detection and protection techniques is described in Section 6.3. Fi-
nally, Section 6.4 discusses the effectiveness of the implementation of the platform.
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Figure 6.1: Model for a privacy-aware VSS.

6.1 Introduction

As mentioned in Chapter 1, in a trustworthy privacy-aware video surveillance
system (TP-VSS) (cf. Figure 6.1), the video from the camera is handled by a
Video Processing Module, a Detection Submodule and a Protection Submodule. We
also assume in Chapter 1 that any user can retrieve a video file from the database
but, since the ROIs are protected, no identity information can be disclosed from
it. Only the Trusted Manager of the system, who has access to an unprotection
key can unprotect the video. Last but not least, the Trusted Manager may need
the permission of a Law Enforcer to effectively unprotect the video in case of
investigations. Hence, the problem of a trusted manager arbitrarily unprotecting
videos is avoided.

Despite of the large amount of literature dealing with ROI detection and pro-
tection, there is no proposal for a privacy-preserving video surveillance database
that takes into account the concepts of trust and security in a holistic fashion.
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6.2 A platform design

In this section we address the basic aspects of the platform. On the one hand, we
discuss the technique that uses the Detection Submodule. On the other hand, we
describe the method that uses the Protection Submodule. Finally, we present the
data stored in the Information System of the platform.

6.2.1 The Detection Submodule

At a first stage, the Detection Submodule makes use of computer vision techniques
to detect the pixels to be protected. As these ROIs are detected, an XML file re-
lated to the current video is also written. This file contains ancillary data such as
the number and location of the ROIs at each frame. The Detection Submodule
must detect the ROIs in real time and accurately. Specifically, the following com-
puter vision techniques offer high accuracy and can work in real time as explained
in Chapter 2:

• When the ROIs to be detected are faces, the Haar-Features technique Viola
and Jones (2001) is accurate and works in real-time, if it is run on fast
hardware. Although the protection of a face is widely accepted for privacy
protectionDufaux (2006), identification can be performed based on other
factors. Hence, it must be stated that if a VSS considers the faces as ROIs,
some identity disclosure could be done by merely analyzing clothes or via
gait recognition processes. Hence, we encourage VSS developers to consider
the full body as the ROI, in the case of people.

• For generic ROI detection (i.e. moving objects in the scene are considered
ROIs) based on background subtraction, the Codebook Construction Kim
et al. (2004) technique fulfills the properties. However, in this technique
using a fixed camera is mandatory. In order to overcome this shortcoming,
detection techniques based on optical flow Horn and Schunck (1981), such
as Farnebäck Farneback (2000) might be used.

In our platform, we can use either a robust optical flow technique based on
tensor voting Rashwan et al. (2013) or a background subtraction technique Kim
et al. (2004) to detect the accurate moving objects as ROIs. Note that using
motion detection based on optical flow techniques is essential in order to avoid the
problems of using background subtraction techniques under certain conditions:
for instance, moving leaves or even rain would be detected as ROIs in case of
using background subtraction with outdoor camera. However, the implementation
of motion detection based on optical flow is more time consuming than other
techniques based on background subtraction (for more details see Chapter 2).
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The process to detect the ROIs can be summarized as follows:

1. The original compressed video stream is obtained from the camera controller.

2. A set of frames is uncompressed and the ROIs are detected.

3. An ancillary data structure containing information of the ROIs is stored.

Note that since the video is not modified, there is no need to recompress the
video in the detection process.

6.2.2 The protection submodule

In turn, the protection consists of modifying the video data so as to hide the
identifying features that could permit the disclosure of identities. In Chapter 2, the
state-of-art proposals for video protection were divided into two groups, depending
on the video domain in which ROIs are protected: Pixel domain. and Compressed
domain..

• Pixels domain. If ROIs are protected in pixel domain, this will clearly af-
fect the quality of the compressed image. For instance, a scrambling of pixels
entails a set of high-frequency image blocks which will suffer a heavy informa-
tion loss after compression and unprotection (i.e. unscrambling). Moreover,
some proposals are based on hiding the ROIs using solids, such as squares or
circles. In these cases, also the original version of the video must be stored
because the utility requirement is not achieved.

• Compression domain. If ROIs are protected in compression domain (i.e.
some parts of the compressed video stream data structure are encrypted)
any unauthorized user (i.e. without decryption key) will obtain noise in the
ROI pixel area. On the contrary, authorized users will be able to decrypt the
structure and reconstruct the original ROI. The methods in compressed do-
main must aim at not increasing substantially the size of the compressed
video once protected. It is also interesting that a protection method is
suitable for a variety of compression video codecs (e.g., MPEG-2, H.264,
MJPEG, etc.). However, some of the state-of-art protection methods are
restricted to H.264 video Peng et al. (2013).

The protection methods based on coefficient alteration Dufaux and Ebrahimi
(2008) of the compressed unprotected video are suitable to implement a TP-VSS.
A compressed video is a set of compressed frames, grouped in GOPs (Group of
Pictures). Each GOP starts with an I-frame (intra-coded) and contains several
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P-frames (predicted) and B-frames (bi-predictive). I-frames are stored and com-
pressed entirely: the frame is divided into 8 × 8-pixel blocks which are applied
a frequency transform (e.g. Discrete Cosine Transform). The obtained 8 × 8-
coefficient blocks describe the pixel block in terms of texture and details. For each
block, there is one DC and 63 AC coefficients. A quantization is applied to each
block, i.e. each coefficient is divided by a number, aiming at reducing the number
of discrete symbols but resulting in a lossy compression and, also, a set of zero co-
efficients. Finally, entropy encoding (for the non-zero coefficients) and run-length
encoding (for the zero coefficients) are applied for a lossless compression of the
block. The information needed to reconstruct the frame is stored in a specific and
standardized data structure. In addition, P and B-frames are not stored entirely:
they just consist of the changing blocks between frames in the GOP.

The unprotection of the video is simply done by applying the inverse method
on the protected video and the alteration of the video does not affect substantially
the compression properties of the video file. We use this technique in the Protec-
tion Submodule of our platform. For example, the following procedure might be
performed Dufaux and Ebrahimi (2008):

1. Generate a seed for a pseudorandom number generator (PRNG). Encrypt
the seed using a secret key.

2. Generate the protection stream PS, a pseudorandom bit sequence with length
B · 63, where B is the number of coefficient blocks belonging to ROIs in the
compressed frames.

3. Flip the sign of the i-th AC coefficient if the (b · 63 + i)-th bit of PS equals
‘1’, where b is the number of coefficient block being protected.

If any user attempts to retrieve and play a protected video, it would obtain
noise in the pixels belonging to ROIs. When unprotecting the video, if the same
PS is generated, the AC coefficients whose sign was flipped in the protection
operation would have their sign properly restored and, as a result, the pixel blocks
of the ROIs would be correctly displayed.

Assuming large video lengths, if the PS was generated for each video, large
sequences of bits would be needed. Moreover, even if the trusted manager only had
to access (and thus unprotect) a small amount of frames, a whole large PS should
be generated. Pseudorandom bit sequences may suffer from security problems due
to extremely large lengths (as a reference, in conditional access systems for digital
TV, the so-called control word key is typically renewed every two minutes). Hence,
we propose generating a PS for each GOP in the video file. If the trusted manager
has to access a certain set of frames, only the PSs belonging to their corresponding
GOP must be generated.
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Another aspect related to the length of PS is whether the videos to be protected
are grayscale (i.e. only the luminance component is considered) or in colour (i.e.
luminance and chrominances are considered). The specific length of PS will depend
also on the chroma subsampling model used (e.g. 4:2:2, 4:2:0, etc.). In this chapter,
we assume that videos are in color since this is common in state-of-art VSS.

