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Abstract  

Acid mine drainage (AMD) generated by sulfide oxidative dissolution is a major cause of 

water contamination world-wide. Arsenic is one of the main AMD pollutants whose 

concentration can reach up to hundreds of mg L-1, i.e. 5-6 orders of magnitude higher 

than the limit of 10 µg L-1 for potable water established by the European Union in 1998. 

This thesis is concerned with the impact of arsenic mobilization along AMD discharges.  

Oxidation of As-bearing sulfides such as arsenopyrite (AsFeS), As-rich pyrite (FeS2) 

or marcasite (FeS2) is one of the main sources of arsenic release. The first part of this thesis 

is focused on the dissolution kinetics of arsenopyrite and marcasite at acidic to neutral 

pH using long term flow-through experiments. The effects of pH, dissolved oxygen and 

temperature on their dissolution were assessed. The respective dissolution rate laws were 

proposed on the basis of the steady-state rates, taking into consideration the slight pH 

effect and the strong dissolved oxygen effect on dissolution. The incorporation of these 

rate laws into the kinetic databases of geochemical and reactive transport codes allows us 

to obtain better realistic simulations. 

The environmental impact of released arsenic into waters depends on its natural 

attenuation. The arsenic oxidation state is considered given that the main process that 

controls the fate and mobility of aqueous arsenic is arsenate sorption onto precipitated 

Fe-phases. The second part of the thesis discusses arsenic oxidation and arsenic sorption. 
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Oxidation was studied by means of batch experiments under abiotic and biotic conditions 

at typical AMD water pH and water composition. Simultaneous oxidation of Fe(II) to 

Fe(III) and arsenite to arsenate occurs under biotic conditions, the former mediated by 

bacteria, and the latter by the presence of Fe(III). Under abiotic conditions, oxidation of 

arsenite to arsenate in the presence of Fe(III) is slow, but is enhanced by increasing 

dissolved Fe(III) and chloride concentrations in the presence of light. Arsenic sorption at 

AMD sites, and hence arsenic attenuation, occurs via arsenate sorption on new iron-

oxyhydroxide and iron-oxyhydroxide-sulphate precipitates (mainly, schwertmannite 

(Fe8O8(OH)5.5(SO4)1.25), jarosite (KFe3(SO4)2(OH)6) and goethite (FeOOH)). The sorption 

capacity of goethite and jarosite was studied and compared with the one reported for 

schwertmannite. To this end, batch experiments were conducted using synthetic powders 

of K-jarosite and goethite at highly acidic pH. In the absence of competitive effects of 

other anions, K-jarosite presented better removal efficiency for arsenate, and ionic 

strength and pH had little effect on the sorption capacity of the two minerals. In contrast, 

these sorption capacities diminished considerably in the presence of sulfate, which is the 

main anion in AMD waters.  

A deeper understanding of the dominant mechanisms controlling arsenic content in 

waters demands the study of the processes not only under laboratory but also under 

natural conditions. Accordingly, the third part of this thesis deals with the arsenic 

attenuation processes in a natural system. To this end, the acidic water and sediments of 

the abandoned Tinto Santa Rosa mine discharge, located in the Iberian Pyritic Belt, were 

studied. The most striking feature of the water was a pH decrease accompanied by a 

systematic decrease in ferrous iron, total iron, arsenite, arsenate and total arsenic 

concentration. Additionally, bed-stream sediments showed high arsenic contents. The 

main processes that control the fate and mobility of arsenic in waters in the field were 

iron and arsenic oxidation, precipitation of Fe(III)-minerals and sorption of As(V) onto 

them. A 1-D reactive transport model using the PHREEQC code was used to explain and 

quantify the aforementioned processes that had been studied previously under 

laboratory conditions. 



 

 

Resumen 

El drenaje de aguas ácidas de mina generado a partir de la oxidación de sulfuros 

metálicos es una de las principales causas de contaminación del agua a nivel mundial. De 

entre los principales contaminantes asociados a estos drenajes, el arsénico es uno de los 

más importantes, pudiendo alcanzar concentraciones de hasta cientos de mg L-1. Estos 

valores superan en 5-6 órdenes de magnitud el valor máximo establecido de 10 µg L-1 por 

la Unión Europea en 1998 para las aguas potables. En esta tesis, se estudia la movilidad 

del arsénico asociado a estos drenajes ácidos de mina y su impacto medioambiental. 

Una de las principales fuentes de arsénico en las aguas es la oxidación de sulfuros 

ricos en As, como son la arsenopirita (AsFeS), la pirita rica en arsénico (FeS2) o la 

marcasita (FeS2). En la primera parte de esta tesis, se ha estudiado la cinética de 

disolución de arsenopirita y marcasita mediante experimentos de flujo continuo de larga 

duración. Con esta metodología, la influencia del pH, del oxígeno disuelto y de la 

temperatura han sido examinados. Asimismo, se han propuesto leyes de velocidad que 

contemplan el leve efecto que ejerce el pH y la gran influencia del oxígeno en las 

velocidades de disolución de ambos minerales. Las leyes de disolución obtenidas pueden 

ser incorporadas en códigos de transporte reactivo, permitiendo obtener cálculos y 

predicciones más realistas.  
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Una vez liberado, el impacto medioambiental del arsénico depende de su 

atenuación natural. En este sentido, el principal proceso que controla la movilidad del 

arsénico acuoso es la adsorción. Debido a la gran influencia que ejerce el estado de 

oxidación del arsénico en la adsorción éste es un factor clave a considerar. En la segunda 

parte de la tesis, los procesos de adsorción y oxidación del arsénico han sido 

investigados. La oxidación ha sido estudiada mediante experimentos de tipo “batch” en 

condiciones abióticas y bióticas, en aguas con pH y composición similares a las 

encontradas en los medios naturales afectados por el drenaje ácido de mina. Según los 

resultados obtenidos, en condiciones bióticas el As(III) es oxidado abióticamente por el 

Fe(III) generado simultáneamente por oxidación catalizada por bacterias. Aunque la 

oxidación de As(III) a As(V) por el hierro es muy lenta, el proceso se acelera cuando se 

incrementa la concentración de Fe(III) o la de cloro en presencia de luz.  

La adsorción del arsénico en los drenajes ácidos, y por tanto su atenuación, tiene 

lugar por la adsorción de As(V) en los nuevos oxihidroxidos e oxihidroxisulfatos de 

hierro que se forman en este tipo de medios, como la schwertmanita 

(Fe8O8(OH)5.5(SO4)1.25), la goetita (FeOOH) o la jarosita (KFe3(SO4)2(OH)6). La capacidad de 

adsorción de la goetita y jarosita han sido examinadas y comparadas con las obtenidas 

previamente por otros autores para la schwertmanita. Con tal objetivo, se han realizado 

experimentos tipo batch con goetita y jarosita sintética en condiciones de pH muy ácido. 

En ausencia de los efectos competitivos de otros aniones, la jarosita potásica presenta 

mayor eficiencia en la remoción del arsenato de la solución. Por otro lado, se ha 

observado que el pH y la fuerza iónica no ejercen apenas influencia en el proceso de 

adsorción del arsenato en ambos minerales. Sin embargo, la presencia de sulfato, 

principal anión en las aguas ácidas de mina, provoca una importante disminución en las 

capacidades de adsorción. 

Un conocimiento completo de los mecanismos dominantes que controlan el arsénico 

en las aguas requiere del estudio de los procesos involucrados, no sólo bajo condiciones 

de laboratorio, sino también en condiciones naturales. Por tanto, la tercera parte de esta 
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tesis se ha centrado en el estudio de los procesos de atenuación natural que tienen lugar 

en un sistema natural. Con este objetivo, se han estudiado tanto el agua como los 

sedimentos de la descarga ácida de la mina abandonada de Tinto Santa Rosa (situada en 

la Faja Pirítica Ibérica). Las principales características observadas en el sistema natural 

son una disminución del pH, acompañada de un decrecimiento sistemático en el Fe(II), 

en el hierro total, en el As(III), en el As(V) y en el arsénico total. Adicionalmente, se ha 

observado que los sedimentos del fondo del arroyo presentan elevadas concentraciones 

de arsénico. Según las características del sistema, los principales procesos que controlan 

la movilidad del arsénico en las aguas de campo estudiadas son la oxidación del hierro y 

del arsénico, la precipitación de minerales de Fe(III) y la adsorción del As(V) en estos 

minerales. Un modelo de transporte reactivo 1-D, realizado mediante el código de 

modelización geoquímica PHREEQC, se empleó para explicar y cuantificar los procesos 

previamente mencionados y que habían sido anteriormente estudiados en condiciones de 

laboratorio. 



 



 

 

Resum  

L’anomenat drenatge àcid de mina (AMD) ve generat per l’oxidació de sulfurs i és causa 

major de contaminació d’aigües a nivell mundial. L’arsènic és un del princiapls 

contaminants la concentració del qual pot assolir centenars de mgL-1, és a dir, de 5 a 6 

ordres de magnitud més gran que el límit de potabilitat per a l’aigua (10µg L-1) establert 

per la UE en 1998. En aquesta tesi, s’estudia l’impacte de la mobilització de l’arsènic al 

llarg de descàrregues de drenatge àcid de mina. 

L’oxidació de sulfurs que contenen arsènic (tal com l’arsenopirita (AsFeS), la pirita 

rica en arsènic (FeS2) o la marcassita (FeS2) és una de les principals fonts d’alliberament 

d’arsènic a l’aigua. En la primera part de la tesi, s’ha estudiat la cinètica de dissolució de 

l’arsenopirita i de la marcassita a pHs àcids i neutre, utilitzant reactors de flux continu, i 

s’han valorat els efectes del pH, de l’oxigen dissolt i de la temperatura en la dissolució 

d’ambdós sulfurs. A partir de les velocitats en estat estacionari establertes, es proposen 

les respectives lleis de dissolució que tenen en compte el lleu i el fort efecte del pH i de 

l’oxigen dissolt, respectivament, en llur dissolució. La incorporació d’aquestes lleis 

cinètiques en les bases de dades del codis geoquímics i de transport reactitu permeten fer 

prediccions molt més realistes. 

L’impacte mediambiental causat per l’arsènic alliberat a les aigües depèn de la seva 

atenuació natural. El principal procés que controla el destí i la mobilitat de l’arsènic aquós 
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és l’adsorció de l’arsenat en fases de ferro precipitades. Per tant, cal tenir en compte el 

paper que juga l’estat d’oxidació de l’arsènic. En la segona part de la tesi, shan estudiat 

tant l’oxidació de l’arsènic com l’adsorció de l’arsènic. L’oxidació s’estudia en condicions 

abiòtiques i biòtiques a pH i composició típics d’aigües àcides de mina, fent servir 

experiments de tipus batch. S’hi mostra com en condicions biòtiques tenen lloc 

simultàniament l’oxidació de Fe(II) a Fe (III) i d’arsenit a arsenat, de manera que mentre 

els bacteris governen la primera, el contingut de Fe(III) domina la segona.  En condicions 

abiòtiques, l’oxidació d’arsenit a arsenat en presència de Fe(III) és lenta, tot i que 

augmenta augmentant la presència de Fe(III) i de clorur amb llum de dia. 

L’adsorció d’arsènic en llocs d’AMD, i per tant l’atenuació d’arsènic, ocorre 

mitjançant l’adsorció d’arsenat en precipitats formats per oxi-hidròxids i oxi-hidròxid-

sulfats de ferro (principalment schwertmannita (Fe8O8(OH)5.5(SO4)1.25), K-jarosita 

(KFe3(SO4)2(OH)6) i goetita (FeOOH)). S’han estudiat les capacitats d’adsorció de la 

jarosita i de la goetita i s’han comparat amb la de la schwertmannita. Amb aquest 

propòsit es van fer experiments de tipus batch a pH molt àcid i amb mostres sintetitzades 

de K-jarosita i de goetita. Sense la competència d’altres anions, la capacitat de la jarosita 

per eliminar arsenat és més alta que la de la goetita. També s’ha vist que la força iònica té 

un escàs efecte en l’adsorció d’ambdós minerals, però que la presència de sulfat, que és 

l’anió més abundant en aigües àcides de mina, minva llurs capacitas d’adsorció.  

Cal conèixer bé els mecanismes dominants que controlen el contingut d’arsènic en 

les aigües, no només en condicions de laboratori, sinó també en les condicions de camp. 

Per tant, en la tercera part de la tesi s’han estudiat el processos d’atenuació de l’arsènic en 

un sistema natural. Amb aquest objetiu s’han caracterizat exhaustivament l’aigua i els 

sediments del rierol provinent de la mina abandonada Tinto Santa Rosa, situada a la 

Faixa Pirítica Ibèrica (IPB). La característica dominant de l’aigua del rierol és un descens 

del pH aigües avall que va acompanyat d’un decreixement sistemàtic de les 

concentracions de ferro ferrós i de ferro total, d’arsenit i d’arsenat, així com d’arsènic 

total. A més a més, els sediments de llit mostren contiguts alts d’arsènic. Els principals 
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mecanismes que dominen el destí i la mobilitat de l’arsènic en aquestes aigües de camp 

són l’oxidació del ferro i de l’arsènic i la precipitatió de compostos de Fe(III) que 

adsorbeixen l’arsenat. S’ha proposat un model unidimensional de trasnport reactiu, 

utilitzant el codi PHREEQC, per explicar i quantificar els processos mencionats que han 

estat estudiats en condicions de laboratori.  
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Chapter 1 

Introduction 

Oxidation of pyrite and other minor sulfides is the major contributor of hydrogen ions in 

mine waters. The purely natural process of “Acid Rock Drainage” (ARD) is often 

intensified by human activities related to mining and mineral processing (Acid Mine 

Drainage or AMD). Oxidation of sulfide minerals not only creates acidity but it also 

releases metals and sulfate into waters giving rise to a major environmental issue. These 

polluting discharges can persist during long periods once the mining activity is over 

(Strömberg and Banwart, 1994). AMD is therefore considered to be one of the main 

causes of contamination of hydrological resources (Nordstrom and Alpers, 1999).  

AMD is mainly generated by oxidation of pyrite (FeS2), which is the most common 

sulfide mineral, and by other sulfides in the presence of water and oxygen (e.g. Stumm 

and Morgan, 1996). Pyrite dissolution can be expressed as: 

+−+
++⇒++ HSOFeOOHFeS 225.3 2

4

2

222  (1.1)  
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During dissolution, pyrite reacts with dissolved oxygen and water to produce ferrous 

iron, sulfate and acidity. If there is enough oxygen in the system the ferrous iron released 

by pyrite dissolution is oxidized to ferric iron according to the following reaction: 

OHFeHOFe 2

3

2

2 5.025.0 +⇒++
+++

 
(1.2)  

This reaction has been termed the “rate determining” step for the overall sequence 

because it is very slow at low pH (< 4) (Singer and Stumm, 1970). However, the presence 

of catalytic microorganisms can increase the rate of iron oxidation by several orders of 

magnitude (Nordstrom and Southam, 1997; Schrenk et al., 1998). The ferric iron generated 

could precipitate as iron hydroxides and other Fe(III) compounds, producing more 

acidity according to the reaction: 

++

+⇒+ HOHFeOHFe 3)(3
32

3
 

(1.3)  

in addition, Fe3+ dissolves pyrite producing more acidity, sulfate and Fe2+ according to the 

reaction: 

+−++

++⇒++ HSOFeOHFeFeS 16215814 2

4

2

2

3

2  (1.4)  

At very low pH in some acid mine drainages, high concentrations of a wide range of 

solutes are found, including arsenic and iron. Arsenic concentrations in these drainages 

can be as high as hundreds of mg L-1. Arsenopyrite (FeAsS) is the dominant arsenic 

mineral in most As-bearing natural occurrences and therefore most responsible for 

elevated arsenic concentrations at surface sites (Smedley et al., 1996). Likewise, oxidation 

of other As-bearing sulfides, such as pyrite and marcasite, can release high arsenic 

concentrations, since arsenic is present in their respective structures in the ranges of 100-

77000 mg kg-1 and 20-126000 mg kg-1 (Smedley and Kinniburgh. 2002).  
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The Iberian Pyritic Belt (IPB) is one of the largest massive sulfide provinces on the 

planet, whose original reserves were in the order of 1700 million tonnes (Sáez et al. 1999). 

Centuries of extraction and exploitation have left kilometers of galleries, numerous pits, 

waste dumps and mine waste (e.g. tailings) where oxidation of sulfides occurs. As a 

result, the area is totally degraded and the Tinto and Odiel rivers are currently two of the 

most polluted rivers in Spain (Olías et al., 2004; Sarmiento et al., 2006; Nieto et al., 2007; 

Sarmiento et al., 2009) owing to the longevity of the contamination processes of AMD 

(Younger, 1997). In these massive sulfide deposits, arsenic can be found in arsenical 

pyrite (with up to 0.4% of As), and in some accessory minerals such as arsenopyrite and 

marcasite. Despite the large amounts of these sulfides in the IPB and despite the high 

arsenic release due to their oxidation, aqueous arsenic is naturally attenuated in rivers 

and streams impacted by AMD.  

The aim of the present thesis is to study the arsenic cycle in AMD waters in the 

context of sulfide mining (e.g. Iberian Piritic Belt) in an attempt to improve predictability 

of arsenic behaviour. Accordingly, the following processes were studied: (i) the sulfide 

oxidation process that governs the arsenic release to water and (ii) the natural processes 

involved in the removal of arsenic in AMD streams under laboratory and field 

conditions. 

The first part of the thesis deals with the dissolution of arsenopyrite and marcasite 

given that this dissolution releases arsenic to AMD waters. Owing to the importance of 

pyrite in the formation of acid mine drainage, pyrite dissolution kinetics has received a 

great deal of attention (Smith and Schumate, 1970; Wiersma and Rimstidt, 1984; 

McKibben and Barnes, 1986; Nicholson et al., 1988; Moses and Herman, 1991; Williamson 

and Rimstidt, 1994; Domènech et al., 2002; Descostes et al., 2004; Pérez-López et al., 2007). 

Arsenopyrite dissolution has also been studied. The effects of temperature, Fe3+ 

concentration, the presence of bacteria (Acidithiobacillus ferrooxidans), pH and of particle 

size on the oxidative dissolution of arsenopyrite have been reported, either in relation to 

aqueous chemistry studies (Gagen, 1987; Breed et al., 1997; Ruitenberg et al., 1999; 
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McGuire  et al., 2001; Craw et al., 2003; Yu et al. 2004; Tallant and McKibben, 2005, Walker 

et al., 2006, Yu et al. 2007 and McKibben et al., 2008) or to arsenopyrite surface 

spectroscopy research, mainly by X-ray Photoelectron Spectroscopy (XPS) (Buckley and 

Walker, 1988; Richardson and Vaughan, 1989; Nesbitt et al., 1995; Nesbitt and Muir, 1998; 

Hacquard et al., 1999, and Mikhlin et al., 2006). Fewer studies have focused on marcasite 

dissolution. Mathews and Robins (1972, 1974); Wiersma (1982) and Wiersma and 

Rimstidt (1984) studied the oxidation of mixtures of pyrite and marcasite. Most recently, 

Rimstidt and Vaughan (2003) studied the differences in reactivity of pyrite and marcasite. 

In addition, several X-ray Photoelectron Spectroscopy (XPS) studies have focused on the 

evolution of marcasite surfaces during oxidation (Rinker et al. 1997; Pratt et al. 1998; Uhlig 

et al. 2001; Elsetinow et al., 2003; Harmer and Nesbitt, 2004).  

However, these data on arsenopyrite and marcasite dissolution are of limited use 

when the long-term dissolution of arsenopyrite and marcasite is to be considered in 

wider ranges of pH, temperature and dissolved oxygen content. 

Accordingly, the first objective of this thesis is to study the dissolution kinetics of 

arsenopyrite and marcasite by assessing the effects that the AMD environmental factors 

(pH, dissolved oxygen and temperature) have on arsenic release in the long-term. Thus, 

dissolution rate laws are proposed to quantify the arsenic release in the AMD impacted 

areas. Likewise, the dissolution of arsenopyrite and marcasite was studied at pH higher 

than the typical ones in AMD in an effort to gain a greater understanding of the treatment 

systems. 

The second part of the thesis discusses the natural attenuation of arsenic released 

from its source and the physical, chemical and biological processes that are responsible 

for arsenic mitigation. 

The natural attenuation of arsenic in AMD areas takes place as the formation of new 

precipitates, such as schwertmannite (Fe8O8(OH)5.5(SO4)1.25), jarosite (KFe3(SO4)2(OH)6), 

and goethite (FeOOH), effectively sorb As(V), reducing the arsenic content in waters 
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(Fukushi, et al. 2003a; Sánchez-España et al. 2005a; Gault et al., 2005; Acero et al., 2006; Lee 

and Chon, 2006). In fact, these iron phases play an important role in the removal of trace 

elements from solution by adsorption and co-precipitation (Benjamin, 1983; Johnson, 

1986; Stumm and Sulzberger, 1992; Bigham et al., 1994; Webster et al., 1998).  

Schwertmannite sorption has been the subject of a large number of works given the 

capacity of this mineral to sorb trace metals (Fukushi et al., 2003b; Fukushi et al., 2004; 

Regenspurg and Peiffer, 2005). Sorption of arsenic on goethite has also been studied by 

Grossl and Sparks (1995), Matis et al. (1997), Dixit and Hering (2003), Lehmann et al. 

(2005), and Giménez et al. (2007) among others. Studies of arsenic sorption onto jarosite 

are less abundant, and jarosite sorption capacity remains unknown.  

Natural arsenic attenuation depends on the arsenic oxidation state; As(V) is sorbed 

more strongly than As(III) to Fe(III) oxides and hydroxides at acid pH (Hsia et al., 1992; 

Bowell, 1994; Wilkie and Hering, 1996). Although As(III) is primarily released by 

dissolution of arsenopyrite (Yu et al., 2007; Cama et al., 2008), the presence of high 

concentrations of Fe and As-oxidizing bacteria in AMD environments appear to oxidize 

As(III) to As(V) rapidly (Cherry et al., 1979; Wakao et al., 1988, Emett and Khoe, 2001; Hug 

et al., 2001; Bednar et al., 2002; Leblanc et al., 2002; Bruneel et al., 2003), favoring arsenic 

sorption onto the iron precipitates. Hence, changes in the iron oxidation state play a 

central role in arsenic mobilization in these aqueous systems since ferrous iron oxidation 

facilitates the formation of Fe(III) precipitates, and arsenite oxidation favors arsenate 

sorption onto these Fe(III) precipitates. 

Currently, there are few data on the simultaneous oxidation of iron and arsenic in 

pH and water chemistry conditions similar to those of acid mine drainage. Likewise, 

arsenic sorption processes at very low pH (e.g. pH < 3) are poorly documented. In an 

attempt to better understand and predict arsenic behaviour in streams and rivers 

impacted by AMD, the oxidation of iron and arsenic and the arsenate sorption in these 

precipitates were studied. Therefore, the second objective of this thesis is to characterize 

the main processes involved in natural attenuation of arsenic: iron and arsenic oxidation 



6                                                                                                                                 Chapter 1: Introduction 

 

and arsenic sorption onto Fe(III) precipitates under laboratory conditions that emulate 

AMD field conditions. 

The last part of the thesis is focused on arsenic mobilization in the acidic discharge 

of the abandoned Tinto Santa Rosa mine in the Iberian Pyritic Belt (SW, Spain). The 

arsenic behavior is modeled using the quantified parameters involved in the distinct 

arsenic related processes that were studied under laboratory conditions. 

1.1 Thesis outline 

This thesis is composed of seven chapters including the introduction. All the chapters are 

based on published papers or manuscripts that are currently in preparation for 

publication or under review by international peer-reviewed journals. The thesis is 

divided into three parts. Each part corresponds to one of the aforementioned objectives.  

Part I (Chapter 2) deals with quantification of arsenic release, yielding arsenopyrite 

and marcasite dissolution rate laws. The effect of pH, dissolved oxygen and temperature 

on the long-term dissolution rates is studied by means of flow-through experiments. The 

evolution of the reacting surfaces is discussed. 

Part II (Chapters 3 and 4) is devoted to the processes involved in natural attenuation 

of arsenic. Chapter 3 describes the simultaneous oxidation of As(III) and Fe(II) and As(III) 

oxidation by Fe(III) under laboratory conditions similar to those found in AMD waters. In 

chapter 4, the arsenate sorption onto goethite and jarosite is compared with the sorption 

capacity of schwertmannite. 

Part III (Chapters 5 and 6) addresses the third objective of the thesis: a field study 

and modeling of the processes involved in the natural attenuation of arsenic in the Tinto 

Santa Rosa acid discharge in the Iberian Pyritic Belt (SW, Spain). The chemistry of waters 

and sediments of the stream is discussed. Chapter 6 describes the geochemical model of 
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the discharge using the PHREEQC code. The processes involved in the arsenic mitigation 

observed in the field are quantified. 

Chapter 7 provides a summary of the main contributions of this thesis. 

 

 



 



 

 

Part I 

Sulfide dissolution 

 

 

 



 

 

 

 

 

 



 

 

Chapter 2 

Dissolution kinetics of arsenopyrite 

and marcasite 

Inorganic aqueous arsenic release is an environmental and human health concern world-

wide (Ferguson, 1990; Aposhian et al., 2004; Rosman et al. 2004; Bunnell et al., 2007). 

Elevated levels of arsenic have been found in natural waters in many areas around the 

world (Nordstrom, 2002; Smedley and Kinniburgh, 2002). 

Arsenopyrite is the dominant arsenic mineral in most As-bearing natural 

occurrences and therefore the main responsible for elevated arsenic concentrations at 

surface sites (Smedley et al., 1996). Nonetheless, the oxidation of other sulfides, such as 

pyrite and marcasite, could release high arsenic concentrations because arsenic could be 

present in their structures in the ranges of 100-77000 mg kg-1 and 20-126000 mg kg-1 for 

pyrite and marcasite, respectively (Smedley and Kinniburgh, 2002).  

Very high concentrations of arsenic (even hundreds of mg L-1) could be found in 

acid mine drainage (AMD) and acid rock drainage (ARD) as a result of the weathering of 

As-bearing sulfides (Nodstrom and Alpers, 1999; Lazareva et al., 2002; Casiot et al., 2003a; 

Frau and Ardau, 2003; Casiot et al., 2005; Lee et al., 2005; Lee and Chon, 2006; Pfeifer et al., 
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2007). An important case of arsenic mobilization related to AMD is the Iberian Pyrite Belt 

(IPB) in the SW of Spain and S of Portugal, which is one of the most important massive 

sulfide provinces in the world. This region contains a large number of abandoned sulfide 

mines, open pits, galleries, tailings and sulfide-sludge ponds that generate creeks with 

acidic water with high levels of arsenic that reach up to 40 mg L-1 (Sánchez-España et al., 

2005b; Sánchez-Rodas et al., 2005; Sarmiento et al., 2005; Acero et al., 2006; Asta et al., 2007; 

Sarmiento et al., 2007; Asta et al., 2008a). Dissolved oxygen promotes dissolution of 

arsenopyrite (AsFeS) and arsenical pyrite (Fe(As,S)2) with the consequent As release into 

run-off water (Williams, 2001; Lazareva et al., 2002; Smedley and Kinniburgh, 2002; Casiot 

et al., 2003a; Frau and Ardau, 2003; Welch and Stollenwerk, 2003; Lee et al., 2005; Pfeifer et 

al., 2007). Other examples of arsenic contaminated groundwaters are probably attributed 

to oxidation of arsenopyrite and As-bearing sulfides in non acidic waters at pH ranging 

from 7-9 in the Madrid Tertiary detrital aquifer (central Spain) (Hernández-García and 

Custodio, 2004) or in groundwater with near neutral pH at Ester dome (Fairbanks, 

Alaska), where dissolved arsenic concentration appears to be controlled by oxidation of 

arsenopyrite in the near-surface environment (Verplanck et al., 2007). Smedley et al. 

(2007) have recently reported arsenic contamination in circumneutral-pH groundwaters 

in Proterozoic basement rocks in Burkina Faso. Thus, there are also other scenarios where 

higher pH (neutral or alkaline) is common. For example, acid generation may be 

artificially attenuated by adding alkaline substances to the AMD producing materials 

(Pérez-López et al., 2007), which results in acid neutralization. Similarly, 

hydrometallurgical techniques such as cyanidation have been conducted at high pH 

producing alkaline waters in contact with mine residues (Salzsauler et al., 2005). 

Because pyrite is usually the most abundant sulfide mineral in ARD and AMD 

environments the kinetics of pyrite oxidation under acidic to neutral conditions have 

been studied for over two decades (Wiersma and Rimstidt, 1984; McKibben and Barnes, 

1986; Nicholson et al. 1988; Moses and Herman, 1991; Williamson and Rimstidt, 1994; 

Domènech et al., 2002; Descostes et al., 2004; Pérez-López et al., 2007; Asta et al. 2008b).  
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Similarly, the effects of different environmental factors on arsenopyrite oxidative 

dissolution, such as temperature, Fe(III) concentration, presence of bacteria 

(Acidithiobacillus ferrooxidans), pH and particle size have been reported in the literature, 

either related to aqueous chemistry studies (Breed et al., 1997; Ruitenberg et al., 1999; 

McGuire et al., 2001; Craw et al., 2003; Yu et al. 2004; Tallant and McKibben, 2005; Walker 

et al., 2006; Yu et al. 2007 and McKibben et al., 2008) or to arsenopyrite surface 

spectroscopy research, mainly by X-ray Photoelectron Spectroscopy (XPS) (Buckley and 

Walker, 1988; Richardson and Vaughan, 1989; Nesbitt et al., 1995; Nesbitt and Muir, 1998; 

Hacquard et al., 1999, and Mikhlin et al., 2006). This extensive literature is indicative of the 

important role of arsenopyrite oxidative dissolution in different geochemical 

environments, from AMD to metallurgical processes, and groundwater contamination. 

However, far few studies have focused on the dissolution kinetics of marcasite. Mathews 

and Robins (1972, 1974) studied the oxidation of mixtures of pyrite and marcasite by 

ferric iron and dissolved oxygen. According to these authors when pyrite-marcasite 

mixtures were oxidized by ferric iron the rate was proportional to the ratio of ferric to 

total iron. When the pyrite-marcasite mixtures were oxidized by oxygen, the pH effect 

over a very limited acidic range (pH -0.1-1.2) was negligible and the results yielded a 0.81 

order of dependence on dissolved oxygen concentration. Wiersma and Rimstidt (1984) 

found a first-order dependence on ferric iron concentrations for pyrite and marcasite. 

Rimstidt and Vaughan (2003) studied the differences in reactivity of pyrite and marcasite 

and concluded that the variations in the crystal structure caused only small differences in 

the dissolution rates (less than one order of magnitude). In addition, several X-ray 

Photoelectron Spectroscopy (XPS) studies focused on the evolution of marcasite surfaces 

during oxidation (Rinker et al. 1997; Pratt et al. 1998; Uhlig et al. 2001; Elsetinow et al., 

2003; Harmer and Nesbitt, 2004). Rinker et al. (1997) conducted batch experiments and 

analyzed marcasite surfaces using XPS and AES (Auger electro spectroscopy), reporting a 

dissolution rate at pH 3. According to Uhlig et al. (2001) the S2p spectrum of fracture 

surfaces of marcasite consists of four main contributions, assigned to bulk sulfur dimers, 

surface dimers, surface monosulfide and short chained polysulfides at the surface. 
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Elsetinow et al. (2003) investigated a synthetic thin film of marcasite by means of XPS and 

AFM (Atomic Force Microscope) and found that the S2p spectral region was dominated 

by disulfide groups and polysulfides.  

Despite their valuable insights into arsenopyrite and marcasite dissolution, most of 

these studies focused their attention on the first few hours of dissolution and not on the 

steady-state dissolution. The short duration of batch experiments usually renders much 

faster dissolution rates than the ones obtained after months (or years) of interaction with 

solutions. In line with this affirmation, a decrease in the concentrations with time has 

been described for many sulfides, such as pyrite (Domènech et al., 2002), chalcopyrite and 

sphalerite (Malmström and Colin 2004; Acero et al. 2007a; Acero et al. 2007b; Acero et al. 

2009) or galena (Cama and Acero, 2005; Acero et al. 2007c) but also for other types of 

minerals (Metz and Ganor, 2001; Brandt et al., 2003). 

High concentrations at the beginning of the experiments are due to either 

dissolution of an outer layer of the reacting mineral, which may be altered by grinding or 

cleaving, or to dissolution of microparticles with higher specific surface areas than the 

bulk sample (Lasaga, 1998). Hence, apparent rates obtained by short batch experiments, 

which are based on those initially high concentrations, are always faster than the steady-

state rates obtained in flow-through experiments. Therefore, the apparent rates obtained 

in batch experiments, which are only based on the initial dissolution of arsenopyrite and 

marcasite, are not applicable for predicting arsenopyrite dissolution in scenarios where 

an extended interaction with solutions is expected (e.g. in the pores of mine tailings, in 

acid streams or aquifers). 

The aim of the present chapter is to study the kinetics of arsenopyrite and marcasite 

oxidative dissolution at different oxidizing conditions by assessing the effects of 

environmental factors, such as pH, dissolved oxygen and temperature in order to 

evaluate  and quantify the As release in long-term conditions. To this end, forty-two 

stirred and non-stirred flow-through experiments were carried out at 25-70ºC and 

dissolved O2 concentrations in the range of 0.2 to 8.7 mg L-1 and over the pH range of 1 to 
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9. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) 

examinations of the samples were carried out before and after experiments to 

characterize mineral surfaces after dissolution. This study is useful in the quantification 

of the extent of arsenic mobility and pollution at field sites where sulfide oxidation is the 

dominant control of arsenic release. 

2.1 Materials and Methods 

2.1.1 Sample characterization 

The arsenopyrite samples used in this study were obtained from Martinet skarn 

mineralization (East Pyrenees range), and the marcasite samples are from the carbonate-

hosted Zn-Pb deposits of Reocin (Cantabria, Spain).  

Powder samples were examined by X-ray diffraction (XRD) using Cu Kα radiation 

over a 2θ range from 0 to 60 degrees and using a scan speed of 0.0014 degrees 2θ per 

second. (XRD). Patterns of the samples showed that mineral samples were 

monomineralic. Electron microprobe analyses were performed on multiple points of the 

samples using a Cameca SX-50 equipment with an accelerating voltage of 20 kV and a 

beam current of 15nA. The atomic composition based on these analyses was Fe 33.3±0.2% 

and S 66.7±0.2% (FeS2) for marcasite, and Fe 33.5±0.1, As 32.1±0.4 and S 34.4±0.4 for 

arsenopyrite (yielding an average chemical formula of Fe1.0As0.94S1.05). These results 

confirmed the high purity of the samples. 

Mineral fragments of the minerals were crushed in an agate mortar and sieved to a 

size fraction of 10 to 100 μm. The specific surface areas of the ground samples were 

determined by the BET method (Brunauer et al., 1938) using 5-point N2 adsorption 

isotherms with a Micromeritics ASAP 2000 surface area analyzer. Measured specific areas 

were found to be 0.9 ± 0.1 m2 g-1 for marcasite and 0.6 ± 0.1 m2 g-1 for arsenopyrite. No 

attempt to remove the microparticles (<1μm) attached to grain surfaces resulting from 

grinding was made. In long-term flow-through experiments, it is not necessary to 
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pretreat the samples to obtain the steady-state dissolution rate since the possible effect of 

the particle size is corrected by normalizing the rates by the final specific surface area. 

Unreacted and reacted powders were examined by Scanning Electron Microscopy 

(SEM) using a JEOL JSM-840 microscope and a field-emission scanning microscope 

Hitachi H-4100FE.  

XPS surface examination of the initial and reacted powdered samples mounted on 

carbon conductive tabs was carried out with a Physical Electronics (PHI) 5500 

spectrometer using a monochromatic X-ray source (with an Al Kα line of 1486.6 eV 

energy and 350 W) placed perpendicular to the analyzer axis and calibrated using the 

3d5/2 line of Ag with a width of 0.8 eV and a binding energy of 368.3 eV. All these 

measurements were made in an ultra high vacuum (UHV) chamber (pressure between 

6.6·10-11 and 6.6·10-12 atm). The analyzer pass energy was 23 eV. An electron flood gun at 

low energies (below 25 eV) was used for charge compensation. Comparison of the 

relative positions of the different peaks in all the studied spectra indicated that charge 

shifting could be considered uniform. Spectra are shown as raw data corrected by 

adjusting the C1s peak (corresponding to adventitious carbon, to a binding energy of 

284.6 eV) because of the charge of the sample. Given the lack of sample cooling while 

acquiring the measurements, loss of elemental sulfur could occur. Therefore, the presence 

or absence of elemental sulfur is discussed below. Atomic concentrations of arsenic, iron 

and sulfur were determined from the XPS peak areas divided by atomic sensitivity 

factors following the Shirley background substraction. A deconvolution of the spectra 

into different components was carried out. Each spectrum was fitted by means of an 

iterative least-squares procedure with Gaussian bands. The proportion of each surface 

species was then determined as a function of the areas covered by each band. However, a 

systematic quantification of the different iron species present in the samples is not 

presented here because of the low signal-to-noise ratio in most of the XPS spectra for 

these peaks. Only the approximate position of the observed sulfur species will be 

described below. 
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Surfaces of raw arsenopyrite powder and some powders retrieved at the end of the 

runs at different pH were examined by MicroRaman spectroscopy, revealing traces of 

quartz and pyrite at the surface. MicroRaman measurements were carried out in back 

scattering geometry by using the polarized 514.5 nm line of an Argon-ion laser. Raman 

scattering measurements were performed in air at room temperature with a triple 

spectrometer Jobin-Yvonne Dilor integrated system with a spectral resolution of about 1 

cm-1. The power density at the sample was set between 5 and 10 mW mm2. Acquisition 

time was between 30 and 120 s depending of the quality of the spectra that were recorded 

in the Stokes region by a 1200 grooves/mm grating monochromator and CCD detector 

system. A confocal microscope Olympus B-201 was used, with an objective 100× with 0.90 

numerical aperture. The spatial resolution was less than 1 μm. In order to verify the 

homogeneity of the samples and the reproducibility of the reported data, all the 

measurements were repeated at different random points of the samples. 

2.1.2 Solutions and analysis 

All input solutions were prepared by mixing the respective analytical reagents and 

Millipore MQ water (18.2 MΩ·cm). The analytical-grade reagents in the acidic solutions 

(pH 1 and 3) were HCl and H2SO4 (95-97%). Reagents FeSO4·7H2O and H2SO4 (95-97%) 

were used to prepare the 0.01M Fe2+ in a H2SO4 solution. Input solution of pH 5.7 only 

consisted of Millipore MQ water (18.2 MΩ · cm). The solution of pH 7.6 was prepared 

with KH2PO4 and NaOH, and pH 9 solution consisted of Na2B4O7·H2O. 

Total concentrations of metals and sulfur in input and output solutions were 

analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, 

Thermo Jarrel-Ash with CID detector and a Perkin Elmer Optima 3200 RL). Detection 

limits for As, Fe and S were 1.3·10-6, 3.6·10-7 and 3.1·10-6 mol L-1, respectively. The accuracy 

in ICP-AES measurements was estimated to be around 3 %. Ferrous and total dissolved 

iron concentrations in output solutions with pH < 3.5 were determined by colorimetry 

using the ferrozine method (To et al., 1999) in a UV–VIS HP Spectrophotometer within 
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one month of sampling. Fe(III) was taken as the difference between Fe(tot) and Fe(II). The 

quality of the results was assured by measuring several standards, blanks and duplicates. 

Fe(tot) concentrations matched ICP-AES results within 5%.  

Input and output solution pH was measured at experimental temperature on an 

unstirred aliquot of solution using a Crison meter combination electrode with 

temperature compensation. Calibration was made with standards of 2, 4, 7 and 9.21 pH 

buffer solutions. Input and output solution pH was the same within error (±0.05 pH 

units). 

The concentration of dissolved oxygen in the reacted solutions was measured in 

some representative experiments by luminescent dissolved oxygen using a Hach HQ10 

portable dissolved oxygen meter. Luminescent dissolved oxygen measurements were 

made in dark conditions and the accuracy at room temperature (22±3ºC) is 5%. 

Redox potential was measured by an Orion combination Pt/Ag-AgCl redox 

electrode. The measurements were corrected by the Standard Hydrogen Electrode (S H 

E). Reliable redox potential measurements could not systematically be obtained because 

of considerable drifting in the recorded values with time. This drifting could be due to 

the low concentrations of aqueous species in the output solutions, to the presence of H2S(g) 

or to the absence of a clearly dominant redox couple (Nordstrom, 2000). When it was 

possible to carry out the measurements the Eh was between 0.2 and 0.7 V.  

2.1.3 Flow through experiments 

Experiments were performed using stirred and non-stirred flow-through Lexan reactors 

with a reaction chamber of 35 mL in volume, as shown in Figure 2.1. The reaction cells 

consisted of two chambers separated by a fine mesh (5 μm) on which the powder sample 

and a teflon stir bar (in the stirred experiments) were placed together. The flow rate used 

in the experiments ranged between 0.03-0.05 mL min-1, which allowed residence times of 
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10-20 h. Solutions were filtered with a 0.45 μm nylon membrane at the top and bottom of 

the reactor. 

Reactors were fully immersed in a thermostatic water-bath held at constant 

temperature (25, 50 and 70±1ºC). In the experiments carried out at input dissolved oxygen 

concentrations lower than 8.7 mg L-1, output solutions, pumps and flow-through cells 

were enclosed in a glove box with the corresponding O2/N2 gas mixtures (4.5% O2 in N2 

for the experiment with 2.0 mg L-1 of input dissolved oxygen and pure N2 for the 

experiments with 0.2 mg L-1 of input dissolved oxygen). 

 

Figure 2.1. Schematic representation of the experimental setup. 

Steady-state conditions were considered to be attained when differences in the 

metal concentration of the output solution were within ± 10% for at least 200 h in 

consecutive leachate samples. After the experiment, the reacted samples were collected, 

rinsed with double-dionized water, dried at room temperature and stored in closed 

microvials until examination by SEM, XPS and determination of their BET specific area. 

2.1.4 Calculation of dissolution rates at pH < 6 

The dissolution rate in steady state, Rate (mol m-2 s-1), was based on the release of As, Fe 

and S according to the expression: 
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(2.1)  

where ci and cio are the out and in-flowing concentrations of the element i (mol As, Fe or S 

m-3), νi is the stoichiometry coefficient of Fe, As or S in the dissolution reaction, A is the 

surface area (m2) and q is the fluid volume flux through the system (m3 s-1). The error 

associated with the calculated dissolution rates was estimated by the Gaussian error 

propagation method (Barrante, 1974) to range from 12 to 25% and it was dominated by 

the uncertainty of BET surface area measurements (±10-15%). 

2.1.5 Calculation of dissolution rates at pH > 6  

At pH higher than 6, it is expected that Fe(II) released from arsenopyrite and marcasite 

dissolution oxidizes quickly to Fe(III) (Singer and Stumm, 1970), and that Fe(III)-bearing 

phases precipitate on mineral surfaces, coating the grains as dissolution proceeds. This 

process is satisfactorily described by the shrinking core model (SCM) and was already 

applied to pyrite oxidation at basic pH (Nicholson et al., 1990). The model assumes 

spherical particle shape, and according to Wen (1968), the process of dissolution-coating 

can be divided into three successive steps: diffusion of reactant (O2(aq) in our case) from 

the bulk solution to the external surface of the coating, diffusion of O2(aq) through the 

coating volume, and finally O2(aq)-induced dissolution of the unreacted core. O2(aq) 

consumption at the core surface gives rise to a concentration gradient across the coating.  

