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Abstract

Quan els humans observen una escena, son capaços de distingir perfectament les
parts que la composen i organitzar-les espacialment per tal de poder-se orientar.
Els mecanismes que governen la percepció visual han estat estudiats des dels prin-
cipis de la neurociència, però encara no es coneixen tots els processos biològic que
hi prenen part. En situacions normals, els humans poden fer servir tres eines per
estimar l’estructura de l’escena. La primera és l’anomenada divergència. Aprofita
l’ús de dos punts de vista (els dos ulls) i és capaç de determinar molt acurada-
ment la posició dels objectes ,que a una distància de fins a cent metres, romanen
enfront de l’observador. A mesura que augmenta la distància o els objectes no
es troben en el camp de visió dels dos ulls, altres mecanismes s’han d’utilitzar.
Tant l’experiència anterior com certs indicis visuals s’utilitzen en aquests casos i,
encara que la seva precisió és menor, els humans aconsegueixen quasibé sempre
interpretar bé el seu entorn. Els indicis visuals que aporten informació de profun-
ditat més coneguts i utilitzats són, per exemple, la perspectiva, les oclusions o el
tamany de certs objectes. L’experiència anterior permet resoldre situacions vistes
anteriorment com ara saber quins regions corresponen al terra, al cel o a objectes.

Durant els últim anys, quan la tecnologia ho ha permès, s’han intentat dissenyar
sistemes que interpretessin automàticament diferents tipus d’escena. En aquesta
tesi s’aborda el tema de l’estimació de la profunditat utilitzant només un punt de
vista i indicis visuals d’oclusió. L’objectiu del treball es la detecció d’aquests indi-
cis i combinar-los amb un sistema de segmentació per tal de generar automàticament
els diferents plans de profunditat presents a una escena. La tesi explora tant situa-
cions estàtiques (imatges fixes) com situacions dinàmiques, com ara trames dins
de seqüències de vı́deo o seqüències completes. En el cas de seqüències completes,
també es proposa un sistema automàtic per reconstruir l’estructura de l’escena
només amb informació de moviment. Els resultats del treball son prometedors i
competitius amb la literatura del moment, però mostren encara que la visió per
computador té molt marge de millora respecte la presició dels humans.



Abstract

When humans observe a scene, they are able to perfectly distinguish the different
parts composing it. Moreover, humans can easily reconstruct the spatial position
of these parts and conceive a consistent structure. The mechanisms involving vi-
sual perception have been studied since the beginning of neuroscience but, still
today, not all the processes composing it are known. In usual situations, humans
can make use of three different methods to estimate the scene structure. The first
one is the so called divergence and it makes use of both eyes. When objects lie in
front of the observed at a distance up to hundred meters, subtle differences in the
image formation in each eye can be used to determine depth. When objects are not
in the field of view of both eyes, other mechanisms should be used. In these cases,
both visual cues and prior learned information can be used to determine depth.
Even if these mechanisms are less accurate than divergence, humans can almost
always infer the correct depth structure when using them. As an example of vi-
sual cues, occlusion, perspective or object size provide a lot of information about
the structure of the scene. A priori information depends on each observer, but it
is normally used subconsciously by humans to detect commonly known regions
such as the sky, the ground or different types of objects.

In the last years, since technology has been able to handle the processing burden
of vision systems, there has been lots of efforts devoted to design automated scene
interpreting systems. In this thesis we address the problem of depth estimation
using only one point of view and using only occlusion depth cues. The thesis
objective is to detect occlusions present in the scene and combine them with a
segmentation system so as to generate a relative depth order depth map for a
scene. We explore both static and dynamic situations such as single images, frame
inside sequences or full video sequences. In the case where a full image sequence
is available, a system exploiting motion information to recover depth structure is
also designed. Results are promising and competitive with respect to the state of
the art literature, but there is still much room for improvement when compared to
human depth perception performance.
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Voldria començar donant l’agraı̈ment al meu tutor Philippe ja que, sense els seus con-
sells, les seves idees i recomanacions, aquesta tesi no hagués estat possible. Durant
aquest temps, les discussions amb ell, sempre fructı́feres, m’han servit per aprendre
nous conceptes i per a saber escollir la millor opció. Per això vull agrair-li la seva
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a tirar endavant tots aquest anys. Finalment, vull agrair de tot cor a la meva parella
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1 Introduction

1.1 Motivation

When humans face different kind of scenes, they can easily estimate the scene structure
even if only one point of view is available. In monocular situations, knowing which
objects are in front of the others is an obvious task, even if the scene is new to the
observer. Reconstructing the underlying visual process has been a field of study since
many years, formally starting with (Von Helmholtz 1866). In the subsequent years,
authors focused on particular aspects of depth perception, such as which cues are
for humans the most significant for depth detection (Braunstein et al. 1989; Ono et al.
1986).

Monocular depth ordering systems are currently an active field of research in the im-
age processing and computer vision field. While most of the works assume some
image structures, there are very few that perform the depth ordering task using only
low level cues. The proposed system is motivated by the work of (Dimiccoli 2009),
tackling the problem without prior knowledge of the type of scene. For this reason,
only still images occlusion cues are used, such as T-junctions and convexity. Both cues
offer good signs of depth discontinuities (McDermott 2004), although only the relative
depth between regions can be retrieved. For image sequences other kind of cues can
also be used, such as motion occlusions or motion parallax. As with still cues, motion
occlusion only offer signs on the relative depth order, while motion parallax can be
used to retrieve a full depth map, with absolute values (up to some factor).

The knowledge of relative depth can be useful in many applications, such as occlusion
boundary detection or depth plane segmentation. Moreover, the system can even be
used as a first step to retrieve a full depth map, as done by the film industry. Therefore,
the main objectives of this project is to provide a system able to retrieve the relative
depth either on monocular single images or sequences relying only on local depth cues.
Additionally, in image sequences, the absolute depth could also be retrieved by using
structure from motion.

Many vision theories such as (Von Helmholtz 1866) state that the human perception
is a Bayesian inference process. To adequate the proposed algorithm to existing vi-
sion theories, our work states a probabilistic framework to detect low level and order
image/video regions according to depth. Moreover, human scene interpretation is
known to be a cooperative process of smaller problems such edge detection, texture
recognition, cue inference, etc. For this reason, a hierarchical image/video represen-
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1. INTRODUCTION

tation is built, so the algorithm is able to deal with details appearing at multiple res-
olutions. To estimate relative depth, local depth cues are aggregated and a global
inference is computed so as to provide with consistent relative depth order maps.

1.2 Research Contributions

In this thesis the depth ordering/estimation problem is addressed in single images,
single frames and video sequences. The main contributions can be found below, orga-
nized in fields and mentioning the associated publications, either published or in peer
review process in the date of the writing of the document (November 2013).

Contribution in Evaluation Methods To the date, evaluation methods on depth or-
dering were rather inadequate and lacked rigorousness. As the depth ordering prob-
lem encompasses a first image/video segmentation step, most state of the art algo-
rithms decoupled both steps, computing two independent performance measures to
each one. In this thesis we propose a unified framework for problems that include
both detection (segmentation) and classification (depth ordering), showing that both
steps are strongly correlated. Related publications:

• G. Palou and G. Salembier. “Precision-Recall-Classification Evaluation Frame-
work: Application to Depth Estimation on Single Images”. In: Submitted to CVPR.
2014

Contributions in Single Images The proposed approach for single images aims to
push the limit of low level static cues, without supposing any a priori structure of the
scene. To this end, in this thesis a new method to estimate junctions based on segmen-
tation information is proposed. Moreover, low level depth cue estimation is integrated
with the region merging process, introducing depth information to the segmentation
hierarchy. Additionally, local information provided by depth cues is propagated to in-
fer a global consistent depth map with a new probabilistic framework using concepts
of reliability networks. Related publications:

• G. Palou and P. Salembier. “Occlusion-based depth ordering on monocular im-
ages with Binary Partition Tree”. In: IEEE ICASSP. Prague, Czech Republic, 2011

• G. Palou and P. Salembier. “From local occlusion cues to global depth estima-
tion”. In: IEEE ICASSP. Kyoto, Japan, 2012

14



1.2. Research Contributions

• G. Palou and P. Salembier. “Monocular Depth Ordering Using T-junctions and
Convexity Occlusion Cues.” In: IEEE Trans. on Image Proc. 2013

Contributions in Single Frames Depth ordering on frames is performed using dy-
namic low level depth cues such as motion occlusions. In this thesis, a new way of
estimating motion occlusions is designed by integrating segmentation in the detection
process. Moreover, motion information is introduced to the segmentation process, im-
proving the region quality shown by quantitative measures. Related publications:

• G. Palou and P. Salembier. “2.1 Depth Estimation of Frames in Image Sequences
Using Motion Occlusions.” In: ECCV Workshops. Firenze, Italy, 2012

• G. Palou and P. Salembier. “Depth ordering on image sequences using motion
occlusions”. In: IEEE ICIP. Orlando, FL, USA, 2012

• G. Palou and P. Salembier. “Depth order estimation for video frames using mo-
tion occlusions”. In: IET Computer Vision 2013

Contributions in Video Sequences One of the major contributions for video sequences
is the design of a hierarchical region representation based on color and long term mo-
tion information. As with single frames, motion occlusions are used to order objects
by their relative depth. Related publications:

• G. Palou and P. Salembier. “Hierarchical Video Representation with Trajectory
Binary Partition Tree”. In: IEEE CVPR. Portland, OR, USA, 2013

• G. Palou and P. Salembier. “Hierarchical Video Representation with Trajectory
Binary Partition Tree and its Applications”. In: IEEE TPAMI, in peer review 2013

Another contribution, is the design of an algorithm that uses motion information to
recover absolute depth maps for video sequences of static sequences with arbitrary
camera motion. The goal of introducing structure from motion is to introduce a possi-
ble approach that allows us to merge motion occlusions (relative depth) and structure
computation (absolute depth). This will permit to construct dense maps for sequence
with arbitrary moving objects, and not only static scenes. Structure from motion is
an active field in the literature and can, by itself alone, provide results on depth map
generation in certain types of sequences. Therefore, a system using only optical flow
to recover depth is designed.
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1. INTRODUCTION

1.3 Thesis Organization

This thesis can be divided in eight major chapters, a part from the current introduction
in Chapter 1 and the conclusions in Chapter III.

Depth Perception In Chapter 2 the fundamentals of human vision are reviewed and
how they can be related with the computer vision and image processing field.
The depth perception process and visual interpretation of scenes is reviewed in
this part, giving an insight of possible computational approaches to mimic hu-
man vision. Additionally, the general system architecture is described.

Monocular Occlusion Cues The whole chapter 3 is devoted to explain the types of
low level depth cues that the proposed depth ordering approaches use. Both
static and dynamic cue estimations are shown.

Evaluation Methodology Prior to deal with the depth ordering problem, a frame-
work to evaluate the results is proposed in Chapter 4. Evaluation is a key aspect
to assess if obtained results are competitive with the state of the art.

Depth Ordering in Still Images In Chapter 5 the problem of depth ordering in single
images is tackled. In this chapter, a deep review of image region representation
is shown, and well as their uses to the depth ordering problem.

Depth Ordering in Single Frames of Video Sequences Extending the algorithm for
single images to frames inside video sequences is done in Chapter 6. Both sys-
tems are similar, but in frames dynamic low level cues can be used instead of
only the static ones. To this end, the different steps of the algorithm are particu-
larized to use motion information.

Depth Ordering of Video Sequences Similar to the previous two chapters, in Chap-
ter 7 an automated system is designed to retrieve relative depth for video se-
quences.

Structure from Motion in Video Sequences Adopting a different perspective than the
other chapters, in Chapter 8 an algorithm that recovers full depth maps using mo-
tion information is designed. This algorithm will be used as a preliminary step
to merge motion occlusions and structure from motion. In this sense, this chap-
ter can be viewed as as an ongoing work extending the technological core of this
thesis.

16



2 Depth Perception

2.1 Vision: the Early Process

Humans are known for their ability to recognize objects and determine the scene struc-
ture in many distinct situations. Our capacity to retrieve a coherent depth interpreta-
tion of the environment seems to be robust and reliable in the majority of cases (Ep-
stein and S. Rogers 1995), with the exception of some optical illusions. The ability
to perceive a 3D world in humans is mainly due to binocular vision, where each eye
provides a different image of the scene and disparity is subconsciously inferred. How-
ever, in monocular situations, perception is affected but still, depth information can
be perceived, see Fig. 2.1 for which cues are used for different types of viewing dis-
tances. The scientific community has tried to mimic the human behavior to determine
the depth structure of scenes. To this day, human performance is still much better than
computer based approaches in both time and accuracy, but the evolution of 3D visual-
ization hardware encourages researchers devote efforts to estimate depth from visual
content.

In this section a review of human vision is given, with special focus on depth percep-
tion. The vision community has been studying how light photons are combined to
produce images in the eye, how these images are transfered to the brain and how this
information is transformed to sensorial or semantic data to condition human behavior.
Although the complete mechanisms are not fully known, computer algorithms rely on
vision studies to base their reasonings on vision theories. The first part in Sec. 2.1.1
discusses the biological mechanisms behind image formation, comparing it to modern
photograph cameras. The second part Sec. 2.1.2 gives an insight in current perception
theories and how they influence the development of algorithms. Depth perception is
discussed more deeply in Sec. 2.2.

2.1.1 The visual system

Given a three dimensional scene, the key problem (prior to scene understanding) is to
know how points and regions in space are transformed into point and regions on the
image plane. The role of the (human) eye is to collect environment light, regulate its
intensity, focus it through a series of lenses and produce an image. Images formed in
both eyes will then be sent using electrical signals to the brain for their interpretation.
This process is well known, and its working principle is very similar in species with

17



2. DEPTH PERCEPTION

Viewing Distance (m)

10 100 1000

Accommodation

Convergence

Binocular Disparity

Motion Parallax

Atmosphere

Texture

Brightness

Size

Occlusion

Near field Medium field Far field

Figure 2.1: Graphic adapted from (Nagata 1991) showing the sensitivity in depth for
the different types of cues. Note that monocular depth cues are valid in all near,
medium and far fields. Disparity, although much more reliable for near viewing dis-
tances, has a limited range of action.

complex eyes (96% of living organisms (Fernald 1997)). There exist many types of
complex eyes, and each one of them is adapted to the biological need of each species.
For instance, the number of lenses, the position of eyes in the head or the operating
band of photoreceptors can be substantially different between types of eyes.

Concerning the human case, shown in Fig. 2.2, when rays of light enter through the
cornea and the iris, they are distorted by the lens such that they become focused on the
retina. Focusing is needed so as to produce sharp images regardless on the distance of
the external objects. When light hits the retina, two types of photoreceptor cells (rods
and cones) get excited depending on light intensity and frequency. Cones respond to
bright light and high resolution color vision, while rods respond to monochromatic
vision in very deam light environments. The sensitivity of the cones in several wave-
lengths is what provides humans the capacity to see colors. Cones are divided into
subgroups selective to short, medium and large wavelengths. Due to this three sub-
groups, humans are able to distinguish three colors (commonly names red, green and
blue) but many other animals have normally two or sometimes four subgroups.

The level of excitement of photohoreceptor cells is sent to the brain through the optical

18



2.1. Vision: the Early Process

Figure 2.2: Vertical section of the human eye in the left, and an overview of the human
visual system on the right

nerve, which is then responsible to form one image for each eye. Information paths are
divided between the left and right visual tracks, and each track carries the representa-
tion from half the visual field (Wurtz et al. 2000) and they meet on the visual cortex, the
back part of the brain responsible for visual perception. While images travel through
optic tracks, the image is processed in simple ways by neurons so extra information to
the visual cortex is provided. This low level processing is then used to provide higher
level information such as disparity (depth) estimation or pattern recognition. This pro-
cess is also known as visual perception and contrarily to the visual system, the way in
which the brain perceives remains still unknown.

2.1.2 Visual perception

Research on how and what humans see may go back as far as the ancient Greece, but
it was not until Hermann von Helmholtz where the first theories of the visual per-
ception of space where stated (Von Helmholtz 1866). His work proposed that vision
was the result of unconscious processes based on previously learned situations. Exam-
ining the eye, this german physicist stated that it had poor optical features and that
perception was a phenomenon hardly linked with a learning process that lasted many
years: the unconscious inference. In that way, humans have a priori expectations of
the scene structures such as the position of light and the object orientations. Due to the
introduction of the learning process, human vision was seen with a broader perspec-
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tive, introducing new disciplines for its comprehension. Helmholtz work provided
empirical theories about his studies on spatial, color and motion perception. The rele-
vance of this study made it the reference on the theory of vision throughout the second
half of the nineteenth century. Helmlholtz theories were redefined using probabilistic
Bayesian theory (Bayes and Price 1763), and experimental validation (Mamassian and
Landy 2001; Stone and Pascalis 2010; Stone 2011; Mamassian 2006) suggests that priors
are indeed very influential in human perception.

In the latter years, namely between 1930-1940 (Köhler 1929; Koffka 1935), Gestalts psy-
chologists presented their theory in perceptual organization. Their basic theory stated
that object are first perceived as whole rather than their individual parts. Their theory
of vision was based on the capacity of the brain on figure-forming and visual comple-
tion instead of perception of individual, simpler visual elements. The Gestalt school
was based under two suppositions. First, the conscious experience is the sum of in-
dividual aspects of the individual and it must be considered as a whole. Second, the
order in which stimulus were perceived is the same order in which the brain processes
the information. That is, if two situations are perceived similarly, the brain will process
them in identical ways. One of their founders, Max Wertheimer defined the purpose
of Gestalt in (Wertheimer 1938) as:

“There are wholes, the behaviour of which is not determined by that of their individual elements,
but where the part-processes are themselves determined by the intrinsic nature of the whole. It
is the hope of Gestalt to determine the nature of such wholes.”

Gestalt theory attemped from the first moment to define universal principles which
allow humans to make the perception arise as a global process, rather than the sum
of local stimulus. From this supposition, gestaltists published in a series of works
the famous laws of organization, in which they determine how individual parts are
associated to form a global perception. These laws are used as a basis in practical
state of the art algorithms in object detection (Carreira and Sminchisescu 2012), optical
character recognition (King et al. 2011) or depth estimation (Saxena et al. 2005). Since
they are specially relevant to the purpose of this thesis, a short review is given with
examples in Fig. 2.3.

Proximity Objects close to another are associated as belonging to the same group

Similarity Objects with similar properties such as shape or color are integrated
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Figure 2.3: Four examples of Gestalt laws of organization. Beggining from the top left,
in scan order: Proximity, similarity, continuity and closure

Continuity Oriented units or groups tend to be integrated into perceptual wholes

Closure Individual parts tend to be associated if they are part of a closed form

Common fate Elements moving together are perceived together

Simplicity Perception as a whole tends to be simple, orderly, balanced, unified, coher-
ent and regular.

Although there may be other factors influencing the perception, such as a priori infor-
mation, these seven laws are the ones used in most applications.

Although these principles seem to play an important role in many situations, the
Gestalt theory was strongly criticized due to its descriptive nature instead of explain-
ing these processes. Gestaltist thought that these abilities were innate, successfully
explaining what brain sees, but they not explaining how. At this point, several the-
ories arose to explain how the perceived information was processed. The two most
important new theories of vision arose during the second part of the twentieth cen-
tury. The first one, ideated by Gibson (J. J. Gibson 1986), claimed that vision should
be understood as a survival tool that enables animal to move, eat and avoid predators.
Another more pragmatic approach, proposed by David Marr (Marr 1982) compared
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the brain to a computer and stated three levels of information processing for vision.
Marr decomposed the problem into three independent levels of understanding:

Computational theory Sets out the goal of the task and why it should be performed.
This includes to define which are the inputs and the outputs of the problem.
Example: using the right and left eye images, one can perform binocular stereo
estimation to be able to move in an environment.

Algorithm Sets out a descriptive process on how to complete the task defined in the
previous step. Example: on binocular stereo estimation point correspondences
should be used to estimate disparity and therefore, depth.

Implementation Specifies the real (physical) implementation of the algorithm either
in biological systems or in computer devices. Example: the visual cortex process
or a C/C++ algorithm.

These three levels of description helped modern vision research to decompose the vi-
sion problem into the essence of the problem (what needs to be perceived) and how
it is performed. With the introduction of Marr theories, the Bayesian theories com-
ing from Helmholtz regained popularity. The modification of the Helmholtz princi-
ples to introduce a more objective concept, such as probability, was a first step to ex-
plain the vision from a more technical point of view. Although a universal model is
still unknown, the proponents considered that the human brain, through processes of
(un)conscious learning, stated the problem as a form of Bayesian inference from sen-
sory data (Moreno-Bote et al. 2011; Knill and Richards 1996). This inference was not
treated in the Helmholtz original theory, although the rules that governed this proba-
bilistic approach were not known.

One of Marr’s most important contributions was made in the first two levels when
he proposed a representational framework for vision. He concentrated on the vision
task of deriving shape information and three dimensional structure from images. This
is a specially relevant work for the purposes of this thesis and many state of the art
algorithms make use of Marr’s problem decomposition.

2D or Primal Sketch: the first stage of vision consists in gathering the principal fea-
tures of the scene, namely lines, common figures, forming edges and regions.
This sketch can be compared with the first step an artist would take to represent
a drawing.
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Figure 2.4: Images and their primal sketch, top and bottom respectively.

2.5D Sketch: the second stage gathers texture. In this step, the lighter and darker
regions are detected, identifying shades, as well as surface orientations thanks to
textures. Object and depth discontinuities are also detected.

3D Sketch: the final step of the algorithm combines all the previous perceived struc-
tures and constructs a 3D scene, hierarchically organized in terms of volumetric
and surface primitives.

Figure 2.4 represents what the first sketch is. Marr theory does not include the use of
multiple points of view (the two retinal images, for example). To adopt several per-
spectives, the general approach is to consider that after the three sketches the different
images are combined for a better scene understanding.

The model of David Marr was very helpful in computer vision and image processing
areas which were seeking algorithms for scene understanding. Nowadays, in the com-
puter vision field, the primal sketch is performed mainly by the edge detectors, the
2.5D Sketch is more focused on region/texture segmentation while the last step, the
most difficult one even now for computer systems, is performed by (among others) pat-
tern recognition and scene understanding/interpretation algorithms. Following the
work of David Marr, (Guo et al. 2003; Guo et al. 2007) proposed practical approaches
to arrive at a representation of the primal sketch. The work presented in this thesis is
focused on the second and third steps of Marr’s theory: Provide a 2.5D representation
and, when possible, estimate a full 3D structure of the scene being observed.

23



2. DEPTH PERCEPTION

2.2 Depth Perception in Humans

Depth perception, as a field of scene understanding, is the one of the most difficult
part of image processing, either for the brain or for a computer. While Marr’s theory
is a good starting point, there still remain unsolved problems both in the way humans
perceive depth, and how a computers can estimate it from 2D observations. Neverthe-
less, the common agreement is that humans perceive depth from a set of simple cues
and that these cues appear depending on the situation. For example, it is different to
perceive depth in real environments than in single photos or video sequences in flat
screens. When multiple views are available, depth cues are much stronger than when
only one single view is present. Nevertheless, the depth perception is a process where
the set of cues compete with each other, hopefully creating a coherent interpretation of
the scene. Many psychologists and artists (Ponzo 1910; Escher and Brigham 1967) ob-
served that this competition may not always give a unique outcome, and created a set
of optical illusions to show that depth perception is one of the most difficult problems
in vision.

Noting that depth perception is the inverse process of the visual system: while vision
projects a 3D world into (multiple) images, the 3D information is still needed for many
purposes. Therefore, the task of depth perception is an ill-posed problem (Bertero
et al. 1988). Due to the loss of information of the 3D-to-2D projection and given an
image, there are an infinite number of possible 3D reconstructions. Even with more
than one point, there exists some ambiguity on the position of the objects in the space.
Therefore, it is only by some intrinsics suppositions that humans are able to estimate
depth such as local cues or a priori known situations. The nature of the cues differs
very much whether the observer has one/multiple or static/dynamic points of view.
A first description is given to differentiate these scenarios and an overview of the cues
used in each of the situation is exposed in subsequent sections.

Multiple Views: This case occurs either in natural human vision or in multiple cam-
era systems. It provides multiple points of view of the same scene. In the case of
humans, these two viewpoints correspond to the eyes; for computers, there can
be more than two viewpoints.

Monocular View: A single point of view is present. This situation can be found also
in nature (animals with one eye on each side of the head) or in computer systems
(for instance, viewing a photo in a LED display).
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Motion Information: This type of information can be associated to either multiple or
monocular views. The particularity resides in the temporal information that can
be gathered. As in the first two cases, motion information is present in nature or
in computer systems equipped with video devices.

2.2.1 Multiple View Depth Cues

Multiple view appears naturally in humans with only two points of view. This kind
of structure is known as stereo or binocular vision: only two very close points of view
are available. Although there are popular systems, such as the 3D cinema, which uses
stereo vision, systems relying on multiple viewpoints (more than 2) usually perform
more robustly. Obviously, a system with more than two viewpoints is impossible to
have for human vision. Architectures with more points of view are only available in
computer-aided systems. Two types of cues can be found to infer the depth from a
pair of (or more) images.

2.2.1.1 Binocular Disparity

When two cameras located at different positions observe the same scene, the created
images are closely related. Normally, large regions of both images can be matched as
shown in Fig. 2.5. From the displacement of the matched region and the knowledge of
the camera positions, it is possible to infer the absolute depth of the objects present in
the scene. The use of only two points of view may introduce some uncertainty areas.
these areas are regions that can be observed only from one point of view. Therefore, in
these areas disparity is not available. If the uncertainty regions needs to be reduced,
this can be achieved gradually by introducing more cameras. Although disparity has
proven to be one of the most reliable cues (Jones and D. N. Lee 1981; Burr and J. Ross
1979), it is not always the case, as conjectured by (Antonides and Kubota 2013).

2.2.1.2 Vergence and Accomodation:

In humans, the visual axes of the eyes (cameras) must converge on the observed object
to allow to focus and to infer the depth information. The synchronized eye move-
ment is known as vergence, and this movement depends on the object spatial position.
If objects are far away, eyes diverge, while if they are close enough, the eye move-
ment converges (the pupils become closer to each other). Depending on their position,
humans know if they are focusing a near or far object (Wismeijer et al. 2008). Note
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Figure 2.5: Depth perception from two views. From left to right: left image, right im-
age and true depth map. The depth map can be constructed from binocular disparity.

that situations in which the eyes do not converge correspond to peripheral vision. Al-
though humans can see outside the main focused object, their ability to detect shapes
and depth decreases abruptly outside a field of view of approximately 30 degrees. Pe-
ripheral vision is used to detect rapid movements and the background structure, but
humans must focus objects to examine them carefully (Day and Schoemaker 2004).
Accommodation is closely related to vergence, in the sense that the lens should focus
near and far objects depending on the position of the eyes. From the eyes muscles
controlling the lens, humans may infer the depth at which they are focusing.

2.2.2 Monocular Depth Cues

Monocular vision does not occur only in computer vision. Animals that have one eye
on each side of the head, can only rely on monocular cues to detect depth. There
is an evolutionary theory stating that animals that need high precision in their fast
movements (such as predators) have their eyes coupled to permit stereo vision at the
expenses of a reduced field of view, while animals which do not (as herbivores) can
rely only on monocular cues with a much broader field of view (Henson 1998). Stereo
vision allows to compute distances precisely for hunting, while a broader field of view
allows to detect incoming dangers much easily. It is important to note that the cues
acting for monocular vision may work together with multiple viewpoints. Humans,
for example, a part from disparity, they can take advantage of monocular depth cues.
To infer depth using only one image, there are several cues which can be used, and
some of them are presented here.
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2.2.2.1 Occlusions / Interposition

Junctions Occlusion, also known as interposition, is known to be a strong depth cue
and it is found locally at some special points, known at junctions (Anderson 2003).
These kind of points are created thanks to the projection of the real world scene to
a visualization plane. Junctions have been suggested to be involved in many depth
perception tasks, specially surface occlusion geometry retrieval. There are many kinds
of junctions (Malik 1987): T-junctions (Guzmán 1968) and L-junctions (Rubin 2001)
and X-junctions (Anderson et al. 1997) are strong indicators for occlusion (T and L
types) and transparency (X types). L-junctions are also commonly known as corners
and can be closely related to convexity cues, so they are discussed more deeply in the
next section. Transparency is a phenomenon that rarely occurs in natural images and
it will not be further discussed here, although in (Dimiccoli 2009) a special treatment
was given to X-junctions. Occlusions occur mainly in T-junctions and, according to
(McDermott 2004), they can be easily detected by humans and can be combined to
provide an initial estimation of the depth of an image. Nevertheless, occlusion only
permits to determine the relative depth order of the regions involved.

T-junction are not always good indicators of depth. To do so, specific sizes, angles and
boundary coincidence are needed (McDermott 2004). As an example, in Fig. 2.6, when
projecting spheres in the real world into circles in the image, some intersections (junc-
tions) are created where generally three objects meet. Locally, at these intersections,
the boundaries of the objects define the junction angle characteristics. With a global
view of the image it is easy to see which objects are in the front of in the back, but lo-
cally in junctions, the depth configuration is difficult to tell. Normally (but not always),
the region belonging to the object lying closer to the viewpoint will form almost a flat
angle in the junction and hence the name of T-junction. The other two regions will
form two arbitrary but similar angles. In Fig. 2.6, it can be seen that, in the marked
T-junction, the red region, R2, occupies most of the local window, shaping a nearly
perfect 180 degree boundary with the other regions.

Stronger and more confident T-junctions appear when the two rear regions, although
not having any restriction about the angle, form a smallest angle bigger that 40 de-
grees; below from that, the perception of depth decreases rapidly, (McDermott 2004).
Even for humans, T-junction detection may be difficult locally and some global rea-
soning from the image structure is needed. Moreover, the scale to correctly classify
T-junctions greatly depends on the image nature (synthetic or natural) and many other
factors such as colors, angles, etc. (Lindeberg 1994). If no global reasoning is done, T-
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Figure 2.6: T-junction examples. In the left image: locally, region R2 is the one forming
the largest angle, appearing to be over R1 and R3. At the center image, the depth
ordering is inverted, since the sky region is forming the largest angle but belongs to
the background. At the right image, a T-junction counterexample formed by texture
variation is shown. Stripes in the tiger form junctions with the background, but the
foreground regions are the smallest ones.

junction depth order cannot be reliably set. For example, textures may generate color
differences which, at a small image extent, can replicate the region angle configuration,
see center and left pictures of 2.6 for a couple of examples.

A simple classification on T-junction can be done, depending on their local depth or-
dering: the normal and the inverted order. The former class is when the region forming
the largest angle is the foreground. The latter class is when the opposite depth order
is found. Locally, both types of junctions have the same feature configurations. As an
example, see how the configuration in the center and left images in Fig. 2.6 is very
similar to the right T-junction in the same figure. However, humans interpret correctly
the types of junctions easily.

Convexity: Convexity is also a good sign for perceptual organization in an image.
Psychological studies such as (Burge et al. 2010; C. C. Fowlkes et al. 2007; Slugocki
et al. 2013) aim to prove that natural objects which present convex shapes appear to
be in the foreground, while the concave ones seem to lie in the background. Highly
convex boundaries are also known as corners or L-junctions (Rubin 2001) and provide
a lot of information on surface organization and on object segmentation. (Hoffman
and Singh 1997) states that natural objects such as persons, animals, trees... are mainly
composed of convex parts. Recalling Marr’s theory in Sec. 2.1, the first step humans
do when facing an image, is to detect object boundaries in the primal sketch. In a
second step, the integration of these boundaries may form the observed object shape,
normally composed of a (non-smooth) closed contour. The curvature of this contour is
what will determine the first insights on depth organization. For example, in convex
object parts such as people extremities like legs, hands or head, the curvature of the
shape will be positive, while in concave part the curvature will be negative. From the
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Figure 2.7: Example on how the minima rule is used to extract points of high curva-
ture and a global depth decision from local convexity relations. In the left image the
boundary of the animal is shown outlined in white. In the right, points with convexity
are marked with green arrows, while points with red arrows indicate high concavity.
The final depth decision results from averaging these points.

curvature characteristics, the overall shape is divided into smaller parts at the points
of negative minima curvature. This division appears to be inherent in vision, and it is
by the averaging of the local depth sign of these parts that relative depth is perceived.

That is, the minima rule (Braunstein et al. 1989; Siddiqi et al. 1996; Walker and Malik
2003) is a procedure for dividing a shape/mesh into simpler subparts, at the points
of high curvature (Y. Lee et al. 2005). As a result, objects in the scene may present
points of high positive curvature (and thus locally convex) and points of high neg-
ative curvature (perceived locally as concave). Thus, to decide if an object is the
foreground or background region, humans integrate along the overall shape the lo-
cal convexity decisions. The overall decision will depend on the averaged sign of the
curvature/convexity as shown in Fig. 2.7

Although convexity may present a correct approach for depth perception, it only per-
mits to determine the relative depth order like T-junction. Usually, convexity cues are
weaker than occlusion cues. The human vision system will then first use occlusion to
structure the image. After this first step, if no occlusion relation can be inferred from a
set of image regions, the foreground/ background relations are inferred mainly from
convexity shapes.

2.2.2.2 Light Shading and Shadows

Retrieving depth in some specific situations can also be done by means of analyzing
the reflectivity of objects and the casted shadows. The work in (R. Zhang et al. 1999)
summarizes the computational techniques to do it but, as always, humans are much
more effective in this area (Kleffner and Ramachandran 1992). Nevertheless, there
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Figure 2.8: Shape from shading examples. Left: example with light effects carefully
detailed. Right: three different objects with their shading and their shadow casted to
an imaginary ground.

are strong assumptions made about the scene when relying on this cue. First, only
one prominent light source may be present and second, this light source is shining
from above. The second assumption comes from the subconscious inference theory
(Von Helmholtz 1866), commented in Sec. 2.1. These assumptions come from the fact
that in most natural images, the light structure conforms to this model, i.e. the sun
shines from the top. There is however, a huge literature on this topic and in (Atick et
al. 1997; Prados and O. Faugeras 2006) some computational approaches are proposed.
Assuming a lambertian surface, where light is scattered uniformly in all the directions,
light shading allows humans to infer the object shape. Shadows, in the other hand,
allow to relate the position of the different objects relatively to the light source. Some
simple examples are given in Fig. 2.8, where one can see clearly that object shape
greatly contributes to perceive the surface curvature of the objects and shadows allow
to know the position of the ground and the direction of the light source.

2.2.2.3 Relative Dimensions and their Cognition

If two objects are known to be of the same class (e.g. two persons) but their absolute
size is unknown within a degree of variability, the two objects observed size in the
image can provide information about their relative depth (Hochberg and McAlister
1955). This cue is known as relative size and, from the viewpoint (a camera, for ex-
ample) the observed size of an object is measured by the visual angle occupied on the
field of view. The bigger object will appear to be nearer. Additionally, if some insights
are known about the absolute size of an object, some suppositions about their absolute
depth can also be inferred. As the visual angle projected to the camera (or retina) de-
creases with distance, the lesser the area is occupied in the image, the further appears
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Figure 2.9: Examples of size cues. Left: from the relative size of the two boats, one
can derive that the smaller one is further from the viewpoint. Right: Regardless of the
illusion, the Eiffel tower is known to be much bigger than the person, so it is placed
far away from the man.

the object. This cue is only applicable with prior learning of the objects, such as per-
sons, cars and several other familiar things from which its size can be approximated.
Fig. 2.9 shows two examples of size cues that help to determine the relative position of
objects in the scene. Since humans easily recognize objects, this cue appears whenever
a known class of objects is seen (which is almost always).

2.2.2.4 Texture Gradient of a Surface

The texture gradient (Clerc and Mallat 2002; Bajcsy and L. Lieberman 1976) is defined
to be the distortion in size experimented by regions close to the point of view with
respect to regions far way, Fig. 2.10. Texture by itself, is also known to help in im-
age segmentation and object differentiation. To represent texture two approaches are
used in the literature: frequency/space oriented filter banks (in which Gabor filters,
(Clausi and Jernigan 2000), is a particular case) and Markov Random Fields, (MRF)’s.
However, to compute the texture gradient, the former approach is much more used.
Generally, it will be defined as the increase of frequency of close image regions (Malik
and Rosenholtz 1997). Normally, under known light and camera conditions, texture
gradient offers the possibility to infer the three dimensional shape of the objects, pro-
viding the absolute depth of their surfaces. If no information about the camera and
lighting properties are available, still some insights about the surface orientation may
be estimated (Malik and Rosenholtz 1997). Texture gradient appears normally in very
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Figure 2.10: Texture gradient examples. Notice the incrementing high frequencies
when the surfaces move away from the camera.

specific environments (Okoshi 1976), so its importance is relative.

2.2.2.5 Atmospheric Effects : Visibility Variation

This cue is observed in very specific situations, where the scene extend may reach
several kilometers. Typically, when one observes a landscape, points very far away
appear blurred and with low contrast. This blurring is due to the effects of the atmo-
sphere, making further away points to fade into the same color than the sky. Although
it can be used to distinguish relative depth, this cue is very approximate since the ef-
fects of the sky will differ from one place to another, or even from day to day at the
same place. An example is shown in the left part of Fig. 2.11

2.2.2.6 Linear Perspective

This cue is closely related to what is called vanishing point. Due to the projection of the
3D-world into the image plane, parallel lines in the real scene appearing the 2D image
as lines crossing at a common point. This effect appears mostly in lines perpendicular
to the image plane. Lines parallel to the image plane do not experiment this effect.
Needless to say, the closer are the lines observed in the image, the further they appear
to be. As an example, the right image in Fig. 2.11 shows a clear case of converging
lines at the vanishing point.
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Figure 2.11: Atmosferic and perspective cue examples. Left: atmospheric effects pro-
vide with a good cue to determine which regions in the image are far apart. Right:
perspective projection creates a clear vanishing point, where straight and parallel lines
appear to converge in the image.

2.2.2.7 Other secondary cues and competition

A part from the cues exposed above, there are other minor cues which may help to
infer depth in specific situations. These cues can be peripheral vision, accommodation,
retinal image size, height in the visual field (Schwartz 2004). Although they can also
be used, they are not considered to be as important as the other ones because of the
low-rate appearance in natural scenes or their lack of reliability. One cue, which is very
important but very specific and thus, of unpractical use, is the familiar configuration
cue. If a situation has already been observed and learned, realizations of the same
or similar situations may induce to the same depth perception, regardless of other
cues. Another important factor to consider is that in an image, many of these cues
may be present at the same time, thus giving a much richer depth information that
one cue alone. However, this information should be combined somehow, depending
on the degree of cue importance. Although all vision theories suggest that this is
indeed the operation done by the brain, the way in which they are combined is still
not completely known (Van den Berg and Brenner 1994; Landy et al. 1995; Qiu and Von
Der Heydt 2005). Some consensus exists on a Bayesian approach (Jacobs 2002; Kersten
and Yuille 2003), and it is indeed what many computational approaches try to mimic
in scene understanding algorithms (Ren et al. 2006; D. Hoiem et al. 2011). However,
to show that even humans have difficulties interpreting some scenes (Gregory 1994),
examples on wrong cue competition are given in Fig. 2.12, and a brief explanation of
each illusion is given below:

• Perspective and position of the object makes the three cars appear to be of differ-
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Figure 2.12: Examples of optical illusions due to depth cue competition. Generally, the
trick is to generate contradictory cues to induce a wrong interpretation of the scene. A
brief commentary is given for each one, from left to right, top to bottom. See descrip-
tion of each image on the text.

ent sizes, although they are not.

• Due to shadow casting and perspective correction, the right (drawn) lighters
appear to be standing up rather that in the paper plane.

• A global depth interpretation of this image is impossible due to familiar configu-
rations.

• Ames room (Gregory 2005). A precisely distorted room also confuses the sizes
of the objects within it.

• Light shading and shadows are created artificially to make the hands appear to
be outside the paper.

• The viewpoint angle and the lack of junctions of this image does not permit to
know the surface orientation.
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Figure 2.13: Example of motion cues. In the left an illustrative example of motion
parallax can be seen. The center and the right images show two consecutive frames
with motion occlusions marked in darkened areas.

2.2.3 Dynamic Depth Cues

2.2.3.1 Motion Parallax

When the observer moves, the relative movement of objects in the scene with respect
to the point of view may give hints about their relative or absolute distance if some
parameters are known, (Ono et al. 1986; Nawrot and Stroyan 2009). In the projected
image, normally, if the background is still (not inherently moving) objects far away
will be displaced much less than objects being near the observer. A typical example of
this situation is the view from a moving vehicle window such as a car or a train. If one
would look through a lateral window, far objects will appear to be much more fixed
that objects near the vehicle. An illustration can be seen in Fig. 2.13, where the trees
near the moving car appear to move faster that far away trees, the cloud and the sun
(which almost does not move).

Motion parallax appears always when objects in the scene are static between each
other and there is relative movement between the camera and these objects. In this
situation, motion parallax and stereo vision can be easily related because essentially
they are equivalent (B. Rogers and Graham 1982).

2.2.3.2 Motion Occlusions

When objects move relatively to the camera, background areas may appear and disap-
pear, providing a reliable cue to determine the depth order. Note that motion occlusion
appears when the apparent motion of two overlapping objects/regions is different.
This situation occurs either when:

• The real motion of the two objects is different (e.g. two cars in a road)
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• The scene is static and the object depths are different (e.g. a building occluding
the sky)

Given two consecutive frames from a video, occlusions are points in one frame which
have no corresponding point in the other frame, see Fig. 2.13. Therefore, it is possible
to distinguish several classes of points depending on their contribution to motion oc-
clusion cues. Points that appear on the first frame but not in the second (that is, they
disappear) are commonly known as occluded points, while points appearing in the
second frame but not in the first (they appear) are known as disoccluded. As with
occlusion cues in the static case, motion occlusion only allow to determine the relative
depth order between objects in the scene.

2.2.3.3 Depth from Motion

Depth from motion is also a cue present only when several images are available. It
is strongly related to the relative/familiar size monocular depth cues as it also relates
the sizes of regions and objects in the scene (Sperling and Dosher 1994). Depth from
motion is created when the objects move in a direction which is parallel to the view
axis. During such movement, objects grow and shrink, depending on whether the
observer moves away from or get closer to the object. This situation offers two types
of cues. First, if the objects change their size, they also change their depth. Second,
depending on the degree of change it is also possible to known which objects are nearer
than the others. This cues is rather specific, as it appears only when a special case of
motion is present.

2.2.4 General Cue Combination

Normally, several types of depth cues are available when observing a scene. If a real
scene is observed with ones eyes, steropsis is available. If , instead, a photo in a frame
is observed, only static cues are available. Many studies investigate how these cues are
combined (Landy et al. 1995; Ernst and Banks 2002; Hillis et al. 2002) but the agreement
is that humans perform a statistical analysis on the most likely depth configuration
based on the observed cues. That is, there exist a Bayesian prior which influences the
confidence of each depth cue based on prior experiences or innate conditions (Bulthoff
1996). There is a general agreement in the community that the most reliable cues are
the ones obtained when both eyes operate (stereopsis), followed by dynamic cues and
static cues. This fact can be correlated by the performance of systems proposed by the
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computer vision community. In this field, stereo vision systems (Baker, Szeliski, et al.
1998; Hirschmuller 2008) are known to be quite reliable, followed by the depth from
motion algorithms (Davison, Reid, et al. 2007; G. Zhang, Jia, Hua, et al. 2011). Finally,
systems attempting to estimate depth from single images (Saxena et al. 2005; D. Hoiem
et al. 2011) are the ones having the most difficulties on providing a reliable system.