6.2.3 The information system

In our platform, the Information System stores the protected videos and the in-
formation needed to unprotect the videos if necessary. Specifically, for each video
file, the next information is stored:

• VideoTime The timestamp of the video. We assume that the length of each
video file is equal (e.g. 10 minutes each).

• VideoLocation In our case, the Information System uses paths that aim
at classifying the videos according to their date of archiving (e.g. /videos/
2012/11/15/video023.mp4)

• ROIdescription It consists of an XML file containing information on the
ROIs of the video file, for instance the list of ROIs in each frame and a ROI
is defined by its bounding box. The Detection Submodule is in charge of
writing this information.

• VideoMAC This is a set of message authentication codes (MAC) for the dif-
ferent fragments the video file is divided into, aiming at checking the video
integrity. If MAC checking fails when a video is open, it can be replaced
from a backup database.

• VideoKey This contains the information to protect and unprotect the video.

VideoKey is uniquely related to each video v stored in the Information System.
It is chosen and computed by the Protection Submodule prior to start protecting
a new video file. When a new video has to be protected, the Protection Submod-
ule contacts the server of the Law Enforcer. We describe now how this value is
computed:

1. Let r be a random number chosen by the Protection Submodule.

2. Let TMsk and LEsk be the secret keys of the Trusted Manager the Law
Enforcer respectively.

110

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 

/videos/2012/11/15/video023.mp4
/videos/2012/11/15/video023.mp4


6.3. Protection and unprotection of videos 111

3. The Protection Submodule contacts the Law Enforcer server using a secure
channel (e.g. protected by Secure Socket Layer, that guarantees confiden-
tiality and integrity) and sends r.

4. The Law Enforcer server sends kv = E(r, LEsk), where E is a symmetric
encryption function, to the Protection Submodule.

5. Now, VideoKey is stored as

E(kv||H(kv), TMsk),

where H is a one-way hash function used for integrity checking of VideoKey.

Last but not least, the different VideoMAC values are computed as

E(H(videof ), TMsk),

where videof corresponds to a fragment f of the protected video stream.
Note that the software in the Protection Submodule does not store the value

r and, consequently, the participation of the Law Enforcer counterpart will be
mandatory in case of video unprotection. Certainly, the original value r could
be dishonestly used by the Trusted Manager but we assume this scenario is not
possible: the Trusted Manager is indeed trusted.

6.3 Protection and unprotection of videos

In this section, we specifically address the procedures of protection and unprotec-
tion of a video. Moreover, we detail the construction of the protection stream and
propose different variations of the coefficient alteration technique.

6.3.1 Construction of the protection stream

The PS is used for both protecting and unprotecting the GOPs in a video file.
Hence, prior to altering the coefficients of the ROIs of a GOP, this bit stream
must be generated. Similarly, prior to unprotecting the GOP, the same PS must
be generated.

Pseudorandom sequences are generated using an initial value or seed. This
seed depends on a random value, r, that is stored in the Information System in
an encrypted manner. We now describe the whole process to generate a PS for a
GOP g:

1. Extract from the file ROIdescription the list of ROIs to protect.
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2. Let B be the number of coefficient blocks corresponding to ROIs in the GOP.

3. Let Kg = H(g||r) be the key of the block cipher function, for GOP g.

4. Let Ig = H(g||Kg) be the initial counter, for GOP g.

5. To obtain the PS, run the Advanced Encryption Standard (AES) block cipher
in counter mode dB · (N)/ne times, where n is the output size of the block
cipher and N is the number of bits needed to “protect” a block.

6.3.2 Protection procedure

The coefficient alteration method introduced in Section 6.2.2 suits the property
of utility (i.e. the sign of AC coefficients will be correctly “restored” if the same
pseudorandom sequence is generated for unprotection). In order to test the ro-
bustness of the protection method, we propose three different flavours of coefficient
alteration:

• AC sign flipping. The sign of non-zero AC coefficients is flipped according
to the PS.

• DC encryption. Only the DC coefficient is altered. To that end, we use
the bits of the PS to encrypt, using the XOR function, the value of the DC
coefficient. Note that the bitwise XOR operation is reversible.

• DC encryption + AC sign flipping. It consists of flipping the sign of
the non-zero AC coefficients and encrypting the DC coefficient.

The value of N defined in Section 6.3.1 depends on the coefficient alteration
scheme used: For AC sign flipping N = 63, for DC encryption N = bDC (thus,
assuming that the DC coefficient is encoded using bDC bits) and, for DC encryption
+ AC sign flipping N = bDC + 63.

Note that other possible schemes have not been used: on the one hand, an AC
encryption scheme would result in a large increase of the size of the compressed
video; on the other, a DC sign flipping only results in unnoticeable image changes
(cf. Figure 6.2). Moreover, protection must be done on all the image components,
i.e. luminance and chrominance. Figure 6.4 shows the effect of applying the
DC encryption + AC sign flipping only on the chrominance components of the
frame. The resulting frame still allows the identification: certainly, the luminance
components are the most relevant in the context of image perception.
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Figure 6.2: Result of DC pseudorandom sign flipping.

6.3.3 Unprotection Procedure

Unprotection of a video can only take place upon specific events, such as criminal
investigations. Hence, the trusted manager cannot unprotect a video on his/her
own. To do so, the unprotection request to the platform entails the contact with
the Law Enforcer server. The purpose is twofold: on the one hand, the value
needed to decrypt the unprotection keys was encrypted by the Law Enforcer; on
the other, the Law Enforcer might log all the requests received from different
TP-VSS. In order to unprotect a GOP g of a video:

1. The Information System checks that the video fragment f to be unprotected
has not been modified. The value E(H(videof ), TMsk) is computed and
compared with the VideoMAC value of the corresponding fragment. If this
integrity checking fails, the fragment of the protected video file could be
restored from a backup server.

2. The Information System reads the VideoKey value from the database and
checks its integrity (using the H(kv||TMsk) value stored in VideoKey). If
integrity check fails, the value could be restored from a backup server.

3. Contact the Law Enforcer server using a secure channel and send the value
kv.
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Figure 6.3: Result of DC encryption + AC sign flipping on the chrominance components.

4. The Law Enforcer server will decrypt kv using the secret key LEsk, i.e.
r = D(kv, LEsk), where D is a decryption function.

5. Construct the PS as described in Section 6.3.1, for the GOPs to be unpro-
tected.

6. Using the information in the ROIdescription file, and the bits of PS, un-
protect the video.

6.4 Implementation and discussion

The aim of this section is to discuss on the features of the platform and the
techniques used in it. To illustrate its behavior, we have developed a testbed
prototype. Our TP-VSS consists of a webserver that manages a front-end for the
complete system. Both Detection and Protection submodules are programmed
in C language and can be executed upon web-activaded requests as shown in
Figure 6.4. The Information System resides in a plain MySQL server. All the
software is installed in an Intel NUC computer.

We have divided this section into two parts: in the first one we address the
degree of protection offered by the image transformations for the three variations
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Figure 6.4: A snapshot of our implemented prototype.

of coefficient alteration, elaborating on both grayscale and color videos. In the
second part, we address the security of the information involved in the platform.

6.4.1 Effectiveness of the protection techniques

The primary goal of the protection technique is to prevent that identities could
be disclosed by merely observing protected frames. However, some other aspects
should also be considered, such as robustness against attacks.