To simplify the system, we assume that diffusion in water is much faster than 

through the solid coating, and that the unreacted core shrinks much more slowly than the 

time needed to reach steady-state diffusion across the coating. This means that, except in 

the early steps of dissolution, the coating acts as the slow barrier for the whole process, 

and the dissolution rate decreases as the coating accumulates.  
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At the onset of the experiment, when no coating is still developed, surface reaction 

is the step that controls the overall process. It is assumed that the mineral dissolution rate 

(mol m-2 s-1) is linearly dependent on oxygen activity: 

2O
akRate ρ=

 (2.2)  

where k is a mass transfer dissolution constant (m s-1), ρ is the molar density of 

arsenopyrite and marcasite (37850 and 40632 mol m-3, respectively), and aO2 is the input 

O2(aq) activity. When the coating is developed, and the overall process is controlled by 

oxygen diffusion through the coating, mineral dissolution depends on the oxygen flux: 

r

C
DRate

ox ∂

∂
=
ν

1
 

(2.3)  

where νox is O2 stoichiometry in the arsenopyrite and marcasite dissolution reaction (see 

below), and D is the effective diffusion coefficient of the coating (m2 s-1). According to 

Wen (1968), the time required to react a specified molar fraction of arsenopyrite, Χ , can 

be calculated on the basis of the step that controls the overall process: 

- dissolution at the surface of the unreacted core (at the onset of the experiment): 

( )[ ]3/111 Χ−−=
kC

R
t ox ρν

 
(2.4)  

- diffusion across the coating: 

( ) ( )[ ]Χ−+Χ−−= 1131
6

3/2
2

DC

R
t ox ρν

 
(2.5)  

where R is initial radius of the particle (m) and D is the effective diffusion coefficient of 

the coating. Total time of the overall process is obtained by adding the times of the two 

steps. For each specific time, the molar fraction of arsenopyrite dissolved, X, was 

calculated from the integrated solute concentration (e.g. sulfate) over time divided by the 

initial mass of arsenopyrite. Hence, the values of k and D were obtained for each 
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experiment as their best fit in eqs. (2.4) and (2.5). As shown by eqs. (2.4) and (2.5), the 

values of k and D depend on the value of the initial radius R. Assuming an initial 

existence of a homogeneous population of particles, the value of R for this population 

was estimated according to the expression:  

MA
R

BET ρ

3
=  

(2.6)  

where ABET is the specific surface area (0.6 and 0.9 m2 g-1 for arsenopyrite and marcasite 

respectively) and M is arsenopyrite and marcasite molar mass (162.7 g mol-1 and 119.98 g 

mol-1, respectively). As the measured BET specific surface areas are 0.6 and 0.9 m2 g-1 for 

arsenopyrite and marcasite respectively, equivalent values of R are 0.8 and 0.7 μm. 

Although these values are outside the range of the measured particle size (10-100 µm) as 

the amount of dissolved sulfide is low, the BET specific surface is more representative of 

the mineral surface than the geometrical surface. Hence, these values ensure the direct 

transformation of the product k·ρ into a dissolution rate constant (mol m-2 s-1), as obtained 

for low pH experimental rates (eq. 2.1), and as obtained from many experiments 

conventionally bound to BET surface measurements (see Brantley, 2008).  

2.2 Results  

2.2.1 Results based on solution chemistry 

Variations with time of the output metals and S concentrations in some representative 

flow-through experiments with different pH are depicted in Figs. 2.2 and 2.3. The 

duration of the experiments varied from 600 to 4500 h. In the experiments carried out at 

pH < 6, steady-state conditions were attained after 300-1200 h and the duration of steady 

state varied exceeding 300 h. In the experiments carried out at pH range 7.5-9 steady state 

was not attained, and the output concentration decreased with time. The conditions of all 

experiments are shown in Tables 2.1, 2.2, 2.3 and 2.4. The residence time in the reactors 

was between 15 and 20 h, depending on the flow rate (0.03-0.05 mL min-1). Calculated  



23 

 

T
a

b
le

 
2

.1
. 

E
x

p
er

im
en

ta
l 

co
n

d
it

io
n

s,
 

st
ea

d
y

-s
ta

te
 

v
a

lu
es

 
a

n
d

 
a

rs
en

o
p

y
ri

te
 

d
is

so
lu

ti
o

n
 

ra
te

s 
b

a
se

d
 

o
n

 
st

ea
d

y
-s

ta
te

 
v

a
lu

es
 

a
n

d
 

b
a

se
d

 
o

n
 

th
e 

S
h

ri
n

k
in

g
 C

o
re

 M
o

d
el

 (
S

C
M

) 
a

n
d

 a
rs

en
ic

 c
o

n
ce

n
tr

a
ti

o
n

 a
t 

a
ci

d
ic

 p
H

. 
In

it
ia

l 
B

E
T

 a
re

a
 o

f 
u

n
re

a
ct

ed
 a

rs
en

o
p

y
ri

te
 i

s 
0

.6
1

 m
2 
g

-1
. 

 

   

F
lo
w
 

F
in
a
l

in
it
ia
l 

fi
n
a
l 

lo
g
 R
a
te

ra
te
 

 B
E
T
 

S
C
M

A
s

(m
L
 m

in
-1
)

(m
g
 L

-1
)
(º
C
)

F
e
/A
s

S
/A
s
F
e
/S

(m
2
 g

-1
)

A
S
P
-2
5
-1

n
o

H
2
S
O

4
0
.0
4
0

1
.0

8
.7

2
5

9
9
8
7
7

3
2
.7
6

2
9
.3
8

1
.1

-
-

0
.5
4

0
.5
0
1
4

0
.4
8
7
5

7
.4
·1
0
-1
1

-1
0
.1

8
.2
·1
0
-1
1

-1
0
.1

-1
0
.6

A
S
P
-2
5
-2

n
o

H
2
S
O

4
0
.0
4
0

2
.7

8
.7

2
5

9
6
3

4
1
.3
4

3
4
.6
6

1
.1

-
-

0
.4
0

0
.5
0
2
8

0
.4
9
6
2

1
.3
·1
0
-1
0

-9
.9

1
.4
·1
0
-1
0

-9
.9

-9
.7

A
S
P
-2
5
-3

n
o

H
C
l

0
.0
3
7

1
.2

8
.7

2
5

1
8
.3
7

3
8
.4
3

3
4
.5
0

1
.1

0
.5

2
.1

0
.7
7

0
.5
0
3
9

0
.4
9
1
2

5
.7
·1
0
-1
1

-1
0
.2

6
.2
·1
0
-1
1

-1
0
.2

-1
0
.1

A
S
P
-2
5
-4

n
o

H
C
l

0
.0
3
8

3
.1

8
.7

2
5

1
8
.3
7

3
0
.9
6

2
9
.6
7

1
.0

0
.6

1
.7

0
.6
5

0
.5
0
7
6

0
.4
9
3
0

5
.9
·1
0
-1
1

-1
0
.2

6
.1
·1
0
-1
1

-1
0
.2

-1
0
.0

A
S
P
-2
5
-1
2

y
e
s

H
C
l

0
.0
4
1

1
.1

8
.7

2
5

2
7
.7
6

5
3
.9
7

5
0
.3
3

1
.1

0
.5

1
.9

0
.6
3

0
.8
0
0
2

0
.7
3
3
0

7
.5
·1
0
-1
1

-1
0
.1

8
.1
·1
0
-1
1

-1
0
.1

-1
0
.0

A
S
P
-2
5
-1
3

y
e
s

H
C
l

0
.0
2
6

2
.9

8
.7

2
5

8
5
.0
2

1
0
8
.4
1

9
5
.9
3

1
.1

0
.9

1
.3

0
.7
4

0
.8
0
0
2

0
.7
0
6
0

7
.8
·1
0
-1
1

-1
0
.1

8
.8
·1
0
-1
1

-1
0
.1

-1
0
.0

A
S
P
-2
5
-5

n
o

H
C
l

0
.0
3
4

1
.3

2
.0

2
5

4
.3
4

9
.1
6

7
.6
9

1
.2

0
.6

1
.2

0
.4
3

0
.5
0
3
4

0
.5
0
1
3

2
.0
·1
0
-1
1

-1
0
.7

2
.4
·1
0
-1
1

-1
0
.6

-1
0
.8

A
S
P
-2
5
-2
4

n
o

H
C
l

0
.0
3
6

3
.1

2
.0

2
5

2
2
.6
9

2
2
.5
1

1
7
.4
2

1
.3

1
.3

1
.0

0
.6
0

0
.7
9
9
1

0
.7
9
1
1

2
.2
·1
0
-1
1

-1
0
.7

2
.8
·1
0
-1
1

-1
0
.6

-1
0
.6

A
S
P
-2
5
-2
5

n
o

H
C
l

0
.0
3
8

1
.1

2
.0

2
5

2
2
.9
3

1
8
.8
9

1
5
.6
4

1
.2

1
.0

0
.8

0
.4
9

0
.8
0
6
8

0
.7
9
9
2

2
.5
·1
0
-1
1

-1
0
.6

3
.0
·1
0
-1
1

-1
0
.5

-1
0
.7

A
S
P
-2
5
-6

n
o

F
e
2
+
&
H
2
S
O

4
0
.0
3
8

1
.2

8
.7

2
5

1
2
4
5
2
0

1
0
0
7
0

2
1
.4
9

-
-

-
0
.6
1

0
.4
9
3
7

0
.4
8
2
9

4
.7
·1
0
-1
1

-1
0
.3

-
-

-1
0
.0

A
S
P
-2
5
-7
-a

n
o

H
C
l

0
.0
3
7

3
.0

0
.2

2
5

b
.d
.l

0
.7
5

b
.d
.l

1
.1

-
-

0
.7
3

0
.5
0
1
4

0
.5
0
0
6

-
-

1
.3
·1
0
-1
2

-1
1
.9

-

A
S
P
-2
5
-7
-b

n
o

H
C
l

0
.0
3
6

3
.0

2
.0

2
5

3
.6
2

4
.8
3

4
.5
5

1
.1

0
.8

1
.3

0
.7
3

0
.5
0
1
4

0
.4
9
9
1

7
.6
·1
0
-1
2

-1
1
.1

8
.1
·1
0
-1
2

-1
1
.1

-1
1
.1

A
S
P
-2
5
-7
-c

n
o

H
C
l

0
.0
3
6

3
.0

8
.7

2
5

1
2
.5
3

1
7
.5
3

1
6
.8
5

1
.0

0
.7

1
.4

0
.7
3

0
.5
0
1
4

0
.4
9
3
5

2
.8
·1
0
-1
1

-1
0
.6

2
.9
·1
0
-1
1

-1
0
.5

-1
0
.5

A
S
P
-2
5
-3
2

n
o

H
C
l

0
.0
1
4

1
.1

0
.2

2
5

9
.8
1

7
.8
3

4
.3
8

1
.8

1
.7

0
.8

0
.3
3

0
.8
0
9
0

0
.8
0
7
5

2
.1
·1
0
-1
2

-1
1
.7

3
.7
·1
0
-1
2

-1
1
.4

-1
1
.3

A
S
P
-2
5
-3
4
-a

y
e
s

H
C
l

0
.0
4
6

1
.2

2
.0

2
5

8
.8
9

1
6
.3
8

1
4
.8
0

1
.1

0
.6

1
.8

0
.4
8

0
.8
2
3
9

0
.8
1
2
1

2
.3
·1
0
-1
1

-1
0
.6

2
.6
·1
0
-1
1

-1
0
.6

-1
0
.3

A
S
P
-2
5
-3
4
-b

y
e
s

H
C
l

0
.0
4
8

1
.3

0
.2

2
5

3
.8
9

4
.3
8

3
.0
3

1
.1

1
.3

1
.1

0
.4
8

0
.8
2
3
9

0
.8
0
8
5

4
.9
·1
0
-1
2

-1
1
.3

7
.0
·1
0
-1
2

-1
1
.2

-1
1
.2

A
S
P
-5
0
-1

n
o

H
C
l

0
.0
3
3

1
.1

8
.7

5
0

2
9
.1
2

5
4
.2
7

5
1
.8
4

1
.0

0
.6

1
.9

0
.6
6

0
.5
0
1
6

0
.4
7
4
2

8
.9
·1
0
-1
1

-1
0
.0

9
.4
·1
0
-1
1

-1
0
.0

-9
.8

A
S
P
-5
0
-4

n
o

H
C
l

0
.0
3
5

2
.9

8
.7

5
0

3
4
.4
1

5
4
.9
1

5
6
.3
0

1
.0

0
.6

1
.6

0
.5
0

0
.8
0
3
7

0
.7
7
6
3

6
.9
·1
0
-1
1

-1
0
.2

6
.7
·1
0
-1
1

-1
0
.2

-9
.6

A
S
P
-7
0
-1

n
o

H
C
l

0
.0
3
7

1
.0

8
.7

7
0

2
7
.7
8

3
5
.8
0

3
1
.0
8

1
.2

0
.9

1
.3

0
.4
6

0
.5
0
1
1

0
.4
7
8
5

8
.6
·1
0
-1
1

-1
0
.1

9
.9
·1
0
-1
1

-1
0
.0

-9
.4

A
S
P
-7
0
-5

n
o

H
C
l

0
.0
2
6

1
.2

8
.7

7
0

4
1
.9
4

4
1
.2
8

3
0
.9
7

1
.3

1
.3

1
.0

0
.5
1

0
.8
0
3
9

0
.7
8
9
8

2
.8
·1
0
-1
1

-1
0
.5

3
.8
·1
0
-1
1

-1
0
.4

-9
.3

A
S
P
-2
5
-8

n
o

H
C
l

0
.0
3
8

5
.2

8
.7

2
5

3
6
.9
0

2
5
.9
3

3
3
.7
2

0
.8

1
.1

0
.7

0
.6
3

0
.5
0
6
6

0
.4
7
0
2

7
.3
·1
0
-1
1

-1
0
.1

5
.6
·1
0
-1
1

-1
0
.3

-1
0
.0

A
S
P
-2
5
-9

n
o

D
D
W

0
.0
3
6

5
.5

8
.7

2
5

1
5
.4
5

4
.0
6

1
8
.0
3

0
.2

0
.8

0
.3

0
.6
7

0
.5
0
2
3

0
.4
8
5
1

3
.2
·1
0
-1
1

-1
0
.5

7
.3
·1
0
-1
2

-1
1
.1

-1
0
.2

A
S
P
-2
5
-2
3

y
D
D
W

0
.0
3
5

5
.8

8
.7

2
5

9
1
.2
4

3
5
.0
5

6
6
.1
2

0
.5

1
.4

0
.4

0
.5
9

0
.8
0
3
9

0
.7
7
5
4

8
.4
·1
0
-1
1

-1
0
.1

4
.5
·1
0
-1
1

-1
0
.3

-1
0
.0

A
S
P
-2
5
-1
9
-a

n
o

D
D
W

0
.0
4
0

5
.6

0
.2

2
5

4
.8
0

0
.6
2

1
.3
0

0
.5

2
.2

0
.1

0
.6
1

0
.8
0
3
3

0
.8
0
2
4

1
.7
·1
0
-1
2

-1
1
.8

8
.4
·1
0
-1
3

-1
2
.1

-1
1
.2

A
S
P
-2
5
-1
9
-b

n
o

D
D
W

0
.0
3
3

5
.6

8
.7

2
5

7
1
.1
1

1
5
.2
4

6
0
.4
1

0
.3

1
.2

0
.2

0
.6
1

0
.8
0
3
3

0
.7
8
7
5

6
.9
·1
0
-1
1

-1
0
.2

1
.7
·1
0
-1
1

-1
0
.8

-1
0
.5

A
S
P
-7
0
-4

n
o

D
D
W

0
.0
3
0

4
.4

8
.7

7
0

6
1
.5
1

2
3
.9
8

4
7
.4
3

0
.5

1
.3

0
.4

0
.6
5

0
.8
0
0
2

0
.7
7
9
6

4
.6
·1
0
-1
1

-1
0
.3

2
.3
·1
0
-1
1

-1
0
.6

-9
.7

lo
g
 R

A
s

R
F
e

 l
o
g
 R

F
e

m
a
s
s

A
s

S
to
ic
h
io
m
e
tr
y

R
A
s

in
p
u
t 

D
O

T
S
 

(µ
M
)

(m
o
l 
m

-2
 s
-1
)

b
.d
.l
.:
 b
e
lo
w
 d
e
te
c
ti
o
n
 l
im
it

p
H

(g
)

E
x
p
e
ri
m
e
n
t

S
ti
rr
in
g

E
le
c
tr
o
ly
te

F
e
 



24                                                          Chapter 2: Dissolution kinetics of arsenopyrite and marcasite 

 

0

50

100

150

200

250

0 400 800 1200 1600 2000 2400 2800

pH 1

C
o
n
c
e
n
tr
a
ti
o
n
 (
µ
m
o
lL

-1
)

time (h)  

0

20

40

60

80

100

0 500 1000 1500 2000 2500

time (h)
C
o
n
c
e
n
tr
a
ti
o
n
 (
µ
m
o
lL

-1
)

pH 5.5

 

0

20

40

60

80

100

0 500 1000 1500

pH 7.5

time (h)

C
o
n
c
e
n
tr
a
ti
o
n
 (
µ
m
o
lL

-1
)

 

0

20

40

60

80

100

0 500 1000 1500 2000 2500

C
o
n
c
e
n
tr
a
ti
o
n
 (
µ
m
o
lL

-1
)

time (h)

pH 9

 

 

Figure 2.2. Variation in total iron (grey rhombi), arsenic (black rombhi) and sulphur (circles) as a 

function of time in arsenopyrite representative experiments at different pH and 8.7 mgL-1 of O2-

dissolved and 25 °C. Initial concentrations for the experiments are not depicted for the sake of 

significance of the vertical scale at basic pH, and iron concentration is not depicted because it was 

below detection limit. 

 

total dissolved mineral mass throughout the experiments was usually less than 10%. As 

shown in Figs. 2.2 and 2.3, concentrations of arsenic, iron and sulfur in the output 

solutions were highest at the start of the experiments, subsequently decreasing. The high 

concentrations at the start of the experiments were probably due to dissolution of 

external layers of the ground mineral or to dissolution of highly reactive microparticles  
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Figure 2.3. Variation in total iron (circles) and sulfur (rhombi) as a function of time in two marcasite 

representative experiments at pH 1, 3, 7.5 and 9 and 25ºC and 8.7 mg L-1 of dissolved oxygen. The 

concentration differences at acidic pH are mainly due to the different flow rate of the experiments. 

Initial concentrations for the experiments are not depicted for the sake of significance of the vertical 

scale at basic pH iron is not depicted because it was below detection limit. 

 

(Lasaga, 1998) (Fig. 2.4). Additionally, preferential dissolution in cracks and other mineral 

defects during the early stages of the experiments can cause high initial concentrations 

(Borda et al., 2004). The fact that a mineral dissolves apparently faster at the start of the 

experiment and the fact that steady states are attained after some time (in this work from 

300 to 1200 h) highlight the need to carry out flow-through instead of short batch 

experiments. Long-term experiments are needed to predict the sulfide dissolution in 

scenarios where an extended interaction with solutions is expected (e.g. acid streams or  
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pores of mine tailings). Sulfur concentrations, in the acid output solutions, were lower 

than metal concentrations (Figs. 2.2, 2.3; Tables 2.1, 2.3). H2S(g) odour was detected during 

the collection of marcasite acid output solutions; although the presence of H2S(g) can not 

be ruled out, it was not detected during the collection of arsenopyrite acid output 

solutions. It is worth noting that, at acid pH, although the measured dissolution reaction 

could be stoichiometric, the dissolved sulfur concentrations do not reflect the 

stoichiometry of the bulk mineral. The deficit of dissolved sulfur in acidic solutions has 

been observed in many studies on sulfide dissolution (Lochmann and Pedlik, 1995; 

Weisener et al., 2003; Malmström and Collin, 2004; Weisener et al., 2004; Acero et al., 

2007b); pyrite (Domènech et al., 2002); pyrrhotite (Janzen et al., 2000); galena (De Giudici 

and Zuddas, 2001; Cama and Acero, 2005; Cama et al., 2005); arsenopyrite  (Tallant and 

McKibben, 2005; McKibben et al., 2008) and marcasite (Rinker et al., 1997). Hence, at acid 

pH dissolution rates of arsenopyrite and marcasite are based only on dissolved iron and 

arsenic concentrations (Tables 2.1 and 2.3).  

At pH > 3 the oxidative dissolution of iron sulfides may lead to precipitation of iron 

(hydr)oxides. The results showed that aqueous iron was partially depleted at mildly 

acidic pH (4.4 to 5.8) and totally depleted at neutral-basic pH (7.5 to 9) ([Fe]out was below 

the detection limit). In the case of arsenopyrite, arsenic output concentrations were lower 

than sulfur in the mildly acidic to basic pH range (Tables 2.1, 2.2; Fig. 2.2). Therefore, for 

experiments at pH higher than 3, the arsenopyrite and marcasite dissolution rates were 

computed from the output S concentration. 

The saturation state of the output solution at the end of each experiment was 

calculated using the PHREEQC code (Parkhurst and Appelo, 1999) and WATEQ database 

(Ball and Nordstrom, 1991). Data for scorodite (FeAsO4·2H2O) are those revised by 

Krause and Ettel (1988). At pH 1-3, output solutions were undersaturated with respect to 

native sulfur, S-bearing phases and Fe-oxy-hydroxides (Tables 2.5 and 2.6). 
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Table 2.4. Experimental conditions and marcasite dissolution rates obtained by the SCM and 

output sulfur concentration at neutral and basic pH. Initial BET surface area is 0.9 m2 g-1. 

Flow Rate 
input 

DO
T

Final 

BET 

area

initial 

mass

final 

mass
RateS

 log 

(RateS)

(mL min
-1
) (mg L

-1
) (ºC) (m

2
 g

-1
)

MRC-11 no DDW 0.030 7.2 8.7 25 1.35 0.5064 0.5055 8.6·10
-11 -10.1

MRC-12 no KH2PO4 0.029 7.4 8.7 25 0.94 0.8064 0.7931 1.3·10
-10 -9.9

MRC-14 no Na2B4O7·H2O 0.031 9.1 8.7 25 1.11 0.8029 0.7803 2.2·10
-10 -9.7

Stirring

(mol m
-2
 s

-1
)

Experiment Electrolyte pH

(g)

 

 

Thus, precipitation of these phases is not thermodynamically favored. In arsenopyrite 

output solutions, in the pH range of 4.4 to 5.8, assuming that total iron was ferric iron, 

supersaturation with respect to scorodite and Fe-oxy-hydroxide phases, such as 

ferryhidrite, goethite and lepidocrocite occurred. At pH > 7, although aqueous iron was 

depleted, calculations were run by using a very low iron concentration (1x10-7 M), 

yielding arsenopyrite and marcasite output solutions supersaturated with respect to 

several iron oxy-hydroxides (Tables 2.5 and 2.6).  

2.2.2 Morphology of reacted solids 

A comparison of SEM photographs of samples before and after reacting in acidic and 

basic pH is shown in Figures 2.4 and 2.5. At acidic pH it is observed that after the 

experiments most of the microparticles have been dissolved. The comparison at neutral -

basic pH reveals the precipitation of new Fe-bearing phases (Fig. 2.5). The smooth surface 

and sharp edges of the unreacted minerals contrast with the surface of reacted grains at 

pH > 3 as it is shown in the SEM micrographs (Figs. 2.4 and 2.5). The comparison of the 

initial samples (Fig. 2.4) to the reacted samples at neutral-basic pH revealed that some 

grains were covered by a discontinuous product-layer like a coarse granulation (Fig. 2.5). 

The formation of secondary iron precipitates on reacted pyrite and arsenopyrite surfaces 

at neutral-basic pH has been reported in earlier works (Koslides and Ciminelli, 1992; 

Bonnissel-Gissinger et al., 1998; Pérez-López et al., 2007). 



29 

 

T
a

b
le

 2
.5

. 
S

a
tu

ra
ti

o
n

 i
n

d
ic

es
 o

f 
th

e 
a

rs
en

o
p

y
ri

te
 o

u
tp

u
t 

so
lu

ti
o

n
s 

w
it

h
 r

es
p

ec
t 

to
 A

s 
a

n
d

 F
e 

b
ea

ri
n

g
 m

in
er

a
ls

. 

 

 

A
rs
e
n
o
p
y
ri
te

A
rs
e
n
o
li
te

S
c
o
ro
d
it
e

S
c
h
w
e
rt
m
a
n
n
it
e

 G
o
e
th
it
e

L
e
p
id
o
c
ro
c
it
e

M
a
g
n
e
ti
te

M
a
g
h
e
m
it
e

F
e
rr
y
h
id
ri
te

(F
e
A
s
S
)

(A
s
2
O

3
)

(F
e
A
s
O

4
:2
H
2
O
)

(F
e
8
O

8
(O
H
) 4
.5
(S
O

4
) 1
.7
5
)

(α
-F
e
O
O
H
)

(γ
-F
e
O
O
H
)

(F
e
3
O

4
)

(γ
-F
e
2
O

3
)

(F
e
(O
H
) 3
(a
))

A
S
P
-2
5
-1

1
.0

-2
1
9
.2

-5
1
.5

-1
5
.7

-1
3
.0

-1
1
5
.0

-1
1
.2

-1
3
.3

-3
1
.4

-3
0
.9

-1
7
.1

-9
2
.2

A
S
P
-2
5
-2

2
.8

-2
2
0
.2

-5
2
.6

-1
6
.8

-7
.2

-7
1
.7

-4
.9

-7
.2

-1
4
.6

-1
8
.2

-1
0
.8

-9
6
.6

A
S
P
-2
5
-3

1
.2

-2
2
2
.3

-5
1
.4

-1
5
.6

-1
0
.8

-1
0
4
.2

-9
.1

-1
1
.4

-2
6
.3

-2
6
.6

-1
5
.0

-9
6
.1

A
S
P
-2
5
-4

3
.1

-2
2
2
.2

-5
3
.3

-1
7
.5

-6
.4

-6
6
.6

-3
.8

-6
.2

-1
1
.7

-1
6
.0

-9
.7

-9
9
.0

A
S
P
-2
5
-1
2

1
.2

-2
2
1
.9

-5
1
.1

-1
5
.3

-1
0
.8

-1
0
5
.3

-9
.3

-1
1
.5

-2
6
.6

-2
7
.0

-1
5
.2

-9
5
.8

A
S
P
-2
5
-1
3

2
.9

-2
1
9
.6

-5
1
.9

-1
6
.2

-6
.2

-6
8
.6

-4
.3

-6
.6

-1
1
.7

-1
6
.9

-1
0
.2

-9
8
.0

A
S
P
-2
5
-5

1
.3

-2
2
1
.7

-5
2
.0

-1
7
.0

-1
1
.3

-1
0
3
.6

-8
.9

-1
1
.2

-2
6
.3

-2
6
.2

-1
4
.8

-9
5
.7

A
S
P
-2
5
-2
4

3
.0

-2
2
0
.0

-5
2
.8

-1
7
.8

-6
.8

-6
7
.9

-4
.0

-6
.4

-1
2
.5

-1
6
.5

-9
.9

-9
7
.6

A
S
P
-2
5
-2
5

1
.0

-2
2
0
.7

-5
1
.3

-1
6
.3

-1
1
.9

-1
0
9
.5

-9
.8

-1
2
.0

-2
8
.5

-2
8
.0

-1
5
.7

-9
4
.6

A
S
P
-2
5
-6

1
.2

-2
1
6
.7

-5
1
.8

-1
6
.0

-1
2
.8

-1
1
2
.9

-1
0
.9

-1
3
.1

-2
8
.1

-3
0
.3

-1
6
.8

-9
2
.3

A
S
P
-2
5
-7
-a

3
.0

-2
2
6
.4

-5
4
.8

-2
0
.6

-8
.2

-7
7
.9

-4
.0

-6
.4

-1
4
.0

-1
6
.4

-9
.9

-1
0
2
.6

A
S
P
-2
5
-7
-b

3
.0

-2
2
2
.1

-5
4
.0

-1
9
.0

-7
.3

-6
8
.7

-4
.0

-6
.3

-1
3
.0

-1
6
.3

-9
.9

-9
8
.4

A
S
P
-2
5
-7
-c

3
.0

-2
2
2
.8

-5
3
.6

-1
7
.9

-6
.8

-6
8
.0

-4
.0

-6
.4

-1
2
.5

-1
6
.4

-9
.9

-9
9
.0

A
S
P
-2
5
-3
2

1
.2

-2
1
9
.0

-5
1
.6

-1
7
.4

-1
1
.9

-1
0
6
.0

-9
.3

-1
1
.5

-2
7
.4

-2
7
.0

-1
5
.2

-9
3
.9

A
S
P
-2
5
-3
4
-a

1
.2

-2
2
1
.0

-5
1
.4

-1
6
.4

-1
1
.2

-1
0
5
.0

-9
.1

-1
1
.4

-2
6
.7

-2
6
.7

-1
5
.0

-9
5
.3

A
S
P
-2
5
-3
4
-b

1
.3

-2
1
9
.7

-5
2
.0

-1
7
.8

-1
1
.6

-1
0
3
.2

-8
.8

-1
1
.1

-2
6
.5

-2
6
.0

-1
4
.7

-9
4
.4

A
S
P
-5
0
-1

1
.1

-2
0
2
.7

-4
7
.1

-1
4
.9

-1
1
.0

-1
0
7
.0

-8
.6

-1
1
.7

-2
4
.2

-2
7
.3

-1
5
.4

-8
7
.6

A
S
P
-5
0
-4

2
.9

-2
0
1
.8

-4
8
.2

-1
6
.1

-7
.0

-7
4
.2

-4
.1

-7
.1

-1
1
.2

-1
8
.2

-1
0
.8

-8
9
.9

A
S
P
-7
0
-1

1
.0

-1
9
0
.0

-4
4
.8

-1
5
.1

-1
1
.6

-1
1
0
.5

-8
.5

-1
2
.1

-2
3
.4

-2
8
.1

-1
5
.8

-8
1
.9

A
S
P
-7
0
-5

1
.2

-1
8
9
.6

-4
4
.8

-1
5
.1

-1
1
.1

-1
0
6
.7

-8
.0

-1
1
.7

-2
2
.1

-2
7
.2

-1
5
.3

-8
1
.9

A
S
P
-2
5
-8

5
.2

-2
3
1
.0

-5
7
.2

-2
1
.5

2
.7

1
5
.9

7
.2

4
.9

7
.4

6
.1

1
.4

-1
0
2
.8

A
S
P
-2
5
-9

5
.5

-2
3
3
.1

-5
8
.3

-2
2
.6

1
.6

1
0
.3

6
.7

4
.4

5
.9

5
.1

0
.8

-1
0
3
.8

A
S
P
-2
5
-2
3

5
.8

-2
3
1
.5

-5
7
.8

-2
2
.1

3
.1

2
0
.2

7
.9

5
.6

9
.5

7
.5

2
.1

-1
0
3
.6

A
S
P
-2
5
-1
9
-a

5
.6

-2
3
0
.2

-5
9
.3

-2
5
.2

-0
.4

3
.5

6
.0

3
.7

4
.2

3
.7

0
.1

-1
0
2
.1

A
S
P
-2
5
-1
9
-b

5
.6

-2
3
1
.6

-5
7
.5

-2
1
.8

2
.7

1
6
.4

7
.4

5
.1

7
.9

6
.5

1
.5

-1
0
3
.3

A
S
P
-7
0
-4

4
.4

-2
2
9
.1

-5
5
.3

-1
9
.6

2
.7

1
1
.8

6
.4

4
.0

4
.8

4
.3

0
.5

-1
0
1
.0

A
S
P
-2
5
-1
0

7
.5

-2
4
1
.8

-6
5
.0

-2
9
.9

-1
.8

2
.8

6
.7

4
.9

5
.8

5
.0

0
.8

-1
0
8
.4

A
S
P
-2
5
-2
1

7
.5

-2
4
1
.2

-6
4
.9

-2
9
.8

-1
.7

3
.5

6
.7

4
.9

5
.8

5
.0

0
.8

-1
0
7
.8

A
S
P
-2
5
-1
1

9
.1

-2
4
7
.1

-7
0
.0

-3
5
.1

-4
.5

-3
.1

6
.5

4
.4

5
.2

4
.6

0
.6

-1
1
1
.0

A
S
P
-2
5
-1
5

8
.9

-2
4
6
.3

-6
9
.6

-3
4
.6

-4
.2

-1
.7

6
.6

4
.5

5
.4

4
.8

0
.7

-1
1
0
.4

  
 A
s
2
O

5
E
x
p
e
ri
m
e
n
t

p
H

E
le
m
e
n
ta
l 

S
u
lf
u
r



30                                                          Chapter 2: Dissolution kinetics of arsenopyrite and marcasite 

 

 

 

 

 T
a

b
le

 2
.6. S

a
tu

ra
tio

n
 in

d
ices o

f th
e m

a
rca

site o
u

tp
u

t so
lu

tio
n

s w
ith

 resp
ect to

 F
e b

ea
rin

g
 m

in
era

ls. 

M
a
rc
a
s
ite

S
c
h
w
e
rtm

a
n
n
ite

 G
o
e
th
ite

M
a
g
h
e
m
ite

F
e
rry

h
id
rite

H
e
m
a
tite

F
e
S
2

(F
e
8 O

8 (O
H
)
4
.5 (S

O
4
)
1
.7
5 )

(α
−
F
e
O
O
H
)

(γ−
F
e
2 O

3 )
(F
e
(O
H
)
3
(a
) )

(α
−
F
e
2 O

3 )

M
R
C
-1

3
.0

-2
2
3
.8

-7
0
.0

-4
.5

-1
7
.3

-1
0
.4

-7
.0

-9
7
.8

M
R
C
-2

3
.0

-2
2
3
.7

-6
7
.1

-4
.1

-1
6
.5

-1
0
.0

-6
.1

-9
8
.0

M
R
C
-3

1
.1

-2
2
4
.2

-1
0
9
.6

-9
.8

-2
8
.0

-1
5
.7

-1
7
.3

-9
5
.8

M
R
C
-4

1
.0

-2
2
3
.2

-1
0
9
.0

-9
.8

-2
8
.0

-1
5
.7

-1
7
.3

-9
5
.4

M
R
C
-5
0
-1

2
.8

-2
0
3
.3

-7
4
.6

-4
.2

-1
8
.5

-1
1
.0

-6
.4

-8
9
.3

M
R
C
-5
0
-2

1
.0

-2
0
2
.3

-1
0
9
.5

-9
.1

-2
8
.2

-1
5
.8

-1
5
.7

-8
6
.9

M
R
C
 -7

0
-1

1
.4

-1
8
8
.4

-1
0
0
.6

-7
.3

-2
5
.8

-1
4
.6

-1
2
.3

-8
1
.7

M
R
C
-5
a

1
.2

-2
2
2
.0

-1
0
4
.5

-9
.1

-2
6
.6

-1
5
.0

-1
6
.0

-9
5
.1

M
R
C
-5
-b

1
.3

-2
2
0
.5

-1
0
2
.6

-8
.8

-2
5
.9

-1
4
.6

-1
5
.3

-9
4
.4

M
R
C
-6
-a

3
.3

-2
2
1
.8

-6
3
.5

-3
.5

-1
5
.4

-9
.4

-5
.0

-9
7
.5

M
R
C
-6
-b

2
.9

-2
1
7
.5

-6
9
.9

-4
.5

-1
7
.4

-1
0
.4

-7
.0

-9
5
.2

M
R
C
-7

3
.1

-2
2
2
.1

-6
7
.4

-3
.8

-1
6
.1

-9
.7

-5
.7

-9
7
.0

M
R
C
-8

2
.2

-2
1
9
.4

-8
5
.2

-6
.9

-2
2
.2

-1
2
.8

-1
1
.8

-9
5
.0

M
R
C
-9

1
.5

-2
1
7
.4

-1
0
3
.3

-9
.6

-2
7
.5

-1
5
.5

-1
7
.1

-9
3
.2

M
R
C
-1
0

2
.0

-2
2
2
.6

-8
4
.2

-6
.5

-2
1
.5

-1
2
.4

-1
1
.0

-9
6
.4

M
R
C
-1
1

7
.2

-2
4
0
.8

7
.8

6
.9

5
.5

1
.0

1
5
.9

-1
0
6
.4

M
R
C
-1
2

7
.4

-2
4
2
.2

6
.7

7
.0

5
.6

1
.1

1
6
.0

-1
0
7
.3

M
R
C
-1
4

9
.1

-2
4
5
.8

-0
.4

6
.8

5
.2

0
.9

1
5
.6

-1
1
0
.7

E
le
m
e
n
ta
l 

S
u
lfu

r
E
x
p
e
rim

e
n
t

p
H



31 

 

 

 

Figure 2.4. SEM images of freshly ground and sieved arsenopyrite and marcasite before experiments 

with attached microparticles and after dissolution at pH < 5 when microparticles are mostly dissolved. 

2.2.3 Results based on surface spectroscopy 

The results obtained by XPS examination of the samples before and after the flow-

through experiments are summarized in Tables 2.7 and 2.8. The poor quality of the signal 

in the Fe2p region of the reacted arsenopyrite surfaces prevented the XPS identification of 

the iron surface species. The results show that, at acidic pH, arsenopyrite surface is 

enriched in arsenic and sulfur and marcasite in sulfur, whereas, at pH 4 to 9, the 

arsenopyrite surface is enriched in iron and arsenic and in iron in the case of marcasite, 

consistently with the solution results (Tables 2.1 and 2.2). 
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Figure 2.5. SEM images of the samples after representative flow-through experiments for the 

studied sulfides. 

An examination of the S2p spectra of arsenopyrite reacted at acidic pH and 8.7 mg 

L-1 of DO (Fig. 2.6a) indicates the existence of three possible species at binding energies 

(BE) of approximately 161.3-161.7, 163.5-163.7 and 168.6-168.8 eV. These binding energies 

were identified as S2-, polysulfides (Sn2- where n≥2), and sulfate, respectively, according to 

the values reported in earlier studies (Buckley and Woods, 1985; Mycroft et al. 1990; 

Nesbitt and Muir, 1994; Pratt et al. 1994; Nesbitt et al., 1995; Nesbitt and Muir, 1998; 

Hacquard et al. 1999). The detection of elemental S on the surfaces was practically 

impossible (i.e., this could not be confirmed or ruled out) owing to the technical 

limitations of the equipment used in the acquisition of the spectra. The examination of 

As3d peaks (Fig.2.6b) shows a major peak at approximately 45.3 eV, which corresponds 

to As(V) (Nesbitt and Muir, 1998). The shoulder of the low binding energy side may  
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Table 2.7. Results obtained from X-ray Photoelectron Spectroscopy (XPS) determinations on the 

initial and reacted arsenopyrite samples. Surface stoichiometry is represented by molar ratios. 

 

     S Fe  As

Initial FeAsS 33.0 33.0 33.0 1 1 1

ASP-25-1* 1.0 35.9 26.2 36.7 0.73 1.02 0.71

ASP-25-2* 2.7 35.1 20.7 42.1 0.59 1.20 0.49

ASP-25-3 1.2 37.5 27.5 34.2 0.73 0.91 0.80

ASP-25-4 3.1 34.7 28.7 35.6 0.83 1.03 0.81

ASP-25-23 5.8 17.2 41.4 38.4 2.40 2.23 1.08

ASP-25-11 9.1 33.8 47.4 18.9 1.40 0.56 2.51

*H2SO4

 † 
Estimated normalizing out the rest of elements (oxygen and adventicious carbon)

Fe/AsSample pH Fe/S As/S
(at. %) 

†

 

 

indicate the contribution of As(-I) and As(II) species at binding energies of 41.3-41.7 eV 

and 43.3 eV, respectively (Buckley and Walker, 1988; Nesbitt et al., 1995; Nesbitt et al., 

1998). Spectra of arsenopyrite surface after reacting at acidic pH and low input DO 

concentration (2 mg L-1) showed that reduced sulfur and arsenic signals increased and the 

amount of the most oxidized species (As(V) and sulfates) decreased (Figs. 2.7 c,d). 

Arsenopyrite XPS results in the pH range of 4.5-5.5 show changes with respect to 

the results obtained at acid pH. First, at this pH the amount of surface iron is higher than 

in the initial sample, which can be attributed to the presence of iron precipitates (e.g., 

Fe(III)-(hydr)oxides). In the S2p spectra two species are identified with an energy binding 

of 164.7 and 169.2 eV (Fig. 2.6e), which correspond to an intermediate oxysulfur 

(Schaufuss et al., 2000) and sulfate, respectively. In the case of As3d peak the best fits of 

the spectra indicate the presence of a major contribution of As(V) and minor As(III) with 

peaks at 45.7 and 44 eV, respectively (Fig. 2.6f). In the range of pH 7-9, S2p spectra show 

that S(-I) oxidizes mainly to polysulfides, and the As3d spectra show a shoulder with 

binding energies in the range of 41.8-42 that may indicate the contribution of As(-I) and a 

major peak at approximately 45 eV, which corresponds to As(V) (Nesbitt and Muir, 1998) 

(Fig. 2.6g,h). 
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Figure 2.6. Curve fitted S2p and As3d spectra of arsenopyrite representative samples dissolved at 

25ºC, 8.7 mg L-1 input DO and pH 3 (a) and (b); at 2 mg L-1 input DO and pH 3 (c) and (d); 8.7 mg 

L-1 input DO and pH 5.6 (e) and (f) and ); 8.7 mg L-1 input DO and pH 7. 
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MicroRaman spectra for arsenopyrite are shown in Fig. 2.7. Reacted samples at 

acidic pH (1-3) show that the most intense peaks are at 472, 219 and 150 cm-1 (Fig. 2.7a). 

These peaks are attributed to elemental sulfur, whereas the other noticeable peaks are 

due to iron oxide and As2O3. This seems to indicate that, under acidic conditions, native 

sulfur could be a dominant surface species along with a minor amount of a stable phase 

iron oxide. MicroRaman spectra of samples reacted at pH 7 (Fig. 2.7b) show peaks that 

are associated with hematite, iron oxy(hydroxide), probably goethite, as well as traces of 

As-O and As2O3 (e.g., claudetite). Thus, secondary predominant surface species are pH 

dependent according to thermodynamics (e.g., see Brookins, 1988). It should be noted 

that native sulfur and iron oxy-hydroxides are very efficient Raman scatterers, i.e. the 

higher their crystallinity, the higher their Raman efficiency. Raman scattering involves 

hundreds of atomic layers below the surface.  
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Figure 2.7. MicroRaman spectra of arsenopyrite samples reacted at 8.7 mg L-1 DO at 25 ˚C and at 

pH 3 (a); and pH 7 (b). 

Hence, taking into account the saturation index of the output solution (Table 2.5) 

and the Raman microanalysis of the solids one can conclude that iron hydroxides such as 

goethite may be responsible for Fe depletion at pH higher than 5. Despite sulfur detection 

by Raman spectroscopy its formation at acidic pH in significant amounts is prevented by 

the subsaturated state of the solution. 

Finally, As depletion at pH > 4 could be attributed to sorption on the Fe(III)-

hydroxide surface. Accordingly, an estimation of the As sorption onto Fe-oxyhydroxide  

a b 

As2O3 
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Table 2.8. Results obtained from X-ray Photoelectron Spectroscopy (XPS) determinations on 

the initial and reacted marcasite samples. Surface stoichiometry is represented by molar ratios. 

     S Fe

Initial FeS 2 - 67 33 0.50

MRC-1 3.0 71 29 0.41

MRC-4 1.0 78 22 0.28

MRC-5 1.3 77 23 0.30

MRCS-70-1 1.4 75 25 0.33

MRC-50-2 1.0 76 24 0.32

MRC-12 7.4 43 57 1.33

MRC-14 9.1 33 67 2.04
 † 
Estimated normalizing out the rest of elements (oxygen and adventicious carbon)

Fe/S
(at. %) 

†Sample pH

 

 

at pH range 4-9 was made on the basis of the Generalized Two layer-surface 

complexation model (Dzombak and Morel, 1990) using the PHREEQC code, a surface 

area of 600 m2 g-1 (as described by Dzombak and Morel, 1990 for hydrous ferric oxide) 

and a surface site density of 2.3 sites nm-2 (Davis and Kent, 1990). Given the total amount 

of Fe-hydroxide, which was based on SO4 released (< 0.1 g), the maximum amount of 

As(III) and As(V) sorbed was less than 10-9 mol As (at pH < 9.5). This arsenic amount was 

too low to account for the As that was retained in the experiments, which was higher 

than 1/5 Fe (i.e. 10-4 mol As). Therefore, the formation of an As phase seems to be 

responsible for As depletion at pH > 4. Based on the stoichiometry of our results, 

scorodite and/or pharmacosiderite could be responsible for As depletion. Beattie and 

Poling (1987) showed that, at pH values greater than 7, arsenopyrite oxidation results in 

the formation of secondary arsenic minerals such as pitticite [Fe2(AsO4)(SO4)OH·2H2O) 

and pharmacosiderite (6FeAsO4·2Fe(OH)3·12H2O). Similarly, Hacquard et al. (1999) 

observed the formation of an oxidation layer composed of Fe(III) arsenite and arsenate on 

the arsenopyrite surface after reacting with a solution of pH 10.  