2.3 Depth Cue Perception in Computer Vision:
Proposed Approach

During this chapter, the way in which humans process visual information has been
reviewed, and the set of visual cues that are used to estimate depth are exposed. Al-
though these tasks are performed subconsciously in humans, mimicking this behavior
in computers is still nowadays a challenge. We do not know how brain fully works
and even if we did, the processing power of the whole brain is still unreachable by
today’s computers in some tasks, specially in pattern recognition (feature detection,
face recognition, high level reasoning, etc.). There are many challenges which are still
unsolved in the computer vision community which are needed for the particular prob-
lem that is addressed here: depth estimation. Below we review the problems in the
main fields which are of concern for the development of this thesis:

Image/Video Segmentation Detecting regions of interest when facing a scene (image
or video) has long been known as an ill-posed problem. Two different observers
will consider distinct partitions since, semantically, the same object or scene struc-
ture can be interpreted differently in the two subjects. Automated systems are
getting closer to the performance in segmentation/contour detection, but seman-
tics cannot easily be retrieved (Bertero et al. 1988).

Feature/Cue Detection As well as for segmentation, feature detection performance in
computer vision is still far from the capacity of humans to perceive points (or
lines, regions, etc.) that are relevant for scene structure inference. Again, this is
probably due to the semantic and prior knowledge that humans use to interpret
even local cues (Holender 1986).

Global inference Observing cues and objects, humans hardly misinterpret a scene.
That is, humans always know how the scene is structured, which are the ob-
served object classes or which people are present in front of him. Computers, on
the other hand, find this kind of high level reasoning much more difficult.
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Region Representation
Post-processing
Segmentation
Global depth interpretation

Depth Map

Cue Estimation

Figure 2.14: Block diagram of the general system architecture.

Thus, to obtain depth information from single points of view, either in images or in
video sequences, these three problems should be addressed at some point. The gen-
eral architecture of the system studied in this thesis can be seen in Fig. 2.14 and it
mainly consists of 3 parts which can interact with each other. The system, accepting
either images or videos as input signals, first transforms the original discretization
of these signals into a region-based representation. In this first process, the ill-posed
condition of the segmentation problem is handled using hierarchical representations.
That is, in an image, objects and regions can be organized in hierarchies such that the
granularity of the segmentation can be chosen depending on the application. After
the construction of the hierarchical representation, the hierarchy is processed to obtain
a segmentation and to help the global depth interpretation. Since the two previous
steps can benefit from cue estimation and vice versa, key features to estimate depth
are used throughout the process with multiple interaction which vary from the image
to the video case.

Since cue estimation is key to the performance of the system, the following chapter
will address the way static and dynamic cues are estimated in this proposed work. In
posterior chapters, the particularization of the representation and the postprocessing
is discussed for single images in Chapter 5, for single frames in video sequence in
Chapter 6 and for full video sequences in Chapter 7.
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Monocular Depth Estimation from
Occlusion Cues
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3 Monocular Occlusion Cues

3.1 Depth Cues in Static Images

In Sec. 2.2 we reviewed the types of depth cues that humans use to estimate depth
from the scene. Many factors come into play when understanding a scene, although
many stimulus come in very specific situations (Nagata 1991). For example, when
looking at a landscape, binocular disparity does not help for very far away objects,
but atmospheric effects could play an important role. In interior scenes such as of-
fices, perspective cues may help to determine surface orientations. From all the depth
cues exposed in previous chapters, there is one type that can appear in every situation:
occlusion cues. Occlusion is manifested through T-junctions and convex/concave con-
tours and their are present in almost all types of scene. Nevertheless, there are several
limitations of occlusion cues:

• They only establish a relative depth order, not an absolute one.

• Individual cues are detected locally, albeit the depth interpretation is a global
process.

Obtaining a relative depth order instead of absolute depth values may not be of cru-
cial importance, as from relative depth a quite decent 3D interpretation can be done
(Hubona et al. 1999). In the post-processing film industry, depth illusion is created by
creating several layers of constant depth, (Van Sijll 2005). Normally, these layers are
limited to three: foreground, background and middle-ground. However, in the last
years, producers pushed the industry to use more complex systems, such as (Phan
et al. 2011) which allowed the creation of many layers instead of only three. As an
example of a real post-production case, Fig. 3.1 show artist depth annotations on one
frame of the well known film, “The Lion King”. As can be seen, relative depth plays
a very important role since it is the first step into inducing smooth depth gradients to
the scene. The mentioned figure shows how tedious this process can be, so a system
which is able to automatically retrieve these layers can very useful to the film indus-
try, among others. To the date, the most used tool is Stereo-D software1, which is also
a semi automatic driven system which allows the user to input depth values to the
image which are interpolated automatically to produce depth.

1www.stereodllc.com

41



3. MONOCULAR OCCLUSION CUES

Figure 3.1: Depth estimation as a post-production step. Left: Reference frame of the
“Lion King” movie. Center: annotations done by hand indicating a relative depth with
(rough) depth values. Right: Final depth results. See how using only relative depth,
the depth map can have high quality.

Relative depth is estimated in local cues, although the depth interpretation of the scene
is a global process. So, this implies that automatic systems exploiting occlusion cues
should consists of two steps: a low level detection followed by a high level (global)
reasoning on scene interpretation. In this section we concentrate on exposing the cue
detection process.

Detecting both T-junction and convexity cues has been already tackled in several works.
Junctions can be seen as the confluence of three different contours (Y-junctions), a con-
tour ending on a straight contour (T-junction) or two crossing contours (X-junctions).
Although X-junction provide cues related to transparency (Beck et al. 1984), they are
rarely found. Y-junctions are normally found when three surfaces with different ori-
entations, but no depth discontinuity are found. Among all three, T-junctions are the
only kind of junction which provide a clear depth ign for image structure interpreta-
tion.

Since junctions can be seen as a special kind of corners, contour and corner detec-
tors are used to detect hem. A modified version of detectors (Harris and Stephens
1988; S. M. Smith and J. M. Brady 1997; D. R. Martin et al. 2004) are used to detect
junctions in the works (Bergen and Meyer 2000; Dimiccoli 2009; M. Maire et al. 2008)
respectively. None of them uses segmentation information to help the contour detec-
tion step, although the inverse situation can be found in (Ishikawa and Geiger 1998),
where junctions help the segmentation process. Whether segmentation should help
the junction detection process or vice versa is a kind of ’chicken and egg’ problem that
we are going to address in Sec. 5.2 but, for the moment, it is assumed that during the
detection process a segmentation of the image is available.

In the work of (Calderero and Caselles 2013) a generalization of occlusion cues is pro-
posed by computing the ownership likelihood to a component. The authors integrate the
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Ri RjRk

Figure 3.2: Example of multiple T-junctions between a pair of regions.

principles of depth perception using occlusions by using level sets theory. The authors
propose to use the dead leaves model of an image of (A. B. Lee et al. 2001), where the
image is formed by a set of overlapping components. The ownership likelihood is
derived from (Kogo et al. 2010), by considering T-junctions, convexity and corners in
a multiscale approach. A global integration is then performed by first combining the
estimated cues at different scales with a posterior diffusion process as in (Dimiccoli
2009) to propagate depth values through the image.

3.1.1 T-junction estimation

Several approaches can be found in the literature about T-junction estimation and
many of them rely on a hard threshold to detect these points (Lindeberg 1994; Dim-
iccoli 2009; Ruzon and Tomasi 2001; Bergevin and Bubel 2004). The proposed system
attempts to assign a confidence value 0 ≤ p ≤ 1 to each point of the image, determin-
ing the probability of that point to be a T-junction. Since junctions are formed when
boundaries meet, their coordinates lie in-between pixels.

In this section, we assume that we are analyzing a T-junction candidate local config-
uration on a point where 3 regions R1, R2, R3 meet. If R1 and R2 share a common
neighbor R3, at least a T-junction candidate n is present at the contact point(s) of the
three regions. Depending on the region shape, there may be more than one junction,
see Fig. 3.2. For each candidate n a probability pn of occlusion is computed in which
on of the three regions R1,R2 or R3 may be on the top the other two. To simplify the
notation, we call p this value of pn. To estimate the confidence value p of a T-junction,
color difference, angle structure and boundary curvature confidence are evaluated at
each candidate point within a centered circular window (R = 10), except for the angle.
Color contributes to differentiate between contrasted regions, angle helps to infer the
depth relationship and curvature detects if the junction has clearly defined boundaries.
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Since they are independent features, the final confidence is computed as the product
of the three confidences: p = pcolor × pangle × pcurve.

3.1.1.1 Color

When a T-junction is formed in an image at a location pt, it may have some color
characteristics that indicate a depth discontinuity. Rather than the common way to
represent color in the three primary channels Red-Green-Blue, the color space chosen
is the CIE Lab (Robertson 1990). Due to its perceptual nature, numeric differences
in the Lab space correspond directly to perceived color differences. The analysis of
the color characteristics is limited to a local neighborhood Ω(pt), see Fig. 3.3. In this
local window, the three regions can be modeled with a three dimensional histogram.
As shown in Fig. 3.3, the pixels used for color confidence(s) evaluation are the ones
which are not neighbors of the other two regions. Due to the blurring of contours, all
region boundary pixels are discarded to avoid a bias in the signature calculation.

Local Region Model The analysis of the color characteristics are limited to a local
neighborhood Ω(pt). In this local window, the three regions can be modeled with a
three dimensional histogram. Due to its sparse nature, the 3D histogram is modeled
by its n most dominant colors. This adaptive form of modeling is also called signature,
and can be expressed as:

Ri (Ω(pt)) = si = {(p1, c1), (p2, c2) . . . (pn, cn)} (3.1)

With i = 1, 2, 3, Ri refers to each one of the meeting regions at the junction points.
c1 . . . cn are the n dominant colors for the histogram and p1 . . . pn are their respective
probability of occurrence. n is fixed to 3 and the representative colors are found by
using a K-means clustering approach. Since the analysis is done in a local neighbor-
hood, n = 3 representative colors proved to be sufficient. The window used for all
the calculations is circular with a radius R of 10 pixels. The choice of this value comes
from (McDermott 2004) where the author states that a large window is required to
have a robust junction detection. In natural images, junctions may appear in different
resolutions/scales. In (Lindeberg 1994; Lindeberg 1999) an automatic scale selection al-
gorithm is proposed but, for this project, a fixed window radius proved to be adequate
to detect almost all the possible junction candidates.

Considered pixels The pixels which are included for color confidence(s) evaluation
are the ones which are not neighbors of the other two regions. All the region boundary
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Figure 3.3: Color analysis of a T-junction candidate: Three regions (white, gray and
yellow) meet and potentially create a T-junction. Pixels close the the region boundaries
(pink) may introduce a bias in the color estimation and are discarded.

pixels are discarded to avoid a bias in mean calculation. During the image formation
process, optical devices act as low pass filters (Baker and Nayar 1999). Parts of the im-
age such as edges, that contain high frequencies, appear to be somehow blurred. This
blurring introduces false statistics during the color characterization of the regions. For
this reason, as seen in Fig. 3.3, these pixels are discarded for the color characterization.

Define si i = 1, 2, 3 to be the histogram of region Ri near the T-junction candidate.
Since a distance measure can only be applied to a histogram pair at a time, a total of
three color distances are computed. λij , i < j, i, j = 1, 2, 3, represents the distance
between region Ri and region Rj . Distances are computed using the Earth Mover’s
Distance (EMD) (Levina and Bickel 2001; Ruzon and Tomasi 2001):

λij = EMD(si, sj) (3.2)

The EMD distance is defined to be the minimum cost to transport a certain probability
masses fij to transform one signature s1 to another s2, according to some costs between
signature colors. Formally, the EMD is defined as:

EMD(s1, s2) = min
∑
i

∑
j

fijcij (3.3)

subject to: fij ≥ 0,
∑
i

fij = p2j,
∑
j

fij = p1i (3.4)

The costs cij define the cost of transforming a unit of mass of color ci in signature s1 to
a color cj in s2. These costs can be arbitrary positive numbers, and in this work, they
are defined as: ,

cij =

(
1− e−

∆ij
γ

)
(3.5)
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With ∆ij being the euclidean distance between Lab-colors ci and cj . The decay param-
eter γ indicates a soft threshold of distinguishable colors and is set to 14.0 as in (Ruzon
and Tomasi 2001). Both EMD costs cij and signature weights p1i, p2jare positive and
less than one. Therefore the color distance of Eq. (3.2) gives a value 0 ≤ λij ≤ 1

If λij ≈ 0, in Eq. (3.2) the regions Ri and Rj do not seem different in a local neighbor-
hood. Conversely, if λij ≈ 1, a strong contrast is present between Ri and Rj . Junctions
are supposed to have three high λij values. To characterize each points with a confi-
dence value, λmin and λmax are defined to be the minimum and maximum respectively
of λ12, λ13 and λ23. Following the ideas proposed in (Harris and Stephens 1988) but
adapting them to the notion of color distances, we can distinguish three situations:

• If λmin ≈ 0, λmax ≈ 0, the pixel pt does not have any feature of interest.

• If λmin ≈ 0, λmax ≈ 1, the pixel pt is likely to belong to an edge.

• If λmin ≈ 1, λmax ≈ 1, the pixel pt belongs to a junction.

Therefore, the function determine the color confidence should take values near 1 when
both λmax, λmin ≈ 1 and values near 0 when either λmax or λmin are 0. A function that
fulfills these requirements can be:

pcolor =
2λminλmax
λmin + λmax

(3.6)

The measure in Eq. (3.6) is motivated by the Harris corner detector (Harris and Stephens
1988) and pcolor ≈ 1 only when all λij ≈ 1.

3.1.1.2 Angle

The angle is a fundamental local cue to determine the depth order of the three regions
meeting at a T-junction, see Sec. 2.2. If segmentation is available, the angles of a T-
junction point are determined by the region boundaries. Information at the junction
center is considered to be unclear, so all the boundaries falling within a small circle of
radius 3 are neglected. Region boundaries around T-junctions are locally considered
to be straight lines corrupted by noise. The boundary coordinates can me modeled by:

bij(n) = t+ nϕij + z(n) (3.7)

Where t = (tx, ty) is a vector containing the T-junction coordinates. ϕij = (ϕx, ϕy) is a
vector indicating the main direction of the boundary and z(n) represents the noise.
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ϕ1,2

ϕ2,3

ϕ1,3

R1

R2
R3

Figure 3.4: Angle computation of a T-junction. See text for the details on how to com-
pute the angles of the brances and the angle formed by each region.

Without the presence of the noise, the region boundary would contain the points
(ϕx, ϕy), (2ϕx, 2ϕy), (3ϕx, 3ϕy) . . . (Nϕx, Nϕy) and would form three perfect straight branches.
The tangent vector at each boundary point is approximated with finite differences as
τij(n) = bij(n) − bij(n − 1). To mitigate the presence of noise in the estimation of
each branch bij orientation ϕij , the average tangent vector ϕ̂ij is found by means of an
exponential weighted mean.

ϕ̂ij =

∑Nij−1
n=0 λ(n)τij(n)∑Nij−1

n=0 λ(n)
=

∑Nij−1
n=0 λn0τij(n)∑Nij−1

n=0 λn0
(3.8)

The total number of considered points for a branch is Nij and depends directly on the
damping factor λ0 and it set to be Nij = 1

1−λ0
. The points near the junction have more

importance (and thus are weighted by a larger factor) than the points being further
away. Since contour points lie between pixels of integer coordinates, there is a finite
number of values for the tangent vectors τij(n) = (±1,±1). This finite set of values
introduces high frequency changes in the mean estimation. Therefore, the estimator
in Eq. (3.8) should attenuate these high variations while keeping the angle estimation
as local as possible. The parameter λ0 controls both the locality of the estimator and
frequency selectivity. Typical values are in the range λ0 = 0.9− 0.99.

At a T-junction there will be three orientation estimates, one for each branch, ϕ̂1,2, ϕ̂1,3

and ϕ̂2,3. The angle of the region is the angle difference of the two vectors concerning
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the region boundaries. For example, angle of region 1, θ̂1, will be ∠ϕ̂1,2 − ∠ϕ̂1,3 or
2π − (∠ϕ̂1,2 − ∠ϕ̂1,3) depending on the angle of the remaining vector ϕ̂2,3, see Fig. 3.4
for details . The angle of a vector ϕ̂ is defined as

∠ϕ̂ = arctan

(
ϕ̂y
ϕ̂x

)
(3.9)

Once the three average tangent vectors are available, each region angle θi is used
to evaluate junction angle characteristics. Considering the angles, ideal shaped T-
junctions have a maximum angle of π and a minimum angle of π

2
. Two measures

are then proposed:

∆θmax = ‖θmax − π‖ ∆θmin = ‖θmin −
π

2
‖ (3.10)

Where θmax and θmin refer to the maximum and minimum of the three angles respec-
tively. To obtain the confidence value, ∆θmin and ∆θmax are considered to be Rayleigh
distributed. With this assumption, two confidences can be obtained using:

Θmax = exp

(
−∆θmax

σ2

)
(3.11)

Θmin = exp

(
−∆θmin

σ2

)
(3.12)

(3.13)

with σ = π
6
. This value is obtained from (McDermott 2004), as the perception of occlu-

sion on T-junctions drops rapidly when angle variations are greater than 30-40 degrees
from the ideal angle configuration. By combining these two values, pangle is obtained
similarly to Eq. (3.6):

pangle =
2ΘminΘmax

Θmin + Θmax

(3.14)

The value pangle, jointly with the color confidence, proved to be the most discriminating
factors to compute the T-junction confidence. However, although the computation
of the angle estimation may result in good angle distributions, the branches of the
junction may not be very regular, having erratic and noisy shapes. To discriminate
highly curved boundaries, a curvature measure is introduced.

3.1.1.3 Curvature

Although curvature is not as important as color and angle, it serves to measure the
branch straightness. If boundaries are highly curved, the point may not be perceived
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as a junction and, instead, only erratic and noisy boundaries are seen. Although the
definition of curvature was originally thought in the physics domain, it has its own
applications in image processing. Stated in (Guichard and Morel 2001), it may help to
describe the shape of the objects presents in a particular scene. It was originally used
in curvature scale space representation (Asada and M. Brady 1986) and anisotropic
diffusion (Perona and Malik 1990). Curvature was also used jointly with the level sets
theory (Guichard and Morel 2001) to determine the curvature of regions in grayscale
images. Following this idea, the level sets theory is used to compute the boundary
curvature near the T-junction.

Curves on Level Sets Consider a gray level image I and a pixel p0. Let u(p) be
the gray level of the image at a certain pixel p (which can be the gray level or the
luminance for example). Considering that the image is a continous function, it can be
proven that the set of pixels on a level λ, u−1(λ), forms a set of disjoint curves. It is
possible to calculate the curvature of each curve c. Without loss of generality, from
now on a particular pixel p0 on an arbitrary level set λ is considered. The resulting
equations, deduced in (Osher and Paragios 2003; Guichard and Morel 2001), are briefly
summarized here.

If the image first order partial derivatives ux, uy along the x and y directions are avail-
able at a point p0 and u2

x + u2
y 6= 0. The curvature of the level λ is defined as:

κ(p) =
uxxu

2
y − 2uxyuxuy + uyyu

2
x(

u2
x + u2

y

)3/2
(3.15)

Where uxx, uyy and uxy are the second order partial derivatives. Since in practice the
image is discrete, the value of the derivatives should be estimated using any of the
available techniques such as convolution by a high pass filter.

The process of curvature confidence calculation is shown in Fig. 3.5 and a summary
is given here. Each region Ri is isolated creating a binary image of the local window.
Note that since the regions may have arbitrary shapes, other regions than R1, R2, R3

may be present in the local window. To eliminate possible interferences from these
outliers, a reconstruction process is performed where, from the boundaries, binary
markers are extended eliminating the holes that may be present. The second and third
steps in Fig. 3.5 illustrate this hole filling process. Finally, the mean absolute value
|κ|i of the curvature κ(xl, yl) of the two branches forming a region Ri is computed at
the boundary points (xl, yl) in the binary image using Eq. (3.15) (Guichard and Morel

49



3. MONOCULAR OCCLUSION CUES

Region 1

Region 2

Region 3

Figure 3.5: Process to calculate the curvature. Left, local window with the three regions
and some outliers (diagonal striped pixels, belonging to other regions). Center, binary
image where Region 1 has been isolated. Right, reconstructed image without outliers.

2001). Each of the |κ|i measures (one for each region) are also assumed to be Rayleigh
distributed to obtain:

Υi = exp

(
−|κ|i
σ2
c

)
(3.16)

Similar to color and angle, curvature confidence should have high values when all κi
are low and the boundaries are straight. Therefore, pcurve is obtained by finding Υmax

and Υmin:

pcurve =
2ΥminΥmax

Υmin + Υmax

(3.17)

3.1.1.4 Local depth gradient determined by T-junctions

Previous work on T-junctions (Dimiccoli 2009) imposed unique depth configuration
for these kind of cues: the region forming the largest angle was always assumed to
lie closer to the viewer. However, experience shows that T-junction may also indicate
the opposite depth relation. Since, locally, all kinds of junctions are similar, deciding
whether T-junctions are normal or inverted should be done by looking at other char-
acteristics than intrinsic color, angle and curvature local features. Instead, a global
reasoning on all the other depth cues should take place, determining the sign of the
depth gradient based on other T-junction observations. We expose this process in Sec.
5.4 as it involves many factors and a complex reasoning.

T-junctions actually indicate depth discontinuities but the sign of the discontinuity
proved to be rather uncertain. Normally, if an object is really occluding other objects
in the background, more than one T-junction is likely to be formed in the image, and
all these T-junctions may have the same region/object as the occluding region. This is
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Figure 3.6: Probability of foreground versus the number of times Nl a region is seen as
the largest region in T-junctions. When many T-junctions agree on the largest region, it
is likely that this region is in front of their neighbors. However, when little T-junction
information is available, the decision is much more difficult (and even the inverse
conclusion is more likely).

why a global reasoning is helpful. Moreover, it is possible to detect a T-junction even
though no real occlusion relation exists. False detections often occur due to color or
texture variations. In Fig. 3.6 all T-junctions of the groundtruth contours in the dataset
of (D. Martin et al. 2001) are examined and the number of times Nl a region appears
as the one forming the largest angle are counted. The figure plots the probability to
be the region in the foreground versus Nl, showing that when many T-junctions agree
on the angle configuration the decision is more easy to take. However, when Nl ≈ 1,
the depth order determined by a T-junction is somewhat arbitrary. Therefore, a single
T-junction cannot determine the order of the regions involved, but additional junction
information may help to the estimation process.

In our case, as a starting point we consider that all T-junctions are normal. This initial
guess has a low confidence and will be allowed to change when estimating the global
depth ordering of the scene. That is, in some circumstances, the depth gradient of a
T-junction will be changed if there are many other occlusion relations indicating the
opposite depth relationship, see 5.4.
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T-Junctions Example

Local Window Confidence Value Local Window Confidence Value

color 0.84 color 0.73
angle 1.00 angle 0.56
curvature 1.00 curvature 0.39
overall 0.84 overall 0.16

color 0.97 color 0.55
angle 0.66 angle 0.39
curvature 0.80 curvature 0.57
overall 0.52 overall 0.12

color 0.88 color 0.51
angle 0.90 angle 0.25
curvature 0.56 curvature 0.77
overall 0.45 overall 0.10

color 0.77 color 0.19
angle 0.66 angle 0.40
curvature 0.59 curvature 0.57
overall 0.30 overall 0.04

color 0.42 color 0.12
angle 0.54 angle 0.60
curvature 0.79 curvature 0.92
overall 0.18 overall 0.03

Table 1: Examples of T-junctions, ordered in decreasing value of confidence, from top
to bottom and left to right. Junctions are marked with a red circle. The region lying on
top of the other two is locally filled in white.

3.1.1.5 T-junction examples

A few examples of T-junction confidence estimation are shown in table 1. Note that
the color confidence is the measure that has the highest relevance of the junction as it
is the first feature detected by humans when examining the scene (McDermott 2004).
Angle plays also an important role in perception. When the biggest region does not
give a clear occlusion cue, confidence drops rapidly. Curvature is the less sensitive
parameter.
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A1

A2

Figure

Ground
Top illustration: Convexity ∝ r1

r2
r1 and r2 are the fraction of straight
lines lying completely in the same
region
Bottom illustration: Convexity ≈
A2

A1

A1 and A2 are the region areas
r1 and r2 are the ratio of pair of
points which their segment lies com-
pletely in the same region

Figure 3.7: Two ways of computing contour convexity. Left: convexity is determined
locally at region boundaries. Top right: exact way to measure local convexity, deter-
mining the number of pair of points which belong to convex sets. Bottom right: aprox-
imate way to compute conexity. Normally, convex shapes present less area in small
neighborhoods centered on contour points.

3.1.2 Convexity estimation

Convexity depth cues are defined locally at region boundaries. A region R1 is convex
with respect to R2 if, on average, the curvature vector on the common boundary is
pointing towards R1. If R1 appears to be convex, it is perceptually seen as the fore-
ground region (and thus, closer to the viewer). In the previous section a technique to
measure the curvature along a contour was presented, but it presented several limita-
tions, which were not significant for that case. First, using level sets only a very local
estimate of the curvature is obtained, while for convexity cues a larger scale is needed.
Second, the process of estimation is rather slow and, therefore, for long contours the
performance may suffer. For these two reasons, an alternative approach is presented
here. Generally, when examining boundary pixels, if R1 presents less area than R2 in
a local neighborhood , R1 may be seen as convex, see Fig. 3.7.

In a local window around a contour point p, the degree of convexity of p is defined as
the ratio r1

r2
of straight segments lying completely on the same region. That is, using

all the possible pairs of points (a, b) within the window a segment āb is formed. If all
points of the segment āb belong to the same region, r1 increases. If āb falls in-between
regions, r2 increases, see the center-top illustration in Fig. 3.7 for a few examples of
segments. Similarly, the are of each region in the local window can be a good indicator
of convexity. Following the bottom-center illustration of Fig. 3.7, pixels belong to each
region within the window are counted. The ratio A1

A2
is small whenA1 � A2, indicating
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Figure 3.8: Probability density function of log A1

A2
with different window radius (ex-

pressed in relative terms of the contour length). As the ration A1/A2, the difference
between figure/ground becomes more evident. for equal sized regions, humans are
not able to distinguish which region is either figure or ground. Note also that the
window size does not seem to be an influential factor on the decision.

that A1 may be seen locally convex.

Reference (C. C. Fowlkes et al. 2007) claims that the analyzed local depth cues (con-
vexity, position in the image and size) are valid for figure ground reasoning in natural
images. To prove this claim, statistics on groundtruth contours were gathered from
the BSDS dataset (D. Martin et al. 2001). They show that the area, convexity, lower
region as well as some non-linear combination of cues are quite reliable to distinguish
between figure and ground in a local neighborhood. Here, for the concerning case, the
size cue experiment is reproduced, as it gave slightly better results for classification
than the true convexity, see (C. C. Fowlkes et al. 2007) for details. For each contour
point of a set of groundtruth annotated contours in the BSDS dataset, the ratio log A1

A2

is calculated. Fig. 3.8 shows the probability density function of a region being either
foreground or background depending on the log A1

A2
value, showing that whenA1 > A2,

the first region is effectively seen as background.

Formally, the overall boundary convexity is obtained from the combinations of two
measures:

ζc (R1, R2) =
∑

(x,y)∈Γ

α(x, y)

L

∑
(x,y)∈Γ

w(x, y)

L
(3.18)

With α(x, y) = 1 if the area of R1 is greater than the area of R2 in Ω(x, y), and α(x, y) =

−1 otherwise. The function 0 ≤ w(x, y) ≤ 1 is a weighting function of the points and
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Convexity Examples

Local Window Partition Confidence Local Window Partitions Confidence

0.63 0.64

0.94 0.77

0.00 0.80

0.15 0.14

0.0 0.45

Table 2: Examples of convexity estimation. For each image, the corresponding parti-
tion and the confidence of the convexity estimation is shown.

it is chosen to be the normalized Sobel gradient of the image, although other gradient
operators work too. L is the number of points where the measure α(x, y) is calculated
and it depends of the window size. The overall convexity confidence of a boundary is:

ζ (R1, R2) = 1− exp

(
− 1

γc
‖ζc (R1, R2)‖

)
(3.19)

γc has been determined experimentally and set to 1
12

. If the result ζc (R1, R2) is positive,
R1 is considered to be convex and, therefore, on top of R2 with confidence ζ (R1, R2).
The converse indicates that R2 is on top of R1. To make the measure as scale invariant
as possible, the neighborhood Ω(x, y) of a pixel is chosen to be a circular window with
a radius of about the 5% of the contour length. Points lying near junctions, image bor-
ders and other regions are discarded for the measure. Contours having small lengths
(L < 100 pixels) are considered to be non-significant for convexity cues.
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3.1.2.1 Convexity examples

Some examples of convexity estimation are shown in Table 2. The confidence measure
can be seen as the probability of the brighter region to be foreground with respect to
the darker one. Some synthetic examples are shown on the upper part of the table,
while natural cases are shown in the lower part. When the partition contains a white
region surrounded by a black region, the convexity confidence is high, as the overall
white shape is seen as convex with respect to the black region. In cases where the
region shape is erratic, the convexity measure gives a correct very low confidence, as
local contour convexities compensate and no overall cue is observed.

3.1.3 Probability of ownership - Combining T-junction and
Convexity cues

Throughout this section two ways of explicitly detecting T-junction and convexity cues
have been exposed. In a recent work from (Calderero and Caselles 2013) a different ap-
proach on how low level cues are treated is presented. The main idea is to integrate
both T-junction and convexity cues into a probability of ownership. Locally, convexity
relations can be seen as the interaction of two connected components (region). Simi-
larly, T-junctions can be thought as the interaction of three different components. In
this way, (Calderero and Caselles 2013) generalizes low level depth cues between two
and three components to an arbitrary number of components. Other than estimating
local depth relations created by T-junctions and convexity, a low level indicator of the
relative depth can be retrieved by formalizing the probability of ownership.

3.1.3.1 The dead leaves model

The approach of (Calderero and Caselles 2013) relies on a complete different model
of the image. The image is considered to be generated by a set of opaque compo-
nents “dropped” into the image plane, possibly occluding each other, called the dead
leaves model (DLM). However, in standard image processing applications, such as
color quantization (Orchard and Bouman 1991) or denoising (Buades et al. 2005), the
image is usually considered to be a random variable with Gaussian random noise. The
Fig. 3.9, taken from (A. B. Lee et al. 2001), shows the difference between both models,
showing that the DLM is perceptually more close to normal images, as well as offer-
ing a mathematical model for occlusions. Additionally, the dead leaves model proved
to generate more accurately the statistics of natural images (gradient, scale invariance
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. . .) and in the work from (Calderero and Caselles 2013) is the theoretical basis for the
occlusion reasoning.

The DLM assumes that the world can be broken down into opaque pieces and that
these pieces are then stacked (projected) into the image plane to form the image of
the three dimensional world (A. B. Lee et al. 2001). This model is similar to the local
representation used for T-junction estimation, although the DLM is used in the whole
image. The approach taken by (Calderero and Caselles 2013) is to assume that these
objects are infinitesimal, and that each point in the image belongs to at least one of
these components. The authors reason, with Gestalt cues about the shape of occluded
shapes an encode inside the probability of boundary low level cues such as bound-
ary convexity and T-junctions. Here a brief overview is given, although the reader is
encourages to see the details in the original article.

The algorithm does not explicitly detect any T-junction or convexity cues, but it esti-
mates the likelihood for a pixel p in an image to belong to different components. The
DLM of an image image is considered to be a union of N overlapping sets X1 . . . XN

with increasing relative depth, and their visible part is:

Ai = Xi\
⋃

1≤j<i

interior (Xj) (3.20)

The union of all the Ai determine an image partition. The border ownership density
function of a pixel, Z(p), is computed only the visible part of each component:

Z(p) =
N∑
i=1

D(p, Ai) (3.21)

The density term D(p, Ai) is defined using two principles so that the pixel is more
likely to belong to a set Xi if 1) the pixel is close to Ai and 2) the boundary is highly
curved. The concrete expression of D(p, Ai) can be quite complex and we refer the
reader to (Calderero and Caselles 2013) for more details. The function Z(p) is an indi-
cator function on the number of sets the pixel p belongs to. Thus, if Z(p) = 0 the pixel
only belongs to a single component, while if Z(p) > 0 the pixel belongs to more than
one component. The only reason for a pixel to belong to more than one component is
occlusion. Therefore, Z(p) is a direct indicator of local depth without explicitly detect-
ing occlusion cues. The higher Z(p) is, the closer will be the pixel to the viewer. In Fig.
3.10 example of Z(p) can be seen on the second column showing that, the function
Z(p) reacts in points near T-junctions and convexity regions.
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Figure 3.9: Two synthetic generated images showing the difference between the dead
leaves model (left) and the additive noise model (right).

Figure 3.10: Example from (Calderero and Caselles 2013). From left to right, example
image, local ownership likelihood (columns 2-6), global feature integration and depth
diffusion. See that the algorithm naturally integrates the majority of occlusion cues
such as convexity (rows 1,2,3) and T-junctions (rows 5 and 6) and discriminates am-
biguous cases such as rows 7 and 8. Note that the case in row 4 is difficult even for
human perception, as the depth order is not clear.
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If the measure in Eq. (3.21) is computed at different scales, it is possible to estimate
the local depth configuration at different scales. The combination of different scales
lead to a global depth likelihood for each pixel. Examples of ownership likelihood
computation in different situations are shown in Fig. 3.10. Since Z(p) is locally defined
near boundaries, a diffusion process is performed to extend its values to the whole
image.

It is important to note that while T-junction and convexity give cues between three or
two components of the image respectively, the probability of ownership is an intrinsic
property of each pixel. It is a direct indicator of the relative depth of a pixel and the
obtained probability map is already globally consistent. The main drawback of this
technique is that all pairs connected components of the image should be examined,
making the process computationally heavy. In (Calderero and Caselles 2013) the CPU
burden is alleviated by considering only close components, discarding long range in-
formation.

3.2 Depth Cues in Dynamic Scenes

Humans easily sense object movement and the cues generated from it. Movement is a
very important cue to determine the depth of a scene, as it can generate either motion
occlusions and motion parallax among other kind of cues. What’s more important, is
that motion cues are very reliable (E. J. Gibson et al. 1959; B. Rogers and Graham 1979).
With the only presence of motion parallax cues, humans are able to infer absolute
depth. That is, it is possible to generate dense depth maps (up to a scale factor) when
the scene moves in some conditions. Motion occlusions, on the other hand, only allow
to determine the relative order of independently moving objects. Both cues appear
always when objects move, but each of them has its limitations:

• Motion parallax (or motion depth cue) can be very informative about the abso-
lute depth and the 3D structure of the scene only when the objects are rigid. That
is, structure from motion can only be perceived when the faced objects have a
rigid structure and their shape do not change (only rotations and translations).

• Motion occlusions are always valid, as long as there are two moving objects, or
their apparent motion is different with respect to the camera. This situation oc-
curs either when:

– The real motion of the two objects is different (e.g. two cars in a road)
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– The scene is static and the object depths are different (e.g. a building occlud-
ing the sky)

Note that these two cues can be coexistent and complimentary, helping each other to
achieve a complete depth interpretation of a scene. In this section we have been talk-
ing about dynamic cues, bypassing the fact that first, we should detect movement.
Humans have an inherent capacity to detect movement, as the eyes continuously
gather information of the environment (Johansson 1973) and motion is subconsciously
inferred (Grossman et al. 2000). However, computers have more difficulties on esti-
mating motion in video sequences, as they can rely only on the projection of objects to
camera frames.

The usual approach to detect object motion is to detect optical flow between video
frames. That is, it is not the real motion of objects, but their apparent motion from
frame to frame. Apparent motion is defined as the motion of a point in an image
at time t to time t + δt. Optical flow is one of the computer vision areas in which
researchers have put more efforts, likely because it is of great importance and gives
much information for many tasks: coding (Krishnamurthy et al. 1995), segmentation
(L. Xu, J. Chen, et al. 2008) or tracking (Sundaram, Brox, et al. 2010) to cite some. Op-
tical flow literature is huge. Here, we will only give insight of a few very relevant
works.

• (Lucas and Kanade 1981) Not precisely used for optical flow estimation, but it
was first proposed for stereo vision. It is the first system to propose a dense
matching using correlation, and it is used until the date.

• (B. K. P. Horn and Schunk 1981) The first dense optical flow estimation algorithm
relying on the solution of a variational problem.

• (Black and Anandan 1996) Introduction of robust statistics to allow sharp transi-
tions to appear in motion edges.

• (Brox, Bruhn, et al. 2004) New practical way to estimate the flow, based on a
theory of image warping.

• (C. Liu et al. 2008) Introduction of SIFT point based descriptors for flow estima-
tion.

• (Brox and Malik 2011) State of the art technique, used in this thesis for optical
flow estimation.
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To understand dynamic cues, and how they can be detected in computer systems, it
is of crucial importance to learn how optical flow is estimated. The following section
explains the most common approaches for optical flow estimation and gives insights
about the strengths and weaknesses of the algorithms which can be exploited to esti-
mate either occlusions and motion parallax.

3.2.1 Optical Flow Estimation

Optical flow plays a central role when dynamic depth cues should be estimated. A
deeper understanding of how motion is computed in most of the art algorithms esti-
mate helps to exploit flow characteristics for a posterior depth inference. In this section
the key parts of the algorithm (Brox, Bruhn, et al. 2004) are shown, as long with an ex-
tension to incorporate sparse descriptors (Brox and Malik 2011). Conventional optical
flow algorithms attempt to find an horizontal u(x, y) and a vertical v(x, y) flow for each
point on the image domain (x, y) ∈ Ω by minimizing a functional.

E(u, v) = ED(u, v) + λES(u, v) (3.22)

The first term ED(u, v) imposes assumptions on the model, while the second terms
ES(u, v) imposes smoothness on the functions u(x, y) and v(x, y) to overcome the aper-
ture problem (Nakayama and Silverman 1988; Hildreth 1984). λ is often known as the
regularization term, as its value can be related on the smoothness of the result. That is,
higher λ is, the more smooth/regular the function is. The data model in (Brox, Bruhn,
et al. 2004), consists of two premises:

Brightness constancy It is assumed that the color value of a pixel does not change
over an interval δt, despite a displacement (δx, δy)):

I(x+ δx, y + δy, t+ δt) = I(x, y, t) (3.23)

If the spatial and temporal displacements are sufficiently small, Eq. (3.23) can be
linearized. Defining u = δx

δt
and v = δy

δt
the so called optical flow constraint equation

is obtained:

Ixu+ Iyv + It = 0 (3.24)

Where Ix an Iy are the image horizontal and vertical derivatives respectively. Lin-
earization of Eq. (3.23) by means of Eq.(3.24) is a key step to the numerical reso-
lution of optical flow problems.
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Figure 3.11: Optical flow estimation examples. The first column shows the frame at
time t of the sequence and the second column shows frame at time t+ 1. The two last
columns show the forward flow field (center right) and the backward flow field (right).
Optical flow direction is color coded, whereas the flow magnitude is encoded in the
color saturation.

Gradient constancy Brightness consistency has one decisive drawback: small scene
illumination changes may lead to wrong pixel correspondences. To overcome
this limitation, the brightness gradient, which is illumination invariant, is also
assumed to be constant.

∇I(x+ δx, y + δy, t+ δt) = ∇I(x, y, t) (3.25)

The gradient of an image at a point (x, y) is defined as ∇I(x, y, t) = (Ix, Iy)
T . As

with brightness consistency, Eq. (3.25) is also linearized in the numerical scheme
resolution. Conditions on subsequent image moments can also be imposed, but
a first order assumption is sufficient for practical scenarios.

When δx = 1 the obtained flows are known as forward flow fields, and when δx = −1

the backward flow fields are obtained instead. Examples of forward and backward
flow estimation are shown in Fig. 3.11 with the technique (Brox and Malik 2011). Al-
though it may be difficult to visually appreciate, but forward and backward flows
are not symmetric as every pixel in one image does not have a correspondence in the
other image. This property will be the basis for occlusion detection, commented in Sec.
3.2.2.1.
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The brightness and gradient consistency constraints are widely used in the state of the
art algorithms (Brox, Bruhn, et al. 2004; L. Xu, Jia, et al. 2010). Assuming that δt = 1

and forming the vectors x = (x, y, t) and w = (u, v, 1), the data term in the energy Eq.
(3.22) can be expressed as:

ED(u, v) =

∫
Ω

Ψ
(
‖I(x+w)− I(x)‖2 + γ ‖∇I(x+w)−∇I(x)‖2)dx (3.26)

Where Ψ(s2) =
√
s2 + ε2 is the Charbonnier robust penalty function (Charbonnier et al.

1994), which results on a modified, differentiable L1 norm. Other choices for Ψ(s2) are
also possible (Black and Anandan 1996), but the one used in the proposed approach is
convex with respect to s, allowing easier numerical minimization.

The use of robust methods, in contrast to (B. K. P. Horn and Schunk 1981), attempt
to reduce the influence of outliers in the estimation process and allow sharp transi-
tion motion edges. Outliers normally appear at object boundaries, producing an over
smoothing if the classical quadratic penalization is used.

Due to the aperture problem, it is only possible to estimate the motion perpendicu-
lar to boundaries, so complementary conditions on the flow (u, v) are needed. This
limitations comes from Eq. (3.24), where there exists only one equation but two vari-
ables must be found (u, v). Usually, local smoothness is assumed, penalizing high flow
discontinuities. Real world objects do not ’break apart’ and their motion is coherent
along their points, so smoothness is a reasonable assumption. As with the data term,
a robust function is needed to ensure that object boundaries are not over smoothed,
leading to a total variation algorithm (Cohen 1993; Werlberger et al. 2009). This is also
applied in other image processing problems, such as denoising (Rudin et al. 1992) or
image segmentation (Mumford and J. Shah 1989). The term ES(u, v) for the energy Eq.
(3.22) is:

ES(u, v) =

∫
Ω

Ψ(‖∇u‖2 + ‖∇v‖2)dx (3.27)

If more than one image is available, the flows can be forced also to be ’temporally’
smooth (Volz et al. 2011). Normally, temporal smoothness increases the system com-
plexity (both in CPU and memory usage), so the usual approach is to process two
frames at a time.

3.2.1.1 Energy Minimization

Minimization of the functional in Eq. (3.22) can be done by solving the corresponding
Euler-Lagrange equations (Fox 1950) with homogeneous Neumann boundary condi-
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tions:

∂ED
∂u
− λ

(
d

dx

∂ES
∂ux

+
d

dy

∂ES
∂uy

)
= 0 (3.28)

∂ED
∂v
− λ

(
d

dx

∂ES
∂vx

+
d

dy

∂ES
∂vy

)
= 0 (3.29)

The details of the numerical scheme for the minimization are not e main concern for
the purpose of this thesis. However, an overview of the warping theory follows. Two
main problems arise when minimizing Eq. (3.22). First, the energy equation is not
convex with respect (u, v), so the minimization can be stuck in a local minima. Sec-
ond, to resolve this variational problem, the set of partial differential equations (PDE)
should be linearized with respect to (u, v). The linearization relation of the data Eqs.
(3.23), (3.25) only holds for small values of (u, v). To cope with large displacements,
the flows (u, v) are computed incrementally, by constructing a coarse-to-fine image
pyramid. The construction of this pyramid deals with the non-convex nature of the
problem by splitting the flows (u, v) into a known part (u0, v0) and a small, unknown
part (du, dv). Initially, at the coarsest level (u0, v0) = (0, 0), and the flows (du, dv)

are computed at each level by warping an image to the other (Brox, Bruhn, et al. 2004;
Black and Anandan 1993). Since (du, dv) are relatively small at each scale, the lineariza-
tion of the data term equation holds, and the Euler-Lagrange equations can be solved
using a sparse linear system.

3.2.1.2 Complimentary information for flow estimation

Although many optical flow estimation approaches are variants of Eq. (3.22), there are
some worth mentioning due to their relevancy. With the popularity rise of SIFT (Lowe
2004), SURF (Bay et al. 2008) and HOG (Dalal and Triggs 2005) descriptors, many
researchers used dense versions of these descriptors to find a motion field. (Brox and
Malik 2011) combines both local (color) information and large displacement matchings
coming from HOG descriptor matchings. This allows the algorithm to account for
large displacements regardless of the regularization term, although sometimes failures
in descriptor matching lead to incorrect motion estimations. The energy to minimize
becomes:

E(u, v) = ED(u, v) + λES(u, v) + λdEM(u, v) (3.30)

Where λd controls the influence of EM , EM is the penalty term coming from descriptor
matchings. The numerical minimization is similar to (Brox, Bruhn, et al. 2004). In
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this work, we use (Brox and Malik 2011) to estimate optical flow, as many sequences
presented large displacements which could be captured by descriptor matching.