Identity concealment

Firstly, we evaluate the effectiveness of the three coefficient alteration techniques
with respect to their capability of concealing the identity of individuals. To that
end, we proceed to alter the coefficients of four different frames: BoyLift, GirlDoor
(both images were obtained by the authors of the article), 1-Corridor, 2-Corridor
(both images were taken from the CAVIAR database 1. These frames are shown
in Figure 6.5.

We have applied the three protection methods to the example frames. The
results can be observed in different figures: Figure 6.6 shows the protection with the
AC sign flipping method, Figure 6.7 shows the protection with the DC encryption

1INRIA Labs, CAVIAR Test Case Scenarios. http://homepages.inf.ed.ac.uk/rbf/
CAVIARDATA1/
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Figure 6.5: The four frames used to evaluate the protection method: BoyLift (top, left),
GirlDoor (top, right), 1-Corridor (bottom, left) and 2-Corridor (bottom, right).

Figure 6.6: The four frames protected with the AC sign flipping technique.

method and finally Figure 6.8 shows the protection with the DC encryption + AC
sign flipping method.

We can observe that AC sign flipping might not be enough to protect the
privacy of individuals. On the contrary, methods including the encryption of the
DC coefficients offer higher privacy protection. However, keeping the AC signs
unaltered results in some of the details of the original image being still noticeable.
Note that combining both AC sign flipping and DC encryption makes unfesaible
disclosing the identity of an individual by visual inspection.

In order to quantitatively compare the three coefficient alteration methods with
regards to privacy protection, we use a variation of the Mean Square Error (MSE)
between the original frame and the protected frame. A high MSE value indicates
a high information loss in the protected frame (and hence high privay protection).
Specifically, we compute the MSE only for the pixels that belong to a ROI. This
measure indicates the error per pixel due to the protection of the ROIs and allows
comparing the effect of a protection technique between different images. Table 6.1
shows the values for the coefficient alteration schemes presented.

Random alteration attacks

In Mart́ınez-Ballesté and Rashwan (2013), we introduced the concept of Random
Alteration Attack. A natural way of dishonestly unprotecting a GOP is to generate
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Figure 6.7: The four frames protected with the DC encryption technique.

Figure 6.8: The four frames protected with the DC encryption + AC sign flipping technique.

Scheme BoyLift GirlDoor 1-Corridor 2-Corridor
AC sf 415 337 125 296

DC enc 3479 697 1230 1943
AC sf + DC enc 9790 3659 2430 3798

Table 6.1: Mean Square Error taking into account the pixels belonging to ROI (sf: sign flipping,
enc: encryption).

a valid PS. However, the Random Alteration Attack does not consist of attacking
the cryptographic information, but of altering the visual elements of the protected
object (i.e. the pixels) so as to obtain an image that, far from being the exact
unprotected frame, allows the identification of the individuals. Hence, if attackers
know the method utilized to protect the frames they can randomly change the val-
ues of the bits of the DC coefficients and/or change the sign of the AC coefficients
until the person in the ROI becomes identifiable.

In order to assess which of the variations is more effective, we have tested the
robustness of the three coefficient alteration techniques against this attack. To
that end, we have generated 1000 random variations of a protected frame, and
have selected the one with less MSE (hence, the random unprotected image that
is “nearest” to the original image). The results are shown in Figure 6.9, together
with the original frame. We can observe that, although the schemes using DC
encryption were offering high protection, the robustest method against this attack
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Figure 6.9: The best frames unprotected by the Random Alteration Attack, for the different
coefficient alteration schemes studied (top, left: original frame; top, right: AC sign flipping;
bottom, left: DC encryption, bottom, right: DC encryption + AC sign flipping).

is the DC encryption + AC sign flipping (that is, in the 1000 random frames, the
frame nearest to the original one does not allow identification). As a conclusion, we
select the DC encryption + AC sign flipping method as the protection technique
used in our platform.

Other aspects

There are some other minor aspects that are worth to be addressed here. An ad-
vantage of our proposal is related to the effect of protection on video compression:
the coefficient variation techniques proposed here do not affect significantly the
compression ratio of the protected video. Our tests show that protection increases
up to 1% the size of the compressed video stream. Note that, for the sake of
brevity and, due to the lack of relevance, we do not include the results of these
tests.

However, the reversibility that provides the coefficient alteration methods is not
guaranteed if some transformations are done to the video (e.g., scaling, changing
the aspect ratio, etc.). Although this issue seems promising, studying the effect
of these transformations on the reversibility property is out of the scope of the
chapter.

6.4.2 Time performance

As mentioned in the Introduction, all the processes involved in the Detection and
Protection submodules must work in real time aiming at avoiding the temporary
storage of original video. Certainly, the internal components of the system make
use of temporary buffers as a support of the software processes. Notwithstanding,
we assume that at least the VSS does not write temporary data in its filesystem.
Moreover, the number of frames per second should also be considered. In this
sense, the number of frames per second is in general lower (e.g. 15 fps), for the
sake of processing in real time.
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Three important elements 2 must be considered when addressing the time per-
formance:

• The time spent for ROI detection.

• The time spent for PS creation.

• The time spent for ROI protection.

Table 6.2 shows a summary of the processing times related to the above ele-
ments. We have measured the average times in 1200 frames captured by means of
our prototype. There are results for CIF and PAL resolutions. We have used MD5
(Message-Digest Algorithm 5) as hash function and 128-bit AES as encryption
function.

Note that the most time consuming procedure is the one related to ROI detec-
tion. For PAL frames and optical flow detection, our implementation allows the
process of 11 frames per second.

Regarding unprotection, the whole procedure is naturally faster since, in this
case, the ROI detection procedure is not executed. Moreover the ROI unprotection
and PS creation will consume the same seconds than in the protection procedure.

Step CIF (352× 288 px) PAL (720× 576 px)
Detection (BS) 10.35 18.20
Detection (OF) 58.23 88.72

PS creation 0.37/12 0.56/12
Protection 0.25 0.38

Time per frame (BS) 10.63 (94.3 fps) 18.61 (53.7 fps)
Time per frame (OF) 58.51 (17.2 fps) 89.13 (11.2 fps)

Table 6.2: Time (in milliseconds) for the processes in our platform prototype. A GOP consists
of 12 frames. We present the results for background subtraction (BS, Kim et al. (2004)) and for
optical flow (OF, Farneback (2000)).

6.4.3 Security overview

Besides providing a real-time and reversible privacy preservation, the system must
accomplish some security requirements. On the one hand, disclosing the identity
of the persons of the video should not be straightforward for the attackers. On the
other hand, the cryptography functions utilized in our platform must be evaluated

2Note that video compression takes place in the camera hardware and, hence, is not considered
here.
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in an appropriate manner. To introduce this security analysis, we present some
assumptions:

1. The goal of attackers is to unprotect the ROIs of a protected video.

2. Both the original video and PSs are never stored in the system.

3. Any public user (including potential attackers) can only access to the pro-
tected video files and the XML description files.

The security aspects related to information security are tackled through the
analysis and discussion of some specific claims.

Claim 1. Attackers cannot feasibly generate the PS unless they gain access to
r. The PS is generated using a block cipher in counter mode. Both the encryption
key and the initial counter are generated from the value r. These elements are
generated using secure cryptographic functions. To dishonestly obtain r, attackers
might gain access to the Information System and use the V ideoKey value in a
brute search attack. The time consumed for succeeding with the attack is upper
bounded by the bit length of r. Last but not least, attackers could use attacks such
as the man-in-the-middle to eavesdrop r from the secure communication channel
between the Trusted Manager and the Law Enforcer.