In the case of marcasite, an examination of the S2p spectra of samples after reacting 

in the range of pH studied (1-9) and 8.7 mg L-1 of dissolved oxygen (Fig. 2.8) suggests the 

existence of two possible species at binding energies of 163.0-163.8 eV and 168.2-169.3 eV. 

Based on the BE values reported in earlier studies (Buckley and Woods, 1987; Mycroft et 
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al. 1990; Nesbitt and Muir, 1994; Pratt et al. 1994; Nesbitt et al., 1995; Nesbitt and Muir, 

1998; Hacquard et al. 1999; Elsetinow et al., 2003) the species identified at middle binding 

energies were attributed to either polysulfides or elemental sulfur, and the highest value 

was attributed to sulfates.  
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Figure 2.8. Curve fitted S2p spectra of representative samples after the flow through experiment at 

pH 1 (a), pH 3 (b), pH 7 (c) and pH 9 (d) and 8.7 mg L-1 of dissolved oxygen and 25ºC. 

The surface Fe/S ratios obtained suggest an enrichment of sulfur in the reacted 

marcasite during dissolution at acidic pH (Table 2.8). These products are composed of 

polysulfides and sulfates, although the presence of elemental sulfur cannot be ruled out. 

This sulfur enrichment has been observed to develop in other reacted sulfides surfaces 

(Acero et al., 2007a,b and c) and also in reacted marcasite by Rinker et al. (1997) who 
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observed the formation of a discontinuous S-rich and Fe deficient surface layer on 

dissolving marcasite. According to the variation in iron and sulfur aqueous 

concentrations durable steady states in all the experiments carried out were achieved, 

which suggests that the solid products on the reacted mineral surfaces do not seem to 

cause a progressive increase in marcasite passivation. 

At neutral-basic pH the results show that marcasite surface is enriched in iron and 

according to the saturation indices obtained iron hydroxides such as goethite and 

ferrihydrite may be responsible for Fe depletion at pH 7-9.  

2.3 Discussion 

2.3.1 Evolution of the arsenopyrite and marcasite surfaces during 

dissolution 

Inspection of the reacted samples confirmed that the arsenopyrite and marcasite surface 

undergoes critical variation as a function of pH, which influenced the overall oxidative 

dissolution of arsenopyrite and marcasite. At pH < 4 the overall oxidative dissolution of 

arsenopyrite (eq. 2.7) and marcasite (eq. 2.8) can be simplified as: 

−+ ++=++ 2

433

2

2)(2)(
2

3

4

11
SOAsOHFeOHOFeAsS

aqs  
(2.7)  

+−+ ++⇒++ HSOFeOOHFeS
aqs 22

2

7 2

4

2

)(22)(2  
(2.8)  

Hence, steady-state dissolution rates were obtained at pH < 4 based on As and Fe release 

normalized with respect to final BET specific surface area (Tables 2.1 and 2.3). The 

dissolution rates obtained in the experiments carried out in H2SO4 (pH 1 and 3) were the 

same, within error, as the rates obtained in HCl. This agreement shows that the 

arsenopyrite and marcasite dissolution rates obtained in this study are applicable to 
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acidic environments with sulfate as the main anionic species (e.g., systems affected by 

acid mine drainage).  

From pH 5 to 6, arsenopyrite dissolution yielded Fe/As and Fe/S aqueous ratios 

lower than one indicating that iron depletion during dissolution was incomplete (Fig. 

2.2). Likewise, incomplete arsenic depletion was observed, giving 0.81 < S/As < 1.38. At 

pH ranging from 7 to 9, aqueous iron was completely depleted in both minerals (below 

the detection limit), and As depletion, higher than that at pH 5-6, was observed during 

arsenopyrite dissolution. 

Therefore, at pH > 5 released ferrous iron rapidly oxidized to ferric iron, which 

precipitated as Fe-solid phases:  

++ +=++ HOHFeOHOFe
saq

2)(
2

5

4

1
)(32)(2

2  
(2.9)  

In the case of arsenopyrite As(III) can be oxidized to As(V) by oxygen (eq. 2.10 at pH ≤ 7 

and eq. 2.11 at pH > 7) (Tallman and Shaikh, 1980; Eary and Schramke, 1990; Walker et al., 

2006):  

+− +=+ HAsOHOAsOH
aq 42)(233

2

1
 

(2.10)  

+− +=+ HHAsOOAsOH
aq

2
2

1 2

4)(233  
(2.11)  

To simplify, the variable S/As aqueous ratio (Table 2.2), can be interpreted as variable 

proportions in the formation of scorodite and Fe(OH)3 phases: 

)(242

2

4)(2

2 2·
2

3

4

1
saq

OHFeAsOOHHAsOOFe =+++ −+  
(2.12)  
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The amorphous Fe(OH)3(s) may represent ferrihydrite, which could transform into 

hematite and/or goethite as pH increased from 5 to 13 (Schwertmann and Murad, 1983). 

This is a simplification and mixed phases (e.g. pharmacosiderite) can also be possible. 

The precipitated Fe(III) and As-bearing phases in the case of arsenopyrite form a 

coating on the mineral grains as dissolution proceeds. As stated above, this process was 

modelled using the shrinking core model (SCM). Thus, the limiting process of 

arsenopyrite dissolution at pH > 4 is the diffusion of O2(aq) through the coating, resulting 

in the dissolution of the unreacted core of arsenopyrite and marcasite.  

An important parameter that governs dissolution under the SCM is the 

stoichiometry of O2(aq) in the dissolution reactions (νox), which according to the addition of 

eqs. 2.9, 2.10 or 2.11 (depending on pH) to eq. 2.7 and eq. 2.9 to 2.8 is 15/4 for arsenopyrite 

and marcasite.  

An example of application of the SCM that simulates the variation in sulfate 

concentration versus time at pH 9 and 0.27 mol m-3 O2(aq) is depicted in Fig. 2.9. As 

expected, the early values are sensitive to k value, whereas the influence of D increases 

with time. The effect of coating can be observed in the plot. After 500 h only 1.7 mol % of 

initial marcasite was dissolved. However, had no coating been formed the dissolution of 

marcasite would have been 4.4 mol %. As discussed above, when the studied minerals 

dissolved at pH < 4 no precipitates were observed on their surfaces under SEM 

inspection. As expected, the variation of the solute concentration reached steady state 

after an initial time span (Figs. 2.2 and 2.3), and the dissolution rate constant can be 

calculated using eq. (2.1). Given that the removal of arsenopyrite and marcasite mass is 

constant in these experiments, their t-X plots show a linear trend, values of k (m s-1) can 

also be estimated by fitting the experimental data to eq. (2.4). Since the initial radius is 

calculated assuming spherical particles from the BET specific surface area measured (eq. 

2.6), the derived rate values (mol m-2 s-1) (eq. 2.6) are practically coincident with the rate 

values obtained using steady state (eq. 2.1) (see Tables 2.1 and 2.3). 
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Figure 2.9. Evolution of the mole fraction of dissolved marcasite in an experiment carried out at pH 

9 and 25ºC and 8.7 mgL-1 of dissolved oxygen. The curves are the plot of the process controlled by 

the surface dissolution step (eq. 2.4), by the diffusion across the coating step (eq. 2.5), and by the 

SCM model (addition of eq. 2.4 and 2.5). 

 

The value of D estimated for the experiments that follow the SCM pattern varies 

within a range of 10-20-10-15 m2 s-1. No variation with pH is apparent. Nicholson et al. 

(1988) estimated a D value for the coating of pyrite of 3·10-16, which is in the higher range 

of our experimental results. As discussed above, the value of D depends on R2 (the value 

assumed for initial radius, eq. 2.5), which in our case is smaller than that reported in the 

pyrite case. Furthermore, the D values estimated here are 5 to 10 orders of magnitude 

lower than the diffusion coefficient of O2(aq) in free water at 25°C (Wilke and Chang, 1955). 

This difference is too large to be attributed to porosity and tortuosity of a porous 

medium. On the other hand, these D values are higher than the diffusion coefficient 

values that are typical of solids (10-20 to   10-34 m2 s-1, Levine, 1978), but could be similar to 

those of poorly crystalline solids as suggested by Nicholson et al. (1988).  
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2.3.2 Effects of pH, DO and temperature on dissolution rates 

Under far-from-equilibrium conditions, an empirically derived dissolution rate law that 

accounts for the effects that pH, dissolved oxygen and temperature exert on sulfide 

dissolution has been proposed as (McKibben and Barnes, 1986; Williamson and Rimstdit, 

1994; Domènech et al., 2002): 

( )m
H

n

aqO aakRate += ·· )(2  (2.13)  

where Rate is in mol m-2 s-1, k is the dissolution rate constant, )(2 aqOa and +H
a  are the 

activities of dissolved oxygen and hydrogen ions in solution. The factors m and n are the 

reaction orders of the reaction with respect to hydrogen ion activity and dissolved 

oxygen concentration in solution, respectively. 

2.3.2.1 The effect of dissolved oxygen on dissolution rates 

The dependence of arsenopyrite and marcasite dissolution rates on dissolved oxygen 

concentration was assessed at 25ºC and acidic pH (Tables 2.1 and 2.3, Fig. 2.10). The rates 

obtained are DO-dependent, decreasing when the dissolved oxygen concentration is 

diminished. This type of dependence has been reported for arsenopyrite (Yu et al., 2007; 

McKibben et al., 2008) and for pyrite (Nicholson et al., 1988; Williamson and Rimstidt, 

1994; Domènech et al, 2002). The reaction order with respect to dissolved oxygen at acidic 

pH was found to be 0.60 and 0.33 for arsenopyrite and marcasite dissolution, respectively 

(Fig. 2.10). The obtained values in this study are in the same order as the values reported 

by Smith and Schumate (1970) who found a value of 0.7 for a mixture of pyrite and 

marcasite, or Kamei and Ohmoto (2000), Manaka et al. (2000), and Manaka (2007) with 

values from 0.5 to 1 for pyrite, or McKibben (1984), Williamson and Rimstidt (1994) and 

Domènech et al. (2002) for pyrite (0.4-0.5±0.04) at pH 2-10. In the case of arsenopyrite, the 

obtained value is higher than those reported by Yu et al. (2007) (0.45±0.05) at pH 5.9 and 

McKibbben et al. (2008) (0.33±0.18) at pH 2-4.5.  
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Figure 2.10. Arsenopyrite and marcasite dissolution rate dependence on dissolved oxygen at 25ºC. 

 

2.3.2.2 The effect of temperature on the dissolution rates 

The temperature dependence of dissolution rate generally follows the Arrhenius law: 

RT
app
E

AeRate
/−

=  (2.14)  

where A is the pre-exponential factor, Eapp is the apparent activation energy, R is the gas 

constant and T is the temperature (K). To obtain experimentally the apparent activation 

energy at acidic pH, experiments were carried out at 25, 50 and 70°C at pH 1 and 3 by 

maintaining constant both the pH and dissolved O2 concentration (Tables 2.1, and 2.3 and 

Fig. 2.11).  

The apparent activation energies for arsenopyrite and marcasite oxidation by 

oxygen in acidic conditions were 30.7 and 12.0 kJ mol-1, respectively.  

In the case of marcasite, the apparent activation energy obtained indicates that the 

overall dissolution mechanism appears to be a diffusion-controlled process. Values of the 

activation energy lower than 20 kJ mol-1 are usually associated with transport-controlled 

dissolution mechanisms (Lasaga, 1998; Brantley and Conrad, 2008). When the dissolution 

of a mineral is transport-controlled, it is expected to produce general rounding of the 
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grains, if the amount of mineral dissolved is significant, and variations in the dissolution 

rate if the stirring rate is changed (Berner, 1980). No change was observed in the shape of 

the grains after the experiments (Fig. 2.4) or in the dissolution rates obtained with and 

without stirring. At present there is no explanation for the apparent inconsistency 

between these observations and the low value obtained for the apparent activation 

energy. Rinker et al. (1997) reported a high Eapp value for marcasite dissolution with 

respect to the one obtained in this study (Table 2.9), probably because of the short 

duration of their batch experiments (around 8 h) and the insufficient time to reach steady-

state rates. Hence, the reported Eapp is not comparable to the one obtained in our long-

term flow through experiments.  
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Figure 2.11. Arsenopyrite and marcasite dissolution rate dependence on temperature at 8.7 mg L-1 

of dissolved oxygen. 

 

In the case of arsenopyrite, Yu et al. (2007) using short-term flow reactors (6-8 h) 

reported Eapp values (kJ mol-1) of 43 (pH 1.8) and 57 (pH 5.9). McKibben et al. (2008) 

carrying out short-term batch experiments at pH 2-4.5 obtained a complicated non-

Arrhenius behavior. The Eapp value obtained in this study (30.7 kJ mol-1) suggests that the 

arsenopyrite dissolution is a surface controlled process.  
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2.3.2.3 The effect of pH on dissolution rates 

In the absence of other catalysts, the dissolution rate of a mineral within certain pH 

ranges, in which the dissolution mechanism does not change, is proportional to a 

fractional power of the H+ activity according to: 

m

HkaR +=  
(2.15)  

where +Ha  is the activity of hydrogen ion in the solution, m is the order of the reaction 

with respect to H+, and k is a rate constant.  

Fig. 2.12 plots logarithm of the rates vs. pH at 25ºC and dissolved O2 concentration 

of 8.7 mg L-1. From pH 1 to 4 the arsenopyrite and marcasite dissolution rate scarcely 

changes with pH. At pH 5-6 arsenopyrite dissolution rate is similar to that at pH < 4. 

Therefore, it suggests that hydrogen ion effect on the dissolution rates in this pH range is 

negligible. This result is consistent with the insignificant pH dependence reported 

previously by Yu et al. (2007) for arsenopyrite and by Williamson and Rimstdit (1994) and 

Domènech et al. (2002) for pyrite (see Table 2.9).  

 

-11.5

-11.0

-10.5

-10.0

-9.5

-9.0

0 2 4 6 8 10

St-St
SCM

pH

lo
g
 R
a
te
 (
m
o
l 
m

-2
  s

-1
)

ARSENOPYRITE

 

 

 

-11.5

-11.0

-10.5

-10.0

-9.5

-9.0

0 2 4 6 8 10

St-St
SCM

pH

lo
g
 R
a
te
 (
m
o
l 
m

-2
  s

-1
)

MARCASITE

 

Figure 2.12. Arsenopyrite and marcasite dissolution rates versus pH at 25ºC of temperature and at 

8.7 mgL-1 of dissolved oxygen based on steady-state (St-St) conditions and obtained using the 

Shrinking Core Model (SCM). 

 



46                                                          Chapter 2: Dissolution kinetics of arsenopyrite and marcasite 

 

The effect of pH assessed in the range of 7-9, is in the order to study the conditions 

found in the treatments used in acid neutralization to remediate AMD contaminated 

sites. The results show that arsenopyrite, in the pH range of 7.5 to 9, dissolves slower 

than at acid pH. The same trend was observed by Yu et al. (2007) at pH 7-8. Marcasite was 

found to be independent on pH at the range of pH considered in this study.  

2.3.3 Dissolution rate laws 

Considering the effects of the environmental variables studied (pH, DO and temperature) 

on mineral dissolution, the reaction orders n and m and the apparent activation energy 

(Eapp) and the rate dissolution constant (k), were estimated from multiple linear regression 

of the rates (Tables 2.1 and 2.3), yielding the following expression for the arsenopyrite 

dissolution rate laws at acidic pH: 

05.005.005.060.025.007.8

25

12 ·10)(
2

±−±±−−−

+⋅=
HOCtearsenopyri
aasmmolR

o

 (2.16)  

04.008.003.033.014.010.9

25

12 ·10)(
2

±−±±−−−

+⋅=
HOCmarcasite
aasmmolR

o

 (2.17)  

where the value of the Apparent Activation Energy has been found to be 30.7 and 12.0 kJ 

mol-1 for arsenopyrite and marcasite respectively at acid pH values.  

A comparison of arsenopyrite dissolution kinetics and that of other As-bearing 

sulfides (arsenopyrite (AsFeS), orpiment (As2S3), realgar (AsS)) and pyrite is shown in 

Fig. 2.13. Table 2.9 gives the dissolution rates and kinetic parameters obtained in these 

studies of sulfides: pyrite (Williamson and Rimstidt, 1994; Domènech et al, 2002); 

orpiment and realgar (Lengke and Tempel, 2002, 2003), and arsenopyrite (Walker et al., 

2006; Yu et al., 2007; McKibben et al., 2008). It is important to highlight that different 

experimental setups and experimental conditions were used in these studies, and that 

dissolution processes and mechanisms of As-bearing sulfide dissolution may not be the 

same. Note that sulfide dissolution rates obtained in very short-term experiments (< 50 h) 
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are usually one order of magnitude faster (Yu et al., 2007; McKibben et al., 2008). Indeed, 

on the onset of our long-term experiments apparent dissolution rates were faster than 

steady-state rates. Thus, the advantage of the long-term experiments is that achievement 

of durable steady state (> 300 h) guarantees the reaction to proceed under steady mineral-

solution conditions. Therefore, it is suggested that quantification of arsenopyrite 

oxidation at acidic mine wastes is appropriately obtained by the long-term experiments. 

As shown in Table 2.9 marcasite dissolution rate obtained is lower than the rate 

proposed by Rinker et al. (1997). This difference may again be attributed to the shorter 

duration (less than 8 h) of the experiments in the work of Rinker et al. (1997).  
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Figure 2.13. Comparison of arsenopyrite and marcasite oxidative dissolution rates obtained in the 

present study with rates of arsenopyrite, orpiment, natural realgar and pyrite found in the 

literature as a function of pH at 25
◦
C and 8.7 mg L-1 DO. SS: Steady-state; SCM: Shrinking Core 

Model; W&R, 1994: Williamson and Rimstdit (1994); L&T, 2002: Lengke and Tempel (2002); L&T, 

2003: Lengke and Tempel (2003); M, 2008: McKibben et al. (2008).  
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In line with this explanation, the dissolution rates obtained for marcasite and 

arsenopyrite in this work are in very good agreement with the rates obtained by 

Domènech et al. (2002) for pyrite, or Acero et al. (2007a,b,c, 2009) for sphalerite, 

chalcopyrite and galena based on long dissolution experiments. Likewise, the obtained 

rate laws obtained for both minerals and the influence exerted by pH and oxygen are 

similar than reported for pyrite by many authors such as Williamson and Rimstidt (1994) 

or Domènech et al. (2002), probably indicating that all these minerals present the same 

behavior under similar conditions. 

2.4 Conclusions 

In this chapter, dissolution rate laws applicable to the prediction of the long-term 

dissolution behavior of arsenopyrite and marcasite in environments undergoing acid 

drainage have been obtained. 

Under the experimental conditions of this study the dissolution of arsenopyrite and 

marcasite dissolution is strongly affected by dissolved oxygen and slightly affected by 

temperature.  

The low values obtained for the apparent activation energy for both sulfides in the 

studied conditions suggest that their dissolution kinetics is controlled by transport 

processes or mixed-controlled by surface reactions and transport processes.  

In the light of the experimental results, two regions can be distinguished from 

arsenopyrite and marcasite oxidative dissolution: (1) an acidic region (1 < pH < 5) when 

aqueous iron is released to the solution and (2) at mildly acid to basic pH (pH > 5) when 

iron released precipitates.  

The dissolution of both minerals in acid conditions creates a sulfur-enriched surface 

layer. This layer is mainly made up by polysulfides and sulfates in both minerals 
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although the presence of elemental sulfur can not be ruled out. However, these layers do 

not exert any passivating effect once the steady state is attained.  

At midly acid to basic pH, the precipitation of Fe phases takes place. Fe-coating 

grows on the mineral surface and prevents the diffusion of aqueous species through it. 

Thus, steady state is not attained and the output concentration decreased with time. 

These results are representative of the conditions found in remediated sites: Fe-layers 

enhance mineral surface passivation, and in addition, the high stability of Fe 

oxy(hydroxide) at circumneutral pH provides a considerable retention capacity of toxic 

metal(oid)s, such as arsenic, that are in non-admissible levels in AMD.  

The dissolution rates obtained for both minerals at atmospheric conditions in this 

work are similar, and also they are in good agreement with the reported rates for pyrite, 

sphalerite, chalcopyrite and galena based on long-term dissolution experiments. It is very 

common that the available dissolution rates for sulfide minerals are obtained in short-

batch experiments. As shown by this study, the use of these rates may lead to an 

overestimation of the dissolution rates. 



 

 

Part II 

Natural attenuation processes 

 

 

 



 

 

 



 

 

Chapter 3 

Chemical oxidation processes 

Arsenic is perhaps unique among the heavy metalloids and oxyanion-forming elements 

(e.g. As, Se, Sb, Mo, V, Cr, U, Re) in its sensitivity to mobilization at the pH values 

typically found in groundwaters (pH 6.5–8.5) and under both oxidizing and reducing 

conditions (Smedley and Kinniburgh, 2002). Arsenic can occur in the environment in 

several oxidation states (-3, 0, +3 and +5) but in natural waters it is mostly found in 

inorganic form as oxyanions of trivalent arsenite [As(III)] or pentavalent arsenate [As(V)]. 

Although organic As forms are produced by biological activity, mostly in surface waters, 

they are uncommon. However, they may occur where waters are significantly impacted 

by industrial activities (Smedley and Kinniburgh, 2002). 

Aqueous arsenic species are controlled by pH and redox conditions. In most natural 

waters (pH ~ 4–10), the most widespread species are the neutral species H3AsO3 for 

arsenite, and H2AsO4- and HAsO42- for arsenate (Cullen and Reimer 1989). At acid pH 

range, the dominant species are H3AsO3 for arsenite and H3AsO4 and H2AsO4- for 

arsenate. 
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Very high concentrations of arsenic can be found in sulfide mining areas (e.g. IPB) 

owing to the oxidation of As-bearing sulfide minerals (e.g. As rich-pyrite and 

arsenopyrite) (Williams, 2001). Arsenic concentrations in these waters can reach up 5-6 

orders of magnitude higher than the established limit of 10 µg L-1 for potable water 

(WHO, 2004).  

Given that arsenopyrite is the dominant arsenic mineral in most As-bearing natural 

occurrences, it is mainly responsible for elevated arsenic concentrations at surface sites 

(Smedley et al., 1996). At acidic pH, its dissolution can be expressed as: 

−+
++=++

2

433

2

2)(2)(
2

3

4

11
SOAsOHFeOHOFeAsS

aqs  
(3.1)  

Dissolution of arsenopyrite mainly releases As(III) (Yu et al., 2007; Cama et al., 2008), 

which could be oxidised by O2 (Tallman and Shaikh, 1980; Eary and Schramke, 1990) (eq. 

3.2) and Fe(III) (Cherry et al., 1979; Emett and Khoe, 2001; Hug et al., 2001; Bednar et al., 

2002) (eq. 3.3):  

+−
+=+ HAsOHOAsOH

aq 42)(233
2

1

 (3.2)  

+++
++→++ HAsOHFeOHAsOHFe 222 43

2

233

3  
(3.3)  

Although arsenite oxidation by oxygen and Fe(III) is slow, especially under acidic 

conditions, it may be catalyzed by the activity of bacteria (Wakao et al., 1988; Leblanc et al. 

2002; Bruneel et al., 2003; Casiot et al., 2003b; Duquesne et al., 2007; Nakazawa and 

Hareyama, 2007) or by the presence of iron and illumination with near ultraviolet light 

(Emett and Khoe, 2001). There are some works on arsenic mobilization in acid drainages 

showing that arsenite oxidation in these environments is carried out at relatively 

significant rates during daytime (e.g. Sarmiento et al., 2007). 
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Arsenite oxidation is of considerable importance since the resulting As(V) is less 

toxic than As(III), less soluble, and is sorbed more strongly than As(III) to Fe(III) oxides 

and hydroxides under acidic conditions (Bowell, 1994). Trapping of arsenic by iron 

minerals is an efficient natural attenuation process that considerably reduces the arsenic 

concentration in AMD waters.  

Knowledge of the simultaneous occurrence of Fe(II) and As(III) oxidation, and of 

the oxidation rates is of great value in the prediction of iron and arsenic behavior in 

natural systems. The connection between iron and arsenic redox reactions play an 

important part in understanding the fate of arsenic in AMD environments since arsenic 

speciation and redox chemistry is reportedly controlled by Fe in solution in AMD 

systems (Daus et al., 2002; Bednar et al., 2005; Sarmiento et al., 2007). Despite the 

significant role of these oxidation processes in the natural attenuation of arsenic, little 

work has been done on the simultaneous oxidation of iron and arsenic. This chapter 

therefore addresses the processes involved in arsenic oxidation under conditions similar 

to those found in AMD waters. To this end, batch experiments using field water samples 

and synthetic solutions were conducted under abiotic and biotic conditions at a 

controlled temperature and at varying concentrations of Fe(II) and Fe(III), sulfate and 

chloride in the presence and absence of light. 

3.1 Materials and Methods 

3.1.1 Site description and field sampling 

The Iberian Pyritic Belt (IPB), which has been described as one of the largest massive 

sulfide deposit in the world, contained original reserves of the order of 1700 Mt (Sáez et 

al., 1999) divided up into more than 80 massive sulfide deposits. Over several centuries of 

mining activity in this area has generated huge amounts of mining waste that continue to 

generate acidity and metal pollution affecting streams and rivers in the Tinto and Odiel 

drainage basins (Olías et al., 2004; Nieto et al., 2007; Sarmiento et al., 2009).  
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Unfiltered water samples with bacterial slime (Fig. 3.1) were collected at two 

abandoned mines in the Iberian Pyritic Belt: San Telmo and Mina Esperanza, both located 

in the Odiel river basin. Water samples from the San Telmo abandoned mine were 

collected from water emanating from a sulfidic waste pile (Fig. 3.2a) on July 2007. Water 

pH of the samples was 2.55 at the moment of sampling. Water samples from Mina 

Esperanza were taken from water emerging from the adit mouth on June 2008 and the 

measured pH was 2.74 (Fig. 3.2b). 

 

 

 

Figure 3.1. Photography that shows in detail the AMD water flowing from the Mina Esperanza adit 

mouth (Huelva, SW Spain) and bacterial slime. The water samples collected were used in the 

arsenic and iron oxidation experiments. 

3.1.2 Solutions, analyses and mineral composition 

All the reagents used to prepare the experimental and analytical solutions were of a 

purity at least equal to the reagent-grade standards of the American Chemical Society. 

Double-distilled water and re-distilled or trace metal grade acids were used in all 

preparations. The following reagents were used for the dissolved total arsenic and 

dissolved arsenite hydride generation atomic-absorption spectrometry (HG-AAS) 

analytical determinations: 10 percent (weight per volume) KI from Aldrich; 10 percent 

(weight per volume) L-Ascorbic Acid from Aldrich; NaOH from Fisher; NaBH4 from  
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Figure 3.2. Photos of the sampling points: acid water emanating from a waste-rock pile in the San 

Telmo abandoned mine (a); and water emerging from the adit mouth of the abandoned Esperanza 

mine where samples were taken (b).  

Fisher; trace metal grade HCl from Fisher; 1000 mg L-1 As(III) and 1000 mg L-1 As(V) from 

High Purity Standards. A standard arsenite stock solution of an As(III) concentration of 

60 mg L-1 was prepared dissolving NaAsO2 in double-distilled water.  

Concentrations of total dissolved As (As(T)) and As(III) were determined by HG-

AAS in water samples according to the methodology described in McCleskey et al. (2003). 

As(V) was calculated as the difference between As(T) and As(III). An atomic absorption 

spectrophotometer (Perkin-Elmer (PE) - AAnalyst 300) with an electrically heated quartz 

cell and a path length of 15-cm inline with a flow injection analysis system (FIAS; PE - 

FIAS 100), an autosampler (PE - AS90), and an arsenic electrodeless discharge lamp (EDL) 

attached to an EDL power supply (PE - EDL System 2) were used. The following 

spectrometer parameters were used: EDL current: 380 mv; wavelength: 193.7 nm; slit: 0.7 

nm. Peak height was used for data processing. Sodium borohydride was prepared daily 

and filtered through a 0.45 μm polyvinylidene fluoride filter membrane using a vacuum 

a b 
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pump. The detection limits of the HGAAS analytical procedure used at the USGS 

National Research Laboratory in Boulder (Colorado, USA), are 0.1 μg L-1 for As(T) and 0.8 

μg L-1 for As(III).  

Ferrous and total dissolved iron concentrations were determined by colorimetry 

using the ferrozine method (Stookey, 1970; To et al., 1999) in a Hewlett-Packard model 

8452A diode array spectrometer with 1 cm cells at room temperature. The concentration 

of dissolved Fe(III) was determined by computing the difference between total dissolved 

iron and dissolved Fe(II). The detection limits are 1 and 2 μg L-1 for total and ferrous iron, 

respectively. However, if Fe(III) exceeds 50% of the total iron in a sample, Fe(II) is 

overestimated. On completion of our experiments, the quantity of dissolved Fe(III) was 

very high compared to dissolved Fe(II). Subsequently, when the Fe(III) concentration was 

higher than 50% of total iron, the colorimetric determination by Herrera et al. (1989) was 

used. This method is suitable for Fe(II) determination in bacterial leaching systems, 

where Fe(II) might be as low as 1% of total iron.  

The concentration of total dissolved arsenic and iron was also measured by 

inductively coupled plasma optical emission spectrometer (ICP-OES) using the Leeman 

Lab Direct Reading Echelle equipment.  

Sulfate and chloride concentrations were determined by HPLC (High Performance 

Liquid Chromatography) using a Dionex model 2010i ion chromatograph with AG4A 

guard and AS4A separator columns and Anion Self-Regenerating Suppressor-II. 

Solution pH measurements were carried out on an unstirred aliquot of solution 

using an Orion Ross pH electrode (81-56) with temperature compensation after 

calibration with standard buffer solutions of pH 4 and 7.  

The mineralogical composition of the precipitates formed during the experiments 

was determined by X-ray diffractometry (XRD) using a Bruker D5005 diffractometer with 

Cu Kα radiation. Powered samples were scanned from 0º to 60º 2θ with a continuous 

scan speed of 0.0014 degrees 2θ per second. Samples of precipitates were observed under 
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field-emission scanning electron microscopy (SEM) using a Hitachi H-4100FE with an 

intensity current of 10 kV.  

3.1.3 Oxidation experiments 

Biotic and abiotic batch experiments were performed in brown and dark polyethylene 

flask bottles of 250 mL and 125 mL. Bottles were immersed in a water bath at constant 

temperature (20 ± 2ºC) under atmospheric conditions. Bottles were periodically stirred in 

order to favor oxygenation.  

Samples (1-5 mL) were taken regularly, filtered by 0.2 μm filters, preserved at 4ºC in 

the dark until analyses for As(III), total As, Fe(II) and total Fe. Arsenite determinations 

were also performed in the dark. 

After the biotic experiments, the solids formed were retrieved, rinsed with double-

dionized water, dried at room temperature and stored in closed microvials until SEM and 

XRD examinations. 

3.1.3.1 Biotic oxidation experiments 

Common bacteria from AMD water of Iberian Pyritic Belt were cultivated in a synthetic 

medium (9K medium) used to grow Acidithiobacillus ferrooxidans. This medium was 

prepared according to the composition of Silverman and Lundgren (1959) (see Table 3.1), 

adjusting its pH to 2.3.  

In this study, two types of biotic experiments were carried out (Table 3.2): (1) 5 mL 

of field water samples that contained microbes were added to 250 mL of 9K culture 

media to enrich the cultures. 0.25 mL (experiments IPB-ME-1, IPB-ME-2, IPB-ME3, IPB-

ME-4) and 0.1 mL of this enriched solution (experiment IPB-ME-5 and IPB-ME-6) were 

added to 250 mL of distinct solutions containing 100, 85, 50, 24 and 2.2 mg L-1 of ferrous 

iron (added as FeSO4) and 800, 500, 490 and 250 µgL-1 of arsenite (added from the 

standard arsenite stock solution); (2) 250 mL solution of 9K culture medium were  
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Table 3.1. Composition of 1L of dissolution of 9K media prepared according to Silverman and 

Lundgren (1959). 

 

Reagent Amount (g)

(NH4)SO4 3.0

KCl 0.1

KH2PO4·3H2O 0.65

MgSO4·7H2O 0.5

Ca(NO3)2 0.01

FeSO4·7H2O 45  
 

 

inoculated with 5 mL of field water sample and arsenite was added from the stock 

solution to reach a concentration of 800 µgL-1 (experiments IPB-ST-1 and IPB-ST-2). 

Experiments were carried out at sulfate concentrations of 487 to 17000 mg L-1. Control 

experiments were run in synthetic solutions with the same concentrations of Fe(II), As(III) 

and sulfate without the addition of the enrichment medium. 

3.1.3.2 Abiotic oxidation experiments 

Abiotic oxidation of As(III) by Fe(III) was studied by means of H2SO4 synthetic lab 

solutions of pH 2.3 that were prepared using double-distilled water in either brown 

polyethylene flasks bottles for dark experiments or transparent for light experiments. 

Initial concentration of As(III) in the experiments ranged from 0.025 to 2.5 mg L-1. 

Experiments were carried out with 1-350 mg L-1 of Fe(III), added as ferric sulfate, and 485 

to 17000 mg L-1 of sulfate (Table 3.3). Chloride was added as NaCl to three experiments 

conducted at 140, 187 and 350 mg L-1 of Fe(III) and 2500 and 17000 mg L-1 of sulfate. 

Photoirradiation of the light experiments was carried out by a conventional lamp with 

light in the visible spectra (λ= 400-780 nm). 

3.1.4 Geochemical calculations 

Speciation-solubility calculations in this chapter were made with the geochemical code 

PHREEQC (Parkhurst and Appelo, 1999) using the WATEQ4F thermodynamic database  
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Table 3.2. Initial experimental conditions and arsenic oxidation rates obtained in presence of 

oxidizing bacteria. 

 

As(III)

k As k Fe zero order k Fe first order

µgL
-1

mgL
-1 molar ratio mgL

-1 L mol -1 s-1 mol
-1
L
-1
s
-1 s-1

IPB-ST-1* 800 8500 15620 17000 n.c 10-6.9 10-4.1

IBP-ST-2* 800 8500 15513 17000 n.c 10-7.0 -

IPB-ME-1 500 100 330 740 10-2.2 10-8.2 10-3.9

IPB-ME-2 250 85 456 740 10-2.8 10-8.5 10-4.0

IPB-ME-3 250 50 349 610 10-2.7 10-8.8 10-4.5

IPB-ME-4 250 24 258 545 10-2.5 10-9.1 10-4.6

IPB-ME-5 490 2.2 6.1 487 - 10-9.4 10-5.2

IPB-ME-6 480 2.2 6.1 487 - 10-9.4 10-5.2

n.c.: not calculated due to iron analytical uncertaintity during As(III) oxidation

As(III) Fe(II)

k Fe first order  of the first order expression: -d[Fe(II)]/dt=k Fe  [Fe(II)] a O2

ST stands for San Telmo samples

ME stands for  Esperanza  mine samples

k Fe zero order  of the first zero expression: -d[Fe(II)]/dt=k

k As  of the kinetic expression: d[As(III)]/dt=k As  [As(III)][Fe(III)]

Rate constantsInitial experimental conditions

Experiment

* Oxidation rates obtained in 9K culture medium

pH

2.3

2.3

Fe:As Sulfate
Fe(II)

 

 

(Ball and Nordstrom, 1991), which was enlarged with data from Bigham et al. (1996) and 

Yu et al. (1999) to account for schwertmannite solubility. In addition, using PHREEQC, 

the rate constants for iron and arsenic oxidation rates were obtained by fitting the 

experimental data to the kinetic expressions that will be discussed below.  

3.2 Results and discussion 

3.2.1 Oxidation of Fe(II) and As(III) in the presence of bacteria  

Ferrous iron oxidation rate in AMD waters is controlled by the mine water pH, the 

amount of dissolved oxygen, and the presence of iron oxidizing bacteria. Abiotic Fe(II) 

oxidation is relatively slow and strongly inhibited at a pH less than approximately 4.5 

(Ficklin and Mosier, 1999). However, in the presence of iron oxidizing bacteria, the 

oxidation rate of Fe(II) to Fe(III) increases by several orders of magnitude over the abiotic 

rate (Singer and Stumm, 1970).  
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Table 3.3. Initial experimental conditions in abiotic experiments carried out with different 

concentrations of Fe(III), sulfate and in presence and absence of light. Shadowed area corresponds 

to the experiments carried out in chloride solutions. 

 

As(III) Fe(III) Sulphate Fe:As Initial RateAs (k As ) RateAs k As

µgL
-1 molar ratio mol L

-1
s
-1

mol L
-1
s
-1 s-1

L10 Yes 2500 140 2500 75 8.8 · 10-8 2.0 · 10-12 10-6.6

L5 Yes 2000 350 17000 235 6.1 · 10-8 1.5 · 10-12 10-7.0

L17 Yes 2180 350 17000 215 9.2 · 10-9 3.5 · 10-12 10-6.6

B1 Yes 25 1 485 54 - 3.8 · 10-14 10-6.8

B2 Yes 25 10 500 537 3.7 · 10-10 7.9 · 10-14 10-6.2

B3 Yes 25 100 740 5366 1.8 · 10-9 - -

B4 Yes 250 1 485 5 - 3.0 · 10-13 10-6.9

B5 Yes 250 10 500 54 - 3.9 · 10-13 10-6.8

B6 Yes 250 100 740 537 3.0· 10-9 6.0 · 10-13 10-6.4

B8 Yes 2500 10 500 5 - 6.5 · 10-12 10-6.5

B9 Yes 2500 100 740 54 - 7.6 · 10-12 10-6.4

NL1
(a) No 2500 187 4020 100 9.7 · 10-8 - -

NL2
(a) No 2370 200 4020 113 8.8 · 10-8 - -

NL7
(a) No 1350 187 17000 186 5.4 · 10-8 - -

No - -

No - -

Yes 1.2 · 10-10  
(c) 10-5.4

Yes 3.4 · 10-10 
 (d) 10-4.5

Yes 1.3 · 10-10 
 (c) 10-5.4

Yes 3.0 · 10-10 
(d) 10-4.5

Yes 20 1 0 54 - 3.1 · 10-13 -
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Figure 3.3 shows the variation in concentration of Fe(II) and As(III) with time. It is 

observed that, even at low pH (pH 2.3), ferrous iron and arsenite concentrations decrease 

as oxidation to ferric iron and arsenate takes place. Oxidation of Fe(II) occurred rapidly, 

and, in the experiments with a very high initial Fe(II) concentration, an initial induction 

period of 150-300 h (Fig. 3.3 a) and of 50-70 h (Fig. 3.3 b) was observed. According to 

Nordstrom (2003) this is the time required for microbes to adapt to the new conditions 

after inoculation (lag phase). Thereafter, the population density is enough to affect the 

inorganic chemistry, resulting in a rapid decrease (Fig. 3.4). The high oxidation rate is 

represented by the steep decrease (slope) and is indicative of zero-order kinetics. The 

exponentially increasing rates (upper part of the curve) and the small but exponentially 

decreasing rates (lowest part of the curve) reflect first-order kinetics (Fig 3.4a). This  
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Figure 3.3. Evolution of Fe(II) and As(III) concentration during the biotic oxidation experiments 

carried out at different Fe(II) and As(III) concentrations. 

 

evolution is observed in our experiments (Fig. 3.3 a-d) and corresponds to the main 

stages of microbial growth described by Nordstrom (2003): (1) initial lag phase; (2) 

exponential growth: the number of cells grown exponentially and the oxidation reaction 

kinetics is zero-order; (3) steady-state phase: achieved in the event of a limiting factor 

resulting in first-order reaction kinetics; (4) death phase: deceleration of the rate (Fig. 

3.4b).  
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Figure 3.4. Typical curve of substrate evolution with time (a); schematic diagram of phases of 

microbial growth (b) (modified from Nordstrom, 2003). 

The resulting ferrous iron oxidation rates were calculated using a combination of 

zero-order expression (eq. 3.4) and the first-order kinetic expression (eq.3.5) proposed by 

Singer and Stumm (1970): 

[ ]
orderzeroIIFe

k
dt

IIFed
r =−=

)(
)(

 (3.4)  

[ ]
2

)]([
)(

)( OorderfirstIIFe
aIIFek

dt

IIFed
r =−=  (3.5)  

where rFe(II) is the oxidation rate expressed in mol L-1 s-1, [Fe(II)] is the ferrous iron 

concentration (mol L-1) at a time t (s), aO2 is the oxygen activity, kzero order (mol L-1 s-1) is the 

rate coefficient of the zero-order kinetic expression and kfirst order (s-1) of the first order 

kinetics. These constants were determined from the best-fit obtained by fitting the 

experimental results with the PHREEQC code (Table 3.2).  

The resulting Fe(II) oxidation rates ranged from 10-6.9 mol L-1 s-1 to 10-9.4 mol L-1 s-1 

(Table 3.2). These oxidation rates are within the values reported under comparable 

environmental conditions (pH=2-3, T=10-25°C) for bacterially mediated Fe(II) oxidation 

rates in AMD waters (e.g. 10−9 and 10−6 mol L−1 s−1) (Kirby and Elder Brady, 1998; 

Nordstrom, 2003; Sánchez-España et al. 2007) with a proposed average value around 

a b 
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5×10−7 mol L−1 s−1 (Nordstrom and Alpers, 1999) and several orders of magnitude faster 

than abiotic rates (3×10−12 mol L−1 s−1; Singer and Stumm, 1968). The differences in the 

oxidation rates obtained in our experiments could be attributed to the maximum 

concentration of bacterial cells achieved. According to Nordstrom (1985, 2003) the 

number of bacterial cells appears to be the limiting factor for iron-oxidation kinetics at 

least under field conditions. 

In all experiments, As(III) concentration decreased drastically, reflecting to a certain 

degree Fe(II) behavior. Nonetheless, two trends were observed regarding As(III) 

behavior. First, in the experiments carried out with the highest As(III) and Fe(II) 

concentrations (9K medium) (Table 3.2), arsenic oxidation apparently commenced before 

iron oxidation, suggesting that two distinct microbial oxidations of arsenic and iron 

might occur independently (Fig. 3.3a). Second, in the experiments conducted with lower 

Fe(II) concentrations (Fig. 3.3b,c,d), the simultaneous oxidation curves of iron and arsenic 

suggest that the same microbes could oxidize both ferrous iron and arsenite. In contrast, 

in the abiotic control experiments with the same arsenic, iron and sulfate concentrations 

no decrease in Fe(II) and As(III) for 800 h was observed (Fig. 3.5).  

The presence of As-oxidizing bacteria in AMD streams has been reported (Wakao et 

al., 1988; Leblanc et al. 2002; Bruneel et al., 2003; Casiot et al., 2003b; Duquesne et al., 2007; 

Nakazawa and Hareyama, 2007), and some authors have proposed that iron oxidizers 

(such as A. ferrooxidans) oxidized As(III) to As(V), which was immediately coprecipitated 

with Fe(III) oxyhidroxides (Leblanc et al., 1996; Leonard et al., 1999). However, the ability 

of iron-oxidizing bacteria to oxidize As(III) is still in contention. For example, Wakao et 

al., (1988) discussed the capacity of A. ferrooxidans and Leptospirillum to oxidize arsenite. 

Although the presence of arsenite-oxidizing bacteria appears to be a reasonable 

hypothesis to account for As(III) oxidation, it is worth noting that the analytical 

uncertainty of the Fe(II) concentration during the first hours is ca. 10%. Hence, a large 

concentration of Fe(III) could not have been determined (for example: 850, 10, 8.5 and 5 

mg L-1 of Fe(III) could have been below the detection limit in experiments IPB-ST-1 or  
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Figure 3.5. Evolution of As(III) and Fe(II) concentration during the abiotic and control oxidation 

experiment. No decrease in As(III) and Fe(II) was observed under sterile (abiotic) conditions. 