3.2.2 Motion Occlusions

Once the basis of the optical flow algorithms are known, it is much easier to under-
stand how motion occlusions can be estimated. Using three frames It−1, It, It+1, it is
possible to detect pixels becoming invisible from It to It+1, called occluded pixels and
pixels becoming invisible from It to It−1 called disoccluded pixels. Here, we describe
the detection of occluded pixels as the detection of disoccluded pixels can be done
similarly by working on the past frame It−1 instead of the next frame It+1. There is
a lot of literature on occlusion estimation. Many approaches choose to integrate the
occlusion detection to the motion estimation process (Sun et al. 2010; Leordeanu et al.
2013; Ayvaci et al. 2010), but this increases a lot the computational burden. Instead, by
using simple error measures, see Eqs. (3.31)-(3.34), it is possible to get rather accurate
occlusion estimates. Below a review the most common ways of the state of the art to
detect if a pixel p becomes occluded is given. Consider the following definitions:

Endpoint Error = EE(p) =
∣∣wt,t+1(p)−wt+1,t

(
p+wt,t+1(p)

)∣∣ (3.31)

Angle error = AE(p) = |π − cos−1(wt,t+1(p) ·wt+1,t
(
p+wt,t+1(p))

)
(3.32)

Photoconsistency = PC(p) = |I(p)− I(p+wt,t+1(p))| (3.33)

Flow variation = FV (p) = |∇wt,t+1(p)| (3.34)

where wt,q is the flow mapping frame t to frame q. The four previous measures give
real-valued error measures, and detection is often performed by setting a threshold.
The first two Eqs. (3.31) and Eq. (3.32) rely on the bijective property of the optical
flow: if a point is visible in both frames t and t + 1, then there should be a one-to-one
mapping of flow fields. In other words, the forward and backward should be equal in
magnitude with complementary angles, compensating each other. The third Eq. (3.33)
relies on the suppositions of the optical flow estimation, where motion tends to relate
pixels having the same color in both images and penalizes high color differences. The
last method in Eq. (3.34) assumes that occlusions occur in motion edges.

More simple occlusion classifiers/detectors can be designed using multiresultion, tex-
tures or descriptors for example; but these four methods represent the main ideas
behind occlusion detection:

• In non-occluded areas flow must be bijective.
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• Flow must relate the same point in both images

• Occlusions occur near motion edges

Alternatively, some approaches choose to combine multiple simple occlusion estima-
tors to provide more reliable occlusion detectors (Humayun et al. 2011). Other ap-
proaches use filtering to refine optical flow and detect occlusions (Xiao, Cheng, et al.
2006). These approaches, along with the ones integrating occlusion and motion estima-
tion perform costly operations. In the case concerning this thesis, we choose to exploit
segmentation with the simple classifier of Eq. (3.31)

3.2.2.1 Occluded and disoccluded pixel estimation

There are two principal problems of using raw optical flow to estimate occlusions.
First, motion edges do not correspond with color edges due to the regularization term
in Eq. (3.22). Second, estimated flow in occluded areas is not reliable (Mac Aodha et al.
2013). Although the optical flow estimation allows sharp transitions between different
motion, the effect of the regularization appears in zones where small detail is present.
That is, in image corners or small regions, flow estimation tend to oversmooth the flow
regardless of color estimation. This regularization serves, among other things, to miti-
gate noise effects but comes with the price of missing details at different resolutions.

A possible workaround to make color and motion edges coincide is to rely on segmen-
tation. Generally, frame/video partitions are obtained using color information so, it
is expected that partition regions coincide with color edges. Segmentation can also
use motion, as we will see in Secs. 6.2 and 7.2 but color proved to be the most confi-
dent information to distinguish between objects. Additionally, get a reliable flow in
occluded areas a parametric flow model is robustly fit to the different region forming
the partition of the frame. Although the way in which segmentation of frames and
sequences are obtained will be explained in Secs. 6.2 and 7.2, suppose from now on
that for occlusion detection a partition P of the frame at time t is available.

The key idea is to detect occlusions by allowing a small error on the endpoint error
compensation in Eq. (3.31). A pixel becomes (dis)occluded if:

Λ (p) 6= Λ
(
p+ w̃t,t+1(p) +wt+1,t

(
p+ w̃t,t+1(p)

))
(3.35)

Where Λ is an operator which maps each pixel to a region label of the partition. w̃t,q(p)

is a parametric flow model fitted to wt,q(p) in the region where p belongs. In other
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Figure 3.12: Three examples of occlusion detection. The left image shows the original
frame, the center left image shows the modeled flows for a given partition. The two
right images show the occlusion relations superposed to the image of the methods in
Eq. (3.31) and Eq. (3.35). Occluded and disoccluded areas are shown in red, while
their occluding pixel is shown in green. Note how the second method obtains clearer
boundaries and much less false alarms.

words, the forward and backward consistency is relaxed, marking a pixel occluded
only if their compensating flows end up in a different region than the original pixel. In
that way, we make motion occlusions and region boundaries coincide, as can be seen
in examples of Fig. 3.12. The parametric flow model for each region is obtained using
the following approach.

Parametric flow fitting To get a region-based modeling of the optical flow, a para-
metric projective model (Kanatani 1988) is used. The flows w̃t,q

Ri
= (ũ, ṽ) with q = t± 1,

associated to region Ri can be expressed as a quadratic model on the x and y coordi-
nates:

ũ(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy (3.36)

ṽ(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (3.37)
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3. MONOCULAR OCCLUSION CUES

where (x, y) ∈ R. The a1...a8 parameters are estimated with robust regression using
iterative least squares (Andersen 2008) due to the presence of outliers:

w̃t,q
Ri

(p) = arg min
w̃t,q

∑
p=(x,y)∈Ri

Ψ
(∥∥wt,q(p)− w̃t,q(p)

∥∥2
)

(3.38)

with the robust penalizer Ψ(z) =
√
z2 + ε2 with ε � 1. The approximation of optical

flow with a quadratic parametric model assumes that objects are planar and rigid,
moving and rotating in 3D space. To prove this, assume that a rigid object is moving
with velocity defined as: Vx

Vy

Vz

 =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 Xt

Yt

Zt

+

 Tx

Ty

Tz

 (3.39)

Where ω = [ω1, ω2, ω3] is the angular velocity vector and T = [Tx, Ty, Tz] is the linear
velocity. Assuming that the scene is generated under perspective projection, the image
coordinates (x, y) = (X

Z
, Y
Z

) and the velocities on the image plane (i.e the optical flow)
can be written as:

u = f
Vx
Z
− xVz

Z
= f

(
Tx
Z

+ ω2

)
− Tz
Z
x− ω3y −

ω1

f
xy +

ω2

f
x2

v = f
Vy
Z
− yVz

Z
= f

(
Ty
Z

+ ω1

)
− ω3x−

Tz
Z
y − ω2

f
xy +

ω1

f
y2 (3.40)

where f is the focal length of the camera, and has no relevance on the model com-
plexity. The previous equation shows that the optical flow velocities have a direct
dependence on the depth of the object Z, being the apparent motion smaller as Z is
larger. This result agrees with the perception of the motion parallax cue, where objects
far away ( 1

Z
≈ 0) appear to move much slower than objects near the viewer ( 1

Z
� 0).

Nevertheless, this kind of relation is not useful for the depth ordering estimation, as Z
is basically the value that should be estimated (and thus unknown). However, if the
object is assumed to be planar, that is:

AX +BY + Z + C = 0 (3.41)

it is possible to remove the dependence of (3.40) in depth by setting Z = (D − AX −
BY )−1 and express equations (3.37) only as a function of ω, T and A,B,C. The exact
dependence of a1, . . . , a8 with respect these parameters is not relevant for the purposes
of this discussion, but the reader is referred to (Kanatani 1988) for more details. The
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3.2. Depth Cues in Dynamic Scenes

Figure 3.13: Example of flow fitting example for three regions. From left to right, the
top row shows the reference frame and the forward and backward flows. The bottom
row shows a partition of the frame and the two modeled flow fields. Each modeled
flow field contains three parametric flow models (one for each region).

key idea is that, normally, non-planar objects which are far from the camera position
can be approximated as planar. In these cases,the error of the flow model and the
estimated raw optical flow become negligible.

In optical flow estimation techniques it is common to deal with a high amount of
outliers, so the usual least squares estimation of the quadratic model may fail in some
cases. Therefore, the a1...a8 parameters are estimated with robust regression using
iterative least squares (Andersen 2008):

w̃t,q
Ri

(p) = arg min
w̃t,q

∑
p=(x,y)∈Ri

Ψ
(∥∥wt,q(p)− w̃t,q(p)

∥∥2
)

(3.42)

with the robust penalizer Ψ(z) =
√
z2 + ε2 with ε� 1. Examples of flow fitting can be

seen in the right part of Figure 3.13.

Once the occluded pixels have been defined, we need to find the occluding pixels, which
correspond to the pixels that will cover the occluded pixels in the next frame. Indeed,
it is the relation between occluded and occluding pixels that provides a depth cue. Of
course, a similar detection has to be done for disoccluded and disoccluding pixels.
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3. MONOCULAR OCCLUSION CUES

pu

po

wt,t+1(pu)

wt+1,t(pu +wt,t+1(pu))

Figure 3.14: Detection of occluding pixels (green area). The image on the left (right) is
It (It+1). See text for more details on occlusion relation estimation.

3.2.2.2 Occlusion relation estimation

With the partition Pf defined and a parametric optical flow model is available for each
region, occluding pixels can be defined by projecting the occluded pixels in It+1 with
w̃t,t+1 and by getting back to the current frame following the backward flow wt+1,t.
This is illustrated in the right part of Fig.3.14 where occluding pixels appear in the
green area. So, for each occluded pixel pu, the corresponding occluding pixel po is
given by:

po = pu + w̃t,t+1
Ri

(pu) +wt+1,t(pu + w̃t,t+1
Ri

(pu)) (3.43)

From Eq. (3.35), it follows that Λpo 6= Λpu. Therefore, although Eq. 3.43 establishes an
occlusion relation between pixels, the relation can be propagated to regions Λpo and
Λpu. Λpo is the occluding region, and thus closer to the viewer. The central image
of Fig.3.13 also shows these occluding pixels in green. At this point, we know that
occluding pixels are in front of occluded pixels and similarly, disoccluding pixels are
in front of disoccluded pixels.

3.2.2.3 Occlusion detection performance

To compare the various methods of occlusion detection available in the literature, ex-
periments performed in (Humayun et al. 2011) are reproduced. The datasets consists
of 11 synthetic sequences with annotated groundtruth occlusions. Pixels going out
of the screen due to movement are also considered occlusion in the annotations, but
since they are not really occluded, they are discarded here for the evaluation. Hence,
only occlusion between objects which remain in the camera field of view are consid-
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Full (F=0.48)
Bijectivity (F=0.39)

Enpoint Error (F=0.28)
Angle Error (F=0.26)

Flow Variation (F=0.18)
Photo consistency (F=0.34)

TBPT-ms (F=0.46)
TBPT-tc (F=0.47)

Figure 3.15: Precision recall of occlusion detection. The dataset is taken from (Hu-
mayun et al. 2011). See text for details on the compared methods.

.

ered. The performance measure is the well known precision-recall framework used
for detection. In this case, the units to be detected are occluded pixels.

the chosen methods for comparisons are the ones from Eqs. (3.31)-(3.34) as well as
the full (Full) and the simple classifier (Lean) proposed in (Humayun et al. 2011). For
the performance of the region-based approach in Eq. (3.35), regions are obtained by
constructing a Trajectory Binary Partition Tree (TBPT) for each sequence and extracting
two sets of segmentations for each sequence. For details on how to construct the TBPT
and how to obtain segmentations from it, see Sec. 7.2. For the moment, assume that
the two sets of segmentations are given and they create two precision recall curves
named TBPT-ms and TBPT-tc.

Quantitative results are shown in Fig. 3.15 showing that detecting occlusions using
regions performs as well as the Full method from (Humayun et al. 2011). The main
drawback about using regions is that the obtained result is extremely dependent on
the partition obtained. Nevertheless, if the proper segmentation is found, results are
competitive with state of the art best techniques. Qualitative results are shown Fig.
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3. MONOCULAR OCCLUSION CUES

Figure 3.16: Five cases of the occlusion dataset from (Humayun et al. 2011). From left
to right, for each column where likely occluded pixels are brighter. Reference frame,
groundtruth occlusions and results using the proposed region approach in Eq. (3.35)
with TBPT-tc partitions, the Full and Lean methods from (Humayun et al. 2011), and
simple methods: flow variation, photo consistency, angle and endpoint error.

3.16. Although the Full classifiers performs slightly better than the proposed occlusion
detection mechanism, its computation is extremely heavy. For example, the classifier
involves computing four different types of optical flow algorithms at two different
resolutions. The occlusion classifier is based on a feature space of approximately 250
dimensions. Clearly, as shown Fig. 3.15, with much less overhead comparable results
can be found, so the proposed region approach is used in this thesis.

The monocular depth cues exposed in this chapter will be integrated into a whole
system to estimate depth order maps. Either T-junction, convexity or motion occlusion
provide a local information on the depth gradient between regions but, sometimes,
local depth relations disagree with the global depth structure. To assess the quality of
the generated depth order maps, an evaluation framework should be designed. The
next section is devoted to present a new depth ordering dataset and contributions on
the evaluation of depth ordering algorithms.

72



4 Evaluation Methodology

4.1 Integrating detection and classification problems

Depth ordering or figure/ground estimation problems are problems which assign an
order to a set of detected regions or contours. This problem is normally divided in
two steps: 1) a segmentation or contour detection and 2) figure/ground or depth order
assignment. Many state of the art algorithms, see Sec. 5.1 decouple the problem and
decide two evaluate only the second part. Nevertheless, it is likely that both steps
are strongly related, as suggest results in (Ren et al. 2006) or (B. Liu et al. 2010) where
much better figure/ground scores are obtained with perfect segmentations. It is then
logical to try to evaluate both steps at the same time. For instance, Fig. 4.1 shows
an image with its groundtruth depth order along with four possible outcomes of four
different depth ordering systems. Which one is better? The answer is not trivial, as the
user may sacrifice some segmentation quality so as to obtain correct depth relations or
vice versa. A quantitative evaluation is needed in these cases.

These kinds of problem also arise in other fields, such as structured prediction with
latent variables (Kumar et al. 2010). In these problems, latent variables are not explitly
modeled but they are key to the performance of the system. In the case of (Kumar
et al. 2010) the latent variable is the object localization and the output of the system is
its classification into some specific class (human, animal...). Therefore, the problem is
conceptually the same: 1) detection of object location and 2) object class classification.
In this case, the better the object localization is, the better the classifier will perform.
As detection and classification performance can be very correlated, it is interesting to
have an evaluation framework capable of capturing all the information. To this end a
Precision-Recall-Classification (PRC) framework is proposed in the following sections.

• G. Palou and G. Salembier. “Precision-Recall-Classification Evaluation
Framework: Application to Depth Estimation on Single Images”. In: Sub-
mitted to CVPR. 2014

Contributions on Performance Measures
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4. EVALUATION METHODOLOGY

Figure 4.1: Depth ordering evaluation problem. From left to right: original image,
ground-truth depth order and four results of depth ordering systems. A part from the
second result, deciding which is the best result is not an easy task.

4.1.1 Detection Problems

In detection problems, systems are designed to decide whether a given event or feature
(object, contour, activity... etc) is present or absent in a given space. Given a ground
truth annotation, a desirable system behavior is to detect all possible entities without
giving any false alarms. Quantifying a system performance is normally done in a
framework where true/false positives/negatives are combined to provide precision
and recall:

• True positives (TP ): events detected by the system and marked as positive on
the groundtruth

• True negatives (TN ): events not detected neither by the system nor annotated on
the groundtruth

• False Positives (FP ): events detected by the system but not annotated on the
groundtruth

• False Negatives (FN ): events not detected by the system but marked as positive
on the groundtruth.

From these four quantities, precision arises as the fraction of correct detections with re-
spect all the detections. Recall is the fraction of detected events among the groundtuth.
Formally, they can be expressed as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(4.1)

The perfect score for a system is when both precision and recall are 1, although nor-
mally there is a compromise between these two quantities. That is, a system that has
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Figure 4.2: Operating regions of two different algorithms (red and blue) for classic
Precision-Recall (left) and Precision-Recall-Classification (right) frameworks. Gray
lines indicate points with the same F measure.

a high recall is also likely to have false positives, and a system which is very precise is
likely to miss some true annotations. Often, the two quantities are summarized into a
single number F , defined as the harmonic mean of precision and recall:

F =
2PR

P +R
(4.2)

Normally system performance is plotted on a precision-recall plane. A particular out-
put of a system is a point in this plane, although it is normal to see operating curves if
a system depends on a given set of parameters θ. Therefore precision and recall of its
output also depends on θ, i.e. P (θ) and R(θ). This gives a set of points on the precision
recall plane which normally are represented as a curve, see Fig. 4.2.

Although the number F may give a hint to compare two systems and see which of the
two has a better behavior, different points on the plane may give the same F measure,
regardless of their precision and recall values. If a curve is present, the system perfor-
mance is normally given by its maximum F measure along the curve. This point is
considered to be the operating point of the system.

In this thesis we propose an extension of the detection problem which includes a bi-
nary classification among the detected objects. The objective to do so is to integrate
both detection and classification into the precision-recall framework. We apply this
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4. EVALUATION METHODOLOGY

∅ 1
A not A

∅ TN MD MD

1 A FD CD ID
not A FD ID CD

Table 3: Confusion matrix of the proposed classification framework. ∅ indicates no
detection, while 1 indicates a detection. A and not A are the possible outcomes of the
classifier. TN , MD and FD stand for true negatives and missed detections. The other
concepts are defined in the text.

extension to depth ordering evaluation, but results can be applied to a variety of prob-
lems.

4.1.2 Combining Detection with Binary Classification

In classification problems, results are often represented with confusion matrices, where
the miss-classification rate is observed among different classes. If ground-truth results
are available, the classifier performance can easily be computed. However, if classi-
fied objects should be first detected by an algorithm, it is likely that the classification
score will depend on the operating point of the detection system. For instance, if only
confident detections are considered (low recall, high precision), a high classification
score is likely to be obtained. On the contrary, if many detections are retrieved, (low
precision, high recall), the classification performance is likely to be worse. To integrate
the detection and classification problems, we introduce two concepts:

• Inconsistent Detection ID: a correct detection that has been erroneously classi-
fied.

• Consistent Detection CD: a correct detection that has been properly classified.

All possible combinations of system output and ground-truth annotations are shown
in Table 3. Similarly to pure detection scores, these measures are combined to provide
precision-recall measures. CD and ID should be interpreted with care. Note that
IDs, although not desirable, are in some way “better” than miss-detections MD or
false detections FD since a correct detection is present and a post-processing step may
correct the classification. Let us consider two extreme cases of the evaluation scenario:
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Pure detection system. In this scenario, we ignore the classification and consider an
outcome to be correct if the detection is correct. In this approach CD and ID are
equivalent and TP = CD + ID, FP = FD and FN = MD.

Pure classification system This scenario considers that an outcome is correct if and
only if detection and classification are correct. Hence, one should consider that TP
are only correctly detected events when the same classification than ground-truth is
produces. In this context, TP = CD while ID should be interpreted in two ways:

• Detecting an incorrect class is equivalent to detect an event/object that does not
exist. Therefore FP = FD + ID.

• Detecting an incorrect class leaves a ground-truth result without correct detec-
tion. Therefore FN = MD + ID.

To consider a scenario in-between these two extremes, a parameter 0 ≤ β ≤ 1 is intro-
duced to regulate the compromise between segmentation-classification quality. In this
way, it is possible to redefine:

TP (β) = CD + βID (4.3)

FP (β) = FD + (1− β)ID (4.4)

FN(β) = MD + (1− β)ID (4.5)

(4.6)

Therefore precision (P ) an recall (R) are redefined as:

P (β) =
CD + βID

CD + βID + FD + (1− β)ID
=

CD + βID

CD + ID + FD
= Cp + βIp (4.7)

R(β) =
CD + βID

CD + βID +MD + (1− β)ID
=

CD + βID

CD + ID +MD
= Cr + βIr (4.8)

With Cp = CD
CD+ID+FD

and Ip = ID
CD+ID+FP

are the consistent and inconsistent preci-
sion respectively. Cr and Ir are defined similarly as consistent and inconsistent recalls.
As shown in Fig. 4.2, each depth ordered partition establishes a line segment on the
precision-recall plane by changing the β value between 0 and 1. If the algorithm to be
evaluated depend on a set of parameters θ, evaluation results in a region in the same
plane. To differentiate these measures with pure detection system, we will refer to
them as Precision-Recall-Classification (PRC) framework.

The PRC plot of Fig. 4.2 gives insight about the system performance. Ideally, a sys-
tem should reach P (β) = R(β) = 1 for all β values. Real systems however present
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a compromise between precision and recall. In the PRC framework, there is an addi-
tional compromise corresponding to the width of the operating region. A wide region
indicates poor system performance in classification (Ip, Ir ≈ 1), while a thin region
(Ip, Ir ≈ 0) indicates that the system is a good classifier. Moreover, as the operating
point of the detection system detects only confident event/objects (low recall), the re-
gion width is expected to decrease, as classification is easier. Based on this framework,
examples PRC measures are proposed in the next section.

4.2 Two PRC frameworks on Depth Ordering

A special case of detection plus classification problem is depth ordering. In this sce-
nario, the scene should be segmented, and each region should be ordered according
to its relative depth. The segmentation step can be considered as the detection stage
of the system (contours need to be detected) and the classification step corresponds to
the correct assignment of relative depth. In this section, the PRC framework will be ap-
plied to the depth ordering problem, by exploring two different perspectives for eval-
uation. A first PRC framework is designed for local depth relations in detected con-
tours, where the local depth gradient is evaluated. This measure is called Local Depth
Consistency (LDC). A second evaluation, called Global Depth Consistency (GDC), is
proposed by looking at the global structure of the image, by examining all pairs of
detected regions. The following two sections explain more thoroughly both measures.

4.2.1 Local Depth Consistency

We extend the original bipartite matching for contour evaluation (D. R. Martin et
al. 2004) to include the classification step as follows. Bipartite matching is used for
contour detection evaluation, and finds a one-to-one mapping between detected and
groundtruth contours. See Fig. 4.3 for a graphical explanation of the process. From
the resulting matched elements, true/false positives/negatives are found and a preci-
sion/recall measures are computed to evaluate the detection score of a system. Here
we extend this bipartite matching to include the depth gradient on detected contours.

In depth ordering, even if a contour is detected correctly, it can still be consistent
with the groundtruth depth order (assigning figure/ground correctly to both sides)
or inconsistent. Originally proposed in (Ren et al. 2006), the performance of a fig-
ure/ground (f/g) classification algorithm is measured with two steps:
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True Positives

False Positives

False Negatives

Figure 4.3: Bipartite matching on contours. The left figure shows two contours,
the dashed red corresponds to the detected one, and the black corresponds to a
groundtruth. Detected contour locations (red circles) are associated with groundtruth
contour locations (black circles) if they are close enough. On the right, a bipartite graph
is constructed and a maximum one-to-one matching is performed, giving rise to true
positives (matched contours, solid lines) and false positives (non-matched detected
contours), as well as false s (groundtruth contours not matched).

1. Bipartite matching on the contours of PS with contours of PG (Arbeláez et al.
2011).

2. Measure the f/g classification accuracy only on detected contours.

That is, the final f/g score is the classification accuracy of the boundary recall. The
main problem with this measure is that it completely ignores the quality of the seg-
mentation, leading to biased results if only confident contours are detected. As stated
in (M. R. Maire 2009), the f/g assignment on confident contours is easier than the as-
signment on ambiguous ones. Therefore, if the system only outputs the most confident
contours, the f/g score could be biased towards higher performance. In other words,
there exists a compromise between the quality of the segmentation and the f/g label-
ing problem which, to this day, has not been fully addressed. In (M. R. Maire 2009) a
first step is proposed by evaluating the f/g score versus the boundary recall, showing
that, effectively, there exists a compromise between these two values. However, this
approach is only sufficient to show the performance for a single system. Using the
PRC framework it is possible to assess both contour detection and depth gradient clas-
sification at the same time. The original matching scheme (D. R. Martin et al. 2004) is
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Figure 4.4: Process to evaluate the local depth consistency. Left: Depth partition with
one contour. The green overlay indicates the figure side, and the red overlay indicates
the ground side. Center: Contour normals are estimated by averaging local orien-
tations. Right: Bipartite matching of the groundtruth contour (right) and detected
contours (left). The figure shows consistent and inconsistent matchings, in green and
yellow respectively, due to the incorrect estimation of the depth gradient.

modified to measure inconsistent matchings, A brief explanation illustrated in Fig. 4.4
follows:

1. From the depth partition, figure and ground sides are identified by examining
the depth of each region.

2. The orientation of the depth gradient is estimated by averaging contour normals
within a local window.

3. Bipartite matching of ground-truth and detected contours: CD and ID are marked
with green and yellow grayed lines respectively. A matching is inconsistent if the
orientation of the depth gradient exceeds a specified threshold (15o).

It is important to note that IDs, although not desirable, are in some way ’better’ than
missdetections MD or false detections FD since a correct contour location is detected
and, eventually, a postprocessing step could correct the depth gradient. As in (D. R.
Martin et al. 2004), false detections FD are the detected contours with no correspon-
dence in the groundtruth, and missed detections MD are contours in the groundtruth
with no correspondence in the detected contours. This measure will be referred as
Local Depth Consistency(LDC) as it measures local depth relations on contours.

4.2.1.1 F/G Over Random Index

As in detection systems, it is always desirable to summarize the performance of a
system in a single number for comparison. In pure detection systems, this ’sum-
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mary measure’ is done by means of the F-measure. Nevertheless, summarizing a
two-dimensional (precision-recall, PR) space into a single dimension may lead to poor
interpretation of results. For instance, systems having different operating points of
precision and recall may give the same F-measure while outputting very different re-
sults.

In the proposed framework, as shown in Fig. 4.2, the system may output a different
PR-curve Cβ for each value of the parameter β. For each β, it is possible to compute
the curve maximum F-measure, Fβ . The detection and classification performance of
the system may be characterized by the pair:

Fmin, Fmax = min
β
Fβ,max

β
Fβ (4.9)

The higher both numbers are, the better the systems detects. Additionally, the smaller
the difference ∆F = Fmax − Fmin is, the better the system classifies. Nevertheless,
the main drawback about ∆F is that the classification performance depends directly
on the precision-recall point giving Fmax. For example, a system having ∆F = 0.2

and Fmax = 0.8 has a much better performance on classification than a system with
Fmax = 0.5 and ∆F = 0.2. Given this situation, it can be convenient to present a
classification measure that does not depend on the operating point.

Classification Measure According to equations (4.7) and (4.8) precision and recall
are divided into their consistent and inconsistent subparts. Consider a contour de-
tection system S and two classification systems working on the detections of S: an
intelligent system Si and one random system Sr. In Si depth gradients are assigned
using some sort of reasoning, while in Sr the depth gradient is assigned randomly.

Assume the operating point of Si has a given set of CDi and IDi. If Sr has the same
operating point on detection, the chance of assigning a correct depth gradient is 50%

and, therefore CDr = IDr = CDi+IDi

2
. It is possible to show with (4.7) and (4.8) that

the precision, recall and F measure (Pr, Rr, Fr) of a random system are related to their
counterparts (Pi, Ri, Fi) of a system with the same detection score by:

Pr = (1 + β)
Pi
2

Pr = (1 + β)
Pi
2

Fr = (1 + β)
Fi
2

(4.10)

Showing that when β = 1 all measures are the same (since no classification is consid-
ered). On the contrary, when β = 0, the three scores of a random system are divided by
two. Therefore, the system behavior can be assessed by comparing it to its theoretical
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random point:

ORI = max(0,
F i
min − F imax

2
F imax

2

) (4.11)

Since contours have variable lengths and F i
min can be lower than F imax

2
, the maximum

operation is done to ensure positive scores. Therefore, a perfect classification system
should have ORI = 1 while a random-like system will have ORI = 0.

4.3 Global Depth Consistency

When estimating depth maps or figure/ground, it is important that the whole depth
map is consistent given a ground truth. That is, the global depth structure of the im-
age should coincide both in the estimated and the groundtruth, even if the contours
do not match perfectly. Even if two parts of the image are not spatially adjacent, the
relative orders between these regions should be coherent with the groundtruth and
thus, pleasant to an external observer. Therefore, a non local measure that quantifies
the global depth consistency is desirable. Since contour localization is not always reli-
able and regions offer a more coarser view of the scene; regions can be used to localize
zones in the image with different depths. To this end, a region based precision-recall
framework similar to the LDC is designed. The proposed name is Global Depth Con-
sistency (GDC) as the measure takes non-local relations into account and relates all the
regions in the image, whether they are adjacent or not (unlike the LDC).

Assume the output of the system is a partition PS formed by a set of NS regions S =

{Si} and the groundtruth data is also a partition PG of the image with NG regions
G = {Gi}. Unlike contours, regions by themselves do not incorporate the notion of
relative order. However, if we consider pairs of regions, the notion of depth transition
arises naturally. Since these pairs of regions do not necessarily need to be adjacent
(unlike contours, which delimite two spatial adjacent regions), evaluating all pairs of
regions leads to a global depth interpretation of the estimated PS with respect to PG.
Denoting the relative depth order of regions Si, Gi as ∆S

i ,∆
G
i the following measures

are designed to provide a PRC framework for global depth ordering. The process is
detailed in the following lines and a short example is given afterwards following Fig.
4.5. As with contours, detected regions should be matched with groundtruth regions.
A common way to perform this matching is to compute the Jaccard index for each Gi
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Groundtruth

Detections 1

2 3 4

4

5

5 6 7

1

2 3

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5 6 7
1
2
3
4
5
6
7

G1 G2 G3 G4 G5

Depth 1 2 3 4 3

S1 S2 S3 S4 S5 S6 S7

Depth 1 2 3 4 3 2 1

Figure 4.5: Example of region matching. Top figure: Each Detected region is matched
to a groundtruth region. In case of subsegmentation, there may be groundtruth re-
gions which are not matched. In case of oversegmentation, the same region can be
matched multiple times. Bottom figure: Two tables showing all possible groundtruth
pairs (left) and detected region pairs (right). Red squares count as MD, blue count as
FD, green as CD and yellow as ID. In See the text for a more extended explanation.
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against all Sj and taking the maximum:

m(Si) = G̃i = arg max
Gi

Si
⋂
Gj

Si
⋃
Gj

∀Si, Gj (4.12)

When matchings have been done, FD are detected as the number of detected pairs
of region, with different depth values, that are matched with the same ground-truth
region:

FD =
∑

Si,Sj∈S

(
1− δ

(
∆S
i ,∆

S
j

))
δ
(
G̃i, G̃j

)
(4.13)

where δ(a, b) = 1 if a = b and 0 otherwise. False detections contain, intuitively, the
number of false depth transitions within groundtruth regions. It is very similar to the
concept of FD in the LDC measure, where a false alarm is detected if a non-existent
true contour is detected by the algorithm. Missed detections (MD) are the total number
of missed transitions due to the region matching process in equation (4.12). Let the set
of matched groundtruth regions be G̃, the formal expression for MD is:

MD =
|G| (|G| − 1)

2
− |G̃|(|G̃| − 1)

2
(4.14)

where | · | denotes the set cardinality. This measure can be explained by following
the example in Fig. 4.5. If G1 is missed (G̃i 6= G1∀i), a total of (|G| − 1) transitions
are missed (G1, G2), (G1, G3), (G1, G4), (G1, G4). If an additional region G5 is missed,
the number of missed transitions are (|G| − 2), so no missed relation is counted twice.
This mechanism gives rise to Eq. (4.14) and in the extreme case when |G̃| = 1, MD =
|G|(|G|−1)

2
(note that at least one region will always be detected).

The last two quantities to define are consistent and inconsistent detections. CD and ID
are found by examining each pair Gi, Gj and averaging the pairs of detected regions
with the same and different depth order respectively. Intuitively, CD and ID for a pair
Gi, Gj measures how, in average, the detections are consistent with the groundtruth
depth. This is done because for very oversegmented partitions, |S| � |G| and while
FD and MD grow linearly with |G|, the number of pairs of detected regions grow
quadratically with |S|. Define αij and βij the number of consistent and inconsistent
matches for a pair Si, Sj respectively. γG,Sij = sgn(∆G,S

i − ∆G,S
j ) is an indicator of the

order of the regions i, j in the sets G,S. Then, αij, βij is expressed as:

αij =
∑

δ
(
γSkl, γ

G
ij

)
(4.15)

βij =
∑

1− δ
(
γSkl, γ

G
ij

)
(4.16)
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Both summations are performed over the regions Sk, Sl fulfilling m(Sk) = G̃i and
m(Sl) = G̃j . The final consistent and inconsistent measures are given by:

CD =
∑
Gi,Gj

αij
αij + βij

(4.17)

ID =
∑
Gi,Gj

βij
αij + βij

(4.18)

To understand the GDC evaluation works, the example of the Fig. 4.5 is explained
more thoroughly. There are:

• MD: Groundtruth regionsG1 andG5 have been missed. As a result, 7 transitions
are missed: MD = 7 as shown by red squares on the left table.

• FD: S1, S2, S3 and S4 have been matched with the same groundtruth region G2.
As a result 6 false transitions (S1, S2), (S1, S3), (S1, S4), (S2, S3), (S2, S4), (S3, S4)

are detected: FD = 6 as shown by blue square on the right table. Additionally,
S6 and S7 are both matched to G4, creating 1 additional FD, thus FD = 7.

• CD, ID: Consistent and inconsistent relations can be resumed into the following:

– The groundtruth transition (G2, G3) on the left table generates the following
inconsistent detections: (S3, S5), (S4, S5) and consistent detections: (S1, S5),(S2, S5).
For this particular groundtruth transitions: CD = 2

4
and ID = 2

4

– The (G2, G4) transition on the left table generates is more complicated. It
generates 8 transitions, of which 2 are consistent detections: (S2, S6), (S1, S7)

and 6 are inconsistent: (S1, S6), (S3, S6), (S4, S6), (S2, S7), (S3, S7), (S4, S7). This
gives : CD = 2

8
and ID = 6

8
.

– The groundtruth transition (G3, G4) on the left table generates 2 detected
transitions. Both transitions (S5, S6) and (S65, S7) are consistent with the
ground truth so, CD = 2

2
and ID = 0

2

Summarizing, the total number of consistent detections is CD = 2
4

+ 2
8

+ 2
2

= 1.75 and
the number of inconsistent detection is ID = 2

4
+ 6

8
+ 0

2
= 1.25. Using MD = 7 and

FD = 7, the numeric expression for the PRC in this case can be computed using Eqs.
(4.7) and (4.8):

P (β) =
CD + βID

CD + ID + FD
=

1.75 + 1.25β

1.75 + 1.25 + 7
= 0.175 + 0.125β (4.19)

R(β) =
CD + βID

CD + ID +MD
=

1.75 + 1.25β

1.75 + 1.25 + 7
= 0.175 + 0.125β (4.20)
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In this particular example, both expressions P (β) and R(β) are the same because
MD = FD = 7, but this is generally not the case. In practical situations, the GDC
is much more restrictive than LDC because it considers not only local relations but
other non-adjacent depth transitions. Therefore it is expected that precision-recall val-
ues to be lower than in the LDC measure. Once presented the evaluation framework
suitable for segmentation and depth ordering, we are now going to discuss state of
the art depth ordering systems as well as the details of the scheme developed in the
context of this thesis.
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5 Depth Ordering in Still Images

5.1 State of the Art

Converting monocular content to 3D to some extend has been an important objective
for many industrial actors such as Microsoft (Ward et al. 2011), Disney (Wang et al.
2011) or Prime Focus (a post-production company for Hollywood Studios) with View-
D software (Bond 2011). Even with current technology, the film/photograph industry
keeps shooting in normal monocular cameras due:

Financial costs Both the camera acquisition and the post production process are more
expensive in the stereo/multiview case than the traditional monocular case.

Technical difficulties Disparity cues are only valid within a limited range of viewing
distances. So large field of view shots are not suitable for stereo vision and only
close views could benefit from two points of view.

Artistic motifs Like shooting in black and white, this only depends on the objective
of the author of the visual content. Some directors/photographers do not find
the added value of 3D to worth the increase on complexity, and prefer to shoot
in monocular.

These three reasons are the key to consider monocular 2D to 3D conversion a field of
interest, regardless of its proven difficulty and ill-posed condition. To the date, monoc-
ular depth systems are not able to estimate a perfect depth map, but, in practice, a
rough representation may suffice for humans to perceive a three dimensional effect
(Hubona et al. 1999; Phan et al. 2011).

Monocular depth estimation in still images started in the 70s with the so called shape-
from-shading algorithms. The starting point was (B. K. Horn 1970), where simple
objects were reconstructed in illumination controlled conditions. In these algorithms,
objects were supposed to be formed by a Lambertian surface, where light is scattered
depending on the incidence angle, and surface does not have many texture. After this
initial work, many other appeared, but the principle was the same: estimate depth
from a single cue. A survey on classical shape from shading algorithms can be found
in (R. Zhang et al. 1999). A worth to mention reference is the work (Barron and Malik
2013), where objects are presented in uncontrolled environments with unknown light
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5. DEPTH ORDERING IN STILL IMAGES

position, shading surface model and object texture. From an image, the reflectance,
shading and texture maps are recovered from the object.

Other kind of depth-from-X include depth from defocus/focus, perspective and tex-
ture. They can be compared to shape from shading methods in the sense that they
only exploit a single depth cue in controlled environments. Defocus assumes that
some objects on the scene are outside the depth of field of the camera so they appear
blurred. The original idea to exploit focus and defocus to retrieve depth was proposed
in (Pentland 1987) and (Darrell and Wohn 1988). Absolute depth is achieved when two
or more images with different focus points are used due to unknown camera calibra-
tion parameters. Nevertheless, approximate results can be obtained using one single
image (Zhuo and Sim 2009; Ghita et al. 2005). The principle of shape/depth from
texture algorithm is to observe that textured surface exhibit different patterns of their
texture depending on their relative orientation and position with respect to the cam-
era. Early algorithms tested the validity of the texture gradient cue on simple texture
patches (Aloimonos 1988). More recent approaches also tried to recover surface orien-
tation on natural images (Super and Bovik 1995), but since the interpretation of natural
environments is much more difficult, the problem is still open.

Due to their restrictions, these systems work only in environments where the back-
ground and the illumination are controlled and with isolated objects. Research only
recently tackled the problem in natural common images taken with cameras. Depth
from perspective is probably the bridge between the approaches estimating depth us-
ing controlled environments and approaches attempting to recover the structure of
general and natural scenes. Since perspective cues arise from the projection of parallel
lines to the image plane and the creation of vanishing points, they were initially used

• G. Palou and P. Salembier. “Occlusion-based depth ordering on monocular
images with Binary Partition Tree”. In: IEEE ICASSP. Prague, Czech Repub-
lic, 2011

• G. Palou and P. Salembier. “From local occlusion cues to global depth esti-
mation”. In: IEEE ICASSP. Kyoto, Japan, 2012

• G. Palou and P. Salembier. “Monocular Depth Ordering Using T-junctions
and Convexity Occlusion Cues.” In: IEEE Trans. on Image Proc. 2013

Contributions on Depth Ordering on Single Images
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5.1. State of the Art

Figure 5.1: Examples of the figure/ground groundtruth annotations for the BSDS300.
Original images are shown in first, third and fifth column. Groundtruth contours in
second, fourth and sixth column mark with white strokes the figural side, and with
black strokes the background.

to estimate surface orientations on scenes with marked structures such as buildings, in-
terior offices or any kind of human construction (Criminisi et al. 1999). With minimal
information of the scene, the authors are able to recover the scene layout and produce
accurate 3D environments from single images. Posterior works (Delage et al. 2006) are
able to recover depth without any prior information, just by looking at perspective
cues.

Although depth estimation in human built environments appeared in the late part of
the 90s, it wasn’t after some years that computer vision addressed depth estimation
in natural scenes. Nevertheless, the firsts works only estimated a general structure
(Torralba and Oliva 2002) such as predominant (or mean) depth of the scene. That is,
it was only possible to estimate whether the observed scene involved close or distant
objects, but not its specific structure. Subsequent works (M. G. Ross and Oliva 2010)
also assessed the estimation of prominent scene features from a perceptual point of
view.

Specific object structure in natural images was not tackled until the Berkeley group
released its segmentation dataset BSDS300 in the work (D. Martin et al. 2001) where
the depth gradient at object contours was annotated, see Fig. 5.1. Although closely
related, estimating the image depth is not exactly the same as assigning depth gradient
at contours, which is also known as figure/ground (f/g) labeling. There are two main
differences between depth ordering and f/g labeling:

• Depth ordering should be globally consistent with the observed cues, while the
contour depth gradient can be unrelated with other contours.

• Figure/ground problems do not need partitions (closed contours) to obtain their
result. Depth ordering systems need a partition of the image to assign depth to
regions.
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5. DEPTH ORDERING IN STILL IMAGES

Figure 5.2: Graphical model of the CRF globalization process for the f/g assignment in
(Ren et al. 2006). The left figures shows possible contours found in an image with junc-
tions marked as points where three or more contours meet. The right figures shows
the associated graph of the CRF. The depth gradient are the variables to find, which
are the red squares on edges.

Moreover, depth ordering system are somewhat more flexible in the sense that they
can estimate surface orientation and semantics on the scene. Figure/ground systems
are, nevertheless important as they can be a first step to a global depth structure es-
timation. In this direction, the scheme (Zhao and Davis 2004) proposed an iterative
approach to segregate an object from its background. A more recent work (Ren et al.
2006) assigns f/g labels to contours based on local decisions followed by a global op-
timization step with conditional random field (CRF) (Lafferty et al. 2001). The used
local depth cues are clustered contour shapes, called shapemes (Berg and Malik 2001).
They intrinsically encode low level vision cues such as parallelism and convexity. Tech-
nique (Ren et al. 2006) is one of the first that exploits the perceptual statement that the
depth gradient at junctions should be determined by a global reasoning rather than
with junction intrinsic characteristics. The CRF framework proposed in the cited pa-
per allows to arrive at a consistent f/g labeling of the depth gradient by enforcing
junction consistency and local depth cues.

It is worth detailing the globalization process of the mentioned algorithm, as many
of the following works use a similar approach. The algorithm tries to find a label-
ing on the edges based on three classes, denoted by a random variable Xe = −1, 0, 1

which encodes the direction of the depth gradient (0 acts as null gradient). From a
set of contours, a graph is constructed, see Fig. 5.2 and probabilistic inference on Xe

is run on the graph so as to maximize a likelihood based on local depth estimations
and junction compatibility. Although this approach offers still state of the art perfor-
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mance, junctions are estimated by propagating contour direction and it may assign
depth gradients to spurious and unrelated contours.

Other works in f/g labeling followed, such as (Leichter and Lindenbaum 2009) and
(M. Maire 2010). The first work uses explicit depth cues such as lower region (Vecera
et al. 2002), parallelism and T-junctions to build a CRF to estimate discrete depth la-
bels on both side of the edges. Although the algorithm ends up estimating f/g labels,
it makes use of depth order information to force global consistency. Its performance
outperforms (Ren et al. 2006), but it uses more cues and makes some assumptions on
the scene structure, such as the lower regions are closer to the viewer. Moreover, its
performance decreases rapidly when no perfect segmentation is available. The work
from (M. Maire 2010) performs segmentation and figure/ground assignment jointly
using angular embedding (Yu 2009) and a local convexity classifier to estimate the
depth gradient at each contour. To obtain a global consistency, the algorithm makes
use of the normalized cut machinery (Shi and Malik 2000) to obtain a set of complex
images where the contour strength and f/g direction are encoded in the real and imag-
inary parts respectively. The main drawback of this approach is that there exists a
compromise in cases when segmentation and f/g cues disagree. In such cases, the al-
gorithm favors one or the other depending on the value of a parameter which is not
easily tuned.