Claim 2. Attackers can dishonestly modify a protected video and/or its V ideoKey
value, but these attacks can be detected. Attackers could attack the system aiming
at modifying the videos in the Information System. These modified videos can
produce incorrect renderings after unprotection. Since a MAC is stored for each
video (in fact, for video fragments), the Information System can check if the video
has suffered any modification. Also, the use of integrity checking aims at detecting
dishonest modifications of the V ideoKey value. To mitigate the effects of such at-
tacks, some backup policies are implemented. However, if an attacker could infer
the secret key of the TM, both new V ideoMAC and V ideoKey values could be
generated.

Claim 3. The probability of an attacker unprotecting a ROI in a GOP is neg-
ligible. If attackers had access to the original (unprotected) video, they could
compare the signs of the non-zero coefficients3 in the frames to attack. Upon dif-
ferences in the coefficients between videos, attackers could build the PS for that
specific GOP. However, given the assumptions, this way of obtaining the PS is
not feasible. Hence, attackers can only perform the aforementioned Random Bit
Alteration Attack and visual inspection of the resulting frames. This is certainly
unfeasible for the DC encryption + AC sign flipping protection. Finally, note that

3The information to compare depends on which of the four coefficient alteration schemes has
been applied to protect the video.
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building the exact PS by brute search is computationally infeasible. For instance,
for the robustest scheme, finding the right combination of alterations for a unique
block is upper bounded by 2d+63−z (where d is the bit-length of the DC coefficient,
and z is the number of zero AC coefficients for the block).

To conclude, the selection of secure block ciphers and hash functions is nec-
essary to fulfill the security requirements. However, as in many scenarios, the
linchpin of the security of the system is the correct management of the secret keys
involved in the system.
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Chapter 7
Robustness of the Coefficient Alteration
Protection Method

In this chapter, we propose a face reconstruction algorithm for protected faces.
These faces were protected by altering AC and DC coefficients of the blocks cor-
responding to a face region in a video compression. The proposed unprotection
algorithm exclusively depends on video processing techniques instead of disclosing
the unprotection key used in the protection process. This approach consists of the
following stages. Firstly, random unprotected faces are generated based on a ran-
dom alteration of AC coefficients with a fixed value of DC coefficients. Secondly,
the best unprotected faces are selected by an Eigenfaces model trained with facial
images from a repository of potentially protected persons. In addition, a single
facial image is generated by merging the best resulting images through median
stacking. Finally, the Eigenfaces model is utilized to recognize the face from the
repository, which is the closest to the resulting image in order to improve the as-
pect of the unprotected face. Experimental results based on both a proprietary
database and a public CALTEC faces database show that face reconstruction using
the proposed approach is very effective in order to break the protection applied to
faces.

The structure of the chapter is as follows. A summary of the method used for
protecting videos and the scenario of the attacking are introduced in Section 7.1.
In Section 7.2, a method to unprotect a protected facial image is described. In
Section 7.3, several tests are conducted in order to evaluate the efficiency of the
attack.
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7.1 Introduction

Video surveillance systems (VSS) are recording people while doing their daily
activities, since this aspect entails privacy issues, legislations regulate the man-
agement of video surveillance data. However, they are focused on the behavior of
VSS managers and operators. In Chapter 6, we stated that legislations should go
one step forward and concentrate on the adoption of Privacy Enhancing Technolo-
gies (PET) applied to video surveillance in order to prevent the reidentification of
individuals.

In Chapter 6, we described the properties that a privacy-aware VSS must have
in order to move trust from the VSS operators to the VSS themselves. In a
nutshell, in order to avoid the need for human supervision (and hence, to avoid
a privacy issue) the detection module must work accurately (i.e., all the ROIs
must be detected); In addition, in order to avoid the storage of the original (and
unprotected) video, the protection process must be completely reversible (i.e., in
case of being accessed by a law enforcer, the video must be easily reverted to the
original one without any loss of information). Finally, all the processes involved
must work in real time so as to avoid the temporary storage of video sequences.
Note that storing the original video (both temporarily or permanently) paves the
way for the VSS becoming a focus of attacks aimed at leaking the original videos.

In addition, in Mart́ınez-Ballesté and Rashwan (2013), we described the design
and implementation of a database system for a privacy-aware VSS that makes use
of these techniques, and relies the security on a secret key owned by the trusted
operator of the VSS. The ROIs protection system is constituted by the following
stages applied to a given sequence of the raw video:

1. Detect the ROIs in the sequence and write an ancillary data file with the
information of the ROIs in the sequence.

2. Compress the raw video into a set of MPEG group of pictures, or GOP1.

3. For each GOP, generate a seed for a pseudo-random number generator (PRNG)
using the GOP number in the sequence and some other random values. Pro-
tect the seed using the secret key of the trusted operator.

4. Protect each GOP as follows:

1In the compressed video stream, Each GOP starts with an I-frame (intra-coded) and contains
several P-frames (predicted) and B-frames (bi-predictive). I-frames are stored and compressed
entirely: the frame is divided into 8 × 8-pixel blocks which are applied a frequency transform
(e.g. Discrete Cosine Transform). The obtained 8× 8-coefficient blocks describe the pixel block
in terms of texture and details. For each block, there is one (direct) DC (a coefficient with zero
frequency) and 63 (alternate) AC coefficients (coefficients with non-zero frequencies)
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• Generate the protection stream PS, a pseudo-random bit sequence of
length l = B × (bDC + 63), where B is the number of coefficient blocks
belonging to ROIs in the compressed GOP, and bDC is the number of
bits for encoding the DC component of a block.

• Protect each coefficient block b by XORing, i.e. encrypting, the i-th bit
of the DC coefficient with the (64 · b+ i)-th bit of PS and flipping the
sign of the j-th AC coefficient if the (64 · b+ j)-th bit of PS equals one,
where b is the number of the coefficient block being protected.

7.1.1 Attacks on protected frames

Certainly, we showed in Mart́ınez-Ballesté and Rashwan (2013) that the described
system is trustworthy and, moreover, we proved that all the data involved is stored
in a secure manner. We assumed that attackers cannot unprotect the videos if they
cannot access the secret key of the trusted operators. However, we sketched that
the goal of an attacker might not be to retrieve or disclose the seed of the PRNG
but to unprotect a protected frame by simply randomly altering the values of the
pixels. If attackers had previous knowledge on the method utilized to protect
the ROIs, they could concentrate on randomly XORing and flipping the sign of
coefficients of the blocks belonging to ROIs.

In Mart́ınez-Ballesté and Rashwan (2013), we proposed four variations of the
coefficient alteration method Dufaux and Ebrahimi (2008): DC encryption, AC
sign flipping, DC + AC sign flipping, and DC encryption + AC sign flipping. We
demonstrated that the latter combination (the one specifically described in the
previous section) is the most robust against these kind of attacks.

Cryptographic attacks aim at sabotaging the security of cryptographic algo-
rithms, and they attempt to decrypt encrypted data or a part of them without a
prior-knowledge of the secret key, which is an important part of cryptanalysis. The
attempt of hacking on an encrypted image, video or data depends on knowledge
of the encryption methods used, and can be perpetrated in two different ways:

• If attackers only have the encrypted data without any knowledge about the
original data and the secret key, they should try to generate a number of
possibilities to estimate the secret key used for decrypting the data. With
long keys, this process is very time consuming and, in general, computation-
ally unfeasible. In Mart́ınez-Ballesté and Rashwan (2013), we proved that
this method is unfeasible for the coefficient alteration methods, especially for
those involving AC sign flipping.