 

IPB-ST-2, IPB-ME-1, IPB-ME-2 and IPB-ME-3, respectively; see Table 3.2). This undetected 

amount of Fe(III) would have been able to oxidize As(III) under these experimental 

conditions. Therefore, it is not easy to determine whether arsenic oxidation was catalyzed 

biotically or abiotically oxidized by Fe(III). In an attempt to clarify the role of bacteria in 

As(III) oxidation, two additional experiments were conducted in inoculated solutions but 

with low Fe(II) concentrations (2.2 mg L-1) (Table 3.2: experiments IPB-ME-5 and IPB-ME-

6). At this low ferrous iron concentration, As(III) oxidation was negligible, whereas Fe(II) 

was completely oxidized (Fig. 3.6), indicating that microbes in field water solutions are 

not As-oxidizer microbes. Thus, the As(III) oxidation observed in the experiments was 

catalyzed by the presence of Fe(III), which resulted from microbial oxidation of ferrous 

iron. Given that these findings indicated abiotic As(III) oxidation, even in the presence of 

iron-oxidizer microbes, abiotic experiments were conducted to study arsenic oxidation in 

the presence of Fe(III), sulfate, chloride and in the presence and the absence of light (see 

next section). 

The variation of total arsenic with time was also studied in the biotic experiments. 

Total arsenic concentration and pH remained invariable when Fe(II) initial concentration 

was 100, 85, 50, 25 and 2.2 mg L-1 (Fig. 3.7a). However, when the initial ferrous iron 

concentration was 8500 mg L-1 (9K medium solution), total arsenic remained constant in  
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Figure 3.6. Evolution of As(III) and Fe(II) concentration during the experiments carried out with 

2.2 mg L-1 of Fe(II) and 480 and 490 µg L-1 of As(III). 

 

the first 145 h. Thereafter, total arsenic decreased together with As(III) oxidation until 

350-380 h followed by a constant concentration for ca. 200 h. Finally, the total arsenic 

concentration reached the initial concentration at the end of the experiment (Fig. 3.7b).  
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Figure 3.7. Variation in As(III) and total As concentration with time in two biotic oxidation 

experiments at 85 mg L-1 of initial Fe(II) (a); in 9K medium (8500 mg L-1 of initial Fe(II)) (b). 

 

Fig. 3.8 depicts the pH variation in this experiment. In the first 400 h pH increases from 

2.4 to 2.7, followed by a pH decrease to 2.2. The pH increase is a consequence of Fe(II) 

oxidation to Fe(III), which consumes protons whereas the pH decrease is due to Fe(III)  
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Figure 3.8. Variation in pH during the biotic oxidation experiment carried out at 8500 mg L-1 of 

initial Fe(II) (experiments IPB-ST1 and IPB-ST2 of Table 3.2). 

    

 

 

 
 

 

Figure 3.9. Precipitation of solid phases at the bottom flask during the experiments carried out in 

presence of bacteria (a); SEM image showing the Fe-precipitates (b) and XRD pattern (c) of the 

Fe(III) phase formed during the experiment (Jrs: jarosite). 

 

a b 

 c 
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hydrolysis and Fe(III) precipitation (Fig. 3.9a) (Nordstrom, 2003; Kupka et al., 2007). SEM 

and XRD examinations of the retrieved precipitate in this experiment showed that it was 

merely formed by jarosite (KFe3(SO4)2(OH)6) (Fig. 3.9b and c). Wang et al. (2006) argue 

that schwertmannite (Fe8O8(OH)5.5(SO4)1.25) is produced by biological oxidation of ferrous 

iron in cultures of iron-oxidizing bacteria, and owing to its instability, it can 

spontaneously transform to other phases including jarosite (KFe3(SO4)2(OH)6). This 

transformation is favored by aging, temperature and ammonium concentration in acid 

media. Although the 9K solution is supersaturated with respect to schwertmannite and 

jarosite as indicated by the PHREEQC calculations, direct precipitation of jarosite is not 

very probable since its formation at low temperature is slow (weeks to months). 

Furthermore, the precipitation of jarosite as the only Fe-phase present does not account 

for the arsenic behavior since arsenate sorption capacity of jarosite in the presence of high 

concentrations of sulfate (0.19 mol L-1 of sulfate in this experiment) is practically 

negligible. By contrast, schwertmannite transformation into jarosite would account for 

the behavior in the total arsenic concentration. Aqueous As(V) could be partially sorbed 

as schwertmannite precipitated. When schwertmannite transformed to jarosite, As(V) 

was released back to the solution as jarosite has a lower arsenate sorption capacity than 

schwertmannite in the presence of sulfate, as will be shown in the following chapter. 

In summary, the experimental results suggest that the presence of an arsenite-

oxidizing bacteria oxidizing arsenite to arsenate cannot be confirmed under the 

conditions of this study. It is shown that under these conditions (similar to those in AMD 

waters), arsenite oxidation is controlled by ferrous iron oxidation (Daus et al., 2002; 

Bednar et al., 2005; Sarmiento et al., 2007), which is bacterially catalyzed by Fe-oxidizing 

microorganisms. 
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3.2.2 Abiotic arsenic oxidation  

Arsenite oxidation was studied under abiotic conditions by means of batch experiments 

conducted at pH 2.3 in light and dark conditions, varying the concentrations of Fe(III), 

As(III), chloride and sulfate, which is the main anion in AMD waters (Table 3.3).  

3.2.2.1 Oxidation of As(III) in Fe(III) solutions  

Fig. 3.10 shows As(III) variation with time in atmospheric conditions in the presence of 

light (Fig. 3.10a-c) and in the absence of light (Fig. 3.10d).  
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Figure 3.10. Abiotic arsenite oxidation by Fe(III) in some representative experiments at pH 2.3 in 

aerated solutions and in the presence of sulfate in light experiments (a, b, c) and dark 

experiments (d) (see Table 3.3). 
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In the experiments with an initial Fe(III)/As(III) molar ratio lower than 54, a gradual 

As(III) oxidation was observed (Fig. 3.10a,b), which went up by increasing the Fe(III) 

content. The As oxidation rate is calculated using a first-order kinetic expression:  

[ ]
[ ])(

)(
)(

IIIAsk
dt

IIIAsd
r

IIIAs
=−=  (3.6)  

where rAs(III) is the oxidation rate expressed in mol L-1 s-1, k is the oxidation rate coefficient 

(s-1) and [As (III)] is the arsenite concentration (mol L-1) after time t. 

Thus, the oxidation rates in experiments B1, B5 and B9 with an initial Fe(III)/As(III) 

molar ratio of 54 went up from 3.8x10-14 to 7.6x10-12 mol L-1 s-1 by increasing the Fe(III) 

content from 1 to 100 (Table 3.3); in experiments B4 and B8 with an initial Fe(III)/As(III) 

molar ratio of 5, the oxidation rate went up from 3.0x10-13 to 6.5x10-12 mol L-1 s-1, by 

increasing [Fe(III)] from 1 to 10 (Table 3.3).  

A fast arsenite oxidation occurred at the start of the experiments with a high 

Fe(III)/As(III) molar ratio, i.e. a ratio higher than 54 (Fig. 3.10c,d). In this case, a zero-

order kinetic expression was used to calculate the initial oxidation rate from: 

[ ]
k

dt

IIIAsd
r

IIIAs
=−=

)(
)(

 (3.7)  

where k is the oxidation coefficient (mol L-1 s-1), [As (III)] is the arsenite concentration (mol 

L-1) after time t. The yielded initial oxidation rates ranged from 3.7 x 10-10 to 9.7 to 10-8 mol 

L-1 s-1 (Table 3.3). This initial rapid oxidation was followed by a gradual arsenite oxidation 

(Fig. 3.10c) that was fitted using the first-order kinetic expression given in eq. 3.6. The 

oxidation rates obtained went up by increasing the Fe(III) content. 

It appears that an initial Fe(III)/As(III) molar ratio higher than 54 yields fast arsenite 

oxidation rates under the present experimental conditions.  
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Log arsenic oxidation rates versus log Fe(III) concentration yield a linear 

dependence between the arsenite oxidation rate, RAs, and the Fe(III) concentration (Fig. 

3.11). This is expressed as RAs= k[Fe(III)]n where k is a rate coefficient and n is the reaction 

order with respect to Fe(III) equal to 1.0±0.1. This oxidation rate-Fe(III) dependence was 

included in the calculations used to fit the observed arsenite oxidation as Fe(II) oxidized 

to Fe(III) (eqs. 3.4 and 3.5) in the biotic experiments (see Fig. 3.3): 

[ ]
=

−
=

dt

IIIAsd
r

IIIAs

)(
)(

k [As(III)] [Fe(III)]
n

 (3.8)  

where k is the oxidation coefficient (mol-1 L-1 s-1), [As (III)] and [Fe(III)] are the arsenite 

and ferric iron concentrations (L-1) after time t, and n is the reaction order with respect to 

ferric iron concentrations (1.0±0.1).  
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Figure 3.11. Log arsenic oxidation rates versus log Fe(III) concentration at high initial Fe:As molar 

ratio (>54) (experiments L5, L17, B2 and B3) (a) and initial Fe:As molar ratio of 54 corresponding 

(experiments B1, B5 and B9) (b). 

 

Likewise, the arsenite oxidation rate-Fe(III) dependency was included in the 

calculations used to model the As (III) evolution along the AMD discharge discussed (the 

Tinto Santa Rosa discharge) in Chapter 6. 
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3.2.2.2 Influence of sulfate  

The arsenite oxidation rates obtained in this study confirmed the inhibitory effect of 

sulfate on arsenite oxidation (Emett and Khoe, 2001; Bednar et al. 2005; McCleskey et al. 

2004). The sulfate effect is observed after comparing our oxidation rates with those 

calculated from the data of McCleskey et al. (2004) with similar amounts of As(III) and 

Fe(III) and varying sulfate contents. The oxidation rate went up from 3.8x10-14 to 3.1x10-13 

mol L-1 s-1 and from 4.6x10-14 to 7.9x10-14, by decreasing sulfate from 485 to 0 and from 

1000 to 500 mg L-1, respectively (experiments B1 and B2 and that of McCleskey et al. 

(2004) in Table 3.3).  

3.2.2.3 Influence of light   

According to Emett and Khoe (2001) photo-oxidation processes occur when light is 

absorbed by any species and a reactive free radical is produced. These authors observed 

that uncomplexed ferric ion (Fe3+aq), which only absorbs light below 300 nm, was found to 

be ineffective in oxidizing arsenic at acidic pH and in the absence of chloride. In our 

experiments at pH 2.3, iron speciation calculations carried out with the PHREEQC code 

showed that the hydrolysis of Fe(III) produced Fe(III)OH2+. This species, in contrast to 

Fe3+aq, is an effective source of hydroxyl free radicals when arsenic oxidation occurs in a 

reaction mixture containing Fe(III) and no chloride at acid pH (Khoe et al., 1986). This 

process is described via free-radical mechanism in which the rate of the initiation reaction 

is determined by the rate of photon absorption by dissolved Fe(III)-hydroxo species as 

shown in the following reactions: 

Fe(III)(OH)
2
 + hν  � Fe(II) + ·OH (3.9)  

As(III) + ·OH � As(IV) + OH- (3.10)  
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As(IV) + O2  + H+ � As(V) + ·OH2 (3.11)  

Although the presence of oxygen does not exert an influence on the photon-initiation 

reactions, it rapidly reacts with the intermediate as expressed in equation (3.11) (Kläning 

et al., 1989).  

Table 3.3 shows the arsenite oxidation rates obtained in abiotic conditions. In some 

experiments (L10, L5, L-17, NL-1, NL-2 and NL-7), a significant amount of As(III) was 

immediately oxidized when As(III) containing solution was mixed with the Fe(III) 

solution in the presence of light (Fig. 3.10c,d). This initial oxidation could be due to the 

presence of high concentrations of Fe(III)OH2+ that were able to rapidly absorb photons, 

producing high reactive hydroxyl radicals. Thereafter, Fe(II) formed by photoreduction 

(eq. 3.7) could be slowly re-oxidized to Fe(III) by oxygen generating more Fe(III)OH2+.  

In the absence of light it was observed that after the immediate initial As(III) 

decrease at the start of the experiment in the presence of light, no further arsenite 

oxidation occurred (Fig. 3.10d). This finding confirms the results by Bednar et al. (2002) 

and McCleskey et al. (2004), who reported insignificant As(III) oxidation at acidic 

solutions in the absence of light. As(III) oxidation ceased owing to the absence of light 

that led to the non existence of hydroxyl radicals.  

In the case of sulfate, it is reasonable to assume that the main anion in AMD waters 

exerts an inhibitory effect on arsenite oxidation in the presence of light given that it forms 

Fe(III)-complexes (FeSO4+), which do not produce reactive free-radicals necessary to 

produce the required As(IV) (Emett and Khoe, 2001).  

3.2.2.4 Influence of chloride  

Although AMD waters do not usually have high chloride concentrations, the chloride 

catalytic effect could play a key role in remediating the arsenic content in AMD 

contaminated environments. Therefore, since As(III) oxidation by Fe(III) seems to be very 
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slow, the effect of chloride on arsenite oxidation in the presence of Fe(III) and sulfate was 

studied by adding 0.05 g L-1 and 8 g L-1 of chloride in the presence and absence of light 

(Fig. 3.12; Table 3.3: experiments NL2-Cl, L10-Cl, L5-Cl). The results showed that the 

addition of chloride to the Fe(III)-sulfate solutions in the presence of light led to an 

increase in the As(III) oxidation (Fig. 3.12a).  
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Figure 3.12. Oxidation of 1-1.2 mg L-1 of As(III) at pH 2.3 by Fe(III) in the presence of sulfate after 

the addition of 0.05 and 8 g L-1 of Cl. In the presence of light (a) and in dark (b). Grey circles 

indicate the As(III) concentration before adding chloride to solution. 

The calculated oxidation rates were around 10-10 mol L-1 s-1, which are one or two 

orders of magnitude higher than the rates in chloride-free solutions (10-13-10-12 mol L-1 s-1) 

and at the same Fe(III) and sulfate concentrations (e.g. compare experiments L10 with 

L10-Cl and L5 with L5-Cl of Table 3.3). Emett and Khoe (2001) attribute this catalytic 

effect on arsenite oxidation to the formation of Fe-chloride-complexes (Fe(III)Cl2+), which 

absorb photons to produce highly oxidizing dichlororadicals: 

Fe(III)(Cl)
2
 + hγ  � Fe(II) + ·Cl (3.12)  

Cl
-
 + ·Cl � ·Cl2

-
 (3.13)  

In contrast, no effect of chloride was observed without light (Fig. 3.12b) since 

photoreactions were totally inhibited. 



76                                                                                                      Chapter 3: Chemical oxidation processes 

 

3.3 Conclusions 

A deeper understanding of the Fe(II) and As(III) simultaneous oxidation processes and a 

quantification of their oxidation rates are of paramount importance in the prediction of 

iron and arsenic behavior in AMD waters.  

Batch experiments under biotic and abiotic acid waters proved to be an efficient tool 

to study arsenite oxidation in the presence of bacteria and different contents of Fe(II), 

Fe(III), As(III) and sulfate and in the presence and absence of light. 

At the low pH considered in this study, Fe(II) oxidation by oxygen is very slow (in 

the order of 10-12 mol L-1 s-1). Nonetheless, iron and arsenite oxidize simultaneously in the 

presence of AMD microorganisms. The results suggest that Fe(II) oxidation is biotically 

catalyzed and that the resulting Fe(III) catalyzes As(III) oxidation to As(V). This 

mechanism invalidates the hypothesis that As(III) oxidation is mediated by bacteria. Fe-

oxidizing microorganisms therefore play a major role in arsenite oxidation since arsenic 

speciation and sorption is controlled by iron in AMD waters.  

As(III) oxidation in the presence of Fe(III) is accelerated by increasing Fe(III) and 

chloride concentrations in the presence of light. A fast arsenite oxidation occurred at the 

start of the experiments with a high Fe(III)/As(III) molar ratio, i.e. a ratio higher than 54 

followed by a slow oxidation whereas at molar ratio lower than 54 a gradual As(III) 

oxidation was observed. In contrast, oxidation is inhibited by increasing the sulfate 

content and effectively stopped when the light is excluded. Strong complexing of Fe(III) 

by sulfate inhibits As(III) oxidation in the presence of light because absorption of photons 

by the Fe(III)-SO4 complex does not produce a reactive free-radical which readily oxidizes 

As(III). 



 

 

Chapter 4 

Sorption processes 

Most geochemical processes take place at the interface water-solid and involve the 

transfer of chemical elements between a fluid phase and a solid mineral phase. Solutes in 

natural waters are often taken up by the solids they contact without alteration of the 

solid. If the specific reaction responsible for uptake has not been identified the process is 

called sorption. Sorption of an element can occur through true adsorption (or surface 

complexation) or co-precipitation (forming a mixed precipitate or solid solution) (Parks, 

1990). 

Because of the interaction of aqueous metal ions with mineral particles in soil and 

sediment samples is immensely complex, studies of simplified model systems, such as 

that presented in this chapter, are required. Therefore, the problem is addressed in a 

series of simplified analog systems in which the number of variables and phases is 

controlled. The knowledge provided by these experiments is an approach of the 

complexity of the natural system and help us to understand the immobilization 

mechanism in the natural environment. 
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Surface and ground waters near mines of sulfide minerals are often heavily 

polluted. Waste materials containing residual sulfide minerals are piled up in tailings and 

may become oxidized giving rise to acid mine drainage (AMD) (Nordstrom and Alpers, 

1999). This AMD releases large amounts of metals which remain soluble (Appleyard and 

Blowes, 1994), causing a major environmental problem.  

The concentrations of arsenic, which is a potentially toxic trace element, in AMD 

can reach hundreds of mgL-1 (e.g. 850 mg L-1 in Richmond Mine, Iron Mountain, 

California; Nordstrom and Alpers, 1999) as a result of the oxidation of As-rich sulfides, 

such as arsenopyrite and As-rich pyrite. Although As(III) is mainly released from the 

dissolution of these minerals (Yu et al., 2007; Cama et al., 2008), the presence of As-

oxidizing bacteria and oxidant agents such as Fe(III) oxidize As(III) to As(V) rapidly 

(Wakao et al., 1988; Leblanc et al., 2002; Bruneel et al., 2003), which is sorbed more strongly 

than As(III) to Fe(III) oxides and hydroxides (Bowell, 1994). 

Arsenic concentrations in AMD polluted areas are naturally attenuated by newly 

formed precipitates, such as schwertmannite (Fe8O8(OH)5.5(SO4)1.25), K-jarosite 

(KFe3(SO4)2(OH)6) and goethite (FeOOH), which effectively sorb As(V) reducing As 

concentrations in waters (Fukushi, et al. 2003a; Gault et al., 2005; Sánchez-España et al. 

2005a,b; Acero et al., 2006; Lee and Chon, 2006; Asta et al. 2007; Asta et al. 2008a). These 

minerals therefore play an important role in the removal of trace elements from solution 

by adsorption and co-precipitation (Benjamin, 1983; Johnson, 1986; Stumm and 

Sulzberger, 1992; Bigham et al., 1994; Webster et al., 1998). 

These iron oxide precipitates formed in acid waters are initially poorly ordered 

minerals such as schwertmannite, which may spontaneously transform with time into 

goethite and jarosite. This transformation is observed under laboratory (Bigham et al. 

1996; Kawano and Tomita, 2001; Jönson et al., 2005; Acero et al., 2006) and field conditions 

(Peine et al., 2000; Gagliano et al., 2004). The instability of schwertmannite has a 

significant impact on the water chemistry because the progressive transformation of the 
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As-bearing amorphous iron oxyhydroxides into more crystallized iron oxides leads to the 

release of arsenic to the water (Courtin-Nomade et al., 2003).  

A number of studies have measured the sorption of different pollutants on natural 

and synthetic iron oxide, hydroxide and oxyhydroxysulfate minerals. Because of its 

capacity for sorbing trace metals, schwertmannite sorption has been the subject of many 

studies (Courtin-Nomade et al., 2003; Fukushi et al., 2003a; Fukushi et al., 2003b; Fukushi 

et al., 2004; Regenspurg and Peiffer, 2005; Acero et al., 2006).  

Sorption of arsenic on goethite, even at relatively low pH has also been studied; 

Lehmann et al. (2005) reported a geochemical model for As(V) sorption on goethite at pH 

3. Dixit and Hering (2003) observed that sorption of As(V) onto ferric oxides and goethite 

was more favorable than sorption of As(III) at pH below 5-6. The same trend was 

observed by Grossl and Sparks (1995), Matis et al. (1997), and Giménez et al. (2007). 

Moreover, the influence of other elements such as silicic acid or dissolved organic carbon 

(DOC) on As(V) sorption has been studied by Waltham and Eick (2002) and Gräfe and 

Sparks (2005). These authors suggested that the presence of silicic acid and organic acids 

could reduce the rate and the total quantity of arsenic adsorbed onto goethite. Works on 

arsenic sorption on jarosite are less abundant than the studies on sorption on goethite and 

schwertmannite. Tomioka (2006) observed that As(V) was sorbed on jarosite in the pH 

range 1-3, whereas As(III) remained in solution. Nonetheless, sorption capacity of jarosite 

is not reported. Gräfe et al. (2008) studied the co-sorption reaction products of arsenate 

and copper on goethite and natro-jarosite with extended X-ray absorption fine structure 

(EXAFS) spectroscopy. 

Despite the large number of studies on arsenic sorption on such phases, data on the 

highly acidic conditions of AMD are lacking. Furthermore, the relative ability of jarosite 

and goethite to retain arsenic remains unclear (Acero et al., 2006). Whereas some earlier 

studies claim that arsenic can remain immobilized in jarosite by replacing sulfur in 

sulfate tetrahedra (Savage et al. 2000, 2005; Gräfe et al., 2008), other works show that 

arsenic is retained preferentially in goethite over jarosite (Strawn et al., 2002).  



80                                                                                                                        Chapter 4: Sorption processes 

 

In order to develop effective management strategies to remediate AMD impacted 

areas, it is necessary to quantify the arsenate sorption capacity of these precipitates at low 

pH. This enables us to understand and predict the arsenic behavior in streams, rivers and 

pit lakes and to determine the potential risk of releasing the sorbed arsenic under 

reductive conditions (e.g. pit and lake bottoms). The goal of this work is therefore to 

quantify the As(V) removed by jarosite and goethite at low pH (1.5-2.5). Given that 

jarosite and goethite coexist in different proportions in AMD precipitates, it is not easy to 

study the respective sorption capacity in natural samples. Synthetic jarosite and goethite 

were used separately to quantify the respective arsenic removal capacity. The effect of 

sulfate content and ionic strength variability on arsenic sorption was studied because 

sulfate is the main anion that competes with arsenate for surface sites and because the 

ionic strength could vary seasonally. 

4.1 Materials and Methods 

4.1.1 Solid synthesis and characterization 

Sorption experiments were conducted with synthetic goethite and synthetic jarosite. 

Goethite synthesis was carried out following the Schwertmann and Cornell (1991) 

methodology. 180 mL of 5M KOH and 100 mL of 1M Fe(NO3)2 were mixed. The 

suspension was diluted to 2L with bidistilled water and aged for 60 h at 70ºC. Thereafter, 

the suspension was washed and dried at 50ºC. K-Jarosite was synthesized according to 

Baron and Palmer (1996), dissolving 5.6 g of KOH and 17.2 g of Fe2(SO4)3·5H2O in 100 mL 

of DDW at 95ºC and 1 atm. The solution was placed in a covered beaker on a hot plate 

and stirred continuously. After 4 h, the precipitate settled and the supernatant solution 

was decanted. The precipitate was then washed several times with ultrapure water (18.2 

MΩ · cm) and dried at 110ºC for 24 h. The synthesized solids were identified by means of 

X-ray diffraction (XRD) using a Bruker D5005 diffractometer with Cu Kα radiation and 

scanned from 0º to 60º 2θ with a continuous scan at a rate of 0.0014 degrees 2θ per 

second. The surface area was measured using a Micromeritics Gemini 2370 surface area 
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analyzer. The BET-determined initial surface area of goethite and jarosite was 29.4±1.9 m2 

g-1 and 2.3±0.3 m2 g-1, respectively, using 5-point N2 adsorption isotherms. 

In addition, using measured iron, potassium, sulfur and arsenic concentrations, the 

saturation indices (SI) of reacted solution were calculated employing the PHREEQC code 

(Parkhurst and Appello, 1999) and thermodynamic database WATEQ4F (Ball and 

Nordstrom, 1991).  

4.1.2 Experimental methodology 

The As(V) stock solution used in the sorption experiments were prepared from reagent 

grade Na2HAsO4·7H2O (Sigma). Initial As(V) concentrations ranged from 3x10-5 to 1x10-2 

mol dm-3. H2SO4 (95-97%) and HCl were used to acidify the experiments with and 

without sulfate, respectively. 

The influence of sulfate on As(V) sorption was studied by simultaneously adding 

As(V) and sulfate (as Na2SO4) stock solutions to sorbent suspensions prepared in the pH 

range of 2.3-2.5.  

A given amount of solid (0.05 g) was put in contact with 20 cm3 of metal solution in 

stoppered polyethylene bottles at room temperature (22±1ºC). The bottles were stirred 

continuously for 50 h. Thereafter, samples were filtered through 0.20 µm pore size filters. 

Concentrations of iron, arsenic, potassium and sulfur were determined by Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) when iron and arsenic 

concentrations exceeded the ICP-AES detection limit (1.3x10-6 and 3.5x10-6 mol dm-3 for 

arsenic and iron, respectively). Graphite Furnace Atomic Absorption Spectrometry 

(GFAAS) was used for lower concentrations. 

The pH of the solutions was measured at equilibrium (pHeq) using a Crison pH-

meter combination electrode with temperature compensation. The calibration of the pH 

was carried out with standard buffer solutions of pH 2 and pH 4. The accuracy was ±0.02 

pH units (± 4.5% in H+ activity). 
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Different series of batch experiments were conducted to quantify the arsenic 

removal by goethite and jarosite following this experimental methodology: 

i Variation of the As(V) sorption as a function of the arsenic concentration in 

solution (between 3x10-5 and 1x10-2 mol dm-3) at 0.15 mol dm-3 ionic strength and 

pH 1.5-2.5. 

ii Variation of the pH (1.5-2.5) on As(V) sorption. 

iii Variation of ionic strength. In most experiments the ionic strength was 0.15 mol 

dm-3 (NaCl), but two additional experiments were carried out at 0.02 mol dm-3 

(NaCl) (see below). 

iv Variation of the As(V) sorption as a function of sulfate concentration in solution 

(between 5x10-3 to 2.8x10-1 mol dm-3). 

The concentration attached to the solid, {As}S in mol m-2, was calculated by the 

difference between the initial concentration of arsenic added to the solution, [As]0, and 

the equilibrium concentration, [As]eq, and normalized with the surface area (SA, in m2) to 

volume (V, in dm3) according to the equation: 

{ } [ ] [ ]( )
SA

V
AsAsAs eqs

×−= 0  (4.1)  

Concentrations of potassium, sulfur and total iron were used to calculate the amount of 

solid dissolved. The results were normalized with respect to the final mass. 

4.1.3 Goethite surface complexation model  

Based on the results of this study and on previously reported data (Dzombak and Morel, 

1990), a surface complexation model with the Diffuse Double Layer (DDL) model for 

electrostatics was employed to describe the As(V) sorption edge for goethite. Constants 
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for protonation of the surface hydroxyl groups and aqueous species were taken from 

earlier studies (Table 4.1).  

Table 4.1. Aqueous protonation constants and intrinsic surface complexation constants. 

 

Reaction log K

AsO4
-3
 + H

+
  = HAsO4

-2 11.60

AsO4
-3
 + 2H

+
  = H2AsO4

- 18.35

AsO4
-3
 + 3H

+
  = H3AsO4 20.60

Reaction log K

H
+
 + Hfo_sOH = Hfo_sOH2

+ 7.47

Hfo_sOH = Hfo_sO- + H+ -9.51

Reaction log K

AsO4
-3
 + 3H

+
 + Hfo_sOH = Hfo_sH2AsO4 + H2O 26.27

AsO4
-3
 + 2H

+
 + Hfo_sOH = Hfo_sHAsO4

-
 + H2O 21.15

b
 Liger et al. (1999)
c
 This study

Arsenate protonation constants
a

Intrinsic goethite surface complexation constants
b

Arsenate adsorption constants
c

a 
These reaction constants are taken from the MINEQL

+
 database (Schecher&McAvoy, 1998) 

 

The stoichiometries of the surface complexes used to fit sorption data are listed in Table 

4.1. Similar surface complexes have been used in earlier studies (Manning and Goldberg, 

1996; Gao and Mucci, 2001; Goldberg and Johnston, 2001; Dixit and Hering, 2003). The 

PHREEQC code was used to obtain the intrinsic As(V) surface complexation constants. 

Surface site densities were set to the values obtained from the sorption isotherms. Model 

predictions with fixed site densities and complexation constants were performed using 

the PHREEQC and MINTEQ (Allison et al., 1990) data bases. The ionic strength values of 

this study were well below 0.7, which is regarded as the upper limit for the application of 

the extended Debye-Hückel and the ion-association equations that PHREEQC uses for 

the calculation of activity coefficients of aqueous solutes. 
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4.2 Results and discussion 

4.2.1 Solid phases 

Solid phases were characterized before and after reacting with the solutions at the 

different pH values. XRD patterns are shown in Figure 4.1 and demonstrate that the 

solids were pure goethite and pure jarosite, respectively. 

Concentrations of potassium, sulfur and total iron were used to calculate the 

amount of solid dissolved. In the case of goethite, the iron concentration corresponded to 

an amount of solid dissolved less than 1%. In the case of jarosite, the aqueous potassium 

concentration indicated that the amount of dissolved jarosite ranged from 20-35%.  

Given the possibility of precipitation of new phases at the experimental conditions, 

the saturation indices of the reacted solution with respect to As and Fe-bearing phases 

were calculated (Table 4.2).  

It is observed that all the reacted solutions were undersaturated with respect to all 

As-bearing phases, including scorodite (FeAsO4:2H2O). Although the solubility product 

of amorphous Fe(III)-arsenate is unknown, the solubility of the amorphous phase is 

generally greater than the crystalline phase (Stumm and Morgan, 1996). Therefore, 

precipitation of As and Fe-As bearing phases during the experiments is discarded. As 

regards to the Fe-phases, some solutions appear to be supersaturated with respect to 

hematite. However, hematite is only formed at high temperatures (150-200ºC) in the pH 

range 0-3 (Robins, 1967). It is worth mentioning that PHREEQC calculations do not 

consider kinetic aspects, and the formation of goethite in Fe(III) systems is very slow 

(weeks to months at room temperature) (Schwertmann and Cornell, 1991). Moreover, 

after reaction XRD patterns of samples only show the presence of goethite and jarosite, 

discarding the precipitation of any new solid phase. 
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pH 1.5

pH 2.4

Initial goethite

15 25 35 45 55

2θ

15 25 35 45 55

2θ

a b

15 25 35 45 55

2θ

Initial jarosite

pH 2.2

pH 1.5

15 25 35 45 55

2θ

 

 

Figure 4.1. Powder X-ray diffraction patterns of initial and residual solids after reaction: (a) at 

pH 1.5 and 2.4 and 0.15 mol dm-3 of ionic strength; (b) at pH 1.5 and 2.2, and 0.15 mol dm-3 of 

ionic strength. 
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4.2.2 Sorption Kinetic considerations 

Suspensions were stirred continuously. In the case of goethite, equilibrium was reached 

after 18 h (Fig. 4.2a). Jarosite-sorption kinetics showed an increase in As sorption even 

after 53 h, and equilibrium was not attained (Fig. 4.2b). Iron concentration in the goethite 

solutions was always lower than 3x10-4 mol dm-1, indicating that less than 1% of initial 

goethite was dissolved. Concentration of sulfur, potassium or iron increased over the 

jarosite experimental runs. This increase in metal concentration represented around 35±5 

and 22±3 % of dissolved solid at pH 1.5 and 2, respectively. Therefore, at this pH range, 

goethite hardly dissolved and sorption was the only process that occurred. By contrast, 

jarosite dissolution occurred together with arsenic sorption.  
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Figure 4.2. Kinetics of As(V) sorption on goethite (a) and jarosite (b). pHeq was 1.5 and  

[As(V)]0=1x10-3 mol dm-3 and initial solid was 0.05 g. 

 

4.2.3 As(V) uptake from solution. Effect of arsenic concentration 

As(V) removal from aqueous solution was investigated at initial As(V) concentrations of 

3x10-5 to 1x10-2 mol dm-3 at pHeq of 1.5-2.5.  
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The variation of the As(V) sorbed onto goethite with the equilibrium arsenic 

concentration in solution is shown in Figure 4.3. The experimental data are fitted with a 

non-competitive Langmuir isotherm that is expressed as: 

[ ]
[ ]eq

eq

As·K+1

As·K
 = 

L

L

max
ΓΓ  

(4.2)  

where Γ is the quantity of arsenic sorbed on the solid and Γmax is the maximum arsenic 

sorption in mol m-2, KL is the Langmuir constant in dm3 mol and [As]eq is the arsenic 

concentration in solution at equilibrium in mol dm-3. 

The maximum sorption capacity ( maxΓ ) obtained for goethite is 7.0x10 -6 mol m-2. The 

good fitting of the experimental data to the Langmuir isotherm (Fig. 4.3) indicates that 

the coverage of the sorption sites was in the form of a monolayer, and all surface sites had 

nearly the same sorption energies. The parameters obtained from the fitting are listed in 

Table 4.3.  

Table 4.3. Parameters of the Langmuir isotherms obtained for As(V) sorption onto goethite as a 

function of pH and ionic strength.  

KL Γmax

(dm
3
 mol

-1
) (mol m

-2
)

2.30±0.15 0.02 9.9·10
3

6.2·10
-6 0.991

2.45±0.20 0.15 1.4·10
4

5.7·10
-6 0.998

1.59±0.10 0.15 7.3·10
3

7.0·10
-6 0.995

Experimental conditions Results

pHeq

Ionic Strength        

(mol dm
-3
)

R
2

 

Earlier spectroscopic studies (e.g. Waychunas et al., 1993; Grossl and Sparks, 1995; 

Fendorf et al., 1997) have shown that arsenate is sorbed onto iron hydroxides, such as 

goethite, forming inner sphere surface complexes by ligand exchange with hydroxyl 

groups at the mineral surface. Waychunas et al. (1993) and Sherman and Randall (2003) 

reported the formation of bidentate complexes, resulting from corner sharing between 

AsO4 tetrahedra and edge-sharing pairs of FeO6 octahedra. 
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The sorption capacity of jarosite was investigated at the same initial As(V) 

concentrations and experimental conditions as in goethite experiments (Fig. 4.4). 

It is not easy to interpret arsenic sorption on jarosite given jarosite dissolution at 

this low pH range. The sorption data obtained could not be fitted with a Langmuir or a 

Freundlich isotherm. Nonetheless, useful quantification was possible. Jarosite sorption 

kinetics showed that sorption occurred, and that the amount of arsenic sorbed was the  
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Figure 4.3. As(V) sorption isotherms for goethite. 0.05 g of solid at 0.15 mol dm-3 ionic strength and 

pHeq 1.6 (a) and 2.5 (b). Dotted lines correspond to the fitting data by using a Langmuir isotherm 

(see text). 

 

maximum after 53 h in all experiments. Thus, the highest amount of arsenic removed 

calculated by eq. 4.1, was around 1.2±0.2x10-4 mol m-2 according to the maximum sorption 

capacity values of jarosite at the end of the experiments. Hence, jarosite appears to be 

significantly more effective in sequestering As(V) than goethite (compare Figs. 4.3 and 

4.4). This result is in good agreement with Gräfe et al. (2008), who observed that the As(V) 

sorption mechanism on jarosite was substantially different from that on goethite. These 

authors reported significantly larger surface coverage of As(V) on jarosite with respect to 

As(V) on goethite. They suggested that As(V) replaced structural sulfate tetrahedra with 

the result that jarosite was more effective in removing As(V) than goethite owing to the 

presence of structural sulfate groups.  
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The As(V) removal capacities obtained in this study for goethite and jarosite were 

compared with earlier results obtained with natural and synthetic phases (Table 4.4). 

Comparison was made by normalizing the results with respect to surface area. Our 

results indicate that the maximum capacity of goethite is between 6 and 7x10-6 mol m-2 at 

pH 1.5-2.5. These values are very similar to the result reported by Lehmann et al. (2005) at 

pH 3 for natural goethite. At pH 3-7, sorption capacities ranged approximately from 3x10-

6 mol m-2 to 4.6x10-6 mol m-2 on both natural and synthetic goethite according to Matis et 

al. (1997), Dixit and Hering (2003) and Giménez et al. (2007). 
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Figure 4.4. As(V) removed by jarosite at pHeq 1.5 (a) and 2.5 (b) and 0.15 mol dm-3 ionic strength. 

Initial solid was 0.05 g. 

4.2.4 Effect of pH on As(V) removal 

Sorption of As(V) onto iron (oxy)hydroxides is expected to depend on pH because both 

aqueous arsenate species and the iron (oxy)hydroxide surface charge are pH-dependent. 

Under acidic conditions, sorbed protons on the functional groups of the surface cause an 

overall positive surface charge with the result that anions can be sorbed. The aqueous 

arsenate species present at the pH range studied are H3AsO4 and H2AsO4-. Although 

[H3AsO4] predominates over [H2AsO4-] at pH < 2.3, [H2AsO4-] can be preferentially sorbed 

at this low pH range. Table 4.3 shows that arsenate sorption on goethite decreases slightly  
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with increasing pH. A similar trend has been observed in earlier studies at pH higher 

than 4.5 (Dixit and Hering, 2003). According to Hsia et al. (1994) this behavior is 

reasonable since surface protonation increases the number of positively charged sites as 

the pH of the system is lowered. This enhances the attraction force between arsenic 

anions and the iron oxide surface, thereby increasing the amount of arsenate sorbed on 

the solid surface.  

Jarosite showed no significant differences in the As(V) removal capacity in the short 

range of pH studied. The sorption mechanism via exchange sulfate-arsenate, suggested 

by Gräfe et al. (2008), could account for the negligible pH effect on the jarosite As(V) 

removal capacity. 

4.2.5 Effect of ionic strength on As(V) removal  

The effect of ionic strength on the As(V) sorption was studied by means of experiments 

carried out at 0.02 mol dm-3 and 0.15 mol dm-3. The results plotted in Fig. 4.5 show that 

As(V) sorption is independent of ionic strength. The results suggest that As(V) 

adsorption on goethite could proceed via the formation of inner-sphere surface as 

indicated previously in earlier studies (e.g. Waychunas et al., 1993; Grossl and Sparks, 

1995; Fendorf et al., 1997). 

4.2.6. Goethite Surface Complexation Model  

A surface complexation model based on the diffused double layer (DDL) was applied to 

elucidate goethite sorption capacity with pH (1.5 <pH <2.5), using the PHREEQC code. 

Site density was calculated from the maximum sorption density for As(V) ( maxΓ =7x10-6 

mol m-2) obtained in this study, yielding 4.19 sites/nm2, which lies in the range of goethite 

sorption capacity found in the literature (Lumsdon and Evans, 1994). Sorption data from 

Matis et al. (1997), Dixit and Hering (2003) and Lehmann et al. (2005) were used. The 

arsenate protonation constants and intrinsic surface constants used in the model are 

given in Table 4.1. Fig. 4.6 shows the good agreement between the model (dotted line) 
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and the experimental data. As reported in earlier studies (Matis et al. 1997; Dixit and 

Hering, 2003; Giménez et al., 2007), the main trend observed is the decrease in goethite 

sorption as pH increases.  
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Figure 4.5. Variation of the As(V) sorption onto (a) goethite and (b) jarosite with ionic strength (0.15

and 0.02 mol dm-3 NaCl) at pHeq 2 and different arsenic (V) concentrations in solution. 

 

4.2.7 Effect of sulfate on As(V) removal 

AMD waters are characterized by exceptionally high sulfate concentrations in waters. 

These values usually exceed 0.01 mol dm-3 (Olías et al., 2004; Dousová et al., 2005; Gault et 

al., 2005; Acero et al., 2006; Lee and Chon, 2006; Nieto et al., 2007; Asta et al., 2008a), and 

are possibly higher than 0.2 mol dm-3 in tailing pore waters (Al et al., 2000; Moncur et al., 

2005; Acero et al., 2007d). Competitive effects of co-occurring solutes such as sulfate have 

been demonstrated in earlier works (Wilkie and Hering, 1996).  

Table 4.5 shows that the quantity of arsenate sorbed onto both solids decreased as 

sulfate concentration increased. This decrease is marked in the case of jarosite even at low 

sulfate concentrations (e.g. percentage sorbed is around 1-4% in the presence of sulfate 

and 38% in the sulfate free solution; Table 4.4). The inhibition of arsenate sorption in 

goethite was much lower than in jarosite in sulfate rich solutions (Table 4.5). The effect of 

sulfate was significant when sulfate concentrations exceeded 0.28 mol dm-3 at the pH  
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Figure 4.6. Comparison of As(V) sorption edge based on experimental data and DDL model (dotted 

line) based on the parameters listed in Table 4.1. pH values correspond to the final pH (pHeq) except 

that of Lehmann et al.(2005), which corresponds to the initial pH value. 

 

range studied. A similar decrease in sorption of As(V) in the presence of sulfate was 

obtained by Wilkie and Hering (1996), who studied the competitive effects of sulfate and 

arsenic sorption on hydrous ferric oxide (HFO).  

Our results are consistent with the different sorption mechanisms reported in earlier 

studies that indicate that sorption capacity of goethite is slightly affected by sulfate, 

whereas jarosite, which exchanges sulfate groups for arsenate groups, decreases its 

exchange capacity as sulfate increases in solution. 
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Table 4.5. Comparison of the % As(V) sorbed in the presence and absence of sulfate at pH 2 and 

[As(V)]0=1x10-3  mol dm-3. 

 

[SO4
2-
]

(mol dm
-3
)

- 38

0.005 4

0.020 1

0.280 0

- 32

0.005 31

0.015 28

0.020 25

0.280 0

% As sorbed

Jarosite

Goethite

 

4.3 Conclusions 

The results of this study show that goethite and jarosite are effective As(V) sorbents in 

highly acidic pH. In the absence of sulfate, the As(V) maximum sorption capacities of 

goethite and jarosite were 15 mg g-1 and 21 mg g-1, respectively, under the similar 

experimental conditions of this study. These values are considerably lower than those 

reported by Fukushi et al. (2002, 2003b, 2004) for As(V) sorption capacity of 

schwertmannite (80 mg g-1 for synthetic and 60 mg g-1 for natural schwertmannite in 

AMD). This suggests a net release of As(V) to the waters during schwertmannite 

transformation to jarosite or goethite. Moreover, if these solids were dragged to reductive 

environments (e.g. pit bottoms), the potential risk of arsenic release would be higher in 

the case of schwertmannite. In the light of our results, ionic strength has no substantial 

effect on the sorption of arsenic on jarosite and goethite. However, the sulfate content in 

the AMD impacted areas has a greater effect on the arsenate sorption capacity of jarosite 

than on that of goethite. In the absence of competitive effects, As(V) sorption on jarosite is 

higher than that on goethite under the studied conditions. 



 



 

 

Part III 

Arsenic mobilization in the 

context of the Iberian Pyritic Belt 

 

 

 



 

 



 

 

Chapter 5 

Arsenic speciation in different Fe(III) 

minerals: an AMD field case study 

In mine wastes (e.g. mine tailings and mine dumps), acid mine drainage (AMD) results 

from the sulfide oxidative dissolution that leads to generation of free acidity and soluble 

metals and metalloids, causing a major environmental problem (Bowell and Bruce, 1995; 

Younger, 1997; Olías et al., 2004). Arsenic, a common constituent of mine waters, can 

reach very high concentrations in AMD (hundreds of mg L-1), and it can be discharged to 

fluvial environments, threatening indigenous microorganisms, plants and animals (e.g. 