However, one of the advantages of (M. Maire 2010) is that it contains a ’figural likeli-
hood’ for each pixel in the image and not only in contours. That is, it obtains a func-
tions which directly inform about the depth order of each pixel. From the raw output,
the authors obtain a depth order partition by applying the Ultrametric Contour Maps
(UCM) from (Arbelaez et al. 2009) and assigning the depth order of each region the
mean ’figural likelihood’ of its pixels, see results in Fig. 5.3.

Prior works attempted even to recover the absolute distance (up to a factor) from a
single point of view. This is the case from (Saxena et al. 2005) and (B. Liu et al. 2010).
The first work oversegments the image and then gathers features for each generated
superpixel. It then uses a learning algorithm to assign an absolute depth value to each
superpixel, also forcing a global consistency with a random field. A part from the
examples given by authors , the algorithms generalizes poorly to different types of
scenes, see Fig. 5.3.

Avoiding over-training on a given type of scenes was tackled by (D. Hoiem et al. 2011).
In this work, authors propose to use the surface layout classifier (Hoiem et al. 2007) to
classify the different types of regions in the scene as either horizontal, vertical, porous
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5. DEPTH ORDERING IN STILL IMAGES

Figure 5.3: Results of the main state of the art methods. In the left column, the original
image is showed. From right to left: groundtruth depth annotation, method of (Saxena
et al. 2005), (M. Maire 2010), (D. Hoiem et al. 2011) and (Calderero and Caselles 2013).
In the depth maps, closer region are encoded in brighter colors
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Region Representation
Binary Partition Tree

Post-processing
Segmentation
Global depth interpretation

Depth Map

T-junction/Convexity Estimation

Figure 5.4: System architecture for single images. This figure is a particularization of
the general scheme in Fig. 2.14.

surfaces or sky. From this classification and other low level features, a CRF is used
to construct a global consistent depth map. The advantage of this method is that it
can produce smooth depth gradients when surfaces are not parallel to the camera
view plane, although surface misclassification leads to poor depth estimations. Nev-
ertheless, the algorithm which is originally intended to detect occlusion boundaries,
presents good performance on contour detection and is one of the best methods of the
state of the art on occlusion boundary detection.

High level information can be very informative about the scene structure but, to the
date, scene recognition (Xiao, Hays, et al. 2010) and surface description (Gould et al.
2009) are unsolved problems. Therefore, one way to assess the scene structure is to
base the algorithm reasoning on low level vision processes. Such processes, stated by
Gestalt as in 2.2, allow to infer some depth relationships from local descriptions of the
image. Either by explicitly detecting depth cues as in (Dimiccoli 2009) or by implicitly
reasoning about occlusion (Calderero and Caselles 2013), these approaches estimate
local depth relations which are propagated afterwards to the whole image to provide
a global depth ordering. Propagation in these cases is done with a non-linear diffusion
filter (Buades et al. 2006). The main drawback of these kind of iterative filters is that
the final outcome is highly sensitive to the number of iterations so, this parameter
may sometimes need to be controlled manually. Since in (Calderero and Caselles 2013)
reasoning is produced at the pixel level, the authors note that the presence of noise and
edge blur may disturb the final result. Nonetheless, results in both systems show that
low level features are useful to recover global depth maps, see Fig. 5.3.

In this thesis, we are going to assess all the potential weaknesses of the previously
mentioned approaches. Three different systems are proposed based on the same prin-
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ciples:

• There is no scene a priori knowledge. No assumptions can be made about the
type of the scene so that the system can accept any kind of input.

• Low level cues are used instead of high level information. Working with low
level information allows to have more cues of depth than simple semantic priors
which strongly condition the final structure estimation.

• Region based image representations allow to deal, among other things, with blur
and noise without preprocessing the image. Moreover, if the region representa-
tion is organized in a hierarchical structure, information appearing at different
scales can be encoded naturally.

The general system architecture was shown in Fig. 2.14. Here we show a particular-
ization for the proposed systems r single images 5.4. From an input image signal, a
region representation by mean of a Binary Partition Tree (BPT) is built and then post-
processed to obtain a suitable segmentation. During this process, low level cues such
as T-junctions and convexity are estimated and used to infer a consistent global depth
ordering. The following section reviews the state of the art of first stage of the system:
hierarchical region representations of images.

5.2 Hierarchical Representation of Images

5.2.1 State of the Art

In most image processing applications, an image is viewed as a set of pixels placed on a
planar grid. This low level and unstructured representation only offers the possibility
to use simple algorithms due to the large number of pixels composing the whole image.
Moreover, the representation does not describe the spatial composition and does not
provide support to easily handle semantic notion. In the recent years, there has been
an increasing interest to consider the image as a set of superposed regions. Thus, a
region-based representation has to be computed from the pixel level.

Since the information in an image may be present at different scales, the image repre-
sentation should be able to deal with different levels of detail. This characteristic is
obtained by constructing a hierarchical set of regions. To generate such regions, two
main approaches handle the problem either with a top-down or a bottom-up perspec-
tive, see Fig. 5.5. The former initially considers the image as a unique region and splits
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Bottom-up approaches

Top-down approaches

Figure 5.5: Differences between bottom-up and top-down approaches. From the origi-
nal image on the left, bottom up approaches successively merge small regions to create
bigger ones. On the contrary, top-down approaches split bigger regions to create finer
partitions.

iteratively the newly created regions to obtain the final partition. The latter considers
the pixels as a starting point and the final regions will grow from these initial seeds.
Among the literature, examples of these systems can be found in (Colantoni and Laget
1997; Tremeau and Colantoni 2000; Pardas et al. 1996).

Some hierarchical segmentation methods extend their “flat” homologue by successive
application of the algorithm to produce coarser partitions at each step. For exam-
ple, (Paris and Durand 2007) extends the Mean-Shift (Comaniciu and Meer 2002), (Cour
and Benezit 2005) applies spectral clustering across scales and (Grundmann et al. 2010)
extends the Efficient-Graph Based method (Felzenszwalb and Huttenlocher 2004) to
produce hierarchies for video sequences. Although these approaches actually produce
a hierarchy of regions, they generate very unbalanced trees in which a parent region
can have a variable number of child nodes. Sometimes a given structure is desirable,
and as such, methods (P. Salembier and Garrido 2000; Alpert et al. 2007; Arbeláez et al.
2011) propose to generate binary trees to represent an image.

The simplest form of a tree, known as the Binay Partition Tree (BPT), was proposed
in (P. Salembier and Garrido 2000) and proved to be fast and efficient. The BPT is
a structured representation of the image regions that can be obtained from an initial
partition using a simple bottom-up merging approach. At each iteration, two adjacent
regions are merged to form a parent region containing the two merged ones. The pair
of regions to be merged are chosen according to a similarity measure. When the BPT
is constructed, the leaves of the tree represent the regions belonging to the initial par-
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Figure 5.6: Example of different prunings of a BPT. Depending on which nodes are
selected (blue or red lines) the produced partition is different. Selecting one as a seg-
mentation for a particular application can be done using tree cuts, see Sec. 5.3

tition and the root node refers to the entire image. The remaining tree nodes represent
the intermediate regions formed due to the merging process used to construct the BPT.

Prior to BPT definition, an image model is needed. Basically, the image model is the
pixel type, also known as color space. To construct a BPT, four region concepts must
be presented:

Models: Since the BPT is a region-based representation, the region and image models
should be clearly defined. A region by itself is a set of 4-connected pixels. Com-
mon choices to represent regions are color and contour information, but these
may vary for each implementation.

Adjacency: Adjacent regions are region sharing at least one pixel edge. Edges are con-
sidered to be the points between two pixels. Region adjacency is then defined as
4-connected. There may be other possibilities, such as an 8-connected adjacency,
but they are not considered in this work.

Hierarchy: The hierarchy of regions is defined as the parent region to be the union
of its two child regions. This parent relationship can be extended to more than
one level, relating a node with all of its descendants and vice versa. This is a
key concept for a BPT because the hierarchical organization allows to look at the
image with different resolutions.

Similarity: A metric should be defined to compare adjacent regions. This metric will
vary depending on the chosen region models and should somehow measure the
similarity between two regions.
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Generally, as the hierarchy cannot be found by a global minimization of a given crite-
rion, bottom up approaches proceed iteratively to build the tree. At each iteration, the
two most similar neighboring regions are merged, creating a new parent region. The
parent region preserves the adjacency relations of both sons with other regions. This
process is repeated until only one region representing the whole image is left. This
strategy proved to give the best result until the date on image segmentation. It should
be noted that the tree is not a segmentation of the image per se, but only a region based
representation which contains many segmentations. Formally, any subtree maintain-
ing the original root can be translated to its corresponding segmentation. That is, the
leaves of a BPT or a pruned BPT represent a partition as shown in Fig. 5.6. Since
BPTs are constructed by iteratively optimizing a local criteria, a post-processing step
generally helps to retrieve better partitions than the ones generated by the merging
sequence. This fact has been observed by several works such as (P. Salembier and
Garrido 2000), (Serra et al. 2012) and (Y. Xu et al. 2012) for example. In the following
sections, two different strategies to create a BPT of the image are presented and in
Sec. 5.3 a general overview of techniques to retrieve better partitions from trees are
discussed in Sec. 5.3.

5.2.2 The Monocular Depth BPT

5.2.2.1 Color Space

When considering the image color space, several choices are possible. Usually, images
are stored using the RGB color space but processing within this space is not the opti-
mal choice. TheRGB model presents high correlation between channels, so redundant
information is processed three times. To eliminate this spectral redundancy, another
color space may be used. The two more popular ones are the Y UV and the CIE Lab,
(Paschos 2001).

Although both color spaces are suitable to deal with uncorrelated channels (luminance
and chrominance) there is an important difference: the Lab color space is perceptually
defined. The numeric distance in the RGB or the Y UV colorspace do not correspond
to the visual color distance seen by humans: two pixels with different RGB or Y UV
values may seem equal to the human eye (Sharma 2002). The Lab color space was
designed to solve this problem: the numerical distance between two colors is directly
proportional to the perceptual difference between this pair of colors.

The difference between pixel values is defined as the euclidean distance between color
vectors. Although theCIELab standard is carefully revised, there are strong criticisms,
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specially about the distance and the distinguishable threshold. First, the distance was
modified in (Robertson 1990) and results showed that some compensation was needed
to maintain the perceptual correspondence between pair of colors. Second, the Just
Noticeable Difference (JND) in (Sharma 2002) was said to be 2.3 instead of 1 as the
standard (CIELAB standard colour image data 2010) proposed. In practice, these two
modifications are subtle changes and they do not have much influence when compar-
ing colors. As a result, the CIELab color space is used in this thesis to represent the
color in the images.

5.2.2.2 Region Model

Generally, image regions are modeled using color characteristics. For example, in (Vi-
laplana et al. 2008) regions were modeled by their color mean while in (Calderero and
Marques 2010) the region model was built around three mono-dimensional channel
histograms. (Dimiccoli 2009) also modeled region with channel histograms, but their
estimation was performed using ideas from the non-local means algorithm proposed
in (Buades et al. 2005). In this thesis, a further extension is used and an adaptive
multidimensional histogram is proposed which proved to give better results on seg-
mentation benchmarks, see Sec. 5.3.

To represent the color distribution of the regions, one could choose among several
possibilities. In contrast to (Calderero and Marques 2010; Vilaplana et al. 2008), the
model chosen for this thesis is a single multidimensional histogram. Although 3D-
histograms do not loose any color information, their representation is very costly in
memory usage. As a result, it is unfeasible to work with a complete three dimensional
representation.

To overcome the memory limitations, regions are modeled using a few representative
colors (signatures) (Ruzon and Tomasi 2001). Following the MPEG-7 standard, 8 dom-
inant colors are a good choice to represent a whole image (Manjunath et al. 1998).
Therefore, the same number is chosen to describe each region, but depending on the
region color homogeneity a lower number may suffice.

Hierarchical Signature Estimation Each color signature si is characterized by a set
of ordered pairs {(p1, c1), (p2, c2) . . . (pn, cn)} with n being at most 8. Each pair i is
composed of a representative color vector ci and its propability of appearance pi.
Due to the hierarchical nature of the BPT regions, the most representative colors for
each region may be estimated using different approaches. The challenge of finding the
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representative colors can be seen as a quantization problem. From the initial image
regions it is fairly easy to find illustrative colors. If the initial regions corresponds to
individual pixels, their dominant color is simply the pixel color. If bigger regions are
considered, dominant colors are obtained using a k-means clustering approach. But
problems arise when a merging occurs. Due to the huge amount of initial regions, an
approximate solution is proposed: When two regions are merged, a new signature is
created for the parent region by joining the two underlying signatures. If the number
of representative colors exceeds the maximum (that is 8, here), only the 8 colors with
more presence (higher probabilities) are selected. If two colors i and j are very close
according to dij = (pi + pj) × cij (dij < 0.1), they are merged and replaced by their
weighted average. cij is defined perceptually as in (Shepard 1987):

cij = 1− e−
∆ij
γ (5.1)

With ∆ij being the euclidean distance between Lab-colors ci and cj . The decay param-
eter γ is set to 14.0 as in (Ruzon and Tomasi 2001). The proposed histogram simplifica-
tion represents each region by at most its 8 most representative colors. The advantages
over the color mean region model are obvious: the mean color is a particularization of
the signature when at most one dominant color is allowed. Permitting more colors in
the representation grants a more accurate representation of textures and thus, similar-
ity measures with two regions having different color distributions but similar means
would lead to different results. The advantages over the mono-dimensional histogram
region model are twofold:

• 3D histogram exploits channel correlation. The mono-dimensional model is com-
pletely valid only when the color channels are independent. If they are not, some
information about color is lost. It happens that, in the CIE Lab color model, lumi-
nance is indeed independent, although the two chroma channels present some
relationship. Therefore, by using the full histogram, this dependence may be
exploited

• a 3D histogram is generally sparse. By using an adaptive approach, the effect of
noise can be reduced and only the most representative colors are stored.

5.2.2.3 Region distance

The order in which these regions are merged to build the BPT is given by a similarity
measure. Usually, this measure is based on low-level features of the regions such as
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color, area, or shape. In this thesis, however, depth information is also introduced
to contribute to the final region distance. The overall distance between two adjacent
regions R1 and R2 is a contribution of all these features:

d(R1, R2) = da × (α(1− (1− dc)× dd) + (1− α)ds) (5.2)

da stands for the area distance. dc and ds are the color and shape measures respectively.
α is the weighting factor between shape and color. Its value was experimentally set
to α = 0.7. dd is the depth measure introduced to weight color distance. These four
contributions (area, color, shape and depth) are considered to be key characteristics
to define regions. Color is the most important feature but, the exclusive use of color
distances lead to regions with unnatural shapes so a measure evaluating the region
contour is introduced. In practice, objects in the real world have more or less compact
and round shapes. Moreover, relevant objects in a scene present similar areas so a
term addressing region size is also included. Since the goal of this thesis is to estimate
depth planes, the inclusion of a depth measure attempts to differentiate different levels
of depth during the BPT construction.

Color Criterion Histograms are a way to represent probability density functions
(pdf ). In this case, they are applied to the represent the color/intensity distribution
of the pixels. Therefore, the problem to compare two region colors is equivalent to
compare two color histograms. There is a wide repertory of measures that can be
considered, ranging from Lp norms to ground distance measures like the histogram
intersection (Puzicha et al. 1997). All the possible distances can be classified into two
different types: bin-to-bin or cross-bin distances. The former type includes Lp norms,
χ2 distance, Kullback-Leibler and Bhattacharyya divergences among others. The key
characteristic is that the distance d(h, g) of two N bin histograms h = [h1, . . . , hN ] and
g = [g1, . . . , gN ] is computed by examining the distance at each bin locally:

d(h, g) = d̃ (f(hi, gi), . . . , f(hN , gN)) (5.3)

Where f(hi, gi) is a function that compares two bin values. The function d̃ aggregates
all the local calculations by a linear combination maybe followed by an exponentiation
(as in the Lp norms). In contrast to bin-to-bin distance, cross-bin distances allow (non
linear) combinations of several bins to compute the final distance value.

The limitation of bin-to-bin distances is that the underlying purpose of histogram
comparison is to obey some perceptual principles. For instance, two colors that are
perceived very differently (e.g. black and white) must have a higher distance than
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Figure 5.7: Effect of bin-to-bin distances. The second and the third histogram have the
same distance with the first histogram although the colors are perceptually very differ-
ent. While bin-to-bin distances say that they are equally different, cross bin distances
solve this problem by assigning a bin-to-bin cost.

two similar colors (e.g blue and turkish). This intuitive reasoning is not fulfilled in
bin-to-bin distances. If, for example, an L2 distance is computed to compare the left
histogram with the center and right histograms in Fig. 5.7, the same result is obtained.
Perceptually, however, the red color is much more different to the dark blue than the
light blue.

This limitation can be overcome by using the so called cross-bin distances, such as the
Diffusion Distance (Ling and Okada 2006) or the Earth Mover’s Distance (EMD). The
Diffusion Distance measures the distance by iteratively computing the energy of the
convolution of a Gaussian Kernel with the bin-to-bin histogram difference. It turns out
that this process, which has the same behavior as the heat propagation in a medium,
can be seen as an approximation of the EMD. The EMD was first presented as a trans-
portation problem (Hillier and G. J. Lieberman 1990). In this thesis, it is used to com-
pare two pdfs. The EMD is already presented in Sec. 3.1 in T-junction color confidence
calculation but, since it is a key concept for the BPT construction, a more thorough
explanation follows.

The EMD measures the amount of probability mass that has to be moved, to convert
one histogram h into another g following some cross-bin unit costs. Although it is a
good measure for image query, first used in (Rubner et al. 1998), it has not been used
for complete image segmentation nor BPT construction. In (Ruzon and Tomasi 2001)
a simplified version of the EMD is used for corner and junction detection.

The EMD distance can be defined between two signatures h and g with number of
bins Nh, Ng. Each signature consists of a set of pairs (hi, c

h
i ) and (gi, c

g
i ), where the

value for bin i, hi, gi is defined to be the probability to observe the color chi and cgi
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h1
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hN

g1

g2

...

gN

Figure 5.8: Graph representing the EMD problem. The arrows represent the flow
from/to the bins and the nodes are the bins themselves

respectively. Since histograms represent a pdf,
∑Nh

i=1 hi = 1,
∑Ng

j=1 gj = 1.

The problem is how to transform histogram h into g. That is, some probability mass of
h should be displaced to form g. The amount of probability mass displaced from one
bin i to another bin j is represented by a flow fij . The unit cost of this displacement
is given by cij . In Fig. 5.8 the graph representing the transformation of h into g is
represented. The mathematical formulation of the EMD can be written as follows:

EMD(h, g) = min
fij

Nh∑
i=1

Ng∑
j=1

cijfij

Ng∑
i=1

Nh∑
j=1

fij

(5.4)

s.t. fij ≥ 0 (5.5)
Nh∑
i=1

fij = gj (5.6)

Ng∑
j=1

fij ≤ hi (5.7)

Eq. (5.5) simply states that the amount of probability mass moved should be positive.
Eq. (5.6) forces that the flows going to a bin j, sum up to the value in gj . Equation (5.7)
makes sure that no more than the available probability is displaced from its original
bin, hi.

The costs cij are defined to be the costs of moving a unit of probability mass from
a bin i to a bin j. Since in the concerning case the histogram bins are colors, cij are
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the unit costs to transform a color chi to a color cgj . Cross bin costs can be arbitrary
positive numbers, but the usual choice is to define them to be the euclidean distance or
a statistical measure. Taking advantage of the CIE Lab color space, the costs proposed
in this scheme are perceptual. The distance between one color i from histogram h to a
color j from histogram g is perceptually defined as:

cij =

(
1− e−

∆ij
γ

)
(5.8)

Where ∆ij is the euclidean distance between colors chi and cgj . γ = 14 is the decay factor.
The EMD is a convex optimization problem, and can be solved by linear programming
algorithms such as the simplex method. Note that efficient ways to compute the EMD
do exist when the costs are linear with respect to the bin distance (Ling and Okada
2006), i.e cij ∝ |i − j|. However, since the costs defined in Eq. (5.8) are not linear,
another implementation was used from (Hillier and G. J. Lieberman 1990). The EMD
computation is a rather costly operation, but the use of few dominant colors on each
region leads to reasonable computational times. As an important fact, the output of
the EMD using the defined costs cij in Eq. (5.8) ranges in [0; 1]. The output 0 conforms
to two completely equal regions and 1 two completely different ones.

The measure used for (5.2) for color is then

dc(R1, R2) = EMD(h, g) (5.9)

With h, g being the histograms representing regions R1 and R2 respectivelty.

Shape/Contour Criterion The contour criterion has long been introduced in image
segmentation. In the early Mumford-Shah functional (Mumford and J. Shah 1989)
a penalty cost on the region perimeter was introduced to find compact regions in a
continuous variational framework. In (Vilaplana et al. 2008) a similar concept for BPTs
was used to encourage regions to be as round as possible. The measure used was
simply the increase of perimeter of the merged region with respect to the region with
the largest perimeter. To adapt the contour criterion to the dynamic range of the color
distance, the increase of perimeter is normalized to the largest perimeter. Define the
length of the perimeters of the two regions R1 and R2 as P1 and P2 respectively. The
common perimeter is P1,2. The measure is then

ds(R1, R2) = max

(
0,

min(P1, P2)− 2P1,2

max(P1, P2)

)
(5.10)
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It is important to mention that the contour criterion should only be applied when the
shapes of the regions are meaningful. In practice, the contour measure is only applied
when the areas of both regions exceed a threshold (i.e. 50 pixels), but other numbers
may work as well.

Area Criterion As stated above, relevant objects in the scene usually have similar
sizes. It is then intuitive to introduce a measure to balance these sizes. That is, all
the regions at a given iteration of the BPT construction should have approximately
the same area. There exist several criteria weighting area in the BPT construction, but
there is no general consensus. All of them, however, are monotonically increasing with
the region areas. Here, the area contribution is defined to be

da(R1, R2) = log2 (1 + min (|R1| , |R2|)) (5.11)

With |R1| , |R2| being the respective region areas, in pixels.

Depth Criterion One of the local cues that allow to infer some depth relationships
between regions are the so called T-junction points, see Sec. 2.2. These points appear
where three different regions meet. To detect them in our approach, the approach of
Sec. 3.1 is used. Since the proposed approach needs a local window segmentation
for T-junction confidence calculation, the Region Adjacency Graph (RAG) of the BPT
merging sequence is used. The RAG is a graph structure where two regions (repre-
sented by graph nodes) are connected if they share at least a common pixel edge. At
each BPT construction iteration, a RAG is available. T-junctions are potentially located
where a region triplet Ri, Rj and Rk is fully connected on this RAG. This also can be
seen as Ri and Rj having a common neighbor Rk. The point where the three regions
meet in the image, defines a possible candidate for a T-junction point. Each possible
location is characterized with a probability value, measured with a confidence value,
0 ≤ p ≤ 1 as explained in Sec 3.1.

Note that two adjacent regions may have more than one T-junction candidate and that
each of these candidates may define two different depth planes. Fig. 5.9 shows a
possible example where the regions Ri and Rj have four T-junctions in common. Note
that some of the T-junctions betweenRi andRj are also T-junctions betweenRi andRk.
The information relying on the T-junction candidates structure is used to modify the
distance between two regions. Consider the set of T-junction candidates T between
any pair of regions Ri and Rj . Following the perceptual cues exposed in Sec. 3.1, it
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Ri RjRk

Figure 5.9: Example of two adjacent regions having more that one T-junction.

is possible to distinguish three kinds of T-junctions on the set T . Ones telling that Ri

is in front of Rj , others telling Rj is in front of Ri and finally others telling that some
other region is in front ofRi andRj . Following the intuition of Sec. 3.1, where the local
depth gradient of T-junctions cannot be decided with local information, a T-junction
potential candidate is considered to have a normal depth gradient. That is, the region
forming the largest angle is the one lying closer to the viewer.

The first two groups indicate that one of the two regions, Ri or Rj , is in a different
plane than the other. The last group does not tell anything about the depth order for
this pair Ri and Rj . However, for the first two groups the information is contradictory
as two regions cannot be at the top of each other at the same time. Thus, one of the
two suppositions (assuming a constant depth for regions) may not be true. The region
depth model considered in this project assumes that no self-occlusion is present in the
scene. From the confidence of each T-junction candidate, it is possible calculate the
probability that either Ri or Rj is in front of the other:

pi =

(
1−

Ni∏
n

(
1− pin

)) Nj∏
n

(
1− pjn

)
(5.12)

pj =

1−
Nj∏
n

(
1− pjn

) Ni∏
n

(
1− pin

)
(5.13)

Where pin is the confidence of the n-th T-junction candidate telling that Ri is in front.
pjn is defined similarly. Ni and Nj are the number of T-junctions for each group. Let us
give a intuitive interpretation of the previous expressions. The probability of Ri being
in front of Rj is that at least one of the T-junctions indicating Ri is in front is true while
all of the T-junctions having Rj in front are false.

With these two probabilities, the confidence difference is defined as δ = |pi − pj| and
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the depth contribution to define the region distance is

dd(R1, R2) =
1

1− δ (5.14)

It should be clear that δ = 1 when the two values pi and pj differ very much and the
depth order is clear and the color distance in Eq. (5.2) is increased to separate the two
different depth planes. When the two values are close the modifier δ is close to zero
and the color distance is not modified. This situation appears either when there are
no cues that permit to order by depth the two regions or when two T-junctions give
contradictory information. the intuition behind the combination of dc and dd during
the BPT construction in Eq. (5.2) is that, the distance between two regions is increased
if the junctions found between these pair of regions determine that there is a depth
discontinuity. Thus, the tree is expected to be partially depth-structured.

Introducing depth distance into the BPT construction solves a ’chicken and egg prob-
lem’. In one hand, segmentation can benefit from the knowledge of the positions of
junctions, as region boundaries may not cross depth planes. On the other hand, T-
junction detection and confidence estimation can benefit from segmentation as junc-
tions appear where three regions meet. By integrating T-junction and segmentation
into an iterative algorithm may help to resolve this ambiguity.

5.2.3 Ultrametric Contour Maps

Ultrametric Contour Maps (UCM) were first presented in (Arbelaez 2006) as a way to
represent an image as a soft boundary map associated to a family of nested segmen-
tations. The purpose of the original paper was not to design a new region merging
approach for image segmentation, but to adapt the distance between regions so that
an ultrametric property was satisfied. This change in how the distance between re-
gion was used proved to give, to the date of publication, the best results on classic
segmentation datasets such as BSDS300 (D. Martin et al. 2001). The key of the algo-
rithm is to define the distance between adjacent regions as a function of local features
on the common contour. Using color and gradient contrast, the algorithm achieved
state of the art performance using simple features. Later, in (Arbeláez et al. 2011) the
UCM was extended to use the gPb contour detection, producing the best state of the
art hierarchical segmentation of images. One of the proposed systems in this thesis, ex-
posed in Sec. 5.4, include the UCM as the hierarchical representation of an image, so a
brief description of the system in (Arbeláez et al. 2011) is commented in the following
section.
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Figure 5.10: Figure extracted from (Arbeláez et al. 2011) showing the gradient compu-
tation for the brightness channel

5.2.3.1 The gPb contour detector

The key of the high performance of the UCM is the contour detection step, where
a set of local cues at different resolutions are combined to provide global consistent
contours. The process is described in the original Pb algorithm in (D. R. Martin et al.
2004) and it is basically a complex gradient operator on brightness, color and texture
image channels. The idea is to place a disk of a fixed size at every pixel in the image
and compare the histogram distribution of every channel of two disc halves using
different orientations (the original implementation used 8 different angles), see Fig.
5.10.

The gradient is computed in the brightness, the two chroma, and in a texture channel.
The latter channel is formed by assigning to each pixel a texton id, obtained by clus-
tering the filter response of 17 Gaussian derivative filters with different orientations.
These responses are clustered to K = 32 ids, and each pixel is assigned to the closest
cluster center. To compare disc halves, the two distributions are compared using the
χ2 distance. The gradient computation is performed over 3 resolutions, and the re-
sponses at each pixel (x, y) are linearly combined in each gradient direction θ to form
a multiscale contour detector mPb(x, y, θ).

Once a local contour strength is available for each pixel, a globalization is performed
by computing pixel affinities and performing spectral clustering (Shi and Malik 2000;
M. Maire et al. 2008). The difference between the spectral clustering of the normalized
cuts and the gPb algorithm, is that the eigenvectors obtained from the spectral cluster-
ing process are not clustered. Instead, the authors propose to reshape each eigenvector
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Figure 5.11: The gPb algorithm in one example image. Left: Original image. Center
left: pixel affinity computation, where the green line represents high affinity and the
red represent low affinity. Center: first four generalized eigenvectors of the spectral
clustering process. Center right: partition of the image by clustering eigenvectors, er-
roneously partitioning the sky. Right: gPb signal obtained by combining eigenvectors.
Image obtained from (Arbeláez et al. 2011)

to the shape of the image, compute its spatial gradient and combine them to produce a
final global gradient for each orientation sPb(x, y, θ). The sPb(x, y, θ) and mPb(x, y, θ)

are linearly combined to produce the global probability of boundary gPb(x, y, θ). The
final contour strength of a pixel is considered to be the maximum contour strength
over all directions gPb = maxθgPb(x, y, θ). An overview of the globalization process
is shown in Fig. 5.11, showing the principal steps of the algorithm.

5.2.3.2 Creating the hierarchy

The gPb signal gives a probability of boundary map, where highly confident contours
have a gPb ≈ 1. Thresholding gPb lead to non-closed contours, it does not partition
the image into regions. Non closed contours may be useful for some applications, but
often it is desirable to obtain regions as they can be much more informative to the
viewer.

From the gPb an oriented watershed transform (OWT) is produced. The OWT is a
classical morphological watershed such as (Beucher and Lantuejoul 1979; Dougherty
1992; Najman and Schmitt 1994), but the resulting contour strength is computed by
averaging only the strength of the gPb(x, y, θ) on the same direction than the edge. In
this way, the contours of the starting partition for the UCM match perfectly the non-
max suppressed contours obtained from the gPb and the hierarchy can be created.

In contrast to (Arbelaez 2006), the distance between regions is simply defined by the
mean strength of the OWT contours. The essence of the algorithm is the same as for
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the BPT literature: produce a binary tree of regions, by merging the two most similar
adjacent regions at a time. The key difference is that the distance between regions is
based on a local contour strength, rather than a region model. Moreover, as regions
are merged, contours are reweighed and the whole hierarchy can be represented by a
soft boundary map.

5.2.3.3 Estimating T-Junctions

Unfortunately, the machinery underlying the gPb-OWT-UCM algorithm is highly cou-
pled, with many parameters trained, and introducing new features/characteristics in
one of the steps could lead to poor system performance. Moreover, since the quality of
the regions produced are the best for state of the art in segmentation, we choose not to
modify the UCM creation process, see results in Sec. 5.3. Instead, once the binary tree
is constructed for each image, T-junctions are estimated in a top-down way, follow-
ing the inverse order of the merging sequence. In this way, the process of T-junction
estimation is similar to the one in the BPT creation process, but in this case distances
between region are not modified by junction confidence. Note that if the distance dd
in Eq. (5.14) is introduced to the UCMs, the ultrametric property could break. Some
examples of the proposed BPTs and UCMs are shown In Fig. 5.12, along with the
T-junctions estimated in each case.

5.2.3.4 Differences between BPT and UCM

Minor differences of UCM and classic BPT lead to a high increase of the segmentation
performance. One of the problems of some of the BPT distances is that the region
model does not represent the spatial correlation of pixels within regions. That is, when
considering the region color histogram, the spatial distributions of colors are lost and,
for relatively large regions this can be a real drawback, see Fig. 5.13. There are other
subtle differences, most of them are commented in Sec. 5.3. Since the proposed BPT
and UCM hierarchical representations offer the best results of the state of the art, they
are chosen as the basis for image region representation. Both trees are conceptually
the same: a binary tree of regions constructed greedily using a specific region distance.
Therefore, both structures can be represented similarly. To differentiate between both
construction schemes, the trees constructed with the proposed distance in Eq. (5.2) will
be referred as BPT, while the tree constructed with the gPb−OWT −UCM algorithm
will be referred to as UCM.
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Figure 5.12: Examples of partitions and T-junctions estimated in the BPT and the UCM
cases. First column: original image. Second and third columns: image with the con-
tours of the BPT and UCM overlaid in white respectively. Fourth and fifth columns:
estimated BPT and UCM junctions exceeding a confidence of 0.1 respectively. Junc-
tions are shown in red, and the region forming the largest angle is filled in white.
Partitions where extracted by minimizing a tree cut energy, see Sec. 5.3. Note that
many T-junctions do not coincide with the extracted contours because the retrieved
partition is too coarse in many cases.
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d ≈ 0

d ≈ 0
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Figure 5.13: Case where the region model of BPT fails. The original left image shows
two objects with same color distributions. The center top image shows the image
partition at a given instant. The bottom center shows the gradient image. If only
region color histogram are considered, the BPT distances will assign the same value
to all distances, leading to inconsistent mergings (top right image). Instead, the UCM
considers local distances so, objects are clearly differentiated by the gradient distance.

5.3 Tree Cuts

Prior to focus on the depth ordering problem concerning this thesis, it can be of interest
to show the potentials of the tree structures for image segmentation. In this section we
review the common techniques that may be used to extract different partitions from
an image using the same tree. Independently of the distance used to create the tree,
the technique extracting a partition from it can be viewed as a tree cut. The BPT is a
particular graph where each node represents a region and the tree branches the region
inclusion relationship. A partition can be naturally defined from a BPT by selecting
the regions represented by the tree leaves. If this is done on the original tree, the
leaves correspond to the initial partition from which the tree is constructed. However,
if we prune the tree, that is if we cut branches at one location to reduce their length,
a new tree, called a pruned BPT is created. The leaves of the pruned BPT define a
non trivial partition. This pruning is a particular graph cut: if the tree root is the
source of the graph and the leaves are connected to a sink node, the pruning cuts the
tree in two connected components, one including the source and the other the sink.
Note that following this approach, partitions observed during the merging sequence
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Set of valid x = (x1, . . . , x7)T :

x1 = (1, 1, 1, 1, 0, 0, 0)T

x2 = (0, 0, 1, 1, 1, 0, 0)T

x3 = (1, 1, 0, 0, 0, 1, 0)T

x4 = (0, 0, 0, 0, 1, 1, 0)T

x5 = (0, 0, 0, 0, 0, 0, 1)T

Invalid:

xI = (1, 1, 0, 0, 1, 0, 0)T

R7

R5

R1 R2

R6

R3 R4

R7

R5

R1 R2

R6

R3 R4

Figure 5.14: Simple BPT and associated valid vectors. Left: Set of valid partition vec-
tors representing a pruning and an invalid partition vector. Center: BPT with green
nodes indicating the cut described by x3. Right: BPT with red nodes representing the
regions described by xI which does not define a pruning.

can obviously be obtained but the interest of the pruning is that a much richer set of
partitions can be extracted. Of course, the key point is to define an appropriate tree
cut rule. Here, an optimum pruning based on energy minimization is proposed and
three different minimization algorithms are assessed. A first formulation and a naive
minimization algorithm is given in Sec. 5.3.1. In Sec. 5.3.2 we give a comparison of
classical graph cuts and tree cuts, while in Sec. 5.3.4 we exploit the structure of the tree
to efficiently find a solution.

5.3.1 A 0-1 Integer Programming Approach

A partition P extracted by pruning can be represented by a partition vector x of binary
variables xi = {0, 1}with i = 1..N assigned to each BPT regionRi. If xi = 1, Ri belongs
to the partition, otherwise xi = 0. Only a reduced subset of vectors, called valid vectors,
actually represents a partition extracted by pruning. The problem of finding a vector
x by minimizing an energy can be formulated as:

x∗ = arg min
x
e>x (5.15)

s.t Ax = 1 (5.16)

x = {0, 1}N (5.17)
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where e is a vector containing entries ei representing the energy associated to a region
Ri and xi. A is a matrix containing all constraints so that x represents a valid partition.
A vector x is valid if one and only one region in every BPT branch involves only one
xi = 1. A branch is a sequence of regions from a leaf to the root of the tree. For example,
the tree of Fig. 5.14 involves four branches.

Each branch l can be represented by a branch vector bl =
(
bl1, . . . , b

l
N

)> where bli = 1

if region Ri is in the branch and bi = 0 otherwise. In the example of Figure 5.14,
the four branch vectors are: b1 = (1, 0, 0, 0, 1, 0, 1)>, b2 = (0, 1, 0, 0, 1, 0, 1)>, b3 =

(0, 0, 1, 0, 0, 1, 1)> and b4 = (0, 0, 0, 1, 0, 1, 1)>. With this notation, a partition vector
x is valid if, for every branch l, b>l x = 1. In Figure 5.14, xI = (1, 1, 0, 0, 1, 0, 0)T is not
valid because b>1 xI = 2. The constraint can be globally expressed as a matrix product
Ax. In the case of Figure 5.14, the constraint is:

Ax =


b>1

b>4

b>3

b>4

x = 1


1 0 0 0 1 0 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 1

x = 1 (5.18)

where 1 is a vector containing all ones. The general 0-1 optimization problem are NP-
hard to minimize, so standard branch and bounds techniques can be used to arrive at
a global minimum. Standard solvers such as CPLEX (ILOG, Inc 2006) are suitable for
this task. Although more efficient algorithms can be applied to this particular prob-
lem thanks to its structure (see the following section), the 0-1 linear programming ap-
proach formulation allows a very easy extension of the model to allow pairwise and
higher order interactions between xi’s. For example, consider the following minimiza-
tion problem:

x∗ = arg min
x
e>x+ x>Qx (5.19)

s.t Ax = 1 (5.20)

x = {0, 1}N (5.21)

Where Q is a matrix with the Qij encoding the cost of xi and xj to be on the final
partition. The problem formulation is still valid and minimization proceeds as before,
with approximate methods. Nevertheless, the problem structure in this case does not
allow for an efficient solution and all possible algorithms minimizing (5.19) have ex-
ponential complexity on the number of elements in x and the constraints. Still, there
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are cases where this formulation is needed such as in (Pont-Tuset and Marqués 2012)
and in (C. Xu, Whitt, et al. 2013). Since minimizing 0-1 problem can be inefficient, it is
possible to exploit the problem structure to design more efficient solutions.

5.3.2 Equivalent Graph Cut Problem

The most common classes of energies that can be minimized using graph cuts are
presented in (Kolmogorov and Zabih 2004). In these problems, an energy should be
minimized with x = x1, . . . xn a vector of binary variables:

E(x1, . . . , xn) =
∑

Ei(xi) +
∑
i<j

Ei,j(xi, xj) (5.22)

Not all kinds of energies can be modeled using a graph. Namely, only the so-called
regular functions are graph representable. Basically, regular functions are functions
which allow to construct a graph without negative edges. Since Eq.(5.22) only involves
pairwise interactions, a condition for regularity must be satisfied for all pairs of nodes:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(1, 0) + Ei,j(0, 1) (5.23)

If condition (5.23) is satisfied over all the variables, the energy can be represented in
a graph and the minimization of (5.22) can be performed efficiently using a maxflow-
mincut algorithm (Cormen et al. 2001). By examining closely (5.22) it is easy to see
the similarity with (5.19), but there are subtle differences that make the problem con-
ceptually different. For instance, pairwise interactions in Eq. (5.22) normally refer to
adjacency relations in the classical graph cuts applications. In the tree cuts case, since
a node is only adjacent to its children, these kind of interactions refer to inclusion rela-
tions. Therefore, matrix Q in Eq. (5.19) and the energy Ei,j(xi, xj) do not represent the
same kind of interactions. However, if pairwise interactions are dropped and (5.15)
is used instead, there is a direct correspondence with vector e and the energy terms
Ei(xi) and Eq. (5.15) corresponds to a regular energy.

Although the function (5.15) has the regularity property required to be graph repre-
sentable, the overall optimization problem is constrained, unlike Eq. (5.22), because x
has to describe a valid a partition. Therefore, additional work has to be done in order
to present the same problem of tree cuts but using a formulation which can be solved
by graph cuts more efficiently than with 0-1 integer programming.

Beginning by the simplest, yet non-trivial, problem of optimization on a tree T2 with
two leaves shown in Fig. 5.15. The tree involves three nodes, i.e. x = [x1, x2, x3], with
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Figure 5.15: Simple case of a binary tree (left) and its corresponding G2 graph with the
only two possible cuts marked in the graph (red and blue, slashed). All the other cuts
in this graph have an infinite cost.

x1, x2 representing the leaves and x3 the root. The only two possible solutions are
x0 = {1, 1, 0} and x1 = {0, 0, 1}with costs E(x0) = e1 + e2 and E(x1) = e3 respectively.
Any other x does not represent a valid partition.

In classical graph cuts problems, the vector x is unconstrained, while here x should
correspond to a valid partition. Therefore, the problem formulation (5.15) does not
correspond to a maxflow-mincut problem at first glance. To convert the proposed
problem into a graph cut, we define a graph G2 where unfeasible partitions x̃ are asso-
ciated to sufficiently high energy values E(x̃) = ∞. In this way, we allow the graph
to be cut at every edge, but only valid partitions have an energy E(x) <∞. Therefore,
the topology of G2 should be such that (Kolmogorov and Zabih 2004):

• Each valid state of x is a cut of G2 with cost E(x).

• Each non-valid state of x is a cut of G2 with cost∞.

G2 is constructed as shown in Fig. 5.15 by introducing a new node and 3 edges. G2

has a structure very similar to that of T2. In (Serra et al. 2012) a similar comparison
between graph cuts and energy minimization is done. In that case, however, the cut
was constrained to node capacity instead of edge To solve the maxflow problem, the
root of the tree is considered to be the source node (green node), while a dummy sink
node connected to all leaves is introduced at the bottom of the graph (red node). The
only two bounded (< ∞) cuts are the ones marked in red and blue with the dotted
lines. To extend the problem to deal with general binary trees, it is possible to use the
inherent recursive structure of a tree as shown in the next section.
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Figure 5.16: Tree cuts can be stated as maxflow problems. Left: Recursive solution to
construct the graph Gl. Right: constructed graph G8 for the T8 case with one marked
cut. The energy of the cut is E1 + E2 + E10 + E14 and the partition is formed by nodes
1,2,10 and 14.

5.3.3 Tree cuts for general binary trees

The key to deal with arbitrary binary trees is to observe that the energy (5.15) and the
constraint (5.16) can be decomposed into two independent problems. Indeed, a binary
tree Tl is composed of a root node joining two binary subtrees TL,Rt/2 corresponding to
its Left and Right descendants. Therefore, the energy of Tl (5.15) can be decomposed
as:

E(x) = elxl +
∑

xi∈TLt/2

eixi +
∑

xj∈TRt/2

ejxj (5.24)

= elxl + e>LxL + e>RxR (5.25)

where the xl corresponds to the energy of the root. The second and third terms corre-
spond to energies of the left and right subtrees. This energy decomposition is possible
because the energy (5.15) is of class F1 (Kolmogorov and Zabih 2004) and there are no
second order terms relating nodes in different subtrees.