• If attackers have access to some information about the original/unprotected
data, they can match the available data to the decrypted data to efficiently
reconstruct the original data.
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In this chapter, we describe an attack against the protection system described
in Mart́ınez-Ballesté and Rashwan (2013). Instead of trying to disclose or obtain
the unprotected data that is used to generate the key of the PRNG, we exclusively
apply video processing technology.

Specifically, we assume the following scenario: A company has a VSS to observe
people who enter the company buildings. The VSS used preserves the privacy of
individuals by protecting their faces by means of using the technique proposed
in Mart́ınez-Ballesté and Rashwan (2013). These videos can only be decrypted by
the trusted operator and under legal authorization.

We assume that there is an attacker who can break and penetrate the security
of the database of the VSS of this company, thus obtaining the protected video
surveillance video. Furthermore, the attacker has access to a public database of
facial images of the employees (such databases are quite common in public web
pages of companies and institutions). This attacker aims at reconstructing the
protected facial images within a frame. The attacker does not aim at reconstructing
a perfectly unprotected frame, but a facial image that allows the recognition of
the employees (optical decryption Li et al. (2008)).

7.2 Attack to unprotect a facial image

In this section, we address the method to unprotect the ROI in a protected video
frame. We assume that the attacker has previous knowledge about the faces that
might be protected (i.e. a public database of the pictures of the employees has been
accessed). In addition, we assume that the attacker is aware that faces have been
protected using the coefficient alteration technique proposed in Mart́ınez-Ballesté
and Rashwan (2013).

As shown in Figure 7.1, the attack consists of four steps: (i) generating random
unprotected faces; (ii) selecting the best unprotected faces; (iii) merging the best
images and (iv) improving the aspect of the unprotected image.

7.2.1 Generating random unprotected faces

The coefficient alteration methods perform the protection in the compressed do-
main of the video, not in the pixel domain. In particular, they change the DC
and AC coefficients of the compressed frame blocks. A DC coefficient encodes the
average intensity value of the pixel block. It often consumes more bits than the
AC coefficients, which represent the detailed views of the encoded video sequences.
For the sake of compression, coefficients are quantized. As a result, some of the
AC coefficients become zero.
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Figure 7.1: Overview of the proposed algorithm for attacking a protected face.

In this first step and, in order to reduce the search space, we set the luminance
DC coefficient of each block to a fixed value between 0 and 255. Then, we obtain
t random candidate unprotected images by randomly flipping the sign of the non-
zero AC coefficients.

7.2.2 Selecting the best decrypted faces

In the second step, the attacker uses the well-known eigenfaces algorithm Turk
and Pentland (1991) in order to select the k best images corresponding to the t
unprotected candidate images.

Faces can be represented by a vector that consists of the image rows concate-
nated with each other. Eigenfaces algorithm yields a new space that can describe
faces in more discriminant way than in the original image space. The base vectors
of this space are the eigenvectors.

The aforementioned eigenvectors constitute as a set of features that character-
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ize the variations between different face images. Each face image can be repre-
sented by one or more eigenvectors corresponding to the largest eigenvalues. Those
eigenvectors that are related to as eigenfaces are used for the classification stage.

A very important aspect is the difference of sizes between the protected faces
and the faces in the database. In order to gain scale invariance, every face is
centered and scaled such that its height and width are set to a predefined size
(H ×W ).

The Eigenfaces procedure is summarized in the following steps:

1. Construct an initial set of images that are the original facial images obtained
from the public picture database as a training set, (H × W × c), where
H = hight, W = width, and c is the number of the original face images.
However, The original images are modified by setting the face luminance DC
coefficients to a fixed value between 0 and 255.

2. Compute the eigenvectors from the training set, only keeping the vectors
that correspond to the M largest eigenvalues.

3. Finally, calculate the corresponding distribution in theM -dimensional weight
space for each known individual, by projecting their face images onto the face
space calculated in the previous step.

The following steps are used to select the k best images from the candidate
unprotected images:

1. Compute the set of weights, using an input image and the M eigenvectors.

2. Determine if the face is sufficiently close to the face space or not by calcu-
lating a similarity score.

3. If it is a face, classify the weight pattern as either a known or an unknown
person.

4. Repeat the three previous steps for the t candidate unprotected images.

5. Finally, select the k images that correspond to the largest similarity scores.

7.2.3 Merging the best faces through median stacking

Each image of k selected images is an unclear facial image (ghost face) for a same
person. In addition, these images are noisy images and show unclear details of face
elements (eyes, nose, etc.). Therefore, in the third step, the attacker merges the k
extracted images into a single image in order to obtain an image that contains the
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most of face elements. The simplest method to merge the k images is by averaging
the images. This is a widely used method for noise reduction although it causes
image blurring.

Therefore, in order to preserve the image details and reduce noise effect, the
median stack procedure Gabbouj et al. (1992) is used so as to increase the signal-
to-noise ratio in images. Median stacking considers all the values of a pixel at a
single location across each image in the stack, and then chooses the final value for
that pixel based on the median result.

Now, the attacker has a single image I that contains details of a protected
face. In order to obtain a noise-robust image, a 3 × 3 median filter is applied
to the resulting single image I. In addition, the Eigenfaces algorithm is used
for recognizing the closest faces in the database. This is done by computing the
similarity score between the unknown unprotected face and each face in the original
database of facial images. We select the ks faces corresponding to the ks highest
similarity scores, if they are related to the face of the same person (the original
database may contain different faces of the same person with different poses and
scales).

7.2.4 Improving the quality of the reconstructed face

As indicated above, all DC coefficients have been set to a fixed value, which leads
to an uncorrect intensity value for the image pixels. In this last step, the correct
values for DC coefficients are estimated, in order to obtain a correct color value
for each pixel of the reconstructed face.

Firstly, the attacker uses the database of the original faces to estimate cor-
rect values of DC coefficients. Each recognized face is divided into five general
regions: forehead, eye, nose, mouth and jaw. Each region is then divided into
8 × 8 blocks with an overlap, namely, by sliding dividing-partition one pixel by
one pixel. Then, the pixels in each image block of each region of the recognized
face(s) are transformed using the DCT transformation. In this step, the attacker
constructs a dataset containing DC coefficient values for each block in a region of
each recognized face.

Therefore, in this algorithm, that attacker has five matrices containing DC
coefficients, each is related to one of the five regions. The number of columns per
region equals the number blocks. In turn, the number of rows equals the number
of the recognized faces (ks). Additionally, if ks is more than one, the median value
of rows of each matrix is used as the estimated DC coefficient value for each block
in a region.
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7.3 Experimental results

We have developed a small database of facial images. The images were collected
with different scales and face rotations with an uncontrolled indoor environment
using a webcam (Logitech QuickCam Orbit/Sphere AF). The database contains 50
static images for eight unique people. The attack algorithm has been implemented
in Matlab.

Assume that the attacker has a protected frame (see Figure 7.2 for two examples
of original and protected faces). In the first step, t = 1, 000 random images.
Figure 7.3 shows some of these t random candidate images. In addition, DC
luminance coefficients of ROIs blocks are set to 255. As shown in Figure 7.3, the
rough details of faces are not correct, and the images are ghostly faces. However
they contain some face elements, such as the eyes, nose, edges, boundaries, etc.

(a) (b) (c) (d) (e) (f)

Figure 7.2: Original images and their corresponding protected versions.