Cullen and Reimer, 1989; Foster et al., 1998; Foster and Ashley, 2002).  

Most geochemical processes involve the transfer of chemical elements between a 

fluid phase and a solid mineral phase and occur at solid-water interface (Stumm, 1987; 

Lasaga, 1990). The dynamics controlling all such processes are governed by the detailed 

structure and chemical bonding of the mineral surface in contact with the fluid. Among 

various physical and chemical processes taking place in the systems, sorption-desorption 

reactions are among the most important. Sorption reactions have been recognized as a 
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mechanism for the control of metal(loid) concentrations. Soils and sediments, at the solid-

water interface represent the major sinks for metal(loid)s released to the environment.  

As mentioned in chapter 4, arsenic mobilization in soils and acidic waters is 

controlled by sorption on newly formed precipitates (schwertmannite, jarosite and 

goethite), causing natural arsenic attenuation. These new phases effectively sorb As(V) 

and decrease arsenic concentrations in waters (Fukushi, et al. 2003a; Gault et al., 2005; 

Sánchez-España et al. 2005; Acero et al., 2006; Lee and Chon, 2006), playing a key role in 

the removal of arsenic and other trace elements from solution by adsorption and co-

precipitation (Bigham et al., 1994; Benjamin, 1983; Johnson, 1986; Stumm and Sulzberger, 

1992; Webster et al., 1998). Since the sorption capacity of these solids is very different (see 

chapter 4), the study of the mineral phases implicated in the effective arsenic mitigation 

in natural waters, as well as their temporal and spatial distribution, is of major 

importance to understand the arsenic evolution in waters. 

To study the speciation of trace elements in solids, in other words, the compounds 

containing a trace element in a sample, a relatively simple and well-adopted procedure is 

the sequential extraction method.  

Ideally, in a sequential extraction method each reagent should target a specific solid 

phase associated with the trace element of interest. Since the stepwise fractionation 

cannot be quantitatively delineated, the extracted pools are operationally defined. 

However, the main limitations of sequential extraction techniques are the lack of 

selectivity of the reagents and the possible metal readsorption and redistribution during 

the treatments (Bermond and Yousfi, 1997; Gómez-Ariza et al., 2000). Moreover, the metal 

partitioning obtained by such techniques is operationally defined by the methods of 

extraction used (Abollino et al., 2005). Nevertheless, such procedures have found 

widespread use in environmental sciences: as long as the results are interpreted with full 

awareness of their limitations, they provide very useful information on the behavior of 

metals in solid matrices, and help in the assessment of possible contamination risks. In 

line with this situation, the complexity of the arsenic mineralogy and the widespread 
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occurrence of As-bearing iron oxyhydroxides require that further detailed speciation and 

characterization studies be undertaken at the molecular scale to better determine the 

form, nature, and distribution of As in sediments (Paktunc et al., 2003). X-ray absorption 

spectroscopy (XAS) has been used succesfully by a number of researchers to investigate 

solid phase speciation of As in the environment (Foster et al., 1998; Savage et al., 2000; 

Strawn et al., 2002; Paktunc et al., 2003; Gault et al., 2003, 2005; Impellitteri, 2005; Arai et 

al., 2006; Charnock et al., 2007; Slowey et al., 2007; Cancès et al., 2008; Román-Ross et al., 

2009). These studies made it clear that an understanding of the geochemical processes 

controlling arsenic mobility cannot be achieved unless the mineralogical/chemical 

composition of the arsenic sources at molecular scale is known. The speciation of arsenic 

in these precipitates is critical for the determination of its environmental fate and for the 

development of effective management strategy for AMD. 

To study the natural arsenic mitigation processes in a natural system, the waters 

and sediments of the acid discharge at the abandoned Tinto Santa Rosa mine were 

examined (Fig. 5.1). This acid stream is located in the Iberian Pyritic Belt (IPB), one of the 

most important metallogenetic provinces of volcanic-hosted massive sulfide deposits in 

the world (e.g. Leistel et al., 1998). Mining activities in this area have generated enormous 

amounts of mining waste over many centuries, which continue to generate acidity and 

metal pollution affecting streams and rivers in the Tinto and Odiel drainage basins (Olías 

et al., 2006; Nieto et al., 2007; Sarmiento et al., 2009). Pyrite is the most abundant mineral in 

the massive sulfide deposits and in the mining waste. In addition to pyrite, other minor 

metallic sulfides such as chalcopyrite, galena, sphalerite and arsenopyrite dissolve and 

contribute to the high concentrations of metals and arsenic to surface and groundwaters.  

The acidic discharge of the abandoned Tinto Santa Rosa mine transports high 

concentrations of acidity, sulfate and metal(loid)s (e.g., Fe, As, Co, Ni, Cu, Pb, and Mn). 

This acid stream presents similar features to the acidic solutions that emerge from mines, 

waste rock piles and/or tailings ponds at other locations of the Iberian Pyrite Belt (IPB)  
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Figure 5.1. Map of Rio Odiel watershed with some of the most important mines. Site of field study 
(abandoned Tinto Santa Rosa mine). Modified after Sarmiento et al., 2006, with permission from 
the author. 
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 (see for example Olías et al., 2004; Sánchez-España et al., 2005a,b, 2007; Sánchez-Rodas et 

al., 2005; Sarmiento et al., 2005, 2007; Acero et al., 2006; Nieto et al., 2007).  

Stream beds in acid mine drainage are often covered with highly contaminated 

sediments. Bulk arsenic concentrations in the Tinto Santa Rosa stream ranged from 0.75 

to 40 mg g-1. The environmental impact assessment of these precipitates and their 

attenuation capacity require the identification and quantification of the arsenic in the 

sediments and the link between the evolution of the relative proportions of these species 

with the physico-chemical and mineralogical characteristics of the sediments. 

With the aim of gathering the necessary information on the evolution of the 

chemical forms of arsenic and its association with the sediments, a combination of 

methods were used: 1) X-ray diffraction (XRD) was carried out to identify the potential 

As-bearing phases in the sediments; 2) total acid digestion and X-Ray Fluorescence were 

used to quantify the solid phase element concentrations; 3) the mineralogical and 

chemical results were confirmed by synchrotron-based X-ray spectroscopy (X-Absorption 

Spectroscopy, XAS). X-ray Absorption Near Edge Structure (XANES) spectra of the 

stream bed sediment samples indicated that As occurs mainly as As(V) and yield direct 

evidence of changes in As speciation with depth. Taken together, these data allow us to 

fully understand how arsenic sequestration proceeds and to identify which phases are the 

main arsenic scavengers in the acid stream, and how water-sediment interaction 

contributes to the chemical evolution of the stream water, with particular emphasis on As 

geochemistry. 

5.1 Materials and Methods 

5.1.1 Field site and sampling description 

All the water and sediment samples described in this study were collected in July and 

November of 2006, March of 2007 and February of 2008 from the acid discharge of the 

abandoned Tinto Santa Rosa mine. This shallow stream (approximately 100-150 cm wide 
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by 20-45 cm) was studied from the adit mouth to approximately 300 m downstream 

where it flows into the Villar River (Fig. 5.2). The stream flows down a narrow channel 

(1.5-2 m) over terraces of ochreous sediment, forming different terrace levels along the 

channel. The stream bed is covered with several centimetres (up to 10 cm) of yellowish 

and reddish loose and crusty precipitates, creating different terrace levels along the 

channel (Fig. 5.3). In order to study the water geochemistry as well as the mineralogy and 

chemistry of the solids of the Tinto Santa Rosa stream samples were collected in different 

campaigns.  

At each sampling point, pH, temperature, Eh and conductivity were measured in 

situ and three water samples were taken in acid-pre-washed polyethylene bottles, after 

rinsing thoroughly with filtered local water. Two of the samples were filtered through a 

0.1-μm pore membrane filter. One sample (15 mL) was acidified with 1 mL of 

concentrated HNO3 solution for major and trace element analysis, while the other sample 

was acidified with HCl, adjusting its pH to less than 1, for dissolved Fe(II)/Fe(III) 

determination. The third water sample, for arsenic speciation determination, was taken 

following the preservation method of Oliveira et al. (2006). This sample was filtered 

through a 0.2-μm pore membrane filter, acidified with HCl and was eluted at a flow rate 

of ca. 2mL min−1 through 10 g of cationic exchange resin placed in a glass column (25 cm 

height, 1.5 cm i.d.). The first 10 mL of eluted sample were discarded and the following 20 

mL were collected for analysis. All the water samples were preserved in the dark at 4ºC 

until analyzed. Fe and As speciation was analyzed in less than 72 h and 48 h, 

respectively, since the samples were taken. 

Solid samples of the terraces and loose precipitates were also taken from the surface 

of the stream bed and at different depths and at the sampling points (Fig. 5.2). Samples 

were dried at room temperature prior to mineralogical and chemical determinations. 

The water flow varies seasonally and ranges from an average of 1.4 L s−1 (after a very 

rainy period of time, November 2006) to 0.70 L s−1 (March, 2007). Reported values for the 

water flow are in the same range from 0.5 to 1.8 L s−1 (Sánchez-España et al., 2005). The 
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residence time of water from the adit mouth to downstream where it flows into the Villar 

River varies from 2 to 3.5 h depending on the flow.  

 

 
 

Figure 5.2. Schematic representation of the water sampling points in the acid discharge of the Tinto 
Santa Rosa mine (see Table 5.1). 

 

5.1.2 Analytical methods  

Water pH was measured in the field using a Crison® glass electrode with temperature 

compensation after calibration with standard buffer solutions of pH 2 and 7. Redox 

potential was measured using a Pt combination electrode (ThermoOrion SureFlow®) and 

checked before using by solutions of 220 and 468 mV. The measurements were corrected 

to the Standard Hydrogen Electrode (SHE) to calculate pe. Electrical conductivity was 

measured with a Pt cell calibrated with KCl 0.1 and 0.01 m solutions. The measurement 

errors for pH, Eh and conductivity were ≤ 0.05 pH units, ≤ 5 mV and ±1%, respectively. 

Concentrations of major elements in solution were measured by Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) using a Perkin-Elmer®  
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Figure 5.3. Different locations of Tinto Santa Rosa sampling site. (a) View of the area where the two 
AMD sources are mixing (TS1 and TS2); (b) terraces and fresh sediment of the bedstream at 
sampling point TS4; (c) close up view of a terrace (TS3); (d) overview of the stream (TS8) where it 
flows into the Villar River, wich contributes to Odiel River. 
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Optima 3200 RL. Detection limits were 0.1 mg L-1 for Al and S; 0.05 mg L-1 for Ca and Mg; 

0.1 mg L-1 for Si; 0.5 mg L-1 for K, 0.025 mg L-1 for Fe, Zn, Cu and Mn and 2 mg L-1 for Na. 

The error was estimated to be below 3% (more than ten times the detection limit). 

Concentrations of trace metals (Ni, Cd, Co, As, Pb, Sb, Ti and V) were analyzed by 

Inductively coupled plasma mass spectroscopy (ICP-MS) using a Perkin-Elmer® Sciex 

Elan 6000 instrument. Detection limits were on the order of 1 μg L−1 and the error was 

estimated to be below 5%. In the analyses of ICP-AES and ICP-MS, calibration with sets 

of standards was performed and the regression coefficients exceeded 0.999. To check the 

accuracy of the results, three laboratory standards were analyzed every 15 samples. 

Blanks and duplicates were also analyzed with each batch of samples. In ICP-AES and 

ICP-MS analyses, dilutions from 1:10 to 1:20 were performed to ensure that the 

concentration of the samples was within the concentration range of the standards.  

Ferrous and total dissolved iron concentrations were determined by colorimetry 

using the ferrozine method (Stookey, 1970; To et al., 1999) in a UV–VIS HP 

Spectrophotometer within three days of sampling. Fe(III) was taken as the difference 

between Fe(tot) and Fe(II). The quality of the results was assured by measuring several 

standards, blanks and duplicates. Fe(tot) concentrations matched ICP-AES results within 

10%.  

Arsenic species (As(III) and As(V)) from water samples collected in November of 

2006 and March 2007 were analyzed by Liquid Chromatography coupled to Hydride 

Generation Atomic Fluorescence Spectroscopy (LC-HG-AFS) (Vilanó et al., 2000). 

Analytical determinations were carried out with a Perkin Elmer 250 LC binary pump (CT, 

USA), equipped with a Rheodyne 7125 injector (Cotati, CA, USA) with a 100 µL loop; 

anion-exchange Hamilton PRP-X100 column (250 mm × 4.1 mm, 10 µm i.d.) (Reno, NV, 

USA) with spherical poly (styrene-divinylbenzene) trimethylammonium exchangers with 

10 µm particle size (250mm x 4.1mm i.d.). This instrument was coupled to a P.S. 

Analytical model Excalibur atomic fluorescence spectrometer equipped with a hollow 

cathode lamp (current intensities: primary=27.5 mA, boost=35.0 mA) and a Perma Pure 
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drying membrane (Perma Pure Products, Farmingdale, NJ, USA) which was used for 

drying the hydride generated. Measuring wavelength was 193.7 nm. Chromatographic 

separation of As(III) and As(V) was performed using a phosphate buffer (20mM 

NH4H2PO4) as the mobile phase (pH 6), filtered through a 0.22 μm nylon membrane at a 

flow rate of 1.5 mL min-1. Data acquisition was performed with a microcomputer and 

homemade software (Pendragon 1.0). Peak heights and peak areas were measured using 

custom-developed software running with Matlab language. The method detection limits 

are 0.2 μg L-1 for As(III) and As(V).  

In the case of the determinations of the arsenic species (As(III) and As(V)) from 

water samples collected in February of 2008, analyses were performed by High 

Performance Liquid Chromatography- Inductively Coupled Plasma Mass Spectroscopy 

(HPLC-ICP-MS). The microHPLC system consisted of an Agilent 1100 Series (Agilent, 

Waldbronn, Germany) binary pump and auto injector with a programmable sample loop 

(20 µL maximum). The separations were performed on a PRP-X100 (Hamilton, Reno, NV, 

USA) anion exchange column (100 mm × 1 mm, 7 µm i.d.) and a phosphate buffer (H3PO4  

12 mM,) as a mobile phase (pH 3) at a flow rate of 80 µL min-1. The microbore column 

was connected directly to a Micromist nebulizer and a high-efficiency nebulizer (HEN) 

using its own capillary (480 mm × 0.25 mm and 480 mm × 0.10 mm, respectively). An HP 

4500 ICP-MS instrument (Yokogawa Analytical Systems, Tokyo, Japan) was used for the 

determinations. For microHPLC-ICP-MS data acquisition, the “time resolved analysis” 

mode was used with 1 s of integration time per mass. Measurement arsenic mass selected 

was  m/z 75. Operational conditions were flow rate of 80 µL min -1 and injected volume of 

5 µL. For tuning of ICP-MS, a solution containing 10 µg L−1 of arsenic made up in double 

deionised water filtered through 0.22 µm was monitored at m/z 75; the ion intensity was 

optimized. Then, resolution and mass axis were also optimized. Detection limit for the 

arsenic species was < 0.05 µg L-1. The quality of the LC-HG-AFS and HPLC-ICP-MS 

results was assured by measuring several standards, blanks and duplicates. As(tot) 

concentrations matched ICP-AES results within 15%.  
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5.1.3 Sediment characterization  

Solid samples were air-dried at room temperature after that they were preserved at 4ºC. 

The major and trace element concentrations of the precipitates were determined by X-Ray 

Fluorescence using a wavelength dispersion X-ray fluorescence spectrometer (Bruker S4 

Explorer) and following the total acid digestion according to the method developed by 

Querol et al. (1996). Concentrations of the resultant solutions of digestions were 

determined by ICP-AES for major elements and by ICP-MS for trace elements.  

The mineralogical composition of the precipitates was determined by X-ray 

diffractometry (XRD) using a Bruker D5005 diffractometer with Cu Kα radiation. 

Powered samples were scanned from 0 to 60 degrees 2θ using a scan speed of 0.0014 

degrees 2θ per second. Samples of precipitates were observed under field-emission 

scanning electron microscopy (SEM) using a Hitachi H-4100FE with intensity current of 

10 kV.  

The specific surface area of the solid samples was determined by the BET-method 

(Brunauer et al., 1938) with a Micromeritics ASAP 2000 using 5 point N2-adsorption 

isotherms.  

X-ray absorption spectra from the precipitates (loose precipitates and terraces) were 

collected at the As K-edge at the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France) on beamline BM8 (Gilda). Samples were prepared as pellets and they 

were measured in fluorescence mode with a Ge 13-element detector. Two or three scans 

were collected for each sample, depending on arsenic concentration. Synthetic standards 

of arsenic adsorbed onto schwertmannite, goethite and jarosite were prepared in the 

laboratory to be used as models compounds. Schwertmannite, goethite and jarosite were 

synthesized following the laboratory procedures described in Schwertmann and Cornell 

(1996). These protocols correspond to pure phases. Schwertmannite was precipitated by 

adding ferric chloride to sodium sulfate solutions, heating to 60 °C for 12 min, cooling at 

room temperature and dialysing the suspension for a period of 30 days. Goethite was 
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prepared by mixing potassium hydroxide and ferric nitrate solutions and aging for 60 h 

at 70 ºC. Jarosite was synthesized by dissolving potassium hydroxide and ferric sulfate in 

water in a covered beaker on a hot plate at 95 ºC and stirring continuously for 4 h. After 

the mineral synthesis, pure synthetic specimens were placed in contact with a solution 

100 mM of As as disodium arsenate heptahydrate (adjusted to pH 2.0 or 4.0 by adding 

HCl) in a solid/liquid ratio of 1:20 and stirred during 4 h. The As concentration added to 

each synthesis corresponds to a Fe:As molar ratio of 20 that it is the ratio reported for acid 

mine drainage from Iberian Pyrite Belt (Sánchez-España et al., 2005b).  

Data reduction of experimental XAFS spectra, obtained at the ESRF, was carried out 

using the WinXAS 95 1.1 package software (Ressler, 1998). The energy threshold of the 

reference metal foil (Au), E0,ref, was determined from the first inflection point in the 

spectrum (Wong et al., 1984), and raw data were linearly calibrated against the difference 

between the obtained E0,ref and the tabulated absorption edge energy for As K-edge. Pre-

edge background substraction and XANES normalization were carried out by fitting a 

linear polynomial to the pre-edge and a square polynomial to the post-edge region of the 

absorption spectrum. 

Least-squares fitting (LSF) procedure was applied to determine the amount of each 

reference in the field samples. This procedure consists of using a set of arsenic model 

reference compounds and determines the amount of each reference in the field samples. 

The fitting procedure yielded the relative proportions. Therefore, a sum of the reference 

spectra was refined to each field sample XANES spectra. The employed nonlinear LSF 

procedure is based on the Levenberg-Marquardt algorithm (Malinowski, 1991) to 

minimize the difference between the experimental and the simulated XANES spectrum.   

The quality of the fits was quantified by the normalized sum-squares residuals in 

the 11.85-11.92 keV range according to the following equation (Isaure et al., 2006):  
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Additionally, arsenic and iron K-edge X-ray absorption spectra of four samples were 

obtained at the CCLRC Daresbury Synchrotron Radiation. Arsenic K-edge X-ray 

absorption spectra were obtained on station 16.5 operating at 2 GeV with a beam current 

of between 130 and 240 mA. Station 16.5 is equipped with a Si(220) double crystal 

monochromator, with harmonic contamination of the beam minimized by a vertically 

focusing mirror in addition to detuning to 70%. The monochromator was calibrated using 

the L(III) edge of a gold foil. The freeze dried acid mine drainage (AMD) sediments and 

As(III)- or As(V)-bearing iron (oxyhydr)oxide wet pastes were mounted in an aluminium 

sample holder with Sellotape windows. Data were collected at liquid nitrogen temperature 

with the station operating in fluorescence mode using an Ortec 30 element solid state Ge 

detector. Multiple scans (3 – 4) were collected for each sample and summed to improve 

signal to noise. Standards of sodium arsenite, disodium arsenate heptahydrate, orpiment 

and arsenopyrite were diluted with boron nitride and collected at room temperature in 

transmission mode. 

Iron K-edge X-ray absorption spectra were obtained on station 7.1. A sagitally bent 

focusing Si(111) double crystal monochromator was utilized, with second order harmonic 

contamination of the beam minimized by a vertically collimating plane mirror as well as to 

detuning to 70%. Before collecting data, the monochromator was calibrated using a 5 µm 

iron foil. The AMD samples were diluted with boron nitride as appropriate and 

presented to the beam in an aluminium sample holder with Sellotape windows. Sample 

data were collected in a liquid nitrogen cooled cryostat in either transmission or 

fluorescence mode; a 13 element solid state Ge detector was used to collect data in the 

latter mode. Two scans were collected and summed for each sample. Hematite, 2-line 

ferrihydrite, schwertmannite and jarosite were collected at liquid nitrogen temperature in 

transmission mode after appropriate dilute with boron nitride. The XAS analysis of the 
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goethite standard was conducted at cryogenic temperature (80 K) on station 8.1 of the 

Daresbury SRS. A Si(220) monochromator was used, detuned to 50% of the maximum 

intensity to minimise harmonic contamination. The monochromator energy was 

calibrated using a 5 µm iron foil. 

The proportion of different arsenic or iron phases of the samples studied in stations 

16.5 and 7.1 at the UK CCLRC Daresbury Synchrotron Radiation Source (SRS), was 

established by fitting the summed sample X-ray absorption near edge structure (XANES) 

or extended X-ray absorption fine structure (EXAFS) spectra, respectively, to a 

combination of end-member standard spectra using the Solver package included in 

Microsoft Excel, with the relative contribution of each standard determined by 

minimizing a least squares residual. In addition, the arsenic data were background 

subtracted and analysed in EXCURV98 using full curved wave theory (Gurman et al., 

1984; Binsted, 1998), with phase shifts calculated ab initio using Hedin-Lundqvist 

potentials and von Barth ground states (Hedin and Lundqvist, 1969). The experimental 

data were fitted by defining a theoretical model and comparing the calculated EXAFS 

spectrum with the experimental data. Shells of backscatterers were added around the 

central absorber atom and the absorber-scatterer distance (r), Fermi energy and Debye-

Waller factor (2σ2) were refined until a least squares residual was minimised. For each 

shell of scatterers, the number of atoms in the shell was chosen as the integer or half 

integer to give the best fit, but was not further refined. Additional shells of scatterers 

were only considered justified if they improved the final fit of the data significantly. 

5.1.4 Geochemical modeling 

Model simulations carried out in this chapter include speciation-solubility calculations, 

which were performed with the PHREEQC code (Parkhurst and Appelo, 1999) using the 

WATEQ4F thermodynamic database (Ball and Nordstrom, 1991)  that was enlarged with 

data from Bigham et al. (1996) and Yu et al. (1999) to account for schwertmannite 

solubility. Additionally, WATEQ4F database was used to calculate solution charge 
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balance used as Quality Assurance and Quality Control (QA/QC) measure for solution 

compositions.  

5.2 Results and discussion 

5.2.1 AMD water chemistry 

AMD water discharged from the abandoned Tinto Santa Rosa mine has a pH variability 

from 2.93 to 3.49 and high concentrations of Fe and SO4 with a noticeable content of trace 

elements (TS1 in Table 5.1). This water is mixed with groundwater approximately seven 

meters away from the first source (Fig. 5.2a). The chemical composition of this second 

source shows some differences with respect to the acid mine discharge (TS2 in data of 

November 2006, March 2007 and February 2008). It contains the highest concentrations of 

arsenic and lead. As(III) comprised a much larger proportion of the dissolved arsenic in 

the TS2 waters (35 – 49%) compared to that in the adit-mouth waters (TS1 < 31%). 

Element concentrations show different patterns from the adit mouth downstream 

(Table 5.1). In all the field samplings a systematic decrease in ferrous and total dissolved 

iron concentration accompanied by a decrease in pH was observed (Fig. 5.4). This fact 

indicates that Fe(II) was oxidized to Fe(III) which, in turn, was removed from the solution 

by precipitation of hydroxides and hydroxysulfates of iron such as schwertmannite, 

goethite and jarosite. The overall precipitation is evidenced along the stream in the form 

of loose and crusty precipitates that cover the bed of the stream (Fig. 5.3).  

The total dissolved arsenic concentration decreases downstream from 1867 to 127 

μg L-1 in July and from 4280 to 1260 μg L-1 in November. Although the dominant As 

species is generally As(V), As(III) is supplied by a subterranean source. Downstream, a 

general increase in As(V)/As(III) ratio is observed due to arsenite oxidation in the stream 

water (see Table 5.1 and Fig. 5.5)  

There are some elements that usually present a constant concentration (conservative 

elements) due to their low reactivity during transport in aquatic systems at the range of  
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Figure 5.4. Evolution of (a) aqueous concentration of total dissolved iron, Fe(II)and Fe(III) and 
(b) pH versus distance in the Tinto Santa Rosa stream. Each point corresponds to the different 
sampling points (TSi) on February 2008. 
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Figure 5.5. Evolution of aqueous concentration of total dissolved arsenic, As (III) and As(V) 
versus distance in the Tinto Santa Rosa stream. Each point corresponds to the different 
sampling points (TSi) on February 2008. 

 

pH studied (such as Na, Mg, Zn, Mn, Al, Cu, Co, Ni and sulfate). Nonetheless, a little 

decrease in their concentration was observed in the July and November sampling 

campaigns. This effect could be caused by diffuse water inflows or streams flowing into 
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the studied stream, resulting in a dilution of the dissolved metal load; only in November 

additional water inputs were detected in the field. To ensure that no diffuse inflows were 

affecting the aquatic system an examination of the concentration of the conservative 

elements along the stream was carried out. The plots of these elements versus distance to 

adit mouth depict the conservative behavior (Fig. 5.6). Likewise, ratios between several 

concentrations of these conservative elements versus distance show the same trend (Fig. 

5.7).  

According to the results, the trace elements present different patterns. The 

concentration of Cd, Ti and Co does not vary significantly with distance, and that of Pb, 

Sb, mainly supplied by the subterranean source TS2, and V shows a slight decrease 

downstream; dissolved As concentration drops systematically from the adit mouth 

downstream.  

As mentioned before, it is well known that concentration of trace metals is 

controlled by sorption onto mineral surfaces (Stumm, 1992). In this case, the variations in 

the behavior of these trace elements could likely be attributed to the different affinity of 

each aqueous species to the surface of the precipitates (schwertmannite, goethite and 

jarosite) assuming (i) there are no other sources for these elements other than the AMD 

discharge, and (ii) there are no streams flowing into the Tinto Santa Rosa which may 

dilute the dissolved metal load. This situation could be assumed for the system in March 

2007 and February 2008, according to the non variability of the conservative elements’ 

concentration. Therefore, it is reasonable to attribute the progressive decrease in the 

aqueous metal concentrations observed in these samplings to the adsorption and/or 

coprecipitation processes. 

5. 2.1.1 Metal(oid) speciation in aqueous solution 

The ionic strength of the acidic water, varies, depending on the sampling, from 0.14 to 

0.19. These values are well below the value of 0.7 which is conventionally considered as  
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Figure 5.6. Evolution of the concentration of Na, Mg, sulfate, Al, Mn and Zn (Februay 2008 data). 
These elements present a conservative behavior over the Tinto Santa Rosa stream. 
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Figure 5.7. Variation of the molar ratio of the conservative element to sulfate in the Tinto Santa 
Rosa stream versus distance (Februay 2008 data). 
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an upper limit for the application of the extended Debye-Hückel and the ion-association 

equations for the calculation of activity coefficients of aqueous solutes. 

Metal(oid) speciation was calculated using the PHREEQC code (Parkhurst and 

Appelo, 1999) and the WATEQ4F database (Ball and Nordstrom, 1991) (Table 5.2). 

Calculations show that at the acidic pH range measured, divalent metals can be present 

either as free aqueous ions or complexed with sulfate species. All these species are 

unlikely sorbed onto the precipitates found in the AMD sediment, since their surfaces 

exhibit a net positive charge at pH~3 (Stumm, 1992), resulting in minor changes in the 

dissolved concentrations of Cd, Ni, Cu, Pb and Zn observed along the stream. 

Conversely, under such acidic conditions, H2AsO4- is the thermodynamically stable 

arsenate aqueous species, and its sorption onto the positively charged surfaces is favored, 

resulting in a dramatic drop in aqueous arsenic concentration with distance from the 

contaminant point sources.  

This metal(loid) behavior is in agreement with other metal-sorption trends observed 

in AMD systems (e.g. Smith, 1999; Fukushi et al., 2003a; Gault et al., 2005; Sánchez-España 

et al., 2005; Acero et al., 2006; Lee and Chon, 2006). 

5.2.1.2 Saturation indices  

The saturation index, SI, is defined as the logarithm of the ratio of the ion-activity product 

to the solubility product constant. If the solution is in equilibrium with a mineral, the ion-

activity product is equal to solubility product constant, and SI is 0. If the SI is greater than 

0, the solution is supersaturated, and the mineral tends to precipitate; if the SI is less than 

0, the solution is undersaturated and the mineral tends to dissolve. 

AMD solutions are commonly supersaturated with respect to a number of iron 

minerals such as goethite, jarosite and schwertmannite, the latter of which is normally the 

mineral favored to precipitate at pH around 3.5 under oxidizing conditions (Eh > 700 

mV). Table 5.3 lists the calculated saturation index (SI) values of the Tinto Santa Rosa 

stream water with respect to these minerals according to the pH measured. Considering  
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Table 5.3. Saturation index calculations made with the PHREEQC geochemical code with respect 
to schwertmannite, goethite and jarosite of the water samples. 

 

Sample Schwertmannite Schwertmannite

(filtered) (logK=18) (logK=10)

February 2008 TS1 3.49 6.5 6.7 4.1 10.2 11.8 19.8
TS2 3.53 6.6 6.8 4.2 10.3 12.4 20.4
TS3 3.41 6.3 6.4 3.8 10.1 11.0 19.0
TS4 3.37 6.2 6.0 3.5 9.6 10.6 18.6
TS5 3.26 6.0 5.7 3.2 9.7 8.4 16.4
TS6 3.27 5.9 5.6 3.1 9.4 9.1 17.1
TS7 3.25 5.8 5.5 2.9 9.1 9.2 17.2
TS8 3.16 5.5 5.0 2.4 8.9 6.6 14.6

March 2007 TS1 2.93 4.9 4.1 1.0 7.3 1.9 9.9
TS2 2.97 5.0 4.2 1.3 7.6 2.1 10.1
TS3 2.95 5.0 4.3 1.3 7.4 3.6 11.6
TS4 2.81 4.7 3.9 1.0 7.4 1.8 9.8
TS5 2.78 4.8 4.1 1.2 7.6 2.3 10.3
TS6 2.76 4.6 3.7 0.8 7.2 1.0 9.0
TS7 2.79 4.7 3.9 0.9 7.3 1.8 9.8
TS8 2.67 4.4 3.1 0.3 6.9 -0.5 7.5

November 2006 TS1 3.32 6.3 8.6 4.2 3.9 -0.2 7.8
TS2 2.94 5.3 6.5 2.0 2.2 -6.8 1.2
TS3 2.85 5.1 5.8 1.7 1.9 -4.5 3.5
TS4 2.87 5.2 6.2 1.9 2.1 -3.3 4.7
TS5 2.83 5.2 6.5 2.0 2.2 -2.0 6.0
TS6 2.81 5.1 5.8 1.7 1.9 -2.6 5.5
TS7 2.85 5.1 5.8 1.8 1.8 -2.1 5.9
TS8 2.78 5.0 5.6 1.5 1.8 -2.5 5.5

July 2006 TS1 3.42 6.1 6.1 3.2 9.7 8.6 16.6
TS2 3.01 5.0 4.0 0.8 8.0 1.1 9.1
TS3 2.92 5.2 4.5 1.8 8.9 3.3 11.3
TS4 2.80 4.9 3.7 - 8.4 0.8 8.8
TS5 2.62 4.5 2.9 - 7.8 -1.8 6.2

Jarosite-H3OpH Goethite Jarosite-K Jarosite-Na

 
 

 

the schwertmannite solubility product proposed by Bigham et al. (1996) (logK = 18±2.5), 

some of the water samples appear to be undersaturated with respect to schwertmannite, 

which seems to contradict the field evidence of schwertmannite precipitation. Hence, the 

use of the solubility constant value of 10.5, proposed by Yu et al. (1999), is supported by 

schwertmannite precipitation as is similarly observed by Fukushi et al. (2003a); 

Regenspurg et al. (2004); Acero et al. (2006). Thus, according to the calculated SI values, 

the water samples are strongly supersaturated with respect to schwertmannite, goethite 

and jarosite.  
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5.2.2 Chemistry and mineralogy of AMD sediments  

Due to the inherent complexity of characterization of the sediments of the Tinto Santa 

Rosa stream bed, a combination of methods such as X-Ray Difraction (XRD), Differential 

X-Ray Difraction (DXRD), Scanning Electron Microscopy (SEM), total solid digestions, X-

Ray Fluorescence (XRF) and X-Ray Absorption Spectroscopy (XAS) was employed to 

understand the role played by solids in the arsenic mobilization. 

Tables 5.4 and 5.5 show the chemical and mineralogical composition of the Tinto 

Santa Rosa precipitates. The stream bed is covered by a yellowish to reddish surface layer 

and gradually changes from fine-grained to loose consolidation with depth. Consolidated 

terrace sediments show colour changes in depth from yellowish to brownish. Likewise, 

banded structures are observed in these consolidated terraces as shown in Fig. 5.8.  

 

 

 

 
 

Figure 5.8. Detailed of the consolidated terrace sediments: TSR-M8 (a) and TSR-M10 (b) collected on 
February 2008. It is observed banded structures and colour changes in depth. 

 

5.2.2.1 Sediment chemical characterization 

The major constituents (wt %) and trace elements obtained by total acid digestion and 

XRF analysis of the solids are shown in Table 5.4. Iron and sulfur are the major chemical 

components of all the solids (terraces, crusty and loose precipitates). The terraces are  
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strongly enriched in Fe and S suggesting they are made up of Fe oxy-hydroxides 

(goethite) and Fe-hydroxy-sulfates (schwertmannite and jarosite). Loose and crusty 

precipitates show a noticeable content of Al2O3, SiO2 and K2O as well as Fe2O3 that 

indicates the presence of aluminosilicate detrital material. 

The most concentrated element amongst the “trace” elements analyzed is arsenic. 

Its concentration is very high compared to that of the other trace elements (Table 5.4). The 

arsenic concentration decreases downstream in the loose, crusty and consolidated 

terraces, as well as with depth in the consolidated terraces. This evolution is discussed 

later. 

Nonetheless, the content of the rest of elements is significant, especially Mn, Cu and 

Pb and to a lesser extent Zn, Cd, Ni, Sb, V, Co and Sr. Their concentration in the loose, 

crusty and consolidated terraces (see Table 5.4) does not follow a systematic trend 

downstream, suggesting that these metals are unlikely to be involved in sediment-

sorption processes. In contrast, the arsenic content systematically decreases downstream, 

mirroring its behavior in the stream water concentration. No systematic variation in the 

trace element concentrations was observed with depth in the consolidated terrace 

samples. This low variability is probably due to the fact that the sediment bands’ 

composition is the result of the superposition of different processes with time. 

5.2.2.2 Sediment mineralogical characterization 

Schwertmannite is ubiquitous as the primary precipitating mineral during the hydrolysis 

of Fe(III) in acidic waters with pH between 2.8 and 4.5 and high sulfate concentrations 

(1000-3000 mg L-1) (Bigham et al., 1994). Ideally, schwertmannite has a Fe/S molar ratio of 

8 but the amount of SO4 is variable due to adsorbed SO4, yielding a structural formula as 

Fe8O8(OH)8-2x(SO4)x·nH2O where 1≤ x ≤1.75, although higher values (1.75 ≤x ≤1.86) have 

been reported by Yu et al. (1999). Goethite (FeOOH) and jarosite (KFe3(SO4)2(OH)6) are 

also common minerals in these AMD environments.  
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Schwertmannite is found in all the sediments collected from Tinto Santa Rosa 

stream (Fig. 5.9). Loose precipitates consist of detrital silicates (quartz, illite, kaolinite), 

and Fe-hydroxides and Fe-oxy-hydroxy-sulfates (e.g. schwertmannite, jarosite and 

goethite). Terraces are mostly made up of schwertmannite, goethite and jarosite with 

minor amounts of quartz.  

 

LOOSE PRECIPITATES CONSOLIDATED TERRACES 

 

 
 

 
 

 

 

Figure 5.9. XRD patterns for loose precipitates (a) and consolidated terraces (b) along the Tinto 
Santa Rosa acid mine discharge (Sch: schwertmannite; Jrs: jarosite; Gt: goethite; Qtz: quartz). 
Samples collected in November 2006. 

 

In the collected samples, the low-intensity XRD peaks of schwertmannite are often 

hidden by high intense peaks of more crystalline minerals, such as goethite. Differential 

XRD (DXRD) has been used to identify schwertmannite (Dold, 2003). The technique of 

DXRD consisted of a sequence of examinations followed by partial extractions of the 

mineral mixture in acidic oxalate solutions (pH 3, 0.2 M, in darkness) (Dold, 2003). As 
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low-crystallinity iron oxides, such as schwertmannite, are readily dissolved in acidic 

oxalate solutions (Bigham and Nordstrom, 2000) the difference between the two spectra 

will ideally identify the dissolved phase. In some of the samples, such as TSR-N-1, TSR-

N-6 or TSR-M-7, the solid was almost totally dissolved in acidic oxalate indicating that 

schwertmannite was the main phase. 

Mineralogical characterization of the solids is consistent with both the elemental 

composition of the sediments (Table 5.4), and the SI calculations (Table 5.3), which 

revealed supersaturation of the studied waters with respect to schwertmannite, goethite 

and jarosite along the stream. 

Usually, schwertmannite, which is the main Fe-phase of the collected samples, 

forms characteristic pin cushion-like aggregates (about 200-500 nm in diameter) leading 

to a rather high surface area of about 100-300 m2 g-1 (Bigham et al., 1994; Cornell and 

Schwertmann, 1996). The pin cushion morphology is not always detectable, especially if 

samples are taken from consolidated sediments or surface crusts (Bigham and 

Nordstrom, 2000). The dried samples were examined by SEM (Fig. 5.10) and the pin 

cushion morphology was not observed. According to Jönsson et al. (2005) washing and 

grinding sample could have contributed to lose this morphology.  

The BET surface areas of all the samples (loose precipitates and terraces) were 

determined to be in the range of 15-50 m2 g-1. These values are much lower than 

compared BET values of 100-300 m2 g-1 that were determined for schwertmannite by 

Bigham et al. (1994) and Cornell and Schwertmann (1996), but similar to those obtained 

by  Webster et al. (1998) and Jönsson et al. (2005) (55 and 43 m2 g-1, respectively). These 

lower BET surface area values could be attributed to the sphere cementation observed. 

On the other hand, a decrease in surface area could be caused by aggregation of the 

sulfate-rich particles while drying (Jönsson et al., 2005). 
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Figure 5.10. SEM pictures of some representative samples of the bed-stream sediments: TSR-J1 
(a); TSR-N4 (b); TSR-N1 (c); TSR-J2 (d); TSR-J3 (e); TSR-N8 (f). Upstream sediments appear 
formed by rounded aggregates, whereas downstream, sediments show elongated and sharp 
shapes. In the case of consolidated terraces, rounded shapes are less evident, probably due to 
washing and grinding of the samples. 
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5.2.2.3 Arsenic association in the sediment  

The high arsenic concentration in the precipitates (Table 5.4) indicates that arsenic has 

been selectively incorporated into the solids probably due to sorption processes at the 

acidic pH (see Chapter 4), demonstrating the efficiency of AMD precipitates in 

sequestering arsenic. Determination of the oxidation state of arsenic in waters and the 

sedimentary arsenic speciation is necessary to link arsenic mobilization with the sorption 

processes and to determine any potential hazardous effects. 

With this in mind, the arsenic and iron associated with the AMD precipitates in the 

Tinto Santa Rosa stream was studied using extended X-ray absorption fine structure 

(EXAFS) spectroscopy in two representative samples that correspond to a consolidated 

terrace sediment and a loose solid precipitate (TSR-J2 and TSR-J3) both collected in July 

2006.  

The pattern fitting of the Fe K-edge EXAFS spectra shown in Fig. 5.11a indicated 

that the iron mineralogy was dominated by schwertmannite, with lesser amounts of 

goethite (11% in TSR-J3) and jarosite/goethite (29% of H-jarosite and 24% of goethite in 

TSR-J2), which were previously detected by XRD (Fig. 5.11b).  

Normalized As K-edge EXAFS spectra are relatively similar for samples TSR-J2 and 

TSR-J3 (Fig. 5.12a). The oscillations giving rise to the first peak in the Fourier transform 

(Fig. 5.12b) were best fitted with a shell of four arsenic atoms at 1.68 Å (see Table 5.6). The 

coordination number, As-O bond distance and position of the absorption edges indicate 

that the arsenic in the samples is dominated by As(V) (Farquhar et al., 2002). The 

inclusion of multiple scattering of the outgoing photoelectron within the arsenate 

tetrahedron in the fit further improved the least squares residual. A second shell 

interaction between arsenic and iron was fitted at 3.30-3.32 Å. The fitted As-Fe distances 

do not allow us to unambiguously identify the host-bearing phase that harbours arsenic. 

However, reported values for EXAFS analyses of the local environment of arsenate in 

jarosite, ferric oxihydroxides and goethite revealed As-Fe interaction at 3.26-3.32 Å,  
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Figure 5.12. Normalised As K-edge EXAFS spectra (a) and radial distribution function (b) of 
two AMD samples collected in July 2006 (TSR-J3 is consolidated terrace at the adit mouth, and 
TSR-J2 is loose precipitate located downstream before the stream flows into Villar River). Solid 
lines represent experimental data, and dotted lines are the least squares best fit using the 
parameters listed in Table 5.6. 

 

 

Table 5.6. Paramaters obtained from fitting As K-edge EXAFS spectra for AMD samplesa. 

 

 EXAFS fit 

Sample Scatterer N r / Å 2σ2 / Å2 

TSR-J2 
O 

Fe 

4 

2 

1.68 

3.32 

0.005 

0.016 

TSR-J3 
O 

Fe 

4 

2 

1.68 

3.30 

0.006 

0.015 

a N is the coordination number (±25%), r is the interatomic 
distance (±0.02 Å for the first shell, ±0.05 Å for more distant shells) 
and 2σ2 is the Debye-Waller factor (±25%). 
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suggesting that the arsenic associated with the AMD samples was associated with an iron 

mineral assemblage (Gault et al., 2005). This As-Fe interaction is consistent with bidentate 

arsenic oxyanions occupying corner sharing positions at the apices of iron oxyhydroxide 

octahedra (Waychunas et al., 1993, Fendorf et al., 1997, Farquhar et al., 2002, Sherman and 

Randall, 2003) or compatible with arsenate substitution for sulfate in the jarosite structure 

(Savage et al., 2000; Paktunc and Dutrizac, 2003).  

A thorough examination of the samples collected was carried out by means of the 

arsenic X-ray absorption near edge structure (XANES) spectra of many of the samples 

collected in November 2006 and March 2007. As K-edge XANES spectra were used to 

determine the arsenic oxidation state in bulk sediments at different depth profiles (to 

study the temporal variation) and along the stream (to study the spatial variation). 

The normalized XANES spectra of most of the samples are shown in Fig. 5.13. In all 

samples, arsenic was present in its oxidised pentavalent state (absorption maxima 11.873 

keV), As(III) was found to be less than 10% in all the samples. These results are consistent 

with the AMD water chemistry results, indicating that arsenate is more effectively 

removed from solution than arsenite Arsenate uptake explains the decrease in aqueous 

As(V) along the stream. Therefore, according to XANES and EXAFS results, arsenic is 

present mainly as arsenate associated to the Fe-compounds found in the sediments.  