The constraints (5.16) can be decomposed in the following way. According to the struc-
ture of the characteristic matrix, the root node corresponds to the last column of A.
Since the last column of A only involves ones, if xl = 1, then all other xk should be
zero to fulfill (5.16). On the contrary, if xl = 0, then the problem consists in finding
the minimum of the second and third terms of equation (5.25). If the last column is
ignored, A can be subdivided by rows into two disjoint matrices AL and AR, one con-
straining xL and the other xR. Finding the minimum for the left and right subtrees
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subproblems becomes:

x∗i = arg min
xi
e>i xi (5.26)

s.t Aixi = 1 (5.27)

xi = {0, 1}N (5.28)

where the subindex i is L or R when referring to the left and the right subtree re-
spectively. Therefore, the two possible solutions of (5.15) are x∗1 = [0,0, 1] or x∗2 =

[x∗L,x
∗
R, 0]:

x∗ =

x∗1 if el < e
>
LxL + e>RxR

x∗2 if el > e
>
Lx
∗
L + e>Rx

∗
R

(5.29)

This recursive definition of the optimum energy is the basis of the dynamic program-
ming solution (P. Salembier and Garrido 2000) (which will be reviewed in the next
section) and also the key to construct a more general graph cut as follows.

Since the left and right subtree problems are decoupled, we can construct Gl by joining
two independent graphs Gl/2 and a root node. To join these three components, an edge
with cost el is added to a dummy node which, in turn, is connected to both Gl/2 with
infinite cost edges. The sinks of each Gl/2 are connected to a common sink. This process
can be seen in the left part of Fig. 5.16 and a particular case of T8 is shown in the right
part of the figure. Since the two subgraphs are connected by infinite costs edges, the
cost of the cuts for Gl is either el or e>LxL + e>RxR.

Although conceptually similar, the technique presented here has a fundamental differ-
ence with classical graph cuts. As stated in (Kolmogorov and Zabih 2004), graph cuts
normally assign labels to nodes depending on the component they are connected to
after the cut. In this scheme, we are not interested in the nodes forming the two cut
components, but on the edges of Gl that form the cut of minimum cost. These edges cor-
respond to regions forming the final partition. The maxflow-mincut algorithm can be
computed in O(|V |3), much faster than the 0-1 integer programming approach which
is O(e|V |). However, in the tree cuts framework, the maxflow-mincut algorithm can be
run much faster than maxflow in general graphs using dynamic programming.

5.3.4 Dynamic Programming Algorithm

The dynamic programming algorithm benefits from the fact that the energy ei in Eq.
(5.15) for a region Ri does not dependent on regions Rj 6=i and that the global energy
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Algorithm 1 Optimal Partition Selection: OptimalSubTree(Region Ri) contains the set
of regions belonging to the subtree rooted at Ri that have been selected to be part of
the partition and the sum of their associated energy

function OPTIMALSUBTREE(Region Ri)
Rl, Rr ← (LEFTCHILD(Ri),RIGHTCHILD(Ri))
(oi, ei)← (Ri, er(Ri))
(ol, el)← OPTIMALSUBTREE(Rl)
(or, er)← OPTIMALSUBTREE(Rr)
if ei < er + el then

OPTIMALSUBTREE(Ri)← (oi, ci)
else

OPTIMALSUBTREE(Ri)← (ol
⋃
or, el + er)

end if
end function

is the sum of the energy values assessed on each region. Therefore, locally optimum
decisions lead to global optimum. More precisely, if Ri is a region which has two child
regions Rl and Rr, the local decision that has to be taken is to know whether Ri or
Rl

⋃
Rr has to belong to the partition. If ei is smaller (larger) than el + er, the locally

optimum solution selects Ri (Rl

⋃
Rr). The complete tree is analyzed in a bottom-up

fashion (from the leaves to the root) to define the complete partition as outlined in
Algorithm 1. A formal proof of dynamic programming optimization in trees is given
in (Serra et al. 2012) and it is also used in (P. Salembier and Garrido 2000) to find a rate-
distortion ratio for a coding system. The algorithm complexity is O(|V |) as each node
is only examined once and, therefore, this should be the strategy to optimize energies
described by Eq. (5.15).

5.3.5 Are Tree Cuts Useful?

In the previous sections several strategies to extract partitions from binary trees were
exposed. For these strategies to be useful, the quality of the retrieved partition should
be higher than partitions obtained by trivial methods such as partitions found in the
merging sequence or cutting the tree at specified levels. The final objective of tree cuts
is to retrieve partitions of better quality for a specific applications and, since depth
ordering is rather specific, a general and public segmentation benchmarking is cho-
sen. Although the experiment setup is to evaluate the segmentation quality, tree cuts
will also be used to retrieve partitions for depth order. To this end, the following ex-
periment is designed. Image segmentation minimizing the Mumford-Shah (MS) func-
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tional (Pock et al. 2009) has been very popular since its first publication in (Mumford
and J. Shah 1989). We propose to assess the tree quality by minimizing a MS functional
on an image I constrained to the tree, adapting the region energy (5.15) to be:

ei =
∑
p∈Ri

|µi − I(p)|2 + λp|Γi| (5.30)

where µi is the mean color vector of region Ri and |Γi| is the length of its perimeter.
λp is a regularizer parameter that controls the relative importance of the perimeter
with respect to the squared error. Taking a closer look at (5.30), one can observe that
there exists a compromise between both energy terms. For very oversegmented solu-
tions (small λo), the squared error will be small, although the total number of contours
points will be high. On the contrary, for subsegmented solutions (high λo), the number
of contours points will be low at the expenses of a higher squared error.

Three hierarchical segmentation approaches to evaluate the energy (5.30) are selected.
The algorithms are the he Binary Partition Tree constructed with the Normalized Weighted
euclidean distance between models with Contour Complexity (NWMC) (Vilaplana et
al. 2008), with the Independent Identically Distributed - Kullback Liebler (IID-KL) (Calderero
and Marques 2010) distances and the proposed distance for monocular depth in Sec.
5.2.2, which is referred to as monocular depth (MD). Additionally, the UCM technique
is also included in the evaluation. The dataset is the Berkeley Segmentation Dataset
(BSDS500) and the reported results are on the test subset (200 images). The tree cut
framework is evaluated using two classes of experiments. First, we assess the improve-
ment of the MS functional in an unsupervised way. Second, we introduce the human
marked segmentations available on the BSDS500 dataset and evaluate the subjective
quality of the contours and regions produced.

5.3.5.1 Unsupervised assessment

Fig. 5.17 shows the results of the minimization as a function of the regularization pa-
rameter λp. The left plot compares the total energy of the optimum tree cut with the
optimum partition found through the merging sequence for a given λp. In absolute
values, the NWMC technique is the one offering best results. This is understandable
as the NWMC hierarchy is constructed using a region distance which is closely related
to the Mumford-Shah functional. Beyond this conclusion, it is important to note that
the tree cut provides better partition than the merging sequence in all cases.

The right plot shows the relative improvement of the tree cut with respect to the merg-
ing sequence. There is a general trend on the behavior of the cuts on the three hier-
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Figure 5.17: Mumford Shah error on the BSDS500 Dataset. Left: Minimum Mumford-
Shah energy of the merging sequence (dashed lines) compared to the tree cut (solid
lines). In all cases the tree cut helps to reduce the error. Right: Relative energy im-
provement depending on the regularizer.

archies. For large λp, partitions have few regions corresponding to cuts near the tree
root. If only the last nodes of the tree are considered, there are few combinatorial
possibilities and the relative improvement is low. As λp becomes smaller, the relative
improvement augments, reaching an optimum point. Then, the relative improvement
decreases because we deal with highly oversegmented partitions that are converging
towards the initial partition.

5.3.5.2 Supervised assessment

It is common to evaluate algorithm results against a human annotated ground-truth
database, so as to verify the human meaning of the results. Here, an assessment of the
contour and region quality of the tree cuts is reported. The two measures are based on
detection frameworks, either by detecting contour locations or regions:

Contour detection performance Contour detection performance is evaluated the bi-
partite matching from (D. R. Martin et al. 2004). As explained in Sec. 4.2, bipar-
tite matching finds a one-to-one matching between the detected contours and the
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groundtruth ones. Detected contour pixels that cannot be matched with a correspond-
ing groundtruth create false positives. On the other way, groundtruth contours that
are not matched with a detected contour create false negatives. Matched contours are
true positives. After the matching, precision-recall measures can be computed, assess-
ing the contour detection performance.

Region detection performance Similar to contour, image segmentation can also be
assessed by considering it as a region detection problem. We apply the measure
from (Pont-Tuset and Marqués 2013), where regions are matched with groundtruth
annotations using the Jaccard index, as in Eq. (4.12). Unmatched groundtruth re-
gions create false negatives, while oversegmentation (two regions matched to the same
groundtruth) create false positives.

The precision-recall (PR) on contours is presented on the left part of Fig. 5.18, while the
PR on regions (Pont-Tuset and Marqués 2013) is shown on the right part. Parameters
involved in the measures are the same as the one used by authors in their respective
papers. NWMC, IID-KL, MD and UCM results are shown together with other state
of the art algorithms on image segmentation such as the Normalized Cuts (Cour and
Benezit 2005) and the Mean-Shift (Comaniciu and Meer 2002).

For contour evaluation, it is common to show the PR compromise. However, since
the operating point is very application dependent, a commonly agreed measure to
summarize the system performance is the so called F-measure, which is the maximum
harmonic mean of Precision and Recall. The higher the F-measure is, the better is the
algorithm considered to behave. We also report these values in the figure. The PR
of the merging sequence (dashed lines) is compared with the tree cut (solid lines of
same color). It is possible to see a great improvement in both NWMC and IID-KL
(0.07 and 0.04 respectively), a moderate increase in MD (0.02) although the UCM loses
performance (-0.02).

The improvement in the MD, NWMC and IID-KL cases can be explained mainly by
two factors. The first, and more obvious, is that the partitions generated by tree cut
are better than the ones of the merging sequence. The second factor is related to how
results of each individual image are aligned to provide a single dataset curve. If the
system performance depends on a parameter value θ, each image Ii, 1 ≤ i ≤ NI will
have its optimum operating point θi, where the F measure is maximum for that partic-
ular image. A desirable system behavior is to have the same optimum operating point
for each image, but this is practically never the case. In real scenarios, the parameter
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Figure 5.18: Precision-Recall (PR) on contours (left) and on regions (right) on the
BSDS500 dataset. Suffixes ’ms’ and ’tc’ indicates results evaluating the merging se-
quence and the tree cuts respectively. The F-measure of each technique is shown in
brackets in the legend.

θ is chosen equally for each image so as to give the best F measure in average for the
whole dataset. The value of the parameter achieving such point is the Optimal Dataset
Scale (ODS) θODS . On the contrary, if the value of θ is tunned to give the optimal point
in each image, the Optimal Image Scale (OIS) is achieved and θ has a different value for
each image. That is, θiOIS , for image i. Since in the OIS case the optimum is achieved
for each individual image, the overall performance is always higher (or equal) that in
the ODS regime, with equality only when θiOIS = θODS for all images. As θODS gets
closer to θiOIS for each image, the average system performance improves.

For the MD, NWMC and IID-KL merging sequence cases, each point of the PR curve
corresponds to the average of individual results having the same number of regions.
For the tree cut cases, each point corresponds to results having the same λp. It turns out
that the ground-truth segmentations have a variable number of regions, making the
OIS differ from the ODS on the merging sequence case. However, the OIS and ODS
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are much closer when aligning results with λp, which makes the average PR curve to
reach a higher F-score. Note that after the tree cut, the F-score obtained for the NWMC
is competitive with the technique of (Cour and Benezit 2005). The decrease in perfor-
mances of the UCM is due to the fact that these techniques are explicitly constructed
to improve the F-score based on the gPb contours. Although the tree cut improves the
MS functional, the contours of minimum MS energy partitions do not correspond very
precisely with human ground-truth segmentations. This is caused by the presence of
textures and color variability that cannot be captured by the mean-error model (5.30).
Of course, this conclusion opens the door to the development of alternative energies.

For region quality evaluation, the PR for regions is shown in the left plot of Fig. 5.18.
In this case, the tree cuts improve the F-score in all three cases, with high gains in MD,
NWMC and IID-KL (0.04, 0.04 and 0.05) and a smaller improvement in the UCM (0.01).
The improvement can be explained with the same reasoning as for contours: partition
quality and alignment. There is also a last factor that may explain the improvement,
which is related to the measure (Pont-Tuset and Marqués 2013). Contour detection is
very sensitive to over/subsegmentations, making precision/recall fall rapidly if ’ex-
tra’ contours are detected or some are missed. Region evaluation, on the contrary, is
more insensitive to solutions having more/less regions (although it is also penalized),
as long as the shape of these regions coincide sufficiently with the ground-truth par-
titions. UCMs are very efficient for contour detection, although their performance on
object/region recognition can be improved (Carreira and Sminchisescu 2012). This can
be observed by the fact that, even with a tree cut, the boundary performance decreases,
although the object quality measure boosts.

The conclusion that can be drawn from the previous experiments is that the UCM is
the best state of the art technique for segmentation, followed by the proposed MD
trees in Sec. 5.2.2. Since the distance is very different from one approach to another,
it is interesting to assess the depth ordering classification system using two different
hierarchies. Nevertheless, the resulting segmentations obtained from the UCM and
MD trees have to agree with low level depth cues (mainly T-junctions) so, another kind
of energy has to be proposed in order to obtain such depth-oriented segmentations.

5.3.6 Depth-based Tree Cut

One immediate application of the tree cuts has been seen in the previous section by
minimizing a Mumford Shah-like functional. Since tree cuts are proven to improve
the quality of the obtained partitions, we can apply the same idea to generated depth
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Figure 5.19: Depth estimation example combining (Calderero and Caselles 2013) and
tree cuts. In scan order: original image, original depth map obtained with PO and 7
generated depth maps with tree cut techniques with increasing λ

maps from (Calderero and Caselles 2013). The mentioned work estimates a low level
cue known as probability of ownership, an intrinsic property of each pixel of the image
which can be directly related to the relative depth, see Sec. 3.1 on how this cue is
computed.

Although the algorithm (Calderero and Caselles 2013) provides good results, it is
based on processing raw color pixel information and sometimes it cannot deal with
noise, blur and texture. Although the original algorithm processes data at different
resolutions, edge and texture effects are often visible. A mid level representation (such
as regions) is often desirable, for example, to determine objects in an image and their
relative depth ordering. Here we propose to incorporate the UCM hierarchical repre-
sentation (Arbeláez et al. 2011) to generate high quality regions with a constant relative
depth value. The idea of the algorithm is similar to the one in (M. Maire 2010), where
the UCM are used to introduce regions to the soft depth estimated map generated by
angular embedding. However, the followed approach differs from the previous one
as here the UCM are processed a posteriori with tree cuts to estimate homogeneous
depth zones. The outline of the algorithm is as follows:

• Generate the UCM representation using the color image

• Estimate depth using (Calderero and Caselles 2013)

• Use tree cuts to obtain a depth-homogeneous partition
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Since the first and second step is carefully explained in Sec. 5.2 and in (Calderero
and Caselles 2013), the focus resides in the third step. The problem is very similar
to the minimization of the energy Eq. (5.30), where homogeneous color zones were
extracted. In this case, instead of working with color, homogeneous depth zones are
extracted from the original depth map. This extraction is performed by minimizing a
Mumford-Shah like functional (Mumford and J. Shah 1989) over the UCM segmenta-
tion hierarchy. To do so, the tree cuts technique is used to minimize a distortion error
between the original depth maps and a depth model for each region. The model for
each region is chosen to be a simple average of the original depth data, and the energy
of Eq. (5.15) can be particularized for this case as:

ei =
∑
p∈Ri

∣∣∣D̂i −D(p)
∣∣∣2 + λ|Γ|i (5.31)

D̂i is the mean depth value of region Ri and D(p) is the original estimated depth
value for a pixel p. Γi is the region perimeter and λ is a parameter controlling the
partition granularity. This equation is very similar to equation (5.30) used to assess
the segmentation quality using tree cuts, and it exhibits the same kind of compromise:
Small values of λ create fine partitions with many regions, while for larger λ coarser
regions are found, see an example in Fig. 5.19. The final estimated depth partition
is formed by regions with minimum tree cut energy and each region is filled with its
mean depth value.

Although a more thorough evaluation is shown in Sec. 5.5, some examples of the tree
cuts with different granularities are shown in Fig. 5.20. Note that the estimated origi-
nal depth presents some artifacts on object edges. The depth propagation of (Calderero
and Caselles 2013) uses only color, so depth in highly textured or non-homogeneous
have undesired variations. Incorporating regions and controlling the regularization
parameter, both the edge artifacts and the texture depth variations effects can be mit-
igated. This mixed approach using the probability of ownership combined with seg-
mentation hierarchies proves to give good results on public benchmarks, see Sec. 5.5.

While the probability of ownership is an intrinsic property of each pixel and with a sim-
ple tree cut competitive results can be obtained, it is still of interest to see which are the
limits of the common low-level cues: T-junctions and convexity. In the next sections
a different depth ordering method dealing explicitly with T-junctions and convexity
is exposed, showing how local depth relations between regions can be globally inte-
grated to generate a global depth map. The local depth cues are explicitly estimated

125



5. DEPTH ORDERING IN STILL IMAGES

Figure 5.20: Examples of depth maps by (Calderero and Caselles 2013) and the tree cut
minimization results in Eq. (5.31). The leftmost column shows the original image and
second shows the original depth map from (Calderero and Caselles 2013). Columns
three to seven show tree cuts with different λ for each image.

and combined with a set of different hierarchical segmentations to assess the potential
limits of low level cues.

5.4 Depth Ordering

5.4.1 Occlusion Based Tree Cut

When trying to recover the depth ordering in an image, a suitable segmentation inside
the tree should be found. The MS functional in the previous section allows for an au-
tomatic segmentation selection based on a compromise between color distortion and
contour length. Although it proves to give good results on segmentation benchmarks,
the obtained segmentation may not be compatible with the depth cues estimated dur-
ing the tree construction. That is, the contours of the regions forming the partition may
no correspond with T-junction coordinates. In an ideal situation, detected T-junctions
would indicate a change of depth plane, so the three regions involved in the junction
should form part of the final partition. Since in typical images there will be few T-
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Iteration 3

T1 is re-estimated T2 disappears

T2T1

R1R2

R3 R3

R4 R4 R4

R5 R5 R5

R6
R6R6

R7 R8

Figure 5.21: Example of T-junction estimation process. When constructing the tree, the
same T-junction can be estimated multiple times. In this case, from the original image
in the left, a tree is created from the image partition shown inthe second image. T1

involves R1, R3, R4. Since a merging occurs between R2 and R3, the T-junction is re-
estimated giving rise to a new T2 involving R1, R4 and R7. In the next merging, since
two regions involved in T2 are merged, the T-junction disappears. In the right image,
the set of T-junctions exceeding 0.01 confidence are shown. The degree of confidence
is color coded, where green and read mean high a low confident scores respectively.

junctions, there exists zones in the images without any depth cue. Thus, regions not
involved in any relevant junction should be discarded, as they will not have any depth
relation with their neighbors.

In practical situations T-junctions have a confidence value 0 ≥ p ≥ 1 which determines
the degree of confidence that a given point is a T-junction point. Potentially every point
in the image is a T-junction point, so each three-way region intersection is character-
ized with a confidence value. If the tree is built correctly, prominent T-junction appear
at the top of the tree, when objects are well represented by regions. So, intersections
at the low levels of the tree should be low-confident, while T-junctions near the root
of the tree should have a high confidence. So, there exists a compromise between the
number of T-junctions considered and the number of regions of the final partition. For
instance, a partition preserving low confidence T-junctions coordinates will be a very
oversegmented partition. On the contrary, if only very high confidence T-junctions are
kept, undersegmentation can occur.

To obtain a partition with a given compromise between T-juncions and number of
regions, the process of T-junction estimation should be further analyzed. At a given
tree building iteration, a T-junction Ti involves three regions R1, R2, R3. If the next
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Figure 5.22: Examples of partitions obtained using tree cuts with the region cost (5.32).
The first two images correspond to the original image and an oversegmentation show-
ing the estimated T-junctions with the same color code as in Fig. 5.21. Partitions are
obtained by increasing λo, so coarser partitions are obtained each time. Each region is
colored with a different gray level.

merging involves Ri, i = 1, 2, 3 with Rj , j 6= i, j 6= 1, 2, 3 one of the tree region forming
the T-junction changes and thus, Ti should be re-estimated creating another junction
candidate Ti+1 involving three different regions, see Fig. 5.21. Also, if a merging occurs
between two regions involved in the same T-junction, the T-junction disappears for
subsequent partitions produced by the merging sequence.

Since all estimations for a point do indeed refer to the same T-junction, there exists
some preprocessing before the final partition can be retrieved. The idea is to group
multiple T-junction estimations of the same image point and retain only the last estima-
tion before the T-junction disappears. For a point in the image a set T of N T-junctions
in the same location are estimated in increasing order of the merging: T = {T1, . . . , TN}
and each Ti involves regions Ri

1, R
i
2, R

i
3. TN is thus the last estimation before the T-

junction disappears and, since it is estimated when regions are larger, the estimated
confidence is the most reliable among the Ti, pN . Upwards the tree, the T-junction
disappears after TN , since two of the regions forming the T-junction are merged. The
formed region contains TN and no depth relations can be retrieved for successively
parent regions.

Since this situation will be present with every T-junction candidate, we can take advan-
tage of tree cuts, Sec. 5.3, to obtain a partition which preserves as many T-junctions as
possible, while maintaining a reasonable partition complexity. Following the notation
of Sec. 5.3, define the cost of a region Ri to be:

ei =
∑
Tk∈Ri

pk + λo (5.32)

where pk is the confidence of the T-junction candidate Tk. The summation is performed
over all T-junctions that have disappeared below region Ri on the tree. λo is a constant
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term for every region included in a partition. There exists a compromise between
the two terms of the cost ei, since at the top of the tree many T-junctions may have
disappeared (

∑
Tk∈Ri pk � 0). Nevertheless, at low levels of the tree, the partition will

be formed with many regions and the constant cost λo will dominate, see Fig. 5.22.
In this way, the obtained partition contains regions belonging to estimated T-junction
cues and, at the same time, the number of regions is minimized.

Once the partition is obtained, the depth relations between region are also retrieved
from the estimated depth cues:

T-junctions For every three common adjacent regions the confidence of the corre-
sponding T-junction is used to relate the two further regions to the closest one.

Convexity For every contour separating two regions, a convexity confidence is esti-
mated as discussed in Sec. 3.1.

Since T-junctions and convexity establish a local depth order between region in the
partition, they may be contradictory cues. Resolving these conflicts and arriving at
a global and consistent depth ordering is done by propagating local depth relations
using a Depth Order Graph.

5.4.2 The Depth Order Graph

Once the final partition Pd is obtained trough the tree cut, a global ordering can be
computed. The problem could be viewed as a rank aggregation problem which are
used for web ranking Dwork et al. 2001 or photosequencing Basha et al. 2012. Here,
the goal is to achieve a fully ordered list from a set of partial orders by minimizing a
given cost function. Normally, rank aggregation works with fully ordered lists, where
two elements cannot have the same order. Since, in a image, two different regions may
be at the same depth (thus have the same order), we state the problem as a network
reliability problem Terruggia 2010.

There are two sets of depth cues that may contribute to determine the relative depth
order between regions. For a given partition Pλ obtained with tree cuts using cost
(5.32), T-junctions relations and convexity relations (estimated using algorithm in Sec.
3.1) are used to create a Depth Order Graph (DOG), see Fig 5.23. Nodes in the graph
represent regions on Pλ- The depth relations are represented by directed weighted
edges, going from the foreground region to the background one. Once all the edges are
defined, a directed graph is obtained like the one illustrated by Fig. 5.23. A depth cue
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R1
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R2

R2
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R3
p1

p1

p1

p1
p2

p2

p3
p3

p4

p4

Figure 5.23: Example of DOG construction from a given partition. Left: partition and
depth relations overlaid. The T-junction is marked with a red circle. Depth relations
obtained from T-junction are marked in red, and convexity relations are marked in
green. Right: corresponding directed graph constructed from the depth cues.

characterizes the relation between one (or more, in case of T-junctions) pair of nodes.
If the cue confidence relating node Ri and node Rj is p, the directed edge weight is
pij = p.

Since the perception of depth involves the interpretation of (sometimes) conflicting
cues, the DOG may also present these conflicts. A depth conflict occurs when, due to
a set of depth cues, a region can be on the top of itself. If that is the case, two regions
exist, R1 and R2, which are at the top of each other at the same time making depth
ordering impossible. These conflicts are identified as cycles in the DOG. That is, if
one can find a cycle in the graph, all the regions belonging to the cycle are classified
as incompatible between them. Fig. 5.23 shows a graph with 3 region with several
conflicts.

The main idea of conflict resolution is to modify/eliminate depth cues with low con-
fidences to achieve a direct acyclic graph (DAG) so that it is possible to establish an
order between nodes. To do so, a global reasoning of all the cues is performed using
the principles of network reliability computation (Terruggia 2010).

The DOG is a graph with edge weights representing probabilities of precedence. That
is, if only two nodesRi andRj were present in a DOG, and these nodes were connected
by a single edge eij with weight p; the probability that node Ri precedes Rj (the node
Ri is in the foreground) would be p. In practice, more than two nodes and more than

130



5.4. Depth Ordering

one edge form a DOG. The DOG can be seen equivalently as a network of reliable
links (Terruggia 2010) and the reliability between two nodes, in the proposed case, is
called probability of precedence (PoP). The overall goal of this step is to perform a
global reasoning of the DOG to eliminate cycles for a posterior depth ordering. To this
purpose, the following solution is proposed:

1. Compute the PoP for every pair of regions (nodes), Ri and Rj . That is, the prob-
ability that Ri is foreground with respect to Rj , ρij .

2. Examine all pairs ρij and ρji. If a cycle is present, both Ri and Rj can be fore-
ground and a conflict exists.

3. In case of conflict, modify one of the paths fromRi toRj or vice versa to eliminate
the cycle.

4. Repeat the previous steps until a DAG is obtained and no conflict exists.

Probability of Precedence Computation To compute the probability that a region
Ri precedes Rj all the paths going from the former to the latter region should be con-
sidered Galtier et al. 2005. Since edge weights represent the confidence of precedence
between pair of directly connected regions (two regionsA andB are directly connected
if there is an edge from A to B), these weights can be used to calculate the probability
of precedence of two non-directly connected regions. Simple rules exist to compute ρij
when graphs have special topologies.

Single Path If only a single path Pq exists:

ρij = p(Pq) =
L∏
l=1

pl,l+1 (5.33)

Where L is the number of edges forming the path and pl,l+1 is the weight of the
edge connecting the nodes l and l + 1 on the path Pq. Equation (5.33) shows that
the PoP of node Ri to a node Rj with respect to Pq is just the joint probability of
all the edges forming Pq. That is, for a node Ri to precede Rj , all the edges in a
path Pq should be reliable.

Multiple direct edges If there exist NE edges between Ri and Rj , ρij is the probability
that at least one edge is reliable:

ρij = 1−
NE∏
l=1

(1− plij) (5.34)
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P1

P2 P3
P2 ∩ P3

P1 ∩ P3P1 ∩ P2

P1 ∩ P2 ∩ P3

Figure 5.24: Venn diagram illustrating the inclusion-exclusion principle for three paths.
Each set represents the reliability of a path. Intersection of two sets represents that
both sets are reliable at the same time and, finally, the intersection of the three sets
represents that all three paths are reliable.

Where plij is the l-th weight of the edge connecting Ri and Rj

General Topology If a set of NP paths connect Ri and Rj the PoP ρij is the probability
that at least one of these NP paths is reliable. This probability can be calculated
by the inclusion-exclusion principle:

Sk =
∑

1≤i1<...<ik≤NP

p(Pi1
⋂

Pi2
⋂
· · ·
⋂

Pik) (5.35)

ρij = p(

NP⋃
i

Pi) =

NP∑
k=1

(−1)(k−1)Sk (5.36)

This can be illustrated with Venn diagrams for a small number of paths, see Fig.
5.24.

To illustrate a simple example of the inclusion-exclusion principle, ρ32 is computed for
the DOG in Fig. 5.23. Three paths are found going from R3 to R2 are found:

• Path P1 : R3 −R2. Probability: p1

• Path P2 : R3 −R1 −R2. Probability (using (5.33)): p2p3

132



5.4. Depth Ordering

• Path P3 : R3 −R1 −R2. Probability (using (5.33)): p1p3

The PoP of R1 to R3 is defined according to (5.36), for this particular case, as:

ρ13 = p(P1 ∪ P2 ∪ P3) = p(P1) + p(P2) + p(P3) (5.37)

− p(P1 ∩ P2)− p(P1 ∩ P3)− p(P2 ∩ P3)

+ p(P1 ∩ P2 ∩ P3)

That is, ρ13 is the probability that at least one path is reliable between R3 and R2. The
unary terms p(P1) = p1, p(P2) = p2p3 and p(P3) = p1p3 are the probabilities that a
given path is reliable. The pairwise terms p(P1 ∩ P2) = p1p2p3, p(P1 ∩ P3) = p2

1p3 and
p(P2 ∩ P3) = p1p2p3 are the probability that two paths are reliable at the same time.
Note that in p(P2 ∩ P3), p3 is no square, as it represents the same edge on both paths.
The last term is the probability that the three paths are reliable p(P1∩P2∩P3) = p2

1p2p3.
Therefore:

ρ32 = p(P1 ∪ P2 ∪ P3) = p1 + p2p3 + p1p3 − p1p2p3 − p2
1p3 − p1p2p3 + p2

1p2p3 (5.38)

Observing that, even for small graphs, the PoP computation becomes computationally
intensive, an approximate strategy should be designed. In an arbitrary large graph, the
computation cost involving the inclusion-exclusion principle is exponentially propor-
tional to the number of paths. Instead, the algorithm proposed here is an approxima-
tion giving an upper bound for all the pairs of nodes. To approximately compute ρij
with more than one path between nodes, consider that there are only three nodes Ri,
Rj and Rk and that ρij and ρjk are already known. Moreover, assume there is a direct
edge from Ri to Rk with strength pik. An approximate PoP of node Ri to Rk is then
given by equation (5.34):

ρik = 1− (1− ρijρjk)(1− pik) (5.39)

Equation (5.39) is only valid if all the paths connecting Ri, Rj and Rk are independent,
although this assumption is not fulfilled in most of the practical cases. The problem of
(5.39) resides in computing the values ρij and ρjk which were assumed to be known.
It is possible to iteratively compute ρij for paths of shorter length and sequentially
increase the path length. This process is performed using a modified Floyd-Warshall
algorithm (Cormen et al. 2001):

for j=1. . . |V | do
for i=1. . . |V | do
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- R1 R2 R3

R1 - ρ12 ρ13

R2 ρ21 - ρ23

R3 ρ31 ρ32 -

ρ12 = p3

ρ13 = p3p4

ρ21 = p4p1 + p4p2 − p1p2p4

ρ23 = (5.38)
ρ31 = p1 + p2 − p1p2

ρ32 = p4

(5.40)

Table 4: Adjacency matrix representing the transitive closure of the graph in 5.23. The
non-zero terms are shown as ρij . The graph representation is shown at the bottom

for k=1. . . |V | do
ρn+1
ik = ρnik + ρnijρ

n
jk − ρnikρnijρnjk

end for
end for

end for

where |V | is the number of nodes in the DOG. If the DOG contains any cycle, the path
length may be infinite so, for practical reasons, the maximum path length is assumed
to be the number of nodes on the DOG. The computation of all the pairs ρij leads
to a new graph which is the transitive closure of the DOG, the DOG+. The transitive
closure of a graphG is a graphG+ with the same nodes ofG. G+ contains a direct edge
(possibly weighted) from node Ri to Rj if there exists a path Pq in G that connects both
nodes. In the case exposed here, the transitive closure of the DOG contain edges with
weigths ρij . The graphG+ allows to detect cycles easily as paths with arbitrary lengths
are reduced to direct edges. It is known that identifying all cycles in a graph G is an
NP problem (Pratt 1976), meaning that there is no efficient solution. Instead, making
use of G+, cycles can be detected easily by direct comparison of ρij and ρji.

The building of the DOG+ is illustrated showing the probability of precedence be-
tween nodes in table 4, as an Adjacency Matrix.

Conflict Resolution If a cycle is found, no depth ordering of the nodes is possible.
Therefore, some edges should be removed. A conflict may occur mainly because of
two factors. The first may be because some false alarms have been introduced in the fi-
nal T-junction candidate selection and/or in the convexity reasoning. The second may
be because self occlusion actually exists in the image. Assuming that self-occlusion is
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rather difficult to find in natural images, the conflicts are said to come from bad depth
cue selection.
The conflict resolution iteratively seeks the minimum ρij of all the pairs of nodes caus-
ing a cycle in the DOG. Each time a conflict is found, either ρij or ρji must be wrongly
estimated. Following an intuitive approach, the less confident depth cues should be
eliminated. Therefore, the minimum of the two PoP values is considered to be wrong.
Therefore, assuming that ρij < ρji, some modifications on the paths that go from Ri to
Rj should be done by deleting or turning some edges (and thus possibly breaking the
cycle).

Once the conflicting pair is identified, a maxflow-mincut from Ri to Rj is performed
on the original DOG. The minimum cut between both nodes gives a set of conflicting
edgesE. It is not the unique set with this property, but sinceE has minimum sum over
all possible cuts between Ri and Rj , the retrieved edges are likely to be the ones with
lower confidences. For each depth cue creating an edge in E, the following reasoning
is performed:

Convexity Cue: The cue is considered to be wrong and the corresponding edge is
eliminated

T-junction Cue: According to the depth perception principles, exposed in section 2.2,
the depth order indicated by a T-junction is not clear. Therefore, if the T-junction
depth order has not been modified before, the occluding side is changed, invert-
ing the depth order relationship and turning the edge’s inward and outward
nodes. If this modification does not solve the conflict, the cue is considered
wrong and it is deleted with the corresponding edges.

Each time a modification to the DOG is done, the transitive closure is recomputed, un-
til no cycles are found and a DAG is obtained. A possible iterative solution of conflict
resolution for the graph in Fig. 5.23 is illustrated in Fig. 5.25. When all the conflicts are
removed from the DOG, no cycles are present. Moreover, a DOG should have a unique
order for its nodes/regions. To order the nodes on the DOG, a topological partial or-
dering is proposed. This ordering is a linear ordering of a graph’s nodes in which each
node comes before all nodes to which it has outbound edges. That is, if node R1 has
an outbound edge to node R2, R1 will precede R2 in the sorted list of nodes and R1

will be closer to the viewer than R2. Since in a depth image, two different regions may
not have the same depth order depth relationship between them, it is assumed that in
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R1

R2R3

R1

R2R3

R1

R2R3

Figure 5.25: Conflict resolution for the graph in Fig. 5.23. The three iterations of the
process are shown from left to right. At each iteration, the two conflicting regions are
marked in yellow and the modified edges are marked in yellow in the next iteration.
In the first iteration, the two edges belonging to a T-junction are reversed. Since there
is still a conflict, the edge going from R3 to R1 is reversed. The third graph on the right
shows the DAG obtained for depth ordering.

such cases both regions have the same ordinal depth. Results using different types of
hierarchies are explored in the next Sec. 5.5. Quantitative and qualitative evaluation
is also assessed for proposed methods and state of the art algorithms.

5.5 Results

5.5.1 Depth Annotated Dataset

There exist few public datasets incorporating relative depth ordering between objects
present in images. There are more datasets devoted to video monocular depth and
motion estimation, where the problem of structure recovery from a set of images is
more tractable than for single images. Nevertheless, one of the most popular datasets
in image segmentation, the BSDS500 (Arbeláez et al. 2011) incorporates figure/ground
annotations for a subset of the images. These annotations are performed in contours,
where both sides are marked either figure (closer to the viewer) or ground (further
to the viewer). Although it is normally the evaluation choice for figure/ground sys-
tems, annotations may not have closed contours and no global consistency is found
in several cases. Moreover, it is unclear if the term “figure” actually refers to depth or
saliency properties. In some annotations, the part that was more salient to the viewer
was marked as “figure” even if it was behind other objects, just because it was seman-

136



5.5. Results

Figure 5.26: Several grond truth annotations for the BSDS500 Datasets. For each
column, the original image is shown on the left and the relative depth on the right.
Brighter regions are closer to the viewer.

tically more important.

To overcome all the possible limitations of the figure/ground annotations, a new bench-
mark was created, based on region relative depths. For each image of the BSDS500
dataset one of the human created segmentations was chosen and their regions were
assigned a relative depth order. Regions are assigned a constant depth value, with no
smooth depth gradient. This may be a limitation when a region spans through differ-
ent depths (such as an horizontal ground), but it gives a clearer insight on the objects
present in the image and their relative position on the scene. Examples can be seen in
Fig. 5.26.

5.5.2 Quantitative evaluation

To evaluate the proposed depth ordering system, the LDC and the GDC measures
proposed in Sec. 4.2 are evaluated. The following proposed approaches are subject to
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this evaluation:

• The proposed monocular depth (MD) estimation ordering scheme based on ex-
plicit detection of T-junctions and convexity, using three different hierarchies:

– The proposed BPT construction scheme, with the pixels as initial partition
(method name: BPT+MD)

– The proposed BPT, with a groundtruth segmentation as initial partition
(method name: GT+MD)

– The UCM technique from (Arbeláez et al. 2011) (method name: UCM+MD)

• The proposed tehcnique integrating the UCM hierarchy and the PO depth gener-
ated depth maps (method name: UCM+PO)

Additionally, techniques from the state of the art are also included in the evaluation:

• The technique from (M. Maire 2010) using angular embedding for figure/ground
segregation (method name: AE)

• The learning based approach from (Saxena et al. 2005) (method name: LD)

• The raw-probability of ownership approach from (Calderero and Caselles 2013)
(method name: PO)

Results on both LDC and GDC measures are presented in Fig. 5.27. Before comment-
ing the results, some nomenclature follows. Each method provides either a surface
or a line in the precision-recall (PR) plane. The higher points in each plot will be re-
ferred to as “detection score” as the LCD and GDC measure in these points do not take
into account depth classification but only correct detections. The lower points for each
graph will be known as “classification score” for a similar reason, as both measures
only count correct detection and correct classifications, see Sec. 4 for a review of the
PRC framework.

The first thing to notice is that LDC gives higher precision-recall scores than GDC,
basically for two causes. First, as already stated in (Pont-Tuset and Marqués 2013) de-
tecting high quality region is a much more difficult problem than detecting contours.
A random contour detection system may have a non-0 detection score on contours,
but it will surely fail on detecting regions. For a more thorough explanation refer
to (Pont-Tuset and Marqués 2013). Second, classification scores are higher because a
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Figure 5.27: LDC and GDC measures for state of the art system. Fmax and Fmin mea-
sures for point each method are shown in brackets in both cases. The ORI is shown
also shown a the bottom table.

global depth consistency is much harder to achieve than local depth gradient at con-
tour points. The LDC measure is a good measure when a moderate oversegmentation
is found. For solutions with many detected contours, the classification score suffers
from the fact that the bipartite assignment of contours matches random pairs, as they
are many potential candidates for a groundtruth contour, giving a poor score. This
fact can be seen in the ORI measure for systems PO an LD, where a score of 0 is as-
signed. This behavior, however, has relative importance because the best F-measures
of systems appear on moderate levels of detected recalls where the bipartite matching
performs correctly.

LDC peformance Analyzing in more detail the LDC error figures it is possible to see
that, obviously, the system using the groundtruth segmentation gives the best detec-
tion and classification scores. Therefore, the GT+MD presents the best F-measure
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for detection, classification and the best ori index (0.47). Since in practical cases the
groundtruth segmentations will not be available, the GT+MD can be used to assess
the limit of T-junction and convexity cues capacity to give insight about the relative
depth order. That is, a system using occlusion cues will not be able to recover al-
ways a correct depth, even if a perfect segmentation is available. For systems with no
groundtruth segmentation, the best algorithms on detection give similar scores close
to F = 0.6. That is, for AE, UCM+PO and UCM+MD the detection is similar because
the machinery underlying the contour detection step is based on the same algorithm,
the gPb, see Sec. 5.2. For systems working at the pixel level, (or very oversegmented
partitions), PO and LD, a high recall is observed but with a very low precision (< 0.1).
It can be seen that the UCM+PO slowly converges to the PO points for points with high
recall. As the granularity of the partitions of the UCM+PO increase, regions become
smaller, eventually matching the PO partitions.

For classification scores, the UCM+PO systems is the best system, as it gives higher
F-measures (F = 0.4) for these points. The system closer to UCM+PO is AE, giving
F = 0.35 followed by the UCM+MD approach F = 0.34. Clearly, the system using
BPT is lower in both detection and classification, as the quality of the contours of
the BPT are lower than the ones in UCM, see Sec. 5.2. For the UCM/BPT+MD and
UCM+PO plots, there is a general trend that for points with low recall both detection
and classification scores converge. Usually, operating points with low recall take into
consideration only high confidence boundaries and, as stated in (M. R. Maire 2009),
the depth organization for higher confidence boundaries is easier than for ambiguous,
low confident, contours.

Overall, the best system for the LDC seems to be the UCM+PO approach, giving the
best F-measures and, consequently, the bestORI = 0.32 way above its next competitor,
AE with ORI = 0.18. Nevertheless, all figures are very far from their ideal counter-
parts. For instance, the ORImax = 1 and the best system to the date has ORI = 0.32,
showing much room for improvement in depth ordering. This somehow contradicts
figure/ground accuracy performance of the state of the art, where scores of nearly 80%

are achieved nowadays, see (D. Hoiem et al. 2011). Here it is shown that there is still a
huge gap between computers and humans.

GDC performance Measuring a global depth ordering is much harder than measure
a local depth gradient, as the PRC comparison between LDC and GDC shows. For the
GT-MD method, for example, the maximum recall of 0.5 shows that, in average, half
of the depth transitions are missed. That is, due to the tree cut process, normally small
region are discarded, missing true depth transitions. Logically, the GT+MD method
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is the one having best figures. For other systems, detection scores are much lower
than in the LDC case with the method UCM+MD giving the best F-measure with
F = 0.38, although UCM+PO, AE and BPT+MD have similar numbers. Although
PO and LD provide extremely oversegmented solutions, they are still not able to cap-
ture all the transitions between groundtruth regions, since the recall of both system
is not 1. For classification it is possible to see that the UCM+PO gives the best score
with F = 0.23, making it the system with less inconsistent detections and having a
better overall depth interpretation of images. This can also be seen by comparing the

“width” of the produced region for each plot. If the plot is thin, the system has few in-
consistent detections. On the contrary, if the plot is wide, inconsistent detections play
an important role.

If one system should be chosen, the UCM+PO should be used. It is the system giving
best results due to great consistency on depth ordering. Its ORI index is the best for
completely unsupervised systems and it has good overall performance in either con-
tour and region benchmarks. For a more complete comparison and a part from the
LDC and GDC measures, it is important to see qualitatively if systems give visually
pleasant results and work in different situations.

5.5.3 Qualitative evaluation

Regardless of the numeric figures that a system gives, it is also important to evaluate
if obtained results are meaningful to the human eye. As a first assessment, a compari-
son of the different operating points of the systems BPT/UCM+MD and UCM+PO is
shown in Fig. 5.28. In this figure, three different solutions are shown for six images.
Solutions were generated by varying the regularization parameter λo in the tree cuts
energy (5.32). The first solution for each system is the one having more regions and it
clearly show lots of false contours and spurious depth transitions. As the regularizer
increases, less regions are obtained, eventually reaching an optimum operating point
for these images. For the highest regularizer, the systems may be seen as a kind of
foreground-background segregation system, as the system tries to separate the front
most plane with the rest of the image.

However, normally a natural image can be divided in a few planes, so the optimum
regularizer may be the one giving a reasonable segmentation (possibly with little
over/sub segmentation) with few region. Images with 5-10 planes usually give a good
depth impression, and in Fig 5.28 they are shown in the second row for each method.
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Figure 5.28: Depth ordering examples for a variety of methods. For each row: 1)
Original image 2) groundtruth depth annotation 3-5) BPT+MD results for different
partition granularities 6-8) UCM+MD results for different partition granularities 9-12)
UCM+PO results for different partition granularities.
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Although the depth ordering in theses cases is not perfect, the overall depth structure
of the image can be easily interpreted.