Figure 7.3: Some of the t random candidate images (only the luminance component is shown).

The training images (the faces obtained from our database) are modified with
a luminance fixed DC value of 255 as shown in Figure 7.4. Note that the face
belonging to the attacked protected frame is not in the training database. Now, a
number of the original images with fixed DC values are used to build an Eigenfaces
model for a face detection.

After applying Eigenfaces on the t random images, each image is projected on
the Eigenfaces subspace in order to determine if a face or not a face by checking the
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(a) (b) (c) (d) (e) (f)

Figure 7.4: (a and c) Original facial images and (b and d) Original facial images with a fixed
DC value (DC = 255) used for training an Eigenfaces model.

similarity score (S) between the input image and the resulting model. The k = 20
images with the highest similarity scores yielded by the Eigenfaces algorithm are
selected from t images. Examples of the k best selected images for a protected
person are shown in Figure 7.5.

(a) (b) (c) (d)

Figure 7.5: The four best images corresponding to the highest similarity scores (only luminance
component is shown).

By applying median stacking, a single image I is generated, which has more in-
formation about details and face edges, but still fails in intensity values. Figure 7.6
shows three different examples for the single median image for three different facial
images from our private database.

The Eigenfaces algorithm is again used for recognizing the closest face to the
resulting single face. We evaluated the accuracy of the Eigenface model by training
it with different facial images of the same person. Table 7.1 shows the accuracy
of the Eigenface model with the number of facial images of the person used for
constructing the model. As shown, the use of different facial images with different
views of a same person yields an increase of the correct detection rate of the
Eigenfaces model. For instance, the results show that if the Eigenfaces model is
trained with one facial image per person, the classification rate is more than 20%.
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: (a) Three median luminance component images for three different persons; (b)
Three median facial images after adding chrominance components.

In turn, using more facial images per person yields higher classification rates.
Notwithstanding, the percentage of training with one image per person is only
20% (low classification rate), however it is considered a good rate comparing with
completely random unprotection algorithms. Actually, the completely random
unprotection is unfeasible in this case, since 2ν tests are necessary, where ν is the
number of blocks times the number of non-zero AC coefficients, and finally the
attacker may obtain a face that is a complectly different from the original one.
Furthermore, in order to increase the chances of getting a correct face detection
in this algorithm, the attacker can select the three maximum similarity scores of
the recognized facial images.

The attacker uses the recognized faces to correct DC coefficients for the result-
ing image I, as shown in Figure 7.7. The fixed DC coefficients are replaced by
the DC coefficients of the recognized faces in order to reconstruct the unprotected
face, as shown in Figure 7.7. The attacker can use the first three detected faces
corresponding to the highest three similarity scores. If, they are for the same per-
son, median stacking is applied to get estimated DC values for each region within
the face. However, if they are for different faces, each is individually used for
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Number of facial
images per person

Total number of
facial images

Detection rate
percentage

01 08 23%
02 16 38%
03 24 49%
04 32 62%

Table 7.1: Rate of correct face detection vs. number of facial images for a unique person used
for training an Eigenfaces model.

correcting the DC coefficients.

(a) (b) (c)

(d) (e) (f)

Figure 7.7: (a-b) Original facial images, (e-h) Reconstructed facial images.

The proposed algorithm is not affected by scaling, as a result of using a fixed
template for training and testing the Eigenfaces model. Figure 7.8 shows that the
size of the recognized face used for correcting DC coefficients is different from the
size of the input protected face. However, there is no influence on the algorithm
accuracy.

The Matlab execution time of the whole algorithm is around 1, 300 seconds on
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(a) (b) (c) (d)

Figure 7.8: (a) Original image without protection, (b) protected image, (c) original image
contains a recognized face used for correcting DC coefficients, and (d) reconstructed image with
the resulting unprotected face.

an Intel Dual Core at 3.2 GHZ, including the Eigenfaces model training and by
considering 250× 170 color facial images.

Additionally, in order to get a more realistic algorithm, the proposed algorithm
has been applied to the public CALTECH face database 2, which contains 450
color frontal images (896× 592) of 25 unique people. Each person has 20 views in
different scales and under different illumination conditions.

We applied the proposed algorithm to different images for the same people.
Qualitative results are shown in Figure 7.9. The proposed system yields up to 90%
correctly detected faces. The impact on the algorithm accuracy of the number of
facial images per person for the Eigenfaces model is kept with the public database.
As shown in table 7.2, the larger number of facial images, the more accurate the
obtained results. In addition, the results show if the Eigenfaces model is trained
with 10 or 15 facial images per person, it leads to more than 90% of detection
rates.

Number of facial
images per person

Total number of
facial images

Detection rate
percentage

01 25 29%
02 50 42%
05 150 67%
10 250 92%
15 375 94%

Table 7.2: Rate of correct face detection vs. number of facial images for a unique person used
for training an Eigenfaces model using the CALTECH face database.

2Caltech Frontal Face Dataset. Online: http://www.vision.caltech.edu/html-files/archive.
html.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.9: (column 1) Original facial images from the public CALTECH face databas, (column
2) Protected facial images with Mart́ınez-Ballesté and Rashwan (2013), (column 3) Reconstructed
facial images.

Furthermore, the algorithm has been applied in order to unprotect a face which
does not belong to the database used for training the Eigenfaces model. Fig-
ure 7.10 shows that the reconstructed image contains the closest face recognized
by the Eigenfaces model to the protected face. Actually, the reconstructed face is
a fake deformed face that contains of the AC coefficients of the protected face (Fig-
ure 7.11(b)), as well as the DC coefficients of the recognized face (Figure 7.11(c)).
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In order to diminish the impact of correcting DC coefficients using a wrong face,
the similarity score of the recognized face is used to update the DC coefficients
values. This means the final DC coefficients depends on the DC coefficients values
of the recognized face and the similarity score resulted from a Eigenfaces model
for this face, as: (DCreconstructed = score×DCrecognized). For instance, if the sim-
ilarity score is very small, the colors of face regions are dark and this is a signal
to a fake face as shown in Figure 7.11. In turn, the high score yields that the
DC coefficients values of the reconstructed face are close to the DC values of the
recognized face and this is a signal to a true face.

(a) (b) (c) (d)

Figure 7.10: (a) Original image without protection, (b) protected image, (c) original image
contains a recognized face used for correcting DC coefficients, and (d) reconstructed image with
the resulting unprotected face.

(a) (b) (c)

Figure 7.11: (a) Resulting facial image (luminance component) with fixed values for DC coef-
ficients, (b) resulting facial image (chrominance + luminance components) with fixed values for
DC coefficients, and (c) reconstructed fake facial image contains a known recognized face used
for correcting DC coefficients.
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Chapter 8
Summary and Conclusions

”Imagination is more important than knowledge.”

- Albert Einstein

In this thesis, the trust in video surveillance systems has been analyzed from the
perspective of the trust in technology: ROIs detection and ROIs protection. From
the theoretical standpoint, the concepts introduced and discussed are of concern
for the computer vision community due to the increasingly widespread use of video
surveillance systems. In general, an accurate understanding and control of the trust
in video surveillance systems preserving privacy plays a key role in that people
can do their daily activities under different cameras with full comfort and without
tension. From the practical perspective, the concepts introduced in this thesis
have been exploited for increasing the widespread of the presented algorithms of
optical flow estimation as motion detection techniques. The techniques introduced
in this thesis provide accurate noise-robust and illumination-robust flow fields that
can intensively be used in a variety of computer vision applications.