Using a set of arsenic model compounds, the As-bearing components in the studied 

samples were speciated to determine the amount of each reference in the field sample 

using the least-squares fitting (LSF) procedure (Ressler et al., 2000). The fitting procedure 

yielded the relative proportions listed in Table 5.7. The values correspond to the amount 

of the respective normalized reference spectra required to yield a good match between 

simulated and experimental XANES spectra. Uncertainties in the fit results are estimated 

to be in the range of 10%. The quality of the fits was quantified by the normalized sum-

squares residuals NSS=Σ(Xanesexperimental-Xanesfit)2/Σ(Xanesexperimental)2 x 100, in the 11.850-

11.920 keV range. The improvement of adding a new component was calculated by I=100-

(NSStwo-components * 100/NSSbest-one fit component) or I=100-(NSSthree-components * 100/NSSbest-two fit 
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components) (Isaure et al., 2006). If the fit improvement (I) was more than 20% the addition of 

the new component was considered and then the simulation with both components was 

retained. Comparison between experimental and transformation results are shown in 

Figs. 5.14 and 5.15. 

Table 5.7. Quantitative As speciation in samples estimated by LSF and XANEs spectra. The 
sum of percentages is not always equal to 100% because a tolerance of 10% is admitted. 

 

Depth
 (cm) Schw Gt Jt

TSR-N1 - 100 - - 
TSR-N3 - 12 68 19
TSR-N4 - 18 62 19
TSR-N5 - 12 64 18
TSR-N6 - 100 - - 
TSR-N7 - 100 - - 
TSR-N8 - 14 86 - 

0-0.5 100 - -
0.5-4 23 69 -
4-4.5 22 68 -
4.5-7 < 10 95 -
0-2 14 86 -

2-4.5 - 100 -
4.5-6 - 100 -
6-7 - 100 -

% As sorbed

TSR-M-8 

TSR-M-10

Sample

 

According to the XANES results, the main As(V) scavenger phase upstream 

(samples TSR-N1, TSR-N6 and TSR-N7) is schwertmannite, whereas downstream 

(samples TSR-N3, TSR-N4, TSR-N5 and TSR-N8) the percentage of As associated to 

schwertmannite decreased as goethite and jarosite increased. Downstream, most of the 

arsenic is associated to goethite, which has a high As(V) sorption capacity even in 

presence of sulfate as explained in Chapter 4. Lower As(V) percentages are found in 

jarosite (18-19% in samples TSR-N3, TSR-N4 and TSR-5). These results are, in general, in 

good agreement with the sediment mineralogical distribution over the stream 

determined by XRD.  

At the adit mouth area (upstream) loose precipitates are composed mainly by 

schwertmannite with minor quantities of goethite and quartz (Table 5.5). Downstream, 

solids are made up of detrital silicates, Fe-oxides and Fe-oxy-hydroxy-sulfates, such as  
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Figure 5.13. As K-edge XANES spectra of the AMD samples with peak height positions of 
As(III) and As(V) indicated. 

 

schwertmannite, jarosite and goethite (Fig. 5.9). This mineralogical evolution is attributed 

to either a pH decrease along the stream, favoring the precipitation of jarosite and 

goethite directly from the solution, or to the displacement of some particles from the 

upper-stream precipitates and terraces downstream. Nevertheless, the schwertmannite 

aging process, which is the schwertmannite transformation to goethite and jarosite cannot 

be discarded. 

As it is shown in the XRD patterns depicted in Fig. 5.16 the consolidated terraces 

exhibite a mineralogical evolution in depth. This evolution is assumed to represent the 

temporal evolution of the precipitates. The XRD patterns of sediments collected at the 

upper part (0-4 cm) of the consolidated terraces, TSR-M7 and TSR-M8, showed that they 

are composed primarily of schwertmannite, with minor amounts of goethite and quartz. 

Likewise, XRD patterns of sediment downstream (TSR-M-10) showed the presence of 

schwertmannite and goethite at the surficial sediment. While the sediment in TSR-M7 

showed no significant change of solid crystallinity with depth, the sediments of 

consolidated terraces TSR-M-8 and TSR-M-10 showed an increase in crystallinity with  
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depth, associated with the more prominent goethite reflections. The arsenic associated 

with the Fe-phases in the terrace TSR-M-8 showed a similar trend: in the upper 

sediments, As(V) is found associated mainly to schwertmannite, which is the main phase 

observed by XRD. At depth, the amount of As(V) sorbed on goethite increased, 

accompanying the increased proportion of goethite in the sediment. In the case of terrace 

TSR-M-10, although a slight increase in arsenic associated to goethite is observed, is very 

homogeneous. 

Comparing the mineralogical percentages of the sediments obtained by XANES to 

the As concentration in these solids it is observed that the highest arsenic concentrations 

are associated with sediments made up of mainly schwertmannite, corresponding to the 

loose precipitates and upper stream terraces. When the precipitates consisted mostly of 

goethite and/or jarosite, which have lower sorption capacities than schwertmannite (see 

Chapter 4), the arsenic concentration in the sediment was lower.  

The mineralogical evolution with depth observed in the sediments could be 

explained by schwertmannite transformation into more stable minerals (e.g. goethite) 

over timescales of weeks to months (Bigham et al., 1996; Peine et al. 2000, Gagliano et al. 

2004, Jönsson et al., 2005, Acero et al., 2006), and jarosite (Acero et al., 2006; Wang et al., 

2006 and Kawano and Tomita, 2001). This transformation is inhibited by the presence of 

arsenate sorbed onto schwertmannite (Fukushi et al., 2003a). This arsenate inhibition 

could account for the difference in the schwertmannite transformation degree in depth 

and over the Tinto Santa Rosa stream bed. Upstream sediments with high arsenic 

concentrations consisted of schwertmannite and minor quantities of goethite, whereas in 

downstream sediments with low arsenic contents and high amounts of goethite, 

schwertmannite transformation to goethite and/or jarosite probably occurred. 

5.3 Conclusions  

The acidic discharge of the abandoned Tinto Santa Rosa mine in the Iberian Pyritic Belt 

(SW, Spain) transports high concentrations of acidity, sulfate and metal(loid)s (e.g., Fe, 
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As, Co, Ni, Cu, Pb, and Mn). Although the concentration of arsenic, which is found as 

As(III) and As(V), is high (up to 4 mg L-1), arsenic is naturally attenuated by sorption onto 

Fe-oxyhydroxide and Fe-oxyhydroxysulfate phases that made up the  stream bed 

precipitates. Although the dissolved arsenic concentration is reduced over the stream, it 

reaches to approximately 127 µg L-1, still exceeding the As limit (10 µg L-1) for potable 

waters (EU guideline). 

To unravel the complex nature of the AMD sediments of the stream bed, XRD and 

XAS characterization methods, together with total acid digestions and XRF analyses were 

used, providing the mineralogical content, the arsenic chemical speciation, spatial 

distribution, and the mineralogical association of arsenic in the collected sediment.  

XRD and DXRD results indicate that schwertmannite is the dominant secondary 

phase in the loose sediments and consolidated terraces of the Tinto Santa Rosa stream 

bed. Loose and crusty precipitates consist of hydroxides and oxy-hydroxy-sulfates of iron 

such as schwertmannite, jarosite and goethite, as well as some amounts of detrital 

silicates (quartz, illite, kaolinite). The sediments of the consolidated terraces are made up 

of schwertmannite, goethite, jarosite and minor amounts of quartz. This mineralogical 

content is consistent with the saturation index calculations with the PHREEQC code and 

WATEQ4F database, which revealed supersaturation of the stream water with respect to 

schwertmannite, goethite and jarosite along the length of the stream. 

The mineralogical distribution over the stream indicates that schwertmannite is the 

dominant phase of the upstream loose sediments, and its amount decreases in the 

sediments downstream, accompanied by an increase in the content of goethite and 

jarosite. Likewise, the mineralogical content of the consolidated terraces at depth shows 

that in the upstream sediments schwertmannite dominates and downstream terraces 

exhibit an increase in crystallinity with depth, reflected in the presence of enhanced 

goethite XRD reflections. The synchrotron-based iron K-edge X-ray spectroscopy of the 

sediments allowed quantification of the mineral content in contrast to the qualitative XRD 

content. 
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Based on total acid digestion and XRF analyses, arsenic is mainly associated with 

Fe-oxyhydroxides and Fe-oxyhydroxysulfates. This arsenic identification in the sediment 

was confirmed by synchrotron-based X-ray spectroscopy using a least-square fitting 

(LSF) procedure on the XANES spectra, indicating that: (1) As occurs mainly as As(V); (2) 

upstream arsenic is sorbed onto the main phase, schwertmannite, whereas downstream it 

appears mainly sorbed onto goethite and jarosite and (3) changes in As speciation with 

depth are observed in the consolidated terrace sediments, where arsenic mainly 

associated to schwertmannite in the upper part of the terraces, and increasing arsenic is 

primarily associated with goethite at depth.  

Accordingly, based on the exhaustive characterization of the sedimentary and 

aqueous arsenic evolution along the stream it is possible to recapitulate that:  

(1) From the comparison between the mineralogical content and the arsenic 

concentration in the identified Fe-phases the highest arsenic concentration is associated 

with sediments that are made up mainly of schwertmannite, corresponding to upstream 

precipitates and terraces. Downstream sediments, where precipitates consisted mostly of 

goethite and/or jarosite, contained lower arsenic concentrations, likely due to the lower 

sorption capacity of goethite and jarosite compared to schwertmannite.  

(2) The mineralogical differences observed in the loose sediments could be 

attributed to (i) differences on pH along the stream that would favor precipitation of 

jarosite and goethite, (ii) erosional transport of some particles from the upstream 

sediments, and (iii) aging of metastable schwertmannite. 

(3) The mineralogical distribution in the consolidated terraces with depth is a 

consequence of the temporal evolution of the precipitates as a result of schwertmannite 

transformation into more stable minerals, such as goethite and jarosite, over timescales of 

weeks to months.  

(4) Arsenic sequestration depends on the rapid oxidation of As(III) and Fe(II), with 

the subsequent hydrolysis of Fe(III) causing precipitation of poorly crystallized minerals 
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such as schwertmannite that can remove arsenic from solution. To quantify the proposed 

processes responsible of arsenic attenuation in the AMD Tinto Santa Rosa, reactive 

transport modelling that couples advective flux and the main geochemical reactions 

observed in the field was performed using the PHREEQC code. Resulting calculations are 

presented in Chapter 6.  



 



 

 

Chapter 6 

Geochemical modeling of arsenic in 

AMD environments 

As discussed in the earlier chapters, arsenic, which is one of the priority pollutants in 

AMD (La Force et al., 2000; Savage et al., 2000), could under extremely acid conditions 

reach very high concentrations (in the order of hundreds of mg L-1; e.g. Nordstrom and 

Alpers, 1999; Plumlee et al., 1999). The primary source of arsenic is the oxidation of As-

bearing sulfides such as arsenopyrite, marcasite and As-rich pyrite. This process, which is 

one of the main causes of arsenic contamination of surface and groundwaters in regions 

of active and historic mining activities world-wide (Ball and Nordstrom, 1985; Prior and 

Williams, 1996; Smedley et al., 1996; Armienta et al., 1997), has also been identified as a 

source of arsenic in non-mining areas (Peters et al., 1999).  

The geochemistry of arsenic in natural systems is complex. The main processes that 

control the mobility and fate of arsenic in surface and groundwaters are: (1) redox 

reactions; (2) sorption/desorption; (3) solid phase precipitation and dissolution and (4) 

biological activity (Cheng et al., 2008). The occurrence and removal of arsenic in natural 
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water bodies are, therefore, related to water pH, redox conditions, the arsenic oxidation 

state, and sorption (or exchange) reactions. Effective remediation of streams and rivers 

affected by acid mine drainage demands a comprehensive knowledge of the dominant 

mechanisms that determine arsenic content in order to curb arsenic pollution and 

improve water treatment. 

The characterization of arsenic sources in mining areas, the mechanisms controlling 

arsenic release and mobility, and its natural attenuation processes have been studied (e.g. 

Fukushi et al., 2003a; Frau and Ardau, 2003; Casiot et al., 2005; Gault et al., 2005). On the 

other hand, there are a number of studies based on geochemical modeling of arsenic 

behaviour. Welch and Lico (1998) made a forward model that included a surface 

complexation model using PHREEQC to determine the role of adsorption and potential 

arsenic sources and sinks in the Carson Desert, Nevada. A surface complexation 

modeling was also used to simulate the behaviour of arsenic at an industrially 

contaminated site by Lumsdon et al. (2001). Stollenwerk et al. (2007) studied arsenic 

attenuation by the oxidized aquifer sediments in Bangladesh including competitive 

sorption and As(III) oxidation processes. As regards sulfide oxidation, Schreiber et al. 

(2000) proposed pyrite oxidation as the potential As source in eastern Winconsin by 

means of an inverse modeling made with NETPATH. Carrillo-Chavez et al. (2000) using 

inverse and forward modeling, studied the processes controlling arsenic in a mining 

district close to La Paz, Baja California (Mexico), and Armienta et al. (2001) predicted the 

water chemistry evolution using an inverse modeling for mass balance at Zimapán Valley 

(Mexico).  

However, there are a few studies that combine an exhaustive arsenic 

characterization and the geochemical quantification in AMD environments. For example, 

most works deal with the arsenic source without considering arsenic oxidation (e.g. 

Schreiber et al., 2000). Additionally, surface oxidation processes were not considered, and 

surface complexation modelling based on hydrous ferric oxide (HFO) surface-site 

parameters was used to compute schwertmannite sorption. Thus, these models despite 



145 

 

being useful in some cases have been found to underestimate arsenic removal (Tonkin et 

al., 2002). There are no works that have used the sorption capacity of schwertmannite 

combined with arsenate sorption and precipitation processes coupled to the iron and 

arsenic oxidation reactions to simulate arsenic mobility under field conditions. 

Accordingly, a geochemical model is proposed in this chapter in order to quantify 

the geochemical processes involved in the arsenic fate along an AMD discharge. The 

model is simple and is based on the processes quantified in earlier studies and previous 

chapters, i.e. oxidation of iron and arsenic, arsenate sorption on Fe-precipitates (e.g., 

schwertmannite), and schwertmannite precipitation. The rate laws and sorption constants 

for the different reactions involved are calibrated against the evolution of the water 

concentration along an AMD where active precipitation of schwertmannite occurs. 

6.1 Model description 

6.1.1 Conceptual model 

The chemical water and sediment characterization along the stream was fully discussed 

in Chapter 5. The main features in the stream water were a decrease in pH from 3.5 and 3 

to 3 and 2.7, accompanied by a systematic decrease in the concentrations of ferrous, total 

iron, As(III), As(V) and total arsenic.  

The conceptual model of the processes involved in arsenic attenuation consists of: 

(1) Fe(II) oxidation to Fe(III), (2) oxidation of As(III) to As(V), (3) Fe(III) precipitation as 

hydroxides and hydroxysulfates that causes a decrease in pH, and (4) sorption of As(V) 

onto the solid Fe(III)-phases. The reactions are shown in Table 6.1 (eq. 6.1 to 6.4). 

In the presence of oxygen, ferrous iron produced by sulfide oxidation is oxidized by 

oxygen (eq. 6.1). This reaction is known to be very slow at low pH (Singer and Stumm, 

1970) except in the presence of microorganisms, that increases the rate of Fe(III) 

production by up to six orders of magnitude, which will be discussed below. 
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The rate of Fe(II) oxidation was found to be proportional to Fe(II) concentration, 

indicating first-order kinetics. This dependence that was proposed in systems under 

steady-state conditions (or equivalent) (Nordstrom, 1985), was implemented in the model 

by using the expression of Singer and Stumm (1970) for pH below 3.5: 

[ ]
[ ]

O2)(
f)(

)(
IIFek

dt

IIFed
r

IIFe
=

−
=  (6.1)  

where rFe(II) is the oxidation rate expressed in mol L-1 s-1, [Fe(II)] is the ferrous iron 

concentration (mol L-1) at a time t (s), fO2 is the oxygen fugacity and k (s-1) is the rate 

constant of the kinetic expression.  

An important consequence of Fe(II) oxidation to Fe(III) is the precipitation of 

secondary ferric phases that remove dissolved iron (and other elements such as arsenic) 

from the solution and cause the pH to decrease progressively downstream.  

Arsenite oxidation by oxygen is very slow (Tallman and Shaikh, 1980; Eary and 

Schramke, 1990) even in Fe(III) solutions (Manning et al., 2002, Roberts et al., 2004, 

McCleskey et al. 2004; Johnston and Singer, 2007). However, the rate of oxidation of 

As(III) to As(V) by oxygen and Fe(III) is increased by several orders of magnitude by the 

presence of near ultraviolet light since the reaction takes place in conjunction with the 

photochemical reduction of Fe(III) (eq. 6.2; Table 6.1; Emett and Khoe, 2001; Hug et al., 

2001; Bednar et al., 2002; McCleskey et al. 2004). Likewise, microbes could catalyze arsenic 

oxidation in natural waters (e.g. Wakao et al., 1988; Wilkie and Hering, 1998; Santini et al., 

2002; Nakazawa and Hareyama, 2007). In the case of AMD waters, the arsenic speciation 

and redox chemistry is controlled by dissolved Fe in AMD systems (Bednar et al., 2005, 

Sarmiento et al., 2007). This is in good agreement with the results obtained in Chapter 3, 

where simultaneous iron and arsenic oxidation was studied under laboratory conditions 

similar to those in the field. The results suggested that Fe(II) oxidation was biotically 

catalyzed and the resulting Fe(III) catalyzed As(III) oxidation to As(V). Although earlier 

works have proposed pseudo-first order kinetics in iron mediated oxidation of As(III) 
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(Leuz et al., 2006), Fe(III) has been demonstrated to be involved in As(III) oxidation. 

Therefore, a second-order kinetic equation that takes into account the effect of As(III) and 

Fe(III) was proposed for the field model (equation 6.2):  

[ ]
=

−
=

dt

IIIAsd
r

IIIAs

)(
)(

k [As(III)] [Fe(III)]n (6.2)  

where k is the oxidation coefficient (L mol-1 s-1), [As (III)] and [Fe(III)] are the arsenite and 

ferric iron concentrations, respectively, in mol L-1 after time t, and n is the reaction order 

with respect to ferric iron concentration that was found experimentally to be one. 

The oxidation of As(III) to As(V) plays a central role in arsenic attenuation since 

Fe(III) precipitates that cover the stream bed show a larger capacity to sorb As(V) than 

As(III). Therefore, oxidation of As(III) to As(V) substantially enhances the arsenic 

removal capacity of stream solids.  

Apart from oxidation reactions, the precipitation of secondary phases is another 

process mainly involved in the arsenic evolution along the acid stream. The usual Fe(III) 

phase formed after Fe(II) oxidation at many sites of the IPB is schwertmannite (Sánchez-

España et al., 2005b, 2007; Acero et al., 2006). The mineral paragenesis may also include 

variable amounts of goethite and jarosite as detected by X-Ray Diffraction. Although the 

solubility calculations performed with the PHREEQC code indicate supersaturation with 

respect to these phases, it should be noted that the PHREEQC calculations do not 

consider kinetic aspects, and the formation of goethite and jarosite in Fe(III) systems at 

low temperature (15-20ºC) is very slow (weeks to months at room temperature) 

(Schwertmann and Cornell, 1991). In addition, transformation of schwertmannite into 

goethite and/or jarosite is also a very slow process (Bigham et al., 1996; Regenspurg et al., 

2004; Jönsson et al., 2005 and Acero et al., 2006). Furthermore, transformation is retarded 

by the presence of arsenate sorbed onto schwertmannite (Fukushi et al., 2003a), which is 

expected to occur in the sediments of the Tinto Santa Rosa stream. Given that the water 

residence time considered in the stream is 2.1 to 3.2 h, direct precipitation of goethite and 
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jarosite and transformation of schwertmannite into goethite and/or jarosite were not 

considered in the model. Therefore, for modeling purposes, the amount of ferric iron 

removed from water between the mixing point and TS8 (Fig. 5.2; Chapter 5) was 

exclusively ascribed to precipitated schwertmannite.  

As regards the rate of mineral precipitation, it is reasonable to assume that this rate 

is proportional to the degree of supersaturation. Kinetic expressions that consider the 

saturation index (as eq. 6.3) have been widely used for model precipitation of many 

minerals (see for example, Molson et al., 2008):  

rSch precipitation = k (1-Ω) (6.3)  

where Ω is the schwertmannite saturation index, defined as the ratio of the ion activity 

product and the solubility product and k is the rate constant (mol L-1 s-1). The high 

variability in the saturation indices for schwertmannite demanded the use of very 

different rate constants in the model (see Table 6.1). Accordingly, the prediction of 

schwertmannite precipitation was impossible because the rate constant seemed to vary 

widely in time even though this process was apparently constant in the field. Therefore, a 

simple kinetic expression that ultimately depends on the saturation state of the solution 

was used to account for schwertmannite precipitation: 

rSch precipitation = k [Fe(III)][H
+
]
-1 (6.4)  

where rSch precipitation is the rate of schwertmannite precipitation in mol L-1 s-1, [Fe(III)] and 

[H+] are the ferric iron and proton concentration in mol L-1, and k is the rate constant in 

mol L-1 s-1. 

It is worth noting that this expression is sufficiently close to eq. 6.3, which considers 

that the rate is proportional to the degree of supersaturation, since the sulfate 

concentration displays a conservative behaviour in AMD waters (it is assumed as 

constant and integrated in the k value) and since [H+] scarcely varies along the stream. 
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According to the total acid digestion analyses and the X-Ray Fluorescence results, 

the arsenic content in the Tinto Santa Rosa precipitates was very high, which 

demonstrated the efficiency of the AMD precipitates to sequester arsenic. In addition, 

XANES spectra indicated that the arsenic sequestered in the precipitates was mainly in its 

oxidized pentavalent state. Given the absence of waters flowing into the Tinto Santa Rosa 

stream to dilute the dissolved metal load, at least during the campaign of March 2007 and 

February 2008 (see Figs. 5.6 and 5.7; Chapter 5), the decrease in aqueous As(III) 

concentration with time was attributed to arsenite oxidation to arsenate. Depletion of 

As(III) was accompanied by production of As(V) which was, in part, sorbed onto 

schwertmannite. This Fe(III)-oxyhydroxysulfate is known to act as a usual sink for As(V) 

in AMD due to sorption processes (e.g. Fukushi et al., 2003a,b; 2004) (eq. 6.4; Table 6.1). 

Hence, the last process included in the model was the arsenic decrease due to As(V) 

sorption onto schwertmannite.  

Sorption of As(V) can occur through true adsorption (or surface complexation) or 

co-precipitation (forming a mixed precipitate or solid solution). In the case of 

schwertmannite, the uptake mechanism of As(V) by schwertmannite in co-precipitation is 

identical to that in the adsorption (Fuskhusi et al., 2004) and consists of a replacement of 

AsO4 by SO4 groups. Furthermore, the evolution of changes in composition has proved to 

be similar in adsorption (Fukushi et al., 2004) and co-precipitation (Carlson et al., 2002). 

Owing to the similar composition in the resultant As(V) complexes in both systems, the 

following simple kinetic co-precipitation rate was included in the model: 

)]([
)(

VAskrr
dionprecipitatSchsorptionVAs

=  (6.5)  

where rAs(V) sorption is the As(V) sorption rate (mol L-1 s-1), rSch precipitation is the schwertmannite 

precipitation rate (mol L-1 s-1), [As(V)] is the arsenate concentration in mol L-1 and Kd 

represents the distribution coefficient for As(V) into schwertmannite. This expression was 

used to calculate the distribution coefficient for As(V) from the laboratory data of 

Fukushi et al. (2003b). The obtained values were compared with these of our model. 
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6.1.2 Reactive transport model implementation 

The one dimensional (1D) reaction-transport model PHREEQC (Parkhurst and Appelo, 

1999) and the WATEQ4F thermodynamic database (Ball and Nordstrom, 1991) were used 

to simulate the evolution of the water composition along the stream.  

In the simulations, a 1D column containing 20 cells, 15 m each in length, with 1 kg of 

water each cell was used with a time step of 800 and 500 s, yielding an average linear 

velocity of 0.02 and 0.03 m s-1 (March 2007 and February 2008 data, respectively). The 

advective transport time (for a chemically conservative constituent) was 10000 s and 

16000 s to model the March 2007 and February 2008 data, respectively, in the 300 m 

length of the column. 

At each time step, PHREEQC simulated the four processes affecting arsenic mobility 

(eq. 6.1 to 6.4, see Table 6.1). The reactions considered in the advective transport model 

were calculated by kinetic laws. 

Model inputs included measured temperature, pH, pe and the concentration of 

anions and cations. The water composition that resulted from the mixing water of the two 

contaminant sources (TS1 and TS2 in a mixing ratio of 0.7TS1/0.3TS2 in both samplings; 

see Table 5.1 and Fig. 5.2, Chapter 5) was used as the initial water composition. Therefore, 

in addition to aqueous speciation, the reactions included in the model were those with 

the most significant impact on arsenic behaviour.  

6.2 Results and discussion 

Figures 6.1 and 6.2 display the pH and dissolved concentrations of total iron and Fe(II), 

Fe(III), total arsenic, As(III) and As(V) along the Tinto Santa Rosa stream and the 

resulting simulations.  

The measured pH was suitably fitted. This evolution trend was mainly controlled by 

iron geochemistry. The iron removal from the dissolved phase demands the oxidation of  
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Figure 6.1. Comparison between simulated and measured data for pH and concentration of Fe(II), 

Fe(III) and total iron in the Tinto Santa Rosa stream. Error bars correspond to the analytical error 

(10% for Fe(II) and Fe(III), 3% for total iron and 0.05 for pH). The calculated values reproduced 

satisfactorily the measured data. The distances between the different sampling points, located by 

GPS in the field, were calculated by means of ArcGIS 9 over the aerial orthoimage of the Tinto 

Santa Rosa stream. The travelling time between points was estimated with the flow rate and the 

stream section measured in the field. 

 

ferrous iron, hydrolysis of ferric iron and the formation of Fe-precipitates. Ferric iron 

hydrolysis releases protons, thereby decreasing pH.  

The rate of Fe(II) oxidation was calculated from the decrease in the Fe(II) 

concentration between the TS1 and TS2 mixing point and point TS8 (see Table 5.1 and 

Fig. 5.2, Chapter 5). The residence time of water estimated between the TS1-TS2 mixing 

point and TS8 was 3.2 and 2.1 h, depending on the flow rate (Q=0.71 and 1.1 L/s, 
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respectively). The resulting Fe(II)-oxidation field rate ranged from 3.4x10-7 mol L-1 s-1 to 

4.3x10-7 mol L-1 s-1. These rates are 5 orders of magnitude higher than the value of 3.0x10-12 

mol L-1 s-1 proposed by Singer and Stumm (1968). This difference between laboratory and 

field Fe(II)-oxidation rates is classically attributed to the catalyzing effect of bacteria 

(Noike et al., 1983; Nordstrom, 1985; Kirby and Elder Brady, 1998; Sánchez-España et al., 

2007). The iron oxidation rates obtained correspond to rate constant values of 10-3.55 and 

10-3.75 L mol-1 s-1 (or 10-4.2-10-4.4 s-1) including the atmospheric pO2 in rate constant). These 

kinetic contant values are slightly higher than those obtained by using the same first-

order kinetic expression under laboratory conditions (10-4.1 to 10-5.2 L mol-1 s-1). But they 

are comparable to the calculated first-order ferrous iron oxidation rate constant of 10-4.1 s-1 

(including pO2 in the rate constant) for microbial oxidation of ferrous iron calculated by 

McKnight et al. (1988) or McKnight and Bencala (1989) under field conditions.  
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Figure 6.2. Comparison between simulated and measured data for concentration of As(III), As(V) 

and total arsenic in the Tinto Santa Rosa stream. Error bars correspond to the analytical error (15% 

for As(III) and As(V) and 3% for total arsenic). 
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After fixing the oxidation rate of Fe(II), As(III) oxidation and Fe(III) precipitation 

were fitted simultaneously. As in Fe(II), the As(III) oxidation rate at the field scale was 

calculated from the decrease in As(III) concentration between the mixing point TS1 and 

TS2 and TS8 and the time required for water to travel this distance. The calculated 

oxidation rate constant is in the order of 10-1.2 L mol-1 s-1. This value is one order of 

magnitude faster than those obtained in this study under laboratory conditions (see 

Chapter 3; As(III) oxidation rate constants ranged from 10-2.2 to 10-2.8 L mol-1 s-1). As stated 

above, iron and arsenic oxidation occurs simultaneously and iron oxidizes arsenic. 

Therefore, the higher As(III) oxidation rate observed in the field is probably due to the 

catalytic effect of ferric iron and solar light although a biocatalyzed process cannot be 

ruled out. The model adequately predicted the general As(III) evolution using the 

proposed kinetic expression (eq. 6.2). Nonetheless, a marked decrease in the As(III) 

dissolved concentration on February 2008 is observed in the upper reaches of the stream 

(between TS1-TS2 mixing point and TS3) and is not totally reproduced (Fig. 6.2d). This 

discrepancy between the measured and the predicted values is difficult to interpret. It 

could be attributed to differences in solar irradiation during day time sampling since 

ultraviolet light induces rapid photooxidation of As(III) to As(V), and also to the fact that 

high Fe(II)/Fe(III) ratio (as observed upstream) raises hydroxyl radical production, 

increasing the oxidation rate of As(III) (Sarmiento, 2007).  

The schwertmannite precipitation rate was calculated from the Fe(III) concentration 

differences along the stream (eq. 6.3; Table 6.1). The estimated rate for schwertmannite 

precipitation was around 3.1x10-7 and 1.7x10-7 mol L-1 s-1 for the data of March 2007 and 

February 2008, respectively. These rate values would be 1.3x10-7 and 2.4x10-7 mol L-1 s-1 

using the differences of total dissolved iron along the Tinto Santa Rosa stream as reported 

in Sánchez-España et al. (2007). These values would be in the range of 1.7x10-6 to 10-7 mol 

L-1 s-1 reported by Sánchez-España et al. (2007) for other AMD impacted sites in the 

Iberian Pyritic Belt.  
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The determination of the rate constant value for schwertmannite precipitation is 

complicated because schwertmannite is an amorphous Fe-phase with a solubility 

constant value that covers a range of several orders of magnitude (Bigham et al., 1996; Yu 

et al., 1999). Using rate constants of 10-8.0 and 10-8.5 mol L-1 s-1, the model adequately 

reproduces the field data. Given the absence of similar precipitation expressions in the 

literature, the same kinetic expression was used to model the reported data by Acero et al. 

(2006) of January 2004 in the Cueva de la Mora stream (located close to the Tinto Santa 

Rosa mine). A precipitation constant of 10-8.1 mol L-1 s-1 was obtained by coupling the 

Fe(II) oxidation (with the same oxidation rate constant of 10-3.75 L mol-1 s-1) as that of the 

February data model) and the schwertmannite precipitation processes. The rate constant 

obtained is in good agreement with the one obtained for schwertmannite precipitation in 

the Tinto Santa Rosa acid discharge.  

The partitioning of an element into preferential solid and aqueous phases is useful 

in predicting the amount of each element that is incorporated into the solid phase. The 

distribution coefficient (Kd) for As(V) into schwertmannite was obtained from laboratory 

data by Fukushi et al. (2003b). Kinetic sorption of As(V) onto schwertmannite was 

modelled by incorporating As(V) as a minor constituent into precipitated schwertmannite 

(eq. 6.4; Table 6.1). Although the model is simplified by omitting the water chemistry, the 

calculated data adequately predict the evolution of the measured As(V) when the 

distribution coefficients are equal to 103.42 and 103.90. These values are respectively lower 

than 104.5 and 105.0, which were calculated from the data of Fukushi et al. (2003b) under 

similar As(V) concentrations to those of this study. This discrepancy could be attributed 

to the higher sulfate concentration in the Tinto Santa Rosa stream, that ranges  from 2800 

to 3500 mg L-1), than in the laboratory experiments (10-70 mg L-1). Schwertmannite 

sorption mechanism was suggested to occur via sulfate-arsenate exchange (Fukushi et al., 

2003b; Fukushi et al., 2004) similar to that proposed for jarosite. Therefore, the 

schwertmannite exchange capacity could decrease as sulfate increases in solution as 

observed for jarosite (see Chapter 4). The model reproduced suitably the arsenic field 

data. Only in the lower reaches did the predicted evolution slightly overestimate the field 
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values. This slight discrepancy may be attributed to the fact that a uniform stream bed in 

which only schwertmannite was considered as the Fe(III)-phase was assumed. As 

discussed in Chapter 4, the As(V) sorption capacities of schwertmannite, goethite and 

jarosite are very different.  

6.3 Conclusions 

A 1-D reactive transport model coupling advective flux and several chemical reactions 

has proved to be useful in elucidating the geochemical behaviour of an AMD stream. A 

remarkable innovation in this model is the incorporation of key chemical reactions such 

as iron and arsenic oxidation, precipitation of schwertmannite and arsenic sorption onto 

the newly precipitated schwertmannite on the stream bed.  

Our geochemical modeling highlights the importance of iron oxidation, which 

ultimately induces all the geochemical changes observed in the system. On the one hand, 

Fe(III) is capable of oxidizing As(III), and on the other hand the precipitation of Fe(III) 

phases favors the As(V) sorption onto them. Therefore, the main mechanism to attenuate 

naturally arsenic in AMD discharges is schwertmannite precipitation together with 

arsenite oxidation to arsenate.  

Despite the simplicity of our model, the simulations satisfactorily reproduced the 

main chemical features of the stream water such as the pH decrease downstream and the 

accompanying changes in arsenic (As(III), As(V), AsTOT) and iron (Fe(II), Fe(III) and FeTOT) 

concentrations. The fitted kinetic constants for iron oxidation are comparable to those 

reported in earlier studies with the same rate law under field and laboratory biotic 

conditions. The distribution coefficient of arsenate onto schwertmannite was lower than 

that calculated from data obtained under laboratory conditions. This is probably due to 

the fact that the schwertmannite sorption mechanism, which was suggested to occur via 

sulfate-arsenate exchange, is likely affected by high sulfate concentrations. The model 

calibration demonstrated the need for scaling the arsenic oxidation rate obtained under 

laboratory conditions since it was 1-2 orders of magnitude lower. As for the rate constant 
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of schwertmannite precipitation, this constant was calibrated to reproduce the iron 

evolution observed given the absence of these values in the literature. This value proved 

to be similar in both samplings and was suitable for modeling schwertmannite 

precipitation at another AMD site in the Iberian Pyritic Belt.  



 



 

 

 

Chapter 7 

General conclusions 

This chapter summarizes the main contributions of this thesis. 

The first part of this thesis is concerned with flow-through experiments designed to 

obtain the dissolution rate laws applicable to the prediction of the long-term dissolution 

of arsenopyrite and marcasite, the main contributors with pyrite of arsenic to waters.  

The arsenopyrite dissolution rate law at pH range 1-6 and 25 ˚C can be expressed as:  

05.005.005.060.025.007.8

25

12 ·10)(
2

±−±±−−−

+
⋅=
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aasmmolR

o

 (7.1)  

The marcasite dissolution rate law at pH between 1 and 3 and 25 ˚C can be expressed as: 

04.008.003.033.014.010.9

25
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+
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o

 (7.2)  

Under the experimental conditions of this study, arsenopyrite and marcasite 

dissolution rates are significantly dependent on dissolved oxygen, decreasing as the 
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dissolved oxygen concentration is diminished. By contrast, pH has little effect on 

dissolution.  

The apparent activation energy is 29.4 and 14.1 kJ mol-1 for arsenopyrite and 

marcasite dissolution, respectively. These rather low values suggest that the overall 

dissolution reaction is controlled by transport processes or mixed-controlled by surface 

reactions and transport processes.  

In acidic solutions (pH ≤ 3) a sulfur-enriched layer is created over the two sulfide 

surfaces. The originated layers are mainly made up of polysulfides and sulfates and the 

presence of elemental sulfur cannot be ruled out. These layers do not exert a passivating 

effect and the steady state is attained. 

The iron released from arsenopyrite and marcasite dissolved under mildly acid to 

basic pH, precipitates as Fe-oxyhydroxide phases over the surfaces. This Fe-coating slows 

down diffusion of aqueous species through it. This results in a decrease in metal release, 

preventing the attainment of the steady state. The formation of these Fe-coatings is 

important at remediated AMD sites since these coatings passivate the surfaces of the 

metal-rich sulfides. These coatings become the sink of toxic metal(oid)s (e.g., arsenic) in 

AMD waters because of their high stability and retention capacities.  

The second part of this thesis deals with the oxidation of As(III) to As (V) in the 

presence of iron, and As(V) sorption on goethite and jarosite under laboratory conditions 

similar to those found in AMD waters. Arsenic retention capacities of goethite and 

jarosite are compared to that of schwertmannite. 

Arsenic speciation and redox chemistry seem to be controlled by aqueous Fe in 

AMD waters. Under AMD biotic conditions, ferrous iron and arsenite oxidize 

simultaneously. Despite reports on the presence of arsenite-oxidizing bacteria in mine-

drainage waters, our findings suggest that Fe(III), which resulted from microbial 

oxidation of ferrous iron, abiotically oxidized As(III). As(III) oxidation to As(V) by Fe(III) 
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is slow under abiotic conditions. Arsenite oxidation is greatly enhanced by light in the 

presence of chloride and by Fe(III) in solution.  

Arsenic mobilization in soils and waters is mainly controlled by sorption processes. 

Acid Rock Drainage (ARD) and Acid Mine Drainage (AMD) impacted areas usually 

show high arsenic contents that decrease with the distance from the polluting source 

(mine adit, tailings, heaps, etc.). Natural attenuation of arsenic in AMD areas is controlled 

by new iron precipitates (e.g., schwertmannite (Fe8O8(OH)5.5(SO4)1.25), jarosite 

(KFe3(SO4)2(OH)6) and goethite (FeOOH)) that sorb aqueous arsenate. Sorption capacity 

of goethite and jarosite was studied using batch experiments with synthetic K-jarosite 

and goethite at highly acidic pH (1.5-2.5). The effect of ionic strength and sulfate 

concentration on arsenic removal was also investigated. The two minerals were able to 

remove arsenic from aqueous solutions. In the absence of competitive effects of other 

anions, K-jarosite presented better removal efficiency than goethite for As(V). The 

maximum sorption capacity was respectively estimated to be 1.2·10-4 and 7.0·10-6 mol m-2 

under similar experimental conditions. Ionic strength and pH had little effect on the 

sorption capacity of goethite and jarosite in the small range of pH studied. The presence 

of sulfate, which is the main anion in AMD natural systems, had a negative effect on 

arsenic removal, since sulphate competes with arsenate for surface sorption sites.  

The sorption capacities obtained are considerably lower than that reported by 

schwertmannite. This suggests that a net release of As(V) to water could take place 

during schwertmannite transformation to jarosite or goethite.  

The last part of this thesis is devoted to the characterization of the geochemical 

processes involved in arsenic natural mitigation at the AMD sites located in the Iberian 

Pyritic Belt (SW, Spain). To this end, the chemistry of waters and sediments of the Tinto 

Santa Rosa acid mine discharge is discussed.  

The most striking feature observed in the Tinto Santa Rosa AMD waters is the 

reduction of pH downstream accompanied by a decrease in ferrous and total iron. These 
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observations indicate that bacterially mediated oxidation of ferrous to ferric iron takes 

place simultaneously with Fe(III) removal by precipitation of Fe(III)-phases, which cover 

the bed stream. Dissolved arsenic concentration decreases as As(III) is oxidized to As(V) 

downstream.  

The bed-stream precipitates show a high arsenic concentration, which is mainly in 

its pentavalent state, indicating that arsenic is selectively incorporated into the solids 

probably due to sorption processes at acidic pH. This demonstrates the efficiency of AMD 

precipitates in sequestering arsenic. Mineralogically, loose and crusty precipitates consist 

of detritic silicates and oxihydroxides and oxy-hydroxy-sulfates of iron such as 

schwertmannite, jarosite and goethite. Consolidated terraces are made up of 

schwertmannite, goethite, jarosite and small amounts of quartz.  

A comparison of sediment mineralogy and arsenic concentration in the identified 

Fe-phases shows that the highest arsenic concentration is associated with the sediments 

largely made up of schwertmannite corresponding to loose precipitates and terraces 

upstream. Arsenic concentration was lower downstream, where precipitates consist 

largely of goethite and/or jarosite with As(V) sorption capacities lower than that of 

schwertmannite. 

The main geochemical processes observed in the field and studied under laboratory 

conditions were quantified by a 1-D reaction-transport model using the PHREEQC code. 

In the light of our findings, the model, despite its simplicity, satisfactorily reproduces the 

arsenic mobilization data along the Tinto Santa Rosa acid discharge.  
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Table A.1: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-1-1 0 0.040 61.24 95678 122.36

ASP-25-1-2 20 0.042 17.79 97362 52.07

ASP-25-1-3 96 0.043 9.28 96738 35.63

ASP-25-1-4 119 0.043 9.75 97424 31.72

ASP-25-1-5 144 0.043 11.13 97112 33.05

ASP-25-1-6 187 0.043 20.27 97549 36.03

ASP-25-1-7 264 0.043 37.88 97861 45.62

ASP-25-1-8 288 0.043 39.05 98110 45.23

ASP-25-1-9 311 0.043 47.44 97923 53.18

ASP-25-1-10 336 0.043 30.59 98609 34.84

ASP-25-1-11 358 0.043 29.47 98235 34.50

ASP-25-1-12 432 0.044 25.11 98796 28.58

ASP-25-1-13 456 0.044 32.86 97424 38.07

ASP-25-1-14 479 0.045 33.29 97923 38.64

ASP-25-1-15 504 0.045 30.97 97985 36.13

ASP-25-1-16 526 0.033 30.97 97486 36.49

ASP-25-1-17 600 0.042 66.10 98983 72.01

ASP-25-1-18 623 0.046 41.67 98859 48.45

ASP-25-1-19 646 0.046 26.20 99857 29.77

ASP-25-1-20 672 0.048 34.46 99170 39.61

ASP-25-1-21 692 0.047 32.89 99732 37.31

ASP-25-1-22 767 0.048 30.91 100293 35.48

ASP-25-1-23 792 0.049 31.50 99358 35.19

ASP-25-1-24 816 0.050 30.54 100231 34.59

ASP-25-1-25 840 0.048 31.66 100418 35.79

ASP-25-1-26 862 0.038 35.42 99545 39.89

ASP-25-1-27 936 0.038 33.08 100356 36.38

ASP-25-1-28 959 0.038 30.75 100667 34.12

ASP-25-1-29 983 0.038 31.42 101042 36.03

ASP-25-1-30 1007 0.039 32.06 100106 35.81

ASP-25-1-31 1031 0.039 27.31 98983 30.24

ASP-25-1-32 1100 0.039 28.59 100231 31.95

ASP-25-1-33 1125 0.040 29.36 98983 32.29

ASP-25-1-34 1148 0.039 31.82 100605 35.74

ASP-25-1-35 1176 0.040 31.82 100543 35.39

ASP-25-1-36 1198 0.040 27.39 99919 30.93

Sample
µmol L

-1
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Table A.2: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

.  