The proposed systems BPT/UCM+MD can also be compared visually with systems us-
ing high level information such as LD (Saxena et al. 2005) or the system (D. Hoiem et al.
2011), devoted to detect occlusion boundaries (OB). Additionally, they are compared
with systems AE and PO which use only local depth cues. Both high level systems use
high level features, as well as low level color and texture cues. They rely heavily on
surface layouts and the position of the pixels in the image, inferring a similar depth
structure for each image. An important difference with systems only using occlusion
cues is that these system can estimate a given orientation for every region, thus pro-
ducing smooth depth transitions. This is the case for (D. Hoiem et al. 2011), where
horizontal surfaces are considered to fade from close to far away depths. Fig. 5.29
shows a comparison over several images. As stated before, relying on high level fea-
tures, the OB and LD methods attempt to fit the learned model to each image, giving
a very similar depth impression for each image. Nevertheless, when the model and
the input image correlate, the estimated depth maps are of high quality, specially in
(D. Hoiem et al. 2011). Since the LD method was trained mainly on landscape image,
the depth layout for each image is very similar, with ground regions being closer to
the viewer. Nevertheless, when the high level information is wrong, generated depth
maps miss much of the image structure, with unacceptable result. In the proposed ap-
proaches, even if some depth cue estimation is wrong the system is able to compensate
it and the overall depth structure for image is somehow captured.

Approaches AE and PO offer also good performance over a variety of situations. Nev-
ertheless, the PO algorithm has spurious responses due to working at the pixel level
(effect that is compensated by UCM+PO) and it has fuzzy boundaries in some cases.
For instance, it creates a imaginary edges near object boundaries. The AE results corre-
late pretty much with the UCM+MD results as they use the same kind of features and
thus the performance is similar (as shown in the LDC and GDC measures).

The fact that the proposed algorithms do not make assumptions on the type of im-
age can be seen in results in 5.30 in comparison with OB and LD. The systems are
presented a bunch of different situations (landscape, close photo, high depth range,
strong foreground/background separation) for depth estimation. Obviously, trusting
only pixel information, without any previous knowledge of the scene can be limiting,
but it also has its positive points. For instance, the input of the system can be arbitrary
images, assuming always that some kind of considered occlusion cue is present. This
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Figure 5.29: From left to right. Original image, depth estimation from BPT+MD,
UCM+MD, UCM+PO, PO, AE, OB and LD methods.
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Figure 5.30: From left to right. Original image, groundtruth relative depth order and
results from the UCM+PO, the AE, the UCM+MD and the OB methods. Note how
occlusion or low level based systems are able to deal with different situations, where
high level approaches fail.

makes the algorithm work in more situations such as a landscape, an office or a por-
trait. Since occlusion cues are known to be almost omnipresent (McDermott 2004), it
is guaranteed that the proposed system can accept almost any kind of input images.

The systems also presents some weaknesses. First, there may exist some low level
cues which do not conform with the assumed model. This case is specially seen in
T-junctions in textured regions, and where convexity does not offer a good depth cue
(take, for example, holes). Second, the constant depth model for each region can be
limiting for some applications, as all the surfaces of the scene are considered to be par-
allel to the camera view plane. If a complete depth map has to be retrieved, this model
is insufficient since it does not permit to have oriented surfaces which can indeed exist
in normal situations. However, for many applications, depth ordering can be suffi-
cient. For instance, if depth ordering is available, with some little user interactions, an
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Figure 5.31: Depth ordering using user information. From left to right, for both
columns. Original image, image with user defined markers and retrieved depth or-
dered partition for the BPT+MD.

approximate depth map may be available.

Extending the system to accept user input User interaction can naturally be inte-
grated in the working flow and can be used to improve the quality of the depth or-
der map. With very little modification, the described unsupervised systems can be
adapted to accept user input. If the user introduces some depth markers in the images,
the given information can be used to force some depth relations. There could be many
situations where this extension is desirable. For example, user information may over-
come some system limitations. Moreover, user may be interested in accurately order-
ing some parts of the image, leaving all the other regions to be ordered automatically.
Since the proposed system is originally designed to perform in an unsupervised way,
unlike (Phan et al. 2011), it is able to infer extra depth planes other than the ones intro-
duced by the user. To illustrate the idea, the approach BPT+MD is extended to accept
user depth markers. Any of the proposed approaches could be extended (UCM+MD,
GT+MD), but the system behavior would be the same with different degrees of user
interaction. Markers can be simply defined by roughly marking areas of the image
with gray levels. To integrate this information with the depth ordering stage, two little
changes are proposed: one concerns the initial BPT tree cut and the other the DOG
construction.

Initial BPT pruning A part from preserving the most important T-junction at the ini-
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tial partition, the pruning must also preserve user input markers at different re-
gions.

Depth ordering Each pair markers from two different regions introduce a fully confi-
dent depth relation. That is, these edges are assigned the maximum confidence
p = 1, making sure that no edge is deleted in the conflict resolution step and the
final depth ordered partition contains all the user markers.

Examples of the system accepting user interaction are shown in Figure 5.31 showing
that, with little user information, accurate orderings can be obtained.
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6 Depth Ordering in Single Frames of Video Sequences

6.1 State of the Art

Depth perception in human vision for vision sequences relies on several depth cues.
When only one point of view is available, disparity cannot be used to infer depth but
only monocular depth cues can be identified for structure estimation. There is a huge
difference when facing static images or video sequences, since when the temporal di-
mension is present a set of totally different cues arise. In static images, only T-junctions
or convexity cues can be used for occlusion estimation. Nevertheless, as shown in Sec.
5.4, the performance of these kind of cues is limited, and humans should make use
of other, higher level, cues in order to infer depth. In video sequences, motion infor-
mation can also be used to get depth information. For example, occlusion of moving
objects, size change or motion parallax are used to structure the scene (Ono et al. 1986).
The difference between still and dynamic cues is that motion is much more reliable
than static cues. State of the art results on depth estimation or figure ground labeling
for motion sequences achieve a much better accuracy with rather simple approaches,
while results in static images are far from ideal even with complex approaches.

Nowadays, motivated by the film industry, many research works are focusing on
depth maps generation for video sequences. Most approaches make use of several
viewpoints to compute the disparity, but shooting or recording scenes with synchro-
nized video cameras adds an extra cost which sometimes, is not affordable. Addition-
ally, camera synchronization can be sometimes impossible to achieve, thus introduc-
ing some drift in the disparity estimation. Moreover, one critical issue is the large

• G. Palou and P. Salembier. “2.1 Depth Estimation of Frames in Image Se-
quences Using Motion Occlusions.” In: ECCV Workshops. Firenze, Italy, 2012

• G. Palou and P. Salembier. “Depth ordering on image sequences using mo-
tion occlusions”. In: IEEE ICIP. Orlando, FL, USA, 2012

• G. Palou and P. Salembier. “Depth order estimation for video frames using
motion occlusions”. In: IET Computer Vision 2013

Contributions on Depth Ordering on Frames
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amount of material that has already been acquired in the past as monocular sequences
and needs to be converted to some extent to a 3D format. In such cases, depth infor-
mation can only be inferred through monocular cues. The film industry is seriously
tackling this problem. For example, Disney or Microsoft have designed supervised
systems supporting the creation of depth maps for monocular sequences (Ward et al.
2011; Wang et al. 2011). These systems rely heavily on human interaction. However,
there is a clear interest in defining unsupervised systems because of their reduced cost
in time and money resources.

Since in video there is much more information, estimating the depth from sequences
seems to be theoretically easier that estimating depth in single images (although in
practice, computational resources are a bottleneck). As a consequence, there is a lot
of literature referring to estimate depth structure from whole sequences, but very lit-
tle on estimating depth for single images. In this section an intermediate approach is
presented: estimating depth on single images within video sequences. By reducing
the problem to a single frame, the algorithm does not suffer from the computational
complexity of processing a whole sequence but it can still benefit from the fact that
motion can be estimated with the surrounding frames. State of the art depth order-
ing systems for frames (or, in practice, very short video sequences) include (Bergen
and Meyer 2000) in which a layered representation of a sequence is obtained by find-
ing occlusions between pair of regions. However, the final depth order is obtained
by a simple aggregation of local cues with no global reasoning. As a result, the final
map is not globally consistent. In (Turetken and Alatan 2009) a forward warping of a
computed segmentation is used to determine which layers overlap other layers in the
following frames. Pairwise layer relations are then used to construct a depth graph for
a global depth ordering reasoning. The depth reasoning step resembles the one pro-
posed Sec. 5.4, where cycles in the graph are identified and some edges are eliminated.
The described process is though much more local, and it is performed by examining
cycles in the graph in an arbitrary order.

The approach of (Chang et al. 2006), restricts itself to motion parallax depth cues, esti-
mating a layered representation by exploiting the difference of horizontal movements.
The authors estimate linear trajectories which they then assign to different layers ac-
cording to their amount of displacement. The approach involves a lot of processing,
such as image transformation to the frequency domain and convolving with a 3D filter.
Moreover, the approach processes pixels individually and lacks the concept of regions.
Therefore, the resulting partitions involve many small regions and the decision pro-
cess is not robust. A different approach to estimate depth from short videos is the
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work from (Karsch et al. 2012), which attempts to find a full depth map by matching
parts of the input video to similar videos and then by propagating depth informa-
tion to unmatched regions. This kind depth by example-based approach works well
for known scenes but its generalization to arbitrary scenes (or even different points
of view of the same scene) is very difficult. References (Li et al. 2006; G. Zhang, Jia,
T.-T. Wong, et al. 2009) attempt to retrieve a full depth map from a monocular image
sequence by exploiting structure from motion in short sequences. However, they in-
volve important assumptions and restrictions about the scene structure that may not
be fulfilled in many typical situations. Structure from motion will be assessed more
deeply in Chapter. 7.

There exists another kind of approaches, which do no attempt to retrieve a depth or-
dered partition, but only recover the occlusion boundaries for a given frame. They
can be seen as the homologue of figure/ground labeling for single images, although
they sometimes involve the processing of several images. For example, the work from
(He and Yuille 2010) assumes that the scene is still and assume that occlusion bound-
aries appear on strong motion and color gradient. They do not attempt to provide
a local depth ordering at contours, but the algorithm only outputs a confidence map
showing the localization of occlusion boundaries. Following a similar line of work,
the approach in (Sundberg et al. 2011) extends the gPb approach (Arbeláez et al. 2011)
on single images to single frames. Basically, they introduce the temporal gradient (for-
ward and backward frame difference) as features to the contour gradient estimator. A
globalization step of the local gradient detector is performed using spectral clustering,
and the region representation using UCMs is kept exactly the same as in (Arbeláez
et al. 2011). Results show that introducing dynamic features greatly help the perfor-
mance on contour detection. As an additional step, the authors show results for figure
ground labeling based on optical flow, claiming much better performance than using
only static cues. The main drawback of this scheme is that the relative depth is as-
signed based on a set of local characteristics of the contour and the approach avoids a
global reasoning on the depth structure of the scene.

The proposed approach for depth estimation in frames is to use motion occlusion to
determine the depth order within a frame given its previous and next frames. No
assumptions on the scene stillness are made other than either the camera of the ob-
jects are moving. When objects move relatively to the camera, background areas
may appear and disappear, providing a reliable cue to determine the depth order.
Note that motion occlusion appears when the apparent motion of two overlapping
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It�1

It

It+1

Optical Flow 
Estimation

Parametric Flow 
Fitting Pruning

Tree Construction

Depth Ordering 
Pruning

Global Depth Order 
Reasoning

Relative Depth Map

Occlusion Relations 
Estimation

Figure 6.1: Proposed system architecture. Three consecutive frames are used to esti-
mate a depth order map. The system involves an optical flow estimation step and a
tree construction. Then, two pruning (graph cut) strategies are applied to extract one
partition providing a region-based representation of the optical flow and a second par-
tition involving regions that can be depth ordered. Finally, a global reasoning is used
to define a consistent depth order map.

objects/regions is different. This situation occurs either when:

• The real motion of the two objects is different (e.g. two cars in a road)

• The scene is static and the object depths are different (e.g. a building occluding
the sky)

To exploit this idea, the system first computes the forward and backward optical flows
(Optical Flow Estimation block of Figure 6.1). Then, a hierarchical region-based repre-
sentation of the image is computed and stored in a Binary Partition Tree, BPT (Tree
Construction block). The goal of this representation is to support robust estimation
and global reasoning about relative depth. The use of such representation is essential
in our approach. Two ways to construct this representation for frames are explored
in this work: one BPT based on color, shape and motion features and one based on
Ultrametric Contour Map (UCM) (Arbeláez et al. 2011). The created trees are used
to retrieve two partitions using tree cut techniques exposed in Sec 5.3. The first par-
tition allows to fit parametric flow models to regions, finding reliable flow values at
occlusion points (Parametric Flow Fitting Pruning block) and then obtaining occlusion
relations. The second partition is obtained by exploiting these occlusion relations and
defines regions that can be depth ordered (Depth ordering Pruning block). Since occlu-
sion relations provide depth relations between pair of regions, a final step is needed
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to ensure global consistency and to obtain a final depth order map. Besides the algo-
rithm definition, this thesis compares the performance of static versus dynamic cues,
showing that motion occlusions are a much reliable cue for depth ordering on video
frames than junctions or convexity cues.

6.2 Hierarchical Representation of Frames

6.2.1 State of the Art

As stated in the previous section, there exists little literature specific for hierarchical
segmentation on single frames inside video sequences. Most approaches either tackle
segmentation in single image or full sequence segmentation, but only few address
single frames. The image segmentation state of the art was exposed in Sec. 5.2 and
the case for full sequences will be exposed in Sec. 7.2. Therefore, the only approach
working explicitly with a hierarchical representation for single frames found to the
date is (Sundberg et al. 2011).

Authors extend the segmentation tools for static images in (Arbeláez et al. 2011) to
include the motion gradient as an additional channel to brightness, color and texture,
see Sec. 5.2. The motion gradient is computed by taking the difference of the cur-
rent image with the following and previous frames and combining both outputs. If
MG+(x, y) = I(x, y, t + 1)− I(x, y, t) and MG−(x, y) = I(x, y, t− 1)− I(x, y, t) are the
forward and backward motion gradient respectively, both MG+,MG− should have
high absolute values in the location of the edges of the current frame. The two mea-
sures are combined to produce a motion gradient imageMG = (MG+MG−)

(1/2) which
is then incorporated to the machinery of the gPb contour detector. The produced soft
contour map, the gPb + δ, is used to create a first Ultrametric Contour Map (UCM) to
determine which boundaries are actual occlusion boundaries. For each region in this
first UCM, the authors reestimate the probability of occlusion boundary using optical
flow features and static boundary cues with a linear classifier. The output of this clas-
sifier is then feed to another to provide the final hierarchical region representation of
the single frame.

This approach is, to the date, the only approach specialized to represent single frames
in video sequences as a set of hierarchically ordered partitions. Although the approach
gives good results, the creation of the hierarchy comprises many steps, and motion
information seems to play a secondary role in favor of static cues for segmentation.
Extending the BPT approach for single images, we propose a simpler method that
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wt,t−1

wt−1,t

wt,t+1

wt+1,t

Figure 6.2: Optical flow computation using the next and previous frames. Left: color
code used to represent optical flow values. Three consecutive frames are presented in
the top row, It−1 ,It in red and It+1. In the bottom row, from left to right, the flows
wt−1,t,wt,t−1,wt,t+1,wt+1,t are shown.

integrates motion information from the beginning of the tree creation process. Once
the tree is created, we process it using tree cuts and make use of motion occlusion cues
to estimate the relative depth order between the obtained regions.

6.2.2 Proposed BPT for Frames

Although the hierarchical representation is constructed for a single frame, informa-
tion from adjacent frames can be used to provide dynamic information such as mo-
tion. In (Sundberg et al. 2011) a quantitative evaluation is performed, measuring how
the size of the temporal window affects the segmentation performance. Surprisingly,
extending to more than two frames (forward and backward) does not help much for
segmentation, so gathering information from the previous as next frames proves to be
sufficient for most of the cases.

To this end, prior to segmenting the frame, the optical flow between forward and back-
ward frames is computed. The technique described in(Brox and Malik 2011) was used,
due to its compromise between simplicity and accuracy. As shown in Fig. 6.2, for each
frame It the previous It−1 and following It+1 frames are used. With three frames, for-
ward flowswt−1,t,wt,t+1 can be estimated. wt−1,t maps each pixel of It−1 to one pixel in
It. Similarly, wt,t+1 maps each pixel in It to one in It+1. Additionally, backward flows
wt,t−1, wt+1,t are also estimated as shown in Fig. 6.2.

Once optical flows are computed, the creation of the segmentation hierarchy can ben-
efit from motion information. For the purposes of this work, two possible trees have
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been considered: a BPT approach created using a similar strategy than for single im-
ages, see Sec. 5.2 and the UCM technique proposed in (Arbeláez et al. 2011). The
only difference between the proposed BPT for single images and the proposed BPT for
frames, is that motion information can be introduced to the region distance and region
model. During merging iterations, the BPT uses a combination of color, shape and mo-
tion information to determine the region similarity. By contrast, the UCM considers
the mean strength of the common contour between Ri and Rj estimated using th gPb.
The formal expressions for both trees are:

dBPT (R1, R2) = darea(αdcm + (1− α)dshape) (6.1)

dUCM(R1, R2) =
∑

x∈Γij

gPb(x)
|Γij | (6.2)

Where R1, R2 are two arbitrary adjacent regions. darea, dshape, dcm are the area, con-
tour and color+motion contributions to d(R1, R2) respectively. α is a weighting factor
between shape and color. darea is defined as for single images in Eq. (5.11). For the
reader convenience, the expression is:

darea = log(1 +min(A1, A2)) (6.3)

With A1 and A2 being R1 and R2 area respectively. Also, as in single images in Eq.
(5.10), dshape is defined as the relative increase of perimeter of the parent region with
respect to the biggest one:

dshape = max

(
0,

min(P1, P2)− 2P1,2

max(P1, P2)

)
(6.4)

With P1, P2 and P1,2 beingR1, R2 and the common perimeters respectively. Each frame
It is represented with seven channels: three for the CIE Lab color space and four for
motion information. The four motion channels correspond to horizontal and vertical
fields for the forwardwt,t+1 = (u, v)t,t+1 and backwardwt,t−1 = (u, v)t,t−1 optical flows.
The color model for each region is the same as for static images: a full 3D adaptive
histogram represented by the 8 most representative colors. For the motion channels a
similar approach is followed, and the motion model consists of a joint 4D histogram
represented by the 8 most representative motions in the region. The way in which the
adaptive motion histogram is estimated is the same as in the color case, see Sec. 5.2.
To compare color and motion models for two adjacent regions, two EMD distances are
used:

dc = EMD(sc1, sc2) (6.5)

dm = EMD(sm1, sm2) (6.6)
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Where the distance dc compares the two color signatures sc1, sc2 for both regions and
the distance dm compares the motion sm1, sm2 signatures. The definition of cross bin
costs for color are the same than for single images. According to (Shepard 1987), this
way of comparing perceptually two magnitudes can be used in many cases, such as
shape or size. Therefore, it is assumed that differences in motion also obey a ’percep-
tual law’ and the cross bins unit cost between two motion can also be expressed as:

cij = 1− e−∆ij/γ (6.7)

with ∆ij as the euclidean distance between color or motion vectors and γ an a priori
set parameter which, in the case of color was fixed to 14 (Ruzon and Tomasi 2001).
γ can be fixed for color because colors have an absolute value, but motion can be
almost arbitrary in the scene. For example, a motion difference of two pixels can be
very representative in very still scenes. However, this same difference in scenes with
objects moving very fast may be due to optical flow estimation error. To avoid setting
a fixed parameter for motion, the maximum and minimum motion are found in the
frame:

mmax = max
q,p
|wt,q(p)| (6.8)

mmin = min
q,p
|wt,q(p)| (6.9)

where q = t + 1, t− 1 and p can be every point in the image. The decay parameter for
(6.7) is set to γ = 0.25(mmax−mmin). In this way, whether the scene has large or small
motions, motion differences are scaled properly.

6.2.3 The UCM for Frames

Since the code to build the hierarchy in (Sundberg et al. 2011) could not be accessed,
experiments were irreproducible without the original code due to the complexity of
the algorithm. Therefore, the classic gPb−OWT −UCM chain of (Arbeláez et al. 2011)
is used to produce a binary partition tree, as in Sec. 5.2. Although motion cannot be
exploited during the segmentation process using this particular technique, the quality
of the regions is comparable (or even better than the BPT approach), so its use can be
justified, see Sec. 6.4.
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6.3 Depth Ordering

Proceeding similarly as in the single image case, when the tree is constructed it is fur-
ther analyzed to obtain proper partitions which represent objects as accurately as pos-
sible. In the case of single frames, there is an extra difficulty regarding the estimation
of motion occlusions. As explained in Sec. 3.2, the optical flow field in occluded areas
is normally unreliable, unless the estimation algorithm deals explicitly with this case.
Therefore, prior to depth ordering, reliable flow field should be somehow provided
for motion occlusion estimation.

The idea of the depth ordering step of the algorithm is to perform two tree cuts. The
first cut is performed to identify homogeneous flow zones so that occlusion areas con-
tain valid flow values. From the modeled flows, the occlusion points and relations are
computed to provide local depth relationships. The second and final cut is the cut gen-
erating the final depth partition. The concept of the final tree cut is similar to the one
for similar images: preserve as many low level depth cues as possible while maintain-
ing a reasonable partition granularity. In this case, a local depth cue is considered to be
an occlusion relation estimated from flow values. An occlusion relation is composed
by two pixels: the occluded pu and the occluding po.

6.3.1 Tree Cut for Parametric Flow Fitting

The process to estimate motion occlusions was shown in Sec. 3.2. For simplicity mat-
ters, the occlusion estimation process assumed that a partition was available for para-
metric flow fitting. Since in practical cases the partition is not available and should be
found, here an approach based on tree cuts is proposed to find a segmentation of the
frame. In Sec. 3.2 the chosen flow model to fit to each region was a projective flow
model (Kanatani 1988) is used. For the reader’s comprehension, a short explanation
follows. The flows w̃t,q

Ri
= (ũ, ṽ) with q = t± 1, associated to region Ri are expressed as

a quadratic model on the x and y coordinates:

ũ(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy

ṽ(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (6.10)

where (x, y) ∈ R. As said, in Sec. 3.2, this parametric model assumes that objects
can be approximated as rigid planar surfaces moving and rotating with respect to the
camera. As objects normally lie far from the camera, this assumption often holds.
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Figure 6.3: Three examples of flow fitting with different partition granularities. From
left to right: reference frame, raw estimated optical flows, and four flow fittings from
coarser to finer partitions.

To limit the computational load, this flow fitting is applied on the tree nodes that are
close to the tree root. Typically, the nodes corresponding to the last thousand merg-
ing steps are kept and the remaining nodes corresponding to earlier merging steps are
discarded. Once the parametric flow is estimated for each region, a partition Pf repre-
senting the regions that best fit to these models is computed using tree cuts, and the
energy (5.15) is adapted as:

ei =
∑
q=t±1

∑
x,y∈Ri

∣∣wt,q(x, y)− w̃t,q
Ri

(x, y)
∣∣+ λf (6.11)

The constant λf can be varied to control the degree of coarseness of the obtained par-
tition. Higher values of λ will provide coarser partitions. As it is an intermediate
step of the system, the value was fixed to λf = 4 × 103. It was found experimentally
and proved not to be crucial for the overall system performance. A few examples are
shown in Fig. 6.3 by varying λf , showing that fitted flows correspond to independent
moving objects.

6.3.2 Occlusion relation estimation

Motion occlusions are estimated according to the algorithm exposed in Sec. 3.2 with
the partition and a few particular examples can be seen in Fig. 6.4. Note that the
system is able to handle a wide variety of situations close views, arbitrary landscapes
and scenes with few and large movements.
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Figure 6.4: Motion occlusions examples. First row: original reference frames. Secon
row: occlusion relations marked for each frame. Occluded and disoccluded points are
marked in red, while occluding points are marked in green.

6.3.3 The Depth Order Graph for Frames

6.3.3.1 Depth Ordering Tree Cut

Equation (3.43) creates a set of pixel pairs (pu,po) for which a depth information is
available. If both pixels belong to the same region, they are discarded but if they
belong to two different regions, we can conclude that there is one evidence that the
two regions belong to different depth planes. In the context of regions described by
hierarchical representations, if we deal with regions that are close to the root, many
(pu,po) pairs are discarded because regions are very large. By contrast, if regions are
close to the leaves, many (pu,po) pairs will be preserved.

To extract from the BPT a partition Pd involving regions that can be depth ordered, an
tree cuts strategy is again used. Here the energy to be optimized should be a compro-
mise between the number of occlusion relations, that is of (pu,po) pairs, that are kept
and the simplicity of the partition in terms of region number. As a result, the pruning
is done particularizing the energy (5.15) as::

ei =
∑

(pu,po)∈Ri

1

No

+ λo (6.12)

where No is the total number of estimated occlusion relations.

6.3.4 Final Depth Ordering

A similar strategy as for single images is followed. The only change is how the weight
of the DOG are defined. We review here the main steps of global depth reasoning, but
a detailed explanation is given in Sec. 5.4.

A graph G = (V,E) is constructed where vertices V represent the regions of Pd. A
directed edge ei = (a, b, pi) is defined between node a and node b if there are occlusion
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relations between region Ra and region Rb. The weight of ei is pi = Nab/No where Nab

is the number of pixels from Ra which have been estimated as occluding pixels of Rb

and No is the total number of occluding pixels. The graph G can be seen as a network
of (un)reliable links, with the edge ei = (a, b, pi) connecting a and b with probability
pi. In this context, a precedes b in depth (a is in front of b) with probability pi. For
two arbitrary nodes of G, the probability of precedence (PoP) can be computed even if
there are no edges directly connecting them. If there exists more than one path from a
node a to b, the probability of “a to precede b” is called ρab and is the probability that
at least one path between a and b is reliable. ρab can be computed by complete state
enumeration and the inclusion-exclusion principle (Terruggia 2010).

6.4 Results

6.4.1 Quantitative Evaluation

Due to the lack of state of the art methods for single frames, there is only one possible
benchmark on f/g labeling: (Sundberg et al. 2011). Nevertheless, the method could
not be accessed and its implementation is not reproducible to a full extent. Therefore,
comparison is done only within variants of the system (basically varying the type
of hierarchy used) and the system of depth ordering for single images. The three
compared systems are:

• The proposed BPT with motion information, estimating depth with motion oc-
clusions (BPT+MO)

• The proposed UCM without motion information, but estimating depth with mo-
tion occlusions (UCM+MO)

• The proposed BPT+MD method of Sec. 5.5.

• The proposed UCM+MD method of Sec. 5.5.

The chosen dataset for comparison is the Berkeley Motion Segmentation Dataset (BMSD),
proposed by (Sundberg et al. 2011), the only dataset of sufficient visual quality that can
be found public. The BMDS is particularly challenging, as there exists a large variety
of situations: small/large movements, low contrast scenes, blurring, atmospheric ar-
tifacts. This dataset also provides with a segmentation of some reference frames in
the sequence and the figure/ground markers for the boundaries. Since the proposed
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Figure 6.5: Results of the LDC (left) and the GDC (right) measures for the BMDS
dataset. The ORI measures of the three systems are shown in the bottom table.

systems need relative depth annotations, the figure/ground labels were adapted to
produce depth ordered partitions.

Results on the LDC and GDC measures follow the case for single images: a global
consistency is much harder to obtain than a local estimation of depth gradient. One of
the reasons to include the BPT+MD and UCM+MD methods into the evaluation of mo-
tion cues is to compare the reliability of both static and dynamic cues. From the LDC
and the GDC measures it is possible to see that the region for the BPT+MD is much
wider than the systems BPT/UCM+MO, meaning that there exist more inconsistent
detections in the estimation using static cues. That is, static cues are less reliable than
dynamic ones. The reason for this behavior comes basically from two factors:

• T-junctions / convexity cues do not always agree at low-level with the correct
depth. See the performance of these cues with groundtruth segmentations in
single images in Sec. 5.5.
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• The estimation of motion occlusion is based on optical flow. Nowadays, the flow
estimation problem is very mature and there exists high quality algorithm able
to estimate it with high reliability. Junction estimation, on the other hand, is still
a non-solved problem.

This difference can also be seen in the ORI index, where the BPT/UCM+MD cannot
deal with such a challenging dataset (BMDS). It should be said that the purpose of this
dataset was to segment object according to their motion, so there are many sequences
where there exists strong color camouflage and low contrast which is captured by
dynamic cues but not by static characteristics because objects move differently. Both
systems BPT+MO and UCM+MO show that motion occlusions are much more reliable
by presenting ORI indexes of 0.25 and 0.16 respectively.

LDC performance Although motion is introduced in the BPT+MO segmentation tree
construction, it doesn’t seem to be able to reach the UCM+PO detection performance
(F=0.44 versus F=0.48 for the BPT and UCM respectively). However, the BPT+MD
has even a lower score (F=0.39) meaning that motion actually does help into the BPT
creation process. The differences with the UCM+MO are the additional texture and
multiscale features the algorithm (Arbeláez et al. 2011) introduces to the detection of
the gradient. Although the BPT is a rather simple approach both in its concept and
the kind of features used to compute region models, it is able to reach competitive
results with state of the art algorithms. Classification scores are clearly higher for
the systems using motion occlusions, meaning that these kind of cues can be more
trusted than static ones. Such effect can be clearly seen when comparing th UCM+MO
and the UCM+MD, where the same hierarchy is used but only the type of monocu-
lar cues used are changed. Although the detection score of both system are similar
(due to differences in the tree cut process), it can be seen that the classification score
for the UCM+MD is lower (F=0.24 versus F=28), showing that motion occlusions are
indeed more reliable than static cues. On the four systems there is a clear behavior:
as recall gets lower, depth assignments on confident contour become easier. That is,
motion occlusions on confident contours are clear and indicate the correct depth order,
giving fewer inconsistent detections. The lower score of the UCM+MO with respect
BPT+MO may be due to the fact that the UCM tree discards motion for its construc-
tion. Although the UCM+MO detection performance is higher that the BPT+MO, the
classification performance is similar for both systems (the lower part of the region)
and therefore the ORI index is higher for the BPT+MO. This may be caused by the
fact that the UCM is able to capture more boundaries thanks to its high-performance
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contour detector, but these contours do not contain motion information. This causes
the system to make random guesses on the depth assignment.

GDC performance The three systems present similar global detection scores, although
the BPT+MD shows much more inconsistency as its region is much wider. The two
best systems, the BPT+MO and UCM+PO provides similar performances for both de-
tection and classification. Overall, either the BPT+MO or the UCM+MO could be cho-
sen as the reference system for depth ordering on single frames. If better segmentation
is desired the UCM+PO should be the choice, but if better accuracy on the depth or-
dering is a must, the BPT+MO should be the reference.

6.4.2 Qualitative Evaluation

To show the advantages and limitations of usin motion occlusions, visual results are
shown for two datasets. In addition to the BMDS, results from the Carneige Mellon
Dataset (CMU) (Stein 2008) are compared. The CMU dataset contains short video
sequences, and some of them have poor quality and have compression (blocking) ar-
tifacts. So, as stated also in (Sundberg et al. 2011), results on this dataset are only
compared qualitatively. Due to the poor quality of the CMU dataset, instead of choos-
ing three consecutive frames, the first, the reference and the last frame of the short
sequence are chosen. Each sequence is about 8 frames long, and this setup was de-
signed so as to generate larger motion between images which could, to some extent,
overcome the distortions due to compression artifacts.

Results of depth ordering can be seen in both Fig. 6.6 and Fig. 6.7, showing that motion
occlusions may work over a variety of situations: static scenes, moving foregrounds,
moving background or even multiple moving objects. Moreover, the algorithm does
not assume anything about the kind of observed scene nor the kind of objects. Non
rigid and deformable objects are treated naturally.

Motion occlusions are thus a good depth cue to determine the relative order between
objects on the scene, although it presents some limitations. First, motion occlusions
work with all translational and certain types of rotational motion. More formally, as
stated in (Meinhardt-Llopis et al. 2011), object rotations with respect to an axis not
perpendicular to the image plane can create self occlusions. When objects rotate, parts
of it disappear behind them, and optical flow estimation algorithms cannot handle
correctly these cases.
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Figure 6.6: Results on the CMU dataset for the BPT+MO case. From left to right, for
the two columns. 1) Keyframe image and 2) Image showing the estimated depth parti-
tion, with white regions meaning closer and black meaning further. 4) Figure/ground
assignment on contours, with green and red overlaids marking figure and ground re-
gions, respectively.

In practical situations, object rotation can be considered negligible from frame to frame
as objects lie far from the viewer. However, if rotation is strongly observed, the as-
sumption about motion occlusions do not fulfill and thus, the algorithm breaks. For
instance, if an objects rotates, points disappearing behind the same objects will seem
to be occluded by itself. Nevertheless, this strong rotations appear hardly and the
algorithm is able to overcome the small orientation changes.

Second, the smoothness enforces by the optical flow estimation algorithm causes two
kinds of (related) effects on both segmentation and occlusion estimation. Due to the
aperture problem, the estimation of the flow field is governed by a smoothness term
which, sometimes, can produced oversmoothed flow fields, the contours of which do
not coincide with real color edges. Small details and sharp and curved edges may be
missed sometimes by flow estimation and, most of the time, optical flow and color
edges do not coincide spatially, see Fig. 6.8. Since occlusions appear at motion edges,
the introduction of segmentation to occlusion detection played a key role on the per-
formance of the system. Additionally, the optical flow algorithm cannot handle very
big occlusion regions. As the occluding region grows, instability of the flow estimation
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Figure 6.7: Results on some of the sequences of the BDS dataset. For each row, from left
to right: original image, groundtruth, occlusions for BPT+MO, depth from BPT+MO,
occlusions from UCM+MO, depth from UCM+PO and depth from BPT+MD.

increases, leading to poorer segmentation performance, as well as an increase of the er-
ror in flow model estimation. Therefore, if very large displacements are observed, the
algorithm is likely to fail on these cases. Nevertheless, if the frame rate is high enough,
only small movements will be observed and the algorithm will be able to correctly
retrieve occlusion information.

When relative depth from single frames is obtained, an immediate extension is to ap-
ply the method for full video sequences. The next chapter exposes the advantages and
the challenges of estimating depth in full video sequences, and presents an approach
to estimate depth from a series of frames.
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Figure 6.8: Figure showing how in the left reference frame and in the optical flow esti-
mated field (center), the edges do not coincide. To show it, both imges are overlapped
in the right image.
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7 Depth Ordering of Video Sequences

7.1 State of the Art

In the last section we proposed a system able to infer relative depth from a video frame.
Although this task is computationally less expensive than doing the same thing for full
video sequences, the literature on the first problem is much more abundant. The data
that should be processed for video is one order of magnitude higher than that for
single frames/images but, in contrast, the amount of information related to a spatio-
temporal signal is also much richer. For this reason researchers tackled the depth
estimation problem on videos much before than depth for single images and frames.
Having a series of temporal consecutive frames provide many cues unavailable for
single frames (not to mention single images), and a lot of redundancy is present so
systems are less error prone. Of course, this comes with the price of the amount of
data to be processed.

One of the key aspects of video is that motion can be estimated in many ways. One
of these approaches, as commented in Sec. 6.1, is optical flow. Flow fields provide a
dense mapping between two frames, where each pixel in a reference frame has a corre-
spondence to another point in a referred frame. Another way to estimate motion is to
adopt a sparse approach, identifying several key points in each frame and then match
them to previous/next frames. Since key points are points with a visible structure,
they appear sparsely located in frames, mainly in corners and edges, (Shi and Tomasi
1994). Matched pairs of key points allow to estimate a general motion from frame to
frame which, under some assumptions, can provide cues of the deph structure of the
observed scene.

Motion and structure are closely related since the first appearance of flow algorithms

• G. Palou and P. Salembier. “Hierarchical Video Representation with Trajec-
tory Binary Partition Tree”. In: IEEE CVPR. Portland, OR, USA, 2013

• G. Palou and P. Salembier. “Hierarchical Video Representation with Trajec-
tory Binary Partition Tree and its Applications”. In: IEEE TPAMI, in peer
review 2013

Contributions on Depth Ordering on Video
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(B. K. P. Horn and Schunk 1981). Few years later, (Koenderink, Van Doorn, et al. 1991)
was one of the first approaches exploiting motion to reconstruct simple structures by
relating points within different frames. Two years later, (Cipolla et al. 1993) presented
a system recovering the structure of hand gestures on controlled environments by ex-
ploiting motion parallax. With the increasing of computer power, in (Szeliski 1996),
the authors proposed to stitch the frames of video sequences into a composite mosaic,
showing that the relative position of images provide cues to, at least, infer a projective
structure of the observed environment (see Sec. 8 for a detailed explanation on pro-
jective geometry). In the same year, (Triggs 1996) proposed a method to relate a set of
tracked points visible throughout the sequence with the camera projection matrices. A
part from the approach in (Szeliski 1996), all the other approaches did not work with
real sequences.

Experiments of (Kanatani 1988) showed that the apparent motion (optical flow) and
the structure of objects is closely related. The form of simple objects (planes and
spheres) and their generating apparent motion was explored showing that, for exam-
ple, planar surfaces under rigid motion can be expressed as a second order parametric
models. However, it wasn’t until (Kanatani, Shimizu, et al. 2000) that motion and
structure were closely related, when the optical flow fields were used to estimate the
fundamental matrix between two views (R. Hartley and Zisserman 2004). Subsequent
works kept relating multiview geometry and optical flow (Wedel, Pock, et al. 2008), or
even combining both approaches (Mainberger et al. 2008), improving the reconstruc-
tion of objects from a set of views. More recent approaches showed that indeed, under
static scene assumptions, motion and disparity are equivalent and dense depth maps
can be estimation using only motion information (G. Zhang, Jia, T. T. Wong, et al. 2008;
G. Zhang, Jia, T.-T. Wong, et al. 2009).

Most of the approaches exploiting motion to estimate depth are known as structure-
from-motion systems. They all follow a similar chain of processing: 1) key point ex-
traction and tracking, 2) initial sparse structure estimation and 3) dense reconstruction
upgrade. In the first stage of these systems, a set of characteristic points are identified
and tracked across frames. In the second, the 3D position of these points is triangu-
lated, providing a sparse three dimensional structure. The last step interpolates the
obtained depth to build dense surfaces and depth maps for visualization. For some
applications, obtaining a sparse structure of the scene is sufficient. For example, in
these approaches, (Davison and Murray 1998) was one of the first real time systems to
track a set of features and position them in a 3D space for autonomous vehicle naviga-
tion. These approaches, known as Simultaneous Localization And Mapping (SLAM)
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have evolved since the 90s with (Davison, Reid, et al. 2007). Recently, GPU comput-
ing power allows to obtain an upgraded version of SLAM systems. These approaches,
commonly known as D-SLAM (D for Dense), are characterized by their capacity to ob-
tain a real time and dense structure from a video sequence (Stühmer et al. 2010). Still,
the previous approach needed a lot of computing power, and its implementation is
restricted to devices with high parallelism capacity, such as GPU. Still nowadays, in
the research community, the common approach to follow is to identify a set of sparse
points, triangulate their position from a set of views to obtain their 3D structure and
then interpolate to obtain a dense surface reconstruction.

There are many approaches exploiting these ideas, but only the most characteristics
will be referred here. For a full survey on the methods, see (Ponce, Forsyth, et al. 2011)
which presents a detailed explanation and many state of the art algorithms. One of
the major works in this field, is the PhD thesis (Pollefeys 1999), which summarizes
most of the structure from motion approaches. Moreover, systems proposed in the
thesis were improved in (Pollefeys et al. 2004), which is nowadays the reference for
all the structure from motion algorithms. The authors in the paper propose a robust
system which is able to estimate a dense surface from a static scene. All the steps of
the systems are carefully explained and some of them are incorporated into the book
(R. Hartley and Zisserman 2004). Until the date, this book is considered to be state of
the art algorithms of typical structure from motion. A posterior system, (Li et al. 2006)
attempted to merge monocular depth cues to the classic architecture of structure from
motion. In a first step, a classic structure from motion system is run and when a motion
degeneracy is found, a depth from monocular static cues is applied to the system.
A motion degeneracy is a particular motion that does not allow to recover structure
from motion (Yan and Pollefeys 2006). Although the authors devise the whole system
structure, the analysis of the depth by static cues (occlusion, convexity, etc) is left as a
future work.

Many structure from motion algorithms suppose that the observed scene is totally
static and can thus be represented as rigid objects. This essentially makes video se-
quences and multiview systems totally equivalent. So, taking pictures at different
time instants is not a problem. The only thing that may be different from (multiview)
stereo systems is that the relative position of the cameras and their calibration matrices
may be unknown and should be found by autocalibration (O. D. Faugeras et al. 1992).
However, if objects move, the structure recovery task is much more difficult and many
researches adopt a layered approach to represent depth for video sequences with arbi-
trary moving objects.
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One of the first approaches exploiting layers, (Ayer and Sawhney 1995), imposes a
parametric model of the motion to each layer and then proposes an expectation-maximization
(EM) algorithm to iteratively estimate the number of objects and the pixels belonging
to each object. Although the system does not provide relative depth ordering between
objects, it is significant as one of the first works proposing motion segmentation on
video sequences. A similar work (Torr et al. 1999) proposes to represent a sequence as
a collection of approximately planar layers that are arbitrarily positioned and oriented
in the scene. The steps of the algoithm are like in (Ayer and Sawhney 1995), where a
EM algorithm is used to estimate the number of planar objects and which pixels be-
long to each object. Other approaches appeared in the following years, such as (Jojic
and Frey 2001). Still, the common point between all of these approaches is that they
try to 1) determine the number of objects in the scene 2) assign to each pixel an owner
object. Since this is a kind of ’chicken and egg’ problem, most people propose to solve
it by generalized expectation-maximization techniques, as the articles here cited.

A different approach is taken in (Bergen and Meyer 2000) where a first motion estima-
tion and segmentation algorithm is proposed. As a post processing step, the authors
analyze the motion estimation errors to derive from them a relative depth order. This
idea is similar to the approach for depth ordering in single frames, see Sec. 6.3, where
occlusions are detected due to some failure of optical flow bijective properties. The
approach is novel in the sense in which it exploits motion errors, but the depth order-
ing part does not enforce global consistency. A much later but also similar approach,
(Turetken and Alatan 2009), does enforce global consistency by eliminating iteratively
cycles on the generated depth order graph. Occlusions in this case are obtained by
forward warping previously segmented region from the reference frame.

Other approaches aim to first obtain a correct segmentation of a video sequence, and
then reason about occlusions (Konrad and Ristivojevic 2003). By using graph cuts (Kol-
mogorov and Zabih 2001), the authors estimate disparity in video sequences incorpo-
rating occlusion information. Although occlusion is integrated within the structure-
from-motion algorithm in this approach, only the structure static scenes with moving
cameras can be correctly retrieved. Other approaches prefer to obtain layered depth
representation: (Chang et al. 2006) exploits motion parallax and detects movement
and occlusions using a multidimensional filter. Similarly, a layered representation is
obtained in (P. Smith et al. 2004) by tracking edges to detect the occluding and the
occluded sides. Nevertheless, this approach needs to know in advance the number of
frames to be processed and the number of depth layers present.

One of the most recent approaches (Lezama et al. 2011) attempts to obtain a full dense
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video segmentation by incorporating depth order into the segmentation information.
The algorithm establishes points trajectories from optical flow which then clusters with
a predefined number of clusters. The clustering method is done by minimizing an
energy using occlusions, obtaining a depth ordered sparse segmentation. Although
layered approaches can estimate the relative depth of objects in moving environments,
they have a drawback: they cannot capture the 3D structure of each individual ob-
ject/region. This fact may not be that serious for single images and frames, where this
information is hard to extract, but obtaining absolute depth from video sequences is
proven to be feasible.