In addition, this dissertation introduced a trustworthy model for a privacy-
preserving video surveillance system, which ensures real-time performance, high
accuracy, reversibility and information security by using a protection technique
based on a coefficient alteration scheme. The coefficient alteration algorithms
assure the reversibility and do not significantly increase the length of the video
protection streams.

This final chapter presents a summary of the contributions and final remarks
of this thesis and suggests future research directions.
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8.1 Summary of contributions

Regarding the detection stage, this thesis has introduced a new stage exclusively
based on tensor voting to build an optical flow estimation model to be more ro-
bust than the current state-of-the-art against the noise and outliers, as well as to
preserve the discontinuities of the estimated flow field. In addition, in this thesis,
an improved stage based on stick tensor voting is used in order to reduce compu-
tational cost of the proposed optical flow model based on a full tensor voting. In
turn, most optical flow approaches can not cope with illumination changes over
video captured. Thus, to overcome this problem, an illumination-robust optical
flow algorithm was developed in this thesis based on the popular histogram of
gradients (HOG) technique.

In turn, a robust protection scheme for the detected regions was developed
based on a DCT coefficients alteration scheme using a secure protection stream
during the decoding process. This method is reversible in order to retrieve the
original data in a case of need under legal authorization, in addition does not
affect on the compression ratio and the length of the video protection streams.
Furthermore, a random attack algorithm was proposed to hack the protection
algorithm to serve for improving the cryptographic algorithm used in the protection
stage.

8.1.1 ROIs detection and protection approaches

The contribution introduced in Chapter 2 is twofold: first, we have described,
analyzed and tested well-known methods and techniques involved in the main steps
of a video surveillance system. In this regard, we have analyzed the techniques
in the literature focusing on the properties that a trustworthy video surveillance
system must fulfil (i.e., real time performance, high accuracy and utility).

8.1.2 Using Tensor voting for estimating accurate flow fields

In Chapter 3, we have proposed an adaptation of the variational optical flow tech-
niques described in Zimmer et al. (2009) and in in Bruhn et al. (2005) by replacing
the Gaussian filtering applied in the form of structure tensors by a discontinuity-
preserving filtering stage based on tensor voting. The application of tensor voting
requires a pre-segmentation of the input images into three regions (homogeneous-
moving, textured-moving, stationary) based on their spatio-temporal gradients.
Tensor voting is separately applied to the homogeneous-moving and textured-
moving regions. The proposed technique has been tested on a wide variety of real
image sequences and compared with classical and state-of-the-art differential op-
tical flow methods. Experimental results show that the proposed technique yields
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flow fields with lower quantitative errors than previous techniques, and is able to
better estimate the optical flow fields, especially over homogeneous regions, and
better discriminate the boundaries of moving objects.

8.1.3 Optical flow fields estimation through a stick tensor
voting

Chapter 4 presents a new approach for optical flow that can be used for detecting
motion in a video surveillance system. This chapter has proposed an adaptation of
the variational optical flow technique described in both Rashwan et al. (2011, 2012)
and illustrated in details, in Chapter 3, by replacing the discontinuity-preserving
filtering stage based on tensor voting by a stage exclusively based on stick tensor
voting in order to significantly reduce the computational time, which is currently
around half the processing time corresponding to the technique initially proposed
in Chapter 3. Furthermore, a weighted non-local term (a practical median filter) is
used to improve the details of the estimated flow fields along discontinuities. The
proposed weighted non-local term depends on both the occlusion state of pixels, as
proposed in Sand and Teller (2008), and the surfaceness saliency obtained through
stick tensor voting.

8.1.4 Illumination-robust optical flow estimation model

Video surveillance systems are badly affected by illumination changes and most
classical optical flow approaches used for surveillance systems can not cope with
illumination changes. Therefore, Chapter 5 introduced a robust optical flow ap-
proach which is very robust concerning illumination changes based on the his-
togram of oriented gradients (HOG). The optical flow model estimates dense flow
fields using a duality of the TV-L1 optical flow model with a non-local term. The
HOG descriptor, which is robust to illumination changes, has been used in order
to define an alterative data term. The proposed approach yields the most accurate
flow fields for real images with both illumination changes and large displacements.

8.1.5 Privacy-aware approach to store video surveillance

In Chapter 6, we have presented a trustworthy platform for privacy-preserving
video surveillance. We have defined the properties that such a system must fulfill
in order to be trustworthy. To the best of our knowledge, this is the only proposal
of privacy-aware video surveillance system from a holistic perspective, taking into
account several aspects instead on only focusing on detection and simple protection
of ROIs. We have divided our platform between a Detection Submodule, a Pro-

139

UNIVERSITAT ROVIRA I VIRGILI 
ROBUST ANALYSIS AND PROTECTION OF DYNAMIC SCENES FOR PRIVACY-AWARE VIDEO SURVEILLANCE 
Hatem Abd Ellatif FatahAllah Ibrahim Mahmoud Rashwan 
DL: T 1102-2014 



140 Chapter 8. Summary and Conclusions

tection Submodule and an Information System. We also involve a Law Enforcer
authority.

We have overviewed the different trends in ROI detection (face detection, back-
ground subtraction and optical flow). We have stated that, on the one hand, it
is necessary to use full moving objects (such as bodies) as ROIs instead of faces;
on the other hand, we have addressed the advantages and disadvantages of the
different groups of techniques. We have also recalled the categories of protection
methods: transformation in the pixel domain and in the compressed domain (the
latter fulfills the property of utility since the methods are fully reversible). We have
focused on the coefficient alteration as the best protection method. The protection
and unprotection depend on a pseudorandom bit stream (the protection stream).
We have described a method to generate this sequence in a secure manner. To
prevent the Trusted Manager from arbitrarily unprotecting videos, we propose
that before protecting and unprotecting a video, the Protection Submodule must
contact its counterpart in the Law Enforcer side.

We have implemented a prototype of our proposed platform in order to do
some tests. We have discussed the effectiveness of the protection method, in terms
of identity concealment, robustness against image reconstruction by means of the
Random Alteration Attack and compression efficiency. We have addressed the time
performance of the protection procedure and have ended with some discussion on
the security of the information and data involved in the platform. The platform
has been prototyped in a Intel NUC computer, with i3 CPU.

8.1.6 Attacks against privacy-aware protected video

Chapter 7 has proposed an algorithm for unprotected ROIs (faces) in a protected
frame by assuming of a previous knowledge about (i) the faces protected (having
access to a public database of facial images) and (ii) the faces have been protected
with the algorithm proposed in Mart́ınez-Ballesté and Rashwan (2013).

The proposed algorithm consists of five steps. First, it generates a number of
images by randomly altering the 63 AC coefficients with a fixed DC coefficient in
order to reduce the complexity of the search space. Secondly, the number of facial
images from the resulting random images are selected according to the highest
similarity score calculated by the Eigenfaces model. A single image is thirdly
generated through median stacking. A number of faces are matched to the resulting
single image based on the trained Eigenfaces model. Finally, a reconstructed face
is obtained by correcting the DC coefficients of the single image through the DC
coefficients of the recognized face(s).

The proposed algorithm has proved to be valid in the empirical tests that have
been conducted, achieving good results with two evaluation databases: a public
CALTECH face database and a proprietary database. Therefore, the alteration
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of AC coefficients with an encrypted DC coefficient is not enough for trustworthy
surveillance systems enabling privacy, since our algorithm can significantly succeed
guessing the protected person in a frame from the protected video.