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-2-1 0 0.040 29.77 970 40.86

ASP-25-2-2 20 0.042 14.05 970 14.05

ASP-25-2-3 96 0.043 9.59 954 7.40

ASP-25-2-4 119 0.043 6.76 968 4.58

ASP-25-2-5 144 0.043 5.29 971 3.91

ASP-25-2-6 187 0.043 5.31 975 5.01

ASP-25-2-7 264 0.043 7.82 990 12.15

ASP-25-2-8 288 0.043 10.08 974 19.84

ASP-25-2-9 311 0.043 14.18 981 32.46

ASP-25-2-10 336 0.043 12.31 970 28.95

ASP-25-2-11 358 0.043 13.30 968 32.82

ASP-25-2-12 432 0.044 17.11 993 40.36

ASP-25-2-13 456 0.044 17.57 1012 40.72

ASP-25-2-14 479 0.045 20.50 1000 43.92

ASP-25-2-15 504 0.045 30.39 1008 47.97

ASP-25-2-16 526 0.033 39.12 995 43.46

ASP-25-2-17 600 0.042 36.87 1000 39.07

ASP-25-2-18 623 0.046 39.26 1004 41.50

ASP-25-2-19 646 0.046 30.94 952 33.57

ASP-25-2-20 672 0.048 36.23 977 40.41

ASP-25-2-21 692 0.047 35.30 952 39.12

ASP-25-2-22 767 0.048 34.45 968 38.48

ASP-25-2-23 792 0.049 33.66 972 36.85

ASP-25-2-24 816 0.050 33.17 948 36.42

ASP-25-2-25 840 0.048 35.14 961 39.09

Sample
µmol L

-1
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Table A.3: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state(n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-3-1 0 0.016 81.27 51.24 156.38

ASP-25-3-2 47 0.036 36.84 24.61 88.61

ASP-25-3-3 73 0.036 24.21 20.59 63.72

ASP-25-3-4 96 0.028 17.79 15.24 50.81

ASP-25-3-5 168 0.037 11.20 10.00 30.06

ASP-25-3-6 192 0.037 10.04 8.38 26.30

ASP-25-3-7 216 0.037 11.64 8.12 28.00

ASP-25-3-8 240 0.038 16.88 9.11 38.30

ASP-25-3-9 262 0.038 21.85 10.34 35.51

ASP-25-3-10 337 0.038 33.66 15.29 41.56

ASP-25-3-11 357 0.037 76.53 22.48 89.78

ASP-25-3-12 385 0.037 56.49 15.96 60.32

ASP-25-3-13 408 0.037 67.23 22.52 74.32

ASP-25-3-14 432 0.037 53.16 18.15 59.14

ASP-25-3-15 504 0.037 58.72 23.78 65.23

ASP-25-3-16 527 0.037 53.34 24.34 58.76

ASP-25-3-17 552 0.037 52.02 21.15 56.67

ASP-25-3-18 577 0.037 50.56 22.48 55.49

ASP-25-3-19 600 0.037 48.28 19.08 52.52

ASP-25-3-20 672 0.037 46.69 18.52 51.26

ASP-25-3-21 696 0.037 41.63 20.95 46.55

ASP-25-3-23 744 0.037 39.26 18.80 43.56

ASP-25-3-25 839 0.037 38.83 19.97 43.13

ASP-25-3-27 887 0.037 37.28 18.66 41.27

ASP-25-3-29 1006 0.037 36.76 20.06 40.39

ASP-25-3-31 1055 0.037 34.45 17.87 37.80

ASP-25-3-33 1103 0.037 34.77 18.47 38.14

ASP-25-3-35 1200 0.038 32.92 17.57 35.95

ASP-25-3-37 1247 0.038 33.61 17.87 36.47

Sample
µmol L

-1
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Table A.4: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-4-1 0 0.032 33.61 86.17 17.52

ASP-25-4-2 24 0.033 49.04 69.23 27.54

ASP-25-4-3 47 0.033 63.12 58.82 69.58

ASP-25-4-4 72 0.034 63.97 45.72 81.25

ASP-25-4-5 96 0.034 55.79 38.30 73.79

ASP-25-4-6 168 0.034 49.07 34.24 62.92

ASP-25-4-7 192 0.034 44.55 33.77 56.54

ASP-25-4-8 216 0.034 44.45 31.47 56.31

ASP-25-4-9 240 0.034 47.58 33.24 59.66

ASP-25-4-10 262 0.034 46.69 30.51 56.11

ASP-25-4-11 336 0.034 45.21 29.00 53.00

ASP-25-4-12 357 0.034 22.08 22.55 n.a.

ASP-25-4-13 384 0.034 42.31 24.81 49.90

ASP-25-4-14 407 0.034 44.11 25.74 52.26

ASP-25-4-15 432 0.034 37.64 24.78 44.28

ASP-25-4-16 503 0.034 39.44 25.18 45.66

ASP-25-4-17 527 0.034 38.51 23.00 43.49

ASP-25-4-18 552 0.034 36.99 21.26 41.04

ASP-25-4-19 576 0.034 36.29 21.10 40.18

ASP-25-4-20 600 0.035 35.09 19.59 38.03

ASP-25-4-21 672 0.035 32.74 22.59 36.67

ASP-25-4-22 720 0.035 32.92 22.83 37.19

ASP-25-4-23 768 0.035 33.86 22.72 35.33

ASP-25-4-24 863 0.035 35.09 21.85 38.14

ASP-25-4-25 1030 0.035 33.94 19.79 36.08

ASP-25-4-26 1077 0.035 33.74 20.27 36.24

ASP-25-4-27 1174 0.035 33.60 20.41 36.28

ASP-25-4-28 1224 0.037 30.59 18.76 32.55

ASP-25-4-29 1272 0.038 30.99 20.07 32.01

ASP-25-4-30 1416 0.038 29.93 17.67 31.23

ASP-25-4-31 1512 0.038 29.14 17.36 30.56

ASP-25-4-32 1560 0.038 27.80 16.58 29.27

ASP-25-4-33 1608 0.038 29.55 19.75 30.13

Sample
µmol L

-1
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Table A.5: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state(n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-12-1 0 0.040 112.72 48.96 197.53

ASP-25-12-2 117 0.042 77.77 34.93 107.70

ASP-25-12-3 287 0.041 72.89 33.37 87.10

ASP-25-12-4 378 0.042 63.08 30.93 69.96

ASP-25-12-5 502 0.042 79.87 35.52 87.64

ASP-25-12-6 619 0.042 66.70 31.22 72.30

ASP-25-12-7 714 0.042 71.19 32.46 80.48

ASP-25-12-8 839 0.042 75.83 33.77 80.03

ASP-25-12-9 958 0.042 71.41 31.81 75.33

ASP-25-12-10 1050 0.042 64.46 31.93 71.58

ASP-25-12-11 1174 0.042 63.80 32.59 69.16

ASP-25-12-12 1295 0.041 66.24 31.56 71.33

ASP-25-12-13 1386 0.042 64.29 32.87 71.34

ASP-25-12-14 1505 0.042 54.06 31.22 57.59

ASP-25-12-15 1554 0.038 57.99 30.88 64.22

ASP-25-12-16 1632 0.042 47.69 27.37 54.72

ASP-25-12-17 1676 0.042 54.82 30.20 61.85

ASP-25-12-18 1700 0.042 52.09 16.46 57.11

ASP-25-12-19 1797 0.042 48.15 20.45 51.56

ASP-25-12-20 1846 0.042 48.69 23.79 51.67

ASP-25-12-21 1896 0.042 46.39 22.87 50.61

ASP-25-12-22 1964 0.042 40.15 17.41 44.90

ASP-25-12-23 2058 0.042 44.58 23.83 47.35

ASP-25-12-24 2155 0.041 47.96 33.45 52.09

ASP-25-12-25 2299 0.041 50.78 26.19 53.96

ASP-25-12-26 2394 0.041 50.78 21.61 52.96

ASP-25-12-27 2465 0.041 47.86 27.54 52.66

ASP-25-12-28 2513 0.041 51.52 35.52 53.86

ASP-25-12-29 2561 0.042 50.51 24.56 54.33

ASP-25-12-30 2633 0.041 54.06 29.16 56.89

ASP-25-12-31 2681 0.041 51.32 33.15 55.16

ASP-25-12-32 2729 0.041 48.54 22.08 53.61

ASP-25-12-33 2803 0.041 46.92 26.81 48.92

ASP-25-12-34 2852 0.041 49.71 23.71 54.56

ASP-25-12-35 2897 0.041 52.51 27.34 55.76

Sample
µmol L

-1
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Table A.6: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-13-1 0 0.046 127.85 8.06 155.24

ASP-25-13-2 123 0.048 75.98 4.84 87.16

ASP-25-13-3 195 0.048 82.08 2.89 96.70

ASP-25-13-4 293 0.048 74.26 1.73 91.75

ASP-25-13-5 383 0.049 80.44 52.42 93.65

ASP-25-13-6 507 0.050 101.35 347.71 105.64

ASP-25-13-7 625 0.049 92.05 585.56 48.85

ASP-25-13-8 719 0.048 77.28 700.88 0.25

ASP-25-13-9 845 0.048 61.17 712.17 0.09

ASP-25-13-10 964 0.048 42.79 733.72 0.04

ASP-25-13-11 1056 0.049 90.18 375.42 177.50

ASP-25-13-12 1180 0.049 143.33 154.33 221.23

ASP-25-13-13 1348 0.049 92.39 148.77 111.46

ASP-25-13-14 1466 0.048 88.19 86.00 100.08

ASP-25-13-15 1560 0.044 72.03 85.02 84.61

ASP-25-13-16 1682 0.046 63.27 70.31 71.72

ASP-25-13-17 1803 0.049 64.36 65.66 75.05

ASP-25-13-18 1847 0.048 64.40 45.33 72.59

ASP-25-13-19 1894 0.049 54.82 60.15 62.65

ASP-25-13-20 1970 0.050 59.00 68.57 66.37

ASP-25-13-21 2014 0.050 61.04 59.29 70.55

ASP-25-13-22 2062 0.050 63.90 60.73 73.13

ASP-25-13-23 2136 0.050 69.89 69.26 77.54

ASP-25-13-24 2161 0.049 70.54 57.95 78.80

ASP-25-13-25 2236 0.046 70.03 57.44 78.15

ASP-25-13-26 2305 0.034 89.96 80.51 100.24

ASP-25-13-27 2353 0.025 111.35 90.22 126.17

ASP-25-13-28 2399 0.026 86.95 63.54 98.78

ASP-25-13-29 2471 0.026 87.45 82.41 99.93

ASP-25-13-30 2520 0.026 85.30 74.98 97.91

ASP-25-13-31 2567 0.026 95.73 84.56 106.61

ASP-25-13-32 2639 0.025 97.02 91.62 111.16

ASP-25-13-33 2687 0.026 97.00 81.42 111.69

ASP-25-13-34 2735 0.026 94.08 89.61 104.56

ASP-25-13-35 2809 0.026 96.97 83.37 108.27

ASP-25-13-36 2857 0.025 94.80 79.56 108.19

Sample
µmol L

-1
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Table A.7: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-5-1 0 0.036 39.63 36.39 66.46

ASP-25-5-2 24 0.018 17.37 16.04 44.01

ASP-25-5-3 97 0.017 9.66 9.30 29.58

ASP-25-5-4 122 0.037 5.21 6.46 18.44

ASP-25-5-5 145 0.037 4.40 6.35 16.02

ASP-25-5-6 169 0.037 4.13 5.61 14.76

ASP-25-5-7 191 0.037 2.63 3.89 9.83

ASP-25-5-8 266 0.036 2.78 5.81 9.39

ASP-25-5-9 286 0.036 4.80 5.39 14.49

ASP-25-5-10 314 0.036 12.90 7.64 22.44

ASP-25-5-11 337 0.036 13.10 n.a. 17.35

ASP-25-5-12 361 0.036 5.23 n.a. 7.18

ASP-25-5-13 432 0.036 6.07 n.a. 9.85

ASP-25-5-14 456 0.036 8.68 n.a. 12.66

ASP-25-5-15 481 0.036 10.22 n.a. 13.49

ASP-25-5-16 506 0.036 7.76 n.a. 10.00

ASP-25-5-17 529 0.036 5.74 n.a. 7.57

ASP-25-5-18 601 0.036 8.27 n.a. 11.40

ASP-25-5-19 625 0.036 8.74 n.a. 11.70

ASP-25-5-20 649 0.036 9.30 n.a. 12.15

ASP-25-5-21 673 0.034 10.47 8.55 12.28

ASP-25-5-23 768 0.034 10.10 4.59 13.05

ASP-25-5-25 816 0.035 11.08 5.03 13.35

ASP-25-5-27 935 0.035 11.24 5.47 14.00

ASP-25-5-29 984 0.035 7.01 3.74 8.37

ASP-25-5-31 1032 0.032 7.76 4.88 9.10

ASP-25-5-33 1128 0.035 7.94 4.08 9.60

ASP-25-5-35 1177 0.035 8.04 4.65 9.58

Sample
µmol L

-1
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Tables A.8 and A.9: Experimental data from the flow-through experiments presented in this 

thesis. Time periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; 

b.d.l.: below detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-24-1 0 0.034 180.01 132.26 245.16

ASP-25-24-2 63 0.037 30.42 26.82 41.94

ASP-25-24-3 142 0.037 16.39 14.07 25.80

ASP-25-24-4 191 0.037 17.17 15.98 25.00

ASP-25-24-5 236 0.037 16.73 19.57 22.62

ASP-25-24-6 307 0.036 17.18 b.d.l. 22.35

ASP-25-24-7 357 0.036 19.38 16.28 23.65

ASP-25-24-8 401 0.036 22.31 15.01 27.20

ASP-25-24-9 569 0.036 19.32 19.77 23.79

ASP-25-24-10 641 0.036 21.04 19.14 25.74

ASP-25-24-11 696 0.036 15.43 1.60 21.19

ASP-25-24-12 808 0.035 17.24 2.60 21.84

ASP-25-24-13 861 0.035 15.59 20.15 20.44

ASP-25-24-14 909 0.035 18.18 14.49 22.20

ASP-25-24-15 984 0.034 23.85 22.16 29.07

ASP-25-24-16 1027 0.035 18.04 34.02 21.34

ASP-25-24-17 1078 0.036 16.04 19.90 20.96

ASP-25-24-18 1166 0.036 16.60 26.40 21.78

ASP-25-24-19 1199 0.036 16.40 28.05 22.09

ASP-25-24-20 1246 0.036 19.25 28.63 23.65

Sample
µmol L

-1

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-25-1 0 0.035 115.59 57.67 208.70

ASP-25-25-2 63 0.039 21.66 n.a. 51.98

ASP-25-25-3 142 0.038 18.82 7.60 43.58

ASP-25-25-4 191 0.038 18.69 4.28 41.41

ASP-25-25-5 236 0.038 18.12 2.74 34.55

ASP-25-25-6 307 0.037 18.41 7.15 31.99

ASP-25-25-7 357 0.038 19.70 6.08 31.56

ASP-25-25-8 401 0.038 19.60 9.43 29.21

ASP-25-25-9 569 0.036 18.44 7.74 23.30

ASP-25-25-10 641 0.038 17.01 2.77 22.65

ASP-25-25-11 696 0.039 14.42 17.26 20.53

ASP-25-25-12 808 0.038 15.79 17.13 20.25

ASP-25-25-13 861 0.038 15.22 26.37 19.05

ASP-25-25-14 909 0.038 15.39 10.94 21.14

ASP-25-25-15 984 0.038 19.82 24.46 23.65

ASP-25-25-16 1027 0.039 15.38 13.49 19.42

ASP-25-25-17 1078 0.039 15.07 23.96 19.02

ASP-25-25-18 1166 0.038 16.72 23.09 20.20

ASP-25-25-19 1199 0.038 14.66 18.97 17.64

ASP-25-25-20 1247 0.038 16.11 25.71 18.72

Sample
µmol L

-1
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Tables A.10: Experimental data from the flow-through experiments presented in this thesis. 

Time periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: 

below detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-6-1 0 0.018 111.33 119878 10276

ASP-25-6-2 49 0.037 55.78 117913 9825

ASP-25-6-3 120 0.037 36.09 120938 10025

ASP-25-6-4 144 0.037 33.41 122061 10061

ASP-25-6-5 169 0.038 29.99 125023 10286

ASP-25-6-6 193 0.038 27.83 118537 9785

ASP-25-6-7 217 0.038 26.41 121998 10032

ASP-25-6-8 289 0.038 25.88 123558 10149

ASP-25-6-9 313 0.038 25.99 121998 9941

ASP-25-6-10 337 0.038 24.35 122435 10007

ASP-25-6-11 361 0.038 24.24 120907 9812

ASP-25-6-12 385 0.038 24.55 122030 9937

ASP-25-6-13 456 0.038 25.47 121562 9955

ASP-25-6-14 480 0.038 22.29 121437 9950

ASP-25-6-15 503 0.038 22.90 124337 10254

ASP-25-6-16 527 0.038 23.84 119410 9755

ASP-25-6-17 623 0.038 21.48 122529 9982

ASP-25-6-18 647 0.038 22.41 122996 9939

ASP-25-6-19 671 0.038 21.36 124337 10082

ASP-25-6-20 694 0.038 23.41 123277 10086

ASP-25-6-21 719 0.038 21.57 121718 9893

ASP-25-6-22 791 0.038 20.85 121437 9894

ASP-25-6-23 816 0.038 20.85 124774 10125

ASP-25-6-24 841 0.038 22.81 122684 9957

ASP-25-6-25 864 0.038 22.49 121655 9878

ASP-25-6-26 889 0.038 23.21 121312 9833

ASP-25-6-27 1009 0.038 20.25 130543 10349

ASP-25-6-28 1033 0.038 20.97 127924 10272

ASP-25-6-29 1057 0.038 20.85 122684 9955

ASP-25-6-30 1129 0.038 21.77 130824 10421

ASP-25-6-31 1153 0.038 21.26 130325 10331

ASP-25-6-32 1177 0.038 22.49 127144 10278

ASP-25-6-33 1201 0.038 23.01 129171 10403

ASP-25-6-34 1225 0.038 21.05 122466 9996

ASP-25-6-35 1297 0.038 21.77 123183 9964

Sample
µmol L

-1

 

 

 

 



198                                                                                                                                                      Appendix  

 

Table A.11: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-7-1-a 0 0.032 18.93 76.03 22.90

ASP-25-7-2-a 28 0.038 5.30 9.15 10.62

ASP-25-7-3-a 311 0.038 2.11 4.10 5.67

ASP-25-7-4-a 459 0.038 b.d.l b.d.l 2.38

ASP-25-7-5-a 627 0.038 b.d.l b.d.l 1.08

ASP-25-7-6-a 797 0.038 b.d.l b.d.l 0.64

ASP-25-7-7-a 1132 0.035 b.d.l b.d.l 0.47

ASP-25-7-8-a 1157 0.039 b.d.l b.d.l 0.46

ASP-25-7-9-a 1179 0.038 b.d.l b.d.l 0.93

ASP-25-7-10-a 1202 0.032 b.d.l b.d.l 0.59

ASP-25-7-11-a 1275 0.038 b.d.l b.d.l 0.56

ASP-25-7-12-a 1300 0.038 b.d.l b.d.l 0.68

ASP-25-7-13-a 1324 0.038 b.d.l b.d.l 1.01

ASP-25-7-1-b 1347 0.038 1.70 b.d.l 1.99

ASP-25-7-2-b 1444 0.038 4.18 b.d.l 4.60

ASP-25-7-3-b 1491 0.038 4.82 3.49 5.38

ASP-25-7-4-b 1540 0.037 5.73 4.04 6.21

ASP-25-7-5-b 1636 0.038 4.75 3.62 5.29

ASP-25-7-6-b 1683 0.037 5.28 3.81 5.79

ASP-25-7-7-b 1780 0.038 4.74 3.62 5.27

ASP-25-7-8-b 1828 0.037 4.68 3.81 5.16

ASP-25-7-9-b 1876 0.037 5.37 4.24 5.28

ASP-25-7-10-b 2020 0.037 4.53 3.65 4.97

ASP-25-7-11-b 2163 0.037 5.18 4.00 5.39

ASP-25-7-12-b 2308 0.037 4.53 3.50 4.84

ASP-25-7-13-b 2452 0.037 4.03 3.39 4.20

ASP-25-7-15-b 2549 0.036 4.25 3.42 4.70

ASP-25-7-16-b 2643 0.036 4.12 3.42 4.40

ASP-25-7-17-b 2860 0.037 5.42 3.93 5.78

ASP-25-7-1-c 2979 0.004 46.32 32.18 43.76

ASP-25-7-2-c 3219 0.036 17.10 17.09 15.19

ASP-25-7-3-c 3340 0.036 20.78 22.48 21.81

ASP-25-7-4-c 3460 0.035 18.63 24.03 19.86

ASP-25-7-5-c 3508 0.036 21.35 26.36 22.20

ASP-25-7-6-c 3724 0.036 21.26 14.50 20.02

ASP-25-7-7-c 3820 0.036 18.00 12.23 16.88

ASP-25-7-8-c 3868 0.036 16.16 10.05 17.42

ASP-25-7-9-c 3892 0.036 16.69 11.71 18.42

ASP-25-7-10-c 3983 0.036 17.95 18.22 17.83

ASP-25-7-11-c 4012 0.036 16.36 10.45 17.29

Sample
µmol L

-1
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Table A.12: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-32-1 0 0.007 166.27 70.01 217.37

ASP-25-32-2 127 0.015 89.42 47.95 151.55

ASP-25-32-3 151 0.015 56.02 41.99 121.61

ASP-25-32-4 174 0.014 28.63 23.46 78.58

ASP-25-32-5 238 0.015 12.64 24.44 55.94

ASP-25-32-6 289 0.013 10.85 10.11 38.46

ASP-25-32-7 342 0.016 9.57 20.74 34.87

ASP-25-32-8 409 0.015 11.07 30.00 31.30

ASP-25-32-9 459 0.012 8.71 25.33 25.37

ASP-25-32-10 503 0.016 7.98 7.44 20.85

ASP-25-32-11 579 0.013 8.64 11.32 15.71

ASP-25-32-12 676 0.016 5.22 4.92 11.41

ASP-25-32-13 771 0.015 4.26 10.71 9.07

ASP-25-32-14 841 0.015 4.41 4.31 7.50

ASP-25-32-15 915 0.015 4.83 18.60 7.79

ASP-25-32-16 967 0.012 4.01 5.60 6.96

Sample
µmol L

-1
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Table A.13: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-34-1-a 0 0.016 350.47 170.09 541.93

ASP-25-34-2-a 54 0.049 170.86 70.20 309.47

ASP-25-34-3-a 95 0.048 50.78 20.77 87.40

ASP-25-34-4-a 167 0.048 39.67 18.63 53.88

ASP-25-34-5-a 213 0.045 35.11 16.10 41.74

ASP-25-34-6-a 262 0.046 26.14 13.20 31.04

ASP-25-34-7-a 333 0.027 24.68 13.22 28.15

ASP-25-34-8-a 384 0.047 22.54 12.04 25.94

ASP-25-34-9-a 406 0.047 20.85 n.a. 24.08

ASP-25-34-10-a 430 0.047 19.30 n.a. 21.97

ASP-25-34-11-a 502 0.046 21.69 n.a. 22.68

ASP-25-34-12-a 526 0.046 20.31 n.a. 20.71

ASP-25-34-13-a 549 0.047 19.06 n.a. 19.82

ASP-25-34-14-a 579 0.046 16.97 9.72 18.84

ASP-25-34-15-a 606 0.046 18.30 10.77 19.02

ASP-25-34-16-a 676 0.040 18.35 12.12 22.92

ASP-25-34-17-a 723 0.047 15.88 9.09 17.61

ASP-25-34-18-a 749 0.047 15.99 8.87 16.94

ASP-25-34-19-a 773 0.016 14.61 9.45 16.40

ASP-25-34-20-a 845 0.141 15.35 9.03 16.94

ASP-25-34-21-a 870 0.006 13.33 9.75 16.15

ASP-25-34-22-a 894 0.047 15.08 9.01 15.75

ASP-25-34-23-a 940 0.046 12.69 n.a. 15.77

ASP-25-34-24-a 1013 0.046 13.88 9.01 15.79

ASP-25-34-25-a 1036 0.046 14.15 9.42 15.79

ASP-25-34-26-a 1060 0.047 13.88 8.10 15.38

ASP-25-34-27-a 1080 0.005 14.95 9.01 15.03

ASP-25-34-28-a 1102 0.055 14.55 10.44 16.08

ASP-25-34-29-a 1165 0.031 14.95 10.61 19.10

ASP-25-34-30-a 1201 0.047 12.55 10.04 18.82

ASP-25-34-31-a 1221 0.047 12.68 8.63 17.20

ASP-25-34-32-a 1246 0.047 13.48 8.63 15.32

ASP-25-34-33-a 1269 0.014 10.41 8.93 15.18

ASP-25-34-34-a 1342 0.050 7.74 4.22 4.81

ASP-25-34-1-b 1368 0.052 6.54 3.57 4.23

ASP-25-34-2-b 1391 0.051 2.80 3.60 5.00

ASP-25-34-3-b 1414 0.052 4.00 4.22 5.79

ASP-25-34-4-b 1437 0.051 2.80 5.30 6.55

ASP-25-34-5-b 1510 0.007 5.87 4.63 6.12

ASP-25-34-6-b 1536 0.048 6.41 3.60 6.12

ASP-25-34-7-b 1557 0.026 6.81 4.73 6.67

ASP-25-34-8-b 1581 0.001 2.94 4.52 6.12

ASP-25-34-9-b 1605 0.044 3.87 4.30 6.14

ASP-25-34-10-b 1677 0.049 1.44 3.95 4.09

ASP-25-34-11-b 1702 0.049 4.02 4.14 3.81

ASP-25-34-12-b 1725 0.049 2.80 3.16 3.49

Sample
µmol L

-1
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Table A.14: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-50-1-1 0 0.053 132.50 64.06 606.05

ASP-50-1-2 24 0.039 89.48 46.28 259.79

ASP-50-1-3 99 0.036 80.83 39.04 125.30

ASP-50-1-4 120 0.036 79.12 43.05 123.30

ASP-50-1-5 146 0.036 75.59 37.96 98.56

ASP-50-1-6 171 0.036 74.46 41.66 91.26

ASP-50-1-7 195 0.037 70.28 48.79 82.40

ASP-50-1-8 264 0.037 65.43 40.86 77.80

ASP-50-1-9 291 0.036 64.14 44.21 76.40

ASP-50-1-10 315 0.037 64.69 39.84 75.28

ASP-50-1-11 338 0.037 63.95 38.68 74.47

ASP-50-1-12 362 0.037 61.12 44.22 70.89

ASP-50-1-13 435 0.037 59.67 26.35 68.36

ASP-50-1-14 456 0.037 58.58 40.02 67.70

ASP-50-1-15 483 0.037 59.81 42.65 68.74

ASP-50-1-16 507 0.036 60.56 38.11 67.78

ASP-50-1-17 530 0.034 62.51 41.43 71.61

ASP-50-1-18 603 0.030 70.24 43.13 79.20

ASP-50-1-19 626 0.025 77.88 49.36 87.61

ASP-50-1-20 650 0.023 81.98 54.24 94.95

ASP-50-1-21 794 0.020 143.22 75.41 153.21

ASP-50-1-22 842 0.023 84.42 43.22 88.16

ASP-50-1-23 933 0.031 61.52 32.31 64.26

ASP-50-1-24 962 0.031 61.20 33.12 63.56

ASP-50-1-25 988 0.031 58.46 31.17 61.15

ASP-50-1-26 1011 0.031 60.32 32.87 63.08

ASP-50-1-27 1033 0.031 57.33 28.58 59.66

ASP-50-1-28 1107 0.032 55.82 30.80 58.03

ASP-50-1-29 1131 0.032 55.63 29.83 58.28

ASP-50-1-30 1154 0.032 54.24 29.35 56.78

ASP-50-1-31 1179 0.032 53.36 29.11 55.67

ASP-50-1-32 1204 0.033 51.62 30.37 54.00

ASP-50-1-33 1275 0.033 51.07 29.80 53.59

ASP-50-1-34 1298 0.032 49.47 28.41 52.19

ASP-50-1-35 1325 0.032 51.49 29.27 53.70

ASP-50-1-36 1346 0.033 51.70 29.54 54.18

ASP-50-1-37 1365 0.033 51.80 27.08 54.07

Sample
µmol L

-1
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Tables A.15 and A.16: Experimental data from the flow-through experiments presented in this 

thesis. Time periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; 

b.d.l.: below detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-50-4-1 0 0.031 365.72 251.67 348.97

ASP-50-4-2 45 0.036 141.48 n.a n.a.

ASP-50-4-3 93 0.035 136.15 83.45 125.60

ASP-50-4-4 164 0.035 119.46 72.79 90.42

ASP-50-4-5 214 0.036 105.45 65.12 91.19

ASP-50-4-6 260 0.036 95.70 58.85 74.16

ASP-50-4-7 332 0.035 90.36 53.67 82.70

ASP-50-4-8 380 0.035 86.49 52.36 78.12

ASP-50-4-9 429 0.035 75.95 50.21 63.01

ASP-50-4-10 500 0.035 83.29 47.81 74.41

ASP-50-4-11 549 0.035 77.82 48.15 73.91

ASP-50-4-12 598 0.035 77.82 47.37 75.34

ASP-50-4-13 678 0.035 73.41 n.a. n.a.

ASP-50-4-14 727 0.035 64.47 n.a. n.a.

ASP-50-4-15 769 0.035 54.06 33.09 47.56

ASP-50-4-16 840 0.035 54.73 33.49 55.54

ASP-50-4-17 885 0.035 56.06 34.05 55.81

ASP-50-4-18 932 0.035 52.72 33.77 53.57

ASP-50-4-19 1004 0.034 57.93 35.21 56.99

ASP-50-4-20 1052 0.035 62.33 36.86 60.00

Sample
µmol L

-1

 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-70-5-1 0 0.019 797.01 341.72 1139.87

ASP-70-5-2 30 0.026 452.00 228.20 762.78

ASP-70-5-3 74 0.025 138.75 117.73 196.38

ASP-70-5-4 146 0.029 89.49 86.73 133.52

ASP-70-5-5 198 0.027 74.89 63.86 96.60

ASP-70-5-6 247 0.027 56.49 61.93 75.46

ASP-70-5-7 319 0.027 38.75 60.75 56.66

ASP-70-5-8 340 0.027 34.92 52.14 49.62

ASP-70-5-9 385 0.027 32.15 50.47 42.32

ASP-70-5-10 484 0.027 32.12 44.32 42.27

ASP-70-5-11 536 0.027 30.51 50.90 40.80

ASP-70-5-12 580 0.026 31.38 41.71 41.86

ASP-70-5-13 656 0.026 31.91 32.08 43.65

ASP-70-5-14 703 0.026 34.09 43.57 42.65

ASP-70-5-15 744 0.026 26.97 41.43 37.44

Sample
µmol L

-1

 

 



203 

 

Table A.17: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Sample Time flow rate As S Fe

(h) (mL min
-1
)

ASP-70-1-1 0 0.030 304.56 132.77 959.23

ASP-70-1-2 28 0.034 167.12 84.06 269.43

ASP-70-1-3 100 0.035 107.84 66.50 122.03

ASP-70-1-4 123 0.035 96.78 54.28 111.45

ASP-70-1-5 148 0.035 79.32 43.05 90.75

ASP-70-1-6 171 0.035 69.80 57.19 79.88

ASP-70-1-7 196 0.035 56.94 46.30 65.21

ASP-70-1-8 268 0.035 55.00 38.25 76.41

ASP-70-1-9 292 0.035 49.86 16.97 57.11

ASP-70-1-10 315 0.035 47.68 23.80 56.10

ASP-70-1-11 340 0.035 47.02 32.10 53.78

ASP-70-1-12 364 0.036 46.36 28.92 51.92

ASP-70-1-13 455 0.036 45.22 29.83 50.57

ASP-70-1-14 484 0.036 44.61 41.78 49.12

ASP-70-1-15 508 0.036 41.84 19.09 49.76

ASP-70-1-16 531 0.036 38.84 25.29 47.49

ASP-70-1-17 604 0.036 39.53 27.18 45.18

ASP-70-1-18 627 0.036 38.91 29.58 44.61

ASP-70-1-19 652 0.036 37.79 23.60 42.31

ASP-70-1-20 676 0.036 38.55 17.94 43.89

ASP-70-1-21 700 0.036 35.86 21.96 41.03

ASP-70-1-22 772 0.036 37.10 29.36 42.84

ASP-70-1-23 796 0.036 38.28 22.91 42.43

ASP-70-1-24 820 0.036 37.26 21.76 42.74

ASP-70-1-25 844 0.036 38.33 21.00 43.25

ASP-70-1-26 868 0.036 36.16 20.83 41.34

ASP-70-1-27 940 0.036 36.55 25.26 42.56

ASP-70-1-28 964 0.036 36.27 19.27 41.96

ASP-70-1-29 988 0.036 36.39 22.60 42.09

ASP-70-1-30 1011 0.036 35.20 14.57 40.06

ASP-70-1-31 1108 0.036 30.71 31.20 35.01

ASP-70-1-32 1132 0.036 30.36 18.18 35.08

ASP-70-1-33 1154 0.036 31.33 24.92 36.03

ASP-70-1-34 1181 0.036 31.07 20.99 37.26

ASP-70-1-35 1201 0.036 31.34 29.96 36.60

ASP-70-1-36 1278 0.037 33.06 30.92 36.16

ASP-70-1-37 1304 0.036 32.48 25.61 37.12

ASP-70-1-38 1327 0.037 31.61 25.82 36.75

ASP-70-1-39 1347 0.037 30.36 31.93 35.94

ASP-70-1-40 1438 0.037 30.95 24.65 35.43

ASP-70-1-41 1466 0.037 31.42 31.23 34.93

ASP-70-1-42 1492 0.037 29.43 30.70 34.84

ASP-70-1-43 1513 0.037 29.06 19.23 34.40

µmol L
-1
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Table A.18: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-8-1 0 0.034 49.95 53.88 22.23

ASP-25-8-2 47 0.037 67.11 75.22 45.40

ASP-25-8-3 190 0.037 52.80 67.18 39.21

ASP-25-8-4 240 0.037 54.37 55.51 41.71

ASP-25-8-5 333 0.037 46.31 48.03 35.91

ASP-25-8-6 432 0.037 42.81 48.63 35.92

ASP-25-8-7 525 0.037 42.62 61.96 35.73

ASP-25-8-8 577 0.037 50.66 68.17 42.75

ASP-25-8-9 719 0.029 44.73 43.13 28.08

ASP-25-8-10 887 0.038 78.84 70.10 50.87

ASP-25-8-11 937 0.038 49.63 51.54 33.62

ASP-25-8-12 1080 0.037 51.55 43.59 34.62

ASP-25-8-13 1177 0.037 40.60 35.84 29.42

ASP-25-8-14 1273 0.037 44.13 45.24 30.86

ASP-25-8-15 1368 0.037 43.85 52.21 30.58

ASP-25-8-16 1394 0.037 43.84 46.55 31.33

ASP-25-8-17 1416 0.037 46.79 25.89 31.68

ASP-25-8-18 1512 0.037 40.16 47.66 30.93

ASP-25-8-19 1536 0.036 39.14 43.96 29.50

ASP-25-8-20 1560 0.037 36.84 31.01 27.75

ASP-25-8-21 1608 0.037 40.47 52.89 33.12

ASP-25-8-22 1677 0.037 44.16 47.52 31.11

ASP-25-8-23 1728 0.036 41.66 52.17 31.14

ASP-25-8-24 1752 0.036 42.66 46.66 32.58

ASP-25-8-25 1770 0.036 40.90 42.58 30.63

ASP-25-8-26 1869 0.036 37.11 24.09 25.95

ASP-25-8-27 1920 0.034 35.99 40.28 26.93

ASP-25-8-28 2041 0.031 42.34 45.97 30.72

ASP-25-8-29 2090 0.036 34.92 20.99 26.59

ASP-25-8-30 2183 0.038 35.05 44.34 27.16

ASP-25-8-31 2207 0.038 34.46 28.94 25.87

ASP-25-8-32 2232 0.038 33.49 42.38 26.41

ASP-25-8-33 2255 0.038 36.58 35.18 27.01

ASP-25-8-34 2280 0.038 33.89 36.66 25.80

ASP-25-8-35 2352 0.038 32.75 36.28 26.65

ASP-25-8-36 2376 0.039 30.64 34.20 22.74

ASP-25-8-37 2400 0.039 32.93 37.21 25.81

Sample
µmol L

-1
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Table A.19: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit).  

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-9-1 0 0.029 53.25 73.70 16.67

ASP-25-9-2 47 0.033 77.20 87.54 29.42

ASP-25-9-3 93 0.033 53.32 78.31 22.54

ASP-25-9-4 189 0.034 44.22 68.13 19.41

ASP-25-9-5 333 0.034 29.88 41.15 12.41

ASP-25-9-6 384 0.034 28.47 29.73 12.86

ASP-25-9-7 431 0.035 19.65 30.88 9.62

ASP-25-9-8 525 0.034 17.49 29.98 7.64

ASP-25-9-9 672 0.035 21.51 26.86 11.03

ASP-25-9-10 719 0.029 20.73 29.44 4.60

ASP-25-9-11 887 0.035 19.42 28.97 3.52

ASP-25-9-12 937 0.035 20.19 23.40 5.20

ASP-25-9-13 1057 0.035 19.38 25.27 4.77

ASP-25-9-14 1080 0.035 19.83 25.34 5.10

ASP-25-9-15 1176 0.035 16.78 16.17 3.21

ASP-25-9-16 1201 0.035 15.63 15.19 2.17

ASP-25-9-17 1248 0.035 16.26 17.72 0.19

ASP-25-9-18 1344 0.035 18.13 18.25 1.47

ASP-25-9-19 1394 0.035 19.91 12.34 3.68

ASP-25-9-20 1435 0.035 18.74 1.79 4.31

ASP-25-9-21 1535 0.034 18.65 19.41 1.94

ASP-25-9-22 1560 0.035 18.23 13.44 1.14

ASP-25-9-23 1584 0.034 17.50 23.28 1.45

ASP-25-9-24 1607 0.035 17.41 7.54 1.15

ASP-25-9-25 1677 0.035 19.41 17.62 1.18

ASP-25-9-26 1703 0.035 22.36 22.62 0.83

ASP-25-9-27 1728 0.035 19.71 15.02 1.61

ASP-25-9-28 1752 0.035 21.17 23.78 1.16

ASP-25-9-29 1769 0.035 21.58 15.66 2.18

ASP-25-9-30 1868 0.035 19.29 21.19 2.34

ASP-25-9-31 1919 0.002 32.13 n.a. 2.16

ASP-25-9-32 2041 0.036 17.16 10.82 3.71

ASP-25-9-33 2064 0.036 16.50 11.60 3.67

ASP-25-9-34 2089 0.035 15.36 9.07 4.39

ASP-25-9-35 2107 0.035 19.79 15.51 2.68

ASP-25-9-36 2183 0.036 18.69 27.29 8.72

ASP-25-9-37 2207 0.035 17.96 12.17 6.10

ASP-25-9-38 2231 0.036 19.69 17.19 6.85

Sample
µmol L

-1
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Tables A.20 and A.21: Experimental data from the flow-through experiments presented in this 

thesis. Time periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; 

b.d.l.: below detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-23-1 0 0.036 176.00 214.95 96.01

ASP-25-23-2 102 0.037 108.96 132.08 54.55

ASP-25-23-3 149 0.037 92.70 114.22 45.03

ASP-25-23-4 193 0.036 86.57 102.36 39.53

ASP-25-23-5 270 0.036 90.14 106.14 42.11

ASP-25-23-6 319 0.036 87.96 99.06 35.48

ASP-25-23-7 365 0.036 79.58 92.18 34.29

ASP-25-23-8 436 0.036 74.33 84.81 23.82

ASP-25-23-9 485 0.035 82.15 94.32 33.93

ASP-25-23-10 530 0.035 79.99 98.78 35.37

ASP-25-23-11 697 0.035 78.61 96.40 30.17

ASP-25-23-12 776 0.035 76.18 99.78 29.21

ASP-25-23-13 818 0.035 78.96 95.10 36.80

ASP-25-23-14 871 0.035 71.91 81.68 34.98

ASP-25-23-15 962 0.035 66.60 73.10 31.58

ASP-25-23-16 990 0.035 65.48 92.82 31.24

ASP-25-23-17 1038 0.035 66.88 90.59 35.42

ASP-25-23-18 1113 0.035 66.86 92.13 35.51

ASP-25-23-19 1155 0.035 65.25 89.41 38.01

Sample
µmol L

-1

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-70-4-1 0 0.019 365.61 564.52 210.43

ASP-70-4-2 54 0.024 157.88 261.47 88.63

ASP-70-4-3 127 0.029 108.92 173.14 63.19

ASP-70-4-4 169 0.024 102.75 159.65 61.28

ASP-70-4-5 214 0.026 81.69 128.13 47.12

ASP-70-4-6 290 0.026 76.15 123.41 42.84

ASP-70-4-7 335 0.026 64.30 93.09 39.72

ASP-70-4-8 382 0.026 49.35 70.71 35.31

ASP-70-4-9 459 0.026 78.91 113.44 48.86

ASP-70-4-10 509 0.027 74.82 96.92 41.50

ASP-70-4-11 552 0.027 57.60 78.24 28.40

ASP-70-4-12 630 0.027 51.79 77.57 25.14

ASP-70-4-13 675 0.027 55.81 87.27 29.56

ASP-70-4-14 724 0.027 49.96 76.69 23.43

ASP-70-4-15 845 0.028 52.94 67.62 24.80

ASP-70-4-16 886 0.028 53.09 70.23 28.52

ASP-70-4-17 964 0.029 47.63 63.22 25.56

ASP-70-4-19 1055 0.030 45.09 61.10 24.03

ASP-70-4-20 1132 0.031 44.48 58.73 22.79

ASP-70-4-21 1181 0.031 46.64 57.55 22.26

ASP-70-4-23 1297 0.030 48.93 69.07 25.25

ASP-70-4-24 1346 0.030 47.39 64.80 23.97

Sample
µmol L

-1
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Table A.22: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-19-1-a 0 0.033 58.25 49.86 78.13

ASP-25-19-2-a 73 0.038 14.04 5.91 18.84

ASP-25-19-3-a 122 0.038 7.98 4.12 10.71

ASP-25-19-4-a 165 0.038 4.10 3.00 5.50

ASP-25-19-5-a 240 0.038 3.29 1.27 4.42

ASP-25-19-6-a 285 0.037 4.89 2.00 6.56

ASP-25-19-7-a 334 0.037 4.57 7.14 6.13

ASP-25-19-8-a 408 0.037 1.53 n.a. 2.05

ASP-25-19-9-a 458 0.036 2.49 n.a. 3.34

ASP-25-19-10-a 501 0.036 b.d.l. n.a. 0.71

ASP-25-19-11-a 573 0.036 b.d.l. n.a. 0.75

ASP-25-19-12-a 630 0.037 b.d.l. n.a. 0.55

ASP-25-19-13-a 676 0.037 b.d.l. n.a. b.d.l.

ASP-25-19-14-a 749 0.039 1.30 11.52 1.74

ASP-25-19-15-a 796 0.041 b.d.l. n.a. 4.20

ASP-25-19-16-a 840 0.041 b.d.l. 0.56 0.89

ASP-25-19-17-a 915 0.044 1.30 1.20 b.d.l.

ASP-25-19-18-a 959 0.041 1.31 2.92 b.d.l.

ASP-25-19-19-a 1113 0.037 1.34 3.54 b.d.l.

ASP-25-19-1-b 1208 0.004 210.94 266.26 0.20

ASP-25-19-2-b 1515 0.032 125.48 139.04 3.17

ASP-25-19-3-b 1583 0.029 107.98 121.92 7.34

ASP-25-19-4-b 1661 0.032 84.63 81.89 2.25

ASP-25-19-5-b 1704 0.031 68.42 77.43 16.45

ASP-25-19-6-b 1943 0.035 52.40 64.78 14.02

Sample
µmol L

-1
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Table A.23: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-10-1 0.0 0.018 21.42 27.49 b.d.l.

ASP-25-10-2 49.2 0.037 8.01 24.29 b.d.l.

ASP-25-10-3 121.4 0.037 3.58 7.54 b.d.l.

ASP-25-10-4 145.2 0.037 3.28 12.85 b.d.l.

ASP-25-10-5 169.5 0.037 3.83 5.31 b.d.l.

ASP-25-10-6 192.6 0.037 2.73 7.96 b.d.l.

ASP-25-10-7 313.1 0.038 2.05 1.16 b.d.l.

ASP-25-10-8 335.0 0.037 1.74 9.40 b.d.l.

ASP-25-10-9 361.7 0.037 1.71 b.d.l. b.d.l.

ASP-25-10-10 619.3 0.037 4.15 5.98 b.d.l.

ASP-25-10-11 864.1 0.035 2.60 b.d.l. b.d.l.

ASP-25-10-12 889.5 0.035 1.45 3.37 b.d.l.