Although later than structure from motion algorithms or layered representations, hy-
brid approaches attempting to estimate the 3D structure in spite of having multiple
moving objects appeared several years ago. One of the first approaches (Costeira and
Kanade 1998) generalized the concept of projective factorization, allowing to introduce
multiple rigid motions to the same scene. The problem of this approach is that obtain-
ing the number of different motions is hard and sometimes the algebra lying behind
the approach is very sensitive to noise. Similarly, in (Fitzgibbon and Zisserman 2000)
a RANSAC approach is proposed to detect the number of different motions. Once mo-
tions are detected, point 3D position is triangulated if a sufficient number of matches
and views are present to perform a self calibration of the camera. Rather than propos-
ing an iterative procedure to detect the number of independent motions, in (Vidal et
al. 2006) a different approach is taken. The concept of the fundamental matrix, which
relates the points seen from two views , is extended to include an arbitrary number
of motions. Although theoretically feasible, the proposed approach has difficulties on
estimating the number of motions in practical cases when noise is present.

These three approaches (Costeira and Kanade 1998; Fitzgibbon and Zisserman 2000; Vi-
dal et al. 2006) offered a sparse structure associated to interest points in environments
with multiple moving objects, but the dense structure of the scene is not retrieved.
Recent approaches such as (G. Zhang, Jia, Hua, et al. 2011) offers the possibility to
represent a video sequence with two independent moving layers. The difference be-
tween this approach and the previously cited ones is that the structure of each layer
is estimated so they are not considered planar views. Similarly, in (Karsch et al. 2012)
the depth of an input video is estimated by searching similarly structured videos on a
groundtruth dataset. Although technique works well for stationary video with some
moving objects, it seems that the system is not scalable to obtain depth for arbitrary
scenes and camera movements.
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Optical Flow/Motion Occlusions Estimation

Figure 7.1: Particularization of the system architecture in Fig. 2.14 for the video case

In this thesis we address the principal problems of the literature on depth estimation
in video sequences. First, we propose a new video representation by extending the
Binary Partition Tree of single images/frames to provide a basis for region multires-
olution analysis of video sequences. Next, and following the proposed algorithm
for depth ordering for single frames, we propose a depth ordering algorithm for full
video sequences without knowing the type of scene present. A particularization of the
schema in Fig. 2.14 can be found in Fig. 7.1 for the video case. In a final section we
address the problem of structure from motion using optical and, supposing that the
input scene is static, we estimate dense depth maps and full 3D structure using only
optical flow information.

7.2 Hierarchical Representation of Video Sequences

7.2.1 State of the Art

Since normally video is seen as a sequence of temporally related images, video process-
ing algorithms are often an extension of image processing techniques. For example,
the well known efficient graph based image segmentation (Felzenszwalb and Hutten-
locher 2004) (GB) is proposed in (Grundmann et al. 2010) (GBH) by extending the
algorithm to create a hierarchy of partitions. A mean-shift algorithm (Paris and Du-
rand 2007) is also adapted for temporal sequences in (Paris 2008) (Meanshift). The
approaches (C. Fowlkes et al. 2004) (Nyström) using normalized cuts and (Corso et al.
2008) (SWA) proved to be scalable in complexity when the time dimension is added.
The basic part of these algorithms is to consider the original pixel grid as a graph,
where nodes represent image pixels and weighted edges represent connectivity. After
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Figure 7.2: Outline of the proposed approach. Starting from the video frames, the first
step identifies reliable trajectories between frames representing long term spatiotempo-
ral coherent part of the scene (shown as dashed lines). Then, the algorithm constructs
a Trajectory Binary Partition Tree by iteratively merging neighboring trajectories and
builds a hierarchical representation of the entire sequence. Note: The node color ap-
proximately represents the mean color of the trajectory regions.

the original representation is transformed into a graph, the algorithms group nodes
with some clustering techniques such as graph cuts, normalized cuts or greedy merg-
ing techniques. Since the image graph representation can be easily extended to more
than 2 dimensions, the extension to video is normally done by treating the temporal
dimension as a third spatial dimension. As a result, pixel connectivity is extended
from the classic 4 neighborhood in images to 6 (Corso et al. 2008) or 26 (Grundmann
et al. 2010) neighborhood in both spatial and temporal dimensions. As a result, 3D
image segmentation (Wirjadi 2007) and video segmentation essentially become equiv-
alent. The principal problem with these approaches is that the temporal dimension
is treated equally as the spatial ones, even if time has different statistics and behavior
than space.

Motion is the principal cue that can be extracted once the temporal dimension is avail-
able and it can be used alone to provide a sparse segmentation of a moving scene with
several objects (Costeira and Kanade 1998; S. Rao et al. 2010; Brox and Malik 2010). Ap-
proaches commented in the last section that estimate depth layers in video are closely
related with motion estimation algorithms. Depth ordering on video sequences can
be seen as a particularization of motion segmentation. Although not exactly equiva-
lent, depth layered representations of videos can be sometimes by concatenating two
stages. A first motion segmentations of the video, and a second ordering between the
obtained motions.

Motion segmentation algorithms are built under the suppositions that some points in
the scene are being tracked over time. Since, until today, not all points can be reliably
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tracked, tracking algorithms, known as feature trackers, operate on a subset of points
which exhibit a visible and easy identifiable structure over time (Shi and Tomasi 1994).
With the appearance of the first dense optical flow estimation algorithms (B. K. P. Horn
and Schunk 1981; Black and Anandan 1993), motion was available for all the pixels in
each frame. However, these algorithms solved the aperture problem (Nakayama and
Silverman 1988) by ’filling’ homogeneous zones with smoothness priors. More recent
and realtime techniques (Wedel, Meißner, et al. 2009) refine the smoothness priors,
but the aperture problem persists. Essentially, the set of points in which dense flow
is reliable is similar (although denser) to the set of feature trackers. A current state
of the art tracker (Sundaram, Brox, et al. 2010) uses frame-to-frame optical flow to
estimate reliable flow regions, creating long term trajectories over time and showing
better coverage and performance than feature-based detectors available to date.

If a scene contains several moving objects, chances are that tracked points of the same
objects move in a similar way. Examining motion differences between tracks is known
as motion segmentation, and many algorithms exist to detect moving entities in video
sequences. The most used approaches are graph cuts (Xiao and M. Shah 2005), nor-
malized cuts (Brox and Malik 2010) and low-rank factorization methods (S. Rao et al.
2010; Yan and Pollefeys 2006). The principal limitation of these approaches are that
they operate on a sparse subset of points, not providing a dense segmentation of the
scene, therefore object boundaries are not available. Sparse representation may be
sufficient for some applications such as tracking or activity recognition, but a dense
coverage provides more information. It is also possible to combine static segmenta-
tion cues (basically color) with optical flow to produce dense segmentation on videos.
The most common technique is to use first a motion segmentation for a sparse repre-
sentation, and then upgrade its density using color (Ochs and Brox 2011). Techniques
such as (Ogale et al. 2005; Sun et al. 2010) have been proposed to produce a dense seg-
mentation coverage using dense optical flow and by explicitly treating occlusion. The
work (Sundaram and Keutzer 2011) uses temporal frame-to-frame information and
the gPb contour detection algorithm (Arbeláez et al. 2011) to compute voxel-based
affinities and relate pixels between frames. Affinities are then clustered using normal-
ized cuts (Shi and Malik 2000) and a segmentation is produced by means of ultra-
metric contour maps (Arbeláez et al. 2011) on the resulting segments. A part from its
computational cost (5 minutes on a cluster of 34 GPUs), the algorithm does not take
advantage of long term information introduced by trajectories but relies on the glob-
alization capacity of normalized cuts to propagate motion information. By contrast,
the work (Lezama et al. 2011) uses the tracked points (Sundaram, Brox, et al. 2010) to
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propose a semi-supervised clustering and uses the obtained labels to produce a dense
segmentation. However, the number of objects should be known in advance and, in
practice, this information is most of the time unknown. In the work of (Dorea et al.
2009) a proposed extension to binary partition trees is proposed, but the algorithm in-
volves a series of bottom-up mergings and top-down splits to achieve short and long
term region coherence. In the proposed extension of the BPT a much natural and sim-
pler approach is followed.

7.2.2 Proposed Hierarchical Video Representation

In this thesis, a scheme is presented so that it integrates the advantages of color and
motion segmentation in the same process to produce a hierarchical region representa-
tion such as a BPT for video sequences. We discuss a completely unsupervised way to
introduce long term motion information and spatial segmentation in a single scheme
by extending the BPT algorithm (P. Salembier and Garrido 2000) to video, but tak-
ing special care of temporal information. The main difference with the original BPT
approach used either in still images and single frames, see Sec. 5.2 and Sec. 6.2 respec-
tively, concerns the elementary units that are iteratively merged. Instead of iteratively
merging neighboring pixels, here neighboring trajectories are merged forming a Tra-
jectory BPT (TBPT). The approach is outlined in Fig. 7.2. The system assumes that
dense forward and backward optical flow information is available. To run the exper-
iments, the same optical flow estimation than in Chapter 6 is used (Brox and Malik
2011), but other approaches could work as well. Prior to the Trajectory BPT computa-
tion, reliable trajectories are defined throughout the sequence using (Sundaram, Brox,
et al. 2010) and then spatially quantized to produce the initial partition used as starting
point for the BPT algorithm. Unlike (Lezama et al. 2011), trajectories are introduced
in a fully unsupervised manner, without prior clustering into a predefined number
of classes. The Trajectory BPT is then computed and, at each iteration, the two most
similar trajectories are merged. While other approaches consider that color and mo-
tion information can be represented in the same way, we take advantage of motion
segmentation clustering techniques to design an appropriate color and motion mod-
els and similarity measures. We show how the generated hierarchy offer competitive
results in comparison with the state of the art segmentation algorithms.

There are three main contributions of this thesis regarding segmentation in video se-
quences. First, a simple and efficient region merging approach to generate a hierarchy
representing whole video sequences. is designed. This task is performed by extending
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the BPT algorithm introducing the temporal dimension. the video is represented as a
binary tree of trajectory regions (which are set of spatially neighboring trajectories).
Second, differently as the state of the art on video segmentation, which considers that
video can be treated equivalently as a 3D volume with color and motion, specific color
(spatial) and motion (temporal) models for regions resulting from the merging process
are devised. Third, during the tree creation process, motion and space are specially ad-
dressed separately for segmentation, designing a coherent distance measure which
exploits advantages of motion and color segmentation at the same time.

7.2.3 Trajectory Estimation

Point trajectories are a reliable way to propagate long term information along an im-
age sequence. Optical flow based tracking (Sundaram, Brox, et al. 2010), in contrast to
descriptor based tracking (Davison, Reid, et al. 2007), provides a denser coverage. In
a nutshell, the tracking algorithm (Sundaram, Brox, et al. 2010) finds reliable starting
points for trajectories and tracks them from frame to frame using the estimated opti-
cal flow (Brox and Malik 2011) until the flow reliability falls below a given threshold.
Reliable optical flow estimates can be found at points fulfilling the following three con-
ditions: 1) they have a visible spatiotemporal structure in their neighborhood 2) they
do not become occluded 3) they are not on a motion boundary. State of the art optical
flow estimation exhibit similar behavior on ’easy’ points (Mac Aodha et al. 2013), mak-
ing the performance of the trajectory tracking stable regardless of the used algorithm.

Trajectories obtained with (Sundaram, Brox, et al. 2010) are used as a starting point
for the tree creation process. Initial estimates should be quantized to the closest pixel
so as to produce an initial partition. Since the flow reliability is used to define the
initial trajectories and also to measure the distance between trajectory regions during
the TBPT creation process, we present the three reliability notions (Sundaram, Brox,
et al. 2010) for a point p = (x, y, t) in the video.

7.2.3.1 Structure reliability

Optical flow estimation algorithms rely on color and gradient consistency with an
additional smoothness term to cope with the aperture problem (Nakayama and Silver-
man 1988). On points where a strong visible structure is present, mainly corners, junc-
tions and textured regions; the aperture problem is easily handled. According to (Har-
ris and Stephens 1988), points with a visible structure can be found by means of the
second eigenvalue λ2 of the structure tensor: Js = Ks ∗ (∇I∇I>). ∇I = [Ix, Iy, It]

T de-
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notes a spatio-temporal gradient, Ks is a Gaussian kernel of standard deviation σ = 1

and the operator ∗ denotes the convolution. A similar approach is used in (Sundaram,
Brox, et al. 2010) to set a hard threshold on whether or not a tracking trajectory should
be started at a given point. In this thesis, the structure reliability is defined for each
point in the video (not only for starting trajectories), and can be expressed as:

ρs(p) = 1− exp
(
−λ2(p)/λ̂2(t)

)
(7.1)

where λ̂2(t) is the average second eigenvalue of the current frame. ρs behaves like a
Harris detector (Harris and Stephens 1988), with ρs ≈ 1 in corners and junctions and
with ρs ≈ 0 in points in homogeneous zones.

7.2.3.2 Occlusion reliability

As commented in motion occlusion estimation in Sec. 3.2, object motion make points
of the background disappear (occlusions) and appear (disocclusions). To check if a
point becomes occluded, a forward-backward consistency is proposed, but an avail-
able partition and flow models should be available. Since during the creation of the
TBPT partitions change at each iteration (and thus flow models fitted to the regions),
a less computationally intense approach is followed. Instead of using regions, an oc-
clusion flow confidence is obtained using the raw optical flow estimation, discarding
region information.

Assume that wt,t+1(p) = (u(p), v(p)) is the forward motion field. The backward flow
field corresponding to p is wt+1,t(p̃) where p̃ = (x + u(p), y + v(p), t + 1). The flow
reliability according to the forward-backward consistency is defined as:

ρo(p) = exp

(
− |wt,t+1(p) +wt+1,t(p̃)|2

0.01(|wt,t+1(p)|2 + |wt+1,t(p̃)|2) + 0.5

)
(7.2)

In the case of non occlusion, ρo ≈ 1, as the forward and the backward flows compen-
sate (w(p) ≈ −w̄(p̄)). In (Sundaram, Brox, et al. 2010), ρo ≈ 0 indicates that p is being
occluded and thus the tracking should be stopped.

7.2.3.3 Motion boundary reliability

At points with strong motion gradients the flow contains motions from two different
objects. Therefore, in motion edges, the estimated flow may not correspond to the
true motion of the objects, so their corresponding reliability should be low. A possible
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tim
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Figure 7.3: Horizontal cut of a video sequence. Estimated trajectories with sub-pixel
accuracy are shown with red, green and orange curves. Quantized trajectories corre-
spond to voxels filled with dark colors whereas adjacent voxels are indicated in light
colors. Adjacency relations are represented by two-way arrows.

way to tackle these situations can be by measuring the gradient magnitude in both the
horizontal and vertical flows:

ρmb(p) = exp

(
−|∇u(p)|2 + |∇v(p)|2

0.01|w(p)|2 + 0.002

)
(7.3)

Where ∇u(p) =
(
∂u
∂x
, ∂u
∂y

)
(p) is the gradient operation on the horizontal flow compo-

nent u(p). The gradient on v(p) is defined similarly. If any of ρs, ρo or ρmb falls below
a given threshold, the tracked trajectory stops. The threshold values used here are
the same as in (Sundaram, Brox, et al. 2010). The motion estimation algorithm (Brox
and Malik 2011) provides sub-pixel accuracy on flow values so bilinear interpolation
is used to track points where the flow falls in-between pixels. The trajectory can be ex-
pressed as a sequence of points P = {(xt, yt, t), . . . , (xt+l−1, yt+l−1, t+ l − 1)}. Once the
complete trajectory is computed with sub-pixel accuracy, each point location is quan-
tized to the closest spatial integer position for each frame: PQ = round(P ), see Fig. 7.3
for examples of quantization. We found very important to perform the whole tracking
process with sub-pixel accuracy prior to quantization, specially in scenes with small
displacements. In average, around 10% of voxels belongs to a trajectory of length
higher than 2. Examples of points belonging to trajectories can be seen in Fig. 7.4.
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Figure 7.4: Example of flow reliability computation for two frames on two sequences
of the BDS dataset (Sundberg et al. 2011). For each column, left to right: reference
frame, forward motion frame where intensity and color indicate flow magnitude and
direction respectively; structure, occlusion and variation reliability, with white values
indicating high reliability. The last column shows points (in green) where a trajectory
of length ≥ 2 is present.

7.2.4 Trajectory Binary Partition Tree

For every bottom-up (merging) segmentation approach, an initial partition should be
provided. In image segmentation it is common to use either the initial partition the pix-
els (Felzenszwalb and Huttenlocher 2004; Vilaplana et al. 2008) or an oversegmented
(superpixel) partition (Arbeláez et al. 2011). In video, rather than supervoxels, the
state of the art approaches is to begin with the 3D-partition defined by individual vox-
els (Grundmann et al. 2010). In this thesis, we adopt an hybrid approach between
voxels and supervoxels, considering the initial partition as the quantized trajectories
defined as described in Sec. 7.2.3. Trajectories allow to both introduce long term in-
formation and reduce the computational overload by reducing the number of starting
regions.

The regions forming the initial partition are the trajectories as well as the non-tracked
points which are considered trajectories of length 1 in the sequel. Then, a region ad-
jacency graph is created by considering 4-connectivity intra-frame and 2 connectivity
inter-frame: two trajectories are adjacent if they are neighbors in the same frame or
their forward or backward motion endpoints coincide, see Fig. 7.3 for examples.

As a classic merging segmentation approach, the TBPT follows a greedy strategy to
create the region hierarchy. It is constructed by iteratively merging the two most sim-
ilar adjacent trajectories until only one region RN is left. As adjacent trajectories are
grouped together, they form what can be called trajectory regions. To decide whether
or not two trajectories should be merged at a given iteration, internal characteristics
of these regions should be used to differentiate them. In video streams, the two most
important cues to do so are color (as for image segmentation) and motion. In the pro-
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posed approach, a color model and a motion model are designed for each region. At
each merging step, the models are used to define a region distance to determine the
two most similar regions to merge. When the merging occurs, a new trajectory region
is created, its color and motion models are updated and new distances are computed.
The region models and distances are discussed in detail in the next section.

The iterative approach allows to define a more precise way to construct a hierarchy of
partitions for videos than (Grundmann et al. 2010; Corso et al. 2008), where the parti-
tion coarseness of each level on the hierarchy is defined by a user defined parameter.
The algorithm proceeds as in the BPT for single images and frames, iterating until one
region RN representing the whole video is left. As exposed in Sec. 5.3, the tree can be
seen as a ’container’ of many more partitions that the ones formed during the merging
sequence. Using the tree cuts, it is possible to process the tree as in single images to
obtain partitions of better quality.

7.2.4.1 Trajectory Region Model

Whether a given segmentation algorithm works with trajectories or other kind of re-
gions, there are many ways to model the partitions elements and to define distance
between these elements, such as the proposed BPTs for images in Sec. 5.2 or in Sec.
6.2. Motion segmentation algorithms dealing with trajectories such as (Brox and Ma-
lik 2010; S. Rao et al. 2010) only use motion information to define similarity between
elements, while other systems such as (Paris and Durand 2007) (implementation by (C.
Xu and Corso 2012)) rely only on region color characteristics. We adopt here an hybrid
approach as in (Grundmann et al. 2010; Lezama et al. 2011), noting that color is the
most discriminative cue for segmentation and motion allows to introduce dynamic
information to the process.

Trajectories produced by (Brox and Malik 2010) can be as long as the entire video
sequence if no occlusion occurs. This provides a very stable starting point for the
merging process. However, prior to define the color and motion model, it is important
to differentiate between spatial and temporal diversity:

• Objects tend to involve rich color distributions that are stable over time.

• Object motion tends to be spatially simple (uniform translation, rotation or zoom
for example), but changing over time.
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Figure 7.5: Importance of modeling the temporal evolution of trajectories. Even if ob-
jects share the same motion in some frames, they can be identified as different entities
when motion is different at a time instant.

Therefore, color presents high spatial but low temporal diversity, while motion char-
acteristics are the opposite. This encourages the use of different models for color and
motion.

Color Model Color stability over time is, in fact, an assumption made by the op-
tical flow estimation algorithm. Therefore, it is reasonable to assume that an image
region can be represented with few colors regardless of its temporal span. Therefore
we consider the trajectory region color model to be an adaptive histogram (signature)
described by at most n = 8 dominant colors in the CIE − Lab color space. The signa-
ture of a region R is a set of pairs sR =

{
(pR1 , c

R
1 ), . . . , (pRi , c

R
i )
}
, i ≤ n, where cRi is a

representative color and 0 < pRi ≤ 1 its corresponding percentage of occurrence. This
representation the same color representation as for images and frames, and for more
details the reader is referred to Sec. 5.2 and Sec. 6.2.

Motion Model Object motion can be easily described between two consecutive frames.
Typically, motion between frames is composed of piecewise-smooth regions. However,
in spite of this spatial simplicity, object motion can change over time (unlike color).
Therefore, the most important role of the motion model is to capture the different mo-
tions across frames and to preserve the order in which they appear. Fig. 7.5 illustrates
the importance of modeling the temporal evolution of motion and therefore why mod-
els based on motion histogram should be avoided.

Therefore, the motion of each trajectory region R is represented by a set of motion
vectors mR =

{
ŵR
t , ŵ

R
t+1, . . . , ŵ

R
t+l−1

}
where ŵR

t is the mean motion vector of the tra-
jectory region at a given time instant t. Although the mean motion can be sufficient
for oversegmentations, representing body motions with their mean can be somewhat
limiting. For instance, motions such as zoom or rotation cannot be represented by a
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Figure 7.6: Figure showing the validity of the model for different cases of video length.
The green curve shows the errors for the extended model.

single value. To cope with these cases, instead of the mean, an adaptive histogram
with n = 8 is used at each frame when there is a small number of regions left to create
the complete tree (200 is used in this work).

Validity of the model To prove that the color and motion models are scalable to
videos of arbitrary length, short sequences of lengths 3,5,7 and 10 frames of the MOSEG
dataset (Brox and Malik 2010) are segmented. At each merging step, the color and the
motion errors for each pixel p ∈ Ri are computed:

CE(p) = |π(I(p))− I(p)| (7.4)

ME(p) =

∣∣∣∣ŵRi
t −w(p)

w(p)

∣∣∣∣ (7.5)

where π(c) assigns the color c to their closest color cluster center in the region where
p belongs. CE and ME are averaged across pixels or averaged with the number of
regions at each merging step. Results of the color and motion errors are shown in
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Fig. 7.6, proving that color and motion errors behave as expected. Obviously, as the
number of regions of the tree decreases, color and motion models exhibit higher error
figures. There are no significant differences on the color error (bottom row) regardless
of the different video length, confirming that 1) color is maintained within a region
across time 2) small color variations are handled by allowing adaptive histograms.
Since motion models already take the video length into account, only the 10 frames
case is shown. Note that when extending the model, if the number number of colors
in the histogram are doubled to 16 (green curve), the color error does not decrease.
However, implementing a motion histogram instead of the mean allows to represent
much more accurately the motion in regions.

7.2.4.2 Trajectory Region Distance

The merging sequence of the BPT is defined by a similarity measure between neigh-
boring trajectory regions based on several distance notions.

Color Distance The distance used is the same as in single images and frames, see
Sec. 5.2 and Sec. 6.2. The chosen distance is EMD, using also the same parameters as
in the previous sections:

dc(s1, s2) = EMD(s1, s2) (7.6)

Motion Distance Even if two objects share the same motion during a long period
of time, as soon as they move differently, they can be assigned to two different en-
tities (Brox and Malik 2010). A good example can be found in Fig. 7.5, where two
different objects meet at a given instant, then move together for some time and finally
they split. In this example, it is clear that the motion distance should not consider
a global motion model, but rather motion differences at each time instant. Similar
to (Brox and Malik 2010), two adjacent trajectories are as different as their maximum
motion difference at a given time instant:

dm(m1,m2) = max
t∈T

1− exp

(
−ρt‖ŵ

1
t − ŵ2

t ‖
γm

)
(7.7)

where T is the common period of time of both trajectories. The coefficient γm = 4 acts
similarly to γc in Eq.(5.8), defining a soft threshold. Unlike color, which has bounded
values for each channel, motion magnitude is very sequence dependent. However, we
found that a displacement difference of four pixels is sufficient to the human eye. An

183



7. DEPTH ORDERING OF VIDEO SEQUENCES

important factor in Eq.(7.7) is ρt which measures the intra-frame flow reliability:

ρt = min
i=1,2

q=s,v,mb

ρ̂iq(t) (7.8)

For each frame, ρt is set to the minimum of the three reliabilities (structure, occlusion
and motion boundary) of the two trajectories i = 1, 2 at each frame. At the last merging
steps of the BPT, trajectory regions may be composed of many pixels of the same frame.
Therefore, for each trajectory, the mean value of the structure ρ̂is(t), occlusion ρ̂io(t), and
motion boundary ρ̂imb(t) reliability is computed. By introducing motion reliability to
Eq.(7.7) we make sure that strong dissimilarities dm ≈ 1 only occur when both flows
are sufficiently reliable ρt ≈ 1. If ρt ≈ 0, motion difference becomes irrelevant dm ≈ 0,
as the two estimated motions may have arbitrary, possibly non real, values.

Final trajectory region distance Although color and motion are two key characteris-
tics, the region size can help to reduce noise effects. We use a size factor dv(v1, v2) that
encourages the merging of regions of small size over regions of larger volume:

dv(v1, v2) = log (1 + min(v1, v2)/γv) (7.9)

where v1 and v2 are the volumes of the two trajectory regions in voxels. γv acts similarly
as γc, γm and it is set to 5% of the video volume. This factor prevents smaller regions
to be considered of equal importance as the bigger ones. The final region distance is:

d = (1− (1− dc)(1− dm)) dv (7.10)

where notation has been simplified for clarity purposes. d is close to zero when both
color and motion are very similar, while it is close to dv if either dc or dm are close to
one. There are other forms of combination for region distance (Vilaplana et al. 2008;
Calderero and Marques 2010), but Eq. (7.10) allows to mitigate the effects of arbitrary
and non-reliable flows. That is, when ρt ≈ 0, motion distance dm ≈ 0 and region dis-
tance is mainly governed by color, not by non-reliable motions. This effect is specially
important in the early steps of the TBPT, where possibly occluded regions containing
arbitrary flows can be compared.

7.2.5 Results on Early Segmentations

There exists strong controversy on whether one should evaluate the performance of
the segmentation itself or evaluate it as a part of an application (Unnikrishnan et al.
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2007). This is mainly to the fact that segmentation is an ill-posed problem, and more
than one segmentation can be suitable for an algorithm purposes. Even humans, when
faced to the same input produce different results. This fact encouraged the creation of
the BSDS Dataset (Arbeláez et al. 2011) on image segmentation, where performance of
an algorithm is evaluated against different human segmentations on the same image.
On the video field, human annotations are much more costly, as a single sequence may
contain more frames than images in the whole BSDS dataset. In this direction, the
work of (A. Y. C. Chen and Corso 2010) allows to propagate region labels throughout
sequences, helping to easily extend human groundtruth to full sequences.

In this section we restrict the evaluation of segmentations produced by the merging
sequence, see Sec. 7.2.4. We analyze the quality of partitions involving between 900
and 100 regions, which correspond to strong and moderate oversegmentation respec-
tively. Note that, one of the advantages of the TBPT is that using a binary tree and
following the merging sequence, we have an exact control on the desired number of
regions unlike methods like GBH or Meanshift.

In this section we are evaluating the quality of the (over) segmentations produced by
the algorithm. Since at this point no depth ordering is available yet, we use a common
and public evaluation method proposed in (C. Xu and Corso 2012) with the dataset
from xiph.org used in (A. Y. C. Chen and Corso 2010) composed of 8 sequences of ap-
proximately 80 frames each. Each frame has a semantic ground-truth segmentation
leading to a total of 639 annotated frames. The evaluation metrics are the ones dis-
cussed in (C. Xu and Corso 2012): Undersegmentation Error (UE), Boundary Recall
(BR), Segmentation Accuracy (SA) and Explained Variation (EV), although a more for-
mal definition of these measures can be found in (C. Xu and Corso 2012), an expla-
nation for each follows. The four measures can be applied either in the 3D volume
or 2D partitions but here only the 3D version is formally defined. The extrapolation
to the 2D domain can be done with ease. Let’s assume that the given video volume
has been partitioned into a set of K segments {S}, with Si being a particular region.
The groundtruth annotation of the same video is composed by a set {G} with Gi be-
ing groundtruth region. Undersegmentation Error measures what fraction of voxels
exceeds the volume boundary of the ground-truth region. Its formal expression for a
given Gi is:

UE(Gi) =

(∑
Sj ,Sj

⋂
Gi 6=∅ |Sj|

)
− |Gi|

|Gi|
(7.11)

where | · | denotes region volume. The final UE is the average of UE(Gi) across all Gi.
The Boundary Recall (BR) assesses the quality of the spatiotemporal boundary detec-
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tion by measures the quantity of groundtruth boundaries generated by {G} captured
(either spatial or temporal) by the segments {S}. There is no easy way to express this
concept with a closed formula, but the idea can be easily interpreted. The Segmen-
tation Accuracy (SA) quantifies what fraction of ground-truth segments is correctly
matched. Suppose that each Si is matched to a groundtruth segment G̃i such that it
maximized the Jaccard index:

G̃i = arg max
Gj

Si
⋂
Gj

Si
⋃
Gj

(7.12)

then, the SA measure can be expressed as:

SA(Gi) =

∑K
j=1 |G̃j

⋂
Gi|

|Gi|
(7.13)

as in the UE case, the final SA measure is the average accross all groundtruth segments.
Finally, Explained Variation (EV) is a measure assessing spatio-temporal uniformity
and it is proposed in (Moore et al. 2008) as a human independent metric. The idea
behind it is to measure how well region variance correlate with video color variance:

EV =

∑
p |µp − µ|2∑

p |I(p)− µ|2 (7.14)

where the summations are done over all the voxels p. µ(p) is the mean color of the
region where p belongs and µ is the overall video color mean. EV is not a perfect
metric in the sense that it penalizes region containing high textures, but it provides a
metric independent from the groundtruth annotations.

Results of segmentation measures are shown in Fig. 7.7. For UE, BR and SA both the
corresponding 2D and 3D versions are shown. Although being similar, 3D bound-
aries are biased with the amount of motion in the scene. With big displacements, the
amount of temporal boundaries created is high compared to spatial (2D) ones. The
temporal stability of segmentation is shown through mean duration of trajectory re-
gions. It can be observed that the Trajectory BPT approach, while maintaining a com-
petitive UE and UA, clearly outperforms the other methods in BR and EV. This means
that 1) boundaries are very well preserved, achieving recalls above 0.8 and 2) produced
voxels are more uniform in color statistics according to EV. This is specially difficult
in complex scenes involving a lot of details and small regions. We believe that this
difference in BR is mainly due to the introduction of the flow reliability into the region
similarity. The average duration of the resulting trajectory regions can also be seen
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Figure 7.7: Results on the dataset of (A. Y. C. Chen and Corso 2010). From left to
right and top to bottom: Segmentation Accuracy (SA), Undersegmentation Error (UE),
Boundary Recall (BR) and Mean Duration versus the region number. The proposed
system is among the best ones in terms of SA and UE and the best in BR. The Trajec-
tory BPT creates regions spanning longer temporal intervals than other state of the art
methods.
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Figure 7.8: Video segmentation examples. Frames 1,11,21,31 from the bus sequence
in the dataset (A. Y. C. Chen and Corso 2010). In row order, partitions obtained with
the SWA method, the GBH algorithm and the proposed Trajectory BPT. Each region
is colored with a unique color that is consistent over time. Each partition involves
roughly 100 regions.

in Fig. 7.7 for different number of regions. The introduction of trajectories into the
segmentation process has allowed the creation of temporally stable regions spanning
throughout longer time intervals than other methods. As we shall see in the follow-
ing sections, error figures in Fig. 7.7 represent only a lower bound on the proposed
measures and, therefore, better partitions can be found.

For subjective evaluation, we show the partitions for three methods in Fig. 7.8. The
sequence is particularly challenging as it involves small details and severe occlusions.
State of the art algorithms have difficulties, but the Trajectory BPT algorithm is able to
preserve boundaries such as the front fence. Although horizontal motion is dominant
in the sequence, the TBPT is also able to track thin vertical structures.

To see how the algorithm behaves as the hierarchy progresses, Fig. 7.9 shows results
on two sequences from the dataset used in (Sundberg et al. 2011). The airplane se-
quence is specially challenging because many areas have similar and homogeneous
colors. As can be noticed, at finer levels of the hierarchy, boundaries are still well
preserved. At coarser levels, regions with different semantic may be merged. In the
bowling sequence, the color contrast is higher, but difficult challenges arise because of
big displacements, appearing objects and specular reflections. The Trajectory BPT is
able to track most of the objects of the scene and the produced regions have semantic
homogeneity.
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Figure 7.9: Two examples of the segmentation hierarchy. For each block, the first row
contains frames 1, 5,10 and 15. The rows 2,3 and 4 show segmentations with 100, 40
and 10 segments respectively. A segment is uniquely colored across frames.

Computational cost The CPU time is governed by the complexity of the Trajectory
BPT priority queue used to handle the distance values. Its complexity is O(E logE)

where E is the number of edges between regions. Consumed memory is dominated
by the storage of color and motion models for each region. Since region adjacency
is sparse, the number of edges E can be considered proportional to the number of
regionsN . Therefore, the overall algorithm complexity isO(N logN) in time andO(N)

in memory. Overall, the algorithm is able to process sequences of 3 million voxels in
around 1000 seconds using less than 20GB of memory in a CPU.

7.3 Relative Depth Ordering

Once a hierarchical representation for the whole sequence is constructed using the
TBPT, the depth ordering process can proceed as in Sec. 6.3. The fact that regions in
the TBPT have an additional dimension does not affect the algorithm. Nevertheless,
slight changes are introduced in the occlusion estimation process and also in the costs
used to cut the tree. Since a segmentation is available in every considered frame, unlike
in the previous case in Sec 6.3, where the tree was only built for the central frame, it
is possible extend the occlusion estimation to several frames and it is also possible
to evaluate the performance of the algorithm using different window lengths. In the
following sections all particularizations for the video case with respect the single frame
case are exposed.
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7.3.1 Tree Cut for Motion Segmentation

When pruning the tree constructed for frames, a parametric flow model was fitted to
each region on a single frame and the tree cut minimizing a sort of distortion error
was found. In the video case, it is straightforward to extend the cost to include the
motion distortion to several frames. Since a tree cut attempts to find the region best
fitting to a certain model, it is possible to see the cut as a motion segmentation step,
where moving objects are supposed to be found. There are many approaches that
tackle motion segmentation in the literature. Two of the most common techniques
are either spectral clustering (Brox and Malik 2010) or low-rank factorization methods
(S. R. Rao et al. 2008). In this context, we propose a different approach using tree cuts
and parametric motion models. Defining the energy for a region Ri as ei following the
tree cuts energy (5.15):

ei =
∑
t

∑
q=t±1

∑
p∈Ri

∣∣wt,q(p)− w̃t,q
Ri

(p))
∣∣+ λ (7.15)

where the summation is done over all time instants t where Ri is present. wt,q(p) =

(ut,q(p), vt,q(p)) is the motion field from frame t to frame q in a pixel p = (x, y) of frame
t. λ is a constant penalty term in each region which controls oversegmentation. The
8-parameter flow model is defined as in Eq. (3.37) and is composed 8-parameters that
define a planar surface under rigid motion.

The flow models correspond to motions subject to planar surfaces and projective cam-
eras. Although real objects are not flat, if their distance to the camera is relatively high,
they can be considered as such. Results of the tree cuts with respect to the merging
sequence partitions and some state of the art on motion segmentation are shown in
Fig. 7.10 for the MOSEG dataset (Brox and Malik 2010) 2 with 10 frames. The improve-
ment of tree cut with respect to the merging sequence is clear on the pixel error where,
for the same degree of oversegmentation, the tree-cut algorithm finds partitions with
less average error than its corresponding merging sequence partition. On the region
error the improvement is not so clear, due to the fact that missed objects contribute
to high error penalties. Therefore, missing an object has a more severe impact on the
performance than being more accurate on the segmentation. Since missed objects are
normally small, they are normally missed in the tree creation process. Hence, both
performances TBPT-ms and TBPT-tc are similar because even with the tree cut, these

2The matching process of (Brox and Malik 2010) assigned segments based on their common overlap.
In case of subsegmentations, small objects could be missed so we changed the algorithm to use the
Jaccard index (intersection over union) instead of the union.
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Figure 7.10: Motion segmentation performance evaluation. Top: Average pixel (left)
and region (right) error for the TBPT on the MOSEG dataset with 10 frames. The suffix
’ms’ refers to partitions of the merging sequence, while ’tc’ refers partitions obtained
with optical flow based tree cuts. Bottom: error in each of 26 sequences composing the
MOSEG dataset.

objects cannot be recovered. Although the pixel error for the TBPT is sometimes worse
(Brox and Malik 2011; Ochs and Brox 2011), it offers a clear improvement on region
error. Comparison with (Sundaram and Keutzer 2011) deserves a special attention as,
like the TBPT, the produced result is a hierarchy of regions using ultrametric contour
maps. Error figures show that the TBPT improves the UCM in both measures. Tree
cuts show a better performance, and in the majority of cases, it recovers the salient
objects with more accuracy than the merging sequence partitions.

When a segmentation is available, the occlusion relations can be estimated. Since a
flow model is available for each frame, occlusion estimation can incorporate region
information as explained in Sec. 3.2.
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7.3.2 Occlusion relations for video

The method for incorporating region information into occlusion detection is showed
in Eq. (3.35) in Sec. 3.2. Nevertheless, a short summary is given for the reader’s clarity.
The process is similar as with the single frame case in Sec. 6.3. With flow models w̃a,b,
a, b = t, t+ 1 available , a pixel becomes occluded if:

Λ (p) 6= Λ
(
p+ w̃t,t+1(p) + w̃t+1,t

(
p+ w̃t,t+1(p)

))
(7.16)

Where Λ is an operator which maps each pixel to a region label of the partition Po. That
is, a pixel is occluded only if their compensating flows end up in a different region
than the original pixel. Performance of the occlusion detector (3.35) is shown in the
corresponding Sec. 3.2. When occluded points are available, occluding points and
relations can be established as the single frame case in Eq. 3.43, by forward-backward
flow compensation.

7.3.3 Depth ordering

Prior to discussing the depth ordering algorithm for video sequences, it should be
stated that depth ordering assumes that the order of the objects is constant through-
out the sequence. That is, objects do not change their relative depth in the examined
frames. This may be somewhat limiting, but for short video sequences this assumption
normally fulfills.

The only difference between the video and the single frame approach is that occlusion
relations are present in all the frames of the sequence and not only in the reference one.
That is, whether or not the central frame has occlusions, if occlusions appear in some
other frame it is possible to relate spatio-temporal regions in all the other parts of the
video. This is clearly an advantage if small motions are present, as one frame may not
contain sufficient information. This can also be a drawback depending on the kind
of motion in the scene and the length of the video sequence. If objects change their
depth ordering during the sequence, including occluding relations of all frames may
introduce conflicting depth relations between objects.

The process is as follows. When a window of length L = 2 ∗W + 1 is segmented, there
are many possibilities to handle motion occlusions. To assess the performance and the
redundancy of motion occlusions with different video lengths, a variable window of
length O = 2 ∗ P + 1 centered at frame W of the segmentation window is considered.
Occlusion relations occurring outside the windowO are discarded. Therefore, for each
input sequence and a reference frame there are two parameters of the system: The
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7.3. Relative Depth Ordering

length of the segmentation window L and the length of the occlusion window O. We
will denote the methods as TBPT(L,O).

The depth ordering algorithm is essentially the same as in single frames. A detailed
explanation can be found in Sec. 6.3, but here the main ideas are reproduced. Once the
parametric flows are found for the video using a first tree cut with energy Eq. (7.15),
occlusion relation within the window of length O are estimated. These occlusions
are then used for a second tree cut to obtain a new partition, the region of which are
ordered according to their relative depth. The ordering is performed by constructing a
depth order graph (DOG) using motion occlusions and inferring a global consistency
eliminating possible conflicts, just as in Sec. 6.3.

7.3.4 Results

Evaluation of the system is a little more complex in the video case than in the single
frame case because there are many factors coming into play. For instance, the length of
the video sequence that should be segmented may be of crucial importance. For short
sequences, there will be less motion information than for longer sequences (imagine a
stationary objects that remains still all the sequence but not in some frames) although
longer sequences may be more difficult to segment since region models for the TBPT
may not adjust to the real data. Additionally, even if the window length Lis changed,
the set of occlusion relations considered may also be varied by changingO. Again, con-
sidering occlusion relations in short time lapses may not be sufficient to relate some
moving regions if movement is too small. However, considering all relations may in-
troduce conflicts which may be solved erroneously during the depth ordering process
using the DOG.

To deal with these issues, the following experiments are designed: the LDC and GDC
from Sec. 4.2 are evaluated varying either the length of the segmented video and the
length of occlusions considered. That is, L = 3, 5, 7, 9 and O = 1, 3, 5, 7, 9 and in all
cases O ≤ L. The considered occlusions are always centered in frame W = 0.5(L− 1).
As with single frames, the BMDS dataset is used. Results are shown in Fig. 7.11 for
LDC and the GDC measures.

By looking at the figure, several conclusions can be drawn. First, for each window size,
the length of the occlusion window O does not seem to vary the system performance.
This can be interpreted in two ways:

• The system is stable to the introduction of more cues, handling correctly the in-
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Figure 7.11: LDC and GDC results, left and right respectively, for a series of segmentation windows
and different occlusion windows. Each approach is named TBPT(L,O) where L refers to the segmenta-
tion window and O refers to the occlusion window considered. Numbers between brackets indicate, in
order, the classification score, the detection score and the ORI index
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troduction of possible conflicting cues as O increases. When considering large O,
it is unavoidable to introduce wrongly estimated occlusion relations. Anyway,
the conflict resolution step in the DOG is able to maintain the same performance.

• Occlusions of one single frame are consistent with the occlusions of the rest of
the sequence. That is, objects follow a coherent motion throughout the sequence,
without changing depth in the analyzed sequence, confirming the initial assump-
tions on object movement and relative depth constancy. If objects changed depth,
some occlusion relations would indicate opposite depth relations, making the
task of depth ordering impossible. Of course, only short sequences are analyzed
and these cases rarely occur. Nevertheless with longer sequences variable depth
cases should have been considered.

Second, by looking across several windows length L, one can see that the detection
score of all the system is more or less stable. In the LDC case, around F = 0.45, and
in the GDC case around F = 0.30. Of course, following the trend of static images
and single frames, the GDC score is lower than the LDC. Note that, considering the
short video length, the segmentation performances are stable. This observation opens
the door to design a streaming approach for the TBPT: as the quality of the tree stays
approximately the same regardless of the segmented window length, a full video se-
quence could be divided and processed in small chunks without loosing quality. Com-
paring the video case with the single frame case (F = 0.44 in the best case), but , the
detection score is slightly better in the video case, showing that the extra information
of the video signal helps to the segmentation process.

Moreover, the classification score stays also constant, around F = 0.28 for the LDC and
F = 0.18 for the GDC measure, giving an ORI index of around ORI=0.3, much better
than the best case in single frames (ORI=0.25). That is explained by the improvement
of the occlusion detection process, where region information was introduced to make
motion and color edges coincide spatially. Although these measures improve state of
the art algorithms, performance is still far away from human perception.

To verify the behavior of the system, LDC and GDC results are also shown for the
MOSEG dataset (Brox and Malik 2011) in Fig. 7.13. The chosen parameters are L = 10

and O = 10. This dataset is easier than BMDS in the sense that it is specially designed
for motion segmentation, whether BMDS is designed for general video segmentation
(using color, texture and other cues) and not only with motion cues. Therefore, in
MOSEG there are always moving objects which can be clearly distinguished by their
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Figure 7.12: LDC and GDC results for the MOSEG dataset. The notation of the method
TBPT(10,10) is the same as in Fig. 7.11

motion (regardless of their color), so it is expected that motion occlusions provide
more reliable depth orderings. Indeed, the system presents an ORI index of 0.66, way
over the ORI indexes for BMDS.