8.2 Future research directions

The concepts and the results presented in this dissertation pave the way for new
applications and solutions to different detection and protection problems. Some
future research directions are summarized below.

8.2.1 A fast automatic optical flow model

The optical flow estimation is of fundamental interest in computer vision with
its great importance in many applications. The errors generated during the flow
fields estimation can yield wrong results in different tasks, such as automated video
surveillance, tracking or gait recognition, among others. Thus, the developing of
fast optical flow techniques is very important for practical purposes. Therefore,
the models introduced in Chapter 3 can be improved by focusing on the reduction
of the computational time of the proposed algorithm, which is currently around
six times larger than the one in Zimmer et al. (2009), by applying the technique
recently proposed in Moreno et al. (2011b). Furthermore, further work is also
required in order to automatically determine the values of the various parameters
that have currently been tuned experimentally. This is necessary in order to have
a fully automatic optical flow estimation algorithm.

8.2.2 A real-time optical flow estimation

Based on the concepts developed in this thesis, and more precisely on the the-
oretical optical flow model derived in Chapter 4, new research efforts are being
devoted in order to derive real-time solutions for the motion estimation based on
optical flow problems. This solution would not only represent a new approach for
the optical flow problem, but could also be integrated into a real video surveillance
system in order to allow for a reliable system based on an accurate ROIs detection.
Therefore, future work will aim at implementing the optical flow model proposed
in Chapter 4 on GPU Systems that accelerate computations using modern accel-
erators such as GPUs and future devices while simplifying implementations. In
addition, future work will also focus on hardware implementations such as, the
field-programmable gate arrays (FPGAs) that allow the developers to program
product features and functions, adapt to new standards, and reconfigure hardware
for optical flow applications.
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8.2.3 A gait recognition based on optical flow fields

The optical flow model proposed in Chapter 4 can be used to design a novel
gait recognition algorithm that will be based on the histogram of co-occurrence
of optical flow fields. The optical flow fields are firstly estimated between each
two consecutive images during a complete gait cycle using the proposed model.
Then, the extracted descriptors along a gait cycle will train a robust classifier
based on support vector machines or neural networks for a gait classification. The
accurate flow fields will yield an accurate gait recognition used for a robust video
surveillance system.

8.2.4 An Illumination-robust and noise-robust optical flow
model

In Chapter 5, the proposed optical flow methodology based on the histogram of
gradients allows to estimate flow fields that can cope with illumination changes.
These illumination-robust models are very useful for dealing with environmental
changes surrounding cameras used in surveillance systems. However, to our knowl-
edge, most of the cameras used in surveillance systems suffer from a lot of noise
types. Therefore, future work will aim to integrate the two optical flow models in
Chapter 4 and Chapter 5 respectively to build both an illumination-robust and a
noise-robust optical flow model based on HOG features and tensor voting process.

8.2.5 A new robust ROIs protection

Regarding the protection sub-module mentioned in Chapter 6 and 7, due to the
success of the attack algorithm proposed in Chapter 7 for reconstructing the pro-
tected faces (with a prior knowledge, i.e. public unprotected faces), an immediate
work will focus on using a more robust and accurate classification approach to
recognize a correct face. In addition, future work aims at reconstructing a face
without any previous knowledge, trying to evaluate a randomly generated un-
protected face by a robust face-detection approach. Furthermore, the effect of
applying a permutation to the non-zero AC coefficients will be studied, aiming at
producing a more robust protected image.

Future work can also include, on the one hand, the study of the effect on the
protected videos of transformations such as rescaling and cropping. Moreover,
we expect to implement some routines taking into account the performance and
resource consuming, aiming at allowing at least 15 fps with the Intel NUC, for
motion detection based on accurate optical flow techniques and PAL frames.

As a final remark, although new models used for a description of real phenom-
ena of the surveillance system cameras require extensive validation under different
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applications, the models introduced in this thesis accurately describe the observed
behavior of the surveillance system technology. Moreover, their application for
solving specific problems have produced promising results. Notwithstanding, a
thorough theoretical analysis incorporating all concepts from surveillance systems,
as well as from the design and manufacture of surveillance cameras, could provide
additional insights on the applicability and limitations of the introduced models
to a wider set of real surveillance systems.
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8.3 Publications

The following publications have been derived from this thesis:

1. Rashwan H. A., Puig D. and Garcia M. A.: On improving the robustness
of differential optical flow, Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on, 2011, pp. 876-881.

2. Rashwan H. A., Garcia M. A. and Puig D.: Improving the robustness of
variational optical flow through tensor voting Computer Vision and Image
Understanding, Academic Press, 2012, vol(116), pp. 953-966.

3. Mart́ınez-Ballesté A., Rashwan H. A., Puig D. and Fullana A.P.: Towards a
trustworthy privacy in pervasive video surveillance systems. PerCom, 2012,
pp. 914-919.

4. Mart́ınez-Ballesté A., Rashwan H. A., Castellà-Roca J. and Puig D.: A
trustworthy database for privacy-preserving video surveillance Proceedings
of the Joint EDBT/ICDT 2013 Workshops, 2013, pp. 179-183.

5. Rashwan H. A., Garcia M. A. and Puig D.: Variational Optical Flow Estima-
tion Based on Stick Tensor Voting. IEEE Transactions on Image Processing,
2013, vol(22), pp. 2589-2599.

6. Rashwan H. A., Mohamed M. A., Garcia M. A., Mertsching B. and Puig D.:
Illumination Robust Optical Flow Model Based on Histogram of Oriented
Gradients Pattern Recognition, Springer Berlin Heidelberg, 2013, pp. 354-
363.

7. Mohamed M. A., Rashwan H. A., Mertsching B., Garcia M. A. and Puig D.:
On Improving the Robustness of Variational Optical Flow against Illumina-
tion Changes, 21st ACM International Conference on Multimedia, 2013, pp.
250-258.

8. Mart́ınez-Ballesté A., Solanas A., Segarra M.V. and Rashwan H. A.: Privacy
in Pervasive Video Surveillance: Trust through Technology and Users Coop-
eration, 4th International Conference on Pervasive and Embedded Computing
and Communication Systems (PECCS), 2014.

9. Rashwan H. A., Mohamed M. A., Mertsching B., Garcia M. A., and Puig D.:
Illumination-Robust Optical Flow Using Local Directional Pattern, IEEE
Transactions on Circuits and Systems for Video Technology, 2014.
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10. Rashwan H. A., Mart́ınez-Ballesté A., Puig D., ”Towards the Implementation
of a Trusted Privacy-Awareness Video Surveillance System”, SAAEI 2014,
Morocco, To appear.

11. Rashwan H. A., Mart́ınez-Ballesté A., Solanas A. and Puig D.: Understand-
ing Trust in Privacy-Aware Video Surveillance Systems, Journal of Informa-
tion Security and Applications, Submitted manuscript.

12. Rashwan H. A., Mart́ınez-Ballesté A., Solanas A. and Puig D.: A secure
and trustworthy platform for privacy-aware video surveillance system, IEEE
Transactions on Information Forensics and Security, Submitted manuscript.

13. Rashwan H. A., Mart́ınez-Ballesté A., Garcia M. A. and Puig D.: Face
Reconstruction against a Trustworthy Privacy-Preserving Video Surveillance
System, Image and Vision Computing, Submitted manuscript.

14. Rashwan H. A., Garcia M. A. and Puig D.: Gait Representation and Recog-
nition From Temporal Co-occurrence of Flow Fields, Pattern Recognition,
Submitted manuscript.
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