ASP-25-10-13 1052.6 0.018 5.04 3.10 b.d.l.

ASP-25-10-14 1128.0 0.013 4.28 2.78 b.d.l.

ASP-25-10-15 1297.6 0.036 b.d.l. 2.88 b.d.l.

ASP-25-10-16 1322.7 0.036 b.d.l. b.d.l. b.d.l.

ASP-25-10-17 1369.1 0.035 b.d.l. b.d.l. b.d.l.

ASP-25-10-18 1465.5 0.035 2.09 2.06 b.d.l.

ASP-25-10-19 1486.8 0.035 b.d.l. 10.62 b.d.l.

ASP-25-10-20 1512.8 0.035 4.87 b.d.l. b.d.l.

ASP-25-10-21 1536.9 0.035 n.a. b.d.l. b.d.l.

ASP-25-10-22 1560.4 0.035 3.24 11.60 b.d.l.

ASP-25-10-23 1630.0 0.035 n.a. b.d.l. b.d.l.

ASP-25-10-24 1654.2 0.035 4.85 b.d.l. b.d.l.

ASP-25-10-25 1702.7 0.035 5.56 b.d.l. b.d.l.

ASP-25-10-26 1823.4 0.034 3.22 5.81 b.d.l.

ASP-25-10-27 1968.7 0.034 2.61 5.53 b.d.l.

ASP-25-10-28 2015.2 0.034 4.08 4.30 b.d.l.

ASP-25-10-29 2060.9 0.034 2.63 4.30 b.d.l.

ASP-25-10-30 2158.1 0.034 2.83 4.86 b.d.l.

ASP-25-10-31 2209.7 0.034 3.86 4.50 b.d.l.

ASP-25-10-32 2305.5 0.034 2.61 4.17 b.d.l.

ASP-25-10-33 2353.8 0.033 4.64 4.27 b.d.l.

ASP-25-10-34 2396.8 0.034 b.d.l. 4.43 b.d.l.

ASP-25-10-35 2496.7 0.033 3.81 4.68 b.d.l.

Sample
µmol L

-1
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Table A.24: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-21-1 0 0.028 88.05 79.61 b.d.l.

ASP-25-21-2 99 0.038 27.33 34.20 b.d.l.

ASP-25-21-3 141 0.038 23.38 b.d.l. b.d.l.

ASP-25-21-4 185 0.038 21.10 11.19 b.d.l.

ASP-25-21-5 261 0.037 32.23 53.87 b.d.l.

ASP-25-21-6 307 0.038 28.89 18.51 b.d.l.

ASP-25-21-7 353 0.020 19.20 15.49 b.d.l.

ASP-25-21-8 430 0.023 51.30 83.56 b.d.l.

ASP-25-21-9 480 0.037 15.22 20.36 b.d.l.

ASP-25-21-10 523 0.037 18.41 6.09 b.d.l.

ASP-25-21-11 601 0.037 11.81 27.07 b.d.l.

ASP-25-21-12 646 0.037 2.88 23.05 b.d.l.

ASP-25-21-13 696 0.034 3.60 21.23 b.d.l.

ASP-25-21-14 817 0.036 6.08 25.84 b.d.l.

ASP-25-21-15 858 0.036 6.77 43.08 b.d.l.

ASP-25-21-16 936 0.036 3.21 20.93 b.d.l.

ASP-25-21-17 982 0.036 2.13 b.d.l. b.d.l.

ASP-25-21-18 1027 0.036 2.58 15.22 b.d.l.

ASP-25-21-19 1152 0.036 5.54 12.95 b.d.l.

ASP-25-21-20 1198 0.036 3.01 13.89 b.d.l.

ASP-25-21-21 1269 0.036 1.75 9.85 b.d.l.

ASP-25-21-22 1318 0.036 b.d.l. 9.61 b.d.l.

ASP-25-21-23 1609 0.036 b.d.l. 27.67 b.d.l.

Sample
µmol L

-1
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Table A.25: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-11-1 0 0.020 14.53 16.54 b.d.l.

ASP-25-11-2 49 0.032 9.83 5.61 b.d.l.

ASP-25-11-3 121 0.032 6.62 b.d.l. b.d.l.

ASP-25-11-4 145 0.032 6.57 3.64 b.d.l.

ASP-25-11-8 361 0.032 6.76 n.a. b.d.l.

ASP-25-11-11 485 0.032 7.49 n.a. b.d.l.

ASP-25-11-12 508 0.032 6.97 n.a. b.d.l.

ASP-25-11-13 528 0.032 6.61 n.a. b.d.l.

ASP-25-11-14 619 0.032 8.21 n.a. b.d.l.

ASP-25-11-15 647 0.007 8.55 8.68 b.d.l.

ASP-25-11-16 673 0.025 8.19 n.a. b.d.l.

ASP-25-11-17 722 0.033 15.11 29.98 b.d.l.

ASP-25-11-18 795 0.022 10.38 20.73 b.d.l.

ASP-25-11-19 864 0.033 8.79 19.70 b.d.l.

ASP-25-11-20 961 0.028 7.75 20.61 b.d.l.

ASP-25-11-21 1011 0.039 5.10 2.12 b.d.l.

ASP-25-11-22 1052 0.023 5.50 13.69 b.d.l.

ASP-25-11-23 1175 0.031 6.53 11.07 b.d.l.

ASP-25-11-24 1224 0.031 11.41 7.28 b.d.l.

ASP-25-11-25 1322 0.031 8.63 12.49 b.d.l.

ASP-25-11-26 1369 0.031 7.71 14.25 b.d.l.

ASP-25-11-27 1465 0.031 8.18 13.53 b.d.l.

ASP-25-11-28 1512 0.030 4.94 8.34 b.d.l.

ASP-25-11-29 1560 0.030 6.65 12.04 b.d.l.

ASP-25-11-30 1654 0.030 6.68 10.10 b.d.l.

ASP-25-11-31 1702 0.030 6.40 11.51 b.d.l.

ASP-25-11-32 1823 0.030 7.64 12.68 b.d.l.

ASP-25-11-33 1873 0.031 8.29 13.22 b.d.l.

ASP-25-11-34 1968 0.031 7.00 11.94 b.d.l.

ASP-25-11-35 2015 0.028 8.03 13.14 b.d.l.

ASP-25-11-36 2061 0.030 10.79 n.a. b.d.l.

ASP-25-11-37 2158 0.030 12.06 13.04 b.d.l.

ASP-25-11-38 2209 0.030 9.72 11.88 b.d.l.

ASP-25-11-39 2305 0.031 9.58 14.19 b.d.l.

ASP-25-11-40 2353 0.031 9.05 12.33 b.d.l.

ASP-25-11-41 2396 0.031 8.02 12.72 b.d.l.

ASP-25-11-42 2496 0.031 6.33 8.39 b.d.l.

ASP-25-11-43 2544 0.031 6.21 12.90 b.d.l.

ASP-25-11-44 2643 0.031 8.84 11.83 b.d.l.

Sample
µmol L

-1
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Table A.26: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate As S Fe

(h) (mL min
-1
)

ASP-25-15-1 0 0.016 67.66 151.82 b.d.l.

ASP-25-15-2 20 0.028 9.96 30.59 b.d.l.

ASP-25-15-3 91 0.028 b.d.l. 4.36 b.d.l.

ASP-25-15-4 143 0.029 1.37 1.96 b.d.l.

ASP-25-15-5 188 0.029 2.79 2.55 b.d.l.

ASP-25-15-6 262 0.028 4.03 13.79 b.d.l.

ASP-25-15-7 354 0.028 1.52 11.20 b.d.l.

ASP-25-15-8 431 0.028 2.39 6.87 b.d.l.

ASP-25-15-9 523 0.029 3.58 23.58 b.d.l.

ASP-25-15-10 619 0.028 2.15 25.64 b.d.l.

ASP-25-15-11 787 0.029 1.42 24.14 b.d.l.

ASP-25-15-12 833 0.029 2.84 31.90 b.d.l.

ASP-25-15-13 931 0.029 2.76 19.19 b.d.l.

ASP-25-15-14 980 0.029 2.22 27.54 b.d.l.

ASP-25-15-15 1147 0.029 1.74 10.67 b.d.l.

ASP-25-15-16 1196 0.029 2.11 12.91 b.d.l.

ASP-25-15-17 1319 0.029 2.30 11.48 b.d.l.

ASP-25-15-18 1486 0.029 3.06 12.47 b.d.l.

ASP-25-15-19 1533 0.029 2.28 4.58 b.d.l.

ASP-25-15-20 1605 0.028 b.d.l. 12.04 b.d.l.

ASP-25-15-21 1702 0.029 8.18 3.62 b.d.l.

ASP-25-15-22 1821 0.030 3.15 9.14 b.d.l.

ASP-25-15-23 1869 0.029 3.95 14.67 b.d.l.

ASP-25-15-24 1942 0.030 2.69 13.29 b.d.l.

ASP-25-15-25 1990 0.030 4.23 10.44 b.d.l.

ASP-25-15-26 2037 0.029 2.64 15.00 b.d.l.

ASP-25-15-27 2157 0.030 3.46 9.82 b.d.l.

ASP-25-15-28 2204 0.029 2.15 4.98 b.d.l.

ASP-25-15-29 2277 0.030 4.04 8.13 b.d.l.

ASP-25-15-30 2373 0.031 b.d.l. 37.89 b.d.l.

ASP-25-15-31 2497 0.031 b.d.l. 8.78 b.d.l.

ASP-25-15-32 2544 0.031 b.d.l. 10.86 b.d.l.

ASP-25-15-33 2665 0.031 b.d.l. 13.01 b.d.l.

ASP-25-15-34 2784 0.031 4.04 22.03 b.d.l.

ASP-25-15-35 2828 0.031 8.36 24.39 b.d.l.

ASP-25-15-36 2881 0.032 7.14 22.05 b.d.l.

ASP-25-15-37 2971 0.032 7.25 42.05 b.d.l.

ASP-25-15-38 3211 0.034 3.82 3.13 b.d.l.

Sample
µmol L

-1
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Table A.27: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-1-1 0 0.038 157.09 58.77

MRC-1-2 27 0.038 198.31 19.96

MRC-1-5 98 0.030 237.98 57.01

MRC-1-6 171 0.034 209.49 105.98

MRC-1-8 218 0.041 103.25 79.58

MRC-1-9 363 0.043 152.00 109.10

MRC-1-12 436 0.043 141.90 110.84

MRC-1-14 530 0.042 113.90 94.54

MRC-1-16 579 0.043 128.84 98.75

MRC-1-17 601 0.045 108.62 86.41

MRC-1-19 700 0.049 95.60 72.71

MRC-1-21 747 0.052 83.17 69.37

MRC-1-23 843 0.025 88.01 72.03

MRC-1-25 893 0.026 102.91 88.79

MRC-1-27 934 0.027 97.92 82.42

MRC-1-29 1034 0.027 91.16 74.27

MRC-1-31 1083 0.027 84.08 68.93

MRC-1-33 1176 0.027 96.93 77.65

MRC-1-35 1227 0.027 99.17 79.03

MRC-1-37 1268 0.027 97.36 78.39

MRC-1-39 1367 0.027 90.59 70.55

MRC-1-41 1419 0.028 91.25 72.64

MRC-1-42 1443 0.028 98.89 78.55

MRC-1-43 1540 0.028 94.65 73.02

MRC-1-44 1564 0.028 69.20 54.16

MRC-1-45 1588 0.028 79.77 65.77

MRC-1-46 1606 0.028 75.13 61.36

MRC-1-47 1682 0.028 72.10 58.46

MRC-1-49 1731 0.028 69.76 55.95

MRC-1-51 1778 0.028 73.29 58.66

MRC-1-53 1875 0.028 91.06 76.47

MRC-1-55 1918 0.028 80.74 65.85

MRC-1-57 2020 0.029 84.73 63.73

MRC-1-59 2068 0.029 68.35 52.35

MRC-1-61 2186 0.029 72.35 54.94

MRC-1-62 2210 0.029 45.09 51.99

MRC-1-63 2232 0.029 77.44 56.39

MRC-1-64 2259 0.029 80.27 59.90

MRC-1-65 2280 0.029 50.56 48.24

MRC-1-66 2356 0.029 67.89 55.56

MRC-1-67 2383 0.029 66.62 57.24

MRC-1-68 2406 0.029 79.26 55.70

MRC-1-69 2425 0.029 72.86 58.60

MRC-1-70 2516 0.029 64.14 57.72

MRC-1-71 2544 0.029 72.03 62.26

MRC-1-72 2571 0.029 70.84 58.43

MRC-1-73 2591 0.029 74.58 61.99

Sample
µmol L

-1
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Table A.28: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state, (n.a.: not analyzed; b.d.l.: 

below detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-2-1 0 0.008 3080.2 n.a

MRC-2-2 41 0.047 383.9 n.a

MRC-2-3 117 0.047 223.9 n.a

MRC-2-4 161 0.048 213.0 n.a

MRC-2-5 188 0.048 184.0 n.a

MRC-2-6 213 0.047 149.7 n.a

MRC-2-7 287 0.022 163.1 7.77

MRC-2-8 335 0.042 866.0 n.a

MRC-2-9 378 0.048 261.6 n.a

MRC-2-10 454 0.046 276.3 n.a

MRC-2-11 501 0.036 459.4 n.a

MRC-2-12 549 0.049 139.7 2.54

MRC-2-13 619 0.044 205.5 6.22

MRC-2-14 670 0.040 205.5 5.75

MRC-2-15 713 0.042 124.8 32.01

MRC-2-16 812 0.041 117.5 57.35

MRC-2-17 839 0.043 132.3 68.81

MRC-2-18 883 0.041 121.7 77.51

MRC-2-19 957 0.039 130.7 82.09

MRC-2-20 1004 0.038 125.8 87.90

MRC-2-21 1050 0.039 124.9 91.32

MRC-2-22 1126 0.039 117.4 81.52

MRC-2-23 1174 0.042 116.3 78.89

MRC-2-24 1217 0.039 108.4 70.19

MRC-2-25 1294 0.039 117.9 69.31

MRC-2-26 1342 0.045 102.3 64.76

MRC-2-27 1386 0.044 104.5 66.98

MRC-2-28 1460 0.044 103.3 66.12

MRC-2-29 1505 0.043 108.43 70.81

MRC-2-30 1554 0.038 122.15 73.21

MRC-2-31 1632 0.043 100.95 64.30

MRC-2-32 1676 0.043 95.90 64.62

MRC-2-33 1700 0.039 109.43 72.82

MRC-2-34 1797 0.037 133.23 82.18

MRC-2-35 1846 0.036 127.55 79.84

MRC-2-36 1895 0.037 115.48 73.66

MRC-2-37 1964 0.020 172.49 103.56

MRC-2-38 2008 0.026 157.33 104.10

MRC-2-39 2057 0.028 127.02 95.42

MRC-2-40 2130 0.028 109.46 89.06

MRC-2-41 2155 0.028 108.49 89.49

MRC-2-42 2230 0.028 109.90 89.20

MRC-2-43 2299 0.028 105.94 87.93

MRC-2-44 2347 0.029 99.73 84.23

MRC-2-45 2393 0.029 101.54 80.02

MRC-2-46 2465 0.028 107.65 83.74

MRC-2-47 2514 0.028 102.98 84.60

MRC-2-48 2561 0.029 107.81 86.34

MRC-2-49 2633 0.028 99.26 83.42

Sample
µmol L

-1
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Table A.29: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-3-1 0 0.013 111.84 231.57

MRC-3-2 51 0.033 89.35 216.76

MRC-3-3 75 0.035 111.04 208.37

MRC-3-4 171 0.033 126.05 180.88

MRC-3-5 218 0.012 94.66 107.56

MRC-3-6 386 0.037 70.72 69.98

MRC-3-7 436 0.038 69.71 60.05

MRC-3-8 530 0.038 29.65 48.14

MRC-3-9 556 0.038 42.82 49.05

MRC-3-10 579 0.038 54.03 46.60

MRC-3-11 601 0.038 39.64 37.83

MRC-3-12 675 0.038 33.01 34.11

MRC-3-13 699 0.038 21.33 34.14

MRC-3-14 722 0.038 33.57 35.64

MRC-3-15 1010 0.038 26.55 23.60

MRC-3-16 1250 0.041 29.04 25.12

MRC-3-17 1418 0.042 24.33 20.84

MRC-3-18 1730 0.044 49.83 40.48

MRC-3-19 1851 0.029 28.43 24.05

MRC-3-20 1922 0.044 29.85 24.71

MRC-3-21 2020 0.044 15.95 18.71

MRC-3-22 2068 0.044 30.20 20.05

MRC-3-23 2186 0.044 15.96 19.20

MRC-3-24 2210 0.044 22.18 19.46

MRC-3-25 2232 0.044 25.79 21.77

MRC-3-26 2259 0.044 14.55 20.06

MRC-3-27 2280 0.044 n.a. 18.59

MRC-3-28 2356 0.044 17.72 20.02

MRC-3-29 2382 0.044 31.89 22.29

MRC-3-30 2406 0.044 20.37 22.61

MRC-3-31 2425 0.043 8.79 21.63

MRC-3-32 2516 0.044 18.10 23.06

MRC-3-33 2544 0.044 27.39 24.60

MRC-3-34 2570 0.044 22.88 25.12

MRC-3-35 2591 0.044 27.43 22.09

MRC-3-36 2619 0.044 19.19 21.13

MRC-3-37 2692 0.030 21.87 25.75

Sample
µmol L

-1
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Table A.30: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-4-1 0 0.033 605.27 2174.72

MRC-4-2 50 0.038 159.12 249.62

MRC-4-3 120 0.039 85.84 107.31

MRC-4-4 171 0.039 79.85 85.31

MRC-4-5 215 0.039 49.25 58.39

MRC-4-6 313 0.040 39.15 45.21

MRC-4-7 340 0.039 56.51 43.39

MRC-4-8 384 0.039 42.11 39.23

MRC-4-9 459 0.039 40.13 37.87

MRC-4-10 505 0.039 61.47 44.28

MRC-4-11 551 0.039 42.78 37.75

MRC-4-12 627 0.039 51.13 34.80

MRC-4-13 675 0.039 42.36 34.40

MRC-4-14 718 0.039 45.92 34.27

MRC-4-15 795 0.039 50.61 33.02

MRC-4-16 844 0.039 44.80 33.65

MRC-4-17 887 0.039 49.40 35.42

MRC-4-18 961 0.039 45.49 32.83

MRC-4-19 1006 0.039 43.18 34.44

MRC-4-20 1055 0.035 40.59 33.86

MRC-4-21 1130 0.039 39.11 28.97

MRC-4-22 1177 0.039 42.41 29.72

MRC-4-23 1201 0.039 44.41 30.99

MRC-4-24 1298 0.039 43.01 30.74

MRC-4-25 1347 0.039 44.75 31.78

MRC-4-26 1396 0.039 37.98 27.93

MRC-4-27 1465 0.039 39.11 28.43

MRC-4-28 1509 0.039 43.07 30.92

MRC-4-29 1559 0.039 66.33 53.63

MRC-4-30 1631 0.039 40.26 37.03

MRC-4-31 1656 0.039 36.42 28.49

MRC-4-32 1731 0.039 35.18 27.05

MRC-4-33 1800 0.039 36.11 27.68

MRC-4-34 1848 0.039 35.49 26.66

MRC-4-35 1895 0.039 34.55 26.84

MRC-4-36 1966 0.039 37.36 28.58

MRC-4-37 2014 0.039 38.70 30.12

MRC-4-38 2062 0.039 42.23 32.62

MRC-4-39 2134 0.039 42.91 34.07

MRC-4-40 2182 0.039 42.94 32.75

MRC-4-41 2230 0.039 37.30 28.58

MRC-4-42 2304 0.039 40.20 30.83

MRC-4-43 2352 0.039 40.17 31.75

Sample
µmol L

-1
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Table A.31: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state(n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-50-1-1 0 0.031 699.49 n.a.

MRC-50-1-2 22 0.037 577.56 n.a.

MRC-50-1-3 99 0.038 201.15 136.53

MRC-50-1-4 147 0.038 172.43 159.80

MRC-50-1-5 190 0.038 151.47 161.58

MRC-50-1-6 265 0.038 138.43 134.50

MRC-50-1-7 310 0.039 129.23 117.92

MRC-50-1-8 358 0.035 132.07 109.72

MRC-50-1-9 437 0.039 115.92 95.79

MRC-50-1-10 481 0.039 112.27 88.90

MRC-50-1-11 505 0.039 110.68 83.63

MRC-50-1-12 602 0.039 111.55 80.04

MRC-50-1-13 650 0.039 109.24 79.32

MRC-50-1-14 700 0.039 108.46 77.21

MRC-50-1-15 768 0.039 111.64 77.60

MRC-50-1-16 813 0.039 110.46 77.83

MRC-50-1-17 862 0.039 105.94 74.86

MRC-50-1-18 935 0.039 98.48 72.59

MRC-50-1-19 960 0.039 98.64 69.94

MRC-50-1-20 1034 0.039 97.05 67.31

MRC-50-1-21 1104 0.039 95.68 67.11

MRC-50-1-22 1152 0.039 93.74 64.49

MRC-50-1-23 1198 0.039 94.80 64.60

MRC-50-1-24 1269 0.039 92.03 63.76

MRC-50-1-25 1318 0.039 98.77 65.75

MRC-50-1-26 1366 0.039 93.12 62.78

MRC-50-1-27 1438 0.039 95.58 62.70

MRC-50-1-28 1485 0.040 92.72 60.91

MRC-50-1-29 1534 0.041 93.09 61.58

MRC-50-1-30 1607 0.041 96.89 63.46

MRC-50-1-31 1656 0.041 104.41 66.80

MRC-50-1-32 1702 0.043 133.88 79.66

MRC-50-1-33 1776 0.033 106.56 70.33

MRC-50-1-34 1824 0.026 133.04 88.65

MRC-50-1-35 1871 0.027 116.32 76.08

MRC-50-1-36 1944 0.027 109.34 70.10

MRC-50-1-37 1990 0.027 107.19 68.29

MRC-50-1-38 2039 0.027 109.31 65.91

MRC-50-1-39 2112 0.028 111.46 66.67

MRC-50-1-40 2160 0.028 109.77 65.38

MRC-50-1-41 2208 0.028 111.64 66.38

MRC-50-1-42 2280 0.028 108.99 64.37

MRC-50-1-43 2331 0.028 107.93 63.52

MRC-50-1-44 2376 0.028 109.96 63.32

MRC-50-1-45 2451 0.028 109.03 63.26

Sample
µmol L

-1
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Table A.32: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-50-2-1 0 0.033 1057.2 3011.91

MRC-50-2-2 23 0.038 219.8 609.54

MRC-50-2-3 100 0.039 125.9 268.42

MRC-50-2-4 148 0.039 125.2 237.44

MRC-50-2-5 192 0.039 102.7 181.57

MRC-50-2-6 288 0.040 89.0 143.06

MRC-50-2-7 336 0.039 87.6 128.64

MRC-50-2-8 455 0.039 85.9 116.88

MRC-50-2-9 502 0.039 87.6 110.77

MRC-50-2-10 600 0.039 91.3 109.21

MRC-50-2-11 649 0.039 93.4 106.40

MRC-50-2-12 696 0.039 90.4 104.38

MRC-50-2-13 768 0.039 89.8 101.37

MRC-50-2-14 816 0.039 93.5 100.83

MRC-50-2-15 864 0.039 96.6 97.88

MRC-50-2-16 939 0.039 91.2 97.34

MRC-50-2-17 988 0.039 93.5 97.14

MRC-50-2-18 1035 0.039 95.0 94.85

MRC-50-2-19 1105 0.039 97.2 105.99

MRC-50-2-20 1155 0.035 103.4 108.89

MRC-50-2-21 1202 0.039 101.4 107.98

MRC-50-2-22 1274 0.039 110.1 123.00

MRC-50-2-23 1321 0.039 112.6 136.11

MRC-50-2-24 1371 0.039 108.9 131.86

MRC-50-2-25 1441 0.039 108.7 125.22

MRC-50-2-26 1489 0.039 116.7 115.22

MRC-50-2-27 1538 0.039 115.2 110.21

MRC-50-2-28 1610 0.039 108.1 104.14

MRC-50-2-29 1658 0.039 109.3 104.96

MRC-50-2-30 1705 0.039 108.6 100.36

MRC-50-2-31 1778 0.039 106.1 98.85

MRC-50-2-32 1826 0.039 103.7 96.96

MRC-50-2-33 1873 0.039 107.7 97.83

MRC-50-2-34 1946 0.039 108.2 102.47

Sample
µmol L

-1
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Table A.33: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-70-1-1 0 0.033 2103.79 3262.31

MRC-70-1-2 25 0.035 272.56 369.02

MRC-70-1-3 72 0.034 111.46 122.38

MRC-70-1-4 141 0.037 99.95 112.00

MRC-70-1-5 196 0.036 117.10 126.30

MRC-70-1-6 243 0.036 114.36 108.88

MRC-70-1-7 315 0.036 107.68 96.45

MRC-70-1-8 363 0.036 129.76 110.76

MRC-70-1-9 408 0.032 153.99 123.80

MRC-70-1-10 483 0.035 62.37 38.14

MRC-70-1-11 527 0.037 95.55 70.99

MRC-70-1-12 580 0.036 120.84 67.04

MRC-70-1-13 670 0.036 116.70 55.97

MRC-70-1-14 747 0.036 106.25 53.59

MRC-70-1-15 838 0.037 129.51 65.28

MRC-70-1-18 1083 0.037 109.24 50.24

MRC-70-1-19 1180 0.037 120.97 57.10

Sample
µmol L

-1
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Table A.34: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-5-1-a 0 0.025 222.20 297.76

MRC-5-2-a 54 0.018 110.30 157.33

MRC-5-3-a 95 0.052 24.50 40.16

MRC-5-4-a 167 0.048 21.43 34.75

MRC-5-5-a 213 0.045 19.59 29.65

MRC-5-6-a 262 0.048 17.69 25.03

MRC-5-7-a 333 0.043 18.83 26.93

MRC-5-8-a 384 0.048 19.86 27.11

MRC-5-9-a 406 0.048 18.04 25.82

MRC-5-10-a 430 0.048 18.38 25.64

MRC-5-11-a 502 0.047 19.42 27.66

MRC-5-12-a 526 0.047 16.71 23.53

MRC-5-13-a 549 0.048 16.76 22.67

MRC-5-14-a 579 0.047 17.72 23.31

MRC-5-15-a 606 0.026 17.72 23.31

MRC-5-16-a 676 0.071 21.68 27.31

MRC-5-17-a 723 0.046 16.85 23.03

MRC-5-18-a 749 0.045 14.84 21.25

MRC-5-19-a 773 0.045 16.31 21.20

MRC-5-20-a 845 0.046 16.14 20.97

MRC-5-21-a 870 0.042 16.42 20.39

MRC-5-22-a 918 0.095 15.44 18.35

MRC-5-23-a 940 0.044 13.32 16.91

MRC-5-24-a 1013 0.044 14.06 17.31

MRC-5-25-a 1036 0.044 13.97 16.77

MRC-5-26-a 1060 0.045 13.78 16.42

MRC-5-27-a 1080 0.044 12.54 15.92

MRC-5-28-a 1102 0.053 13.16 16.06

MRC-5-29-a 1165 0.029 13.43 16.64

MRC-5-30-a 1201 0.044 13.65 16.24

MRC-5-31-a 1221 0.044 12.13 14.30

MRC-5-32-a 1246 0.045 12.40 15.67

MRC-5-33-a 1269 0.044 11.59 14.69

MRC-5-1-b 1342 0.043 11.29 13.38

MRC-5-2-b 1368 0.045 5.29 7.41

MRC-5-3-b 1391 0.046 b.d.l. 4.32

MRC-5-4-b 1414 0.045 3.85 4.03

MRC-5-5-b 1437 0.045 3.77 4.61

MRC-5-6-b 1510 0.041 6.43 7.01

MRC-5-7-b 1536 0.045 7.16 8.28

MRC-5-8-b 1557 0.049 4.68 6.60

MRC-5-9-b 1581 0.045 3.41 4.57

MRC-5-10-b 1605 0.044 b.d.l. 3.83

Sample
µmol L

-1
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Table A.35: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit).. 

 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-6-1-a 0 0.020 1790.99 n.a.

MRC-6-2-a 54 0.048 605.31 n.a.

MRC-6-3-a 95 0.048 203.74 n.a.

MRC-6-4-a 167 0.048 104.35 n.a.

MRC-6-5-a 213 0.045 65.30 31.34

MRC-6-6-a 262 0.055 52.77 28.43

MRC-6-7-a 333 0.043 35.74 29.12

MRC-6-8-a 384 0.058 38.86 33.12

MRC-6-9-a 406 0.060 88.94 34.18

MRC-6-10-a 430 0.060 160.64 56.07

MRC-6-11-a 502 0.059 150.53 56.20

MRC-6-12-a 526 0.059 126.52 49.37

MRC-6-13-a 549 0.061 121.94 51.52

MRC-6-14-a 579 0.061 116.29 52.02

MRC-6-15-a 606 0.063 108.46 54.51

MRC-6-16-a 676 0.047 109.40 66.52

MRC-6-17-a 723 0.063 85.54 60.78

MRC-6-18-a 749 0.057 84.08 63.90

MRC-6-19-a 773 0.033 140.27 63.00

MRC-6-20-a 845 0.060 71.88 64.24

MRC-6-21-a 870 0.057 80.12 73.75

MRC-6-22-a 894 0.050 79.18 77.12

MRC-6-1-b 1269 0.034 51.08 64.77

MRC-6-2-b 1300 0.080 10.01 23.77

MRC-6-3-b 1368 0.085 10.97 22.82

MRC-6-4-b 1391 0.084 9.18 20.06

MRC-6-5-b 1414 0.084 11.30 16.79

MRC-6-6-b 1509 0.084 10.32 18.23

Sample
µmol L

-1
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Table A.36: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-25-7-1 0 0.033 6.51 2.31

MRC-25-7-2 24 0.033 6.62 2.28

MRC-25-7-3 48 0.033 5.06 2.03

MRC-25-7-4 120 0.033 4.32 2.20

MRC-25-7-5 144 0.033 3.55 2.60

MRC-25-7-6 167 0.033 3.46 3.13

MRC-25-7-7 192 0.033 3.25 4.02

MRC-25-7-8 216 0.033 3.18 7.21

MRC-25-7-9 307 0.033 b.d.l. 8.06

MRC-25-7-10 336 0.033 b.d.l. 6.73

MRC-25-7-11 360 0.033 b.d.l. 6.95

MRC-25-7-12 383 0.033 b.d.l. 6.14

MRC-25-7-13 456 0.032 b.d.l. 6.27

MRC-25-7-14 480 0.033 b.d.l. 6.51

MRC-25-7-15 504 0.033 b.d.l. 6.75

MRC-25-7-16 528 0.030 b.d.l. 6.47

MRC-25-7-21 720 0.035 7.54 11.77

MRC-25-7-22 792 0.034 b.d.l. 14.37

MRC-25-7-23 816 0.034 8.07 12.69

MRC-25-7-24 840 0.034 b.d.l. 11.00

MRC-25-7-25 864 0.034 b.d.l. 13.84

MRC-25-7-26 958 0.034 b.d.l. 6.97

MRC-25-7-27 984 0.033 4.65 7.69

MRC-25-7-28 1008 0.033 b.d.l. 7.76

MRC-25-7-29 1033 0.033 b.d.l. 9.14

MRC-25-7-30 1054 0.033 b.d.l. 6.79

MRC-25-7-32 1157 0.030 b.d.l. 5.65

MRC-25-7-33 1180 0.033 b.d.l. 6.75

MRC-25-7-34 1199 0.033 b.d.l. 5.37

MRC-25-7-35 1290 0.033 b.d.l. 5.65

Sample
µmol L

-1
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Table A.37: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-8-1 0 0.057 6749 307.25

MRC-8-2 13 0.032 5972 319.25

MRC-8-3 165 0.034 5956 264.82

MRC-8-4 190 0.034 5985 177.48

MRC-8-5 309 0.025 5900 160.16

MRC-8-6 357 0.034 5891 135.51

MRC-8-7 429 0.034 5841 126.57

MRC-8-8 477 0.034 5844 119.23

MRC-8-9 525 0.034 5844 110.46

MRC-8-10 597 0.033 5844 109.22

MRC-8-11 620 0.033 5844 107.32

MRC-8-12 646 0.033 5844 101.38

MRC-8-13 693 0.033 5844 98.64

MRC-8-14 772 0.033 5844 94.22

MRC-8-15 813 0.033 5844 97.19

MRC-8-16 861 0.033 5844 91.39

MRC-8-17 932 0.033 5844 90.08

MRC-8-18 981 0.033 5844 91.39

MRC-8-19 1030 0.033 5844 85.32

MRC-8-20 1105 0.033 5844 87.11

MRC-8-21 1149 0.033 5844 86.71

MRC-8-22 1197 0.033 5844 86.12

MRC-8-23 1268 0.033 5844 84.55

MRC-8-24 1317 0.033 5844 84.30

MRC-8-25 1364 0.033 5844 84.64

Sample
µmol L

-1
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Table A.38: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-9-1 0 0.041 37578.74 1741.45

MRC-9-2 32 0.031 37578.74 209.38

MRC-9-3 184 0.033 37578.74 175.60

MRC-9-4 209 0.020 37578.74 171.41

MRC-9-5 328 0.023 37578.74 183.12

MRC-9-6 376 0.033 37578.74 141.22

MRC-9-7 448 0.033 37578.74 123.49

MRC-9-8 496 0.033 37578.74 120.54

MRC-9-9 544 0.033 37578.74 116.51

MRC-9-10 616 0.033 37578.74 109.85

MRC-9-11 639 0.033 37578.74 109.79

MRC-9-12 665 0.032 37578.74 124.62

MRC-9-13 712 0.033 37578.74 106.62

MRC-9-14 791 0.032 37578.74 103.78

MRC-9-15 832 0.032 37578.74 100.72

MRC-9-16 879 0.021 37578.74 100.93

MRC-9-17 951 0.023 37578.74 129.88

MRC-9-18 999 0.032 37578.74 93.84

MRC-9-19 1049 0.032 37578.74 88.74

MRC-9-20 1124 0.032 37578.74 85.46

MRC-9-21 1168 0.032 37578.74 86.80

MRC-9-22 1216 0.032 37578.74 88.42

MRC-9-23 1287 0.032 37578.74 89.96

MRC-9-24 1336 0.032 37578.74 85.94

MRC-9-25 1383 0.032 37578.74 90.24

MRC-9-26 1456 0.032 37578.74 86.42

MRC-9-27 1503 0.032 37578.74 89.91

Sample
µmol L

-1
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Table A.39: Experimental data from the flow-through experiments presented in this thesis. Time 

periods in bold letters correspond to the considered steady-state (n.a.: not analyzed; b.d.l.: below 

detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-10-1 0 0.044 13160.36 295.79

MRC-10-2 32 0.032 2287.16 303.49

MRC-10-3 184 0.034 648.35 215.94

MRC-10-4 209 0.034 233.14 165.57

MRC-10-5 328 0.025 54.33 98.07

MRC-10-6 376 0.034 89.19 132.66

MRC-10-7 448 0.034 72.63 106.02

MRC-10-8 496 0.034 64.18 97.55

MRC-10-9 544 0.034 65.46 100.32

MRC-10-10 616 0.034 63.46 92.69

MRC-10-11 639 0.034 63.46 90.81

MRC-10-12 665 0.034 63.46 88.59

MRC-10-13 712 0.034 63.46 92.62

MRC-10-14 791 0.033 63.46 86.55

MRC-10-15 832 0.034 71.95 85.00

MRC-10-16 879 0.033 69.92 86.00

MRC-10-17 951 0.033 65.74 76.83

MRC-10-18 999 0.033 67.39 78.55

MRC-10-19 1049 0.034 65.93 77.15

MRC-10-20 1124 0.033 63.09 72.75

MRC-10-21 1168 0.033 68.23 74.09

MRC-10-22 1216 0.033 64.84 73.12

MRC-10-23 1287 0.033 65.15 72.14

MRC-10-24 1336 0.033 68.55 75.34

Sample
µmol L

-1
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Table A.40: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-11-1 0 0.031 409.34 b.d.l.

MRC-11-2 48 0.036 203.09 b.d.l.

MRC-11-3 122 0.034 148.61 b.d.l.

MRC-11-4 167 0.033 130.00 b.d.l.

MRC-11-5 194 0.033 102.99 b.d.l.

MRC-11-6 218 0.032 111.98 b.d.l.

MRC-11-7 292 0.032 112.51 b.d.l.

MRC-11-8 317 0.032 111.14 b.d.l.

MRC-11-9 341 0.032 116.77 b.d.l.

MRC-11-10 364 0.032 103.76 b.d.l.

MRC-11-11 383 0.032 112.57 b.d.l.

MRC-11-12 460 0.032 132.13 b.d.l.

MRC-11-13 481 0.032 113.36 b.d.l.

MRC-11-14 507 0.032 131.43 b.d.l.

MRC-11-15 531 0.032 128.38 b.d.l.

MRC-11-16 555 0.032 108.25 b.d.l.

MRC-11-17 624 0.032 134.30 b.d.l.

MRC-11-18 649 0.032 135.76 b.d.l.

MRC-11-19 676 0.032 122.91 b.d.l.

MRC-11-20 697 0.032 121.62 b.d.l.

MRC-11-21 719 0.031 132.30 b.d.l.

MRC-11-22 818 0.031 118.39 b.d.l.

MRC-11-23 845 0.031 120.20 b.d.l.

MRC-11-24 868 0.031 126.83 b.d.l.

MRC-11-25 889 0.031 140.94 b.d.l.

MRC-11-26 963 0.030 125.23 b.d.l.

MRC-11-27 985 0.031 118.12 b.d.l.

MRC-11-28 1010 0.030 111.62 b.d.l.

MRC-11-29 1033 0.030 105.73 b.d.l.

MRC-11-30 1055 0.030 120.73 b.d.l.

MRC-11-31 1131 0.029 105.01 b.d.l.

MRC-11-32 1153 0.029 94.11 b.d.l.

MRC-11-33 1179 0.029 105.54 b.d.l.

MRC-11-34 1204 0.036 97.74 b.d.l.

MRC-11-35 1223 0.035 80.46 b.d.l.

MRC-11-36 1300 0.035 84.27 b.d.l.

MRC-11-37 1327 0.035 64.17 b.d.l.

MRC-11-38 1348 0.035 66.17 b.d.l.

MRC-11-39 1369 0.038 66.40 b.d.l.

MRC-11-40 1391 0.038 74.30 b.d.l.

Sample
mol L

-1
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Table A.41: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-12-1 0 0.027 104.07 b.d.l.

MRC-12-2 18 0.027 145.92 b.d.l.

MRC-12-3 91 0.028 120.13 b.d.l.

MRC-12-4 136 0.028 108.65 b.d.l.

MRC-12-5 185 0.028 104.94 b.d.l.

MRC-12-6 258 0.029 92.18 b.d.l.

MRC-12-7 306 0.028 93.49 b.d.l.

MRC-12-8 354 0.028 86.32 b.d.l.

MRC-12-9 426 0.029 79.87 b.d.l.

MRC-12-10 477 0.029 66.02 b.d.l.

MRC-12-11 522 0.029 64.96 b.d.l.

MRC-12-12 597 0.028 60.16 b.d.l.

MRC-12-13 645 0.028 68.23 b.d.l.

MRC-12-14 688 0.028 54.76 b.d.l.

MRC-12-15 766 0.028 52.67 b.d.l.

MRC-12-16 814 0.029 50.49 b.d.l.

MRC-12-17 858 0.029 40.85 b.d.l.

MRC-12-18 954 0.029 37.73 b.d.l.

MRC-12-19 1002 0.029 37.36 b.d.l.

MRC-12-20 1121 0.029 23.07 b.d.l.

MRC-12-21 1167 0.029 36.49 b.d.l.

MRC-12-22 1266 0.029 35.21 b.d.l.

MRC-12-23 1314 0.029 35.02 b.d.l.

MRC-12-24 1361 0.029 33.56 b.d.l.

MRC-12-25 1434 0.029 31.62 b.d.l.

MRC-12-26 1482 0.021 33.68 b.d.l.

MRC-12-27 1530 0.029 29.41 b.d.l.

MRC-12-28 1605 0.029 29.64 b.d.l.

MRC-12-29 1654 0.029 28.39 b.d.l.

MRC-12-30 1700 0.029 31.81 b.d.l.

MRC-12-31 1771 0.029 32.43 b.d.l.

MRC-12-32 1821 0.029 32.50 b.d.l.

MRC-12-33 1868 0.029 34.99 b.d.l.

MRC-12-34 1940 0.029 29.93 b.d.l.

MRC-12-35 1987 0.029 30.52 b.d.l.

MRC-12-36 2036 0.029 29.95 b.d.l.

MRC-12-37 2106 0.029 31.56 b.d.l.

MRC-12-38 2155 0.029 30.09 b.d.l.

MRC-12-39 2204 0.029 36.67 b.d.l.

MRC-12-40 2276 0.029 35.66 b.d.l.

MRC-12-41 2324 0.029 30.40 b.d.l.

MRC-12-42 2371 0.029 35.55 b.d.l.

MRC-12-43 2444 0.029 29.51 b.d.l.

MRC-12-44 2492 0.029 29.63 b.d.l.

MRC-12-45 2538 0.029 28.50 b.d.l.

MRC-12-46 2611 0.029 25.96 b.d.l.

Sample
µmol L

-1
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Table A.42: Experimental data from the flow-through experiments presented in this thesis, (n.a.: 

not analyzed; b.d.l.: below detection limit). 

Time flow rate S Fe

(h) (mL min
-1
)

MRC-14-1 0 0.032 383.27 b.d.l.

MRC-14-2 116 0.034 161.29 b.d.l.

MRC-14-3 161 0.033 138.84 b.d.l.

MRC-14-4 283 0.033 109.43 b.d.l.

MRC-14-5 379 0.033 94.27 b.d.l.

MRC-14-6 451 0.032 85.98 b.d.l.

MRC-14-7 548 0.032 82.58 b.d.l.

MRC-14-8 671 0.034 83.67 b.d.l.

MRC-14-9 791 0.033 75.13 b.d.l.

MRC-14-10 883 0.032 70.45 b.d.l.

MRC-14-11 1027 0.032 65.30 b.d.l.

MRC-14-12 1193 0.032 59.66 b.d.l.

MRC-14-13 1340 0.032 58.01 b.d.l.

MRC-14-14 1459 0.032 52.30 b.d.l.

MRC-14-15 1555 0.031 50.55 b.d.l.

MRC-14-16 1679 0.031 39.73 b.d.l.

MRC-14-17 1796 0.019 49.43 b.d.l.

MRC-14-18 1893 0.032 29.81 b.d.l.

MRC-14-19 2012 0.031 28.22 b.d.l.

MRC-14-20 2131 0.031 27.82 b.d.l.

MRC-14-21 2229 0.031 27.82 b.d.l.

MRC-14-22 2349 0.031 23.40 b.d.l.

MRC-14-23 2396 0.031 24.16 b.d.l.

MRC-14-24 2469 0.031 24.10 b.d.l.

MRC-14-25 2517 0.031 23.26 b.d.l.

MRC-14-26 2564 0.031 26.45 b.d.l.

MRC-14-27 2637 0.031 53.84 b.d.l.

MRC-14-28 2686 0.031 28.03 b.d.l.

MRC-14-29 2733 0.031 31.93 b.d.l.

MRC-14-30 2802 0.030 29.12 b.d.l.

MRC-14-31 2857 0.031 31.13 b.d.l.

MRC-14-32 2904 0.031 29.63 b.d.l.

MRC-14-33 2976 0.031 26.71 b.d.l.

MRC-14-34 3025 0.031 18.91 b.d.l.

MRC-14-35 3069 0.031 22.08 b.d.l.

MRC-14-36 3144 0.031 21.18 b.d.l.

MRC-14-37 3187 0.031 20.13 b.d.l.

MRC-14-38 3241 0.031 16.18 b.d.l.

MRC-14-39 3331 0.031 13.92 b.d.l.

Sample
µmol L

-1
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