This high ORI index is explained by the kind of motions present in the dataset. Se-
quences are mainly comprised by moving cars in roads and people walking, so scenes
present easier situations than in the BMDS sequences. In Fig. 7.13 some examples
are shown, showing that motion occlusion indicate the correct ordering in most of the
cases.

7.3.4.1 Qualitative results

As done in the previous two cases in images and frames, visual results are represented
for several situations. This type of analysis helps to see in which situation the systems
works or in which scenes the algorithm has difficulties. Fig. 7.14 shows a few exam-
ples of the BMDS sequences with varying illuminations, strong textures and different
motion types. Results show that the system is able to cope with almost all situations,
and the overall structure is seen in most of the cases. Of course, there are a few wrong
estimated depth relations but in general the main depth relations are captured. Note
that, different from single frames, the system orders by depth in the whole sequence
rather than just in individual frames.
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Figure 7.13: Examples of depth ordering in the MOSEG dataset. From left to right: ref-
erence frame, groundtruth depth ordering and results for first, sixth and tenth frame.

Although here only a few examples are shown, the general behavior for the system
can be grasped for several situations. For example, in static scenes with a moving
camera (rows 3 and 5) the algorithm still identifies the regions on the video which
present a high change in depth, leaving smooth gradients untouched. In the third row,
the buildings are extracted because they are occluding the sky, while the water is not
identified with different depths, as its depth fades away and no occlusions are present.

In other situations with moving objects, the algorithm is able to handle most cases, but
there are some sequences in which the algorithm has difficulties:

Non-rigid motion Specially seen in sequences where there exist people walking, the
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Figure 7.14: Series of results in the BMDS dataset. Results are shown using the
TBPT(9,9) system, but only the three central frames are shown for clarity. Original
images are on the left, and depth results are on the right. See how the system is able
to handle many situation, but in sequences with high rotations (two last ones) some
spurious and wrong orderings are obtained.
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algorithm breaks objects into small parts (take for example rows 1,4,7 and 9) to
capture self-occlusion. Specially arms and legs are broken from the body and
assigned their own depth order. This may be undesirable in some systems, al-
though it may also be seen as an advantage to have a more precise system.

Rotations Looking at the two last rows, when strong rotations are present (the dog
tail in the next-to-last row and the wheels in the last row) spurious responses are
created and, even, wrong depth relations are inferred.

Overall, the system can be considered to be well-behaved. Most of the situations are
correctly handled and the main structure of the scene is correctly capture by the algo-
rithm.
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8 Structure from Motion

All along this thesis depth estimation was limited to infer the relative depth order of
the objects in the scene. By using only low level cues it has been possible to determine
local depth relations between regions in the image. By means of a globalization process
local relations are extended to create global consistent relative depth map orders. Nev-
ertheless, the system has been limited to obtain flat objects and relative depth, without
absolute references. Precisely, in video sequences it is possible to estimate depth be-
yond relative depth if some suppositions are fulfilled. The first, is that there must exist
some kind of apparent motion. Either the camera or the background should move
with respect each other so that structure from motion can be inferred. The second is
that this motion has to be rigid if, the algorithm complexity should be kept moderate.

In Sec. 7.1 a review of algorithms retrieving depth maps from video is exposed. Sev-
eral ways exist to tackle the depth estimation on sequences. Two of the most common
approaches are 1) to describe the video using a depth ordered layered representation
or 2) to apply structure from motion algorithms. As it would be seen in the open prob-
lems and future work, still much work needs to be done when estimating structure in
videos with multiple moving objects. The purpose of this section is to give the first
steps towards the design of a system that exploits optical flow to compute structure
from motion of a scene, under the supposition that the scene is static.

The perspective of this chapter is somewhat different as the the approach followed in
previous sections, where relative depth ordering between objects is estimated. Whereas
estimating relative depth requires a segmentation step, structure from motion does
not need region information to recover depth. Instead, using only pixel-based infor-
mation, structure from motion algorithms are able to recover a dense depth map for
a static scene. Segmentation techniques used throughout this thesis, namely binary
partition trees, are not used in this part. As a future work, relative depth ordering us-
ing segmentation information and structure from motion will be combined to produce
dense depth maps for arbitrary moving sequences. Nevertheless, since structure from
motion can be used alone for static scenes, we present the algorithm and intermediate
results in the following sections.

The proposed algorithm follows a similar strategy than many state of the art structure
from motion algorithms, specially (Pollefeys et al. 2004). The difference of the pro-
posed algorithm with respect to the others is that here only optical flow information
is used. In this way, we obtain a much denser coverage of tracked points throughput
the video sequence. This allows us to have more information to improve reliability
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Figure 8.1: Block diagram of the system to retrieve structure from motion.

of the structure estimation and it also makes the transition from sparse depth map to
dense coverage much easier. The following sections discuss the proposed approach to
recover depth from videos recorded using only one point of view.

8.1 Structure from General Motion

In practical sequences recorded with hand held cameras, the point of view normally
moves and rotate freely, producing some motion patterns which can be exploited to
derive the depth structure. Additionally, if the scene is static and rigid, it is possible to
recover directly the spatial structure by using only motion information.

The approach of the proposed system can be seen in Fig. 8.1 and a detailed explanation
is provided in the following sections. The proposed system has many similarities with
the work (R. Hartley and Zisserman 2004), although some improvements are made in
many stages of the algorithm. This section is, to the moment of publication, ongoing
work which would be used in combination with motion occlusions exposed in Chapter
7 so as to handle depth reconstructions for sequences with arbitrary movements and
arbitrary object movement. In a nutshell, the system uses estimated trajectories from
optical flow to find reliable point tracks. From the first two frames, the structure of the
video is built incrementally, one frame at a time until all frames are processed. Since
the camera calibrations not known to the system, an autocalibration step is needed
to ensure a proper reconstruction. In the incremental structure computation and the
autocalibration steps, non-linear refinement of the obtained solutions is performed
by means of bundle adjustment. Since the estimated depth maps are sparse, a post
processing step is needed to generate dense depth maps for each frame. Prior to the
description of the system, a brief introduction to the pinhole camera model and homo-
geneous coordinates follows, as they are central for the reconstruction algorithm.
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Figure 8.2: Pinhole camera geometry. Figure extracted from (R. Hartley and Zisserman
2004).

8.1.1 Pinhole Camera Model and Homogeneous coordinates

Depth reconstruction is considered to be the inverse problem of 3D to 2D projection.
By having a series of images of the same object/scene, it is possible to retrieve the
absolute position of each point in the object (up to a scale factor). Therefore, under-
standing how 3D points are projection onto the camera plane is a key aspect of the
development of reconstruction algorithms. Suppose that the camera center is at the
point C = (0, 0, 0) and it is looking in the positive Z-direction. A point in space
X = (X, Y, Z) should be projected to a plane Z = f , where f is known as focal length.
The expression of the projection is x = (fX/Z, fY/Z)>, see Fig. 8.2.

The above expression can be expressed in matrix notation with the use of homoge-
neous coordinates. Homogeneous coordinates were introduced in (Möbius 1827) to
allow a compact representation for infinite points. The point X in a three dimensional
euclidean space corresponds to a point λ(X, Y, Z, 1) in the projective space with λ 6= 0.
Points at infinite are represented in the projective space with their last coordinate equal
to zero, λ(X, Y, Z, 0). This kind of representation is suitable to represent points at in-
finity with finite coordinates (unlike normal, or euclidean coordinates), and are very
widely used in structure from motion algorithms. From now on, assume that point co-
ordinates are expressed in homogeneous coordinates, whereas euclidean coordinates
will be explicitly mentioned. The projection equation in matrix notation is:

λx = PX = K [I3|03]X (8.1)

K =

f 0 0

0 f 0

0 0 1

 (8.2)
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where I3 is the 3 by 3 identity matrix and 03 is a zero vector with three coordinates and
λ is a non zero factor. In real situations, the camera is not at the world center (0, 0, 0)

but has some translation and rotation. Moreover, the camera calibration matrix K

may have varying focal lengths, projection centers and skew parameters. For arbitrary
camera internal parameters, and arbitrary positionC and orientation R, the projection
of a point X becomes:

λx = PX = K [R| −RC]X (8.3)

K =

fx s cx

0 fy cy

0 0 1

 (8.4)

where R is the rotation matrix of the camera,C is the world camera center and (cx, cy)

is the image projection center. The skew s is normally considered s = 0 and focal
lengths fx, fy are considered equal in practical cases fx = fy = f . With Eq. (8.3) of
the projection of a single point in one image it is possible to relate the projection of the
same point to two (or more) different images.

8.1.1.1 Example Application: Motion Parallax

Motion parallax appears when the camera is moving relatively to an object, and this
object/region presents large motion differences, generally when the observed objects
occupy high ranges of depths. For example, if one travels by train and looks at the
landscape, near objects appear to move faster than objects far away. To show the appli-
cations of the pinhole camera mode, the motion parallax case will be developed here,
showing its equivalence to stereo/disparity estimation algorithms.

In this section it is assumed that the motion of the camera is restricted, with only an
horizontal translation affecting the point of view. Assume that the camera is looking
to a static scene and that it moves laterally, without rotating or zooming. With the
pinhole camera model the projection of a 3D point X to a point x in the image plane
is given by the projection matrix: λx = PX = KR [I3| − t]. The camera skew is s = 0,
and the focal length f and the principal point in the image cx, cy are known. All these
parameters are encoded as in Eq. (8.4).

The rotation matrix R is indicates the rotation with respect the three axes x, y, z and
for now let’s assume that R = I3. Additionally, if the camera center is at the origin
of coordinates, t = (0, 0, 0), the projection of a 3D point to a 2D image point becomes
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Camera 1

Camera t

Camera 2

Camera t + δt

Depth (z-axis)

Time or x-axis

Figure 8.3: Motion parallax experiment setup and its equivalence to stereo problems.
Two different cameras (either in different x-position or in different time instants) look
at a static object in front of them.

λ1(x, y, 1) = (fX, fY, Z). Converting from homogeneous coordinates to euclidean, the
projection becomes:

(x1, y1)> =
(x
λ
,
y

λ

)>
=

(
X

Z
,
Y

Z

)>
(8.5)

It is possible to see that the position of a point in the image is inversely proportional
to its depth. Assume that the camera moves, or in the stereo case a second camera is
placed with the same orientation than the first camera but with a displacement of d
units only in the x-coordinates. The displacement vector becomes t = (d, 0, 0) and the
projection of the same 3D point to the other image is:

λx2 = P2X = K
[
I3| − (d, 0, 0)>

]
X = K(X − d, Y, Z)> (8.6)

If the calibration matrix is known, it can be ignored, so the point can be expressed in
euclidean coordinates as x2 =

(
X−d
Z
, Y
Z

)
. If δx = − d

Z
, the point x2 can be expressed

as x2 = (x1 + δx, y1). That is, knowing that two images are taken by two cameras
displaced by a pure horizontal translation, the horizontal displacement of a point in
the two images is a direct indicator of the absolute depth.

In fact, the previous paragraph just proves mathematically the effects observed in mo-
tion parallax commented in Sec.2.2. Observing that the displacement δx = d

Z
is in-
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8. STRUCTURE FROM MOTION

Figure 8.4: The two right images are the left and right original images respectively.
The center right shows the estimated motion between images, with more saturation
for larger motions. The right image shows the disparity image, where brighter areas
correspond to closer regions.

versely proportional to the depth, near objects (small Z) will produce bigger displace-
ment, while objects with big Z will seem rather stationary.

In Fig. 8.4 a clear example of this effect can be seen. In this case, disparity is di-
rectly estimated from optical flow. Nevertheless, efficient algorithms exist for the
stereo/motion parallax case. Optical flow needs to estimate two variables per pixel,
which are the displacements of the pixel from one image to another. Since in motion
parallax/stereo only displacements in the x-direction appear, algorithms only need to
estimate one variable per pixel. The general approach to estimate disparity is very
similar to optical flow: using a variational approach relying on data and on smooth-
ness constraints, see Eq. (3.22). Some works tried to compare both approaches, such as
(Durgin et al. 1995) and (Miled et al. 2009) where disparity is closely related to motion.
Literature on stereo disparity estimation is vast, and current state of the art techniques
offer very accurate and fast approaches, see the surveys in (Barnard and Fischler 1982)
and (Scharstein and Szeliski 2002) for a detailed literature enumeration.

8.1.2 Reliable trajectory tracking

After reviewing a particular application of the pinhole camera model, we are going
to address the case of general motions. To relate the same point between images, the
point should be tracked across frames from a video. Assume that optical flow informa-
tion is available and trajectories are already estimated for each video sequence as in
Chapter 7. Trajectories relate a point x(t) in frame t with L other consecutive frames.
Since it is assumed that the scene is static, the same space point X is seen in image
coordinates x(t), . . . ,x(t + L − 1). To avoid tracking outliers, trajectories with L < 3

are discarded. Since trajectories may not cover the whole video domain and may only
be present in a subset of the frames, N-view factorization methods such as (Tomasi
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x1 x2

e2e1

C1 C2

X

Epipolar plane

Epipolar lines

Figure 8.5: Epipolar geometry illustration. A pointX projected onto two image planes
create a plane with the camera centers. The points where the line joining the two
centers intersect with the image plane are called epipoles.and correspond to the right
and left null space of the fundamental matrix.

and Kanade 1992) and (Triggs 1996) cannot be applied. Instead, an algorithm which
incrementally builds the video structure frame by frame is proposed.

The algorithm idea is to first extract projection matrices and spatial structure from
relations of the first two frames of the video. After that, frame by frame, each camera
projection matrix is obtained as well as the spatial position of appearing points. As the
first step, two view structure computation is a key aspect of the system, so a detailed
explanation of the two-view geometry and the algorithm strategy is given below.

8.1.3 Two View Geometry

When the same space point X is seen in two images with projections x1 and x2, it is
possible to relate the projection of each image in the following way. The two camera
centers, namely C1 and C2, and the point X form a plane in the three dimensional
space as shown in Fig. 8.5. This geometric formation is known as epipolar geometry
and can be algebraically expressed using the fundamental matrix. Multiple properties
can be derived from the epipolar geometry, but here only the most important will
be mentioned, see (Z. Zhang 1998) for a complete explanation. The most important
property of the epipolar geometry is that the following relation holds:

x>2 Fx1 = 0 (8.7)
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8. STRUCTURE FROM MOTION

with F being the fundamental matrix which has rank 2. The fundamental matrix is
estimated for the first two frames of the video using the normalized eight point algo-
rithm (R. I. Hartley 1997) which proved to be numerically very stable. Knowing only
the matrix F is the first step towards structure recovery. From F the pair of projection
cameras of the two images can be retrieved, (Sturm 1997). The two projection cameras
are known as canonical cameras, and their formal expression is:

P̃1 = [I3|03] (8.8)

P̃2 = [EF|e2] (8.9)

where e2 is a vector such that e>2 F = 0 and it is called the epipole on the second image.
The matrix E is a skew-symmetric matrix formed with e2 = [ex, ey, ez]:

E =

 0 −ez ey

ez 0 −ex
−ey ex 0

 (8.10)

When the two canonical projection matrices are found, it is possible to triangulate the
point position to find the 3D coordinates of all points X̃ the projection of which is
present in the two images. The used algorithm (Kanatani 2008) is an optimal trian-
gulation method, which minimizes the projection error of the point correspondences.
Other algorithms such as (R. I. Hartley and Sturm 1997) were tried, but the first pro-
duced more stable results, (Kanatani, Sugaya, et al. 2008). To understand the basics
of optimal triangulation, a brief explanation follows. The previously cited works con-
sider that the projection of a 3D point to each image is contaminated by additive Gaus-
sian noise:

x̃1 = x1 + σ1 = P̃1X̃ (8.11)

x̃2 = x2 + σ2 = P̃2X̃ (8.12)

where x̃1,2 are the observed projections and x1,2 are the projections under the absence
of noise, represented by vectors σ1,2. Optimal triangulation finds a space vector X̂
and two ’optimal’ projections x̂1, x̂2 such that it minimizes the following error:

|x̃1 − x̂1|2 + |x̃2 − x̂2|2 (8.13)

|x̃1 − P̃1X̂|2 + |x̃1 − P̃2X̂|2 (8.14)

Eq. (8.13) is the basic of bundle adjustment algorithms (Triggs et al. 2000) and can
be easily generalized to several images instead of two. The common name in the
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8.1. Structure from General Motion

literature for Eq. (8.13) is ’reprojection error’ as it measures how the true space point
deviates from their ideal projection in both images due to noise. It follows from (R. I.
Hartley and Sturm 1997) that for the case of two points in two images, there exists a
special (and somewhat simple) solution to Eq. (8.13) which involves solving a low-
degree polynomial. The same is not true when the reprojection error is considered in
several images. Extensions to multiple image should be done in other ways, see Sec.
8.1.4 for more details. The general cases of reprojection error and bundle adjustment
are essential to structure recovery due to the finite precision of algebraic methods in
computers and they should be used in all the systems (Triggs et al. 2000).

Up to this point, we have recovered the camera matrices for the first two frames of a
video, along with the structure of the point trajectories visible in those frames. Nev-
ertheless, this reconstruction is not unique. Consider a 4 by 4 invertible matrix H,
it can be shown that the fundamental matrix F representing a pair of camera ma-
trices (P1,P2) and (P1H

−1,P2H
−1) is the same. This can be seen from the fact that

x1 = P1X = (P1H
−1)(HX) = P̂X̂ . Therefore, the same image projection x1 is per-

formed by the point-camera pairs (X,P1) and (HX,P1H
−1). This facts also holds for

the second image.

Therefore, recovering the structure from two views can only be achieved up to a trans-
formation of the 3D-space, represented by the rectifying homography matrix H. For
this reason, the initial structure computation is known as projective reconstruction
and may be very different from the real (euclidean) reconstruction. The proposed al-
gorithm finds the 3D structure of the scene as follows:

• Find a projective reconstruction for the whole video sequence, Sec. 8.1.5

• Apply autocalibration to find a rectifying homography H, Sec. 8.1.6

• Transform the camera matrices and the points to obtain an euclidean reconstruc-
tion, Sec. 8.1.6

When the structure is recovered for the first two frames, camera poses and the spatial
position of other points are obtained incrementally, one frame at a time. Since triangu-
lating points and finding camera matrices involve complex algebraic operations, the
solutions obtained are refined at each step with non-linear optimization. A special case
of non-linear optimization in structure from motion algorithms is known as bundle ad-
justment and allows to improve initial solutions. Since improvements are noticeable
(Triggs et al. 2000), bundle adjustment is included in the proposed system and a brief
explanation follows.
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8.1.4 Bundle Adjustment

Although bundle adjustment is not a particular step of the system, it is included in
every step of the system where an algebraic decomposition is made. That is, each time
the systems needs to perform a singular value decomposition, an inverse or any kind
of matrix factorization (LU, Cholesky), a bundle adjustment step is added to prevent
precision errors to propagate to subsequent steps. If the precision of actual computers
was not an issue, bundle adjustment would not be necessary. But, since modern CPU
have a finite precision, errors propagate and can possibly cause the system to fail.

The main idea of bundle adjustment is to refine an initial solution of a set of parame-
ters θ to minimize a geometric magnitude, such as the projection error, which can be
non-linear with θ. Bundle adjustment is an iterative minimization technique applied
to geometric cost functions (R. Hartley and Zisserman 2004). Due to the vast literature
on this subject, the reader is referred to the previous citation for a detailed survey on
iterative methods. Here only the bundle adjustment case is explained. In structure
recovery, the most common magnitude to minimize is the so-called reprojection er-
ror. Consider a set of 3D points Xi and a set of observed projections of these points
xil, where the subscript l refers to the view the projection belongs to. The bundle ad-
justment finds projection matrices and 3D points which minimize the distance of the
projection with the observed values:

min
Pl,Xi

∑
l

∑
i

D(xil,PkXi) (8.15)

where D(·) is a distance function (commonly the euclidean). Generally, projection ma-
trices and points are parametrized with camera parameters such as position or rotation.
In that case, the algorithm finds the optimal position and rotation angles such that Eq.
(8.15) is minimized.The minimization needs a starting point close to the minimum to
maximize the odds of covergence (although not guaranteed) and it is carried out us-
ing a Levenberg-Marquardt algorithm exploiting the sparse structure of the problem
(Triggs et al. 2000). Many solvers are available but, for this thesis, the solver (Ceres
Solver) is used.

8.1.5 Incremental Projective Structure Recovery

Assume that we observe a set ofN point trajectories, with each trajectory ti = {x(t0i) . . .x(t0i+

Li−1)} formed by a set of Li points present in consecutive frames from t0i to t0i+Li−1.
When the initial projective structure is recovered from the first two frames, each of the
trajectories with t0i = 0 has a corresponding point in space X̃i.
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8.1. Structure from General Motion

When moving to the third frame, there will be trajectories with t0i < 2 that have
already a position X̃i triangulated because their projection was present in previous
frames. If there is a sufficient number of trajectories, the projection matrix for the third
frame can be linearly obtained. Consider that a point of a trajectory ti is observed in
the third frame. For notation simplicity we will call this point in homogeneous coor-
dinates x = (x, y, 1), its corresponding space point X and the projection matrix to be
recoverd as P = [P>1 ,P

>
2 ,P

>
3 ] with P1 being one row of the projection matrix. By

knowing that λx = P, it is possible to rewrite the previous equality as:

P3Xx− P1X = 0 (8.16)

P3Xy − P2X = 0 (8.17)

Therefore, each point contributes to two equations constraining the matrix P, so a
total of six known points suffice to find P. In practice many more correspondences are
known, so a least squares solution is found by singular value decomposition (SVD).
As said before, after SVD, a bundle adjustment step to refine P is performed so that

P∗ = arg min
P

∑
i

D(xi,PXi) (8.18)

with P, a 3-by-4 matrix, parametrized using 11 variables, as the scale factor does not
matter. After the optimum is found, the projective camera pose is obtained for the
third frame, P̃3 = P∗.

Once the projection matrix is found for the third image, there may exist some trajecto-
ries starting in the second frame that may not have a corresponding space point. As
the projection matrices P̃2 and P̃3 are known, it is possible to follow a similar strat-
egy than Eqs. (8.16) and (8.17) to find a space point for each trajectory. Since a space
point in homogeneous coordinates has four variables, two projections are sufficient to
triangulate its spatial position. This process can be repeated for each new frame on the
sequence, obtaining all matrices P̃l and all 3D projective positions Xi for all trajecto-
ries and views of the sequence. The process of incremental structure recovery can be
summarized into the following steps:

• Begin with projective cameras P̃1 and P̃2

• For each new view l:

– Obtain a camera matrix P̃l for view l from triangulated points

– Refine P̃l with Eq. (8.18)
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– Obtain new point triangulations using the obtained camera matrices

• Process the next frame if available

Once all points and cameras are obtained (up to a projective transformation) it is then
possible to find a rectifying homography H to recover an euclidean reconstruction
(autocalibration). Prior to that, a global projective bundle adjustment is performed, to
refine the found solutions and to prevent drift errors to accumulate by minimizing:

min
P̃l,X̃i

∑
l

∑
i

D(xil, P̃lX̃i) (8.19)

once the refinement is done, it is possible to proceed to the autocalibration step of the
system. The minimization is done by keeping the first camera matrix fixed, as it used
as a reference frame.

8.1.6 Autocalibration for Metric Reconstruction

Once the camera matrices are estimated in all views and the spatial structure of the
points is also recovered, it is likely that the recovered structure does not respect the
real world geometry. That is, parallelism, distances and other geometric magnitudes
are not respected in projective transformations. The goal of autocalibration (or self
calibration) is to find the transformation that maps the recovered projective structure
and camera matrices to the real ones. In other words, the goal is to recover the camera
internal K and external parameters (position and rotation) for each projection view.
There are many approaches to self calibration, but they can be divided into two kinds:

• Approaches that use the Kruppa equations (O. D. Faugeras et al. 1992)

• Approaches that use the absolute quadric (Triggs 1997)

Since the former kind of methods involve a large amount of non-linear programming,
using the absolute quadric for self calibration proves to give more stable results (Ponce,
McHenry, et al. 2005). The absolute quadric is the dual image of an imaginary point
conic at infinity π∞, and the points belonging fulfill X2 +Y 2 +Z2 = 0, see (Chandraker
et al. 2007) for a detailed explanation and Fig. 8.6 for an illustration of the concept. The
absolute quadric can be represented by a 4-by-4 matrix Ω∗∞ and when the obtained
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Plane at infinity

KK

KK

KK

Camera 1

Camera 2

Camera 3

Absolute conic

Figure 8.6: Illustration of the dual image of the absolute conic. Regardless of the cam-
era pose, the dual conic project equally to each camera view plane. The conic formed
in each plane can be expressed as the matrix KlK

>
l

camera matrices correspond to a metric space it can be expressed as:

Ω∗∞ = diag(1, 1, 1, 0) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 (8.20)

if the recovered camera matrices do not correspond to a metric reconstruction (which
is likely the case for the initial reconstruction), the absolute quadric matrix will have
another form. The most important property of Ω∗∞ is that it fulfills:

KlK
>
l = PlΩ

∗
∞P>l (8.21)

where Ki is the matrix encoding the internal camera parameters for each view l, see
Fig 8.6. In a projective space, the matrix Ω∗∞ is a rank-3, symmetric positive definite
matrix. If some constraints about the camera calibration parameters K are known, a
set of linear equations can be imposed on Ω∗∞ coefficients. Depending on the number
of constraints on Kl, the number of views needed to find Ω∗∞ may vary from 2 to 10
(R. Hartley and Zisserman 2004). In this thesis, we follow the work of (Pollefeys et al.
2004) to cope with critic cases.

We first assume that Kl = K ∀l, so internal parameters are constant. The idea is to
transform each camera matrix by a ’normalizing’ matrix K̃ = K−1

0 K introducing a
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priori knowledge of the parameters so the matrix K̃K̃> can be expressed as:

K0 =

w + h 0 w
2

0 w + h h
2

0 0 1

 (8.22)

K̃K̃> =

 1± 9 ±0.01 ±0.1

±0.01 1± 9 ±0.1

±0.1 ±0.1 1± 9

 (8.23)

where w and h are the video width and height in pixels respectively. As K̃K̃> is
symmetric, each view contributes to a total of six equations (the upper part of the
matrix). Moreover, the absolute quadric is a 4 by 4 symmetric matrix which can be
parametrized with 10 coefficients, so two views may be sufficient to find K̃, and thus
K. Normally, however, many more views are needed as self calibration is very sensi-
tive to noise. In the proposed algorithm we use all available frames to find a solution
for Ω∗∞. For a projection matrix P = [P>1 ,P

>
2 ,P

>
3 ], and combining Eq. (8.21) and Eq.

(8.23), the six generated equations are:

1

β
(P1Ω

∗
∞P

>
1 − P3Ω

∗
∞P

>
3 ) = 0 (8.24)

1

β
(P2Ω

∗
∞P

>
2 − P3Ω

∗
∞P

>
3 ) = 0 (8.25)

1

0.2ν
(P1Ω

∗
∞P

>
1 − P2Ω

∗
∞P

>
2 ) = 0 (8.26)

1

0.01ν
(P1Ω

∗
∞P

>
2 ) = 0 (8.27)

1

0.1ν
(P1Ω

∗
∞P

>
3 ) = 0 (8.28)

1

0.1ν
(P2Ω

∗
∞P

>
3 ) = 0 (8.29)

where ν and β are weighting factors for numerical stability. Note that, theoretically ν, β
should not have any impact of the solution, but practice shows that they are indeed
crucial. The uncertainity of the the matrix K̃K̃> is set by assuming reasonable values in
(Pollefeys et al. 2004) and proved to give good results. The solution is found again by
least squares, performing an SVD to the generated linear system. To prevent numerical
errors, the algorithm (Thormählen et al. 2006) is followed: the value of β in (8.24),(8.25)
is varied exponentially β = 0.1 exp(0.1n) with n = 1 . . . 50. ν is kept fixed at ν = 1. A
total of 50 possible solution are found, and the one that minimizes the criterion from
(Nistér 2001) is considered to be the final solution.
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Once Ω∗∞ is found for the projective reconstruction, it is possible to recover the recti-
fying homography H by knowing Eq. (8.20). So, the decomposition diag(1, 1, 1, 0) =

HΩ∗∞H> can be performed using SVD. Once H is known, cameras and points are
transformed according to:

Pl = P̃lH
−1 (8.30)

Xi = HXi (8.31)

When the camera matrices are transformed by H−1 internal parameters K and the
rotation matrix R can be retrieved by QR-decomposition (Lawson and Hanson 1974),
as well as the camera center C. With this set of parameters, a final refinement on the
found solution is performed using bundle adjustment.

8.1.6.1 Final bundle adjustment

In a metric space, a camera matrix can be written as Pl = Kl [Rl|Tl] with Rl being a
rotation matrix (3 angles), Tl = −RlCl being the rotated center of the camera (3 co-
ordinates) and Kl having two focal lengths and two principal points (4 parameters).
Additionally, the second order radial distortion δl (Weng et al. 1992) is taken into ac-
count, so a total of 3 + 3 + 4 + 1 = 11 parameters are needed for each camera. The
bundle optimization minimizes the following quantity:

min
Kl,Rl,Tl,δ

∑
l

∑
i

D(xil, proj(Xi,Kl,Rl,Tl, δl)) (8.32)

where proj(·) is the (non-linear) projection of the point X taking all the parameters
into account. The solution of this minimization gives a set of parameters for each
camera and an absolute position for all points which can then be represented in depth
maps or point clouds. As an example on the structure recovery represented on point
clouds, Fig. 8.7 shows three examples of reconstructions represented in point clouds.
Although trajectories do not cover the whole video, they are sufficiently dense to be
visualized and to provide a good interpretation of the observed scene. Nevertheless, it
is normally desirable to have dense depth maps for each frame so a depth is available
for each point in the video. To this end, the following section discusses a possible way
to post-process the reconstructed points so as to obtain such dense representations.
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Figure 8.7: Examples of generated point clouds. The first column shows the first image
of the sequence and the two other columns show the point cloud from two different
orientations. Each point is colored by its mean average color over time.

8.1.7 Depth-map post-processing

The only last step to generate depth maps from video sequences is to take non reliable
points from the video into account. Recall that the trajectory tracking algorithm in
Chapter 7 only tracked points which had reliable flow. Thus, depending on the scene
motion, there may be many areas on the image that do not have a trajectory associated
to them, see Fig. 8.8.

After reconstruction, points in frames associated to a trajectory have also an associated
depth. Assuming that the projection of a point X = (X, Y, Z, 1) corresponds to the
image point λx = PX , the absolute depth of the point associated to a camera matrix
P is given by:

depth(X,P) =
λ

|m| (8.33)

wherem = (P31, P32, P33)> is a vector containing the first three coordinates of the third
row of P. m corresponds to the vector marking the direction of the camera and it
is pointing towards the front of the camera, perpendicularly to the image plane (R.
Hartley and Zisserman 2004). Then, for every reconstructed point Xi it is possible to
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Figure 8.8: Example of flow reliability for a particular sequence. The top row shows the
original frame, the middle row shows the forward flow field and the last row shows
the flow reliability. White pixels are reliable pixels. Note that flow is not reliable in
strong depth gradients or in homogeneous zones. The last image is black because
there is no optical flow field.

.

assign its depth at each view where its projection is visible. Since the depth maps still
contain points with unassigned depth, inpainting techniques are used to ’fill the gaps’.

The two most common approaches to inpaint images are (Bertalmio et al. 2000) and
(Telea 2004). Both techniques work similarly, and the only difference is in the way
they update missing information. From an initial image and an inpainting mask
(telling which regions to inpaint) the algorithms proceed iteratively until no pixel is
updated and the inpainting has ended. The former incrementally updates the holes
using a level sets approach combined with anisotropic diffusion (Perona and Malik
1990), while the latter updates each pixel using a weighted neighborhood filter taking
into account the direction of propagation. The main limitation of these works is that
inpainting an image is done using the same image information. Since obtained depth
maps may have large undefined region, inpainting the obtained depth map using only
depth information may lead to an over smoothing of the depth edges. Nevertheless,
if depth information is propagated using also color information, the inpainted depth
map is much more sharp.

In the works of (Dimiccoli 2009) and (Calderero and Caselles 2013) a diffusion filter
is used to propagate depth information using the color image. As the diffusion is
performed using a linear filter, the process may average neighbor depth values, con-
verging when all values are equal to a common depth value. In this thesis, we present
an hybrid approach of inpainting and diffusion techniques. The main idea of the al-
gorithm is to incrementally complete the depth image using color information. This
hybrid approach is based on the iterative process of (Telea 2004), and the steps of the
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Figure 8.9: Depth inpainting example using color information. At the left image the
first frame of a video is shown. The second shows the estimated depth, with brighter
colors assigned to closer pixels. Unassigned depth pixels are black pixels. The third
image corresponds to the mask (white pixels) where depth should be propagated. The
fourth image is the distance transform of the mask. The last image is the inpainted
depth.

algorithm are as follows:

• Perform the distance transform of the mask marking the ’holes’ to be completed

• Order each pixel according to their distance to the boundary of the region to be
inpainted

• Proceeding in increasing distance value for each pixel, find its depth value by a
weighted average using the color image

Fig. 8.9 shows an example of depth inpainting using image color. Note that unreli-
able areas cover large regions on the generated depth image, so classical inpainting
algorithms do not handle well these situations. More formally, the algorithm has as
an input a color image I and an incomplete depth image D where a region Ω (possi-
bly disconnected) needs to be filled with depth values. The region Ω is marked in the
mask M of Fig. 8.9 with white pixels. The algorithm iteratively updates pixels from
the boundary of the region, δΩ, as follows:

D(p ∈ δΩ) =
1

Z(p)

∑
d∈Γ

w(p,d)D(p+ d) (8.34)

where Γ is a circular neighborhood with radius R = 10 pixels. The factor Z(p) is a
normalization and its formal expression is Z(p) =

∑
d∈Γw(p,d). The weights w(p,d)

are defined with a similar technique as for diffusion filters, taking into account color
and distance to the pixel to be updated:

w(p,d) = exp(
|I(p)− I(p+ d)|

γ
) exp(

|d|
R

) (8.35)

where γ = 14 and controls how color difference influece. The averaging. Eq. (8.35)
assigns more weight to close pixels with similar color, while pixels being far away or
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with different color have a low influence in the current update. Each frame is com-
pleted independently, filling all the missing depths on the video. Next section shows
results on the whole process, showing that trajectories obtained from the optical flow
can be a good initialization to a complete depth recovery system.

8.2 Results

In contrast to single images, there is no standard benchmark to compare sequences
structure from motion algorithms. There are many datasets to evaluate either stereo/disparity
or multiview algorithms such as (Seitz et al. 2006). Many of the public benchmarks are
either scenes on controlled environments or synthetic generated data. Since the ap-
proach presented here is a general way to retrieve depth from natural sequences using
only optical flow, it is not specialized for stereo or multiview. Nevertheless, we present
results qualitatively, comparing the estimated depth with state of the art approaches
and with groundtruth disparity over a variety of datasets.

8.2.1 State of the Art Comparison

The proposed algorithm is compared to state of the art algorithm on depth estimation
in video sequences (G. Zhang, Jia, T.-T. Wong, et al. 2009). As there is no standard
dataset to evaluate depth recovery from videos, example results from (G. Zhang, Jia,
T.-T. Wong, et al. 2009) are used for comparison. For the proposed depth estimation,
each sequence is cropped to 7 frames, and optical flow is computed between frame
pairs. The depth recovery uses trajectories estimated within these 7 frames. The ex-
periment setup for (G. Zhang, Jia, T.-T. Wong, et al. 2009) is somewhat different, as all
frames for each sequence were used (about 200) and the CPU time was 3 min/frame.
The running time of the proposed algorithm is under 3 minutes for 7 frames, consider-
ably faster.

Results show that the performance of the system is somewhat similar to the one in the
cited work. Nevertheless, large areas involve unreliable flow information, the inpaint-
ing algorithm has problems filling large regions. Neverthless, the presented approach
achieves comparable depth map quality while improving by far the running time.
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Figure 8.10: Results compared to (G. Zhang, Jia, T.-T. Wong, et al. 2009) on some se-
quences. Each group of two rows correspond to a different sequence. The first four
images of the group correspond to frames of the sequence. Images directly below cor-
respond to results of (G. Zhang, Jia, T.-T. Wong, et al. 2009). The right column shows
the proposed system results. The first row of each group correspond to results without
inpainting, and the row below it to inpainted results.
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8.2.2 Groundtruth Comparison on Stereo

A second comparison is done by estimating depth on stereo sequences (Seitz et al.
2006). Although the stereo problem can be done much more precisely with the con-
straints of the setup (two cameras, aligned horizontally and calibrated), here we show
that using optical flow for stereo problems can also produce good results. Quantitative
evaluation was impossible on the proposed dataset, as the number of views required
for camera calibration were not fulfilled by some sequences on the dataset.

Instead, qualitative results can be seen in Fig. 8.11. The proposed algorithm performs
quite well in most of the cases, although effects of the inpainting algorithm can be seen
at depth edges. On the generated results it can be seen than most structures and depth
gradients are retrieved. If objects are dissimilar in color, inpainting missing depth
values corrects well edges, while if two objects have close colors, some depth values
leak from one object to another (see the second row in Fig. 8.11). Moreover, the over-
smoothness of the optical flow algorithm is observed when many fine detail is present
where these small structures are missed, for example in the sixth and seventh rows. In
overall, the proposed algorithm is able to recover the depth with reasonable precision.

8.2.3 Limitations

The proposed algorithm is, compared to the state of the art, a low-complexity system
able to retrieve absolute depth from video sequences of static backgrounds. The princi-
pal factor that limits the system is the quality of the estimated optical flow. There exist
many high quality optical flow estimation algorithms, but many of them last minutes,
even hours to compute the flow between pairs of frames, as (Sun et al. 2010) for exam-
ple. If the video sequence consists of a few frames, this computation time may add
to several days of optical flow estimation. We choose not to use these approaches but
aim for a faster algorithm (Brox and Malik 2010), while maintaining a good quality on
public benchmarks. Although here it is shown that depth can be recovered only from
flow, the fact that many regions of the image contain not-reliable flow is a caveat for
the algorithm, as inpainting may not work properly with large missing areas.

There are two other factors that may be limiting the system. First, there must exist
some relative movement between the camera and the scene. And second, this move-
ment must be rigid, with no independently moving objects. Future work will be de-
voted to the definition of an algorithm able to recover structure even with the presence
of moving objects.
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Figure 8.11: Examples on multiview stereo sequences. The two right images are the
two reference frames. The central columns show the depth groundtruth, and the left
two columns show the estimated depth. Note that the proposed system performs
reasonably well on most sequences.
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9 Conclusions

The work presented in this manuscript exposed a system which relied only on low
level image cues for image and video segmentation and depth ordering. Regardless
of the simplicity of the cues used to obtain the results, the different proposed algo-
rithms offered results comparable with other approaches which based their reasoning
on higher level information by means of learning. The proposed system shows sev-
eral approaches that were not found in the literature. Several key aspects on BPT con-
struction were addressed throughout the thesis, such as the introduction of T-junction
estimation and optical flow to the BPT construction process.

The proposed BPT merging criteria, either in images and video showed results compa-
rable with state of the art in several public datasets. Formally, the specific contributions
of the segmentation process are:

• The segmentation is carried out using perceptual measures rather than using
only statistical information like many state of the art algorithms use.

• The adaptive 3D-histogram region model was not used before, at least in the
BPT structure, making us able to exploit the channel correlations on the distance
measures.

• The Earth Mover’s Distance, was not found to be exploited for a whole segmen-
tation process though it was used in small image regions and/or image query
applications. Its computational cost is the main factor that discourages its im-
plementation in a whole segmentation system. The proposed histogram region
model allows to implement the EMD as comparison measure between regions
within a reasonable computation time.

• Specifically for video, the concept of ’flow reliability’ is used to create spatio-
temporal consistent segmentations, by exploiting color and motion information
differently than the state of the art approaches.

A quantitative evaluation of the hierarchies and ways to process them using tree cuts
are exposed, showing that optimization methods over the trees do indeed provide
with better quality partition than the usual techniques performed until the date.

Additional contributions are also made in the evaluation process, where two new mea-
sures are proposed to evaluate depth order maps estimates. The proposed framework
is generalizable to problems including detection and classification, and provides an
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intuitive scheme to grasp system results using a single plot, rather than with multi-
ple independent measures for detection and classification respectively. As for depth
ordering, the detailed contributions are

• Push the limits of low-level cue performance for depth ordering.

• Propose a new probabilistic framework to propagate local depth information to
a global depth consistency.

• Two new methods for T-junctions and motion occlusions estimation are pro-
posed in the corresponding sections, showing results comparable to the state
of art.

Although the most important innovations of the system have been commented, the
system may suffer from several limitations, which are commented next.

9.1 Limitations

Projecting a 3D world to a 2D plane has an inherent loss of information which cannot
be recovered completely using a single point of view. Therefore, it is impossible to re-
cover the exact depth map using only image information. Rough depth interpretations
can be computed if additional information is available, such as the type of observed
scene or the type of objects present. This kind of information cannot be retrieved from
within the input image/video, but a high-level learning process should take place us-
ing an external dataset and learning from examples. Therefore, low level cues are
limited to produce an approximation of the current scene structure.

Further limitations of the system are found in the types of monocular depth cues used.
As seen in the corresponding results sections, cues do not always indicate the correct
depth order locally, but a global inference is needed. Many times, this global infer-
ence cannot correct error on low level measures so, incorrect depth orders may be
produced.

Although these are the most characteristic limitations of a monocular depth ordering
system, other weak points may be found in each particular stage of the system. Never-
theless, throughout the thesis we’ve shown that steps taken perform similarly or even
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better than their respective state of the art approaches. By examining the weaknesses
of the system several lines of work open for possible future work.

10 Open Problems and Future Research

The presented results for depth ordering show that with few suppositions, perfor-
mance was similar (often better) to the current state of the art solutions. There are,
however, some improvements that may be presented. Since the system performance
is improved when perfect human segmentation is available, one could think that im-
proving the segmentation process, the overall system performance should increase.
Therefore, maybe some changes in the BPT construction part should be introduced to
achieve such a goal. Other improvements of the system can be:

• The depth region model could allow a flexible surface orientation, having smooth
depth gradients and not only depth discontinuities. Surface orientation may be
estimated with state of the art techniques and further integrated with the occlu-
sion detection.

• Adopting a low-level learning approach to avoid the current system limitations.
Results show that a scene structure learning is a too-ambitious model for the
infinite number of possible situations, but focusing the efforts on a low-level
scheme (such as contours, junctions) could lead to better cue classification.

• Introducing more depth cues. For example, the use of haze, texture gradient,
perspective cues to recover original depth maps could be a good complement to
occlusions cues.

Furthermore, the proposed system could be extended to handle different types of situ-
ations, specially when depth cues are either absent or indicate contradictory informa-
tion. Below two examples of such extensions are presented.

Joining Static depth cues and motion occlusions The most immediate work is to
combine the two types of occlusion cues: static (T-junctions and convexity) with the
dynamic ones (motion occlusions). It is not clear in the literature how humans combine
these kind of cues. Moreover, in this thesis it is shown that motion occlusion work far
better than static cues. Nevertheless, in many real world cases when the camera and
world are static, motion cues are absent and other approaches to estimate depth should
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be proposed. A system which combines the static and dynamic cues used in this thesis
could be a starting point to deal with such cases.

Full depth maps recovery for video sequences If the scene is assumed to be com-
posed of several rigid bodies moving freely, it is possible to recover partially its struc-
ture. When the scene is composed by a single static object, we have shown that it is
possible to recover its structure up to a scale factor. If two or more bodies are present,
it is also possible to recover each individual structure. With the introduction of mo-
tion occlusions, the different objects could be related and a global depth map could be
estimated. A possible scheme for such a system could be:

1. Identify the number of rigid objects N with independent motions in a scene

2. Recover structure parameters for each object

3. Estimate the structure of these objects

4. Arrive at a global depth understanding using occlusions

In this way, it would be possible to combine structure from motion cues and motion
occlusions to provide dense depth maps in most types of image sequences.
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